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ABSTRACT OF THE DISSERTATION   

 

Advanced Machine Learning Algorithms in Manufacturing Scheduling Problems 

 

By BILAL AL MULA ABD 

Dissertation Director:  

Professor Myong K. Jeong 

 

Scheduling is a master key to succeed in the manufacturing companies in global competition. 

Better process scheduling leads to competitive advantage by reducing production cost and 

increasing productivity. Global competition has obliged the companies to expend their investments 

in new manufacturing systems. With the arises of these new systems, many of manufacturing 

problems have appeared such as scheduling problems has gained attention by researchers. 

Especially, it is important to develop new methodologies in order to improve manufacturing 

scheduling effectiveness of these new sophisticated systems. Many of researchers have used 

machine learning for scheduling problems because it is discovering implicit knowledge of expert 

schedulers that can applied for future schedules generation. In addition, machine learning is able 

to create flexible schedules depending on the state of the system.     

In this dissertation, we present several methodologies for machine learning to scheduling in 

different manufacturing processes. For the scheduling problem of traditional industries, we first 
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present a machine learning approach for dynamic scheduling of multiple machines. Existing 

dynamic scheduling algorithms based on classification methods that do not utilize all the available 

data for the better scheduling problem. A regression-based dynamic scheduling (RDS) algorithm 

is proposed to improve scheduling performance of classification-based dynamic scheduling. Due 

to the unknown relationship between predictor variables and output variables, kernel ridge 

regression is presented to predict the performance of the scheduling based on system status 

attributes. The scheduling outputs of the proposed RDS algorithm is evaluated with scheduling 

results of all combinations of dispatching rules from the static job shop scheduling and a 

classification-based dynamic scheduling. 

For the scheduling problem of semiconductor manufacturing system, we present a new machine 

learning algorithm for complex semiconductor scheduling. An adjustable dispatching rule (ADR) 

that calculates weighted sum of control factors for determining which job should be processed 

first. Then, to find near-optimal weight values of the ADR for improving system performance, the 

real coded genetic algorithm (GA) with fitness approximation is proposed. For the fitness 

approximation, kernel ridge regression and polynomial regression are applied by using relatively 

small number of fitness evaluations. The performance of the proposed algorithms is evaluated by 

using an extensive experiment with existing dispatching rules, fixed weights, and GAs without 

fitness approximation.  

Finally, in order to improve the scheduling performance of semiconductor wafer fabrication, we 

propose new variable ranking algorithms to identify the contributions of each input variable to 

output variable. We present a new kernelized general dominance weight (GDW) for ranking of 

scheduling factors in semiconductor manufacturing system. To build kernel version of GDW, the 

relevance vector machine regression technique is applied. 
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CHAPTER 1   

 Introduction  

 

1.1 Overview 

Scheduling is defined as the resources allocation to work along time periods. The goal of 

scheduling is optimization of objectives by creating an effective schedule (Pinedo, 2016).  

Scheduling is used to allocate and plan a common set of resources such as, human resources, 

machinery resources, purchase materials in the manufacturing system and production processes. 

The area of manufacturing scheduling aims to actively assign resources as machines to some sort 

of jobs.  

Many of researchers have used machine learning for scheduling problems because machine 

learning has the capability to use the scheduling knowledge to build the best schedule for the 

manufacturing system. In addition, Machine learning based schedulers are easy to be integrated 

with different decisions such as sensor monitors and diagnostic systems. Furthermore, reasoning 

ability enables the scheduling systems to perform more reactive in addition to predictive (Shaw et 

al., 1992). 

Machine learning that is used by a scheduling system usually it uses a simulation system to build 

various manufacturing system situations and select the best schedule for each situation. Then, a 

machine learning technique takes experience from the training data sets to do the future decisions 

for scheduling (Priore et al., 2014). 
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The semiconductor manufacturing is identified by an expanding complication of manufacturing 

operations and have the multiple steps of processes such as limitations number, accurate 

geometries to recognize on chips, growing cases of automation combined with tools and costs, and 

high quality requirements from the customers (Yugma et al., 2015, Fenner et al., 2005). 

Semiconductor manufacturing operations may be divided into four steps: wafer probing, wafer 

fabrication, assembly or packing, and final test. Especially, in the wafer fabrication stage, the lot 

is the minimum unit to process and each lot consists of a fixed number of wafers. The wafer 

fabrication can be represented as a procedure composed of reentrant sequential process flows 

(Yugma et al., 2015). 

 

1.2 Dissertation outline  

In this dissertation, we present advanced machine learning approaches to solve complex 

scheduling problems in traditional manufacturing systems and semiconductor manufacturing 

systems. This dissertation is organized as follows. Chapter 2 presents a machine learning approach 

for dynamic scheduling of multiple machines. Chapter 3 proposes an adjustable dispatching rule 

(ADR) and real coded genetic algorithm with fitness approximation for scheduling problem of 

semiconductor wafer fabrication. Chapter 4 presents a scheduling algorithm based on the 

kernelized general dominance weight for semiconductor wafer fabrication. Finally, Chapter 5 

summarizes the research results and presents the conclusion. 
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CHAPTER 2   

 Machine Learning Approach for Dynamic Scheduling in Job Shop 

Systems 

 

2.1 Introduction 

Scheduling is a useful way for manufacturing systems where global competition has a 

tremendous effect on outputs of a process. The efficient scheduling leads the industrial companies 

toward the success. Otherwise, the ineffectual scheduling creates bottlenecks in various 

manufacturing system operations. The definition of scheduling is the assignment of jobs to 

machines through time periods. It is an important process for optimization of the objectives 

(Pinedo, 2016). The target of scheduling is allocation jobs to machines to reduce the process time 

and the manufacturing cost (Shaw et al., 1992). 

In manufacturing systems, a flow shop (Shakhlevich et al., 1998, Jeong et al., 2005) is referred to 

an environment where machines are set in series and each job goes through a series of operations. 

Except for a few extensions of the flow shop scheduling problems like a two-machine flow shop 

scheduling problem that can be fixed optimally but the other problems are NP-hard. All jobs go 

through the same route in a flow shop environment. When the sequence are not necessary the same 

for every job but they are fixed, the environment is called a job shop. Flow shop scheduling is also 

NP-hard (Sotskov et al., 1995) as it is the special case of job shop scheduling. 

Many approaches for solving the flow shop and job shop scheduling problems may be utilized. 

These approaches can be broken down to a few groups: the heuristic, the analytical, the artificial 
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intelligence based algorithms and the simulation (Priore et al., 2014). In the analytical approach, 

the job shop and flow shop scheduling problems are captured with optimization models. Lack of 

efficiency for large-scale problems is the main drawback of this approach. Therefore, in order to 

overcome this kind of drawbacks, heuristic approaches that are usually dispatching rules, can be 

utilized. A dispatching rule means process first a job that is waiting in the queue with the most 

important of priority. In case that a machine has been freed. Changing the rules dynamically 

depending on the state of the system can produce interesting outcomes.  

In the literature, there are two types of methodologies to change dispatching rules. In the first one 

is selecting the dispatching rule with best performance from a group of simulated dispatching rules. 

In the second technique i.e. artificial intelligence, simulation is used to generate different 

processing system situations and the best scheduling for each specific case is chosen. In this 

approach a set of simulations are considered as training examples. Then, a machine learning 

algorithm is applied on the training examples to build models that can be used for future 

scheduling. Examples of such algorithms include inductive learning and neural networks. 

Su and Shiue (2003) developed an algorithm that incorporate genetic algorithm (GA) with 

inductive learning. In their technique, for a given system attributes subset, a decision tree is 

generated by applying the inductive learning algorithm. Metan and Sabuncuoglu (2005) proposed 

improved techniques that use operation control charts, inductive learning and simulations. Their 

technique, first a decision tree is generated by applying the features of the system. Then, 

dispatching rules are chosen from the decision tree for per period of scheduling. C4.5 (Quinlan, 

1993) is used as the learning algorithm and the proposed technique is performed on a job shop 

system (Baker, 1984) to minimize the average tardiness. This technique was later improved by 
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Metan et al. (2010). Li and Olafsson (2005) proposed a new method for creating new scheduling 

rules from the data of each job. Their proposed method has the advantage of discovering implicit 

knowledge of expert schedulers that can applied for future schedules generation. Olafsson and Li 

(2010) proposed an extended version of their initial work as well. 

For the second approach i.e. neural networks, a work has been conducted by Min and Yih (2003) 

which proposed a method for scheduling by picking of dispatching rules. Competitive neural 

networks (CNNs) are presented to get the scheduling knowledge in this work. This work also uses 

the semiconductor fab imitation model. Guh et al. (2011) developed a system that allocates 

different dispatching rules for each of the machines using self-organizing map (SOM) neural 

networks. They present a case study that involves a modification of the model used by Montazeri 

and Van Wassenhove (1990). They compare their proposed approach with two alternatives that 

one of them uses inductive learning (Su and Shiue, 2003) and the other one uses SVMs (Shiue, 

2009). They both employ the same dispatching rule in all machines.  

Exterkate et al. (2016) have proposed a kernel ridge regression as a technique for predicting 

nonlinear relationships. They have expanded the present kernel methods to become its employ in 

time-series conditions model for financial enforcements and macroeconomic. The experimental 

implementation is to estimating four predictors U.S. macroeconomic variables, output, revenue, 

sales, and labor. The experimental studies state that kernel based algorithms are often show a high 

accuracy for predicting the performances more than the conventional linear methods that not using 

kernel. Cho et al. (2008) have presented a technique that consists of two parts, off-line part which 

uses to build a model as predicting the observations and on-line part to monitor and diagnosis a 

model to make a decision depending on the information that are collected from off-line part. 
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In most of the existing approaches for dynamic-based classification, they used only small fraction 

of the available training data for selecting a dispatching rule for given system state. 

Consequentially, other available training data, e.g. training data that do not have the best result, 

were completely disregarded. So, the future scheduling decisions from the result of the 

classification-based dynamic scheduling (CDS) may not cover all possible combinations of 

dispatching rules for each machine without relatively large amount of training data. To overcome 

this drawback, in this chapter, we proposed a dynamic scheduling algorithm that finds the best 

combination of dispatching rules using regression technique for job shop scheduling problem. The 

proposed algorithm can predict a scheduling performance with various combinations of 

dispatching rules.  

This chapter is arranged as follows. In Section 2.2, several dispatching rules and control attributes 

used in this chapter are briefly described. Then, the dynamic scheduling algorithm using regression 

technique for job shop scheduling problem is proposed in Section 2.3. In Section 2.4, the 

accomplishment of the proposed algorithms is compared with that of all combinations of 

dispatching rules and a classification-based dynamic scheduling, and the conclusions are presented 

in Section 2.5. 

 

2.2 Background  

2.2.1 Dispatching Rules  

Dispatching rules determine which job will be processed on next at a given machine. Many of 

researches in dispatching rules has been effective for long time and many various principles have 
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been proposed in the literature (Pinedo, 2016). We introduce the popular four dispatching rules as 

follows:  

First In First Out (FIFO): This rule selects a job that has been arrived at the queue first. FIFO, a 

dispatching rule under which the jobs are sequenced by their arrival times, is easy to implement 

and an effective rule for minimizing the maximum flow time and its variance.  

Shortest Processing Time (SPT): SPT chooses the jobs that have shortest processing time and 

handles to complete them first. When most of the jobs cannot meet their due dates SPT effectively 

minimizes the total tardiness of all jobs. This rule is one of the most used one for its simplicity.  

Minimum Slack Time (MST): The MST rule detects the insistence of a job by its slack time. Slack 

time is expressed as the temporal difference between the latest time that a job must be started and 

the earliest time that a job can be started. This rule selects a job that has least slack time.  

Earliest Due Date (EDD): According to EDD rule, earliest due date that belongs to a job is chosen 

first. If a group of jobs that not dependent, each job has different arrival time and different a due 

date, to be ensures all the jobs perform by their due date, this rule can create an efficient schedule 

for all jobs in a group by their due date.  

 

2.2.2 Control Attributes  

The control attributes which include information of jobs and system state can be used as the 

input variables for machine learning algorithms. We introduce several control attributes as follows:  
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Work In Process (WIP): This attribute is a partially finished jobs waiting for completion. Optimal 

production management aims to minimize WIP because it requires storage space. This attribute 

can be calculated in the system as the rate number of jobs.  

Average System Utilization (ASU): This attribute is the mean utilization of the manufacturing 

system. In the single machine model, the ASU can be calculated as mean arrival time of jobs 

divided by mean processing time of jobs.  

Average Remaining Processing time (ARP): ARP is the sum of processing time jobs that is 

remaining in system divided by jobs number that need to be processed. 

Average Slack Time (AST): Slack time is the rate of time a job can be delayed without causing 

another job to be delayed or impacting the finishing time. Usually a smaller AST is more desirable 

in real-time systems.  

Maximum Relative Machine Workload (MRMW): MRMW which checks workload for the 

machines to detect a bottleneck through time. This attribute is defined as the rate of the maximum 

workload to system utilization.  

