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Modern life is getting more complicated and people rely more on the intelligence em-

bedded in their electronic gadgets. It is expected these gadgets will take larger roles in

making, at least some simple, decisions instead of us. It is not difficult to see how many

gadgets will be needed in an Internet of Things environment, or smart home settings, or

any sort of connected devices. Interaction among these devices can be addressed using

game theoretical models. However for a large number of devices interacting/playing

with each other, the classical game models can be complicated. One way to approach

this problem is by using evolutionary game theory (EGT). Evolutionary games deal

with large number of players by making assumptions such as some common similarities

in the players’ interests, payoffs, and bounded rationality. Both of these assumptions

seem to fit in modeling the large number of players’/devices’ interaction. On the other

hand, evolutionary games can model the user behavior in taking decisions when repeat-

edly played. Meaning that, each time a player does a move, the player observes the

payoff and can compare it with the average payoff, and in the next play the player can

choose a different move if it gives higher payoff and so on so forth. By using the concept

of replicator dynamics, evolutionary games make it possible to observe how the choice

dynamics is made. It can be looked at as learning until reaching to a very stable choice

which is an evolutionary stable choice.
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This thesis first presents the problem of communications under a denial of service

attack through a jamming threat. We consider the problem where the players try to

communicate with a base station under the threat of jammers who, possible cooper-

atively, try to block their communications. The users have the option to work coop-

eratively too. The second problem this thesis deals with a generalized network model

known as ephemeral network under the threat of a malicious attack with the absence of

any central authority. The only control to the network is a set of rules which are agreed

upon before setting a connection. Thirdly, we study the problem of advanced persistent

threats (APTs), which is the problem of a powerful and stealthy attacker who wants to

infiltrate the system. Evolutionary game theory is used by giving the players, the APT

attacker and the system defender, the opportunity to adapt their decisions according to

the replicator dynamics to reach to the robust decision,i.e, to choose the defend/attack

strategy.

The final part of this work uses evolutionary game theory to model the coexistence

between WiFi and LTE-U technologies. We consider a scenario where there are two

heterogeneous populations, one population represents the set of LET-U APs and the

other one represents the set of WiFi AP. Furthermore, we assume that AP’s belong to

the same population do not interfere with each other. We study, under a given set of

transmission strategies, the stability of the strategies that can appear in such a conflict.

We specify the conditions under which, a coexistence with minimal interference can be

established.
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1

Chapter 1

Introduction

Security of wireless networks, data centers, or any other cyber physical system is a

necessity that is not new or temporary. It has been an attractive area of research

for many researchers around the globe. Incidents of attacks against different systems

are too many to count. Starting from eavesdropping wireless communication systems,

creating denial of service attacks, intruding networks to gain access to sensitive infor-

mation, attacking data centers, attacking industrial systems, and even manipulating

the governmental election systems. The attackers can range from students who want

to get fame, as with the case of Rutgers DDoA which lasted from Fall, 2014 to Fall

2016 [4], to army special units which use jammers to disarm explosives [5].

Furthermore, current evidences show attacks which are organized by countries against

others. For example, Gueye has mentioned in [6], based on a Symantec white paper,

that a virus called Stuxnet was targeting industrial control systems possibly in Iran.

However, some security specialists suspected that Stuxnet was designed in Israel to

sabotage the Iranian nuclear power plants. On the other hand, Iran launched its attack

which is known by Thamar reservoir [7] in which, and according to Clearsky in Israel,

several different attacks aiming for taking over the victim’s email account and com-

puter. Another attack example is reported by Kaspersky Labs in [8], the Dark Hotel,

where the attackers get control over some hotels’ networks, then they used these in-

fected networks to get access to the hotels’ guests computers. According to Kaspersky

Labs, this attack was there since 2007 and is still active now. The last attack was not

to sabotage the system or to jam the signal. Instead, it was to get information from

the victims and to stay in their systems.

The last two attacks bring more sophistication to the network/system defender,
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and this is the reason for calling them Advanced Persistent Threats (APTs). An APTs

attack is a well funded, powerful and long term attack. Some strategies for 22 APTs

attack campaigns are given in [9]. APTs attacks are now under the investigation of

many researchers and security labs, because of their huge damages.

Aside from jamming a wireless network or performing a stealthy APTs attack, other

types of attacks emerged as the world is getting more connected. Smart cities, smart

grids, smart homes, Internet of Things (IoT), machine to machine communications,and

so on are terms that we hear each day. All these connections need to be secured.

How can we build a central authority (CA) system to ensure the security of these

connections? Can these smart devices agree on protocols to defend themselves? Why

will these devices cooperate? If these devices are smart, then how will they respond to

a smart attacker(s)? Is it possible for an attacker to gain access through the cloud to

the victims heart pump or Insulin pump? These are new challenges which were not on

the surface 10 years ago.

Fortunately, there are always new models and approaches to deal with security

problems. New approaches come from the hardware capabilities, understanding new

mathematical models, and software advancements. Game theory represents a natural

candidate to solve problems of conflict. It captures the behavior of the competitors to

reach a feasible solution. In wireless networks, the players, people or devices, compete

to gain the network resources. It is difficult to build a controller that can manage all

the interaction scenarios. Game theory enables the players to reach to a solution called

Nash Equilibrium, in a decentralized way since it can be considered as a distributed

optimization tool. However, networks have many players that makes the extension of

two-player game model challenging.

On the other hand, if the game is played over some time interval, the players may

change their behavior and, subsequently, their actions. As a result, there is some

dynamic behavior that needs to be addressed.

One solution is to use Evolutionary Game Theory (EGT) to model these problems.

Nash mentioned EGT [10] in his dissertation and called it the mass-action. In page 21
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of his dissertation, Nash made three assumptions about the players, and later he con-

sidered them as populations. Specifically, he assumed it is unnecessary for the players

to have the ability of any complex thinking, and the players are supposed to accumulate

empirical knowledge on the advantages of their pure strategies. The absence of complex

thinking enables judging the behavior of many players in the population by analyzing

the behavior of two players. In addition, the accumulated empirical knowledge can

be interpreted as the use of the of some dynamics, later will be known as replicator

dynamics, to reach to the best strategy.

Specifically, evolutionary games can capture the action of many players over a period

of time that gives the players the chance to observe their behavior and adjust it. The

dynamic part of the game can be looked at as a learning tool that is being used by

the players to refine their decisions. At the same time, evolutionary games can be used

between two players where each player can adjust her decision according to their past

cumulative experience to reach to a robust decision.

In the first part of this thesis, we study the problem of cooperative users who want

to communicate with a base station in the presence of cooperative jammers. Then we

address the security problem of short life networks called ephemeral networks. These

networks consist of nodes connected in a decentralized way, and the nodes have to

defend themselves against intruder(s). Finally, we address the APTs attack problems on

data center(s). The second part of the dissertation studies the coexistence interaction

between a WiFi access point and LTE-U node. The WiFi AP controls its downlink

power level, while the LTE-U AP controls its duty cycle and downlink power. We

model this interaction as a noncooperative evolutionary game.

1.1 Distributed Denial of Service Attacks in a Wireless Network Evo-

lutionary Game [1]

We consider a wireless network of M users connected to an access point in the presence

of N jammers whose purpose is to deny or degrade the performance of the users by

injecting interference. Using the achieved signal to inference plus noise ratio (SINR) as
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the performance metric, we study the dynamics of such a distributed denial of service

attack (DDoA) by using Evolutionary Game Theory (EGT). Specifically, we consider

a cooperative network model, where the M users (and N jammers) can collectively

enhance their achieved SINR (degrade the user SINR). We model the strategic trans-

mission decisions of the users (and the jammers) using simple random access techniques

where the users (and jammers) decide to transmit or not with a transmission proba-

bility, taking into account their energy costs. Using the replicator dynamics (RD), we

characterize the evolutionary stable strategies (ESS’s) of the game and observe that

the resulting transmission probabilities turn out to be either 0 or 1. Further, given a

network (channel) setting, we show using a phase portrait of the replicator dynamics

how the ESS strategies evolve for different cooperation levels of the users and jammers

populations. We also provide insights into resulting ESS strategies as a function of the

number of users and jammers, and their channel qualities. The results are presented in

Chapter 3.

1.2 Threat Revocation in Ephemeral Networks [2]

We consider a wireless network of M nodes connected together in a decentralized way

(for example as an ad hoc network), and according to pre-specified rules. There are

other malicious node(s) which can be either inserted or infected which are trying to

disturb the operation of the network. The nodes are cooperating to defend the network

(and eventually themselves) by isolating the misbehaved node(s). We approach this

problem using Evolutionary Game Theory (EGT), and characterize the robust equilib-

rium point(s) for this game. The game is formulated such that all the nodes take part

in the decision process to avoid problems caused by unsuccessful revocation or over

reacted revocation decisions. Each node in the network (interchangeably called benign

node to distinguish it from the malicious node or the intruder) has three decisions to

make: (a) abstain or do nothing; (b) self-sacrifice by disconnecting the intruder and

itself; and (c) voting to isolate the intruding node. Each decision has its advantages

and disadvantages and the Replicator Dynamics (RD) is used to show the dynamics

of the nodes’ decisions. By simulating the RD equation, two different cases emerge as
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Evolutionary Stable Strategies (ESS) where one of them is the desired ESS, and the

other is not. Phase portrait diagrams are used to characterize the fraction of the M

nodes needed to choose each one of these ESS’s, the rate of convergence, and the effect

of increasing the cooperation rewards. The results obtained are presented in Chapter

4.

1.3 Advanced Persistent Threats [3]

Advanced Persistent Threats (APTs) represent stealthy, powerful, long term, and well

funded attacks against cyber systems, such as data centers and cloud storage. Evo-

lutionary game theory is used to capture the long term continuous behavior of APTs

on cloud storage devices. Two APT defense games with discrete strategies are for-

mulated, in which both an APT attacker and a defender compete to control one or

multiple storage devices regarding their attack or defense intervals. The dynamical

stability of each defense and attack strategy pair is studied according to the replicator

dynamics criteria to characterize the locally asymptotically stable equilibrium strate-

gies. The Evolutionary stable strategy is discussed in each game, which is a subset

of the asymptotically stable Nash Equilibrium (NE). The phase portraits provide the

locally asymptotically stable points of the APT defense game, which represent the NE

showing the relationship between the asymptotic stability and evolutionary stability.

The analysis and experimental results are presented in Chapter 5.

1.4 Coexistence between LTE- and WiFi

Coexistence between different wireless communication technologies is a necessity which

stems from the need for dynamic spectrum sharing between users. We study the spec-

trum coexistence problem between the LTE-U and the WiFi technologies using using

evolutionary game theory (EGT). Specifically, we study the effect of the transmission

cost on each LTE AP (eNodeB) and WiFi AP and find the conditions under which long

term coexistence can be established. We model this long term coexistence by finding

the evolutionary stable strategies (ESSs) of the evolutionary game. We analyze the cost
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functions for the LTE-U and the WiFi APs, and show that the LTE-U AP behavior is

more sensitive to the cost than to the number of users, while WiFi is more sensitive

to the number of users than to the transmission power cost. We also consider the case

where the WiFi AP removes users that can not establish the minimum SINR required

in order to reduce the interference to the LTE-U AP users. Interestingly this creates

more interference due to the aggressive/selfish behavior of the WiFi APs. We solve

this problem by introducing a modified cost function. Finally, we formulate a classical

game theoretic model for the coexistence problem, find its Nash equilibrium (NE), and

study its stability under the Replicator Dynamics (RD) of the evolutionary game. The

results obtained are presented in Chapter 6.
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Chapter 2

Introduction to Evolutionary Game Theory

Evolutionary games are used to model the behavior of large number of players under

certain assumptions. If all the players have the same interests, and suffer the same loses

then they can be grouped in one population. Examples of this case can be users who

try to associate themselves with base stations that give them better quality of service.

This type of games is called symmetric games. In symmetric games, if the players get

the same payoff regardless of their role in the game, then the game is called doubly

symmetric game. The payoff matrix is symmetric in the case of doubly symmetric

games [11]. The other class of evolutionary games is asymmetric games where players

have different payoffs according to their role in the game. Examples of this is the

case of the game between users and jammers. For two roles, we have a bimatrix game

which also can be used to represent a game between two populations with excluding

the intra-specific interaction, i.e, users compete with jammers in that game and there

is no user-user competition [12].

It is well known that each mixed-strategy game has an NE [13],i.e, the players

choose their strategies with a probability p. The probability vector p has the usual

probability properties, i.e, pi ≥ 0 and
∑n

i=1 pi = 1. As a result, a strategy corresponds

to a point p in Sn. Assume that the players in the population were playing one of two

pure strategies, E1 and E2, according to probability vectors p and q. A population

that uses the strategy E1 is said to be evolutionary stable, if when a small part (ε) of

it switches to the strategy E2, the strategy E1 keeps giving its players higher payoff.

In equations, let the payoff function for each player be denoted as u(E1, E1), then

the strategy E1 is an evolutionary/evolutionarily stable strategy (ESS) (will resist the
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mutant or invading strategy E2) if

u(E1, εE1 + (1− ε)E2) > u(E2, εE1 + (1− ε)E2) (2.1)

for all sufficiently small ε. The conditions under which the ESS exists are given by the

following:

Theorem 1 [14]: For a population Γ, where each player has a set of n pure strategies

Ei, 1 ≤ i ≤ n, the mixed strategies p and q in the game with an associated payoff

matrix A. The strategy p ∈ Sn is an ESS if and only if:

pTAq > qTAq (2.2)

for all p 6= q ∈ Sn.A population Γ contains the players of the same interests, and apply

the same strategies. Each player has a set of pure strategies Ei, i = 1, .., n. Each player

chooses each of the n strategies with a probability pi. Sometimes we use the alternative

equivalent ESS conditions from [15] to simplify the calculations. If we define A = Q to

be the payoff matrix, then the above conditions can be rewritten as:

(1) Equilibrium condition: fσ = σ?TQσ?T − σ?TQσ > 0

(2) Stability condition: if fσ = 0, then gσ = σ?TQσ−σTQσ > 0 over all mixed strategies

vectors σ in the neighbor of the ESS strategies σ?. The first condition is the definition

of NE that the strategy σ? is the best reply to itself. However, this condition by itself

does not guarantee the ESS, because it allows another alternatives best response if

fσ = 0 [16]. The stability condition assures that the incumbent strategy, σ?, do better

than the mutant strategy,σ, against itself.

For two populations, we have asymmetric (bimatrix) game, and Theorem 2 below

provides the ESS existence conditions.

Theorem 2 [14]: The ESS for two populations Γ and Θ with pure strategies Ei, i =

1, .., n, and Fj , j = 1, ..,m, with payoff matrices A and B respectively, is the strategy

(p∗,q∗) where p∗ ∈ Sn and q∗ ∈ Sm that satisfies: p∗TAq∗ > pTAq∗, for all p ∈ Sn

and p 6= p∗, and, q∗TBp∗ > qTBp∗, for all q ∈ Sm and q 6= q∗, where p and q are the

probability vectors over the pure strategies of the two populations Γ and Θ, respectively.
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Evolutionary games can be dynamically characterized using the replicator dynamics

(RD) which are a set of nonlinear differential equations that capture the evolution of

the strategies in the population. RD can be thought of a set of learning rules used by

the players to shape their strategy choices. At each time, a player compares her payoff

with the average payoff in the population and change her strategy each time. The RD

has a wide range of applications because of its simplicity and practicality. The RD for

one population evolutionary game is given as:

ṗi = pi[u(pi,p)− u] (2.3)

u =

n∑
i=1

piu(pi,p), (2.4)

where the initial conditions are pi(0) = pi,0 over all possible strategies. The differential

equation (2.3) says that at any time, the number of users (the user strategy preference)

who are using strategy pi can increase or decrease by comparing the payoff to the

average payoff given in formula (2.4). For the case of more than one population, the

RD systems of equations will be expanded to take in consideration the probabilities of

choosing the other strategies in the other populations.

2.1 Relation between Asymptotic Stability and Evolutionary Stability

Any asymptotically stable1 strategy (point) is a NE, but the reverse does not hold in

general. Any ESS is a NE, and the reverse does not hold in general. Any strict NE is

an ESS and vice versa, see for example [11,16]. Specifically, for a one population game

with more than two strategies, asymptotic stability does not guarantee evolutionary

stability (see for example the game proposed by Zeeman [15], and mentioned in [17]).

If we have one population with each player has a symmetric payoff function and the

payoff matrix is symmetric, the asymptotic stability implies evolutionary stability [17].

1Asymptotic stability means any solution that starts near the equilibrium point converges to that
equilibrium point. Here we refer to local asymptotic stability. Local stability in this work is used,
because there are multiple equilibrium points, where each equilibrium point has a specific region where
all solutions inside that region convergence to it. Formally, this region is called the region of attraction
(RoA).
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The ESS is more stable than the local asymptotic stability, and thus a Zeeman’s game

shows that the region of attraction of the ESS is larger than that of the regular attractor

(asymptotically stable point) [15]. Furthermore, symmetric games can admit a mixed

strategy as an ESS, but it has to be unique.

Figure 2.1: Flowchart to find the ESS in the evolutionary game with multiple strategies.

On the other hand, in asymmetric/two population games the asymptotic stability

also implies evolutionary stability [12]. Finally, mixed strategies are always unstable in

asymmetric games [16].

