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Dissertation Director: 

Dr. Erin Vogel 

 

 In complex environments, the ability to encode information about the location of 

resources should confer selective advantages by improving foraging efficiency.  What constitutes 

foraging goals, and to what degree species encode information about food resources remain 

largely unresolved. In this dissertation, I apply principles from nutritional geometry and 

movement ecology to 1) examine whether macronutrient balancing is a biologically relevant 

foraging goal for Bornean orangutans; and 2) investigate the relationship between preference 

indices and the nutritional geometry of orangutan foods, and 3) explore the ways in which 

movement and spatial cognition facilitate nutritional balancing. Orangutans were chosen as a 

model system because of their capacity for complex cognition, their solitary social system, and 

the high variability in food availability in orangutan habitats. 

 In Chapter 2, simulation and Behavioral Change Point Analysis are used to demonstrate 

that the balance of nutrient intake by orangutans cannot be attributed to chance, and that 

individuals modulate their movement behavior in response to nutrient intake in a goal directed 

manner. In Chapter 3, nutritional isocline plots and food electivity indices are used to 

demonstrate that the orangutans’ evaluation of food quality is significantly related to nutritional 

balancing. Items of high nutritional return are preferred and associated with fast trajectories 
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through nutritional cartesian space. In Chapter 4, a continuous-space continuous-time movement 

framework (ctmm) is utilized to characterize patterns of space use by Bornean orangutans, and 

remote sensing and simulation modeling are used to evaluate different cognitive movement 

strategies in the context of nutritional balancing. Multispectral analysis and supervised machine 

learning techniques are used to map the nutritional landscape at Tuanan. Movement parameters 

from the ctmm analysis are used to parameterize models simulating memory and perception-

based strategies of nutrient balancing. Simulation results suggest orangutans utilize spatial 

memory to facilitate nutritional balancing.  
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Chapter 1: Introduction 

 

1.1 Synopsis 

 Field research on the diet and behavior of animal systems is now reaching a new state of 

maturation, where long-term datasets on a number of taxa are becoming available. The 

accumulation of continuous longitudinal data on ecosystem structure, dynamics, and diversity, as 

well as lifetime records of the behavior and reproduction of individual animals, are starting to 

converge. This has created opportunities to ask new, large scale ecological questions, in addition 

to addressing previously intractable questions on a number of difficult to study systems. As a 

result, there has been a recent and rapid swell in the development of interdisciplinary techniques 

to quantitively address these data.  

 In the realm of feeding ecology, technological advancements in animal tracking 

(Wilkelski et al., 2007; Brown et al., 2012; Kays et al., 2015) and remote sensing technologies 

(Lim et al., 2003; Asner et al., 2008; Adam et al., 2010), new urinalysis assays (Emery 

Thompson et al., 2008; Vogel et al., 2012), and many novel analytical frameworks are all 

available in this era of long term data. Prior to this current era of research, studies have struggled 

to address how animals navigate the what, when, and where of decision making in the wild. 

Studying what animals know about their resources and how they utilize that knowledge requires 

somewhat complete knowledge about that animal’s environment (Janson and Byrne, 2007).  

 In this dissertation, I present data from a field study on Bornean orangutans (Pongo 

pygmaeus wurmbii) at the Tuanan Orangutan Research Station from 2014-2015. These data were 

collected as part of the Tuanan Orangutan Research Project; a large scale collaboration between 

Rutgers University, University of Zurich, and Universitas Nasional Jakarta.  The goals of this 

study are to understand the underlying processes that generate both fine scale and large scale 
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patterns in the spatial movement of individuals; to reevaluate our understanding of foraging 

goals and what constitutes them; and study the relationships between macronutrients and 

ecosystem structure as they pertain to plant-animal interactions; and to take advantage of the new 

methods and technologies to develop a framework for studying memory as a mechanism for goal 

directed behavior.  

1.2 Organization of this Dissertation 

 In this chapter, I introduce the background theory and literature for this study. I describe 

the study system, and present the metadata about the individual orangutans analyzed here. Each 

of the following chapters are written as a manuscript for publication, and have separate methods 

sections. There is significant overlap in the methods used to answer the questions addressed in 

each chapter. In chapter two, I construct simulations to evaluate whether nutritional balancing in 

this study system is an environmental artifact, or a biologically meaningful signal. I then use 

behavioral segmentation techniques to evaluate whether individuals are treating this metric as a 

foraging goal, and discuss the relevance of expanding our understanding of goals beyond net 

calories. In chapter three, I analyze various physical and chemical attributes of trees and food 

items and how they may drive dietary electivity indices. I then discuss how these relationships 

can be integrated into the Geometric Framework of Nutrition to quantify the value of a particular 

goal resource. In chapter four, I utilize the emerging continuous space continuous time modeling 

framework to analyze large scale ranging and home-range behavior to revisit our understanding 

of orangutan home-range use. I then develop spatially explicit maps of the nutritional landscape 

from remotely sensed data to examine the drivers of fine scale spatial decisions, and model 

whether memory may be a mechanism allowing individuals to acquire food. Finally, in chapter 5 

I conclude by giving a brief synopsis of the results in each chapter. 
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1.3 Introduction 

There is a long and rich history of research on the diets and foraging behavior of animals. 

Starting with seminal papers by Emlen (1966), MacArthur and Pianka (1966), and Schoener 

(1971), scientists have tried to understand how natural selection has shaped the diets and 

foraging behavior of animal systems, assuming that foraging strategies are a function of fitness 

maximization. Because animals are invariably required to feed in order to survive and reproduce, 

foraging decisions are thought to be based on a set of economic rules that allow individuals to 

maximize efficiency, whereby the relevant currency is usually assumed to be energy (Schoener 

1971; Krebs 1974). These decision-making rules are the basis for the optimal foraging literature, 

and much effort has gone into studying if and how individuals forage in an “optimal” way.  

A major tenant of optimal foraging theory is that animals are trying to maximize foraging 

efficiency given a set of constraints (Schoener 1971; Krebs 1974). The most fundamental 

extrinsic constraints on foraging are the spatiotemporal availability of food, and time, whereby 

time is a limited resource and individuals attempt to maximize energy intake or minimize the 

amount of time spent searching for and processing food (Krebs 1974; Pyke et al. 1977). Research 

on how this optimization is achieved has therefore been split between four broad categories 

(Pyke et al. 1977): 1) What items to include in the optimal diet? 2) How to choose between food 

patches? 3) How much time to commit to each patch? 4) How to optimize movement between 

patches? For a long time, the latter of these four received the least amount of attention; however, 

due to advances in modeling, the increased number of long-term datasets, and technological 

advances enabling empirical studies on of the subject, there has been a recent shift in attention 

towards animal space use in the context of foraging. This discussion will focus on the questions 

and key issues associated with animal movement and foraging theory.  
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Two seminal studies helped set the stage for the current work on spatial movement and 

foraging, and serve as a foundation for the present discussion (Cody,1971; Pyke, 1974)). Animal 

movement is generally present in the form a track representing the animal’s travel path. An 

animal’s movement track is the continuous stochastic process resulting from the interaction of 

behavior with physiological and environmental constraints; however, the data that are actually 

obtained by sampling an animal’s movement are discretely sampled subsets of that continuous 

movement process. Data representing movement tracks therefore typically consist of some 

distribution of steps or step-lengths (the distance between the discretely sampled locations) and 

turns (changes in angles between discretely sampled locations) (Nathan 2008, Gurarie 2009, 

Schick et al. 2008, Fleming 2014). Since the 1930’s, entomologists have reported changes in 

turning angles of animals upon encountering a food item, but very few studies addressed broader 

evolutionary questions about how such changes are influenced by distribution and foraging 

context (Pyke et al. 1977). These questions were first formally addressed by evolutionary 

biologists Cody (1971) and Pyke (1974) by comparing simulated data with available empirical 

data on mixed flock fringillid birds (families Cardinalidae, Emberizidae, Fringillidae, Parulidae, 

Picidae, Regulidae, Troglodytidae, Tyrannidae, and Vireonidae) and hummingbirds (Selasphorus 

platycercus) respectively. Both authors argued that foraging efficiency would be maximized if 

animals avoid revisiting previously exploited food patches, assuming that patches are depleted 

upon visitation (Cody 1971; Pyke 1974; Pyke et al. 1977). They also assumed that animals are 

foraging with only local information (stimuli from the current position), and therefore movement 

decisions are not influenced by outside or non-local information (i.e., stimuli from or knowledge 

about far away resources) (Cody 1971; Pyke, 1974). The results of their studies showed that 

patch revisitation was indeed minimized when movement was linear, changes in direction were 
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restricted to the boundary of the foraging environment, and that these model outputs were 

consistent with the available empirical data (Cody 1971; Pyke 1974). Pyke later reviewed the 

available literature to test whether these results were consistent across animals, but found that 

animal movement varied widely across taxa and were rarely consistent with their original 

simulations (Pyke 1978a, Pyke et al. 1977). In a following study, Pike (1978b) found that 

changes in travel paths of bumblebees were influenced by non-local information. Pyke found that 

bumblebees navigate between flowers by conducting local scans from the current flower to 

locate and travel to the nearest detectable flower (Pyke 1977). Pyke (1977) suggests that failure 

to replicate Cody (1971) and Pyke’s (1974) original findings across a wide variety of taxa is 

most likely because the assumption that travel decisions are based only on local information is 

incorrect; and that there are cases whereby animals are likely using outside information to make 

travel decisions.  

If animals are using both local and non-local spatial information to maximize foraging 

efficiency, then natural selection must have resulted in adaptations that minimize errors and 

facilitate the storage of information (Bennett 1996). The current literature seems to be 

converging on spatial memory and the associated cognitive adaptations as the mechanisms by 

which optimal travel decisions are made while foraging (e.g. Janson 2000; Janson and Byrne 

2007; Gautestad 2011; Fagan et al. 2013).  

1.3.2 Cognitive Maps 

 Spatial memory is often presented as an abstraction whereby animals “map” spatial 

information, potentially onto some sort of mental image commonly referred to as a cognitive 

map (e.g., Gallistel 1989; Bennett 1996). Although there are a wide variety of published 

definitions of cognitive maps (see Bennett 1996 for a list of definitions), the majority of them 
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have limited utility because they are too vague or do not allow explicit predictions to be made 

about behavior (Bennett 1996). The original concept of a cognitive map, and the coining of the 

term, was by Tolman (1948), who defined cognitive maps as mental representations of routes, 

paths, and environmental relationships that determine an animal’s behavioral response. He 

explained that the diagnostic feature of a cognitive map is that it allows animals to make novel 

shortcuts between two locations independently of current environmental stimuli (Tolman 1948). 

Tolman’s (1948) concept of the cognitive map was expanded upon by O’Keefe and Nadel (1978) 

who distinguished between maps and routes, where routes were presented as a simpler 

alternative to cognitive maps. Route-based navigation simply involves the use of straight 

movement between landmarks to achieve foraging goals (O’Keefe and Nadel 1978). Routes 

require the storage of very little information and can therefore result advantageously in faster 

travel due to the relatively simpler calculations required, but routes are also very rigid and 

extremely sensitive to damage or loss of landmarks (O’Keefe and Nadel 1978). Cognitive maps 

differ from this system in that they 1) are extremely flexible and insensitive to the loss of 

landmarks; 2) contain vast amounts of spatial information; and 3) result in more direct but slower 

travel since they demand more complex calculations (O’Keefe and Nadel 1978).  

 The value of this original concept of a cognitive map is that it provides a clear set of 

predictions about the behavior of individuals under identified conditions (Bennett 1996). Tolman 

(1948) originally provided evidence from captive experiments on rats (Rattus norvegicus) and 

argued that their ability to make novel shorts cuts suggests that they have cognitive maps. 

O’Keefe and Nadel (1978) lent further support to this conclusion in their brief review of data on 

wolves (Canis lupus) and their ability to make novel short cuts. Bennett (1996) however, 

cautioned against defining cognitive maps in this manner. He indirectly invoked Morgan's Canon 



7 
 

 
 

(1903), and explained that demonstration of a novel behavioral short cut requires data that reject 

simpler mechanisms that could have led to the same navigational outcome (Bennett 1996).  

Bennett (1996) identifies three such alternative scenarios that must be eliminated before 

one can confidently claim that a novel short cut was made, and therefore, that there is a cognitive 

map (sensu Tolman 1948). The first possibility is that the short cut is, in fact, not truly novel, and 

that the animal has performed the “short cut” based on prior experience unbeknownst to the 

observer. The second, and most obvious alternative, is that the animal did not perform route 

based travel as per O’Keefe and Nadel (1978), i.e., the animal follows a seemingly novel path 

from one location to another simply because it recognizes a landmark from a new angle (and not 

because it possesses any detailed representations about the location of its goal). Finally, it must 

be shown that the short cut is not a product of path integration. Path integration, also known as 

“dead reckoning”, is a method of navigation whereby an animal returns to its starting point by 

summing the vectors of distance and direction to estimate its current position, and then 

calculating a direct return to the starting point (Gallistel 1989; Bennett 1996; Etienne and Jeffery 

2004). This form of navigation requires minimal memory, but is not a cognitive map, and is 

common in arthropods and vertebrates (Gallistel 1989; Bennett 1996; Etienne and Jeffery 2004). 

Bennett (1996) asserts that there are no cases where all simpler solutions can be confidently 

ruled out, and therefore Tolman’s (1948) concept of cognitive maps should not be invoked as an 

explanation.  

Another definition of a cognitive map is simply a record in an animal’s brain of 

geometric relationships between locations in space (Gallistel 1989; Gallistel 1993; Gallistel 

1994). In this case, types of cognitive maps differ only in the types of geometries that are 

encoded by the animal and govern its decisions (Gallistel 1989). Under this definition, there is no 
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distinction between route based travel systems or map based travel systems, both are considered 

forms of cognitive maps (Bennett 1996). This conceptualization of cognitive maps has 

advantages over the original Tolman (1948) concept in that it implies all animals have a mental 

geometric representation of space. Since different types of cognitive map differ in the types of 

geometries that are encoded, researchers studying spatial memory are able to formally test 

predictions derived from those geometries, and behavior can be explicitly tested against formal 

mathematical models of animal space use (O’Keefe and Bennett 1994).  

1.3.3 Encoding information 

Regardless of what definition of cognitive map one choses to accept, what is consistent 

across each conceptual variant is that spatial information is somehow “mapped” onto the brain 

itself. This leaves us with the question of how spatial information is actually biologically 

encoded, and which features selection is acting on to enable animals to use cognitive maps?  

O’Keefe and Nadel (1978) were the first to propose that cognitive maps are encoded by the 

hippocampus. There was, however, debate about hippocampal function and how memory is 

encoded. Stemming from independent bodies of work; namely evidence linking hippocampal 

damage to amnesia, and work demonstrating neuronal activity in the hippocampus during 

navigation, there was disagreement about whether the hippocampus was responsible for 

encoding declarative memory, which is consciously recalled memory such as facts or verbal 

information (see Ullman (2004)), or encoding spatial memory (Scoville & Milner 1957; O’Keefe 

& Dostrovsky, 1971; Schiller et al. 2015)). Because these lines of research differed substantially 

in their methods, it was difficult to come to a consensus about the role of the hippocampus 

(Schiller et al. 2015).  
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Recently, a substantial amount of work has emerged allowing for both views of 

hippocampal function to converge (Buzsáki & Moser 2013; Milivojevic & Doeller 2013; 

Maguire & Mullally 2013; Eichenbaum & Cohen 2014; Schiller et al. 2015). A recent and 

detailed synthesis by Schiller et al. (2015) discussed how neuronal activity in the hippocampus is 

associated with multiple types of spatial and non-spatial information. Citing evidence from fMRI 

and neuronal recordings, they discuss how both spatial and temporal information is encoded by 

the hippocampus. They report reliable firing sequences of hippocampal neurons in both temporal 

and spatial contexts, and that the temporal coding of hippocampal neurons parallels spatial 

coding of hippocampal neurons (Schiller et al. 2015). They also discuss several recent studies 

demonstrating that associated spatial and non-spatial variables are encoded together, and that 

spatial and non-spatial context are integrated and organized into networks of multiple related 

memories (Schiller et al. 2015). What’s even more interesting is their suggestion that grid cells in 

the medial entorhinal cortex make computations regardless of the types of sensory inputs a 

species relies on (Schiller et al. 2015). They suggest that despite reliance on disparate sensory 

modalities (e.g., vision for primates and smell for rats), rats and primates may use the same 

neuronal coding mechanisms (Schiller et al. 2015), implying that computations by grid cells are 

not bound to sensory mechanism, movement, or body orientation and reflect navigation through 

mental space (Schiller et al. 2015). This suggestion that similar processes are at work regardless 

of the means of sensory perception should be taken into account when controlling for the 

perceptual range of an individual in studies of spatial foraging.    

Tolman (1948) described novel short cuts as the primary feature of cognitive maps, 

however he described their primary function as support for the planning of behavior to obtain 

goals (Tolman 1948). Schiller et al. (2015) demonstrate that cognitive maps are 
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multidimensional and experiences are mapped across many behavioral domains. What is clear 

from Schiller et al.’s (2015) discussion of the hippocampus is that cognitive maps are not only 

records of geometric relationships in space, but also temporal relationships and potentially other 

types of attribute information associated with particular mapped goals. Schiller et al.’s (2015) 

expanded concept of a multidimensional cognitive map allows us to expand our predictions 

about how an optimal forager will make travel decisions beyond just geometries.  

1.3.4 Selection and cognitive maps 

 Cognitive maps should provide many potential selective advantages to individuals that 

possess them. At large scales, cognitive maps should aid in navigating spatially complex 

landscapes, locating and relocating rare or essential sites more efficiently, or obtaining resources 

that are temporally variable (Bingman & Cheng 2005; Janmaat et al. 2006; Janson & Bryne 

2007; Papastamatiou et al. 2013, Fagan et al. 2013). At local scales, cognitive maps may result in 

better access to critical resources or locations (Janson 2000, Fagan et al. 2013). Perhaps the best 

empirical evidence for selection on cognitive maps is the body of work on food-caching 

chickadees (genus Poecile). Food-caching behavior is characterized by non-migratory animals 

collecting and storing food during times of food abundance, and relying heavily on these stored 

foods during times of food scarcity or high variability (Vander Wall 1990; Pravosudov and Roth 

2013). Croston et al. (2015) stated that variation in intensity of the food scarcity period is 

predictable along climatic gradients, and therefore predict that chickadee reliance on food-caches 

should vary with respect to the intensity of those periods. Furthermore, because food-caching 

behavior is dependent on the cognitive processes involved in spatial memory, (Krebs et al. 1989; 

Sherry et al. 1989; Dukas 2004; Pravosudov and Roth 2013) Croston et al. (2015) predicted that 

spatial memory and the associated anatomy should vary with respect to reliance on food-caching. 
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They embarked on a lengthy review and synthesis on the literature on food-caching chickadees 

in order to discuss four potential contributors to variation in food-caching, the hippocampus, and 

spatial memory. These contributors are local adaptation, behavioral plasticity, development, and 

epigenetics (Croston et al. 2015). A very important aspect of their review as it pertains to the 

present discussion are that in a series of studies, birds collected from different climates and 

populations, yet reared under the same conditions, showed significant differences in spatial 

memory, number of hippocampal neurons, rates of hippocampal neurogenesis, and hippocampal 

morphology (reviewed in Croston et al. 2015). Additionally, during interspecific social 

interactions between chickadee species, chickadee populations from harsher climates were 

consistently dominant over those from other populations, restricting access to critical resources 

to individuals from local populations (Croston et al. 2015). Furthermore, they reported strong 

female preference for males from their own population (Croston et al. 2015). The remarkable 

thing about these findings are that in addition to habitat harshness explaining the variation in 

cognitive maps, maintenance of this variation seems to be reinforced by sexual selection in the 

chickadees, since female preference prevents admixture between populations (Croston et al. 

2015). Food-caching chickadees provide a strong empirical example of local adaptation of the 

anatomy and behavior associated with cognitive maps in response to the environment. 

 Admittedly, food caching is a special case of cognitive foraging, and it may be 

inappropriate to broadly compare the spatial behavior of food caching animals to spatial memory 

use in other animals. As per Croston et al. (2015), food caching is a direct response to temporal 

variation in resources. Additionally, the food cachers themselves dictate the spatial distribution 

of the resources they will target in the future. Thus, any predictions about directionality one 

might make about food caching animals may not hold for other animals. Furthermore, food 
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caching chickadees are not an appropriate system to test large scale predictions about the 

relationships between landscape structures, travel, and memory. Climates across the globe are 

not as predictably seasonal as in temperate zones; and foraging often manifests in other modes of 

behavior outside of food-caching.  

1.3.5 Predicting space use and foraging success 

 To better understand the conditions in which a cognitive map increases foraging success, 

we have to explore the alternative ways foraging success can be achieved. As previously 

discussed, foraging theory predicts that animals will forage economically (e.g. Emlen 1966; 

MacArthur & Pianka 1966; Schoener 1971; Charnov 1976; Pyke et al. 1984; Krebs 1978; 

Stephens & Krebs 1986). A considerable amount of work has gone into predicting how animals 

might prioritize various resources, how they should behave upon encountering these resources, 

the breadth of resources one should expect an animal to utilize, and how animals should manage 

their time (e.g. Emlen 1966; MacArthur & Pianka 1966; Charnov 1976; Krebs 1978; Pyke et al. 

1984; Stephens & Krebs 1986). Before an animal can make any of these types of decisions it 

must actually locate these resources. Thus, success is sometimes reduced to simply locating 

resources in a time minimizing fashion (Stephens & Krebs 1986, Janson 2000). Given this 

operational definition of success, one can make predictions about how an animal might achieve 

foraging success as levels of information it and types of foraging environments vary (Janson 

2000, Janson & Bryne 2007). 

 The Movement Ecology Paradigm (MEP) (Nathan et al. 2008) is a convenient context in 

which to frame and test these predictions. Under the MEP, an animal’s movement track is said to 

be derived from four components: 1) the animal’s internal state, defined as its intrinsic 

physiological, neurological, or psychological condition, dictating why to move; 2) the animals 
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motion capacity defined as morphological or biochemical traits, dictating how to move; 3) the 

animal’s navigation capacity, defined as the cognitive or sensory mechanisms, dictating where to 

move; and 4) external factors, defined as biotic or abiotic environmental drivers of movement 

(Nathan et al. 2008). Thus, one can predict the composition of movement tracks (the sequence of 

starts, stops, and turns) resulting from the interaction of different internal states, navigation 

capacities, and external factors.  

As previously discussed, some animals navigate in the absence of complex memory, 

either in a completely non-oriented way (Codling et al. 2008; Reynolds and Rhodes 2009) or via 

path integration (Gallistel 1989; Bennett 1996). Animals both with and without cognitive maps 

can exhibit simple forms of navigation such as path integration (Gallistel 1989; Bennett 1996). In 

fact, simple modes of movement are common in the animal kingdom relative to navigation via 

cognitive map, (Gallistel 1989; Bennett 1996). However, there are clearly cases where memory 

driven foraging confers an advantage over path integration and other simpler navigational 

modes. Comparing foraging outcomes when animals utilize versus do not utilize memory (i.e., 

forage randomly) can help us understand the conditions whereby incorporating memory into 

foraging decisions significantly and importantly improves foraging efficiency. Janson (2000) 

outlined a set of predictions for how animals with and without memory are expected to respond 

to their environment in regards to steps and turns. Under the MEP (Nathan et al. 2008), Janson’s 

(2000) predictions can be reframed as distinct movement tracks in response to varying external 

factors, namely the distribution and regeneration of resources, and varying the navigational state, 

namely spatial memory vs. no spatial memory. Given a navigation capacity that is not based on 

spatial memory, Janson outlined the expectation for movement tracks resulting from four 

external factors: (a) resources are depleted; (b) resources are not depleted; (c) resources are 
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uniformly distributed; and (d) resources are patchily distributed.  Given scenario (a), Janson 

predicted that individuals avoid revisiting patches before they have regenerated by moving 

linearly (Janson 2000). Given scenario (b), he predicted that random steps and turns are equally 

as efficient as any other search strategy (Janson 2000), presumably because there is not a cost to 

revisiting sites. Given scenario (c), subsequent resources should be farther apart from one 

another, so individuals will take longer steps and narrower turns (Janson 2000).  Finally, given 

scenario (d), Janson (2000) predicted that encountering a resource predicts the presence of other 

nearby resources, so short step lengths and sharp turns are taken to stay nearby.  

