

© 2018

HARSHIT BOKADIA

ALL RIGHTS RESERVED

DEEP LEARNING BASED VIRTUAL METROLOGY IN

SEMICONDUCTOR MANUFACTURING PROCESSES

by

HARSHIT BOKADIA

A thesis submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Master of Science

Graduate Program in Industrial and Systems Engineering

Written under the direction of

Myong K. Jeong

And approved by

New Brunswick, New Jersey

OCTOBER, 2018

ii

ABSTRACT OF THE THESIS

Deep Learning Based Virtual Metrology in Semiconductor Manufacturing

Processes

By HARSHIT BOKADIA

Thesis Director:

Myong K. Jeong

Virtual metrology (VM) in semiconductor manufacturing is the technique of predicting

critical dimensions of wafer quality characteristics without direct measurement based on

process data of production equipment. VM is important in semiconductor manufacturing

since it enables engineers to monitor the quality of wafers in production without physical

wafer metrology thereby increasing the throughput of the process. As the process

information consists of a large number of process variables in the form of raw sensor

signals, learning new useful features in a low dimensional space is a key to build accurate

VM prediction models. Earlier efforts in VM modeling were carried out by employing

linear dimensionality reduction techniques such as PCA. Autoencoder is a deep learning

based feature extraction method that has the capability to explore the non-linearity in the

modeling and to represent high dimensional input into a low dimensional space. In this

thesis, we propose a new VM model by incorporating the autoencoder based feature

learning. We apply the proposed model to the prediction of critical dimensions of wafers

at a plasma etching process in semiconductor manufacturing and compare the predictive

iii

performance of the proposed model with conventional VM models. The experimental

results show that the proposed model outperforms the existing models thus showing that

autoencoder based feature learning is helpful in VM modeling with raw sensor signals.

iv

 Acknowledgement

I would like to take this opportunity to acknowledge everyone who had faith in

this research work.

First and foremost, I would like to express my gratitude to my committee

chairperson Professor Myong K. Jeong for his constant support, guidance and motivation

in completing this thesis. He taught me the way to approach a research problem and

contribute effectively in the research. He had been very patient and supportive throughout

the research. He has the insight of an accomplished scholar and provided valuable

feedbacks during his reviews which helped me in making substantial contribution to this

research. I am grateful for his support.

The assistance and guidance of my fellow PhD student Jeongsub Choi had been

very much essential in completing this thesis. He helped me in writing python scripts and

implementing the ideas throughout this research work. He is a very hard working

researcher and had been of tremendous help despite his busy schedule. I appreciate his

support and guidance.

I would also like to thank the committee members Professor Weihong Guo and

Professor Hoang Pham for taking out time from their busy schedule and providing

valuable feedback on my thesis.

I would like to thank the faculty, staff, and students of my department, Industrial

and Systems Engineering at Rutgers for their continuous support during my time at

Rutgers.

At last, I would take this opportunity to thank my parents and sister for supporting

me for this research work and keeping me motivated throughout the journey.

v

Table of Contents

ABSTRACT OF THE THESIS…………………………………………………………..ii

Acknowledgement……………………………………………………………………….iv

Table of Contents…………………………………………………………………………v

List of Tables..……………………………………………………………………………vi

List of Figures …………………………………………………………………………..vii

 Introduction………………………………………………………………1 CHAPTER 1

 Related Work…………………………………………………………….6 CHAPTER 2

2.1. VM in Semiconductor Manufacturing……………………………………6

2.2. Autoencoder and Deep Neural Networks……………………………….10

 Proposed Methodologies With Features Extracted by Autoencoder……17 CHAPTER 3

3.1 VM with Features from Process Statistics…………………………………..18

3.2 VM with Features from Raw Sensor Dataset……………………………….23

 Experiments and Results……………………………………………….25 CHAPTER 4

4.1 VM with Autoencoder for Features from Process Statistics Data…………..29

4.2 VM with Autoencoder for Features from Raw Sensor Data………………..33

 Conclusion and Future Work………………………………………..….36 CHAPTER 5

References………………………………………………………………………………38

vi

List of Tables

Table 4.1 Hyperparameters to be tuned for various prediction models 28

Table 4.2 Summary statistics extracted for each sensor signal ... 29

Table 4.3 Testing MSE for various prediction models ... 32

Table 4.4 Statistics for top 30 Pearson correlation coefficients .. 32

Table 4.5 Statistics for top 30 Spearman correlation coefficients 32

Table 4.6 Testing MSE for various prediction models ... 34

Table 4.7 Statistics for top 30 Pearson correlation coefficients .. 34

Table 4.8 Statistics for top 30 Spearman correlation coefficients 34

vii

List of Figures

Figure 2.1 Basic one hidden layer autoencoder .. 11

Figure 3.1 Methodology for VM based on feature learning by autoencoder on process

statistics data. .. 19

Figure 3.2 Methodology for VM based on features learning by autoencoder on raw sensor

data. ... 24

Figure 4.1 Raw sensor dataset from plasma etching process .. 26

Figure 4.2 Graph of MSE and number of hidden neurons for process statistics dataset. . 30

Figure 4.3 Graph of MSE and number of hidden neurons for raw sensor dataset. 33

1

 Introduction CHAPTER 1

The manufacturing of integrated circuits (ICs) also known as chips in semiconductor

manufacturing industry involves a large number of sequential steps such as chemical

vapor deposition, etching process and lithography process. During each step, patterned

layers are being formed on the wafers which eventually complete the integrated circuit

and we get the final product called ICs or the chip. From each wafer, hundreds of chips

are being formed. Definitely, the complete process involves a huge amount of capital

expenditure. To ensure cost effectiveness and process stability, an efficient and reliable

method for process control is required and since semiconductor manufacturing consists of

a number of sequential manufacturing stages, quality control at each stage is important

for high production yield.

High yield in production and product‟s quality can be achieved by good quality

management. A way for quality control is to monitor manufacturing process by

measuring critical dimensions of wafer quality characteristics at various steps during the

process (metrology). Another way is to promptly detect wafer abnormalities by

identifying spatial defect patterns (Kim et al., 2016). Fail bit maps (FBMs) are also quite

commonly used tools for monitoring wafer quality which involves visual inspection of

failed cell count during wafer functional tests. Some researchers proposed an automated

classification procedure for failure pattern on FBMs using regularized singular value

decomposition which no more requires any visual inspection thus saving time and money

(Kim et al., 2015). Both metrology and fault detection is important in achieving a better

overall quality control. Traditionally, manufacturing processes in semiconductor industry

2

were controlled using statistical quality control techniques and metrology being one of

them has been in practice for a long time (Su et al., 2007). Critical dimensions of wafer

quality characteristics are being measured at various stages during the process by

sampling few wafers out of the lot (Su et al., 2007; Khan et al., 2007). These

measurements were done with physical metrology tools which produce a lot of delay in

providing feedback of the current wafer quality (Chang and Cheng, 2005). Also, this

physical metrology is being performed only on monitor wafers which are drawn

intermittently during the the process (Kang et al., 2011). Not only this, the equipment

condition keeps on changing due to malfunction, preventive maintenance events, and

equipment aging problems. This changes the process parameters and hence the wafer

quality. These process shifts and drifts in equipment condition which occur between the

measurements are not easily detected which may lead to faulty wafers thereby decreasing

the cost efficiency.

