

ADVANCED MACHINE LEARNING ALGORITHMS IN

MANUFACTURING SCHEDULING PROBLEMS

by

BILAL AL MULA ABD

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Industrial and Systems Engineering

Written under the direction of

Myong K. Jeong

And approved by

New Brunswick, New Jersey

OCTOBER, 2018

ii

ABSTRACT OF THE DISSERTATION

Advanced Machine Learning Algorithms in Manufacturing Scheduling Problems

By BILAL AL MULA ABD

Dissertation Director:

Professor Myong K. Jeong

Scheduling is a master key to succeed in the manufacturing companies in global competition.

Better process scheduling leads to competitive advantage by reducing production cost and

increasing productivity. Global competition has obliged the companies to expend their investments

in new manufacturing systems. With the arises of these new systems, many of manufacturing

problems have appeared such as scheduling problems has gained attention by researchers.

Especially, it is important to develop new methodologies in order to improve manufacturing

scheduling effectiveness of these new sophisticated systems. Many of researchers have used

machine learning for scheduling problems because it is discovering implicit knowledge of expert

schedulers that can applied for future schedules generation. In addition, machine learning is able

to create flexible schedules depending on the state of the system.

In this dissertation, we present several methodologies for machine learning to scheduling in

different manufacturing processes. For the scheduling problem of traditional industries, we first

iii

present a machine learning approach for dynamic scheduling of multiple machines. Existing

dynamic scheduling algorithms based on classification methods that do not utilize all the available

data for the better scheduling problem. A regression-based dynamic scheduling (RDS) algorithm

is proposed to improve scheduling performance of classification-based dynamic scheduling. Due

to the unknown relationship between predictor variables and output variables, kernel ridge

regression is presented to predict the performance of the scheduling based on system status

attributes. The scheduling outputs of the proposed RDS algorithm is evaluated with scheduling

results of all combinations of dispatching rules from the static job shop scheduling and a

classification-based dynamic scheduling.

For the scheduling problem of semiconductor manufacturing system, we present a new machine

learning algorithm for complex semiconductor scheduling. An adjustable dispatching rule (ADR)

that calculates weighted sum of control factors for determining which job should be processed

first. Then, to find near-optimal weight values of the ADR for improving system performance, the

real coded genetic algorithm (GA) with fitness approximation is proposed. For the fitness

approximation, kernel ridge regression and polynomial regression are applied by using relatively

small number of fitness evaluations. The performance of the proposed algorithms is evaluated by

using an extensive experiment with existing dispatching rules, fixed weights, and GAs without

fitness approximation.

Finally, in order to improve the scheduling performance of semiconductor wafer fabrication, we

propose new variable ranking algorithms to identify the contributions of each input variable to

output variable. We present a new kernelized general dominance weight (GDW) for ranking of

scheduling factors in semiconductor manufacturing system. To build kernel version of GDW, the

relevance vector machine regression technique is applied.

iv

Acknowledgement

First and foremost, I should love to extend heartfelt appreciation to my advisor, Professor

Myong K. Jeong, for his support and guidance. Professor Jeong has the determination and insight

of true scholars and he is the most patient and supportive mentors who have kindly concerned and

considered my academic improvements. I am truly grateful to Professor Myong K. Jeong, an

exceptional researcher and teacher. Since the beginning of my studies at Rutgers University, he

has encouraged me and helped me with his precision and unfailing support.

 I must also thank my dissertation committee members, Professor Weihong Guo, Professor Zhimin

Xi and Professor Jie Gong for their expertise, support, intellectual insights and time.

I must to thank my parents, especially my father’s spirit that passed away last year who have

prayed and supported for the completion of my study and they have been everything I needed to

go through tough times during the program.

I could not have done this dissertation and my Ph. D degree without the support from my wife,

Aula Hamod, who has been there for me for the last six years. I also thank all the members of my

kids (Dalya, Fatima, Linda and Ali) who have been there for me and have given all of the love,

support, encouragement, and dedication. I would like to thank Dr.Minkoo Kang for his

recommendations and support. I acknowledge all my friends at Rutgers University for being great

colleagues and friends, especially Behnam, Ali, Bao, Mehmet and Jeongsub.

v

I must thank my siblings (Kassem, Hanady, Ali, Jalal, Nawers, Thora, Ansam and Tamara, These

past six years, being far from you, was quite a journey for me. I could not be where I am today,

without the love and support of every one of you.

I also want to thank Sayed Jaffer and his family for support and encouragement throughout the

course of my Ph.D. studies.

I want to thank government of Iraq (The Ministry of Higher Education and Scientific Researcher

in Iraq) for sending me to the United States for school on their expenses likewise Rutgers the State

University of New Jersey for providing me one of the best educational facilities in the United

States and affordable housing.

Last but not the least, my family and the one above all of us, I thank Allah for answering my

prayers and giving me the strength to endure despite on the moment of wanting to give up the

study. Thank you so much.

vi

 Table of Contents

ABSTRACT OF THE DISSERTATION ... ii

Acknowledgement ... iv

Table of Contents ... vi

List of Tables.. ... ix

List of Figures ..x

CHAPTER 1 Introduction ...1

1.1 Overview ..1

1.2 Dissertation outline ..2

CHAPTER 2 Machine Learning Approach for Dynamic Scheduling in Job Shop Systems3

2.1 Introduction ..3

2.2 Background ..6

2.2.1 Dispatching Rules ..6

2.2.2 Control Attributes ..7

2.3 Dynamic Scheduling Algorithm for Job Shop Problems ...9

2.3.1 Problem Description ..9

2.3.2 Classification-based Dynamic Scheduling (CDS) ...10

2.3.3 Regression-based Dynamic Scheduling (RDS) ...13

2.3.4 An illustrative Example with n Jobs on m Machines ..19

2.4 Simulation Studies..22

2.5 Conclusions ..29

CHAPTER 3 New Machine Learning Algorithm for Scheduling of Complex Semiconductor

Manufacturing System ...30

3.1 Introduction ..30

3.2 Background ..34

3.2.1 Real Coded GA ..34

3.2.2 Polynomial Regression ..35

3.2.3 Kernel Ridge Regression ...36

3.3 Adjustable Dispatching Rule (ADR) ...37

vii

3.3.1 Assumptions ..37

3.3.2 Control Factors ..38

3.3.3 Calculating Weighted Sum of Control Factors ..41

3.3.4 Arena Simulation Model for Semiconductor Wafer Fabrication42

3.4 Real Coded GA with Fitness Approximation ..44

3.4.1 Flowchart of the Real Coded GA with Fitness Approximation44

3.4.2 Chromosome Representation ...46

3.4.3 Selection ..46

3.4.4 Crossover Operator ..47

3.4.5 Mutation Operator ...47

3.4.6 Fitness Evaluation..48

3.4.6.1 Polynomial Regression .. 48

3.4.6.2 Kernel Ridge Regression ... 48

3.5 Experimental Studies..49

3.5.1 Problem Description ..49

3.5.2 Experimental Setup..51

3.5.3 Experimental Results ...52

3.5.3.1 Comparison of the Existing Dispatching Rules, Fixed Weights and GAs without

Fitness Approximation ... 52

3.5.3.2 Comparison of GAs with and without Fitness Approximation Polynomial

Regression (FAPR) .. 54

3.5.3.3 Comparison of GAs with and without Fitness Approximation Kernel Ridge

Regression (FAKRR) ... 55

3.6 Conclusions ..56

CHAPTER 4 New Kernelized General Dominance Weight for Ranking of Scheduling Factors in

Semiconductor Manufacturing System ..58

4.1 Introduction ..58

4.2 Background ..60

4.2.1 Variable Ranking Algorithms ..60

4.2.1.1 Variable Importance in Projection (VIP) ... 61

4.2.1.2 Variable Permutation ... 61

4.2.1.3 R-relief ... 62

viii

4.2.1.4 Relative Weights .. 62

4.2.1.5 General Dominance Weights ... 62

4.2.2 Relevance Vector Machine (RVM) Regression ..63

4.3 Kernelized General Dominance Weight ..64

4.4 Simulation Studies..68

4.4.1 Simulation Model Description...68

4.4.2 Experimental Setup..72

4.4.3 Experimental Results ...73

4.5 Conclusion ..76

CHAPTER 5 Conclusion Remarks ..77

References………………………………………………………………………………………..79

ix

List of Tables

Table 2.1 The structure of the observations for given combination of dispatching rules 17

Table 2.2 An example of the simulation results for all combinations with a set of jobs 23

Table 2.3 The example of the observations for given combination of dispatching rules 24

Table 2.4 Two simulation models with different job environments ... 25

Table 2.5 Comparison of the mean tardiness of static and dynamic scheduling for model 1 26

Table 2.6 Comparison of the mean tardiness of static and dynamic scheduling for model 2 27

Table 3.1 Number of coefficients at different polynomial degrees and number of variables 36

Table 3.2 The examples of control factors for semiconductor wafer fabrication 39

Table 3.3 The number of machines in each station ... 49

Table 3.4 Step information of 20 different layers ... 50

Table 3.5 Sequence of layer IDs for each type of jobs ... 51

Table 3.6 Testing environment for GAs ... 52

Table 3.7 Comparison of the average waiting times for the existing dispatching rules, fixed

weights (FW) and GAs without fitness approximation (FA) .. 53

Table 3.8 Comparison of GAs with and without fitness approximation (FAPR) 54

Table 3.9 Comparison of GAs with and without fitness approximation (FAKRR) 55

Table 4.1 The number of machines in each module ... 69

Table 4.2 The sample data of the processing steps ... 71

Table 4.3 Sequence of layer IDs for each product type .. 72

Table 4.4 Relative importance (RI) scores and ranking of control factors 74

Table 4.5 Arithmetic calculations of relative importance (RI) scores for F1 and F3 75

x

List of Figures

Figure 2.1 Job shop scheduling problem with 𝑛 jobs on 𝑚 machines .. 9

Figure 2.2 The procedures of the classification-based dynamic scheduling 11

Figure 2.3 An example of the results of the classification .. 12

Figure 2.4 The procedures of the regression-based dynamic scheduling 14

Figure 2.5 Pseudocode of the RDS algorithm .. 19

Figure 2.6 Scheduling results of three cases for the example of job shop scheduling problem ... 21

Figure 3.1 Main process steps in a wafer fabrication ... 31

Figure 3.2 Arena simulation model for semiconductor wafer fabrication 43

Figure 3.3 The flowchart of the real coded GA with fitness approximation 45

Figure 3.4 The waiting time of the job ... 51

Figure 4.1 Semiconductor wafer fab modules and moving sequences ... 69

Figure 4.2 The Loss time for all processed lots .. 73

1

CHAPTER 1

 Introduction

1.1 Overview

Scheduling is defined as the resources allocation to work along time periods. The goal of

scheduling is optimization of objectives by creating an effective schedule (Pinedo, 2016).

Scheduling is used to allocate and plan a common set of resources such as, human resources,

machinery resources, purchase materials in the manufacturing system and production processes.

The area of manufacturing scheduling aims to actively assign resources as machines to some sort

of jobs.

Many of researchers have used machine learning for scheduling problems because machine

learning has the capability to use the scheduling knowledge to build the best schedule for the

manufacturing system. In addition, Machine learning based schedulers are easy to be integrated

with different decisions such as sensor monitors and diagnostic systems. Furthermore, reasoning

ability enables the scheduling systems to perform more reactive in addition to predictive (Shaw et

al., 1992).

Machine learning that is used by a scheduling system usually it uses a simulation system to build

various manufacturing system situations and select the best schedule for each situation. Then, a

machine learning technique takes experience from the training data sets to do the future decisions

for scheduling (Priore et al., 2014).

2

The semiconductor manufacturing is identified by an expanding complication of manufacturing

operations and have the multiple steps of processes such as limitations number, accurate

geometries to recognize on chips, growing cases of automation combined with tools and costs, and

high quality requirements from the customers (Yugma et al., 2015, Fenner et al., 2005).

Semiconductor manufacturing operations may be divided into four steps: wafer probing, wafer

fabrication, assembly or packing, and final test. Especially, in the wafer fabrication stage, the lot

is the minimum unit to process and each lot consists of a fixed number of wafers. The wafer

fabrication can be represented as a procedure composed of reentrant sequential process flows

(Yugma et al., 2015).

1.2 Dissertation outline

In this dissertation, we present advanced machine learning approaches to solve complex

scheduling problems in traditional manufacturing systems and semiconductor manufacturing

systems. This dissertation is organized as follows. Chapter 2 presents a machine learning approach

for dynamic scheduling of multiple machines. Chapter 3 proposes an adjustable dispatching rule

(ADR) and real coded genetic algorithm with fitness approximation for scheduling problem of

semiconductor wafer fabrication. Chapter 4 presents a scheduling algorithm based on the

kernelized general dominance weight for semiconductor wafer fabrication. Finally, Chapter 5

summarizes the research results and presents the conclusion.

3

CHAPTER 2

 Machine Learning Approach for Dynamic Scheduling in Job Shop

Systems

2.1 Introduction

Scheduling is a useful way for manufacturing systems where global competition has a

tremendous effect on outputs of a process. The efficient scheduling leads the industrial companies

toward the success. Otherwise, the ineffectual scheduling creates bottlenecks in various

manufacturing system operations. The definition of scheduling is the assignment of jobs to

machines through time periods. It is an important process for optimization of the objectives

(Pinedo, 2016). The target of scheduling is allocation jobs to machines to reduce the process time

and the manufacturing cost (Shaw et al., 1992).

In manufacturing systems, a flow shop (Shakhlevich et al., 1998, Jeong et al., 2005) is referred to

an environment where machines are set in series and each job goes through a series of operations.

Except for a few extensions of the flow shop scheduling problems like a two-machine flow shop

scheduling problem that can be fixed optimally but the other problems are NP-hard. All jobs go

through the same route in a flow shop environment. When the sequence are not necessary the same

for every job but they are fixed, the environment is called a job shop. Flow shop scheduling is also

NP-hard (Sotskov et al., 1995) as it is the special case of job shop scheduling.

Many approaches for solving the flow shop and job shop scheduling problems may be utilized.

These approaches can be broken down to a few groups: the heuristic, the analytical, the artificial

4

intelligence based algorithms and the simulation (Priore et al., 2014). In the analytical approach,

the job shop and flow shop scheduling problems are captured with optimization models. Lack of

efficiency for large-scale problems is the main drawback of this approach. Therefore, in order to

overcome this kind of drawbacks, heuristic approaches that are usually dispatching rules, can be

utilized. A dispatching rule means process first a job that is waiting in the queue with the most

important of priority. In case that a machine has been freed. Changing the rules dynamically

depending on the state of the system can produce interesting outcomes.

In the literature, there are two types of methodologies to change dispatching rules. In the first one

is selecting the dispatching rule with best performance from a group of simulated dispatching rules.

In the second technique i.e. artificial intelligence, simulation is used to generate different

processing system situations and the best scheduling for each specific case is chosen. In this

approach a set of simulations are considered as training examples. Then, a machine learning

algorithm is applied on the training examples to build models that can be used for future

scheduling. Examples of such algorithms include inductive learning and neural networks.