 There is much independent theoretical support for Janson’s (2000) predictions about 

random foragers. Janson cites Cody’s (1971) model of finches, where motion is generated from a 

random walk process in an environment with depletable patches showing that turning is always 

likely to cause an animal to return to a previously visited patch. Similarly, Prasad et al. (2006) 

independently simulated search behavior derived from a correlated random walk with patch 

depletion, and found that there was a 77% success rate of encountering an undepleted patch. 

Both studies lend support to prediction: (a) Cody’s (1971) work demonstrating theoretically and 

empirically the cost of turning given depletable patches; and (b) Prasad et al.’s (2006) simulation 

demonstrating the benefit of linear motion given depletable patches. Janson (2000) also cites 

Stillman and Sutherland (1990) as support for this prediction (b), where they simulated foraging 

outcomes with rapidly replenishing resources and found that varying turning had little to no 

effect on foraging success. Because searching modes with frequent turns or linear motion 

performed similarly, this confirms Cody’s (1971) suggestion that that when resources replenish 

quickly foragers will be successful regardless of search strategy (Stillman & Sutherland 1990). 

Benhamou (2007) independently used simulations to compare foraging success when movement 
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is driven by a Lévy Walk process to an alternative in which movement is driven by a “classical” 

random walk. Lévy Walks have a step-length distribution with an infinite variance, and are 

therefore considered super diffusive (Reynolds and Rhodes 2009). In other words, Lévy Walks 

exhibit narrow turns and consist of randomly oriented straight line movements, with short 

movements alternating with long movements (Reynolds and Rhodes 2009). Classical random 

walks have a step-length distribution with a fixed variance, and result in tortuous paths that are 

with shorter step-lengths than Lévy Walks of the same overall length (Codling et al. 2008). 

Benhamou (2007) found that Lévy Walks outperformed classical random walks only when 

resources were uniformly distributed, while classical random walks were more efficient in 

patchy environments (Benhamou 2007). As predicted by scenario (c), the superdiffusive 

movement process performed better in a uniformly distributed, widely spaced foraging 

environment, and as predicted by scenario (d), the movement process with the shorter steps and 

more torturous path was the most efficient in a patchy environment. Janson’s (2000) assertion 

that encountering a resource predicts the presence of subsequent resources stems from work done 

by Hubbell (1979) on the dispersion of tropical trees. Hubbell (1979) reports that all sampled 

species exhibited either a clumped or random distribution. Thus, prediction (d) can be expected 

to hold at least in the case of arboreal species where the majority of the diet is composed of 

tropical trees.  

 Janson (2000) provided a useful set of expectations for what a randomly foraging 

animal’s behavior should look like, but at what point does it pay to stop foraging randomly? 

Fagan et al. (2017) examined foraging success in dynamic landscapes for animals whose 

movement aren’t completely random, but don’t rely on memory. In other words, they were 

interested in movement oriented by some stimulus away from the current position but within 
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some perceptual range (Fagan et al.  2017). The question is “Under what conditions does 

gathering non-local information improve foraging success?” (Fagan et al.  2017). Using 

integrodifferential equations they constructed a movement model addressing how foraging 

success changes with variation in the perceptual range, the strength of the reaction to 

information, and the resource distribution (Fagan et al. 2017). Foraging success was defined as 

the animal’s ability to overlap in time and space with its resources (Fagan et al. 2017). The 

implication is that overlap would translate to use in terms of real world behavior. Landscapes 

were modeled as: 1) temporally static landscapes (i.e.; resource availability does not vary in 

time); 2) landscapes where resources are temporally pulsed (simulating some sort of periodic 

temporal availability or seasonality); 3) landscapes where the pulse is faster; 4) landscapes where 

resources are pulsed and spatiotemporally offset, (i.e., resource availability is variable in both 

time and space); and 4) temporally pulsed where patches are discrete with hard edges and 

therefore difficult to find (i.e., a discrete resource such as a tree rather than a patch where the 

patch boundary gradually dissipates) (Fagan et al.  2017). Fagan et al. (2017) found that when 

movement is based only on local information, foraging success is highest in temporally static 

landscapes, and decreases as landscapes get more complex. Foraging success was highest within 

a given landscape with zero outside information (Fagan et al. 2017). An example of such a 

landscape may be one where resource renewal is so fast that resource availability does not vary 

temporally, however real world examples of such landscapes are rare. When the animal is able to 

react to non-local information, then foraging success increased with the animal’s ability to 

quickly react to outside information (Fagan et al. 2017). Furthermore, the faster an animal was 

able to react to non-local information, the larger of a perceptual range it could take advantage of 

(Fagan et al. 2017). The increase in foraging success with an increased perceptual range is the 
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most dramatic when resources are difficult to find (Fagan et al. 2017). Fagan et al. (2017) 

conclude that gathering non-local information is useful in temporally dynamic environments 

with difficult to find resources patches when animals can react quickly to resources (Fagan et al. 

(2017). 

 In the case of cognitive maps, there is substantial added complexity which makes 

prediction and distinction challenging. Since cognitive maps are thought to facilitate goal 

directed behavior, one simple prediction that can be made is that goal directed movement should 

be efficient and directed, and consist of straight lines punctuated by sharp turns at target 

locations (Janson and Byrne 2007). However, this prediction is unsatisfying because there are 

cases where this pattern may be produced by simpler cognitive processes. Janson and Byrne 

(2007) stipulate that the way to determine if tracks of this nature are generated by cognitive maps 

is to check that the distance between the two points is greater than the animal’s perceptual range. 

If this is the case, then the animal must have had prior information about the location of the goal 

(Janson and Byrne 2007). Unfortunately, if these data or a reasonable proxy are not available, 

distinguishing the underlying process generating the path is not possible.  

Another prediction is that speed can be an indication of goal directed behavior, and by 

extension spatial memory (Janmaat et al. 2006; Janson and Byrne 2007). If increases in speed 

occur en route to a goal, and the increase in speed occurred outside of the animal’s perceptual 

range, then spatial memory may be inferred because speed should represent the animal’s 

anticipation of the value of the goal (Janmaat et al. 2006; Janson and Byrne 2007). 

Unfortunately, the utility of this prediction is also dependent on the ability to obtain data on the 

perceptual range of the animal.  
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 Predicting the sequence of resources an animal with spatial memory is likely to visit is 

also difficult because there are a number of decisions that can be made to maximize net energy 

intake or minimize search and travel time. If the foraging goal is to maximize total energy 

consumption, animals would be expected to target only the most valuable or profitable items 

(Janson 2000; Janson and Byrne 2007). Alternatively, net energy expenditure might be 

minimized by minimizing travel time between patches (Janson and Byrne 2007). This can be 

accomplished either by following a nearest neighbor rule, where the animal always navigates in a 

straight line to the nearest known available resource, or by following some sort of “look ahead” 

rule, whereby the animal choses the optimal route between some subset of available resources 

before continuing on to the next subset (Janson 2000). Animals could also aim to minimize the 

overall travel path, and would have to do so amongst all resources outside the perceptual range 

(Altman 1974; Janson and Byrne 2007). In both cases the distance to the nearest neighboring 

goal should be greater than expected from a randomly searching forager, since remembered 

locations are, by definition, those be outside the animal’s current perceptual range (Janson and 

Byrne 2007).  

Foragers may have multiple goals, such as social goals unrelated to foraging, or 

simultaneously maximizing energy consumption and minimizing travel distance. This makes 

prediction even more challenging, especially in cases where there is some tradeoff between 

distance to the next location and the value of that next location (Janson 2000). Janson (2000) 

however, proposes that if animals follow a look ahead rule, then both route optimization and 

target value may be taken into account by the forager. For example, if an animal looks N 

resources ahead, then as it is optimizing its route the between N-1 resources the highest valued 

resources should be driving the overall direction (Janson 2000).  
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Additionally, net energy may not be the only relevant currency. Nutritional ecologists 

take a multi-dimensional approach to studying an individual’s nutritional goals, and have 

developed the Geometric Framework of Nutrition (GF) (Simpson & Raubenheimer, 2012). GF is 

simply a graphical way of representing and analyzing the nutritional composition of an 

individual’s diet in multidimensional space, and provides quantitative tools for determining an 

animal’s nutritional goals (Raubenheimer & Simpson, 1995). Simpson & Raubenheimer (2012) 

have experimentally demonstrated in a number of taxa that animals modulate their foraging 

behavior to maintain homeostasis, and that animals make foraging choices so that they achieve 

their target ratio of macronutrients. Since animals may modulate their behavior specifically in 

response to nutritional homeostasis, homeostatic goals should translate directly to foraging goals. 

If nutritional processes are operating at short timescales, then perhaps goal directed behavior can 

also be expected to happen over comparatively short timescales. In any case, if we consider 

foraging goals to be related to nutrient balancing instead of energy maximization, many of our 

predictions about space use could change. 

Finally, if temporal data are encoded along with spatial information, then animals may 

behave such that recently depleted resources are avoided and only returned to when the resource 

is expected to replenish (Janson and Byrne 2007). Thus, animals should generally avoid recently 

visited locations (Janson and Byrne 2007).  

1.3.6 Empirical studies on spatial memory in wild animals 

Much of the initial empirical evidence for spatial memory in animals comes from 

experiments with captive animals. The advantages of captive experiments in this context are that 

they provide control over the perceptual range, previous experience with the relevant stimulus, 

and the availability of resources for the animal to detect (Janson 2000).  Evidence from captive 
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chimpanzees (Pan troglodytes; Tinkelpaugh 1932; Menzel 1973), rhesus macaques (Macaca 

mulatta; Tinkelpaugh 1932), and yellow nosed monkeys (Cercopithecus ascanius whitesidei; 

MacDonald and Wilkie 1990), all demonstrate that primates are able to recall the locations of 

hidden rewards. When asked to relocate hidden rewards, each species chose efficient routes, 

generally adhering to a nearest neighbor rule (Tinkelpaugh 1932, Menzel 1973; MacDonald and 

Wilkie 1990; Gallistel and Cramer 1996). Evidence from captive vervet monkeys (Chlorocebus 

pygerythrus) indicates that vervets may follow a look ahead strategy and can look ahead up to 

three steps (Cramer 1995; Gallistel and Cramer 1996). Individual vervets were tasked with 

relocating experimentally hidden food rewards to see if they would choose the most optimal 

route. The actual routes taken by each monkey were compared to competing algorithms 

representing potential routes between each reward. The results of the experiment showed that 

vervet routes did not match the optimal (nearest-neighbor) algorithm, but were consistent with 

the algorithm representing a three step look ahead rule. Unfortunately, it is unclear whether the 

cognitive skills required in experimental settings are the same as those required for foraging 

across large landscapes, and there is even evidence that the ability to navigate across large spatial 

scales is developmental (Janson 2000). While Garber (1989) reports that wild tamarins (genus 

Saguinus) show evidence of spatial memory across large distances (average nearest neighbor 

distance reported as 148 meters), Menzel and Beck (2000) report that in closely related species 

of captive tamarins’ the ability to orient themselves from their nest box was restricted to within 

50 meters of the nest box. Data from captivity therefore seem to have limited utility, and we 

must be conservative about the inferences we make from such data. 

Janson et al. (1997) and Janson (1998) studied spatial memory in wild capuchins (Cebus 

apella) through a series of field experiments, mitigating some of the aforementioned limitations 
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of captive experiments. They established an array of 15 feeding platforms throughout the study 

area during a period of fruit scarcity. This allowed them to manipulate the location, value, and 

renewal rate of the “resources” available to the capuchins (Janson et al, 1997; Janson 1998). 

Because the capuchins exhibited predictable and measureable changes in velocity and direction 

upon detecting feeding platforms, Janson et al. (1997) were able to estimate the food detection 

radius of the capuchins to be 82 meters with 95% confidence. Janson (1998) then monitored the 

capuchins’ spatial movements between the platforms, and compared them to the expected 

movement patterns under various models of random foraging. Janson (1998) found that the 

capuchins move in straight lines towards nearby feeding platforms more often than expected by 

random searching. Observed spatial patterns were only indistinguishable from random search 

models when the detection distance exceeded 225 meters (Janson 1998). Such detection 

distances were deemed highly unlikely due to the high degree of confidence in their detection 

estimates (Janson et al. 1997; Janson 1998). Janson (1998) explained that while these data 

provide good evidence for spatial memory in capuchins, they do not reveal if capuchins plan 

optimal routes. The data highlight the importance of knowing the perceptual range in studies of 

memory driven foraging, and show that it can be assessed experimentally.  

Janmaat et al. (2006) addressed this topic in wild mangabeys (Cercocebus atys atys, and 

Lophocebus albigena johnstoni) by monitoring specific focal trees. They tested whether ranging 

patterns of the mangabeys was better explained by sensory cues or by spatial memory (Janmaat 

et al. 2006). The perceptual range (visual and olfactory) of the animals was assumed to be similar 

to those of humans due to their shared phylogeny (Janmaat et al. 2006). The tree species used 

was chosen because visual and olfactory detection of the fruit was deemed unlikely and few 

other species were known to eat the fruit (Janmaat et al. 2006). Janmaat et al. (2006) then 
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monitored the visitation patterns and approach speeds of the animals in response to variation in 

the fruiting state of the trees. They report that the likelihood of visiting a tree was significantly 

higher when fruit was available, was lower when trees recently fruited, and that the speed of 

approach varied significantly with the quality of fruit (Janmaat et al. 2006). Janmaat et al. (2006) 

argued that changes in behavior occurred outside the perceptual range and therefore indicate that 

mangabeys use past experience to anticipate changes in food quality and quantity.  

Cunningham and Janson (2007) monitored the foraging behavior of white-faced saki 

monkeys (Pithecia pithecia) during a period of fruit abundance. Using nearest neighbor travel 

and site revisitation as indicators of spatial memory, they tested observed behavior against two 

models of random foraging. They found that the distance traveled between resources was four 

times greater than expected at random, and that the odds of visiting a resource increased greatly 

if the tree was very productive and recently visited (Cunningham and Janson (2007). They also 

found that amongst preferred trees, sakis consistently chose the nearest of those trees 

(Cunningham and Janson 2007). Cunningham and Janson (2007) argued that the sakis’ foraging 

decisions indicate both spatial knowledge of resources, and recent memory of food quality and 

availability. The use of recent experience to inform the animals about the quality of nearby 

resources, paired with bypassing certain resources for the highly productive resources are 

interpreted by Janson and Byrne (2007) as evidence of goal directed spatial behavior. 

Interestingly, Cunningham and Janson (2013) monitored the same group of animals during a 

subsequent period of fruit scarcity, and found that movement patterns of the group no longer 

indicated any of the previous signs of memory. They suggest that the lack of high quality 

resources corresponds with the switch to a memoryless search strategy, and argue that spatial 

memory might be a mechanism allowing travel to rich and distant resources (Cunningham and 
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Janson 2013). In other words, goal directed behavior will only be exhibited when goals are 

available. If goals are not available, individuals may revert to simpler strategies. At the very least 

their results indicate behavioral flexibility in the face of dynamic landscapes, and show that a 

species can switch between multiple movement strategies under certain circumstances.  

Avgar et al. (2015) studied memory and movement in caribou to test whether caribou 

(Rangifer tarandus caribou) movement was predicted by resource abundance, the density of 

predators, or the density of conspecifics (Avgar et al. 2015). Rather than examining step lengths 

and turn angles like the previously discussed studies, Avgar et al. (2015) constructed a spatially 

explicit cognitive movement model where an individual moves through a gridded landscape, and 

each movement decision is probabilistic and driven by what the individual knows about each cell 

in the grid. Sensory information and spatial memory are built into the model such that there is a 

decay rate associated with both memory and the perceptual range of the individual (Avgar et al. 

2015). The model was parameterized such that three null hypotheses were considered: no non-

local sensory imput, memory decay, and no memory retention (Avgar et al. 2015). The model 

was then evaluated on its ability to predict the observed ranging data of the caribou (Avgar et al. 

2015). Avgar et al. (2015) report that resource abundance was a strong predictor of caribou 

movement behavior, and that only for some individuals did the density of predators or other 

caribou have an effect. No individuals revealed patterns consistent with the null model of no 

sensory perception, but all individuals converged on the null model representing an “everlasting 

memory” characterized by no decay (Avgar et al. 2015). The results of their study suggest that 

caribou movement is in response to food, that caribou rely very little on sensory information, and 

that they rely heavily on long term spatial memory to make informed movement decisions 

(Avgar et al. 2015).  
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1.3.7 Study System 

Current orangutan distributions are restricted to the forests of Borneo and Sumatra 

(Husson et. al, 2009). They are rare or absent at high altitudes, and are most commonly found in 

lowland Dipterocarp forests, peat swamp forests, freshwater swamps and alluvial forests (Husson 

et al., 2009). Bornean and Sumatran forests are comprised of a large proportion of trees in the 

family Dipterocarpaceae. This causes extreme temporal seasonality, due in large part to the 

supra-annual mast fruiting exhibited by this family (Marshall et al., 2009; Wich et al. 2009). 

Forests with fewer Dipterocarp trees exhibit less extreme temporal seasonality, and orangutan 

densities are inversely related to the density of Dipterocarp trees (Marshall et al., 2009).  

Orangutans are among the most highly encephalized of the non-human primates, in 

addition to having one of the slowest life-histories of any terrestrial mammal (Leutenegger, 

1973; Harvey et al., 1987; Marino, 1998; van Noordwijk and van Schaik, 2005) They have fruit 

dominated diets (van Schaik et al., 1996, Leighton, 1993), and exhibit an extended 

developmental period where the young remain dependent on the mother to develop sufficient 

foraging skills (Schuppli et al., 2016). Furthermore, orangutans have been shown to use the 

lowest amount of energy per body mass of any primate (Pontzer et al. 2010).  

It has been shown that diet is a major selective force driving the evolution of brain size 

(Benson-Amram et al., 2016; DeCasien et al., 2017; Holekamp and Benson-Amram, 2017). The 

large brain, coupled with the slow metabolism and slow life-history of orangutans indicate a 

strong evolutionary response to the extreme seasonality exhibited by Southeast Asian forests. 

Orangutans are clearly cognitively and physiologically adapted for the acquisition of spatially 

fixed, but temporally variable resources, making them an ideal model system for studying 

cognitive foraging in the wild.  
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Furthermore, in group living species, where individuals vary in their goals, group 

members follow decision making rules resulting in a compromise allowing the group to move as 

a cohesive unit. Groups typically follow a majority rule, where the resulting direction of the 

group is the average directional vector of all the individuals (Couzin et al., 2005; Strandburg-

Peshkin et al., 2015). This makes studying resource selection and goal directed foraging difficult, 

since the resulting group level decision will not necessarily reflect the foraging goals of each 

individual. Orangutans, on the other hand, are semi-solitary (van Schaik et al., 1996), so most 

decisions can be interpreted as a true decision and an uncompromised goal. This makes 

orangutans a preferable model over other large brained primates in this context.  

Sumatran forests have a lower stem density of Dipterocarp trees than their Bornean 

analogs, exhibit fewer periods of fruit scarcity, and shorter durations of scarcity periods 

(Marshall et al., 2009). Sumatran forests are therefore more productive than Bornean forests, and 

are considered more suitable habitats for orangutans (Marshall et al., 2009; Wich et al. 2009). As 

previously discussed, Croston et al. (2015) demonstrated that the intensity of the scarcity periods 

predicts the reliance on spatial cognition in chickadees. It follows that orangutans follow the 

same pattern, and therefore it seems likely that selection for reliance on spatial memory should 

stronger on Borneo than on Sumatra. For this reason, the present study focused Bornean 

orangutans (Pongo pygmaeus wurmbii) at the Tuanan Orangutan Research Station (TORP).  

1.3.8 Study site and population 

The Tuanan study site (02º 09’06’’S; 114º 26’26’’E) was established in January 2003 

within the 3,090 km2 Mawas Conservation Area in Central Kalimantan, Indonesia (van Schaik et 

al. 2005). Tuanan is a peat swamp forest that comprises a 1137ha gridded trail system. It is 1.7 

km east of the Kapuas River. Nearest to the river, the substrate consists of white sand on mineral 
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soil. With a rapid eastwardly transition to a peat substrate. Within the grid system, peat depth 

ranges from 0.5-2m and gets increasingly deeper further east outside the bounds of the study 

area. The site is a recovering forest, with a history of logging in the early 1990’s, followed by 

low levels of local logging (van Schaik et al.2005). Orangutan density at Tuanan is among the 

highest in Borneo (Husson et al., 2009), with estimates ranging from 4.3-4.5 individuals/km2 

(van Schaik et al., 2005; Husson et al., 2009; Vogel et al., 2017). 

 

Figure 1.1 Map of the Tuanan grid system 
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 Figures 1.2a and 1.2b show mean monthly rainfall and daily temperature respectively. Average 

daily temperature is 25.8oC (σ = 3.05), and average annual rainfall is 7.73mm/year (σ = 2.3). There is 

substantial monthly variation in tree phenology patterns at Tuanan (Figure 1.3), however fruit availability 

stays consistently low with the average percentage of fruiting trees per month being 4.61%.  

 

Figure 1.2 a) Total monthly rainfall in mm. b) Daily temperature in degrees Celsius. Red is the daily high, blue is 

the daily low. 
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Figure 1.3 Monthly fruit availability index. Units are in percentage of trees. Red is percentage of fruiting trees, 

blue is percentage of flowering trees, and green is percentage of trees exhibiting young leaf flushing. 

 

Knowledge of the orangutan diet at Tuanan is mostly complete, with the total number of known 

food items leveling off after about ten years of data (Figure 1.4). 82% of the known diet items have been 

analyzed for macronutrient composition. 
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Figure 1.4 Accumulation curves and addition curves. a) is the total number of food items observed in the 

diet at each year. b) The total number of new food items added to the diet each year. The diet starts to 

stabilize after 9 years. 

 

Orangutan behavioral data were collected using standard protocols 

(http://www.aim.uzh.ch/de/research/orangutannetwork/sfm.html), and only data from full nest-

to-nest focal follows were included in all analyses. For this study, 150 nest-to-nest follows were 

conducted on five main focal adult females (referred to as ‘focal’ individuals). Ten consecutive 

follow days at a time were attempted for each individual, with five being the minimum number 

of follows required. Data collection began in June 2014, and concluded in August 2015. Activity, 

ranging, and feeding data were collected using two minute instantaneous samples. During each 

feeding bout, food species, food part, ripeness, intake rate, and bout duration were recorded. 

Ranging data consisted of two minute GPS coordinates collected using handheld Garmin 

GPSMAP units. In addition to the focal individuals, full day, nest-to-nest follows were also 
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conducted on non-focal individuals opportunistically (Table 1.1). Activity, feeding, and ranging 

data were collected as previously described and ranging data were collected every thirty minutes. 

All data were added to the larger behavioral database consisting of data collected since 2003. All 

behavioral data from 2003-2015 are described in detail in Vogel et al. (2017).  

 

Table 1.1 Meta-data for all orangutans used in the analyses for this dissertation. Only individuals whose IDs are 

reliable and where full focal follows were completed are included. Asterisks indicate focal animals. All other animals were 

opportunistically sampled. 