A general procedure for finding the ESS of any evolutionary game with more than

two strategies is shown in Fig.2.1.
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Chapter 3

Distributed Denial of Service Attacks in a Wireless

Network Evolutionary Game

3.1 Introduction

Wireless networks are prone to many attacks because of the inherent openness of the

transmission medium. One of these attacks is the distributed denial of service attack

(DDoA). A malicious node (device, or user) can perform DDoA by jamming another

node’s (user or device) transmission by degrading its signal quality and denying cor-

rect reception at the intended receiver. This problem can be formulated as a game

between the user(s) and the jammer(s), and it has been studied extensively in the lit-

erature. The more general scope of this problem is within the physical layer security

framework where signal processing approaches, and error correcting codes are used to

solve this problem, see for example [18], and the references therein. Statistical signal

processing techniques that take advantage of the radio channel properties are shown

to mitigate attacks against wireless networks in [19,20]. However, these methods often

use centralized approaches that optimize various transmission parameters and receiver

techniques [21]. On the other hand, game theory (both cooperative and noncooper-

ative) provides a distributed optimization solution to the above problem [22]. Static

game theoretic approaches typically characterize the stable operating points (equlibria)

as well as the strategies chosen by the users and jammers to achieve these. In this

chapter, we are interested in studying the dynamics of such DDoA in a network (pop-

ulation) consisting of a collection of users and jammers when each of the populations

are allowed to cooperatively transmit (and jam). Specifcally, we will use Evolutionary

game Theory (EGT) [23] to study the dynamics of DDoA in a wireless network with

M users connecting to an access point in the presence of N jammers whose goal is
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disrupt the user transmissions. The chapter is organized as follows. A brief review of

related work is provided in Section 6.2. Section 4.3 gives the details of the problem

formulation and the parameter derivations. Simulation results are given in Section ??,

and we conclude in Section 6.6.

3.2 Related work

Evolutionary Game Theory has been used to study the dynamics of wireless networks

in many competing situations [24–30]. These situations range from radio resource

management among competing users for rate adaptation, base station assignment and

spectrum sharing, to routing in mobile networks as well pricing of wireless resources.

In almost all of the above cases, the models result in symmetric games where all users

optimize the same utility function, typically get identical rewards and face similar costs.

In this chapter, we consider a setting where the underlying model involving users and

jammers inherently results in an asymmetric situation regarding the rewards and costs.

Earlier work in [31] has considered secrecy rate adaptation using a EGT formulation

but the model considered there is quite different from the one under consideration

here. Specifically, in this work, we formulate a doubly asymmetric evolutionary game

between two populations (users and jammers) and implicitly solve the evolutionary

stable strategies for the game using a potential function formulation. Besides EGT

formulations, there have been many efforts that consider static formulations of user

and jammer interactions (see e.g. [32–38]).

3.3 Problem Formulation

We consider a single-cell system with M users connected to a base stations (BS) in

the presence of N jammers. The jammers launch an attack by transmitting signals

(with some probability) that interfere with the users’ transmissions, there by reducing

their SINR while incurring a transmission cost. The users on the other hand decide

(with some probability) either to transmit or not. Further, we consider a cooperative

network model where the M users (and N jammers) can collectively enhance their
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achieved SINR (degrade the user SINR). The M -users and the N -jammers form two

different populations with conflicting goals. The users are trying to enhance their SINR

at the BS, while the jammers are launching their attack to lower the users’ SINR. This

conflict is modeled using Evolutionary Game Theory (EGT), where the sets of player of

strategies are to transmit or to not, and the sets of payoffs consist of the rewards that

are represented by the difference between the achieved SINR and the transmission

cost. At any time instant, some players (users or jammers) are transmitting, while

the others are not. After several interactions, the initial transmitting portion of the

players will change and settle at a stable point. This point is a potential evolutionary

stable strategy (ESS) for the game. This evolution from the initial population to the

stable population is captured by the concept of Replicator Dynamics (RD) [11,17,23].

At this stability point, no one can do better by deviating from this equilibrium point.

This equilibrium point is known as Nash Equilibrium (NE), but with the addition of

the condition of being stable against small population deviations from this NE, it will

evolve to an ESS.

3.3.1 Cooperative Users vs. Cooperative Jammers

Cooperation among players means that all the players in a certain population have an

objective function that they are trying to maximize. In the context of the communi-

cation model, it implicitly implies that all users are delivering joint messages for each

other. If the users’ population succeeds in forcing the jammers’ to stop jamming (by

making the jamming cost higher than its reward), then all users benefit from this, and

the same motivation holds for the jammers’ population. Assume that players (users and

jammers) in each population are cooperating to transmit their signal. As the number

of the participating players in transmissions increases, the SINR for each player will

increase, but at the price of additional transmission cost. The channel coefficients play

an important role to enhance the SINR and add uncertainty to the players’ payoffs.

Thus players learn from their past moves through the RD learning process.



14

Users’ utility function formulation

Let the utility of user i when the user chooses to transmit be:

UTxi|T =
hiPi + ρ

∑M
k=1,k 6=i hkPk

σ2 + δ
∑N

j=1, h
′
jP
′
j

− Cu(Pi + ρ

M∑
k=1,k 6=i

Pk) (3.1)

hi’s and h′j ’s are the channel coefficients between the users and the base station, and

between the jammers and the base station, respectively. ρ and δ are the probabilities

(portions of community) that the users and the jammers are transmitting, respectively.

This is the same as saying that when user-i starts transmitting, there is a portion ρ

of other users who are transmitting and helping her to increase her SINR (the same

holds for the jammers). Cu is the cost that users pay for transmitting. σ2 is the noise

power. Because of the users’ cooperation (the same argument holds for the jammers,

as will be shown later) the utility function for each user in equation (5.4)can be written

as the average utility: UTx|T = 1
M

∑M
i=1 UTxi|T . After some manipulations, we get the

following expression:

UTx|T =
(ρ(M−1)+1)

M

∑M
k=1 hkPk

σ2 + δ
∑N

j=1, h
′
jP
′
j

− Cu(
(ρ(M − 1) + 1)

M

M∑
k=1

Pk) (3.2)

Let the utility of the user i and the average utility of the population in the not-transmit

case be:

UTxi|NT =
ρ
∑M

k=1,k 6=i hkPk

σ2 + δ
∑N

j=1, h
′
jP
′
j

− Cu(ρ
M∑

k=1,k 6=i
Pk) (3.3)

UTx|NT =
(ρ(M−1))

M

∑M
k=1 hkPk

σ2 + δ
∑N

j=1, h
′
jP
′
j

− Cu(
(ρ(M − 1))

M

M∑
k=1

Pk) (3.4)

There are two reasons for writing the utility as shown in equations (?? and ??). The first

is to convert the game from doubly asymmetric to asymmetric. In other words, to unify

the users’ goal, because they share the same motivation and also because the presence of

different channel coefficients is an undesired technicality. The latter is undesirable since

it destroys the intuition behind constituting the users’ population which should contain

the players with the same interest. The second reason is mathematically justifiable,

that is, the average utility function for all the players constitutes a potential function

as will be shown in Claim 3.1.
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Claim 3.1. The average utility function (in equations (3.2) and (3.4)) of all players

form a potential function for the population.

Proof.

UTxi|T − UTxi|NT =
hiPi

σ2 + δ
∑N

j=1, h
′
jP
′
j

− CuPi (3.5)

UTx|T − UTx|NT =

∑M
i=1 hiPi

M(σ2 + δ
∑N

j=1 h
′
jP
′
j)
−
∑M

i=1CuPi
M

(3.6)

=
1

M

M∑
i=1

(UTxi|T − UTxi|NT )

According to the definition of potential games in [39], the average function is an ordinal

potential function since

UTxi|T − UTxi|NT > 0⇐⇒ UTx|T − UTx|NT > 0. (3.7)

Furthermore, it has been shown in [39] that the sum function is an exact potential

function. The average is just a scaled version of the sum. As a result it is an ordinal

potential function. We can use the fact the NE is invariant under scaling and shifting

to prove that the sum and the average function have the same NE. The meaning of Eq.s

(3.6) and (3.5) is when all players use the transmit strategy, they get higher payoff. This

is established by either optimizing their individual utility functions or by the potential

function and this completes the proof.

Jammers’ utility function formulation

The utility function of the jammer is assumed to be the reciprocal of the user’s utility.

This formulation is different from the formulation that is usually used in the literature

(for example in [32]). The formulation we use lends itself to mathematical manipulation.

For jammer j, the utility that she will get in the transmission case is:

UJxj |T =
σ2 + h′jP

′
j + δ

∑N
l=1,l 6=j h

′
lP
′
l

ε+ ρ
∑M

i=1, hiPi
− CJ(P ′j + δ

N∑
l=1,l 6=j

P ′j) (3.8)

where ε is a very small positive number added to keep the jammers’ equations mathe-

matically tractable (to be shown later) . As a result, the average utility for the jammers’
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community can be written as: UJx|T = 1
N

∑N
j=1 UJxj |T . After manipulations, we get

the following equation:

UJx|T =
σ2 + (δ(N−1)+1)

N

∑N
j=1 h

′
jP
′
j

ε+ ρ
∑M

i=1, hiPi
− CJ(

(δ(N − 1) + 1)

N

N∑
j=1

P ′j) (3.9)

The utility function and the average utility function for the jammer in the not-transmitting

case are given in equations (3.10) and (3.11), respectively:

UJxj |NT =
σ2 + δ

∑N
l=1,l 6=j h

′
lP
′
l

ε+ ρ
∑M

i=1, hiPi
− CJ(δ

N∑
l=1,l 6=j

P ′j) (3.10)

UJx|NT =
σ2 + (δ(N−1))

N

∑N
j=1 h

′
jP
′
j

ε+ ρ
∑M

i=1, hiPi

−CJ(
(δ(N − 1))

N

N∑
j=1

P ′j) (3.11)

Justifying the jammers’ average utility in (3.9) and (3.11) and proving that they

constitute a potential function follows the same reasoning and approach used for the

users’ utility function and Claim 3.1.

Stability Analysis

The game is an asymmetric game, and according to [11, 17, 23], there is no mixed ESS

under the RD. The RD equation in its general form is given in (2.3). Substituting the

utility functions in (3.2) and (3.4), on one hand, and (3.9) and (3.11), on the other hand,

in (2.3) and (2.4), we get differential equations for the user and the jammer transmission

probabilities, respectively. Denote the user and jammer transmission probabilities by ρ

and δ, respectively. Let dρ
dt = ρ̇ and dδ

dt = δ̇, then:

ρ̇ = ρ(1− ρ)(
1
M

∑M
k=1 hkPk

σ2 + δ
∑N

j=1, h
′
jP
′
j

− Cu
M

M∑
k=1

Pk) (3.12)

for ρ(0) = ρ0 and 0 ≤ ρ0 ≤ 1. Similarly, for the jammer, it will be:

δ̇ = δ(1− δ)(
1
N

∑N
j=1 h

′
jP
′
j

ε+ ρ
∑M

k=1 hkPk
− CJ
N

N∑
j=1

P ′j) (3.13)
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for δ(0) = δ0 and 0 ≤ δ0 ≤ 1. To simplify the notation, we introduce the following

variables:

x1 =
1

M

M∑
k=1

hkPk , x2 =

N∑
j=1

h′jP
′
j , x3 =

Cu
M

M∑
k=1

Pk. (3.14)

y1 =
1

N

N∑
j=1

h′jP
′
j , y2 =

M∑
k=1

hkPk , y3 =
CJ
N

N∑
j=1

P ′j . (3.15)

Rewriting (3.12) and (3.13) in terms of (3.14) and (3.15), we get:

ρ̇ = ρ(1− ρ)(
x1

σ2 + δx2
− x3), ρ(0) = ρ0 (3.16)

δ̇ = δ(1− δ)( y1
ε+ ρy2

− y3), δ(0) = δ0 (3.17)

Equations (3.12) and (3.13) are nonlinear ordinary differential equations. The equilib-

rium points of these equations can serve as potential ESS’s. The asymptotic stability

will be checked to see the long run behavior of the system. We form the Jacobian

matrix whose elements are ∂ρ̇
∂ρ ,

∂ρ̇
∂δ ,

∂δ̇
∂ρ , and ∂δ̇

∂δ . For an equilibrium point to be asymp-

totically stable, the eigenvalues of the Jacobian matrix should have negative real parts.

This is equivalent to i) the determinant of the Jacobian > 0, and ii) the trace of the

Jacobian < 0. The system of differential equations given in (3.16) and (3.17) has 9

equilibrium points (4 of them correspond to pure strategies, while the others are mixed

strategies). The phase portraits for these nonlinear second order differential equations

are shown for different cases in the figures in Sec. 4.4. These phase portraits indicate

that the only motion starting in the square (0, 1), (1, 0), (0, 0), and (1, 1) will tend to

two stable points (in this special case it will go to (0, 1), (1, 0) ), and this rules out any

mixed strategy. In what follows, the Jacobian for the pure strategies will be built and

analyzed. It can be shown that (0, 0) and (1, 1) are not asymptotically stable points.

Similarly, we can prove the other cases.

Building the Jacobian for (0,1) strategy: This means that the user will choose the

not-transmit strategy and the jammer will choose the transmit strategy, i.e., ρ = 0 and

δ = 1. This strategy will sometimes be referred to as the jammers’ desired strategy.

J(0,1) =

 x1
x2+σ2 − x3 0

0 −y1
ε + y3

 (3.18)
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Building the Jacobian for (1,0) strategy: This means that the user will choose

the transmit strategy and the jammer will choose the not-transmit strategy, i.e., ρ = 1

and δ = 0. This strategy will sometimes be referred to as the users’ desired strategy.

J(1,0) =

−x1
σ2 + x3 0

0 y1
y2+ε

− y3

 (3.19)

Conditions to get asymptotic stability for the cooperative users, and coop-

erative Jammers

By applying the determinant rule and the rank rule to each of the Jacobian matrices

in (3.18) and (3.19), we get the following conditions.

Testing the (0,1) as a potential ESS: det(J(0,1)) = ( x1
x2+σ2 − x3)(−y1

ε + y3) > 0,

which leads to the requirement that both terms should be < 0 (because −y1
ε < 0).

Trace(J(0,1)) = ( x1
x2+σ2 − x3) + (−y1

ε + y3) < 0, which is guaranteed because of the

second term. As a result, a sufficient and necessary condition for (0, 1) to be an ESS is

( x1
x2+σ2 − x3) < 0. This can be written as:

1
M

∑M
k=1 hkPk

σ2 +
∑N

j=1, h
′
jP
′
j

<
Cu
M

M∑
k=1

Pk (3.20)

Testing the (1,0) as a potential ESS: det(J(1,0)) = (−x1
σ2 +x3)(

y1
y2+ε
−y3) ≈ (−x1

σ2 +

x3)(
y1
y2
−y3) > 0, and Trace(J(1,0)) = (−x1

σ2 +x3)(
y1
y2+ε
−y3) ≈ (−x1

σ2 +x3)+(y1y2−y3) < 0.

This leads to the requirement that both terms in both equations should be less than

zero, i.e., (x1
σ2 > x3) and y1

y2
< y3, or:

1
M

∑M
k=1 hkPk

σ2
>
Cu
M

M∑
k=1

Pk (3.21)

1
N

∑N
j=1 h

′
jP
′
j∑M

k=1 hkPk
<
CJ
N

N∑
j=1

P ′j (3.22)
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3.3.2 Relation between asymptotic stability and ESS in the coopera-

tive users and cooperative jammers game:

In general, each ESS is not asymptotically stable point (see for example [23]). However,

according to [12] in asymmetric games with two strategies, asymptotically stability is

equivalent to being an ESS.

3.3.3 Convergence to Asymptotically Stable Points

Convergence to asymptotically stable points will be verified by simulations in the later

sections in addition to the analytical verification in this section. The approach used

here closely follows what is done in [31].

Claim 3.2. : The Cooperative users and Cooperative Jammers game converges to the

one of ESSs: (0, 1) or (1, 0) according to the conditions in equations (3.20) or (3.21)

and (3.22) being true.

Proof. By Claim J1, we have a game with two potential functions for two populations.

Each player in each population will work towards maximizing her population potential

function. According to [39], the solution for the above game is unique, and this proves

the convergence part of the claim. For the second part, if equation (3.20) is true, then

(0, 1) is an asymptotically stable point. Similarly if equations (3.21) and (3.22) are

true, then (1, 0) is an asymptotically stable point. Furthermore, from the discussion

of the relation between the asymptotic stability, and evolutionary stability in 3.3.2, we

know that these points are corresponding to the ESS points of the game. As a result,

the game will converge to one of them (either (0, 1) or (1, 0)).

Under some special conditions, one can show that the game will settle at a specific

ESS. Each ESS depends on the channel coefficients, the initial probabilities, and the

number of users and jammers who are active (transmitting). However if one of the

population players have better channels, and larger numbers, then a specific ESS can

be predicted. These conditions are stated and proved in Claim 3 below.
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Claim 3.3. : For equal transmission powers, then regardless of the initial population

points, we have:

(1) If the number of users is greater than the number of jammers, then (1, 0) is the

ESS, if the ratio of the average of the users channel gains to the sum of the jammers

channel gains is greater than the users transmission cost.

(2) If the number of jammers is greater than the number of users, then (0, 1) is the

ESS, if the ratio of the average of the jammers channel gains to the sum of the users

channel gains is greater than the jamming cost.

