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ABSTRACT OF THE THESIS   

 

Deep Learning Based Virtual Metrology in Semiconductor Manufacturing 

Processes 

By HARSHIT BOKADIA  

Thesis Director: 

Myong K. Jeong 

 

Virtual metrology (VM) in semiconductor manufacturing is the technique of predicting 

critical dimensions of wafer quality characteristics without direct measurement based on 

process data of production equipment. VM is important in semiconductor manufacturing 

since it enables engineers to monitor the quality of wafers in production without physical 

wafer metrology thereby increasing the throughput of the process. As the process 

information consists of a large number of process variables in the form of raw sensor 

signals, learning new useful features in a low dimensional space is a key to build accurate 

VM prediction models. Earlier efforts in VM modeling were carried out by employing 

linear dimensionality reduction techniques such as PCA. Autoencoder is a deep learning 

based feature extraction method that has the capability to explore the non-linearity in the 

modeling and to represent high dimensional input into a low dimensional space. In this 

thesis, we propose a new VM model by incorporating the autoencoder based feature 

learning. We apply the proposed model to the prediction of critical dimensions of wafers 

at a plasma etching process in semiconductor manufacturing and compare the predictive 
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performance of the proposed model with conventional VM models. The experimental 

results show that the proposed model outperforms the existing models thus showing that 

autoencoder based feature learning is helpful in VM modeling with raw sensor signals. 
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 Introduction CHAPTER 1 

 

The manufacturing of integrated circuits (ICs) also known as chips in semiconductor 

manufacturing industry involves a  large number of sequential steps such as chemical 

vapor deposition, etching process and lithography process. During each step, patterned 

layers are being formed on the wafers which eventually complete the integrated circuit 

and we get the final product called ICs or the chip. From each wafer, hundreds of chips 

are being formed. Definitely, the complete process involves a huge amount of capital 

expenditure. To ensure cost effectiveness and process stability, an efficient and reliable 

method for process control is required and since semiconductor manufacturing consists of 

a number of sequential manufacturing stages, quality control at each stage is important 

for high production yield.  

High yield in production and product‟s quality can be achieved by good quality 

management. A way for quality control is to monitor manufacturing process by 

measuring critical dimensions of wafer quality characteristics at various steps during the 

process (metrology). Another way is to promptly detect wafer abnormalities by 

identifying spatial defect patterns (Kim et al., 2016). Fail bit maps (FBMs) are also quite 

commonly used tools for monitoring wafer quality which involves visual inspection of 

failed cell count during wafer functional tests.  Some researchers proposed an automated 

classification procedure for failure pattern on FBMs using regularized singular value 

decomposition which no more requires any visual inspection thus saving time and money 

(Kim et al., 2015). Both metrology and fault detection is important in achieving a better 

overall quality control. Traditionally, manufacturing processes in semiconductor industry 



2 

 

 

 

were controlled using statistical quality control techniques and metrology being one of 

them has been in practice for a long time (Su et al., 2007). Critical dimensions of wafer 

quality characteristics are being measured at various stages during the process by 

sampling few wafers out of the lot (Su et al., 2007; Khan et al., 2007). These 

measurements were done with physical metrology tools which produce a lot of delay in 

providing  feedback of the current wafer quality (Chang and Cheng, 2005). Also, this 

physical metrology is being performed only on monitor wafers which are drawn 

intermittently during the the process (Kang et al., 2011). Not only this, the equipment 

condition keeps on changing due to malfunction, preventive maintenance events, and 

equipment aging problems. This changes the process parameters and hence the wafer 

quality. These process shifts and drifts in equipment condition which occur between the 

measurements are not easily detected which may lead to faulty wafers thereby decreasing 

the cost efficiency. 

Virtual metrology (VM) in semiconductor manufacturing overcomes the 

limitations of conventional physical metrology by predicting critical dimensions of wafer 

quality characteristics without direct measurement based on process data of production 

equipment (Chang and Cheng, 2005). It enables engineers to monitor the quality of 

wafers in production without physical wafer metrology thereby increasing the throughput 

of the process. This is the reason VM is gaining increasing attention from semiconductor 

manufacturing industry. 