Average Queue Length (AQL): This attribute stores the average queue length of all queues for the 

scheduling period.  
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2.3 Dynamic Scheduling Algorithm for Job Shop Problems  

2.3.1 Problem Description  

 Let us define the scheduling problem for a job shop. There is a set 𝓙 = {𝐽1, … , 𝐽𝑛} of 𝑛 jobs 

that are to be processed on a machine set 𝓜 = {𝑀1, … , 𝑀𝑚} of 𝑚 machines as shown in Figure 

2.1. For each job 𝐽𝑖, there are a due date 𝑑𝑖 and release time 𝑟𝑖. Each machine 𝑀𝑘 ∈ 𝓜 allows to 

implement one job 𝐽𝑖 ∈  𝓙. The job 𝐽𝑖 composes of a sequence of 𝑛𝑖 operations 𝑜1
𝑖 , ⋯ , 𝑜𝑛𝑖

𝑖 , where 

𝑀𝑜𝑞
𝑖 ∈ 𝓜 and 1 ≤ 𝑞 ≤ 𝑛𝑖, being given in advance. The execution of 𝑜𝑞

𝑖  cannot start before the 

execution of 𝑜𝑞−1
𝑖  has been completed, for 𝑞 = 2, … , 𝑛𝑖 . Each operation 𝑜𝑞

𝑖  requires an 

uninterrupted period of processing time 𝑝𝑖𝑞 ≥ 0.  

We assume that there are no failures for all machines, no rework for all jobs and an unlimited 

buffer space in between two machines.  

 

M1

J2 M2

Mm

J1

Jn

…

…

 

Figure 2.1 Job shop scheduling problem with 𝑛 jobs on 𝑚 machines 
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In this chapter, we consider the mean tardiness of all jobs as a performance measure for job shop 

scheduling problem. The tardiness of job 𝐽𝑖 is defined as 𝑡𝑖 = max (𝐶𝑖 − 𝑑𝑖, 0), where 𝐶𝑖 and 𝑑𝑖 is 

the completion time and due date of the job 𝐽𝑖, respectively. It represents how long after the due 

date a job was completed and can measure due date performance of the schedule. So, the mean 

tardiness can be calculated as 𝑇 = ∑ 𝑡𝑖
𝑛
𝑖=1 /𝑛. 

A preliminary categorization could deal with static and dynamic scheduling. In static scheduling 

problem, a limitation is represented by scheduling all jobs at the same time. In static case, the 

schedule is obtained one time. While, in dynamic scheduling problem, only one job is scheduled 

in advance and the other jobs are scheduled dynamically in the system. In this chapter, it is defined 

as static scheduling when a combination of dispatching rules is fixed for all machines until all jobs 

are processed. For dynamic scheduling, a combination of dispatching rules can be chosen 

depending on the system state.  

 

2.3.2 Classification-based Dynamic Scheduling (CDS) 

Most of the existing approaches for dynamic scheduling of job shop problems that based on 

data mining methodologies, the researchers used the classification techniques to determine the 

solutions of dynamic scheduling. It means that training examples are obtained for various system 

states in advance. Each training example has the values of control attributes for representing the 

system state, and the best combination of dispatching rules. Then, the most similar one to current 

system state can be chosen for dynamic scheduling. The procedures of the classification-based 

dynamic scheduling are shown in Figure 2.2.  
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Figure 2.2 The procedures of the classification-based dynamic scheduling 

 

Figure 2.3 shows an example of the results of the classification. In this example, the CART 

algorithm is used to generate a decision tree as the results. In the classification problem, nodes 

except leaf nodes represent the conditions for input variables and the leaf nodes represent each 

class. The decision tree can be analyzed into decision rules, where the result is the involvements 

of the leaf node, and the conditions along the path from a conjunction in the if-then clause.  

Off-line Classification Model Development 

Step 1. Generate observations  

1-a. Repeat for each combination of dispatching rules  

1) Select a combination of dispatching rules for all machines  

2) Run the simulation until all jobs are processed  

3) Note the performance value  

1-b. Select the combination of dispatching rules corresponding to the best performance value  

1-c. Generate an observation with a vector of control attribute values with corresponding best   

        combination of dispatching rules  

1-d. Go to step 1-a until 𝑛𝑜𝑏𝑠 observations are obtained 

Step 2. Develop the classification model  

2-a. Divide 𝑛𝑜𝑏𝑠 collected observations into 𝑛𝑡𝑟 training data and 𝑛𝑡𝑒 test data 

2-b. Build the classification model to fit on 𝑛𝑡𝑟 training data 

2-c. Using 𝑛𝑡𝑒 test data to evaluate the achievement of the classification model  

On-line Dynamic Scheduling  

Step 3. Classification-based dynamic scheduling  

    3-a. When a job is finished in any machines, evaluate the values of control attributes 

    3-b. Select the best combination of dispatching rules for all machine using classification model      

           in step 2  

    3-c. Go to step 3-a until all jobs are processed  
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Figure 2.3 An example of the results of the classification 

Note that in Step 1-a to 1-b, to obtain one observation, (𝑛𝑑𝑟)𝑚 simulation runs are required where 

𝑛𝑑𝑟 is the number of dispatching rules and 𝑚 is the number of machines. In spite of the results 

from (𝑛𝑑𝑟)𝑚 simulation runs, only one result that shows the best performance is obtained as an 

observation for the classification-based dynamic scheduling. It means that results of (𝑛𝑑𝑟)𝑚 − 1 

simulation runs are completely wasted. Moreover, relatively large number of observations may be 

required to get the all possible combination of dispatching rules in the classification-based dynamic 

scheduling because the result of the classification-based dynamic scheduling with small number 

of observations cannot cover all combinations of dispatching rules. For example, the result of the 

decision tree in Figure 2.3 has only 18 leaf nodes by using 100 observations. To overcome this 

drawback, we proposed a regression-based dynamic scheduling algorithm that utilizes all results 
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from (𝑛𝑑𝑟)𝑚 simulation runs to find the best combination of dispatching rules and estimate their 

performance value.  

 

2.3.3 Regression-based Dynamic Scheduling (RDS)  

In order to find the best combination of dispatching rules by estimating their performance value 

using the values of control attributes, a set of regression models should be developed in advance. 

The total number of regression models can be calculated as 𝑛𝑟𝑒𝑔 = (𝑛𝑑𝑟)𝑚, where 𝑛𝑑𝑟 is the 

number of dispatching rules, and 𝑚 is the number of machines. If 𝑛𝑜𝑏𝑠 observations are required 

for each regression model, the total number of observations for all regression models should be 

𝑛𝑜𝑏𝑠 ∙ (𝑛𝑑𝑟)𝑚. The procedures of the regression-based dynamic scheduling are shown in Figure 

2.4.  
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Figure 2.4 The procedures of the regression-based dynamic scheduling   

Off-line Regression Model Development 

Step 1. Generate observations  

1-a. Repeat for each combination of dispatching rules  

(1) Select a combination of dispatching rules for all machines  

(2) Run the simulation until all jobs are processed  

(3) Note the performance value  

(4) Generate an observation with a vector of control attribute values with corresponding 

performance value for given combination of dispatching rules 

1-b. Go to step 1-a until 𝑛𝑜𝑏𝑠 observations are obtained for each combination of dispatching      

        rules 

Step 2. Develop the regression model for each combination of dispatching rules  

2-a. Repeat for each combination of dispatching rules  

(1) Divide 𝑛𝑜𝑏𝑠 collected observations into 𝑛𝑡𝑟 training data,  𝑛𝑣𝑎 validating   data  

  and 𝑛𝑡𝑒 testing data 

(2) Build the regression models to fit on 𝑛𝑡𝑟 training data for given combination  

  of dispatching rules 

(3) Adjust the regression models based on the result of the comparison in 𝑛𝑣𝑎  

(4) Assess the performance of the regression model using 𝑛𝑡𝑒 test data 

On-line Dynamic Scheduling  

Step 3. Regression-based dynamic scheduling  

    3-a. When a job is finished in any machines, evaluate the values of control attributes 

    3-b. Repeat for each combination of dispatching rules  

(1) Select the regression model for given combination of dispatching rules  

(2) Calculate the estimated performance value using selected regression model and the 

values of control attributes from Step 3-a   

(3) Note the estimated performance value  

    3-c. Select the combination of dispatching rules corresponding to the best estimated performance  

            value in step 3-b  

    3-d. Go to step 3-a until all jobs are processed   
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In step 1, we initialize and generate the observations that system needs to get the performances.  

Simulation studies section have more details for this step. 

In step 2, we present a kernel ridge regression (KRR). The mechanism of KRR depends on usual 

ridge regression and least squares regression. The result prediction for ridge regression is shown 

in equation (2.1) and (2.2). 

 

𝛽 = (𝑋𝑇𝑋 +  𝜆𝐼)−1𝑋𝑇𝑦     (2.1) 

 

�̂� = 𝑋𝛽      (2.2) 

 

where 𝛽 is the regression coefficients and 𝞴 is the parameter of ridge regression. The main idea of 

KRR, presents a high-dimensional space of predictors by using shrinkage or ridge term to avoid 

overfitting to predict the regression coefficients. So, the result of KRR can be written as 

 

�̂� = 𝑦𝑇(𝐾 +  𝜆𝐼)−1𝑘          (2.3) 

where 𝐾𝑖𝑗 =  𝑥𝑖𝑥𝑗 and it is called kernel matrix and 𝑘𝑖 =  𝑥𝑖𝑥
′ and it is called kernel function. To 

get on �̂� in kernel ridge regression we need to recalculate 𝐾 and 𝑘 instead of explicit 

transformations 𝑥 → ϕ(𝑥). 

As is shown in equation 2.3 kernel ridge regression has kernel trick that is distinguished from 

ordinary ridge regression. Kernel trick increases the improvement of computational efficiency. 

The important process to use of kernel trick is selecting ϕ that produces to determine an accurate 
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kernel function 𝑘𝑖 (means choosing the appropriate kernel). So, we present polynomial kernel to 

incorporate with ridge regression. 

In off-line case the observations have three parts, training data, validating data and testing data. 

The parameters for kernel polynomial ridge regression as number of order and lambda are 

optimized. As shown in Step 2-a in Figure 2.4, 𝑛𝑜𝑏𝑠 collected observations are divided into 𝑛𝑡𝑟 

training data, validation data 𝑛𝑣𝑎 and 𝑛𝑡𝑒 test data for each combination of dispatching rules. A 

regression model for given combination of dispatching rules is initially fit on 𝑛𝑡𝑟 training data. 

The training data has the pairs of input variables and the corresponding answer, which is commonly 

denoted as the target. Then, the regression model is running with the training data and produces a 

result, which is then compare with the target, for each observation. The coefficients of the 

regression model are adjusted based on the result of the comparison in 𝑛𝑣𝑎. The test data is used 

to provide an unbiased evaluation of the regression model. The regression models for all 

combination are built after modified those models in validation data and examined them in testing 

data.  

In step 3, on line situation is started. When a job is processed on any machine, the proposed 

algorithm calculates the values of control attributes and here the values of control attributes 

consider a vector has (1 × 𝑁) where 1 represents an observation and 𝑁 represents the number of 

predictor variables. Depending on regression models and the parameters that already optimized in 

off-line situation, the system can be predicted the new performance values for all combination of 

dispatching rules. After that the system starts comparing between the performance of current 

dispatching rule and all other combination of dispatching rule to choose the dispatching rule that 

gives best performance. So, the system can change to the dispatching rule that has best 
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performance. Usually, the ordinary least squares procedure presupposes that the number of 

predictor variables should be less or equivalent to the number of observations to prevent overfitting 

problems. But even we have that case, KRR may obtain a good in-sample fit in dynamic 

scheduling. The structure of the observations for each regression model consists of the values of 

control attributes as the independent variables and the performance value as the dependent variable 

as shown in Table 2.1. 

 Table 2.1 The structure of the observations for given combination of dispatching rules 

 

 

For each observation, 𝑛𝑐𝑎 control attributes for input variables and the performance measure for 

output variable are calculated after simulation running with randomly generated 𝑛 jobs. These jobs 

can be reused for all combinations of dispatching rules. In other words, a set of 𝑛 jobs can be used 

for each regression model because of the values of control attributes and performance measures 
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from the set of jobs with different combination of dispatching rules may be different. Thus, only 

𝑛𝑜𝑏𝑠 set of jobs are required for developing 𝑛𝑟𝑒𝑔 regression models.  

