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Abstract of the Thesis 
 

Implementation of an Advanced Control strategy into a Continuous  

Direct Compaction Pharmaceutical tablet manufacturing process 

 

By APARAJITH BHASKAR 

 

Thesis Director: 

Ravendra Singh 

In the context of the pharmaceutical manufacturing, a recent momentum has developed in using 

continuous manufacturing lines as opposed to conventional batch manufacturing systems. 

Processes that are continuous in nature traditionally have been adapting process systems 

engineering (PSE) tools to assist in their quality management process.  The pharmaceutical 

industry, which has been newly initiated into the domain of continuous manufacturing, presents 

new and challenging problems within the PSE domain. The primary reason for these challenges 

is the particulate nature of the raw materials. The design, development and implementation of 

control systems in such an environment lacks a comprehensive literature base. This work 

attempts to fill in this void through an exploration of control schemes that can be implemented 

into a Direct Compaction (DC) continuous manufacturing line. Focus was given to model 

predictive control (MPC) systems due to their expected augmented performance in comparison 

to the classical Proportional Integral Derivative (PID) controller. Multiple control strategies were 

developed in the domain of tablet compaction. A key result was the development and 

implementation of a multi input multi output (MIMO) MPC that was capable of controlling 

tablet weight and compression force simultaneously under the assumption that real time tablet 

weight data was available.  
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Building upon this Model Predictive Control scheme, an optimization algorithm that was adapted 

from a previous simulation based study was modified for implementation into the DC 

manufacturing line. The methodology for its implementation along with some key experimental 

results is presented here. Here, the demand was a user input to the optimization. The output of 

this calculation was the production rate set point which was relayed to the MPC. The actual 

value of the production rate is treated as a disturbance variable. Main compression force was 

monitored and controlled during various demand scenarios to give an indication of tablet quality. 

Finally, a Residence Time Distribution (RTD) based control system was implemented insilico 

for proof of concept. The RTD of a system can be used to predict outlet parameters if input 

parameters are known. This was used to predict the concentration of the active pharmaceutical 

ingredient (API) in tablets at the outlet of the compaction process. This information was used to 

develop a rejection system that would divert tablets that violate specified tolerance limits.



iv 

 

Acknowledgements 
 

I would like to thank Dr. Ravendra Singh for giving me the opportunity to work in his research 

group. I thank him for his constant guidance and support through the course of my Master’s 

program. His guidance was truly valuable and his patience was one that kept us all on the ground 

without panicking. I would also like to thank my thesis defense committee members Dr. Rohit 

Ramachandran and Dr. Shishir Chundawat. 

I would also like to thank the FDA and Rutgers research council for their financial support in the 

work done in this thesis. I would like to acknowledge the Engineering Research Center for 

Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical 

Engineering, Rutgers University, NJ, USA, for providing support and giving me a hands on 

experience on the various pharmaceutical unit operations and software mentioned in my thesis. 

I would like to give thanks to Fernando Nunes De Barros with whom I have spent a significant 

amount of time working on projects. I do believe this work was made possible with his 

contributions. It was great collaborating with Matthew Billups, Rahul Ramakrishnan, Yash 

Malkeri, Atul Rewari and Disha Patel who are all part of the research group. 

Lastly, but definitely not the least, I would like to thank my parents, my friends and everyone 

else around that provided support. Being in the US and working in a research program like this 

has been a privilege and I’m indebted to all the people that made this happen.  

 

 

 



v 

 

Table of Contents 

Abstract of the Thesis ................................................................................................................................. ii 

Acknowledgements .................................................................................................................................... iv 

List of Figures ............................................................................................................................................ vii 

List of Tables .............................................................................................................................................. ix 

Chapter 1 Introduction ............................................................................................................................... 1 

1.1 Literature Review .............................................................................................................................. 1 

1.2 Objectives ........................................................................................................................................... 5 

1.3 Overview of thesis ............................................................................................................................. 5 

Chapter 2 Background ............................................................................................................................... 7 

2.1 Continuous Direct Compaction solid oral dosage manufacturing process .................................. 7 

2.2 Feedback Control ............................................................................................................................ 11 

2.3 Model Predictive Control ............................................................................................................... 13 

Chapter 3: Implementation of a model predictive control system into continuous tablet compaction 

process ........................................................................................................................................................ 16 

3.1 Direct compaction continuous manufacturing process ............................................................... 16 

3.2 Materials and methods ................................................................................................................... 17 

3.3 Hardware and software integration .............................................................................................. 17 

3.4 Real Time tablet weight measurement:......................................................................................... 19 

3.5 Open loop response analysis and identification of control loops ................................................ 21 

3.6 Step response analysis ..................................................................................................................... 22 

3.7 Sensitivity Analysis ......................................................................................................................... 23 

3.8 Overview of developed flexible control system ............................................................................. 24 

3.9 Advanced model predictive cascade MIMO control system ....................................................... 25 

3.10 Implementation of advanced model predictive control system into continuous 

pharmaceutical manufacturing pilot-plant ........................................................................................ 26 

3.11 Development and tuning of advanced model predictive controller (MPC) ............................. 28 

3.12 Development, implementation and tuning of PID controller .................................................... 35 

3.13 Closed loop performance evaluation ........................................................................................... 37 

3.14 Results and discussions ................................................................................................................. 38 

Chapter 4 Residence time distribution (RTD) based diversion system for continuous 

pharmaceutical manufacturing process .................................................................................................. 46 

4.1 Drug concentration based real time diversion strategy ............................................................... 46 

4.2 Residence Time Distribution (RTD) model .................................................................................. 48 

4.3 Strategies for real time assurance of tablet drug concentration ................................................. 50 



vi 

 

4.4 Systematic framework for design, evaluation and implementation of RTD based diversion 

system ..................................................................................................................................................... 55 

4.5 Insilico design of RTD based diversion system............................................................................. 58 

4.6 Results and discussion .................................................................................................................... 61 

Chapter 5: Integrated scheduled optimization and model predictive control implementation into 

continuous direct compaction line ........................................................................................................... 79 

5.1  Materials and methods .................................................................................................................. 79 

5.2 Hardware and software integration .............................................................................................. 79 

5.3 Integrated Moving horizon based optimization and model predictive controller 

implementation. ..................................................................................................................................... 81 

5.4 Results and discussion .................................................................................................................... 85 

Chapter 6: Conclusions and Future perspectives ................................................................................ 101 

References ................................................................................................................................................ 105 

 

 

  



vii 

 

List of Figures 
 

Figure 2.1. Schematic of continuous direct compaction (DC) tablet manufacturing process situated at 

Rutgers University, NJ, USA ...................................................................................................................... 11 

Figure 2.2. Graphical representation of Model Predictive control (Singh et al. 2013) .............................. 15 

Figure 3.1. Integration of control hardware and software for tablet press automation and control (Bhaskar 

et al., 2017). ................................................................................................................................................ 18 
Figure 3.2. Implementation of a developed systematic methodology for real-time monitoring of tablet 

weight (Bhaskar et al., 2017). ..................................................................................................................... 20 
Figure 3.3. Feedback superstructure for tablet press control (Bhaskar et al., 2017). ................................. 22 
Figure 3. 4. Open loop response of tablet compaction process (MCH: Main compression height) (Bhaskar 

et al., 2017). ................................................................................................................................................ 23 
Figure 3.5. Sensitivity analysis for main compression force (Bhaskar et al., 2017). ................................. 24 
Figure 3.6. Advanced multi input multi output model predictive control strategy (Bhaskar et al., 2017). 26 
Figure 3. 7. Implementation of an advanced model predictive control system into continuous 

pharmaceutical manufacturing pilot-plant (MPC: model predictive controller, AI: analog input, AO: 

analog output, SCLR: scale-up/down, BKCAL: back-calculation, PCF: pre compression force, MCF: 

main compression force, FD: fill depth, MCH: main compression height) (Bhaskar et al., 2017). ........... 27 
Figure 3.8. Main compression force open loop response for MPC model development (Bhaskar et al., 

2017). .......................................................................................................................................................... 29 
Figure 3.9. Pre compression force open loop response for MPC model development (Bhaskar et al., 

2017). .......................................................................................................................................................... 31 
Figure 3.10. Multi inputs multi outputs MPC Model Generation (Bhaskar et al., 2017). ......................... 32 
Figure 3.11. Model verification (control mode 2) (Bhaskar et al., 2017). ................................................. 34 
Figure 3. 12. PID controller tuning for main compression force control (control mode 1) (Bhaskar et al., 

2017). .......................................................................................................................................................... 36 
Figure 3. 13. Closed loop response of main compression force (MCF). (a) inbuilt control strategy, (b) 

external PID controller, (c) advanced model predictive controller (MPC). (Bhaskar et al., 2017). ........... 38 
Figure 3. 14. MCF closed loop response analysis (control mode 1) (Bhaskar et al., 2017). ..................... 40 
Figure 3. 15. PCF controller closed loop response (control mode 2) (Bhaskar et al., 2017). .................... 41 
Figure 3. 16. Open loop response of pre and main compression force. MCH: Main compression height 

(Bhaskar et al., 2017). ................................................................................................................................. 42 
Figure 3. 17. Closed loop response of pre and main compression forces (2x2 MPC closed loop response) 

(Bhaskar et al., 2017). ................................................................................................................................. 43 
Figure 3. 18. Real-time table weight measurements (Bhaskar et al., 2017). .............................................. 44 
Figure 3. 19. Closed loop response of tablet weight supervisory control loop (Bhaskar et al., 2017). ...... 45 
Figure 4.1. Overview of drug concentration based real time diversion strategy. G: Good tablet, B: Bad 

tablet ............................................................................................................................................................ 48 

Figure 4.2. Real time diversion of pharmaceutical tablets. 0: Accept, 1: Reject ....................................... 51 

Figure 4.3.  Fixed window based tablet diversion system ......................................................................... 53 

Figure 4.4. RTD based tablet diversion system ......................................................................................... 55 

Figure 4.5. Framework for implementation of RTD based control............................................................ 58 



viii 

 

Figure 4.6.  Comparison of FIR response and convolution integral .......................................................... 60 

Figure 4.7. Fluctuation in API concentration (a) High magnitude (b) Low magnitude ............................. 64 

Figure 4.8. Negative pulse disturbance (a) High magnitude (b) Low magnitude ...................................... 66 

Figure 4.9. Step disturbance (a) Step up (b) Step down ............................................................................. 69 

Figure 4.10. Short positive offset in concentration (a) High magnitude (b) Low magnitude .................... 72 

Figure 4.11. Short negative offset in concentration (a) High magnitude (b) Low magnitude ................... 74 

Figure 4.12. RTD based control simulated for a noisy input concentration data. ...................................... 75 

Figure 4.13. Performance assessment of RTD based control with different RTD models. ....................... 77 

Figure 5. 1. Hardware and software integration ......................................................................................... 81 

Figure 5.2. Schematic representation of Model predictive control strategy with disturbance handling 

capacity and supervisory optimization. ....................................................................................................... 84 

Figure 5.3. Real time optimization of demand. .......................................................................................... 87 

Figure 5.4. Real time optimization of direct compaction line without a controller and rejection 

considerations. ............................................................................................................................................ 88 

Figure 5.5. Real time optimization of direct compaction line with rejection considerations and without a 

controller. .................................................................................................................................................... 90 

Figure 5.6. Main compression force open loop response for MPC model development with step changes 

in production rate and fill depth. ................................................................................................................. 92 

Figure 5.7. Closed loop response for MPC to control main compression force using fill depth. .............. 93 

Figure 5.8. Main compression force open loop response for MPC model development with step changes 

in production rate and main compression height. (CF-Compression Force, MCH – Main Compression 

Height, PR – Production rate) ..................................................................................................................... 95 

Figure 5.9. Main compression force MPC implementation. ...................................................................... 96 

Figure 5.10.  Closed loop response for MPC to control main compression force using main compression 

height. ......................................................................................................................................................... 97 

Figure 5. 11. Real time optimization of direct compaction line with MPC. .............................................. 99 

Figure 5.12. Performance evaluation of real time optimization and MPC controller. 100 

  



ix 

 

List of Tables 
 

Table 3.1. Key tablet press parameters. ...................................................................................................... 17 

Table 3. 2 Different options to control the tablet press. A feasible pairing is denoted by ‘X’. .................. 21 

Table 3.3. Summary of control modes. ...................................................................................................... 25 

Table 3.4. MPC model parameters (Bhaskar et al., 2017). ........................................................................ 30 

Table 3.5. MPC tuning parameters. ............................................................................................................ 35 

Table 3.6. MCF control algorithms analysis. ............................................................................................. 40 

Table 4.1. Manufacturing efficiencies of Case studies 1-5 ........................................................................ 77 
Table 5.1. Rejection fraction ...................................................................................................................... 89 

Table 5.2. Performance metrics for MCH based MCF controller .............................................................. 97 

 



1 

 

 

 

Chapter 1 Introduction 
 

1.1 Literature Review 

Traditionally, pharmaceutical products involving solid dosages forms have been manufactured 

through batch processes. The varied levels of complexity arising from material handling, product 

quality, process understanding etc. inhibited the fast adoption of new technologies in the 

pharmaceutical industry and therefore, continuous manufacturing which was adapted by other 

industries, took a back seat here. But in recent times, a significant amount of momentum has 

accumulated that is thrusting forward the continuous manufacturing paradigm (Leuenberger 

2001; Lee et al. 2015). An effort in facilitating this has been undertaken in terms of the research 

required to develop an understanding of the challenges and possible solutions to the variety of 

new research problems in manufacturing. A big facet to this is the development of process 

systems engineering (PSE) methods and tools, which includes modelling, control and 

optimization of the manufacturing plant. This work focuses on the control and optimization 

aspects of process systems engineering in continuous pharmaceutical manufacturing. 

The direct compaction (DC) route is the simplest and most economical manufacturing process 

(Meeus 2011).  The wet granulation (WG) process is preferred when granulation of materials is 

needed before compaction. The roller compaction (RC) route, also known as the dry granulation 

process, is used when granulation of water sensitive material is needed. Among these 

manufacturing options, the DC route is becoming more popular for continuous pharmaceutical 

manufacturing. Due to the embryonic state of work in the area of control, the DC route was 

chosen to test the developed control schemes. A manufacturing plant of this kind is available at 

Rutgers University, USA that is integrated and connected to multiple control platforms. The 
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details of this are given in the Background section [2.1] of the thesis. Critical quality attributes 

that are of importance in this process are the tablet weight, potency and tensile strength or 

breaking force. These parameters directly influence the characteristics of the tablets dissolution 

properties and thus, warrant a control system that can constrain them in the case of an offset in 

the parameters beyond a predefined threshold. 

