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ABSTRACT OF THE THESIS

Assessment of Wilcox κ - ω Turbulence Model in Regions

of Shock-Wave Turbulent Boundary-Layer Interaction

by Robert A. Alviani

Thesis Director: Doyle D. Knight

Turbulence models require constant research and development due to the nature of

the models themselves. This thesis investigates the fidelity of the Reynolds-averaged

Navier-Stokes (RANS) based 2006 Wilcox κ - ω turbulence model. The commercial flow

solver GASPex is utilized for simulations, along with MATLAB for grid generation and

Tecplot for post-processing. Associated results obtained are subsequently compared to

an experimental study done by CUBRC in 2014. In this study, CUBRC ran a series

of supersonic flow experiments on multiple physical configurations. The data obtained

from these experiments include surface pressure and surface heat transfer values in re-

gions of shock-wave turbulent boundary-layer interaction (SBLI). The purpose of the

study was to document this data for further blind code validation studies. This thesis

focuses on the results obtained for the large cone flare configuration. Ten runs were

completed on the large cone flare, where six of the ten runs were simulated for com-

parison. Corresponding Mach numbers for the experiment range from 5 to 8. A grid

convergence study was done and documented to ensure solution independence of grid

discretization. Computational results conclude that the Wilcox κ - ω model predicts

surface pressure well for all cases. Average surface pressure is predicted reasonably
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upstream of SBLI and post-flare, and peak surface pressure is predicted within the ex-

perimental uncertainty. However, separation is found to be significantly over-predicted

for most cases. The Wilcox κ - ω model is shown to predict surface heat transfer poorly

throughout. In regions of SBLI, surface heat transfer is shown to be drastically over-

predicted, especially peak magnitudes. Additionally, it can be seen that the Wilcox

κ - ω model produces a large anomalous spike in surface heat transfer downstream of

the cone-flare junction in all cases. This spike is shown to be directly correlated to

a large spike in turbulent kinetic energy near the surface of the large cone, observed

at the same location. Causes for this spike are currently unknown and have not been

further investigated, however similar spikes have been seen in the computational results

obtained for the hollow cylinder flare configuration. Future work encompasses further

assessment of the Wilcox κ - ω model in similar flow regimes. Since over-prediction is

a strong factor of error in regions of SBLI, modifications to the Wilcox κ - ω model are

required for more accurate predictive capabilities. The anomalous spike that occurs in

surface heat transfer also needs be fully investigated to determine possible causes and

resolutions.

Keywords: Hypersonics, CFD, RANS, Turbulence, Wilcox, SBLI
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Chapter 1

Introduction

Aerodynamics, a sub-field of fluid and gas dynamics, has been researched and applied

to countless applications throughout history. Human advancements such as flying and

space travel were made possible by the advancements in this field. Aerodynamics is

indefinitely expanding with new research, and dates back to the times of Aristotle and

Archimedes. Throughout history, notable researchers in aerodynamics include Leonardo

Da Vinci, Sir Isaac Newton, Daniel Bernoulli, Leonhard Euler, and Sir George Cayley.

Da Vinci (1505) was the first to consider the concepts of lift when observing bird flight

[1]. Newton (1687), who is considered the first aerodynamicist in a modern sense, de-

veloped the early theories of air resistance [2]. Bernoulli (1738) developed relationships

between pressure and velocity in flowing fluids, and Euler (1757) used these principles

to derive the well-known Euler equations [3]. Cayley (1810), who is recognized as the

”father of aviation”, discovered the generation of lift due to the pressure distribution

on the surface of a wing [3]. The list of notable researchers who contributed to the field

of aerodynamics can be considered much larger as numerous developments have been

made throughout history, and is therefore condensed for brevity.

The field of aerodynamics can be narrowed into smaller sub-fields for further consid-

eration. One of the areas that can be considered is supersonic aerodynamics. This field

encompasses all flow that that moves faster than the speed of sound, i.e. Mach ≥ 1. Ad-

ditionally, three separate flow regimes can be discussed. These regimes are sonic, Mach

= 1, supersonic, 1 < Mach < 5, and hypersonic, Mach ≥ 5. While the first photographs

showing proof of supersonic phenomena such as shock waves were published by Ernst

Mach in 1887 [4], the creation of a manned aircraft able to fly supersonically in level

flight wasn’t achieved until 1954. This aircraft was the American X-1B, which was the
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first in a series of rocket-powered aircrafts purposed for experimental research [5]. The

developments in supersonic aerodynamics that made the X-1B possible were made by

many notable contributors, such as Ludwig Prandtl, Theodor Meyer, Adolf Busemann,

and Theodore von Karman [6]. Research in supersonics has expanded immensely since

the X-1B and has been essential to developments in aerodynamics, propulsion, and

combustion.

While supersonic aerodynamics and development have flourished over the years, new

found problems and issues have as well. One issue is that when working with the highly

non-linear Navier-Stokes equations, numerical approximations are often required in or-

der to obtain solutions. Subsequently, this produced the new area of research known

as computational fluid dynamics (CFD). Considering that the numerical calculations

employed in CFD require computing power to be remotely feasible, research and devel-

opment of CFD methods weren’t actualized until the rise of computers in the late 1950’s.

Early developments in CFD were made by various researchers such as Sergei Godunov,

Peter Lax, Burton Wendroff, and Robert MacCormack. These developments include

Riemann-based schemes (Godunov), hyperbolic dissipative schemes (Lax-Wendroff),

and explicit Navier-Stokes methods (MacCormack) [7]. Further progression of CFD

methods took place in the 1970s with the development of the potential flow equations.

Later in the 1980’s, invscid Euler and Navier-Stokes schemes were developed by Bram

van Leer, Joseph Steger, R.F. Warming, Philip Roe, and Ami Harten. These develop-

ments include the high-order Godunov scheme (van Leer), flux-vector splitting scheme

(Steger-Warming), approximate Riemann solver (Roe), and total variation diminishing

scheme (Harten) [7]. Additional CFD development continued into the 21st century up

to present day, with research producing new methodology and modifications to existing

schemes/codes.

While these developments pushed the capabilities of CFD and allowed for excellent

prediction of compressible fluid dynamics, the incorporation of turbulence has been a

persistent issue. Turbulence and associated modeling have been well-studied and doc-

umented throughout history, with notable contributions from Joseph Boussinesq, Os-

borne Reynolds, and Ludwig Prandtl. Arguably, the start of turbulence modeling began
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when Boussinesq (1877) postulated that turbulent stresses are linearly proportional to

mean strain rates [8]. Later, Reynolds (1895) proposed that turbulent quantities can be

separated into two portions, mean and fluctuating, also known as Reynolds Averaging

(a statistical approach). This led to the notion that turbulence can be considered a

random, or chaotic, phenomenon [9]. These two developments led to what are known

as the Reynolds-averaged Navier-Stokes (RANS) equations. However, due to insuffi-

cient knowledge of viscous flows at the time, further progress was halted until Prandtl’s

(1904) discovery of the boundary layer. About thirty years later, Prandtl (1925) then

proposed a method of prediction of eddy viscosity, the turbulent transfer of momentum

by eddies, dubbed the mixing-length theory [9]. This theory was developed into the

first algebraic turbulence model, or the zero-equation model. At the end of World War

2, Prandtl (1945) further postulated a new model where eddy viscosity depends on the

kinetic energy of turbulent fluctuations, κ [9]. This introduced a new differential trans-

port equation to the Navier-Stokes equations and thusly become the first one-equation

turbulence model. In the one-equation model, eddy viscosity depends on history of the

flow and thus is more physically realistic than the algebraic model [9]. However, a tur-

bulence length scale specification is still required and therefore this model is considered

incomplete. Andrey Kolmogorov (1942) proposed the first complete turbulence model,

where two differential transport equations are presented [9]. The first is a modeled

equation for turbulent kinetic energy, κ, and the second is a modeled equation for the

rate of dissipation of energy, ω. This model is known as the first two-equation model,

although it was not extensively used until further progression of computing methods.

Additionally, another type of turbulence model was created by Julius Rotta (1951),

the Reynolds stress transport model, which removed the dependence of the Boussinesq

approximation [9]. Two equation models were further developed throughout the 20th

century, such as the κ - ω model by Philip Saffman (1970) and the κ - ε model by

Brian Launder and Dudley Spalding (1972) [9]. Although Launder’s κ - ε model saw

popular use, it showed demonstrable inadequacy in prediction of flows with adverse

pressure gradients. Saffman’s κ - ω model overcame this significant issue by integrating

through the viscous sublayer, thus becoming the more popular model of the two [9].
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The κ - ω model was further developed through the end of the 20th century into the

21st century by various contributors such as David Wilcox and Florian Menter. The

latest modified κ - ω model was introduced in 2006 by Wilcox, and consequently is the

primary turbulence model that is investigated for this thesis.

Aside from RANS-based turbulence models, there are multiple Navier-Stokes solvers

that attempt to resolve turbulence features differently. Among these are large eddy sim-

ulation (LES), detached eddy simulation (DES), and direct numerical simulation (DNS).

Each method has its own respective advantages and disadvantages when comparing to

their RANS-based cousins. For example, while DNS allows for numerical resolution of

the whole range of spatial and temporal scales of turbulence, it is extremely computa-

tionally expensive [10]. LES allows for reduction of computational cost by ignoring the

smaller length scales, hence the name, but is still more computationally expensive than

RANS-based models [10]. DES acts as a combination of both RANS and LES modeling

but requires more complicated meshes due to the separation of RANS and LES regions

[11]. Considering that the scope of this thesis revolves around the RANS-based Wilcox

κ - ω model, these models will not be further discussed.

1.1 Concluding Remarks

With a layout of the history of aerodynamics, CFD, and turbulence modeling, the last

question to answer is: ”how accurate are the current models”? David Dolling pub-

lished an article in 2001 summarizing modern shock-wave boundary-layer interaction

(SBLI) research, concluding that important quantities for strong interactions are con-

sistently predicted poorly [12]. Countless studies have been done in congruence to this

publication. One of such studies, done in 1998 by Doyle Knight and Gerard Degrez,

concluded that surface pressure, surface heat transfer, and skin friction obtained from

RANS simulations of 2D and 3D interactions were inaccurately predicted [13]. Knight

later published in 2003 that RANS computations for compression corner induced SBLI

were accurate for weak interactions but still showed significant inaccuracy for strong

interactions [14]. Anthony Oliver, et al., (2007) published equivalent results in that
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various quantities, such as separation and skin friction, were predicted reasonably well

for weak SBLI interactions but poorly for strong SBLI interactions [15]. In an identical

computational study to this thesis, Saumil Patel (2018) found that in high Reynolds

number flows, the Wilcox κ - ω model largely over-predicted surface heat transfer and

separation in regions of SBLI [16]. The studies listed here cover only a small fraction of

the investigations into the predictability of current turbulence models; where most, if

not all, result in similar conclusions. Collectively, it is abundantly clear that turbulence

modeling still requires development in order to improve its predictive capabilities. In

order to identify the underlying issues associated with any turbulence model, blind code

validation studies are employed. Experimental data obtained from these studies can

then be utilized in comparison to simulations conducted with various CFD methods

and turbulence models. This is done in order to understand the computational results

obtained and the discrepancies between them and experimental data. This information

can further be used for assessment of a given turbulence model, which can lead to mod-

ifications/corrections of the model. This is where the primary scope of the thesis lies,

which is the assessment of the Wilcox κ - ω turbulence model. Specifically, assessment

is conducted in SBLI regions for hypersonic, high Reynolds number, flows.

1.2 Outline

The following chapters of this thesis will be briefly outlined. Chapter 2 provides an

overview of governing equations and fundamental physics associated with SBLI. Chap-

ter 3 presents the important considerations for the employed numerical schemes using

the 1D Euler equations. Chapter 4 presents the formation of the 3D equations em-

ployed in research, as well as derivations of the RANS equations and the Wilcox κ - ω

turbulence model. Chapter 5 provides the outline of the experimental study conducted

by CUBRC, as well as data obtained. Chapter 6 discusses the specific methodology of

this thesis, such as the grid generation and commercial software information. Chapter

7 presents the final results of the computational study done for this thesis. Lastly,

Chapter 8 provides the grounds for any related future work that can be considered.
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Chapter 2

Precursor Physics and Aerodynamics

Before moving into the methodology of this research, a brief overview of the physics

involved will be presented. In this chapter, the main topics that are going to be cov-

ered are the conservation equations, supersonic flow phenomena, and turbulence. The

information presented here will be utilized in further discussions and is considered fun-

damental to the topics covered in this thesis.

First, the flowfield specification needs to be prescribed. In classical field theory, two

specifications exist for flowfield, Eulerian and Lagrangian. The Lagrangian description

of flow considers the thermodynamic and flow properties of individual fluid particles

[17]. These properties change over time and are tracked for each respective particle. For

example, a specific fluid particle’s position can be defined as X(xo, t) and subsequently,

an arbitrary flow property of the particle can be defined as φ(X(xo, t), t). The Eulerian

description of flow considers the thermodynamic and flow properties of specific locations

of the flow, rather than the fluid particles themselves [17]. Here, individual particles are

ignored and fluid properties can be written as a function of space and time. Consider a

location x, and time t, where an arbitrary fluid property can then be written as φ(x, t).

Further, the Eulerian and Lagrangian specifications can be related by what is known

as the material derivative. Essentially, the material derivative describes the time rate

of change of a physical quantity that is subjected to a velocity field V(x, t) [17]. For

the arbitrary fluid property φ(x, t), this can be written as follows.

Dφ

Dt
=
∂φ

∂t
+ V · ∇φ =

∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
+ w

∂φ

∂z
(2.1)
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2.1 Conservation of Mass, Momentum, and Energy

This section will follow the derivations published by Anderson (2003) [18]. The main

focus of continuum mechanics is the derivations of fundamental equations that are valid

for all continuous media [19]. These equations, which are based on the universal laws

of physics, are known as the conservation equations. One method of derivation of the

conservation equations utilizes the Eulerian specification and is known as the control

volume approach. This approach employs a stationary finite control volume, hence

Eulerian, to derive the fundamental conservation equations. The basic formation of

this derivation is done by setting an arbitrary control volume around a fluid flow, with

inclusion of a control surface around boundaries. Using this system, the conservation

equations can be derived with use of various conservation laws. The three laws employed

are the law of conservation of mass, the law of conservation of linear momentum, and

the first law of thermodynamics.

First is the continuity equation. This equation is derived from the law of conserva-

tion of mass, which states that mass cannot be created or destroyed [20]. The control

volume formation of the continuity equation relates the rate of change of mass inside

the control volume to net mass flow into the control volume. The terms below contain

the fluid density ρ, the fluid velocity vector V = uî + vĵ + wk̂, the control volume V ,

the unit normal vector n̂, and the control surface A. With this, the continuity equation

can be shown as:

∂

∂t

˚
V
ρdV = −

‹
A
ρ
(
V · n̂

)
dA (2.2)

Second is the conservation of momentum equation. The law of conservation of

linear momentum, derived from Newton’s laws, states that linear momentum is neither

created or destroyed and is only changed through the action of forces [20]. Therefore,

in the control volume approach, the conservation of momentum equation is formed by

equating the rate of change of momentum inside the control volume to the net forces

exerted onto the fluid and net flux of momentum across the control surface. Here, new
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terms p and Fviscous {̂i, ĵ, k̂} represent the fluid pressure and viscous forces exerted on

the fluid, respectively. It should also be noted that external body forces are ignored.

