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Thesis Director: 
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The increasing array of challenges faced by the pharmaceutical industry during 

drug development has led to a push for more efficient manufacturing techniques. With the 

implementation of continuous manufacturing, the importance of process modeling and 

control has become evident, being subject of multiple studies. Dynamic models with fast 

execution speeds are needed for the development of control strategies. Additionally, as 

robust as a control system can be, it is still not possible to ensure that the entirety of a 

production run is within quality specifications. For this reason, strategies for material 

diversion in real time need to be implemented. 

The first part of this work focuses on the modeling of the tablet compaction 

operation. The experimental residence time distribution (RTD) of the tablet compaction 

process is determined through tracer experiments, and the resulting data is used to generate 

and validate an RTD model based on two different approaches. A framework for the 
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development of control relevant dynamic models is then introduced. To exemplify the 

presented framework, a validated dynamic model for the tablet compaction operation is 

created. An in silico study using this model is conducted to evaluate different control 

algorithms and strategies for tablet compaction. One of the evaluated control strategies is 

selected and successfully implemented in a direct compaction pilot plant to demonstrate 

the applicability of the validated model for control strategy development. 

In the second part of this thesis, a framework for the implementation of a material 

diversion system based on RTD is presented. A tablet diversion system is created according 

to the introduced framework, and the proposed diversion system is implemented in a 

commercial control platform, where its functionality is demonstrated using the developed 

RTD model and a simulated input. 
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Chapter 1 : Introduction 

1.1. Literature Review 

In the recent years, the pharmaceutical industry is facing a growing array of 

challenges in new drug product development. With the average cost for the development 

of a new drug surpassing $2.87 billion and a jump in the generic share of prescriptions 

filled from 49% to 91% between 2000 and 2015, the profitability of new drugs has been 

drastically diminished [1], [2]. The increasing cost and market share domination by 

generics, coupled with a reduced effective patent life of new products, higher-regulatory 

constraints, and relatively inefficient quality by testing (QbT) manufacturing paradigm, led 

to an evolving interest in more efficient and automated processing techniques [3], [4]. In 

face of this scenario, several pharmaceutical companies have started a transition from 

batch-based production to continuous processing [5]. Continuous manufacturing has 

presented itself as an attractive alternative with flexibility, and time and cost-saving 

features [6]. Additionally, continuous manufacturing has the advantage of achieving steady 

state quickly in a few minutes, facilitating the implementation of efficient control strategies 

and enabling true quality by design (QbD). 

The concept of QbD, as presented in the ICH Q8 guidance on pharmaceutical 

development, requires manufacturers to demonstrate an understanding on how multiple 

process variables affect the quality of the final product [7], [8]. This entails the ability to 

correlate critical process parameters (CPP) to critical quality attributes (CQA) of each unit 

operations. Even if this relationship is well defined and understood, variations in properties 
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of raw materials can cause deviations in product quality. For this reason, another important 

aspect of QbD is the development of a control strategy that can mitigate the effects that 

process disturbances and variations in raw material properties have in the final product 

quality. 

There have been multiple contributions in the scientific domain of process control 

for the pharmaceutical industry. Generalized strategies and frameworks for the 

implementation of process controls in pharmaceutical processes have been developed [9], 

[10]. The control of individual unit operations such as wet granulation [11]–[13], dry 

granulation [14], [15], feeding and mixing [16], and tablet compaction [17], [18] have been 

studied. The integrated control of continuous processing lines has also been the subject of 

various manuscripts.  Singh et. al. has demonstrated the control of direct compaction and 

roller compaction manufacturing strategies through simulation studies [15], [19], [20]. 

Mesbah et. al. has introduced, in a simulation platform, a model predictive control strategy 

for a fully integrated continuous pharmaceutical manufacturing line, from API 

crystallization to tablet production [21]. Experimental implementations of plan-wide 

control have been achieved by Singh et. al., and Huang and Pla [22]–[24]. 

Most modern control strategies still rely on feedback loops, which take the system 

output into consideration in order to adjust actuators and achieve a desired output response. 

Among feedback control algorithms, model predictive control (MPC) is highlighted here. 

This algorithm is based on an optimization scheme and is inherently capable of dealing 

with multi input multi output (MIMO) systems with interactions and dead times. The 

inclusion of process variable constraints is also possible in MPC due to its optimization-

based nature. These advantages led to its popularization and widespread usage in industry 
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[25]–[27]. Multiple variations of MPC have been developed, including schemes that 

consider model uncertainty and scenario based approaches [28]–[34]. However, despite the 

constant developments in this area in the chemical and petrochemical industries, little effort 

has been done towards the implementation of MPC in pharmaceutical process and more 

specifically, tablet compaction operations [17].  

Although continuous manufacturing has gained attention from the pharmaceutical 

industry as a mean of modernizing production, the implementation of continuous 

particulate processing systems still faces a major challenge related to material and batch 

traceability as well as diversion of out of specification production. Muzzio and Engisch 

have proposed the use of residence time distributions (RTD) for means of material 

traceability [35]. Residence time distributions have thoroughly studied as a classical 

chemical engineering topic, but it was only recently that this concept has been introduced 

in the pharmaceutical industry. 

A review on the applications of RTDs on solid unit operations has been presented 

by Gao et. al. [36]. Continuous mixers have been thoroughly characterized using RTDs in 

previous studies [37]–[40]. Work has also been conducted in the determination of the RTD 

of wet granulation processes [41], [42]. Recently, the mixing profile of granulators has 

been characterized and its RTD has been used for control and material diversion purposes 

[43], [44]. Studies have been conducted in the experimental determination and modeling 

of the RTD of a tablet press feed frame [45], [46]. The approach utilized by the authors 

during the modeling of the mixing profile of the feed frame involved the assumption that 

ideal mixing occurs within the vessel. 
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1.2. Objectives 

This thesis has been carried out in two separate parts. The first part has the objective 

of introducing frameworks for development of validated control relevant models, creation 

of a validated model for the tablet compaction operation and demonstration of an advanced 

control strategy for tablet compaction. The second part of this work will focus on a 

framework for residence time distribution based diversion systems and its implementation. 

Following are the specific objectives of this work: 

1. To determine, model, and validate the residence time distribution to the tablet 

compaction unit and chute assembly. 

2. To present a systematic framework for creating control relevant validated models of 

pharmaceutical unit operations. 

3. To develop a validated model of the tablet press by applying the modeling framework 

presented in Objective 2. 

4. To determine the ideal control algorithm for the compaction process. 

5. To evaluate three different control strategies for the tablet press. 

6. To present a framework for implementation of residence time distribution based 

diversion system 

7. To demonstrate implementation of a residence time distribution based diversion 

system. 
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1.3. Overview of Thesis 

In this thesis, the reader will be walked through the development and, in some 

chapters, implementation of tools and strategies for control and material diversion in a 

continuous direct compaction process. This material should also serve as a base for similar 

efforts in different continuous pharmaceutical manufacturing routes (e.g. dry granulation 

and wet granulation). 

Chapter 2 introduces key concepts required for the full understanding of this work. 

A description of the experimental setup available at Rutgers University as well as 

overviews on the tablet compaction process, feedback control, model predictive control 

(MPC), and residence time distributions is given in this chapter. 

A systematic framework for development of validated models of pharmaceutical 

processes is presented in Chapter 3. Additionally, a model for tablet compaction is 

developed and validated based on experimental data. In Chapter 5, the applicability of this 

model is demonstrated through studies that evaluate different control algorithms and 

control strategies under set point tracking and disturbance rejection scenarios. A 

comparison between the simulated and experimental results for one of the control strategies 

is also presented. 

The residence time distribution (RTD) of a tablet compaction unit is determined 

and modeled in Chapter 3. A novel strategy for accurately sampling tablets in real time is 

presented, and tracer experiments are conducted. Two different modeling approaches are 

evaluated, and their results are validated. The developed RTD model serves as a base to 

demonstrate the implementation of a tablet diversion system in Chapter 6. A framework 
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for the complete implementation of this diversion system is presented in this chapter as 

well. 

Results and discussions from all the previous chapters are agglomerated in Chapter 

7. Finally, Chapter 8 elaborates on conclusions of this work and future perspectives on the 

presented topics. 
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Chapter 2 : Background 

2.1. Continuous Direct Compaction Process 

2.1.1. Process and Pilot Plant Description 

A continuous direct compaction pilot-plant situated at the ERC-SOPS, Rutgers 

University, has been used in this study (Figure 1). The pilot-plant spans an area of 10 x 10 

feet and is built in three levels to take advantage of gravity as the driving force for material 

flow. The top level houses three loss-in-weight feeders (Coperion K-Tron KT20 and 

KT35), with the possibility of expansion, used for introducing excipients and APIs into the 

process in a controlled manner. The middle level is assigned to the de-lumping or milling  

of powders (Quadro Comill), the addition of lubricant to the process (Coperion K-Tron 

KT20), and blending (Glatt GCG-70). The ground floor is designated for compaction (Fette 

1200). The upper and middle levels are connected through flexible connections, while the 

middle and lower levels are connected through a chute, where spectroscopical tools can be 

installed to monitor the process [3], [6]. 
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Figure 1. Continuous direct compaction process. 

The modular design of the pilot-plant allows for quick reconfiguration based on 

experimental requirements, avoiding the need to run the entire plant for specific 

experiments. Multiple configurations have been used throughout this study, demonstrating 

the flexibility of the plant. 

2.1.2. Tablet Compaction 

Tablets are the most widely commercialized pharmaceutical dosage form and are 

manufactured by compacting the formulation using a rotary tablet press. It is estimated that 

more than 70% of the pharmaceutical products sold worldwide are tablets, with an 

approximated market value of over $300 billion dollars per year [47]. The tablet 

compaction process takes place in a series of four main steps: die filling, pre-compression, 

main compression, and ejection. Each of these steps is crucial for a consistent tablet quality, 

hence it is necessary to understand and control them. 
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Consistent and uniform filling of dies is often the rate-limiting factor in the entire 

tablet compaction process [48]. Powder properties and operating parameters play a major 

role in the quality of die filling, having effects on tablet weight and ultimately affecting the 

performance and mechanical properties of the final product [45]. Initially, the formulation 

enters the feed frame through a vertical chute. Once inside the feed frame, two rotating 

blades force the powder into the die. The excess powder in the die is then removed by a 

scraper and the die proceeds to the next compaction stages. The volume of powder fed into 

the die and the density of the bulk powder can be varied according to the tablet filling depth 

and feed frame speed respectively, allowing for accurate control of tablet weight. It is also 

important to acknowledge the presence of powder mixing within the feed frame, which can 

further dampen any upstream fluctuations in blend properties and reduce variations in 

tablet quality. This mixing can be characterized by tradition residence time distribution 

approaches. 

Subsequent to die filling, the powder is subjected to two compression stages. The 

first stage, known as pre-compression, is required to achieve de-aeration of the powder and 

reduce the occurrence of tablet defects, such as capping. The second stage, main 

compression, is when the powder in the die is pressed to its final height, forming the tablet 

through sintering mechanisms. During compression, rotating drums push the punches into 

the die compacting the powder. The distance between the drums determines the height to 

which the powder is compressed (main and pre-compression heights) and this distance can 

be adjusted by changing the vertical position of the bottom drum. Pre and main 

compression forces are measured during these stages, being a function of the fill depth 

divided by the compression height (compression ratio).  
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In the final stage of the tableting operation, a rotating drum pushes the bottom 

punch upwards, forcing the tablet to leave the die. A sensor located under the drum 

measures the force required to eject the tablet. This ejection force is a function of 

composition, amount of lubricant present in the tablet, compression ratios and turret speed, 

being useful in the diagnostics of problems in the final product. 