The development and implementation of control methodologies in pharmaceutical industries, 

especially in solid oral dosage forms, is still a developing field. This makes it an exciting 

research area (Muzzio et al. 2013). Extensive work has been done to design and develop the 

control system for continuous pharmaceutical manufacturing process in last decade using insilico 

studies. There has been some limited demonstration of model predictive control methods for 

granulation systems  (Gatzke et al. 2001). Model based control schemes that systematically 

address problems arising from product quality specifications are addressed in Pottmann et al. 

2000. Studies have been done on developing enhanced process design and control of a multiple-

input multiple-output (MIMO) granulation process (Ramachandran et al. 2012). There has been 

some prior work on modelling the granulation process which provides insight into improved 

control and design including measurement selection (Sanders et al. 2009) . An efficient plant-

wide control strategy for an integrated continuous pharmaceutical tablet manufacturing process 

via roller compaction has been designed in silico (Singh et al. 2012). A control system for wet 

granulation process has been also developed (Singh et al. 2014). There have been studies 

showing comparisons between PID and MPC control schemes, illustrating potential of a hybrid 

control scheme in improving pharmaceutical manufacturing operations (Singh et al. 2013). A 

validated model and multi input multi output (MIMO) control system has been developed for 

tablet press (Nunes de Barros et al. 2017). A combined feed forward/feedback control strategy 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/dosage-forms
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using both PID and MPC control algorithms has been also developed for direct compaction tablet 

manufacturing process (Singh et al. 2015; Haas et al. 2017).  

Some efforts have been also made for implementation of the control strategy into continuous 

pharmaceutical tablet manufacturing pilot-plant. A systematic framework for the onsite design 

and implementation of the control system in continuous tablet manufacturing process has been 

developed (Singh et al. 2014). An advanced hybrid MPC–PID control architecture coupled with 

real time inline/online monitoring tools and principal components analysis (PCA) based 

additional supervisory control layer has been implemented into a continuous direct compaction 

tablet manufacturing process with focus on drug concentration assurance (Singh et al. 2014). The 

real time monitoring and control of powder level in transfer pipe (chute) has been practically 

demonstrated using advanced model predictive control system (Singh 2017). Advanced model 

predictive control system has been also implemented into the tablet press unit operation of 

continuous pharmaceutical manufacturing process (Bhaskar et al. 2017). End-to-end continuous 

pharmaceutical manufacturing  was investigated taking in considerations for model predictive 

control that can implemented for control of critical quality attributes (Mesbah et al. 2017). The 

theory on model predictive control itself has been extended greatly and reviewed extensively in 

the literature (Mayne 2014). There has been a significant advancements in both nonlinear and 

linear commercially available controllers (Qin et al. 2003). In this thesis, model predictive 

control (MPC) strategy as well as PID have been implemented into a tablet press unit operation 

of direct compaction tablet manufacturing pilot-plant. The performance of MPC and PID have 

been evaluated and compared(Bhaskar et al. 2017). 

Post development of a control system, in some circumstances due to varying market demand 

there may be a lower requirement or higher requirement of product. This fluctuation can result in 
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a need for modified operating regimes of a continuous line. Typically, these operating regimes 

are determined by an optimization algorithm that maximizes a metric through modifications in 

the process. This thesis undertakes the problem of optimizing the production rate to meet market 

demand while supervising any model predictive controller that has been implemented in the 

direct compaction line. Prior literature on this includes the investigation of an optimal dynamic 

operation of a continuous process for the production of a pharmaceutical product (Shoham et al. 

2017). Some case studies are presented to demonstrate the effectiveness of the proposed 

approach (Sahlodin et al. 2015). The most significant theme running through the implementation 

hurdles encountered though was the lack of information available to the model (Powell et al. 

2002). At Rutgers, a moving horizon-based real-time optimization (MH-RTO) which was 

integrated with a hybrid model predictive control (MPC) system for a continuous tablet 

manufacturing process for quality by design (QbD)-based efficient continuous manufacturing 

was developed (Singh et al. 2015). This work has been adapted and further developed upon in 

this thesis with focus on its implementation into the direct compaction continuous 

pharmaceutical tablet manufacturing process. 

Still, there are circumstances where batch manufacturing persists. In this situation product is 

tested in between unit operations and if it is out of spec then entire batches maybe discarded. To 

prevent this, an open loop continuous manufacturing strategy with essential diversion strategies 

maybe installed.  Ideally, a diversion strategy would simply divert product if it were out of spec 

and allow material to flow through if it were within spec. This determination/prediction of 

whether a material can be qualified for further processing is another challenging area of work. 

This is a topic still that is still being explored and being debated within the research and 
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industrial communities. There is not much prior work done in this area some of the details of this 

are given in the background section. 

1.2 Objectives 
 

This study was carried out with an objective of developing an understanding of the challenges 

involved in implementing advanced control strategies in the direct compaction continuous 

manufacturing system. There has been no attempt made in the past to improve upon existing 

control strategies inbuilt in the traditional tablet presses to the best of the author’s knowledge. 

This work attempts to contribute to this space. Importance has been given to developing a 

holistic control system in a theoretical manner, and implementing sections of this control system. 

This work made used of the continuous direct compaction line available in ERC-SOPS, Rutgers, 

USA. The main objectives can be listed as follows: 

1. In depth study of challenges involved in implementing control strategies into the 

pharmaceutical manufacturing system. 

2. Implementation of a model predictive control (MPC) system into the tablet press unit 

operation of continuous tablet manufacturing pilot-plant. 

3.  Insilico design and development of a pharmaceutical tablet diversion system that can 

assure drug concentration under control mode failures. 

4. Implementation of an optimization algorithm into the continuous direct compaction line 

to produce tablets efficiently under varying demand changes.  

1.3 Overview of thesis 

A brief overview of the rest of chapters is provided here to assist the reader. 
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Chapter 2 provides a brief background to all the various aspects of the pharmaceutical industry 

that are covered in this thesis. Focus has been given to the continuous direct compaction tablet 

manufacturing route. Brief reviews on feedback control and model predictive control has also 

been provided that directs readers appropriately for more information regarding these. 

In Chapter 3, an in-depth documentation of the work done in implementation of a control 

strategy that uses the Model predictive control algorithm is presented. The details of all 

experiments have been elaborated on. This chapter also presents the novel methodology for 

model development that was used along with a new method for real time weight measurement. 

An attempt was made to accomplish objectives 1 and 2 in this chapter. 

Chapter 4 develops the theory through insilico studies with regards to the implementation of 

Residence Time Based control. This work is focused on the implementation for a tablet 

compaction unit in the direct compaction route. Objective 3 has been accomplished in this 

chapter. 

In lieu of the objective that requires the implementation of an optimizations strategy (objective 

4), chapter 5 adapts previously published work to develop a ground for implementation of a real 

time optimization strategy for the direct compaction manufacturing line. Finally, the concluding 

remarks from all the works done and a way forward into the future work in given in chapter 6. 
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Chapter 2 Background 

2.1 Continuous Direct Compaction solid oral dosage manufacturing process 

The shift in manufacturing from batch to continuous that has been initiated is guided by the 

regulatory constraints imposed by the FDA. This was done to encourage early adaptation of new 

technological advances, facilitate industry application of model quality management techniques, 

implementation of risk based approaches, ensure regulatory policies are based on state-of-the-art 

science, and enhance the consistency and coordination of drug quality regulatory policies. The 

International Conference on Harmonization (ICH) implemented a trio of quality guidance: Q8 

(R2), Q9, and Q10 (FDA 2009a; FDA 2009b) which introduced valuable concepts such as 

Quality by Design (QbD), Quality by Control (QbC) and Real Time Release Testing (RTRT). 

There is a need to contribute to the literature to expand knowledge so as to facilitate 

implementation of such new regulatory ideas through efficient manufacturing strategies. This 

thesis focuses on contributing to this space through research centered on tablets produced via the 

direct compaction route. 

Before getting into the details of direct compaction itself it may be important to note that tablet 

production can take place in three different ways: wet granulation, dry granulation and direct 

compaction. In each of these processes the intermediate product- mixed powder or granules, is 

compacted through a rotary tablet press to produce a finished uncoated tablet. Direct compaction 

is deemed the simplest and the most economical of the three for a variety of reasons. The 

simplest reason is that it contains the fewest process stages- weighing, blending and compaction, 

leading to a shorter process cycle and faster production times (Augsburger et al. 2002). 
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In some cases, an additional coating can be applied to the finished tablets and capsules, but this 

is an option not a necessity. In most cases, the direct compaction process consists of a feeding 

element, followed by milling. The product from these unit operations is continuously fed into a 

blender which in turn supplies the tablet press with powder. The finished compacted powder is 

then sent for coating which to the best of the author’s knowledge is still being done in a batch or 

semi-batch processes across the industry. 

Prior work has been done in developing control strategies for the direct compaction process but 

this thesis revisits some of these strategies from a more mechanistic perspective. The focus has 

been given to the tablet compaction process itself.  

Tablet compaction takes place through a systematic series of steps. At the start of this process, 

the powder is fed into a rotary tablet press through a mechanical chute. The material then enters a 

feed frame where rotating blades fill powder into the dies one by one. An increase or decrease in 

the feed frame speed can change the instantaneous density through consolidation or can decrease 

the instantaneous density by fluidization depending on the speed and material properties. 

Another important parameter is the filling depth. This defines the total volume of powder that 

will be filled at this stage through an adjustable height. An increase in this parameter is 

essentially an increase in the depth to which powder can be filled thus, increasing the volume of 

powder that is filled and subsequently the weight. The powder, once filled in the dies has the 

excess removed by a scraper.  Thus, at this stage the weight of the tablet is defined, assuming 

that there are no defects in the tablet. 



9 

 

 

 

After this, the powder goes through two compression stages, the pre compression stage and the 

main compression stage. With respect to both stages, the mechanics of this is such that two 

rotating drums on the top and bottom can be adjusted in terms of the spacing between them. The 

drum at the bottom can be moved vertically in order to change the spacing, while the upper drum 

is kept stationary. At their respective stations, the spacing between the two drums determines the 

final height that the powder will be compacted to. The two parameters that can be adjusted are 

the pre compression height and the main compression height. When the dies come in contact 

with the drums during rotation the top die presses down towards the bottom one thus, generating 

a compaction. The force the upper die experiences during this process is essentially the 

compression force data that can be extracted from the press and used for control. The pre 

compression force station is necessary as it reduces phenomena such as capping, increases the 

dwell time and also causes de-aeration of the powder. The main compression force station is 

where the actual compaction takes place. For a certain fill depth, a decrease in main and pre 

compression height increases the force the upper drum experiences. Subsequently, this also 

increases the breaking force and density of the tablets. Further details of the tablet compression 

process can be found in Järvinen et al. (2013) and Augsburger et al. (2002). 

2.1.1 Continuous Tablet Manufacturing Process and Pilot Plant at Rutgers University 

The experiments that are referred to in this thesis were conducted in the continuous direct 

compaction tablet manufacturing pilot-plant that has been installed at ERC-SOPS, Rutgers 

University, USA. The schematic of the continuous direct compaction pharmaceutical 

manufacturing process is shown in Figure 2.1. The construction of the plant uses three levels to 

take advantage of gravity for material flow purposes. The top level is designated to powder 
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feeding and storage, while the middle layer is assigned to the task of de-lumping and blending, 

the bottom floor is used for compaction. Each level spans an area of 10 × 10 feet. The equipment 

present in the lab includes three gravimetric feeders with the capability of expansion. Following 

the feeders, a co-mill is integrated for de-lumping the powders as mentioned before and creating 

contact between the components. The lubricant feeder is added after the co-mill in order to 

prevent over lubrication of the formulation in the co-mill. All these streams are then connected to 

a continuous blender to create a homogeneous mixture of all ingredients. The exit stream from 

the blender is fed to the tablet press via a rotary feed frame. The powder blend fills a die, which 

is subsequently compressed in order to create a tablet. This plant is modular in nature, thus, 

enabling the use of equipment in different combinations specific to the required experiments. 
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Figure 2.1. Schematic of continuous direct compaction (DC) tablet manufacturing process 

situated at Rutgers University, NJ, USA 

 

The DC process has been intensively studied and schematic has been previouly reported in 

several scientific literatures by C-SOPS researcher (e.g. Boukouvala et al. 2012) 

2.2 Feedback Control 

In recent years, the performance requirements for process plants have become increasingly 

difficult to satisfy. Stronger competition, tougher environmental and safety regulations, and 
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rapidly changing economic conditions have been key factors in tightening product quality 

specifications. A further complication is that model plants have become more difficult to operate 

because of the trend toward complex and highly integrated processes. For such plants, it is 

difficult to prevent disturbances from propagating from one unit to other interconnected units. 

In view of increased emphasis placed on safe, efficient plant operating, it is only natural that the 

subject of process control has become increasingly important in recent years. This increase in 

interest in the domain of control is even more recent in the pharmaceutical industry since its shift 

from batch to continuous manufacturing. 

Feedback control essentially involves three things; sensing of data from controlled variables in 

the plant, a correlation between these parameters and their respective manipulated variable and a 

controller that efficiently manages this information. Historically, Proportional (P), Integral (I) 

and Derivative (D) controllers were used to constrain variables in manufacturing plants. A 

combination of these controllers in one is called a PID controller. Due to this combinatorial 

nature, PID controllers have large amounts of flexibility and are far more efficient in comparison 

with their individual entities. 

A PID controller is relatively simple to implement and tune. These controllers are 

computationally inexpensive, based on the difference between the set point values and actual 

values of the controlled variables. A PID controller is inherently unconstrained and restricted to 

single input and single output systems. In the case that there are multiple variables that require 

manipulation, multiple PID controllers are required to be applied. 
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This thesis uses a PID control to compare its performance with a Model Predictive Controller 

(MPC) for the tablet press unit operation in the continuous direct compaction pharmaceutical 

tablet manufacturing process. 

2.3 Model Predictive Control 

Since the early 70s, various techniques have been developed for the design of model based 

control systems for robust multivariable control of industrial unit processes. Predictive control 

was pioneered simultaneously by Richalet et al. (1976) and Cutler et al. (1979). The first 

implemented algorithms and successful application were reported in the references papers. Since 

then, Model predictive control technology has evolved from a basic multivariable process control 

technology that enables operation of processes within well-defined operating constraints. The 

main reasons for acceptance of MPC technology by the process industry since 1985 are- MPC is 

a model based controller design procedure, which can easily handle processes with large time-

delays, non-minimum phases, process interaction, multivariable systems and unstable processes. 