The proposed regression-based dynamic scheduling algorithm performs as follows. When a job is 

processed on any machines in the system, the proposed algorithm calculates all estimated 

performance values for each combination of dispatching rules using the current values of control 

attributes and regression models that are developed in advance. Then, the proposed algorithm can 

switch to the combination of dispatching rules that has the best estimated performance value. If 

the best combination of dispatching rules from the regression models and the current combination 

of dispatching rules are different, the proposed algorithm calculates the expected benefit of 

changing combination of dispatching rules using the estimated performance value of both best and 

current combinations of dispatching rules. Consequentially, if the expected benefit of changing 

combination of dispatching rules is bigger than a current value, the RDS algorithm changes the 

current combination of dispatching rules to the best combination of dispatching rules. The 

pseudocode of on-line dynamic scheduling part of the proposed algorithm is shown in Figure 2.5.  
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Regression-based Dynamic Scheduling (RDS) for Job Shop Problems  

/* CDR is the combination of dispatching rules */ 

/* PV is the performance value */ 

1 begin  

2     while all jobs are processed on the system do  

3         if a job is processed for any machines do  

4             Calculate the current values of control attributes;  

5             for each CDR do 

6                 Calculate the estimated PV using the regression model for given CDR;  

7                 Keep best CDR and its estimated PV;  

8             end  

9             if best CDR /= current CDR do  

10                if threshold < difference of PVs for best and current CDRs do  

11                    Current CDR ← best CDR; 

12                end 

13            end 

14        end 

15    end  

16 end  

Figure 2.5 Pseudocode of the RDS algorithm  

 

2.3.4 An illustrative Example with n Jobs on m Machines  

Let us consider a simple job shop scheduling problem as follows. Let assume there are 3 jobs 

(𝐽1, 𝐽2 and 𝐽3) that are to be processed on 3 machines (𝑀1, 𝑀2 and 𝑀3). For each job 𝐽𝑖, there are a 

release time 𝑟𝑖, processing time on the 𝑘-th machine 𝑝𝑖𝑘, due date 𝑑𝑖 and their processing order 𝑜𝑘
𝑖  

as follows.  
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𝑟 = [
0
0
0

],�⃗� = [
4 10 8
3 8 7
4 12 9

],𝑑 = [
24
34
32

], �⃗� = [
2 3 1
1 3 2
1 2 3

]    (2.4) 

In this example, we consider three cases as follows: (a) each job is processed by SPT rule for all 

machine, (b) each job is processed by EDD rule for all machine, and (c) each job is processed by 

SPT rule before time 10, then the rule is change to EDD rule for all machine. Figure 2.6 is shown 

the results of these cases.  
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(a) Each job is processed by SPT rule for all machines

M1

M2

M3

10 20 30 405 15 25 35

J1J2

J3

J2J3J1

J2

J3

J1

C1=26

C3=31

C2=30
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M3

10 20 30 405 15 25 35

J1J2

J3

J2J3J1

J2

J3

J1

C1=22

C3=31

C2=30

d1=24 d2=34

d3=32

d1=24 d2=34

d3=32

d1=24 d2=34

d3=32

(b) Each job is processed by EDD rule for all machines

(c) Each job is processed by SPT rule (before time 10) and EDD rule (after time 10) for all machines
 

Figure 2.6 Scheduling results of three cases for the example of job shop scheduling problem 
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For case (a) and case (c), when job 2 and job 3 are arrived at the same time on machine 1, job 2 

can be processed first by the SPT rule because 𝑝21 is less than 𝑝31. On the other hand, job 3 should 

be processed first by the EDD rule because 𝑑3 is less than 𝑑2 at time 0 for case (b). At time 10 in 

case (a) and case (c), job 2 and job 3 compete for processing on machine 2. According to the SPT 

rule, job 2 is processed first because 𝑝22 is less than 𝑝32 in case (a). For case (c), job 3 is processed 

first because 𝑑3 is less than 𝑑2.  

As a performance measure, mean tardiness of the scheduling results of three cases can be compared 

as follows. The mean tardiness of all jobs can be calculated as 
∑ max (0,𝐶𝑖−𝑑𝑖)𝑛

𝑖=1

𝑛
. So, the mean 

tardiness of the case (a), (b) and (c) is  
7

3
, 

2

3
  and 0, respectively. The result shows that the case (c) 

is the best solution with minimum mean tardiness for the example of job shop scheduling problem.  

 

2.4 Simulation Studies  

In order to measure of efficiency of the presented algorithm, Matlab simulation studies are 

performed for scheduling 𝑛 jobs on three machines in job shop problem. There are four dispatching 

rules i.e. SPT (1), EDD (2), MST (3) and FIFO (4), for each machine. Then, the combination of 

dispatching rules for three machines is denoted by using 3-digit number from 111 to 444. For 

example, the combination 134 means that SPT (1), MST (3) and FIFO (4) is selected for machine 

1, 2 and 3, respectively. So, the total number of all combinations of dispatching rules is (43) = 64.  

To get 100 observations for each combination of dispatching rules, the following simulation runs 

are required repeatedly. For each simulation run, 50 jobs are randomly generated. Each job has its 

release time, processing times for each machine, due date and orders for processing route over 
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machines. When all jobs are processed, the values of control attributes i.e. WIP, ASU, ARP, AST, 

MRMW and AQL, and the mean tardiness of all jobs can be calculated for generating an 

observation. As an example, Table 2.2 states the simulation results for all combinations of 

dispatching rules with a set of jobs. The right most column of Table 2.2, named CDR, means the 

combination of dispatching rules.  

Table 2.2 An example of the simulation results for all combinations with a set of jobs 

 
Input variables  Output variable  

CDR 
WIP ASU ARP AST MRMW AQL Mean Tardiness 

1 6.97 0.82 10.44 3.64 1.14 4.51 14.73 111 

2 7.31 0.83 10.01 4.50 1.14 4.83 15.66 112 

3 7.32 0.83 9.95 4.65 1.14 4.85 15.52 113 

4 7.30 0.83 9.86 4.59 1.14 4.82 15.61 114 

5 8.74 0.81 9.49 11.32 1.14 6.31 22.12 121 

6 8.88 0.81 9.78 11.71 1.14 6.45 22.58 122 

7 8.99 0.81 9.76 12.03 1.14 6.56 23.11 123 

8 8.85 0.81 9.62 11.72 1.14 6.42 22.56 124 

… … … … … … … … … 

61 10.15 0.82 7.78 16.21 1.14 7.68 28.41 441 

62 10.25 0.82 7.91 16.19 1.14 7.79 28.98 442 

63 10.19 0.82 7.80 15.97 1.14 7.72 28.49 443 

64 10.45 0.82 7.73 16.84 1.14 7.98 29.82 444 

 

In the classification-based dynamic scheduling, only one result with the minimum value of the 

mean tardiness i.e. the first row, represents an observation, then rest of them are wasted. However, 

in our proposed regression-based dynamic scheduling, all results can be contributed for improving 

regression models.  
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After generating observations, to develop the regression model for each combination of 

dispatching rules, 100 collected observations are divided into 70 training data, 10 validation data 

and 20 test data. Then, the regression model is built to fit on training data. Validation data is used 

to modify the parameters. To assess the performance of the regression model, test data is used. 

Table 2.3 shows that the example of the observation data for given combination of dispatching 

rules. 

Table 2.3 The example of the observations for given combination of dispatching rules  

 
Input variables Output variable 

WIP ASU ARP AST MRMW AQL Mean Tardiness 

Training 

data 

1 6.97 0.82 10.44 3.64 1.14 4.51 14.73 

2 6.12 0.78 10.31 1.26 1.12 3.79 13.08 

… … … … … … … … 

70 5.25 0.68 8.79 3.07 1.32 3.22 15.29 

Validating 

Data 

71 7.34 0.76 10.43 2.45 1.28 4.54 16.68 

72 5.98 0.81 9.93 1.94 1.49 6.51 15.92 

… … … … … … … … 

80 6.41 0.79 12.94 0.34 1.17 6.08 14.07 

Test 

data 

81 5.90 0.73 10.99 1.77 1.29 3.70 15.82 

82 5.22 0.72 9.59 0.14 1.15 3.05 10.17 

… … … … … … … … 

100 6.85 0.74 16.91 -0.58 1.33 4.63 18.33 

 

The scheduling result of the regression-based dynamic scheduling is compared with all 

combinations of static scheduling and a classification-based dynamic scheduling for the mean 

tardiness. There are two simulation models with different job environments to generate jobs 

randomly. For model 1, the inter-arrival time, processing times for each machine and due date of 
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all jobs are generated by exponential distribution with different values of lambda. On the other 

hand, the uniform distribution with different lower and upper bounds are applied for model 2 as 

shown in Table 2.4.  

Table 2.4 Two simulation models with different job environments  

 Model 1 Model 2 

Interarrival time Exp. (5) Uniform [15,90] 

Processing time for machine 1 Exp. (4) Uniform [30,140] 

Processing time for machine 2 Exp. (5) Uniform [40,160] 

Processing time for machine 3 Exp. (3) Uniform [35,200] 

Due date Release time + Exp. (20) 
Release time + Uniform 

[500,1000] 

 

For model 1, the results of the mean tardiness of static and dynamic scheduling are compared for 

all test data as shown in Table 2.5. For example, the result of static scheduling with test data 1 

show that the mean tardiness is minimum of 4.3 with combination of dispatching rules 122, i.e. 

SPT for machine 1, EDD for machine 2 and machine 3, and maximum of 8.2 with combination of 

dispatching rules 421, i.e. FIFO for machine 1, EDD for machine 2, and SPT for machine 3. The 

mean tardiness of CDS and RDS with test data 1 is 6.9 and 5, respectively. The relative 

improvement between CDS and RDS is calculated as 38% (=
6.9−5

6.9
) for test data 1. As shown in 

Table 2.5, the mean tardiness of the RDS is reduced from a minimum of 1.48% to a maximum of 

70.34% from that of the CDS for all test data.  
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Table 2.5 Comparison of the mean tardiness of static and dynamic scheduling for model 1 

Test 

data 

Static Scheduling Dynamic Scheduling 

Best (CDR) Worst (CDR) CDS RDS 
Relative Improvement 

CDS to RDS 

1 4.3 (122) 8.2 (421) 6.9 5 38% 

2 11.2 (212) 28.4 (143) 24.6 22.4 9.82% 

3 3.1 (221) 8.1 (144) 7.2 6.4 12.5% 

4 12.1 (211) 31.9 (434) 26.1 25.6 1.95% 

5 4.1 (212) 10.4 (444) 10.3 6.71 53.5% 

6 5.3 (133) 17.2 (442) 10.6 6.4 65.62% 

7 4.2 (222) 9.4 (441) 9.2 5.4 70.37% 

8 7.6 (211) 17 (444) 15.2 9.9 53.53% 

9 2.8 (224) 11.6 (442) 7.35 4.6 59.78% 

10 16.4 (211) 33.5 (444) 29.79 27.1 9.92% 

11 7.7 (211) 20.1 (443) 18.14 14.2 27.74% 

12 4.5 (111) 9.8 (434) 7.3 6.9 5.79% 

13 16.4 (213) 44.5 (344) 41 40.4 1.48% 

14 7.6 (121) 15.6 (434) 14.4 11.1 29.72% 

15 10.1 (313) 29.7 (443) 21.1 18.7 12.83% 

16 7.2 (121) 19.8 (333) 11.4 10.1 12.87% 

17 9.6 (122) 24.2 (243) 17.5 11.4 53.5% 

18 12 (411) 33.3 (443) 30.2 27.3 10.62% 

19 20.2 (112) 41.7 (444) 32 30.3 5.61% 

20 8.5 (214) 22.4 (444) 16.9 14.5 16.55% 

 

For model 2, the results of the mean tardiness of static and dynamic scheduling are also compared 

for all test data as shown in Table 2.6. As shown in Table 2.6, the mean tardiness of the RDS is 

reduced from a minimum of 0.76% to a maximum of 19.59% from that of the CDS for all test data.  
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Table 2.6 Comparison of the mean tardiness of static and dynamic scheduling for model 2  

Test 

data 

Static Scheduling Dynamic Scheduling 

Best (CDR) Worst (CDR) CDS RDS 
Relative Improvement 

CDS to RDS 

1 972.1 (222) 1478.2 (211) 982.3 884.3 11.08% 

2 962.8 (122) 1309.2 (144) 948.4 888.7 6.71% 

3 798.9 (211) 1287.0 (144) 869.7 727.2 19.59% 

4 736.5 (331) 971.7 (144) 746.7 724.1 3.12% 

5 778.7 (422) 1137.5 (214) 732.9 723.8 1.25% 

6 922.8 (311) 1366.7 (444) 960.7 849.4 13.10% 

7 862.0 (111) 1269.7 (444) 884.1 780.2 13.31% 

8 1020.0 (221) 1344.6 (444) 1192.1 1017.4 17.17% 

9 898.0 (322) 1310.2 (444) 935.7 870.9 7.44% 

10 1061.1 (321) 1381.8 (444) 1035.8 985.3 5.12% 

11 702.25 (321) 1120.2(444) 784.45 749.1 4.71% 

12 795.24 (311) 1220.6 (344) 926.03 848.1 9.18% 

13 728.7 (321) 1074.4 (444) 794.32 788.3 0.76% 

14 747.61 (221) 1164.5 (344) 907.51 760.6 19.31% 

15 857.12 (321) 1316.6 (444) 903.78 870.2 3.85% 

16 825.52 (221) 1344.3 (444) 946.78 890.2 6.35% 

17 839.87 (211) 1252.9 (144) 861.38 847.6 1.62% 

18 900.1 (311) 1217.8 (442) 1061.10 972.6 9.09% 

19 897.99 (322) 1310.2 (444) 935.67 870.9 7.43% 

20 941.54 (331) 1326.7 (144) 1033.52 1001.5 3.19% 

 

As is shown in Table 2.5 and 2.6, RDS is significantly given the best results comparing with 

classification dynamic scheduling. For all testing data, the average of the mean tardiness with RDS 

is the best. Furthermore, in those tables, the dispatching rules number 2 (earliest due date), number 

1 (Shortest processing time) and number 3 (minimum slack time) are the best respectively and the 

worst dispatching rule is number 4(fist in first out). The proposed algorithm is improved to 

optimize the performance measures (mean tardiness).So, the mean tardiness is effected directly by 

EDD and SPT and indirectly by MST. The proposed technique focuses to execute the most 
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effective dispatching rules (EDD and SPT) continually to insure minimize the performance 

measure. Minimum slack time (MST) is the dispatching rule that has a main impact on the fourth 

control attribute (AST) in input data. So, MST has a role to calculate and minimize the performance 

measure but less than EDD and SPT. Kernel ridge regression dynamic scheduling has ability to 

discover the dispatching rule that gives the best results for performance measure. In order to fit 

high accuracy regression models with unknown relationship between independent variables and 

the target, polynomial kernel ridge regression is presented to get predictive model with high 

accuracy. Polynomial kernel discovers the implicit control attributes in training data by computing 

the similarity of vectors (training set). 