Orangutan name Age class 
Date First 

seen 

Known 

birthdate 

Estimated 

birthdate 

Jinak* Adult female with dependent 7/5/2003   1953 

Juni* Adult female with dependent 7/16/2003   1994 

Kerry* Adult female with dependent 7/28/2003     

Kondor* Adult female     Jan-99 

Milo* Adult female  7/13/2003   2001 

Danum Immature male 9/27/2010   Jul-10 

Dayak Adult flanged male 10/3/2003     

Deri Immature male 9/18/2004   Jul/Aug-04 

Desy Adult female 12/1/2003     

Ekko Adult flanged male 3/21/2004     

Frodo Adult unflanged male 5/18/2007     

Gismo Adult flanged male 4/8/2004     

Helium Adult flanged male 9/8/2012     

Henk Adult flanged male 3/27/2004     

Jerry Immature male 7/5/2003   Jun-17 

Jimi Adult flanged male 8/29/2005     

Jip Immature male 2/10/2006 2/10/2006   

Joya Immature male 10/10/2011   Jun /Jul-11 

Katmandun Adult flanged male  9/24/2011     

Kay Adult flanged male 3/20/2005     

Kentung Adult flanged male 1/10/2005     

Kino Immature male 1/8/2007   Jan-07 

Leo Adult flanged male 3/30/2006     

Mawas Immature female 7/21/2008 7/15/2008 8-Jul 

Mindy Adult female 7/13/2003     

Momo Adult unflanged male 12/1/2009     
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Nanio Immature male 9/18/2004   1997 

Niko Adult flanged male 7/17/2003     

Otto Adult flanged male 8/3/2008     

Pinky Adult female 10/9/2008     

Preman Adult unflanged male 9/11/2003     

Rambo Adult flanged male 7/15/2003     

Sidony Adult female 9/27/2007     

Sony Immature male 3/28/2010 3/28/2010 2010 

Streisel Immature female 9/27/2007   2002 

Sumi Adult female 7/28/2003     

Talia Adult female       

Ted Adult unflanged male       

Tomi Adult flanged male       

Vini Adult unflanged male 5/22/2012     

Wodan Adult unflanged male 4/27/2004     
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Chapter 2. Variation in spatial movement as it relates to nutritional 

balancing in Bornean orangutans (Pongo pygmaeus wurmbii) 

 

2.1. Introduction 

 The optimal foraging literature has been instrumental to our understanding of animal 

energy budgets and the evolution of decision making (Charnov, 1976; Pyke, 1984; Krebs, 1978; 

Bateson & Kacelnik, 1998). The reality that both time and energy are constraints on behavior has 

led to work on predicting how these constraints dictate choices about the what, where, and how 

of resource acquisition (Pyke et al., 1977). The presumption is that selection favors individuals 

that optimize their decisions, usually through risk minimization and energy maximization.  

 Energy has long been the predominant currency through which optimal foraging and 

evolution are studied. Dietary categories have historically been framed around categorical 

differences in the energy content of foods, and deciding between high and low energy foods has 

been invoked as a means of niche partitioning in animal communities (Bell, 1971; Jarman, 1974; 

Kay, 1975; Owen-Smith, 1988; Codron et al., 2007; Shipley, 2007). Even fine-scale foraging 

decisions such as optimal patch choice are modeled in terms of diminishing energetic returns 

(Charnov, 1976). Although the foraging literature has been heavily calorie-centric, there has 

been a recent and growing shift towards acknowledging the importance of other nutritional 

currencies. 

 Some of the earliest work that explicitly addressed the role of nutrients in diet 

optimization came from the linear programming and ungulate literature. This literature 

demonstrated that animals attempt to optimize nutrient intake relative to plant secondary 

compounds, and showed that certain micronutrients can be extremely limiting for animals 
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(Freeland & Jansen, 1974; Westoby, 1974; Belovsky, 1978;  Belovsky, 1981). This research 

influenced Milton’s (1979) work on the feeding ecology of folivorous primates, where she 

suggested that they optimize their diets by targeting a specific ratio of protein to fiber. 

McNaughton (1988) showed that the spatial distribution of mineral nutrients predicted ungulate 

density, and forest level experiments by Ball et al. (2000) showed that experimentally increasing 

the nitrogen content (i.e., quality) of leaves caused an aggregate response in mammal presence. 

Furthermore, recent work on invertebrates has shown that they have marked responses to nutrient 

availability, demonstrating both changes in invertebrate distribution and dietary strategy due to 

micronutrient limitation (Kaspari et al., 2014; Kaspari et al., 2016; Clay et al., 2017). 

 Advances in our understanding of stable isotopes and their relationship to diet and 

nutrition have changed how we view trophic dynamics and niche differentiation (Newsome et 

al., 2007; Fernandes et al., 2012). Now it is not only possible to reconstruct diets, but isotopic 

niche space can be further translated into nutritional niche space, allowing us to move beyond the 

classical tropes of high and low energy strategies. Furthermore, is it now clear that different 

types of nutrients interact with genes in a number of measurable ways, and that there are clear, 

biologically meaningful reasons to optimize behavior with regards to nutrient intake (Reitsema, 

2013; Minihane, 2015). There is even evidence that some micronutrient regulated processes are 

important enough that “triage” mechanisms have evolved to conserve those processes in the 

short term at the expense of long term health (Ames, 2006; McCann & Ames, 2009).  

 Simpson & Raubenheimer (2012) maintain that because adequate nutrition is 

fundamental to cell maintenance and growth, natural selection should optimize foraging in such a 

way that individuals are always able to meet their nutritional demands. They maintain that 

species should have a specific balance of macronutrients as their target, and that individuals 
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should modulate their feeding behavior specifically to achieve that nutritional balance (Simpson 

& Raubenheimer, 2012). They developed the geometric framework of nutrition, which allows us 

to visualize and analyze how individuals’ nutritional intake actually fluctuates. This framework 

was used to show that spider monkeys (Felton et al., 2009) and gorillas (Rothman et al., 2011) 

have taxon specific nutrient targets, and switch between a diverse set of available food items, 

consistently hitting their respective targets.  

 Experimental work using this framework has been compelling, however field measures of 

nutritional targets are assumed to be biologically relevant without a clear means of verification. 

How much of the daily balance of nutrients that wild individuals achieve is just a function of the 

environment, and not a true target? Even when total calories are the currency of interest, it can be 

difficult to predict foraging decisions since both the interpretation of the goals, and assumptions 

about the distribution of relevant food items might be different than what the animals actually 

experience (Vogel & Janson, 2011).  If the observed balance of nutrients in wild populations are 

in fact biologically relevant targets, then the ratio of nutrients should be different than chance 

would predict, and there should be evidence of goal directed behavior in response to nutrients.  

 The spatial and temporal distribution of food is the most fundamental and immediate 

constraint on an individual’s ability to forage (Krebs 1974; Pyke et al. 1977). Before energy or 

nutrient intake occurs, those resources containing the nutrients must be located. There is 

substantial literature on how search and navigation strategies can vary, and what conditions 

might exert selection pressures for the different movement strategies (e.g. Stephens & Krebs, 

1986; Janson, 2000; Janson & Bryne, 2007; Nathan et al., 2008). Most notably, it is possible to 

distinguish between random search strategies, and goal directed behavior (Janson, 2000; Hill, 

2006; Janson & Bryne, 2007; Nathan et al., 2008).  



41 
 

 
 

 Completely random searching is un-oriented, and consists of uncorrelated changes in 

direction and velocity (Reynolds and Rhodes, 2009). Goal directed motion is typically described 

as some form of area restricted search (ARS), with the predictions about direction and velocity 

depending on the amount of information stored by the forager (Janson, 2000; Hill, 2006; Janson 

& Bryne, 2007). If an animal is not relying on prior knowledge about the location of resources, 

then its motion is expected to consist of an increase in sharp, slow, correlated turns upon 

encountering a resource patch. This allows it to have sufficiently tortuous motion to keep it 

within the bounds of the patch (Viswanathan et al., 1999; Fauchald & Tveraa, 2003; Hill, 2006; 

Viswanathan et al., 2008; Dragon et al., 2012). As the time since the last resource encounter gets 

longer, motion becomes more linear and the animal is expected leave the patch to locate another 

one (Viswanathan et al., 1999; Fauchald & Tveraa, 2003; Hill, 2006; Viswanathan et al., 2008; 

Dragon et al., 2012). If an animal is using non-local information to locate resources, then motion 

is expected to be linear and directed (autocorrelated), and always in the direction of a goal 

(Janson, 2000; Janson & Bryne, 2007). When animals rely on memory, then the distance 

between goals should be farther than the perceptual range of the individual, and sharp changes in 

direction are expected to only be from one goal resource towards another goal resource (Janson, 

2000; Janson & Bryne, 2007). Velocity is also expected to increase when an animal moves in the 

direction of a highly valued goal. Increases in velocity occurring beyond the perceptual range 

can signal a change in behavior in anticipation of the goal due to prior information about that 

goal (Pochron, 2001, Janson & DiBitetti, 1997, Janmaat, 2006).  

 If the observed ratio of macronutrients in wild populations is a true target, then changes 

in direction and velocity should vary significantly with the observed nutritional trajectory (i.e., 

change in distance in nutritional space from the target ratio over time). If an animal is searching 
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randomly, then there should be no relationship between that animal’s movement parameters and 

its nutritional trajectory. If the animal is using ARS, then it should exhibit low velocity with 

increased turning if the animal is near it’s nutritional target. Movement becomes linear once the 

animal leaves the resource. If the animal is using memory or other non-local information, then 

velocity should be high and autocorrelated, and turning should be high, but not necessarily 

autocorrelated, when the animal is near it’s nutritional target. By examining nutritional balancing 

and motion parameters independent of actual food items and actual locations, we are not at risk 

of misidentifying goals or mischaracterizing the animal’s perception of resource distributions. 

We can objectively evaluate whether the suspected desired outcome of the foraging day (i.e., the 

target ratio of nutrients) actually corresponds to goal directed behavior and the animal’s search 

strategy.  

 

Hypothesis 2.1a: Macronutrient balancing by orangutans is not a function of random food 

acquisition and represents a biologically relevant outcome of foraging.  

Prediction 2.1a: The mean daily ratio of macronutrients for the population is not an arbitrary 

metric and represents a nutritional target. The empirical population mean is expected to be 

significantly different from population means derived from random feeding simulations.  

Hypothesis 2.1b: Alternatively, the empirical population mean could simply reflect the average 

macronutrient ratio of known orangutan food items.  

Prediction 2.1b: In this case, the empirical mean should not be significantly different from the 

mean of random feeding simulations.  

Hypothesis 2.2a: The mean macronutrient ratio is a biologically meaningful foraging goal, and 

individuals make spatial decisions that facilitate macronutrient balancing.  
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Prediction 2.2a: Deviations from the nutritional target (in nutritional cartesian space) vary in 

response to changes in the diagnostic features of orangutan movement tracks (in physical space), 

with motion parameters indicating non-random motion when near the target.  

Hypothesis 2.2b: Alternatively, nutritional balancing may not be an important foraging goal, and 

spatial behavior may be unrelated to macronutrient ratios. 

Prediction 2.2b: In this case, motion parameters will not be statistically associated with the 

distance from the nutritional target, and indicate a random movement strategy whereby spatial 

decisions are independent of dietary decisions.  

  

2.2. Methods 

2.2.1 Study site and system 

 Data were collected at the Tuanan Orangutan Research Station in Central Kalimantan, 

Indonesia. Tuanan is a peat-swamp forest that comprises about 1137 ha, with peat depth typically 

ranging from 0.5-2 m. Orangutan density at Tuanan is among the highest in Borneo (Husson et 

al., 2009), with estimates ranging from 4.3-4.5 individuals/km2 (van Schaik et al., 2005; Husson 

et al., 2009; Vogel et al., 2017).  

 

2.2.2 Behavioral data collection 

 Orangutan behavioral data were collected using standard protocols 

(http://www.aim.uzh.ch/de/research/orangutannetwork/sfm.html), and only data from full nest-

to-nest focal follows were included in this analysis. For all focal animals, activity, ranging, and 

feeding data were collected using two-minute instantaneous samples. For this study, in addition 

to the regular project data collection, 150 nest-to-nest follows were conducted on five focal adult 
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females.  Females were chosen based on level of habituation and ease of relocation. Focal 

females are described in Table 2.1. Females were followed for a minimum of five consecutive 

days. Females were opportunistically followed for an additional five days when possible, with 

ten days being the maximum number of consecutive follows permitted by the research station. 

Data were collected between June 2014 and August 2015. During each feeding bout, food 

species, food part, ripeness, intake rate, and bout duration were recorded. Ranging data consisted 

of two-minute GPS coordinates collected using handheld Garmin GPSMAP units. For all non-

focal individuals, nest-to-nest follows were conducted opportunistically. Activity, feeding, and 

ranging data were collected as previously described and ranging data were collected every thirty 

minutes. All data were added to the larger behavioral database consisting of data collected since 

2003. All behavioral data from 2003-2015 are described in detail in Vogel et al. (2017).  Nest-to-

nest follows from this database, consisting of 42,482 follows of 37 individuals, were used in an 

analysis of simulation results (see section 2.2.4). Only data from focal females were used to 

analyze macronutrient intake and goal directed behavior (see section 2.2.5).  

Table 2.1 Meta-data for focal female orangutans.  

Orangutan name Age class 
Estimated birth 

year 

Jinak 
Adult female with 

dependent 
1953 

Juni 
Adult female with 

dependent 
1994 

Kerry 
Adult female with 

dependent 
NA  

Kondor Adult female 1999 

Milo Adult female  2001 
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2.2.3 Nutrient intake 

 The macronutrient compositions of each food item were taken from the long-term Tuanan 

nutritional database. The database encompasses 82% of the known orangutan diet.  The sample 

collection, preparation, and nutritional analysis of each food item are detailed in Vogel et al. 

(2017).  

Protein (𝑃) and non-protein (𝑁𝑝𝑒) kcal intake were calculated per feeding bout per 

individual per day such that  

𝑃 = 𝑙 × 𝑟 × 𝑒𝑃      (2.1a) 

and 

𝑁𝑝𝑒 = 𝑙 × 𝑟 × 𝑒𝑁𝑝𝑒 .      (2.1b) 

𝑙 is bout length, 𝑟 is intake rate, and 𝑒 is energy (in 𝑃 or 𝑁𝑝𝑒). A feeding bout was defined as an 

event beginning when an individual first ingests a food resource and ends once it leaves that 

resource or switches to a different resource. Cumulative intake was calculated by summing 

intake across bouts.  The ratio of non-protein energy (kcal) to energy from protein (𝑁𝑝𝑒: 𝑃) per 

day was calculated for all individuals from 2003-2015 using the pooled data from the long-term 

Tuanan orangutan database. The cumulative ratio of macronutrients per day was calculated for 

all known individuals where nest to nest follows were successfully completed. Data spanned 

from 2003 to 2015. The mean ratio of macronutrients for the entire orangutan population was 

then calculated.  

 

To test whether the mean ratio of 𝑁𝑝𝑒: 𝑃𝑖 is a function of chance or the average ratio of 

orangutan foods, orangutans were simulated to randomly feed under resource rich conditions 

using the following procedure: the empirical distribution parameter values were calculated for 
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the observed orangutan bout lengths, number of bouts per day, number of available food items 

per day, and number of food items eaten. These values were then used to parameterize the 

associated theoretical density functions for each variable. For each of 10,000 iterations, the 

available food items, food items eaten, bout lengths, and number of bouts per day were randomly 

drawn from each density function. Resource rich conditions were determined based on Food 

Availability Index (FAI) values from 2003 to 2015.  FAI was binned into quantiles 

corresponding to high, medium, and low periods. High FAI periods were considered resource 

rich periods, and known food items consistently available during high FAI periods were 

designated as available foods and stored in a data frame. The nutritional database, comprised of 

811 known food items, had 285 items commonly consumed during high FAI periods. The 

available foods data frame was then subset so that number of food items available to encounter 

was a random sample of the data frame drawn from the available food items theoretical density 

function.   

 

2.2.4 Simulation 

 

 

Let 𝑑 represent the food items eaten per simulated day, 𝑏 represent the total number of 

bouts per day, and 𝑙 represent bout length. Values for and 𝑙 are drawn from an exponential 

Table 2.2 Simulation parameter values 

Foraging parameter Distribution µ 

 Number of bouts per day Normal µ=23.16, σ=10.03 

Number of food items eaten Normal µ=9.50, σ=3.52 

Number of food items available per day Normal µ=50.3 , σ=25.6 

Bout length (min) Exponential λ-1=17.62 
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density function (equation 2.2a), and values for 𝑑 and 𝑏 are drawn from the standard normal 

density function (equation 2.2b) 

 

𝑓(𝑥, λ) = λ𝑒−λ𝑥       (2.2a) 

 

𝑓(𝑥|µ, σ2) =
1

√2𝜋σ2 𝑒
−

(𝑥−µ)2

2σ2        (2.2b) 

 

with the corresponding model terms represented in Table 2.2. The value for 𝑑 is the number of 

food items to be randomly selected from the nutritional database at each iteration (𝑛 =10,000 

iterations). 

𝑁𝑝𝑒: 𝑃𝑖 = ∑ (
∑ 𝑁𝑝𝑒𝑗

𝑏𝑖
𝑗

∑ 𝑃𝑗
𝑏𝑖
𝑗

)𝑛
𝑖        (2.3) 

 ∑ 𝑁𝑝𝑒
𝑏𝑖
𝑗 = 𝑙𝑗 × 𝑒𝑁𝑝𝑒𝑗 × 𝑟𝑗      (2.4a) 

and   

  ∑ 𝑃
𝑏𝑖
𝑗 = 𝑙𝑗 × 𝑒𝑃𝑗 × 𝑟𝑗 × 𝑃𝑗      (2.4b) 

where 𝑒 is the energy (in 𝑃 𝑜𝑟 𝑁𝑝𝑒) in the patch randomly selected from 𝑑𝑖 food items. Values 

for 𝑟 and 𝑒 are drawn from the nutritional database.  

The simulated 𝑁𝑝𝑒: 𝑃 values represent the value of 𝑁𝑝𝑒: 𝑃 that an individual should end 

on each day if it is consuming food randomly. This simulation assumes nothing about search and 

navigation or dietary preference. To test if orangutans are balancing macronutrients in a non-

random way, and to test if their ratio of 𝑁𝑝𝑒: 𝑃 is equal to the average 𝑁𝑝𝑒: 𝑃 ratio of orangutan 

food items, the simulated 𝑁𝑝𝑒: 𝑃 values were compared to the empirically derived 𝑁𝑝𝑒: 𝑃 values 

using the Wilcoxon rank sum test. Empirical and simulated 𝑁𝑝𝑒: 𝑃 values were also compared to 
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the 𝑁𝑝𝑒: 𝑃 of the food items themselves using the Kruskal Wallis rank sum test and multiple 

comparisons tests.  

 

2.2.5 Goal directed behavior 

 To test whether the above ratio of 𝑁𝑝𝑒: 𝑃 can be interpreted as a nutritional goal, 

behavioral modification was examined in response to deviations around 𝑁𝑝𝑒: 𝑃 per foraging day. 

The cumulative ratio (𝑐) of 𝑁𝑝𝑒: 𝑃 at the end of each bout was calculated for each of the 

five focal females, and their cumulative trajectories (their changes in position in nutritional 

cartesian space relative to their target) were tracked for each day.  

Formally, 

 (𝑐𝑛)𝑛=1
𝑏 = {

𝑐(1) =  
𝑁𝑝𝑒1

𝑃1

𝑐(𝑛) = 𝑐(𝑛 − 1) +
𝑁𝑝𝑒𝑛

𝑃𝑛

  (2.5) 

At the end of each bout, the Euclidean distance from the target ratio (equation 2.6) was 

calculated. To do so, the mean ratio of the population (see Results, Hypothesis 2.1) was treated 

as the nutritional target rail, and thus the slope of a line given the formula 𝑦 = 𝑚𝑥 + 𝐵. The 

perpendicular distance of each point to the target rail was then calculated, whereby  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
|𝐵+𝑚𝑥0−𝑦0|

√(1+𝑚)2
     (2.6) 

To test for behavioral modulation in response to the distance from the target rail, 

structural changes in the orangutan’s spatial behavior were analyzed using behavioral change-

point analysis (BCPA) (Gurarie et al., 2009). BCPA is a likelihood-based method for detecting 

structural changes in a movement path. GPS tracks are modeled as stationary, continuous space -

continuous time Gaussian processes. BCPA is advantageous over other behavioral segmentation 
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methods in that it is robust to unevenly sampled data and the movement variables are easily 

modeled by autoregressive time-series models (Gurarie et al., 2009).   

Rather than handling absolute positions or compass bearings, estimated speeds and 

turning angles were decomposed into two orthogonal components.  

𝑉𝑝 = 𝑉 sin 𝜃      (2.7a) 

and 

𝑉𝑡 = 𝑉 cos 𝜃      (2.7b) 

𝑉 is displacement/time interval, and 𝜃 the turning angle (Gurarie et al., 2009). Speed, 

directional persistence, and variability are supposed to be captured in these two variables. 𝑉𝑝, 

named persistence velocity, is defined as the tendency of motion to persist in a given direction 

and the velocity of that motion. 𝑉𝑡, named turning velocity, is defined as the tendency of motion 

to head in a perpendicular direction in a given time interval. Each component possesses its own 

µ, 𝜎, and 𝜌 (Gurarie et al., 2009). These parameters are the diagnostic features of a movement 

track and make it easy to identify discrete modes of movement behavior.   

Goal directed movement is defined as one of two scenarios. Informed search is any 

motion where 𝑉𝑝 shows a high µ, 𝜎, and 𝜌 indicating faster and more directed motion with abrupt 

starts and stops, and where 𝑉𝑡 shows a high 𝜎 and high 𝜌. Area Restricted Search (ARS) is any 

motion where 𝑉𝑝 shows a low µ, high  𝜎, and 𝜌 indicating slow but correlated motion with abrupt 

starts and stops, and where 𝑉𝑡 shows a high 𝜎, and low 𝜌, indicating more tortuosity and a longer 

turning radii.  
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Table 2.3 Goal directed motion parameter expectations.  

 𝑉𝑝 𝑉𝑡 

 µ 𝜎 𝜌 𝜎 𝜌 

Area Restricted 

Search (ARS) 

low high low high low 

Informed search high high high high high 

 

Goal directed behavior was examined by testing how fluctuations in µ, 𝜎, and 𝜌 predict 

the Euclidean distance from the target rail in nutritional space using generalized additive mixed 

models (GAMM). When an animal is behaving in a goal directed way, it should be near it’s 

nutritional target ratio. Other modes of movement should not translate to successfully achieving 

the target ratio. Thus, when the distance from the target is small, movement parameters should 

reflect either ARS or informed search as per Table 2.3.  

GAMM were run using the MGCV package in R (R Developement Core Team, 2017; 

Wood & Wood, 2017). GAMMs are semi-parametric extensions of generalized linear models 

where the linear predictor involves a sum of smooth functions of the predictor variables. Smooth 

terms are represented using penalized regression splines. Inference is based on these smooth 

functions (Hastie and Tibshirani, 1986, 1990; Wood, 2006a). For further information on how to 

calculate smooth functions, see Wood (2006b). GAMM is advantageous because of the 

relaxation on parametric assumptions, and because GAMM can reveal non-linear relationships in 

the data. Individual ID was included as a random effect in each model, and random slopes were 

included in the models to minimize type 1 errors. Thus, all models are fully maximal (Barr, 

Levy, Scheepers, & Tily, 2013). 
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2.3. Results 

Hypothesis 2.1 

Simulation outputs suggest that if an orangutan randomly feeds amongst the available 

food items at Tuanan, the resulting ratio of 𝑁𝑝𝑒: 𝑃 is equal to the mean 𝑁𝑝𝑒: 𝑃 for orangutan 

food items. The observed ratio of 𝑁𝑝𝑒: 𝑃 for orangutans was significantly lower than simulated 

𝑁𝑝𝑒: 𝑃, and was significantly lower than the average ratio of 𝑁𝑝𝑒: 𝑃 for orangutan food items 

(Kruskal Wallis rank sum test, p < 0.001; multiple means comparison, p<0.05; Table 2.4). There 

was not a significant difference between mean 𝑁𝑝𝑒: 𝑃 of orangutan foods and simulated 𝑁𝑝𝑒: 𝑃. 