Currently, the increasing interest in process systems engineering in the pharmaceutical industry 

raises questions about applicability of this advanced control strategy. A lack of extensive 

research in this area makes it an exciting and challenging area to work in.  

Model predictive control is essentially an optimization based controller. It also consists of the 

manipulated variable and the controlled variable like the PID. Additionally, to this, it is also 

possible to feed into the model predictive controller the disturbances in the process if they are 

measured or if they have been externally modelled. These variables are called disturbances 

variables. The controller uses a model of the process in the process of optimization. The 

development of this model is an important step in using model predictive control and is part of 
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the tuning procedure. Industrial model predictive controllers normally have within them 

toolboxes that perform step changes on the plant to use the acquired data to develop empirical 

models. The structure of these models can change if the systems dynamics are accurately 

captured.  

Once a model is in place, the current state of the manipulated variables is fed to this model as an 

input. The outputs of the model are the current and future states of the controlled variables. The 

predicted output trajectory is compared with the required set points. The difference between 

these two trajectories is minimized through calculation of a new trajectory for the manipulated 

variables (predicted control input) in each time instant. The first value of this calculated 

trajectory is sent into the plant. This process of predicting the controlled variable trajectory, 

optimization of the difference between the set point and current values is repeated at each time 

step. Figure 2.2 gives a brief graphical illustration of these trajectories where the measured 

output gives the current state of the controlled variable. The requirement to run such an 

optimization in each time step creates a layer of complexity that is dependent on the type of 

model used. A nonlinear model may not be easily optimized. This point raises concerns in the 

industry due to difficulties that may arise in actual application. All models used in this thesis are 

however, linear and time invariant.  
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Figure 2.2. Graphical representation of Model Predictive control (Singh et al. 2013)  

Reprinted with permission from Singh, R., et al. (2013). System-wide hybrid MPC–PID control 

of a continuous pharmaceutical tablet manufacturing process via direct compaction. Eur J 

Pharm Biopharm. 85:1164–1182. Copyright Elsevier. 

 

Additionally, this thesis makes uses of a Model predictive controller on a variety of strategies. 

Work has been done to show the relevance of its advantages in the pharmaceutical industry and 

the improved efficiency it provides. In Chapter 3, the focus is primarily on developing the 

reasons for use of MPC in a pharmaceutical manufacturing line. This idea is furthered and 

developed upon in Chapter 5 where it is applied in an augmented capacity and supervised by an 

optimization that was externally run.  
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Chapter 3: Implementation of a model predictive control system 

into continuous tablet compaction process 
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3.1 Direct compaction continuous manufacturing process 

A brief description of the continuous pharmaceutical tablet manufacturing pilot-plant has been 

given in Section 2.1.1. This work is focused around tablet compaction unit operation. A detailed 

explanation of the compaction process has been provided in Section 2.1. For the compaction 

experiments in this chapter, API, excipient and lubricant were pre-blended using a batch blender 

before being manually fed into the tablet press hopper. The single sided rotary tablet press has 

been used in the experiments. Tablet press parameters were monitored and controlled in DeltaV 

(Emerson) through OPC connection. The key parameters are highlighted in Table 3.1. Circular 

tablet punches with a diameter of 12 mm were used. Tablets were collected in a container placed 

on a catch scale in order to monitor the tablet weight in real-time. 

  

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/excipient
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#tbl0005
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   Table 3.1. Key tablet press parameters. 

Parameter Availability Value 

Production rate Set point & actual 8000–20,000 tablets/h 

Turret speed Actual Dependent on production rate 

Feed frame speed Set point & actual 30 rpm 

Main compression force Set point & actual Controlled 

Pre compression force Actual Controlled 

Main compression height Set point & actual Manipulated 

Pre compression height Set point & actual 4.05 mm 

Fill depth Set point & actual Manipulated 

3.2 Materials and methods 

All the experiments were conducted using a blend with a composition of 89% lactose 

monohydrate (excipient), 9% acetaminophen (API) and 1% magnesium stearate (lubricant). The 

blend was prepared in a Glatt batch blender run at 25 revolutions per minute (rpm) for 30 min 

with a layered loading order to ensure that thorough mixing is achieved. The maximum capacity 

of each batch was of 7 kg, so multiple batches had to be prepared throughout the experiments. 

Most tablet press parameters were kept constant throughout the experiments unless otherwise 

needed as part of study. The parameters and their values are presented in Table 3.1 (Bhaskar et 

al. 2017). 

3.3 Hardware and software integration 

The communication between the control platform and the tablet press unit takes place in a local 

area network through OPC protocol. In order for the connection to be completed there must be 

an OPC server installed on each end (tablet press and control platform) and an OPC client to 

interface the communication between servers. Process variables are commonly referred as tags in 

OPC servers and clients. Advanced link tags must be configured in the OPC client in order to 

establish data flow between tags located in different servers.  

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/stearate
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#tbl0005
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A diagram of the control platform and the tablet press unit integration is schematically presented 

in Figure 3.1. Initially, the data from the tablet press is stored in the internal tablet press OPC 

server. The OPC client then reads the data from the tablet press OPC server and writes it to the 

DeltaV OPC. From DeltaV OPC server, the data can be accessed by the controller, which applies 

the desired control algorithms and determines the control action to be taken. The information 

about the control action then follows the reverse path to the tablet press where the manipulated 

variables actuated on, leading to changes in the process and closing the control loop (Bhaskar et 

al. 2017). 

 

Figure 3.1. Integration of control hardware and software for tablet press automation and control 

(Bhaskar et al. 2017). 

Once the variables are accessible in DeltaV, a landing module is created in order to monitor and 

manipulate each process parameter. The landing module consists of a series of input and output 

blocks configured as external references that point the address of each tag in the OPC server. Set 

points are configured as output blocks while actual readings are configured as input blocks. 
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Blocks with the description of each parameter are also added to the landing module. The landing 

module replicates every parameter available in the tablet press HMI (human machine interface). 

Control modules created in DeltaV point to the tablet press landing module.  

3.4 Real Time tablet weight measurement: 

The critical process parameters (e.g. main compression force) of tablet press are measured using 

inbuilt sensors. However, there are no commercial tools available that can measure the critical 

quality attributes (CQAs) (e.g. tablet weight, tablet hardness) in real-time. The commercially 

available inline tool for tablet weight and hardness measurements (e.g. Check master (FETTE)) 

is slow, can measure only a portion of the tablets produced, and is based on a destructive method. 

The real-time measurement of the CQAs are needed for real-time feedback/feedforward control. 

A toolbox is being developed at C-SOPS (Rutgers) that can measure the tablet CQAs in real-time 

specifically suitable for real-time feedforward/feedback control and real-time release (RTR) and 

is subject of future publication. 

A novel method for measurement of tablet weight in real-time is reported in Bhaskar et al. 

(2017). The method is based on ‘gain in weight’ concept and consists of a catch scale, which 

collects the tablets and measures the weight of all tablets produced in real-time. The average 

mass of the tablets is calculated based on the production rate and the change of mass on the load 

scale during a specified duration. A schematic of the weight measurement implementation is 

shown in Figure 3.2 and the equation used in the calculation block is given below (Bhaskar et al. 

2017). 

 
𝑚̅(𝑡) =

(𝑚𝑇(𝑡) − 𝑚𝑇(𝑡 − ∆𝑡))

𝑃 ∗ 3600 ∗ ∆𝑡
 (1) 

Where 𝑚̅ is the average tablet weight, 𝑚𝑇 is the total mass on the catch scale, P is the tablet 

production rate in tablets per hour, and ∆𝑡 is the time difference between measurements. The 

value of ∆𝑡 is set by changing the value of the time delay block. 
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Figure 3.2. Implementation of a developed systematic methodology for real-time monitoring of 

tablet weight (Bhaskar et al. 2017). 

 

The time delay should be determined according to the process and the production rate used. An 

ideal value of dead time should be large enough to avoid the oscillations caused by the tablets 

dropping on the catch scale, but still be small enough not compromise the performance of the 

control system. Smaller values for time delay can be used as production rate increases (Bhaskar 

et al. 2017).  

The method for real-time tablet weight measurement is implemented in DeltaV (Emerson) 

control platform as shown in Figure 3.2 and described in Bhaskar et al. (2017). A feeder (K-

Tron) has been used as a catch scale in which the tablets are collected in real-time. This catch 

scale is just employed for proof of concept of the method and using (or building) more precise 

catch scale can improve the measurement quality significantly. The catch scale is first connected 

with the DeltaV control panel via Profibus connection, and then the signal from the Profibus is 

transmitted to the DeltaV controller. From DeltaV controller block, the signal goes to the DeltaV 

control platform (operating computer) via Ethernet cable where the weight measurement method 

has been implemented.  
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Table 3. 2 Different options to control the tablet press. A feasible pairing is denoted by ‘X’. 

 
Final control variables Weight Tablet breaking force 

 
Intermediate control variables PCF MCF MCF 

Actuators 

Fill depth X X X 

Main compression height 
  

X 

PCF – Pre Compression Force, MCF – Main Compression Force 

3.5 Open loop response analysis and identification of control loops 

Different options to control the tablet press are given in Table 3.2 (Bhaskar et al. 2017). Tablet 

weight and breaking force are the main control variables that can be controlled via a supervisory 

control system. The critical process parameters that can be measured in real-time are the pre 

compression force and the main compression force. Therefore, it is a good strategy to utilize 

these measurements for tablet weight and breaking force control. The tablet weight can be 

controlled either via pre compression force or main compression force. Tablet breaking force can 

be controlled via main compression force. Fill depth and main compression thickness are two 

actuator candidates. Fill depth affects both CPPs (pre and main compression forces) and both 

CQAs (weight and tablet breaking force). The main compression thickness only affects the main 

compression force and tablet breaking force. The tablet weight and breaking force can be 

controlled through cascade control arrangements where the slave controllers control CPPs and 

master controller controls CQAs. The master controllers provide the set points for slave 

controllers. There could be also possibility to control the tablet weight and breaking force 

through a single loop arrangement where these CQAs are controlled directly by manipulating the 

actuators. Some intermediate option such as controlling one CQA through cascade system and 

another through a single loop system could be also feasible. Similarly, from Table 3.2, several 

other control options can be generated. Two control options are feasible for main compression 

force control, one for pre compression force control, four options for tablet breaking force 

control and three for tablet weight. There are twelve feasible options to control tablet weight and 

breaking force simultaneously and this is diagrammatically represented in Figure3.3. Therefore, 

https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#tbl0010
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#tbl0010
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0015
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the design of an optimal control system is a challenging task and is still an open area of research 

(Bhaskar et al. 2017). 

 

Figure 3.3. Feedback superstructure for tablet press control (Bhaskar et al. 2017). 

3.6 Step response analysis 

This section analyses the effect that the manipulated variables have on the controlled variables in 

an open loop configuration. This analysis is important to understand the process dynamics and 

thereby to design, pair, and tune the controller. Figure 3.4 shows the step changes made to the fill 

depth and main compression height. The PCF and MCF responses to these manipulations are 

shown subsequently. When a change in fill depth is made, both pre compression and main 

compression forces change, but these changes vary in magnitude. This is because the pre 

compression height is higher and thus the sensor reads a lower force value. When a step change 

is made in the main compression height, a response is observed only in the main compression 

force and not in the pre compression force as it was expected. This is due to the fact that the 

change, in terms of the process hierarchy, happens after the pre compression phase. Therefore, 

there is no correlation between the main compression height and the pre compression force. 

Similarly, the step response analysis has been performed for other process variables (results are 

not reported here) (Bhaskar et al. 2017). 

https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0020
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Figure 3. 4. Open loop response of tablet compaction process (MCH: Main compression height) 

(Bhaskar et al. 2017). 

 

3.7 Sensitivity Analysis 

The sensitivity analysis is important to understand the effect of process inputs on CPPs and 

CQAs. A fundamental understanding of the tablet press drives the pairing of actuators and 

controlled variables. It is well known from the open loop experiments that the fill depth affects 

both the main compression force and pre compression force (see Figure 3.4). In keeping with the 

goal of trying to control both variables separately, an alternate actuator is required to control the 

main compression force. Among the available options, the Main Compression Height (MCH) is 

chosen. In order for MCH to be used as the actuator, it would have to be more sensitive as 

compared to the fill depth. Only small changes in the main compression height would be 

permissible in order to stay within the constraints set by regulatory bodies. Therefore, the 

actuator candidates for MCF are the fill depth and the main compression height. Data from the 

open loop experiments was used to analyze the sensitivity of the variables. The change in control 

variable is calculated as follows (Singh et al. 2009): 

 
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 % 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = 100 |

𝑌0
𝑗(𝑡) − 𝑌𝑖

𝑗(𝑡)

𝑌0
𝑗(𝑡)

| (2) 
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 Where 𝑌𝑖
𝑗(𝑡) is the value of the controlled variable in the ith perturbation of the jth 

actuator candidate and 𝑌0
𝑗(𝑡) is the base value of the jth actuator candidate (Singh et al. 2012). 

 The sensitivity analysis for main compression force is shown in Figure 3.5. As can be 

seen in figure, the main compression height induces a higher change in the MCF with a relatively 

lesser change in its own magnitude when compared to fill depth. This is especially the case when 

the step changes are made in the upward direction. This makes it the ideal choice for usage in 

feedback control. It should be noted that this study of sensitivity and quantification of 

interactions can be done post generation of a relative gain array method as well (Singh et al. 

2013).  

 

Figure 3.5. Sensitivity analysis for main compression force (Bhaskar et al. 2017). 

 

3.8 Overview of developed flexible control system 

Multiple control systems were developed that represent the different ‘modes of closed loop 

operation’ (Bhaskar et al. 2017). It provides flexibility for the user (plant operator) in terms of 

closed loop operation mode selection based on need. Furthermore, within a selected control 

mode, the user has flexibility to select a specific control algorithm. Different levels of control are 

needed for different formulations and manufacturing scenarios and therefore, the flexible nature 
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of the control system is very useful for continuous pharmaceutical manufacturing. In order to 

facilitate readability, a number was assigned to each mode of closed loop operation. All the 

control modes of operation along with its designated control variables and actuators are listed in 

Table 3.3. These control modes have been described in detail in Bhaskar et al. (2017).  

Table 3.3. Summary of control modes. 

Control 

mode 
CNTRL1 CNTRL2 MNLPT1 MNLPT2 

1 
Main compression 

force  
- Fill Depth - 

2 
Pre compression 

force 
- Fill Depth - 

3 
Pre compression 

force 

Main compression 

force 
Fill Depth MCH 

4 Tablet weight - PCF SP - 

5 Tablet weight Tablet hardness PCF SP MCF SP 

PCF: Pre compression force, MCF: Main compression force, MCH: Main compression height, 

SP: Set point 

3.9 Advanced model predictive cascade MIMO control system 

The advanced MPC strategy aims to control both tablet weight and breaking force independently. 