One of the important point in incorporation KRR with dynamic scheduling is capability of KRR 

to predict a high accuracy value for performance with situation that has number of control variables 

(input vales) more than number of observations and also when the relationship between predictor 

variables and dependent variables are nonlinear. So, KRR can perfectly predict the performance 

in dynamic scheduling case with one observation and six control attributes (input values). RDS 

gives the results better than CDS because RDS utilizes fraction data bigger than CDS to learn. In 

other words, RDS improve all combination of dispatching rules in advance to find the best 

combination in dynamic case while CDS just uses small fraction data that represent the best 

performance is obtained for each simulation running and is ignored all other combinations of 

dispatching rule. Therefore, the results of CDS are not quality and lacked because they are not 

included all combinations of dispatching rules 
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2.5 Conclusions  

In this chapter, a dynamic scheduling algorithm based on a regression technique for job shop 

scheduling problems is proposed to overcome following drawbacks in the existing approaches. 

First, small fraction of the available data is only used and other available data were completely 

wasted because a dynamic scheduling was solved as a classification problem in most of existing 

works. Second, the classification-based dynamic scheduling (CDS) algorithm requires relatively 

large number of observations to cover all possible future scheduling decisions. Thus, we proposed 

the regression-based dynamic scheduling (RDS) algorithm using kernel ridge regression (KRR). 

KRR has a capability to predict a high accuracy value for performance with situation that has 

number of control variables (input vales) more than number of observations and also when the 

relationship between predictor variables and dependent variables are nonlinear. To evaluate the 

efficiency of the presented RDS algorithm, the comparison between the mean tardiness of the RDS 

algorithm and the CDS algorithm is done. As the simulation results, the mean tardiness of the RDS 

is reduced from a minimum of 1.48% to a maximum of 70.34% from that of the CDS for simulation 

model 1 and from a minimum of 0.76% to a maximum of 19.59% from that of the CDS for 

simulation model 2. So, the regression-based dynamic scheduling (RDS) algorithm is significantly 

given the best results comparing with classification dynamic scheduling (CDS). 
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CHAPTER 3   

 New Machine Learning Algorithm for Scheduling of Complex 

Semiconductor Manufacturing System 

 

3.1 Introduction 

 The semiconductor manufacturing is identified by an expanding complication of 

manufacturing operations such as limitations number, accurate geometries to recognize on chips, 

growing cases of automation combined with tools and costs, and high quality requirements from 

the customers. There are four steps of operations of semiconductor manufacturing: wafer probing, 

wafer fabrication, packing or assembly, and final test. In the wafer fabrication stage, the lot is the 

minimum unit to process, and each lot consists of a fixed number of wafers. The wafer fabrication 

can be represented as a procedure composed of reentrant sequential process flows. (Yugma et al., 

2015). 

Depending on a semiconductor manufacturing system features such as probability return a job to 

a same machine many times, changing demand through short periods, a lot of processing steps, 

capacity is not balance, transforming bottlenecks, Jobs with different product types and different 

proportions of each type and various machines can process same jobs, make the scheduling of a 

semiconductor wafer fabrication (SWF) problem strongly NP-hard (Garey and Johnson, 1979, 

Chen, 2010).  

The scheduling problem in SWF is connected with the allocation multistage process with reentrant 

flows on the limited number of machines. Several processing steps is required to produce a chip 

layer such as photolithography, chemical-mechanical polishing (CMP), diffusion, doping, etching 
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and film deposition. Depending on the type of product, more than 700 steps may need to produce 

a lot over several weeks (Mönch et al., 2011). Figure 3.1 is applied from (Yugma et al., 2015) and 

presents the major of the wafer fabrication process steps.  

Oxidation, 

Deposition, 

Diffusion

Photo-

lithography
Etch

Planarization

Ion 

Implantation

Sort, 

Assembly, 

Final Test

Wafer Processing (Front-end)Raw Wafer, 

Wafer Start

Processed 

Wafer

 

Figure 3.1 Main process steps in a wafer fabrication 

Priority dispatching rules are extensively used in SWF scheduling problem. Priority dispatching 

rule determines which job among those waiting for service is to be scheduled in preference to 

other. The popular shortest processing time (SPT) rule leads to maximum throughput (Conway 

and Maxwell, 1962), and for minimizing the tardiness of jobs, the critical ratio (CR) rule is a best 

dispatching rule. Moreover, the starvation avoidance (SA) rule can ensure high utilization of 

bottlenecks (Glassey and Resende, 1988). However, there is no one dispatching rule that can be 

effective well with all situations (Uzsoy et al., 1992; Holthaus and Rajendran, 1997). These 

dispatching rules are easy to implement, but generally produce inconsistent results for various 

accomplishment metrics (Tyan et al., 2004, Thiesse and Fleisch, 2008). As a result, the advanced 
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priority dispatching rules have been developed. Dabbas and Fowler (2003) proposed a scheduling 

algorithm that combines multiple performance matrices. A dynamic multi-objective scheduling 

approach for semiconductor back-end processes has been developed by Sivakumar and Gupta 

(2006). Also, decision tree-based scheduling approaches have been proposed (Zhang et al., 2009; 

Olafsson and Li, 2010). 

We present a novel algorithm is called adjustable dispatching rule (ADR). This algorithm   

calculates the weight value (𝑤𝑖) for a group of factors. When a lot arrived at a station according to 

its predetermined order, a set of all weight factors should be calculated to determine the priority 

of processing. A lot has the maximum sum of all weight factors can be processed first. 

Then, we proposed a real coded genetic algorithm (RCGA) to optimize the weight factor values. 

RCGA is considered as the effective algorithm that uses to solve the complex scheduling problems 

(Mahmudy et al., 2013). RCGA consists of a machine learning technique as kernel ridge regression 

or polynomial regression models for estimating fitness function of RCGA. The initial population 

is generated by using Arena simulation model and it also is used as an observation data to build 

the kernel ridge regression and polynomial regression models. This regression model estimates the 

fitness function for RCGA. Then, the results of RCGA can be added as new observation so as to 

enhance the efficiency of the regression models.  

A hybrid genetic algorithm (GA) and data mining approach are presented in job shop scheduling 

problems. In this work, GA is applied for generating a learning population of good solutions 

(Harrath et al., 2002). Chien and Chen (2007) proposed a GA for reducing makespan of the jobs 

on furnace machines under complicated process conditions and time constraints. A loading 

problem in flexible manufacturing system (FMS) is proposed by using real coded GA which codes 
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a chromosome as real numbers. The real coded GA improves the system performances such as 

system throughput and the balance of the system (Mahmudy et al., 2013).  

One of the difficulties in applying GAs to semiconductor scheduling problems is that GAs usually 

need a large amount of time to evaluate fitness. However, fitness evaluations are always 

complicated due to the cost and time. Thus, it may be useful to estimate the fitness values by 

developing a fitness approximation model. 

Because in real manufacturing system, it will take much more effort and cost to observe the system 

performance under different sets of weight values for factors, our proposed RCGA with estimated 

fitness function from machine learning algorithms can be a good alternative to optimize the values 

of weight values in a real fabrication processes. This approach needs small number of observations 

for system performance under different sets of weight values for factors to build the prediction 

model for the fitness function. Then, we can proceed to optimize the weight factors over the 

generations of RCGA without further physical simulation run (or observing the actual system 

performance) under different sets of weight values for factors.  

In order to overcome these challenges, we proposed an adjustable dispatching rule (ADR) that 

calculates weighted sum of control factors for determining which job should be scheduled first. 

Compared to the existing dispatching rules, the advantage of the ADR is that priorities of waiting 

jobs can be reassigned easily by changing weight values of control factors. Based on a relatively 

small number of observations, the proposed algorithm can build an accurate regression model. It 

may has a significant role when the cost of obtaining observations is expensive.   
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The arrangement of this chapter is as follows. In Section 3.2, real coded GA and the regression 

techniques that used in this chapter are briefly described. Section 3.3 introduces the ADR and the 

examples of control factors and how to calculate weighted sum of control factors to realize the 

ADR. Then, the real coded GA with fitness approximation to solve the scheduling problem of 

semiconductor wafer fabrication in Section 3.4. The comparison of efficiency between the 

proposed algorithm and the existing dispatching rules by using a real fab simulation model in 

Section 3.5, and our conclusions are given in Section 3.6. 

 

3.2 Background  

3.2.1 Real Coded GA  

GA is one of the most approved evolutionary algorithm that imitate the evolution in nature. 

The decision variables for the GA are typically represented as binary strings. In the binary 

representation, the number of decision variables specifies the length of the chromosome. On the 

other hand, the real coded GA (RCGA) presents the real number representation for decision 

variables instead of the binary strings (Murugan et al., 2007). 

The benefits of the RCGA as against the binary GA are follows. Real number representation 

performs well compared with binary representation for numerical optimization problems 

(Michalewicz, 1996). The binary coded GA needs more time to compute then the real coded GA 

(Renders and Flasse, 1996). The crossover operator is considered the main operator for searching 

solution space in the real coded GAs. The extensive studies of different type of crossover operators 

are presented in Herrera et al., (2003). 
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3.2.2 Polynomial Regression  

Polynomial regression is a well-known non-linear regression in which the relationship between 

input variables and output variable is formulated as a polynomial. It is also widely used in 

situations where the response is curvilinear. It can be considered to be a special case of linear 

regression because it is linear with statistical estimation problems. The formulation of polynomial 

regression depends on the degree of polynomial and input variables number. For example, the 

second order polynomial in one variable 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥1
2 + 𝜀, the second order polynomial 

in two variables 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽11𝑥1
2 + 𝛽22𝑥2

2 + 𝛽12𝑥1𝑥2 + 𝜀, and the general form of 

the second order polynomial regression model  

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝛽1,1𝑥1
2 + 𝛽2,2𝑥2

2 + ⋯ + 𝛽𝑝,𝑝𝑥𝑝
2 + 

𝛽1,2𝑥1𝑥2 + 𝛽1,3𝑥1𝑥3 + ⋯ + 𝛽𝑝−1,𝑝𝑥𝑝−1𝑥𝑝 + 𝜀,       (3.1) 

where 𝑝 is the input variables number.  

The number of coefficients at different number of input variables and polynomial degrees is 

enumerated as shown in Table 3.1.The number of coefficients increases rapidly when the 

polynomial degree increases because it is (𝑝+𝑘
𝑘

) =
(𝑝+1)(𝑝+2)⋯(𝑝+𝑘)

𝑘!
 for 𝑝 input variables and 𝑘-th 

order polynomial regression.  
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Table 3.1 Number of coefficients at different polynomial degrees and number of variables 

Number of  

Variables 

Polynomial Degree 

𝐤 = 𝟏 𝐤 = 𝟐 𝐤 = 𝟑 𝐤 = 𝟒 … 

1 2 3 4 5 … 

2 3 6 10 16 … 

3 4 10 20 35 … 

4 5 15 35 64 … 

5 6 21 56 106 … 

6 7 28 84 165 … 

7 8 36 120 246 … 

8 9 45 165 355 … 

9 10 55 220 499 … 

10 11 66 286 686 … 

… … … … … … 

 

3.2.3 Kernel Ridge Regression  

The Kernel Ridge Regression (KRR) is proposed as a framework for estimating nonlinear 

predictive relations. It shows relatively consistent and good performance of prediction and can 

build more accurate regression models than traditional linear regressions (Exterkate et al., 2016). 

Ordinary least squares regression and ridge regression are used in KRR. The prediction result of 

the ridge regression is shown in Equations (3.2) and (3.3).  

 

𝛽 = (𝑋𝑇𝑋 +  𝜆𝐼)−1𝑋𝑇𝑦     (3.2) 

�̂� = 𝑋𝛽      (3.3) 

 

where 𝛽 is the regression coefficients and 𝞴 is the parameter of ridge regression. The main idea of 

KRR is working to change the input variables to a space of high-dimensional in a nonlinear way. 
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A high-dimensional space is using to estimate a regression equation, in addition to use a penalty 

term to avoid overfitting. So, the result of KRR can be written as 

 

�̂� = 𝑦𝑇(𝐾 +  𝜆𝐼)−1𝑘          (3.4) 

 

where 𝐾𝑖𝑗 =  𝑥𝑖𝑥𝑗 is the kernel matrix and 𝑘𝑖 =  𝑥𝑖𝑥′ is the kernel function. To get on �̂� in KRR, 

we need to recalculate 𝐾 and 𝑘 instead of explicit transformations 𝑥 → ϕ(𝑥). 

 

3.3 Adjustable Dispatching Rule (ADR)  

To solve the priority of dispatching rule, ADR has been presented. When a lot arrived at a 

station according to its predetermined order, a set of all weight factors should be calculated to 

determine the priority of processing for waiting jobs. The semiconductor wafer fabrication model 

is generated to mimic real semiconductor wafer fabrication system. So, Arena simulation is 

developed for semiconductor wafer fabrication that allows the user to build simulation models and 

perform experiments (Garrido, 2009). To do so we have to consider the follows. 