There are several advantages of shifting to virtual metrology from physical 

metrology in semiconductor manufacturing. Earlier, for metrology operation, the quality 

statistics were collected for only a few wafers from the lot (Khan et al., 2007). It was 
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hard to measure every production wafer since it is time-consuming and expensive also. 

These few wafers were assumed to represent the product quality of all the production 

wafers (Hung and Lin, 2007). VM provides more information on the quality of processed 

wafers in production rather than just a few sampled wafers since for VM modeling few 

wafers are sampled from the lot to get metrology data (response variable) and the 

metrology values for the rest of the wafers are predicted through VM prediction models. 

VM enables to detect the shifts and drifts occurring due to changing process dynamics 

immediately and reconfigure the process parameters accordingly in real time thereby 

preventing the production of faulty wafers (Lin et al., 2006). VM drives the production 

efficiency and eventually throughput by enabling the process control and monitoring in 

real time (Khan et al., 2007; Qin et al., 2006). Also, with increased complexity of circuit 

design and chips getting smaller and smaller, it is required to shift to the wafer to wafer 

control from earlier lot to lot control which is possible by virtual metrology because of 

faster response and no metrology delays. 

For VM, the process information is collected from the sensors mounted on the 

production equipment, and the resultant data can be very high dimensional. Existing VM 

modeling techniques have some limitations when we deal in the high dimensional space 

since they consider linear dimensionality reduction techniques such as PCA (Kang et al., 

2011; Hung and Lin, 2007; Zeng and Spanos, 2009; Kurz et al., 2015; Park et al., 2015) 

and least angle regression (Susto and Beghi, 2013). But, the functional data coming from 

different sensors might have a non-linear mapping with the response variable and 

performing linear dimensionality reduction overlooks this non-linearity. On the other 

hand, some VM models are based on features from variable selection such as stepwise 
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selection, statistical filtering and various other variable selection techniques (Purwins et 

al., 2011; Zeng and Spanos, 2009)  which eventually leads to losing of some important 

process information from the data due to reduction in model complexity. However, 

deploying existing VM techniques directly in the high dimensional space may lead to a 

poor generalization.  

Autoencoder (Vincent et al., 2008) and its variants with deep neural network 

structures have this capability of learning non-linear features from the data in a low 

dimensional space (Hinton and R.Salakhutdinov, 2006). Deep neural networks have 

shown successful performance at many complex modeling tasks such as fault detection 

and classification in semiconductor manufacturing (Lee et al., 2017),  fault diagnosis in 

rotating machinery elements (Jia et al., 2016), reciprocating air compressors (Tran et al., 

2014) and at representation learning (Bengio et al., 2013).  

So, the alternative may be to do dimensionality reduction taking into account the 

non-linear mapping of process variables with the metrology values. Our motivation for 

this research is in developing a new VM model which encompasses this feature learning 

with autoencoders to improve the VM performance. Deep learning models have the 

ability of mapping approximate non-linear function between predictor variables and 

response variable through multiple hidden layers and non-linear activation functions 

(Larochelle et al., 2009).  

If we learn good features in a lower dimensional space by taking non-linearity 

into account through a deep learning based feature extraction method known as 

autoencoders, we have a good chance of getting higher prediction accuracy for various 

existing prediction models. 
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In this thesis, we proposed a new VM modeling technique using deep learning 

based feature extraction models. The objective in this thesis is to show that features 

extracted by autoencoder and its variants with deep structure improve the VM 

performance where autoencoders are capable of learning non-linear features from data as 

well as reducing the dimensionality. We evaluate the proposed methodologies by 

conducting two different experiments on a real-life dataset of a plasma etching process in 

semiconductor manufacturing. The first experiment is to evaluate the methodology with 

deep learning based feature extraction by applying autoencoders on conventional VM 

approach of process statistics data. The second experiment is to apply autoencoder 

directly to raw sensor data.  In both the case, the features learned by autoencoder 

improves the VM performance.  