These results support Prediction 2.1a of Hypothesis 2.1a, indicating that in nature orangutans are 

consuming more dietary protein than can be explained by random chance based on the random 

foraging simulation. Figure 2.1 shows the distribution of simulation outcomes and actual 

orangutan observations. 
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Figure 2.1 Empirical and simulated data: Histograms of a) simulated data after n=10,000 iterations, and 

b) empirically derived values of Npe: P. The x-axis represents the ratio of non-protein (kcal) to protein 

(kcal) at the end of a foraging day. The y-axis is the frequency with which each value of Npe: P is 

observed.  Simulated ratios of Npe: P are significantly higher than observed values (Wilcoxon rank sum 

test, p < 0.001).  
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Table 2.4 Kruskal Wallis and multiple comparisons tests 

Kruskall Wallis Rank Sum 

χ2 df p Multiple Comparisons 

66.29 2 p < 0.001 

Food Items-Orangutan* 

Food Items-Simulation 

Orangutan-Simulation* 

Dataset Mean  Median  Mode 

Orangutan food 14.26 10.98 4.21 

Orangutan intake 10.58 9.63 14.69 

Simulated intake 11.16 10.59 14.23 

Results of a Kruskal Wallis test, a multiple comparisons test, and summary 

statistics about the three data sets are included here. Comparisons in italics 

and with an asterisk (*) are significantly different after Bonferroni 

correction 

 Results from the simulation support the notion that the observed ratio of 𝑁𝑝𝑒: 𝑃 for wild 

orangutans is not arbitrary. It could be that a 10.58 ratio of 𝑁𝑝𝑒: 𝑃 is a legitimate target balance 

of macronutrients, and that individuals make discrete foraging decisions to facilitate achieving 

this ratio of nutrients. If the nutritional composition of individual food items was similar across 

the known diet, one could infer that a ratio of 10.58 is an inevitable statistical artifact. The 

available diet at Tuanan however, is quite varied. Figure 2.2 illustrates this variability. Figure 

2.2a explicitly represents the variability in all four macronutrients across all food items. The 

identity of each food item was purposely left out so as not to distract from the four-dimensional 

landscape. Carbohydrates are the most variable, followed by fiber, protein, and lipids. Figure 

2.2b shows how the mean ratio of nutrients for each food item differs from each other and the 
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overall mean. These plots illustrate the multitude of ways an orangutan can switch between foods 

to obtain different ratios of macronutrients.  

 

 

Figure 2.2 Macronutrient variability: a) A four-dimensional representation of the macronutrient profile of each item in the 

orangutan diet. Units are in kcal. The standard deviations are as follows: protein =7.2; carbohydrates =13.4; lipids=3.9; 

fiber=12.8. b) A non-parametric analysis of means illustrating the significant differences in 𝑁𝑝𝑒: 𝑃 between food types. n is the 

number of species in each category, p-values indicate significant differences from the grand mean. The grand mean is represented 

by the horizontal line connecting each category.   

 

 It is clear that the orangutan diet enables individuals to select and switch between 

resources during the foraging period such that they have some control over that ratio of 𝑁𝑝𝑒: 𝑃 

they achieve by the end of their active period.  
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Figure 2.3 Nutritional target rails: The two outer rails represent the two possible extremes in terms of 𝑁𝑝𝑒: 𝑃 given the 

available food items. The dotted line is the average 𝑁𝑝𝑒: 𝑃of the available food items, and the dashed line is the target 𝑁𝑝𝑒: 𝑃 of 

the orangutan population. In Figure 2.3a, the heatmap is an interpolation of the ratio of 𝑁𝑝𝑒: 𝑃 in each known food item in the 

diet. In Figure 2.3b, the heatmap is an interpolation of the total number of feeding bouts on each respective food item.  

 Figure 2.3 illustrates where the orangutan target rail falls in nutritional space relative to 

the items in the orangutan diet. The heatmap shows the relative shape of the entire diet breadth 
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on the nutritional landscape. The heatmap in Figure 2.3a characterizes how the relative 

proportions of protein (kcal) to non-protein (kcal) of food items vary across the extent of 

orangutans’ nutritional space, and the heatmap in Figure 2.3b shows what parts of the nutritional 

landscape are most heavily utilized. It is apparent that regions in Figure 2.3a with low (blue) 

values of 𝑵𝒑𝒆: 𝑷 correspond to analogous bright (yellow) regions of Figure 2.3b. It seems that 

the orangutans invest a large amount of foraging effort in the proportionally protein rich parts of 

their nutrient space. Additionally, protein intake falls along a relatively horizontal line, 

potentially suggesting protein prioritization. The data represented in Figure 2.3 suggest that 

individuals may be making discrete choices explicitly related to the macronutrient composition 

of their available foods.  

 If a ratio of 10.58 𝑁𝑝𝑒: 𝑃 is indeed an explicit foraging goal beyond net caloric gain, then 

individuals are expected to explicitly modulate their behavior to facilitate the acquisition of 

specific macronutrients. Figure 2.4 is a snapshot from one day of foraging from one adult female. 

As we monitored the cumulative intake of macronutrients, we recorded her trajectory in 

nutritional space in relation to the proposed target ratio of 𝑁𝑝𝑒: 𝑃. Each point represents the end 

of a feeding bout, and her new position in nutrient space given her latest additive consumption. 

By calculating the straight-line distance from her location at the end of each bout to the 

nutritional target, we are able to monitor fluctuations around the nutritional target in relation to 

behavioral decisions in actual space. 

 We interpret reductions in the distance from the target line as our measure of foraging 

success, and departures from the target line as getting further from the foraging goal. If a specific 

ratio of 𝑁𝑝𝑒: 𝑃 is indeed a legitimate foraging goal, and if 10.58 is not an arbitrary value in this 

context, then goal directed behavior in the actual environment should translate directly to 
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reductions in the Euclidean distance to the target ratio. 

 

Figure 2.4 Cumulative intake of 𝑵𝒑𝒆: 𝑷: An example of one foraging day from an adult female trajectory. Each color 

represents a different food species, and each point represents the end of a new foraging bout. The blue line is a line with a slope 

of 10.58 representing the nutritional target ratio for the orangutans. The Euclidean distance from the line is our quantitative 

measure of foraging success.  

Hypothesis 2.2 

 Figures 2.5 and 2.6 are linearized representations of the results of GAMMs, looking at 

how deviations from the nutritional rail are predicted by changes in spatial decisions by the 

orangutans. Table 2.5 includes results of each model. Distance from the target was strongly 

associated with changes in movement decisions. As individuals overshoot their target, mean 

persistence velocity decreases. Mean persistence is highest when individuals are closest to the 

nutritional rail. An increase in mean persistence velocity translates to both faster and more 

directed motion. Standard deviation and autocorrelation also follow the same trend. A higher 

standard deviation in persistence velocity means more variable starts and stops, and short bursts 

of speed, and a higher autocorrelation means more directed motion independent of speed.  

 The same trends are seen with changes in turning velocity. Standard deviation and 

autocorrelation in turning is highest when individuals are the closest to their target ratio of 

macronutrients (Figure 2.5 and 2.6). An increase in standard deviation for turning velocity 
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corresponds to more turns, and an increase in autocorrelation corresponds to long and wide arcs 

in the motion (longer turning radii). Together these results support Prediction 2.2a of Hypothesis 

2.2a.  

 

Figure 2.5 Deviations in the distance from the target rail in response to Persistence velocity: Linear representation of 

outputs from GAMM demonstrating how deviations from the nutritional rail are predicted by changes in mean a) mean; b) 

standard deviation; and c) autocorrelation in persistence velocity.  

 

Figure 2.6 Deviations in the distance from the target rail in response to turning velocity: Linear representation of outputs 

from GAMM demonstrating how deviations from the nutritional rail are predicted by changes in mean a) standard deviation; and 

b); autocorrelation in turning velocity. 
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Table 2.5  Variation in distance from target ratio of Npe:P in response to movement parameters, 

outputs of generalized addative mixed models    

GAMM AIC  
R-sq 

(adj) 

Smooth 

terms 
edf Ref.df F-value p-value 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ~ µ𝑉𝑝
+ 𝜎𝑉𝑝

+ 𝜌𝑉𝑝
 8003.67 0.638 

s(µ𝑉𝑝
) 8.903 8.966 37.1 < 2𝑒−16 

s(𝜎𝑉𝑝
) 7.856 8.36 19.88 < 2𝑒−16 

s(𝜌𝑉𝑝
) 8.93 8.998 51.85 < 2𝑒−16 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ~ µ𝑉𝑡
+ 𝜎𝑉𝑡

+ 𝜌𝑉𝑡
 8184.952 0.533 

s(µ𝑉𝑡
) 8.893 8.996 40.8 < 2𝑒−16 

s(𝜎𝑉𝑡
) 8.728 8.978 17.16 < 2𝑒−16 

s(𝜌𝑉𝑡
) 8.975 8.999 24.4 < 2𝑒−16 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ~ µ𝑉𝑝
+ 𝜎𝑉𝑝

+ 𝜌𝑉𝑝

+ µ𝑉𝑡
+ 𝜎𝑉𝑡

+ 𝜌𝑉𝑡
 

7552.948 0.814 

s(µ𝑉𝑝
) 8.667 8.877 12.925 < 2𝑒−16 

s(𝜎𝑉𝑝
) 8.023 8.54 26.704 < 2𝑒−16 

s(𝜌𝑉𝑝
) 8.886 8.99 47.996 < 2𝑒−16 

s(µ𝑉𝑡
) 8.724 8.953 18.844 < 2𝑒−16 

s(𝜎𝑉𝑡
) 7.621 8.503 8.839 4.48𝑒−12 

s(𝜌𝑉𝑡
) 8.646 8.895 5.64 1.81𝑒−07 

 

2.4. Discussion and Conclusion 

The simulation represents an animal feeding randomly from known items in the diet. If 

the mean ratio of macronutrients is a biologically meaningless metric, then the observed 

population mean should be equivalent to the simulated values. If the target ratio of nutrients was 

unintentional, then it should reflect the average of the environment. In this case, observed values 

were significantly smaller than expected by random chance, indicating that orangutans are 

ingesting more protein relative to non-protein than expected. Even when high energy fruits are 

available, orangutans are still maintaining a higher than expected relative protein intake. These 

results support Prediction 2.1a of Hypothesis 2.1a.  

The relationship between spatial movement and macronutrient intake is quite striking. It 

is clear that orangutans are modulating their spatial behavior in response to their macronutrient 

balance. Parameter values for both persistence and turning velocity are consistent with the 



60 
 

 
 

predictions for an informed search strategy. When orangutans are close to their target balance of 

nutrients, they exhibit faster, more directed movement, with an increase in turns and punctuated 

movement and longer turning radii (see Figure 2.5 and 2.6). When they are far from their 

nutritional target, they exhibit slower, less directed motion, with less turns and shorter turning 

radii. In other words, when individuals move in a random and meandering way, they start to drift 

further from their nutritional target, and when they move in a goal directed way, where they 

speed up as they move to highly valued items and make discrete turns and stops between goal 

items, they are able to return to their nutritional target. These results are consistent with goal 

directed behavior, and suggest that the orangutans are likely using non-local information, and 

perhaps memory, to locate the food items that enable them to achieve the observed ratio of 

nutrients, which is likely close to their actual needs. The movement parameters vary with the 

nutritional target such that they confirm our expectations laid out in Table 2.3 for informed 

search. The parameters do not suggest ARS when the distance to the target gets small. It could be 

that orangutans are exhibiting multiple modes of behavior, such that while they are engaging in 

non-goal-oriented behavior they start to overshoot their foraging targets. Switching to a goal 

directed movement mode likely enables them to correct their nutritional trajectories. The spatial 

movement, together with the results of the simulated nutrient ratios, indicate that orangutans 

make non-random foraging decisions enabling them to maintain a higher than expected protein 

intake.  

The approach employed here may not be ideal for systems where within group 

competition or predation are important factors influencing movement. The orangutans at Tuanan 

are neither group living, nor subject to known predators, and therefore changes in their fine scale 

motion parameters can be more confidently interpreted. Additional data are required at sites with 



61 
 

 
 

group living animals or sites with a high predator density. Furthermore, these results cannot tell 

us the relative contributions of any particular food item to the end of day ratio of 𝑁𝑝𝑒: 𝑃. Nor 

can these results tell us anything about the distribution or availability of foods, or the actual 

travel routes used by the orangutans. What these results clearly demonstrate, is that being near 

the nutritional target is strongly associated with a goal directed search strategy in orangutans. 

The movement parameters explained a large proportion of the variation in how far orangutans 

are from their nutritional target. Three GAMMS were run to understand the explanatory power 

of the spatial movement.  The first model only included the parameters for 𝑉𝑝, explaining 63.8% 

of the variation on the distance from the target. The second model only included parameters for 

𝑉𝑡, explaining 55.3% of the variation. The third model included both 𝑉𝑝 and 𝑉𝑡. As previously 

stated, 𝑉𝑝 and 𝑉𝑡 are two orthogonal components of the movement process that together should 

capture the totality of the underlying structure (Gurarie et al., 2009). This larger model was 

identified as the best model by AIC, and explained 81.4% of the variation. The movement 

behavior explains a remarkable amount of the nutritional trajectory of the animals. Balancing 

macronutrients must be considered as an important factor in the evolution of spatial decision 

making in animals and should be further examined in future animal movement research. While 

animals have been clearly demonstrated to optimize parts of their behavior for energy 

maximization and risk aversion, this study provides evidence that foraging behavior is also being 

optimized to maintain a specific balance of macronutrients in the diet.  

These results support Prediction 2.2a of Hypothesis 2.2a. This provides a unique 

opportunity to reevaluate much of what we might predict in terms of how actual food items are 

ranked in the diet. Individuals overshoot their nutritional target throughout the day, regularly 

switching between available food items until they end on or near the target ratio. This implies 
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that the traditional practice of weighting food items by their assumed value (or caloric value) 

may be inappropriate, as orangutan food preferences may be highly temporally dynamic. 

Orangutans may constantly update how they prioritize food items at the end of each feeding 

bout, and studies modeling patch choice or predicting home-range utilization should to 

acknowledge that inherent underlying complexity.  

Studies about spatial memory that weight goal resources by total calories may miss 

signals of goal directed movement. What may look like un-oriented movement may in fact be 

directed travel between misclassified goals. For example, Cunningham and Janson (2007) found 

evidence of goal directed movement and spatial memory in a wild population of white-faced saki 

monkeys (Pithecia pithecia) during a period of food abundance. They reported that the distance 

traveled between resources was much greater than expected at random and exceeded the 

estimated perceptual ranges, suggesting that the monkeys were using prior information about 

resource locations (Cunningham and Janson, 2007).  Cunningham and Janson (2013) monitored 

the same group of saki monkeys during a subsequent period of fruit scarcity and failed to detect 

any signals of spatial memory or goal directed foraging. They attributed this change to a seasonal 

absence of goal resources, claiming that signals of spatial memory or goal directed behavior are 

only expected to manifest in the presence of goal resources (Cunningham and Janson, 2013). An 

alternative explanation could be that saki monkeys balance their macronutrient intake, and the 

misclassification of goal resources prevented the detection of goal directed foraging. The 

underlying structure of the saki monkey movement may indicate goal directed motion as they 

achieve their nutritional goals.   

 Distinguishing spatial memory from other forms of oriented motion in an animal that 

balances macronutrients still presents many challenges. As stated previously, food items vary 
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substantially in their macronutrient content, and animals actively balancing macronutrients are 

expected to recursively evaluate target food items after each feeding bout. It is possible for 

resources to be distributed such that many resources of differing nutritional content are found 

near each other. In such a case, it would be possible for an animal with the capacity for complex 

memory to move in a way indistinguishable from simpler forms of movement. The larger and 

more spread out each forging patch, the easier it could be to detect spatial memory’s role in 

macronutrient balancing.  

 Given that animal’s make spatial decisions that facilitate macronutrient balancing, future 

studies may be able to predict search and navigation strategies of various taxa based on their 

nutritional ecology.  For instance, Machovsky-Capuska et al. (2016) propose the concept of the 

multidimensional nutritional niche. They present a series of hypothetical models visualizing the 

concepts of macronutrient specialists and generalists. A macronutrient generalist tolerates a 

wider range of macronutrient compositions, while a macronutrient specialist will have a fixed 

macronutrient composition (Machovsky-Capuska et al., 2016). One might expect selection for 

goal direction motion to be stronger in species that are macronutrient specialists, and to utilize 

non-local information. One might expect macronutrient generalists to be more likely to rely on 

local information, or to utilize a random search strategy. The degree of specialization or 

generalization could have direct effects on the amount of information individuals must encode, 

which could have important adaptive implications.  Further integration of nutritional ecology 

into movement ecology can greatly expand what we know about the evolution of spatial decision 

making.  

 Finally, accounting for nutritional balancing may enable us to develop better models for 

patch residence times and may be provide unique opportunity to revisit Charnov’s (1976) 
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marginal value theorem. Integrating macronutrient balancing into classical optimality models is 

an obvious next step for future studies of nutritional ecology in wild animals.  If modifying the 

marginal value theorem to incorporate nutrition outperforms the original model, then we can 

better parameterize future cognitive foraging models.   
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Chapter 3. Food electivity and macronutrient balancing by Bornean 

orangutans (Pongo pygmaeus wurmbii) 

 

3.1. Introduction 

Understanding why animals select the items in their diets has been a central focus of 

foraging ecology research (Schoener, 1987; Perry, & Pianka, 1997; Houtman & Dill, 1998; 

Whelan & Brown, 2005). This stems from the optimal foraging literature, where it is suggested 

that animals have some understanding of food quality, rank their foods accordingly, and make 

economic decisions regarding what to include in their diets based on that ranking. Food quality is 

traditionally quantified as either calories provided or biomass, and items are ranked based on the 

average energy gain per search and handling time (Pyke, 1984). Food preference is typically 

measured in terms of use relative to availability (Altmann, 1998; Conklin-Brittain et al., 1998; 

Doran et al., 2002), where items that are disproportionally used relative to their availability are 

considered preferred food items (Lechowicz, 1982; Pyke, 1984; Lambert, 2007; Marshall and 

Wrangham, 2007; Marshall et al.2009). Primatologists typically dichotomize food items into 

preferred or fallback foods, with fallback foods defined as both low quality and low utilization 

relative to their availability (Marshall and Wrangham, 2007). Marshall and Wrangham (2007) 

discuss the adaptive significance of these two food types, and suggest that consumption of 

fallback foods would select for food processing traits while consumption of preferred foods 

would select for food acquisition traits. A foraging animal that has some knowledge of its food 

resources and their traits is expected to utilize information regarding preference and quality to 

navigate to preferred resource locations. While Marshall and Wrangham introduce preferred 

foods as higher quality relative to fallback foods, they don’t explore any alternative measures of 

food quality and how additional traits might influence food utilization.  
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The geometric framework literature has demonstrated that animals actively balance 

macronutrients to reach taxon specific, and homeostatically determined, nutritional targets 

(Simpson & Raubenheimer, 2012). This has been experimentally shown in many taxa, such as 

locusts (Raubenheimer & Simpson), caterpillars (Lee et al., 2002), bears (Erlenbach et al., 2014), 

mice (Solon-Beit et al., 2015), and moose (Felton et al., 2016). Nutritional balancing has also 

been observed in wild species, for example both gorillas and spider monkeys have been shown to 

switch between food items until they reach a discrete balance of non-protein energy (𝑁𝑃𝑒) to 

protein (𝑃) (Felton et al., 2009; Rothman et al., 2011). Humans have been shown to prioritize 𝑃 

while regulating nutrient intake (Martinez-Cordero et al., 2012). Such studies do a wonderful job 

exploring the net result of the balancing process. Geometric plots are used to communicate how 

absolute amounts of 𝑁𝑃𝑒 and 𝑃 intake vary and reveal signals of macronutrient prioritization 

through balancing (Simpson & Raubenheimer, 2012). Those of us studying fine-scale decision 

making however, are interested how macronutrient balancing unfolds mechanistically. The 

Geometric Framework is rarely used to predict an animal’s behavior upon the sequential 

encounter of resources (Simpson et al. (2004) is a notable exception), and it has not been used to 

study the cognitive (spatial) strategies that animal use to facilitate nutritional balancing.  

The geometric framework provides a convenient means of reframing our understanding 

of classical foraging goals. However, to study goal directed behavior, and to predict sequential 

foraging decisions, the relationship between food preference and nutritional targets needs to be 

clarified. One common means by which goal directed foraging behavior is studied is by building 

movement models that utilize attractiveness functions (reviewed in Janson, 2000). More recently, 

a popular modeling approach is to utilize recursive probability functions or redistribution kernels 

with explicit quality parameters (e.g. Bracis et al., 2015; Avgar et al., 2015). With any of these 
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approaches, the degree to which an animal is attracted to a given resource location is typically a 

function of distance and the value or quality of the resource. A natural next step in the utilization 

of these models is to use the geometric framework to determine the value parameter for each 

resource. This presupposes that preferred food, in terms of use relative to availability, are the 

items that enable individuals to reach their nutritional targets. In the geometric framework, the 

nutritional target is represented by a line in nutritional space with a slope equal to the ratio of 

macronutrients that individuals strive to attain (Simpson & Raubenheimer, 2012). It is possible 

that preferred foods are just as nutritionally variable as other foods, and that they are not 

necessarily more important than other foods in terms of reaching the nutritional target. It is 

necessary then, to examine how preference varies with nutrition, before assuming a nutritionally 

informed value metric in spatial foraging models.  

One further consideration when evaluating resource quality is the rate of return of each 

food item. Schülke et al. (2006) studied the importance of ingestion rate for understanding 

energy intake. They pointed out that the amount of time spent feeding on a food item does not 

always equate to the relative biomass ingested. They highlighted the fact that ingestion rate 

varies more among food items than among individuals, and showed that ingestion rate was just 

as important as food chemistry in explaining variation in energy intake (Schülke et al., 2006). 

This poses an interesting question in terms of how to evaluate resource quality. One could simply 

calculate the quality of each food item as the total amount of 𝑃 or 𝑁𝑃𝑒 per gram of that food. 

Alternatively, the rate at which an animal is able to acquire the relevant macronutrient per unit-

time of feeding may be more biologically relevant to a foraging animal. If a food is rich in some 

nutrient, but the amount of time required to ingest a given nutrient is high, the individual may 

incur a cost by choosing that food item. Thus, the overall value of this resource may not be as 
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high as expected based on the nutritional value alone. In this case, quality would be the rate of 

nutrient intake, or the interaction between ingestion rate and nutrient content. In the context of 

the geometric framework, this might translate to the rate at which individuals move towards or 

away from the nutritional rail (in nutritional cartesian space) throughout each day. While quality 

might be interpreted as the overall amount of 𝑃 or 𝑁𝑃𝑒 per item, it may also may be interpreted 

as the rate at which a given food item is able to move individuals across nutrient space (the unit 

rate of displacement towards or away from the target nutritional rail in nutritional space). The 

following chapter will explore the use of two methods that can be used in concert to supplement 

the geometric framework while evaluating how to quantify the quality of food items.  

The first method is borrowed conceptually from the seed dispersal literature. Seed 

dispersal landscapes (Schupp et al., 2010) are visual methods for evaluating the effectiveness of 

seed dispersal. They consist of bivariate plots, with one axis pertaining to some measure of 

dispersal quantity, and the other axis pertaining to some measure of dispersal quality. In this 

framework, effectiveness is the interaction between quantity and quality. Isoclines are drawn, 

with all values along each isocline being equal. Any points falling on the same isocline therefore 

share the same effectiveness value, regardless of how different their individual quantity or 

quality values are (Schupp et al., 2010). This makes it possible to account for the multitude of 

ways (or strategies) that can lead to the same effectiveness values. The use of isoclines to 

identify functionally equivalent values can be extended to studying the nutritive value of foods.  

In this case, ingestion rate is the quantity axis, and the macronutrient content is the quality axis. 