 

3.3.1 Assumptions  

To simplify the model, we made some assumptions for the scheduling of semiconductor 

manufacturing systems with uneven setup times of the different jobs as follows:  
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1. Jobs of the same type have the same route of processing steps with same processing 

times. However, a setup time before processing can vary depends on allocated machine 

and job type. 

2. Each station has a fixed number of parallel machines. Machines in each station are 

identical in nature.  

3. The preemption is not allowed. 

4. There are no failures for all machines, no rework for all jobs, and no inventory limits 

in the system. 

  

3.3.2 Control Factors 

When a job arrived at a station according to its predetermined order, a set of all control factors 

should be calculated by using current information of the job and machines in the station. There are 

10 examples of control factors with their purpose and how to calculate the values of the control 

factors as shown in Table 3.2.  
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Table 3.2 The examples of control factors for semiconductor wafer fabrication 

 Factor Name Purpose How to calculate the value of the factor 

F1 
Recipe Change 

Loss 

Minimizing Recipe 

change loss 

(Maximum loss – Current loss) / Maximum 

loss 

F2 
Chamber 

Availability 

Maximizing 

Chamber Availability 

The number of available idle chambers to 

process the type of a given product / The total 

number of idle chambers 

F3 
Chuck 

Efficiency 

Minimizing Chuck 

Arm Loss 
{
1 if previous Chuck ≠ current Chuck

0 otherwise                                               
 

F4 

Device 

Priority 

Weight 

Product with highest 

priority should be 

processed first. 

The value for each product can be assigned 

between 0 and 1 according to the priority of 

the product. 

F5 
Moving Target 

Weight 

Product with highest 

priority should be 

processed first. 

1 – (Actual output of moving / Planned output 

of Moving) 

F6 
Lot Location 

Weight 

Priority according to 

distance from the 

machine 

The value of this factor can be assigned 

between 0 and 1 according to their location. 

F7 
Delay Time 

Weight 

Priority for 

preventing delay 

MIN{(Delay time/Threshold value for 

delay),1} 

F8 
Wait Time 

Weight 

Product with largest 

waiting time should 

be processed first. 

MIN{(Waiting time/Threshold value for 

waiting),1} 

F9 
Lot Priority 

Weight 

Designated lot should 

be processed first. 

The value of this factor can be assigned 

between 0 and 1 according to their lot priority. 

F10 
Designate Step 

Weight 

Designated step 

should be processed 

first. 

The value of this factor can be assigned 

between 0 and 1 according to their step weight. 

 

Recipe change loss factor (𝑭𝟏) means a loss for setup time between previous work and next work 

for a machine. If both previous work and next work have same recipe, there is no recipe change 

loss. The value of this factor can be calculated by the ratio of (maximum loss – current loss) to 



40 

 

 

 

maximum loss for a given lot. If there is no recipe change loss (i.e., current loss is 0), the value of 

𝑭𝟏 is 1. Chamber availability factor (𝑭𝟐) means how many chambers are available to process a 

given lot on the machine. If all chambers are available to process a given lot, 𝑭𝟐 is 1. The value of 

this factor can be calculated by the proportion of the number of available idle chambers to the idle 

chambers for a given lot. It is better to process first a lot with higher value of 𝑭𝟐 for maximizing 

chamber availability. The actual processing time depends on the value of 𝑭𝟐 i.e., the actual 

processing time = the ideal processing time / the value of 𝑭𝟐.  

Chuck efficiency factor (𝑭𝟑) represent an efficiency of chuck arm usage. Each lot has either an 

odd chuck or an even chuck. If previous lot and next lot have different chucks (e.g., an odd chuck 

for previous lot and an even chuck for next lot), there is no chuck arm loss. Otherwise, there is 

some fixed setup time before processing next lot. A value of this factor can be assigned 0 or 1. It 

is better to process first a lot with different chuck from the previous one for minimizing chuck arm 

loss. 

Device priority factor (𝑭𝟒) indicates the priority of the product for processing. The product with 

highest value of this factor should be processed first. The value of this factor for each product can 

be assigned between 0 and 1 according to the priority of the product.  

Moving target factor (𝑭𝟓) represents the proportion of the unfinished output number to the planned 

output number. Lot location factor (𝑭𝟔) indicates a distance from the lot to the machine.  

Delay time factor (𝑭𝟕) and wait time factor (𝑭𝟖) indicate how long a given lot has been delayed 

and waited for processing, respectively. The value of these factors can be calculated by the 
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minimum value of delay (or wait) time / Threshold value for delay (or wait) and 1. It means the 

value of these factors cannot be exceed a value of 1.  

Lot priority factor (𝑭𝟗) indicates a priority of a given lot for processing. Designate step factor 

(𝑭𝟏𝟎) indicates a priority of a given step for processing.  

 

3.3.3 Calculating Weighted Sum of Control Factors  

To calculate weighted sum of control factors, a normalized weight 𝑤𝑖 should be defined for 

control factor 𝐹𝑖. For the total number of control factors 𝑝, each weight 𝑤𝑖 has a value between 0 

and 1. Also, the sum of all weights is equal to 1, i.e. ∑ 𝑤𝑖
𝑝
𝑖=1 = 1. For such normalized weights, 

the weighted sum of control factors is simply ∑ 𝑤𝑖𝐹𝑖
𝑝
𝑖=1 . 

When a machine is available, the job with the highest weighted sum of control factors is selected 

from waiting jobs for processing. For example, if there are three jobs with values of three control 

factors, 𝐽1(0.5,1,0.3), 𝐽2(0.8,0.2,0.5), 𝐽3(1,0,0.4), and the normalized weights are (0.5,0.3,0.2), 

then the weighted sum of three jobs can be calculated as  

[
0.5 1 0.3
0.8 0.2 0.5
1 0 0.4

] [
0.5
0.3
0.2

] = [
0.61
0.56
0.58

]. 

It means that 𝐽1 has the highest priority for processing with the normalized weights(0.5,0.3,0.2). 

This example shows that job priorities can be easily reassigned by changing the normalized 

weights.  
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3.3.4 Arena Simulation Model for Semiconductor Wafer Fabrication  

The simulation model of semiconductor wafer fabrication is developed by using Arena 

simulation software that allows the user to build simulation models and perform experiments 

(Garrido, 2009). For the proposed simulation model, the various processing steps of all jobs fall 

into eight stations: photolithography (PHOTO), etching (ETCH), chemical-mechanical 

planarization (CMP), cleaning (CLN), chemical vapor deposition (CVD), ion implantation (IMP), 

diffusion (DIFF), and metal interconnect (METAL) as shown in Figure 3.2. Moreover, arrival dock 

and shop exit modules are constructed for arrival and departure of jobs, respectively.  
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Figure 3.2 Arena simulation model for semiconductor wafer fabrication  
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3.4 Real Coded GA with Fitness Approximation   

In this section, the real coded GA with fitness approximation to find near-optimal weights for 

control factors for the scheduling problem of semiconductor wafer fabrication is applied. 

 

3.4.1 Flowchart of the Real Coded GA with Fitness Approximation  

As shown in Figure 3.3, the flowchart of the real coded GA with fitness approximation starts 

with randomly generated input variables that represent weight values of control factors. The output 

variable is evaluated by using simulation model and represent performance measure that we want 

to improve.  



45 

 

 

 

 

Figure 3.3  The flowchart of the real coded GA with fitness approximation 

After generating a fixed number of input variables and output variable, these initial data can be 

used not only the initial population of real coded GA, but also the observations for finding 

polynomial regression coefficients.  
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The real coded GA initializes a population of solution and improves by repeatedly applying 

selection, crossover and mutation operators. Parents are chosen from the initial population. Then, 

offspring are produced from selected parents by using crossover and mutation operators. These 

offspring have to evaluate by using a fitness function in order to generate next population. When 

evaluation process is done, the real coded GA stores the best solution of this population and next 

population replaces the current population iteratively until termination condition is fulfilled.  

The initial data from simulation model can be used as the observations for finding of regression 

coefficients to estimate the objective function of the RCGA because of the relationship between 

input variables and output variable is unknown. The estimated fitness function can be improved 

by adding new observation from the best solution of the real coded GA repeatedly.  

 

3.4.2 Chromosome Representation 

A chromosome consists of real values whose size is equal to the number of the weight values. 

Each element of the chromosome 𝑥1, 𝑥2, ⋯ , 𝑥𝑝 corresponds to the real values for 𝑝 weight values 

for control factors. The value of 𝑥𝑖 is maintained between 𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥. 𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥 is the 

minimum and maximum value of weights, respectively. 

 

3.4.3 Selection 

The selection procedure is applied to select parents from the current population to perform 

genetic operations. In this chapter, tournament selection method is applied for select parents. The 
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tournament selection includes a number of running tournaments of some individuals randomly 

selected from the current population. Then, the winners of each tournament are selected. The 

advantage of the tournament selection is that it can be easily adjusted by modifying the size of the 

tournament. If the tournament size is smaller, weak individuals have a larger chance to be selected. 

 

3.4.4 Crossover Operator  

To create a new generation, the operator of crossover is typically applied to a pair of individuals 

to generate two offspring (Goldberg, 1989). In this chapter, we use well-known single-point 

crossover operator. Let us assume that 𝑃1 = (𝑐1
1, 𝑐2

1, … , 𝑐𝑛
1) and 𝑃2 = (𝑐1

2, 𝑐2
2, … , 𝑐𝑛

2) are two 

parents. A position 𝑖 ∈ {1,2, … , 𝑛 − 1} is chosen randomly and two offspring are produced as 𝑂1 =

(𝑐1
1, 𝑐2

1, … , 𝑐𝑖
1, 𝑐𝑖+1

2 , … , 𝑐𝑛
2) and 𝑂2 = (𝑐1

2, 𝑐2
2, … , 𝑐𝑖

2, 𝑐𝑖+1
1 , … , 𝑐𝑛

1). 

 

3.4.5 Mutation Operator 

In uniform mutation proposed by Michalewicz (1996), a gene is replaced with a random value 

between user-specified upper and lower bounds. In this chapter, the uniform mutation operator is 

applied. From a point 𝑥 = (𝑐1, 𝑐2, … , 𝑐𝑛), the muted point 𝑥∗ = (𝑐1
∗, 𝑐2

∗, … , 𝑐𝑛
∗ ) is created as 𝑐𝑖

∗ =

𝑐𝑖
𝑙 + 𝑟(𝑐𝑖

𝑢 − 𝑐𝑖
𝑙), where 𝑟 is a random number between 0 and 1and is uniform distribution. 𝑐𝑖

𝑙 and 

𝑐𝑖
𝑢 is lower bound and upper bound of the 𝑖-th gene, respectively.  
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3.4.6 Fitness Evaluation 

The objective function of the optimization problem should be formulated into a fitness function 

used to measure the goodness of the solution (Mahmudy et al., 2013). However, due to features of 

the semiconductor manufacturing systems, the fitness function cannot be formulated using existing 

mathematical expressions for our problem. That is why we need to use an advanced regression 

model as a fitness function.  

 

3.4.6.1 Polynomial Regression  

In order to estimate the fitness function of the real coded GA, a third-order polynomial 

regression model is applied as follows:  

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝛽1,1𝑥1
2 + 𝛽2,2𝑥2

2 + ⋯ + 𝛽𝑝,𝑝𝑥𝑝
2 + 

𝛽1,2𝑥1𝑥2 + 𝛽1,3𝑥1𝑥3 + ⋯ + 𝛽𝑝−1,𝑝𝑥𝑝−1𝑥𝑝 + 𝛽1,1,1𝑥1
3 + 𝛽2,2,2𝑥2

3 + ⋯ + 

𝛽𝑝,𝑝,𝑝𝑥𝑝
3 + 𝛽1,1,2𝑥1

2𝑥2 + 𝛽1,1,3𝑥1
2𝑥3 + ⋯ + 𝛽𝑝,𝑝,𝑝−1𝑥𝑝

2𝑥𝑝−1 +  

𝛽1,2,3𝑥1𝑥2𝑥3 + 𝛽1,2,4𝑥1𝑥2𝑥4 + ⋯ + 𝛽𝑝−2,𝑝−1,𝑝𝑥𝑝−2𝑥𝑝−1𝑥𝑝 + 𝜀,    (3.5) 

Where 𝑝 is the number of input variables. The polynomial coefficients 𝛽’s are calculated to 

minimizing the mean square error (MSE) of the observations.  

 

3.4.6.2 Kernel Ridge Regression  

As is shown in equation 3.4 kernel ridge regression has kernel trick that is distinguished from 

ordinary ridge regression. Kernel trick increases the improvement of computational efficiency. 
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Selecting ϕ that works to determine an accurate kernel function 𝑘𝑖 (means choosing the appropriate 

kernel) is the important process to succeed of kernel trick. So, we present polynomial kernel to 

incorporate with ridge regression to estimate the fitness function of the real coded GA. The 

parameters of KRR are optimized to predict a high accuracy of regression model. 

  

3.5 Experimental Studies 

3.5.1 Problem Description 

As shown in Figure 3.2, there is 8 stations and each station has fixed number of machines as 

shown in Table 3.3. As mentioned in Section 3.3.1, machines in each station are identical in nature. 

We assume that all physical distances between one station and another station are equal to 100 

feet. There are 10 automated guided vehicles (AGVs) with same speed of 100 feet/min for 

transportation. 