Su and Shiue (2003) developed an algorithm that incorporate genetic algorithm (GA) with

inductive learning. In their technique, for a given system attributes subset, a decision tree is

generated by applying the inductive learning algorithm. Metan and Sabuncuoglu (2005) proposed

improved techniques that use operation control charts, inductive learning and simulations. Their

technique, first a decision tree is generated by applying the features of the system. Then,

dispatching rules are chosen from the decision tree for per period of scheduling. C4.5 (Quinlan,

1993) is used as the learning algorithm and the proposed technique is performed on a job shop

system (Baker, 1984) to minimize the average tardiness. This technique was later improved by

5

Metan et al. (2010). Li and Olafsson (2005) proposed a new method for creating new scheduling

rules from the data of each job. Their proposed method has the advantage of discovering implicit

knowledge of expert schedulers that can applied for future schedules generation. Olafsson and Li

(2010) proposed an extended version of their initial work as well.

For the second approach i.e. neural networks, a work has been conducted by Min and Yih (2003)

which proposed a method for scheduling by picking of dispatching rules. Competitive neural

networks (CNNs) are presented to get the scheduling knowledge in this work. This work also uses

the semiconductor fab imitation model. Guh et al. (2011) developed a system that allocates

different dispatching rules for each of the machines using self-organizing map (SOM) neural

networks. They present a case study that involves a modification of the model used by Montazeri

and Van Wassenhove (1990). They compare their proposed approach with two alternatives that

one of them uses inductive learning (Su and Shiue, 2003) and the other one uses SVMs (Shiue,

2009). They both employ the same dispatching rule in all machines.

Exterkate et al. (2016) have proposed a kernel ridge regression as a technique for predicting

nonlinear relationships. They have expanded the present kernel methods to become its employ in

time-series conditions model for financial enforcements and macroeconomic. The experimental

implementation is to estimating four predictors U.S. macroeconomic variables, output, revenue,

sales, and labor. The experimental studies state that kernel based algorithms are often show a high

accuracy for predicting the performances more than the conventional linear methods that not using

kernel. Cho et al. (2008) have presented a technique that consists of two parts, off-line part which

uses to build a model as predicting the observations and on-line part to monitor and diagnosis a

model to make a decision depending on the information that are collected from off-line part.

6

In most of the existing approaches for dynamic-based classification, they used only small fraction

of the available training data for selecting a dispatching rule for given system state.

Consequentially, other available training data, e.g. training data that do not have the best result,

were completely disregarded. So, the future scheduling decisions from the result of the

classification-based dynamic scheduling (CDS) may not cover all possible combinations of

dispatching rules for each machine without relatively large amount of training data. To overcome

this drawback, in this chapter, we proposed a dynamic scheduling algorithm that finds the best

combination of dispatching rules using regression technique for job shop scheduling problem. The

proposed algorithm can predict a scheduling performance with various combinations of

dispatching rules.

This chapter is arranged as follows. In Section 2.2, several dispatching rules and control attributes

used in this chapter are briefly described. Then, the dynamic scheduling algorithm using regression

technique for job shop scheduling problem is proposed in Section 2.3. In Section 2.4, the

accomplishment of the proposed algorithms is compared with that of all combinations of

dispatching rules and a classification-based dynamic scheduling, and the conclusions are presented

in Section 2.5.

2.2 Background

2.2.1 Dispatching Rules

Dispatching rules determine which job will be processed on next at a given machine. Many of

researches in dispatching rules has been effective for long time and many various principles have

7

been proposed in the literature (Pinedo, 2016). We introduce the popular four dispatching rules as

follows:

First In First Out (FIFO): This rule selects a job that has been arrived at the queue first. FIFO, a

dispatching rule under which the jobs are sequenced by their arrival times, is easy to implement

and an effective rule for minimizing the maximum flow time and its variance.

Shortest Processing Time (SPT): SPT chooses the jobs that have shortest processing time and

handles to complete them first. When most of the jobs cannot meet their due dates SPT effectively

minimizes the total tardiness of all jobs. This rule is one of the most used one for its simplicity.

Minimum Slack Time (MST): The MST rule detects the insistence of a job by its slack time. Slack

time is expressed as the temporal difference between the latest time that a job must be started and

the earliest time that a job can be started. This rule selects a job that has least slack time.

Earliest Due Date (EDD): According to EDD rule, earliest due date that belongs to a job is chosen

first. If a group of jobs that not dependent, each job has different arrival time and different a due

date, to be ensures all the jobs perform by their due date, this rule can create an efficient schedule

for all jobs in a group by their due date.

2.2.2 Control Attributes

The control attributes which include information of jobs and system state can be used as the

input variables for machine learning algorithms. We introduce several control attributes as follows:

8

Work In Process (WIP): This attribute is a partially finished jobs waiting for completion. Optimal

production management aims to minimize WIP because it requires storage space. This attribute

can be calculated in the system as the rate number of jobs.

Average System Utilization (ASU): This attribute is the mean utilization of the manufacturing

system. In the single machine model, the ASU can be calculated as mean arrival time of jobs

divided by mean processing time of jobs.

Average Remaining Processing time (ARP): ARP is the sum of processing time jobs that is

remaining in system divided by jobs number that need to be processed.

Average Slack Time (AST): Slack time is the rate of time a job can be delayed without causing

another job to be delayed or impacting the finishing time. Usually a smaller AST is more desirable

in real-time systems.

Maximum Relative Machine Workload (MRMW): MRMW which checks workload for the

machines to detect a bottleneck through time. This attribute is defined as the rate of the maximum

workload to system utilization.

Average Queue Length (AQL): This attribute stores the average queue length of all queues for the

scheduling period.

9

2.3 Dynamic Scheduling Algorithm for Job Shop Problems

2.3.1 Problem Description

 Let us define the scheduling problem for a job shop. There is a set 𝓙 = {𝐽1, … , 𝐽𝑛} of 𝑛 jobs

that are to be processed on a machine set 𝓜 = {𝑀1, … , 𝑀𝑚} of 𝑚 machines as shown in Figure

2.1. For each job 𝐽𝑖, there are a due date 𝑑𝑖 and release time 𝑟𝑖. Each machine 𝑀𝑘 ∈ 𝓜 allows to

implement one job 𝐽𝑖 ∈ 𝓙. The job 𝐽𝑖 composes of a sequence of 𝑛𝑖 operations 𝑜1
𝑖 , ⋯ , 𝑜𝑛𝑖

𝑖 , where

𝑀𝑜𝑞
𝑖 ∈ 𝓜 and 1 ≤ 𝑞 ≤ 𝑛𝑖, being given in advance. The execution of 𝑜𝑞

𝑖 cannot start before the

execution of 𝑜𝑞−1
𝑖 has been completed, for 𝑞 = 2, … , 𝑛𝑖 . Each operation 𝑜𝑞

𝑖 requires an

uninterrupted period of processing time 𝑝𝑖𝑞 ≥ 0.

We assume that there are no failures for all machines, no rework for all jobs and an unlimited

buffer space in between two machines.

M1

J2 M2

Mm

J1

Jn

…

…

Figure 2.1 Job shop scheduling problem with 𝑛 jobs on 𝑚 machines

10

In this chapter, we consider the mean tardiness of all jobs as a performance measure for job shop

scheduling problem. The tardiness of job 𝐽𝑖 is defined as 𝑡𝑖 = max (𝐶𝑖 − 𝑑𝑖, 0), where 𝐶𝑖 and 𝑑𝑖 is

the completion time and due date of the job 𝐽𝑖, respectively. It represents how long after the due

date a job was completed and can measure due date performance of the schedule. So, the mean

tardiness can be calculated as 𝑇 = ∑ 𝑡𝑖
𝑛
𝑖=1 /𝑛.

A preliminary categorization could deal with static and dynamic scheduling. In static scheduling

problem, a limitation is represented by scheduling all jobs at the same time. In static case, the

schedule is obtained one time. While, in dynamic scheduling problem, only one job is scheduled

in advance and the other jobs are scheduled dynamically in the system. In this chapter, it is defined

as static scheduling when a combination of dispatching rules is fixed for all machines until all jobs

are processed. For dynamic scheduling, a combination of dispatching rules can be chosen

depending on the system state.

2.3.2 Classification-based Dynamic Scheduling (CDS)

Most of the existing approaches for dynamic scheduling of job shop problems that based on

data mining methodologies, the researchers used the classification techniques to determine the

solutions of dynamic scheduling. It means that training examples are obtained for various system

states in advance. Each training example has the values of control attributes for representing the

system state, and the best combination of dispatching rules. Then, the most similar one to current

system state can be chosen for dynamic scheduling. The procedures of the classification-based

dynamic scheduling are shown in Figure 2.2.

11

Figure 2.2 The procedures of the classification-based dynamic scheduling

Figure 2.3 shows an example of the results of the classification. In this example, the CART

algorithm is used to generate a decision tree as the results. In the classification problem, nodes

except leaf nodes represent the conditions for input variables and the leaf nodes represent each

class. The decision tree can be analyzed into decision rules, where the result is the involvements

of the leaf node, and the conditions along the path from a conjunction in the if-then clause.

Off-line Classification Model Development

Step 1. Generate observations

1-a. Repeat for each combination of dispatching rules

1) Select a combination of dispatching rules for all machines

2) Run the simulation until all jobs are processed

3) Note the performance value

1-b. Select the combination of dispatching rules corresponding to the best performance value

1-c. Generate an observation with a vector of control attribute values with corresponding best

 combination of dispatching rules

1-d. Go to step 1-a until 𝑛𝑜𝑏𝑠 observations are obtained

Step 2. Develop the classification model

2-a. Divide 𝑛𝑜𝑏𝑠 collected observations into 𝑛𝑡𝑟 training data and 𝑛𝑡𝑒 test data

2-b. Build the classification model to fit on 𝑛𝑡𝑟 training data

2-c. Using 𝑛𝑡𝑒 test data to evaluate the achievement of the classification model

On-line Dynamic Scheduling

Step 3. Classification-based dynamic scheduling

 3-a. When a job is finished in any machines, evaluate the values of control attributes

 3-b. Select the best combination of dispatching rules for all machine using classification model

 in step 2

 3-c. Go to step 3-a until all jobs are processed

12

DR

111

DR

141

DR

112

DR

121

DR

111

DR

141

DR

111

DR

113

DR

112

DR

111

DR

241

DR

112

DR

111

DR

112

DR

111

DR

112

DR

111

DR

111

AST

WIP

MRMW MRMW

WIP WIP

AST

WIP

ASU

WIP ARP

ASU

ASTASU

ASU ARP

WIP

>3.3

>3.5

>7.2

>0.74

>4.4>0.71

>14.4>0.69

>0.66

>24.8

>5.3

>7.2

>1.3 >1.3

>8.7 >12.7

>23.5

Figure 2.3 An example of the results of the classification

Note that in Step 1-a to 1-b, to obtain one observation, (𝑛𝑑𝑟)𝑚 simulation runs are required where

𝑛𝑑𝑟 is the number of dispatching rules and 𝑚 is the number of machines. In spite of the results

from (𝑛𝑑𝑟)𝑚 simulation runs, only one result that shows the best performance is obtained as an

observation for the classification-based dynamic scheduling. It means that results of (𝑛𝑑𝑟)𝑚 − 1

simulation runs are completely wasted. Moreover, relatively large number of observations may be

required to get the all possible combination of dispatching rules in the classification-based dynamic

scheduling because the result of the classification-based dynamic scheduling with small number

of observations cannot cover all combinations of dispatching rules. For example, the result of the

decision tree in Figure 2.3 has only 18 leaf nodes by using 100 observations. To overcome this

drawback, we proposed a regression-based dynamic scheduling algorithm that utilizes all results

13

from (𝑛𝑑𝑟)𝑚 simulation runs to find the best combination of dispatching rules and estimate their

performance value.

2.3.3 Regression-based Dynamic Scheduling (RDS)

In order to find the best combination of dispatching rules by estimating their performance value

using the values of control attributes, a set of regression models should be developed in advance.

The total number of regression models can be calculated as 𝑛𝑟𝑒𝑔 = (𝑛𝑑𝑟)𝑚, where 𝑛𝑑𝑟 is the

number of dispatching rules, and 𝑚 is the number of machines. If 𝑛𝑜𝑏𝑠 observations are required

for each regression model, the total number of observations for all regression models should be

𝑛𝑜𝑏𝑠 ∙ (𝑛𝑑𝑟)𝑚. The procedures of the regression-based dynamic scheduling are shown in Figure

2.4.

14

Figure 2.4 The procedures of the regression-based dynamic scheduling

Off-line Regression Model Development

Step 1. Generate observations

1-a. Repeat for each combination of dispatching rules

(1) Select a combination of dispatching rules for all machines

(2) Run the simulation until all jobs are processed

(3) Note the performance value

(4) Generate an observation with a vector of control attribute values with corresponding

performance value for given combination of dispatching rules

1-b. Go to step 1-a until 𝑛𝑜𝑏𝑠 observations are obtained for each combination of dispatching

 rules

Step 2. Develop the regression model for each combination of dispatching rules

2-a. Repeat for each combination of dispatching rules

(1) Divide 𝑛𝑜𝑏𝑠 collected observations into 𝑛𝑡𝑟 training data, 𝑛𝑣𝑎 validating data

 and 𝑛𝑡𝑒 testing data

(2) Build the regression models to fit on 𝑛𝑡𝑟 training data for given combination

 of dispatching rules

(3) Adjust the regression models based on the result of the comparison in 𝑛𝑣𝑎

(4) Assess the performance of the regression model using 𝑛𝑡𝑒 test data

On-line Dynamic Scheduling

Step 3. Regression-based dynamic scheduling

 3-a. When a job is finished in any machines, evaluate the values of control attributes

 3-b. Repeat for each combination of dispatching rules

(1) Select the regression model for given combination of dispatching rules

(2) Calculate the estimated performance value using selected regression model and the

values of control attributes from Step 3-a

(3) Note the estimated performance value

 3-c. Select the combination of dispatching rules corresponding to the best estimated performance

 value in step 3-b

 3-d. Go to step 3-a until all jobs are processed

15

In step 1, we initialize and generate the observations that system needs to get the performances.

Simulation studies section have more details for this step.

In step 2, we present a kernel ridge regression (KRR). The mechanism of KRR depends on usual

ridge regression and least squares regression. The result prediction for ridge regression is shown

in equation (2.1) and (2.2).

𝛽 = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑦 (2.1)

�̂� = 𝑋𝛽 (2.2)

where 𝛽 is the regression coefficients and 𝞴 is the parameter of ridge regression. The main idea of

KRR, presents a high-dimensional space of predictors by using shrinkage or ridge term to avoid

overfitting to predict the regression coefficients. So, the result of KRR can be written as

�̂� = 𝑦𝑇(𝐾 + 𝜆𝐼)−1𝑘 (2.3)

where 𝐾𝑖𝑗 = 𝑥𝑖𝑥𝑗 and it is called kernel matrix and 𝑘𝑖 = 𝑥𝑖𝑥
′ and it is called kernel function. To

get on �̂� in kernel ridge regression we need to recalculate 𝐾 and 𝑘 instead of explicit

transformations 𝑥 → ϕ(𝑥).

As is shown in equation 2.3 kernel ridge regression has kernel trick that is distinguished from

ordinary ridge regression. Kernel trick increases the improvement of computational efficiency.