2.2. Feedback Control 

The transition from batch to continuous processing has increased the opportunities 

for the application of process control in the pharmaceutical industry. Many control systems, 

including on-off control, proportional-integral-derivative (PID) control, and model 

predictive control (MPC), rely on the real time feedback of process variables to generate a 

control action. PID controllers present a vast advantage over on-off control, being more 

flexible and offering fine adjustments in the manipulated variables. A block diagram 

demonstrating a generalized implementation of a PID controller is presented in Figure 2. 

 

Figure 2. Generalized feedback control implementation. 

During operation, the PID controller receives the error between the set point and 

the actual value of the controlled variable. The actuation is then calculated based on the 
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magnitude of the error (proportional action), on integral of the error over time (integral 

action) and on the rate of change of the error (derivative action). The response of the 

process to this actuation is then detected by the sensor and the error is recalculated, closing 

the control loop. 

The PID controller can be represented in different ways. The expanded form of the 

PID controller, which is used in Simulink and Matlab implementations is presented in 

Equation 1. This is well suited for optimization based controller tuning because the gains 

can be used to independently adjust the influence of each control mode. 

 
𝑝(𝑡) = �̅� + 𝐾𝑐𝑒(𝑡) + 𝐾𝐼∫ 𝑒(𝜏)𝑑𝜏

𝑡

0

+ 𝐾𝐷
𝑑𝑒(𝑡)

𝑑𝑡
 (1) 

where 𝑝(𝑡) is the controller output, �̅� is the steady state value of the output, 𝑒(𝑡) is the 

error between set point and actual values, 𝜏 is the dummy variable of integration, and 𝐾𝑐, 

𝐾𝐼 and 𝐾𝐷 are the proportion, integral and derivative tuning parameters, respectively. 

A review on the applications of PID controllers on modern processes has been 

published by Visioli [49]. Applications of this control algorithm in the pharmaceutical field 

have also been studied by multiple authors. Bhaskar et al. has demonstrated the 

implementation of feedback controller on a tablet compaction unit [17]. The performance 

of a PID based control loop on a continuous direct compaction process has been also 

studied [50]. Although PID controllers are a widespread and time-tested solution, a few 

processes might require more advance control algorithms, leading to studies on hybrid and 

MPC based control strategies [20], [23], [51]. 
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2.3. Model Predictive Control 

Model predictive control is an important advanced control technique for difficult 

multivariable control problems [52]. The MPC concept, presented in [53] consists of the 

combination of a linear process model with current process measurements to predict the 

future output of the process for a given number of steps in the future (prediction horizon). 

This combination allows the controller to calculate the optimal control action to be taken 

over the control horizon (number of calculated future control movements) without violating 

any constraints imposed in the process. MPC offers several advantages over traditional 

control methods and few are listed here:  

1. The linear process model captures the interactions between significant process variables. 

2. Transport delays are taken into account by the linear process models. 

3. Smoother control, with less noise propagation can be achieved through MPC. 

4. Constraints on inputs and outputs are considered when performing a control action. 

5. Can efficiently handle multi input multi output (MIMO) control problem 

6. It is easier to tune. 

7. The control calculations can be coordinated to optimize set points.  

These reasons justify the widespread implementation of MPC in critical processes 

such as power plants and oil refineries. Recently, attention has been drawn for the 

implementation of MPC in pharmaceutical processes.  As mentioned in the previous 

section, Singh et al. have developed a hybrid MPC-PID control strategy for direct 
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compaction tablet manufacturing process [20], [23], [51]. Singh et al. have also presented 

a systematic framework for implementation of the MPC into the pilot-plant [19], [20], [23], 

[51]. A hybrid MPC-PID control system has been also proposed for API separation and 

purification process [20], [23], [51]. Nunes de Barros et. al. demonstrated model predictive 

control strategies for the tablet compaction operation, and Bhaskar et. al. have implemented 

these strategies in a pilot plant [17], [54]. Mesbah et. al. studied the use of MPC to control 

both downstream and upstream pharmaceutical manufacturing processes [21]. These 

publications exemplify the multiple applications of MPC in continuous pharmaceutical 

manufacturing. 
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Figure 3. MPC operating principle (adapted from Singh et al., 2013) [20]. 

Adapted with permission from Singh, R., et al. (2013). System-wide hybrid MPC–PID 

control of a continuous pharmaceutical tablet manufacturing process via direct 

compaction. Eur J Pharm Biopharm. 85:1164–1182. Copyright Elsevier.  

2.4. Residence Time Distribution 

Residence time distribution (RTD) is a probability distribution function that 

describes how long a fluid or powder element spends inside a given operation. RTDs are  

used to characterize the mixing that occurs inside a compartment and can be determined 

experimentally through the injection of a tracer material into the process in the form of a 

pulse or a step [20]. The outlet tracer concentration is measured until the effects of the 

injection settle down. In powder processes, these concentration measurements can be 
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recorded online using PAT tools, or samples can be collected for offline measurements. If 

offline measurements are used, it is important to appropriately select the sampling intervals 

to ensure that the samples can be analyzed in a timely manner, while ensuring that enough 

information is collected to accurately represent the residence time distribution of the 

system. This trade-off can be achieved by having a shorter sampling interval initially, when 

high variations in concentration are expected, followed by wider interval when the effects 

of the tracer injection taper off. 

A key aspect to be considered  during the experimental determination of residence 

time distributions is the tracer selection. The addition of tracer should not influence the 

flow properties of the bulk powder while still being readily detectable through analytical 

techniques. Commonly, tracers are inert and completely distinguishable from the bulk 

formulation, but since multicomponent formulations are used in the pharmaceutical 

industry, it is possible to use one of the components of the mixture as a tracer as long as 

changes in concentration do not affect the flow properties of the bulk powder. 

The residence time distribution profile is also heavily dependent on process 

parameters, meaning that it is necessary to experimentally determine a profile for each 

operating condition used during production. The RTD of the tablet press feed frame is 

expected to vary with feed frame speed, tablet production rate (turret speed) and tablet fill 

depth, where the later should have a lesser influence on the process. 

For an ideal pulse tracer injection, the resulting concentration profile has the same 

shape as the residence time distribution. The RTD can be determined by normalizing the 

concentration profile according to Equation 2. 
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𝐸(𝑡) =

𝐶(𝑡) − 𝐶0

∫ (𝐶(𝑡) − 𝐶0)𝑑𝑡
∞ 

𝑡0

 (2) 

Where 𝐶(𝑡) is the tracer concentration in the outlet, 𝑡0 is the injection instant and 𝐶0 is the 

initial tracer concentration before injection. 

Pulse injection experiments are advantageous in situations where an expensive 

tracer is used, since it minimizes the amount of tracer consumed. In powder systems, the 

pulse technique also minimizes the effects of slight differences in flowability between the 

tracer and the bulk formulation. For pulse injection experiments to result in an accurate 

RTD, data should be collected for the entire concentration profile, including its tail. In 

situations where data is not available, the tail can be approximated by an exponential decay 

[35], [55]. Another major downside of this technique is that it relies on a close to 

instantaneous pulse injection, which is not always possible. 

If a close to ideal pulse injection is not feasible, a step injection can be used as an 

alternative. The step injection is also adequate for tracers that can be detected in low 

concentrations. Care must be taken to ensure that the injection of tracer does not affect the 

bulk flow properties of the powder.  This technique results in a curve in the shape of the 

cumulative distribution function (𝐹(𝑡)). The cumulative distribution function can be 

calculated by normalizing the process data according to Equation 3. 

 
𝐹(𝑡) =

𝐶(𝑡) − 𝐶0
𝐶𝑓 − 𝐶0

 (3) 

 



 

 

 
 

17 

Where 𝐶(𝑡) is the tracer concentration profile, 𝐶0 is the initial tracer concentration, 

and 𝐶𝑓 is the final tracer concentration. 

The resulting distribution from both techniques are related according to Equation 

4. 

 
𝐸(𝑡) =

𝑑𝐹(𝑡)

𝑑𝑡
 (4) 

2.5. Control Hardware and Software Integration 

The central piece in the control hardware and software integration is the control 

platform, which serves as a hub for the connection between all the process equipment, 

sensors and software. Multiple communication protocols are commercially available, and 

their usage depends on the equipment being integrated. 

Commonly, spectroscopic tools are operated through their own standalone 

computers, which contain instrument specific software. The software outputs the spectra 

collected at each sampling interval in files of various formats, which can then be accessed 

by other software in the control network via file pooling. Modern PAT tools can also 

communicate directly to the spectral tool through instrument specific drivers. 

Process equipment and traditional sensors can establish communication through 

industrial protocols such as 4-20 mA HART, 0-20 VDC or 0-10 VDC, network protocols 

(Ethernet, TCP/IP), serial connections (RS-232, RS-485), PROFIBUS and OLE for 

Process Control (OPC). Where latter is becoming more common in modern processes due 

to its flexibility and increase in popularity of ethernet based industrial communications. 
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The diagram presented in Figure 4 demonstrates the control network established 

for the experiments conducted in Chapter 3. In this integration, the NIR instrument (Bruker 

Matrix-F FT-NIR) is connected to a laptop dedicated to data acquisition. The data acquired 

through this software is deposited in files located in a shared folder in the control network. 

From this folder, the spectral data is made available to all the members of the network. The 

PAT software (Process Pulse II) reads the spectral files and applies a calibration model to 

the data, generating concentration predictions for the different components of the powder 

blend. These concentration values read by an OPC client (Kepware) which also 

communicates through OPC Data Access (OPC DA) to the tablet press unit and the control 

platform (DeltaV). The controller then reads and interprets all process variables, generating 

actuation signal which are sent to the plant through OPC connections and 24 VDC digital 

signals. A control software (DeltaV Control Studio) allows the user to interact with the 

controller, with the possibility of introducing new control strategies into the system and 

perform open loop actuation on the process. 
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Figure 4. Control hardware and software integration. OPC: OLE for process control; PAT: 

Process analytical technology; LAN: Local area network.  

 

  



 

 

 
 

20 

Chapter 3 : Residence Time Distribution (RTD) Model of 

Tablet Press Feed Frame 

Acknowledgements 

This work is supported by the Glaxo Smith Kline (GSK) and National Science Foundation 

Engineering Research Center on Structured Organic Particulate Systems. 

3.1. Materials and Methods 

The blends used during the feed frame RTD experiments were composed of Lactose 

PH-310 (excipient, Foremost Farms), Acetaminophen (API, Mallinckrodt) and Magnesium 

Stearate (lubricant, Mallinckrodt). Two blends with 9 % and 12 % API loading were pre-

mixed using a V-blender (Patterson-Kelley liquid-solids blender) at 25 revolutions per 

minute for 30 minutes with a layered loading order to ensure that complete mixing is 

achieved. 

Tablet samples for the NIR calibration model development were prepared using a 

single station compaction simulator (Presster) with a target weight of 400 mg, and pre- and 

main compression forces of 3 kN and 12 kN respectively. The compaction experiments 

were conducted using a Fette 1200 tablet press with flat round punches (10mm in diameter) 

and 20 stations. The tablet press was set-up to closely match the compaction profile to 

which the NIR calibration tablets were subjected. The detailed tablet press parameters used 

in this experiment are presented in Table 1. 
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Table 1. Tablet press parameters 

FD (mm) MCH (mm) PCH (mm) PR (tablets/h) FF speed (RPM) 

7.5 3.2 3.91 20,000 40 
FD: Fill depth; MCH: Main compression height; PCH: Pre-compression height; 

PR: Production rate; FF: Feed frame 

 

A Bruker Matrix-F FT-NIR spectrometer was used for the online blend composition 

measurements. The tablet samples were collected, and their API composition was 

measured offline using through an MPA Multi-Purpose Analyzer (Bruker). Reflectance 

spectroscopy was applied for online measurements of blend composition, while 

transmittance spectroscopy was used for tablet measurements. 