Table 3.3  The number of machines in each station 

Station Number of Machines Station Number of Machines 

PHOTO 10 ETCH 4 

IMP 3 METAL 4 

CLN 12 CVD 3 

DIFF 15 CMP 2 

 

There are three types of jobs, 𝐽1, 𝐽2 and 𝐽3, in the simulation model. The proportion of each type of 

jobs is 50% of 𝐽1, 30% of 𝐽2 and 20% of 𝐽3. To generate step information for each type of jobs, 20 

different layers are made as shown in Table 3.4. For each layer, there are step information with 

pairs of station name and processing time. Then, the sequence of layer IDs for the type of 𝐽1 is 
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assigned from layer ID 1 to layer ID 20 in numerical order. The remaining sequences of layer IDs 

for the type of 𝐽2 and 𝐽3 are assigned randomly as shown in Table 3.5.  

Table 3.4 Step information of 20 different layers 

Layer ID Step Information (Station name, Processing time (min)) 

1 
(IMP,30) → (IMP,40) → (DIFF,300) → (PHOTO,60) → (DIFF,250) → 

(CLN,35) → (CLN,25) 

2 (PHOTO,55) → (ETCH,40) → (CLN,25) → (CLN,30) 

3 (PHOTO,62) → (IMP,45) → (CLN,25) 

4 (PHOTO,62) → (METAL,50) → (CLN,25) → (CVD,30) → (DIFF,300) 

5 (PHOTO,62) → (IMP,50) → (IMP,45) 

6 (PHOTO,60) → (ETCH,50) → (CLN,35) → (CVD,35) 

7 
(PHOTO,55) → (ETCH,40) → (CLN,25) → (CLN,30) → (CMP,60) →  

(CLN,30) 

8 (PHOTO,62) → (METAL,55) → (CLN,25) → (ETCH,40) 

9 (PHOTO,62) → (ETCH,30) → (CLN,25) → (CVD,40) 

10 
(PHOTO,60) → (DIFF,200) → (DIFF,180) → (CLN,35) → (CLN,25) → 

(METAL,55) 

11 (PHOTO,60) → (CVD,30) → (CLN,35) → (CLN,25) 

12 
(PHOTO,55) → (ETCH,40) → (ETCH,45) → (CLN,25) → (CLN,30) → 

(DIFF,250) → (CMP,55) → (CLN,30) 

13 (PHOTO,62) → (METAL,45) → (CLN,25) → (METAL,50) 

14 (PHOTO,60) → (DIFF,400) → (CLN,35) → (CLN,25) 

15 
(PHOTO,62) → (ETCH,35) → (METAL,45) → (CLN,25) → (CVD,35) → 

(CVD,40) 

16 (PHOTO,60) → (CVD,30) → (CLN,35) → (CLN,25) 

17 (DIFF,200) → (CLN,35) → (CLN,25) 

18 
(PHOTO,55) → (ETCH,40) → (CLN,25) → (CLN,30) → (CMP,60) →  

(CLN,30) 

19 (PHOTO,62) → (METAL,50) → (CLN,25) 

20 (PHOTO,55) → (ETCH,50) → (CLN,25) → (CLN,30) → (DIFF,400) 
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Table 3.5 Sequence of layer IDs for each type of jobs 

Type of jobs Sequence of layer IDs 

J1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 

J2 13,5,14,6,4,19,11,9,8,15,3,7,16,1,18,12,17,2,20,10 

J3 14,11,7,15,2,12,9,18,16,20,5,3,8,1,6,19,17,4,10,13 

 

3.5.2 Experimental Setup  

Simulation runs were conducted by executing the simulation model for 10 days of warm-up 

period to avoid startup bias and 30 days of simulation period. To get the observation data for fitness 

approximation, 50 different set of weight values are randomly generated for PHOTO station. For 

each simulation run with each set of weight values, the output variable is labeled by obtaining the 

average waiting time for all jobs processed on the PHOTO station in the simulation period. The 

waiting time of the job can be calculated as the difference between arrival time of the job and 

process start time of the job as shown in Figure 3.4. 

 

Waiting time Loss Ideal processing time

Station 

arrival time

Process 

start time

Process 

end time

Actual processing time  

Figure 3.4 The waiting time of the job 

After getting the observation data, regression coefficients are calculated by minimizing mean 

square error (MSE) of the observation for fitness approximation. Then, 10 of 50 observation data 

are randomly chosen for the initial population. 
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The population size, selection method, crossover and mutation operators, crossover and mutation 

rates, mutation probability, the number of individuals kept for the elitism, and the termination 

condition are fixed for a uniform testing environment as shown in Table 3.6.  

  

Table 3.6 Testing environment for GAs 

Parameter Binary coded GA Real coded GA 

The population size 10 

Selection method Tournament (size = 3) 

Crossover operator Single-point crossover 

Mutation operator Uniform mutation 

Crossover rate 0.6 

Mutation rate 0.3 

Mutation probability 0.02 (for each bit) 0.2 (for each gene) 

Number of individuals  

kept for the elitism 
1 

Termination condition 
When the fitness value of best solution of current generation 

has reached a plateau (5 consecutive generations) 

 

 

3.5.3 Experimental Results 

3.5.3.1 Comparison of the Existing Dispatching Rules, Fixed Weights and GAs without 

Fitness Approximation 

 The simulation results with the existing dispatching rules such as FIFO, SPT, EDD, and fixed 

weights (FW) are obtained to compare with the near-optimal solution of GAs, i.e. binary coded 

GA (BCGA) and real coded GA (RCGA), without fitness approximation (FA). GAs without FA 
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can be operated with the original fitness evaluation that means obtaining an output variable from 

the simulation model.  

 

Table 3.7 Comparison of the average waiting times for the existing dispatching rules, fixed 

weights (FW) and GAs without fitness approximation (FA) 

 Average Waiting Time (min) 
Relative Improvement 

FIFO Fixed Weights 

FIFO 52.65 - 10.08% 

SPT 115.92 -120.17% -97.98% 

EDD 91.09 -73.01% -55.58% 

FW 58.55 -11.21% - 

BCGA 50.44 4.19% 13.85% 

RCGA 48.97 6.99% 16.36% 

 

As shown in Table 3.7, compared with FIFO, the average waiting time of BCGA and RCGA is 

reduced by 4.19% and 6.99%, respectively. Moreover, compared with fixed weights, the average 

waiting time of BCGA and RCGA is reduced by 13.85% and 16.36%, respectively.  

The reason why the average waiting time of the FIFO is not the smallest is because the waiting 

time of other jobs which are waiting in the station becomes longer if the setup time, e.g. recipe 

change loss and chuck loss, of jobs currently being processed becomes longer. Moreover, the 

average waiting time of the SPT rule is the worst because the processing of jobs with a relatively 

large processing time is delayed due to the processing of jobs with a small processing time. 
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3.5.3.2 Comparison of GAs with and without Fitness Approximation Polynomial 

Regression (FAPR) 

To compare performance of GAs with and without FAPR, the average waiting time and the 

number of simulation runs are obtained. GAs without FA can be operated with the original fitness 

evaluation that means obtaining an output variable from the simulation model. On the other hand, 

GAs with FA can be operate using same estimated fitness function consists of polynomial 

regression coefficients and input variables. 

Table 3.8 Comparison of GAs with and without fitness approximation (FAPR) 

 Average Waiting Time (min) Number of 

Simulation Runs 
MEAN STD MIN 

BCGA 53.70 2.89 50.44 160 

BCGA with FAPR 55.38 3.28 49.51 23 

RCGA 53.45 3.01 48.97 120 

RCGA with FAPR 53.02 2.54 48.71 28 

 

As shown in Table 3.8, compared with BCGA without FA, the minimum value of the average 

waiting time of BCGA with FA is reduced by 1.84%. Moreover, the number of simulation runs of 

BCGA with FA is reduced by 85.63% compared with BCGA without FA. On the other hand, 

compared with RCGA without FA, the minimum value of the average waiting time of real coded 

GA with FA is reduced by 0.53%. Moreover, the number of simulation runs of real coded GA with 

FA is reduced by 76.67% compared with real coded GA without FA.  

Until the termination condition of GA was satisfied, BCGA and RCGA required 160 and 120 

simulation runs, respectively. In contrast, to get better results than the minimum of average waiting 

times of BCGA and RCGA, BCGA with FA and RCGA with FA required 23 and 28 simulation 
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runs, respectively. Therefore, the advantage of GAs with FA is that the number of simulation runs 

is significantly reduced. When our fitness approximation shows very good estimation of the 

original fitness function, i.e. obtaining an output variable from the simulation model, GAs with 

FA can get reduced the average waiting time with relatively small number of simulation runs 

compared with GAs without FA. 

 

3.5.3.3 Comparison of GAs with and without Fitness Approximation Kernel Ridge 

Regression (FAKRR) 

To compare performance of GAs with and without FAKRR, the average waiting time and the 

number of simulation runs are obtained. GAs without FA can be operated with the original fitness 

evaluation that means obtaining an output variable from the simulation model. On the other hand, 

GAs with FAKRR can be operated using same estimated fitness function consists of the KRR 

model and input variables.  

Table 3.9 Comparison of GAs with and without fitness approximation (FAKRR) 

 Average Waiting Time (min) Number of 

Simulation Runs 
MEAN STD MIN 

BCGA 53.70 2.89 50.44 160 

BCGA with FAKRR 51.88 1.68 49.32 27 

RCGA 53.45 3.01 48.97 120 

RCGA with FAKRR 49.82 1.83 46.50 29 
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As shown in Table 3.9, compared with BCGA without FAKRR, the minimum value of the average 

waiting time of BCGA with FA is reduced by 2.22%. Moreover, the number of simulation runs of 

BCGA with FA is reduced by 83.13% compared with BCGA without FA. On the other hand, 

compared with RCGA without FA, the minimum value of the average waiting time of real coded 

GA with FA is reduced by 5.04%. Moreover, the number of simulation runs of real coded GA with 

FA is reduced by 75.83% compared with real coded GA without FA.  

Until the termination condition of GA was satisfied, BCGA and RCGA required 160 and 120 

simulation runs, respectively. In contrast, to get better results than the minimum of average waiting 

times of BCGA and RCGA, BCGA with FA and RCGA with FA required 27 and 29 simulation 

runs, respectively. Therefore, the advantage of GAs with FA is that the number of simulation runs 

is significantly reduced. When our fitness approximation shows very good estimation of the 

original fitness function, i.e. obtaining an output variable from the simulation model, GAs with 

FA can get reduced the average waiting time with relatively small number of simulation runs 

compared with GAs without FA. 

 

3.6 Conclusions  

In this chapter, a new machine learning algorithm for scheduling of complex semiconductor 

manufacturing system is proposed. The efficient algorithms that consists of the adjustable 

dispatching rule (ADR) and the real coded genetic algorithm (GA) with fitness approximation has 

been proposed for scheduling problem of semiconductor wafer fabrication. For the ADR, we 

introduced the control factors and calculating weighted sum of control factors. Compared to the 
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existing dispatching rules, the advantage of the ADR is that priorities of waiting jobs can be 

reassigned easily by changing weight values of control factors. In order to find near-optimal weight 

values of the ADR, the real coded GA with fitness approximation is also proposed. For the fitness 

approximation, kernel ridge regression and polynomial regression are applied by using relatively 

small number of fitness evaluation. The performance of the real coded GA with fitness 

approximation is evaluated by using an extensive experiment with existing dispatching rules, fixed 

weights and GAs without fitness approximation. Compared with FIFO as one of the existing 

dispatching rule, the average waiting time of real coded GA without fitness approximation is 

reduced by 6.99%. Moreover, compared with fixed weights, the average waiting time of real coded 

GA without fitness approximation is reduced by 16.36%. The number of simulation runs of binary 

coded GA with fitness approximation polynomial regression (FAPR) and real coded GA with 

FAPR is reduced by 85.63% and 76.67%, respectively, compared with GAs without FA. The 

number of simulation runs of binary coded GA with fitness approximation kernel ridge regression 

(FAKRR) and real coded GA with FAKRR is reduced by 83.13% and 75.83%, respectively, 

compared with GAs without fitness approximation. The experiments show that the ADR and the 

real coded GA with both finesses approximation can find near-optimal solution of the scheduling 

problem for semiconductor wafer fabrication with relatively small number of fitness evaluation. It 

can play an important role when the cost of evaluating fitness is expensive.  
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CHAPTER 4   

 New Kernelized General Dominance Weight for Ranking of 

Scheduling Factors in Semiconductor Manufacturing System 

 

4.1 Introduction 

In semiconductor manufacturing, wafers are fabricated through complex multi processes. 

Wafer fab facilities typically consist of several general process modules: photolithography 

(PHOTO), etching (ETCH), chemical-mechanical planarization (CMP), cleaning (CLN), chemical 

vapor deposition (CVD), ion implantation (IMP), diffusion (DIFF), and metal interconnect 

(METAL). In a fab, several types of products are produced such as DRAM, SSD. 

Due to their structures such as numerous product types, demand fluctuations, and hundreds of 

processing steps (Chen, 2010), the scheduling problem of the semiconductor wafer fabrication is 

well known NP-hard problem (Garey and Johnson, 1979). To resolve the scheduling problem, 

many dispatching rules such as shortest processing first (SPT), critical ratio (CR) and starvation 

avoidance (SA), and genetic algorithm (GA) based approaches are extensively used (Conway and 

Maxwell, 1962; Glassey and Resende, 1988; Harrath et al., 2002; Chien and Chen, 2007; 

Mahmudy et al., 2013). However, it is difficult to use these scheduling algorithms for real-life 

semiconductor wafer fabrication because of their dynamic features such as change of product 

demand, unpredictable machine breakdown, and shifting bottleneck. Depending on the type of 

products, wafer fabrications are carried out along the processes specified by the corresponding 

product recipes.  