The important process to use of kernel trick is selecting ϕ that produces to determine an accurate

16

kernel function 𝑘𝑖 (means choosing the appropriate kernel). So, we present polynomial kernel to

incorporate with ridge regression.

In off-line case the observations have three parts, training data, validating data and testing data.

The parameters for kernel polynomial ridge regression as number of order and lambda are

optimized. As shown in Step 2-a in Figure 2.4, 𝑛𝑜𝑏𝑠 collected observations are divided into 𝑛𝑡𝑟

training data, validation data 𝑛𝑣𝑎 and 𝑛𝑡𝑒 test data for each combination of dispatching rules. A

regression model for given combination of dispatching rules is initially fit on 𝑛𝑡𝑟 training data.

The training data has the pairs of input variables and the corresponding answer, which is commonly

denoted as the target. Then, the regression model is running with the training data and produces a

result, which is then compare with the target, for each observation. The coefficients of the

regression model are adjusted based on the result of the comparison in 𝑛𝑣𝑎. The test data is used

to provide an unbiased evaluation of the regression model. The regression models for all

combination are built after modified those models in validation data and examined them in testing

data.

In step 3, on line situation is started. When a job is processed on any machine, the proposed

algorithm calculates the values of control attributes and here the values of control attributes

consider a vector has (1 × 𝑁) where 1 represents an observation and 𝑁 represents the number of

predictor variables. Depending on regression models and the parameters that already optimized in

off-line situation, the system can be predicted the new performance values for all combination of

dispatching rules. After that the system starts comparing between the performance of current

dispatching rule and all other combination of dispatching rule to choose the dispatching rule that

gives best performance. So, the system can change to the dispatching rule that has best

17

performance. Usually, the ordinary least squares procedure presupposes that the number of

predictor variables should be less or equivalent to the number of observations to prevent overfitting

problems. But even we have that case, KRR may obtain a good in-sample fit in dynamic

scheduling. The structure of the observations for each regression model consists of the values of

control attributes as the independent variables and the performance value as the dependent variable

as shown in Table 2.1.

 Table 2.1 The structure of the observations for given combination of dispatching rules

For each observation, 𝑛𝑐𝑎 control attributes for input variables and the performance measure for

output variable are calculated after simulation running with randomly generated 𝑛 jobs. These jobs

can be reused for all combinations of dispatching rules. In other words, a set of 𝑛 jobs can be used

for each regression model because of the values of control attributes and performance measures

18

from the set of jobs with different combination of dispatching rules may be different. Thus, only

𝑛𝑜𝑏𝑠 set of jobs are required for developing 𝑛𝑟𝑒𝑔 regression models.

The proposed regression-based dynamic scheduling algorithm performs as follows. When a job is

processed on any machines in the system, the proposed algorithm calculates all estimated

performance values for each combination of dispatching rules using the current values of control

attributes and regression models that are developed in advance. Then, the proposed algorithm can

switch to the combination of dispatching rules that has the best estimated performance value. If

the best combination of dispatching rules from the regression models and the current combination

of dispatching rules are different, the proposed algorithm calculates the expected benefit of

changing combination of dispatching rules using the estimated performance value of both best and

current combinations of dispatching rules. Consequentially, if the expected benefit of changing

combination of dispatching rules is bigger than a current value, the RDS algorithm changes the

current combination of dispatching rules to the best combination of dispatching rules. The

pseudocode of on-line dynamic scheduling part of the proposed algorithm is shown in Figure 2.5.

19

Regression-based Dynamic Scheduling (RDS) for Job Shop Problems

/* CDR is the combination of dispatching rules */

/* PV is the performance value */

1 begin

2 while all jobs are processed on the system do

3 if a job is processed for any machines do

4 Calculate the current values of control attributes;

5 for each CDR do

6 Calculate the estimated PV using the regression model for given CDR;

7 Keep best CDR and its estimated PV;

8 end

9 if best CDR /= current CDR do

10 if threshold < difference of PVs for best and current CDRs do

11 Current CDR ← best CDR;

12 end

13 end

14 end

15 end

16 end

Figure 2.5 Pseudocode of the RDS algorithm

2.3.4 An illustrative Example with n Jobs on m Machines

Let us consider a simple job shop scheduling problem as follows. Let assume there are 3 jobs

(𝐽1, 𝐽2 and 𝐽3) that are to be processed on 3 machines (𝑀1, 𝑀2 and 𝑀3). For each job 𝐽𝑖, there are a

release time 𝑟𝑖, processing time on the 𝑘-th machine 𝑝𝑖𝑘, due date 𝑑𝑖 and their processing order 𝑜𝑘
𝑖

as follows.

20

𝑟 = [
0
0
0

],�⃗� = [
4 10 8
3 8 7
4 12 9

],𝑑 = [
24
34
32

], �⃗� = [
2 3 1
1 3 2
1 2 3

] (2.4)

In this example, we consider three cases as follows: (a) each job is processed by SPT rule for all

machine, (b) each job is processed by EDD rule for all machine, and (c) each job is processed by

SPT rule before time 10, then the rule is change to EDD rule for all machine. Figure 2.6 is shown

the results of these cases.

21

M1

M2

M3

10 20 30 405 15 25 35

J1J2

J3

J2 J3J1

J2

J3

J1

C1=22

C3=39

C2=18

(a) Each job is processed by SPT rule for all machines

M1

M2

M3

10 20 30 405 15 25 35

J1J2

J3

J2J3J1

J2

J3

J1

C1=26

C3=31

C2=30

M1

M2

M3

10 20 30 405 15 25 35

J1J2

J3

J2J3J1

J2

J3

J1

C1=22

C3=31

C2=30

d1=24 d2=34

d3=32

d1=24 d2=34

d3=32

d1=24 d2=34

d3=32

(b) Each job is processed by EDD rule for all machines

(c) Each job is processed by SPT rule (before time 10) and EDD rule (after time 10) for all machines

Figure 2.6 Scheduling results of three cases for the example of job shop scheduling problem

22

For case (a) and case (c), when job 2 and job 3 are arrived at the same time on machine 1, job 2

can be processed first by the SPT rule because 𝑝21 is less than 𝑝31. On the other hand, job 3 should

be processed first by the EDD rule because 𝑑3 is less than 𝑑2 at time 0 for case (b). At time 10 in

case (a) and case (c), job 2 and job 3 compete for processing on machine 2. According to the SPT

rule, job 2 is processed first because 𝑝22 is less than 𝑝32 in case (a). For case (c), job 3 is processed

first because 𝑑3 is less than 𝑑2.

As a performance measure, mean tardiness of the scheduling results of three cases can be compared

as follows. The mean tardiness of all jobs can be calculated as
∑ max (0,𝐶𝑖−𝑑𝑖)𝑛

𝑖=1

𝑛
. So, the mean

tardiness of the case (a), (b) and (c) is
7

3
,

2

3
 and 0, respectively. The result shows that the case (c)

is the best solution with minimum mean tardiness for the example of job shop scheduling problem.

2.4 Simulation Studies

In order to measure of efficiency of the presented algorithm, Matlab simulation studies are

performed for scheduling 𝑛 jobs on three machines in job shop problem. There are four dispatching

rules i.e. SPT (1), EDD (2), MST (3) and FIFO (4), for each machine. Then, the combination of

dispatching rules for three machines is denoted by using 3-digit number from 111 to 444. For

example, the combination 134 means that SPT (1), MST (3) and FIFO (4) is selected for machine

1, 2 and 3, respectively. So, the total number of all combinations of dispatching rules is (43) = 64.

To get 100 observations for each combination of dispatching rules, the following simulation runs

are required repeatedly. For each simulation run, 50 jobs are randomly generated. Each job has its

release time, processing times for each machine, due date and orders for processing route over

23

machines. When all jobs are processed, the values of control attributes i.e. WIP, ASU, ARP, AST,

MRMW and AQL, and the mean tardiness of all jobs can be calculated for generating an

observation. As an example, Table 2.2 states the simulation results for all combinations of

dispatching rules with a set of jobs. The right most column of Table 2.2, named CDR, means the

combination of dispatching rules.

Table 2.2 An example of the simulation results for all combinations with a set of jobs

Input variables Output variable

CDR
WIP ASU ARP AST MRMW AQL Mean Tardiness

1 6.97 0.82 10.44 3.64 1.14 4.51 14.73 111

2 7.31 0.83 10.01 4.50 1.14 4.83 15.66 112

3 7.32 0.83 9.95 4.65 1.14 4.85 15.52 113

4 7.30 0.83 9.86 4.59 1.14 4.82 15.61 114

5 8.74 0.81 9.49 11.32 1.14 6.31 22.12 121

6 8.88 0.81 9.78 11.71 1.14 6.45 22.58 122

7 8.99 0.81 9.76 12.03 1.14 6.56 23.11 123

8 8.85 0.81 9.62 11.72 1.14 6.42 22.56 124

… … … … … … … … …

61 10.15 0.82 7.78 16.21 1.14 7.68 28.41 441

62 10.25 0.82 7.91 16.19 1.14 7.79 28.98 442

63 10.19 0.82 7.80 15.97 1.14 7.72 28.49 443

64 10.45 0.82 7.73 16.84 1.14 7.98 29.82 444

In the classification-based dynamic scheduling, only one result with the minimum value of the

mean tardiness i.e. the first row, represents an observation, then rest of them are wasted. However,

in our proposed regression-based dynamic scheduling, all results can be contributed for improving

regression models.

24

After generating observations, to develop the regression model for each combination of

dispatching rules, 100 collected observations are divided into 70 training data, 10 validation data

and 20 test data. Then, the regression model is built to fit on training data. Validation data is used

to modify the parameters. To assess the performance of the regression model, test data is used.

Table 2.3 shows that the example of the observation data for given combination of dispatching

rules.

Table 2.3 The example of the observations for given combination of dispatching rules

Input variables Output variable

WIP ASU ARP AST MRMW AQL Mean Tardiness

Training

data

1 6.97 0.82 10.44 3.64 1.14 4.51 14.73

2 6.12 0.78 10.31 1.26 1.12 3.79 13.08

… … … … … … … …

70 5.25 0.68 8.79 3.07 1.32 3.22 15.29

Validating

Data

71 7.34 0.76 10.43 2.45 1.28 4.54 16.68

72 5.98 0.81 9.93 1.94 1.49 6.51 15.92

… … … … … … … …

80 6.41 0.79 12.94 0.34 1.17 6.08 14.07

Test

data

81 5.90 0.73 10.99 1.77 1.29 3.70 15.82

82 5.22 0.72 9.59 0.14 1.15 3.05 10.17

… … … … … … … …

100 6.85 0.74 16.91 -0.58 1.33 4.63 18.33

The scheduling result of the regression-based dynamic scheduling is compared with all

combinations of static scheduling and a classification-based dynamic scheduling for the mean

tardiness. There are two simulation models with different job environments to generate jobs

randomly. For model 1, the inter-arrival time, processing times for each machine and due date of

25

all jobs are generated by exponential distribution with different values of lambda. On the other

hand, the uniform distribution with different lower and upper bounds are applied for model 2 as

shown in Table 2.4.

Table 2.4 Two simulation models with different job environments

 Model 1 Model 2

Interarrival time Exp. (5) Uniform [15,90]

Processing time for machine 1 Exp. (4) Uniform [30,140]

Processing time for machine 2 Exp. (5) Uniform [40,160]

Processing time for machine 3 Exp. (3) Uniform [35,200]

Due date Release time + Exp. (20)
Release time + Uniform

[500,1000]

For model 1, the results of the mean tardiness of static and dynamic scheduling are compared for

all test data as shown in Table 2.5. For example, the result of static scheduling with test data 1

show that the mean tardiness is minimum of 4.3 with combination of dispatching rules 122, i.e.

SPT for machine 1, EDD for machine 2 and machine 3, and maximum of 8.2 with combination of

dispatching rules 421, i.e. FIFO for machine 1, EDD for machine 2, and SPT for machine 3. The

mean tardiness of CDS and RDS with test data 1 is 6.9 and 5, respectively. The relative

improvement between CDS and RDS is calculated as 38% (=
6.9−5

6.9
) for test data 1. As shown in

Table 2.5, the mean tardiness of the RDS is reduced from a minimum of 1.48% to a maximum of

70.34% from that of the CDS for all test data.

26

Table 2.5 Comparison of the mean tardiness of static and dynamic scheduling for model 1

Test

data

Static Scheduling Dynamic Scheduling

Best (CDR) Worst (CDR) CDS RDS
Relative Improvement

CDS to RDS

1 4.3 (122) 8.2 (421) 6.9 5 38%

2 11.2 (212) 28.4 (143) 24.6 22.4 9.82%

3 3.1 (221) 8.1 (144) 7.2 6.4 12.5%

4 12.1 (211) 31.9 (434) 26.1 25.6 1.95%

5 4.1 (212) 10.4 (444) 10.3 6.71 53.5%

6 5.3 (133) 17.2 (442) 10.6 6.4 65.62%

7 4.2 (222) 9.4 (441) 9.2 5.4 70.37%

8 7.6 (211) 17 (444) 15.2 9.9 53.53%

9 2.8 (224) 11.6 (442) 7.35 4.6 59.78%

10 16.4 (211) 33.5 (444) 29.79 27.1 9.92%

11 7.7 (211) 20.1 (443) 18.14 14.2 27.74%

12 4.5 (111) 9.8 (434) 7.3 6.9 5.79%

13 16.4 (213) 44.5 (344) 41 40.4 1.48%

14 7.6 (121) 15.6 (434) 14.4 11.1 29.72%

15 10.1 (313) 29.7 (443) 21.1 18.7 12.83%

16 7.2 (121) 19.8 (333) 11.4 10.1 12.87%

17 9.6 (122) 24.2 (243) 17.5 11.4 53.5%

18 12 (411) 33.3 (443) 30.2 27.3 10.62%

19 20.2 (112) 41.7 (444) 32 30.3 5.61%

20 8.5 (214) 22.4 (444) 16.9 14.5 16.55%

For model 2, the results of the mean tardiness of static and dynamic scheduling are also compared

for all test data as shown in Table 2.6. As shown in Table 2.6, the mean tardiness of the RDS is

reduced from a minimum of 0.76% to a maximum of 19.59% from that of the CDS for all test data.