Thus, the conservation of momentum equation can shown in integral form as:

∂

∂t

˚
V
ρVdV +

‹
A
ρV
(
V · n̂

)
dA = −

‹
A
pn̂dA+ Fviscous (2.3)

Last is the conservation of energy equation. The first law of thermodynamics states

the same as the above two laws, in that energy is considered conserved and only changed

with the action of work and heat addition [20]. In the control volume approach, the

conservation of energy equation relates the rate of change of total energy inside the

control volume to the rate of heat addition to the fluid, net work exerted onto the fluid,

and net flux of energy across the control surface. Additional new terms consist of e,

Wviscous, and Q̇; which represent total energy of the fluid per unit mass, viscous work

exerted on the fluid, and rate of global fluid heat transfer, respectively. Further, the

conservation of energy equation can be shown as:

∂

∂t

˚
V
ρedV +

‹
A
ρe
(
V · n̂

)
dA = −

‹
A
p
(
V · n̂

)
dA− Q̇+Wviscous (2.4)

2.1.1 Differential Mapping / Constitutive Relationships

Using mathematical analysis, conservation equations (2.2)-(2.4) can be represented as a

system of differential equations. These equations are commonly employed for fluid dy-

namic calculations, and are subsequently introduced/discussed in Chapter 4. To obtain

the conservative differential formations, the control volume equations must be mapped

to their respective differential forms. For example, consider an arbitrary function φ, as

well as a basic control volume integral equation shown as:

∂

∂t

˚
V
φdV +

‹
A
φ
(
V · n̂

)
dA = 0 (2.5)
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The divergence theorem is first applied in order to convert the surface integral in equa-

tion (2.5) to a volume integral. In addition, the time derivative attached to the volume

integral in equation (2.5) can be moved inside the integral due to the control volume

being independent of time. These two modifications can be shown as:

‹
A
φ
(
V · n̂

)
dA =

˚
V
∇ ·
(
φV)dV,

∂

∂t

˚
V
φdV =

˚
V

∂φ

∂t
dV (2.6)

Utilizing relations shown in (2.6), a single volume integral containing all terms can be

obtained. Further, it can be noted that if an integral over an arbitrary volume is equal

to zero, then the integrand must also be equal to zero everywhere in volume [18]. Thus,

equation (2.5) is further transformed into the final conservative differential form.

˚
V

[
∂φ

∂t
+∇ ·

(
φV
)]
dV = 0

∂φ

∂t
+∇ ·

(
φV
)

= 0

(2.7)

At this point, it is important to note constitutive relationships that are associated

with these equations. From classical thermodynamics, the constitutive relationship,

or equation of state, can be obtained for an ideal gas. Additionally, the relationship

between total energy e and internal energy ei, can be shown as follows.

ρ = pRT, e = ei +
1

2
||V||2 (2.8)

Along with this, internal energy ei, which total energy can be derived from, can be

defined by two state variables such as ei = ei(T, P ). With additional assumptions, this

expression can be shown as an exact relation. For a thermally perfect gas, internal

energy can be related to just one thermodynamic property such as ei = ei(T ), where

the derivative can be shown as dei = cvdT . For a calorically perfect gas, internal energy

can be explicitly related to temperature and heat capacity, such as that ei = cvT .
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2.2 Supersonic Flow

Figure 2.1: Oblique Shock [18]

The following section will follow the deriva-

tions published by Anderson [18]. The

main considerations when discussing super-

sonic flow lies in the phenomena associated

with it. The most basic supersonic phe-

nomena that can be considered are shock

waves and expansions fans. Fundamen-

tally, shock waves will cause the flow to dis-

continuously change its speed and related

thermodynamic quantities. There are var-

ious classifications for shock waves, such as normal, oblique, strong/weak, and de-

tached/attached. Normal shocks can occur for supersonic flow in situations such as

within pipe flow (normally when chocked). Oblique shocks are often seen at the leading

edge of a sharp object (flat plate) or due to a physical ramped surface (compression

corner). Oblique shocks can additionally be considered strong or weak, depending on

specific physical and flow quantities (e.g. deflection angle and incoming Mach number).

Most notably, oblique shocks waves will occur during supersonic flow when the flow is

forced to turn into itself. This is illustrated for an inviscid, two-dimensional, flow in Fig-

ure 2.1. Essentially, this happens when the flow hits, or goes over, a changing boundary.

If the changing boundary causes the flow to be deflected up, an oblique shock will form.

An easy way to describe an oblique shock is a coalescence of infinite compression waves

placed directly on top of each other. For sea-level, supersonic air flow, the thickness of

a shock wave is roughly on the order of a mean free path O(10−5 inches) [21]. In the

case of an oblique shock, flow properties, such as velocity and Mach number, decrease

instantaneously. Related thermodynamic properties, such as density and temperature,

increase instantaneously. This instantaneous change additionally causes large entropy

generation due to stagnation pressure decreases.



11

Figure 2.2: Expansion Fan [18]

The contrary of this occurs when the su-

personic flow moves over a boundary that

is fanning. This will cause an expansion

fan to form, as seen to the left in Figure

2.2 (also inviscid). Similarly to an oblique

shock, an expansion fan can be considered

a coalescence of weak expansion waves. For

the situation shown, flow is forced to turn

away from itself and thus opposite affects

seen by the oblique shock occur. As a result, flow properties increase and related ther-

modynamic properties decrease. However, unlike an oblique shock, this change occurs

continuously with zero entropy generation.

2.2.1 Conical Flow, 3D Considerations

This subsection follows observations made in NASA technical report 1135 [22]. Further

considerations can be noted pertaining to supersonic flow over a cone. First, consider

the 2D case of a cone which can be represented as a wedge. For this, supersonic flow

will hit the leading edge of the cone and create an oblique shock seen in Figure 2.1. For

a cone however, 3D relieving effects take place and significantly affect the magnitude of

change in flow quantities. Aside from this, it is important to note that the strength of

the oblique shock for both a cone and a wedge is a function of the deflection angle, σ, and

flow Mach number. This strength can be noted to affect shock angle and associated

changes in flow quantities. Certain deflection angle and Mach number combinations

can result in either an attached or detached leading edge shock. An attached shock

operates as an oblique shock, where a detached shock operates as a strong/bow shock.

Additionally, if an attached shock forms at the leading edge of a 3D cone, it can be

stated that the shock wave will take the 3D formation of a circular cone as well. Due

to this, flow quantities are determined as constant across concentric conical surfaces

between the shock and the cone and as a result, can be considered to depend only
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on one spatial direction. This is useful when considering computational analysis of

cone geometries, as a pseudo-2D axisymmetric representation of a cone is sufficient for

modeling. In turn, this greatly reduces the computational loading of a fluid simulation

without loss of important physical phenomena.

Figure 2.3: 3D Conical Flow [22]

2.2.2 Shock-Wave Boundary-Layer Interaction

This subsection follows the outline presented by Bibin, et. al., (1993) [23]. As the main

focus of investigation for this thesis is within regions of shock-wave boundary-layer

interaction (SBLI), the phenomena associated with SBLI will be presented. SBLI oc-

curs mainly in regions of supersonic inviscid-viscous interaction and leads to boundary

layer separation, as well as peak aerothermodynamic loading. While SBLI can occur

in multiple situations, ramp-induced SBLI will be discussed. Consider supersonic flow

across a flat plate, illustrated on the next page in Figure 2.4. Viscous effects are not

ignored, and thusly a laminar boundary layer is formed along the surface. In addition,

a weak oblique shock will form as the flow hits the leading edge of the flat plate due

to the boundary layer displacement thickness. Further downstream, the compression

corner will induce an adverse pressure gradient, which will result in flow separation of

the boundary layer (S). Separation will also produce a free-shear layer which acts as

a boundary layer not attached to a physical surface. Aside from separation, multiple

shocks are present in SBLI. Due to the abrupt change of flow at the separation point, a
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separation shock will form at the start of the separation region. Similarly, a reattach-

ment shock will form at the end of separation (R). In the situation shown, shock-shock

interaction occurs downstream (triple-point), where a discontinuity in entropy is seen

due to differing shock families (slip-line). Lastly, peak aerothermodynamic loading is

usually seen directly at reattachment (R). It should be noted that since SBLI strongly

depends on freestream/physical conditions, various differing SBLI formations can be

seen aside from what’s presented.

Figure 2.4: Shock-Wave Boundary-Layer Interaction [23]

2.3 Turbulence

Turbulence can be described as random chaotic fluctuations in fluid flow properties.

Turbulence is a continuum phenomenon, and can be characterized by irregularity, dif-

fusivity, and dissipation [24]. The energy cascade, which is the transfer of energy from

large scales to small scales, as well as the Reynolds number, which is the ratio of inertial

forces to viscous forces, can be noted as driving mechanisms of turbulent flows [25].

Turbulent flows are always considered highly irregular and thus normally treated

with a statistical approach [24]. This is done by decomposing flow quantities into a

sum of their mean and fluctuating portions. The mean, or average, can be obtained in

various ways, such as with respect to time. Consider a turbulent velocity ui(x, t) that is
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fluctuating with time, as shown in Figure 2.5. In this figure, Ui(x) (shown) is the time-

averaged mean, and u′′i (x, t) (not shown) consists of the fluctuations of ui(x, t) from the

mean Ui(x). This is known as Reynolds-averaging and is fundamental to development

of the Reynolds-averaged Navier-Stokes (RANS) equations.

Figure 2.5: Time-Averaged Velocity [9]

Following Tennekes and Lumley (1972) [24], turbulence can be characterized by diffu-

sivity, rotationality, and dissipation. The diffusivity of a turbulent flow can be charac-

terized by the increased rates of mass, momentum, and energy transport. Turbulent

diffusion also leads to rapid mixing of the fluid. The rotationality of turbulence can be

shown as high levels of fluctuating vorticity. In 3D, vortices are subjected to stretching

and squeezing due to vorticity gradients, which is known as vortex stretching. Vortex

stretching acts as a vorticity-maintenance mechanism, and since absent in 2D flows,

forces turbulence to always be considered three dimensional. The dissipation of tur-

bulence flows can be characterized by the rapid kinetic energy dissipation of the flow.

Through this, eddies of differing length scales are formed. The energy cascade from

large-scale structures to smaller scales occurs due to inertial instabilities. This cascade

of energy continues to transfer to smaller and smaller scales until molecular diffusion

becomes important and viscous dissipation occurs. The scale at which this happens is

known as the Kolmogorov Length Scale [26].

Laminar flow will typically transition to turbulence when the Reynolds number

becomesO(105) [27]. This transition is visualized in Figure 2.6 (a) for a cigarette plume.

A laminar boundary layer in the same situation will become unstable and transition
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into a turbulent boundary layer. A fully-developed turbulent boundary layer, as seen

in Figure 2.6 (b), consists of three layers with differing length scales. These layers

are known as the viscous sublayer, non-viscous rotational layer, and outer potential

(inviscid) layer. Flow within the bottom two layers is not steady, however the extremely

small viscous sublayer is considered near-laminar because of the overwhelming effects of

viscosity [24]. Turbulence clearly plays a large role in SBLI, and as mentioned, requires

statistical modeling. The method of turbulence modeling employed in this thesis is

further discussed in Chapter 4.

(a) Turbulence Transition [24] (b) Turbulent Boundary Layer [28]

Figure 2.6: Turbulence Transition and Boundary Layer Schematic
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Chapter 3

Numerical Considerations

Computational fluid dynamics (CFD) revolves around solving the governing partial

differential equations, as well as integral formation of these equations, via numerical

approximations. This chapter will present the basic numerical considerations of the one-

dimensional Euler equations. Numerical considerations associated with the full three-

dimensional Navier-Stokes equations, with inclusion of viscous and turbulence effects,

can be shown to follow the same principles as described here for the one dimensional

Euler equations.

3.1 Finite Difference Method

Taylor expansion is a basic mathematical operation that transforms any function f(x)

into a infinite sum around a given point (a). This sum consists of the function defined

at that point f(a), as well as its derivatives fn(a) where:

fn(a) =
∂nf

∂xn

∣∣∣∣
x=a

(3.1)

Taylor theorized that this sum will converge if the nth derivative fn grows no faster

than an arbitrary positive constant to the nth power [29]. Allowing this, then the Taylor

expansion of function f(x) can be written as:

f(x) =
∞∑
n=0

fn(a)

n!
(x− a)n

= f(a) +
∂f

∂x

∣∣∣∣
x=a

∆x+
∂2f

∂x2

∣∣∣∣
x=a

∆x2

2
+ · · ·

(3.2)
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3.1.1 Backward and Forward Euler

The information presented in this subsection follows derivations published by Anderson

(1995) [30]. Taylor expansion can be used to replace any quantity, per se, with a

sum. Let a represent an arbitrary 1D variable, where f(x) can be denoted as a(x). In

addition, consider a discrete set of points xi, xi+1, xi+2, . . . where xi+1 = xi+∆x. Thus,

utilizing Taylor expansion, it can be shown that the value of ai+1 can be expanded as:

ai+1 = ai +
∂a

∂x

∣∣∣∣
xi

∆x+
∂2a

∂x2

∣∣∣∣
xi

∆x2

2
+ · · ·

≈ ai +
∂a

∂x

∣∣∣∣
xi

∆x

(3.3)

where the first line of (3.3) represents the exact definition of ai+1, and the second line

represents an approximation in which all higher order terms are ignored. However, re-

arrangement of the second line approximation is needed to obtain a useful expression.

Thus, (3.3) can be used to define an approximation of the first derivative of ai as

∂a

∂x

∣∣∣∣
xi

=
ai+1 − ai

∆x
(3.4)

which is considered the forward Euler numerical approximation of the derivative of ai.

The backward Euler numerical approximation would incorporate ai−1 rather than ai+1.

Additionally, a central difference approximation incorporates both. This derivation

is fundamental to the finite difference method (FDM) applied to partial differential

equations, and can further be expanded on.

The error associated with the approximation in (3.3) can be defined as the exact

derivative (Taylor expansion with no approximation) minus the approximated deriva-

tive. As a result, the error associated with the approximation is simply a sum of higher

order terms dropped. The order of error O represents the degree of the leading error

term. Therefore, the error of the forward Euler approximation (3.4) can be defined as:

∂a

∂x

∣∣∣∣
xi,real

− ∂a

∂x

∣∣∣∣
xi,approx

=
∂2a

∂x2

∣∣∣∣
xi

∆x

2
+ · · · = O(∆x) (3.5)
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More advanced schemes can be used to further reduce this error, such as the central

difference approximation which has an error of O(∆x2). Additional considerations

such as stability, consistency, and convergence that are also associated with FDM will

be covered in an later section.

3.2 Finite Volume Method

The information presented in this section follows derivations published by Versteeg

and Malalasekera (2007) [31]. To show the methodology of the finite volume method

(FVM), consider a basic 1D advection problem:

∂φ

∂t
+
∂ψ

∂x
= 0 (3.6)

Here, φ = φ(x, t) and ψ = ψ (φ(x, t)). To derive the FVM, equation (3.6) is first

integrated in time (n→ n+ 1) as shown.

φn+1 = φn −
ˆ n+1

n

∂ψ

∂x
dt (3.7)

Allowing a 1D medium of constant area, the spatial domain x can be sub-divided into

discrete finite volumes with cell-centers indicated by i, known as volume averaging.

With this, the function φ can be transformed into its respective volume average φ̄, as:

φ̄n =
1

xi+ 1
2
− xi− 1

2

ˆ x
i+1

2

x
i− 1

2

φndx (3.8)

Further, equation (3.7) can be transformed using relation (3.8) into the following equa-

tion, relating φn+1 to the spatial integral of φn minus the temporal integral of ∂ψ
∂x .

φ̄n+1 =
1

∆xi

ˆ x+ 1
2

x− 1
2

{
φn −

ˆ n+1

n

∂ψ

∂x
dt

}
dx (3.9)
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By applying the divergence theorem to equation (3.9), the following equation can be

derived.

φ̄n+1 = φ̄n − 1

∆xi

{ˆ n+1

n
ψi+ 1

2
dt−

ˆ n+1

n
ψi− 1

2
dt
}

(3.10)

Lastly, the semi-discrete numerical approximation of equation (3.6) can be obtained by

further differentiating equation (3.10) with respect to time, as:

∂φ̄i
∂t

+
ψi+ 1

2
− ψi− 1

2

∆xi
= 0 (3.11)

Where equations (3.10) and (3.11) are the final 1D FVM formations.