Having control over both variables independently allows an accurate tailoring of the tablet 

dissolution profile in order to match regulatory requirements. Control is achieved by decoupling 

the weight and tablet breaking force in a strategy that consists of two model predictive 

controllers, with two inputs and two outputs each, placed in a cascade arrangement (see Figure 

3.6). The slave controller is in charge of maintaining both the main and pre compression forces at 

the remotely defined set points via manipulation of main compression height (tablet thickness) 

and fill depth respectively. The master controller, based on the error (deviation from set point) in 

weight and breaking force values, determines the set points for PCF and MCF. Changes in 

weight are handled by varying PCF set point while changes in tablet breaking force are achieved 

https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0030
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0030
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by varying MCF set point. A schematic representation of the control strategy is shown in Figure 

3.6. As shown in the figure the master controller is in charge of defining the remote set point for 

the pre and main compression forces controller. This in turn actuates on the fill depth and main 

compression height respectively. This strategy represents control mode 5 described in 

Section 3.7 (Bhaskar et al. 2017). 

 

Figure 3.6. Advanced multi input multi output model predictive control strategy (Bhaskar et al. 

2017). 

 

3.10 Implementation of advanced model predictive control system into continuous 

pharmaceutical manufacturing pilot-plant 

A control strategy for tablet weight (control mode 4) has been considered to demonstrate the 

control loop implementation. This strategy was implemented in DeltaV using the Control Studio 

feature. A diagram representing the implementation in DeltaV is shown in Figure 3.7. An input 

block containing an internal reference to the tablet weight landing module receives the weight 

reading and directs it to a scalar block where the value is scaled in range of 0%–100%. The 

scaled weight is then received by the master Single Input Single Output (SISO) MPC block as 

the controlled variable. It is important to properly scale all the controlled variables received by 

MPC blocks so that even small changes in their values can be perceived by the controller. This is 

specifically important in the case of pre compression force control since the variation in 

measured signal is expected to be very small during normal operation. The scaling strategy 

proposed in this manuscript can make the control of those variables, which the variations in 

https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0030
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0030
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#sec0055
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0035
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measured signal are expected to be very small, feasible. The output of the master controller then 

goes through an analog output block (AO) and is connected as the PCF set point of the slave 

controller. The MCF set point, which is related to tablet breaking force, is defined by the 

operator. The slave controller receives scaled PCF (controlled variable 1) and MCF (controlled 

variable 2) values from input blocks. Values for the manipulated variables (fill depth and MCH) 

are calculated by the slave MIMO MPC and go through AO blocks followed by scalar blocks in 

order to rescale them to their original ranges. The rescaled values are finally sent back to the 

plant by means of output blocks with reference to the tablet press landing module. It is important 

to note that each AO block also generates a back-calculation value that must be fed back as a 

back-calculation input in their respective MPC blocks in order to ensure proper function of the 

control module. Note that, currently the real-time measurement of tablet breaking force is not 

possible and therefore the supervisory tablet breaking force control loop, which should ideally 

provide the set point of main compression force, has not been integrated. It has been assumed 

that a consistent MCF can lead to consistent tablet breaking force. 

 

Figure 3. 7. Implementation of an advanced model predictive control system into continuous 

pharmaceutical manufacturing pilot-plant (MPC: model predictive controller, AI: analog input, 

AO: analog output, SCLR: scale-up/down, BKCAL: back-calculation, PCF: pre compression 

force, MCF: main compression force, FD: fill depth, MCH: main compression height) (Bhaskar 

et al. 2017). 
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3.11 Development and tuning of advanced model predictive controller (MPC) 

3.11.1 MPC model generation 

The models for the MPC controllers were generated using DeltaV Predict “auto-generate” 

feature. This feature creates a process model based on open loop data. For the SISO (single input 

single output) model the process was initially tested using a tool built into the software, but the 

results were not satisfactory. The tool applied a pseudo-random binary sequence test (PRBS), 

which consists of a series of bump tests that are equal in magnitude with random duration. Some 

of the applied bumps had duration smaller than 20 s, causing no response from the system, since 

the values for the compression forces are only updated every 20 s due to limitations in the tablet 

press data acquisition system. 

With this limitation in mind, all the process tests for MPC model generation were done based on 

manually determined step changes. For a SISO system, the open loop tests can be easily done by 

applying a series of regular step changes to the manipulated variable. The MPC model 

generation for main compression force that was used to develop ‘control mode 1’ is shown 

in Figure 3.8. As shown in the figure, the step changes in fill depth have been introduced and 

consequently the main compression force response was measured. The generated MPC model is 

given in Table 3.4 (see control mode 1) (Bhaskar et al. 2017). 

https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0040
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#tbl0020
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Figure 3.8. Main compression force open loop response for MPC model development (Bhaskar 

et al. 2017). 
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Table 3. 4. MPC model parameters (Bhaskar et al. 2017). 

Control 

mode 
Model 

Dead 

time 

(s) 

Gain 
FO time 

constant (s) 

SO time 

constant (s) 

Lead time 

constant (s) 

1 MCF – FD 25 
0.537713 

(kN/mm) 
3.84615 3.84615 0 

2 PCF – FD 17 
0.300986 

(kN/mm) 
10.9694 1.33824 0 

3 PCF – FD 25 
1.12937 

(kN/mm) 
5.38462 0 0 

 

PCF – 

MCH 
0 0 (kN/mm) 0 0 0 

 
MCF – FD 27 2.15 (kN/mm) 4.61538 0 0 

 

MCF – 

MCH 
23 

−1.14998 

(kN/mm) 
5.19639 0.188222 0 

4 

PCF – FD 15 
0.307 

(kN/mm) 
3.84615 0 0 

PCF – 

MCH 
0 0 (kN/mm) 0 0 0 

MCF – FD 13 0.65 (kN/mm) 5.38462 0 0 

MCF – 

MCH 
10 

−0.144755 

(kN/mm) 
4.61538 0 0 

TW – PCF 51 
3.63841 

(mg/kN) 
10 0 0 

*FO: First order. SO: Second order. 
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Similarly, the MPC model has been generated for pre compression force control in order to 

develop ‘control mode 2’. The step response data which was used to generate this controller is 

shown in Figure 3.9. The generated MPC model is given in Table 3.4 (see control mode 2). 

 

Figure 3.9. Pre compression force open loop response for MPC model development (Bhaskar et 

al. 2017). 

 

For a MIMO (multi input multi output) system with two manipulated and two controlled 

variables the complexity is slightly increased. As shown in Figure 3.10, step changes were first 

applied to main compression height, leading to variations only in main compression force. Then, 

the fill depth is decreased to 5.7 mm and step changes are again applied to the main compression 

height. This decrease in fill depth causes a decrease in both main and pre compression forces. 

The main compression height is then increased to 3.55 mm and step changes are made in fill 

depth. The increase in main compression height leads to a decrease only in main compression 

force, while the change in fill depth causes variations in both forces. Finally, the main 

compression height is decreased, which leads to an increase in main compression force, and step 

changes are again applied to the fill depth. Figure 3.10 shows the control variables response with 

respect to actuators set point. The developed MPC model relates the actuators set point with the 

control variables. The achieved actuator signals are the intermediate responses that affect control 

https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0045
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#tbl0020
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0050
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0050
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variables. Understanding the dynamics between actuators set point and achieved signals as well 

as the dynamics between achieved actuator signals and control variables are important to 

implement the control system. Combining these two dynamics generates the overall dynamics of 

a control loop and therefore it affects the overall performance of the control system. Similarly, 

the MPC mode for ‘control mode 4’ has been generated as given in Table 3.4. The MPC model 

for ‘control mode 5’ has not been generated because currently no sensor is available to measure 

the tablet breaking force in real-time according to the best knowledge of authors. 

 

Figure 3.10. Multi inputs multi outputs MPC Model Generation (Bhaskar et al. 2017).  

 

The overall model for a MIMO MPC consists of a matrix of models where each individual 

represents the relation between a controlled and manipulated variable pair. The model 

parameters for the different models generated are given in Table 3.4. The models generated in 

control platform (DeltaV) are described by dead time, gain, first order constant, second order 

constant and lead time constant. In the tablet press, a modification of the fill depth will modify 

the amount of powder filled into the dies. This has a direct impact on the force experienced by 

the sensors. Therefore, a change in the fill depth impacts a change in the pre compression force 

and the main compression force. This interaction essentially means that model, during control, 

has to counter this interaction if these variables are not directly paired. It is for this reason that 

https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#tbl0020
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#tbl0020
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in Table 3.4, under control mode 3, the MCF-FD variable pair displays nonzero model 

parameters. A major difference can be seen in the shorter dead times of control mode 4 as 

compared to control mode 3. This change can be attributed to the fact that the process was run at 

a higher production rate during control mode 4 model generation and operation. The production 

rate was increased to ensure that the tablets flowed evenly into the catch scale. This also reduced 

the weight variability in the data that was obtained since the weight is being averaged over a 

larger number of tablets. It is important to note that the model parameters are optimized by 

"DeltaV Predict" based on the open loop response tests. Given that each open loop test was 

performed independently, a slight variation in model parameters is expected and observed. Fine 

tuning can be achieved based on thorough knowledge of the process. 

3.11.2 Model response and validation 

Within DeltaV using the Predict feature, it is possible to verify and display the accuracy of a 

model once it has been generated. To elaborate on this, one example has been displayed 

in Figure. 11. This example is from ‘control mode 2’ that has been used to control the pre 

compression force. In the image we can see the graph of actual and predicted vs sample. The 

blue line depicts the actual values of the controlled variable as obtained from the open loop 

experiments. The output of model that the software subsequently generates is plotted in green 

and serves as a comparison between the actual and the predicted values to evaluate the accuracy 

of the model. In this case, the model displayed matched very well with the predicted values. This 

is reflected in the R-squared value (0.956462). Given that this is the case for the pre compression 

force; the data availability is limited to 20 s intervals. This creates room for error which is also 

quantified in the Squared Error panel. The MPC algorithm can handle small errors in model 

prediction and therefore, it has been the most successful control algorithm in commercial 

manufacturing where an ideal model with zero prediction error is practically difficult to achieve. 

It may also be noted that the models were verified for all control modes but the model 

verification graphs have not been shown for the sake of brevity. 

https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#tbl0020
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0055
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Figure 3.11. Model verification (control mode 2) (Bhaskar et al. 2017). 

 

3.11.3 MPC controller tuning 

The MPC controller parameters were then tuned based on the generated models. The parameters 

available in DeltaV are: control horizon, penalty on move (PM) and penalty on error (PE). 

Control horizon represents the number of predicted control moves. Higher values for control 

horizon make the controller more aggressive at the price of increasing the computational 

requirements. Penalty on move defines how much a controller is penalized for changes in a 

specific manipulated variable (Singh et al. 2014) . Low PM values result in a fast controller with 

a narrow stability margin, while controllers with a high PM value have a wide stability margin 

with sluggish response. PM values most affects the controller when there is a mismatch between 

the model and the process (Wojsznis et al. 2003). PM is analogous to the input or rate weight 

terms commonly used in the control language. PE weights the output variables according to their 

importance, with the most important variable to be controlled having the highest value (Seborg et 

al. 2004) . PE is commonly referred as output weight. The penalty on move was adjusted in order 
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to ensure that changes made to the pre compression force set point had the least effect on main 

compression force. The values for MPC parameters are presented in Table 3.5 (Bhaskar et al., 

2017). 

Table 3.5. MPC tuning parameters. 

Control 

mode 
Controlled variable 

Control 

horizon 

Penalty on 

Error 

Penalty on 

Move 

1 
Main compression 

force 
5 1 8 

2 
Pre compression 

force 
5 1 8 

3 
Pre compression 

force 
5 1 1.5 

 

Main compression 

force 
5 1 12 

4 

Pre compression 

force 

9 

1 6 

Main compression 

force 
1 3 

Tablet weight 5 1 24.5 

 

3.12 Development, implementation and tuning of PID controller 

The main compression force (mode 1) has been considered here as an example to demonstrate 

the development, implementation and tuning of a PID controller. The PID controller for MCF 

was tuned using DeltaV InSight on-demand tuning tool. First, the tool applies a series of step 

changes with the same magnitude and duration to the manipulated variable according to the user 

input. Based on the dynamic response of the system, the software calculates values for the 

process dead time, gain and time constant, as well as the controller ultimate gain and period. The 

https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#tbl0025
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user then selects the desired tuning method and response speed, which generates values for the 

control parameters. The generated values can then be fine-tuned by the user if necessary. 

The controller tuning was done based on a process response test with a step size of 19%, using 

the “Typical – PI” (Ziegler et al. 1993) method, which is built into DeltaV, with fast desired 

response speed. The step response generated for the PID controller tuning is shown in Figure 

3.12. As shown in the figure, the multiple step changes have been introduced in the fill depth set 

point. The achieved fill depth response is also shown in the figure. As shown in the figure, there 

is a lag time between the fill depth set point and actual fill depth of approximately 6 s. 

Corresponding changes in the main compression force is also shown in the figure. The main 

compression force follows the profile of fill depth but with some lag time. The generated data 

has been used to tune the controller. Fine tuning was done by the authors. The PI controller used 

in the experiments was tuned with a gain of 0.78 kN/mm and a reset of 31.2 s. 

 

Figure 3. 12. PID controller tuning for main compression force control (control mode 1) 

(Bhaskar et al. 2017). 

 

 

https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0060
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0060
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3.13 Closed loop performance evaluation 

All the controllers were evaluated based on closed loop performance metrics. Three metrics were 

used, integral of absolute error (IAE), integral of square error (ISE) and integral of time absolute 

error (ITAE). The equations for ITAE (3), IAE (4) and ISE (5) are presented below: 

 

𝐼𝑇𝐴𝐸 =  ∫ 𝑡|𝑦𝑎𝑐𝑡(𝑡) − 𝑦𝑠𝑝(𝑡)|𝑑𝑡

𝑡𝑓

0

 (3) 

 

𝐼𝐴𝐸 =  ∫ |𝑦𝑎𝑐𝑡(𝑡) − 𝑦𝑠𝑝(𝑡)|𝑑𝑡

𝑡𝑓

0

 (4) 

 

𝐼𝑆𝐸 =  ∫ (𝑦𝑎𝑐𝑡(𝑡) − 𝑦𝑠𝑝(𝑡))
2

𝑑𝑡

𝑡𝑓

0

 (5) 

 Where 𝑡𝑓 is the duration of the experiment, 𝑦𝑎𝑐𝑡(𝑡) and 𝑦𝑠𝑝(𝑡) are the actual and setpoint 

values of the controlled variable 𝑖 respectively, and 𝑛 is the number of controlled variables. 