In chapter 2, we review the literature of VM and autoencoder and briefly explain 

the key concepts on deep learning. Chapter 3 explains the new proposed VM model. In 

chapter 4, we evaluate the proposed model using a real-life sensor dataset. Chapter 5 

concludes this thesis and states future research work. 
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 Related Work CHAPTER 2 
 

2.1. VM in Semiconductor Manufacturing 

VM is for the prediction of metrology values or critical dimensions of wafer quality 

characteristics from process information which is generally present in the form of 

functional data from sensors mounted on the production equipment. The purpose of VM 

is to provide metrology values of all the wafers present in the lot thus enabling wafer to 

wafer control rather than lot to lot control. The Fault detection and classification (FDC) 

data and metrology data which are used for process control can be used for VM modeling 

(Cheng and Cheng, 2005; Chang et al., 2006). VM system is in short part of the process 

control along with FDC system. 

VM modeling belongs the advanced process control (APC) techniques rather than 

traditional statistical process control techniques due to real-time control feedback. Being 

a kind of APC techniques, VM modeling exploits the historical data in the form 

multivariate process information to predict metrology values with real-time configuration 

of process parameters in order to maintain product quality. VM modeling consists of data 

processing as the very initial step which involves data cleaning in the form of outlier 

detection, imputation of missing values and statistical analysis of data by dimensionality 

reduction in the form variable selection or feature transformation to a lower dimension. It 

also involves correlation analysis of process variables to remove redundant variables and 

keep only the significant ones. This stage of data pre-processing assures the quality of 

data we input to the VM prediction models by keeping only that much of process 

information which truly explains the variance with target variable i.e. metrology data in 
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case of VM. The next step is to test the performance of various VM prediction models 

and compare the model performance by a suitable performance measure to assess the best 

model suitable for VM modeling. Various approaches have been taken by the researchers 

in the past at all these different stages of VM modeling. 

First, let‟s discuss the previous work by researchers at the data preprocessing 

stage for VM modeling.  To begin with, a considerable amount of work has been done 

regarding outlier detection. Outlier detection is an important step in VM modeling. There 

is a possibility of the faulty wafer being produced due to process shifts and drifts 

happening. This faulty wafer may cause the metrology values to have an extremely high 

or low value thereby affecting the overall predictive performance of the model. Thus, it is 

important to have these outliers detected and removed. Zeng and Spanos (2009) deal 

outlier detection in VM modeling where they treated the points with distance metric 

value greater than the cut-off value as outliers and adopted Mahalanobis distance as the 

distance metric. Some researchers adopted Hotelling T
2 

test in their work on VM 

modeling for dealing with outliers (Hirai and Kano, 2015; Zeng and Spanos, 2009). 

Another paper proposed a robust regression model based on relevance vector machine to 

deal with outliers by using weight strategy (Hwang et al., 2014). Though not specific to 

VM, recently Hwang et al. (2015) proposed a robust kernel-based regression technique 

which along with estimating the non-linear functional relationship between predictor and 

response variable can also help in dealing with outliers in both   and   space which may 

prove to be helpful in VM applications. 

Variable selection is a major challenge in VM modeling due to a high number of 

process variables involved. Finding critical or important process variables which explain 
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the variations in output is significant in building accurate prediction models. Various 

methods were proposed by researchers in the past for variable selection. Hung and Lin 

(2007) adopted stepwise selection to extract critical parameters. They also adopted 

Principal Component Analysis (PCA) and Bartlett test for further reducing input 

variables to their prediction models. Though not specific to VM, recently a novel PCA 

based neural network approach adopting Bayesian information criteria for studying high 

dimensional multivariate functional data was proposed to compare the prediction models 

efficiency in semiconductor manufacturing (Ko et al., 2013).  Pampuri et al. (2011) 

proposed multilevel lasso algorithm and used L1 penalization to obtain models of lower 

order. Purwins et al. (2011) used only simple statistical filtering and expert selection for 

variable selection. Zeng and Spanos (2009) adopted random modeling genetic partial 

least square algorithm and stepwise selection for variable selection. Hirai and Kano 

(2015) adopted variable importance in projection (VIP) method for doing the variable 

selection. Susto and Beghi (2013) proposed another technique called least angle 

regression for model selection.  