3.3 1D Euler Equation Formation

The information presented in this section follows derivations published by Knight (2006)

[32]. Using CFD methods such as FDM and FVM, numerical approximations for com-

pressible flow can be obtained. The governing equations employed for the following

derivations are the 1D Euler equations. Allowing for 1D flow, the compressible Euler

equations can be written as:

∂ρ

∂t
+
∂ρu

∂x
= 0 (3.12)

∂ρu

∂t
+
∂ρu2

∂x
= −∂p

∂x
(3.13)

∂ρe

∂t
+
∂(ρe+ p)u

∂x
= 0 (3.14)

Further, equations (3.12)-(3.14) can be written in vector formation as:

∂Q
∂t

+
∂F
∂x

= 0 (3.15)
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Here, the conservative vector Q, and flux vector F , in equation (3.15) can be shown in

terms of density ρ, velocity u, pressure p, and total energy e as:

Q =



ρ

ρu

ρe


, F =



ρu

ρu2 + p

ρeu+ pu


(3.16)

For discussion of flux-vector splitting, it is important to note that F and Q can

be related through the Euler Identity: F = AQ. This relation can further transform

equation (3.15) into the following:

∂Q
∂t

+A∂Q
∂x

= 0 (3.17)

The coefficient matrix A shown in equation (3.17) can be written in terms of velocity

u and total enthalpy H:

A =



0 1 0

1
2(γ − 3)u2 (3− γ)u (γ − 1)

1
2(γ − 1)u3 −Hu H − (γ − 1)u2 γu


(3.18)

where total enthalpy H can be written as:

H = e+
p

ρ
(3.19)

3.3.1 Discretization

The 1D conservation equations (3.12)-(3.14) can be modeled in control volume form

as well, for purposes of employment of the FVM. Consider equation (3.15), shown in

integral formation as follows.
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∂

∂t

ˆ
V
Qdxdy +

ˆ
∂V
Fdy = 0 (3.20)

Now, just as with the FVM derivation, equation (3.20) can be applied to a discrete

set of control volumes Vi. The solution requires specification of a set of these control

volumes. Consider a 1D discretization, where the x-axis is set into M cells, indicted by

i, shown below in Figure 3.1.

Figure 3.1: 1D Spatial Discretization

Additionally, the time domain can be decomposed as well (Taylor expansion):

tn+1 = tn + ∆tn (3.21)

Then, the conservative vector Q can be transformed into a volume averaged vector, Qi.

As with the previous derivation, the volume averaged vector Qi can be shown as:

Qi(t) =
1

Vi

ˆ
Vi

Qdxdy (3.22)

where the 1D volume Vi is equal to ∆x∆y. The flux quadrature F , which involves both

faces i+ 1
2 and i− 1

2 , can be represented by Fi+ 1
2

with the following spatial integral:

Fi+ 1
2

=
1

Ai+ 1
2

ˆ
x
i+1

2

Fdy (3.23)

where the 1D intermittent area Ai+ 1
2

is equal to ∆y. Collectively, the FVM represen-

tation of the 1D Euler equations can therefore be defined as:
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∂Qi
∂t

+

(
Fi+ 1

2
− Fi− 1

2

)
∆x

= 0 (3.24)

where the solution of (3.24) at time n+ 1 can be further be shown as:

Qn+1
i = Qni −

1

∆x

ˆ tn+1

tn

(
Fi+ 1

2
− Fi− 1

2

)
dt (3.25)

Equation (3.24) is the final formation by which the the Euler partial differential

equations are transformed into a system of ordinary differential equations [32]. It

should be noted that equation (3.24) additionally requires the specification of temporal

and spatial algorithms. With any choice of algorithm, there are various numerical con-

siderations that require discussion and are subsequently presented in the next section.

3.4 Accuracy, Consistency, Stability, and Convergence

When considering the 1D FVM approach to the Euler equations shown in equations

(3.24) and (3.25), several numerical issues need to be considered. As with the previ-

ous section, the information presented in this section follows derivations published by

Knight (2006) [32]. The four main numerical considerations are presented as follows.

(1) Accuracy: The direct measurement of agreement between the numerical algorithm

and the exact solution.

(2) Consistency: The fidelity of the numerical algorithm, with respect to the represen-

tation of the actual solution of the governing partial differential equations.

(3) Stability: Ability of the numerical algorithm to remain stable with iteration and

avoid temporally unbounded oscillations.

(4) Convergence: The ability of the numerical algorithm to converge to the exact solu-

tion with arbitrary reduction of spatial and temporal discretization.
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3.4.1 Accuracy

To analyze the accuracy of the above equation, a class of discrete approximations is

made to equation (3.25). This results in the following formation:

Qn+1
i = Qni −

∆t

∆x

{
θ
[
F
(
Qn+1
i+ 1

2

)
− F

(
Qn+1
i− 1

2

)]}
− ∆t

∆x

{(
1− θ

)[
F
(
Qn
i+ 1

2

)
− F

(
Qn
i− 1

2

)]} (3.26)

The formation presented in equation (3.26) can further be evaluated. First, the the

approximation Q can be replaced with the exact expression Q by the following assump-

tion:

Qi+ 1
2

= Q(x) + ∆xR1(x) + ∆x2R2(x) +O(∆x3) at xi+ 1
2

(3.27)

whereR1,2 is dependent on the algorithm employed. Utilizing equation (3.27), F (Qi+ 1
2
)

can be expressed via Taylor expansion in the following manner.

F
(
Qi+ 1

2

)
= F

(
Q(x)

)
+
∂F

∂Q

[
∆xR1(x) + ∆x2R2(x) +O(∆x3)

]
+ O(∆x2) at xi+ 1

2

(3.28)

Additionally, the second term of equation (3.26) can be shown as [33]:

[
θF
(
Qn+1
i+ 1

2

)
+ (1− θ)F

(
Qn
i+ 1

2

)]
∆t =

ˆ tn+1

tn
Fi+ 1

2
dt+ (θ − 1

2
)∆t2T1

(
xi+ 1

2

)
+O(∆t3)

(3.29)

where T1 depends on F and θ (thus specified by the algorithm).
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Equations (3.27)-(3.29) can then be used to transform the discrete approximation (3.26)

into the following:

Qn+1
i = Qni −

1

∆x

ˆ tn+1

tn

(
F
(
Qi+ 1

2

)
− F

(
Qi− 1

2

))
dt− (θ − 1

2
)∆t2

∂T1

∂x

−∆x∆t

[
θ
∂

∂x

(∂F
∂Q
R1

)n+1
+ (1− θ) ∂

∂x

(∂F
∂Q
R1

)n]
+O(∆t2∆x) +O(∆t3) +O(∆x2∆t)

(3.30)

Now, (3.30) can be used to determine accuracy. First, the error associated with this

approximation must be defined. The conventional definition of error of an approximated

function can be considered:

Qn+1
i

∣∣∣
discrete

= Qn+1
i

∣∣∣
exact

+ E(∆t,∆x) (3.31)

Since error is expected to be formed by Taylor expansion, E can be decomposed into a

polynomial to analyze accuracy as:

E(∆x,∆t) = a∆x+ b∆t+ c∆x2 + d∆x∆t+ e∆t2

+O(∆xi∆t3−i)
∣∣
i=0,...,3

+ . . .

(3.32)

Here, it is important to note that the leading non-zero constants define the order of

accuracy. For equation (3.30), constants a, b, and c are zero. Constants d and e follow:

d =

[
θ
∂

∂x

(∂F
∂Q
R1

)n+1
+ (1− θ) ∂

∂x

(∂F
∂Q
R1

)n]
, e = −(θ − 1

2
)
∂T1

∂x
(3.33)

Equations (3.30)-(3.33) are used to analyze the accuracy of the discrete approximation

(3.26). It can first be noted that discretization causes error in terms of temporal and

spatial components. Further, the definitions of θ and R1 are specified by a given

algorithm. Directly, it can be seen that if the value of θ is equal to 1/2, the algorithm
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is temporally second-order accurate. Any other value will result in first-order temporal

accuracy. Additionally, if R1 = 0, then the algorithm is spatially second-order accurate.

For any non-zero value of R1, the algorithm is spatially first-order accurate.

3.4.2 Consistency

The consistency of the discrete approximation (3.26) can be determined by comparison

to the exact integral formation (3.25) and the exact differential formation (3.15). The

discrete approximation (3.26) is deemed consistent if the limit as ∆t → 0 yields the

exact integral formation (3.25) and if the limit as ∆x→ 0 and ∆t→ 0 yields the exact

differential formation (3.15). In basic terms, if the discretization of (3.26) is further

reduced to an infinite amount of cells, the exact equations in which it was derived must

be obtained. Consider the formation of error defined previously:

Qn+1
i

∣∣∣
discrete

= Qn+1
i

∣∣∣
exact

+ E(∆t,∆x) (3.34)

E(∆x,∆t) = a∆x+ b∆t+ c∆x2 + d∆x∆t+ e∆t2

+O(∆xi∆t3−i)
∣∣
i=0,...,3

+ . . .

(3.35)

With equations (3.34) and (3.35), it can be shown that the discrete approximation of

Qn+1
i will approach the exact solution of Qn+1

i as the error approaches zero. Addition-

ally, it was shown in the previous section that the order of error is O(∆x∆t,∆t2, . . .).

With this in mind, it can be implicitly stated that as ∆t→ 0, E → 0. Additionally, it

can also be stated that as ∆t → 0 and ∆x → 0, E → 0 as well. This further provides

consistency of the discrete approximation (3.26) to the integral formation (3.25) and

the differential formation (3.15), and thus proves that (3.26) is fully consistent.
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3.4.3 Stability

Both equations (3.24) and discrete approximation (3.26) can be further evaluated in

terms of stability using von Neumann analysis. To determine the stability, spatial

discretization is first considered. For illustration, consider a basic flux quadrature:

Fi+ 1
2

= F(Qi+ 1
2
),

Qi+ 1
2

= Qi

(3.36)

By applying Taylor expansion and various approximations of terms, equation (3.24)

can be further re-written as:

∂Qi
∂t

+Ai

(
Qi −Qi−1

)
∆x

= 0 (3.37)

Additionally, the Fourier series coefficients of Qi can be shown as:

Q̂k(t
n) =

1

2N

i=2N∑
i=1

Qi(t
n)e−ikxi (3.38)

Utilizing equation (3.38), equation (3.37) can be re-written in terms of a Fourier series.

In addition, matrix A is diagonalized and further simplifications are made:

∂Q̂k
∂t

+ αAQ̂k = 0

∂Q̂k
∂t

+ αTΛT−1Q̂k = 0

∂Q̃k
∂t

+ αΛQ̃k = 0

(3.39)

where Q̃k = T−1Q̂k. The solution to the final equation shown in (3.39) can further be

found by integration and written as:

Q̃km(t) = Q̃km(0)e−αλmt (3.40)
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Here, the coefficient α seen in equations (3.39) and (3.40) is key to the stability analysis

of equation (3.24). α can be defined as:

α =
1

∆x

(
1− cos k∆x

)
+

i

∆x
sin k∆x (3.41)

Thus, in order for equation (3.24) to have spatial stability, the real portion of αλm

must be positive. From equation (3.41), it can seen that the real portion of α, which is

equal to 1
∆x(1 − cos k∆x), is positive for all values of k. However, this requires λm to

be positive for all values k as well. The eigenvalues of the constant matrix A are:

λ1 = u, λ2 = u+ a, λ3 = u− a (3.42)

Therefore, the flux quadrature presented in (3.36) can be considered stable only when

u ≥ a. For this condition, the fluid must be traveling to the right at or above the speed

of sound, which is consistent with supersonic flow physics.

Additional considerations for the discrete approximation (3.26) with the flux quadra-

ture shown in (3.36) need to be made to ensure stability. Consider an analog to equation

(3.40), derived from the discrete approximation (3.26):

Q̃n+1
k = GQ̃nk (3.43)

where the matrix G in equation (3.43) can be defined as:

G =
[
I + ∆tθαΛ

]−1[
I −∆t(1− θ)αΛ

]
(3.44)

The stability condition for equation (3.43) requires that ||G|| ≤ 1. This allows for

the solution to be decaying, thus avoiding temporally unbounded oscillations. For the

flux quadrature presented in (3.36), this can be shown more clearly in the following

equation.
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(∆tλi
∆x

)[(∆tλi
∆x

)
(1− 2θ)− 1

]
= 0 (3.45)

Equation (3.45) has a dependence on θ, which is prescribed by an algorithm. Consider

the explicit Euler algorithm, where θ = 0. With this, the conditions of stability derived

from (3.45) take the form:

λi ≥ 0 and ∆t ≤ ∆x

λi
(3.46)

which further follows the notion that:

u ≥ a and ∆t ≤ ∆tCFL (3.47)

The term ∆tCFL is often seen in stability analysis and is known as the Courant-

Friedrichs-Lewy (CFL) condition. This condition puts a restriction on the discrete

time-steps employed by any specific algorithm, and can be expressed as:

∆tCFL = min
∆x

λi
(3.48)

3.4.4 Convergence

When utilizing a FVM approach for derivation of equation (3.24), the numerical ap-

proximation Qn,api converges to the exact solution Qn,ei if the following expression holds.

lim
∆t,∆x→0

||Qn,ei −Q
n,ap
i || = 0 (3.49)

Further, it can be shown that the normalized difference between the exact and ap-

proximation solutions is of the same order as accuracy. Therefore, for a spatially and

temporally second-order algorithm, the normalized difference can be shown as:

||Qn,ei −Q
n,ap
i || = O(∆t2,∆x2) (3.50)
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which therefore implies convergence for equation (3.24).

3.5 Reconstruction

Consider the semi-discrete FVM Euler equations presented previously:

∂Qi
∂t

+

(
Fi+ 1

2
− Fi− 1

2

)
∆x

= 0 (3.51)

The discretization of the domain and introduction of the volume averaged vector Qi(t)

results in loss of information of Q(x, t). The time-averaged Qi requires the fluxes

Fi± 1
2
, which are computed from the local approximate reconstruction Qi(x) of the ex-

act Qi. The simplest reconstruction here is that Qi(x) = Qi; however, this greatly

diminishes the numerical fidelity of the solution, and thus higher order accuracy meth-

ods are sought. This leads into reconstruction using the primitive function. Through

an extensive mathematical proof, the commonly employed modified upwind scheme for

conservation laws, or MUSCL scheme, can be derived. The final formation follows:

Ql
i+ 1

2

= Qi +
1

4

[
(1− κ)∆Qi− 1

2
+ (1 + κ)∆Qi+ 1

2

]
,

Qr
i− 1

2

= Qi −
1

4

[
(1− κ)∆Qi+ 1

2
+ (1 + κ)∆Qi− 1

2

] (3.52)

where the forward and backward gradients ∆Qi± 1
2

are defined as the difference between

cell-centers of adjacent cells as:

∆Qi+ 1
2

= Qi+1 −Qi, ∆Qi− 1
2

= Qi −Qi−1 (3.53)

This reconstruction scheme allows for differing values of κ, which produce multiple

types of schemes. Depending on the value of κ, both equations shown in (3.52) can be

transformed into either a second or third order reconstruction scheme. Additionally,

various values of κ produce differing cell-value dependencies. Associated order and

dependencies for κ = -1, 0, 1/3, and 1, are provided on the next page in Table 3.1.
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Value Order Dependence

κ = −1 2nd order,
upwind

Ql
i+ 1

2

depends on Qi and Qi−1 and Qr
i− 1

2

depends on Qi

and Qi+1.

κ = 1 2nd order,
centered

Ql
i+ 1

2

depends on Qi and Qi+1 and Qr
i− 1

2

depends on Qi

and Qi−1.

κ = 1
3 3rd order,

upwind
bias

Ql
i+ 1

2

depends on Qi, Qi−1, and Qi+1 and Qr
i− 1

2

depends

on Qi, Qi−1 and Qi+1.

κ = 0 2nd order,
upwind
bias

Ql
i+ 1

2

depends on Qi, Qi−1, and Qi+1 and Qr
i− 1

2

depends

on Qi, Qi−1 and Qi+1.

Table 3.1: MUSCL Scheme κ Values, Order, and Dependence

For the purposes of this thesis, κ is set to 1/3. Thus, the general reconstruction (3.52)

can be shown to be:

Ql
i+ 1

2

= Qi +
1

6

[
∆Qi− 1

2
+ 2∆Qi+ 1

2

]
,

Qr
i+ 1

2

= Qi −
1

6

[
∆Qi+ 1

2
+ 2∆Qi− 1

2

] (3.54)

which works as a three-stencil method and depends on both adjacent cells as mentioned.

3.5.1 Flux Limiters

While the reconstructed equation (3.52) works very well with smooth, continuous data,

large gradients and discontinuities can produce numerical oscillations. In order to

maintain stability, the higher-order correction term has to be reduced. Essentially, this

forces the reconstruction at cell-faces to be within the limit of adjacent cell-averages.

Consider a basic Taylor expansion of the vectors Ql,r
i± 1

2

.