Each coordinate is the interaction between these two parameters, or the rate of nutrient return per 

unit feeding time. Items sharing an isocline exhibit identical amounts of nutrient per unit feeding 

time, and therefore can be interpreted as equivalent in value to the forager.  
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The second method, taken from classical optimal foraging literature, consists of 

calculating food electivity indices. Food electivity indices are a way to quantify food utilization 

based on use relative to availability (Lechowicz, 1982). Leichowicz compared the performance 

of all available electivity indices, and concluded that Vanderploeg and Scavia's (1979) E* index 

(defined in section 3.2.5) is the best of the available electivity indices on the grounds that it 

represents the foragers perception of food value based on relative abundance. Furthermore, 

Vanderploeg and Scavia's E* has a possible range of plus or minus one, making interpretation 

simple and convenient. Values close to one indicate preference, and values close to negative one 

indicate avoidance. Values at zero represent foods where use and availability are equal, and 

therefore likelihood of feeding is random (Vanderploeg and Scavia, 1979; Lechowicz, 1982).  

Both isoclines and Vanderploeg and Scavia's E* can be used in concert to supplement the 

geometric framework (GF). By utilizing the isocline values, we are acknowledging the intrinsic 

importance of intake rate to the value of food items and treat each item in terms of the rate of 

nutrient intake. We hypothesize that orangutan food preference is a function of macronutrient 

balancing. The combination of isoclines and E* are utilized to make predictions. The first 

prediction is that if food items are different in how important they are for achieving 

macronutrient targets, then the nutritional profile of food items (isocline values) should be 

associated with E*. If individuals prefer food items with the highest rate of return, this should 

translate to their ability to quickly move through nutrient space. In this case, the second 

prediction is that E* should also be positively associated with the mean rate of change in 

Euclidean distance from the nutritional target rail per food item.  In other words, food items that 

allow for more nutrients quickly should cause individuals to move towards or away from the 

target quickly, and foods that allow for faster course corrections after overshooting targets are 
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predicted to be preferred. Understanding the role intake rate and electivity indices play in 

nutritional balancing will allow us to confidently parameterize goal directed spatial models in the 

future.  

 

3.2. Methods 

3.2.1 Study site and system 

 Data were collected at the Tuanan Orangutan Research Station in Central Kalimantan, 

Indonesia. Tuanan is a peat swamp forest that comprises about 1137ha. Orangutan density at 

Tuanan is among the highest in Borneo (Husson et al., 2009), with estimates ranging from 4.3-

4.5 individuals/km2 (van Schaik et al., 2005; Husson et al., 2009; Vogel et al., 2017).  

 

3.2.2 Behavioral data collection 

 Orangutan behavioral data were collected using standard protocols 

(http://www.aim.uzh.ch/de/research/orangutannetwork/sfm.html), and only data from full nest-

to-nest focal follows were included in the analyses. For this study, nest-to-nest follows were 

conducted from June 2014 to August 2015. Activity and feeding data were collected using two-

minute instantaneous samples. During each feeding bout, food species, food part, ripeness, intake 

rate, and bout duration were recorded. All data were added to the larger behavioral database 

consisting of data collected since 2003. All behavioral data from 2003-2015 are described in 

detail in Vogel et al. (2017). All analyses presented here were conducted on the pooled dataset. 
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3.2.3 Nutrient intake and balancing 

 The macronutrient compositions of each food item were taken from the long term Tuanan 

nutritional database consisting of 82% of the known orangutan diet. The sample collection, 

preparation, and nutritional analysis of each food item are detailed in Vogel et al. (2017).  

𝑃 and 𝑁𝑃𝑒 intake were calculated per feeding bout per individual per day. Cumulative 

intake was calculated by summing intake across bouts. The ratio of non-protein energy (kcal) to 

protein (kcal) (𝑁𝑃𝑒: 𝑃) per day was calculated for all individuals from 2003-2015 using the 

pooled data from the long term Tuanan orangutan database. 𝑁𝑃𝑒: 𝑃 was calculated for all known 

individuals where nest-to-nest follows were successfully completed. The nutritional target rail 

for the population was calculated as the population mean 𝑁𝑃𝑒: 𝑃 (justified in chapter 2). The 

Euclidean distance from the target rail (𝑑) was calculated at the end of each bout.  

The rate of change in Euclidean distance per minute feeding (∆d) was calculated for each 

foraging bout, and the mean rate of change (∆𝑑𝐴𝑉𝐺) was calculated for each food item. ∆𝑑𝐴𝑉𝐺 is 

treated as the speed with which a given food item moves an individual through nutritional space. 

The relative position of each individual in nutritional space (i.e., 𝑃 dominant space vs 𝑁𝑃𝑒 

dominant space) was calculated based on their cumulative 𝑁𝑃𝑒: 𝑃 at the end of each bout. 

Decision limits (Frisch, 1934) for the population mean were calculated as a way of establishing 

upper and lower bounds on the nutritional target. Any point where cumulative 𝑁𝑃𝑒: 𝑃 is less 

than the lower bound of the target rail is in 𝑃 space. Any point where cumulative 𝑁𝑃𝑒: 𝑃 is 

greater than the upper bound of the target rail is in 𝑁𝑃𝑒 space. The direction of movement 

through nutritional space is defined as equal to the ratio of 𝑁𝑃𝑒: 𝑃 of the food item being 

consumed. The value of 𝑁𝑃𝑒: 𝑃 of a given food item being consumed is equal to the slope of the 

line passing through the current location in nutrient space. Any food item with a 𝑁𝑃𝑒: 𝑃 larger 
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than the slope of the target rail always moves the individual towards the 𝑁𝑃𝑒 portion of space. 

Any food item with a 𝑁𝑃𝑒: 𝑃 smaller than the slope of the target rail always moves the 

individual towards the 𝑃 portion of space.  

 

3.2.4 Nutritional intake rate and isoclines 

Isocline landscapes were plotted following the example of Schupp et al. (2010). Ingestion 

rate forms the quantitative (y) axis, and nutritional values form the qualitative (x) axis. Isoclines 

are plotted like contours (Schupp et al., 2010), where points falling on the same isocline share 

the same rate of nutritional gain per unit time. Isocline landscapes were made for 𝑁𝑃𝑒 and 𝑃. 

Nutritional gain per unite time is calculated as the interaction between ingestion rate (𝐼𝑖) and 

either 𝑃or 𝑁𝑃𝑒.  

 

3.2.5 Vanderploeg and Scavia's E* 

 E* was calculated monthly for food items from 2003 – 2015. Mean E* was then 

calculated for each species across months and years. Analysis was limited to species where 

phenological data and abundance data were available. E* was calculated as per Vanderploeg and 

Scavia (1979), where 𝑊𝑖 =

𝑟𝑖
𝑝2

∑
𝑟𝑖
𝑝𝑖

𝑖

, and 𝐸𝑖
∗ =

𝑊𝑖−
1

𝑛

𝑊𝑖+
1

𝑛

.  𝑟 is the proportion of food 𝑖 in the diet, and 𝑝 is 

the relative abundance in the environment (Vanderploeg and Scavia, 1979; Lechowicz, 1982).  
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3.2.6 Statistical analyses 

Statistical analyses were done in R (R Developement Core Team, 2017). Figures were 

generated using the ggplot2 package (Wickham, 2016). All relationships between electivity 

indices and nutritional values were evaluated using generalized additive mixed models 

(GAMM). 

GAMMs were run using the MGCV package in R (Wood & Wood, 2017). They are 

semi-parametric extensions of generalized linear mixed models where the linear predictor 

involves a sum of smooth functions of the predictor variables. GAMM is advantageous because 

of the relaxation on parametric assumptions, making them amenable for use with E* (Lechowicz, 

1982). They are also advantageous because they can reveal non-linear relationships in the data. 

Individual ID and tree species ID were included as a random effect in each mixed model, and 

random slopes were included in the models to minimize type 1 errors. Thus, all models are fully 

maximal (Barr, Levy, Scheepers, & Tily, 2013). 

 

3.3. Results 

 Figure 3.1 and 3.2 show isocline landscapes for 𝑃 and 𝑁𝑃𝑒 for all known food items. 

Figure 3.3 shows a Geometric Framework plot of all known food items. Visual inspection of the 

Geometric Framework plot shows that most of the diet consists of items with low total protein, 

with more variance in non-protein, especially for fruit. In general, plotting the entire known diet 

this way makes it difficult to see without excluding a large portion of items, because so many of 

the items are clustered in the low protein region. The isocline landscapes make it much easier to 

get an overview of the diet upon visual inspection, as items are much less uniformly clustered 

around low values. The data dispersion can be seen in Figure 3.4. Interestingly, there is much 
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more visual differentiation for the 𝑃 landscape than for the 𝑁𝑃𝑒 landscape. Both Figure 3.1 and 

3.2 show that several items clearly fall along shared isoclines, indicating equivalence in 𝑃 or 

𝑁𝑃𝑒 per minute. Means and standard deviations for each food type are available in Figures 3.1-

3.3. 

 The difference between isocline values and raw macronutrient values is not trivial and 

has strong implications for how we interpret resource quality. Ranking food items by 𝑁𝑃𝑒 

results in remarkably different rankings than if food is ranked in terms of 𝑃, and ranking food 

items by their isocline values results in even more starkly different ranking. Table 3.1 shows the 

percent change in each ranking and much the average rank changed.  

Figure 3.1 Rate of protein return per minute per food item. Colors indicate different species. Shapes indicate the food type. BK is 

bark, FL is flowers, FR is fruit, INS is insects, LV is leaves, PITH is pith, VEG is soft green vegetation, YL is young leaves, and 

OTH is other food items. All isoclines represent the interaction between intake rate and protein (Intake rate x protein), and points 

along each isocline indicate equivalent values of protein per minute. The isocline landscape reveals the variety of ways each food 

item contributes to the rate of protein intake for orangutans. Means and standard deviations for each food type are as follows. 

BK (µ = 0.01671118, σ = 0.004636872), FL (µ = 0.23163389, σ = 0.083422492), Fr (µ = 0.50077248, σ = 0.421845057), INS 
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(µ = 1.83971629, σ = 0.286493616), LV (µ = 0.55579602, σ = 0.265848504), OTH (µ = 0.69521587, σ = 0.969508551), PITH 

(µ = 0.17257171, σ = 0.299908961), VEG (µ = 0.12212246, σ = 0.072973822), YL (µ = 0.98694611, σ = 0.404158711). 

 

 

Figure 3.2 Rate of NPe return per minute per food item. Colors indicate different species. Shapes indicate the food type. All 

isoclines represent the interaction between intake rate and NPe (Intake rate x NPe), and points along each isocline indicate 

equivalent values of NPe per minute. The isocline landscape reveals the variety of ways each food item contributes to the rate of 

NPe intake for orangutans. Food items are the same as defined in Figure 3.1. Means and standard deviations for each food type 

are as follows. BK (µ = 0.2760019, σ = 0.0371994), FL (µ = 1.9740171, σ = 0.4689325), Fr (µ = 7.2566045, σ = 6.7951867), 

INS (µ = 2.2541393, σ = 0.3510305), LV (µ = 3.8033826, σ = 2.2837239), OTH (µ = 4.4523942, σ = 5.1412396), PITH (µ = 

0.656057, σ = 1.0492328), VEG (µ = 0.5769786, σ = 1.058271), YL (µ = 4.1862721, σ = 1.6877476). 

 

 

Figure 3.3 GF plot of known orangutan food items. Relative proportions of NPe to P are shown. Colors indicate different species, 

shapes indicate different food types. Means and standard deviations for each food type are as follows. Protein: BK (µ = 0.00128, 
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σ = 0.00035), FL (µ = 0.029855, σ = 0.010752), FR (µ = 0.113209, σ = 0.092931), INS (µ = 0.158194, σ = 0), LV (µ = 0.05878, 

σ = 0.022503), OTH (µ = 0.085875, σ = 0.05634), PITH (µ = 0.150028, σ = 0.106633), VEG (µ = 0.169942, σ = 0.079941), YL 

(µ = 0.051505, σ = 0.016297). Non-protein: BK (µ = 0.02111741, σ = 0.002649153), FL (µ = 0.25442887, σ = 0.060440188), Fr 

(µ = 1.8886137, σ = 2.354903362), INS (µ = 0.19383, σ = 0), LV (µ = 0.39814574, σ = 0.185087684), OTH (µ = 0.8888953, σ = 

1.067834841), PITH (µ = 0.61878713, σ = 0.376546151), VEG (µ = 0.65126017, σ = 0.245155125), YL (µ = 0.22151586, σ = 

0.086016074) 

 

Table 3.1 Rank order changes  

A B Percent changed Mean position change 

𝑁𝑃𝑒 𝑃 0.88 24.55 

𝑃 𝑃/𝑚𝑖𝑛 0.99 39.30 

𝑁𝑃𝑒 𝑁𝑃𝑒/𝑚𝑖𝑛 0.98 33.79 

    
𝑁𝑃𝑒* 𝑃* 0.60 5.90 

𝑃* 𝑃/𝑚𝑖𝑛* 0.80 13.80 

𝑁𝑃𝑒* 𝑁𝑃𝑒/𝑚𝑖𝑛* 0.90 3.20 
Differences between ranking systems. A is the reference ranking. Percent changed is the percentage of positions that are 

different from the reference ranking. Mean position change is the average magnitude of each position change.  

*Rank order changes when restricted to the top ten food items.  

 

 

Figure 3.4 Histograms of macronutrient data. Plots a and c show the distribution and dispersion of the raw protein and non-

protein values. Plots b and d show the distribution and dispersion of the isocline values indicating the rates of intake.  

The variation in E* was examined with respect to 𝑃/𝑚𝑖𝑛 and 𝑁𝑃𝑒/𝑚𝑖𝑛. Both variables 

significantly predicted E*, with high values of E* associated with both high returns of 𝑃/𝑚𝑖𝑛 

and 𝑁𝑃𝑒/𝑚𝑖𝑛 (GAMM, p < 0.001, r2=0.37; p < 0.001, r2=0.42). Figure 3.5 shows the GAMM 
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outputs. Both models show a nonlinear positive relationship, confirming prediction one. 

Inspection of the rug plots indicate that the relationship is steepest where data density is highest, 

and credible intervals become very wide at extreme values where there are few data points. 

Preference values never exceed .065 for any food item. This is likely because these are the mean 

preference values across years, causing seasonality to keep values from getting very high. In this 

case high values of E* can be thought of as items that are consistently preferred. Once values of 

𝑃/𝑚𝑖𝑛 and 𝑁𝑝𝑒/𝑚𝑖𝑛 get sufficiently high, the curves start to level off around the maximum 

values of E*. This seems to indicate that the very high return items are equally preferred. Values 

of E* for avoided items get as low as -.99, and items with E* approaching zero are rare. This 

indicates that very few items are selected at random relative to their availability, and foods with 

low returns of both 𝑃 and 𝑁𝑝𝑒 are strongly avoided.  
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Figure 3.5 GAMM outputs of food electivity and nutrition. a) Changes in E* in response to rate of protein return. (p < 0.001, 

r2=0.37, F = 39.635.588). Gray bands indicate 95% credible intervals. Rug plots at the bottom indicate data density. b) Changes in 

E* in response to rate of protein return. (p < 0.001, r2=0. 43, F = 44.626.919). Gray bands indicate 95% credible intervals. Rug 

plots at the bottom indicate data density.  

 

 To confirm prediction two and integrate these results back into the GF, changes in E*, 

𝑃/𝑚𝑖𝑛, and 𝑁𝑃𝑒/𝑚𝑖𝑛 need to correspond to changes in an individual’s trajectory through 

nutritional space. To accomplish this, the relationships between 𝑃/𝑚𝑖𝑛 and 𝑁𝑝𝑒/𝑚𝑖𝑛 with 

∆𝑑𝐴𝑉𝐺 were examined. This metric is a measure of how fast (units/min) each food item moves an 

individual towards or away from the target 𝑁𝑃𝑒: 𝑃. Since the rate of nutrient return significantly 

predicts E*, E* should also be predicted by the rate of motion through nutritional space. 

Additionally, 𝑃 /𝑚𝑖𝑛 and 𝑁𝑃𝑒 /𝑚𝑖𝑛 should be correlated to ∆𝑑𝐴𝑉𝐺. Individuals are predicted to 
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prefer food items that move them through nutritional space rapidly (have a high ∆𝑑𝐴𝑉𝐺). 

E*, 𝑃/𝑚𝑖𝑛, and 𝑁𝑃𝑒/𝑚𝑖𝑛 were all significantly related to ∆𝑑𝐴𝑉𝐺 (Figure 3.6). E*, 𝑃/𝑚𝑖𝑛, and 

𝑁𝑃𝑒/𝑚𝑖𝑛 increased in a nonlinear positive fashion with respect to ∆𝑑𝐴𝑉𝐺 (GAMM, p < 0.001, r2 

= 0.08; p < 0.001, r2 = 0.28; p < 0.001, r2 = 0.32).  

 

 Finally, for these results to be meaningful, these foraging preferences should translate to 

successfully attaining foraging goals. In this case, the goal of interest is the target 𝑁𝑃𝑒: 𝑃 rail as 

indicated by the Geometric Framework. The closer an individual gets to the target 𝑁𝑃𝑒: 𝑃 

(minimal 𝑑), the greater the degree of foraging success. When individuals stray too far into 𝑃 

space or 𝑁𝑃𝑒 space, the more likely individuals should choose food items that will quickly move 

them in the direction of the target rail. Therefore, the interaction between ∆𝑑𝐴𝑉𝐺, their relative 

position, and their relative direction in nutritional space should result in individuals reaching 

Figure 3.6 Response to ∆𝑑𝐴𝑉𝐺 . GAMM outputs 

illustrating the link between isocline landscapes and 

GF. a) Preference values in response to ∆𝑑𝐴𝑉𝐺 . 

Significant, nonlinear positive relationship (p < 0.001, 

r2 = 0.08, F= 8.2152.606). b) 𝑃 kcal/min in response to 

∆𝑑𝐴𝑉𝐺 . Significant, nonlinear positive relationship (p < 

0.001, r2 = 0.28, F= 193.798). b) 𝑁𝑝𝑒 kcal/min in 

response to ∆𝑑𝐴𝑉𝐺 . Significant, nonlinear positive 

relationship (p < 0.001, r2 = 0.32, F= 21.584.306). 

 



83 
 

 
 

their target 𝑁𝑃𝑒: 𝑃 (𝑑 should approach zero). Figure 3.7 shows the effect this three-way 

interaction has on 𝑑. It is clear that individuals prioritize high ∆𝑑𝐴𝑉𝐺  foods. When individuals 

are in 𝑃 space, they move along a rail towards 𝑁𝑃𝑒 to return to the target rail. Conversely, when 

individuals are in 𝑁𝑃𝑒 space, they moving along a rail towards 𝑃 space to return to the target 

rail.  

 

Figure 3.7 GAMM output showing how 𝑑 varies in response to the interaction between ∆𝑑𝐴𝑉𝐺 , their relative position, and their 

relative direction. Values are on the scale of the link function. Values to the right on the x-axis indicate animal being in 𝑃 space. 

Values to the left of the x-axis indicate an animal being in 𝑁𝑝𝑒 space. Values to the bottom of the y-axis indicate animals moving 

along a rail towards the 𝑃 direction. Values to the top of the y-axis indicate animals moving along a rail towards the 𝑁𝑃𝑒 

direction. Red corresponds with small values of 𝑑 at or near zero (on the 𝑁𝑃𝑒: 𝑃 target). Yellow corresponds with large values of 

𝑑, indicating animals are far from the 𝑁𝑝𝑒: 𝑃 target. (p < 0.001, r2 = 0.37, F= 61.2899.86). 

  

3.4. Discussion and Conclusion 

 These results demonstrate that orangutans are able to achieve their nutritional balance, as 

indicated by GF, by prioritizing food items with high rates of nutritional return as indicated by 

their isoclines. Food preference is related to food items that allow them to quickly traverse 

nutritional space, potentially to make it easier to correct their nutritional trajectory after 
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overshooting in any given macronutrient direction. High rate of return foods correlate with an 

ability to quickly change the Euclidean distance from target nutritional rails. Foods with low 

rates of return are heavily avoided as indicated by electivity values. Since rate of return is the 

interaction between intake rate and nutritional content, this means any item with an exceptionally 

low nutritive value and/or intake rate will be heavily avoided.  

The ability to reconcile the GF outputs with actual food utilization metrics supports the 

notion that macronutrient balancing is a targeted enterprise, with preference for specific food 

items being a mechanism by which macronutrient prioritization becomes possible. The 

relationship between electivity values and GF outputs also assuages concerns that the nutritional 

balancing is largely phenomenological. The fact that fine scale foraging decisions, in terms of 

discrimination between food items, translates to reaching nutritional targets lends support to the 

notion that the GF is a useful means of quantifying resource quality and identifying foraging 

goals. Future resource selection modeling and step selection modeling can justifiably include 

food nutritional profiles as predictors of animal spatial decision making, rather than rely solely 

on total calories. Future studies on adaptive consequences of preferred foods in terms of 

cognitive evolution should consider incorporating nutrient balancing into their models, as it 

likely explains an important amount of variation.  

It should be pointed out that isocline landscapes show promising utility for future studies 

of foraging behavior. Variables do not need to be limited to those included here. Any measure of 

quantity and quality that may have biologically meaningful interactions can be plotted using this 

approach. To the best of our knowledge, this study is the first to utilize isocline landscapes to 

analyze foraging strategies. Being able to visualize each possible way the quantity and quality 

axes result in functionally equivalent outcomes enables further exploration of fine scale foraging 
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strategies. For example, one could feasibly generate monthly isocline landscapes, and examine 

whether changes between quantitative and qualitative strategies enable individuals to maintain 

the same rate of intake. One could plot multiple individuals on a single isocline landscape and 

evaluate whether there is inter-individual variation in the approach to nutritional balancing. One 

could even use isocline landscapes in conjunction with GF to characterize qualitative and 

quantitative differences in home ranges between individuals based on the available food items. 

Isoclines and electivity indices have the potential to be very synergistic supplements to any 

studies utilizing the GF. 
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Chapter 4. Orangutan space use and strategies for balancing 

nutrients.  

 

4.1 Introduction 

Movement is a fundamental characteristic of life, generated by multiple processes across 

a range of temporal and spatial scales. Plants are largely fixed in space yet rely on passive 

movement for reproduction; various forms of aquatic life rely on passive motion for dispersal 

and colonization; and most terrestrial forms of life exhibit active forms of motion (for further 

examples and discussion see Ridley, 1930; Maguire, 1963; Nathan, 2006; Guarie, 2008; Mueller 

and Fagan, 2008, Nathan et al., 2008; Mueller et al., 2011). Movements reflecting processes such 

as migration, dispersal, and colonization occur at the largest scales, instantaneous movement in 

response to stimuli generally occur at the smallest scales, and movement related to resource 

acquisition, antipredator behavior, and social behavior occur at intermediate scales (Estes et al., 

1991; Alerstam et al., 2003; Gurarie et al., 2011). Furthermore, movement is directly related to 

individual survival, population and community structure and dynamics, and evolution 

(summaries and relevant citations can be found in Patterson et al., 2008; Nathan et al., 2008; 

Mueller et al., 2011).  

The realities of conservation in the Anthropocene, along with advances in animal 

tracking and remote sensing capabilities, have generated further interest in animal movement 

research, with emphasis on the understanding of movement as it relates to invasive species, 

disease management, climate change, human wildlife conflict, and habitat loss (e.g. Cooke et al., 

2004; Kays et al., 2007; Wikelski et al., 2007; Patterson et al., 2008; Bohrer et al., 2015; Kays et 
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al., 2015; Primm et al., 2015; Reynolds et al., 2015; Tucker et al., 2018). This has resulted in an 

associated effort to expand and improve the analytical tools and techniques for handling 

movement data. Sophisticated computational capabilities along with new perspectives on 

movement analysis have brought about a paradigm shift in movement ecology, with a move from 

traditional methods towards a continuous-space continuous-time modeling framework (Johnson 

et al., 2008; Fleming et al., 2014a; Fleming et al., 2014b; Gurarie et al., 2017).     