The integral of absolute error weights all the error equally. Systems optimized using IAE tend to 

present a slower response with less sustained oscillations when compared to the other metrics. 

Integral of the square error tends to penalize large error more than small errors, creating systems 

the eliminated large errors quickly but tend to have sustained small amplitude oscillation. ITAE 

emphasizes errors that occurs after a long time rather than errors at the beginning of the process. 

This generates controllers that settle quicker than the other methods but have a sluggish initial 

response. 

 Steady state error (offset), rise time, settling time and percent overshoot were also calculated. 

The steady state error is the relative difference between set point and actual values. Rise time is 

the time needed for the control variable to first reach 80% of the desired to the set point. Settling 

time is the time required for the process output to reach and remain inside a +−5% range around 

the set point (Seborg et al. 2004). 
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3.14 Results and discussions 

3.14.1 Evaluation of control algorithms (using control mode 1) 

In order to determine the most adequate control algorithm to be applied, three different 

controllers were evaluated namely inbuilt controller, developed external PID controller and 

developed external advanced model predictive controller (MPC). The control variable, main 

compression force (MCF) has been considered here as a demonstrative example. The closed loop 

responses of main compression force along with the actuator signals are shown in Figure 3.13. 

 

Figure 3. 13. Closed loop response of main compression force (MCF). (a) inbuilt control 

strategy, (b) external PID controller, (c) advanced model predictive controller (MPC). (Bhaskar 

et al., 2017). 

 

First, the tablet press was run under inbuilt control scheme of main compression force. This 

experiment was started by letting MCF stabilize at 4 kN. The MCF set point value was then 

changed to 6 kN and the closed loop response of the system was observed. Once constant 

oscillations were achieved, the MCF set point was again stepped down to 4 kN. The experiment 

was ended when constant oscillations around 4 kN were observed. A pulse on MCF can be 

noticed at around 520 s into the experiment. This disturbance can be caused the readjustment of 

the powder in the chute by the operator, which led to a slight change in the powder bulk density. 

https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0065
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The closed loop response is shown in Figure 3.13a. The experiments for the PID controller were 

conducted after setting up an appropriate connection and building the loop on DeltaV. The 

tuning for the PID was done based on the methodology described in Section 3.11. Post this, the 

tablet press was run in open loop to achieve a steady state before the closed loop experiment was 

started. The initial MCF value was set to 8 kN. This value was chosen based on previous 

experiments that showed that the tablet breaking force was adequate (results of this not displayed 

here). The MCF was increased by 50% from the initial value to a value of 12 kN and then 

reduced by 100% from the initial value to a value of 4 kN to analyze its performance. The 

experiments for the MPC were conducted in the exact same manner as for PID with the 

exception that the tuning of the MPC block was done through the strategy explained in 

Section 3.10. The step changes were made from the same base value of 8 kN. 

A comparison of the response of the three strategies (Figure 3.13) shows that the MPC has a 

faster response than PID. The step changes applied to the PID and MPC were kept the same for 

the sake of consistency. A look into the actuator graphs show that the MPC response is much 

faster in achieving proximity to the set point. 

The closed loop responses of main compression force under above mentioned three control 

algorithms are shown in Figure 3.14. The closed loop response under inbuilt control strategy is 

shown in right y axis while the responses under external PID and MPC are shown in left y axis. 

This is because, the starting set point in first case was different in comparison to other two cases. 

However, the magnitude of step size was the same in all three cases and therefore, the closed 

loop performance can be directly compared. As shown in Figure 3.14, the MPC has a better 

response in comparison to the PID and inbuilt controller. It reaches the new set point faster and 

also has lesser settling time. Table 3.6 summarizes the performance metrics along with closed 

loop statistics for the three different control loops. The performance metrics were calculated for a 

single normalized step change and the period considered for the calculations was of 160 s. The 

faster response along with the performance metrics led to a conclusion that the MPC is superior 

to PID in this specific process. The reason for this superior performance is that the process has a 

considerable dead time and the value for compression forces is only updated every 20 s. Another 

major advantage of using MPC is that it allows a flexible implementation of MIMO controllers 

https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#sec0115
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0065
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0070
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0070
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#tbl0030
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using a single block in DeltaV. Given that this was the case, all the control modules built in the 

proceeding experiments are MPC based (Bhaskar et al. 2017). 

 

Figure 3. 14. MCF closed loop response analysis (control mode 1) (Bhaskar et al. 2017). 

Table 3.6. MCF control algorithms analysis. 

Strategy 
IAE 

(kN.s) 

ITAE 

(kN.s) 

ISE 

(kN.s) 

Rise time 

(s) 
Settling time (s) Overshoot (%) 

Inbuilt 80.08 3646 68.67 87 >280 1.2 

External 

PID 
65.19 3173 42.67 121 211 0 

External 

MPC 
46.25 1589 35.34 46 153 0 

       

3.14.2 Investigation of pre compression force controllability (control mode 2) 
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It has been normally assumed that the pre compression force cannot be controlled in real-time 

and therefore, most commercially available tablet press units do not have an inbuilt controller for 

pre compression force. A control system for pre compression force has been developed (Bhaskar 

et al. 2017). The pre compression force experiments were conducted using a MPC block on 

DeltaV. The actuator for this controlled variable was decided to be the fill depth in accordance 

with the overall hypothesis. The development and tuning of the MPC was done as explained in 

Section 3.10. The step changes were made to evaluate the set point tracking capability of the 

controller. The first step up in pre compression force set point was made from 5 kN to the 7 kN. 

As can be seen in the figure, after a system imposed dead time of 25 s, the controller brings the 

signal back to the set point. The rise time is 43 s. A small overshoot of 1.5% can be seen in the 

response of control variable. However, this overshoot is acceptable. The existence of overshoot 

is very common in closed loop response. The achieved settling time 115 s, which is 

acceptable. Figure 3.15 shows that after an initial small overshoot, a perfect ideal control with no 

oscillation has been achieved. It was concluded from this experiment that the pre compression 

force can be properly controlled through manipulations in the fill depth using a MPC (Bhaskar et 

al. 2017). 

 

Figure 3. 15. PCF controller closed loop response (control mode 2) (Bhaskar et al. 2017). 

 

https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#sec0095
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0075
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3.14.3 Simultaneous control of main and pre compression forces (control mode 3) 

The performance of a MIMO MPC with two controlled variables and two manipulated variables 

was evaluated. Because of interactions between two control loops, the MIMO system is more 

difficult to control. The controller was developed and tuned according to the procedure described 

in Sections 3.10. Both control loops are interactive since fill depth affects both control variables. 

The interaction of these control loops is shown in Figure 3.16 via an open loop response. The pre 

compression force control loop affects the main compression force control loop while the main 

compression force control loop does not have an effect on pre compression force control loop. 

The goal of implementation of this 2 × 2 MPC is to be able to manipulate main and pre 

compression forces independently to control tablet breaking force and weight respectively. The 

experiment was divided in two parts (Bhaskar et al. 2017). 

 

Figure 3. 16. Open loop response of pre and main compression force. MCH: Main compression 

height (Bhaskar et al. 2017). 

 

 

https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#sec0095
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0080
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In order to test the controller and each input-output set in isolation, step changes were made in 

MCF while keeping PCF at a constant set point. The system reacted as expected, with changes 

only in the actuator for MCF. For the second part of the experiment, set point changes were 

made in PCF while maintaining MCF constant. It can be seen from the dynamic response of the 

system that PCF properly tracked the set point changes. Small oscillations in MCF values can be 

seen after the changes in PCF set point. These oscillations occur because changes in fill depth 

(PCF actuator) lead to variations in both compression forces. As expected, the controller 

promptly takes action to mitigate the variations in MCF caused by changes in fill depth. This 

result also serves as a disturbance rejection for the MCF controller. Accurate process models and 

optimal tuning of the MPC should minimize the magnitude of these variations (Bhaskar et al. 

2017). The responses of the system are presented in Figure 3.17. 

 

Figure 3. 17. Closed loop response of pre and main compression forces (2x2 MPC closed loop 

response) (Bhaskar et al. 2017). 

  

3.14.4 Real-time tablet weight measurement validation and feedback control 

The developed methodology for tablet weight measurement was evaluated as a proof of concept 

(Bhaskar et al. 2017). Changes in fill depth were applied to the system and the effect on tablet 

weight was observed. The system response with no signal processing applied is shown in Figure 

https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0085
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0090
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3.18. As expected, the measured tablet weight is directly proportional to fill depth and the 

magnitude of the weight variations is the same as the fill depth variation. A considerable 

oscillation in tablet weight, which was likely caused by an irregular inflow of tablet in the catch 

scale, can be noticed at around 160 s. 

 

Figure 3. 18. Real-time table weight measurements (Bhaskar et al. 2017). 

 

The available weight measurement technique was then used for the implementation of a 

supervisory tablet weight controller. The goal of this experiment was to prove that simultaneous 

control of tablet weight and main compression force, which is directly related to tablet breaking 

force, is possible, even though a fully established real-time tablet weight measurement method is 

not available at the moment. The controller was tuned according to the methodology described in 

Section 3.10. The closed loop response of the controller is shown in Figure 3.19. As shown in the 

figure, the predefined consistent tablet weight has been achieved. The controller was able to 

maintain the tablet weight at the set point. A consistent main compression force has been also 

achieved. The objective of this study was to perform a proof of concept experiment for real-time 

tablet weight control and it has been achieved successfully (Bhaskar et al. 2017). However, there 

is a significant scope for improving the closed loop performance. Augmenting the weight 

https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0090
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#sec0095
https://www.sciencedirect.com/science/article/pii/S0378517317309535?via%3Dihub#fig0095
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measurement system by developing a commercial sensor could improve the measured signal and 

thereby the performance of the control system. 

 

Figure 3. 19. Closed loop response of tablet weight supervisory control loop (Bhaskar et al. 

2017). 
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4.1 Drug concentration based real time diversion strategy 

A drug concentration based diversion system is an intrinsic requirement for continuous 

pharmaceutical manufacturing. Conventional pharmaceutical manufacturing was based on batch 

processes and therefore such a system was not needed before. In a batch process, as seen in 

Figure 4.1 (a), individual raw materials are mixed in a blender. The output from this is 

transferred into drums and is subsequently tested for content uniformity offline. If the product 

does not meet specifications, then entire batches maybe disposed. Product that meets regulatory 

constraints is then stored and transported to the next unit operation. In the case of solid dosage 

forms for direct compression, the product is then feed through a feeder into a tablet press. The 

compacted tablets are then transferred to coating and packaging process.  
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On the other hand, for the continuous manufacturing process, an upstream disturbance could 

propagate downstream if it has not been controlled locally or if the local control is not efficient 

causing overshoots. Depending on the performance of downstream unit operations, this 

disturbance could amplify or diminish. Nonetheless, due to this disturbance propagation, there is 

a need to control or be able to mitigate situations that have the capacity to deteriorate end 

product quality. It’s steady state operation of a continuous manufacturing process allows for the 

development of control systems as mentioned before. Drug concentration control as described in 

the following sections, although not traditional in the sense of control is a strategy that is 

necessary as it eliminates the need for offline testing post the compaction stage. It facilitates Real 

Time Release Testing (RTRT) as the tablets can then be seamlessly transported to the coating 

and packaging processes.  

In Figure 4.1 (b), such a “drug concentration based diversion system” has been schematically 

illustrated. As shown in the figure, the blender is connected to the tablet press via a shoot that is 

designed to house Process Analytical Technology (PAT) devices. A spectroscopic device (NIR) 

is integrated here and data from this is collected and used for real time monitoring of drug 

concentration. This creates a real time availability of the inlet drug concentration data at the entry 

of the tablet press. The drug concentration based control strategy developed in this work then 

uses this inlet concentration to determine a signal for the diversion strategy that can accurately be 

used to reject tablets that are out of tolerance limits at the outlet of the tablet press. 
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Figure 4. 1. Overview of drug concentration based real time diversion strategy. G: Good tablet, 

B: Bad tablet 

4.2 Residence Time Distribution (RTD) model 

An RTD based strategy is proposed to be applied for real time tablet diversion. Prior to 

elaborating on the details of the soft sensor, the fundamentals of RTD have been introduced in 

this section.  

RTD is the probability distribution of time that solid or fluid materials stay inside one or more 

unit operations in a continuous flow system.  For a manufacturing plant or equipment, the RTD 

is a characteristic of the mixing occurs inside it (Fogler 2006). Typical chemical engineering 

jargon differentiates the RTD at the definitional stage using a Continuous Stirred Tank Reactor 

(CSTR) and Plugged Flow Reactor (PFR) where the former exhibits a thorough mixing while the 

latter introduces a time delay.  
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For a system, the RTD may be derived by conducting tracer experiments. For a pulse 

experiment, once the inlet and the outlet concentration data is collected, the RTD function can be 

calculated as follows, 

𝑬𝒆𝒙𝒑(𝒕) =
𝒄𝒐𝒖𝒕(𝒕)

∫ 𝒄𝒐𝒖𝒕(𝒕)𝒅𝒕
∞

𝟎

   (1) 

Where Eexp(t) is the experimentally obtained RTD and cout(t) is the outlet concentration with 

respect to time. This can be converted into the Cumulative Distribution Function (CDF) 

(Fexp(t) ) using the following relation, 

𝑭𝒆𝒙𝒑(𝒕) =  ∫ 𝑬𝒆𝒙𝒑(𝒕)𝒅𝒕
𝒕

𝟎
 (2) 

 

On the other hand, for a step change based experiment, the following equation maybe used to 

calculate the Cumulative Distribution Function (CDF), 

𝑭𝒆𝒙𝒑(𝒕) =
𝑪(𝒕)−𝑪𝟎

𝑪𝒇−𝑪𝟎
   (3) 

Where, C0 is the inlet concentration before the step change, Cf is the inlet concentration after the 

step change and C(t) is the outlet concentration at time t. This can be converted into the RTD 

function using the following relation. 

 

𝑬𝒆𝒙𝒑(𝒕) =
𝒅𝑭𝒆𝒙𝒑(𝒕)

𝒅𝒕
   (4) 

Additionally, from experimental data the RTD can be characterized using the calculated mean 

residence time and variance. These can be determined using the following equations, 

𝝉 = ∫ 𝒕𝑬(𝒕)𝒅𝒕
∞

𝟎
   (5) 
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𝝈𝟐 = ∫ (𝒕 − 𝝉)𝟐𝑬(𝒕)𝒅𝒕
∞

𝟎
  (6) 

The increased involvement of RTD in the chemical engineering field has also led to the 

development of a myriad of models. The work has made use of the tank in series (T-I-S) model. 