Virtual metrology (VM) in semiconductor manufacturing overcomes the

limitations of conventional physical metrology by predicting critical dimensions of wafer

quality characteristics without direct measurement based on process data of production

equipment (Chang and Cheng, 2005). It enables engineers to monitor the quality of

wafers in production without physical wafer metrology thereby increasing the throughput

of the process. This is the reason VM is gaining increasing attention from semiconductor

manufacturing industry.

There are several advantages of shifting to virtual metrology from physical

metrology in semiconductor manufacturing. Earlier, for metrology operation, the quality

statistics were collected for only a few wafers from the lot (Khan et al., 2007). It was

3

hard to measure every production wafer since it is time-consuming and expensive also.

These few wafers were assumed to represent the product quality of all the production

wafers (Hung and Lin, 2007). VM provides more information on the quality of processed

wafers in production rather than just a few sampled wafers since for VM modeling few

wafers are sampled from the lot to get metrology data (response variable) and the

metrology values for the rest of the wafers are predicted through VM prediction models.

VM enables to detect the shifts and drifts occurring due to changing process dynamics

immediately and reconfigure the process parameters accordingly in real time thereby

preventing the production of faulty wafers (Lin et al., 2006). VM drives the production

efficiency and eventually throughput by enabling the process control and monitoring in

real time (Khan et al., 2007; Qin et al., 2006). Also, with increased complexity of circuit

design and chips getting smaller and smaller, it is required to shift to the wafer to wafer

control from earlier lot to lot control which is possible by virtual metrology because of

faster response and no metrology delays.

For VM, the process information is collected from the sensors mounted on the

production equipment, and the resultant data can be very high dimensional. Existing VM

modeling techniques have some limitations when we deal in the high dimensional space

since they consider linear dimensionality reduction techniques such as PCA (Kang et al.,

2011; Hung and Lin, 2007; Zeng and Spanos, 2009; Kurz et al., 2015; Park et al., 2015)

and least angle regression (Susto and Beghi, 2013). But, the functional data coming from

different sensors might have a non-linear mapping with the response variable and

performing linear dimensionality reduction overlooks this non-linearity. On the other

hand, some VM models are based on features from variable selection such as stepwise

4

selection, statistical filtering and various other variable selection techniques (Purwins et

al., 2011; Zeng and Spanos, 2009) which eventually leads to losing of some important

process information from the data due to reduction in model complexity. However,

deploying existing VM techniques directly in the high dimensional space may lead to a

poor generalization.

Autoencoder (Vincent et al., 2008) and its variants with deep neural network

structures have this capability of learning non-linear features from the data in a low

dimensional space (Hinton and R.Salakhutdinov, 2006). Deep neural networks have

shown successful performance at many complex modeling tasks such as fault detection

and classification in semiconductor manufacturing (Lee et al., 2017), fault diagnosis in

rotating machinery elements (Jia et al., 2016), reciprocating air compressors (Tran et al.,

2014) and at representation learning (Bengio et al., 2013).

So, the alternative may be to do dimensionality reduction taking into account the

non-linear mapping of process variables with the metrology values. Our motivation for

this research is in developing a new VM model which encompasses this feature learning

with autoencoders to improve the VM performance. Deep learning models have the

ability of mapping approximate non-linear function between predictor variables and

response variable through multiple hidden layers and non-linear activation functions

(Larochelle et al., 2009).

If we learn good features in a lower dimensional space by taking non-linearity

into account through a deep learning based feature extraction method known as

autoencoders, we have a good chance of getting higher prediction accuracy for various

existing prediction models.

5

In this thesis, we proposed a new VM modeling technique using deep learning

based feature extraction models. The objective in this thesis is to show that features

extracted by autoencoder and its variants with deep structure improve the VM

performance where autoencoders are capable of learning non-linear features from data as

well as reducing the dimensionality. We evaluate the proposed methodologies by

conducting two different experiments on a real-life dataset of a plasma etching process in

semiconductor manufacturing. The first experiment is to evaluate the methodology with

deep learning based feature extraction by applying autoencoders on conventional VM

approach of process statistics data. The second experiment is to apply autoencoder

directly to raw sensor data. In both the case, the features learned by autoencoder

improves the VM performance.

In chapter 2, we review the literature of VM and autoencoder and briefly explain

the key concepts on deep learning. Chapter 3 explains the new proposed VM model. In

chapter 4, we evaluate the proposed model using a real-life sensor dataset. Chapter 5

concludes this thesis and states future research work.

6

 Related Work CHAPTER 2

2.1. VM in Semiconductor Manufacturing

VM is for the prediction of metrology values or critical dimensions of wafer quality

characteristics from process information which is generally present in the form of

functional data from sensors mounted on the production equipment. The purpose of VM

is to provide metrology values of all the wafers present in the lot thus enabling wafer to

wafer control rather than lot to lot control. The Fault detection and classification (FDC)

data and metrology data which are used for process control can be used for VM modeling

(Cheng and Cheng, 2005; Chang et al., 2006). VM system is in short part of the process

control along with FDC system.

VM modeling belongs the advanced process control (APC) techniques rather than

traditional statistical process control techniques due to real-time control feedback. Being

a kind of APC techniques, VM modeling exploits the historical data in the form

multivariate process information to predict metrology values with real-time configuration

of process parameters in order to maintain product quality. VM modeling consists of data

processing as the very initial step which involves data cleaning in the form of outlier

detection, imputation of missing values and statistical analysis of data by dimensionality

reduction in the form variable selection or feature transformation to a lower dimension. It

also involves correlation analysis of process variables to remove redundant variables and

keep only the significant ones. This stage of data pre-processing assures the quality of

data we input to the VM prediction models by keeping only that much of process

information which truly explains the variance with target variable i.e. metrology data in

7

case of VM. The next step is to test the performance of various VM prediction models

and compare the model performance by a suitable performance measure to assess the best

model suitable for VM modeling. Various approaches have been taken by the researchers

in the past at all these different stages of VM modeling.

First, let‟s discuss the previous work by researchers at the data preprocessing

stage for VM modeling. To begin with, a considerable amount of work has been done

regarding outlier detection. Outlier detection is an important step in VM modeling. There

is a possibility of the faulty wafer being produced due to process shifts and drifts

happening. This faulty wafer may cause the metrology values to have an extremely high

or low value thereby affecting the overall predictive performance of the model. Thus, it is

important to have these outliers detected and removed. Zeng and Spanos (2009) deal

outlier detection in VM modeling where they treated the points with distance metric

value greater than the cut-off value as outliers and adopted Mahalanobis distance as the

distance metric. Some researchers adopted Hotelling T
2

test in their work on VM

modeling for dealing with outliers (Hirai and Kano, 2015; Zeng and Spanos, 2009).

Another paper proposed a robust regression model based on relevance vector machine to

deal with outliers by using weight strategy (Hwang et al., 2014). Though not specific to

VM, recently Hwang et al. (2015) proposed a robust kernel-based regression technique

which along with estimating the non-linear functional relationship between predictor and

response variable can also help in dealing with outliers in both and space which may

prove to be helpful in VM applications.