Animal behavior is inherently continuous, with an individual’s movement resulting from 

the complex interplay between the animal’s internal state (i.e. neurological and physiological), 

biomechanical constraints, capacity to utilize information (cognitive or sensory), and 

environmental constraints (Nathan et al., 2008). Logistical constraints on the ability to sample an 

animal’s movement require researchers to discretize the continuous movement process, sampling 

successive relocations (i.e. steps) along the animal’s path and traditionally modeling the 

movement as a discrete time correlated random walk (Ovaskainen and Cornell, 2003; Bovet and 

Benhamou, 1988; Turchin, 1998; Bartumeus et al., 2005; Fortin et al., 2005; Codling et al., 

2008). The resulting step length and turn angle distributions are used to make biological 

inferences about the movement process. There are a number of known problems and limitations 

to this approach, most notable among them being the sensitivity to sampling rate (Bovet and 

Benhamou, 1988; Turchin, 1996; Turchin, 1998; Bartumeus et al., 2005; Codling and Hill, 2005; 

Gautstead, 2013; Fleming et al., 2014a). Sampling rate is typically chosen for logistical reasons 

unrelated to the biology of the study system and is rarely if ever on the same time scale as the 

behavior of the animal. Starts and stops of behaviors are therefore unrelated to the beginning and 

end of sampled relocations, and the resulting distributions of steps and turns fail to capture the 

biological properties of continuous motion (Nouvellet et al., 2009; Fleming et al, 2014a; Fleming 
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et al., 2014b; Gurarie et al., 2017). Furthermore, correlated random walks are incompatible with 

irregularly sampled data, and most movement tracks are highly autocorrelated, violating the 

assumptions of most traditional analytical techniques (e.g. kernel density estimation) (Dray et al., 

2010; Polansky et al., 2010; Fleming et al, 2014a; Fleming et al, 2014b; Gurarie et al., 2017).  

Continuous-time stochastic process (CTSP) models are free of the above limitations. 

Firstly, they are defined by characteristic time and length scales that are scale invariant, and 

therefore independent of sampling schedules and robust to irregular sampling. (Johnson et al., 

2008; McClintock et al., 2014; Fleming et al., 2014a; Fleming et al., 2014b; Gurarie et al., 2017). 

Secondly, rather than treating autocorrelation as a nuisance parameter, multiscale autocorrelation 

structures are accommodated. The CTSP modeling framework therefore provides a workflow 

whereby a model selection approach is applied to the autocorrelation structure of the movement 

process, enabling a suite of model types to be fitted to data. (Fleming et al., 2014a; Fleming et 

al., 2014b). Thus, the underlying movement process of an animal no longer needs to be a priori 

assumed, and more complicated modes of behavior across all timescales can be explored. 

(Fleming et al., 2014a; Fleming et al., 2014b). Previously, CTSP models were computationally 

inaccessible to the greater research community due to unfamiliarity with the underlying 

mathematics. Thankfully, there are now well documented tools enabling the widespread 

application of these methods to the analysis of fine-scale and large-scale space use (Fleming and 

Calabrese, 2015; Gurarie, 2015; Johnson, 2015; Gurarie, 2016).  

Logistical and ecological considerations make orangutans particularly appropriate study 

candidates for a CTSP modeling approach. Currently, the risk of obstructing the throat sack 

precludes orangutans from being fitted with traditional GPS collars, and they are very skilled at 

removing affixed devices (personal experience). Tracking orangutans is therefore restricted to 
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sampling with hand held GPS units during focal observations. Naturally, this results in unevenly 

sampled tracking data that have time gaps, as animals occasionally evade researchers over the 

course of focal observations.  Furthermore, orangutans often leave the boundaries of study areas, 

returning at unpredictable time intervals. This makes it nearly impossible to evenly sample 

orangutan space use. Because the characteristic scales of CTSP models are defined 

independently of the sampling rate, and because CTSP models don’t assume independent and 

identically distributed data, the CTSP framework is well suited for analyzing orangutan 

movement data.   

Ecologically, orangutans exhibit a suite of interesting external and internal components to 

their movement. They occupy multiple forest types, with a majority of individuals occurring in 

degrees of anthropogenically modified forests (Singleton et al., 2004; Meijaard et al., 2010; 

Wich et al., 2012; Ancrenaz et al., 2015).  They are therefore subject to multiple canopy 

structures which influence their locomotion (Hebert and Bard, 2000; Thorpe and Crompton, 

2006; Thorpe et al., 2007; Thorpe et al., 2009; Manduell et al., 2011; Manduell et al., 2012). 

They are also the largest living arboreal animal, further constraining them to parts of the canopy 

that can support their weight (Thorpe and Crompton, 2007; Thorpe et al., 2009). Furthermore, 

orangutan habitats exhibit complex phenological patterns resulting in highly variable and largely 

unpredictable food availability (Marshall et al., 2009; Marshall and Which, 2013; Marshall et al., 

2014; Vogel et al., 2017). Orangutan therefore are predicted to require sophisticated spatial 

strategies to account for the external drivers of their motion, i.e. both locate uncertain resources 

and manage physical movement constraints.  

Recent studies have found that during periods of fruit scarcity, orangutans metabolize 

body fat, indicated by ketone bodies in their urine (Knott, 1998; Thompson and Knott, 2008) 
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enter into a negative energy balance as indicated by low C-peptide of insulin levels (Thompson 

and Knott, 2008), and enter into a steady-state negative protein balance, as evidenced by δ15N 

levels (Vogel et al., 2012a; Vogel et al., 2012b). Given these measurable responses to food 

scarcity, selection can be predicted to heavily favor individuals with spatial strategies that 

prevent chronic states of energy and/or nutrient deficits. Furthermore, selection for spatial 

memory is suggested to be stronger in environments where scarcity is higher and where relative 

abundance of food is lower (Marshall and Wrangham, 2007; Croston et al., 2015). Thus, there 

are also clear internal components to orangutan movement, physiological and cognitive, that 

likely explain not only the impetus to move, but suggest movement can be driven by non-local 

information, possibly through a processes such as memory and cognition.   

Chapter two of this dissertation showed that orangutans intake higher proportional 

amounts of protein than expected by chance, and that maintaining a target ratio of macronutrients 

was associated with signals of goal directed foraging behavior. It could be that the spatial 

location of food items with preferred nutritional profiles is an important external component to 

orangutan spatial movement. The use of information pertaining to the location, availability, and 

nutritional content of these food items may be a cognitive process underlying an orangutan’s 

ability to react to that external component to its movement, thereby satisfying the internal 

physiological component of its motion. Given that animals are known to actively balance 

macronutrients as they forage (Lee et al., 2002; Felton et al., 2009; Rothman et al., 2011; 

Martinez-Cordero et al., 2012; Simpson & Raubenheimer, 2012; Erlenbach et al., 2014; Solon-

Beit et al., 2015; Felton et al., 2016), memory and cognition could be cognitive mechanisms 

facilitating macronutrient balancing.  
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Advances in remote sensing technologies make it possible to rapidly sample high 

resolution environmental data across large areas. When properly ground-truthed, these data can 

provide remarkably complete information about the entirety of an animal’s habitat. Here, 

remotely sensed environmental variables and CTSP modeling were used to get a mechanistic 

understanding of Bornean orangutan (Pongo pygmaeus wurmbii) space use.  

First, home range behavior will be explored. The underlying parameters of orangutan 

motion will be estimated and used to revisit our understanding of range residence and range 

overlap published previously (i.e. Singleton, 2009; van Noordwijk et al., 2012; and Buckley, 

2014). GPS data collection did not begin at Tuanan until 2011 (Vogel, personal communication), 

and previously published orangutan ranges at the site were from data collected prior to 2011 (van 

Noordwijk et al., 2012). Home range estimates in this study should be markedly more reliable 

than prior estimates. We also take a detailed look at differences in space use between males and 

females.  Second, movement parameters of trajectories between resources within the perceptual 

range and resources outside the perceptual range will be studied, and the implications for 

memory will be discussed. Here, orangutans are hypothesized to utilize spatial memory to make 

decisions, and are therefore predicted to exhibit straight, and directed motion towards resources 

outside of their perceptual range. Remote sensing imagery will be used to generate spatial maps 

of orangutan nutritional goals using machine learning techniques. The cognitive mechanisms 

underlying the observed space use will be explored via simulation modeling using parameters 

drawn from the aforementioned movement and remote sensing analysis. A model simulating a 

memory-based movement process is predicted to explain orangutan foraging behavior better than 

a model simulating a perception based movement process.  
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4.2 Methods  

4.2.1 Study site and system 

 Data were collected at the Tuanan Orangutan Research Station in Central Kalimantan, 

Indonesia. Tuanan is a peat swamp forest that comprises about 1137ha. Orangutan density at 

Tuanan is among the highest in Borneo (Husson et al., 2009), with estimates ranging from 4.3-

4.5 individuals/km2 (van Schaik et al., 2005; Husson et al., 2009; Vogel et al., 2017).  

 

4.2.2 Behavioral data collection 

 Orangutan behavioral data were collected using standard protocols 

(http://www.aim.uzh.ch/de/research/orangutannetwork/sfm.html). For this study, nest-to-nest 

follows were conducted from June 2014 to August 2015. Activity and feeding data were 

collected using two-minute instantaneous samples. During each feeding bout, food species, food 

part, ripeness, intake rate, and bout duration were recorded. All data were added to the larger 

behavioral database consisting of data collected since 2003. All behavioral data from 2003-2015 

are described in detail in Vogel et al. (2017). Ranging data were collected every thirty minutes 

prior to this study, and every two minutes for this sampling period. The pooled dataset was used 

for autocorrelated kernel density estimation (AKDE; see section 4.2.7). Two-minute GPS data 

were used for calculating fine scale movement parameters.   

 

4.2.3 Phenology 

Monthly phenology monitoring at Tuanan began in 2003 using methods described in 

Vogel et al. (2008) and Harrison et al. (2010). All trees with a diameter at breast height (DBH) of 

greater than 10cm were monitored monthly for the presence and abundance of fruit. Phenology 
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plots contained 1868 trees covering 2.3 ha, encompassing the home-ranges of the most 

commonly monitored orangutans. Tree species were identified by skilled local botanists. 

 

4.2.4 Nutrient intake 

 The macronutrient compositions of each food item were taken from the long-term Tuanan 

nutritional database. The database encompasses 82% of the known orangutan diet.  The sample 

collection, preparation, and nutritional analysis of each food item are detailed in Vogel et al. 

(2017). Protein and non-protein kcal intake were calculated per feeding bout per individual per 

day following Vogel et al. (2017). Cumulative intake was calculated by summing intake across 

bouts.  The cumulative ratio of non-protein kcal to protein kcal per day was calculated for all 

individuals.  

 

4.2.5 Software 

All data analyses and simulations were conducted in the R environment for statistical 

computing (R Core Team, 2017). Generalized additive models were run using the mgcv package 

(Wood and Wood, 2015). Random Forest was run using the randomForest package (Liaw and 

Wiener, 2002). Confusion matrices were generated using the caret package (Kuhn et al., 2015). 

Semi-variograms, periodograms, model fitting, model selection, home range estimation, and 

home range overlap were all implemented using the ctmm package (Calabrese et al., 2016). 

Behavioral changepoint analysis was implemented using the BCPA package (Gurarie, 2013). 

Geospatial layers were handled using the raster and rgdal packages (Hijmans and van Etten, 

2014; Bivand et al., 2018). Figures were generated using base R and ggplot2 (Wickham, 2016; R 

Core Team, 2017). 
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4.2.6 Nutritional mapping 

To examine the spatial strategies of orangutans as they pertain to nutritional balancing, an 

effort was made to spatially contextualize their nutritional landscape.  Since manually identifying 

and mapping the location of each individual tree within the study area was infeasible within the 

sampling period, rapid and large-scale sampling was achieved via remote sensing.  First, a 

reference dataset was collected to enable ground truthing of remotely sensed data (see Reference 

data collection). Following ground sampling, high resolution multispectral WorldView-3 

imagery was obtained from DigitalGlobe.  (see Multispectral imagery). High resolution spatial 

and spectral imagery have been shown to have great utility in remotely identifying tree species 

(i.e. Clarke et al., 2005; Omar, 2010; Sridharan, 2010; Chen, 2011; Cho et al., 2011; Colgan et 

al., 2012; Immitzer et al., 2012; Féret and Asner, 2013; Baldeck and Asner, 2014). The field 

reference dataset was then used to train a machine learning algorithm to identify trees based on 

their spectral signature (see Tree classification).   

Following tree identification, nutritional maps were not attempted for any months where 

nutritional data were not available for all tree species. Furthermore, months where liana 

consumption was high were also excluded, as lianas could not be detected with the available 

image resolution. Finally, nutritional mapping was restricted to months where only the most 

accurately identifiable tree species were productive (see results section). For months where all 

criteria were met, quality indices based on tree species nutritional profiles (see section 4.2.7) 

were mapped to represent the nutritional balancing landscape. These maps were then utilized in 

orangutan foraging simulations.  
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Reference data collection 

50m X 50m plots were established along the length of focal orangutan travel routes. All 

trees with a DBH of 10cm and larger were sampled, and any tree where feeding was observed by 

an orangutan was sampled. A total of 10,000 trees were sampled thoughout the entire study 

period. Height, diameter at breast height, crown diameter species, and GPS coordinates were 

sampled for every tree. Tree height and crown extents were recorded with Nikon Forestry PRO 

Laser Rangefinders. Garmin GPSmap 60CSx , GPSmap 62, and GPSmap 78, and Trimble Juno 

3B handheld GPS units were used to record the locations of all trees. The coordinates of each 

tree were averaged until the estimated error reached 3m or less. New permanent identification 

numbers were attached to each newly sampled tree. Additionally, seven 50m X 50m biomass 

plots were established where all trees were sampled regardless of DBH. With a team of four 

people sampling trees and one person observing the orangutans, we found that a minimum of one 

plot and a maximum of two plots were possible to finish in one day.  

 

Multispectral imagery 

 

Available WorldView-3 images for the dates of the study period were chosen based on 

lack of cloud obstruction and absence of smoke from local agricultural burning. Due to local 

weather conditions and the prevalence of local burning, finding suitable images was challenging. 

Two images were deemed suitable, one from August 2014 and one from April 2015. The first 

image was during a dryer time of year (mean daily rainfall = 2.5mm), and the second image was 

during a wetter period (mean daily rainfall = 8.7mm). The WorldView-3 satellite provides high 

spatial resolution data at 1.38m per pixel with a geolocation accuracy predicted at less than 3.5m 

without ground control. Multispectral images include 8 spectral bands: Coastal (397–454 nm), 



98 
 

 
 

Blue (455–517 nm), Green (507–586 nm), Yellow (580–629 nm), Red (626–696 nm), Red Edge 

(698–749 nm), Near Infrared 1 (765–899 nm), and Near Infrared 2 (857–1039 nm). DigitalGlobe 

has published descriptions of the utility of each band. The Coastal and Blue bands provide 

measures of chlorophyll content in healthy plants.  The Yellow and Green bands are measures of 

plant health, and when used together help differentiate types of plant materials. The Red band is 

one of the most important for discriminating vegetation from soil and geological features. The 

Red Edge band is thought to help with species and age differentiation and is also a measure of 

plant health. The Near Infrared 1(NIR1) band helps measure moisture content in plants and can 

differentiate vegetation from bodies of water. The Near Infrared 2 (NIR2) band overlaps with 

NIR1, but because it is less sensitive to the atmosphere it is thought to enhance vegetation 

analysis (DigitalGlobe, 2013). Further specifications about the WorldView-3 system can be 

found on the DigitalGlobe website (https://www.digitalglobe.com/resources/satellite-

information).  

 

Tree classification  

 Remote tree identification was done using Random Forest classification (RF). RF is a 

non-parametric ensemble learning technique, free of the assumptions of normality or equal 

covariances typical of other classification methods (Breiman, 2001; Liaw, 2013). RF works by 

constructing a large (user defined) number of decision trees from a training dataset. Each 

decision tree is constructed by sampling with replacement from the training data. A random 

subset of the input variables is selected at each node, and the best-splitting variable is chosen 

based on the Gini criterion. After training, new data are classified by taking the mode of the 

classification outcomes of the entire forest of decision trees (Breiman, 2001; Liaw, 2013). 
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Measures of variable importance are given in the form of mean decrease in accuracy (MDA) and 

mean decrease in Gini (MDG) (Breiman, 2001; Liaw, 2013). 

 Here, we use a pixel-based approach for identifying trees from our multispectral images. 

This is because we lacked the resolution to apply automated crown delineation methods, 

prohibiting an object-based approach. The mean diameter of a tree crown for trees with a 

minimum DBH of 10 can span between ~3-4 pixels, with the largest observed crown 

encompassing ~10 pixels and the smallest ~1 pixel. The GPS averaged locations of our manually 

identified trees (our training data set; see Reference data collection above) were used to extract 

the associated pixel values from the multispectral layer. Stratified sampling of 40% of the 

reference dataset made up the training data for RF. The number of decision trees was set to 

10000, and all 8 spectral bands were included in the model.  Classification was attempted for 65 

classes, 9 of which only genus level information was available at the time of ground sampling. 

The remaining 56 were identifiable to the species level. Model performance was evaluated by 

calculating the balanced accuracy from a confusion matrix (Valdez, 2007; Brodersen, 2010). 

 

4.2.7 Movement analysis 

Home ranges and periodicities  

 Home range analysis was restricted to individuals that were routinely followed; whose 

identities were known, verified, and reliably recognized by observers; and to individuals with 

enough full nest to nest follows whereby the total observation time added up to at least one year 

of observation. The final dataset included 18 individuals, with 7 flanged males and 11 adult 

females. Flanged male home range estimation is famously difficult. Because GPS tracking 

devices can’t be fitted to orangutans, and because flanged males typically travel well outside the 
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boundaries of most study areas, continuous observation of males hasn’t been successful 

(although there have been admirable attempts, see Buckley, 2014). Our study site is no exception 

to this trend. Flanged males are sporadically encountered, ranges are very large, and they 

typically range outside the bounds of where we are permitted to follow them. For these reasons, 

all male home range estimates in this study are likely underestimates due to sampling bias.  

 Semi-variogram and periodogram analysis were used as an initial visual exploration of 

movement behavior across time scales. The autocorrelation structure of the movement was 

revealed through visual inspection of the semi-variograms (Fleming et al., 2014a, Fleming et al, 

2014b). The continuous time movement models typically studied in the context of animal 

tracking data include Brownian Motion (BM), Ornstein–Uhlenbeck (OU) motion, Integrated 

Ornstein–Uhlenbeck motion (IOU), and the newer Ornstein–Uhlenbeck–F (OUF) process. A 

linear increase in semi-variance at the shortest timescales indicates uncorrelated velocities 

characteristic of BM and OU processes, while upward curvature indicates autocorrelated velocity 

characteristic of IOU and OUF motion (Fleming and Calabrese, 2013; Fleming et al., 2014a). At 

the longest timescales, failure to reach an asymptote signals either under sampling, or that the 

individual hasn’t established a home range. Asymptotic behavior is indicative of range residence, 

with the home range crossing time corresponding to the timescale at which the semi-variance 

asymptotes (Fleming et al., 2014a).   

 Periodicities in space use were explored through visual inspection of the periodograms. A 

periodicity in space use refers to a repeated visit to an area within the home range at a 

characteristic time interval (Péron et al., 2016; Péron et al., 2017). This is distinct from normal 

revisits to previous locations, because individuals do not necessarily occur at characteristic, 

predictable/cyclical time intervals. Peaks in the periodogram reveal the timescales of potential 
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periodicities in the mean. In other words, the animal reverts to a point in its range that moves 

periodically at some characteristic timescale. This is known as a periodic-mean process. 

Periodicities can also be in the form of a stochastic rotational component of the movement called 

a circulation process, whereby individuals pass through the same areas at some cyclical time 

scale. A circulation process is not always visible in periodograms, and instead must be estimated 

directly from the data (Péron et al., 2016; Péron et al., 2017).  Figure 4.1 is an illustration 

demonstrating periodic space use taken directly from Péron et al. (2017).  

 

Figure 4.1 Schematic representations of periodic space use taken directly from Figure 2 in Péron et al. (2017). The left represents 

a circulation process, the middle represents a periodic mean process, and the right represents both. The long black arrow 

represents changes in the process mean while the gray arrow represents circulation (Péron et al., 2017). 

 Visual exploration was followed by model fitting through maximum likelihood (Fleming 

et al., 2014b). Candidate models were then ranked and selected according to AIC (Akaike, 1974; 

Yang, 2005). The selected models were compared to the semi-variograms to confirm that the 

important features of the data are explained (Fleming et al., 2016). The selected model for each 

individual was then used for autocorrelated kernel density estimation (ADKE) (Fleming et al., 

2015; Fleming and Calabrese, 2017). This procedure produces estimates of home range size, 

position autocorrelation timescale, velocity autocorrelation timescale, and speed (km/day) 

(Fleming et al., 2015; Fleming and Calabrese, 2017). If a model with a periodic-mean process is 
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selected, then estimates of the periodic variance in position and velocity are also provided along 

with the number of harmonics per timescale. If a circulatory process is selected, then estimates of 

the length of the circulation period are provided (Péron et al., 2016; Péron et al., 2017). The 

position autocorrelation timescale is a measure home range crossing time. The velocity 

autocorrelation timescale is a measure of the tortuosity of the movement. The speed estimate 

translates to the average total distance traveled per day (Fleming et al., 2015; Fleming and 

Calabrese, 2017).  The strength of the periodicities in location and velocity is the proportion of 

variance explained by periodicities in the mean, with the number of harmonics per timescale 

indicating number of periodicities at that timescale (Péron et al., 2016; Péron et al., 2017).  

Home range overlap was calculated using the Bhattacharyya coefficient, a useful measure 

of the similarity between Gaussian distributions (Bhattacharyya, 1943). Traditionally, the 

Utilization Distribution Overlap Index (UDOI) has been considered the preferred method of 

calculating home range overlap (Fieberg and Kochanny, 2005). Recently however, it has been 

found that UDOI exhibits unnecessary dependence on confidence level such that the confidence 

level behaves like an ad hoc tuning parameter (Winner et al., in review; Fleming, personal 

communication). The Bhattacharyya coefficient avoids this problem completely, and is the 

method implemented in the ctmm package (Winner et al., in review; Fleming, personal 

communication).  

Sex difference in home range behavior were analyzed using Wilcoxon rank-sum tests. 

The relationship between home range size and other movement metrics, and the likelihood of co-

occurrence within overlapping home ranges, was analyzed using Generalized additive mixed 

models (GAMM). GAMMs are semi-parametric extensions of generalized linear models where 

the linear predictor involves a sum of smooth functions of the predictor variables. Smooth terms 
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are represented using penalized regression splines. Inference is based on these smooth functions 

(Hastie and Tibshirani, 1986, 1990; Wood, 2006a). For further information on how to calculate 

smooth functions, see Wood (2006b). GAMM is advantageous because of the relaxation on 

parametric assumptions, and because GAMM can reveal non-linear relationships in the data. 

Individual ID was included as a random effect in each model. 

 

Travel distance and directed behavior 

 The distance traveled between food resources was calculated for all focal individuals. 

Behavioral Changepoint Analysis (BCPA) was used to test how signals of goal directed motion 

(speed and directedness) vary between trips within the orangutan perceptual range and trips 

beyond their perceptual range (defined in section 4.2.8). BCPA was used to calculate the 

tendency of motion to persist in a given direction and the velocity of that motion, captured by the 

“persistence velocity” 𝑉𝑝 = 𝑉 sin 𝜃  (Gurarie et al., 2009). The mean, standard deviation, and 

autocorrelation of the persistence velocity were calculated at each timestep during trips between 

food resources (Gurarie et al., 2009). GAMM was used to analyze how these parameters vary 

with respect to the distance traveled to each resource.  

 

4.2.8 Simulation 

Spatially explicit, individually based models were created to explore the performance of 

two different cognitive strategies on nutritional balancing. The first strategy is to utilize resource 

information within a constrained perceptual range. In this case individuals are assumed to forage 

without memory and navigate towards high quality resources they can physically detect (i.e., via 

vision, olfaction, presence of other feeding individuals). The second strategy is to utilize memory 
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of resources beyond the perceptual range. In this case, how memory is encoded onto cognitive 

maps is not explicitly modeled. Rather, individuals are assumed to have completely explored 

their environment, and have complete information about resource locations within the habitat. 