Variable selection techniques are mainly concerned with dimensionality 

reduction. At the same time, we also need to retain information from important variables 

which may be dropped while employing some variable selection technique. This is where 

regularization comes into the picture since it helps in penalizing the coefficients rather 

than completely getting rid of the variable. The basic approach in a regression technique 

is towards minimizing the residual sum of squares which may sometime lead to 

overfitting. This led to the development of regularized models such as that of ridge 

regression. Still, the problem of high dimensional data is not solved since the ridge 



9 

 

 

 

regression does not perform the dimensionality reduction. As a result, L1 penalized 

techniques were developed which helps to obtain the sparse solution in case of the 

smaller value of regularization parameter. A study of Pampuri et al. (2011) proposed a 

multilevel lasso technique which is basically an extension of L1 penalization to a 

hierarchical framework. Recently a technique which provides a sparse explicit 

description of the function in input space along with exploring non-linearity in the data 

was proposed (Lee et al., 2014). The technique can be effective in VM application since 

it takes care of the non-linearity in modeling, tackles the variable selection issue in 

kernel-based approaches to some extent and in addition is less sensitive to a range of 

data. 

The next stage after data pre-processing involves working with prediction models 

for VM. Many machine learning based models were proposed by researchers for VM 

modeling such as support vector machine for regression (Purwins et al., 2011; Chou et 

al., 2010; Kim et al., 2017), relevance vector machine with variational inference for 

regression (Hwang et al., 2014) and K- nearest neighbor for regression (Lee et al., 2014). 

Some researchers used linear modeling techniques such as multiple linear regression and 

lasso regression in VM modeling for a single output variable (Susto and Beghi, 2013), 

others proposed VM models based on partial least squares regression for multiple output 

variable (Hirai and Kano, 2015; Khan et al., 2007; Purwins et al., 2011). Another 

approach for VM modeling currently is that of neural networks and some researchers 

proposed feed-forward network with error Backpropagation for VM modeling (Su et al., 

2006; Zeng and Spanos, 2009; Cheng and Cheng, 2005). Some others proposed radial 

basis function neural network (Ferreira et al., 2009; Hung and Lin, 2007). 
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2.2. Autoencoder and Deep Neural Networks 

Artificial neural networks are computational models as mimics of biological neural 

networks in a human brain. They consist of neurons interconnected with each other in 

multiple layered networks. These networks are capable of non-linear modeling with the 

help of non-linear activation functions at the neurons. The neurons on an input layer take 

input data, and the neurons on the subsequent layers take the output of the activation 

function from the preceding layers. A deep neural network consists of a multiple numbers 

of hidden layers in the network and is trained in a hierarchical fashion. i.e. features 

learned by subsequent layers depend on those of the previous layers. There are various 

kinds of different deep neural network models in use today and together they comprise 

the field of deep learning.  

A simple artificial neural network consists of one or two hidden layers in general. 

The paper on universal approximation theorem proved that even shallow neural networks 

with as small as one hidden layer having sufficient neurons can approximate any complex 

function (Hornik et al., 1989; Cybenko, 1989). It is possible that the functions that are 

represented well by using deep nets may require almost an exponential number of 

neurons with a shallow network. But still, we required deep learning models because 

sometimes single layer or shallow network is not able to solve various problems like 

object recognition, image recognition,  speech recognition etc. since the learning process 

is hierarchical i.e. each layer learns certain features and then the subsequent layers build 

on the output of previous layers.  