3.2. NIR Model Calibration 

The NIR calibration model used to measure concentration of API in the blend was 

developed in an experimental setup which allowed powder to flow with a vertical speed 

similar to the one observed in the plant. The setup consisted of a loss in weight feeder 

which fed powder into a standalone feed frame through a vertical chute. The NIR sensor 

was placed on the chute replicating what is seen in the pilot plant. Accurate control of the 

rotational speed of the feed frame, and consequently flow rate, was achieved by rotating 

the feed frame using a direct current (DC) motor. Calibration spectra for the online PAT 

model were collected for five different blends with API composition ranging from 7 % to 

15 % in weight. 

The offline NIR calibration model for tablets was developed using blends with 

compositions ranging from 8 % to 14 % API. Ten tablets of each concentration level were 
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analyzed and divided into calibration and validation datasets according to Table 2. 

Additionally, ten spectra for an individual calibration tablet were collected to incorporate 

the characteristic noise of the instrument into the calibration model. Figure 5 shows a 

comparison between the reference and predicted API composition values for the validation 

tablets. It is observed that the model predicts the API composition with reasonable accuracy 

with calculated root mean square error of prediction (RMSEP) of 0.093, relative standard 

error of prediction (RSEP) of 0.0069% and bias of 0.00012.  

Table 2. Composition of tablets for model calibration and validation. 

Composition (%w/w) Number of tablets (-) 
APAP Lactose MgSt Calibration Validation 

8 91 1 6 4 
10 89 1 7 3 
12 87 1 7 3 
14 85 1 6 4 
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Figure 5. NIR tablet calibration model validation. 

3.3. Experimental RTD Determination 

3.3.1. Experimental Setup 

Experiments were conducted to determine and validate the residence time 

distribution of a tablet compaction unit. The experimental setup consisted of two loss-in-

weight feeders (Coperion K-Tron KT20 with coarse auger screws) connected to the tablet 

press directly through a vertical chute, where the NIR instrument was installed (Figure 6). 

The feeders were loaded with two different blends with nominal API concentration of 9% 

and 12%, in order to achieve sharp concentration changes.  
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Figure 6. Experimental setup for RTD experiments. 

In these experiments, API was selected as a tracer to minimize variations in flow 

properties. The first experiment involved a step change in API concentration from 12% to 

9%. This step change data will later be used to fit the F(t) curve. In the second experiment, 

a 2-minute-long pulse from 9% to 12% API was injected into the system. This data will 

serve as the validation dataset. Tablets were sampled during the experiments to determine 

the concentration profile at the tablet press output. 

3.3.2. Preliminary Experiments 

Preliminary experiments were conducted to obtain an approximated RTD of the 

tablet compaction unit. A step, in density, was applied to the system by switching from a 

low density blend to a high density blend, where both blends had similar flow properties 
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as the material used in the RTD determination. The response of the system was analyzed 

using a PAT free approach which consisted in the detection of changes in powder density 

through fluctuations in the force required to eject the tablets from the dies. The preliminary 

results aided in the definition of the time at which sampling should be started and ended, 

as well as the sampling rate that should be used during the RTD determination experiments. 

3.3.3. Tablet Sampling Strategy 

As determined per the preliminary experiments, tablets were sampled every 20 

seconds. The sampling for the step and pulse experiments started at 320 seconds and 430 

seconds, respectively, after the disturbance was applied to the system and was ceased 700 

seconds after the last change in the system input. A diversion gate allowed samples to be 

collected at accurate intervals. Each collection lasted 2 seconds, ensuring that at least three 

tablets were collected.  

Each sample was collected in individual numbered bags. The use of the diversion 

gate coupled with the control platform continuous historian allowed the sampling bags to 

be traced to an exact time instant. Spectral data from the incoming powder blend was 

collected online while the tablet concentration was measured offline after the experiments.  

3.4. Residence Time Distribution Models 

3.4.1. Tank-in-Series Model 

Multiple models are available for characterizing the mixing of systems. According 

to the study conducted by Mateo-Ortiz & Méndez, the feed frame of a tablet press should 

behave as a close to ideal constantly stirred tank reactor (CSTR) [46]. However, Engisch 
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& Muzzio have suggested that powder systems can be modeled using a series of CSTRs 

[35]. This model can be fitted in two different ways. In the first one, the mean residence 

time (MRT) and the number of tanks in the model are the fitted variables. In the second 

method, the MRT is calculated from experimental data and the only fitted variable is the 

number of tanks. For this study, a tank-in-series model followed by a plug flow reactor 

(PFR) has been used to characterize the RTD of the tablet press, where the TIS portion 

represents the feed frame and the PFR portion represents the pipes and turret of the tablet 

press. The mean residence time of the TIS and PFR models, as well as the number of tanks 

have been optimized to fit the experimental data. 

The tank-in-series model approximates the RTD of a system as a series of equally 

sized CSTRs, resulting in a realistic mixing description. The number of tanks is an integer 

varying from 1 to infinity, and a larger number of tank results in a narrower RTD, tending 

to a plug flow reactor with no axial mixing (PFR) as the number of tanks tends to infinity. 

The generalized tank-in-series model followed by a PFR is presented in Equation 5. 

 𝐸(𝑡) = {

0                         , 𝑡 < 𝜏𝑃𝐹𝑅
𝑡𝑛−1

(𝑛 − 1)! (
𝜏𝑇𝐼𝑆
𝑛 )

𝑛  𝑒
(−

𝑛𝑡
𝜏𝑇𝐼𝑆

)
, 𝑡 ≥ 𝜏𝑃𝐹𝑅 (5) 

where 𝜏𝑇𝐼𝑆 and 𝜏𝑃𝐹𝑅 are the mean residence times of the TIS and PFR models 

respectively, 𝐸(𝑡) is the residence time distribution of the system, and 𝑛 is the number of 

tanks in the TIS model. 
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3.4.2. Dispersion Model 

The axial dispersion model describes the RTD of the feed frame as an ideal plug 

flow within a tube superimposed by a diffusion term resulting in a system characterized by 

back mixing [36], [56]. This model has a similar fitting procedure as the tank in series 

model with the only difference being the fact that the main fitted parameter of the 

dispersion model is the Peclet number (𝑃𝑒), which represents the ratio between convective 

and diffuse transport. The dispersion RTD function for open-open boundaries as developed 

by Taylor is presented in Equation 6 [57]. As the Peclet number tends to infinity, the 

behavior of the system approaches an ideal plug flow reactor, where no axial dispersion is 

present. 

 𝐸(𝑡) =

{
 

 
0                         , 𝑡 < 𝜏𝑃𝐹𝑅
1

2√
𝜋𝜏𝑡
𝑃𝑒

𝑒−
𝑃𝑒(𝜏−𝑡)2

4𝜏𝑡 , 𝑡 ≥ 𝜏𝑃𝐹𝑅 (6) 

where 𝜏 is the mean residence time, 𝜏𝑃𝐹𝑅 is the system dead time, and 𝑃𝑒 is the Peclet 

number. 

 

3.5. RTD Modeling Toolbox 

A toolbox to has been created in Matlab to facilitate the fitting of residence time 

distribution models to a new set of experiments. The procedure is composed of three major 

scripts: raw data preprocessing, the model fitting function, and RTD model function. A 
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diagram with the overall functionality of the toolbox is presented in Figure 7. A detailed 

description of each step in the process will be provided in the following sections. 

 

Figure 7. RTD toolbox overview 

3.5.1.  Raw Data Preprocessing 

The raw process data is extracted from the control system in the form of a 

spreadsheet containing the value of each process variable and their respective timestamps. 

The first step in preprocessing is to convert the excel spreadsheet into a Matlab data table. 

The timestamps from the data table are then converted from absolute to relative time, 

elapsed in seconds from the beginning of the tracer experiment. Once the timestamps are 
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converted, individual timeseries are created for each data stream and these timeseries are 

stored in a timeseries collection object. 

Data incoming from the offline NIR analysis of the tablets is originally organized 

in a spreadsheet and each datapoint is correspondent to a tablet sample. Timestamps are 

attributed to each datapoint based on their sampling instant according to the procedure 

described in Section 3.3.3. 

3.5.2. Model Fitting Function 

The preprocessed data is loaded in a Matlab script and inputted in the model fitting 

function along with the initial guesses for the parameters and their feasible ranges. Two 

distinct model fitting functions can be used depending on the nature of the model 

parameters. If all parameters are continuous, a built-in minimization algorithm is used to 

fit the model by minimizing the sum of the squared error between the experimental data 

and model prediction. If at least one of the parameters is discrete (e.g. number of tanks), 

the function iterates through all the possible discrete values within a user defined range 

while fitting the continuous parameters at each point. The performance of the fitted models 

is then compared and the best performing discrete point is selected. Performance metrics 

,and the cumulative RTD response are also computed in the model fitting function and 

returned to the user. 

The fminsearchbnd function built into Matlab was used to achieve the 

minimizations [58]. The sum of the squared error (SSE) between the experimental and 

model values was selected as the cost function of the minimization (Equation 7).  
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 𝑆𝑆𝐸 = 𝑚𝑖𝑛∑(𝐸(𝑡)𝑒𝑥𝑝 − 𝐸(𝑡)𝑚𝑜𝑑𝑒𝑙)
2

 (7) 

where 𝑆𝑆𝐸 is the sum of the squared errors, 𝐸(𝑡)𝑒𝑥𝑝 is the experimental residence 

time distribution and 𝐸(𝑡)𝑚𝑜𝑑𝑒𝑙 is the fitted residence time distribution. 

 

3.5.3. RTD Model 

Each RTD model involves two functions, one used for parameter fitting and another 

used for the computation of the CRTD curve. The minimization routine used to fit the 

continuous model parameters requires the specification of a function that returns the error 

between the predicted and experimental RTD. This function takes the model parameters as 

inputs and uses Equations 5 and 6 to calculate the simulated 𝐸(𝑡) curve, which is then 

integrated resulting in the predicted CRTD of the system. The CRTD is then compared 

with the experimental values to compute the sum of the squared errors of the model. 

Similarly, a second function is also created to generate and return the CRTD of the system 

when the model inputs are known.  
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Chapter 4 : Development of Validated Tablet Press Model 
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4.1. Materials and Methods 

The experiments conducted in this chapter were based on a blend with a 

composition of 89% lactose monohydrate 310 (excipient), 9% semi-fine acetaminophen 
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(API) and 1% magnesium stearate (lubricant). The materials were loaded in Glatt container 

blender in a layered loading order and the blender was run at 25 revolutions per minute 

(RPM) for 30 minutes. Multiple individual batches of 7 kilograms were prepared. 

To obtain dynamic information about the process variables, open loop experiments 

consisting of a series of step changes were conducted in the tablet compaction unit 

operation. The parameters presented in  

Table 3, and the ranges of these step changes were defined based on operational 

constraints and previous knowledge of the process. This data was used in the development 

and validation of the simulation tool.  

 

Table 3. Key tablet press parameters [54]. 