Variable selection is a major challenge in VM modeling due to a high number of

process variables involved. Finding critical or important process variables which explain

8

the variations in output is significant in building accurate prediction models. Various

methods were proposed by researchers in the past for variable selection. Hung and Lin

(2007) adopted stepwise selection to extract critical parameters. They also adopted

Principal Component Analysis (PCA) and Bartlett test for further reducing input

variables to their prediction models. Though not specific to VM, recently a novel PCA

based neural network approach adopting Bayesian information criteria for studying high

dimensional multivariate functional data was proposed to compare the prediction models

efficiency in semiconductor manufacturing (Ko et al., 2013). Pampuri et al. (2011)

proposed multilevel lasso algorithm and used L1 penalization to obtain models of lower

order. Purwins et al. (2011) used only simple statistical filtering and expert selection for

variable selection. Zeng and Spanos (2009) adopted random modeling genetic partial

least square algorithm and stepwise selection for variable selection. Hirai and Kano

(2015) adopted variable importance in projection (VIP) method for doing the variable

selection. Susto and Beghi (2013) proposed another technique called least angle

regression for model selection.

Variable selection techniques are mainly concerned with dimensionality

reduction. At the same time, we also need to retain information from important variables

which may be dropped while employing some variable selection technique. This is where

regularization comes into the picture since it helps in penalizing the coefficients rather

than completely getting rid of the variable. The basic approach in a regression technique

is towards minimizing the residual sum of squares which may sometime lead to

overfitting. This led to the development of regularized models such as that of ridge

regression. Still, the problem of high dimensional data is not solved since the ridge

9

regression does not perform the dimensionality reduction. As a result, L1 penalized

techniques were developed which helps to obtain the sparse solution in case of the

smaller value of regularization parameter. A study of Pampuri et al. (2011) proposed a

multilevel lasso technique which is basically an extension of L1 penalization to a

hierarchical framework. Recently a technique which provides a sparse explicit

description of the function in input space along with exploring non-linearity in the data

was proposed (Lee et al., 2014). The technique can be effective in VM application since

it takes care of the non-linearity in modeling, tackles the variable selection issue in

kernel-based approaches to some extent and in addition is less sensitive to a range of

data.

The next stage after data pre-processing involves working with prediction models

for VM. Many machine learning based models were proposed by researchers for VM

modeling such as support vector machine for regression (Purwins et al., 2011; Chou et

al., 2010; Kim et al., 2017), relevance vector machine with variational inference for

regression (Hwang et al., 2014) and K- nearest neighbor for regression (Lee et al., 2014).

Some researchers used linear modeling techniques such as multiple linear regression and

lasso regression in VM modeling for a single output variable (Susto and Beghi, 2013),

others proposed VM models based on partial least squares regression for multiple output

variable (Hirai and Kano, 2015; Khan et al., 2007; Purwins et al., 2011). Another

approach for VM modeling currently is that of neural networks and some researchers

proposed feed-forward network with error Backpropagation for VM modeling (Su et al.,

2006; Zeng and Spanos, 2009; Cheng and Cheng, 2005). Some others proposed radial

basis function neural network (Ferreira et al., 2009; Hung and Lin, 2007).

10

2.2. Autoencoder and Deep Neural Networks

Artificial neural networks are computational models as mimics of biological neural

networks in a human brain. They consist of neurons interconnected with each other in

multiple layered networks. These networks are capable of non-linear modeling with the

help of non-linear activation functions at the neurons. The neurons on an input layer take

input data, and the neurons on the subsequent layers take the output of the activation

function from the preceding layers. A deep neural network consists of a multiple numbers

of hidden layers in the network and is trained in a hierarchical fashion. i.e. features

learned by subsequent layers depend on those of the previous layers. There are various

kinds of different deep neural network models in use today and together they comprise

the field of deep learning.

A simple artificial neural network consists of one or two hidden layers in general.

The paper on universal approximation theorem proved that even shallow neural networks

with as small as one hidden layer having sufficient neurons can approximate any complex

function (Hornik et al., 1989; Cybenko, 1989). It is possible that the functions that are

represented well by using deep nets may require almost an exponential number of

neurons with a shallow network. But still, we required deep learning models because

sometimes single layer or shallow network is not able to solve various problems like

object recognition, image recognition, speech recognition etc. since the learning process

is hierarchical i.e. each layer learns certain features and then the subsequent layers build

on the output of previous layers.

Autoencoders belong to a family of deep learning models where output layer is

exactly the same as the input layer. Autoencoders aims to learn representation for a set of

11

input data typically in low dimensional space (Hinton and R.Salakhutdinov, 2006). It

does so by first compressing the input to a low dimensional space through „encoder‟ and

then reconstructing the input through „decoder‟. The low dimensional representation of

the input (encoder) is also called „latent space representation‟. This network is typically

trained through a well-known algorithm called Backpropagation for optimizing the cost

function to obtain parameters i.e. minimize the reconstruction error or loss function.

Autoencoder is basically an unsupervised deep learning algorithm since it does not

require any target values or labels to train the network. It is, in fact, a kind of self-

supervised algorithm as it takes the raw input and generates the labels by forming the

output layer exactly same as the input layer. Figure 2.1 below shows a basic one hidden

layer autoencoder.

Figure 2.1 Basic one hidden layer autoencoder

Different strategies of deep learning models are applicable in case of

autoencoders also like training by Backpropagation, introducing sparsity or regularization

constraint, avoiding overfitting by dropout (Srivastava et al., 2014), using different

Encoded

Input

Reconstructed

Input
Input

12

optimization algorithms for faster convergence. We can stack multiple basic

autoencoders to create a deep autoencoder to learn more complex functions. We are

going to review few important concepts of deep neural networks in the further sections

which are very much applicable to autoencoders. By using these techniques, we can

create various different autoencoders. For example, adding regularization constraint to

the layer in the form of L1 or L2 penalization may help in avoiding overfitting while

training the autoencoders. This regularization term forces the autoencoder to learn the

input representation through a small number of nodes by penalizing some nodes to zero.

This sometimes helps in learning better features. Using convolutional layer instead of

dense hidden layer creates a convolutional autoencoder. Similarly stacking multiple

autoencoders creates a deep autoencoder and many others.

Autoencoder are different from PCA or other dimensionality reduction techniques

in the manner that autoencoders can induce non-linearity in the networks through its

activation functions i.e. we can have a non-linear transformation of data while PCA is all

about linear transformation

An important concept in solving any machine learning problem is that of bias and

variance. In simple terms, bias refers to the training error and variance to the test error. We

generally want to reduce the variance without affecting bias. But, in practicality, there is

always some trade-off between the two which is known as the bias-variance trade-off.

Recently deep learning pioneers in their book (Goodfellow et al., 2016) discussed the

concepts of regularization and overfitting in detail. A very high bias refers to

„underfitting‟. This means the model has converged to a suboptimal solution and has not

learned the function mapping properly or rather has not explored the possible relationship

13

between the predictor and response variable effectively. The solution can be to try a

deeper architecture or a deep autoencoder in our case to learn new features, in short,

increasing the model capacity. Now, as we increase the model capacity by deploying a

deeper architecture, we may reduce our training error to a very low value but it may lead

to a bad generalization error. This is the case of high variance or „overfitting‟. In this case,

the model is mapping the relation between predictor variable and response variable very

accurately for training data but does not generalize well enough on test data. To overcome

this issue of overfitting we generally introduce various regularization techniques in our

autoencoder models while learning new features such as L1 and L2 sparse autoencoders as

mentioned before. Regularization helps in decreasing the variance though there may be

some trade-off with bias.