Proof. To eliminate (0, 1) from being an ESS, it is enough to show that it is not asymp-

totically stable. By Claim 3.2 the game converges to an ESS, then we are left with

(1, 0) which is our desired ESS. From the stability analysis in 3.3.1, (0, 1) can be a sad-

dle point (and hence not asymptotically stable) if (3.20) is not satisfied. Assuming the

noise is very small with respect to the jammers’ interference power will simplify the cal-

culations as follows: we need ( x1
σ2+x2

−x3 > 0)|σ2<<x2 ⇒
1
M

∑M
k=1 hkPk∑N

j=1 h
′
jP
′
j

> Cu
M

∑M
k=1 Pk ⇒

1
M

∑M
k=1 hk∑N

j=1 h
′
j

> CuPkwhich is true,and hence (0, 1) will be a saddle point. The second

part of the claim can be proved similarly by excluding (1, 0) from being asymptotically

stable.

What the above claim reveals is that if users are greater in number and have sig-

nificantly better channels than the jammers, the ESS results in victory for the user

population, and vice-versa.

3.4 Conclusions

We considered a wireless network ofM users connected to an access point in the presence

of N jammers whose purpose is to deny or degrade the performance of the users by

injecting interference. Using the achieved signal to inference plus noise ratio (SINR)

as the performance metric, we studied the dynamics of such a distributed denial of

service attack (DDoA) by using Evolutionary Game Theory (EGT). Specifically, we

considered a cooperative network model, where the M users (and N jammers) can

collectively enhance their achieved SINR (degrade the user SINR). We modeled the
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(a) Positions of the 20 users and 9 jammers.

(b) Example of strategies evolution for 20 users, 9 jammers, ρ = 0.5, and δ = 0.6.

(c) Phase Portrait for 20 Users and 9 Jammers.

Figure 3.1: 20 users and 9 jammers.
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strategic transmission decisions of the users (and the jammers) using simple random

access techniques where the users (and jammers) decide to transmit or not with a

transmission probability taking into account their energy costs. Using the replicator

dynamics (RD) we characterized the evolutionary stable strategies (ESS’s) of the game

and observed that the resulting transmission probabilities turn out to be either 0 or

1. Further, given a network (channel) setting, we showed using a phase portrait of the

replicator dynamics how the ESS strategies evolve for different cooperation levels of the

users and jammers populations. We also provided insights into resulting ESS strategies

as a function of the number of users and jammers, and their signal strengths (locations).

Typically, if users are greater in number and have significantly better channels than the

jammers, the ESS results in victory for the user population, and vice-versa.
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(a) Positions of the 2 users and 20 jammers.

(b) Example of strategies evolution for 2 users, 20 jammers, ρ = 0.5, and δ = 0.6.

(c) Phase Portrait for 2 Users and 20 Jammers.

Figure 3.2: 2 users and 20 jammers.
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(a) Positions of the 20 users and 20 jammers.

(b) Example of strategies evolution for 20 users, 20 jammers, ρ = 0.5, and δ = 0.6.

(c) Phase Portrait for 20 Users and 20 Jammers.

Figure 3.3: 20 users and 20 jammers.
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Chapter 4

Threat Revocation in Ephemeral Networkst

4.1 Introduction

Ephemeral networks are those in which the nodes of the network are connected in a

decentralized way where the life time of the network could be short. Examples of these

networks can be ad hoc networks, vehicular networks, and delay tolerant networks

[22,40]. Revocation games can be used to model security threats for Internet of Things

(IoT) where each device can be considered as a benign node with an intruder who tries

to launch an attack to disturb the network. The model considered here is suitable

to describe any network structure where there is no Centralized Authority (CA), to

constantly monitor the network [40].

In this chapter, we are interested in studying the dynamics of the misbehavior

introduced by an intruder(s) in an ephemeral network (population) consisting of a

collection of benign nodes and malicious ones when the population of the benign node

is allowed to cooperatively take a decision on how to deal with such threat optimally.

Specifically, we will use Evolutionary Game Theory (EGT) [23] to study the dynamics

of such attack in a wireless network with M users connected in an ad hoc manner in

the presence of intruders whose goal are to disrupt the users’ communications.

The chapter is organized as follows. A brief review of related work is provided in

Section 4.2. Section 4.3 gives the details of the problem formulation and the parameter

derivations. Simulation results are given in Section 4.4, and we conclude in Section 4.5.
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4.2 Related work

Applying game theory to address the security of vehicular networks can be found in [41]

and the references therein, where various game models such as zero sum game models,

fuzzy games, and fictitious play have been applied. For ephemeral networks, the work

in [40] uses a dynamic (sequential) game to collect certain number of votes to declare

node revocation. In [42], the authors use a static game to find the optimal revocation

procedure. In this chapter, we propose an evolutionary game model to the problem,

where the benign nodes are assumed to form a homogeneous population of players.

Evolutionary Game Theory has been used to study the dynamics of wireless net-

works in many competing situations [24–30]. These situations range from radio resource

management among competing users for rate adaptation, base station assignment, and

spectrum sharing, to routing in mobile networks, as well pricing of wireless resources.

In almost all of the above cases, the models result in symmetric games where all users

optimize the same utility function, typically get identical rewards and face similar costs.

Earlier work in [1, 31, 43] used EGT for wireless network security where the objective

function was either the secrecy rate as in [31], signal to noise ratio in [1], or in terms of

building a reputation system to monitor the misbehavior in the network by the CA as

in [43].

4.3 Problem Formulation

We assume a decentralized short range network consisting of a population of M benign

nodes threatened by intruder(s). Each node has equal opportunity to be able to face

that intruder to make a decision. The set of available strategies for each node to choose

from is {A,S, V } [40], and [42]. A stands for abstain or do nothing (the free rider

problem). S stands for self-sacrifice, where the node takes the ultimate decision by

disconnecting the intruder and itself from the network to protect the whole population

(however, for the network connectivity, it is not desired that large number of nodes to

use this strategy). V is for voting to isolate the suspected node or not. Each decision

has its benefits and consequences which are represented as rewards and costs. As a
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Table 4.1: Players’ Payoffs

A S V

A (−c,−c) (β,B − cs) (−c,−(c+ v))

S (B − cs, β) ((B − cs)/2, (B − cs)/2) (B − cs, b− v)

V (−(c+ v),−c) (b− v,B − cs) (b− v, b− v)

result the node cost function (that has to be minimized) is given as [22],

Ji(Ai, k) =


(1− k)c if Ai = A

v + (1− k)c− kb if Ai = V

cs −B if Ai = S

(4.1)

where all the variables are non-negative. k = 1 if the revocation is successful and

equals zero if not. v is the cost of voting, b is the benefit of voting (if revocation was

not successful, then the voting node(s) can suffer or being attacked by the intruder(s)),

cs is the cost of self-sacrifice, B is the benefit of self-sacrifice, and c is the attack cost

(damage to the network).

According to the game formulation as either static or dynamic, different decision

rules are derived in [40] and [42]. However, formulating the problem as an evolutionary

game, gives an intuitive way to think about the problem. If node-1 decides to use a

strategy A, then why should node-2 commit strategy S or V ? By setting some pre-

specified rules, one can control how the decision could be made. This is captured by the

cost terms associated with each decision. We assume that all the nodes are identical

in their interests, payoffs, and decision costs. Furthermore, these nodes are threatened

by the same intruder. By formulating an appropriate payoff function, this game is a

typical symmetric evolutionary game. The payoff matrix is defined under the following

constraints: β > b− v > B − cs. All the variables are non negative real numbers. The

variables c, cs, b, v, B are defined as in (4.1), and β is the benefit from not using strategy

S when not needed. For any ordered pair (x, y) in the payoff table above, Table 4.1, the

first entry represents the payoff to the row player and the second entry represents the

benefits for the column player. As it can be seen, the game encourages removing the

attacker quickly by the constraint above. Also, the game is discouraging the strategy
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A when there is a threat, and promoting using strategy S. However, excessive use of

strategy S could lead to the network be disconnected, and this is undesired solution.

As a result, the costs for both players playing S is high, since one of them is needed to

play it to isolate the intruder. The pair {V,A} has the worst cost, because it will not

lead to a successful revocation, and as a result the attacker might take revenge from

the node which voted for revocation, or might change its position to avoid that node

and start a new attack that could be tolerated by the presence of more nodes that play

the strategy A. Let each node chooses the strategies {A,S, V } with probabilities given

by the probability vector ρ = [ρ1, ρ2, ρ3]
T , and the payoff matrix (for the row player

which is the same for all players in the game) can be written as,

Q =


−c β −c

B − cs (B − cs)/2 B − cs
−(c+ v) b− v b− v

 (4.2)

then each node will solve the following optimization problem,

max
ρ

ρTQρ

subject to

3∑
i=1

ρi = 1,

0 ≤ ρi ≤ 1, i = 1, 2, 3.

(4.3)

The problem above is not convex, because the matrix Q is neither positive definite, nor

semi definite. Also, although we assumed that the game is symmetric on its players’

interests, the payoff matrix is not symmetric (see (4.2)). If it was symmetric, then we

would have a doubly symmetric evolutionary game [11]. In doubly symmetric evolu-

tionary games, (4.3) can be solved as a quadratic convex program. However, by using

the RD concept, we can find the locally asymptotically stable strategies, and then test

them for being ESS using the fσ and gσ conditions. Finally, it is assumed (as in [22])

that there is a detection mechanism that is responsible for identifying and declaring the

intruder(s), so that the other nodes can make their decisions upon that. We will follow

the procedure given in Fig.2.1.
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4.3.1 The Game Dynamics

The dynamic stability of the game is studied in the scope of RD, where each player

compares her payoff with the average payoff and updates her strategy according to this.

For this game, the ESS can be in the mixed strategies or in the pure ones. In all cases,

the eigenvalues of the Jacobian of the RD at the equilibrium should have negative real

parts. In some cases it is easier to look at the Jacobian, but not always. For this

game, the RD is represented by the following system of nonlinear ordinary differential

equation,

ρ̇i = ρi(u(ρi, ρ)− u), i = 1, 2, 3. (4.4)

Furthermore, there are two independent equations in the system (4.4), since ρ̇3 =

−(ρ̇1 + ρ̇2). To find the ESS potential points, we need to solve the above system

of nonlinear equations (4.4) to find all the rest points, then finding the eigenvalues

correspond to each rest point. If the eigenvalues have negative real parts, then we have

asymptotic stability which has to be further investigated for being ESS by applying

them to fσ and gσ. The Jacobian matrix is given as,

J =

 ∂ρ̇1
∂ρ1

∂ρ̇1
∂ρ2

∂ρ̇1
∂ρ2

∂ρ̇2
∂ρ2

 (4.5)

Unfortunately, finding the rest points for the system of equations (4.4) in a general

form is difficult to express analytically. However, finding it for the pure strategies is

relatively an easier task.

In this game, and for the sake of simplicity, we use the RD (4.4) to visualize the evolution

of the probabilities ({ρ1, ρ2, ρ3}), while we use the conditions (fσ and gσ) to check the

strategy for being an ESS. However, for a strategy to not being asymptotically stable,

means it is not an ESS.

Claim 4.1. Among all the available pure strategies {A,S, V }, the strategy V (which

corresponds to (ρ1 = 0, ρ2 = 0, ρ3 = 1)) is an ESS in its neighborhood.

Proof. We can check the asymptotic stability (through computing the eigenvalues) of

the Jacobian matrix which corresponds to each of the given strategies. If the strategy
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is not asymptotically stable, then it is not an ESS. If it is asymptotically stable, then

we check if it satisfies fσ (and gσ if fσ = 0) condition. To prove that V (which

corresponds to (ρ1 = 0, ρ2 = 0, ρ3 = 1) is an ESS in its neighborhood, we substitute

it in the condition fσ, to get [0 0 1]Q[0 0 1]T − [ρ1 ρ2 ρ3]Q[0 0 1]T = ((b − v) +

c)ρ1 + ((b− v)− (B − cs))ρ2 → fσ > 0 which proves V as an ESS. For the strategy A

({ρ1 = 1, ρ2 = 0, ρ3 = 0}), the corresponding Jacobian is

J(1,0) =

 −v cs − c− v −B

0 B − cs + c

 (4.6)

with eigenvalues −v < 0 and B − cs + c > 0, this strategy is not asymptotically stable,

and as a result it is not an ESS. Similarly, for the strategy S ({ρ1 = 0, ρ2 = 1, ρ3 = 0}),

the corresponding Jacobian is

J(0,1) =

 β − 0.5(B − cs) 0

(b− v)− β (b− v)− 0.5(B − cs)

 (4.7)

with eigenvalues β − 0.5(B − cs) > 0 and (b− v)− 0.5(B − cs) > 0, this strategy is not

asymptotically stable, and as a result it is not an ESS too.

Claim 1 shows two things: (1) It is possible to get each node involved in the decision

making process to avoid the free rider problem (where nodes just use the A strategy),

given that there are enough nodes that are using the V strategy. (2) although the other

strategies (A and S) cannot dominate the population by themselves (which is good),

there still the possibility that an undesired mixed strategy (which is given by {A,S, 0}),

where strategy V will not used, be an ESS. Characterizing the conditions under which

such an ESS emerges can be done by finding the asymptotically stable points of (4.4),

while the required potion of population (initial conditions and the region of attraction)

that is required to converge to such an ESS is shown by the phase portrait diagrams.

4.4 Simulation Results

In this section, two cases correspond to two different values for the payoff matrix Q

will be analyzed to find the ESS and simulated using the package in [44] to show the

convergence rates of different strategies to the asymptotically stable points.
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Table 4.2: Example 1 Strategies and their Eigenvalues

Strategy (ρ1, ρ2, ρ3) Eigenvalues

(0, 0, 1) (−2,−0.5)

(0.54, 0.46, 0) (−0.8,−0.7)

(0, 1, 0) (1.75, 0.75)

(0.25, 0.46, 0.29) (−0.64, 0.42)

(0.8, 0, 0.2) (1.5, 0.4)

(1, 0, 0) (1.5,−0.5)

4.4.1 Case 1

In this case, we take the following values for the game parameters, β = 2; b = 1.5; v =

0.5;B = 1.5; cs = c = 1. The payoff matrix is

Q =


−1 2 −1

0.5 0.25 0.5

−1.5 1 1

 (4.8)

We search for the rest points of the RD (4.4) using [44] to get the asymptotically stable

points. Table 4.2 shows these strategies with their eigenvalues. The phase portrait is

shown in Figure 4.1. The solid dots are the asymptotically stable points, while the

empty dots are not asymptotically stable. The speed of convergence is captured by the

color, the darker the color, the higher the speed of convergence. The first asymptotically

stable strategy V , (ρ1 = 0, ρ2 = 0, ρ3 = 1), has been proven as an ESS in Claim 1.

Similarly, we prove that the second asymptotically stable point (0.54, 0.46, 0) to be an

ESS as follows, [0.54 0.46 0]Q[0.54 0.46 0]T − [ρ1 ρ2 ρ3]Q[0.54 0.46 0]T = 0.73ρ3 >

0 → fσ > 0. The phase portrait in Figure 5.2 shows that the region of attraction of

strategy V is larger than that of the other ESS. This highlights that nodes can tune

their decisions by assigning in advance proper parameters to induce cooperation and

eliminate the free rider problem as well as to avoid the network self destruction where

strategy S could be seen as the only strategy used to eliminate the intruder. Figures

4.2 and 4.3 show the probability evolution for some specific initial conditions (portion

of populations use each strategy).
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Figure 4.1: Phase Portrait for β = 2; b = 1.5; v = 0.5;B = 1.5; cs = c = 1. Solid dots are the
asymptotically stable points.

Figure 4.2: Convergence to the ESS (0.54, 0.46, 0) given that β = 2; b = 1.5; v = 0.5;B =
1.5; cs = c = 1, and with initial points ρ1 = 0.5, ρ2 = 0.2, ρ3 = 0.3.

Figure 4.3: Convergence to the ESS (0, 0, 1) given that β = 2; b = 1.5; v = 0.5;B = 1.5; cs =
c = 1, and with initial points ρ1 = 0.35, ρ2 = 0.3, ρ3 = 0.35.
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4.4.2 Case 2

In this case, we take the following values for the game parameters, β = 2; b = 2; v =

0.5;B = 1.5; cs = c = 1. For this case, the game has the same asymptotically stable

points and the ESS’s as found in Section 4.4.1. However, the difference is that the

region of attraction for the desired ESS V (0, 0, 1) is larger than that of the other ESS

(where no player plays V ) as can be seen from Figure 4.4 (the calculations details are

omitted because the space limitation). This change has been made by increasing the

value of b from 1.5 to 2, which means more payoff for cooperation (or voting). Figures

4.5 and 4.6 show the convergence to the mixed and pure strategies. Comparing them

with Figures 4.2 and 4.3, it can be seen that much less portion of the population (benign

nodes) needs to use the V strategy to motivate the other nodes to use it.

Figure 4.4: Phase Portrait for β = 2; b = 2; v = 0.5;B = 1.5; cs = c = 1, and with initial points
ρ1 = 0.35, ρ2 = 0.3, ρ3 = 0.35.

4.5 conclusions

We considered a wireless network of M nodes connected together in a decentralized

way, and according to pre-specified rules. We assumed that there are other malicious

node(s) which could be either inserted or infected which are trying to disturb the oper-

ation of the network. We assumed the nodes to be cooperating to defend the network

(and eventually themselves) by isolating the misbehaved node(s). We approached this
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Figure 4.5: Convergence to the ESS (0.54, 0.46, 0) given that β = 2; b = 2; v = 0.5;B = 1.5; cs =
c = 1, and with initial points ρ1 = 0.6, ρ2 = 0.2, ρ3 = 0.2.