The generalized model for tanks in series is given by the following equation, 

𝑬(𝒕) =
𝒕𝒏−𝟏

(𝒏−𝟏)!(
𝝉

𝒏
)

𝒏 𝒆(
−𝒏𝒕

𝝉
)    (7) 

Where τ, is the mean residence time and n is the number of Continuous Stirred Tank Reactors 

(CSTRs). The experimental data can be used to fit into this equation by determining the number 

of tanks and mean residence time using a least squares technique. 

4.3 Strategies for real time assurance of tablet drug concentration 

The real time diversion of tablets based on drug concentration is challenging because there is 

currently no sensor available that can measure the tablet potency and mean drug concentration of 

tablet in real time. However, the drug concentration of blend can be measured in real time using 

well stablished PAT techniques and tools (Singh et al. 2014). Therefore, the sorting method 

relies on the real time measurement of blend uniformity and model predicting tablet potency and 

residence time from sensor location and tablet press outlet (diversion gate). A systematic tablet 

sorting procedure is shown in Figure 4.2. As shown in the Figure 4.2, two approaches can be 

considered for tablet sorting based on drug concentration: a fixed window of diversion approach 

and a Residence time distribution (RTD) based approach. The first approach is simpler to 

implement but may lead to lower production efficiency. The second approach is based on more 

advanced technique and will ensure more efficiency but is relatively complex to implement. Both 

strategy need prior experimentations to identify the parameters needed for control methodology 
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developed in this work. However, the second approach may need relatively complex experiments 

to be conducted in compare to the first approach. 

 

Figure 4. 2. Real time diversion of pharmaceutical tablets. 0: Accept, 1: Reject 

4.3.1 Fixed window approach  

Tablet diversion is facilitated using this approach through knowledge of Time delays from the 

point of detection (chute or feed frame) to the point of the affect (tablet press outlet gate) in the 

system. The sensor that detects the concentration is connected to a comparator block which 

decides if the said concentration is within the specifications. If it is not within specification, the 

experimentally derived time delay is applied and post this the diversion begins. The diversion 

stops when a concentration within spec is detected and the another time delay is applied. These 

protocols can be represented using Equation (8) and Equation (9). The time to start diversion can 

be calculated as follows. 
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𝒕𝒓 = 𝒕𝒐𝒇𝒇𝒔𝒑𝒆𝒄 + 𝒕𝒅𝒊 − 𝒕 (8)2 

Where tr is the time at which diversion should start, toffspec is the time at which the drug 

concentration of the blend goes out of its specifications, tdi is the time delay that the system 

requires to realize the change in concentration at the outlet and t is the safety margin to 

guarantee that no off spec tablets will be sorted in good tablet lot. toffspec  can be obtained using 

real time PAT sensor for blend uniformity measurement. tdiis predetermined using offline 

experimentations and it depends on both formulation and plant characteristics. It must be re-

estimated if there are any changes in formulation &/or process conditions. t is chosen by the 

operator based on experience working with the system 

The time to stop diversion can be calculated as follows: 

𝒕𝒂 = 𝒕𝒔𝒑𝒆𝒄 + 𝒕𝒅𝒇 + 𝒕  (9) 

Where ta is the time at which diversion should stop, tspec is the time at which the drug 

concentration returns to an acceptable range, tdf is the time delay that the system requires to 

wash out the previous off spec materials and like in Equation 8, t is the safety margin to 

guarantee that no off spec tablets will be sorted in good tablet lot. tdf is similar to   tdi and in 

most cases it is likely to be the same.  Nonetheless to avoid any assumptions these are treated 

differently and it may be predetermined using offline experiments. Another reason to treat these 

values differently is that the system may behave differently for fluctuations in formulation &/or 

process conditions.  

This concept is further illustrated in Figure 4.3. In the Fixed Window approach, for a pulse 

disturbance of unit magnitude from nine to ten, the diversion according to Equation (8) will 
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begin at tr and goes on until ta. The diversion begins after the initial time delay, tdi  has been 

applied and then last for the duration of the pulse disturbance. It then lasts another extended 

period of time governed by the value of tdf. 

 

Figure 4. 3.  Fixed window based tablet diversion system 

4.3.2 RTD based approach 

In this methodology, the RTD of the system is estimated through tracer experiments. This 

estimated RTD can be used to predict the outlet concentration from the inlet concentration. The 

details of the implementation of the RTD based diversion on Simulink is further illustrated in a 



54 

 

 

 

later section in the paper. The outlet concentration can be calculated using the convolution 

integral as follows: 

𝑪𝒐𝒖𝒕(𝒕) =  𝑪𝒊𝒏(𝒕) ∗ 𝑬(𝒕)   (10) 

 

Where Cout(t)is the outlet concentration, Cin(t) is the inlet concentration and E(t)is the RTD of 

the system. 

Using this relation, the outlet concentration can be predicted in real time and this signal can be 

used to initiate the diversion. One scenario is explored in Figure 4.4, where a pulse disturbance is 

introduced in the system. The response in the system as predicted using the RTD shows a period 

where the concentration is out of specification. The diversion system which is dependent on the 

predicted signal rejects tablets only when the outlet concentration is out of specification. At this 

point a comparison can be made between the fixed window approach and the RTD based 

approach. It is clear that the RTD based approach sees a more accurate diversion of tablets. The 

improvement that the RTD based approach provides is further explored in this paper. 

An important consideration at this point is to note that the mean API concentration of the tablet 

is used to determine the diversion window as opposed to the Potency. The reason for this lies in 

the dependency of potency on the tablet weight which at this point does not have many reliable 

real time measurement methodologies. A constant value of weight can be used for the calculation 

of Potency but this would not result in any new information as it would simply amplify the 

disturbances in the predicted outlet concentration. 
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Figure 4. 4. RTD based tablet diversion system 

 

4.4 Systematic framework for design, evaluation and implementation of RTD based 

diversion system 

Figure 4.5 shows a sequential framework that can be followed for the development and 

implementation of RTD based diversion system. Given that the Residence Time Distribution 

characterizes the mixing within a unit operation under certain operation conditions and the 

quanta of time a fraction of material spends inside said operation, a change in the spatial 

characteristics; example change in reactor size for a reactor or fill depth in the case of tablet 

compaction, the RTD would be modified due to the change in time that a material spends in the 

process. The formulation characteristics can drastically change the flow behavior within the 
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process. This too can modify the RTD of the system. From this, the reader may glean that the 

process parameters and the formulation must be kept constant for a system. Therefore, in the 

development of the RTD based diversion strategy, a first step would be to accurately define the 

product, process and plant configurations. The process should be run under operating conditions 

to be used in final manufacturing. At this point, the RTD can be determined as mentioned in 

Section 4.4. 

Post RTD determination, the implementation of this methodology is developed. For a linear 

system, a pulse or step response of a system at any time will behave and spread through the 

system just like a pulse of equal magnitude (Engisch and Muzzio 2016). A measured input 

stream could be represented with a string of discrete values representing the fluctuations in the 

stream. Using the convolution integral for mixing, the final drug concentration can then be 

estimated. Using the Equation 8, it is possible to predict the outlet of a unit operation as long as 

the concentration of the inlet stream, Cin(t), and the RTD, E(t), are both known. The 

implementation of this equation in real time system can be used to develop a soft sensor where 

the inlet concentration of a blend is measured and the outlet concentration in a unit operation is 

predicted. 

This convolution integral methodology can be implemented insilico with available process 

models. Various scenarios can be simulated and tested to analyze the control system. This 

manuscript, illustrates this step in detail as can be seen in the Section 4.8 (results). The insilico 

analyses provides a tool for the implementation and development of a control strategy. This step 

is essential since it optimizes the use of expensive raw material in the developmental stages.  The 

performance of the strategy can also be tested to check for the accurateness of the RTD model. 
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Additionally, performance metrics can also be developed and tested insilico. An example of such 

a metric that can be used and is used in this work is the manufacturing efficiency as defined by 

Equation 11. 

𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝜀) = 100 ∗
𝐺𝑜𝑜𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑡)

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑡)
  (11) 

A real time analysis of the manufacturing efficiency can also be used to determine alarms in the 

control system. A production efficiency lower than a certain threshold can give process operators 

an indication of whether the production needs to be stopped to rectify any process faults.  

Post the insilico design and performance assessment, the RTD model can be used in the plant for 

real time tablet diversion based on mean API concentration. The implementation step essentially 

requires the integration of the plant with the diversion system and resolving all hardware and 

software connectivity issues. Validated PAT models must also be developed for real time drug 

concentration measurement. At this point, the system maybe run to test the diversion capability 

of the developed system. Performance issues with the RTD soft sensor based control system, at 

this stage can be attributed to inaccurate RTD model identification and concentration detection 

methods. An iterative re-estimation of existing data can be used to arrive at accurate models. 
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Figure 4.5. Framework for implementation of RTD based diversion 

4.5 Insilico design of RTD based diversion system 

The RTD based diversion system was developed and implemented using a combination of 

Matlab and Simulink. The details of the implementation are elaborated on in this section. 
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4.5.1 Implementation of RTD model for prediction of mean API composition of tablets 

The Cumulative Distribution Function of a unit operation from Equation 2 and 3 when 

normalized maybe plotted on an X and Y axis where the maximum value on the Y axis is one 

and the minimum value is zero. The X axis maybe extended as per the necessity to incorporate 

the full RTD function. Such a plot is shown in Figure 4.6. The RTD model was implemented by 

entering a vector containing all the values from the Y axis into the Finite Impulse Response 

Block in terms of their increments for a certain sampling time.  

It was observed that the convolution integral from Equation (10) could be calculated in real time 

by simply feeding the inlet concentration to the FIR block where the output signal is the 

convoluted outlet concentration. Figure 4.6 gives an illustration of this for a unit step response. A 

comparison of the output from the convolution integral and the output of the FIR block has been 

shown. As can be seen, the only difference lies in the step like structure of the FIR response. 

This step like structure can be attributed to the sample time which in this case is one second. It 

can be smoothened by using a smaller sample time. All the scenarios in this paper were 

generated using the FIR block as the RTD based soft sensor. 
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Figure 4. 6.  Comparison of FIR response and convolution integral 

 

4.5.2 Tablet potency prediction 

Although, the proposed diversion system is based on mean API composition of the tablet, the 

potency has also been analyzed to demonstrate that it is also controlled using this control 

strategy. The potency calculation assumes that there is continuous real time data for tablet 

weight. The potency is then calculated using the expression: 
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𝑃𝑜𝑡𝑒𝑛𝑐𝑦 = 𝑇(𝑡) ∗ 𝐶𝑜𝑢𝑡(𝑡)  (12) 

 

Where T(t) is the continuous tablet weight and  Cout(t) is the RTD based prediction of the outlet 

concentration. 

A methodology for real time tablet weight measurement has been previously reported (4). To 

simulate a signal similar to this a band limited white noise block was used with following 

parameters: Noise power = 0.0000000001, sample time = 2 and seed = 23341. This signal is 

summed with a constant value of 0.4 g to simulate the real time tablet weight T(t) from the 

Equation 12 . 

4.5.3 Tablet diversion system 

The signal generated from the RTD soft sensor (represented by the FIR block), that is, the 

predicted outlet concentration is fed to the diversion system. The diversion system is based on 

the difference between the reference mean API composition of tablet and the actual 

concentration (Cout(t)). The absolute value of this difference is compared with an allowed 

tolerance via a relay which produces a binary output. This output is used to calculate the period 

of good production and the period of diversion. 

4.6 Results and discussion 
 

In this section, scenarios were generated with both the RTD and Fixed window based diversion 

system. Both methodologies were compared in each scenario and its production efficiency was 

analyzed. These scenarios were generated based on potential manufacturing problems during 
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production. In each case, the disturbance has been introduced before entry into the tablet press 

and the affect is seen post compaction. 

4.6.1 Evaluation of RTD based diversion system for rejecting pulse disturbances 

The API, which contains small particles with a tight size distribution, in some cases may 

agglomerate to larger granules. When the blending is not very efficient, agglomerated particles 

can cause sudden changes in the API concentration. Other reasons for such fluctuations can be if 

the feeder stops working for a short duration, a lump of API is introduced into the tablet press, 

API feeder control overshoot, API feeder response time is faster or slower than the excipient 

feeder. Nonetheless, such an occurrence can be treated as a disturbance and has been simulated 

in the form of a pulse disturbance. Two cases have been considered, one with a positive higher 

low magnitude and another with a negative high and low magnitude. as can be seen in Figure 4.7 

and 4.8. In both cases, the disturbance is introduced at the hundredth second. It should also be 

noted that the initial 80s have been allotted to startup of the simulation. 

4.6.1.1 Case study 1: Diversion of more potent tablets caused by positive pulse disturbances 

In Figure 4.7 (a), the output concentration spreads after a certain time delay and subsequently 

exceeds the acceptable range of both concentration and potency. The concentration and potency 

eventually return to the acceptable range once the effect of the disturbance has ceded. During this 

time period a plot analyzing the production has been plotted. The RTD based approach rejects 

tablets for a lesser time period and only when the actual predicted tablet concentration is out of 

range. In the case of the Fixed window approach the tablets are rejected for a slightly longer time 

duration.  
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Similarly, in Figure 4.7 (b) the output concentration spreads and rises as an effect of the input 

pulse disturbance but does not exceed the boundaries at any time. The potency does not exceed 

the boundaries at any point. Therefore, the RTD based diversion approach does not reject any 

tablets after the disturbance has been affected. According to the Fixed Window approach though, 

since it is dependent on the input concentration there is a definite diversion period that follows 

the disturbance.  
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Figure 4. 7. Fluctuation in API concentration (a) High magnitude (b) Low magnitude 

4.6.1.2 Case study 2:  Diversion of less potent tablets caused by negative pulse disturbances 

In Figure 4.8 (a), the variation in the inlet concentration causes a change in the outlet 

concentration. A spread after a certain time delay exceeds the acceptable range of both 

concentration and potency. The concentration and potency eventually return to the acceptable 

range once the effect of the disturbance has ceded. The production plot shows that the RTD 

based approach rejects the tablets for a lesser time period and only when the actual predicted 

tablet concentration is out of range. On the other hand, in the case of the Fixed window 

approach, tablets are rejected for a slightly longer time duration.  
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In Figure 4.8 (b), the output concentration spreads and rises as an effect of the input pulse 

disturbance but does not exceed the boundaries at any time. The potency does not exceed the 

boundaries at any point. According the RTD based diversion approach there is no diversion post 

the eightieth second since the outlet concentration is within the boundaries. According to the 

Fixed Window approach, since it is dependent on the input concentration there is a definite 

diversion period that follows the disturbance.. 
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Figure 4.8. Negative pulse disturbance (a) High magnitude (b) Low magnitude 

 

4.6.2 Evaluation of RTD based diversion system for rejecting step disturbances 

In some situations, a feeder might start feeding more or less and this may go undetected. If the 

process monitoring system does not detect this, then another fail safe measure would be to make 

use of the real time diversion system at the tablet press outlet. This scenario has been simulated 

by a step change disturbance.  