Ql
i+ 1

2

= Qi +
1

2

(∂Q
∂x

)
∆x = Qi +

1

2
δQl,

Qr
i− 1

2

= Qi −
1

2

(∂Q
∂x

)
∆x = Qi −

1

2
δQr

(3.55)
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To limit the values of Ql,r
i± 1

2

to that of adjacent cells, consider the following relation:

Qi −
1

2
δQ ≥ Qi−1,

Qi +
1

2
δQ ≤ Qi+1

(3.56)

which clearly shows that if the high-order gradient δQ exceeds 2∆Qi± 1
2
, the magnitude

must be limited. Allow the following filter function, where δQ is further related to

equation (3.55).

δQ = R(θ)δQ, θ =
∆Qi+ 1

2

∆Qi− 1
2

(3.57)

min(2∆Qi+ 1
2
, 2∆Qi− 1

2
) = R(θ)

{1

2

[
(1− κ)∆Qi− 1

2
+ (1 + κ)∆Qi+ 1

2

]}
(3.58)

Further specification of the filter function R(θ) is set by differing limiters. The limiter

of choice for this thesis is the minimum modulus (min-mod) limiter. The min-mod

function allows for the smaller (magnitude) of the two gradients to be employed if they

have the same sign, and zero otherwise. In conclusion, the min-mod function can be

written as:

minmod(x, y) =


x, |x| < |y| & xy > 0

y, |x| > |y| & xy > 0

0, xy < 0

, R(θ) =


2θ

θ + 1
, 0 ≤ θ < 1

2

θ + 1
, θ ≥ 1

(3.59)

3.6 Roe Scheme

The information presented in this section follows derivations from Knight (2006) [32].

Considering that Roe’s method is the utilized inviscid flux algorithm, this method will

be derived in full. Philip Roe (1981,1986) developed his flux algorithm based on the



32

exact solution to the generalized Riemann problem. Consider the previously shown

conservative form of the differential Euler equations:

∂Q
∂t

+A∂Q
∂x

= 0 (3.60)

where the coefficient matrix A is once again defined:

A =



0 1 0

1
2(γ − 3)u2 (3− γ)u (γ − 1)

1
2(γ − 1)u3 −Hu H − (γ − 1)u2 γu


(3.61)

Roe sought a solution to the generalized Riemann problem by forming an approximate

equation to (3.60):

∂Q
∂t

+ Ã(Ql,Qr)
∂Q
∂x

= 0 (3.62)

where Ã(Ql,Qr) is the approximation of the exact matrix A. Roe postulated that the

approximate matrix Ã(Ql,Qr) satisfied the following properties, which are important

for the derivation of the algorithm.

(i) Ã provides a linear mapping from the vector space of Q to the vector space of F .

(ii) Ã(Ql,Qr) → A(Q) as Ql → Qr → Q.

(iii) For any Ql and Qr, Ã(Ql,Qr) x (Ql −Qr) = Fl −Fr.

(iv) The eigenvectors of Ã(Ql,Qr) are linearly independent.

These postulations can be determined to have the following effects. (i) Allows the as-

sumption that each component of ÃQ has the same units as F , respectively. Further

assuming a smooth Q, (ii) provides the assumption that Roe’s approximation (3.62)



33

is consistent with the exact equation (3.60) and is a close approximation. For dis-

continuous jumps such as shocks, (iii) shows that Roe’s approximation requires exact

conditions across a shock. Lastly, (iv) is essential for the linear algebra operations that

will be taken. This provides that the matrix Ã(Ql,Qr) can be diagonalizable into real,

distinct, eigenvalues and linearly independent eigenvectors. Further, it is assumed that

Ã(Ql,Qr) is non-singular, allowing inversion.

To determine the Roe matrix Ã(Ql,Qr), consider the conservative vector Q, and

flux vector F , as shown:

Q =



ρ

ρu

1
γ [ρH + (γ−1)

2 ρu2]


, F =



ρu

1
γ [(γ − 1)ρH + (γ+1)

2 ρu2]

ρHu


(3.63)

Additionally, a new vector ν is introduced in which both Q and F are a function of ν.

ν =



√
ρ

√
ρu

√
ρH


(3.64)

Further, it is possible to define ∆Q and ∆F as functions of two separate constant

matrices multiplied by ∆ν.

∆Q = B∆ν,

∆F = C∆ν

(3.65)

For completeness, it can be noted that ∆Q = Ql−Qr, ∆F = Fl−Fr, and ∆ν = νl−νr.

The Euler Identity allows Q to be related with F as follows:

∆F = Ã∆Q (3.66)
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Combining relation (3.66) with equations in (3.65), and with some additional linear

algebra, the relationship between the Roe matrix Ã and the constant matrices B and

C can be found to be: Ã = CB−1. Deriving matrices B and C can be done using the

relations shown in (3.65), and is not shown for sake of brevity. Once this is done, the

Roe matrix Ã can be found to be:

Ã =



0 1 0

(γ−3)
2 ũ2 (3− γ)ũ (γ − 1)

(γ−1)
2 ũ3 − H̃ũ H̃ − (γ − 1)ũ2 γũ


(3.67)

where Ã is defined as the Roe matrix, ũ the Roe-averaged velocity, and H̃ the Roe-

averaged total enthalpy. In addition, ũ and H̃ are further defined as:

ũ =

√
ρlul +

√
ρrur√

ρl +
√
ρr

,

H̃ =

√
ρlHl +

√
ρrHr√

ρl +
√
ρr

(3.68)

It is very interesting to note that the Roe matrix Ã is near-identical to the original

matrix A. However, does Ã satisfy the necessary conditions, (i)-(iv), that Roe postu-

lated about Ã(Ql,Qr)? The Euler Identity, ∆F = Ã∆Q, is utilized in the derivations

above; which is indeed a linear mapping of F to Q, thus (i) is satisfied. As mentioned in

the first sentence of this paragraph, Ã being near-identical to the original matrix A is

not just interesting, but provides grounds for (ii) to be satisfied. From both equations

shown in (3.68), it is easy to see that ũ → u and H̃ → H as Ql → Qr → Q. This

implies that Ã → A as well, satisfying (ii). For (iii), it can be noted that before the

derivation of Ã, ∆ terms seen in relations (3.65) are defined as ∆f = fl−fr. Therefore,

(iii) is inherently satisfied. Satisfaction of (iv) however requires additional derivations

to be determined.
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First, the Roe matrix, Ã(Ql,Qr), must be diagonalized as follows:

Ã = ṼΛ̃Ṽ−1 (3.69)

Here, Ṽ is a matrix comprised of individual eigenvectors ν̃i, and Λ̃ is a matrix comprised

of individual eigenvalues λ̃i. From the Roe matrix in (3.67), λ̃i and ν̃i can be found,

where relations in (3.70) and (3.71) below consequently satisfy (iv).

λ̃1 = ũ, λ̃2 = ũ+ ã, λ̃3 = ũ− ã (3.70)

ν̃1 =



1

ũ

1
2 ũ

2


, ν̃2 =



1

ũ+ ã

H̃ + ũã


, ν̃3 =



1

ũ− ã

H̃ − ũã


(3.71)

Now that the Roe matrix is determined to be consistent with postulations (i)-(iv),

further derivations can be made. First, the matrices Λ̃ and Ṽ can be shown by combining

components of (3.70) and (3.71) as:

Λ̃ =



ũ 0 0

0 ũ+ ã 0

0 0 ũ− ã


, Ṽ =



1 1 1

ũ ũ+ ã ũ− ã

1
2 ũ

2 H̃ + ũã H̃ − ũã


(3.72)

Additionally, the inverse matrix Ṽ−1 can be found:

Ṽ−1 =



1
2ã2

[1− (γ − 1)ũ2] 1
ã2

(γ − 1)ũ − 1
ã2

(γ − 1)

1
4ã2

[(γ − 1)ũ2 − 2ãũ] 1

2ã2
[ã− (γ − 1)ũ] 1

2ã2
(γ − 1)

1
4ã2

[(γ − 1)ũ2 + 2ãũ] − 1

2ã2
[ã+ (γ − 1)ũ] 1

2ã2
(γ − 1)


(3.73)
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Using (3.69)-(3.73), Roe’s equation (3.62) can be further modified as follows:

∂Q
∂t

+ Ã(Ql,Qr)
∂Q
∂x

=0

∂Q
∂t

+ ṼΛ̃Ṽ−1∂Q
∂x

=0

Ṽ−1∂Q
∂t

+ Ṽ−1ṼΛ̃Ṽ−1∂Q
∂x

=0

∂Q̃
∂t

+ Λ̃
∂Q̃
∂x

=0

(3.74)

where Q̃ = Ṽ−1Q. Lastly, the solution to the end result of (3.74) can be considered:

Q̃ =



Q1

Q2

Q3


=



Constant on C1

Constant on C2

Constant on C3


(3.75)

where C1−3 in equation (3.75) are defined as the characteristic curves.

3.6.1 Further Consideration

Once again, consider the semi-discrete FVM Euler equations presented previously:

∂Qi
∂t

+

(
Fi+ 1

2
− Fi− 1

2

)
∆x

= 0 (3.76)

Now it can been shown that the flux vector approximation Fi+ 1
2

can be modified using

the Euler Identity (3.66) and diagonalization (3.69) as:

Fi+ 1
2

= Fi+ 1
2

= ÃQ = (ṼΛ̃Ṽ−1)(ṼQ̃)i+ 1
2

= ṼΛ̃Q̃i+ 1
2

(3.77)
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In addition to (3.77), Q̃(xi+ 1
2
) can be written as:

Q̃n+1
i+ 1

2

(k) =
1

2
[(Q̃kl + Q̃kr) + α(Q̃kl − Q̃kr)], where k = 1, 2, 3

α = 0,±1

(3.78)

Here, α is determined by the corresponding sign (or value if 0) of λ̃k. Further, the final

formation of the flux vector approximation Fi+ 1
2

can be written as:

Fi+ 1
2

=
1

2
[ṼΛ̃(Q̃l + Q̃r) + Ṽ|Λ̃|(Q̃l − Q̃r)]

=
1

2
[Q̃Λ̃Q̃−1(Ql +Qr) + Q̃|Λ̃|Q̃−1(Ql −Qr)]

=
1

2
[Fl + Fr + Q̃|Λ̃|Q̃−1(Ql −Qr)]

=
1

2
[Fl + Fr + Q̃|Λ̃|Q̃−1(Ql

i+ 1
2

−Qr
i+ 1

2

)]

(3.79)

where Fl can be defined as F (Ql
i+ 1

2

) and Fr can be defined as F (Qr
i+ 1

2

). The final

result of (3.79) represents Roe’s method for the flux vector F . Here, F is taken to be

the exact solution to the approximate Riemann problem and Fi+ 1
2

is taken to be the

approximate solution to the exact Riemann Problem.

3.7 Temporal Integration

The information presented in this section follows derivations from Saad (2003) [34]. The

temporal scheme that will be presented is Gauss-Seidel, as that is the one employed

in this thesis. Gauss-Seidel is an inner-iterative technique used for solving systems

of linear equations. To derive the basic method, first consider an arbitrary constant

matrix B and arbitrary vectors φ and ψ. Together, these can be used to form a system

of linear equations. It is important to note that for this method to be feasible, matrix

B must be invertible.

Bφ = ψ (3.80)
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Consider the LU decomposition of B, where L is the lower-triangle portion and U is the

upper-triangle and B = L + U . Further, the above equation (3.80) can be rearranged:

Lφ = ψ − Uφ, φ = L−1(ψ − Uφ) (3.81)

Allowing an iterative scheme with parameter k, the LHS can be set to be the k + 1

value of φ and the RHS can be set to be the k value of φ as follows:

φk+1 = L−1(ψ − Uφk) (3.82)

Equation (3.82) can further be rearranged through forward substitution and decompo-

sition of matrices φ, ψ, L, and U into their respective components as:

φk+1
i =

1

bii

(
ψi −

i−1∑
j=1

bijφ
k+1
j −

N∑
j=1+1

bijφ
k
j

)
(3.83)

For i, j = 1, 2, 3, . . . ,N. Coefficients bii and bij are the diagonal and off-diagonal compo-

nents of the matrix B, respectively. After every iteration of k, φki is updated to φk+1
i .

This method of temporal iteration is convenient for reaching steady-state solutions but

does not produce time-accurate solutions. The advantages of this include reduced so-

lution storage and exceptionally faster convergence. As a result, solutions produced by

this temporal method are not considered useful until convergence is achieved, which is

further defined by the residual. The residual of an iterative scheme is the calculation

of solution change between iterations. In this case, this can be represented as ∆φ =

φk+1
i −φki . Additionally, it can be noted that output residual information is commonly

given as the L2 norm of the change of solution. Consider a 1D Euler algorithm, where

φ contains 3 elements, on a grid with N cells. The L2 norm of the residual can be found

as the root-mean-square of the solution change of each element as:

L2 =

√
1

3

∑
j

1

N

∑
i

(∆φi,j)2 for i = 1, 2, 3, . . . , N

j = 1, 2, 3
(3.84)
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Chapter 4

3D Numerical Formations

The entire following chapter follows derivations from AeroSoft’s Technical Reference

Guide [35]. The numerical considerations presented in Chapter 3 provide a outline of

how the Navier-Stokes equations are solved numerically in one dimension. However, the

governing equation formations required for this research must be made in three dimen-

sions, and viscous, turbulence, and heat addition effects can no longer be ignored. This

chapter presents the formation of the Navier-Stokes equations in three dimensions only,

where previous numerical considerations such as accuracy, consistency, and stability are

considered outside the scope of this thesis. Formations presented in this chapter are

done with consideration of the employed flow solver GASPex, where inviscid modeling

is first presented and then expanded to viscous and turbulence modeling.

The generalized 3D Navier-Stokes equations can be numerically approximated using

the finite volume method (FVM), as presented previously in Chapter 3. Similarly, V

represents the control volume, A represents the control surface, and n̂ represents the

unit normal vector. Consider a 3D control volume approach, where the conservation of

mass, momentum, and energy equations are coupled in the following manner:

∂

∂t

˚
V
Q dV +

‹
A

(F(Q) · n̂) dA =

˚
V
S dV (4.1)

where terms Q, F , and S are comprised of the conservative, flux, and source variables

for a given formation. For the purposes of this thesis, the gas will be considered perfect

and non-equilibrium effects are further ignored. Because of this, the source term S can

be disregarded for most of the derivations presented in this chapter. FVM utilizes the

form of the above equation by first allowing a cell-averaged conservative variable term,
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Q̄. Additionally, per FVM, the flux integral is approximated with a sum over the faces

of each cell. Both of these are shown in the following relations.

Q̄ =
1

V

˚
V
Q dV,

‹
A

(F(Q) · n̂) dA ≈
∑
A

(F · n̂) ∆A (4.2)

Together, the generalized 3D FVM formation of the Navier-Stokes equations can be

obtained. An additional operation is employed in GASPex in order to solve for primitive

variables, rather than conserved, which is done for efficiency purposes. By applying the

chain rule to the volume-averaged conservative term Q̄, the time derivative is replaced

with respect to the primitive variables. Thus together, the final FVM formation can be

shown as:

V

(
∂Q̄
∂q

)
∂q

∂t
+
∑
A

(F · n̂) ∆A = 0 (4.3)

While GASPex employs the above FVM method formation for computations, it

is more clear to show the inviscid, viscous, and turbulence equations in differential

formation. This can be represented by:

∂Q

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= S (4.4)

where Q consists of the conservative variables, F, G, and H consist of the flux vari-

ables, and S consists of the source variables. Collectively, the formation shown in (4.4)

represents the conservation of mass, momentum, and energy equations.