Autoencoders belong to a family of deep learning models where output layer is 

exactly the same as the input layer. Autoencoders aims to learn representation for a set of 
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input data typically in low dimensional space (Hinton and R.Salakhutdinov, 2006).  It 

does so by first compressing the input to a low dimensional space through „encoder‟ and 

then reconstructing the input through „decoder‟. The low dimensional representation of 

the input (encoder) is also called „latent space representation‟. This network is typically 

trained through a well-known algorithm called Backpropagation for optimizing the cost 

function to obtain parameters i.e. minimize the reconstruction error or loss function. 

Autoencoder is basically an unsupervised deep learning algorithm since it does not 

require any target values or labels to train the network. It is, in fact, a kind of self-

supervised algorithm as it takes the raw input and generates the labels by forming the 

output layer exactly same as the input layer. Figure 2.1 below shows a basic one hidden 

layer autoencoder. 

 

 

 

 

 

 

 

 

Figure 2.1 Basic one hidden layer autoencoder 

 

Different strategies of deep learning models are applicable in case of 

autoencoders also like training by Backpropagation, introducing sparsity or regularization 

constraint, avoiding overfitting by dropout (Srivastava et al., 2014), using different 
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optimization algorithms for faster convergence. We can stack multiple basic 

autoencoders to create a deep autoencoder to learn more complex functions. We are 

going to review few important concepts of deep neural networks in the further sections 

which are very much applicable to autoencoders. By using these techniques, we can 

create various different autoencoders. For example, adding regularization constraint to 

the layer in the form of L1 or L2 penalization may help in avoiding overfitting while 

training the autoencoders. This regularization term forces the autoencoder to learn the 

input representation through a small number of nodes by penalizing some nodes to zero. 

This sometimes helps in learning better features. Using convolutional layer instead of 

dense hidden layer creates a convolutional autoencoder. Similarly stacking multiple 

autoencoders creates a deep autoencoder and many others.  

Autoencoder are different from PCA or other dimensionality reduction techniques 

in the manner that autoencoders can induce non-linearity in the networks through its 

activation functions i.e. we can have a non-linear transformation of data while PCA is all 

about linear transformation   

An important concept in solving any machine learning problem is that of bias and 

variance. In simple terms, bias refers to the training error and variance to the test error. We 

generally want to reduce the variance without affecting bias. But, in practicality, there is 

always some trade-off between the two which is known as the bias-variance trade-off. 

Recently deep learning pioneers in their book (Goodfellow et al., 2016) discussed the 

concepts of regularization and overfitting in detail. A very high bias refers to 

„underfitting‟. This means the model has converged to a suboptimal solution and has not 

learned the function mapping properly or rather has not explored the possible relationship 
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between the predictor and response variable effectively. The solution can be to try a 

deeper architecture or a deep autoencoder in our case to learn new features, in short, 

increasing the model capacity. Now, as we increase the model capacity by deploying a 

deeper architecture, we may reduce our training error to a very low value but it may lead 

to a bad generalization error. This is the case of high variance or „overfitting‟. In this case, 

the model is mapping the relation between predictor variable and response variable very 

accurately for training data but does not generalize well enough on test data. To overcome 

this issue of overfitting we generally introduce various regularization techniques in our 

autoencoder models while learning new features such as L1 and L2 sparse autoencoders as 

mentioned before. Regularization helps in decreasing the variance though there may be 

some trade-off with bias. 

Regularization in deep learning or any machine learning technique is a way of 

improving model performance by reducing the generalization error but not the training 

error. During overfitting, the model learns too much of details or we can say it overlearns 

with the noise in the data and as a result, it does not generalize well enough on a new data 

or unseen data. Some of the commonly used techniques for regularization in autoencoders 

are L1 or L2 regularization. We can create new autoencoders by adding L1 & L2 

regularization constraint in a basic autoencoder to learn better features for our prediction 

models. 