27

Table 2.6 Comparison of the mean tardiness of static and dynamic scheduling for model 2

Test

data

Static Scheduling Dynamic Scheduling

Best (CDR) Worst (CDR) CDS RDS
Relative Improvement

CDS to RDS

1 972.1 (222) 1478.2 (211) 982.3 884.3 11.08%

2 962.8 (122) 1309.2 (144) 948.4 888.7 6.71%

3 798.9 (211) 1287.0 (144) 869.7 727.2 19.59%

4 736.5 (331) 971.7 (144) 746.7 724.1 3.12%

5 778.7 (422) 1137.5 (214) 732.9 723.8 1.25%

6 922.8 (311) 1366.7 (444) 960.7 849.4 13.10%

7 862.0 (111) 1269.7 (444) 884.1 780.2 13.31%

8 1020.0 (221) 1344.6 (444) 1192.1 1017.4 17.17%

9 898.0 (322) 1310.2 (444) 935.7 870.9 7.44%

10 1061.1 (321) 1381.8 (444) 1035.8 985.3 5.12%

11 702.25 (321) 1120.2(444) 784.45 749.1 4.71%

12 795.24 (311) 1220.6 (344) 926.03 848.1 9.18%

13 728.7 (321) 1074.4 (444) 794.32 788.3 0.76%

14 747.61 (221) 1164.5 (344) 907.51 760.6 19.31%

15 857.12 (321) 1316.6 (444) 903.78 870.2 3.85%

16 825.52 (221) 1344.3 (444) 946.78 890.2 6.35%

17 839.87 (211) 1252.9 (144) 861.38 847.6 1.62%

18 900.1 (311) 1217.8 (442) 1061.10 972.6 9.09%

19 897.99 (322) 1310.2 (444) 935.67 870.9 7.43%

20 941.54 (331) 1326.7 (144) 1033.52 1001.5 3.19%

As is shown in Table 2.5 and 2.6, RDS is significantly given the best results comparing with

classification dynamic scheduling. For all testing data, the average of the mean tardiness with RDS

is the best. Furthermore, in those tables, the dispatching rules number 2 (earliest due date), number

1 (Shortest processing time) and number 3 (minimum slack time) are the best respectively and the

worst dispatching rule is number 4(fist in first out). The proposed algorithm is improved to

optimize the performance measures (mean tardiness).So, the mean tardiness is effected directly by

EDD and SPT and indirectly by MST. The proposed technique focuses to execute the most

28

effective dispatching rules (EDD and SPT) continually to insure minimize the performance

measure. Minimum slack time (MST) is the dispatching rule that has a main impact on the fourth

control attribute (AST) in input data. So, MST has a role to calculate and minimize the performance

measure but less than EDD and SPT. Kernel ridge regression dynamic scheduling has ability to

discover the dispatching rule that gives the best results for performance measure. In order to fit

high accuracy regression models with unknown relationship between independent variables and

the target, polynomial kernel ridge regression is presented to get predictive model with high

accuracy. Polynomial kernel discovers the implicit control attributes in training data by computing

the similarity of vectors (training set).

One of the important point in incorporation KRR with dynamic scheduling is capability of KRR

to predict a high accuracy value for performance with situation that has number of control variables

(input vales) more than number of observations and also when the relationship between predictor

variables and dependent variables are nonlinear. So, KRR can perfectly predict the performance

in dynamic scheduling case with one observation and six control attributes (input values). RDS

gives the results better than CDS because RDS utilizes fraction data bigger than CDS to learn. In

other words, RDS improve all combination of dispatching rules in advance to find the best

combination in dynamic case while CDS just uses small fraction data that represent the best

performance is obtained for each simulation running and is ignored all other combinations of

dispatching rule. Therefore, the results of CDS are not quality and lacked because they are not

included all combinations of dispatching rules

29

2.5 Conclusions

In this chapter, a dynamic scheduling algorithm based on a regression technique for job shop

scheduling problems is proposed to overcome following drawbacks in the existing approaches.

First, small fraction of the available data is only used and other available data were completely

wasted because a dynamic scheduling was solved as a classification problem in most of existing

works. Second, the classification-based dynamic scheduling (CDS) algorithm requires relatively

large number of observations to cover all possible future scheduling decisions. Thus, we proposed

the regression-based dynamic scheduling (RDS) algorithm using kernel ridge regression (KRR).

KRR has a capability to predict a high accuracy value for performance with situation that has

number of control variables (input vales) more than number of observations and also when the

relationship between predictor variables and dependent variables are nonlinear. To evaluate the

efficiency of the presented RDS algorithm, the comparison between the mean tardiness of the RDS

algorithm and the CDS algorithm is done. As the simulation results, the mean tardiness of the RDS

is reduced from a minimum of 1.48% to a maximum of 70.34% from that of the CDS for simulation

model 1 and from a minimum of 0.76% to a maximum of 19.59% from that of the CDS for

simulation model 2. So, the regression-based dynamic scheduling (RDS) algorithm is significantly

given the best results comparing with classification dynamic scheduling (CDS).

30

CHAPTER 3

 New Machine Learning Algorithm for Scheduling of Complex

Semiconductor Manufacturing System

3.1 Introduction

 The semiconductor manufacturing is identified by an expanding complication of

manufacturing operations such as limitations number, accurate geometries to recognize on chips,

growing cases of automation combined with tools and costs, and high quality requirements from

the customers. There are four steps of operations of semiconductor manufacturing: wafer probing,

wafer fabrication, packing or assembly, and final test. In the wafer fabrication stage, the lot is the

minimum unit to process, and each lot consists of a fixed number of wafers. The wafer fabrication

can be represented as a procedure composed of reentrant sequential process flows. (Yugma et al.,

2015).

Depending on a semiconductor manufacturing system features such as probability return a job to

a same machine many times, changing demand through short periods, a lot of processing steps,

capacity is not balance, transforming bottlenecks, Jobs with different product types and different

proportions of each type and various machines can process same jobs, make the scheduling of a

semiconductor wafer fabrication (SWF) problem strongly NP-hard (Garey and Johnson, 1979,

Chen, 2010).

The scheduling problem in SWF is connected with the allocation multistage process with reentrant

flows on the limited number of machines. Several processing steps is required to produce a chip

layer such as photolithography, chemical-mechanical polishing (CMP), diffusion, doping, etching

31

and film deposition. Depending on the type of product, more than 700 steps may need to produce

a lot over several weeks (Mönch et al., 2011). Figure 3.1 is applied from (Yugma et al., 2015) and

presents the major of the wafer fabrication process steps.

Oxidation,

Deposition,

Diffusion

Photo-

lithography
Etch

Planarization

Ion

Implantation

Sort,

Assembly,

Final Test

Wafer Processing (Front-end)Raw Wafer,

Wafer Start

Processed

Wafer

Figure 3.1 Main process steps in a wafer fabrication

Priority dispatching rules are extensively used in SWF scheduling problem. Priority dispatching

rule determines which job among those waiting for service is to be scheduled in preference to

other. The popular shortest processing time (SPT) rule leads to maximum throughput (Conway

and Maxwell, 1962), and for minimizing the tardiness of jobs, the critical ratio (CR) rule is a best

dispatching rule. Moreover, the starvation avoidance (SA) rule can ensure high utilization of

bottlenecks (Glassey and Resende, 1988). However, there is no one dispatching rule that can be

effective well with all situations (Uzsoy et al., 1992; Holthaus and Rajendran, 1997). These

dispatching rules are easy to implement, but generally produce inconsistent results for various

accomplishment metrics (Tyan et al., 2004, Thiesse and Fleisch, 2008). As a result, the advanced

32

priority dispatching rules have been developed. Dabbas and Fowler (2003) proposed a scheduling

algorithm that combines multiple performance matrices. A dynamic multi-objective scheduling

approach for semiconductor back-end processes has been developed by Sivakumar and Gupta

(2006). Also, decision tree-based scheduling approaches have been proposed (Zhang et al., 2009;

Olafsson and Li, 2010).

We present a novel algorithm is called adjustable dispatching rule (ADR). This algorithm

calculates the weight value (𝑤𝑖) for a group of factors. When a lot arrived at a station according to

its predetermined order, a set of all weight factors should be calculated to determine the priority

of processing. A lot has the maximum sum of all weight factors can be processed first.

Then, we proposed a real coded genetic algorithm (RCGA) to optimize the weight factor values.

RCGA is considered as the effective algorithm that uses to solve the complex scheduling problems

(Mahmudy et al., 2013). RCGA consists of a machine learning technique as kernel ridge regression

or polynomial regression models for estimating fitness function of RCGA. The initial population

is generated by using Arena simulation model and it also is used as an observation data to build

the kernel ridge regression and polynomial regression models. This regression model estimates the

fitness function for RCGA. Then, the results of RCGA can be added as new observation so as to

enhance the efficiency of the regression models.

A hybrid genetic algorithm (GA) and data mining approach are presented in job shop scheduling

problems. In this work, GA is applied for generating a learning population of good solutions

(Harrath et al., 2002). Chien and Chen (2007) proposed a GA for reducing makespan of the jobs

on furnace machines under complicated process conditions and time constraints. A loading

problem in flexible manufacturing system (FMS) is proposed by using real coded GA which codes

33

a chromosome as real numbers. The real coded GA improves the system performances such as

system throughput and the balance of the system (Mahmudy et al., 2013).

One of the difficulties in applying GAs to semiconductor scheduling problems is that GAs usually

need a large amount of time to evaluate fitness. However, fitness evaluations are always

complicated due to the cost and time. Thus, it may be useful to estimate the fitness values by

developing a fitness approximation model.

Because in real manufacturing system, it will take much more effort and cost to observe the system

performance under different sets of weight values for factors, our proposed RCGA with estimated

fitness function from machine learning algorithms can be a good alternative to optimize the values

of weight values in a real fabrication processes. This approach needs small number of observations

for system performance under different sets of weight values for factors to build the prediction

model for the fitness function. Then, we can proceed to optimize the weight factors over the

generations of RCGA without further physical simulation run (or observing the actual system

performance) under different sets of weight values for factors.

In order to overcome these challenges, we proposed an adjustable dispatching rule (ADR) that

calculates weighted sum of control factors for determining which job should be scheduled first.

Compared to the existing dispatching rules, the advantage of the ADR is that priorities of waiting

jobs can be reassigned easily by changing weight values of control factors. Based on a relatively

small number of observations, the proposed algorithm can build an accurate regression model. It

may has a significant role when the cost of obtaining observations is expensive.

34

The arrangement of this chapter is as follows. In Section 3.2, real coded GA and the regression

techniques that used in this chapter are briefly described. Section 3.3 introduces the ADR and the

examples of control factors and how to calculate weighted sum of control factors to realize the

ADR. Then, the real coded GA with fitness approximation to solve the scheduling problem of

semiconductor wafer fabrication in Section 3.4. The comparison of efficiency between the

proposed algorithm and the existing dispatching rules by using a real fab simulation model in

Section 3.5, and our conclusions are given in Section 3.6.

3.2 Background

3.2.1 Real Coded GA

GA is one of the most approved evolutionary algorithm that imitate the evolution in nature.

The decision variables for the GA are typically represented as binary strings. In the binary

representation, the number of decision variables specifies the length of the chromosome. On the

other hand, the real coded GA (RCGA) presents the real number representation for decision

variables instead of the binary strings (Murugan et al., 2007).

The benefits of the RCGA as against the binary GA are follows. Real number representation

performs well compared with binary representation for numerical optimization problems

(Michalewicz, 1996). The binary coded GA needs more time to compute then the real coded GA

(Renders and Flasse, 1996). The crossover operator is considered the main operator for searching

solution space in the real coded GAs. The extensive studies of different type of crossover operators

are presented in Herrera et al., (2003).

35

3.2.2 Polynomial Regression

Polynomial regression is a well-known non-linear regression in which the relationship between

input variables and output variable is formulated as a polynomial. It is also widely used in

situations where the response is curvilinear. It can be considered to be a special case of linear

regression because it is linear with statistical estimation problems. The formulation of polynomial

regression depends on the degree of polynomial and input variables number. For example, the

second order polynomial in one variable 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥1
2 + 𝜀, the second order polynomial

in two variables 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽11𝑥1
2 + 𝛽22𝑥2

2 + 𝛽12𝑥1𝑥2 + 𝜀, and the general form of

the second order polynomial regression model

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝛽1,1𝑥1
2 + 𝛽2,2𝑥2

2 + ⋯ + 𝛽𝑝,𝑝𝑥𝑝
2 +

𝛽1,2𝑥1𝑥2 + 𝛽1,3𝑥1𝑥3 + ⋯ + 𝛽𝑝−1,𝑝𝑥𝑝−1𝑥𝑝 + 𝜀, (3.1)

where 𝑝 is the input variables number.

The number of coefficients at different number of input variables and polynomial degrees is

enumerated as shown in Table 3.1.The number of coefficients increases rapidly when the

polynomial degree increases because it is (𝑝+𝑘
𝑘

) =
(𝑝+1)(𝑝+2)⋯(𝑝+𝑘)

𝑘!
 for 𝑝 input variables and 𝑘-th

order polynomial regression.

36

Table 3.1 Number of coefficients at different polynomial degrees and number of variables

Number of

Variables

Polynomial Degree

𝐤 = 𝟏 𝐤 = 𝟐 𝐤 = 𝟑 𝐤 = 𝟒 …

1 2 3 4 5 …

2 3 6 10 16 …

3 4 10 20 35 …

4 5 15 35 64 …

5 6 21 56 106 …

6 7 28 84 165 …

7 8 36 120 246 …

8 9 45 165 355 …

9 10 55 220 499 …

10 11 66 286 686 …

… … … … … …

3.2.3 Kernel Ridge Regression

The Kernel Ridge Regression (KRR) is proposed as a framework for estimating nonlinear

predictive relations. It shows relatively consistent and good performance of prediction and can

build more accurate regression models than traditional linear regressions (Exterkate et al., 2016).

Ordinary least squares regression and ridge regression are used in KRR. The prediction result of

the ridge regression is shown in Equations (3.2) and (3.3).

𝛽 = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑦 (3.2)

�̂� = 𝑋𝛽 (3.3)

where 𝛽 is the regression coefficients and 𝞴 is the parameter of ridge regression. The main idea of

KRR is working to change the input variables to a space of high-dimensional in a nonlinear way.

37

A high-dimensional space is using to estimate a regression equation, in addition to use a penalty

term to avoid overfitting. So, the result of KRR can be written as

�̂� = 𝑦𝑇(𝐾 + 𝜆𝐼)−1𝑘 (3.4)

where 𝐾𝑖𝑗 = 𝑥𝑖𝑥𝑗 is the kernel matrix and 𝑘𝑖 = 𝑥𝑖𝑥′ is the kernel function. To get on �̂� in KRR,

we need to recalculate 𝐾 and 𝑘 instead of explicit transformations 𝑥 → ϕ(𝑥).

3.3 Adjustable Dispatching Rule (ADR)

To solve the priority of dispatching rule, ADR has been presented. When a lot arrived at a

station according to its predetermined order, a set of all weight factors should be calculated to

determine the priority of processing for waiting jobs. The semiconductor wafer fabrication model

is generated to mimic real semiconductor wafer fabrication system. So, Arena simulation is

developed for semiconductor wafer fabrication that allows the user to build simulation models and

perform experiments (Garrido, 2009). To do so we have to consider the follows.

3.3.1 Assumptions

To simplify the model, we made some assumptions for the scheduling of semiconductor

manufacturing systems with uneven setup times of the different jobs as follows:

38

1. Jobs of the same type have the same route of processing steps with same processing

times. However, a setup time before processing can vary depends on allocated machine

and job type.

2. Each station has a fixed number of parallel machines. Machines in each station are

identical in nature.

3. The preemption is not allowed.

4. There are no failures for all machines, no rework for all jobs, and no inventory limits

in the system.

3.3.2 Control Factors

When a job arrived at a station according to its predetermined order, a set of all control factors

should be calculated by using current information of the job and machines in the station. There are

10 examples of control factors with their purpose and how to calculate the values of the control

factors as shown in Table 3.2.