4.1 Inviscid Formations

Utilizing the differential formation presented with equation (4.4), formation of the Euler

(inviscid) equations can be obtained. As discussed in Chapter 3, this formation can be

subsequently solved with flux schemes, such as Roe’s. First, consider the differential

formation:
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∂Q

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= 0 (4.5)

where the inviscid conservative term Q can be decomposed as:

Q =



ρ

ρu

ρv

ρw

ρe



(4.6)

and the inviscid flux terms F, G, and H can be decomposed as:

F =



ρu

ρu2 + p

ρuv

ρuw

(ρe+ p)u



, G =



ρv

ρuv

ρv2 + p

ρvw

(ρe+ p)v



, H =



ρw

ρuw

ρvw

ρw2 + p

(ρe+ p)w



(4.7)

The above terms (4.6) and (4.7) consist of fluid density ρ, component velocities u, v, and

w, total energy per unit mass e, and pressure p. As mentioned, the gas is also assumed

perfect and non-equilibrium effects are ignored. To be concise, the presentation shown

above can be further condensed using Einstein notation. This allows for the velocity

vector to be defined as uj = (u1,u2,u3) = uî + vĵ + wk̂ and the position vector to be

defined as xj = (x1,x2,x3) = xî+ yĵ + zk̂. In addition to this, the Dirac delta function

δij is implemented for formation purposes and defined as follows.
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δij


0 if i 6= j

1 if i = j

(4.8)

Together, the inviscid formation can now be presented with the differential equation:

∂Q

∂t
+

3∑
j=1

∂Finv
j

∂xj
= 0 (4.9)

where the conservative term Q and total inviscid flux term Finv
j can be decomposed as:

Q =



ρ

ρu

ρv

ρw

ρe



, Finv
j =



ρuj

ρuuj + pδj1

ρvuj + pδj2

ρwuj + pδj3

(ρe+ p)uj



(4.10)

Lastly, the inviscid flux term seen in the FVM representation (4.2) and (4.3) requires

an inner product of the flux vector Finv
j with the unit normal vector n̂. Allowing n̂ =

(n̂1,n̂2,n̂3), this can be shown as:

∑
A

Finv
j · n̂ = Finv

1 n̂1 + Finv
2 n̂2 + Finv

3 n̂3 (4.11)

where Finv
1→3n̂1→3 form:

Finv
1 n1 =



ρun̂1

(ρu2 + p)n̂1

ρuvn̂1

ρuwn̂1

(ρe+ p)un̂1



, . . . (4.12)
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4.2 Viscous Formations

When discussing the 3D inviscid formation of the Navier-Stokes equations, viscous

effects and heat addition are ignored, leading to the compressible Euler equations.

While this formation is useful for supersonic applications, ignoring these effects results

in loss of important physical phenomena, such as boundary layers. In order to represent

truly physical flow, the inviscid formation can simply be expanded to add the viscous

and heat addition effects. Consider a slight adjustment in which these effects are

represented with viscous flux terms Fv, Gv, and Hv. Consider the differential formation

shown in (4.4):

∂Q

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= 0 (4.13)

where the flux terms F, G, and H can be separated into inviscid and viscous terms as:

F = Finv −Gv, G = Ginv −Gv, H = Hinv −Hv (4.14)

With this, the conservative term Q and invscid flux terms Finv, Ginv, and Hinv remain

the same. The viscous flux terms are comprised of two new components, the viscous

shear stress tensor and global heat transfer vector. Just as with the velocity and

position vectors, the viscous shear stress tensor and global heat transfer vector can

be represented using Einstein notation as τij and qj , respectively. Following this, the

viscous shear stress tensor can be defined in the following manner:

τij =


τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

 =


τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 (4.15)

where it is important to note that non-symmetric indices, i 6= j, are identical. In

addition, global heat transfer can be defined as qj = (q1,q2,q3) = qxî+ qy ĵ+ qzk̂. Using
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the above relations (4.14) and definitions of viscous shear stress and global heat transfer,

the differential formation (4.13) can be represented as:

∂Q

∂t
+

3∑
j=1

∂Finv
j

∂xj
=

3∑
j=1

∂Fv
j

∂xj
(4.16)

where the additional viscous flux term Fv
j can be decomposed as:

Fv
j =



0

τ1j

τ2j

τ3j

τjiui − qj



(4.17)

and for clarity, viscous work τjiui in the energy equation can be written as:

τjiui =


τxxu+ τxyv + τxzw, j=1

τyxu+ τyyv + τyzw, j=2

τzxu+ τzyv + τzzw, j=3

(4.18)

Once again, several items can be noted about the above formation. First, the con-

servative and inviscid flux terms are identical to the inviscid formation. In addition,

the new viscous flux term is comprised of elements of momentum transport related to

viscous shear stress τij , and energy transport related to viscous work τjiui and global

heat transfer qj . As with the inviscid formation, the amount of species is one (perfect

gas) and vibrational non-equilibrium is ignored. Further, the viscous shear stress tensor

Further, the individual representations of each component in the viscous shear stress

tensor can be modeled by applying Stokes law for a monatomic Newtonian gas. This

allows for the viscous shear stress tensor to be a linear function of the rate of strain. As a

result, the diagonal and symmetric off-diagonal viscous shear stresses can be determined

with the following relations.
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τxx =
2

3
µ

(
2
∂u

∂x
− ∂v

∂y
− ∂w

∂z

)
,

τyy =
2

3
µ

(
2
∂v

∂y
− ∂u

∂x
− ∂w

∂z

)
,

τzz =
2

3
µ

(
2
∂w

∂z
− ∂u

∂x
− ∂v

∂y

)
,

τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
,

τxz = τzx = µ

(
∂u

∂z
+
∂w

∂x

)
,

τyz = τzy = µ

(
∂v

∂z
+
∂w

∂y

)
(4.19)

The global heat transfer vector qj can be decomposed just as with the viscous shear

stress tensor. By applying Fourier’s law, global heat transfer can be represented as the

conduction of energy due to temperature gradients as:

qj = −k ∂T
∂xj

(4.20)

Viscosity and thermal conductivity seen in equations (4.19) and (4.20) must further be

modeled. Sutherland’s model first assumes that viscosity and thermal conductivity are

a function of temperature. Following this, these quantities can expressed as:

µ = µ0

(
T

T0

) 3
2 T0 + S

T + S
, k = k0

(
T

T0

) 3
2 T0 + S

T + S
, (4.21)

where the constants µ0, k0, T0, and S depend on the species.

4.3 Turbulence Formation

The information presented in this section additionally includes derivations from Wilcox

(2006) [9]. The 3D Navier-Stokes turbulence formation requires significantly more in-

sight and methodology than previous formations. First, consider the differential forma-

tion presented for the viscous formation, with inclusion source terms S:

∂Q

∂t
+

3∑
j=1

∂Finv
j

∂xj
=

3∑
j=1

∂Fv
j

∂xj
+ S (4.22)
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where the conservative Q, inviscid flux Finv
j , and viscous flux Fv

j terms are first set to

be the identical to the previously presented laminar formations. The source term S

will represent turbulent production and dissipation that arise further in the derivation.

In order to incorporate the effects of turbulence, the the conservative and flux terms in

formation (4.22) must be modified. First, allow (4.22) to represent the instantaneous

turbulent equations. With this, the associated variables can then be further decom-

posed into their respective mean and fluctuating portions. This results in a statistical

approach to turbulence, known Reynolds/Favre-averaging. Application of this approach

is utilized to develop the Reynolds-averaged Navier-Stokes (RANS) equations, which

can further be modified by various turbulence models.

4.3.1 Reynolds and Favre Averaging

Reynolds proposed the following methods of averaging that are utilized to form the

RANS equations, which are further expanded by Favre-averaging in the Favre-averaged

Navier-Stokes equations. Three fundamentally different types of averaging are consid-

ered, which include time-averaging, spatial averaging, and ensemble averaging. These

averages can be shown as follows.

φ̄(x) = lim
∆t→∞

1

∆t

ˆ t+∆t

t
φ(x, t)dt Time Average

φ̄(t) =
1

V

˚
V
φ(x, t)dV Spatial Average

φ̄(x, t) = lim
N→∞

1

N

N∑
n=1

φn(x, t) Ensemble Average

(4.23)

In order to derive the Favre-averaged equations, time-averaging is utilized, where spatial

and ensemble averages are not considered. Additionally, another type of averaging

introduced by Favre is employed, known as mass-averaging, which can be shown as:

φ̃i =
1

ρ̄
lim

∆t→∞

1

∆t

ˆ t+∆t

t
ρ(x, τ) φi(x, τ) dτ (4.24)
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Following (4.23) and (4.24), associated variables in the terms of formation (4.22) are

decomposed into their mean and fluctuating portions. Here, the mean for most of the

variables is obtained using mass-averaging (Favre); however, the averaging of ρ, p, and

q is done using a conventional mean. These variables can be decomposed as:

u = ũ+ u′′, ρ = ρ̄+ ρ′, p = p̄+ p′, h = h̃+ h′′,

e = ẽ+ e′′, T = T̃ + T ′′, q = q̄ + q′
(4.25)

where h represents total enthalpy.

4.3.2 Favre-Averaged Navier-Stokes Equations

Following Reynolds/Favre-averaging, the variables associated with conservation of mass,

momentum, and energy equations can be decomposed. After, equations are time-

averaged and simplified to obtain a usable statistical formation. Rather than using

the notation seen in Sections 4.1 and 4.2, this will be shown using the conventional dif-

ferential form for clarity. Presented below, the starting equations represent the instan-

taneous continuity equation (4.26), momentum equation (4.27), and energy equation

(4.28).

∂ρ

∂t
+
∂ρuj
∂xj

= 0 (4.26)

∂ρui
∂t

+
∂(ρuiuj + pδij)

∂xj
=
∂τij
∂xj

(4.27)

∂ρe

∂t
+
∂(ρeuj + puj)

∂xj
=
∂(τjiui − qj)

∂xj
(4.28)

The Continuity Equation

∂ρ

∂t
+
∂ρuj
∂xj

= 0 (4.29)
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∂ρ̄

∂t
+
∂ρuj
∂xj

= 0 (4.30)

∂ρ̄

∂t
+
∂ρ̄ũj
∂xj

= 0 (4.31)

The Momentum Equation

∂ρui
∂t

+
∂(ρuiuj + pδij)

∂xj
=
∂τij
∂xj

(4.32)

∂ρui
∂t

+
∂(ρuiuj + p̄δij)

∂xj
=
∂τ̄ij
∂xj

(4.33)

∂ρ̄ũi
∂t

+
∂(ρ̄ũiũj + ρu′′i u

′′
j + p̄δij)

∂xj
=
∂τ̄ij
∂xj

(4.34)

∂ρ̄ũi
∂t

+
∂(ρ̄ũiũj + ρ̄ũ′′i u

′′
j + p̄δij)

∂xj
=
∂τ̄ij
∂xj

(4.35)

The Energy Equation

∂ρe

∂t
+
∂(ρeuj + puj)

∂xj
=
∂(τjiui − qj)

∂xj
(4.36)

∂ρe

∂t
+
∂(ρeuj + puj)

∂xj
=
∂(τjiui − q̄j)

∂xj
(4.37)

∂ρ̄ẽ

∂t
+
∂(ρ̄ẽũj + ρe′′u′′j + puj)

∂xj
=
∂(τjiui − q̄j)

∂xj
(4.38)

∂ρ̄ẽ

∂t
+
∂(ρ̄ẽũj + ρ̄ẽ′′u′′j + puj)

∂xj
=
∂(τjiui − q̄j)

∂xj
(4.39)
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Additionally, the mass-averaged total energy per unit mass ẽ and constitutive ideal gas

relationship have been modified and can be represented by the following relations.

ẽ = cvT̃ +
1

2
ũj ũj +

1

2
ũ′′ju

′′
j , p̄ = ρ̄RT̃ (4.40)

The statistical turbulent differential formation for each conservation equation is shown

as the final line of each derivation (4.31), (4.35), and (4.39). Collectively, the conserva-

tion of mass, momentum, and energy equations are presented as follows.

∂ρ̄

∂t
+
∂ρ̄ũj
∂xj

= 0 (4.41)

∂ρ̄ũi
∂t

+
∂

∂xj
(ρ̄ũiũj + ρ̄ũ′′i u

′′
j + p̄δij) =

∂τ̄ij
∂xj

(4.42)

∂ρ̄ẽ

∂t
+

∂

∂xj
(ρ̄ẽũj + ρ̄ẽ′′u′′j + puj) =

∂

∂xj
(τjiui − q̄j) (4.43)

which marks final formation of the RANS/Favre equations. In equations (4.41)-(4.43),

ũi and ẽ are Favre-averaged primitive variables, where ρ̄ and p̄ are the time-averaged

variables. In addition, τ̄ij denotes the time-averaged viscous stress tensor and q̄j denotes

the time-averaged heat flux. Several additional terms that arise in Favre-averaging

have the following denotations. In the momentum equation, ρ̄ũ′′i u
′′
j is referred to as

the Reynolds Stress tensor and puj is the time-averaged pressure-velocity moment. In

the energy equation, ρ̄ẽ′′u′′j is considered the turbulent transfer of heat and τjiui is the

time-averaged viscous shear-velocity moment.

4.3.3 Two-Equation Modeling (κ-ω)

The statistical conservation equations (4.41)-(4.43) are still considered open and require

further modeling and simplification to be closed. As outlined in the introduction, there
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are many types of turbulence models that can achieve this. With this said, the two-

equation κ - ω model will be presented. The modifications and approximations made

to these equations are further tabulated on the next page in Table 4.1.

Viscous Shear-Stress τ̄ij = τ̃ij + τ̄ ′′ij

Viscous Shear-Stress τ̃ij ≈ µ
(
∂ũi
∂xj

+
∂ũj
∂xi

)
− λµ∂ũk∂xk

δij

Shear-Stress Fluctuations τ ′′ij = µ
(
∂u′′i
∂xj

+
∂u′′j
∂xi

)
− λµ∂u

′′
k

∂xk
δij & τ̄ ′′ij ≈ 0

Turbulent Kinetic Energy κ = 1
2 ũ
′′
ju
′′
j

Boussinesq Approximation ρ̄ũ′′i u
′′
j = µt

(
∂ũi
∂xj

+
∂ũj
∂xi
− λδij ∂ũk∂xk

)
− λδij ρ̄κ

Heat Flux q̄j = −k ∂T∂xj ≈ −k
∂T̃
∂xj

,

Pressure-Velocity Moment puj = p̄ũj + ρ̄RT̃ ′′u′′j

Viscous Shear-Velocity Moment τjiui = τ̃jiũi + τ̃jiū
′′
i , as τ ′′jiu

′′
i , τ̄

′′
jiũi ≈ 0

Turbulent Transport of Heat ρ̄ẽ′′u′′j = ρ̄CvT̃ ′′u′′j + ρ̄ũiũ′′ju
′′
i + 1

2 ρ̄
˜u′′i u′′i u′′j

T̃ ′′u′′j = − µt
p̄P rt

∂T̃
∂xj

& 1
2 ρ̄

˜u′′i u′′i u′′j = −σ∗µt ∂κ∂xj

Enthalpy ρ̄ẽũj + p̄ũj = ρ̄h̃ũj

Turbulent Prandtl Number Prt = νt
αt

= Cp
µt
kt
, where kt = Cp

µt
Prt

Further Simplifications ρ̄CvT̃ ′′u′′j + ρ̄RT̃ ′′u′′j = ρ̄(Cv +R)T̃ ′′u′′j

= −ρ̄Cp
(

µt
ρ̄P rt

∂T̃
∂xj

)
= −kt ∂T̃∂xj

Two-Equation Approximation τ̃jiū
′′
i − 1

2 ρ̄
˜u′′i u′′i u′′j = (µ+ σ∗µt)

∂κ
∂xj

Table 4.1: Modeling of Favre-Averaged Navier-Stokes Equations
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The two-equation considerations can now be utilized to modify the previous statistical

conservation equations (4.41)-(4.43). Collectively, the modified statistical conservation

of mass, momentum, and energy equations (differential form) are presented below.