Parameter Availability Value 

Production rate Set point & actual 8,000 – 20,000 

tablets/h 

Turret speed Actual Dependent on 

production rate 

Feed frame speed Set point & actual 30 rpm 

Main compression force Set point & actual Controlled 

Pre-compression force Actual Controlled 

Main compression height Set point & actual Manipulated 

Pre-compression height Set point & actual 4.05 mm 

Fill depth Set point & actual Manipulated 
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The modeling and simulations presented in this chapter were conducted in the 

Matlab and Simulink environment. The Parameter Estimation Toolbox, which is built into 

Matlab was used for regression of the dynamic models. 

4.2. Systematic Modelling Framework for Pharmaceutical Process Control 

System Design 

The modeling of the tablet compaction process followed a systematic framework 

presented in Figure 8. This framework is generalized can be used as a guideline for the 

development of control relevant models in the future. 
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Figure 8. Systematic modeling framework. DOE: Design of experiments [54]. 

Initially, the overall structure of the model is conceptualized, and the relevant inputs 

and outputs, as well as, intermediate process variables are identified. Once the model has 

been conceptualized, its structure is implemented in the simulation platform of choice 

(Simulink). The structure of the model is dependent on the interaction between different 

process variables and the availability of data for each of these variables. Multiple modeling 

approaches can be used in this step, including differential equations, state-space equations, 

transfer functions, and a combination of dynamic and static models. 

An experimental plan is then designed and executed to ensure that dynamic 

information rich data is collected. A key aspect to be considered in this step is the possible 

presence of non-linearities in the process. These non-linearities can be identified and 
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characterized through the analysis of step responses at varied operating conditions. 

Different step responses for the same step change at different ranges are a strong indicator 

of non-linearities. The data generated from the experiments is collected through the control 

platform’s continuous historian and stored in an SQL database. Once in the SQL database, 

the data can be retrieved through a spreadsheet and preprocessed using Matlab. During 

preprocessing, the raw data is organized according to each individual experiment and the 

absolute timestamps are converted to relative time from the start of the experiment. 

Models relating each variable pair are regressed individually to closely match 

experimental data, and the fitting procedure varies according to the nature of the model 

being implemented. Transfer functions representing the dynamic behavior of the system 

are fitted using Matlab’s Parameter Estimation Toolbox. During this procedure, the transfer 

function parameters are optimized through the Nelder Mead simplex algorithm to minimize 

the sum of the squared error between the experimental data and the transfer function output 

[33]. The steady state models implemented in this work consisted of polynomial equations 

and were regressed using Matlab’s polynomial fitting functionality (polyfit). 

Each model is then individually validated, and if the performance of the model is 

not satisfactory, the fitting procedure is repeated. Individual validations are followed by 

the performance evaluation of the full integrated model. If the integrated model does not 

meet the desired performance standards, its structure is modified, and the fitting is repeated. 

New experiments can be performed if additional data is required for the fitting of the 

modified structure. The coefficient of determination (R2) was the performance metric used 

to evaluate both the integrated and individual models. Models with a R2 value bigger than 

0.9 were considered satisfactory. 
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4.3. Model Structure 

4.3.1. Transfer Functions 

Transfer functions are algebraic expression that describe the dynamic relationship 

between an input and an output variable [52]. These expressions offer a compact form of 

representing a model and were selected as the main modeling strategy for this work due to 

their ease of implementation, interpretation, and solution using Simulink. The model 

developed in this study consists of a series of low order transfer functions arranged to 

represent a multiple input, multiple output (MIMO) tablet compaction process. The 

dynamic behavior of each input-output variable pair was represented by either a first order 

or second order transfer function depending on its characteristic response and the value of 

the regression coefficient (R2) for the different order transfer functions. A first order 

transfer function was always preferred if its performance was satisfactory. The general 

form of the transfer function implemented in this work is presented in Equation 8. First 

order transfer functions can be obtained from this Equation 8 by setting the value of 𝜏1 to 

zero. 

 𝑌(𝑠)

𝑈(𝑠)
=

𝐾

𝜏1𝑠2 + 𝜏2𝑠 + 1
 (8) 

where 𝑈(𝑠) and 𝑌(𝑠) are the input and output signals, respectively, 𝐾 is process 

gain, and 𝜏𝑖 are the time constants. The values of the transfer function parameters are fitted 

to minimize the difference between the simulated and the experimental data. The fitting 

procedure is described in detail in Section 4.5. 
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4.3.2. Variable Transport Delays 

An accurate representation of transport delays is necessary when building a control 

relevant model since they can heavily influence controller tuning parameters, adversely 

affecting control loop stability [52]. Variable delays are observed in tablet compaction due 

to the characteristic nature of this process. These delays consist of two fractions as seen in 

Equation 9. The first fraction is related to the sensing method and has a constant value, 

while the second fraction is inherent of the process itself and is dependent on process 

variables such as turret speed and number of dies in the tablet press. This fraction varies 

according to Equation 10. 

 𝜃 = 𝜃𝑠 + 𝜃𝑝(𝜔) (9) 

 
𝜃𝑝(𝜔) =

60 𝛥𝑛𝑝

𝜔 𝑛𝑝
 (10) 

where  𝜃𝑠 is the sensor time delay, 𝜃𝑝(𝜔) is the process time delay, 𝜃 is the overall 

time delay, 𝜔 is turret speed, Δ𝑛𝑝 is the number of dies between actuation and sensing, and 

𝑛𝑝 is the total number of dies in the tablet press. 

4.4. Nonlinear Force Behavior 

Main and pre-compression forces are the main variables that need to be controlled 

during compaction as they directly relate to tablet breaking force and can be made to affect 

tablet weight. Information about the nonlinear correlation between tablet tensile strength 

and compaction force has been previously described in the literature [59]. A relation 
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between compaction pressure and volume has been described by Kawakita [60]. In this 

work empirical correlations between compression forces and the ratios of the fill depth and 

compression heights have been developed. The nonlinearity has been introduced in the 

dynamic model of the tablet press and is of extreme importance for process control. If the 

nonlinearities of a system are not properly accounted for during control strategy 

development, the resulting controller will only be stable only in a very narrow operational 

range. 

Experiments have been conducted to analyze how the compression forces are 

affected by the compression ratios, defined as the ratio between fill depth and compression 

height. The steady state values of the forces were plotted against their respective 

compression ratios (Figure 9).  
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Figure 9. Nonlinear main compression force behavior [54]. 

As expected, a nonlinear trend was observed for both pre and main compression 

forces. Two different empirical equations, exponential and a second order polynomial, 

were fitted to the data and the latter yielded a better fit. The form of the fitted equation is 

show below (Equation 11). 

 𝐹 = 𝑎1𝑟
2 + 𝑎2𝑟 + 𝑎3 (11) 
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where 𝑟 is the ratio of fill depth and compression height, 𝐹 is the compaction force, 

and 𝑎𝑖 are the polynomial coefficients of the model. The numerical values of these 

constants are provided in Section 7.4.2. 

This approach allows the model to represent the dependence of one output variable 

on two input variables through a single equation. It is important to notice that only steady 

state data was used to fit these empirical relations. These relations only provide non-

dynamic information of the systems. In order to capture the dynamic behavior of the 

system, these polynomials must be and preceded by a transfer function with unitary gain. 

4.5. Model Regression 

4.5.1. Linear Models 

Prior to fitting, all the model inputs, outputs, and intermediate variables were 

identified through analysis of historical process data. Following this identification, transfer 

functions were created to relate these variables. The parameters for each individual transfer 

function were fitted using a combination of Matlab, Simulink, and the Parameter 

Estimation Toolbox. Initially, experimental data for each input-output pair was loaded into 

the Matlab workspace. A Simulink model containing a parameterized transfer function 

(Equation 8) followed by a transport delay was then loaded and the Parameter Estimation 

Toolbox is opened. The fitting procedure takes place using this toolbox, which minimizes 

a user selected cost function by varying the length of the transport delay and the parameters 

of the transfer function trough built in optimization algorithms. For this work, the Trust-

Region-Reflexive algorithm with a sum of the squared errors cost function was selected 

for dynamic model fitting. 
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It is important to note that when using transfer functions to represent the dynamics 

of nonlinear processes, the transfer function parameters are only valid around the 

operational range at which they were fitted. Pre- and main compression force transfer 

functions were fitted in ranges of 1.4-3.2 kN and 5-12 kN respectively. 

4.5.2. Nonlinear Models 

A two-step fitting procedure has been used to model the relation between the 

compression ratios and the compression forces, as well as the relation between tablet 

breaking force and main compression ratio. Initially, the polynomials were fitted based on 

steady state data. Following this, a Simulink model containing a polynomial equation 

followed by a parametrized transfer function with unitary gain and a transport delay was 

loaded. The dynamic parameters of this model were then fitted according to the procedure 

described in the section above. 

4.6. Model Implementation 

A flexible process model was developed using Simulink, allowing virtual 

experiments to be conducted in a simple and quick manner, while reducing material usage 

and costs. Key input and output parameters are available for manipulation and monitoring 

in the model, creating a similar environment as the on seen in the tablet press. The model 

structure was developed in such way to allow the user to access each individual step of the 

tableting operations, resulting in a model that is divided in five modules. The first four 

modules capture the behavior of the mechanical actuators, pre-compression stage, main 

compression stage and tablet CQAs. The fifth module represents the tablet diversion 

system. The Simulink flowsheet is organized using subsystem masks to facilitate the 
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understanding of the implementation. An overview of the implementation is presented in 

Figure 10. Four main modules and snapshots of their implementation can be seen in the 

image. 

 

Figure 10. Model implementation overview [54]. 

4.6.1. Actuators Module 

The actuators module is composed of a series of transfer function relating the set 

point and actual values for the actuators of the tablet press. Fill depth, pre-compression 

height and main compression height actuators were modeled according to first order 

dynamics, while a second order transfer function was used to represent the production rate 

actuator. Turret speed is also calculated in this module based on the actual production rate 
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(𝑃𝑅) value using Equation 12. The fitted parameters for the actuator models are given in 

Table 4. 

 
𝜔 =

1000𝑃𝑅

60𝑁𝑝
 (12) 

where turret speed (𝜔) is given in rotations per minute, production rate is given in 

thousands of tablets per hour and 𝑁𝑝 is the total number of punches in the press. 

Table 4. Model parameters — Actuators 

Model Inputs Model Outputs 
Model Details   

R2 
Order τ1 (s) τ2 (s) θ (s) Gain 

Fill depth set point Fill depth 1 1.0694 - 5.4986 1 0.9966 

Main compression 

height set point 

Main compression 

height 
1 0.1658 - 5.3616 1 0.9973 

Pre-compression 

height set point 

Pre-compression 

height 
1 0.1658 - 5.3616 1 0.9973 

Production rate 

set point 
Production rate 2 0.9 0.9968 8 1 0.9824 

 

4.6.2. Compression Modules 

To accurately represent the behavior of the compression forces their interaction 

with fill depth, compression heights, production rate and blend density were modeled. It 

was recognized that compression forces are affected by a combination of the amount of 

powder filled into the die and the height to which the powder is compressed. This 

combination was captured by relating the compression forces to the ratios between fill 

depth and compression heights. The interactions between the production rate and the 

compression forces were modeled using a second order transfer function followed by a 
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constant transport delay. The response of the production rate model was added to the 

response of the nonlinear compression model. An important remark is the fact that the 

polynomial equation that was used in the nonlinear compression was fitted against absolute 

values of compression ratio. Since the input variables of this model are deviation variables, 

it is important to convert them to absolute values before computing the polynomial 

calculation. A methodology to capture variations in density was also added to this model. 

Changes in powder density result in variations on the amount of powder being fed into the 

die. This behavior can be captured by linear changes in fill depth as a function of density. 