59 

 

 

 

In Chapter 3, the adjustable dispatching rule (ADR) shows a successful scheduling result in 

semiconductor manufacturing processes with multiple types of jobs by calculating weighted sum 

of control factors for determining priorities of waiting lots. In particular, the ADR facilitates to 

dynamically reassign priorities of waiting lots in process by determining weights of control factors 

according to the conditions of fabrication processes. 

In this chapter, we propose a novel variable ranking algorithm, kernelized general dominance 

weight (KGDW), to improve the scheduling performance with the ADR. The proposed model 

employs the relevance vector machine (RVM) regression model (Tipping, 2001) for the 

nonlinearity between inputs and output variables in the framework of the general dominance 

weight method (Budescu, 1993; Azen and Budescu, 2003,Kim et al., 2017) for the importance 

assessment of the inputs. With the proposed variable ranking model, the importance of control 

factors about wafer fabrication processes are scored in relative scales, and the resultant important 

scores are employed for the weights of control factors for scheduling with the ADR. By taking the 

importance scores as the weight parameters in the ADR scheduling. 

This chapter is organized as follows. In Section 4.2, the RVM regression technique and the 

traditional variable ranking algorithms are briefly described. Then, we propose the kernelized 

GDW in Section 4.3. The performance of our proposed algorithm is evaluated with existing 

variable ranking algorithms using simulation results in Section 4.4. Section 4.5 finally presents the 

conclusions.  
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4.2 Background  

4.2.1 Variable Ranking Algorithms  

The key method for variable ranking methods is measuring the relative contribution of the 

predictor variables (𝑋𝑖) in dependent variables (𝑌𝑖). In order to measure the variables importance, 

there are some variable ranking algorithms that are depending on regression techniques can do 

that.  

Chao, et al. (2008) presented six variable ranking methods that depending on multiple linear 

regression. They are used for health studies. Gazzola, et al. (2018) presented a new technique that 

estimates the importance for each input variable within multiple steps process. Zhao, et al. (2017) 

extended the relative importance method from linear regression to additive models: a semi-

parametric model type. A linear regression model implicitly assumes that the advertising channels 

contribute to revenue in a linear manner. As it is generally a restrictive assumption to expect the 

underlying data generation process of any real dataset to be linear, the resulting attribution values 

are very likely to be inaccurate. Nonlinear parametric models, such as logistic regression, might 

be viable alternatives. Nonetheless, it is still difficult to justify postulating any pre-assumed model 

structure. In other words, a good model should allow for far greater flexibility in unfolding the 

underlying relationship. A non-parametric component provides flexibility. As such, semi-

parametric approaches have the potential to be an important auxiliary modeling paradigm for 

indirect attribution approaches(Zhao, et al. 2017).  
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4.2.1.1 Variable Importance in Projection (VIP) 

VIP determines the importance percentage of independent variables depending on weights that 

contributes in value of Y by using Partial Least Squares (PLS)  on (X, y) (Wold, et al. 2001). 

Partial Least Squares Regression (PLS) is a recent method that creates and integrates features from 

primary structure and linear regression. This technique aims to estimate a group of dependent 

variables from of regressors or predictors. PLS uses latent variables to extract the prediction of 

dependent variables from the regressors by using orthogonal factors. It is preferred to use when 

we need to predict dependent variables in case there are a huge number of predictors variables.  

Partial Least Squares tries to discover the covariance between independent variables and 

dependent variables by finding latent variables. Original predictor variables can be explained as a 

linear combination of latent variables. A good prediction performance depends on a selection the 

number of latent variables (Hwang, et al. 2014).  

 

4.2.1.2 Variable Permutation  

This method studies how unexpected permutations of 𝑋1 affect the residual sum of squares of 

a regression model, while conditioning on the values of 𝑋2, 𝑋3, … , 𝑋𝑝 in order isolate the relative 

importance of 𝑋1 from that of all other input variables. Its procedure consists of two loops and 

may be summarized by the following some steps(Strobl et al. 2008). 
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4.2.1.3 R-relief 

Relief algorithm is successful and general predictor estimators. It can recognize conditional 

dependencies between predictors and dependent variables in regression and classification. In 

addition, their quality estimates have a natural interpretation. R-RELIEF relies on a particular, 

intuitively meaningful idea of what makes an input variable important. According to this idea, 

input variable 𝑋1 is important if it satisfies two conditions: I) it separates observations with 

different output value; II) it does not separate observations with similar output value ( Šikonja and 

Kononenko  2003).  

 

4.2.1.4 Relative Weights 

The Relative Weights method divides the coefficient of determination 𝑅2 of multiple linear 

regression to a group of orthonormal components that be as a result from independent variables. It 

makes a group of new independent variables which have the relationship with the primary 

variables and are not correlate to each other. The respond variables can be predicted from a new 

group of predictors variables that produces regression coefficients. 

 

4.2.1.5 General Dominance Weights 

This method divides the coefficient of determination 𝑅2 from multiple linear regression by 

repeated consecutive aggregate of squares on 𝑋1. It defines importance in a unique way by 

comparing pairs of predictors (from a selected model) across all subset models (subsets of the 
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predictors) to make the determination of relative importance or dominance. Dominance analysis 

is an axiomatic and engaging procedure for determining predictor importance that requires only a 

measure of model fit (e.g., R2) to determine the additional contribution of any given predictor to 

any specific subset model. In linear regression, whether model fit is defined as the ratio of variance 

in the response accounted for by the predictors or the squared correlation between the observed 

and the predicted responses, the same R2 measure is obtained (Azen and Budescu 2003).  

 

4.2.2 Relevance Vector Machine (RVM) Regression  

The RVM proposed by Tipping (2001) is a kernel-based machine learning algorithm that uses 

Bayesian inference to get sparse solutions for classification and regression problems. It can be 

used as an alternative to the support vector machine (SVM). Compared to the SVM, the sparsity 

of solutions is the most recognizable advantage of the RVM. It means the number of support 

vectors of the SVM is bigger than the number of relevance vectors of RVM. So, the RVM is 

significantly more than SVM and the posterior distributions of most weights in the RVM are 

rapidly peaked around zero (Samui et al., 2011; Hwang et al., 2014; Hwang and Jeong, 2018).  

In supervised learning, there are training observations{𝐱𝑖, 𝑦𝑖}𝑖=1
𝑁 . The RVM regression technique 

may be explained by the form:  

 

𝑦 = 𝑓(𝐱) + 𝜖,        (4.1) 
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where 𝜖~𝑁(0, 𝛽−1) and the first term of (1) can be denoted by 𝑓(𝐱) = 𝐰T𝝓(𝐱) with a weight 

vector 𝐰 and a vector of basis functions 𝝓(𝐱) = [𝜙1(𝐱), … , 𝜙𝑁(𝐱)]T.  

The conditional probability of a weight vector 𝐰 given the diagonal matrix 𝐀 as the 

hyperparameter can be explained as 𝑝(𝐰|𝐀)~𝑁(𝐰|𝟎, 𝐀−𝟏) = ∏ 𝑁(w𝑖|0, 𝐴𝑖𝑖
−1)𝑁

𝑖=1  because an 

automatic relevance determination (ARD) prior. Also, a kernel function 𝛫(𝐱, 𝐱′) can be used 

instead of a basis function 𝜙𝑖(𝐱) = 𝛫(𝐱, 𝐱𝒊).  

Due to obtain the noise precision 𝛽 and the prior precision 𝐀, the maximum likelihood estimation 

can be applied with the likelihood function as follows:  

𝑝(𝐲|𝐗, 𝐀, 𝛽) = ∫ 𝑝(𝐲|𝐗, 𝐰, 𝛽)𝑝(𝐰|𝐀)𝑑𝐰 

~𝑁(𝟎, 𝛟𝐀−𝟏𝛟𝐓 + 𝛽−1𝐈)       (4.2) 

 

where 𝛟 is a M x M matrix and i-th row is 𝜙𝑖(𝐱)T (Son and Lee, 2016). 

 

4.3 Kernelized General Dominance Weight  

We present the kernelized GDW technique to rank the importance of each control factor to 

improve the system performance of semiconductor wafer fabrication. The GDW is proposed by 

Budescu (1993) and refined by Azen and Budescu (2003) to obtain variable importance using 

variance contributions of all pairs of variables.  
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The kernelized GDW is based on the framework of the GDW adopting the RVM regression 

technique for estimating the effect of a variable of interest on the predictive performance in 

consideration of non-linear relationships between the inputs and output. For the simplicity of the 

following description, the RVM regression model can be written as 

 

𝑦 = 𝑓(𝐱) + 𝜀,       (4.3) 

 

where 𝑓 is the predictive function of the regression model, and 𝐱 is an input feature vector.  

This method decomposes the 𝑅2 of model (4.3) via iterative sequential sums of squares on 𝑋𝑗. Its 

procedure may be summarized by the next steps: 

Step 1: 

 The procedure of the proposed method for the importance of variable 𝑋𝑗 for 𝑗 = 1, … , 𝑝 is 

as follows. Let 𝑆𝑡 for the indexes 𝑡 = 1, … , 2𝑝 − 1 be the subsets of 𝑆 = {𝑋1, 𝑋𝟐, …  , 𝑋𝑝} ∖

{𝑋𝑗} and 𝐱(𝑆𝑡) be the input vector of the variables in 𝑆𝑡.  

 For each subset 𝑆𝑡 for 𝑡 = 1, … , 2𝑝 − 1, repeat the steps 2-4.  

 

Step 2: 

 Using the variables in 𝑆𝑡, train the model in (4.3) with the training dataset and compute the 

pseudo coefficient of determination with the testing dataset, 𝑅𝑆𝑡

2 , as  
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𝑅𝑆𝑡

2 = 1 −
𝑆𝑆𝐸𝑆𝑡

𝑆𝑆𝑇
 

 𝑆𝑆𝐸𝑆𝑡
= ∑ (𝑦𝑖 − 𝑓 (𝐱𝑖

(𝑆𝑡)
))

2

𝑖  is sum of squared errors with the testing dataset 

 𝑆𝑆𝑇 = ∑ (𝑦𝑖 − �̅�)2
𝑖  is sum of squared total with the testing dataset 

Step 3: 

 Using the variables in 𝑆𝑡
′ = 𝑆𝑡 ∪ {𝑋𝑗}, train the model in (4.3) with the training dataset and 

compute the pseudo coefficient of determination with the testing dataset 𝑅𝑆𝑡
′

2 . 

𝑅𝑆𝑡∪{𝑋𝑗}
2 = 1 −

𝑆𝑆𝐸𝑆𝑡
′

𝑆𝑆𝑇
 

 𝑆𝑆𝐸𝑆𝑡
′ = ∑ (𝑦𝑖 − 𝑓 (𝐱𝑖

(𝑆𝑡
′)

))

2

𝑖  is sum of squared errors with the testing dataset 

 

Step 4: 

 Compute the difference of the testing performance between the models using the subsets 

with 𝑋𝑗 and without 𝑋𝑗 as  

Δ𝑆𝑡
= 𝑅𝑆𝑡

′
2 − 𝑅𝑆𝑡

2 .           (4.4) 

 

In (4.4), we employ the pseudo coefficient of determination with the testing dataset, 𝑅𝑆𝑡

2  of the 

models instead of the coefficient of determination, 𝑅2, used in the original GDW, wherein 𝑅2 can 

be limited to precisely quantify the importance of variables in terms of prediction with nonlinear 
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predictive models. Although the values of Δ𝑆𝑡
 are expected to increase from zero as much as the 

focal variable improves the model performance, (4.4) can result in negative values in cases of low 

importance. That is, the model performance can be degenerated by taking the focal variable as 

model overfitting or increase of noise (unnecessary inputs).  

 

Step 5: 

 Calculate the variable importance of 𝑋𝑗 averaging out the difference of the testing 

performance Δ𝑆𝑡
 with weights over all the subsets as 

 

𝑅𝐼𝑗 =
1

𝑝
∑ (

1

(
𝑝−1

𝑘
)

∑  Δ𝑆𝑡𝑡:|𝑆𝑡|=𝑘 )
𝑝−1
𝑘=0       (4.5) 

A first “inner” average (within parentheses) considers all possible RVM regression models on a 

given number of input variables. To be specific, the term within parenthesis contains a sum that 

runs over all subsets 𝑆𝑡 whose cardinality (number of input variables) is equal to 𝑘; there are 

(
𝑝 − 1

𝑘
) such subsets, and so they represents the increase in pseudo coefficient of determination 

yielded by the addition of 𝑋1 to the input variables of a RVM regression model, averaged out over 

all RVM regression models on 𝑘 input variables (Grömping, 2009). An outer average (outside the 

parentheses) averages out all inner averages across all possible numbers of input variables. The 

sum outside the parentheses runs over all possible 𝑘 values, from 0 (no input variable) to 𝑝 − 1 

(all input variables other than 𝑋1). Since there are a total of 𝑝 such values, the ratio 
1

𝑝
 normalizes 

the sum to an average.  
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4.4 Simulation Studies  

4.4.1 Simulation Model Description  

In this section, the simulation model developed using Arena software is briefly introduced for 

getting observations to evaluate performance of the kernelized GDW algorithm. The simulation 

model generates reports immediately when a simulation run is done (Garrido, 2009). Due to its 

features such as supporting hierarchical architecture and object-oriented programming, the Arena 

is a powerful modeling simulation tool for diverse areas including manufacturing, logistics, 

transportation and data communication (Hammann and Markovitch, 1995). 