Figure 4.6: Convergence to the ESS (0, 0, 1) given that β = 2; b = 2; v = 0.5;B = 1.5; cs = c = 1,
and with initial points ρ1 = 0.4, ρ2 = 0.4, ρ3 = 0.2.
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problem using Evolutionary Game Theory (EGT), and characterized the robust equi-

librium point(s) for this game. We formulated a game such that all the nodes take part

in the decision process to avoid problems caused by unsuccessful revocation or over

reacted revocation decisions. Each node in the network (interchangeably called benign

node to distinguish it from the malicious node or the intruder) is assumed to have three

decisions to make: (a) abstain or do nothing; (b) self-sacrifice by disconnecting the

intruder and itself; and (c) voting to isolate the intruding node. Each decision has its

advantages and disadvantages and the Replicator Dynamics (RD) is used to show the

dynamics of the nodes’ decisions. By simulating the RD equation, two different cases

emerged as Evolutionary Stable Strategies (ESS) where one of them is the desired ESS,

and the other is not. We showed using phase portrait diagrams the fraction of the M

nodes needed to choose each one of these ESS’s, the rate of convergence, and the effect

of increasing the cooperation rewards.
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Chapter 5

Advanced Persistent Threats

5.1 Introduction

Continuous targeting of storage devices by a well funded, powerful attacker are called

Advanced Persistent Threats (APTs) [45]. A study of APT in [9] shows that an attacker

can apply advanced attack techniques such as spear phishing and watering-hole-attacks

against cyber systems such as cloud storage and servers. The nature of these attacks

reflects deep conflicts among many factors such as the attacker’s desire to control the

system versus the attacking cost. Attackers can also use social engineering to pretend

to be trustworthy. As a result, game theory has been used in [46] to model the conflict

between an APT attacker and the defender.

In this chapter, we study the dynamics of the APT defense of cloud storage re-

garding the APT attack and scan intervals, according to the replicator dynamics (RD).

Evolutionary game theory [12,14,17,23] and the replicator dynamics, together, provide

a dynamic picture of the APT defense over a finite set of time intervals. This study

can help understand the APT attacks against smart facilities such as in a smart city,

medical devices, and Internet of Things. Specifically, we consider two asymmetric evo-

lutionary games, in which the APT attacker and the defender can learn the optimal

strategy by using the RD criteria. Under RD, players compare their payoffs using a

certain strategy with the average payoff gained in their population, and choose the

strategy which gives them the higher than average payoff.

In the APT defense game one or multiple storage devices or data centers are threat-

ened by an APT attacker who can choose the attack intervals, i.e., the time periods

before launching APT, while the defender chooses the waiting periods before scanning

the devices. The importance of each storage device to the attacker and the defender,
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such as the size of the stored data and their priority is described by the attack cost and

the defense gain. In addition, by further testing the locally asymptotically stable points

of the RD, which are the stable Nash equilibrium (NE) solutions for the APT defense

game, we study the evolutionary stable strategy (ESS) of the APT defense game. The

phase portrait is presented to show dynamic games, and help one to understand the

conditions under which a specific strategy will be played and if that strategy is going

to withstand some small perturbations in the players’ attitudes to replace it. The best

defense strategy against APT is analyzed under various APT attack and defend mod-

els, such as the intervals required to successfully launch attacks against a given storage

device. A systematic RD-based procedure is derived to solve the evolutionary game of

APT defense.

Most existing game theoretic studies on APT such as [46–48] focus on modeling the

attack behavior and assume that both the attacker and the defender reach a solution

to their conflict through the Nash equilibrium, which represents the stable state of the

system. However, the NE in an evolutionary game is not always the ultimate solution

or even asymptotically stable. Therefore, we apply ESS to investigate whether the

NE of the proposed APT defense game is resilient to small perturbations. The main

contribution of this work is characterized by the following:

(1) We formulate an APT defense game using evolutionary game theory to study the

dynamic behavior of the APT attacker and defender with replicator dynamics.

(2) The stability and the robust solutions of the APT defense game are studied according

to the ESS criteria.

(3) We indicate the conditions under which the APT defense game has the ESS for

given initial conditions, and depict them pictorially.

The chapter is organized as follows: related work is reviewed in Section 6.2. Section

5.3 provides the evolutionary game model. Section 5.4 presents the ESS of the dynamic

APT defense game. Finally, conclusions are drawn in Section 6.6.
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5.2 Related work

Evolutionary game theory has been used to study the dynamics of many competing

scenarios. For example, in wireless networks, users compete for network resources

[24–29]. In [24], two evolutionary games used to model multiple access control in a

slotted Aloha wireless network and power control for a wide band CDMA system are

presented. The evolutionary stable strategies (ESS’s) for the games are studied under

different wireless channels and pricing schemes. A user-base station association study

using evolutionary games is presented in [25]. In [26], evolutionary games are used to

study distributed resource allocation in small cells. Potential games and evolutionary

dynamics are used to address the noncooperative routing problem in [27]. Coexistence

in cognitive radio where the available channels have different qualities and the associated

user behavior in channel selection is modeled as an evolutionary game in [28], and the

ESS for the corresponding symmetric game is derived. A pricing evolutionary game

between users and video streaming service providers is studied in [29].

Evolutionary games have been used in modeling security conflicts as in [31], [43],

and [1]. The work in [31] addresses the secrecy rate adaptation between a sensor

node and its responsible cluster head as an evolutionary game to solve the conflict

between increasing the secrecy rate, and minimizing the cost for data transmission

in a wireless sensor network. In [43], an indirect reciprocity-based security system

for large-scale wireless networks is presented where malicious users are punished by

building a reputation system. The jamming evolutionary game as presented in [1], uses

cooperation between users to defend against cooperative jammers, and finds the ESS

under different channels and power cost conditions. A recent survey on evolutionary

game applications is presented in [49], where the authors considered specific engineering

applications based on evolutionary games, such as building dynamic dispatch algorithms

in smart grids.

Since the seminal work in [46] proposed the game theoretic formulation of the APT

problem, other studies have followed. For example, the APT defense game with a

resource constraint environment as presented in [47] analyzes two games. A dynamic
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Table 5.1: Summary of Symbols

S Number of storage devices

xki /y
k
i Defense/attack interval at time k against device i

zki Duration to complete the k-th attack against device i

Gi Defense gain of device i

Ci Attack cost against device i

L Number of non-zero attack duration levels

x/y Defender/Attacker pure strategies

ρ/δ Defender/Attacker mixed strategies

J Jacobian matrix

D/A Defender/Attacker payoff matrices

game proposed in [50] studies the interactions between the defender and the attacker,

while the insiders were competing among themselves to sell the information to the

attacker at the risk of being caught by the defender. A three-player game model as

presented in [48], investigates the interactions among an APT attacker, a cyber system

defender, and insiders. The prospect theoretic study on APT defense in [51] discloses

the impact of the subjective view of an APT attacker on the data safety levels of a cloud

storage. In this chapter, we formulate an asymmetric evolutionary game between the

APT attacker and the cloud storage defender to find the evolutionary stable strategies

in the APT defense games.

5.3 Evolutionary Game of APT Defense Game

Evolutionary APT games are dynamic games in which the attacker and the defender

apply learning rules in multiple (attack and defense) time-intervals. According to the

theory presented in Ch.2, the ESS of the game is expected, if it exists, to be over the

pure strategies.

We consider S storage devices threatened by an APT attacker (A) and defended by

a cloud storage defender (D). The attacker (or defender) wishes to take control of the

storage devices by launching attacks (or performs scan) during specific time intervals.

However, the time period to finish an attack is not known in advance to any of the

players. During the kth interactions between the attacker and the defender, we use yki ,
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Figure 5.1: Illustration of the APT defense game.

xki , and zki as the time periods between two attacks, two scans, and the time to finish

an attack on the ith storage device, respectively. It is clear that xki > 0 because the

defender needs time to scan the storage device for any possible APT attacks.

Let yki and xki be the strategy for the attacker and defender to maximize their payoff.

However, the evolutionary stable strategy is stronger and more stable than NE, since

it is stable against small deviations from the ESS. In this game, each player will resist

the small perturbations, and stick to the same strategy. The payoff of the defender

depends on the gain to a defender to scan the ith storage device denoted by Gi. The

cost for the attacker to launch APT on the ith storage device is denoted by Ci. As

shown in Figure 5.1, the data stored on the ith storage device is safe with a probability

min((yi+zi)/xi, 1), where the random variable zi is the time required to finish the APT

attack on the ith device, which is usually not known in advance.

Similar to the assumption in [51], z is quantized into L non zero levels with the

distribution [P il ]0≤l≤L, where P il = Pr(zi = l/L), with 0 ≤ l ≤ L and 0 ≤ i ≤ S. The

utility of the attacker denoted by uA(x,y) and the utility of the defender uD(x,y), are

given by [51] as:

uD(x,y) =

S∑
i=1

L∑
l=0

P il min(
Lyi + l

Lxi
, 1) + xiGi (5.1)

uA(x,y) = −
S∑
i=1

L∑
l=0

(
P il min(

Lyi + l

Lxi
, 1) + I(yi < xi)Ci

)
. (5.2)

For the readers’ convenience, we summarize our commonly used notations in Table 5.1.
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5.4 ESS of the Dynamic APT Game

Each player aims to maximize his or her own utility optimization problem as follows:

max
x

uD(x,y)

max
y

uA(x,y)

subject to 0 <
S∑
i=1

xi ≤ 1,

0 ≤
S∑
i=1

yi ≤ 1,

0 < xi ≤ 1, 0 ≤ yi ≤ 1,∀1 ≤ i ≤ S.

(5.3)

The feasible action sets of the players in this game are predefined and known by both

players. According to [51], potential NEs of the APT defense game with one storage

device are (0.5, 0), (1, 0), and (1, 1), which are the candidates of ESS.

We fist consider the ESS of the APT detection game with one storage device. In

this case, Eqs.(5.1) and (5.2)can be simplified into:

uD(x, y) =
2∑
l=0

Pl min(
2y + l

2x
, 1) + xG (5.4)

uA(x, y) = −(

2∑
l=0

Pl min(
2y + l

2x
, 1) + I(y < x)C), (5.5)

where the strategies (x,y) are given by x = [x1 x2]
T = [0.5 1]T , y = [y1 y2 y3]

T =

[0 0.5 1]T , and T denotes the transpose operation. In the mixed-strategy game, the

attacker randomly chooses the strategy y with probability vector [δi]1≤i≤3, and the

defender selects a strategy from x with probability vector [ρi]1≤i≤2.The payoff table

for this game is given in Table 5.2, where a(i, j) means the payoff of an attacker plays

strategy yj against a defender plays strategy xi. Similarly, d(i, j) means the payoff of

a defender plays strategy xi against an attacker plays strategy yj . According to [14],

there is no mixed ESS under the RD. The RD equation in its general form is given in

(2.3). Let dρi/dt = ρ̇i and dδj/dt = δ̇j , and define the following dummy variables:

α1(ρ1, ρ2) = a11ρ1 + a21ρ2 and α2(ρ1, ρ2) = a12ρ1 + a22ρ2. Then the RD equations are
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Table 5.2: Payoffs in an APT defense game with one device.

y1 = 0 y2 = 0.5 y3 = 1

x1 = 0.5 (d11, a11) (d12, a12) (d13, a13)

x2 = 1 (d21, a21) (d22, a22) (d23, a23)

given by the following system of nonlinear differential equations:

ρ̇i = ρi(1− ρi)(uD(xi,y)− uD(xj ,y)), if i 6= j (5.6)

δ̇j = δj(uA(x, yj)− uA(x,y)) (5.7)

uA(x, y) = (α1(ρ1, ρ2) + 1)δ1 + (α2(ρ1, ρ2) + 1)δ2 − 1, (5.8)

where ρ̇i represents the evolution of the defender choice towards using the strategy xi,

and δ̇j is the evolution of the APT-attacker choice towards using the strategy δj .

The ESS condition for the asymmetric game is given by Theorem 2 [14]. Note

that we used 3 variables out of 5 variables, i.e, we used ρ1, δ1, and δ2, and removed

ρ2 and δ3. The reason is that they are dependent variables, so their time derivatives

can be expressed in terms of the other variables as: ρ2 = 1 − ρ1 ⇒ ρ̇2 = −ρ̇1, and

δ3 = 1 − δ1 − δ2 ⇒ δ̇3 = −δ̇1 − δ̇2. For an equilibrium point to be asymptotically

stable [52], the eigenvalues of the Jacobian matrix should have negative real parts. Any

point which is asymptotically stable will be an ESS candidate. As a result, the Jacobian

matrix that is represented by (5.9) will be checked for the above pure strategies.

J =


∂ρ̇1
∂ρ1

∂ρ̇1
∂δ1

∂ρ̇1
∂δ2

∂δ̇1
∂ρ1

∂δ̇1
∂δ1

∂δ̇1
∂δ2

∂δ̇2
∂ρ1

∂δ̇2
∂δ1

∂δ̇2
∂δ2

 (5.9)

Claim 5.1. Among all the game pure strategies, the following strategies are the only

ESS candidates:

(a) (0, 0, 0) or (ρ2 = 1, and δ3 = 1) if 0.5P1 + P0 < C and 0.5P0 < C.

(b) (0, 1, 0) or (ρ2 = 1, and δ1 = 1) if G > P1, C < 0.5P1 + P0, and P1 + P0 > 0.

(c) (1, 1, 0) or (ρ1 = 1, and δ1 = 1) if P0 > C and P1 > G.
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Proof. The proof is divided into two parts, where in the first part we have to prove

that the strategies mentioned in the claim above are asymptotically stable under some

conditions. In the second part, we have to prove that the other strategies are not

ESS candidates by proving them to be not asymptotically stable under any conditions.

Testing for asymptotic stability is done by checking the negativity of eigenvalues of

the Jacobian matrix that corresponds to each one of these strategies. Some of the

eigenvalues of the Jacobian of these strategies will always have positive real part, which

will exclude them from being asymptotically stable. Re-write equations (5.6) and (5.7)

yielding,

ρ̇1 = ρ1(1− ρ1)(D1δ1 +D2δ2 +D3) (5.10)

where,

D1 = d11 + d23 − d21 − d13 (5.11a)

D2 = d12 + d23 − d22 − d13 (5.11b)

D3 = d13 − d23 (5.11c)

δ̇1 = δ1((1 + α1(ρ1, ρ2))(1− δ1)− (1 + α2(ρ1, ρ2))δ2) (5.12)

δ̇2 = δ2((1 + α2(ρ1, ρ2))(1− δ2)− (1 + α1(ρ1, ρ2))δ1) (5.13)

The Jacobian matrix for the last RD system is given by (5.14),

J =


T3(1− 2ρ1) D1ρ1(1− ρ1) D2ρ1(1− ρ1)

δ1(T5(1− δ1)− T4δ2) T2(1− 2δ1)− T1δ2 T1δ1

δ2(T4(1− δ2)− T5δ1) −T2δ2 −(T2δ1 + T1(1 + 2δ2))


(5.14)

T1 = a12ρ1+a22(1−ρ1)+1, T2 = a11ρ1+a21(1−ρ1)+1, T3 = D3+D1δ1+D2δ2, T4 =

a12−a22, and T5 = a11−a21. For the sake of simplicity, we represent the pure strategies

in terms of the mixed strategies as follows: (ρ1, ρ2, δ1, δ2, δ3), where ρ′is are the

defender probabilities of choosing pure strategies and δ′js are the attacker probabilities

of choosing pure strategies, is written as (ρ1, δ1, δ2).
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We first check the asymptotic stability of (0,0,0), which corresponds to the pure

strategy that the defender will choose to wait longer before scanning the device, and

the attacker will do the same, i.e, choosing x1 w.p ρ1 = 0, x2 w.p ρ2 = 1, y1 w.p δ1 =

0, y2 w.p δ2 = 0, y3 w.p δ3 = 1.

J(0,0,0) =


D3 0 0

0 a21 + 1 0

0 0 a22 + 1

 (5.15)

The strategy is asymptotically stable if 0.5P1+P0 < C and 0.5P0 < C. For the defender

D3 < 0 as given by (5.11a), if the attacker is using the strategy y3, then the defender

can gain more by using the strategy x2 rather than the strategy x1. On the other hand,

the attacker needs to have a21 < −1 and a22 < −1, meaning that choosing the shorter

waiting times y1 = 0 and y2 = 0.5 against a defender uses her longer waiting time

strategy, x2, will give the attacker lower rewards than when using her longest waiting

time strategy y3. In terms of the the payoffs, a21 and a22 are giving less than a23.

Similarly, we can prove the asymptotic stability of (0,1,0) and (1,1,0), which is

equivalent to check stability of the scenario in which the defender chooses the longest

waiting period before scanning a device, and the attacker starts attacking without

waiting, and the scenario in which the defender chooses the shorter waiting period to

scan the device and an attacker continuously keeps attacking.

Checking (0,0,1) for Asymptotic Stability

This is equivalent to check the pure strategy where the defender chooses the longer

waiting period, x2 = 1, and the attacker uses the shorter waiting period, y2 = 0.5, i.e,

choosing x2 w.p 1, and y2 w.p 1. The eigenvalues are D2+D3, a21−a22, and −(a22+1).

However, to make the condition a21 − a22 < 0 means we need P1 + P0 < 0, which does

not hold. As a result this strategy is not asymptotically stable. Similarly, we can prove

that (1,0,0) and (1,0,1) are not asymptotically stable.