The modified fill depth calculation is presented in Equation 13. 

 𝐹𝐷∗ =
𝜌

𝜌𝑟𝑒𝑓
𝐹𝐷 (13) 

where 𝐹𝐷∗ is the modified fill depth value, 𝐹𝐷 is the actual fill depth, 𝜌 is the 

powder bulk density in the feed frame and 𝜌𝑟𝑒𝑓 is the reference value of bulk density at 

which the polynomial coefficients of Equation 13 were fitted. 

Compression force models were developed to capture the effects of fill depth, 

compression heights, production rate and blend density on the compression forces. Table 

5 summarizes the details and parameters of the transfer function models for critical process 

parameters. Table 6 presents the polynomial coefficients from Equation 11 fitted to the 

experimental compression force data. 
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Table 5. Model parameters — Critical process parameters 

Model 

Inputs 

Model 

Outputs 

Model Details 

Order τ1(s) τ2(s) Θmax(s) Gain R2 

Pre-

compressi

on ratio 

Pre-

compressi

on force 

1 2.5058 - 12.5 1 0.9680 

Main 

compressi

on ratio 

Main 

compressi

on force 

1 3.4244 - 15 1 0.9659 

 

Table 6. Model parameters — Polynomial coefficients 

Polynomial 

Constants 

Pre-

compression 

Force (−) 

Main 

Compression 

Force (−) 

a1 80.92 55.97 

a2 −219.40 −150.34 

a3 149.83 101.98 

 

4.6.3. Critical Quality Attributes Module 

The critical quality attributes module calculates tablet weight and breaking force 

based on fill depth, density, compression forces and turret speed. Tablet weight was 

modeled using a first order transfer function with unitary gain followed by the weight 

calculation described in Equation 14 and a variable transport delay. It is important to notice 

that the transfer function used to model the tablet weight behavior also incorporates the 

dynamics of the tablet weight measurement technique. 

 𝑊 = 𝐴𝑝𝜌𝐹𝐷 (14) 
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where 𝑊 is the tablet weight, 𝐴𝑝 is the area of the punch, 𝜌 is the powder bulk 

density in the feed frame and 𝐹𝐷 is the fill depth. 

Tablet breaking force is calculated using a polynomial relationship between the 

breaking force and main compression ratio followed by a variable transport delay. Effects 

of density variations on tablet breaking force were modeled using the modified fill depth 

approach presented in Section 4.6.2. Since no dynamic data was available for tablet 

breaking force, the models were based on the main compression ratio dynamics. A fixed 

transport delay was used to model and represent the hypothetical behavior of a tablet 

breaking force sensor. 

The fitted coefficients used in the tablet breaking force model were 𝑎1  =

 258.8846, 𝑎2  =  −695.3997 and 𝑎3  =  468.2229. The resulting transfer function 

model used to represent tablet weight has a gain dependent of the powder density and punch 

geometry, with a first order time constant of 6.5 s and a transport delay of 12 s. 

 

4.6.4. Tablet Diversion Module 

A module representing the tablet diversion system was also developed. This module 

quantifies the total number of tablets produced during the simulation as well as the number 

of tablets inside and outside specifications. The total production is computed through the 

integration of the production rate over time. The good production is obtained by 

multiplying the production rate signal by a series of logic signals coming from relay block 

and then integrating this overall signal over time. The relay blocks output a value of 1 (true) 

if the tablets are within specification and a value of 0 (false) if tablets are outside 
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specification. Each relay block analyzes one specific critical quality attribute (weight, 

hardness and API potency). The bad production is calculated by simply subtracting the 

good production from the total production. 
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5.1. Materials and Methods 

Controller tuning, and closed loop experiments performed in this chapter were 

based on the same formulation described in Chapter 3. Matlab and Simulink were used as 

the simulation platform for the control system evaluation through virtual experiments. Two 

built-in Matlab toolboxes, Control System Toolbox and MPC Toolbox, were used 

throughout this chapter for design of control strategies. 

5.2. Controller Tuning and Implementation 

Both controller tuning methods presented in this section make use of a linearized 

process model. The linearization point at which the controllers were tuned are given in 

Table 1. 

Table 7. Linearization points for controller tuning 

Variable 
MCF 
(kN) 

PCF 
(kN) 

Tablet weight 
(mg) 

Tablet breaking 
force (kN) 

Linearization point 10 5 400 40 

MCF: Main compression force; PCF: Pre-compression force 

 

5.2.1. Tuning and Implementation of PI Controller 

The PI controller implemented in this work was tuned according to the modified 

SIMC method presented by Skogestad [61]. This method consists of a rule based tuning 

approach that considers both controller performance and robustness. One of the advantages 
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of the SIMC method is that only one parameter (𝜏𝑐) needs to be adjusted. Lower 𝜏𝑐 values 

lead to a tighter controller with better performance. On the other hand, controllers tuned 

with higher values of 𝜏𝑐 are smoother and more robust. The value of  𝜏𝑐 = 21.03 ≅ 𝜃 was 

used to tune the only PI controller implemented in this Chapter, yielding the following 

tuning parameters: 𝐾𝑐 = 0.0204 and 𝜏𝐼 = 0.0019. The selected value of 𝜏𝑐 followed the 

guidelines recommended by Skogestad as the tightest value that maintains a smooth 

control. 

The implementation was achieved in Simulink using the PID block. When a linear 

control algorithm such as PI is used to control nonlinear processes, it is necessary to ensure 

that the process is within the controller operational range before close loop operation is 

started. For this reason, a Switch block was placed before the controller block allowing the 

transition from open loop operation to closed loop operation to take place once the 

operational range is reached. The signal coming from the Switch block is connected to the 

PID block tracking signal (TR). This signal is used by the controller to cancel out any 

action taken by the controller during open loop operation. Back-calculation was selected 

as the anti-windup method, avoiding saturation of the integral action when the output of 

the controller is constrained.  

5.2.2. Tuning and Implementation of MPC 

Model predictive control uses a linearized process model to make predictions of the 

future states of a multiple input-multiple output system (MIMO). An important aspect 

when developing an MPC is the generation of a linear model that can accurately represent 

the process behavior at an operational point. 
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Pre-compression and main compression forces are two of the controlled variables 

evaluated in this section which are nonlinear in nature. This nonlinearity is described in 

Section 4.4 and can be characterized by a transfer function with a gain that is dependent on 

the compression ratio being applied to the system at a given instant. Upon differentiation 

of Equation 11 it is possible to obtain the gain of this transfer function at any operational 

point (Equation 15). 

 
𝑘(𝑟) =

𝑑

𝑑𝑟
(𝑎1𝑟

2 + 𝑎2𝑟 + 𝑎3)        𝑎𝑡 𝑟 = 𝑅 (15) 

 

where 𝑅 is the value of the compression ratio where the system is linearized, and 𝑘 is the 

gain of the system. 

 The transfer function containing this linearized gain and the previously regressed 

time constants is then used to replace the nonlinear Simulink model. The order of the Pade 

approximation for all transport delays is set to 30. The inbuilt MPC controller design 

toolbox is then used to generate a controller containing finite impulse response (FIR) model 

of the system. The value of control horizon, prediction horizon, penalty on move, and 

penalty on error of the controller can be adjusted during this step. In order for the controller 

to be able to handle unmeasured disturbances, an integrated white noise model can be 

added to the system. Table 8 presents the tuning parameters for all the MPC controllers 

used in this Chapter. 
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Table 8. MPC tuning parameters 

Controller 
Ts 

(s) 

P 

(Samples) 

M 

(Samples) 

Output Weight Input Rate Weight 

CV 1 (-) CV 2 (-) MV 1 (-) MV 2 (-) 

MCF 1 40 2 1 - 0.1 - 

Strategy 1 1 25 2 0.135 0.135 0.739 0.739 

Strategy 2—Master 4 20 2 1 1 0.1 0.1 

Strategy 2—Slave 1 25 2 0.135 0.135 0.739 0.739 

Strategy 3—Master 4 20 2 1 1 0.1 0.1 

Strategy 3—Slave 4 20 2 1 - 0.1 - 

Ts: Sampling time, P: Prediction horizon, M: Control horizon, CV: Controlled variable, MV: Manipulated variable 

 

Key configurations were necessary to ensure the proper operation of the MPC block 

in Simulink. Similar to what was done for the PID controller, a switch was added to allow 

the transition from open to closed loop operation, with the only difference that the signal 

from the switch was sent to the controller block through the MV target port. It was also 

necessary to set the order of the Pade approximation of the transport delays to 30. 

5.3. Design and Evaluation of Control Systems 

Three different control strategies were developed and evaluated with the goal of 

ensuring that the critical quality attributes of the tablet compaction process were 

maintained at their desired values. These strategies were evaluated under two different 

scenarios, which consisted of a set point tracking experiment and a disturbance rejection 

experiment, where variations in powder density were used as an unmeasured disturbance. 

The variations in density applied to the system had the form of a white noise disturbance, 

followed by a ramp disturbance and a step change (Figure 11). 
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Figure 11. Density variations for disturbance rejection. 

5.3.1. Strategy 1 – Simultaneous Control of Pre- and Main Compression Forces 

A control strategy for simultaneously controlling pre- and main compression forces 

through fill depth and main compression height using a MIMO MPC has been evaluated. 

From a review of the mechanisms behind the compression process, it has been postulated 

that tablet weight and breaking force can be indirectly controlled through the pre- and main 

compression forces, respectively, using this strategy. This strategy was also implemented 

in the pilot plant. The experimental implementation was used to validate the applicability 

of the developed model.  
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Currently, it is not feasible to measure tablet weight and hardness in real time with 

enough precision to allow strategies 2 and 3 to be implemented in the pilot plant. For this 

reason, these strategies were only evaluated in a simulation environment. 

5.3.2. Strategy 2 – Cascade Control of Weight and Tablet Breaking Force 

If sensors for both tablet weight and breaking force are available, it is possible to 

control these variables using a cascade arrangement, where the slave controller uses the 

strategy described in Section 5.3.1. The master controller provides the pre- and main 

compression force set points to the slave controller in order to track the tablet weight and 

breaking force. The performance of this strategy is heavily dependent on the sampling rate 

of the sensors. 

5.3.3. Strategy 3 – Direct Control of Weight and Tablet Breaking Force 

The possibility of controlling tablet weight directly through fill depth and tablet 

breaking force in a cascade arrangement might be desired if a fast sensor for tablet weight 

is available. Such sensor has been previously developed and implemented as a proof of 

concept in a previous work [17]. This strategy consists of a SISO MPC for main 

compression for which actuates on the ratio between fill depth and main compression 

height. This is used to calculate main compression height based on fill depth values, thus 

minimizing the variations in main compression force cause by changes in fill depth. A 

secondary MPC is used to control tablet weight and breaking force through manipulations 

in fill depth and main compression force setpoint. 
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Chapter 6 : Framework for Implementation of Residence Time 

Distribution Based Diversion System 
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6.1. RTD Based Diversion System 

Tablets have been traditionally classified as good (within specifications) or bad (out 

of specifications) based on offline measurements of representative samples. Several assays 

based on tablet samples are necessary to ensure product quality and must be satisfied before 

releasing the tablets into the market. However, there are no methods and tools available 

that can be used for real time assurance of tablet quality. Recently, the use of spectroscopic 

tools for the real-time monitoring of blend and tablet composition has increased in 

popularity [62]. Although NIR measurements have proven suitable for online monitoring 

of blend composition, monitoring of tablet composition is still not reliable or fast enough 

for real-time diversion applications. Blend composition measurements prior to the 

compaction operation can yield accurate results and are a common practice in continuous 

manufacturing, but a framework describing how to proceed in case the blend composition 

is out of specification has not yet been established. 