39

Table 3.2 The examples of control factors for semiconductor wafer fabrication

 Factor Name Purpose How to calculate the value of the factor

F1
Recipe Change

Loss

Minimizing Recipe

change loss

(Maximum loss – Current loss) / Maximum

loss

F2
Chamber

Availability

Maximizing

Chamber Availability

The number of available idle chambers to

process the type of a given product / The total

number of idle chambers

F3
Chuck

Efficiency

Minimizing Chuck

Arm Loss
{
1 if previous Chuck ≠ current Chuck

0 otherwise

F4

Device

Priority

Weight

Product with highest

priority should be

processed first.

The value for each product can be assigned

between 0 and 1 according to the priority of

the product.

F5
Moving Target

Weight

Product with highest

priority should be

processed first.

1 – (Actual output of moving / Planned output

of Moving)

F6
Lot Location

Weight

Priority according to

distance from the

machine

The value of this factor can be assigned

between 0 and 1 according to their location.

F7
Delay Time

Weight

Priority for

preventing delay

MIN{(Delay time/Threshold value for

delay),1}

F8
Wait Time

Weight

Product with largest

waiting time should

be processed first.

MIN{(Waiting time/Threshold value for

waiting),1}

F9
Lot Priority

Weight

Designated lot should

be processed first.

The value of this factor can be assigned

between 0 and 1 according to their lot priority.

F10
Designate Step

Weight

Designated step

should be processed

first.

The value of this factor can be assigned

between 0 and 1 according to their step weight.

Recipe change loss factor (𝑭𝟏) means a loss for setup time between previous work and next work

for a machine. If both previous work and next work have same recipe, there is no recipe change

loss. The value of this factor can be calculated by the ratio of (maximum loss – current loss) to

40

maximum loss for a given lot. If there is no recipe change loss (i.e., current loss is 0), the value of

𝑭𝟏 is 1. Chamber availability factor (𝑭𝟐) means how many chambers are available to process a

given lot on the machine. If all chambers are available to process a given lot, 𝑭𝟐 is 1. The value of

this factor can be calculated by the proportion of the number of available idle chambers to the idle

chambers for a given lot. It is better to process first a lot with higher value of 𝑭𝟐 for maximizing

chamber availability. The actual processing time depends on the value of 𝑭𝟐 i.e., the actual

processing time = the ideal processing time / the value of 𝑭𝟐.

Chuck efficiency factor (𝑭𝟑) represent an efficiency of chuck arm usage. Each lot has either an

odd chuck or an even chuck. If previous lot and next lot have different chucks (e.g., an odd chuck

for previous lot and an even chuck for next lot), there is no chuck arm loss. Otherwise, there is

some fixed setup time before processing next lot. A value of this factor can be assigned 0 or 1. It

is better to process first a lot with different chuck from the previous one for minimizing chuck arm

loss.

Device priority factor (𝑭𝟒) indicates the priority of the product for processing. The product with

highest value of this factor should be processed first. The value of this factor for each product can

be assigned between 0 and 1 according to the priority of the product.

Moving target factor (𝑭𝟓) represents the proportion of the unfinished output number to the planned

output number. Lot location factor (𝑭𝟔) indicates a distance from the lot to the machine.

Delay time factor (𝑭𝟕) and wait time factor (𝑭𝟖) indicate how long a given lot has been delayed

and waited for processing, respectively. The value of these factors can be calculated by the

41

minimum value of delay (or wait) time / Threshold value for delay (or wait) and 1. It means the

value of these factors cannot be exceed a value of 1.

Lot priority factor (𝑭𝟗) indicates a priority of a given lot for processing. Designate step factor

(𝑭𝟏𝟎) indicates a priority of a given step for processing.

3.3.3 Calculating Weighted Sum of Control Factors

To calculate weighted sum of control factors, a normalized weight 𝑤𝑖 should be defined for

control factor 𝐹𝑖. For the total number of control factors 𝑝, each weight 𝑤𝑖 has a value between 0

and 1. Also, the sum of all weights is equal to 1, i.e. ∑ 𝑤𝑖
𝑝
𝑖=1 = 1. For such normalized weights,

the weighted sum of control factors is simply ∑ 𝑤𝑖𝐹𝑖
𝑝
𝑖=1 .

When a machine is available, the job with the highest weighted sum of control factors is selected

from waiting jobs for processing. For example, if there are three jobs with values of three control

factors, 𝐽1(0.5,1,0.3), 𝐽2(0.8,0.2,0.5), 𝐽3(1,0,0.4), and the normalized weights are (0.5,0.3,0.2),

then the weighted sum of three jobs can be calculated as

[
0.5 1 0.3
0.8 0.2 0.5
1 0 0.4

] [
0.5
0.3
0.2

] = [
0.61
0.56
0.58

].

It means that 𝐽1 has the highest priority for processing with the normalized weights(0.5,0.3,0.2).

This example shows that job priorities can be easily reassigned by changing the normalized

weights.

42

3.3.4 Arena Simulation Model for Semiconductor Wafer Fabrication

The simulation model of semiconductor wafer fabrication is developed by using Arena

simulation software that allows the user to build simulation models and perform experiments

(Garrido, 2009). For the proposed simulation model, the various processing steps of all jobs fall

into eight stations: photolithography (PHOTO), etching (ETCH), chemical-mechanical

planarization (CMP), cleaning (CLN), chemical vapor deposition (CVD), ion implantation (IMP),

diffusion (DIFF), and metal interconnect (METAL) as shown in Figure 3.2. Moreover, arrival dock

and shop exit modules are constructed for arrival and departure of jobs, respectively.

43

Figure 3.2 Arena simulation model for semiconductor wafer fabrication

44

3.4 Real Coded GA with Fitness Approximation

In this section, the real coded GA with fitness approximation to find near-optimal weights for

control factors for the scheduling problem of semiconductor wafer fabrication is applied.

3.4.1 Flowchart of the Real Coded GA with Fitness Approximation

As shown in Figure 3.3, the flowchart of the real coded GA with fitness approximation starts

with randomly generated input variables that represent weight values of control factors. The output

variable is evaluated by using simulation model and represent performance measure that we want

to improve.

45

Figure 3.3 The flowchart of the real coded GA with fitness approximation

After generating a fixed number of input variables and output variable, these initial data can be

used not only the initial population of real coded GA, but also the observations for finding

polynomial regression coefficients.

46

The real coded GA initializes a population of solution and improves by repeatedly applying

selection, crossover and mutation operators. Parents are chosen from the initial population. Then,

offspring are produced from selected parents by using crossover and mutation operators. These

offspring have to evaluate by using a fitness function in order to generate next population. When

evaluation process is done, the real coded GA stores the best solution of this population and next

population replaces the current population iteratively until termination condition is fulfilled.

The initial data from simulation model can be used as the observations for finding of regression

coefficients to estimate the objective function of the RCGA because of the relationship between

input variables and output variable is unknown. The estimated fitness function can be improved

by adding new observation from the best solution of the real coded GA repeatedly.

3.4.2 Chromosome Representation

A chromosome consists of real values whose size is equal to the number of the weight values.

Each element of the chromosome 𝑥1, 𝑥2, ⋯ , 𝑥𝑝 corresponds to the real values for 𝑝 weight values

for control factors. The value of 𝑥𝑖 is maintained between 𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥. 𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥 is the

minimum and maximum value of weights, respectively.

3.4.3 Selection

The selection procedure is applied to select parents from the current population to perform

genetic operations. In this chapter, tournament selection method is applied for select parents. The

47

tournament selection includes a number of running tournaments of some individuals randomly

selected from the current population. Then, the winners of each tournament are selected. The

advantage of the tournament selection is that it can be easily adjusted by modifying the size of the

tournament. If the tournament size is smaller, weak individuals have a larger chance to be selected.

3.4.4 Crossover Operator

To create a new generation, the operator of crossover is typically applied to a pair of individuals

to generate two offspring (Goldberg, 1989). In this chapter, we use well-known single-point

crossover operator. Let us assume that 𝑃1 = (𝑐1
1, 𝑐2

1, … , 𝑐𝑛
1) and 𝑃2 = (𝑐1

2, 𝑐2
2, … , 𝑐𝑛

2) are two

parents. A position 𝑖 ∈ {1,2, … , 𝑛 − 1} is chosen randomly and two offspring are produced as 𝑂1 =

(𝑐1
1, 𝑐2

1, … , 𝑐𝑖
1, 𝑐𝑖+1

2 , … , 𝑐𝑛
2) and 𝑂2 = (𝑐1

2, 𝑐2
2, … , 𝑐𝑖

2, 𝑐𝑖+1
1 , … , 𝑐𝑛

1).

3.4.5 Mutation Operator

In uniform mutation proposed by Michalewicz (1996), a gene is replaced with a random value

between user-specified upper and lower bounds. In this chapter, the uniform mutation operator is

applied. From a point 𝑥 = (𝑐1, 𝑐2, … , 𝑐𝑛), the muted point 𝑥∗ = (𝑐1
∗, 𝑐2

∗, … , 𝑐𝑛
∗) is created as 𝑐𝑖

∗ =

𝑐𝑖
𝑙 + 𝑟(𝑐𝑖

𝑢 − 𝑐𝑖
𝑙), where 𝑟 is a random number between 0 and 1and is uniform distribution. 𝑐𝑖

𝑙 and

𝑐𝑖
𝑢 is lower bound and upper bound of the 𝑖-th gene, respectively.

48

3.4.6 Fitness Evaluation

The objective function of the optimization problem should be formulated into a fitness function

used to measure the goodness of the solution (Mahmudy et al., 2013). However, due to features of

the semiconductor manufacturing systems, the fitness function cannot be formulated using existing

mathematical expressions for our problem. That is why we need to use an advanced regression

model as a fitness function.

3.4.6.1 Polynomial Regression

In order to estimate the fitness function of the real coded GA, a third-order polynomial

regression model is applied as follows:

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝛽1,1𝑥1
2 + 𝛽2,2𝑥2

2 + ⋯ + 𝛽𝑝,𝑝𝑥𝑝
2 +

𝛽1,2𝑥1𝑥2 + 𝛽1,3𝑥1𝑥3 + ⋯ + 𝛽𝑝−1,𝑝𝑥𝑝−1𝑥𝑝 + 𝛽1,1,1𝑥1
3 + 𝛽2,2,2𝑥2

3 + ⋯ +

𝛽𝑝,𝑝,𝑝𝑥𝑝
3 + 𝛽1,1,2𝑥1

2𝑥2 + 𝛽1,1,3𝑥1
2𝑥3 + ⋯ + 𝛽𝑝,𝑝,𝑝−1𝑥𝑝

2𝑥𝑝−1 +

𝛽1,2,3𝑥1𝑥2𝑥3 + 𝛽1,2,4𝑥1𝑥2𝑥4 + ⋯ + 𝛽𝑝−2,𝑝−1,𝑝𝑥𝑝−2𝑥𝑝−1𝑥𝑝 + 𝜀, (3.5)

Where 𝑝 is the number of input variables. The polynomial coefficients 𝛽’s are calculated to

minimizing the mean square error (MSE) of the observations.

3.4.6.2 Kernel Ridge Regression

As is shown in equation 3.4 kernel ridge regression has kernel trick that is distinguished from

ordinary ridge regression. Kernel trick increases the improvement of computational efficiency.

49

Selecting ϕ that works to determine an accurate kernel function 𝑘𝑖 (means choosing the appropriate

kernel) is the important process to succeed of kernel trick. So, we present polynomial kernel to

incorporate with ridge regression to estimate the fitness function of the real coded GA. The

parameters of KRR are optimized to predict a high accuracy of regression model.

3.5 Experimental Studies

3.5.1 Problem Description

As shown in Figure 3.2, there is 8 stations and each station has fixed number of machines as

shown in Table 3.3. As mentioned in Section 3.3.1, machines in each station are identical in nature.

We assume that all physical distances between one station and another station are equal to 100

feet. There are 10 automated guided vehicles (AGVs) with same speed of 100 feet/min for

transportation.

Table 3.3 The number of machines in each station

Station Number of Machines Station Number of Machines

PHOTO 10 ETCH 4

IMP 3 METAL 4

CLN 12 CVD 3

DIFF 15 CMP 2

There are three types of jobs, 𝐽1, 𝐽2 and 𝐽3, in the simulation model. The proportion of each type of

jobs is 50% of 𝐽1, 30% of 𝐽2 and 20% of 𝐽3. To generate step information for each type of jobs, 20

different layers are made as shown in Table 3.4. For each layer, there are step information with

pairs of station name and processing time. Then, the sequence of layer IDs for the type of 𝐽1 is

50

assigned from layer ID 1 to layer ID 20 in numerical order. The remaining sequences of layer IDs

for the type of 𝐽2 and 𝐽3 are assigned randomly as shown in Table 3.5.

Table 3.4 Step information of 20 different layers

Layer ID Step Information (Station name, Processing time (min))

1
(IMP,30) → (IMP,40) → (DIFF,300) → (PHOTO,60) → (DIFF,250) →

(CLN,35) → (CLN,25)

2 (PHOTO,55) → (ETCH,40) → (CLN,25) → (CLN,30)

3 (PHOTO,62) → (IMP,45) → (CLN,25)

4 (PHOTO,62) → (METAL,50) → (CLN,25) → (CVD,30) → (DIFF,300)

5 (PHOTO,62) → (IMP,50) → (IMP,45)

6 (PHOTO,60) → (ETCH,50) → (CLN,35) → (CVD,35)

7
(PHOTO,55) → (ETCH,40) → (CLN,25) → (CLN,30) → (CMP,60) →

(CLN,30)

8 (PHOTO,62) → (METAL,55) → (CLN,25) → (ETCH,40)

9 (PHOTO,62) → (ETCH,30) → (CLN,25) → (CVD,40)

10
(PHOTO,60) → (DIFF,200) → (DIFF,180) → (CLN,35) → (CLN,25) →

(METAL,55)

11 (PHOTO,60) → (CVD,30) → (CLN,35) → (CLN,25)

12
(PHOTO,55) → (ETCH,40) → (ETCH,45) → (CLN,25) → (CLN,30) →

(DIFF,250) → (CMP,55) → (CLN,30)

13 (PHOTO,62) → (METAL,45) → (CLN,25) → (METAL,50)

14 (PHOTO,60) → (DIFF,400) → (CLN,35) → (CLN,25)

15
(PHOTO,62) → (ETCH,35) → (METAL,45) → (CLN,25) → (CVD,35) →

(CVD,40)

16 (PHOTO,60) → (CVD,30) → (CLN,35) → (CLN,25)

17 (DIFF,200) → (CLN,35) → (CLN,25)

18
(PHOTO,55) → (ETCH,40) → (CLN,25) → (CLN,30) → (CMP,60) →

(CLN,30)

19 (PHOTO,62) → (METAL,50) → (CLN,25)

20 (PHOTO,55) → (ETCH,50) → (CLN,25) → (CLN,30) → (DIFF,400)

51

Table 3.5 Sequence of layer IDs for each type of jobs

Type of jobs Sequence of layer IDs

J1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

J2 13,5,14,6,4,19,11,9,8,15,3,7,16,1,18,12,17,2,20,10

J3 14,11,7,15,2,12,9,18,16,20,5,3,8,1,6,19,17,4,10,13

3.5.2 Experimental Setup

Simulation runs were conducted by executing the simulation model for 10 days of warm-up

period to avoid startup bias and 30 days of simulation period. To get the observation data for fitness

approximation, 50 different set of weight values are randomly generated for PHOTO station. For

each simulation run with each set of weight values, the output variable is labeled by obtaining the

average waiting time for all jobs processed on the PHOTO station in the simulation period. The

waiting time of the job can be calculated as the difference between arrival time of the job and

process start time of the job as shown in Figure 3.4.