Based on Claim 5.1, we can see that we are left with (0, 0, 0), (0, 1, 0), and (1, 1, 0)

as potential ESS strategies. Next, the ESS test given in Theorem 2 will be applied to
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Table 5.3: Eigenvalues for pure strategies in Example 1

Point Eigenvalues Equivalent Strategy

(0, 0, 0) −0.45,−0.4,−0.05 (0, 1, 0, 0, 1)

(0, 0, 1) −0.35, 0.4, 0.35 (0, 1, 0, 1, 0)

(0, 1, 0) −0.2, 0.05,−0.35 (0, 1, 1, 0, 0)

(1, 0, 0) −0.3, 0, 0.45 (1, 0, 0, 0, 1)

(1, 1, 0) 0.2, 0.3, 0.3 (1, 0, 1, 0, 0)

(1, 0, 1) 0.35, 0,−0.3 (1, 0, 0, 1, 0)

each asymptotically stable point. In the next section, we will take a numerical example

and show how the simulation results agree with the derivations shown above.

Numerical Example 1

In this example, an attacker and a defender compete to take control over a cloud storage

device. The game is given by (5.3). For G = 0.9, C = 0.5, P0 = 0.2, and P1 = 0.5, the

payoff matrices, and the replicator dynamics equations are given by:

D =

 d11 d12 d13

d21 d22 d23

 =

 1.25 1.45 1.45

1.45 1.8 1.9

 (5.16)

A =


a11 a21

a12 a22

a13 a23

 =


−1.3 −1.05

−1 −1.4

−1 −1

 (5.17)

ρ̇1 = ρ1(1− ρ1)[0.25δ1 + 0.1δ2 − 0.45] (5.18)

δ̇1 = −δ1[(0.05− 0.25ρ1)(1− δ1) + (−0.4 + 0.4ρ1)δ2] (5.19)

δ̇2 = δ2[(−0.4− 0.4ρ1)(1− δ2) + (0.05 + 0.25ρ1)δ1] (5.20)

The eigenvalues for each pure strategy were found, using the procedure in Figure 2.1, in

order to validate our theoretical analysis. The Jacobian will be with respect to ρ1, δ1,

and δ2. The eigenvalues are given in Table 5.3.
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One can see that (0, 0, 1), (1, 0, 0), and (1, 0, 1) have positive eigenvalues as predicted

by Claim 1. Next, the (0, 1, 0) and (1, 1, 0) strategies are eliminated too, because the

asymptotic stability conditions for them do not hold, i.e, there are some eigenvalues

that have nonnegative real parts. Finally, we are left with (0, 0, 0) (which is (0, 1) for the

defender and (0, 0, 1) for the attacker) strategy as an asymptotically stable point, and

hence a NE. According to [12], this asymptotically stable strategy is an ESS. However

we find the same result by applying Theorem 2 to it as follows:

(0, 0, 0) ⇒ ρ1 = 0, ρ2 = 1, δ1 = 0, δ2 = 0, δ3 = 1. For the defender, [0 1]DyT >

xDyT . Where y = [y1 y2 y3], x = [x1 x2], and D is given by (5.16). After algebraic

simplifications, we get (0.2y1 + 0.35y2 + 0.45y3)x1 > 0 for nonzero yjs, j = 1, 2, 3 and

x1. At the same time, the attacker must have [0 0 1]AxT > yAxT , and A is given by

(5.17). After simplifications, we get 0.3x1y1 + (0.05y3 + 0.4y2)x2 > 0 for any nonzero

y′js, j = 1, 2, 3 and xi, i = 1, 2. Finding the regions where these inequalities hold is

a problem that is known in nonlinear control literature [52] as the problem of finding

the region of attraction. However, we will not discuss it here and will use the phase

portrait to get a pictorial representation of these regions. The simulation results are

shown in Figure 5.2, which shows clearly the concept of regions of attraction. Note that

we used the pure strategies instead of the mixed strategies, which are used in Theorem

2. Figure 6.3 shows the strategies evolution from some initial conditions and the payoff

associated with each strategy. Clearly, the payoff associated with the ESS strategy,

which is in this case the defender chooses the shorter waiting period, x2 = 0.5, w.p 1,

and the attacker chooses the longest waiting period, y3 = 1, w.p 1, is the highest payoff

among all the other strategies for both players. The following claims provide more

insight depending on the values of the defending gain and the attacking cost.

Claim 5.2. If C > 0.5P1 + P0 and G < P1, the APT defense game has one ESS

candidate, which is the strategy (0, 1, 0, 0, 1).

Proof. : If C > 0.5P1 + P0, the conditions for asymptotic stability of (0, 1, 1, 0, 0) and

(1, 0, 1, 0, 0) will not hold. In other words, the Jacobian matrix of these strategies will

have eigenvalues with positive real parts, which means that they are not asymptotically
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Figure 5.2: Phase portrait of of the dynamic game with G = 0.9, C = 0.5, P0 = 0.2, and
P1 = 0.5.

Figure 5.3: Strategies probability evolution of the APT defense game with G = 0.9, C = 0.5,
P0 = 0.2, and P1 = 0.5. Initial values are: ρ1(0) = 0.75, ρ1(0) = 0.25, δ1(0) = 0.1, δ2(0) = 0.4,
and δ3(0) = 0.5.
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Table 5.4: Eigenvalues for pure strategies in Example 2

Point Eigenvalues Equivalent strategy

(0, 0, 0) −1.4,−1.05,−0.05 (0, 1, 0, 0, 1)

(0, 1, 0) 2, 1.05,−0.35 (0, 1, 1, 0, 0)

(1, 1, 0) −0.2, 1.3, 1.3 (1, 0, 1, 0, 0)

stable. As a result, the only asymptotically stable strategy will be (0, 1, 0, 0, 1). The

last strategy will be the only ESS candidate for the game.

Numerical Example 2

The following example is to validate Claim 5.2. We assume the following parameters:

G = 0.1, C = 1.5, P0 = 0.2, and P1 = 0.5. The cost of launching the attack is much

higher than the defense gain. Initial values that represent the players’ initial mixed

strategies or weighted decisions of how to choose their pure strategies are: ρ1(0) =

0.75, ρ1(0) = 0.25, δ1(0) = 0.1, δ2(0) = 0.4, and δ3(0) = 0.5. From the stability

analysis, we get the following eigenvalues, where the rest of the strategies are eliminated

based on Claim 5.1. Figure 5.4 illustrates the probability evolution for selecting the

pure strategies and the payoff for each strategy. It can be seen that the asymptotically

stable strategies have the highest payoffs for both players. The phase portrait for this

example is given by Figure 5.5.

Figure 5.4: Strategies probability evolution of the APT defense game with G = 0.1, C = 1.5,
P0 = 0.2, and P1 = 0.5. Initial values are: ρ1(0) = 0.75, ρ1(0) = 0.25, δ1(0) = 0.1, δ2(0) = 0.4,
and δ3(0) = 0.5.
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Figure 5.5: Phase portrait of the dynamic game with G = 0.1, C = 1.5, P0 = 0.2, and P1 = 0.5.

Table 5.5: Eigenvalues for pure strategies in Example 3

Point Eigenvalues Equivalent strategy

(0, 0, 0) −10.75, 0, 0.35 (0, 1, 0, 0, 1)

(0, 1, 0) −0.5,−0.35,−0.35 (0, 1, 1, 0, 0)

(1, 1, 0) −0.1,−0.1, 0.5 (1, 0, 1, 0, 0)

Claim 5.3. If the defending gain is G > P1 and the attacking cost is C < 0.5P0, then

the game has one ESS candidate. The attacker will continuously keep attacking the

device and the defender will choose the longest waiting period to scan the device, i.e,

(0, 1, 1, 0, 0).

Proof. The proof follows from Claim 1, where we have three possible asymptotically

stable points. If G > P1 and C < 0.5P0, the conditions for asymptotic stability for

(1, 0, 1, 0, 0) and (0, 1, 0, 0, 1) do not hold, because the Jacobian matrix for these strate-

gies will have eigenvalues with positive real part which makes them unstable. On the

other hand, the only asymptotically stable point is (0, 1, 1, 0, 0).

Numerical Example 3

The following example is to validate Claim 5.3. We take the following parameters:

G = 1.5, C = 0.1, P0 = 0.2, P1 = 0.5, ρ(0) = [0.75, 0.25], and δ(0) = [0.1, 0.4, 0.5].

The probability evolutions of the game show that the asymptotically stable strategies

have the highest payoffs for both players (see Figure 5.6). The phase portrait as shown
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in Figure 5.7 indicates that the (0, 1, 0) is the only asymptotically stable strategy.

Figure 5.6: Strategy evolution of the APT defense game with G = 1.5, C = 0.1, P0 = 0.2, and
P1 = 0.5. Initial values are: ρ1(0) = 0.75, δ1(0) = 0.1, and δ2(0) = 0.4.

Figure 5.7: Phase portrait of the dynamic game with G = 1.5, C = 0.1, P0 = 0.2, and P1 = 0.5.

Now we consider the ESS of the APT defense game with multiple storage devices,

which are S storage devices or data centers that are threatened by an APT attacker,

whose strategies are [yi,j ]1≤j≤S , i = 1, 2. The defense strategies are [xi,j ]1≤j≤S , i = 1, 2,

meaning that the attacker waits ys time units before attacking the sth device and the

defender waits xs time units before scanning the sth device. The strategies in the mixed-

strategy APT defense game are given by δ = [δi]1≤i≤2 and ρ = [ρi]1≤i≤2, where δi is

the probability for the attacker to choose yi, and ρi is the probability for the defender

to choose xi. The cost vector for attacks denoted by C is given by [Ci]1≤i≤S , and the

defense vector gain G is given by [Gi]1≤i≤S . The utilities for the strategies are given in
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Table 5.6: Payoffs in the storage game

y1 y2

x1 uD(x1,y1), uA(x1,y1) uD(x1,y2), uA(x1,y2)

x2 uD(x2,y1), uA(x2,y1) uD(x2,y2), uA(x2,y2)

Table 5.6 according to uH(xi,yj) =
∑S

s=1 u
s
H(xi,yj), where H = {D,A} and usH(xi,yj)

is the utility function of player H for defending (attacking) the sth storage device.

Replicator Dynamics

The ESS of the asymmetric APT defense game with two strategies can be derived via the

procedure as shown in Figure 2.1. According to Theorem 9.8 in [23], any asymptotically

stable strategy is equivalent to an ESS. Let ρ1 = ρ, ρ2 = 1− ρ, δ1 = δ, and δ2 = 1− δ,

we get the following system of nonlinear differential equations,

ρ̇ = ρ(1− ρ)(uD(x1,y)− uD(x2,y)) (5.21)

δ̇ = δ(1− δ)(uA(x,y1)− uA(x,y2)). (5.22)

Notice that ρ̇2 = −ρ̇ or δ̇2 = −δ̇. Let d̂ij = uD(xi,yj), and âij = uA(xi,yj).

After simplification, we have

ρ̇ = ρ(1− ρ)(D̂1δ + D̂2) (5.23)

and

δ̇ = δ(1− δ)(D̂3ρ+ D̂4), (5.24)

where

D̂1 = d̂11 + d̂22 − d̂12 − d̂21 (5.25a)

D̂2 = d̂12 − d̂22 (5.25b)

D̂3 = â11 + â22 − â12 − â21 (5.25c)

D̂4 = â21 − â22. (5.25d)
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The Jacobian matrix of the dynamic game is given by

J(ρ,δ) =

 (1− 2ρ)(D̂1δ + D̂2) D̂1(1− ρ)ρ

D̂3(1− δ)δ (1− 2δ)(D̂3ρ+ D̂4)

 . (5.26)

The ESS(s), if any, are the pure strategies that are asymptotically stable. Asymptotic

stability of the pure strategies corresponds to the strategies which give stable eigenvalues

to the Jacobian matrix given in (5.26).

Without loss of generality, we now focus on the case of two storage devices (S=2)

and discuss the specifics of the ESS and asymptotically stable NE obtained for this

case. Each player has two strategies to choose from, i.e, each player divides the waiting

time to scan (attack) between the two devices. The available strategies for the players

are: x1 = (0.75, 0.25), meaning that the defender will wait 0.75 time units before

scanning the first device and 0.25 time units before scanning the second device, and

x2 = (0.5, 0.5) for the defender. Similarly, the attacker strategies are y1 = (1, 0) and

y2 = (0.5, 0.5). The strategies are chosen as, y1 w.p δ1, y2 w.p δ2, x1 w.p ρ1, and x2 w.p

ρ2. uH(x = xi,y = yj) = u1H(x = xi,y = yj)+u2H(x = xi,y = yj), where H = {D,A},

and u1H(x = xi,y = yj) is the utility function for defending (attacking) the first storage

device. Similarly, u2H(x = xi,y = yj) is the utility function for defending (attacking)

the second storage device.

Based on the stability of the rest points of the RD system in (5.21) and (5.22), we

get the following claim:

Claim 5.4. In the APT defense game with two devices, the mixed strategy (ρ, δ) =

([0, 1], [1, 0]) is not an ESS.

Proof. This claim has two parts. First, we prove that the other game pure strategies can

be asymptotically stable under some conditions. This will be shown through asymptotic

stability. Second, we prove that this strategy is not asymptotically stable. We start by

proving that there are ESS candidates under some conditions.
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Checking (0,0) for Asymptotic Stability

This is equivalent to checking the pure strategy (x2,y2) for being asymptotically stable.

J(0,0) =

 D̂2 0

0 D̂4

 . (5.27)

The eigenvalues of the Jacobian matrix in (5.27) are D̂2 and D̂4. By Eq.s (5.25b and

5.25d), this strategy is locally asymptotically stable if G1 +G2 > 2.68P0 and P0 < C2.

Furthermore, the eigenvalue D̂2 which is given by (5.25b) has to be negative, indicating

that d̂22 > d̂12 which holds as long as 0.25G1 + 0.5G2 < P0 holds. For the attacker,

the eigenvalue D̂4, where D̂4 is given by (5.25d), has to be negative. This means that

â21 < â22 or the payoff for the attacker uses the strategy y2, is higher than using the

strategy y1 against a defender using the strategy x2. This holds by setting P0 < C2,

which is the second condition. Similarly, we can prove that (1, 0), (1, 1), and (0, 1)

are not asymptotically stable as well. As a result, this strategy cannot be locally

asymptotically stable.

Let P0 = 0.4, G1 = 0.4, G2 = 0.4, C1 = 0.3, and C2 = 0.5. It is clear that the

conditions to get negative eigenvalues of the Jacobian matrix in (5.27) hold and thus

the strategy (0, 0) (i.e., ρ1 = 0, ρ2 = 1, δ1 = 0, and δ2 = 1) is locally asymptotically

stable in the game with two storage devices. Figure 5.8 presents the evolution of

the probabilities for selecting the pure strategies for a specific set of initial conditions

accompanied with the utility of each player at each of these strategies, showing that

the ESS strategy gives both player the highest payoff. Figure 5.9 shows that for all the

initial conditions, the game will evolve to (0, 0).

5.5 Conclusions

In this chapter, we analyzed the APT attack/defense strategies for cloud storage using

evolutionary game theory, and we formulated two APT games with discrete strategies.

The first game corresponds to the APT defense of a single one storage device regard-

ing the attack and defense time periods. The second game extends the discussion to
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Figure 5.8: Strategies probability evolution of the APT defense game with P0 = 0.4, G1 =
0.4, G2 = 0.4, C1 = 0.3, C2 = 0.5, and ρ1(0) = ρ2(0) = δ1(0) = δ2(0) = 0.5.

Figure 5.9: Phase portrait of the dynamic game with two storage devices with P0 = 0.4, G1 =
0.4, G2 = 0.4, C1 = 0.3, and C2 = 0.5.
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multiple storage devices. The dynamical stability of the cloud storage systems were

investigated using the replicator dynamics criteria to characterize the locally asymptot-

ically stable equilibrium strategies. The ESS of the APT defense game is derived and

the conditions under which each ESS exists are provided to show how the initial scan

and attack intervals, the APT attack duration and cost, and the defense cost change the

APT defense performance. We have provided the phase portraits to show the locally

asymptotically stable points of each game, which represent the NE of the game, and

show the relation between the asymptotic stability and evolutionary stability.



56

Chapter 6

LTE-U WiFi Coexistence

6.1 Introduction

The number of wireless devices has been increasing over the last decade and it has

been estimated that the data traffic requirement is going to rise as well. According

to the study by Cisco, the traffic carried over mobile wireless networks will observe

a 7x growth by 2021 [53]. These high demands have motivated opening of newer

wireless spectrum bands and prompted the research community to look for innovative

techniques to increase the spectrum usage efficiency. Providing high throughput while

maintaining the quality-of-service (QoS) in wireless networks is a primary goal for ser-

vice providers. Towards this goal, several revisions have been proposed in Long Term

Evolution (LTE), which is currently the most popular standard for mobile wireless

communication with capabilities such as carrier aggregation (CA), use of higher order

multiple-input multiple-output (MIMO) techniques, and small cell deployment with

enhanced intercell interference coordination (eICIC) to support Heterogeneous Net-

works (HetNets). However, all these improvements are still restricted by the limited

bandwidth of licensed spectrum. Therefore the service providers are looking towards

readily available unlicensed spectrum for further improvement in the throughput. LTE-

unlicensed (LTE-U) has been proposed in LTE release 13 as a technique for accessing

the unlicensed spectrum in conjunction with the licensed spectrum. One of the major

challenges for LTE-U is the presence WiFi devices in the unlicensed spectrum. WiFi is

a widely popular and ubiquitous technology for enabling wireless broadband access, and

therefore it is very important for any new entrant such as LTE-U to coexist amicably

with WiFi in the unlicensed bands. The main challenge of such coexistence is the dif-

ference in medium access techniques of these two technologies. WiFi uses carrier-sense
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multiple access with collision avoidance (CSMA/CA) which supports exponential back-

off to coexist with other unlicensed devices. LTE-U accesses the channel in a periodic

manner such that it transmits the signal only in a fractional duration of this period.