Based on sample data, processing steps obtained from a semiconductor manufacturing company  

Then, the precedence constraints between two modules can be found using also sample data of 

processing steps.  

As shown in Figure 4.1, the eight modules and moving sequences between two modules are 

depicted as rounded rectangles and arrows, respectively. Using the simulation model is developed 

with eight modules: PHOTO, ETCH, CMP, CLN, CVD, IMP, DIFF and METAL. 
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PHOTO ETCH IMPCLN DIFFCVDCMP METAL

 

Figure 4.1 Semiconductor wafer fab modules and moving sequences 

As shown in Table 4.1, the number of identical machines for each module are carefully determined 

to achieve a reasonable load balance of the simulation model. For the transportation between two 

different modules, we also assume that all distances between two different modules are equal to 

100 feet, and 10 automated guided vehicles (AGVs) are randomly located.  

 

Table 4.1 The number of machines in each module  

 

Module 

 

Number of Machines 

 

Module 

 

Number of Machines 

PHOTO 10 ETCH 4 

IMP 3 METAL 4 

CLN 12 CVD 3 

DIFF 15 CMP 2 
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For the entities of the simulation model, i.e., wafer lots, there are three types of products 𝑃1, 𝑃2 

and 𝑃3. The proportion of each product type is assigned 50% of 𝑃1, 30% of 𝑃2, and 20% of 𝑃3. It 

means that if the average inter-arrival time of all products is 60 min, the average inter-arrival time 

of 𝑃1, 𝑃2 and 𝑃3 is 120 min, 200 min, and 300 min, respectively.  

As shown in Table 4.2, the sample data of processing steps obtained from a semiconductor 

manufacturing company consists of 20 layers and 94 processing steps with pairs of the name of 

module and ideal processing time. The ideal processing time is the processing time for a given step 

without setup time.  
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Table 4.2 The sample data of the processing steps  

Layer 

ID 

No of 

Steps Processing Steps (Module name, Ideal processing time (min)) 

1 7 
(IMP,30) → (IMP,40) → (DIFF,300) → (PHOTO,60) → (DIFF,250) → 

(CLN,35) → (CLN,25) 

2 4 (PHOTO,55) → (ETCH,40) → (CLN,25) → (CLN,30) 

3 3 (PHOTO,62) → (IMP,45) → (CLN,25) 

4 5 (PHOTO,62) → (METAL,50) → (CLN,25) → (CVD,30) → (DIFF,300) 

5 3 (PHOTO,62) → (IMP,50) → (IMP,45) 

6 4 (PHOTO,60) → (ETCH,50) → (CLN,35) → (CVD,35) 

7 6 
(PHOTO,55) → (ETCH,40) → (CLN,25) → (CLN,30) → (CMP,60) → 

(CLN,30) 

8 4 (PHOTO,62) → (METAL,55) → (CLN,25) → (ETCH,40) 

9 4 (PHOTO,62) → (ETCH,30) → (CLN,25) → (CVD,40) 

10 6 
(PHOTO,60) → (DIFF,200) → (DIFF,180) → (CLN,35) → (CLN,25) → 

(METAL,55) 

11 4 (PHOTO,60) → (CVD,30) → (CLN,35) → (CLN,25) 

12 8 
(PHOTO,55) → (ETCH,40) → (ETCH,45) → (CLN,25) → (CLN,30) → 

(DIFF,250) → (CMP,55) → (CLN,30) 

13 4 (PHOTO,62) → (METAL,45) → (CLN,25) → (METAL,50) 

14 4 (PHOTO,60) → (DIFF,400) → (CLN,35) → (CLN,25) 

15 6 
(PHOTO,62) → (ETCH,35) → (METAL,45) → (CLN,25) → (CVD,35) → 

(CVD,40) 

16 4 (PHOTO,60) → (CVD,30) → (CLN,35) → (CLN,25) 

17 3 (DIFF,200) → (CLN,35) → (CLN,25) 

18 6 
(PHOTO,55) → (ETCH,40) → (CLN,25) → (CLN,30) → (CMP,60) → 

(CLN,30) 

19 3 (PHOTO,62) → (METAL,50) → (CLN,25) 

20 5 (PHOTO,55) → (ETCH,50) → (CLN,25) → (CLN,30) → (DIFF,400) 
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In order to assign the processing steps for 𝑃1, layer ID are chosen from 1 to 20 in numerical order. 

Then, the processing steps for 𝑃2 and 𝑃3 are assigned by shuffling the sequence of 𝑃1 as shown in 

Table 4.3.  

 

Table 4.3 Sequence of layer IDs for each product type  

Product Type Sequence of Layer IDs 

𝐏𝟏 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 

𝐏𝟐 13,5,14,6,4,19,11,9,8,15,3,7,16,1,18,12,17,2,20,10 

𝐏𝟑 14,11,7,15,2,12,9,18,16,20,5,3,8,1,6,19,17,4,10,13 

 

4.4.2 Experimental Setup  

In order to get training observations for the kernelized GDW algorithm, the description of the 

experimental setup is as follows. Each simulation run is executed 30 days of simulation period 

with 10 days of warm-up to prevent startup bias. First, 100 different set of weight values for 10 

control factors, i.e. recipe change loss (𝑭𝟏), chamber availability (𝑭𝟐), chuck efficiency (𝑭𝟑), 

device priority (𝑭𝟒), moving target (𝑭𝟓), lot location (𝑭𝟔), delay time (𝑭𝟕), wait time (𝑭𝟖), lot 

priority (𝑭𝟗), and designate step factor (𝑭𝟏𝟎), are randomly generated as input variables. The more 

detailed description for control factors, i.e. the purpose of each control factor and how to calculate 

the value of control factors, can be found in Chapter 3. The output variable, average loss, is 

obtained from the result of each simulation run. The average loss means the difference average of 

time between actual processing time and ideal processing time for all lots processed in the 

simulation period as shown in Figure 4.2.  
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Figure 4.2 The Loss time for all processed lots 

 

4.4.3 Experimental Results 

In this experiment, we focus on the two control factors that are related with the efficiency of 

the machines in PHOTO module. First, the recipe change loss factor indicates a loss of efficiency 

cause by various amount of setup time for the change of recipe that requires when both previous 

and current processes have different recipe on a given machine. Calculating the recipe change loss 

factor value for a given lot on a given machine can be calculate as the ratio of (maximum loss – 

current loss) to the maximum loss. Second, the chuck efficiency factor indicates a loss of efficiency 

cause by the setup time for moving chuck arms. Each lot should be processed using either an odd 

chuck arm or an even chuck arm. When previous and current lots should be processed using same 

chuck arm, a fixed amount of setup time for moving chuck arms is required.  

The advantages of this method are that processing priorities of waiting lots could be reassigned 

dynamically by determining weight values for each control factors at the right moment according 

to the conditions of semiconductor wafer fabrication. To develop and improve the scheduling 

performance with ADR, it is useful to determine the weight values for each control factors. 
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Variable ranking with relative importance (RI) scores of the kernelized GDW is evaluated with 

the existing variable ranking methods such as general dominance weight (GDW), relative weights 

(RW), variable importance in projection (VIP), variable permutation (VP), tree method (TM) and 

r-relief method (RM) as shown in Table 4.4.  

 

Table 4.4 Relative importance (RI) scores and ranking of control factors 

 
KGDW GDW VIP TM VP RM RW 

RI Rank RI Rank RI Rank RI Rank RI Rank RI Rank RI Rank 

𝑭𝟏 0.435 1 0.345 1 0.096 8 0.233 1 0.270 1 0.225 2 0.105 4 

𝑭𝟐 0.022 9 0.034 8 0.095 9 0.114 4 0.055 8 0.023 9 0.107 3 

𝑭𝟑 0.270 2 0.218 2 0.093 10 0.127 2 0.182 2 0.040 7 0.089 8 

𝑭𝟒 0.022 8 0.020 9 0.102 3 0.057 9 0.000 10 0.078 5 0.096 6 

𝑭𝟓 0.008 10 0.015 10 0.104 2 0.076 7 0.062 7 0.042 6 0.120 1 

𝑭𝟔 0.061 3 0.075 5 0.101 5 0.028 10 0.107 4 0.145 4 0.088 10 

𝑭𝟕 0.038 7 0.077 4 0.106 1 0.121 3 0.109 3 0.039 8 0.102 5 

𝑭𝟖 0.044 5 0.063 6 0.099 6 0.088 5 0.079 6 0.232 1 0.110 2 

𝑭𝟗 0.040 6 0.091 3 0.102 4 0.084 6 0.046 9 0.000 10 0.089 7 

𝑭𝟏𝟎 0.055 4 0.059 7 0.099 7 0.068 8 0.086 5 0.172 3 0.088 9 

 

 

Desirable ranking of weight factors from field experiences are as follows: 𝐹1 is the most important 

one because it is related with the recipe change loss. The recipe change loss can be increased to 

maximum of 20 min according to the recipe for the lot, and the relationship between the machine 

and the lot. 𝐹3 is the second important one because it is related with the chuck loss, but relatively 

less important than 𝐹1 because chuck loss can be increased to maximum of 5 min (i.e., it is 

significantly less than recipe change loss). 𝐹2 should be the least one because it is related with the 
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chamber availability but, in the PHOTO station, all lots have values of 𝐹2 are equal to 0. 𝐹4, 𝐹6, 𝐹9 

and 𝐹10 are the second least important group with the same level. Other remaining factors𝐹5, 𝐹7 

and 𝐹8 are not important either, but a little better than the above four factors. These remaining 

factors may have similar importance values.  

According to the field experiences, we expect that 𝐹1 and 𝐹3 should be rank 1 and rank 2, 

respectively. The results show that KGDW, GDW, TM and VP may be good candidates of variable 

ranking method for our simulation model. However, we also expect that the RI scores of 𝐹1 and 

𝐹3 should be significantly larger than others, and the RI score of 𝐹1 should be larger than the RI 

score of 𝐹3. In order to verify which variable ranking method is the best from the candidates, two 

simple arithmetic calculations are performed as shown in Table 4.5. The results show that KGDW 

is the best variable ranking method of the candidates.   

Table 4.5 Arithmetic calculations of relative importance (RI) scores for 𝑭𝟏 and 𝑭𝟑 

 KGDW GDW TM VP 

𝑭𝟏 + 𝑭𝟑 0.7054 0.5633 0.3606 0.4528 

𝑭𝟏 − 𝑭𝟑 0.165 0.127 0.106 0.088 
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4.5 Conclusion 

 In this chapter, a new variable ranking algorithm called the kernelized general dominance 

weight (GDW) is proposed to improve the scheduling performance by using relevance vector 

machine (RVM) regression technique for semiconductor wafer fabrication. The relative 

importance (RI) scores of each control factor and each system performance are calculated by using 

kernelized GDW. The RVM regression technique is applied to build kernel version of GDW, and 

to get the best fit model. To assess the achievement of presented algorithm, the simulation model 

is developed and the observations are generated by running of the simulation model. Experimental 

results show that relative importance (RI) scores and variable ranking of the kernelized GDW are 

reasonable than the results of existing variable ranking algorithms.  
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CHAPTER 5 Conclusion Remarks 

  

In this dissertation, we have proposed and developed several methodologies for finding best 

scheduling of different manufacturing systems such as traditional manufacturing systems and 

semiconductor manufacturing systems.  In chapter 2, a dynamic job shop scheduling algorithm 

based on regression technique is proposed to overcome on drawbacks in the existing dynamic job 

shop scheduling based on classification approaches. Kernel ridge regression is presented because 

it has ability to discover the unknown relations between predictor variables and response variables. 

The experimental results are promising and strongly present that the proposed approach in this 

project can be applied to give the best values for the performance measures. 

In Chapter 3, the efficient algorithm that consists of the adjustable dispatching rule (ADR) and real 

coded genetic algorithm (RCGA) with fitness approximation has been proposed. Kernel ridge 

regression and polynomial regression techniques as fitness function and computer simulation for 

scheduling problem of semiconductor manufacturing system has been presented. RCGA generates 

a new population and then it works to improve it by repeating the main operations such as selection, 

crossover and mutation operators. By the empirical results state that the ADR and the real coded 

GA with fitness approximation can find near-optimal solution of the scheduling problem for 

semiconductor wafer fabrication with relatively small number of fitness evaluation. It can play an 

important role when the cost of evaluating fitness is expensive. 

In chapter 4, a new ranking algorithm called kernelized general dominance weight (KGDW) is 

proposed to determine the importance of each weight factors for improving scheduling 

performance of semiconductor wafer fabrication. In order to get high quality of prediction model, 
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we have modified relevance vector machine (RVM) regression to work with GDW. To assess the 

achievement of presented algorithm, the simulation model is developed and the observations are 

generated by running of the simulation model. Experimental results show that relative importance 

(RI) scores and variable ranking of the kernelized GDW are reasonable than the results of existing 

variable ranking algorithms. 
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