The logical solution to this problem would be to detect if the incoming blend is out 

of specification and simply reject tablets after a pre-determined time delay. This solution 
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would ensure that all tablets containing the out of specification blend are appropriately 

rejected, but it could also result in the rejection of tablets that are within specification. To 

overcome this issue, a methodology for tablet rejection based on the real-time prediction 

of API concentration in tablets using RTD approach has been developed [63]. Figure 12 

presents the main concept of RTD based control system, where the input and the residence 

time distribution of the system are used to predict the API concentration in tablets. The 

tablets are diverted based on this predicted concertation. In this work, the RTD based 

diversion methodology has been implemented in a direct compaction pilot plant.  
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Figure 12. RTD based diversion methodology. The area highlighted in green represents the 

diverted tablets. 

6.2. Systematic Framework for Implementation of RTD based Diversion 

System 

A systematic framework has been developed to guide future implementations of 

diversion systems based on RTDs. This framework has been generalized to be implemented 

around any set of unit operations.  
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Figure 13. Systematic framework for implementation of RTD diversion system. 

It is known that the residence time distribution of a system is characteristic of its 

unit operations. Hence, the plant setup needs to be defined before any RTD determination 

efforts occur. Even slight changes in setup of the plant can have a strong influence on the 

RTD of the system (e.g. using a chute with larger dimensions can completely change the 

RTD). It is also important to establish the type and location of the PAT sensors. Once the 

plant configuration is fixed, the boundaries of the rejection system must be defined. The 

downstream boundary should be chosen based on the closest location, downstream of the 

unit operation producing undesirable products, where the diversion gate can be installed. 

The upstream boundary is dependent on the closest PAT sensor upstream of the unit 

operation. 

The installation of the diversion gate and its integration with the control system 

starts with the definition of the kind of actuation used to operate the gate. Most 

commercially available systems have either electric or pneumatic actuation. Both systems 

make use of a solenoid operated through a relay controlled by the control system, with the 

only difference that the pneumatic gates also require a compressed air line. Once the gate 
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is installed, it is necessary to understand any transport delays between the actuation in the 

control system and the actual actuation in the gate. This delay must later be incorporated 

in the RTD of the system. 

As previously mentioned, RTDs are heavily influence by material flow properties 

and process parameters. An RTD is only valid for the formulation and processing 

parameters at which the experiments were conducted, and extrapolations are rarely valid. 

For this reason, the next two key steps in the framework are fixing the powder formulation 

to be used and fixing any process parameters that can influence the mixing or the mass 

flowrate of the system. 

The most important step in the implementation of the tablet diversion system is the 

experimental determination of the system’s RTD. This step is an area of research in itself 

and multiple studies have been published on various unit operations [41], [43], [46], [47]. 

Tracer selection is an important aspect when conducting RTD experiments. The selected 

tracer must have similar flow properties as the bulk formulation, while still being easily 

detectable. The RTD determination of a tablet press feed frame has been described in detail 

in Chapter 3. A few detection techniques can be highlighted including, colorimetric 

techniques, detection based on concentration, density, and detection of radioactive tracers. 

Two other important considerations when describing the mixing of a unit operation are the 

sampling technique and the type of disturbance applied to characterize the system (step or 

pulse). The rate at which samples are collected must produce a manageable number of 

samples, while still being frequent enough to ensure that all the information about the 

mixing is captured, especially at the beginning of the experiment when the slope of the 

tracer concentration profile is more accentuated. The choice between a step or a pulse 
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experiment depends on the amount of tracer available. Step changes are easier to realize 

and detect but require more tracer and can yield inaccurate RTDs if the tracer is 

inappropriately selected. Pulses are harder to achieve and detect but have the advantage of 

requiring less tracer and yielding a more accurate RTD. 

The last steps in the framework involves fitting an RTD model to the experimental 

data and tuning the diversion system. Model fitting is done to obtain a clean RTD, without 

noise, that represents the system. The key aspect to be considered during fitting is the type 

of model being used. The two main models are tank-in-series and dispersion, and their 

usage depends on the system being modelled [55]. The procedure for fitting an RTD model 

has been described in detail in Section 3.5. Once the model is obtained and integrated, the 

tuning of the diversion system occurs. In this step, the safety margin of the RTD prediction 

is determined. This margin can be tuned by tightening the nominal limits for diversion by 

a tuning constant. 

6.3. Integration of Diversion Mechanism 

The integration of a diversion mechanism was necessary to divert the bad 

production from the total production. A rejection mechanism consisting of a gate actuated 

using a solenoid coil was already installed in the tablet press, but its control was not 

available to the end user (Figure 14). To overcome this issue, the coil was wired directly 

to the control platform through a 24 VDC discrete output port, which can be operated using 

the control system. 

The signal sent to the discrete output port is generated in a DeltaV control module 

using a discrete output (DO) block. This block references the physical address of the port 
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in the control system and can assume values of 1 or 0 according to its input. The inputs 

received from the DO block can be set locally by the user or remotely by another control 

module.  When a signal of value 1 is sent to the diversion mechanism, 24 VDC current 

flows through the solenoid causing the position of the diversion gate to change, once the 

signal reverts back to 0, the gate returns to its original position. 

 

Figure 14. Tablet diversion mechanism.  

6.4. Real-time prediction of concentration in DeltaV 

Real-time prediction of API concentration in tablets has been implemented based 

on the convolution of the residence time distribution with the inlet concentration in the 

tablet press. This concept of concentration predictions using convolution has been 
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described in detail by Engisch & Muzzio but had not yet been implemented in real-time on 

an experimental setup [35]. 

In the referenced paper, the authors used the conv function built into Matlab to 

successfully compute the convolution integral. Although no pre-existing tools for 

calculation of the convolution integral were available in the control system that was used 

in the experiments, it was noticed by the authors that a finite impulse response (FIR) filter 

could be used to emulate the results obtained through the conv function. A FIR filter is 

available through the MPC Simulate block in the control platform. In this implementation, 

the cumulative residence time distribution coefficients (𝐹(𝑡)) are manually entered in the 

MPC Simulate block as the FIR coefficients. 

The FIR coefficients used by the MPC Simulate block are loaded through a text file 

using DeltaV MPC Predict tool. This text file consists of a standard heading pre-defined 

by DeltaV. In this heading it is possible to select the sampling rate, in seconds, of the MPC 

block. The file also contains a series of 120 coefficients which represent the discretized 

values of the 𝐹(𝑡) curve used in this implementation. Figure 15 exemplifies this 

implementation and demonstrates the interchangeability of the convolution and FIR 

methodologies when subjected to a simulated input.  
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Figure 15. Comparison between convolution in Matlab and DeltaV. 

The implementation of the two calculations differs slightly. When the conv function 

is implemented, the inputs are a vector containing concentration data and a vector 

containing the discretized RTD coefficients obtained from 𝐸(𝑡), whereas on the MPC 

simulate implementation, the inputs are the concentration signal and a vector containing 

the discretized cumulative RTD coefficients obtained from 𝐹(𝑡). Through the analysis of 

Figure 15, it is possible to conclude the both calculation methods yield the same results. 

6.5. Diversion System Implementation 

The DeltaV implementation of the diversion system control module is shown in 

Figure 16. An input parameter block containing a reference to the concentration value 

obtained through NIR is connected to the MNPLT1 port on the MPC Simulate block. Inside 
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the MPC block, the input value is convoluted with the finite impulse response MPC model 

that, in the RTD convolution case, consists of a vector containing the 𝐹(𝑡) values that can 

be obtained through the modeling procedure demonstrated in Chapter 3. This convolution 

generates a prediction for the API concentration in the tablets.  

The predicted concentration from RTD then goes through a Compare block, where 

it is determined if the value is inside the acceptable range. The high and low boundaries of 

the range are specified through the ports COMP_VAL1 and COMP_VAL2. If it is defined 

that the API concentration in the tablets is outside specification, the Compare block sends 

a signal to divert the production until the predicted API concentration in the tablets is 

brought back to specification. 

 

Figure 16. Implementation of diversion system in DeltaV. 

A data flow diagram for the diversion system is presented in Figure 17. The diagram 

is centered on the control module described above, which is connected to two input and 

two output data streams. In order to achieve an accurate concentration prediction, the 

cumulative residence time distribution model coming from Matlab is discretized into 120 

points and the sampling rate of this discretization is defined. This information is inputted 

into a text file which is then read by the prediction control module. A second data stream 

incoming into the control module from a spectroscopic tool consists of the API 
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concentration in the blend. Once the outlet concentration prediction is achieved and the 

rejection signal is generated in the control model, the resulting data is saved in a process 

historian sent to the tablet diversion mechanism. 

  

Figure 17. Diversion system data flow diagram. 
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Chapter 7 : Results and Discussions 
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7.1. Experimental RTD Determination 

Two tracer experiments were conducted to fit and validate the RTD model for a 

specific set of operating conditions. The experiments consisted of a step down in nominal 

API concentration from 12 % to 9 % followed by a two minutes long pulse in nominal API 

concentration at 12 %. The initial sample collection times for the step and pulse 

experiments were 320 seconds and 430 seconds from tracer injection respectively. 

 

Figure 18. Tracer experiment: step change in API concentration. 

The average concentrations of the samples collected during the step change 

experiment are presented in Figure 18, and the error bars represent the standard deviation 

between three tablets of each sample. From this image it can be observed that the mixing 
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in the feed frame presents a similar behavior to what is observed in a system composed of 

a higher order differential equation. It is also evident that the initial and final API 

concentrations do not match the 12 % and 9 % nominal concentrations at which the blends 

were prepared. Inaccuracies during blend preparation and an offset in the NIR calibration 

model have been identified as the two possible causes for this mismatch and need to be 

further investigated. Although the actual concentration value is different than the nominal 

values, it should still be possible to conduct the residence time distribution analysis based 

on this experiment, with the only difference being that the initial and final concentrations 

will be additional parameters that need to be fitted. The results of the pulse response of the 

feed frame are shown in Figure 19. Similar to what is observed in Figure 18, an offset is 

present between the nominal and actual concentrations. When the two experiments are 

compared, it can be noticed that there is a difference in the number of samples before the 

system reacts to the tracer injection. This difference is expected since there is a discrepancy 

between the times at which the initial sample was collected at each experiment. 
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Figure 19. Tracer experiment: pulse in API concentration. 

7.2. RTD Model Development 

Tank-in-series and dispersion models were developed for the system based on the 

step experiment presented in Figure 18. The experimental data was converted to a 

cumulative residence time distribution curve using Equation 3 and fitting initial and final 

API concentrations, yielding concentration values of 9.35 % and 12.08% respectively.  The 

resulting CRTD plot is shown in Figure 20. 
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Figure 20. Experimental cumulative residence time distribution. 

Through the graphical analysis of Figure 20, it can be observed that the system 

starts reacting approximately 800 seconds after the tracer injection and this reaction tapers 

off at approximately 1400 seconds. Once the experimental 𝐹(𝑡) curve is generated, the 

residence time distribution models can be fitted using the toolbox described in Section 3.5. 

The results of the model fitting procedure are presented in Figure 21, while the fitted 

parameters are presented in Table 9. 
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Table 9. Residence time distribution model parameters. 