While orangutans in the wild are unlikely to exhibit this extreme level of memory, we aim to test 

the importance of memory in facilitating nutritional balancing by examining which of these two 

extremes best recreate observed orangutan foraging behavior.  

We use a modified version of the modeling approach by Bracis et al. (2015) and Bracis 

and Mueller (2017). Semi-variogram analysis and model selection (AIC) revealed that amongst 

the available continuous time movement models, the orangutan movement best fits an Ornstein–

Uhlenbeck–F process (OUF) (see results section). OUF models hybridize Ornstein–Uhlenbeck 

motion with correlated velocity models, capturing both the restricted space use and correlated 

starts and stops associated with animals foraging within a home range (Fleming et al., 2014a). 

Orangutan movement was therefore modeled as a continuous trajectory 𝑧(𝑡), given by equations 

4.1a and 4.1b. 

𝑑

𝑑𝑡
𝑧(𝑡) =

1

𝜏𝑧
(𝑧(𝑡) − 𝜇𝑧) + 𝑢(𝑡)     (4.1a) 

𝑑

𝑑𝑡
𝑢(𝑡) = −

1

𝜏𝑢
(𝑢(𝑡))     (4.1b) 

The autocorrelation structure is captured by 𝜏𝑧 and 𝜏𝑢, where 𝜏𝑧 is the timescale of 

autocorrelation at which an animal covers its home range and 𝜏𝑢 is the timescale of 

autocorrelation of the velocity process. To maintain a realistic autocorrelation structure, 𝜏𝑧 and 

𝜏𝑢 were selected by averaging observed 𝜏𝑧 and 𝜏𝑢 values as calculated from AKDE. Values were 

checked to ensure the distribution of displacements approximated the observed distribution. 
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Unlike the original OUF model, the noise parameter is replaced by a bias vector sensu Bracis et 

al. (2015) and Bracis and Mueller (2017). The bias vector is described by its magnitude and 

angle, 𝑢(𝑡) = (𝑣, ∠𝜃). The magnitude of the bias vector, 𝑣 = ||𝑢(𝑡)||, is selected from a 

truncated exponential distribution with a rate parameter 𝜆 that best captures the observed 

distribution of orangutan displacements. The angle of the bias vector is drawn from a recursive 

circular probability density function (equation 4.2) (Bracis and Mueller, 2017). 

𝑔(𝜃) =
∫ 𝑄(𝑟,𝜃)𝑑𝑟

Υ𝑅
0

∫ ∫ 𝑄(𝑟,𝜃′)𝑑𝑟𝑑𝜃′Υ𝑅
0

2𝜋
0

    (4.2) 

𝑟 = |𝑧 − 𝑧′| is the distance of each point from the animal’s current location 𝑧′. Υ𝑅 is the only 

parameter that changes between the memory and perception models. Υ𝑅 represents the 

perceptual range of the orangutans. We assume that orangutans rely on vision to perceive their 

food and that they have a similar perceptual range as humans and other primates. Υ𝑅 is thus set 

to 150m (Golla et al, 2004; Janmaat 2006). Individuals utilizing memory should be making 

decisions based on resources well outside their perceptual range (Janson and Byrne, 2007), thus 

for the memory model Υ𝑅 is set large enough to encompass the entire orangutan habitat. Bracis 

and Mueller (2017) refer to this parameterization as omniscience, and model memory as the 

average experience of the animal given long term time averaged remotely sensed data. 

Unfortunately, a continuous record of sufficiently clear and high-resolution imaging of our site 

are not available. This is due both to obstruction by clouds and smoke from local burning, and 

the sampling schedule of available satellites. However, an examination of the performance of 

Bracis and Mueller’s (2017) various models shows that the omniscience model most closely 

matches their remotely sensed memory models, as expected by a search strategy relying on non-
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local prior information. It is therefore not unreasonable to interpret a model with an infinite 

perceptual range as functionally equivalent to the extreme case of perfect memory.   

 𝑄 is the animal’s evaluation of quality. In this case, quality is based on how well a given 

food item moves an animal towards it’s nutritional target in cartesian nutrient space, sensu 

nutritional geometry (Simpson and Raubenheimer, 2012). Figure 4.2 provides an illustration 

explaining this conception of 𝑄. In a two-dimensional cartesian space where the x-axis 

represents protein and the y-axis represents non-protein, an animal’s target balance of nutrients 

represents a specific trajectory through that space (Simpson and Raubenheimer, 2012). 

Cumulative intake of nutrients is tracked relative to the nutritional target. Here, we indicate the 

target as 𝑁𝑝𝑒: 𝑃𝑇, and the individuals current balance as 𝑁𝑝𝑒: 𝑃′. As individuals balance 

nutrients, they switch between foods items and experience a number overshoots and course 

corrections relative to the target trajectory (see chapters 2 and 3). Each food item represents a 

possible trajectory relative to the target. The angle of a trajectory is a function of the ratio of 

macronutrients (the slope) of that food item relative to the target. Here, we define a high-quality 

food as having a trajectory with a slope angle resulting in the greatest possible decrease in the 

distance from the target. In practice, this equals tan−1 𝑁𝑝𝑒 

𝑃
 when the current ratio is too far into 

the 𝑁𝑝𝑒 direction, and 180∘ − tan−1 𝑁𝑝𝑒 

𝑃
 when 𝑁𝑝𝑒: 𝑃′ is too far in the protein direction.  

(
𝑁𝑝𝑒

𝑃

′
>

𝑁𝑝𝑒

𝑃 𝑇
⟶ 𝑄 = tan−1 𝑁𝑝𝑒 

𝑃
 ) ∧ (

𝑁𝑝𝑒

𝑃

′
<

𝑁𝑝𝑒

𝑃 𝑇
⟶ 𝑄 = 180∘ − tan−1 𝑁𝑝𝑒 

𝑃
) (4.3) 

At each timestep, quality is reevaluated relative to the individual’s current cumulative 

nutrient intake, and food items are numerically ranked based on their slope angle.  The 

probability of turning at a given angle is consequently reevaluated at each timestep using the 

circular probability density function.  
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Figure 4.2 Illustration of the quality principle. The black line bisecting cartesian space is a representation of the target ratio of 

macronutrients. The dark gray region above the target indicates space where an individual fed on an 𝑁𝑝𝑒 rich food and overshot 

its target in the 𝑁𝑝𝑒 direction. The light gray region below the target indicates space where an individual fed on a protein rich 

food and overshot its target in the protein direction. A and B demonstrate an individual starting its foraging on a 𝑁𝑝𝑒 rich food, 

well overshooting the target. The second bout, indicated by the orange line, shows two possible choices, food A or food B. The 

angle of the trajectory caused by food A enables the individual to reach its target. The angle of the trajectory caused by food B 

moves the individual farther away from the target. Food A is therefore ranked as a higher quality food than food B. C and D show 

a similar scenario, except the individual began its foraging with a protein rich food and overshot in the protein direction. The 

angle of the trajectory caused by food C enables the individual to reach its target. The angle of the trajectory caused by food D 

moves the individual farther away from the target. Food C is therefore ranked as a higher quality food than food D. 

 The simulation was run at one-minute timesteps to represent 12 hours of continuous 

behavior for each iteration. Models were run for 100 iterations each. The length of each feeding 

bout was drawn from a truncated exponential distribution with a rate parameter  𝜆−1 calculated 
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from the observed distribution of orangutan bout lengths. The cumulative ratio of macronutrients 

at the end of each iteration are calculated using equations 4.4 and 4.5. 𝑃 and 𝑁𝑝𝑒 represent 

protein and non-protein respectively. 𝑙 is bout length, 𝐼 is intake rate, 𝑒 is energy (in 𝑃 or 𝑁𝑝𝑒), 

and 𝑏 is the total number of bouts per iteration. 

𝑁𝑝𝑒: 𝑃𝑖 = ∑ (
∑ 𝑁𝑝𝑒𝑗

𝑏𝑖
𝑗

∑ 𝑃𝑗
𝑏𝑖
𝑗

)𝑛
𝑖       (4.4) 

∑ 𝑁𝑝𝑒
𝑏𝑖
𝑗 = 𝑙𝑗 × 𝑒𝑁𝑝𝑒𝑗 × 𝐼𝑗      (4.5a) 

∑ 𝑃
𝑏𝑖
𝑗 = 𝑙𝑗 × 𝑒𝑃𝑗 × 𝐼𝑗 × 𝑃𝑗     (4.5b)  

Simulation outputs are then compared to observed orangutan macronutrient balancing using 

mean squared error (MSE).   

Table 4.1 contains the definitions and values of the model parameters. Both models successfully 

approximated the observed distribution of orangutan step lengths. MSE in step length for the 

perception model was 0.7, and MSE in step length for the memory model was 1.05.  

Table 4.1 Model parameters and definitions 

Parameter Definition Units Value 

𝜏𝑧 Position autocorrelation timescale Days 4000 

𝜏𝑢 Velocity autocorrelation timescale Minutes 4 

𝜆−1 

Rate parameter of exponential distribution for 

generating the magnitude ||𝑢(𝑡)|| of bias vector 𝑣 Meters 12.32 

Υ𝑅𝑝,𝑚 Perceptual range Meters 150p,∞𝑚
𝑎  

 
µ𝑧 Mean location of movement process Meters 0 

𝑝: Perception model; 𝑚: Memory model 

𝛼 Encompasses the entire study area.  
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4.3 Results 

4.3.1 Movement analysis 

Home range behavior  

Semi-variograms indicated that all 18 orangutans included in the analysis are range resident.  

The three parameter OUF model was strongly selected by AIC in all cases. Figure 4.3 shows the 

semi-variance of one individual plotted against a BM, OU, and OUF model. The semi-variance 

function clearly asymptotes to stable range residence. BM fails to capture the autocorrelation 

structure of the data, and the OU poorly fits the autocorrelation at the shortest timescales. The 

OUF model fits the data well across timescales. Table 4.2 shows home range size estimates and 

movement parameters of all individuals.  
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Figure 4.3 Model fits and empirical semi-variogram. Empirical variogram of a female orangutan plotted against a BM model 

(red), an OU model (purple), and an OUF model (blue). Plot A shows the fit across monthly timescales. Plot B is zoomed into 

daily timescales. Plot C is zoomed to an hourly timescale up to about a day. Plot D is zoomed further to the shortest hourly 

timescales.   
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Table 4.2 Home range estimates and movement parameters of orangutans at Tuanan. Home 

ranges estimated using Autocorrelated Kernal Density Estimation.  

Individual Sex 
Home range 

(km^2) (95% CI) 

Home range crossing 

time (Days) (95% CI) 

Velocity 

autocorrelation time 

scale (minutes) 

(95% CI) 

Average total 

distance traveled 

(km/day) (95% CI) 

Milo Female 2.79 (2.27-3.36) 1.65 (1.39-1.96) 39.80 (36.55-43.33) 2.76 (2.69-2.83) 

Mindy Female 1.99 (1.67-2.34) 1.30 (1.04-1.61) 51.32 (45.67-57.68) 2.30 (2.23-2.38) 

Juni Female 2.79 (2.30-3.35) 1.70 (1.32-2.18) 75.21 (61.36-92.19) 2.21 (2.09-2.33) 

Jinak Female 1.92 (1.46-2.46) 4.55 (3.30-6.29) 14.32 (11.58-17.70) 2.19 (2.04-2.33) 

Kerri Female 5.71 (4.18-7.48) 7.14 (5.02-10.16) 16.09 (14.15-18.29) 2.88 (2.74-2.99) 

Kondor Female 4.21 (3.26-5.29) 3.78 (2.82-5.06) 15.80 (14.34-17.40) 3.63 (3.53-3.74) 

Inul Female 1.40 (1.24-1.58) 4.04 (2.84-5.76) 14.20 (11.67-17.29) 2.45 (2.30-2.61) 

Desi Female 1.47 (1.01-2.01) 5.45 (3.98 - 7.47) 23.83 (18.86-33.11) 1.70 (1.53-1.87) 

Pinky Female 2.84 (2-3.82) 2.31 (1.60- 3.32) 39.89 (33.94-49.89) 2.87 (2.75-2.99) 

Sidony* Female 1.76 (1.14-2.5) 2.02 (0.99-4.12) 73.67 (55.72-97.41) 1.59 (1.49-1.70) 

Streisel Female 2.92 (1.65-4.55) 3.78 (1.61-8.91) 39.41 (27.38-56.73) 2.50 (2.29-2.73) 

Nikko Male 4.94 (3.87-6.15) 1.88 (1.40-2.51) 37.44 (32.43-43.22) 4.22 (4.06-4.39) 

Wodon Male 5.09 (3.80-6.56) 6.68 (4.74-9.43) 17.97 (15.17-21.29) 3.35 (3.20-3.51) 

Otto Male 6.1 (4.035-8.59) 3.87 (2.28-6.59) 40.28 (33.39-48.60) 3.04 (2.89-3.18) 

Henk Male 4.82 (2.78-7.41) 17.56 (8.84-34.89) 9.21 (7.31-11.60) 3.76 (3.59-3.93) 

Helium Male 2.55 (1.59-3.73) 3.44 (1.72-6.86) 31.48 (22.02-45.02) 2.48 (2.25-2.71) 

Dayak Male 4.52 (3.025-6.31) 5.78 (4.08-8.05) 25.59 (22.39-29.24) 3.099 (2.98-3.21) 

Tomi Male 4.35 (3.032-5.91) 3.85 (2.73-5.44) 81.90 (68.57-95.90) 1.89 (1.80-1.98) 

* Deceased female (see Marzec et al. 2016). 

All estimates of home range size for males are likely underestimates due to sampling bias.  

 

 Figure 4.4 shows male and female differences in home range size and movement 

parameters. Despite being underestimates, males have significantly larger home ranges than 

females (Wilcoxon signed rank, p = 0. 013). There are no significant differences in home range 

crossing time (Wilcoxon signed rank, p = 0.211), tortuosity (Wilcoxon signed rank, p = 1), or 

average total travel distance (Wilcoxon signed rank, p = 0.056) between males and females.  
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Figure 4.4 Violin plots of sex differences in A: home range size; B: home range crossing time; C: path tortuosity as measured by 

the velocity autocorrelation timescale; and D: average total distance traveled (speed). Each violin shows the kernalized 

distribution estimates with an overlaid box showing the interquartile range and a line indicating the mean. Violin plots allow for 

visualization of any potential multimodal distributions. 

Home range size does not predict home range crossing time or path tortuosity. Home 

range size is positively related to average total distance traveled, with larger home ranges 

predicting longer total distance traveled per day (see Figure 4.5a). Home range crossing time is 

significantly predicted by path tortuosity, with higher velocity autocorrelation timescales (more 

directed movement) resulting in shorter home range crossing times (see figure 4.5b). Meandering 

movement with high tortuosity (low velocity autocorrelation timescales) results in longer home 

range crossing times (see table 4.3 for details from the GAMM outputs). Example home ranges 

can be seen in figure 4.6. 
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Table 4.3 GAMM outputs: Movement parameters   

Model F-value r2 p-value 

Home range crossing time ~ 𝑠(Home range size) 2.8781 0.091 0.109 

Average total distance traveled ~ 𝑠(Home range size) 15.061 0.437 0.001 

Tortuosity ~ 𝑠(Home range size) 0.4991 -0.032 0.490 

Home range crossing time ~  𝑠(Tortuosity) 5.411.1.903 0.435 0.011 
Bold values indicate significant results.  

 

Figure 4.5 Smoothed model terms from GAMM outputs (A: Average total distance traveled ~ 𝑠(Home range size); B: Home 

range crossing time ~  𝑠(Tortuosity).  Model outputs available in table 4.2. Estimated effects (estimated smooth functions) are 

represented as solid lines, and the 95% Bayesian credible interval is represented as dashed lines. The y axis scale is in response 

units (on the scale of the linear predictor), and the x axis is the variable range. The y axis label is the fitted function with the 

estimated degrees of freedom in parenthesis, and the rug plot at the bottom indicates sampled values of the covariates of each 

smooth. 
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Figure 4.6 Examples of orangutan utilization distributions with 95% confidence intervals as generated through AKDE: Plot A is a flanged male home range. Plot B is an adult 

female home range. Dark pixels indicate the highest probability of utilization.  
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Periodic patterns of space use 

Periodogram analysis revealed support for daily or monthly periodicities in several 

orangutans. Figure 4.7 shows an example periodogram from a focal female. Table 4.4 contains 

details about the periodicities for each individual. AIC selected models with a periodic mean 

process (cyclical shift in average location within the home-range) for six out of seven males, and 

for two females. Both females and two of the males exhibited daily periodicities, three males 

exhibited monthly periodicities, and one male experienced both daily and monthly periodicities. 

One male, and the remaining nine females were fit to a stationary mean process indicating no 

change in mean location within the home-range..  

A circulation process was detected for five females and four males (one of the males 

being the one with the stationary mean process). No females exhibited both a circulation process 

and a periodic mean process. Four females had neither a periodic mean process nor a circulation 

process. All males exhibited at least one type of periodicity. The circulation frequency was 

similar for all individuals. The mean circulation frequency was 1.56 months with a standard 

deviation of 0.35.  

Table 4.4 Periodicities in male and female orangutan space use 

Individual Sex 
Circulation frequency 

(months) (95% CI) 

Harmonic Intensity of periodicity 

(location) (95% CI) 

Intensity of 

periodicity (velocity) 

(95% CI) Day Month 

Milo Female 1.49 (0.83-7.52) 0 0 NA NA 

Mindy Female NA 0 0 NA NA 

Juni Female NA 0 0 NA NA 

Jinak Female 1.46 (0.89-3.92) 0 0 NA NA 

Kerri Female NA 0 0 NA NA 

Kondor Female 1.29 (0.77-3.82) 0 0 NA NA 

Inul Female NA 1 0 3.17 (0-4.84) 3.98 (0-6.03) 

Desi Female 1.79 (1.05- 6.15) 0 0 NA NA 

Pinky Female 1.02 (0.59-3.81) 0 0 NA NA 

Sidony* Female NA 0 0 NA NA 

Streisel Female NA 2 0 6.46 (0-10.01) 15.20 (0-22.13) 
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Nikko Male NA 1 0 6.10 (0-8.84) 8.45 (0-12.18) 

Wodon Male NA 1 0 3.37 (0.48-23.52) 6.11 (1.47-25.39) 

Otto Male NA 0 1 42.74 (5.61-100) 3.31 (0-4.84) 

Henk Male 1.51 (0.91-6.29) 1 4 59.23 (48-73.07) 67.31 (64.16-70.61) 

Helium Male 1.44 (0.74-28.75) 0 1 19.25 (0-37.1) 1.14 (0-2.22) 

Dayak Male 1.73 (0.96-9.24) 0 0 NA NA 

Tomi Male 2.35 (1.33-10.54) 0 1 16.52 (0-29.03) 1.66 (0-2.93) 

Circulation frequency values of NA indicate that models with a circulation process were rejected by AIC. Intensity of periodicity 

values of NA indicate that models with a periodic mean process were rejected by AIC, and a stationary mean model was selected. 

The intensity of the periodicity is the proportion of the variance in the animal’s location or velocity as a result of the periodicity. 

The circulation frequency is the average time interval the animal successively passes through (revisits) the same areas (Fleming 

and Calabrese, 2015).  Individuals with neither a circulation process or a periodic mean exhibit no evidence of periodic space use. 

* Deceased female (see Marzec et al. 2016).  

 

Figure 4.7 Periodogram from a male orangutan indicating evidence for periodicities at one day. Peaks are indicative of 

periodicities. The black represents the periodogram of the movement, and the red represent the periodogram of the sampling 

schedule. When they closely reflect one another, it may indicate periodicities in sampling rather than movement, requiring actual 

model selection to determine the likelihood of the periodicities (Fleming and Calabrese, 2015; Péron et al., 2016; Péron et al., 

2017).  

Table 4.5 GAMM outputs: Periodicities   
 

 

Model 
 Smooth terms 

Df F-value r2  p-value 

Presence of periodicity ~ 𝑠(Home range size) 1 3.688 0.127  0.073 

Intensity of periodicity in location ~ 𝑠(Home 

range size) 1 1.975 0.0901 

 

0.209 

Intensity of periodicity in velocity ~ 𝑠(Home 

range size) 1 0.262 -0.125 

 

0.627 

Presence of periodicity ~ sex 

 Parametric terms 

Estimat

e t-value r2 

 

p-value 

0.81818 5.292 0.614 

 p < 

0.001 
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Bold values indicate significant results.  

 

 GAMM confirmed a strong relationship between sex and presence of periodicities. Males 

are much more likely to exhibit a periodic mean process than females, suggesting that males 

move between areas within their home-ranges in a predictable and temporally cyclical manner, 

while females generally lack this temporal patterning to their range use. There was no 

relationship between home range size and the strength or likelihood of periodicities. Table 4.5 

provides a breakdown of model results.  

Home range overlap 

Mean home range overlap for orangutans was 52%. Mean home range overlap for males 

was 75%, and mean overlap for females was 40%. Mean overlap between males and females was 

54%. Related females, specifically mother daughter dyads, exhibited substantial overlap (mean = 

77%), while unrelated females exhibited very little overlap (mean = 27%). Despite the high 

degree of overlap, mothers and daughters still partition their space use. Areas with the highest 

probability of occurrence for daughters are negatively predicted by areas with a high probability 

of use by mothers (Figure 4.8).  



118 
 

 
 

 

Figure 4.8 Mother daughter dyad home range partitioning. Output of a spatially explicit GAMM. Data represent the probability 

of utilizing a given location within the home range. Dyad identity is a random effect in the model (F=87.75  2.722, p < 0.001, r2 = 

0.341). Estimated effects (estimated smooth functions) are represented as solid lines, and the 95% Bayesian credible interval is 

represented as dashed lines. The y-axis scale is in response units (on the scale of the linear predictor), and the x-axis is the 

variable range. The y axis label is the fitted function with the estimated degrees of freedom in parenthesis. 

 

Travel to food resources 

 The mean distance traveled between resources was 34.5 meters. The observed length of 

trips to food resources best fit a gamma distribution with a shape parameter of 1 and a rate 

parameter of 0.81. BCPA measured movement parameters ( µ, 𝜎, and 𝜌 of the persistence 

velocity) were compared for trips less than 150m to trips exceeding 150m. Neither mean velocity 

(µ) nor punctuations in the motion (𝜎) were predicted by distance traveled (GAMM, p>0.05). 

The autocorrelation (𝜌) of the persistence velocity (directedness of the motion) was significantly 

predicted by distance traveled. Figure 4.9 shows the results of GAMM. The nonlinear 

relationship between 𝜌 and distance traveled is very informative. For all distances shorter than 

150, the smooth function stays flat, with 𝜌 not responding to distance. After 150m, there is a 
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sudden upward shift indicating a positive relationship between 𝜌 and distance at the longest 

distances. Even though data is sparse at the longest distances, the credible intervals do not 

increase dramatically. This suggests that when individuals move towards resources outside of 

their perceptual range, they do so in a persistent and directed manner.  

 

 

Figure 4.9 Smoothed model terms from GAMM output.  F-value = 2.976.917, p = 0.00478, r2=.056. Estimated effects (estimated 

smooth functions) are represented as solid lines, and the 95% Bayesian credible interval is represented as dashed lines. The y axis 

scale is in response unites (on the scale of the linear predictor), and the x axis is the variable range. The y axis label is the fitted 

function with the estimated degrees of freedom in parenthesis, and the rug plot at the bottom indicates sampled values of the 

covariates of each smooth. 

 

4.3.2 Tree classification and nutrient mapping 

Tree classification by RF started with 111 tree species. After initial model training some 

were regrouped to the genus level, either because botanical knowledge of the species was only 

available at genus level, or because pooling improved model performance. This reduced the 

dataset from 111 to 64 classes. Figure 4.10 shows the importance of each spectral band to 

successful tree classification. NIR1, NIR2, and RedEdge were the most important for node 

splitting, while Yellow, Blue, and NIR1were the most important for prediction accuracy. The 

Coastal band was consistently the least important of the spectral bands.  
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Figure 4.10 (a)Mean decrease in accuracy indicates the loss of prediction accuracy due to excluding or permuting a variable. (b) 

Mean decrease in Gini indicates how each variable contributes to the homogeneity of the nodes after each split during tree 

construction. Variables with the highest mean decrease in accuracy are generally the most important.  