∂ρ̄

∂t
+
∂ρ̄ũj
∂xj

= 0 (4.44)

∂ρ̄ũi
∂t

+
∂

∂xj
(ρ̄ũiũj + p̄δij) =

∂

∂xj
(τ̃ij − ρ̄ũ′′i u′′j ) (4.45)

∂ρ̄ẽ

∂t
+
∂ρ̄h̃ũj
∂xj

=
∂

∂xj

[
ũi(τ̃ji − ρ̄ũ′′ju′′i )

]
+

∂

∂xj

[
(µ+ σ∗µt)

∂κ

∂xj
− q̄j

]
(4.46)

The modified viscous shear-stress tensor can be coupled with the Reynolds stress as

Tij = τ̃ij − ρ̄ũ′′i u′′j and decomposed into its respective components (including λ = 2/3):

Txx =
2

3
(µ+ µt)

(
2
∂ũ

∂x
− ∂ṽ

∂y
− ∂w̃

∂z

)
− 2

3
ρ̄κ,

Tyy =
2

3
(µ+ µt)

(
2
∂ṽ

∂y
− ∂ũ

∂x
− ∂w̃

∂z

)
− 2

3
ρ̄κ,

Tzz =
2

3
(µ+ µt)

(
2
∂w̃

∂z
− ∂ũ

∂x
− ∂ṽ

∂y

)
− 2

3
ρ̄κ,

Txy = (µ+ µt)

(
∂ũ

∂y
+
∂ṽ

∂x

)
,

Txz = (µ+ µt)

(
∂ũ

∂z
+
∂w̃

∂x

)
,

Tyz = (µ+ µt)

(
∂ṽ

∂z
+
∂w̃

∂y

)
(4.47)

where off-diagonal components of Tij are still symmetric (e.g. Txy = Tyx). As with the

viscous formation, the modified heat transfer vector q̄j can also be decomposed as:

q̄x = −(k + kt)
∂T̃

∂x
, q̄y = −(k + kt)

∂T̃

∂y
, q̄z = −(k + kt)

∂T̃

∂z
(4.48)

Lastly, the total energy ẽ relation shown in (4.40) can now be shown with relation to

turbulent kinetic energy κ as follows.

ẽ = cvT̃ +
1

2
ũj ũj + κ (4.49)



52

Two-equation models incorporate additional turbulent variables for computation.

First, the eddy viscosity, denoted µt, is modeled by turbulent kinetic energy κ, dissipa-

tion ε, and frequency ω, in the following manner.

µt
∣∣
κ−ε =

ρ̄κ2

ε
, µt

∣∣
κ−ω =

ρ̄κ

ω
(4.50)

The relations and approximations made in this section give rise to what are know as

closure coefficients that are needed in order to close the turbulence formation. First,

the turbulent Prandtl number Prt, which represents the ratio of diffusion of momentum

to diffusion of heat, can be obtained with the empirical relations. Subsequently, the

laminar and turbulent Prandtl numbers can be expressed for air as:

Pr =
Cpµ

κ
≈ 0.72, P rt =

Cpµt
κt
≈ 0.9 (4.51)

The other closure coefficient seen above is σ∗. For the Wilcox κ-ω model, this coefficient

is set to 3/5. With introduction of additional transport equations, multiple new closure

coefficients will be introduced.

4.3.4 Additional Transport Equations

The arise of the turbulent quantities κ, ε and ω in two-equation modeling requires ad-

ditional transport equations for computation. For the Wilcox κ - ω model, these two

equations are known as the Turbulent Kinetic Energy (TKE) equation and Turbulent

Frequency Energy (TFE) equation. The TKE and TFE equations take the same forma-

tion of the conservative equations, with the inclusion of additional source terms, shown

as production and dissipation. The TKE equation is first required to solve for turbulent

kinetic energy κ. This equation, shown in differential form, can be represented as:

∂ρ̄κ

∂t
+
∂ρ̄κũj
∂xj

=
∂τκj
∂xj

+ Pκ −Dκ (4.52)
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where the spatial derivative on the LHS is the convection term, the spatial derivative

on the RHS is the diffusion term, Pκ is the production term, and Dκ is the dissipation

term. The diffusion, production, and dissipation terms can be represented as:

τκj = (µ+ σ∗µt)
∂κ

∂xj
, Pκ = µtS

2 − 2

3
ρ̄κ
∂ũi
∂xj

, Dκ = β∗ρ̄ε (4.53)

where the strain invariant S2, and dissipation rate ε, can be shown as:

S2 =

(
∂ũi
∂xj

+
∂ũj
∂xi

)
∂ũi
∂xj
− 2

3

(
∂ũk
∂xk

)2

, ε = κω (4.54)

The additional closure coefficient introduced in the TKE equation is β∗. For the Wilcox

κ-ω model, this coefficient is set to 9/100.

Following the previous derivation, an additional equation known as the TFE equa-

tion is required to solve for the turbulent frequency ω. The equation is structured in

the same way as the TKE equation, and can be shown in differential form as:

∂ρ̄ω

∂t
+
∂ρ̄ωũj
∂xj

=
∂τωj
∂xj

+ Pω −Dω (4.55)

where the diffusion, production, and dissipation terms can be similarly shown as:

τωj = (µ+ σµt)
∂ω

∂xj
, Pω = α

ω

κ

(
µtS

2 − 2

3
ρ̄κ
∂ũi
∂xj

)
,

Dω = βρ̄ε
ω

κ
, ε = κω

(4.56)

The new closure coefficients that arise in the TFE equation are σ, α, σd, and β. For the

Wilcox κ-ω model, the first two coefficients are set to 1/2 and 13/25, respectively. The

second two coefficients are more involved. σd is determined by the following relation:

σd =


0 G ≤ 0

σd0 G > 0

, G =
∂κ

∂xj

∂ω

∂xj
, σd0 =

1

8
(4.57)



54

and additionally, β is obtained by the following:

β = β0fb, β0 = 0.0708, fb =
1 + 85Xw
1 + 100Xw

, Xw =

∣∣∣∣ΩijΩjkŜki
(β∗ω)3

∣∣∣∣
Ωij =

1

2

(
∂ũi
∂xj
− ∂ũj
∂xi

)
, Ŝki =

1

2

(
∂ũk
∂xi

+
∂ũi
∂xk

)
− 1

2

∂ũm
∂xm

δki

(4.58)

4.3.5 Final Formation

With implementation of the TKE and TFE equations to the statistical equations (4.44)-

(4.46), the complete two-equation turbulence formation can be considered. In addition

to the conservative and flux terms, the production and dissipation terms are added

as turbulent sources. Closure coefficients follow those presented in the previous sub-

sections. Collectively, the final differential turbulence formation of the Wilcox κ - ω

turbulent model can be represented as:

∂ρ̄

∂t
+
∂ρ̄ũj
∂xj

= 0 (4.59)

∂ρ̄ũi
∂t

+
∂

∂xj
(ρ̄ũiũj + p̄δij) =

∂

∂xj
(τ̃ij − ρ̄ũ′′i u′′j ) (4.60)

∂ρ̄ẽ

∂t
+
∂ρ̄h̃ũj
∂xj

=
∂

∂xj

[
ũi(τ̃ji − ρ̄ũ′′ju′′i )

]
+

∂

∂xj

[
(µ+ σ∗µt)

∂κ

∂xj
− q̄j

]
(4.61)

∂ρ̄κ

∂t
+
∂ρ̄κũj
∂xj

=
∂

∂xj

[
(µ+ σ∗µt)

∂κ

∂xj

]
+
[
µtS

2 − 2

3
ρ̄κ
∂ũi
∂xj

]
− β∗ρ̄κω (4.62)

∂ρ̄ω

∂t
+
∂ρ̄ωũj
∂xj

=
∂

∂xj

[
(µ+σµt)

∂ω

∂xj

]
+α

ω

κ

[
µtS

2− 2

3
ρ̄κ
∂ũi
∂xj

]
+σd

∂κ

∂xj

∂ω

∂xj
−βρ̄ω2 (4.63)

In conclusion, differential equations (4.59)-(4.63) provide the final turbulence formation

employed for this thesis.
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Chapter 5

Experimental Study

The following chapter will present the experimental study done as a precursor to this

thesis. The study was conducted by CUBRC Internal Research, and subsequently

presented at the American Institute of Aeronautics and Astronautics (AIAA) Aviation

conference in 2014. The information and data utilized for the research done in this

thesis was obtained from this publication [36]. CUBRC, or the Calspan-University of

Buffalo Research Center, is a non-profit research and development organization formed

in 1983. The mission of CUBRC is to employ developing technology to solve influential

and challenging issues that exist among various United States communities, such as

Defense and Homeland Security [37].

The experimental study was sponsored by CUBRC Internal Research, NSSEFF

grant with University of Minnesota, and AFOSR. The primary purpose of the study

was to obtain and document results for use of a blind code validation. In addition to the

experiment, post-computational studies were also conducted and published by various

contributors. Overall data is collected for several configurations, where the large cone

flare and large hollow cylinder are primarily considered. The focus of this thesis is on

the large cone flare, where it can be noted that a similar analysis has been done for the

large hollow cylinder by Saumil Patel [16]. Data collection includes surface pressure and

surface heat transfer measurements in regions of shock-wave boundary-layer interaction

(SBLI). The experiments were conducted at various freestream conditions ranging from

Mach 5 to 8, in both cold flows and fully turbulent flows with duplicated flight velocities.

For the large cone flare, a total of ten different runs were conducted and published. For

the purposes of this thesis, the experimental uncertainty for the study is estimated at

5% for surface pressure readings and 10% for surface heat transfer readings.



56

5.1 Experimental Equipment (CUBRC)

The collective information presented in this section is obtained from CUBRC’s main

website [37]. CUBRC has multiple testing facilities, employed for various experimental

purposes. The LENS AeroThermal and AeroOptic test facility is the main facility

associated with this experimental study and is comprised of four LENS, or Large Energy

National Shock, wind tunnels. Each tunnel was constructed with a specific focus on

major supersonic and hypersonic flow regimes. The current tunnels are the LENS 48-

inch Mach 6 to 18 Shock Tunnel, LENS I, LENS II, and LENS XX. The tunnel that

was employed for this experimental study was the LENS II Shock/Ludweig Tunnel,

constructed for high Reynolds number flows with Mach ranges of 2 through 12.

5.1.1 LENS II

Figure 5.1: LENS II Tunnel [36]

The LENS II High Reynolds Num-

ber Shock Tunnel is designed to op-

erated between Mach 2 and 12. In

addition, duplicated flight velocities

can range from 3,000 to 9,000 ft/sec.

LENS II is a very large tunnel with

driver and driven tubes that are 60

and 100 ft, respectively. Major tests

using LENS II have been conducted

at duplicated flight conditions to de-

termine aerothermodynamic loading and propulsion system performance. Fundamental

studies of SBLI have been conducted on flight-scale models in high Reynolds number

cold flows, as well as high enthalpy flows to provide ”flight like” conditions for code-

development and calibration. Overall test times can range about 1/3 of a second for

low Mach number flows and about 1/10 of a second for higher Mach number flows.

Freestream conditions in the LENS II are obtained from pitot pressure probes, stagna-

tion heat transfer gauges, and thermocouple probes for total temperature readings.
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5.1.2 Large Cone Flare

Figure 5.2: Large Cone Flare [36]

The large cone flare design can be related

to many supersonic vehicles, such as the

nose of jet-propulsion aircraft. This the-

sis is focused on the experimental study

conducted on this specific configuration.

To the right, a physical image of the large

cone flare is shown inside of the LENS II

Tunnel. The total length of the large cone

flare is 98.59 inches. The axisymmetric

cone exhibits a sharp point at the nose,

with a 7◦ vertex angle. Farther down-

stream, at 92.64 inches, a second flare exists with a 40◦ vertex angle. In high Mach

number flows, it can be expected that this configuration will produce multiple super-

sonic phenomena. Most notably is SBLI, which takes place near the surface of the

second flare. For computational purposes, the sharp point at the nose is considered to

be infinitesimally sharp, with zero thickness. Additionally, considering the size of the

configuration, the incoming turbulent boundary layer at the second flare is considered

to be fully developed. The overall schematic for the large cone flare is shown below.

Figure 5.3: Large Cone Flare Schematic [36]
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The Large Flare is equipped with numerous surface pressure and surface heat trans-

fer sensors. These sensors include piezoelectric pressure gauges (for surface pressure)

and thin-film heat transfer gauges (for surface heat transfer) [38]. A total of 48 pressure

sensors are clustered locally along the axial surface near the second flare, ranging from

89 inches (7.46 feet) to 97.6 inches (8.13 feet). Additionally, a total of 86 heat transfer

sensors are distributed along the entire axial surface of the cone, ranging from 6.8 inches

(.57 feet) to 97.7 inches (8.14 feet). Condensed sensor locations are tabulated below,

where sensor denotations for pressure and heat transfer are P# and T#, respectively.

Sensor Axial Location (inches) Sensor Axial Location (inches)

P26 89.607 T1 6.848
P27 89.761 T2 9.892

P28 89.915 T4 15.892

P29 90.069 T96 16.892

P30 90.223 T97 17.892

...
...

...
...

P75 96.357 T159 96.548

P76 96.548 T160 96.827

P77 96.827 T161 97.133

P78 97.21 T162 97.44

P79 97.593 T163 97.746

Table 5.1: Pressure and Heat Transfer Sensor Locations

5.2 Experimental Data

Experiments were run with multiple freestream conditions, with Mach number ranges

of roughly 5 to 8. These conditions are tabulated for each run and provided on the next

page. For computations, six out of the ten runs were selected: Runs 28, 34, 33, 14, 41,

and 37. The model surface is approximated to be isothermal with a wall temperature

of 300 K, or 540◦ R. The freestream gas is assumed to be dry air with mass fractions

cN2 = 0.765 and cO2 = 0.235, and is further approximated as a perfect ideal gas.
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Run Number Mach Number Velocity ( ftsec) Temperature (R◦) Density ( slugs
ft3

)

28 4.96 4844.1 395.8 2.75E-04

34 6.03 5177.6 305.8 1.38E-04

33 6.17 3055.3 101.7 1.43E-04

14 7.18 3862.6 119.9 1.11E-04

41 8.10 6898.5 300.5 4.57E-05

37 8.21 4205.9 108.8 8.48E-05

Table 5.2: Freestream Conditions for CUBRC LCF Experiments

5.3 Computational Study

Previous computational studies have been done corresponding to this experimental

study. Detailed submissions were received by NASA Langley Research Center, NASA

Ames Research Center, University of Minnesota, Texas A&M University, and CUBRC.

Simulations from these organizations were carried out by MacLean, Candler, Prabhu,

Bowersox, and Gnoffo, respectively. Comparisons that were presented by CUBRC in-

clude plots for surface pressure and surface heat transfer in regions of SBLI. The main

turbulence models employed for simulations were SST and Spalart-Allmaras. Contrib-

utors found very similar results for each respective run for both surface pressure and

surface heat transfer. For each run, all contributors produced reasonable pressure pre-

dictions, with over-prediction of the region of separation and location of peak pressure.

In addition, all contributors produced inaccurate post-flare surface heat transfer pre-

dictions, as well as large over-predictions of peak heat transfer. Computational studies

were also conducted for the large hollow cylinder, where results show similar inaccura-

cies. Collectively, the computational results published by these contributors are on-par

with the final results for this thesis. All predictive inaccuracies are dually observed,

with slight discrepancies due to the employed turbulence model.
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Chapter 6

Methodology

There are many commercial software that exist for computational fluid dynamics (CFD).

Some examples include GASPex, ANSYS CFX, COMSOL Multiphysics, OpenFoam,

and Autodesk Simulation. The commercial software utilized for this thesis is AeroSoft’s

GASPex. GASPex is multi-physics package that primarily solves the Reynolds-averaged

Navier-Stokes (RANS) equations. To be able to utilize GASPex, a grid must first be

imported. Once this is done, the graphic user interface (GUI) can be configured in

order to produce a fluid-flow simulation. There are numerous specifications that can be

made, as well as parameters that can be set. Some examples include boundary condi-

tions, freestream conditions, inviscid flux scheme, and turbulence model. This chapter

will present the methodology of this thesis, which includes grid generation and GASPex

configuration.

6.1 Grid Generation

GASPex requires a grid to be self-created and imported into the GUI. Multiple grid

formats are accepted in GASPex, including Plot3D, CGNS, GASP, FVUns, and VGrid.

Plot3D was chosen, however this format requires additional code such as C++ or MAT-

LAB for creation. Due to familiarity, the grid generation code was created using MAT-

LAB. Additionally, because the software utilizes a matrix-base language, it is very easy

to create an efficient grid generation code using it.
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(i) Number of Zones (α)

(ii) Dimensions1→α: N x M
...

(iii) Cell Coordinates: xi,j
...