Waiting time Loss Ideal processing time

Station

arrival time

Process

start time

Process

end time

Actual processing time

Figure 3.4 The waiting time of the job

After getting the observation data, regression coefficients are calculated by minimizing mean

square error (MSE) of the observation for fitness approximation. Then, 10 of 50 observation data

are randomly chosen for the initial population.

52

The population size, selection method, crossover and mutation operators, crossover and mutation

rates, mutation probability, the number of individuals kept for the elitism, and the termination

condition are fixed for a uniform testing environment as shown in Table 3.6.

Table 3.6 Testing environment for GAs

Parameter Binary coded GA Real coded GA

The population size 10

Selection method Tournament (size = 3)

Crossover operator Single-point crossover

Mutation operator Uniform mutation

Crossover rate 0.6

Mutation rate 0.3

Mutation probability 0.02 (for each bit) 0.2 (for each gene)

Number of individuals

kept for the elitism
1

Termination condition
When the fitness value of best solution of current generation

has reached a plateau (5 consecutive generations)

3.5.3 Experimental Results

3.5.3.1 Comparison of the Existing Dispatching Rules, Fixed Weights and GAs without

Fitness Approximation

 The simulation results with the existing dispatching rules such as FIFO, SPT, EDD, and fixed

weights (FW) are obtained to compare with the near-optimal solution of GAs, i.e. binary coded

GA (BCGA) and real coded GA (RCGA), without fitness approximation (FA). GAs without FA

53

can be operated with the original fitness evaluation that means obtaining an output variable from

the simulation model.

Table 3.7 Comparison of the average waiting times for the existing dispatching rules, fixed

weights (FW) and GAs without fitness approximation (FA)

 Average Waiting Time (min)
Relative Improvement

FIFO Fixed Weights

FIFO 52.65 - 10.08%

SPT 115.92 -120.17% -97.98%

EDD 91.09 -73.01% -55.58%

FW 58.55 -11.21% -

BCGA 50.44 4.19% 13.85%

RCGA 48.97 6.99% 16.36%

As shown in Table 3.7, compared with FIFO, the average waiting time of BCGA and RCGA is

reduced by 4.19% and 6.99%, respectively. Moreover, compared with fixed weights, the average

waiting time of BCGA and RCGA is reduced by 13.85% and 16.36%, respectively.

The reason why the average waiting time of the FIFO is not the smallest is because the waiting

time of other jobs which are waiting in the station becomes longer if the setup time, e.g. recipe

change loss and chuck loss, of jobs currently being processed becomes longer. Moreover, the

average waiting time of the SPT rule is the worst because the processing of jobs with a relatively

large processing time is delayed due to the processing of jobs with a small processing time.

54

3.5.3.2 Comparison of GAs with and without Fitness Approximation Polynomial

Regression (FAPR)

To compare performance of GAs with and without FAPR, the average waiting time and the

number of simulation runs are obtained. GAs without FA can be operated with the original fitness

evaluation that means obtaining an output variable from the simulation model. On the other hand,

GAs with FA can be operate using same estimated fitness function consists of polynomial

regression coefficients and input variables.

Table 3.8 Comparison of GAs with and without fitness approximation (FAPR)

 Average Waiting Time (min) Number of

Simulation Runs
MEAN STD MIN

BCGA 53.70 2.89 50.44 160

BCGA with FAPR 55.38 3.28 49.51 23

RCGA 53.45 3.01 48.97 120

RCGA with FAPR 53.02 2.54 48.71 28

As shown in Table 3.8, compared with BCGA without FA, the minimum value of the average

waiting time of BCGA with FA is reduced by 1.84%. Moreover, the number of simulation runs of

BCGA with FA is reduced by 85.63% compared with BCGA without FA. On the other hand,

compared with RCGA without FA, the minimum value of the average waiting time of real coded

GA with FA is reduced by 0.53%. Moreover, the number of simulation runs of real coded GA with

FA is reduced by 76.67% compared with real coded GA without FA.

Until the termination condition of GA was satisfied, BCGA and RCGA required 160 and 120

simulation runs, respectively. In contrast, to get better results than the minimum of average waiting

times of BCGA and RCGA, BCGA with FA and RCGA with FA required 23 and 28 simulation

55

runs, respectively. Therefore, the advantage of GAs with FA is that the number of simulation runs

is significantly reduced. When our fitness approximation shows very good estimation of the

original fitness function, i.e. obtaining an output variable from the simulation model, GAs with

FA can get reduced the average waiting time with relatively small number of simulation runs

compared with GAs without FA.

3.5.3.3 Comparison of GAs with and without Fitness Approximation Kernel Ridge

Regression (FAKRR)

To compare performance of GAs with and without FAKRR, the average waiting time and the

number of simulation runs are obtained. GAs without FA can be operated with the original fitness

evaluation that means obtaining an output variable from the simulation model. On the other hand,

GAs with FAKRR can be operated using same estimated fitness function consists of the KRR

model and input variables.

Table 3.9 Comparison of GAs with and without fitness approximation (FAKRR)

 Average Waiting Time (min) Number of

Simulation Runs
MEAN STD MIN

BCGA 53.70 2.89 50.44 160

BCGA with FAKRR 51.88 1.68 49.32 27

RCGA 53.45 3.01 48.97 120

RCGA with FAKRR 49.82 1.83 46.50 29

56

As shown in Table 3.9, compared with BCGA without FAKRR, the minimum value of the average

waiting time of BCGA with FA is reduced by 2.22%. Moreover, the number of simulation runs of

BCGA with FA is reduced by 83.13% compared with BCGA without FA. On the other hand,

compared with RCGA without FA, the minimum value of the average waiting time of real coded

GA with FA is reduced by 5.04%. Moreover, the number of simulation runs of real coded GA with

FA is reduced by 75.83% compared with real coded GA without FA.

Until the termination condition of GA was satisfied, BCGA and RCGA required 160 and 120

simulation runs, respectively. In contrast, to get better results than the minimum of average waiting

times of BCGA and RCGA, BCGA with FA and RCGA with FA required 27 and 29 simulation

runs, respectively. Therefore, the advantage of GAs with FA is that the number of simulation runs

is significantly reduced. When our fitness approximation shows very good estimation of the

original fitness function, i.e. obtaining an output variable from the simulation model, GAs with

FA can get reduced the average waiting time with relatively small number of simulation runs

compared with GAs without FA.

3.6 Conclusions

In this chapter, a new machine learning algorithm for scheduling of complex semiconductor

manufacturing system is proposed. The efficient algorithms that consists of the adjustable

dispatching rule (ADR) and the real coded genetic algorithm (GA) with fitness approximation has

been proposed for scheduling problem of semiconductor wafer fabrication. For the ADR, we

introduced the control factors and calculating weighted sum of control factors. Compared to the

57

existing dispatching rules, the advantage of the ADR is that priorities of waiting jobs can be

reassigned easily by changing weight values of control factors. In order to find near-optimal weight

values of the ADR, the real coded GA with fitness approximation is also proposed. For the fitness

approximation, kernel ridge regression and polynomial regression are applied by using relatively

small number of fitness evaluation. The performance of the real coded GA with fitness

approximation is evaluated by using an extensive experiment with existing dispatching rules, fixed

weights and GAs without fitness approximation. Compared with FIFO as one of the existing

dispatching rule, the average waiting time of real coded GA without fitness approximation is

reduced by 6.99%. Moreover, compared with fixed weights, the average waiting time of real coded

GA without fitness approximation is reduced by 16.36%. The number of simulation runs of binary

coded GA with fitness approximation polynomial regression (FAPR) and real coded GA with

FAPR is reduced by 85.63% and 76.67%, respectively, compared with GAs without FA. The

number of simulation runs of binary coded GA with fitness approximation kernel ridge regression

(FAKRR) and real coded GA with FAKRR is reduced by 83.13% and 75.83%, respectively,

compared with GAs without fitness approximation. The experiments show that the ADR and the

real coded GA with both finesses approximation can find near-optimal solution of the scheduling

problem for semiconductor wafer fabrication with relatively small number of fitness evaluation. It

can play an important role when the cost of evaluating fitness is expensive.

58

CHAPTER 4

 New Kernelized General Dominance Weight for Ranking of

Scheduling Factors in Semiconductor Manufacturing System

4.1 Introduction

In semiconductor manufacturing, wafers are fabricated through complex multi processes.

Wafer fab facilities typically consist of several general process modules: photolithography

(PHOTO), etching (ETCH), chemical-mechanical planarization (CMP), cleaning (CLN), chemical

vapor deposition (CVD), ion implantation (IMP), diffusion (DIFF), and metal interconnect

(METAL). In a fab, several types of products are produced such as DRAM, SSD.

Due to their structures such as numerous product types, demand fluctuations, and hundreds of

processing steps (Chen, 2010), the scheduling problem of the semiconductor wafer fabrication is

well known NP-hard problem (Garey and Johnson, 1979). To resolve the scheduling problem,

many dispatching rules such as shortest processing first (SPT), critical ratio (CR) and starvation

avoidance (SA), and genetic algorithm (GA) based approaches are extensively used (Conway and

Maxwell, 1962; Glassey and Resende, 1988; Harrath et al., 2002; Chien and Chen, 2007;

Mahmudy et al., 2013). However, it is difficult to use these scheduling algorithms for real-life

semiconductor wafer fabrication because of their dynamic features such as change of product

demand, unpredictable machine breakdown, and shifting bottleneck. Depending on the type of

products, wafer fabrications are carried out along the processes specified by the corresponding

product recipes.

59

In Chapter 3, the adjustable dispatching rule (ADR) shows a successful scheduling result in

semiconductor manufacturing processes with multiple types of jobs by calculating weighted sum

of control factors for determining priorities of waiting lots. In particular, the ADR facilitates to

dynamically reassign priorities of waiting lots in process by determining weights of control factors

according to the conditions of fabrication processes.

In this chapter, we propose a novel variable ranking algorithm, kernelized general dominance

weight (KGDW), to improve the scheduling performance with the ADR. The proposed model

employs the relevance vector machine (RVM) regression model (Tipping, 2001) for the

nonlinearity between inputs and output variables in the framework of the general dominance

weight method (Budescu, 1993; Azen and Budescu, 2003,Kim et al., 2017) for the importance

assessment of the inputs. With the proposed variable ranking model, the importance of control

factors about wafer fabrication processes are scored in relative scales, and the resultant important

scores are employed for the weights of control factors for scheduling with the ADR. By taking the

importance scores as the weight parameters in the ADR scheduling.

This chapter is organized as follows. In Section 4.2, the RVM regression technique and the

traditional variable ranking algorithms are briefly described. Then, we propose the kernelized

GDW in Section 4.3. The performance of our proposed algorithm is evaluated with existing

variable ranking algorithms using simulation results in Section 4.4. Section 4.5 finally presents the

conclusions.

60

4.2 Background

4.2.1 Variable Ranking Algorithms

The key method for variable ranking methods is measuring the relative contribution of the

predictor variables (𝑋𝑖) in dependent variables (𝑌𝑖). In order to measure the variables importance,

there are some variable ranking algorithms that are depending on regression techniques can do

that.

Chao, et al. (2008) presented six variable ranking methods that depending on multiple linear

regression. They are used for health studies. Gazzola, et al. (2018) presented a new technique that

estimates the importance for each input variable within multiple steps process. Zhao, et al. (2017)

extended the relative importance method from linear regression to additive models: a semi-

parametric model type. A linear regression model implicitly assumes that the advertising channels

contribute to revenue in a linear manner. As it is generally a restrictive assumption to expect the

underlying data generation process of any real dataset to be linear, the resulting attribution values

are very likely to be inaccurate. Nonlinear parametric models, such as logistic regression, might

be viable alternatives. Nonetheless, it is still difficult to justify postulating any pre-assumed model

structure. In other words, a good model should allow for far greater flexibility in unfolding the

underlying relationship. A non-parametric component provides flexibility. As such, semi-

parametric approaches have the potential to be an important auxiliary modeling paradigm for

indirect attribution approaches(Zhao, et al. 2017).

61

4.2.1.1 Variable Importance in Projection (VIP)

VIP determines the importance percentage of independent variables depending on weights that

contributes in value of Y by using Partial Least Squares (PLS) on (X, y) (Wold, et al. 2001).

Partial Least Squares Regression (PLS) is a recent method that creates and integrates features from

primary structure and linear regression. This technique aims to estimate a group of dependent

variables from of regressors or predictors. PLS uses latent variables to extract the prediction of

dependent variables from the regressors by using orthogonal factors. It is preferred to use when

we need to predict dependent variables in case there are a huge number of predictors variables.

Partial Least Squares tries to discover the covariance between independent variables and

dependent variables by finding latent variables. Original predictor variables can be explained as a

linear combination of latent variables. A good prediction performance depends on a selection the

number of latent variables (Hwang, et al. 2014).

4.2.1.2 Variable Permutation

This method studies how unexpected permutations of 𝑋1 affect the residual sum of squares of

a regression model, while conditioning on the values of 𝑋2, 𝑋3, … , 𝑋𝑝 in order isolate the relative

importance of 𝑋1 from that of all other input variables. Its procedure consists of two loops and

may be summarized by the following some steps(Strobl et al. 2008).

62

4.2.1.3 R-relief

Relief algorithm is successful and general predictor estimators. It can recognize conditional

dependencies between predictors and dependent variables in regression and classification. In

addition, their quality estimates have a natural interpretation. R-RELIEF relies on a particular,

intuitively meaningful idea of what makes an input variable important. According to this idea,

input variable 𝑋1 is important if it satisfies two conditions: I) it separates observations with

different output value; II) it does not separate observations with similar output value (Šikonja and

Kononenko 2003).

4.2.1.4 Relative Weights

The Relative Weights method divides the coefficient of determination 𝑅2 of multiple linear

regression to a group of orthonormal components that be as a result from independent variables. It

makes a group of new independent variables which have the relationship with the primary

variables and are not correlate to each other. The respond variables can be predicted from a new

group of predictors variables that produces regression coefficients.

4.2.1.5 General Dominance Weights

This method divides the coefficient of determination 𝑅2 from multiple linear regression by

repeated consecutive aggregate of squares on 𝑋1. It defines importance in a unique way by

comparing pairs of predictors (from a selected model) across all subset models (subsets of the

63

predictors) to make the determination of relative importance or dominance. Dominance analysis

is an axiomatic and engaging procedure for determining predictor importance that requires only a

measure of model fit (e.g., R2) to determine the additional contribution of any given predictor to

any specific subset model. In linear regression, whether model fit is defined as the ratio of variance

in the response accounted for by the predictors or the squared correlation between the observed

and the predicted responses, the same R2 measure is obtained (Azen and Budescu 2003).

4.2.2 Relevance Vector Machine (RVM) Regression

The RVM proposed by Tipping (2001) is a kernel-based machine learning algorithm that uses

Bayesian inference to get sparse solutions for classification and regression problems. It can be

used as an alternative to the support vector machine (SVM). Compared to the SVM, the sparsity

of solutions is the most recognizable advantage of the RVM. It means the number of support

vectors of the SVM is bigger than the number of relevance vectors of RVM. So, the RVM is

significantly more than SVM and the posterior distributions of most weights in the RVM are

rapidly peaked around zero (Samui et al., 2011; Hwang et al., 2014; Hwang and Jeong, 2018).