 

4.6.2.1 Case study 3: Diversion of more potent tablets caused by step disturbances 
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In Figure 4.9 (a) a step change disturbance has been simulated in the concentration to represent 

an excipient feeder that is feeding less. The resulting increase in the API concentration causes the 

potency to increase as well. The dynamics exhibited by this increase is derived from the RTD of 

the system. In both, the RTD based approach and the fixed window approach the diversion 

begins at around the same time and since the concentration does not return to the desired range 

and therefore, there is no need to stop the diversion during this time. On observing the graphs, it 

can be seen that there is little difference in the RTD based approach and the Fixed Window 

approach. The RTD based approach is 1% percent better.  

4.6.2.2 Case study 4:  Diversion of less potent tablets caused by step disturbances 

In Figure 4.9 (b), similarly a step down has been simulated in the concentration to represent an 

excipient feeder that is feeding more. The resulting decrease in the API concentration causes the 

potency to decrease as well. As is apparent from the graphs, this case is a mirror image of the 

case of the step up disturbance. The step down magnitude is exactly the same as the step up 

magnitude. 
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Figure 4.9. Step disturbance (a) Step up (b) Step down 

 

4.6.3 Evaluation of RTD based diversion system for rejecting short step change disturbances 

In some situations, compacted and badly mixed API can result in disturbances that may last more 

than a few seconds and subside once the material passes. This has been simulated in Figure 4.10 

with two magnitudes. The degree to which powder is compacted can result in a high or low 

magnitude disturbance.  

 

4.6.3.1 Case study 5:  Diversion of more potent tablets caused by short positive step 

disturbances 



70 

 

 

 

In Figure 4.10 (a), the disturbance is of a higher magnitude and lasts twenty seconds. The output 

concentration response and potency as predicted is shown and this exceed the tolerance. The 

result of this is a diversion as seen in the plot. The Fixed window approach and the RTD based 

approach provide very similar results in this case but the latter provides a one percent 

improvement. 

In Figure 4.10 (b), the disturbance lasts for twenty seconds as well but the magnitude is much 

lesser. The concentration and potency exceed the toleration limits and the subsequently the 

diversion begins in both the RTD based approach and the Fixed window based approach. In this 

case the decreased magnitude of the disturbance results in the improved performance of the RTD 

based approach.  
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Figure 4.10. Short positive offset in concentration (a) High magnitude (b) Low magnitude 

 

4.6.3.2 Case study 5:  Diversion of less potent tablets caused by short negative step disturbances  

In Figure 4.11 (a), the disturbance is in the negative direction and lasts twenty seconds. The 

output concentration response and potency as predicted is shown and this exceeds the tolerance. 

The result of this is a diversion as seen in the plot. The Fixed window approach and the RTD 

based approach provide very similar results in this case but the latter provides a one percent 

improvement. 
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In Figure 4.11 (b), the negative disturbance is of a smaller magnitude but lasts for twenty 

seconds as well. The concentration and potency exceed the toleration limits and the subsequently 

the diversion begins in both the RTD based approach and the Fixed window based approach. In 

this case the decreased magnitude of the disturbance results in the improved performance of the 

RTD based approach.  
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Figure 4.11. Short negative offset in concentration (a) High magnitude (b) Low magnitude 

 

4.6.4 Evaluation of RTD based diversion for rejecting random disturbances 

In the pharmaceutical industry, real time concentration is measured using NIR, RAMAN and 

other spectroscopic devices. These devices rely on the collection of spectra inline and PAT 

models for their concentration prediction. It is possible that for short periods of time there is a 

high fluctuation in the inlet concentration. Even if the powder is uniformly mixed it is possible 

that the concentration varies continuously in magnitude around a certain mean. Such a signal has 

been simulated in Figure 4.12. Here the input concentration fluctuates constantly and violates the 

boundaries. In such a situation, since the fixed window approach is dependent on the input signal 
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it would initiate diversion. Since there is a violation of the boundaries at multiple time points 

there would subsequently be more diversions initiated. This would detrimentally effect 

manufacturing efficiency since all tablets rejected during this period as seen from the calculated 

output concentration are within the allowed limits almost throughout the entire timespan of 

simulation except at the one hundred and sixtieth second. This means that there would be 

unnecessary diversion by the Fixed Window strategy. On the other hand, the RTD based 

diversion strategy would reject tablets only during the brief period that there is a violation.  

 

Figure 4. 12. RTD based diversion simulated for a noisy input concentration data. 
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4.6.5 Performance assessment of RTD based diversion for different processes 

The proposed RTD based diversion system is process dependent and must be re-tuned for 

different processes. In this section, the RTD based diversion strategy has been evaluated for 

different processes. The different processes have been simulated via varying number of tanks in 

the tank in series model with a plug flow reactor to simulate the delay in the response. The 

justification for this consideration is to show that the prediction of the outlet concentration can be 

drastically different in different systems and the performance may vary based on the system. In 

Figure 4.13, the outlet concentration has been plotted for 1,5,10 and 15 tanks. With an increase 

in the number of tanks the spread of the response widens and the effect of the disturbance 

persists in the system for much longer. Subsequently, the diversion times increase with the 

number of tanks.  
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Figure 4. 13. Performance assessment of RTD based diversion with different RTD models. 

Table 4.1. Manufacturing efficiencies of Case studies 1-5 

Scenario Magnitude Manufacturing Efficiency, ε (%) 

  
RTD Fixed Window 

Pulse Disturbances 

Case Study 1 
High 94.6667 87.1667 

Low 100 87.1667 

Case Study 2 
High 94.6667 87.1667 

Low 100 87.1667 

Step Disturbances 
Case Study 3 NA 71 69 

Case Study 4 NA 71 69 

Short Step 

disturbances 

Case Study 5 
High 72 71 

Low 79 71 

Case Study 6 
High 72 71 

Low 79 71 
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4.6.6 Discussions: 

In this work an RTD based diversion system was designed, developed and implemented in silico. 

This methodology was compared to an alternative fixed window methodology. In the fixed 

window methodology, process time delays are applied to determine diversion periods while in 

the RTD based strategy the predicted outlet concentration determines the diversion window. 

From the results, it was observed that the RTD based approach is always better than the fixed 

window approach. This is reinforced by the manufacturing efficiency in Table 1, which was used 

as a metric to quantify the improvement. The magnitude of improvement changes depending on 

factors such as the magnitude and type of disturbance. If the system exhibits long step like 

disturbances, then either the Fixed Window approach or the RTD based approach can be used. 

From Table 4.1, one could also draw the conclusion that the RTD based diversion system 

performs best when the disturbance is a short pulse. In this work, the developed system’s 

application is directed mainly towards continuous pharmaceutical manufacturing processes 

where it can facilitate more efficiency in production. This however, does not restrict its use to a 

Direct Compaction Continuous Pharmaceutical line. It can be adapted and used in any 

continuous processes. 
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Chapter 5: Integrated scheduled optimization and model predictive 

control implementation into continuous direct compaction line 
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5.1  Materials and methods 

The pilot plant has been described in Section 2.1.1 of the background. The compaction process is 

described in detail in Section 2.1. The moving horizon based real time optimization (MH-RTO) 

method for continuous pharmaceutical manufacturing processes has been taken from Singh, Sen, 

et al. (2015). The experiments were conducted using a blend of 90% lactose 310 (excipient), 9% 

acetaminophen (API) and 1% magnesium stearate (lubricant). The API, excipient, and lubricant 

were pre-blended using a batch v blender for 30 minutes at 25 RPM. A rotary tablet press (Fette 

1200) was used for the compaction process. Tablet press parameters were monitored and 

controlled using DeltaV (Emerson) in combination with Matlab through OPC connection. The 

punches used in the tablet press were 12 mm and circular in shape. 

5.2 Hardware and software integration 

Communication was established between Matlab, the control platform and the actual tablet press. 

This was achieved through the local area network through OPC protocol. The connection 

between the tablet press and DeltaV has been explained in detail in Chapter 3 under Section 3.3. 
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The connection between DeltaV, Matlab and the tablet press that was used for the optimization 

has been explained further in this section. 

There are essentially three units involved in this integration – the matlab work station, the Delta 

V work station and the tablet press. Each of these houses an OPC server. Communication 

between these units is facilitated by the local area network and further managed by an OPC client 

[Kepware]. Figure 3.1 can further illustrate this. On each of the servers, it is possible to setup 

tags on kepware that project data outgoing from an OPC enabled software into the server. DeltaV 

and Matlab are both OPC enabled software and kepware is used to setup these tags. On one of 

the work stations, an advanced tag is setup to tube the tags together. Essentially, the tags on the 

OPC servers are interconnected to enable desired communication. In this case, the advanced tags 

are setup on the DeltaV work station. This integration has been schematically represented in 

Figure 5.1. It is further assisted by Figure 3.1. 
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Figure 5. 1. Hardware and software integration 

5.3 Integrated Moving horizon based optimization and model predictive controller 

implementation. 

An ideal moving horizon based optimization consists of an optimization algorithm that uses 

process information along with external inputs to maximize profit through a set of calculations. 

(Singh et al., 2015). It would ideally receive two inputs, the current and past production rates as a 

trajectory and demand for the product. Based on this, with the motivation of maximizing profit, 

the optimization predicts a trajectory for the production rate for a predefined future interval. The 

first point from this is applied to the plant. It is assumed that control for the plant has already been 

developed and is being supervised by model predictive control. The controller receives updated 

set points for the production rate and based on this keeps the process parameters in check for 

optimal tablet production. 
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The implementation of the optimization in this case does not involve a prediction of future 

trajectories or take into account past data. It seeks to investigate potential challenges that may 

arise in using such a strategy from the perspective of the continuous direct compaction 

manufacturing line. Following assumptions and considerations have been made for the 

implementation: 

1. It is assumed that the demand changes periodically and this change in demand update 

takes into account prior deficiencies or excesses. 

2. The control of main compression force is a reflection of the control of tablet breaking 

force. 

3. Only slave control loop was enable while running in optimization mode. 

4. Tablet concentration control at the feeder level is assumed to be efficient based on ratio 

control. 

5. It is assumed that the controller performs optimally within a given production rate range 

such that the production under control meets demand. Although this assumption is made, 

this point is further investigated and potential advantages and disadvantages of this 

assumption are explored. 

This simplified optimization algorithm that was developed based on these assumptions has been 

termed scheduled optimization. The implementation strategy has been elaborated in the next 

section. 

5.3.1 Scheduled Optimization 
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An optimization algorithm was adapted from a previous paper (Singh et al. 2015). This was 

simplified for implementation into the direct compaction tablet manufacturing pilot plant.  

Following were the main modifications to the previously published work: 

1. The inputs to the objective function are the demand which is a user input and the rejection 

fraction which can be a variable that is derived from the tablet press or operator provided 

based on the method of implementation. 

2. The demand is provided per optimization run in another file that calls the optimization. The 

optimization runs the Matlab inbuilt ‘Fminbnd’ on the objective function to output a 

production rate (Forsythe et al. 1977). The production rate is written to DeltaV before which it 

is relayed to the tablet press. 

 

5.3.2 Disturbance handling main compression force model predictive controller 

A model predictive controller was developed with the motivation of keeping process parameters 

constrained during the optimization. This has been schematically shown in Figure 5.2. 
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Figure 5.2. Schematic representation of Model predictive control strategy with disturbance 

handling capacity and supervisory optimization. 

As can be seen, the manipulated variables are the main compression height (MCH) and the fill 

depth (FD). This pairing was chosen based on the Sensitivity analysis presented in Section 3.7 of 

Chapter 3. Although, schematically presented, only the main compression force controller was 

implemented for the sake of simplicity.  As seen in the Figure 5.2, the production rate was fed to 

the MPC as a disturbance. The set point of the production rate is set by the optimization; the 

actual value of the production rate is used as a disturbance variable in the MPC. This was done to 

take into account the effect the production rate has on the correlation between main compression 

force and main compression height. 
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5.4 Results and discussion 

This results and discussion section has been generated based on the implementation of a series of 

scenarios. The first of these scenarios was the implementation of the optimization without a 

controller and rejection considerations. In this case, there was no controller that would control the 

critical process parameters and it was assumed that all production was good. This was done to 

expose the potential gains of having a controller in place and also some open loop characteristics 

of the compaction process.  

The second of these scenarios was the implementation of the optimization with an approximated 

methodology for taking into account rejection in real time. This methodology is further elaborated 

in the section 5.4.2.  This scenario is justified as one could make the argument that a switch type 

control can be put in place to reject material as and when it is out of spec.  This further seeks to 

make evident the need for a complex control system. 

Post this, the controller is developed and run in combination with the optimization. Two actuator 

candidates are evident for the SISO MPC. One is the filling depth and the other is the main 

compression height. From the understanding of the mechanical working of the tablet press, one 

can make the statement that for a change in production rate, the rate at which the powder is filled 

into the dies would be affected. To mitigate this, one would need to feedback information about 

the die filling efficiency and manipulate fill depth accordingly. But in the situation that the die is 

filled inefficiently, both hardness and the weight would be impacted. Therefore, this would reflect 

on the main compression force. So it can be justified that maintaining the main compression force 

through manipulation of the fill depth can possibly control both hardness and weight. Considering 

this, it was a scenario that was implemented. 
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Another more tested possibility is that the main compression force can be controlled through 

manipulations in main compression height. This assures tablet breaking force control. It however, 

don’t control the weight of the tablet. To control the weight, the MPC would have to be expanded 

to the 2x2 strategy with disturbance as presented in Figure 5.2. The implementation of this 

presents complexities in developing the model that is required to run the MPC strategy. For 

simplicity sake, this work has not been pursued. This would however be a future direction to 

pursue so as to build on this work. In this work, the MPC controlling hardness through 

manipulations of main compression height is however implemented. 

Following are the scenarios as described above. 