The ON duration of this transmission is determined by the duty cycle which is one

of the most important parameters for LTE-U. In an uncoordinated environment, the

WiFi can attempt to transmit only during the OFF duration of LTE-U. The duty cycle

of the transmission is a configurable parameter, thus making the LTE-U transmission

more adaptable to any changes in the environment.

The main contributions of this work are as follows: (1) We formulate a coexistence

game using the evolutionary game theory to study the dynamic behavior of the LTE-U

and WiFi APs serving multiple users in the same area with replicator dynamics. (2) The

stability and the robust solutions of the coexistence game are investigated according

to the ESS criteria. (3) We indicate the conditions under which the coexistence game

has the ESS for any given initial conditions, and depict some of them pictorially. (4)

We formulate an optimization problem where the WiFi AP can exclude some of its

users based on a given minimum SINR and derive the corresponding stable strategies

and their stability conditions. (5) We formulate a classical game theoretical model that

assumes continuum of strategies and study the stability of the derived Nash Equilibrium

(NE) under the Replicator Dynamics (RD).

6.2 Related work

The coexistence between LTE and WiFi has been addressed from different perspectives

in the literature. However, the following papers, which are by no means intended to

be a comprehensive list, are of particular interest to our work. The authors in [54]

addressed the coexistence problem by controlling both the duty cycle and the power

level of LTE-U AP using a multi-armed bandit algorithm. The authors found that

the LTE-U AP has incentives to reduce its transmission power/duty cycle because

the interference to other LTE-U APs and WiFi APs would make them use higher

power levels and this will create more interference in the network. A joint uplink-

downlink LTE-U/WiFi coexistence problem is addressed in [55], where the LTE-U APs
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optimize the aggregate data rate on both the licensed and the unlicensed bands by

optimizing user and spectrum association parameters. These parameters are chosen

according to a learning algorithm called Echo State Networks. A multi-game framework

is proposed in [56], where the WiFi users are considered as leaders, while the LTE-U

APs are the followers. Another game theoretic formulation to this problem is given

in [57], where the authors considered the coexistence as a power control game. The

last two papers share with this work, independently, the ability of the WiFi AP to be

an active player in the game. However, in this work, the strategies to be controlled

by the LTE-U and WiFi APs are different from the previous efforts. In addition to

the usage of different game parameters, we use evolutionary game theory to address

this problem where the game dynamics are captured by the use of replicator dynamics.

Replicator dynamics is considered here as a learning tool to reach to a more robust

equilibrium strategy. Evolutionary game theory has been used to study the dynamics

of many competing scenarios. In [24], two evolutionary games to model multiple access

control in a slotted Aloha wireless network and power control for a wideband CDMA

system are presented. In [26], evolutionary games are used for small cells distributed

resource allocation, where it is used for subcarrier and power allocation for the small

cell base stations. Potential games and evolutionary dynamics are used to address the

noncooperative routing problem in [27]. A pricing evolutionary game between users and

video streaming service providers is presented in [29]. A recent survey on evolutionary

game applications is presented in [49], where the authors considered specific engineering

applications based on evolutionary games, such as building dynamic dispatch algorithms

in smart grids. In this chapter, we formulate an asymmetric evolutionary game between

two populations (the WiFi APs and the LTE-U APs) and explicitly find the evolutionary

stable strategies for the proposed games using the evolutionary game theories. For the

reader’s convenience, we summarize our commonly used symbols in Table 6.1.

6.3 Evolutionary Game of LTE-U and WiFi Coexistence

In this chapter, we consider wireless users with capabilities of opportunistically utilizing

any of the multiple available wireless technologies. Fig. 6.1 presents once such case for
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WiFi APLTE-U AP

Users connected to LTE-U AP

Users connected to WiFi AP

Desired channel

Interference channel

Figure 6.1: Illustration of The WiFi/LTE-U Coexistence Game.

Table 6.1: Summary of Symbols

Symbol Description

NL/NW Number of users connected to the LTE-U AP/WiFi AP

PL(.)/P
W
(.) Power level used by the LTE-U AP/WiFi AP

hLi /h
W
i Channel coefficient between the ith user and LTE-U AP/WiFi AP

To ON duration in a duty cycle for LTE-U AP transmission

α A non negative number that reflects the benefit from increasing the
duty cycle measured in per time unit.

γ A non negative number that reflects the cost of increasing the duty
cycle measured in power per time unit.

CL/CW The transmission cost for the LTE-U AP/ WiFi AP

a scenario with two wireless technologies namely WiFi and LTE-U. In our analysis, we

assume that devices utilizing the same technologies do not interfere with each other.

This is a valid assumption since the WiFi interference is taken care by CSMA/CA,

and LTE-U interference is handled by proper scheduling of resources. We formulate a

game between the two populations using these two different technologies, where each

population has different interests and strategies. We assume that each WiFi AP has

discrete transmission powers to choose from, while the LTE-U AP can not only select

discrete power levels but also the duty cycle. We also assume, as in [58], that each AP

utility is a function of its users’ utility functions. Because the interaction is continuous,

the game can be viewed as a dynamic game. The ESS in such a case is a pure strategy

that is asymptotically stable under the RD.
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• The utility function for the ith user of LTE-U AP is

uLi (PLk , To, P
W
j ) =

1

NL

(
hLi P

L
k

σ2 + hWi P
W
j

+ αTo

)
− (PLk + γTo)CL, i = 1, ..., NL. (6.1)

• The utility function for the mth user of WiFi AP is

uWm (PLk ,To, P
W
j ) =

1

f(NW )

(
hWm P

W
j

σ2 + hLmP
L
k

− αTo
)
− PWj CW , m = 1, ..., NW . (6.2)

where f(NW ) is an increasing function that indicates that the WiFi AP utility is af-

fected by increasing the number of users more than the LTE-U. It is assumed here, for

simplicity, as f(NW ) = βNW , β ≥ 1. Without loss of generality and for the sake of

mathematical simplifications, we assume that each WiFi AP can choose from two power

levels, i.e, PW(.) ∈ P = {P1, P2}, and the LTE-U APs can choose from two transmission

power levels PL(.) ∈ P and two transmit durations, i.e, To ∈ T = {T1, T2}. The WiFi and

LTE-U AP’s utilities are increasing functions of their users’ utilities. These utilities are

defined below.

• The LTE-U AP Utility Function

UL(PLk , To, P
W
j ) =

1

NL

(∑NL

i=1 h
L
i P

L
k

IW (PWj )
+NLαTo

)
−NL(PLk + γTo)CL, (6.3)

where IW (PWj ) =
∑NL

i=1(σ
2 + hWi P

W
j ) is the interference from the WiFi AP that uses

power transmission level j, To ∈ T, and {PLk , PWj } ∈ P.

• The WiFi AP Utility Function

UW (PLk ,To, P
W
j ) =

∑NW

m=1 h
W
m P

W
j

βNW IL(PLk )
− αTo

β
−NWPWj CW (6.4)

where IL(PLk ) =
∑NW

m=1(σ
2 + hLmP

L
k ) is the interference from the WiFi AP that uses

power transmission level k, To ∈ T, and {PLk , PWj } ∈ P. There are intuitive reasons

for adding the cost terms in (6.1) and (6.2). In [57], the authors justified it as the
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transmit power cost of the APs. In [58], the authors justified it as the interference

cost to the other APs. In this chapter, we consider it as a combination of costs which

result from power consumption and interference. The next claim uses the concept of

potential functions to prove that maximizing the AP’s utilities in (6.3) and (6.4) is the

same as maximizing each AP user’s utility, as expressed in (6.1) and (6.2), respectively.

Potential functions are very useful, because they allow studying the NE of a single

function that does not depend on a particular player [39]. More explicitly, the NE

of the individual players and the NE that results from the potential function are the

same. In this chapter, this equivalence in the NE means that when each AP optimizes

its potential function, it optimizes the utility functions of the users connected to it.

Claim 6.1. (a) (6.3) is a potential function for the LTE-U users whose individual

utility function is given by (6.1). (b) (6.4) is a potential function for the WiFi users

whose individual utility function is given by (6.2).

Proof. (a) According to [39], for UL(PLk , To, P
W
j ) to be a potential function, it must

satisfy the conditions that if

uLi (PL2 , To, P
W
j )− uLi (PL1 , To, P

W
j ) ≥ 0,

then

UL(PL2 , To, P
W
j )− UL(PL1 , To, P

W
j ) ≥ 0,

and vice versa. By using Eqs. (6.1) and (6.3), we get:

hLi (P2 − P1)

NLIW (PWj )
− (P2 − P1)CL ≥ 0,∑NL

i=1 h
L
i (P2 − P1)

NLIW (PWj )
−NL(P2 − P1)CL ≥ 0.

As a result Eqs. (6.3) and (6.4) are potential functions. Proving part (b) results from

redoing the previous calculations to Eqs. (6.2) and (6.4).

6.4 ESS of the Dynamic Coexistence Game

The game in its normal form is shown in Table 6.2, where the WiFi AP is represented

by the column player and the LTE-U AP is the row player. The WiFi AP chooses
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Table 6.2: Normal Form Coexistence Game

WiFi AP

P1 w.p. δ1 P2 w.p. δ2
L
T
E
-U

A
P x1 = (P1, T1) w.p. ρ1 (a11, b11) (a12, b12)

x2 = (P1, T2) w.p. ρ2 (a21, b21) (a22, b22)

x3 = (P2, T1) w.p. ρ3 (a31, b31) (a32, b32)

x4 = (P2, T2) w.p. ρ4 (a41, b41) (a42, b42)

it strategies P = {Pi}i=1,2 with probabilities δ = {δi}i=1,2. Similarly, the LTE-U AP

chooses its strategies x = {xj}j=1,2,3,4 with probabilities ρ = {ρj}j=1,2,3,4. It can be

noted that aji is the payoff of the LTE-U AP when it uses the strategy xj against a

WiFi AP using the strategy Pi , and similarly, bji is the payoff of the WiFi AP using

the strategy Pi against an LTE-U AP using the strategy xj . Each player (AP) aims to

maximize its own utility by solving the following optimization problems:

maximize
ρ

UL(PLk , To, P
W
j )

maximize
δ

UW (PLk , To, P
W
j )

subject to: 0 ≤
4∑
i=1

ρi ≤ 1, 0 ≤
2∑
i=1

δi ≤ 1, (6.5)

0 ≤ {ρi}i=1,2,3,4 ≤ 1, 0 ≤ {δi}i=1,2 ≤ 1.

The feasible action sets of the players in this game are predefined and known by both

players. According to [14], there is no mixed ESS under the RD. The RD equation in

its general form is given in (2.3). Let dρi
dt = ρ̇i and

dδj
dt = δ̇j , then the RD equations are

given by the following system of nonlinear differential equations:

δ̇i = δi(1− δi)(UW (x, PW1 )− UW (x, PW2 )), (6.6)

ρ̇j = ρj(U
L(xj ,P)− UL(x, δ)), (6.7)

U
L

(x, δ) =
∑

j=1,2,3,4

ρjU
L(xj ,P) (6.8)

UL(xj ,P) =
∑
i=1,2

δiaji, j = 1, 2, 3, 4, (6.9)

UW (x, PWi ) =
∑

j=1,2,3,4

ρjbji, i = 1, 2, (6.10)
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where δ̇i represents the evolution of the WiFi AP choice towards using the strategy Pi,

and ρ̇j is the evolution of the LTE-U AP choice towards using the strategy xj .

For an equilibrium point to be asymptotically stable [52], the eigenvalues of the

Jacobian matrix should have negative real parts. Generally speaking, any point which

is asymptotically stable will be an ESS candidate. As a result, the following Jacobian

matrix will be checked for the above pure strategies.

J =

 ∂δ̇1
∂δ1

[ ∂δ̇1
∂ρj=1,2,3

]

[
∂ρ̇j=1,2,3

∂δ1
] [

∂ρ̇j=1,2,3

∂ρj=1,2,3
]


4×4

(6.11)

Claim 6.2. All the pure game strategies can be locally asymptotically stable given that

their trajectories start sufficiently close in their neighborhood and the convergence con-

ditions given in Table 6.3 hold.

Proof. We provide a detailed proof only for Case 1 since the other cases follow a sim-

ilar pattern. Pure strategies for Case 1 are: the WiFi AP chooses to use the higher

transmission power level, P2, with probability one, i.e. δ2 = 1, while the LTE-U AP

chooses the first strategy x1 = (P1, T1) with probability one, i.e ρ1 = 1. This strategy

shows that the WiFi AP is getting aggressive, uses P2, against a friendly LTE-U AP.

The Jacobian matrix of the RD for Case 1 is

J(0,1,0,0) =


b11 − b12 0 0 0

0 a42 − a12 a42 − a22 a42 − a32

0 0 a22 − a12 0

0 0 0 a32 − a12

 .

The eigenvlaue (λ1, λ2, λ3, λ4) of J(0,1,0,0) are the diagonal elements of this matrix.

λ1 = a22 − a12, λ2 = a32 − a12

λ3 = a42 − a12, λ4 = b11 − b12

By using Eqs. (6.3) and (6.4) and collecting terms, we get:

λ1 < 0, if
α

γ
< NLCL

λ2 < 0, if
hL

NLIw(P2)
< NLCL

λ3 < 0, if
1

∆P + γ∆T

(
hL∆P

NLIw(P2)
+ α∆T

)
< NLCL
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λ4 < 0, if NWCW <
hW

βNW IL(P1)

which implies that for the LTE-U AP, represented by λ1, λ2, and λ3, the collective power

transmission cost, NLCL, is higher than the payoffs from increasing the transmission

power level or the transmission time period when the WiFi AP is aggressive, i.e, uses

P2. Also, when a WiFi AP uses this strategy it means that transmit power cost is

low, and as a result, it increases its transmission power level regardless of any costs to

increase its rewards. This is manifested by λ4 < 0, and it is a typical selfish behavior

in noncoopeartive games. As a result, this strategy is asymptotically stable if the

conditions specified for Case 1 in Table 6.3 are satisfied. Overall, the entries of Table 6.3

show the conditions under which the eigenvalues of the Jacobian matrix have negative

real parts for given suitable initial conditions for different cases. They also present

the comparison between the benefits from two considered technologies in terms of the

SINR and the cumulative costs. Transmission is said to be more expensive when the

cumulative cost is higher than the transmission benefits.

Observations Based on Claim 6.2

(a) The worst equilibrium strategy from the perspective of a WiFi AP is given by Case

8, because it creates the most interference to the WiFi users. Breaking any of the

above-mentioned conditions will guarantee that the game will not converge to it.

(b) The best equilibrium strategy is given by Case 5. Therefore, by ensuring that the

above-mentioned conditions are satisfied and the initial portion of the two populations

are within a close neighborhood of this equilibrium point, it guarantees that the game

will converge to it.

(c) A sufficient condition to force the LTE-U AP to be friendly, i.e., preventing it from

playing the aggressive strategies x2, x3, and x4 which create more interference to the

WiFi AP, is by ensuring that the value of NLCL exceeds the following

max

{
α

γ
,

hL

NLIw(P )
,

1

∆P + γ∆T

(
hL∆P

NLIw(P )
+ α∆T

)}
.

(d) The worst equilibrium strategy from the coexistence perspective is given by Case



65

−80 −60 −40 −20 0 20 40 60 80
−100

−50

0

50

100

Distance(m)

Di
sta

nc
e(

m
)

WiFi users
LTE-U users
WiFi AP
LTE-U AP

Figure 6.2: Users Locations for Example 1.

4, since it creates the most interference to all users in the network. Breaking any of the

conditions will guarantee that the game will not converge to it.

6.4.1 Choosing β in f(NW )

Current WiFi technology is based on the Carrier Sense Multiple Access with Collision

Avoidance (CSMA/CA) protocol. In this protocol, the WiFi user equipment senses

the channel for any possible ongoing transmission and if there is none, the user starts

its own transmission. However, if the channel is occupied, the WiFi device defers

the transmission for some period of time and then repeats the sensing activity and so

on. Based on the analysis presented in [59] and [60], the WiFi throughput depends on

multiple factors such as the channel, the probability of successful transmission (Ps), the

number of idle slot times, the average time the channel is captured with a successful

transmission, and the average time the channel is captured with a collision. In this

work, we take the probability of successful transmission, Ps, as the criteria to find the

value of β in f(NW ) in Eq. (6.2). Based on [59] and [60],

Ps =
τ(1− τ)NW−1NW

1− (1− τ)NW
∈ [0, 1] (6.12)

where τ ∈ [0, 1] is the user’s transmission probability. As NW gets large, 1−(1−τ)NW '

1 and τ(1 − τ)NW−1 ' ε, where ε > 0 is a very small number. In case of the WiFi,

it shows that increasing the number of users decreases the probability of successful

transmission and as a result reduces the throughput. In this paper, we assume that
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β = 1
Ps
≥ 1, which is a rough, but a valid approximation. On the other hand, the LTE

technology uses OFDMA for multiple access, which allows multiple users to share the

time and frequency resources, and as a result, it is not severely affected by increasing

the number of users as the case with the WiFi.