Model 
Mean residence 

time (s) 
Dead 

time (s) 
Peclet 

number (-) 
Number of 

tanks (-) 
SSE (-) R2 (-) 

Dispersion 314 644 10.24 - 0.6045 0.9973 

Tank-in-series 278.7 740.8 - 3 0.6105 0.9973 

 

Figure 21. Residence time distribution models. 

From Figure 21 it can be observed that both models yielded similar results, 

presenting a close fit to the experimental data. The values of the regression coefficients 

presented in Table 9 also support this observation. One interesting result from the model 

fitting procedure is that although both models resulted in almost identical residence time 

distributions, the fitted dead times presented a considerable difference. This result shows 

that the fitted dispersion model has a slower concentration buildup when compared to the 

tank-in-series model. 
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7.3. RTD Model Validation 

The fitted residence time distribution models were validated using the data 

generated during the pulse injection experiment. To conduct this validation, the measured 

input concentration of tracer was convoluted with the residence time distribution curve 

calculated through the models. The convolution generated a prediction of the system output 

concentration, which was then compared to the system response to pulse injection observed 

during the experimental procedure. The comparison is presented in Figure 22. A small 

offset from the expected values was observed in both NIR models. This offset can be easily 

removed by adjusting the NIR model and, for this reason, the offset was fixed during post 

processing of the data to facilitate the comparison. 



 

 

 
 

72 

 

Figure 22. RTD model validation using adjusted experimental data. 

From Figure 22 it can be observed that the general trend of the response to the pulse 

injection is captured by the prediction. Another important observation is the fact that even 

though the input concentration data has a fair amount of noise, the resulting concentration 

prediction is noise free, since the noise gets filtered by the mixing present in the feed frame. 

When the offset is removed, the experimental and predicted concentration values present a 

close relation. These results validate the proposed residence time distribution modeling 

strategy and framework presented in this manuscript, while also emphasizing the 

importance of accurate NIR calibration models. 

7.4. Tablet Compaction Model Validation 

The dynamics of the interactions between multiple process parameters was 

captured using mathematical models as described in Chapter 3. This section is organized 
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to demonstrate the dynamics of set point and actual actuator values, critical process 

parameters and their respective actuators, and critical quality attributes and critical process 

parameters. 

7.4.1. Actuator Dynamics 

Figure 25 presents the dynamics of the three main actuators in the tablet compaction 

process. Set point, simulated, and actual values have been plotted to show the model 

performance. From Figure 23 it can be concluded that the fill depth actuator model presents 

dynamics characteristic of a first order system. A good model fit was achieved for the fill 

depth model, with a coefficient of determination of 0.9966.  
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Figure 23. Fill depth model validation. SP: set point. 

In Figure 24,a small steady state offset is observed in the main compression height 

model. This offset can be explained by the fact that the simulated results have a higher 

number of significant digits when compared to the experimental values. A coefficient of 

determination (R2) of 0.9973 was obtained for this fit. The main compression height model 

parameters have also been used to calculate the pre-compression height dynamics. This 

assumption is made based on the fact that the main and pre-compression height actuators 

have the same mechanical working principle and configuration. 
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Figure 24. Main compression height model validation. SP: set point. 

Figure 25 presents the validation of the production rate actuator. This model is 

characterized by a second order dynamic response, where a slight overshoot is observed. 

The model accurately captures the actuator behavior, with a high R2 value (0.9824). This 

value is lower than the values obtained for the fill depth and main compression height 

actuators because of small oscillations present in the experimental data. 
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Figure 25. Production rate model validation. SP: set point. 

From the R2 values obtained for the models as well as from the presented plots, it 

can be concluded that the models closely match the experimental data. 

7.4.2. Critical Process Parameter Interaction 

Pre-compression force validation is plotted in Figure 26, which is divided in two 

levels. Variations in main compression ratio resulting from changes in fill depth are 

presented in the top plot, while the bottom plot represents the response in pre-compression 

force in both simulated and experimental scenarios. The fill depth variations ranged from 

5.8 mm to 6.6 mm and it can be observed that the simulated system closely matched the 

experimental setup. 
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Figure 26. Pre-compression force model validation. 

Figure 27 presents the main compression force response with respect to changes in 

main compression ratio, which were caused by actuations in the fill depth and main 

compression height. This model was developed in such a way to incorporate interactions 

between main compression height and fill depth. As expected in for the compaction 

process, the image shows that main compression force increases when the main 

compression ratio increases. 
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Figure 27. Main compression force model validation. 
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7.4.3. Critical Quality Attributes 

The validation of the model relating tablet breaking force to main compression ratio 

is presented in Figure 28a. This model was developed based on steady state data and for 

this reason, the model was not validated against dynamic data. A non-linear trend between 

tablet breaking force and main compression ratio can be observed in this figure. Although 

this model is considered accurate for control system design, the inclusion of dynamic data 

to this representation should be a focus of future research. 

The model response presented in Figure 28b was developed to predict the tablet 

weight and validated against experimental data. From the image it can be observed that a 

decrease in fill depth results in a reduction in tablet weight over time. Through regression, 

it was determined that this dynamic behavior can be captured by a first order transfer 

function. 
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Figure 28. (a) Tablet breaking force model validation (b) Tablet weight model validation 



 

 

 
 

81 

7.5. Control System Design, Evaluation and Validation for Tablet Compaction 

Operation 

This section exemplifies the applications of the validated model, developed in 

Chapter 3, for the design of control systems. The selected simulation environment provides 

flexibility in terms of the controls strategies that can be evaluated, reduces the time spent 

in experiments, consequently reducing the amount of material and expenses required to 

develop and implement a new control system. In the first part of this section, different 

control algorithms are compared in order to determine the best alternative to be used in the 

compaction process. Then, the selected control algorithm is used in the evaluation of 

various control strategies. Individual characteristics of the strategies are then discussed and 

guidelines for selecting the optimal control strategy for a given system are presented. 

7.5.1. Control Algorithm Performance Analysis 

Two steps changes in main compression force setpoint were applied to the system 

and the dynamic response was observed. The first step change was within the operational 

range at which the controllers were tuned, with an increase in MCF setpoint from 8 kN to 

12 kN.  The second step was from 12 kN to 4 kN and was outside the operational range of 

the controllers. This was done in order to evaluate the influence of the nonlinearities on the 

performance of the controllers. 

Figure 29 show the dynamic behavior of the different control algorithm in response 

to changes in MCF setpoint. 
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Figure 29. Control algorithm comparison. 

From Figure 29, it can be observed that the percent overshoot and the time to steady 

state are different for the two step changes. This behavior is expected and characteristic 

when a linear controller is implemented on a nonlinear system. All the controller exhibited 

a better performance when operated within the range at which they were tuned. A 

significant performance increase was observed when an integrated white noise unmeasured 

disturbance model was added to the MPC. The unmeasured disturbance model can handle 

mismatches between the linear MPC model and the nonlinear behavior of the plant, 

eliminating the steady state offset seen in the standard MPC. These mismatches become 

more significant as the setpoint moves away from the operational range of the controller. 
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A comparison between the PI controller and the MPC with unmeasured disturbance leads 

to the conclusion that the latter presents a better performance, with a smaller response time 

and less overshoot. 

The simulations were replicated in the pilot plant using the PI and MPC algorithms 

available in the control platform (DeltaV). For this comparison, only the step change from 

8 kN to 12 kN was considered. Figure 30 shows the results of this comparison. The 

superiority of the MPC over the PI algorithm was again verified. A small difference 

between the experimental and simulated results. This difference is expected, as the 

controllers used in the experimental setup followed the auto-tuning routine available in the 

control platform, which differed from the tuning method used in Simulink.  
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Figure 30. Simulated and actual close loop responses. 

Performance metrics for both simulated and experimental control algorithms are 

presented in Table 10. The MPC control algorithm will be used in the subsequent 

simulations and experiments conducted in this Chapter, since it presented a superior 

performance when compared to the PI algorithm. 

Table 10. Closed loop performance metrics 

Strategy 
IAE 

(kN.s) 

ITAE 

(kN.s) 

ISE 

(kN.s) 

Rise 

time (s) 

Settling 

time (s) 

Overshoot 

(%) 

Steady state 

error (%) 

Experimental PID 289.95 18506 693.45 121 211 0 0 

Simulated PID 204 6596.2 626.48 64 120 6.1112 0 
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Experimental 

MPC 
180.5 5688.6 564.33 46 153 0 -7.5 

Simulated MPC 
111.65

5 
5216.2 317.788 23 24 0 2.7782 

MPC with 

disturbance model 
86.83 954.49 333.68 23 25 0.448 0 

 

7.6. Control Strategy Evaluation 

7.6.1. Strategy 1 – Simultaneous Control of Pre- and Main Compression Forces 

The set point changes applied to the simulated system with pre- and main 

compression force control and the respective response in these variables are presented in 

Figure 31a. The actuation signal generated by the controller is presented in Figure 31b. 

From the figures it can be observed that both compression forces are able to track their 

respective set points through the controller actions. As expected, changes in main 

compression force set point do not affect the pre-compression force, since the actuation 

occurs after the pre-compression station. In the case of an open loop scenario, 

manipulations in fill depth (PCF actuator) would lead to large variations in both 

compression forces. When changes in pre-compression force setpoint occur, a direct 

actuation in fill depth is generated. This actuation is then compensated with actions in main 

compression height in order to mitigate the effects on main compression force. This 

behavior is an indication that the controller model is able to successfully capture the 

interactions between manipulated and controlled variables. 

Figure 31c shows the effects that the changes in the set points of the compression 

forces have in tablet weight and breaking force. Direct interactions between tablet weight 

and pre-compression force as well as between tablet breaking force and main compression 
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force can be observed, indicating that the tablet CQAs can be indirectly controlled to the 

compression forces’ setpoints. 
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Figure 31. Control strategy 1 – Set point tracking scenario. (a) Critical process parameters (b) 

Actuators (c) Critical quality attributes. 

Figure 32 shows the system response to the disturbance rejection scenario presented 

in Section 5.3. When a white noise disturbance is applied to density, the controller takes 

action to bring the controlled variables to their respective set points as seen in Figure 32a,b. 

It can be observed that the effect of the density variations is not completely mitigated by 

the controller because of the high frequency at which the white noise occurs. A large 

deviation from set point followed by a steady state offset is observed when the system 

undergoes a ramp disturbance in density. This steady state offset has been previously 

observed by other authors when ramp disturbances are applied to MPCs with integrated 

white noise models [28].  Applying a step change in density results in a large oscillation in 

the controller, which is dampened after approximately 100 s. It is important to note that 
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disturbances of high magnitude have been applied to the system for demonstration 

purposes. The disturbances observed in practical scenarios have a lesser magnitude and 

consequently, controller performance will be better. 
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Figure 32. Control strategy 1 – Disturbance rejection scenario. (a) Critical process 

parameters (b) Actuators (c) Critical quality attributes. 

 The main advantage of the presented control strategy is that it does not require 

online sensor for tablet weight and breaking force, since these critical quality attributes are 

indirectly controlled through the compression forces. This strategy has a relatively fast 

response time in comparison to strategies involving cascade arrangement. The downside 

of this strategy is the fact that it requires a relationship between the compression forces and 

the tablet CQAs to be established during plant setup. Because tablet weight and pre-

compression force are dependent of each other in this system, it is necessary to fine tune 

pre-compression height to ensure that both variables are in the desired range. It is also 

important to note that the controller needs to be retuned if any changes in pre-compression 

forces are made. A few disturbances can change the relationship between tablet CQAs and 
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the compression forces, such as fluctuations in tablet composition. If these variations occur, 

the system is able to stabilize the compression forces, but the tablet CQAs will deviate 

from their desired values. The best way to prevent these fluctuations is by ensuring control 

of blend composition, as proposed by Singh et al. [23]. 