5.4.1 Scheduled optimization without controller and rejection considerations 

The product demand was varied from 8,000 tablets/h to 15,000 tablets/h and from 15,000 

tablets/h to 25,000 tablets/h and so on as shown in Figure 5.3. Step changes were introduced in 

the demand.  At each step change, the optimization was run, and this produced new set point 

values for the production rate. This set point was sent to DeltaV and then to the tablet press. Four 

such optimization cycles are observed as shown in Figure 5.3.  
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Figure 5. 3. Real time optimization of demand. 

 

Due to operation within the optimizer limits, an assumed lack of rejection in product, the 

optimized production rate follows the path of the demand. As the production rate increased the 

main compression force (MCF) and the pre-compression force (PCF) decreased. This is seen in 

Figure 5.4. The MCF which was the variable of importance has a set point of 2.7 which was 

decided from previous experiments. A 10 % tolerance limit is provided. It can be seen that post 

the changes in production rate, the main compression force and pre compression force follow a 

similar decreasing trend. This can be attributed to bad die fill efficiency due to faster turret 

rotation and same feed frame speed a lower dwell time because the lower compression time. 
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Figure 5.4. Real time optimization of direct compaction line without a controller and rejection 

considerations.  

 

5.4.2 Scheduled optimization without control and approximated rejection considerations 

The rejection fraction in this scenario has been defined based on the main compression force 

values that are received from the tablet press. There is currently no data available to build a 

model that relates main compression force to a metric that determines rejection fraction. In this 

work, a DeltaV calculation block allotted a rejection fraction based on the current value of main 

compression force. The main compression force range and assumed rejection fraction is given in 

Table 5.1 
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Table 5.1. Rejection fraction 

Main Compression force (kN) Range Rejection fraction (units) 

MCF>3.2 0.01 

2=>MCF=>3.2 0.1 

1=>MCF=>2 0.3 

MCF<1 0.6 

As seen in Figure 5.5, the demand was changed from an initial 8000 tablets per hour to 15000 

tablets per hour.  The main compression force during this run remains above 3.2 kN and 

therefore does not cause a change in the rejection fraction. The demand is then further increased 

from 15,000 to 17,500 tablets per hour. The MCF decreases further and now is lesser than 3.2 

causing the rejection fraction to rise 0.11. A feedback of this into the optimization and a rerun 

generates an increased production rate of 17,700 tablets/h. Due to the increase in production rate 

again, there is a further decrease in MCF resulting in the increase in rejection fraction to 0.3. 

This causes the production rate to rise and the take the value of 19,700 tablets/h. Due to further 

increase in production rate, the MCF decreased and the rejection fraction increased to 0.6 and 

caused the production rate to jump to 25,000 tablets/h. At this stage, from visual inspection the 

tablet press was not producing tablets but shooting out uncompressed powder.  

At this stage the demand is reduced to 8,000 tablets/h. Due to this, the production rate decreases 

from 25,000 to 20,000 tablets per hour. An increase in MCF causes a lowering of the rejection 

fraction to 0.3 resulting in a lower value of production rate (11,400 tablets per hour). A further 

lowering of the rejection fraction (0.3 to 0.01) is caused due to the increase in the main 

compression force. One can see from this that in an open loop state, the system with rejection 
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consideration enters a region of instability at higher demand values. Due to the manually run 

methodology used here, the system was brought back to stable operating conditions. A 

continuous real time system however would have led to high production rates and very low MCF 

values.  At this juncture the need for an MCF controller is evident. Thus it has to be fixed which 

can be done by controlling the MCF. 

 

Figure 5.5. Real time optimization of direct compaction line with rejection considerations and 

without a controller. 

 

5.4.3 Closed loop performance of disturbance handling MPC 

5.4.3.1 Fill Depth actuator based controller performance 
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The development of an MPC follows the same procedure as followed in Chapter 3. Step changes 

are applied to develop an MPC model. This model is then used in building a controller.  

Figure 5.6 shows the open loop step changes that were made. The production rate is varied along 

with the fill depth and the changes in MCF are observed. The production rate set point was first 

changed from 8,000 to 25,000 tablets per hour. The actual production rate followed the path of 

the set point. It is noticed here that the optimization was not considered during this experiment. 

A decrease in the MCF is noted. Next, the fill depth set point was changed from 5.5 mm to 6.5 

mm and the actual fill depth value followed the set point. This change in fill depth caused an 

increase in MCF. Following this, production rate set point was reduced back to 8,000 tablets per 

hour which increased the MCF to 13.3 mm. Then the fill depth set point was changed to 4.5 mm. 

Further step changes were introduced. From these step changes, a model for the model predictive 

controller (MPC) was developed.  
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Figure 5.6. Main compression force open loop response for MPC model development with step 

changes in production rate and fill depth. 

 

Post controller development, two tests were conducted. A set point tracking test and a 

disturbance rejection test.  

In the case of set point tracking the set point for MCF was changed from 3.6 mm to 4.8 mm. As 

seen in Figure 5.7, manipulations in the fill depth bring the MCF to its set point. Some 

oscillations are observed. The set point was then changed back to 3.6 mm. The fill depth was 

further manipulated accordingly to achieve the MCF set point.  

The disturbance rejection test was conducted in the same run. For this the production rate set 

point was changed from 8,000 to 16,500 tablets per hour, which caused the MCF to drop. It is 
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seen from figure 5.7 that the MPC increased the fill depth set point to control the MCF but 

oscillations started to appear. The oscillations increased with time and thus the production rate 

set point was brought back to 8,000 tablets/h. This was done to prevent the tablet press from 

breaking down to high values of MCF. Post the return to 8000 tablets per hour the main 

compression force stabilizes. This result shows that the controller is unstable at higher 

production rates. This can be attributed to high sensitivity of changes in the fill depth to the main 

compression force at higher production rates, inability for the model to capture the dynamics 

correctly and a lack of further process understanding at this operating regime.  

 

Figure 5.7. Closed loop response for MPC to control main compression force using fill depth. 
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5.4.3.2 Main Compression height based controller performance 

The controller with main compression height as the actuator is the second of the two alternatives 

that was tested. Like before, the model is developed and tested. 

For the open loop step test, the MCH set point was first changed from 3 mm to 3.25 mm. this 

caused the MCF to decrease. Following this, the production rate was changed from 8,000 to 

25,000 tablets per hour. The MCF is observed to decrease to 0.9 kN. The MCH was changed to 

2.9 mm and then to 3.25. The production rate was then increased to 16,500 tablets per hour. The 

MCF changes were noted. Later, the MCH set point was brought down to 2.5 mm and then to 3.4 

mm and back to 3.25 mm. After which the production rate set point was changed back to 8,000 

tablets/h. Here its seen that the main compression force (control variable) is inversely 

proportional to main compression height (actuator) as well as production rate (measurable 

disturbance to the control loop). This data was used for the controller model development.  
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Figure 5.8. Main compression force open loop response for MPC model development with step 

changes in production rate and main compression height. (CF-Compression Force, MCH – Main 

Compression Height, PR – Production rate) 

 

The developed model is used to implement closed loop MPC based control as shown in Figure 

5.9.  Set point tracking and disturbance rejection tests were conducted to test efficiency of the 

controller.  

For set point tracking, the MCF set point was changed from 3.6 mm to 4.4 mm. As seen in 

Figure 5.10, MCH is manipulated accordingly to bring the set point of MCF to its target. The 

MCF set point, post stable operation, was then brought back to 3.6 mm. The MCH was 

manipulated efficiently to bring the MCF back to target. 
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For the disturbance rejection, the production rate was changed from 8,000 to 16,500 tablets per 

hour post set point tracking stable operation. The increase in production rate as seen in Figure 5.8 

causes the MCF to decrease. The MPC rejects this disturbance through appropriate 

manipulations in MCH. Post this; the production rate was increased to 25,000 tablets per hour. 

The set point of MCF is maintained post a short spike in its value. This was also observed when 

the production rate set point was changed back to 8,000 tablets/h where the MPC increased the 

MCH set point so that the MCF can follow is set point. Thus, the MCF was controlled with the 

MCH set as manipulating variable and production rate as the disturbance. Some performance 

metrics for this were calculated and have been presented in Table 5.2 

 

Figure 5.9. Main compression force MPC implementation. 

Model Predictive 

Controller 
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Figure 5.10.  Closed loop response for MPC to control main compression force using main 

compression height. 

Table 5.2. Performance metrics for MCH based MCF controller 

ITAE IAE ISE Rise time Settling time  Over shoot 

6893.65 87.65 75.205 99 120 1.75 

 

5.4.3.3 Time to steady-state based rejection 

Given that to some extent main compression force is controllable within the defined production 

rate, an observation from the closed loop tests revels a consistent two minutes time to steady post 

appearance of a production rate disturbance. Traditionally, main compression force violations are 
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used to reject tablets. If time to steady state is considered to be consistent within the optimization 

range, then tablets should be rejected for the time period that the process is unsteady. Therefore, 

this time period can be used to fractionalize the rejection per run if the total run time is known. It 

was predefined that the demand would be varied every seven minutes. Therefore, if there is 

rejection during the first two minutes, then the rejection fraction for that time period is 2/7. This 

numeric value is used in further experimentation to account for rejection. 

5.4.4 Integrated Scheduled optimization and MPC implementation 

Having developed controllers, the optimization is now retested with the system in closed loop. 

The demand was provided every seven minutes. Subsequently, the optimization was run every 

time the demand was changed. The rejection fraction is now a numerical value in the 

optimization. The demand of 5,750 tablets per hour was initially provided in Matlab, the 

optimization ran to give a production rate set point of 8,100 tablets per hour. Then the demand 

was changed to 10,000 tablets per hour and the optimization was run to give a production rate set 

point of 14,000 tablets per hour to DeltaV. The production rate changed with respect to its set 

point. This caused the MCF to change and hence the MPC controlled the MCF through 

manipulations in MCH. Then the demand was changed to 15,000 tablets/h and the optimization 

gave 21,000 tablets/h. Similarly, the demand was changed to 8,000 tablets/h then to 5,000 

tablets/h and then to 20,000 tablets/h with a 7 min gap between each other. Thus, caused the 

production rate to change 11,200 tablets/h then to 18,430 tablets/h and then to 25,000 tablets/h 

respectively. Form the figure 13, its seen that the MPC controlled the MCF for all these step 

changes. Thus the real time optimization with MPC was implemented. 
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Figure 5. 11. Real time optimization of direct compaction line with MPC. 

 

Figure 14 show demand vs production vs good tablets for the demand changes made above. The 

upper bound considered here for production rate was 25,000 tablets/h and so the good tablets 

didn’t meet the demand for the final case. 
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Figure 5.12. Performance evaluation of real time optimization and MPC controller. 
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Chapter 6: Conclusions and Future perspectives 

This chapter has been written in accordance with the objectives for the thesis. Each objective has 

been concluded and a future path has been set. The scientific literature review to identify the 

gaps in the state of arts along with the background required has been systematically presented as 

seen in Chapters 1-2.  

As seen in Chapter 3, multiple control strategies were presented for the direct/indirect control of 

tablet weight and hardness. A MIMO cascade MPC based strategy was proposed for tablet press. 

A 2X2 MPC was implemented for simultaneous control of pre and main compression forces and 

thereby indirect control of tablet weight and hardness. A master loop has been also implemented 

using a novel real time tablet weight measurement method for direct control of tablet weight. 

Results show that tablet weight was controlled in real time and a cascade controller as elaborated 

on can be considered as a potential CQA controlling methodology. It is important to note that the 

master hardness control loop is currently not possible to implement because of unavailability of 

real time measurement sensor of tablet hardness and it could be a direction of future 

investigation. Also, drift in the density or the composition would not be taken into account. This 

segueways into an important aspect of this that has not been explored in this thesis, that is, the 

control of composition along with tablet weight and hardness. Numerous strategies have been 

postulated as seen in the introduction section but none have been implemented with an MPC in 

the system in real time and that could be a future research direction.  

As presented in Chapter 4, an RTD based control system was designed, developed and 

implemented Insilico. This methodology was compared to an alternative fixed window 

methodology. In the fixed window methodology, process time delays are applied to determine 

diversion periods while in the RTD based strategy the predicted outlet concentration determines 
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the diversion window. From the results, it was observed that the RTD based approach is always 

better than the fixed window approach. In this work, the developed system’s application is 

directed mainly towards continuous pharmaceutical manufacturing processes where it can 

facilitate more efficiency in production. This however, does not restrict its use to a Direct 

Compaction Continuous Pharmaceutical line. It can be adapted and used in any continuous 

processes. The future work includes the implementation of RTD based control strategy into our 

pilot-plant facility. 

As described in Chapter 5, the implementation of an optimization algorithm in the continuous 

direct manufacturing line to produce tablets efficiently under varying demand changes was 

achieved with control over the main compression force that indirectly control tablet hardness. 

Some assumptions were made about this. This can be considered as a stepping stone in achieving 

a holistic control system with supervisory optimization. The author acknowledges the simplicity 

of the current solution. Future steps can take into account more variables from the Direct 

Compaction manufacturing process and expand the optimization space. 
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Nomenclature 

Abbreviations Variables 

API Active pharmaceutical ingredient 

CSTR Continuous stirred tank reactor 

CQA Critical quality attributes 

NIR Near infrared reflectance 

PFR Plugged flow reactor 

PAT Process analytical technology 

RTRT Real time release testing 

RTD Residence time distribution 

AI Analog Input 

AO Analog Output 

API Active Pharmaceutical Ingredient 

CNTRL Controlled Variable 

CPP Critical Process Parameter 

IAE Integral of Absolute Error 

ISE Integral of Square of Error 

ITAE Integral of Time Absolute Error 

MgSt Magnesium Stearate 

MCF Main Compression Force 

MCH Main Compression Height 

MNPLT Manipulated Variable 

MPC Model Predictive Control 

OPC OLE (Object linked and embedding) for process control) 

PCF Pre Compression Force 

PCH Pre Compression Height 

PE Penalty on Error 

PID Proportional Integral Derivative 

PM Penalty on Move 

QbD Quality by Design 

QbT Quality by Testing 

SCLR Scalar 

SP Set point 

CF Compression Force 

 

 

Symbol Variable Units 

C Concentration g/m
3
 

C(t) Concentration at time t (%) 
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E(t) Residence time distribution function s
-1

 

F(t) Cumulative distribution function (-) 

N Number of tanks (-) 

T Time s 

Ε Manufacturing efficiency % 

Σ Variance s 

Τ Mean residence time s 

 

Subscript Variable 

A Accept 

Di Initial delay 

Df Final delay 

Exp Experimental  

F Concentration after step change 

In Input stream 

O Off-specification 

Out Output stream 

S Specification 

R Reject 
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