In supervised learning, there are training observations{𝐱𝑖, 𝑦𝑖}𝑖=1
𝑁 . The RVM regression technique

may be explained by the form:

𝑦 = 𝑓(𝐱) + 𝜖, (4.1)

64

where 𝜖~𝑁(0, 𝛽−1) and the first term of (1) can be denoted by 𝑓(𝐱) = 𝐰T𝝓(𝐱) with a weight

vector 𝐰 and a vector of basis functions 𝝓(𝐱) = [𝜙1(𝐱), … , 𝜙𝑁(𝐱)]T.

The conditional probability of a weight vector 𝐰 given the diagonal matrix 𝐀 as the

hyperparameter can be explained as 𝑝(𝐰|𝐀)~𝑁(𝐰|𝟎, 𝐀−𝟏) = ∏ 𝑁(w𝑖|0, 𝐴𝑖𝑖
−1)𝑁

𝑖=1 because an

automatic relevance determination (ARD) prior. Also, a kernel function 𝛫(𝐱, 𝐱′) can be used

instead of a basis function 𝜙𝑖(𝐱) = 𝛫(𝐱, 𝐱𝒊).

Due to obtain the noise precision 𝛽 and the prior precision 𝐀, the maximum likelihood estimation

can be applied with the likelihood function as follows:

𝑝(𝐲|𝐗, 𝐀, 𝛽) = ∫ 𝑝(𝐲|𝐗, 𝐰, 𝛽)𝑝(𝐰|𝐀)𝑑𝐰

~𝑁(𝟎, 𝛟𝐀−𝟏𝛟𝐓 + 𝛽−1𝐈) (4.2)

where 𝛟 is a M x M matrix and i-th row is 𝜙𝑖(𝐱)T (Son and Lee, 2016).

4.3 Kernelized General Dominance Weight

We present the kernelized GDW technique to rank the importance of each control factor to

improve the system performance of semiconductor wafer fabrication. The GDW is proposed by

Budescu (1993) and refined by Azen and Budescu (2003) to obtain variable importance using

variance contributions of all pairs of variables.

65

The kernelized GDW is based on the framework of the GDW adopting the RVM regression

technique for estimating the effect of a variable of interest on the predictive performance in

consideration of non-linear relationships between the inputs and output. For the simplicity of the

following description, the RVM regression model can be written as

𝑦 = 𝑓(𝐱) + 𝜀, (4.3)

where 𝑓 is the predictive function of the regression model, and 𝐱 is an input feature vector.

This method decomposes the 𝑅2 of model (4.3) via iterative sequential sums of squares on 𝑋𝑗. Its

procedure may be summarized by the next steps:

Step 1:

 The procedure of the proposed method for the importance of variable 𝑋𝑗 for 𝑗 = 1, … , 𝑝 is

as follows. Let 𝑆𝑡 for the indexes 𝑡 = 1, … , 2𝑝 − 1 be the subsets of 𝑆 = {𝑋1, 𝑋𝟐, … , 𝑋𝑝} ∖

{𝑋𝑗} and 𝐱(𝑆𝑡) be the input vector of the variables in 𝑆𝑡.

 For each subset 𝑆𝑡 for 𝑡 = 1, … , 2𝑝 − 1, repeat the steps 2-4.

Step 2:

 Using the variables in 𝑆𝑡, train the model in (4.3) with the training dataset and compute the

pseudo coefficient of determination with the testing dataset, 𝑅𝑆𝑡

2 , as

66

𝑅𝑆𝑡

2 = 1 −
𝑆𝑆𝐸𝑆𝑡

𝑆𝑆𝑇

 𝑆𝑆𝐸𝑆𝑡
= ∑ (𝑦𝑖 − 𝑓 (𝐱𝑖

(𝑆𝑡)
))

2

𝑖 is sum of squared errors with the testing dataset

 𝑆𝑆𝑇 = ∑ (𝑦𝑖 − �̅�)2
𝑖 is sum of squared total with the testing dataset

Step 3:

 Using the variables in 𝑆𝑡
′ = 𝑆𝑡 ∪ {𝑋𝑗}, train the model in (4.3) with the training dataset and

compute the pseudo coefficient of determination with the testing dataset 𝑅𝑆𝑡
′

2 .

𝑅𝑆𝑡∪{𝑋𝑗}
2 = 1 −

𝑆𝑆𝐸𝑆𝑡
′

𝑆𝑆𝑇

 𝑆𝑆𝐸𝑆𝑡
′ = ∑ (𝑦𝑖 − 𝑓 (𝐱𝑖

(𝑆𝑡
′)

))

2

𝑖 is sum of squared errors with the testing dataset

Step 4:

 Compute the difference of the testing performance between the models using the subsets

with 𝑋𝑗 and without 𝑋𝑗 as

Δ𝑆𝑡
= 𝑅𝑆𝑡

′
2 − 𝑅𝑆𝑡

2 . (4.4)

In (4.4), we employ the pseudo coefficient of determination with the testing dataset, 𝑅𝑆𝑡

2 of the

models instead of the coefficient of determination, 𝑅2, used in the original GDW, wherein 𝑅2 can

be limited to precisely quantify the importance of variables in terms of prediction with nonlinear

67

predictive models. Although the values of Δ𝑆𝑡
 are expected to increase from zero as much as the

focal variable improves the model performance, (4.4) can result in negative values in cases of low

importance. That is, the model performance can be degenerated by taking the focal variable as

model overfitting or increase of noise (unnecessary inputs).

Step 5:

 Calculate the variable importance of 𝑋𝑗 averaging out the difference of the testing

performance Δ𝑆𝑡
 with weights over all the subsets as

𝑅𝐼𝑗 =
1

𝑝
∑ (

1

(
𝑝−1

𝑘
)

∑ Δ𝑆𝑡𝑡:|𝑆𝑡|=𝑘)
𝑝−1
𝑘=0 (4.5)

A first “inner” average (within parentheses) considers all possible RVM regression models on a

given number of input variables. To be specific, the term within parenthesis contains a sum that

runs over all subsets 𝑆𝑡 whose cardinality (number of input variables) is equal to 𝑘; there are

(
𝑝 − 1

𝑘
) such subsets, and so they represents the increase in pseudo coefficient of determination

yielded by the addition of 𝑋1 to the input variables of a RVM regression model, averaged out over

all RVM regression models on 𝑘 input variables (Grömping, 2009). An outer average (outside the

parentheses) averages out all inner averages across all possible numbers of input variables. The

sum outside the parentheses runs over all possible 𝑘 values, from 0 (no input variable) to 𝑝 − 1

(all input variables other than 𝑋1). Since there are a total of 𝑝 such values, the ratio
1

𝑝
 normalizes

the sum to an average.

68

4.4 Simulation Studies

4.4.1 Simulation Model Description

In this section, the simulation model developed using Arena software is briefly introduced for

getting observations to evaluate performance of the kernelized GDW algorithm. The simulation

model generates reports immediately when a simulation run is done (Garrido, 2009). Due to its

features such as supporting hierarchical architecture and object-oriented programming, the Arena

is a powerful modeling simulation tool for diverse areas including manufacturing, logistics,

transportation and data communication (Hammann and Markovitch, 1995).

Based on sample data, processing steps obtained from a semiconductor manufacturing company

Then, the precedence constraints between two modules can be found using also sample data of

processing steps.

As shown in Figure 4.1, the eight modules and moving sequences between two modules are

depicted as rounded rectangles and arrows, respectively. Using the simulation model is developed

with eight modules: PHOTO, ETCH, CMP, CLN, CVD, IMP, DIFF and METAL.

69

PHOTO ETCH IMPCLN DIFFCVDCMP METAL

Figure 4.1 Semiconductor wafer fab modules and moving sequences

As shown in Table 4.1, the number of identical machines for each module are carefully determined

to achieve a reasonable load balance of the simulation model. For the transportation between two

different modules, we also assume that all distances between two different modules are equal to

100 feet, and 10 automated guided vehicles (AGVs) are randomly located.

Table 4.1 The number of machines in each module

Module

Number of Machines

Module

Number of Machines

PHOTO 10 ETCH 4

IMP 3 METAL 4

CLN 12 CVD 3

DIFF 15 CMP 2

70

For the entities of the simulation model, i.e., wafer lots, there are three types of products 𝑃1, 𝑃2

and 𝑃3. The proportion of each product type is assigned 50% of 𝑃1, 30% of 𝑃2, and 20% of 𝑃3. It

means that if the average inter-arrival time of all products is 60 min, the average inter-arrival time

of 𝑃1, 𝑃2 and 𝑃3 is 120 min, 200 min, and 300 min, respectively.

As shown in Table 4.2, the sample data of processing steps obtained from a semiconductor

manufacturing company consists of 20 layers and 94 processing steps with pairs of the name of

module and ideal processing time. The ideal processing time is the processing time for a given step

without setup time.

71

Table 4.2 The sample data of the processing steps

Layer

ID

No of

Steps Processing Steps (Module name, Ideal processing time (min))

1 7
(IMP,30) → (IMP,40) → (DIFF,300) → (PHOTO,60) → (DIFF,250) →

(CLN,35) → (CLN,25)

2 4 (PHOTO,55) → (ETCH,40) → (CLN,25) → (CLN,30)

3 3 (PHOTO,62) → (IMP,45) → (CLN,25)

4 5 (PHOTO,62) → (METAL,50) → (CLN,25) → (CVD,30) → (DIFF,300)

5 3 (PHOTO,62) → (IMP,50) → (IMP,45)

6 4 (PHOTO,60) → (ETCH,50) → (CLN,35) → (CVD,35)

7 6
(PHOTO,55) → (ETCH,40) → (CLN,25) → (CLN,30) → (CMP,60) →

(CLN,30)

8 4 (PHOTO,62) → (METAL,55) → (CLN,25) → (ETCH,40)

9 4 (PHOTO,62) → (ETCH,30) → (CLN,25) → (CVD,40)

10 6
(PHOTO,60) → (DIFF,200) → (DIFF,180) → (CLN,35) → (CLN,25) →

(METAL,55)

11 4 (PHOTO,60) → (CVD,30) → (CLN,35) → (CLN,25)

12 8
(PHOTO,55) → (ETCH,40) → (ETCH,45) → (CLN,25) → (CLN,30) →

(DIFF,250) → (CMP,55) → (CLN,30)

13 4 (PHOTO,62) → (METAL,45) → (CLN,25) → (METAL,50)

14 4 (PHOTO,60) → (DIFF,400) → (CLN,35) → (CLN,25)

15 6
(PHOTO,62) → (ETCH,35) → (METAL,45) → (CLN,25) → (CVD,35) →

(CVD,40)

16 4 (PHOTO,60) → (CVD,30) → (CLN,35) → (CLN,25)

17 3 (DIFF,200) → (CLN,35) → (CLN,25)

18 6
(PHOTO,55) → (ETCH,40) → (CLN,25) → (CLN,30) → (CMP,60) →

(CLN,30)

19 3 (PHOTO,62) → (METAL,50) → (CLN,25)

20 5 (PHOTO,55) → (ETCH,50) → (CLN,25) → (CLN,30) → (DIFF,400)

72

In order to assign the processing steps for 𝑃1, layer ID are chosen from 1 to 20 in numerical order.

Then, the processing steps for 𝑃2 and 𝑃3 are assigned by shuffling the sequence of 𝑃1 as shown in

Table 4.3.

Table 4.3 Sequence of layer IDs for each product type

Product Type Sequence of Layer IDs

𝐏𝟏 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

𝐏𝟐 13,5,14,6,4,19,11,9,8,15,3,7,16,1,18,12,17,2,20,10

𝐏𝟑 14,11,7,15,2,12,9,18,16,20,5,3,8,1,6,19,17,4,10,13

4.4.2 Experimental Setup

In order to get training observations for the kernelized GDW algorithm, the description of the

experimental setup is as follows. Each simulation run is executed 30 days of simulation period

with 10 days of warm-up to prevent startup bias. First, 100 different set of weight values for 10

control factors, i.e. recipe change loss (𝑭𝟏), chamber availability (𝑭𝟐), chuck efficiency (𝑭𝟑),

device priority (𝑭𝟒), moving target (𝑭𝟓), lot location (𝑭𝟔), delay time (𝑭𝟕), wait time (𝑭𝟖), lot

priority (𝑭𝟗), and designate step factor (𝑭𝟏𝟎), are randomly generated as input variables. The more

detailed description for control factors, i.e. the purpose of each control factor and how to calculate

the value of control factors, can be found in Chapter 3. The output variable, average loss, is

obtained from the result of each simulation run. The average loss means the difference average of

time between actual processing time and ideal processing time for all lots processed in the

simulation period as shown in Figure 4.2.

73

Waiting time Loss Ideal processing time

Station

arrival time

Process

start time

Process

end time

Actual processing time

Figure 4.2 The Loss time for all processed lots

4.4.3 Experimental Results

In this experiment, we focus on the two control factors that are related with the efficiency of

the machines in PHOTO module. First, the recipe change loss factor indicates a loss of efficiency

cause by various amount of setup time for the change of recipe that requires when both previous

and current processes have different recipe on a given machine. Calculating the recipe change loss

factor value for a given lot on a given machine can be calculate as the ratio of (maximum loss –

current loss) to the maximum loss. Second, the chuck efficiency factor indicates a loss of efficiency

cause by the setup time for moving chuck arms. Each lot should be processed using either an odd

chuck arm or an even chuck arm. When previous and current lots should be processed using same

chuck arm, a fixed amount of setup time for moving chuck arms is required.

The advantages of this method are that processing priorities of waiting lots could be reassigned

dynamically by determining weight values for each control factors at the right moment according

to the conditions of semiconductor wafer fabrication. To develop and improve the scheduling

performance with ADR, it is useful to determine the weight values for each control factors.

74

Variable ranking with relative importance (RI) scores of the kernelized GDW is evaluated with

the existing variable ranking methods such as general dominance weight (GDW), relative weights

(RW), variable importance in projection (VIP), variable permutation (VP), tree method (TM) and

r-relief method (RM) as shown in Table 4.4.