(iv) Cell Coordinates: yi,j
...

for i = 1, 2, 3, · · · , N

j = 1, 2, 3, · · · , M

Table 6.1: Plot3D Grid Formatting

To create a Plot3D grid, first a basic ge-

ometry outline needs to be considered. Using

this, the outline needs to be converted into

separate zones. For the purposes of GASPex,

each zone will allow for different boundary

conditions and solution storage. After this,

the geometrical outline needs to be converted

into a discrete mesh. For the Plot3D format,

this is recorded by specifying each individ-

ual node’s Cartesian location. After this, the

mesh needs to be formated in a particular way. The line-by-line formatting of a 2D

Plot3D grid with dimensions of N by M is shown to right, in Table 6.1. Figure 6.1,

shown below, represents an example grid. For this grid, the number of zones, nodes,

and cells are 1, 9, and 4, respectively. The dimensions of this grid are [0,2] by [0,2].

Figure 6.1: Sample Plot3D Grid

For the employed grid configuration,

the amount of zones was set set to three.

The first zone is the incoming flow region,

set to be the inlet flow. Without this

first zone, computational instability occurs.

The second zone is the main physical re-

gion, where the geometry is based on the

double cone flare. The last zone is the out-

let zone, set to be slightly downstream of

the end of the flare and is required for sim-

ilar reasons as the inlet zone. To create the

outline geometry and dimensions for each zone, multiple considerations were taken.

First, the second zone is set as the center-zone in which it begins at the origin of the

Cartesian grid. The length of this zone is set to the length of double cone flare, which

is 98.59 inches (or 8.126 feet). The height of this zone needed special consideration,
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as it needed to be tall enough to fully contain all supersonic phenomena. The leading

constraint for this is the incoming leading edge shock. The height needed to contain

this shock can be approximated by the Mach wave angle µ, which is a function of in-

coming Mach number. This angle and the corresponding height h, can be found with

the following relations: Note that L = length.

µ = sin−1 1

M∞
, h = L tan(µ) (6.1)

It is important to mention that one grid was made to incorporate all runs. Since the

incoming Mach angle µ is inversely proportional to Mach number, the lowest run Mach

number (Run 28 - Mach 4.96) was used to create the grid. Additionally, a factor of 1.25

was added to the total height to ensure room for uncertainty and approximation error.

The dimensions for the incoming and exiting zone are arbitrary in the x-direction, and

based on the beginning/ending coordinates of the second zone in the y-direction. The

total dimensions for the grid are presented below in Table 6.2, where the second zone

is split into the pre, 2a, and post, 2b, flare dimensions. In the table, x-coordinates are

always constant and the beginning/ending y-coordinates for each zone are shown as a

result of the trapezoidal geometry. Additionally, it should be noted that coordinates in

Table 6.2 are rounded, where actual coordinates utilized are double-precision.

Zone x y1 y2

1 -0.74 → 0.00 0.00 → 1.46 ”

2a 0.00 → 7.72 0.00 → 1.46 0.95 → 2.40

2b 7.72 → 8.22 0.95 → 2.40 1.36 → 2.82

3 8.22 → 8.95 1.36 → 2.82 ”

Table 6.2: Employed Grid Dimensions
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Next, the mesh for the grid was created where the overall geometry that was em-

ployed follows Table 6.2. The x spatial-direction was discretized in an arbitrary manner

at first, and later refined. The y spatial-direction took further consideration. First, a

basic mesh was created that had a constant change of height ∆y. Here, the starting

location for each J-Surface follows basic trigonometry as a function of the flare angle

and spatial location. After, viscous effects needed to be considered. Due to the viscous

sublayer which needs to be resolved, the y-direction spacing near the wall is required

to be extremely small (roughly 10−06 inches). If this was kept at a constant change

of height, the amount of cells required would be extremely large and computationally

expensive. Therefore, two geometric progressions were employed to optimize computa-

tional loading. The first geometric progression progressed the surface height location

yw, to about 1/10 of the total surface height yα, in half of the total nodes. The second

geometric progression then progressed yα to the total height, in the remainder of the

points. Arbitrary constants associated with these progressions, C1 and C2, are based

on the height of each surface and corresponding amount of nodes in the y-direction.

After this, the final grid mesh was created, represented in Figure 6.2. It should be

noted that considering the large amount of cells for the final grid, Figure 6.2 shows a

reduced version of the grid through I/J-Blanking in Tecplot.

Figure 6.2: Mesh for Large Cone Flare, Plot3D
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Throughout the research conducted in this thesis, a grid independence study was

also done. The purpose of the study, which will be presented in the Results chapter, was

to create a fine enough grid where grid sequencing had a negligible affect on the solution.

Before the grid was deemed independent, several configurations were made. Each time

a configuration was created, the grid was split into three sequences: course, medium,

and fine. Various differing grid configurations were employed to test grid dependence.

After several iterations, the final grid configuration was created in which grid sequencing

effected the results within the experimental uncertainty and thus deemed independent.

The final grid configuration nodal information and sequencing is tabulated in Table 6.2.

Zone # of Nodes # of Cells

1 (x): 51.00 (y): 3,009 150,400

2 (x): 3,281 (y): 3,009 9,866,240

3 (x): 51.00 (y): 3,009 150,400

Table 6.3: Finest Grid Mesh Information

6.1.1 2D to Axisymmetric Conversion

A common practice in CFD is simulating 3D configurations with 2D axisymmetric

models. It has been seen that basic phenomena and approximations using this method

allow for minimal computational resources with low change in results. For the purposes

of this thesis, the 2D grid model is converted to a 2D axisymmetric grid. GASPex

allows for this conversion to be done when importing a 2D grid automatically. When

this is done, the 2D grid is rotated about the axis of symmetry by ± π
80 , or 2.25◦, which

creates a total of 2 nodes in the k-direction. Using the solution visualization feature in

GASPex, a representation of the employed 2D axisymmetric grid is provided (on the

next page).
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Figure 6.3: GASPex Visualization of Grid

6.2 Solver Configuration

Once a grid is imported, GASPex’s input deck must be configured. First, the imported

grid can be sequenced either automatically or by user definition. After, the zonal and

surface boundary conditions must be specified. Once this is done, the rest of the fluid

simulation specifications can be chosen, such as physical models and run definitions.

Grid sequencing is often employed for CFD applications in order to reduce the

time taken for simulations. The first initial imported grid, denoted as the fine grid, is

subsequently reduced into less-refined meshes. Luckily, additional meshes do not need

to be created outside of GASPex, as an in-software grid sequencing mechanism exists.

After sequencing, the meshes are consecutively run in reverse order. The first mesh

utilizes an initialized flow, in that all flow quantities are set arbitrarily. This can cause

issues for temporal convergence, and thus a separate CFL definition is often needed for

this mesh. After, the solutions are interpolated to the next, more refined, mesh. This

acts as a new initialization, which is much more accurate than the first. A total of

three sequences are utilized; which are denoted coarse, medium, and fine. The medium

and coarse meshes are sequenced from the fine grid by 1/2 and 1/4, respectively. The

method of sequencing and subsequent nodal/cell-information for the medium and coarse
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meshes are provided below on Table 6.4.

Zone Sequence # of Nodes # of Cells

1 Medium (x): 51.00 (y): 1,505 75,200

Coarse (x): 51.00 (y): 753.0 37,600

2 Medium (x): 1,641 (y): 1,505 2,466,560

Coarse (x): 821.0 (y): 753.0 616,640

3 Medium (x): 51.00 (y): 1,505 75,200

Coarse (x): 51.00 (y): 753.0 37,600

Table 6.4: Grid Sequencing Information

An important part of CFD is the implication of boundary conditions into any code.

GASPex allows for numerous types of physical boundary conditions including solid

wall, in/out flow, extrapolation, symmetry, etc. Zonal boundaries are configured with

the point-to-point boundary condition, which interpolates solutions between adjacent

zones based on distance between corresponding grid cells. The employed grid was cre-

ated in a way that aligns each individual cell between adjacent zones and therefore

should allow for exact transition between each zone. These boundaries are set for the

left faces of Zone 2 and 3, as well as the right faces for Zone 1 and 2. The physical

boundary conditions that were implemented are additionally tabulated below in Table

6.5. Not included in this table are the boundary conditions set for the K-faces of the

axisymmetric conversion, which are automatically set to positive/negative axisymmet-

ric. In Table 6.5, several boundary conditions are listed: Symmetry plane is used when

symmetrical flow conditions are expected. Positive/Negative Axisymmetric specifica-

tion works in a similar fashion. Fixed at Q sets the flow conditions of the boundary to

the freestream specifications. No slip, T = Tw, allows for an isothermal physical wall

boundary. Lastly, First-Order Extrapolation sets boundary values to neighboring flow

properties. The two types of turbulent boundaries included are Inflow/Outflow and

Default ; which prescribe values for κ/ω at specific boundaries.
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Zone Surface Boundary Condition Turbulent B.C.

1 Bottom Symmetry Plane N/A

1 Top Symmetry Plane N/A

1 Left Side Fixed at Q Inflow/Outflow

2 Bottom No Slip, T=Tw N/A

2 Top First-Order Extrapolation Default

3 Bottom First-Order Extrapolation Default

3 Top First-Order Extrapolation Default

3 Right Side First-Order Extrapolation Inflow/Outflow

Table 6.5: Implemented Boundary Conditions

Another requirement to set up a fluid simulation in GASPex is the configuration of

the physical models employed. Information prescribed here includes specifications of

thermo-chemistry, freestream conditions, and inviscid, viscous, and turbulence models.

The gas model is chosen to be a perfect gas, with frozen chemistry and equilibrium

translation and rotation temperatures. The freestream specifications are set to the

exact freestream conditions for each run, where freestream temperature, density, and

velocity are used as key parameters. The inviscid, viscous, and turbulence modeling

definitions employed are as follows.

(i) Inviscid Modeling: Roe scheme, 3rd order upwind bias accuracy (κ = 1
3) with Min-

Mod flux limiter.

(ii) Viscous Modeling: Sutherland viscosity and conductivity models.

(ii) Turbulence Modeling: Wilcox κ - ω (2006), default settings with no limiting or

compressibility correction.

The last component of the flow solver that needs to be configured is the run def-

inition. Here, temporal integration, convergence criteria, CFL number, and physical

resources can be specified for each simulation. Each sequence needs to be individu-

ally ran with differing specifications. Re-initialization is done for the coarse sequence
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only, where the coarse and medium solutions are further interpolated up to consecu-

tive sequences. Convergence criteria allows for specification of the maximum amount

of iteration cycles to be conducted, as well as with exiting convergence parameters.

The temporal integration scheme, and associated CFL number/basis, can be further be

specified. The temporal scheme employed is Gauss-Seidel inner-iterative. With an iter-

ative scheme such as Gauss-Seidel, convergence criteria needs to be chosen and modified

throughout computations in order to definitively reach the steady-state solution. This

is done by monitoring the output solution residuals, which were described previously,

in detail, at the end of Chapter 3. Essentially, residuals define the solution change

between temporal iterations (cycles), and once a certain level is reached, can be used

to determine if steady-state has been reached. A basic residual plot is shown below

(log-scale) for the first 10,000 iterations of an arbitrary run. It is important to note

that GASPex outputs residual as a L2 norm, normalizing each consecutive sequence by

the first iteration’s residual value (i.e. the first residual of each sequence is set to one).

Figure 6.4: First 10,000 Cycle Residual (L2 Norm)
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With the Gauss-Seidel temporal scheme, CFL numbers can be set and do not always

have to be ≤ 1. CFL numbers can be altered throughout a run, allowing for higher CFL

numbers to be utilized. Additionally, the CFL number can be defined by a basis, in

which the wave-speed condition can be set to global or local specifications. Local values

are needed in order to obtain useful solutions in regions of SBLI; however, freestream

specifications may need to be employed in order to avoid instability caused by initial-

ization. The method of CFL progression through each sequence follows in Table 6.6,

where it should be noted that differing freestream velocities may require additional

modifications.

Sequence Convergence CFL Definition CFL # Cycles

Coarse 10−8 Q Infinity 0.1 - 1 5,000

1 5,000

Q Local 1 10,000

1-2 5,000

2 10,000

Medium 10−6 Q Local 1 5,000

1-2 5,000

2 10,000

Fine 10−5 Q Local 1 5,000

1-5 5,000

5 10,000

Table 6.6: CFL Number and Definition Progression

Specification of computational resources, such as memory per core and total number

of cores, is required for each individual simulation. Following this, zonal decomposition

must be configured for allocation of these resources. Zonal decomposition allows for

all zones to be decomposed into multiple partitions, which allows for parallel efficiency

when running across multiple cores/nodes. This needs to be conducted separately for

each sequence, or when computational resources employed are modified. To obtain the
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computational resources required for this research, the Rutgers School of Engineering

(SOE) High Performance Computing (HPC) Cluster was accessed. The SOE HPC

Cluster has a total of 60 available nodes, with 16 cores and 128 GB of RAM per each

node. The computational resources of the SOE HPC Cluster utilized for each sequence

is tabulated below in Table 6.7.

Sequence Memory per Core # of Cores # of Nodes

Coarse 2,000 MB 40 4

Medium 4,000 MB 80 8

Fine 6,000 MB 96 8

Table 6.7: Computational Resources

6.3 Post-Processing

For any CFD simulation, post-processing is required for data analysis. Post-processing

can be done with numerous software; however, Tecplot and MATLAB were chosen.

MATLAB was used to convert various solutions obtained by GASPex to match with

respective experimental data. Tecplot was used for creation of all surface pressure,

surface heat transfer, and Mach counter plots presented in the Results chapter. Ad-

ditionally, Tecplot allows for data manipulation which is used in order to calculated

streamlines in the Mach contours. Lastly, it should be noted that extraneous data

analysis and manipulations done throughout research, such as evaluation of the ob-

tained results, was conducted using MATLAB.
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Chapter 7

Results

The following chapter will present the final results obtained in this research. The main

considerations for discussion are surface pressure and surface heat transfer in regions of

shock-wave boundary-layer interaction (SBLI). Both grid convergence and experimental

comparison plots are provided for each surface variable, where solution change (for grid

convergence) and error (for comparison) are included as well. Mach contours of the

SBLI region are additionally provided, along with tabulated surface variable data.

The general flowfield of the entire large cone flare can be visualized in a Mach contour

using sample results from Run 28, shown below. For this configuration, a leading edge

attached oblique shock is formed at the sharp tip. The region of investigation (SBLI)

is located at the downstream flare (∼ 89 inches). At the downstream flare, a detached

Figure 7.1: Total Flowfield
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bow shock (separation shock) can be seen. Further aft, recovery and expansion takes

place, and eventually the bow shock and leading edge shock interact causing a shock-

shock interaction. However, this interaction is not investigated further and all discussion

remains in the SBLI region. This region will be further discussed in the following section.

7.0.1 SBLI Flowfields

While the total flowfield is similar for each run, the SBLI region between runs differs

significantly. Due to this, Mach contours for each run will be shown in the following

pages (Figure 7.2-7.7). The SBLI region consists of an incoming turbulent boundary

layer, recirculation/separation region, and separation/reattachment shocks. The in-

coming turbulent boundary layer succumbs to an adverse pressure gradient at the flare,

causing separation. Separation occurs at roughly 90 inches (2 inches pre-flare), produc-

ing a strong separation shock and detached shear layer. The flow eventually reattaches

at roughly 95 inches (3 inches post-flare), causing peak surface pressure and surface

heat transfer loading, along with an additional reattachment bow shock.

Figure 7.2: Run 28 - Flowfield
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Figure 7.3: Run 34 - Flowfield

Figure 7.4: Run 33 - Flowfield
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Figure 7.5: Run 14 - Flowfield

Figure 7.6: Run 41 - Flowfield
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Figure 7.7: Run 37 - Flowfield

7.1 Presentation of Results

Analysis of surface pressure and surface heat transfer results will be presented in sep-

arate categories: grid convergence and experimental comparison. The primary focus is

on surface variable averages and peak values. Averages are taken in two regions, which

are the fore region, ranging from 0 to 89 inches, and the SBLI region, ranging from 89

to 98 inches. Runs are presented with increasing Mach number, in the following order:

Run 28, Run 34, Run 33, Run 14, Run 41, and Run 37.

7.1.1 Gird Convergence

Grid convergence is mainly measured by the percent solution change between the

medium and fine grids. Surface variable plots for each respective run are provided

following discussion and tabulated data is included in ”Final Remarks and Tabulated

Data”. The information presented in this subsection concludes that all solution change

values are negligible. With this, it can be asserted that the employed grid can be

considered ”converged”, implying that final results are independent of grid refinement.
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1) Surface Pressure

For surface pressure, average fore solution change for all runs is negligible at 0.11%.