Regularization in deep learning or any machine learning technique is a way of

improving model performance by reducing the generalization error but not the training

error. During overfitting, the model learns too much of details or we can say it overlearns

with the noise in the data and as a result, it does not generalize well enough on a new data

or unseen data. Some of the commonly used techniques for regularization in autoencoders

are L1 or L2 regularization. We can create new autoencoders by adding L1 & L2

regularization constraint in a basic autoencoder to learn better features for our prediction

models.

Optimization also plays an important role in deep learning models since they try to

minimize the loss function (regression model as in our case) and helps in finding the best

model parameters. The optimizer we choose for our autoencoder determines the quality of

features we have learned since the way the model parameter values are updated and

14

optimized during a training process depends a lot on various optimization algorithms used

in deep learning. A recent paper on gradient descent optimization in deep learning gave

some insights into many optimization techniques in the deep learning area (Ruder, 2016).

Majority of the optimization algorithms in deep learning are based on first order

optimization since computing a second order derivative is very costly. Though second

order optimization also tells about the curvature of loss function and it shows if the first

order derivative is increasing or decreasing. Therefore, second order derivative does not

get stuck in local minima since it knows about the curvature of the loss function.

The equation for parameter update in a typical neural network is as:

 () () (1)

where: stands for learning rate, () () for gradient of loss function () with

respect to and is the weight parameter.

From equation (1), we can see that the weights are updated in the opposite

direction of the gradient. The first order minimization often leads to a local minimum.

Generally, more complex problems have a non-convex function mapping. Though a deep

neural network may approximate this highly non-convex function mapping but it may

converge to local minima. The parameter updates were done only once for a batch

gradient descent method. This was however not considered good since it had only one

update and problem of getting stuck in a local minimum was high and also it had a slow

convergence. This was rectified by stochastic gradient descent (SGD) method and

equation (1) now become:

 () () (2)

15

where is the training observations which is stochastically chosen. Now, SGD has

definitely more parameter updates as compared to a traditional batch gradient descent

algorithm. This may cause high variance and may lead to overshooting the minima.

Now, a proper selection of learning rate also affects the training of our

autoencoder to a large extent. In fact, the way parameters are updated based on learning

rate is the key difference between various optimization algorithms. The paper by Ruder

(2016) discussed various adaptive algorithms. The ‘Adagrad’ algorithm allows the

learning rate to adapt itself based on parameter update. It no longer has a fixed learning

rate as SGD. However, it suffers from a problem of decaying learning rate which

ultimately leads to a very slow convergence. In „Adadelta‟ optimization algorithm this

problem is decaying learning rate is mitigated. Another algorithm ‘Adam‟ stands

for adaptive moment estimation. „Adam‟ actually helps in adapting learning rate and

momentum according to the parameter updates. We calculate the first moment and second

moment which is basically the mean and variance respectively and based on that we

update the parameters. Detailed „Adam‟ algorithm can be referred from the original paper

(Kingma and Ba, 2015). However, there is no general rule to which optimization

algorithm may work best and we may need to try different optimization methods to get the

best result.

In autoencoder or any kind of deep neural network model, the parameters are

basically the weights and biases which are learned during the model training process.

Other than this, there are some parameters which are not learned during the training

process and these are called as hyper-parameters. These hyper-parameters actually control

the learning of the parameters which are learned during the training i.e. weights and

16

biases. Some of the important hyper-parameters are learning rate, momentum, choice of

activation function, number hidden layers and number of units in each hidden layer, mini-

batch size, optimizers, regularization parameters, decay rate etc. to name a few. Hyper-

parameters are the parameters which are not learned from the data during the training

process. In fact, they are external to the model training and are often chosen outside of the

learning process. These hyper-parameters need to be optimized in order to get optimum

values for model parameters. We often tune in the hyper-parameters in a way so as to get

the best possible values for the model parameters. There are various ways to tune in those

hyper-parameters viz. grid search, random search and Bayesian optimization. In grid

search, we select some points on the hyper-parameter range which are uniformly

distributed across the whole range. However, in this type of search, we train the neural

network using all possible combinations of hyper-parameters across the grid and we might

be training our deep net on a range of hyper-parameters which are not suitable. Instead, if

we rather do the random search, we select the values for hyper-parameters randomly

across the grid rather than using the uniform scale and then we narrow down our search

for the hyper-parameters values which works well enough (Bergstra and Bengio, 2012).

17

 Proposed Methodologies With Features CHAPTER 3

Extracted by Autoencoder.

Our methodology is based on the essence of accurately modeling the VM prediction

problem for a very high dimensional dataset by retaining most of the information. So, to

reduce the dimension taking non-linearity into account, we adopt a deep neural network

based feature extraction method known as autoencoder which learns new features in a

low dimensional space by reconstructing the input.

We propose two methodologies for VM incorporating feature learning through

autoencoder. Firstly, we adopt autoencoder for feature extraction from process statistic

data, on which conventional VM modeling approaches have been based, and the extracted

features are used for the prediction in VM. To convert the raw sensor dataset into process

statistics dataset, various statistics like mean, median, skewness, kurtosis etc. to name a

few are being used. Then we learn new features on this process statistics data with the help

of different autoencoders and use the extracted features for prediction modeling. On the

other hand, we propose the other approach that autoencoder is employed for feature

extraction directly from raw sensory data, and the extracted features are used for the

prediction in VM. Both the methodologies are being discussed in detail in section 3.1 and

3.2 respectively.

In both the methodologies, we fix the encoding dimension for our autoencoder to

learn new features. For different encoding dimensions in a one hidden layer autoencoder,

we calculate the reconstruction error by computing mean squared error (MSE). The MSE

value will slow down in improvement after a certain value of hidden neurons. We adopt

that number of hidden neurons in the encoder layer as our input dimension for the

18

prediction models. This method helps in reducing the dimension and at the same time

also helps to retain a reasonable amount of information for the functional sensor data by

mapping non-linear functions.

3.1 VM with Features from Process Statistics.

Typically we are given a raw sensor data from a semiconductor fabrication process which

is monitored by certain numbers sensors on the process equipment, and which consists of

number of recipe steps also called sub-operations. The signals from the process

equipment sensors are stored over the time duration and so the sensors provide the signals

of time points for each wafer. A critical dimension of wafer quality characteristics is

measured after being processed.

In the first methodology, we convert the raw sensor dataset into a design matrix by

extracting certain useful features such as summary statistics like mean, variance, standard

deviation, skewness, kurtosis etc. There are a few advantages of extracting features from

these signals. First, features extracted from signals are more robust to noise as compared

to signal itself. Secondly, sometimes the precise value of the signal at a point of time may

not make as much sense as the trend in the signal over the time. Third, the process

information may be stored in a smaller memory space making the statistical analysis easier

and faster. Let us suppose we extract statistics from each of the sensors for each of

the sub operations. Thus, now our new process statistics dataset has number of

predictor variables which is equal to „ ‟ i.e. total number of predictor variables as stated

earlier in the section. Conventionally, this process statistics dataset which is high

dimensional is being used for prediction with VM.