6.4.2 Numerical Examples

We consider two examples to show the effect of increasing the WiFi AP transmission

cost, CW . If the WiFi AP can handle the cost, as in Example 1, then it will be aggressive

regardless of the LTE-U AP behavior. In Example 2, we show that we can achieve the

best coexistence situation, Case 5 in Table 6.3, by increasing CW . In both examples, we

show the convergence to the ESS through mathematical analysis and simulation. Each

figure, Figs. 6.3 and 6.8, shows the evolution of the probabilities of choosing the pure

strategies for each player. Additionally, we provide the net payoff for each AP alongside

with each strategy to show that the ESS strategies have the highest payoffs. To clarify,

in Example 1, Fig. 6.3 shows that the WiFi AP chooses the strategy P2 with probability

one, δ2 = 1, against an LTE-AP playing strategy x1, and this strategy gives the WiFi

AP a higher payoff, b12 = 0.22081. b12 is larger than the payoff that the WiFi AP gets

when playing P1 strategy against the same LTE-U AP which is b11 = 0.010405. In a

similar way, we can interpret the other curves in Figs. 6.3 and 6.8. Furthermore, show

the dynamics of Eqs. (6.3) and (6.4) as the players’ decisions evolve. These payoffs

are shown in Figs. 6.4-6.7 and Figs. 6.9-6.12. The game utilities are proportional

to the signal to interference plus noise ratio (SINR) metric which reflects the users’

throughput. The higher the utility, the higher SINR. However, the utilities values do

not reflect the exact SINR values that players get through out the game. We assumed

also that the AP’s keep transmitting regardless of the SINR achieved at the users’ end.

Example 1

In this example, the WiFi AP plays the coexistence aggressive strategy, P2, while the

LTE-U plays the coexistence friendly strategy, x1 = (P1, T1). We assume that the users

are uniformly distributed in the area shown in Fig. 6.2. For NW = 20, NL = 15, P =
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{0.1, 0.2}, T = {0.3, 0.6}, γ = α = 1, β = 1.5, and CL = 5CW = 0.5, the payoff

matrices are given by:

A =



a11 a12

a21 a22

a31 a32

a41 a42


=



−2.1976 −2.2772

−4.1476 −4.2272

−2.4451 −2.6044

−4.3951 −4.5544


(6.13)

B =



b11 b12

b21 b22

b31 b32

b41 b42



T

=



0.0104 0.2208

−0.1896 0.0208

−0.0816 0.0368

−0.2816 −0.1632



T

(6.14)

where A and B are the payoff matrices for the LTE-U AP and the WiFi AP receptively.

The RD equations can be written as:

ρ̇k = ρk

 2∑
j=1

δjakj −
4∑
i=1

2∑
j=1

aijδjρi

 , k = 1, 2, 3. (6.15)

δ̇1 = δ1(1− δ1)
4∑
i=1

(bi1 − bi2)ρi. (6.16)

The eigenvalues for this strategy are λcase1 = [−1.95,−0.3272,−2.2772,−0.2104].

According to [12], this strategy should be an ESS. However, it is instructive to prove

this by the definition given by Theorem 2. The (0, 1, 0, 0) strategy means that the LTE-

U AP will use (ρ1 = 1, ρ2 = 0, ρ3 = 0, ρ4 = 0) and the WiFi AP will use (δ1 = 0, δ2 = 1).

By substituting for the values of the payoff matrices from (6.13) and (6.14). For the

LTE-U AP, we get:[
1 0 0 0

]
A
[
δ1 δ2

]T
−
[
ρ1 ρ2 ρ3 ρ4

]
A
[
δ1 δ2

]T
> 0

⇒ (1.95ρ2 + 0.2475ρ3 + 2.1975ρ4)δ1

+ (1.95ρ2 + 0.3272ρ3 + 2.2772ρ4)δ2 > 0 (6.17)

which satisfies the ESS condition given in Theorem 2. Similarly, for the WiFi AP,[
0 1

]
B
[
ρ1 ρ2 ρ3 ρ4

]T
−
[
δ1 δ2

]
B
[
ρ1 ρ2 ρ3 ρ4

]T
> 0
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Figure 6.3: Example 1 Strategies Evolution. NW = 20, NL = 15, P = {0.1, 0.2}, T =
{0.3, 0.6}, γ = α = 1, β = 1.5, and CL = 5CW = 0.5. It shows the LTE-U AP chooses the
strategy x1 = (P1, T1) w.p ρ1 = 1 and the WiFi AP chooses the strategy P2 w.p δ2 = 1.

⇒ 1 + 0.092(ρ1 + ρ2) > 0 (6.18)

This satisfies the ESS condition in Theorem 2 which agrees with the simulation results

shown in Fig. 6.3. Figs. 6.4 and 6.6 show the evolution of the average payoffs that are

calculated from Eqs. (6.3) and (6.4) for the LTE-U AP and the WiFi AP, respectively.

It cab be seen that on average the ESS strategies of this scenario are having the higher

payoffs. On the other hand, Figs. 6.5 and 6.7 show the payoffs at the ESS of the game

which are the final payoffs that players get. It is also noticed that the LTE-U payoff is

lower than the WiFi AP payoff. The reason is the values of the cost parameters that

are chosen in this example.

Example 2

The following example is to show the effect of increasing the WiFi transmission cost

from CW = 0.1 to CW = 0.3. This will converge to the most desirable case, Case 5,

which we call it the friendly coexistence because both APs create the lowest interference

level to each others’ users. This strategy is an ESS too. Asymptotic stability can be

shown by checking the eigenvalues and then according to [12], the ESS is established.

Alternatively, it can be proved from Theorem 2 as we did in Example 1 above. All other

parameters are kept the same as in Example 1. The probability evolution is shown in

Fig. 6.8. Similar to Example 1 above, Figs. 6.9 and 6.11 show the average payoff for the
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Figure 6.4: Example 1 LTE-U Average Utility Function Evolution. NW = 20, NL = 15, P =
{0.1, 0.2}, T = {0.3, 0.6}, γ = α = 1, β = 1.5, and CL = 5CW = 0.5. It shows the LTE-U AP
gets a higher average payoff when it chooses strategy x1 = (P1, T1) w.p ρ1 = 1 against a WiFi
AP regardless of its used strategy.

LTE-U AP and the WiFi AP calculated from 6.3 and (6.4), respectively. The payoffs

evolution at the ESS are show in Figs. 6.10 and 6.12. Here we notice that increasing

the WiFi users transmission cost leads the WiFi AP to adapt a friendlier behavior by

choosing the lower transmission power level, P1, or equivalently to make δ1 = 1.

6.4.3 The Effect of The Transmission Cost and The Number of Users

on The Players’ Utilities

In this section, we study the effect of the cost and the number of users on the players’

utility functions. To simplify the analysis we assume equal channel coefficients for both

APs users. We fix the transmission power level, so that the power levels are PL and

PW for the LTE-U AP and the WiFi AP in (6.3) and (6.4), respectively, PL and PW

∈ P. We also assume that (1− τ)NW−1 ≈ (1− τ)NW ≈ 0 for large number of WiFi AP

users. The utilities under the previous assumptions are given as:

UL(PL, To, P
W ) =

hLi P
L

(σ2 + hWi P
W )NL

+ αTo − (PL + γTo)NLCL, (6.19)

UW (PL, To, P
W ) =

hWm P
W

(σ2 + hLmP
L)βNW

− αβ−1To −NWPWCW . (6.20)

By taking the partial derivatives of Eqs. (6.19) and (6.20), we get:

∂UL
∂CL

= −(PL + γTo)NL (6.21)

∂UL
∂NL

=
−hLi PL

(σ2 + hWi P
W )N2

L

− (PL + γTo)CL (6.22)
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Figure 6.5: Example 1 LTE-U Utility Function Evolution vs. a WiFi AP uses PW2 . NW =
20, NL = 15, P = {0.1, 0.2}, T = {0.3, 0.6}, γ = α = 1, β = 1.5, and CL = 5CW = 0.5. It
shows the LTE-U AP gets a higher payoff when chooses strategy x1 = (P1, T1) against a WiFi
AP playing the strategy P2.

∂UW
∂CW

= −PWNW (6.23)

∂UW
∂NW

≈ −CWPW , NW is large, (6.24)

∂UW
∂τ

≈ −(
hWm P

W

σ2 + hLmP
L
− αToNW )(Nwτ − 1)(1− τ)NW−2 (6.25)

From (6.21), it is clear that increasing the LTE-U AP cost, CL, and comparing it

to the corresponding term in the WiFi AP utility in Eq. (6.23), will hurt the LTE-U

AP more than the WiFi AP. The reason for this is that the LTE-U AP is charged for

increasing the transmission period and the power level. Also, it shows that the WiFi

AP is less sensitive to increasing the transmission power cost. Furthermore, the WiFi

AP may keep creating interference to the LTE-U AP users without really serving its

users, i.e. some WiFi users may get very low SINR that is not enough to establish a

link between to the AP. The second observation stems from (6.21) and (6.22), shows

that the dominant cost term is the transmission cost and it is almost a linear decreasing

term in both equations. For the WiFi AP, the payoff seems to decrease linearly with the

cost given large number of users. However, since the WiFi uses CSMA/CA, increasing

the number of users will bring the probability of successful transmission, (6.12), to zero.

To capture the effect of the users’ transmission on the WiFi AP payoff we use (6.25),

that is under the assumption that (1 − τ)NW−2 6= 0, the users’ optimal transmission

probability, τ∗, can be derived from (6.25) as

(i) τ∗ >
1

NW
, if

hWm P
W

(σ2 + hLmP
L)

< αToNW (6.26)
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Figure 6.6: Example 1 WiFi Average Utility Function Evolution. NW = 20, NL = 15, P =
{0.1, 0.2}, T = {0.3, 0.6}, γ = α = 1, β = 1.5, and CL = 5CW = 0.5. It shows the WiFi AP
gets a higher payoff when it chooses strategy P2 (the dotted line) w.p ρ1 = 1 against a LTE-U
AP regardless of its used strategy.

(ii) τ∗ <
1

NW
, if

hWm P
W

(σ2 + hLmP
L)

> αToNW (6.27)

Fig. 6.13 helps to explain these equations, where it can be seen that the WiFi AP util-

ity function approaches a constant value, −NWP
WCW , regardless of the transmission

probabilities. Increasing the transmission probabilities does not affect as it can be seen

from (6.25) and Fig. 6.13.1

6.4.4 The WiFi AP Serves a Subgroup of Its Users

In this section, we assume the WiFi AP, depending on the information it has about

each user SINR, transmits only to a subgroup of users who satisfy a minimum SINR

requirement, i.e. SINR ≥ SINRThreshold. Mathematically, the WiFi AP optimization

1 In this figure we assumed that all channel coefficients sum to one which means all the WiFi AP
users are equidistant from the LTE-U AP and the WiFi AP.
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Figure 6.8: Strategies Evolution for Example 2. NW = 20, NL = 15, P = {0.1, 0.2}, T =
{0.3, 0.6}, γ = α = 1, β = 1.5, and CL = 0.5, CW = 0.3. It shows the LTE-U AP chooses the
strategy x1 = (P1, T1) w.p ρ1 = 1 and the WiFi AP chooses the strategy P1 w.p δ1 = 1.

problem becomes:

max
{δi}i=1,2

UW (PLk , T r, P
W
j )

subject to SINRThreshold ≤ SINRW
j (PLk , P

W
j )

SINRW
m (PLk , P

W
j ) =

hWm P
W
j

σ2 + hLmP
L
k

, m = 1, ..., NW ,

{PWj , PLk } ∈ P

0 ≤
4∑
i=1

ρi ≤ 1,

0 ≤
2∑
i=1

δi ≤ 1,

0 ≤ {ρi}i=1,2,3,4 ≤ 1, 0 ≤ {δi}i=1,2 ≤ 1.

(6.28)
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Figure 6.9: Example 2 LTE-U Average Utility Function Evolution. NW = 20, NL = 15, P =
{0.1, 0.2}, T = {0.3, 0.6}, γ = α = 1, β = 1.5, and CL = 0.5, CW = 0.3. It shows the LTE-U
AP gets a higher average payoff when it chooses the strategy x1 = (P1, T1) w.p ρ1 = 1 against
the WiFi AP regardless of its used strategy.

The dynamic nature of the problem, captured by SINRW
j (PLk , P

W
j ), requires the WiFi

to find the correct SINRW
j (PLk , P

W
j ) to make the decision of transmitting or dropping

the mth user. For the specific case of P = {P1, P2}, there are four possible outcomes.

As a result, we propose that the WiFi AP drops the mth user that can not satisfy the

threshold under the best received SINR, i.e. under SINRW
m (PL1 , P

W
2 ) =

hWm PW
2

σ2+hLmP
L
1

. The

reasoning behind this, is that if the WiFi AP is transmitting at its highest power level,

P2, while the LTE-U AP creates the lowest interference, P1, and the user still not able

to establish a link, then there is no point from keep transmitting to that user, since

this will lead to more power transmission cost and more interference to the LTE-U

AP users. The rationale behind this is to lower the interference on both LTE-U and

WiFi APs, which will motivate the friendly coexistence. However, this suggests that

the WiFi AP will use the lower power level P1, but our theory and results suggest the

opposite as shown in Fig. 6.14, where it shows that the WiFi AP will keep playing the

aggressive strategy, P2, regardless of the LTE-U AP used strategy, which happens to

be the friendliest strategy x1 = P1, T1. The parameters used to produce this figure are

the same ones used in Example 2.

The observations in Section 6.4.3 suggest that the WiFi AP will not decrease its

transmission power level even if the LTE-U works in the friendly mode. This seems

counter-intuitive, but as shown in Fig. 6.14 it is an expected behavior for the WiFi AP.
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Figure 6.10: Example 2 LTE-U Utility Function Evolution vs. a WiFi AP uses PW1 . NW =
20, NL = 15, P = {0.1, 0.2}, T = {0.3, 0.6}, γ = α = 1, β = 1.5, and CL = 0.5, CW = 0.3. It
shows the LTE-U AP gets a higher payoff when it chooses the strategy x1 = (P1, T1) against a
WiFi AP playing the strategy P1.

The reason behind this behavior is the mechanism of the RD. Each time, the WiFi AP

will weight its strategies. If the LTE-U AP is in the friendly mode, then the WiFi AP

will gain more payoffs from using the higher transmission power level than the lower

transmission power level although the latter power level guarantees the required SINR.

Also, it is because, WiFi AP is less sensitive to the transmission power cost because of

the formulation of the utility function (see (6.3) and (6.4)). Fig. 6.14 shows the stable

strategies for the both APs. Finally, the number of the WiFi AP users who satisfy

a minimum SINR = 15 dB is 3 out of 20 users and the WiFi uses the higher power

level, P2. In this example, we used the parameters from Example 2, where increasing

the cost for the WiFi should lead to the friendly ESS. However, in this case, even by

increasing the WiFi AP transmission cost to 0.9, the WiFi keeps using the higher power

level which is P2. In the next section, we modify the WiFi utility function to limit such

aggressive behavior.

Finally, Table 6.4 shows the different parameters that were changed to manipulate

the WiFi AP to return to its friendly behavior. The table shows that although the WiFi

AP cost of transmission has been increased 9 times of the cost given in Example 1 (see

Fig. 6.3), the WiFi AP keeps using the higher power level due to higher rewards. Table

6.4 also shows that the initial probabilities for using the transmission power level did

not affect the WiFi AP decision. In the next section, we introduce a power dependent



75

0 5 10 15 20 25 30 35 40 45 50

−0.7

−0.6

−0.5

−0.4

Iteration

Ev
olu

tio
no

fU
W

(P
L k,T

o,P
W j

)

The WiFi AP Average Payoff Evolution.

UW (PL
k , To, P

W
1 )

UW (PL
k , To, P

W
2 )

Figure 6.11: Example 2 WiFi Average Utility Function Evolution. NW = 20, NL = 15, P =
{0.1, 0.2}, T = {0.3, 0.6}, γ = α = 1, β = 1.5, and CL = 0.5, CW = 0.3. It shows the WiFi AP
gets a higher average payoff when it chooses the strategy P1 (the solid line) w.p δ1 = 1 against
a LTE-U AP regardless of its used strategy.

cost to the WiFi AP service to users who satisfy the proposed SINR criteria.

The WiFi AP Serves a Subgroup of Its Users Based on a Power Dependent

Cost Approach

In this part, we introduce a cost function for the WiFi AP which depends on the

transmission power level. We derive the conditions under which the resulted strategy

is asymptotically stable. The model is given in (6.29). Assume that CWj , j = 1, 2, ...,

is the cost of using the jth power level. For two power levels, P1, P2, we have

CW2 = f(CW1) = gCW1 , g ≥ 1, (6.29)

where the function f(CW1) can be chosen to be any monotonically increasing function.

The conditions under which the ESS of the new modified game established are given in

Claim 6.3.

Claim 6.3. All the modified WiFi AP power pricing game pure strategies can be locally

asymptotically stable given that their trajectories start sufficiently close in their neigh-

borhood and the convergence conditions given below hold. Furthermore, the stability

conditions for the LTE-U AP are the same as in Claim 6.2 and are given in the first

part of each case of Claim 6.2. The second part of each case, which captures the WiFi



76

0 5 10 15 20 25 30 35 40 45 50
−0.6

−0.5

−0.4

−0.3

−0.2

Iteration

Ev
olu

tio
no

fU
W

(P
L 1,T 1

,PW j
)

The WiFi AP Payoff Evolution vs. LTE-U AP Playing x1=(PL
1 ,T1).

UW (PL
1 , T1, P

W
1 )

UW (PL
1 , T1, P

W
2 )

Figure 6.12: Example 1 WiFi Utility Function Evolution vs. a LTE-U AP uses x1 = (P1, T1) .
NW = 20, NL = 15, P = {0.1, 0.2}, T = {0.3, 0.6}, γ = α = 1, β = 1.5, and CL = 0.5, CW =
0.3. It the WiFi AP gets a higher payoff when it chooses the strategy P1 against a LTE-U AP
playing the strategy x1.