Balanced accuracy was calculated for each class to evaluate classification performance 

(details regarding the calculation of balanced accuracy are found in Kuhn, 2018). Table 4.6 

provides the prediction accuracy for each class. Accuracy ranged from 70-83%, with the mean 

balanced accuracy for all classes being 75%. May 2015 was the only month that met all criterion 

for nutrient mapping (see section 4.2f Nutritional mapping). Pixels corresponding to productive 

species during May were classified according to RF, enabling recursive calculation of 𝑄 (see 

section 4.2h Simulation). Figure 4.11 is one example of a nutrient landscape generated using RF. 

Table 4.6 Random forest prediction accuracy  

Species 
Balanced 

Accuracy 

Acronychia pedunculata 0.75 

Aglaia rubiginosa 0.75 

Alseodaphne sp. 0.75 

Artocarpus dadak 0.79 
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Blumeodendron kurzii 0.74 

Buchanania sp. 0.70 

Burseracae Santiria sp. 0.79 

Callophyllum hosei 0.77 

Calophyllum nodusum 0.72 

Campnosperma coriaceum 0.75 

Cotylelobium melanoxylon 0.75 

Cratoxylum glaucum 0.75 

Cryptocarya sp 2 0.72 

Cryptocarya sp. 1 0.77 

Ctenolophon parvifolius 0.75 

Diospyros confertiflora 0.73 

Diospyros pseudo-malabarica 0.75 

Diospyros siamang 0.75 

Dyera lowii 0.73 

Elaeocarpus mastersii 0.74 

Garcinia bancana 0.74 

Garcinia cf. beccarii 0.73 

Garcinia cf.parvifolia & sp. 0.72 

Gymnacranthera farquhariania  0.79 

Horsfieldia crassifolia 0.75 

Ilex cymosa 0.75 

Koompassia malaccensis 0.73 

Licania splendens 0.70 

Lithocarpus conocarpa 0.76 

Litsea cf. rufo-fusca 0.74 

Madhuca motleyana 0.76 

Mesua sp 0.75 

Mezzetia leptopoda / parviflora 0.83 

Mezzetia umbellata 0.79 

Mezzettia cf. 

leptopoda/parviflora 
0.73 

Mezzettia umbellata 0.75 

Musaendopsis beccariana 0.75 

Myristica lowiana 0.75 

Neoscortechinia kingii 0.76 

Neoscortechinia sp. 0.73 

Nephelium sp. 0.74 

Palaquium cochleariifolium 0.73 

Palaquium leiocarpum 0.75 

Palaquium pseudorostratum 0.75 

Palaquium ridleyi 0.73 

Parartocarpus venenosa 0.75 
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Payena leerii 0.74 

Platea sp. 0.75 

Polyalthia hypoleuca 0.75 

Pouteria cf. malaccensis 0.76 

Santiria laevigata 0.73 

Shorea sp. 0.72 

Stemonurus scorpioides 0.74 

Sterculia sp. 0.76 

Syzygium cf. garcinifolia 0.75 

Syzygium cf. tawahense 0.70 

Syzygium curtisii 0.72 

Syzygium havilandii 0.72 

Syzygium sp. 0.73 

Tetramerista glabra 0.75 

Tristariopsis whiliana 0.75 

Xerospermum noronhianum 0.75 

Xylopia cf. malayana 0.73 

Xylopia fusca 0.79 
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Figure 4.10 Nutritional landscape as generated using random forest. The bottom right is a 

site wide view of the landscape, and the top left is a zoomed in view to facilitate visual 

differentiation of pixel colors. Red pixels indicate nutritional profiles likely to be avoided. 

Dark green indicates the most attractive nutritional profiles. Pixel values are recalculated 

as the cumulative nutrient intake of simulated individuals changes over time.  
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4.3.3 Simulation results 

 The memory model resulted in a higher proportional intake of protein relative to the 

perception model. The resulting mean 𝑁𝑝𝑒: 𝑃 from the perception model was 14.35, while the 

mean 𝑁𝑝𝑒: 𝑃 for the memory model was 13.42. Observed mean 𝑁𝑝𝑒: 𝑃 for the orangutans in 

May 2015 was 13.11. The perception model overestimated 𝑁𝑝𝑒 intake relative to the observed 

orangutan intake. MSE for the perception model was 4.53, while MSE for the memory model 

was 0.16. The results from the memory model are unexpectedly consistent with the observed 

values. The memory clearly outperforms the perception model, suggesting that memory may 

facilitate protein acquisition by orangutans. Figure 4.12 shows examples of the simulated 

trajectories from each model.



125 
 

 
 

 

 

 

Figure 4.12 Sample simulated trajectories from the memory and perception models. A shows three simulated tracks form the memory model. B shows three simulated tracks from 

the perception model. Different colors indicate different tracks. Each point had a randomly selected starting coordinate.  Tracks with similar starting locations were chosen for 

visualization purposes. Each track represents one 12-hour day of ranging. 
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4.4 Discussion and Conclusion 

4.4.1 Home range utilization 

 Each orangutan included in the home range analysis exhibited stable home range 

behavior. Interestingly, there was substantial interindividual variation in the utilization of that 

home range. Larger home ranges typically translated to further average daily travel as evidenced 

by GAMM, however more travel did not translate to faster home range crossing times. Instead, 

home range crossing time was a function of how directed or how tortuous their overall space use 

was as measured by the velocity autocorrelation time scale. The standard deviation in tortuosity 

was 21.5 minutes, with no significant relationship to sex. Tortuosity was also not predicted by 

home range size. There are several possible factors that, upon future study, could explain the 

variation in tortuosity. Social behavior and variation in age may account for some variation in 

tortuosity. Perhaps young individuals searching for consortships may increase their likelihood of 

encountering conspecifics, or perhaps adult males are forced to modulate their motion in 

response to one another. Differences in locomotor strategy could possible account for some 

tortuosity. Individuals constrained to the canopy may have markedly different movements than 

individuals locomoting on the ground, and there is evidence of a sex bias towards males having 

more prevalent ground-based travel (Ashbury et al, 2015). While this study did not collect this 

level of social behavior data, further thought is warranted on explaining the interindividual 

variation in tortuosity.  

4.4.2 Male-female differences in space use 

 Collecting data on male orangutan ranging is famously difficult (Buckley, 2014). 

Attaching GPS collars is not possible due to the orangutan’s throat sack. GPS data collection is 

therefore limited to using hand held GPS devices during focal animal follows. Furthermore, legal 
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restrictions on the ability to venture outside of study areas precludes following males when they 

leave site boundaries. Predicting when males will return to a study area is typically impossible. 

Few attempts at following males for prolonged periods of time have shown that male home 

ranges can be exceedingly large (e.g. Buckley, 2014). These constraints are true at Tuanan, 

resulting in very uneven sampling of males. For these reasons, all estimates of male home range 

size at Tuanan are likely underestimates due to sampling bias. Nevertheless, male utilization 

distributions at Tuanan are significantly larger than female utilization distributions. Males are 

also more likely to exhibit periodic patterns of space use within their home ranges.  

 Only two females exhibited periodicities in their mean location, with both females 

showing weak daily patterns of periodic space use. It is unclear why these two females are the 

only two exhibiting signs of daily periodic space use. They differ in both home-range size and 

age. Streisel is a young female with no offspring and a larger home-range, while Inul is a very 

old female that has had multiple offspring with a small home-range. No females showed 

evidence of monthly periodic behavior. All but one male showed evidence of periodic space use. 

There was substantial intermale variation in the time scale of the periodicities, with some males 

showing daily periods and others showing monthly periods. The intensity of the periodicities 

varied form as low as 15% variance explained to as high as 67% variance explained. There was 

no relationship to any movement parameters and the presence of periodicities. To the best of our 

knowledge, periodic space use in primates has not yet been studied, therefore ecological 

explanations for the presence of these periodicities are not yet obvious. There are a number of 

hypotheses that may explain some of this variation. Monthly periodicities could be explained by 

revisiting important renewable resources. If there is some food item that become available 

asynchronously, or renews on a monthly or lunar cycle, then monthly periodicities could indicate 
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both spatial and temporal knowledge of that resource. These periodicities may even indicate 

route-based search strategies or evidence or traplining and may aid future studies in examining 

how cognitive maps are encoded.  

An alternative explanation for the presence of monthly periodicities may be social. Given 

the near complete home range overlap of the males at Tuanan, monthly periodicities may be the 

result of intermale competition. It is even possible that the cyclical space use of males is 

coinciding with female cycling, and that males return to areas in anticipation of mating 

opportunities with females. Future research could try to reconcile periodic behavior of males 

with long call data or resource renewal to try to contextualize the presence of these periodicities.  

 Majority of the orangutans exhibited a circulation process of around 1.5 months. This 

means that individuals are passing through the same parts of their home range on about a 

monthly cycle. Flanged males exhibiting both periodicities in their mean location and a 

circulation process are likely shifting to a different part of their home range at the end of each 

circulation, potentially looping through their home range as they deplete resources. High 

resolution remote sensing can aid in monitoring home range wide resource depletion in future 

studies.  

Periodic patterns of orangutan space use seem to be a rich avenue of future research that 

will help us better understand the social and ecological drives of home range utilization.  

4.4.3 Home range overlap 

van Noordwijk et al., (2012) estimated female home ranges using traditional kernel 

density estimation and discussed female philopatry through the lens of home range overlap. 

AKDE utilization distributions indicate that the overlap of unrelated females was overestimated 
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by van Noordwick et al., (2012), and the overlap between related females was underestimated. 

Related females indeed exhibited a high degree of overlap between their utilization distributions, 

however GAMM revealed that within overlap zones there is substantial home range partitioning.  

van Noordwijk et al., (2012) characterize related females as associating significantly 

more often than unrelated females and engaging in social behavior frequently during 

associations. While their association times are higher than that of unrelated females, the total 

percentage of days and percentage of time spent in association were remarkably low. van 

Noordwijk et al., (2012) report that the percent of days with encounters between related females 

is ~3 percent, and the percent of time in association during encounters is ~2 percent. We 

maintain that this is highly asocial and is in concordance with the degree of space use 

partitioning revealed by GAMM. This may be a spatial strategy whereby orangutans mitigate 

risk, tolerating a minimal level of resource competition provided individuals share a matriline.  

The high degree of overlap between flanged male home ranges was unexpected. 

Orangutans have been classically portrayed as solitary, with a very loose and dispersed social 

structure in which there is only one resident flanged male (MacKinnon, 1974; Rijksen, 1978; 

Mitani, 1985, Galdikas, 1995). At Tuanan, it seems that several flanged males are range resident 

with nearly entirely overlapping ranges. Home range overlap amongst orangutans is thought to 

be higher at sites with higher population densities (Rijksen, 1978), and Tuanan has one of the 

highest known orangutan densities in Borneo (Husson et al., 2009). Anecdotally, there seems to 

be an impression amongst field researchers in Borneo that Tuanan and similar peat swamp sites 

are more productive, and able to support more orangutans than the dipterocarp dominated sites. 

Other more pessimistic field researchers seem to think the orangutan density at peat swamps is a 

function of habitat loss. In either case, Tuanan has a reputation for having a surprising flanged 
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male density, and males may be unable to avoid this degree of range overlap. Of the males 

included in this analysis, four of the seven have been observed at Tuanan since 2003/2004, with 

the others known since 2008 and 2012. These males not only overlap but have long overlapping 

tenures.  

4.4.4 Travel distance between food patches 

 GAMM indicated that movement is more autocorrelated, and therefore more directed, 

when individuals are traveling distances beyond their perceptual range towards food resources. 

Long movements such as these are relatively infrequent, however when they occur they the 

movement is persistent. This mode of motion towards a resource not directly visible to the 

individual, suggests an intentional trajectory towards a location based on prior information. 

Janson and Byrne (2007) originally suggested motion beyond the perceptual range as the 

criterion for differentiating memory from taxis. Our results suggest orangutans may exhibit 

multiple modes of movement behavior, whereby they make frequent uncorrelated trips between 

detectable resources, with interspersed trips to known locations far away.  

It is possible that relying on both local and non-local information is necessary for 

nutritional balancing. Orangutans may engage in short bouts of perceptual motion until they 

overshoot their macronutrient intake in protein or non-protein. They may then need to navigate 

towards a known resource that will return their cumulative nutrient intake to a target balance. 
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4.4.5 Nutritional mapping 

The first step to modeling nutritional balancing was to recreate the nutritional landscape 

experience by the orangutans. The workflow involved rapid tree sampling through remote 

sensing, and tree identification through random forest.  

Random forest prediction accuracy was between 70 and 83%. This level of predictive 

power is remarkable given the number of classes and the pixel-based approach implemented 

here. We would consider this level of error unacceptable for an empirical approach to modeling 

discrete choice, however since the approach here is to utilize simulation modeling, this level of 

accuracy is sufficient for approximating conditions at Tuanan. If 8 bands and ~2m resolution is 

enough to achieve >70% accuracy, then increasing the number of spectral bands and improving 

spatial resolution can improve model performance substantially. We plan to resample the site 

using drones, increasing the resolution to cm resolution. We also plan to increase the number of 

spectral bands when possible. Drone resolution data will be able to capture spectral variation at 

the level of fruit and leaves, and pick up subtle changes in height within tree crowns (Tang and 

Shao, 2015; Zhang, 2016). This can enable automated crown segmentation along with better 

prediction capabilities (Zagalikis et al., 2005; Smith et al., 2008; Seul et al., 2015). Improving 

our sampling to this extent will enable us to pursue an object-based classification approach, 

improving accuracy enough to pursue step selection and state space modeling.  

 

4.4.6 Simulation 

 Simulation results suggest that perception-based strategies result in higher 𝑁𝑝𝑒 

consumption relative to memory-based strategies. One explanation for this could be that foraging 
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decisions are restricted to relatively local information, thereby causing individuals to be more 

susceptible to environmental stochasticity. This could in turn cause mean 𝑁𝑝𝑒: 𝑃 to be closer to 

the average of the environment, and therefore inflate proportional 𝑁𝑝𝑒 intake. A strategy relying 

on prior, non-local information would enable individuals to buffer themselves from this by 

intentionally targeting resources not immediately available to them.  

 The perception model overestimated 𝑁𝑝𝑒 intake when comparing model performance to 

observed values. The memory model performed surprisingly well, replicating the mean 

orangutan 𝑁𝑝𝑒: 𝑃 nearly exactly. This suggests that memory may be an important mechanism 

enabling orangutans to maintain their target ratio of 𝑁𝑝𝑒: 𝑃. The memory model assumed 

complete information about the entire habitat, an implausible expectation that we are not 

imposing on orangutans. Instead, orangutans are likely switching between modes of behavior 

where foraging decisions are based on resources within the perceptual range, then targeting 

known resources when local options can’t facilitate nutritional balancing. This is evidenced by 

the high frequency of short, uncorrelated trips between resources, with rare long and 

autocorrelated trips present at the tail of the distribution of journey lengths (Figure 4.9).  

 The relationship between periodicities in space use and the evidence for a memory-based 

search strategy is an exciting topic for future research. Route based cognitive maps as well as 

temporal memory may result in periodicities in animal movement. Individuals could conceivably 

forage along a productive route, circling back at some characteristic timescale until nutritional 

balancing is no longer possible. They could then move to another set of foraging routes at some 

other known area within the home range, repeating this process. Clarifying the ecological context 

of periodic space use may enable us to address questions regarding cognitive maps and how 

information is encoded. Our simulation approach did not attempt to model how spatial memory 
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was encoded nor did it address temporal memory. Future studies may consider incorporating 

these elements into foraging models to better understand how they influence nutritional 

balancing.    

 While we simulated memory-based foraging on a nutritional landscape, it is important to note that 

individuals are not expected to be conscious of macronutrients as they forage. Individuals are most likely 

reacting to and remembering the food items themselves. Mechanistically, the spatial decisions behind 

macronutrient balancing are likely driven by something akin to cravings. An individual may satisfy its 

palate by feeding on a food rich in carbohydrates and lipids, causing it to reach an unbalanced 

macronutrient state, resulting in their subsequent craving to shift to an item rich in protein. There is some 

evidence that specific neuropeptides may control the intake of specific macronutrients, and that 

stimulating feeding and reward centers can cause molecular and neurochemical changes in the brain 

(Temple et al., 1998; Levine et al., 2003a; Levine et al. 2003b; Sharma et al., 2013). The degree to which 

neuropeptides affect macronutrient intake, and if they act on the same timescale as foraging decisions is 

an interesting avenue of future research. There is some literature on humans suggesting that the modern 

taste for non-protein energy evolved as a result of macronutrient availability in the past, whereby protein 

was highly available and non-protein was not (Speth and Spielmann, 1983; Cordain et al., 2000; Konner 

and Eaton, 2010; Kuipers et al., 2010; Raubenheimer et al., 2015). If this claim is supported, then it 

follows that orangutans may have had similar selection pressures resulting in their current target ratio of 

macronutrients. Neuropeptides may signal when to switch between food items, and memory-based 

navigation may have evolved to facilitate the acquisition of desired foods.  
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Chapter 5. Conclusion 

5.1 Summary and conclusions 

Generations of researchers have contributed to our understanding of animal foraging and 

decision making. For years, the consensus has been that animals are essentially input-output 

bound. They have a limited amount of energy to allocate to behavior and are limited in their 

ability to intake energy (Schoener 1971; Krebs 1974). Therefore, they are thought to follow 

economic decisions rules regarding energy management (Pyke, 1984). As the foraging literature 

matured, researchers stared asking more complicated questions, such as what do animals know 

and how do they use knowledge to make foraging decisions (Janson and Byrne, 2007). This line 

of questioning centered around animals’ mental representations of space, since research 

acquisition is fundamental to energy optimization (Tolman, 1948; Pyke et al., 1977; Byrne, 

1979; Bennett, 1996;  Milton, 2000; Janson, 2000). Empirical attempts to address these questions 

were still locked into an energy in-energy out framework, and often struggled to find empirical 

support for spatial memory in foraging (reviewed in Janson and Byrne, 2007; Zuberbühler and 

Janmaat, 2010). We now know, however, that a plant is not just a plant (Freeland and Janzen, 

1974; Glander, 1982; Cornell and Hawkins, 2003), and a calorie is not a just a calorie (Milton, 

1979; Simpson and Raubenheimer, 1993; Felton et al., 2009; Raubenheimer el at., 2009). 

Chapter two of this dissertation revisited our understanding of foraging goals, and 

explored whether nutrient balancing is a biologically relevant goal. Nutritional geometry metrics 

of foraging success (Simpson and Raubenheimer, 1995) were evaluated as against movement 

ecology metrics of directed behavior (Janson, 2000; Hill, 2006; Gurarie et al., 2009). First, 

simulation confirmed that the ratio of macronutrients consumed by orangutans could not be 

explained by chance. Then, examining variation in foraging success relative to variation in 
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spatial movement metrics revealed that orangutans modulate their spatial behavior in response to 

balancing macronutrients, and nutritional balancing was most successful when movement was 

goal oriented. This demonstrated that macronutrient balancing is a biologically meaningful goal 

influencing animal decision making, and definitions of foraging goals should be expanded to 

include nutritional balancing.  

Chapter three utilized isoclines as a novel method for evaluating the quality of food 

items. Isoclines revealed that food items with seemingly disparate nutritional profiles may 

actually be equivalent from the perspective of orangutans. Nutritional profiles were then 

analyzed against preference indices (Lechowicz, 1982), showing that patterns of food preference 

are significantly related to balancing macronutrients. Demonstrating that the animal’s own 

evaluation of resource value is linked to nutritional balancing gives further context and 

validation to the nutritional geometry framework. Additionally, the utility of isoclines for 

studying animal foraging is highlighted.    

Chapter four implemented a continuous space continuous time approach to characterizing 

orangutan home range utilization (Calabrese et al., 2016). General patterns of space use, 

including male-female differences in home range behavior were discussed. Periodicities in 

orangutan space use were identified and discussed, and possible ecological contexts for said 

periodicities were explored. Movement between food trees by orangutans showed increased 

directedness during trips exceeding the orangutan perceptual range, suggesting utilization of 

prior information to navigate. The role of memory in nutritional balancing was explored via 

simulation modeling. Parameterization of movement models were informed by ctmm estimated 

metrics. The model domain was generated using remotely sensed data and supervised machine 

learning techniques to recreate the nutritional landscape of Tuanan. Restricting foraging 
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decisions to the orangutans’ perceptual range resulted in overestimation of non-protein energy 

intake. Prior information of the entire model domain resulted in a macronutrient balance nearly 

identical to observed orangutan intake. Results form chapter four suggest that spatial memory 

may be an important biological mechanism facilitating macronutrient balancing. It is likely that 

orangutans are able to prioritize protein because they have some prior information or prior 

experience enabling them to effectively navigate to resources with the desired ratio of 

macronutrients.   

 

5.2 Future work 

 Future research is needed to clarify the ecological context of observed periodic patterns 

of orangutan space use. Periodic patterns of space use may provide clues into how information is 

encoded and may allow us to recognize signals of temporal memory. Understanding these 

relationships will enable future studies to model their effect on nutritional balancing. 

 Future improvements on nutritional mapping are necessary to take an empirical approach 

to studying memory and nutritional balancing. The methods used in this dissertation were 

appropriate for generating a simulation domain, however the prediction error and spatial 

resolution were not sufficient for an empirical approach. Utilizing drones and hyperspectral 

cameras would provide the resolution necessary to improve prediction accuracy, and to take an 

object based approach to tree classification (Zagalikis et al., 2005; Smith et al., 2008; Seul et al., 

2015;Tang and Shao, 2015; Zhang, 2016). With a more reliable nutritional map, step selection 

functions can be utilized to empirically understand the drivers of orangutan travel routes, with 

the possibility of controlling for structural constraints on travel.  



145 
 

 
 

 Finally, most work on nutrition and foraging, including this dissertation, have focused 

almost exclusively on macronutrient intake (i.e. Lee et al., 2002; Felton et al., 2009; Rothman et 

al., 2011; Martinez-Cordero et al., 2012; Simpson & Raubenheimer, 2012; Erlenbach et al., 

2014; Solon-Beit et al., 2015; Felton et al., 2016). The human literature has recently made 

interesting advances on the role and importance of micronutrients to survival and health, 

identifying physiological and metabolic mechanisms that conserve micronutrient related 

processes (Ames, 2006; Hänsch and Mendel, 2009; McCann and Ames, 2009; Ames, 2010a; 

Ames, 2010b; McCann and Ames, 2011). If these mechanisms are important enough for triage 

mechanisms to have evolved, then micronutrient acquisition may be an important factor 

influencing decision making strategies. Currently, micronutrient work on non-human primates 

has been largely limited to the consequences of zinc and iron restriction on captive rhesus 

macaques, showing measurable differences in development and behavior (Golub et al., 2000; 

Golub et al., 2006a; Golub et al., 2006b; Golub et al., 2009; Golub, 2010; Golub and Hogrefe, 

2014). Other notable studies include sodium acquisition by gorillas (Rothman et al, 2006), and 

copper intake by redtail monkeys (Rode et al., 2006). These studies open the door for examining 

the evolutionary implications of micronutrients on foraging behavior. Putting micronutrients in 

an ecological context, studying their relationship to macronutrients, and understanding their 

influence on the decision-making strategies is an exciting avenue for future research. Just as 

expanding our understanding of foraging goals has been a theme of this dissertation, perhaps 

future work will further expand how we define goals to include micronutrients.  

 

5.3 Conclusion 
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 In summary, the work culminating from this dissertation provides compelling evidence 

that orangutan spatial decisions are related to macronutrient balancing, and that prior information 

is utilized to achieve this. The nature of foraging goals is clearly more nuanced than previously 

assumed, and an individual’s evaluation of a goal can change depending on immediate 

physiological demands. Proportional macronutrient intake should not be dismissed as 

phenomenological noise, and should be considered in studies of cognition and space use.   
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