19

In our methodology, we learn new features on this process statistics dataset using

autoencoder and its variants in a low dimensional space with non-linear activations at the

hidden units. Then, we use these new features for deploying VM prediction models. This

methodology is summarized in the Figure 3.1 below.

Figure 3.1 Methodology for VM based on feature learning by autoencoder on

process statistics data.

Suppose that, for each wafer, the fabrication process is monitored by sensors on

the process equipment over time Consider there are sub-operations also called recipe

steps for the process. For sub-operations, the signals from the sensors are

stored over the time duration , and so the sensors provide the signals of time points for

Prediction

Extracted features dataset

L1-SAE DAE L2-SAE AE

New Features

Raw Sensor dataset

20

each wafer where ∑

 . Then summary statistics such as mean, standard

deviation, skewness, kurtosis etc. are extracted from the signal of each sub-process.

Let * +
 be a dataset from observed wafers where are -dimensional

input vectors and are output values for = 1, 2, …, . To be specific, each consists of

 summary statistics from raw signals for the -th wafer concatenated in a vector for

sensors as , and is a measured critical dimension from a fabrication process. In

our case of semiconductor manufacturing, the number of observations are basically the

number of wafers.

An autoencoder is trained through Backpropagation for reconstruction of inputs

i.e. the output layer, in this case, is same as the input layer. Let us consider a general

feed-forward neural network with hidden layers and neurons in the layer. The

output vectors at the layer () for = 0, …, are computed as:

 () () () () (3)

 () ()(
())

(4)

where, () is a , () is a bias vector, and () is

an element-wise activation function on the layer. () indicates the given input

vector and the output vector at the hidden layer is () = () where

is the set of all the weight parameters in . Now we need to learn a new representation of

 -dimensional input into a lower dimension space through autoencoders. That is, the

input vector is taken in the autoencoder as () in (3). In case of a single-hidden-layer

21

autoencoder, we get the reconstructed input vector () at the output layer given by (3)

and (4). Particularly, () becomes the extract feature vector at the hidden layer as the

latent space representation based on the encoded input. To obtain the features, we train

the autoencoder by minimizing the cost function () given by

 () ∑‖

()
()‖

 (5)

where
()

 is the activation for the -th observation on the -th layer, and ‖ ‖ is a L2

vector norm. So, we need to calculate min () i.e. find the values of parameters

(weights) that minimize this cost function. We try to find these optimal values of

parameters through an iterative algorithm known as the Backpropagation algorithm

(Rumelhart et al., 1986). The Backpropagation algorithm updates the parameters by

calculating the cost function at the last layer and backpropagating the error using chain

rule through gradients of weights in a deep neural network.

 We can also use other types of autoencoders to learn new features which we

discussed in chapter 2. In addition to basic and deep autoencoder, we have the regularized

autoencoder. In case of regularized autoencoder, the cost function () gets modified

only keeping rest of the model as same. Now we can add a regularization constraint in the

form of L1 and L2 penalization on the activation at the hidden layer of this autoencoder

to form regularized autoencoder. This regularization term forces the autoencoder to learn

the input representation through a small number of nodes by penalizing some nodes to

zero.

22

Firstly, we add the regularization constraints on the activation at the hidden units

of the autoencoder to learn new features with sparsity. For L1 sparse autoencoder this

 () gets modified due to the addition of regularization constraint and becomes:

 () ∑‖

()
()‖

 ∑‖ ()‖

(6)

where ‖ ‖ is a L1 vector norm.This regularization term with L1 norm in (6) penalizes

the activations at hidden units thereby producing a more compact representation. This

compact representation can be more effective in getting better prediction performance

than the basic autoencoder.

Similarly, for L2 norm autoencoder, the equation for loss function becomes:

 () ∑‖

()
()‖

 ∑‖ ()‖

(7)

This regularized autoencoder also provides better features for prediction modeling

by penalizing the activations at hidden units by a rather different norm. The L2 norm

does not penalize the activations to an extreme zero value. This could be effective when

sensor signals are highly correlated, since losing features due to extreme penalization as

in the previous case can lead to the loss of important process information.

So, depending on the amount of correlation between the sensor signals, this kind

of regularized variants of autoencoder can provide useful new features for prediction.

Once we have learned the new features, we use these features for predicting our

metrology values with the help of various prediction models. The prediction models take

23

the data in the form output vector at the hidden layer of our autoencoder which are

basically our features learnt by autoencoder i.e. () for the observation which is

for = 1, 2, …, . Let a prediction model be and the output from the prediction model

be ̂ as

 ̂ () (8)

The performance of various prediction models is then evaluated in terms of mean

squared errors (MSE) through equation 9 where ̂ being predicted output and being the

actual output.

∑(̂)

 (9)

3.2 VM with Features from Raw Sensor Dataset.

In our second methodology, autoencoder is employed for feature learning directly

from the raw sensor data. In this, we first rearrange the dataset from raw sensor signals

into a matrix for our regression problem by considering every time stamp for each sensor

as a different feature. So, let‟s say there are sensors and time stamps for each sensor

(time stamps may be different for different sensors), so our rearranged raw sensor dataset

has features or predictor variables.

In our previous methodology, we extracted statistics from raw sensor dataset

which can lead to losing some important process information. In this methodology, we

learn new features directly on the raw sensor dataset. Learning new features directly on

24

the raw sensor dataset keeps the process information intact and may provide better

features than our first methodology.

We learn new features from the -dimensional raw sensor input vector

directly in a lower dimension space with the help of autoencoder. We learn for = 1,

2, …, by getting output at the hidden layer through (3) and (4) by training our

autoencoder through the Backpropagation. We can add the sparsity to the autoencoder

while extracting features through (6) and (7) same as we did in our first methodology.

The prediction models take the compact representation or the new features for = 1, 2,

…, as the input to get predicted output i.e. ̂ with the help of (8) and we compare our

model performances. This methodology summarized in Figure 3.2.

Figure 3.2 Methodology for VM based on features learning by autoencoder on raw

sensor data.

Prediction

Raw Sensor Dataset

L1-SAE DAE L2-SAE AE

New Features

25

 Experiments and Results CHAPTER 4

We consider an etching process in semiconductor manufacturing for our experimental

work. Plasma Etching process is basically the removal of material from the surface by the

plasma where the ions are bombarded on the surface of the wafer. It proposes various

challenges like high dimensionality of data, equipment aging, changing process dynamics

owing to maintenance activities, high correlation among various sensors, the introduction

of outliers due to changing equipment conditions and various other challenges. The

process also needs to be controlled in order to prevent etching of the following layers. So

it is being monitored by various sensors measuring different physical parameters such as

pressure, temperature, and others. Critical dimension values for various quality

characteristics of the wafers e.g. “etch bias” in our case are being measured after

completion of the etching process.

The proposed autoencoder based VM model in this thesis is evaluated on the basis

of various experiments conducted on sensor dataset which is basically the data collected

from a plasma etching process of a semiconductor manufacturing plant. The raw data

from the sensor was collected over the same time length for a wafer i.e. the time length of

all sensors for a particular wafer is same. However, sub-operations timing is different for

different wafers. As a result, the total lengths of sensor signals are different for different

wafers. The average length of the signals for the wafers in the dataset is 650 and the

standard deviation of 10.22. The dataset consists of data from 85 sensors (these 85

sensors are picked out of approximately 200 sensors based on expert selection) for 298

wafers. The etching process equipment has 58 sub-operations. Figure 4.1 below shows a

snap of the raw sensor data.