Figure 6.13: Example 2 WiFi Utility Function with a LTE-U AP uses x1 = (P1, T1) . P1 =
0.1, T1 = 0.3, γ = α = 1, β = 1.5, and CL = 0.5, CW = 0.3.

AP, is changed as given below:

Case 1: (0, 1, 0, 0) or (δ2 = 1, and ρ1 = 1) if

(1) LTE-U AP conditions as in Claim 6.2, and

(2) NW∆CW (PW ) < hW

βNW IL(P1)
.

Case 2: (0, 0, 1, 0) or (δ2 = 1, and ρ2 = 1) if

(1) LTE-U AP conditions as in Claim 6.2, and

(2) NW∆CW (PW ) < hW

βNW IL(P1)
.

Case 3: (0, 0, 0, 1) or (δ2 = 1, and ρ3 = 1) if

(1) LTE-U AP conditions as in Claim 6.2, and
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Figure 6.14: Strategies Evolution for the Optimization Problem in Eq. (6.28). NW = 20, NL =
15, P1 = 0.1, P2 = 2P1, T1 = 0.3, T2 = 2T1, γ = α = 1, β = 1.5, and CL = 0.5, CW = 0.3.
The final results are the same even with CW = 0.9.

(2) NW∆CW (PW ) < hW

βNW IL(P2)
.

Case 4: (0, 0, 0, 0) or (δ2 = 1, and ρ2 = 1) if

(1) LTE-U AP conditions as in Claim 6.2, and

(2) NW∆CW (PW ) < hW

βNW IL(P2)
.

Case 5: (1, 1, 0, 0) or (δ1 = 1, and ρ1 = 1) if

(1) LTE-U AP conditions as in Claim 6.2, and

(2) NW∆CW (PW ) > hW

βNW IL(P1)
.

Case 6: (1, 0, 1, 0) or (δ1 = 1, and ρ2 = 1) if

(1) LTE-U AP conditions as in Claim 6.2, and

(2) NW∆CW (PW ) > hW

βNW IL(P1)
.

Case 7: (1, 0, 0, 1) or (δ1 = 1, and ρ3 = 1) if

(1) LTE-U AP conditions as in Claim 6.2, and

(2) NW∆CW (PW ) > hW

βNW IL(P2)
.

Case 8: (1, 0, 0, 0) or (δ1 = 1, and ρ4 = 1) if

(1) LTE-U AP conditions as in Claim 6.2, and

(2) NW∆CW (PW ) > hW

βNW IL(P2)
, where ∆CW (PW ) = CW2P2 − CW1P1.

Proof. Similar to Claim 6.2, we have to check the new asymptotic stability conditions

for the WiFi AP. We take the first case, which is (0, 1, 0, 0) or (δ2 = 1, and ρ1 = 1).
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The difference is in calculating the condition under which the eigenvalue related to the

WiFi AP is asymptotically stable. This eigenvalue is given by λ4 = b11 − b12. This

strategy is asymptotically stable if λ4 < 0.

By substituting in Eqs. (6.3) and (6.4), using (6.29) for the cost, and collecting

terms, we get: NW∆CW (PW ) < hW

βNW IL(P2)
. In a similar way we can prove the other

conditions. By using the conditions given in Claim 6.3, one can derive the threshold

cost at which the WiFi AP can be forced to play a certain strategy. As an example,

the cost at which the WiFi AP in Case 1 of Claim 6.3 will not play P2 is found to be:

CW2 >
1
P2

(
hW

βNW IL(P1)
+ CW1P1

)
.

Fig. 6.15 shows the simulation results that validate Claim 6.3. It can be seen that

with setting a higher cost for P2, the WiFi AP returns to the friendly behavior. In this

example, g in (6.29) is set to 49. The other parameters are set as in Example 2 for

consistency, and the users’ and the APs’ locations are as shown in Fig. 6.2.
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a41 = -4.3951

a31 = -2.4451

Figure 6.15: Strategies Evolution after Adapting the Cost Function in Eq. (6.29) in the Opti-
mization Problem in Eq. (6.28) . NW = 20, NL = 15, P1 = 0.1, P2 = 2P1, T1 = 0.3, T2 =
2T1, γ = α = 1, β = 1.5, and CL = 0.5, CW1

= 0.3, and CW2
= 49CW1

.

6.4.5 The Effect of the Distance between the LTE-U AP and WiFi

AP

We did simulations were the distance between the APs change. We do not show the

results here, since we did not get a difference. This can be easily proved. However, we

present a sketch of the proof. Changing the distance between as AP, let’s say the WiFi
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AP, and its users affects the channel parameters, in this case hLm and hWm . As a result,

regardless of the position of the APs, our model in (6.1) and (6.2) has these channel

parameters effect, so the stability conditions will stay the same.

6.5 General Game Theoretic Formulation

In this section, we formulate and solve the coexistence game using classical game theory.

In other words, we assume that the game is played once. We assume that PL ∈ [0, PLmax],

To ∈ [Tmino , Tmaxo ], and PW ∈ [0, PWmax]. The players’ optimization problems are given

below,

maximize
PL,To

UL(PL, To, P
W )

maximize
PW

UW (PL, To, P
W )

subject to: PL ∈ [0, PLmax], To ∈ [Tmino , Tmaxo ], (6.30)

PW ∈ [0, PWmax],

where UL(.) and UW (.) are just the continuous version of (6.3) and (6.4). In fact, they

are the potential functions for the LTE-U AP and the WiFi AP respectively given under

the continuum version of strategies given in (6.30). Under this limited power and duty

cycle settings with (6.3) and (6.4), the NE of the game is defined as PL∗, T ∗o , , P
W∗

and found by solving (6.30). Furthermore, by setting the partial derivatives of (6.3)

and (6.4) with respect to the variables {PL, To} for the LTE-U utility function and PW

for the WiFi utility function, we get the game NE strategies as,

PL∗ =


1∑NW

m=1 h
L
m

(∑NW
m=1 h

W
m

βN2
WCW

−NWσ2

)
,

∑NW
m=1 h

W
m

βN2
WCW

> NWσ
2

0, otherwise

(6.31)

T ∗
o =

 Tmaxo , α > γCLNL

Tmino , otherwise

PW∗ =


1∑NL

i=1 h
W
i

(∑NL
i=1 h

L
i

N2
LCL

−NLσ2

)
,

∑NL
i=1 h

L
i

N2
LCL

> NLσ
2

0, otherwise.

(6.32)

To is a linear independent variable in the LTE-U utility. As a result, it takes the

maximum value when the condition in (6.31) holds, α > γCLNL, and the minimum
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value if it does not hold. (6.31) and (6.32) represent the classical NE of the game. They

do not give information about the game dynamics. However, they are the optimal

strategies for both players at a certain point of time. The robustness of these NE

strategies against all other available strategies can be formulated as an asymmetric

evolutionary game and tested for asymptotic stability under the replicator dynamics.

In this game, the players represented by the LTE-U AP and the WiFi AP choose the

NE strategies in (6.31) and (6.32) with probability ρ1 and δ1, respectively. Also the

players, the LTE-U AP and the WiFi AP, choose any other alternative strategy from

the continuum of the rest of strategies with probabilities ρ2 and δ2, respectively. Define

x1 = (PL∗, T ∗o ), x2 = (PL 6= PL∗, To 6= T ∗o ), y1 = PW∗, and y2 = PW 6= PW∗, then

x1 is chosen with probability ρ1 and y1 is chosen with probability δ1. The replicator

dynamics equations from (2.3) and (2.4) are used to study the stability of the NE as

follows,

ρ̇1 = ρ1(1− ρ1)(kL1 δ1 − kL2 ), (6.33)

kL1 = UL(x1, y1)− UL(x2, y1)− UL(x1, y2) + UL(x2, y2),

kL2 = UL(x2, y2)− UL(x1, y2),

δ̇1 = δ1(1− δ1)(kW1 ρ1 − kW2 ), (6.34)

kW1 = UW (x1, y1)− UW (x2, y1)− UW (x1, y2) + UW (x2, y2),

kW2 = UW (x2, y2)− UW (x2, y1),

The utilities of both players at any strategy other than the NE, (x1, y1), are the expected

values over all the range of PL, To, and PW . It can be seen that this stability rule can

find if the NE is an asymptotically stable strategy or not without being able to study

the stability of all the possible strategies. For example in the WiFi case, there is an

infinite number of possible values in the interval PW ∈ [0, PWmax]. A similar argument

holds for the LTE-U AP set of strategies.

Claim 6.4. The NE PL∗, T ∗o , P
W∗ is an asymptotically stable NE under the replicator

dynamics given in (6.33) and (6.34) if the following conditions hold, (1) For the LTE-U

AP the NE strategy, x1 = (PL∗, T ∗o ), is a strict NE. This condition is captured by the
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inequality:( ∑NL
i=1 h

L
i

IW (PW∗)
− N2

LCL
) (PL∗−PL)

NL
> (NLCLγ − α)(T ∗o − To), PL 6= PL∗ ∈ [0, PLmax], To 6=

T ∗o ∈ [Tmino , Tmax0 ],

(2) For the WiFi AP the NE strategy, y1 = PW∗, is a strict NE and this condition

holds if either:

(2-i)
∑NW

m=1 h
W
m

βNW IL(PL∗)
< NWCW and PW∗ < PW , or

(2-ii)
∑NW

m=1 h
W
m

βNW IL(PL∗)
> NWCW and PW∗ > PW and PW 6= PW∗ ∈ [0, PWmax].

Proof. In this proof, we derive the conditions under which the NE strategy, x1 =

(PL∗, T ∗o ) and y1 = PW∗, is asymptotically stable. This corresponds to linearizing the

RD system of equations in (6.33) and (6.34) near ρ1 = 1 and δ1 = 1. The Jacobian

matrix is,

J(1,1) =

 ∂ρ̇1
∂ρ1

∂ρ̇1
∂δ1

∂δ̇1
∂ρ1

∂δ̇1
∂δ1

 =

 −(kL1 − kL2 ) 0

0 −(kW1 − kW2 )

 . (6.35)

For asymptotic stability, the eigenvalues of (6.35) has to have negative real parts [52].

Substituting for kL1 , k
L
2 , k

W
1 , and kW2 from (6.33) and (6.34) in (6.35) and simplifying,

we get the conditions in Claim 6.4.

6.6 Conclusions

In this chapter, we studied the coexistence problem between different technologies to

achieve dynamic spectrum sharing among users using evolutionary game theory. Specif-

ically, we studied the coexistence problem between LTE-U and WiFi APs, where we

assumed APs which belong to different technologies are located in the same area where

they can create interference to each others’ users on the downlink. Additionally, we

investigated the effect of the transmission cost on each AP and specified the conditions

under which long-term coexistence can be achieved. The long-term coexistence is mod-

eled by finding the evolutionary stable strategies of the evolutionary game. We analyzed

the cost functions for the LTE-U and the WiFi APs, and showed that the LTE-U AP

behavior is more sensitive to the cost than to the number of users. For the WiFi, we

found its behavior is more sensitive to the number of users than to the transmission
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power cost. On the other hand, we studied the case where the WiFi AP removes users

that could not establish the minimum SINR required to establish a communication link

to reduce the interference to the LTE-U AP users. We found that this will create more

interference in the network. We solved this problem by introducing a modified cost

function for the WiFi AP to reduce the interference to the LTE-U technology users

by penalizing the WiFi AP when it shows unnecessary aggressive/selfish behavior. Fi-

nally, we presented a classical game-theoretic formulation to the coexistence problem

and found the corresponding NE strategies. Furthermore, we analyzed the stability of

these strategies under the RD and presented the asymptotic stability conditions for the

NE.

There are several possible extensions of this work such as considering the case where

the LTE-U APs create interference to each other. We excluded this scenario by assuming

that LTE-U APs belong to the same operator. It is expected that this will produce a

different set of stable strategies, if any. Proposing new/modified utility functions, that

are not a scaled or shifted versions from the ones presented here in (6.1) and (6.2),

may result in a different NEs and ESSs (if any). The stability of the players’ strategies

in both games presented here was studied under the RD. However, there are other

dynamics that can be considered, see for example [17].
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Table 6.3: Convergence Conditions for Claim 6.2

# Strategies (δ1, ρ1,
ρ2, ρ3)

Conditions

Case 1 (0, 1, 0, 0) or
NLCL > max

{
α
γ ,

hL

NLIw(P2) ,
1

∆P+γ∆T

(
hL∆P

NLIw(P2) + α∆T
)}

,

(δ2 = 1, ρ1 = 1) NWCW < hW

βNW IL(P1)

Case 2 (0, 0, 1, 0) or
α
γ > NLCL > max

{
hL

NLIw(P2) ,
1

∆P−γ∆T

(
hL∆P

NLIw(P2) − α∆T
)}

,

(δ2 = 1, ρ2 = 1) NWCW < hW

βNW IL(P1)

Case 3 (0, 0, 0, 1) or
min

{
hL

NLIw(P2) ,
1

∆P−γ∆T

(
hL∆P

NLIw(P2) − α∆T
)}

> NLCL >
α
γ ,

(δ2 = 1, ρ3 = 1) NWCW < hW

βNW IL(P2)

Case 4 (0, 0, 0, 0) or
NLCL < min

{
α
γ ,

hL

NLIw(P2) ,
1

∆P+γ∆T

(
hL∆P

NLIw(P2) + α∆T
)}

,

(δ2 = 1, ρ2 = 1) NWCW < hW

βNW IL(P2)

Case 5 (1, 1, 0, 0) or
NLCL > max

{
α
γ ,

hL

NLIw(P1) ,
1

∆P+γ∆T

(
hL∆P

NLIw(P1) + α∆T
)}

,

(δ1 = 1, ρ1 = 1) NWCW > hW

βNW IL(P1)

Case 6 (1, 0, 1, 0) or
α
γ > NLCL > max

{
hL

NLIw(P1) ,
1

∆P−γ∆T

(
hL∆P

NLIw(P1) − α∆T
)}

,

(δ1 = 1, ρ2 = 1) NWCW > hW

βNW IL(P1)

Case 7 (1, 0, 0, 1) or
min

{
hL

NLIw(P1) ,
1

∆P−γ∆T

(
hL∆P

NLIw(P1) − α∆T
)}

> NLCL >
α
γ

(δ1 = 1, ρ3 = 1) NWCW > hW

βNW IL(P2)

Case 8 (1, 0, 0, 0) or
NLCL < min

{
α
γ ,

hL

NLIw(P1) ,
1

∆P+γ∆T

(
hL∆P

NLIw(P1) + α∆T
)}

,

(δ1 = 1, ρ4 = 1) NWCW > hW

βNW IL(P2)

Table 6.4: Changing the Transmission Cost for the WiFi AP.

CW P1 w.p δ1 P2 w.p δ2 Stable Strategy

0.3− 0.9 0.4 0.6 P2

0.5− 0.9 0.6 0.4 P2

0.5− 0.9 0.8 0.2 P2
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Chapter 7

Conclusions and Future Work

7.1 Summary of Research

The work presented here can be broadly divided into two main categories. First, the

use of evolutionary game theory to address different security problems in wireless net-

works and data storage. The second part is applying evolutionary games to solve the

coexistence problem among different technologies, in general, and between LTE-U and

WiFi in particular.

7.1.1 Evolutionary Games to Address Wireless and Storage Security

Problems

We formulated a denial of service attack through jamming evolutionary game. We used

potential functions to formulate the utilities of two asymmetric populations and studied

their asymptotically stable and hence evolutionary stable strategies. We showed that

such attack can be mitigated given a high enough number of cooperative users.

We addressed another security problem called threat revocation in ephemeral net-

works. Such networks are expected to be widely adopted although under different names

such as Internet of Things, or vehicular networks, and so on. We broadly proposed an

evolutionary game that captures how nodes in such networks can, independently, thwart

the threat by taking into account the connectivity cost. Evolutionary stable strategies

were used to show the conditions under which the network can be kept safe.

Our final contribution in this category was using evolutionary games to model an

attacker and defender competing to get control over storage device(s) by continuous

attacking and defending over specified periods of time. Evolutionary stable strategies
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are derived and the conditions that make them hold are specified explicitly. The ESS’s

show, under given cost(gain), the more robust attack (defense) strategies.

7.1.2 Evolutionary Games to Address Coexistence among Different

Technologies

In this part, we proposed using evolutionary game theory as a mechanism for coexistence

between WiFi technology and LTE-U one. We formulated the utility functions for each

AP such that it is the potential function of its own users. We considered two different

cases where the WiFi users who could not establish a link and where they could establish

it. We found that for the case where the WiFi AP can drop out some of its users who

can not maintain a threshold SINR, the power cost function for the WiFi AP needs to

increased significantly to prevent it from raising its downlink transmission power. Such

kind of behavior benefits the WiFi AP users, because it increases their SINR, but at

the same it creates unnecessary interference to the LTE-U AP users.

7.2 Future Work

Using Evolutionary games on graphs to model the problems addressed in this disserta-

tion is a natural extension to our work. Graph theory allows for specific formulation

of the utility function for each player based on its neighbors. For example, in a game

where players can choose to cooperate of defect as strategies, a player who is surrounded

by defectors does not care about cooperators who are not interacting with her, and vise

versa.

The coexistence problem addressed in Chapter 6 can be extended to deal with many

technologies. In this work, we analyzed the game under the replicator dynamics. The

others possible scenarios can be interference reduction by means of cooperation between

the technologies. Another scenario can use a different learning rule rather than the

replicator dynamics, see for example [17]. Coexistence under a hostile environment is

another interesting extension.
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