Table 4.4 Relative importance (RI) scores and ranking of control factors

KGDW GDW VIP TM VP RM RW

RI Rank RI Rank RI Rank RI Rank RI Rank RI Rank RI Rank

𝑭𝟏 0.435 1 0.345 1 0.096 8 0.233 1 0.270 1 0.225 2 0.105 4

𝑭𝟐 0.022 9 0.034 8 0.095 9 0.114 4 0.055 8 0.023 9 0.107 3

𝑭𝟑 0.270 2 0.218 2 0.093 10 0.127 2 0.182 2 0.040 7 0.089 8

𝑭𝟒 0.022 8 0.020 9 0.102 3 0.057 9 0.000 10 0.078 5 0.096 6

𝑭𝟓 0.008 10 0.015 10 0.104 2 0.076 7 0.062 7 0.042 6 0.120 1

𝑭𝟔 0.061 3 0.075 5 0.101 5 0.028 10 0.107 4 0.145 4 0.088 10

𝑭𝟕 0.038 7 0.077 4 0.106 1 0.121 3 0.109 3 0.039 8 0.102 5

𝑭𝟖 0.044 5 0.063 6 0.099 6 0.088 5 0.079 6 0.232 1 0.110 2

𝑭𝟗 0.040 6 0.091 3 0.102 4 0.084 6 0.046 9 0.000 10 0.089 7

𝑭𝟏𝟎 0.055 4 0.059 7 0.099 7 0.068 8 0.086 5 0.172 3 0.088 9

Desirable ranking of weight factors from field experiences are as follows: 𝐹1 is the most important

one because it is related with the recipe change loss. The recipe change loss can be increased to

maximum of 20 min according to the recipe for the lot, and the relationship between the machine

and the lot. 𝐹3 is the second important one because it is related with the chuck loss, but relatively

less important than 𝐹1 because chuck loss can be increased to maximum of 5 min (i.e., it is

significantly less than recipe change loss). 𝐹2 should be the least one because it is related with the

75

chamber availability but, in the PHOTO station, all lots have values of 𝐹2 are equal to 0. 𝐹4, 𝐹6, 𝐹9

and 𝐹10 are the second least important group with the same level. Other remaining factors𝐹5, 𝐹7

and 𝐹8 are not important either, but a little better than the above four factors. These remaining

factors may have similar importance values.

According to the field experiences, we expect that 𝐹1 and 𝐹3 should be rank 1 and rank 2,

respectively. The results show that KGDW, GDW, TM and VP may be good candidates of variable

ranking method for our simulation model. However, we also expect that the RI scores of 𝐹1 and

𝐹3 should be significantly larger than others, and the RI score of 𝐹1 should be larger than the RI

score of 𝐹3. In order to verify which variable ranking method is the best from the candidates, two

simple arithmetic calculations are performed as shown in Table 4.5. The results show that KGDW

is the best variable ranking method of the candidates.

Table 4.5 Arithmetic calculations of relative importance (RI) scores for 𝑭𝟏 and 𝑭𝟑

 KGDW GDW TM VP

𝑭𝟏 + 𝑭𝟑 0.7054 0.5633 0.3606 0.4528

𝑭𝟏 − 𝑭𝟑 0.165 0.127 0.106 0.088

76

4.5 Conclusion

 In this chapter, a new variable ranking algorithm called the kernelized general dominance

weight (GDW) is proposed to improve the scheduling performance by using relevance vector

machine (RVM) regression technique for semiconductor wafer fabrication. The relative

importance (RI) scores of each control factor and each system performance are calculated by using

kernelized GDW. The RVM regression technique is applied to build kernel version of GDW, and

to get the best fit model. To assess the achievement of presented algorithm, the simulation model

is developed and the observations are generated by running of the simulation model. Experimental

results show that relative importance (RI) scores and variable ranking of the kernelized GDW are

reasonable than the results of existing variable ranking algorithms.

77

CHAPTER 5 Conclusion Remarks

In this dissertation, we have proposed and developed several methodologies for finding best

scheduling of different manufacturing systems such as traditional manufacturing systems and

semiconductor manufacturing systems. In chapter 2, a dynamic job shop scheduling algorithm

based on regression technique is proposed to overcome on drawbacks in the existing dynamic job

shop scheduling based on classification approaches. Kernel ridge regression is presented because

it has ability to discover the unknown relations between predictor variables and response variables.

The experimental results are promising and strongly present that the proposed approach in this

project can be applied to give the best values for the performance measures.

In Chapter 3, the efficient algorithm that consists of the adjustable dispatching rule (ADR) and real

coded genetic algorithm (RCGA) with fitness approximation has been proposed. Kernel ridge

regression and polynomial regression techniques as fitness function and computer simulation for

scheduling problem of semiconductor manufacturing system has been presented. RCGA generates

a new population and then it works to improve it by repeating the main operations such as selection,

crossover and mutation operators. By the empirical results state that the ADR and the real coded

GA with fitness approximation can find near-optimal solution of the scheduling problem for

semiconductor wafer fabrication with relatively small number of fitness evaluation. It can play an

important role when the cost of evaluating fitness is expensive.

In chapter 4, a new ranking algorithm called kernelized general dominance weight (KGDW) is

proposed to determine the importance of each weight factors for improving scheduling

performance of semiconductor wafer fabrication. In order to get high quality of prediction model,

78

we have modified relevance vector machine (RVM) regression to work with GDW. To assess the

achievement of presented algorithm, the simulation model is developed and the observations are

generated by running of the simulation model. Experimental results show that relative importance

(RI) scores and variable ranking of the kernelized GDW are reasonable than the results of existing

variable ranking algorithms.

79

References

Azen, R., and Budescu, D. V. (2003). The dominance analysis approach for comparing predictors

in multiple regression. Psychological Methods, 8(2), 129-148.

Baker, K. R. (1984). Sequencing rules and due-date assignments in a job shop. Management

Science, 30(9), 1093-1104.

Budescu, D. V. (1993). Dominance analysis: A new approach to the problem of relative

importance of predictors in multiple regression. Psychological Bulletin, 114(3), 542-551.

Chao, E. Y., Zhao, Y., Kupper, L. L. and Nylander-French, L. A. (2008). Quantifying the relative

importance of predictors in multiple regression analyses for public health studies. Journal of

Occupational and Environmental Hygiene, 5(8), 519-529.

Chen, T. (2010). An optimized tailored nonlinear fluctuation smoothing rule for scheduling a

semiconductor manufacturing factory. Computers and Industrial Engineering, 58(2), 317-

325.

Chien, C. F., and Chen, C. H. (2007). A novel timetabling algorithm for a furnace process for

semiconductor fabrication with constrained waiting and frequency-based setups. OR

Spectrum, 29(3), 391-419.

Cho, H. W., Kim, K. J., and Jeong, M. K. (2008). Determination of influential factors and

diagnostics using multivariate statistical relationships between variables and faults. Expert

Systems with Applications, 35(1), 30-40.

Conway, R. W., and Maxwell, W. L. (1962). Network dispatching by the shortest-operation

discipline. Operations Research, 10(1), 51-73.

Dabbas, R. M., and Fowler, J. W. (2003). A new scheduling approach using combined dispatching

criteria in wafer fabs. IEEE Transactions on Semiconductor Manufacturing, 16(3), 501-510.

Exterkate, P., Groenen, P. J., Heij, C., and van Dijk, D. (2016). Nonlinear forecasting with many

predictors using kernel ridge regression. International Journal of Forecasting, 32(3), 736-

753.

80

Fenner, J.S., Jeong, M.K., and Lu, J.C. (2005). Optimal automatic control of multistage production

processes. IEEE Transactions on Semiconductor Manufacturing, 18(1), 94–103.

Garey, M. R., and Johnson, D. S. (1979). A guide to the theory of NP-completeness. A Series of

Books in the Mathematical Sciences. W. H. Freeman and Company, San Francisco.

Garrido, J. M. (2009). Object oriented simulation: A modeling and programming perspective.

Springer, Boston.

Gazzola. G., Choi, J., Kwak, D., Kim, B., Kim, D., Tong, S., and Jeong, M. K. (2018). Integrated

variable importance assessment in multi-stage production processes. IEEE Transactions on

Semiconductor Manufacturing, 31(3), 343-355.

Glassey, C. R., and Resende, M. G. (1988). Closed-loop job release control for VLSI circuit

manufacturing. IEEE Transactions on Semiconductor Manufacturing, 1(1), 36-46.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine

learning. Addison-Wesley, Boston.

Grömping, U. (2009). Variable importance assessment in regression: linear regression versus

random forest. The American Statistician, 63(4), 308-319.

Guh, R. S., Shiue, Y. R., and Tseng, T. Y. (2011). The study of real time scheduling by an

intelligent multi-controller approach. International Journal of Production Research, 49(10),

2977-2997.

Hammann, J. E., and Markovitch, N. A. (1995). Introduction to arena [simulation software].

Simulation Conference Proceedings, pp. 519-523.

Harrath, Y., Chebel-Morello, B., and Zerhouni, N. (2002). A genetic algorithm and data mining

based meta-heuristic for job shop scheduling problem. IEEE Symposium on Emerging

Technologies and Factory Automation 2(1), 727-728.

Helland I.S. (1990). PLS regression and statistical models. Scandinavian Journal of Statistics,

17(2), 97–114.

81

Herrera, F., Lozano, M., and Sánchez, A. M. (2003). A taxonomy for the crossover operator for

real‐coded genetic algorithms: An experimental study. International Journal of Intelligent

Systems, 18(3), 309-338.

Holthaus, O., and Rajendran, C. (1997). Efficient dispatching rules for scheduling in a job

shop. International Journal of Production Economics, 48(1), 87-105.

Hwang, S., Jeong, M. K., and Yum, B. J. (2014). Robust relevance vector machine with variational

inference for improving virtual metrology accuracy. IEEE Transactions on Semiconductor

Manufacturing, 27(1), 83-94.

 Hwang, S., and Jeong, M. K. (2018). Robust relevance vector machine for classification with

variational inference. Annals of Operations Research, 263(1), 21-43

Jeong, M. K., Mat, P., and Chen, Z. (2005). Throughput gain with parallel flow in automated flow

lines. IEEE Transactions on Automation Science and Engineering, 2(1), 84-86.

Kim, J., Jeong, M. K. and Elsayed, E. A. (2017). Monitoring multistage processes with

autocorrelated observations. International Journal of Production Research, 55(8), 2385-

2396.

Li, X., and Olafsson, S. (2005). Discovering dispatching rules using data mining. Journal of

Scheduling, 8(6), 515-527.

Mahmudy, W., Marian, R. M., and Luong, L. H. (2013). Modeling and optimization of part type

selection and loading problem in flexible manufacturing system using real coded genetic

algorithms. International Journal of Electrical, Computer, Electronics and Communication

Engineering, 7(4), 251-260.

Metan, G., and Sabuncuoglu, I. (2005). A simulation based learning mechanism for scheduling

systems with continuous control and update structure. IEEE of the 37th Conference on

Simulation, pp. 2148-2156.

82

Metan, G., Sabuncuoglu, I., and Pierreval, H. (2010). Real time selection of scheduling rules and

knowledge extraction via dynamically controlled data mining. International Journal of

Production Research, 48(23), 6909-6938.

Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution programs. Springer,

New York.

Min, H. S., and Yih, Y. (2003). Selection of dispatching rules on multiple dispatching decision

points in real-time scheduling of a semiconductor wafer fabrication system. International

Journal of Production Research, 41(16), 3921-3941.

Mönch, L., Fowler, J. W., Dauzère-Pérès, S., Mason, S. J., and Rose, O. (2011). A survey of

problems, solution techniques, and future challenges in scheduling semiconductor

manufacturing operations. Journal of Scheduling, 14(6), 583-599.

Montazeri, M., and Van Wassenhove, L. N. (1990). Analysis of scheduling rules for an

FMS. International Journal of Production Research, 28(4), 785-802.

Murugan, M. S., Suresh, S., Ganguli, R., and Mani, V. (2007). Target vector optimization of

composite box beam using real-coded genetic algorithm: a decomposition

approach. Structural and Multidisciplinary Optimization, 33(2), 131-146.

Olafsson, S., and Li, X. (2010). Learning effective new single machine dispatching rules from

optimal scheduling data. International Journal of Production Economics, 128(1), 118-126.

Pinedo, M. L. (2016). Scheduling: theory, algorithms, and systems. Springer, New York.

Priore, P., Gómez, A., Pino, R., and Rosillo, R. (2014). Dynamic scheduling of manufacturing

systems using machine learning: An updated review. Artificial Intelligence for Engineering

Design, Analysis and Manufacturing, 28(1), 83-97.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. Morgan Kaufmann, San Francisco.

Renders, J. M., and Flasse, S. P. (1996). Hybrid methods using genetic algorithms for global

optimization. IEEE Transactions on Systems, Man, and Cybernetics, 26(2), 243-258.

83

Samui, P., Lansivaara, T., and Kim, D. (2011). Utilization relevance vector machine for slope

reliability analysis. Applied Soft Computing, 11(5), 4036-4040.

Shakhlevich, N., Hoogeveen, H., and Pinedo, M. (1998). Minimizing total weighted completion

time in a proportionate flow shop. Journal of Scheduling, 1(3), 157-168.

Shaw, M. J., Park, S., and Raman, N. (1992). Intelligent scheduling with machine learning

capabilities: the induction of scheduling knowledge. IIE Transactions, 24(2), 156-168.

Shiue, Y. R. (2009). Data-mining-based dynamic dispatching rule selection mechanism for shop

floor control systems using a support vector machine approach. International Journal of

Production Research, 47(13), 3669-3690.

Šikonja, M., and Kononenko, I. (2003). Theoretical and empirical analysis of reliefF and

 rreliefF. Machine Learning, 53 (1), 23–69.

Sivakumar, A. I., and Gupta, A. K. (2006). Online multi-objective pareto optimal dynamic

scheduling of semiconductor back-end using conjunctive simulated scheduling. IEEE

Transactions on Electronics Packaging Manufacturing, 29(2), 99-109.

Son, Y., and Lee, J. (2016). Active learning using transductive sparse bayesian

regression. Information Sciences, 374(1), 240-254.

Sotskov, Y. N., and Shakhlevich, N. V. (1995). NP-hardness of shop-scheduling problems with

three jobs. Discrete Applied Mathematics, 59(3), 237-266.

Strobl, C., Boulesteix, A., Kneib, T., Augustin, T., and Zeileis, A. (2008). Conditional variable

importance for random forests. BMC Bioinformatics, 9(1), 307.

Su, C. T., and Shiue, Y. R. (2003). Intelligent scheduling controller for shop floor control systems:

A hybrid genetic algorithm/decision tree learning approach. International Journal of

Production Research, 41(12), 2619-2641.

Thiesse, F., and Fleisch, E. (2008). On the value of location information to lot scheduling in

complex manufacturing processes. International Journal of Production Economics, 112(2),

532-547.

84

Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of

Machine Learning Research, 1(1), 211-244.

Tyan, J. C., Du, T. C., Chen, J. C., and Chang, I. H. (2004). Multiple response optimization in a

fully automated FAB: An integrated tool and vehicle dispatching strategy. Computers and

Industrial Engineering, 46(1), 121-139.

Uzsoy, R., Church, L. K., Ovacik, I. M., and Hinchman, J. (1992). Dispatching rules for

semiconductor testing operations: A computational study. In Electronics Manufacturing

Technology Symposium, Thirteenth IEEE/CHMT International, pp. 272-276.

Wold, S.; Sjöström, M.; Eriksson, L. (2001) PLS-regression: a basic tool of chemometrics.

Chemometrics and Intelligent Laboratory Systems, 58(2), 109-130.

Yugma, C., Blue, J., Dauzère-Pérès, S., and Obeid, A. (2015). Integration of scheduling and

advanced process control in semiconductor manufacturing: Review and outlook. Journal of

Scheduling, 18(2), 195-205.

Zhang, H., Jiang, Z., and Guo, C. (2009). An optimised dynamic bottleneck dispatching policy for

semiconductor wafer fabrication. International Journal of Production Research, 47(12),

3333-3343.

Zhao, K., Mahboobi, S., & Bagheri, S. (2017). Revenue-based attribution modeling for online

advertising. IEEE Transactions on Knowledge and Data Engineering, 1(1), 1-16.