26

 Figure 4.1 Raw sensor dataset from plasma etching process

We conducted two different experiments which will be explained in section 4.1

and 4.2 ahead. In our first experiment, we learned new features by four different

autoencoders on process statistics data. In our second experiment, we learned new

features directly on the raw sensor dataset. Then we deployed four different regression

models on the new extracted features dataset in both the experiments for getting

prediction performance. In both the experiments, we first ran an initial experiment with

0

50

100

150

1

2
5

4
9

7
3

9
7

1
2

1

1
4

5

1
6

9

1
9

3

2
1

7

2
4

1

2
6

5

2
8

9

3
1

3

3
3

7

3
6

1

3
8

5

4
0

9

4
3

3

4
5

7

4
8

1

5
0

5

5
2

9

5
5

3

5
7

7

6
0

1

6
2

5

Sensor-1, Wafer-1

0

100

200

300

1

2
5

4
9

7
3

9
7

1
2

1

1
4

5

1
6

9

1
9

3

2
1

7

2
4

1

2
6

5

2
8

9

3
1

3

3
3

7

3
6

1

3
8

5

4
0

9

4
3

3

4
5

7

4
8

1

5
0

5

5
2

9

5
5

3

5
7

7

6
0

1

6
2

5

Sensor-4, Wafer-1

0

50

100

150

1

2
6

5
1

7
6

1
0

1

1
2

6

1
5

1

1
7

6

2
0

1

2
2

6

2
5

1

2
7

6

3
0

1

3
2

6

3
5

1

3
7

6

4
0

1

4
2

6

4
5

1

4
7

6

5
0

1

5
2

6

5
5

1

5
7

6

6
0

1

6
2

6

6
5

1

Sensor 82, Wafer-1

27

varying number of neurons in the encoder layer for one hidden layered autoencoder to fix

the encoding dimension for minimum reconstruction error. The rate of improvement of

MSE decreases after a certain number of neurons so we fixed this as the encoding

dimension for our autoencoders in both the experiments respectively.

The 298 observations are divided into two parts: 238 observations are used for

model training and 60 observations are used for testing the model. 3- fold cross validation

is adopted for the training set to avoid over-fitting and get a good generalization capability

for the prediction model. Various set of hyper-parameters are tuned in by using grid search

on this training set and the best combination of hyper-parameters are then tested on the

test set to see if the model generalizes well enough.

We deployed four different regression methods i.e. SVM for regression, Ridge

regression, Lasso regression and deep neural networks to evaluate the performance of our

autoencoder based proposed method with existing methods. Support vector machine

(SVM) for regression (Vapnik, 1999) is known for its good generalization capability. The

objective is to minimize the sum of the ε-insensitive loss function. SVM needs the

parameters „C‟ for the regularization cost and „𝛆‟ for error from the margins to be tuned in

along with different kernel functions. We tested both linear and radial basis kernel to get

the best solution with again 3-fold cross-validation. Lasso is another commonly used

regression method. Lasso regression has also the capability of getting a sparse solution by

penalizing some coefficient values to zero. The variable selection and regularization

capability of Lasso by L1 penalization make it suitable to generalize well enough for

regression task. The regularization parameter here is „alpha‟ which is the only hyper-

parameter fined tuned again with a 3-fold cross-validation. Ridge regression is found be

28

suitable for regression tasks which involve highly correlated variables. It invokes

penalization by L2 norm. For deep neural network, a predetermined structure based on

preliminary experiments done for fine tuning of different hyperparameters was adopted.

The hyper-parameters to be tuned in for all the models are being summarized in Table 4.1

below.

Table 4.1 Hyperparameters to be tuned for various prediction models

Virtual Metrology Models Hyper-Parameters to be tuned

(3- fold cross validation used)

Support Vector Machine
C for regularization and type of kernel and

its parameters

Lasso and Ridge Regression for regularization

Deep Neural Network

Learning rate, number of epochs, batch size,

optimizer, dropout rate, number of hidden

layers, number of neurons in each hidden

layer.

To summarize, given the raw sensor data, we convert the raw sensor dataset into

the design matrix for regression problem with respect to two different methodologies in

our research. We then carry out the data preprocessing such as feature rescaling. A new

representation of input features is learned by autoencoders for minimum reconstruction

error. On this new transformed data, we deploy various prediction models such as SVM,

Lasso, Ridge, deep neural networks to test the model performance. We do the fine-tuning

of hyper-parameters for various prediction models with a randomized grid search and K-

fold cross-validation to get the best configuration of the model with best parameters.

The computation for the experiments was implemented based on the python

libraries: keras and scikit-learn.

29

4.1 VM with Autoencoder for Features from Process Statistics Data.

Nine different statistics shown in Table 4.2 were extracted from each sub-operation of

each sensor signal for model implementation. Features are extracted from a discretized

signal of observed time points. We have 85 sensors and 9 input statistics are extracted

from 58 sub-operations of each sensor signal for the etching process. So, all together we

have 85*9*58= 44370 input features and one output which is basically equal to the

number of response variables (critical dimensions) which in our case is only one.

Table 4.2 Summary statistics extracted for each sensor signal

Feature Expression

Length

Minimum ()

Maximum ()

Range () ()

Mean

∑

Median ()

Variance

∑(̅)

Skewness
∑(

 ̅

)

Kurtosis
∑(

 ̅

)

On this process statistics dataset, we ran our first experiment for fixing the encoding

dimension for our autoencoder as explained earlier. We get the following graph shown

below and we fixed the encoding dimension as 2000 for our autoencoder as we can see

30

from Figure 4.2 that there is no substantial improvement in MSE after we increase our

dimension from 2000 neurons.

Figure 4.2 Graph of MSE and number of hidden neurons for process

statistics dataset.

The Table 4.3 below show the testing MSE for various prediction models on the

features learned by various autoencoders and we can see that the features learned by one

hidden layered autoencoder provide better performance for various prediction models.

We deploy prediction models on process statistics dataset (FE), on features learnt by one

hidden layer autoencoder from process statistics dataset (AE+FE), on features learnt by

L1 autoencoder from process statistics dataset (L1-AE+FE), on features learnt by L2

autoencoder from process statistics dataset (L2-AE+FE) and on features learnt by deep

autoencoder from process statistics dataset (DAE+FE).

31

We also calculated the Pearson and Spearman correlation coefficients between

features and the output variable for the new features learned by all different

Autoencoders (AE) shown in Table 4.4 and Table 4.5 respectively. This gives an idea of

the features learned by various autoencoders. The improvement in VM performance due

to the new features learned by autoencoders can be attributed to correlation coefficients

in the tables. In the following tables, Pr_Mean stands for mean of top 30 Pearson

correlation coefficients. Similarly, Pr_Max stands for maximum of all the Pearson

correlation coefficients. Likewise, Sr_Mean stands for mean of top 30 Spearman

correlation coefficients and Sr_Max stands for maximum of all the Spearman correlation

coefficients. Pearson correlation provides the measure of linear correlation between two

variables. Table 4.4 shows that the features learned by one hidden layer autoencoder have

reasonably comparable values of Pearson coefficients with process statistics dataset. But,

it should be noted here that the autoencoder features are in a very low dimensional space

with just 2000 features compared to almost 44000 features from process statistics dataset.