To verify the applicability of the developed model, this control strategy has also 

been implemented in an experimental setup and the result were compared to the simulation 

output. The effect that changes in the set points of compression forces have on tablet weight 

and breaking force have not been evaluated during the experiments, since no experimental 

dynamic data could be obtained for those variables. The comparison between the 

simulation and experimental results is presented in Figure 33 where a close match between 

simulation and experiments is observed, demonstrating the capabilities of the model for 

control system design. 
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Figure 33. Control strategy 1 - Experimental validation. 

7.6.2. Strategy 2 – Cascade Control of Weight and Breaking Force 

The response of the simulate system with the double cascade control arrangement 

to the set point tracking scenario is presented in Figure 34. Both tablet weight and breaking 

force are able to successfully track their set points by actuating on the set points of the 

compression forces. Overshoots in tablet weight are observed when set point changes are 

made in this variable. These oscillations are also observed in the pre-compression force 

and are most likely caused by the fact that the MPC internal model is not able to capture 

the non linear behavior of the compression forces, which becomes more pronounced as the 

compression forces move away from the operating point at which the controllers were 



 

 

 
 

94 

tuned. Spikes in tablet breaking force are seen in Figure 34a when changes are made in the 

set points of the tablet CQAs. These spikes can be avoided by limiting the maximum rate 

of change of the manipulated variable of the compression force controller (slave). 
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Figure 34. Control strategy 2 – Set point tracking scenario. (a) Critical process parameters (b) 

Actuators (c) Critical quality attributes. SP: Set point. 

Figure 35 presents the system’s response under the disturbance rejection scenario. 

The resulting response is similar to what is observed for control strategy 1 in Figure 32, 

with the main difference being in the fact that no steady state offset is observed between 

the CQAs and their set points. This occurs because in this system the inner control loop 

partially absorbs the effect of the ramp perturbation, resulting a step like disturbance in the 

compression forces. The step disturbance then gets completely eliminated by the master 

control loop, resulting in a response where no offset is observed between the CQAs and 

their set points. 
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The advantage of control strategy 2 lies in the fact that tablet weight and breaking 

force are monitored in real time and controlled through a cascade arrangement. This allows 

the usage of tablet weight and breaking force sensor with relatively slow sampling rates. 

Directly sensing the tablet CQAs eliminates the need of correlations between the 

compression forces and the CQAs, which can often times be inaccurate, as mentioned in 

Section 7.6.1. This control strategy is able to more adequately handle certain disturbance 

that cannot be handle by control strategy 1. The main disadvantage of this cascade 

arrangement is that a second layer of non-linearities is added to the system by relating tablet 

weight to pre-compression force. These accumulated non-linearities result in a narrower 

stability margin for the controllers. This control strategy, due to its cascade arrangement, 

has slightly longer response times than strategy 1. Although not as critical as in strategy 1, 

it is still necessary to tune the compression force controller with the adequate pre-

compression for range in mind. 
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Figure 35. Control strategy 2 – Disturbance rejection scenario. (a) Critical process 

parameters (b) Actuators (c) Critical quality attributes. 

7.6.3. Strategy 3 – Direct Control of Tablet Weight and Cascade Tablet Breaking Force 

Control 

Figure 36 shows the simulated response of a system with direct control of tablet 

weight and cascade control of tablet hardness. Similar responses are seen in all the three 

step changes applied in tablet weight, which is a characteristic of a linear system. 

Interactions between tablet weight and breaking force can be noticed in Figure 36a in the 

form of peaks in tablet breaking force. Changes in tablet weight set points cause fast 

actuations in fill depth, which lead to variations in main compression force. These 

variations are mitigated by the main compression force controller through manipulations 

in main compression height. A difference in the dynamics of the controllers causes the 



 

 

 
 

100 

sharp peaks in main compression force observe in Figure 36a. The tablet breaking force 

controller is able to track its set point when no changes in tablet weight are made. 
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Figure 36. Control Strategy 3 – Set point tracking scenario. (a) Critical process parameters (b) 

Actuators (c) Critical quality attributes 

The response of the system consisting of control strategy 3 to the disturbance 

rejection scenario is presented in Figure 37. The analysis of this response is similar to what 

is described for strategy 1. The main advantage of control strategy 3 is the fact that the 

inner compression force controller isolates the non-linear behavior of the main 

compression force from the master controller, which actuates on variables that linearly 

affect tablet weight and breaking force. In this strategy, it is possible to control pre-

compression force independently without affecting any of the tablet CQAs, making it easier 

to avoid tablet defects related to inadequate dwell times. Theoretically, if the controller 

models are properly regressed, control strategy 3 should present the best performance 
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among the evaluated strategies. This strategy can be further improved by using fill depth 

as a measure disturbance signal in the main compression force controller. 
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Figure 37. Control strategy 3 – Disturbance rejection scenario. (a) Critical process 

parameters (b) Actuators (c) Critical quality attributes. 

 

7.7. Demonstration of RTD Based Diversion System 

Three simulated scenarios have been created to demonstrate the implementation of 

the RTD based diversion system in a commercially available control platform (Figure 38). 

The NIR signal has been simulated using an input parameter block and the 𝐹(𝑡) 

coefficients used in this demonstration correspond to the response of a first order system. 
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Figure 38. Demonstration of diversion system in DeltaV. X-axis: Time (hh:mm); Y-axis left: 

Concentration (%); Y-axis right: Rejection signal (-) 
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In the first scenario (Figure 38a), a pulse with 10 seconds duration and 1% 

magnitude was applied to the system. The pulse spreads across the tablet press according 

to the RTD resulting in predicted concentrations that do not trigger the rejection 

mechanism. This result is a clear example of a situation where an RTD based diversion 

yields a better performance than the traditional time delay based diversion system. The 

second scenario (Figure 38b) consists again of a pulse with 10 seconds duration but with 

12% magnitude. The larger magnitude results in a disturbance that violates the 

concentration limits and triggers the diversion system for approximately 17 seconds.  

When a step disturbance with a magnitude of 3% is applied to the system (Figure 

38c), the diversion system is triggered after 2 seconds and only returns to its normal state 

6 seconds after the input concentration value is brought back to 9%. This scenario replicates 

a situation where a traditional delay based diversion system would achieve the same 

performance as an RTD based system. 
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Chapter 8 : Conclusions and Future Perspectives 

8.1. Conclusions 

In this work, multiple tools for the development and implementation of diversion 

and control strategies on continuous pharmaceutical manufacturing processes have been 

presented. A framework describing the development of validated dynamic process models 

has been introduced and a tablet compaction model was successfully created according to 

the framework. The dynamic model was able to accurately capture the nonlinear behavior 

and interactions that are present in a tablet press. The main advantage of the implemented 

model over previous modelling efforts for this unit operation lies in the fact that the selected 

modeling strategy allows for fast execution of the simulation while still maintaining 

accuracy. 

The applicability of this compaction model in the process system engineering field 

is wide and one of its examples has been demonstrated in this work through the evaluation 

of control algorithms and advanced control strategies. It was concluded that, for the studied 

control loops, the MPC algorithms presents a better performance when compared to the 

traditional PID algorithm. Three different control strategies have been evaluated using 

simulated set point tracking and disturbance rejection scenarios. Possible cases where each 

strategy can be used, as well as the advantages and disadvantages of each strategy were 

discussed. One of the simulated strategies was selected and implemented in the pilot plant 

available at Rutgers University. The resulting data from this experiment closely matched 

the simulations, validating the applicability of the developed model. 
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Although process control has proven itself as an invaluable tool for maintaining 

product quality in continuous pharmaceutical manufacturing, it is still necessary to have 

diversion systems for situations when the control system is not able to mitigate disturbances 

in the process. For this reason, a framework for the implementation of a product diversion 

system based on residence time distributions has been created. 

The residence time distribution of the chute, feed frame and tablet press assembly 

has been determined experimentally and modeled through two different approaches. Both 

approaches, tank-in-series and dispersion, yielded similar results by accurately capturing 

the mixing behavior of the studied system. A novel automated tablet sampling strategy was 

devised to conduct the RTD determination experiments, facilitating the attribution of 

timestamps to the collected samples. The fitted RTD profile was validated by convoluting 

it with the input API concentration of the system for the pulse tracer experiment and the 

resulting curve presented a similar shape as the concentration measured from the collected 

tablets. An RTD modeling toolbox has also been developed as part of this work and will 

be an important tool in future modeling efforts. 

The implementation of the RTD based diversion system was demonstrated using a 

simulated input in the control platform (DeltaV). Although not natively supported by 

DeltaV, convolution between an input and the RTD profile was achieved by modifying the 

MPC simulate tool available in DeltaV. This convolution method was compared to the 

convolution function available in Matlab, yielding similar responses and hence validating 

the methodology used in DeltaV. 



 

 

 
 

110 

8.2. Future Perspectives 

The first part of this work introduced a generalized framework for creating 

validated dynamic models of continuous pharmaceutical operations and modeled the tablet 

press available at Rutgers University. In order to fully represent the tablet press, it is still 

necessary to incorporate the developed RTD and a nonlinear relation between production 

rate and the compression forces. The developed model was completely empirical and only 

valid for a specific formulation. Including the influence of material properties should be a 

topic for future research, making the model more generalized and increasing its possible 

application. 

Three control strategies were developed for the tablet compaction operation and 

one of these strategies was tested using a standalone tablet press. Although this strategy 

was able to perform well in this scenario, it is important to evaluate how the control system 

will behave when the complete direct compaction line is run. Further investigation on the 

stability of this strategy also need to be conducted. Additionally, the performance of these 

strategies should be evaluated for blends with less than ideal flow properties. 

The RTD models determined in this thesis must still be expanded to be 

representative not only at different processing conditions, but also for different materials. 

Understanding how the mixing profile of the feed frame changes with materials, varying 

turret speeds, paddle speeds, and fill depth is the next step in this workstream and is an 

extremely complex area of research. Once this is understood, it will be necessary to work 

towards the derivation of a convolution methodology that is able to handle time varying 

vectors. 
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There is a growing interest coming from pharmaceutical industries and regulatory 

bodies on the topic of real time product diversion system based on residence time 

distributions. The experimental demonstration of the developed diversion system is a study 

that still needs to be conducted to fully validate this methodology. 

There are still many directions to be explored on the presented research topics. This 

work should serve as stepping stone for the expansion of the knowledge space on the 

applications of process control and dynamic modeling in the pharmaceutical industry. 
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Appendix A: Nomenclature 
 

Symbols Description 

API Active pharmaceutical ingredient 

CPP Critical process parameter 

CQA Critical quality attribute 

CSTR Continuously stirred tank reactor 

DC Direct current 

DO Discrete output 

FD Fill depth 

FIR Finite impulse response 

FT-NIR Fourier transform -near infrared 

HART Highway addressable remote transducer 

MCF Main compression force 

MCH Main compression height 

MgSt Magnesium stearate 

MIMO Multi input multi output 

MNPLT Manipulated 

MPC Model predictive control 

MV Manipulated variable 

NIR Near infrared 

OPC OLE for process control 

PAT Process analytical technology 
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PCF Pre-compression force 

PCH Pre-compression height 

PFR Plug flow reactor 

PID Proportional integra derivative 

QbD Quality by design 

QbT Quality by testing 

RMSEP Root mean square error of prediction 

RSEP Relative standard error of prediction 

RTD Residence time distribution 

SISO Single input single output 

SSE Sum of the squared error 

TIS Tanks-in-series 

TR Tracking 
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