Average SBLI solution change for all runs is higher, but still within the experimental

uncertainty at 3.41%. Minimum fore solution change is found in Run 14 at 0.02%

(Figure 7.11), where maximum fore solution change is found in Run 33 at 0.37% (Figure

7.10). Minimum SBLI solution change is found in Run 41 at 2.26% (Figure 7.12),

where maximum SBLI solution change is found in Run 33 at 4.25% (Figure 7.10). Peak

surface pressure magnitude solution change and location displacement follow similar

trends. Average peak solution change is negligible at 1.03% and average peak location

displacement can be considered low at 0.11 inches. Minimum peak magnitude solution

change is found in Run 28 at 0.47% (Figure 7.8), where maximum peak magnitude

solution change is found in Run 37 at 1.76% (Figure 7.13). Minimum peak location

displacement is found in Run 41 at 0.05 inches (Figure 7.12), where maximum peak

location displacement is found in Run 33 at 0.17 inches (Figure 7.10). Associated

surface pressure grid convergence plots are provided on the following pages (Figures

7.8-7.13).

Figure 7.8: Run 28 - Surface Pressure (Grid Convergence)
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Figure 7.9: Run 34 - Surface Pressure (Grid Convergence)

Figure 7.10: Run 33 - Surface Pressure (Grid Convergence)
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Figure 7.11: Run 14 - Surface Pressure (Grid Convergence)

Figure 7.12: Run 41 - Surface Pressure (Grid Convergence)
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Figure 7.13: Run 37 - Surface Pressure (Grid Convergence)

2) Surface Heat Transfer

For surface heat transfer, average fore solution change for all runs is negligible at 1.11%.

Average SBLI solution change for all runs is higher, but still within the experimental

uncertainty at 3.31%. Minimum fore solution change is found in Run 41 at 0.71%

(Figure 7.18), where maximum fore solution change is found in Run 33 at 1.60% (Figure

7.16). Minimum SBLI solution change is found in Run 41 at 2.25% (Figure 7.18),

where maximum SBLI solution change is found in Run 33 at 4.04% (Figure 7.16).

Peak surface heat transfer magnitude solution change and location displacement follow

similar trends. Average peak solution change is negligible at 1.64% and average peak

location displacement can be considered low at 0.12 inches. Minimum peak magnitude

solution change is found in Run 37 at 0.83% (Figure 7.19), where maximum peak

magnitude solution change is found in Run 33 at 2.85% (Figure 7.16). Minimum peak

location displacement is found in Run 41 at 0.03 inches (Figure 7.18), where maximum

peak location displacement is found in Run 34 at 0.15 inches (Figure 7.15). Associated

surface heat transfer grid convergence plots are provided on the following pages (Figures

7.14-7.19).
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Figure 7.14: Run 28 - Surface Heat Transfer (Grid Convergence)

Figure 7.15: Run 34 - Surface Heat Transfer (Grid Convergence)
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Figure 7.16: Run 33 - Surface Heat Transfer (Grid Convergence)

Figure 7.17: Run 14 - Surface Heat Transfer (Grid Convergence)
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Figure 7.18: Run 41 - Surface Heat Transfer (Grid Convergence)

Figure 7.19: Run 37 - Surface Heat Transfer (Grid Convergence)
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7.1.2 Comparison to Experiment

Now that grid independence is proven, final results can be compared to CUBRC. Com-

parison is mainly measured by percent error between the fine grid and interpolated

experimental data. As with grid convergence, surface variable plots for each respective

run are provided following discussion and tabulated data is included in ”Final Remarks

and Tabulated Data”. Analysis of the information presented in this subsection is more

comprehensive than grid convergence. Due to this, conclusions will be provided after

the presentation of results in ”Final Remarks and Tabulated Data” as well.

1) Surface Pressure Prediction

For surface pressure, average fore error for all runs is near the experimental uncertainty

at 6.45%. However, average SBLI error for all runs is much higher at 36.9%. Minimum

fore error is found in Run 14 at 3.23% (Figure 7.23), where maximum fore error is found

in Run 37 at 11.2% (Figure 7.25). Minimum SBLI error is found in Run 14 at 28.0%

(Figure 7.23), where maximum SBLI error is found in Run 41 at 44.6% (Figure 7.24).

Peak surface pressure magnitude is predicted very well, averaging 7.96% for all runs.

Minimum peak magnitude error is found to be as low as 1.27% in Run 14 (Figure 7.23),

where maximum peak magnitude error is found in Run 33 at 18.0% (Figure 7.22). Peak

surface pressure location is predicted with less accuracy, averaging a displacement of

0.82 inches. Minimum peak location displacement is found in Run 41 at 0.30 inches

(Figure 7.24), where maximum peak location displacement is found to be as high as 1.54

inches in Run 28 (Figure 7.20). Associated surface pressure error plots are provided on

the following pages (Figures 7.20-7.25).
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Figure 7.20: Run 28 - Surface Pressure (Comparison to Experiment)

Figure 7.21: Run 34 - Surface Pressure (Comparison to Experiment)
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Figure 7.22: Run 33 - Surface Pressure (Comparison to Experiment)

Figure 7.23: Run 14 - Surface Pressure (Comparison to Experiment)
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Figure 7.24: Run 41 - Surface Pressure (Comparison to Experiment)

Figure 7.25: Run 37 - Surface Pressure (Comparison to Experiment)
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2) Separation Over-Prediction

From Figures 7.20-7.25 and the discussion presented in (1), it can be concluded that

surface pressure is predicted reasonably well overall. While the the average error in

the SBLI region is very high at 36.9%, the primary source of error lies in the over-

prediction of separation. Error is shown to be exceedingly higher in separation than

post-flare in the SBLI region, thus causing the large percentage of error. Separation is

over-predicted, on average, by 1.36 inches. Minimum over-prediction of separation is

found in Run 14 at 0.89 inches (Figure 7.23), where maximum over-prediction is found

to be as high as 1.70 inches in Run 33 (Figure 7.22).

3) Surface Heat Transfer Prediction

For surface heat transfer, average fore error for all runs is higher than surface pressure

at 18.5%. Average SBLI error for all runs is also high at 29.5%, where the primary

source of error is the over-prediction of heat transfer itself. Minimum fore error is

found in Run 41 at 4.88% (Figure 7.30), where maximum fore error is found to be as

high as 55.6% in Run 14 (Figure 7.29). Minimum SBLI error is found in Run 37 at

19.5% (Figure 7.31), where maximum SBLI error is found to be as high as 53.9% in

Run 14 (Figure 7.29). Peak surface heat transfer location is predicted within the same

ranges as pressure, averaging a displacement of 0.80 inches. Minimum peak location

displacement is found in Run 41 at 0.52 inches (Figure 7.30), where maximum peak

location displacement is found in Run 28 at 1.19 inches (Figure 7.26). However, peak

surface heat transfer magnitude is predicted much more poorly, averaging 54.6% error.

Minimum peak magnitude error is found in Run 37 at 29.8% (Figure 7.31), where

maximum peak magnitude error is found to be over 100% in Run 14 (Figure 7.29).

Associated surface heat transfer error plots are provided on the following pages (Figures

7.26-7.31).
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Figure 7.26: Run 28 - Surface Heat Transfer (Comparison to Experiment)

Figure 7.27: Run 34 - Surface Heat Transfer (Comparison to Experiment)
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Figure 7.28: Run 33 - Surface Heat Transfer (Comparison to Experiment)

Figure 7.29: Run 14 - Surface Heat Transfer (Comparison to Experiment)
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Figure 7.30: Run 41 - Surface Heat Transfer (Comparison to Experiment)

Figure 7.31: Run 37 - Surface Heat Transfer (Comparison to Experiment)
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4) Anomalous Heat Transfer Spike

In addition to previous considerations, the Wilcox κ - ω model produces an anomalous

surface heat transfer spike in all runs post-flare. While the spike has no physical sig-

nificance, it can be attributed to an error in the turbulence model. The magnitude is

almost always larger than peak surface heat transfer, averaging 125% of its value for all

runs. It can also be noted that there is a direct dependence to a similar, exceedingly

large, spike in turbulent kinetic energy κ near the wall. This dependence is clear con-

sidering that both spikes are practically positioned in the same location. In total, the

κ-spike’s magnitude averages over 8,000% of the near-wall κ value. In order to display

this spike, turbulent kinetic energy is plotted near the spike for Run 28 (Figure 7.32).

To create this plot, κ is taken one cell above the wall and compared to the surface heat

transfer results for locational purposes. With this, it can be seen that the κ-spike is

produced in same vicinity as the surface heat transfer spike (which is consistent in all

runs).

Figure 7.32: Run 28 - Near-Wall Turbulent Kinetic Energy
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7.2 Final Remarks and Tabulated Data

In conclusion, it is apparent that the Wilcox κ - ω model has several advantages and

disadvantages in regions of SBLI. First, the model predicts surface pressure within

reason, but displacements of peak values and separation size are cause for concern. The

model is also proven to predict surface heat transfer poorly in both the fore and SBLI

region. Additionally, the anomalous spike in surface heat transfer and turbulent kinetic

energy is another large cause for concern. Therefore, these factors need to be taken into

consideration when employing the Wilcox κ - ω turbulence model in regions of SBLI.

Future modifications to the model are dually required to increase predictive accuracy.

Tabulated Data

All of the associated grid convergence and experimental comparison data is provided

on the following pages (Tables 7.2-7.7), as well as total run averages below (Table 7.1).

General Averages Pressure Heat Transfer

Fore (avg.) Sol. Change 0.11 % 1.11 %
Error 6.45 % 18.5 %

SBLI (avg.) Sol. Change 3.41 % 3.31 %
Error 36.9 % 29.5 %

Peak Values Pressure Heat Transfer

Displacement Med → Fine 0.11 (in) 0.12 (in)
Experiment 0.82 (in) 0.80 (in)

Magnitude Sol. Change 1.03 % 1.64 %
Error 7.96 % 54.6 %

Additional Analysis

Displacement Separation Med → Fine -0.13 (in)
Experiment -1.36 (in)

Magnitude Heat-Spike % of Peak Flux 125 %
% of Average κ 8,400 %

Table 7.1: All Runs - Surface Variable Solution Averages
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General Averages Pressure Heat Transfer

Fore (avg.) Sol. Change 0.06 % 1.26 %
Error 3.23 % 5.03 %

SBLI (avg.) Sol. Change 4.04 % 3.67 %
Error 34.6 % 27.9 %

Peak Values Pressure Heat Transfer

Displacement Med → Fine 0.14 (in) 0.27 (in)
Experiment 1.54 (in) 1.19 (in)

Magnitude Sol. Change 0.47 % 1.78 %
Error 2.4 % 59.1 %

Additional Analysis

Displacement Separation Med → Fine -0.11 (in)
Experiment -1.28 (in)

Magnitude Heat-Spike % of Peak Flux 129 %
% of Average κ 6,631 %

Table 7.2: Run 28 - Surface Variable Solution Data

General Averages Pressure Heat Transfer

Fore (avg.) Sol. Change 0.03 % 0.82 %
Error 3.56 % 12.6 %

SBLI (avg.) Sol. Change 2.82 % 3.26 %
Error 42.9 % 23.3 %

Peak Values Pressure Heat Transfer

Displacement Med → Fine 0.09 (in) 0.15 (in)
Experiment 0.72 (in) 0.9 (in)

Magnitude Sol. Change 1.11 % 1.43 %
Error 5.45 % 36.8 %

Additional Analysis

Displacement Separation Med → Fine -0.09 (in)
Experiment -1.29 (in)

Magnitude Heat-Spike % of Peak Flux 143 %
% of Average κ 7,903 %

Table 7.3: Run 34 - Surface Variable Solution Data
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General Averages Pressure Heat Transfer

Fore (avg.) Sol. Change 0.37 % 1.60 %
Error 6.61 % 13.0 %

SBLI (avg.) Sol. Change 4.25 % 4.04 %
Error 34.5 % 27.9 %

Peak Values Pressure Heat Transfer

Displacement Med → Fine 0.17 (in) 0.03 (in)
Experiment 0.98 (in) 0.56 (in)

Magnitude Sol. Change 0.69 % 2.85 %
Error 18.0 % 50.9 %

Additional Analysis

Displacement Separation Med → Fine -0.22 (in)
Experiment -1.70 (in)

Magnitude Heat-Spike % of Peak Flux 133 %
% of Average κ 7,120 %

Table 7.4: Run 33 - Surface Variable Solution Data

General Averages Pressure Heat Transfer

Fore (avg.) Sol. Change 0.02 % 0.95 %
Error 7.75 % 55.6 %

SBLI (avg.) Sol. Change 3.10 % 3.27 %
Error 28.0 % 53.9 %

Peak Values Pressure Heat Transfer

Displacement Med → Fine 0.11 (in) 0.15 (in)
Experiment 0.56 (in) 0.84 (in)

Magnitude Sol. Change 1.27 % 1.54 %
Error 1.27 % 113 %

Additional Analysis

Displacement Separation Med → Fine -0.15 (in)
Experiment -0.89 (in)

Magnitude Heat-Spike % of Peak Flux 109 %
% of Average κ 7,500 %

Table 7.5: Run 14 - Surface Variable Solution Data
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General Averages Pressure Heat Transfer

Fore (avg.) Sol. Change 0.06 % 0.71 %
Error 6.37 % 4.88 %

SBLI (avg.) Sol. Change 2.26 % 2.25 %
Error 44.6 % 24.6 %

Peak Values Pressure Heat Transfer

Displacement Med → Fine 0.05 (in) 0.03 (in)
Experiment 0.30 (in) 0.52 (in)

Magnitude Sol. Change 0.88 % 1.42 %
Error 8.61 % 38.1 %

Additional Analysis

Displacement Separation Med → Fine -0.08 (in)
Experiment -1.66 (in)

Magnitude Heat-Spike % of Peak Flux 149 %
% of Average κ 13,500 %

Table 7.6: Run 41 - Surface Variable Solution Data

General Averages Pressure Heat Transfer

Fore (avg.) Sol. Change 0.11 % 1.30 %
Error 11.2 % 19.9 %

SBLI (avg.) Sol. Change 3.96 % 3.34 %
Error 34.6 % 19.5 %

Peak Values Pressure Heat Transfer

Displacement Med → Fine 0.08 (in) 0.09 (in)
Experiment 0.80 (in) 0.80 (in)

Magnitude Sol. Change 1.76 % 0.83 %
Error 12.0 % 29.8 %

Additional Analysis

Displacement Separation Med → Fine -0.15 (in)
Experiment -1.32 (in)

Magnitude Heat-Spike % of Peak Flux 84.9 %
% of Average κ 7,724 %

Table 7.7: Run 37 - Surface Variable Solution Data
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Chapter 8

Future Work

In light of the results obtained in this thesis, two main categories of future work can be

specified. The first consideration lies with the anomalous spike in surface heat transfer.

It was observed that the spike is associated to a similar spike in near-surface turbulent

kinetic energy. The spike was also observed to be correlated to grid refinement, where

it was seen to disappear in previous, less refined, grid configurations. This leads to the

main question: ”What is the cause of the anomalous spike”? Aside from the turbulence

model, possible reasons may include the flux/temporal schemes, boundary conditions,

grid sequences, input parameters, etc. However, as a similar spike was seen in an

identical study by Patel [16], it is likely that the reason lies inherently in the Wilcox κ

- ω turbulence model. Collectively, the first category of future work can be defined as:

1) Investigation of the Anomalous Surface Heat Transfer Spike

The next consideration is the main concern of the Wilcox κ - ω turbulence model.

In regards to prediction of shock-wave boundary-layer interaction (SBLI), the model

produces significant discrepancies to experimental results. Accuracy of predications

are shown to be dependent on the freestream conditions, preforming better/worse for

differing runs. In addition, while overall accuracy of surface pressure pressure is rea-

sonable, separation is alarmingly over-predicted. Surface heat transfer is consistently

predicted poorly, as well. These findings are not new, as various studies have made

similar observations. Thus, the second category of future work can be defined as:

2) Improvement of the Wilcox κ - ω Predictability in SBLI
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