In case of process statistics dataset, we can see that only 69 features are useful out of

44370 features which unnecessarily increase the model complexity thereby lowering the

testing MSE. Also, if we calculate the ratio of critical features (i.e. features having

correlation value >0.3 out of the total number of features), it is almost equal i.e. 0.0015.

But as mentioned earlier we have a reduced model complexity in case of features learned

by autoencoders by having more useful features in a low dimensional space. Hence, we

can see the prediction models accuracy is better with features learned by autoencoder.

Like Pearson correlation, Spearman correlation also measures the relationship between

two variables. The difference between the two is that Pearson correlation coefficient

32

measures linear relationship between variables while Spearman correlation coefficient

measures the monotonic relationship between variables. So, here we again see from the

Table 4.5 below that the correlation coefficients improved for the features learned by

autoencoder when we took non-linearity into account. This again explains why we have

better prediction performance with the features learnt from autoencoder.

Table 4.3 Testing MSE for various prediction models

Models LASSO RIDGE SVM DNN

FE 0.150969 0.146868 0.138563 0.171452

AE+FE 0.147364 0.157370 0.127266 0.150757

L1-AE + FE 0.153619 0.161069 0.132117 0.167345

L2-AE + FE 0.153374 0.170123 0.136617 0.179518

DAE + FE 0.154102 0.182613 0.136749 0.196976

Table 4.4 Statistics for top 30 Pearson correlation coefficients

Models Pr_Mean Pr_Max Number of coefficients> 0.3

FE 0.4361 0.4812 69

AE+FE 0.1990 0.4879 3

L1-AE + FE 0.2074 0.2898 0

L2-AE + FE 0.1917 0.3241 1

DAE + FE 0.1844 0.2399 0

Table 4.5 Statistics for top 30 Spearman correlation coefficients

Models Sr_Mean Sr_Max Number of coefficients> 0.3

FE 0.3190 0.3573 55

AE+FE 0.2410 0.3178 1

L1-AE + FE 0.2385 0.2934 0

L2-AE + FE 0.2375 0.3180 1

DAE + FE 0.2386 0.3046 1

33

4.2 VM with Autoencoder for Features from Raw Sensor Data.

In this experiment, the raw sensor dataset was directly used to deploy machine learning

models. So, each time stamp for every sensor is a feature and we don‟t extract process

statistics like we did in the previous experiment. So, we have 85*654 = 55590 features

and 298 observations. The raw sensor dataset was rescaled in the range of -1 to 1. As an

initial experiment, we fixed the encoding dimension for our autoencoder same as we did

in the previous experiment. We get the following graph shown below in Figure 4.3.

Though from the graph we can see that there is no substantial improvement in MSE after

3000 neurons but due to memory constraints, we needed to further lower our encoding

dimension for learning features by autoencoders from raw sensor dataset. We finally

fixed 2000 neurons as our encoding dimension.

Figure 4.3 Graph of MSE and number of hidden neurons for raw sensor dataset.

34

We deploy prediction models on raw sensor dataset (RSD), on features learnt by

one hidden layer autoencoder from raw sensor dataset (AE+RSD), on features learnt by

L1 autoencoder from raw sensor dataset (L1-AE+RSD), on features learnt by L2

autoencoder from raw sensor dataset (L2-AE+RSD) and on features learnt by deep

autoencoder from raw sensor dataset (DAE+RSD).

Table 4.6 Testing MSE for various prediction models

Models LASSO RIDGE SVM DNN

RSD 0.018793 0.026347 0.019961 0.042531

AE+RSD 0.018793 0.028658 0.019954 0.038543

L1-AE+RSD 0.018704 0.029371 0.019969 0.036850

L2-AE+RSD 0.019132 0.03328 0.019951 0.044230

DAE+RSD 0.018793 0.042783 0.019966 0.056706

Table 4.7 Statistics for top 30 Pearson correlation coefficients

Models Pr_Mean Pr_Max Number of coefficients> 0.3

RSD 0.31410 0.613 18

AE+RSD 0.17434 0.223 0

L1-AE+RSD 0.17336 0.237 0

L2-AE+RSD 0.16920 0.211 0

DAE+RSD 0.17174 0.219 0

Table 4.8 Statistics for top 30 Spearman correlation coefficients

Models Sr_Mean Sr_Max Number of coefficients> 0.3

RSD 0.34378 0.3566 237

AE+RSD 0.29834 0.4025 10

L1-AE+RSD 0.30627 0.3642 14

L2-AE+RSD 0.30180 0.3861 16

DAE+RSD 0.29508 0.3254 9

Table 4.6 shows that the features learned by one hidden layer autoencoder provide

better performance for various prediction models. This can be attributed to correlation

35

coefficients also which is evident from Table 4.7 and Table 4.8. The interpretation of the

correlation coefficients can be done in a similar way as done for section 4.1. We can

clearly see that we have a comparable ratio of critical or useful features with autoencoder

but in a low dimensional space which explains why we have better prediction

performance with autoencoder learnt features.

So, it is evident from the above experiments that the features learned by

autoencoder provide better prediction performance for most of the existing models.

Another important conclusion is that learning features directly on the raw sensor dataset

rather than extracting summary statistics provides better model performance since

extracting statistics leads to losing the process information. So, we conclude from the

results that learning new features through autoencoders improves the prediction accuracy

of various existing models.

36

 Conclusion and Future Work CHAPTER 5

In this thesis, we proposed new deep learning based VM models for semiconductor

manufacturing process which is effectively able to learn a better representation of inputs

in a low dimensional feature space and improves the performance of various prediction

models. The proposed model highlights the importance of learning better features by

using neural network models which enhances the performance of existing VM modeling

techniques. We used a 3 cross-validation for hyper-parameter tuning to get the best

performing parameters for prediction models. To verify the effectiveness of our proposed

VM model, we compared it with existing methods using real-life plasma-etching sensor

data. Our experimental results have shown that the proposed VM model provides better

results than existing VM techniques.

In future, we may develop our own customized autoencoder for this complex

regression task. An autoencoder which can be specifically suited for learning better

representations of functional data from raw sensor signals can be highly effective. One

more issue which can be addressed in the future is increasing the robustness of our

prediction model. VM modeling requires a method which along with estimating non-

linear functional mapping between predictor and response variable also deals with

outliers. The robust kernel-based regression method proposed by Hwang et al. (2015) can

prove to be effective in VM applications for the reason stated above.

This thesis is the first of its kind approach in adopting the modern neural network

models to learn better features for regression task of VM modeling. There is also a good

amount of future research scope in adopting this proposed model and improving the

performance of VM models by designing a new custom autoencoder as stated above

37

which can be suitable for functional data coming from the monitoring sensors. Further

research with our proposed model can prove to be very effective for VM applications in

semiconductor manufacturing and can make the process highly efficient.

38

References

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and

new perspectives. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(8), 1798-1828.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization.

Journal of Machine Learning Research , 13, 281-305.

Chang J. Y. C. & Cheng, F. T. (2005). Application development of virtual metrology in

semiconductor industry. In Proceedings of the 31st Annual Conference IEEE

Industrial Electronics Society, 2005, (pp. 124–129). IEEE.

Chou, P. H., Wu, M. J., & Chen, K. K. (2010). Integrating support vector machine and

genetic algorithm to implement dynamic wafer quality prediction system. Expert

System Applications, 37(6), 4413-4424.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Math.

Control Signals Systems, 2, 303-314.

Ferreira, A., Roussy, A., & Condé, L. (2009). Virtual metrology models for predicting

physical measurement in semiconductor manufacturing. In Advanced

Semiconductor Manufacturing Conference, 2009. ASMC'09. IEEE/SEMI (pp.

149-154). IEEE.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Hinton, G. E., & R.Salakhutdinov, R. (2006). Reducing the dimensionality of data with

neural networks. Science, 313(5786), 504-507.

Hirai, T., & Kano, M. (2015). Adaptive virtual metrology design for semiconductor dry

etching process through locally weighted partial least squares. IEEE Transactions

on Semiconductor Manufacturing, 28(2), 137-144.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are

universal approximators. Neural Networks, 2, 359-366.

Hung, M. H., Lin, T. H., Cheng, F. T., & Lin, R. C. (2007). A novel virtual metrology

scheme for predicting CVD thickness in semiconductor manufacturing.

IEEE/ASME Transactions on Mechatronics, 12(3), 308-316.

Hwang, S., Jeong, M. K., & Yum, B. J. (2014). Robust relevance vector machine with

variational inference for improving virtual metrology accuracy. IEEE

Transactions on Semiconductor Manufacturing, 27(1), 83-94.

Hwang, S., Kim, D., Jeong, M. K., & Yum, B.-J. (2015, August). Robust kernel-based

regression with bounded influence for outliers. Journal of the Operational

Research Society, 66(8), 1385–1398.

Jia, F., Lei, Y., Lin, J., Zhou, X., & Lu, N. (2016). Deep neural networks: A promising

tool for fault characteristic mining and intelligent diagnosis of rotating machinery

with massive data. Mechanical Systems and Signal Processing, 72, 303-315.

Khan, A. A., Moyne, J. R., & Tilbury, D. M. (2007). An approach for factory-wide

control utilizing virtual metrology. IEEE Transactions on Semiconductor

Manufacturing, 20(4), 364-375.

Kingma, D. P., & Ba, J. L. (2015). ADAM: A method for stochastic optimization.

International Conference on Learning Representations, 2015.

Kim, B., Jeong, Y. S., Tong, S., Chang, I., & Jeong, M. K. (2016). Step-down spatial

39

 randomness test for detecting abnormalities in DRAM wafers with multiple spatial

 maps. IEEE Transactions on Semiconductor Manufacturing, 29(1), 57-65.

Kim, B., Jeong, Y. S., Tong, S., Chang, I., & Jeong, M. K. (2015). A regularized singular

value decomposition-based approach for failure pattern classification on fail bit

map in a DRAM wafer. IEEE Transactions on Semiconductor Manufacturing,

28(1), 41-49.

Kim, M., Kang, S., Lee, J., Cho, H., Cho, S. & Park, J. S. (2017). Virtual metrology for

copper-clad laminate manufacturing. Computers and Industrial Engineering. 109,

280-287.

Ko, Y., Moon, P., Kim, C., Ham, M., Jeong, M. K., Garcia-Diaz, A., Myoung, J., &

Yun, I. (2013). Predictive modeling and analysis of HfO2 thin film process based

on Bayesian information criterion using PCA-based neural networks. Surface and

Interface Analysis. 45(9), 1334-1339.

Kurz, D., De Luca, C. & Pilz, J. (2015). A sampling decision system for virtual

metrology in semiconductor manufacturing. IEEE Transactions on Auomation

Science and Engneering. 12(1), 75-83.

Larochelle, H., Bengio, Y., Louradour, J., & Lamblin, P. (2009). Exploring strategies for

training deep neural networks. Journal of Machine Learning Research, 10(Jan),

1-40.

Lee, H., Kim, Y., & Kim, C. O. (2017). A deep learning model for robust wafer fault

monitoring with sensor measurement noise. IEEE Transactions on Semiconductor

Manufacturing, 30(1), 23-31.

Lee, K., Kim, N., & Jeong, M. K. (2014). The sparse signomial classification and

regression model. Annals of Operations Research, 216(1), 257–286.

Lee, S. K., Kang, P., & Cho, S. (2014). Probabilistic local reconstruction for k-NN

regression and its application to virtual metrology in semiconductor

manufacturing. Neurocomputing, 131, 427-439.

Lin, T.-H., Hung, M.-H., Lin, R.-C., & Cheng, F.-T. (2006). A virtual metrology scheme

for predicting CVD thickness in semiconductor manufacturing. IEEE

International Conference on Robotics and Automation (pp. 1054-1059). Orlando,

Florida: IEEE.

Pampuri, S., Schirru, A., Fazio, G., & Nicolao, G. D. (2011, August). Multilevel lasso

applied to virtual metrology in semiconductor manufacturing.. IEEE International

Conference on Automation Science and Engineering(CASE), 2011. (pp. 244-249).

IEEE.

Park, S., Jeong, S., Jang, Y., Ryu, S., Roh, H. J. & Kim G. H. (2015). Enhancement of the

Virtual Metrology Performance for Plasma-Assisted Oxide Etching Processes by

Using Plasma Information (PI) Parameters. IEEE Transactions on Semiconductor

Manufacturing. 28 (3), 241-246.

Purwins, H., Nagi, A., Barak, B., Höckele, U., Kyek, A., Lenz, B., ... & Weinzierl, K.

(2011). Regression methods for prediction of PECVD silicon nitride layer

thickness. IEEE International Conference on Automation Science and

Engineering(CASE), 2011. (pp. 387-392). IEEE.

Ruder, S. (2016). An overview of gradient descent optimisation algorithms. arXiv

preprint arXiv:1609.04747.

40

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal

representations by error propagation. In D. E. Rumelhart, & J. L. McClelland

(Eds.), Parallel Distributed Processing, vol. 1 (pp. 318–362). MIT Press.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).

Dropout: A simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15, 1929-1958.

Susto, G. A., & Beghi, A. (2013). A virtual metrology system based on least angle

regression and statistical clustering. Applied Stochastic Models in Business and

Industry, 29(4), 362-376.

Su, Y. C., Lin, T. H., Cheng, F. T., & Wu, W. M. (2008). Accuracy and real-time

considerations for implementing various virtual metrology algorithms. IEEE

Transactions on Semiconductor Manufacturing, 21(3), 426-434.

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of

initialization and momentum in deep learning. In Proceedings of the 30th

International Conference on Machine Learning (pp. 1139-1147). Atlanta,

Georgia, USA: PMLR.

Tran, V. T., AlThobiani, F., & Ball, A. (2014). An approach to fault diagnosis of

reciprocating compressor valves using Teager–Kaiser energy operator and deep

belief networks. Expert Systems with Applications, 41(9), 4113-4122.

Vapnik, V. N. (1999). The Nature of Statistical Learning Theory.

Vincent, P., Larochelle, H., Bengio, Y. & Manzagol, P.A (2008). Extracting and

composing robust features with denoising autoencoders. In Proceedings of 25th

International Conference on Machine Learning (ICML). (pp. 1096–103). New York.

Zeng, D., & Spanos, C. J. (2009). Virtual metrology modeling for plasma etch operations.

IEEE Transactions on Semiconductor Manufacturing, 22(4), 419-431.