Optimization also plays an important role in deep learning models since they try to 

minimize the loss function (regression model as in our case) and helps in finding the best 

model parameters. The optimizer we choose for our autoencoder determines the quality of 

features we have learned since the way the model parameter values are updated and 
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optimized during a training process depends a lot on various optimization algorithms used 

in deep learning. A recent paper on gradient descent optimization in deep learning gave 

some insights into many optimization techniques in the deep learning area (Ruder, 2016). 

Majority of the optimization algorithms in deep learning are based on first order 

optimization since computing a second order derivative is very costly. Though second 

order optimization also tells about the curvature of loss function and it shows if the first 

order derivative is increasing or decreasing. Therefore, second order derivative does not 

get stuck in local minima since it knows about the curvature of the loss function. 

The equation for parameter update in a typical neural network is as: 

           ( ) ( ) (1) 

 

where:     stands for learning rate,  ( ) ( ) for  gradient of loss function  ( ) with 

respect to   and   is the weight parameter.     

From equation (1), we can see that the weights are updated in the opposite 

direction of the gradient. The first order minimization often leads to a local minimum. 

Generally, more complex problems have a non-convex function mapping. Though a deep 

neural network may approximate this highly non-convex function mapping but it may 

converge to local minima. The parameter updates were done only once for a batch 

gradient descent method. This was however not considered good since it had only one 

update and problem of getting stuck in a local minimum was high and also it had a slow 

convergence. This was rectified by stochastic gradient descent (SGD) method and 

equation (1) now become: 

          ( ) (   ) (2) 
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where   is the training observations which is stochastically chosen. Now, SGD has 

definitely more parameter updates as compared to a traditional batch gradient descent 

algorithm. This may cause high variance and may lead to overshooting the minima.  

Now, a proper selection of learning rate also affects the training of our 

autoencoder to a large extent. In fact, the way parameters are updated based on learning 

rate is the key difference between various optimization algorithms. The paper by Ruder 

(2016) discussed various adaptive algorithms. The ‘Adagrad’ algorithm allows the 

learning rate to adapt itself based on parameter update. It no longer has a fixed learning 

rate as SGD. However, it suffers from a problem of decaying learning rate which 

ultimately leads to a very slow convergence. In „Adadelta‟ optimization algorithm this 

problem is decaying learning rate is mitigated. Another algorithm ‘Adam‟ stands 

for adaptive moment estimation. „Adam‟ actually helps in adapting learning rate and 

momentum according to the parameter updates.  We calculate the first moment and second 

moment which is basically the mean and variance respectively and based on that we 

update the parameters. Detailed „Adam‟ algorithm can be referred from the original paper 

(Kingma and Ba, 2015). However, there is no general rule to which optimization 

algorithm may work best and we may need to try different optimization methods to get the 

best result. 

In autoencoder or any kind of deep neural network model, the parameters are 

basically the weights and biases which are learned during the model training process. 

Other than this, there are some parameters which are not learned during the training 

process and these are called as hyper-parameters. These hyper-parameters actually control 

the learning of the parameters which are learned during the training i.e. weights and 



16 

 

 

 

biases. Some of the important hyper-parameters are learning rate, momentum, choice of 

activation function, number hidden layers and number of units in each hidden layer, mini-

batch size, optimizers, regularization parameters, decay rate etc. to name a few. Hyper-

parameters are the parameters which are not learned from the data during the training 

process. In fact, they are external to the model training and are often chosen outside of the 

learning process. These hyper-parameters need to be optimized in order to get optimum 

values for model parameters. We often tune in the hyper-parameters in a way so as to get 

the best possible values for the model parameters. There are various ways to tune in those 

hyper-parameters viz. grid search, random search and Bayesian optimization. In grid 

search, we select some points on the hyper-parameter range which are uniformly 

distributed across the whole range. However, in this type of search, we train the neural 

network using all possible combinations of hyper-parameters across the grid and we might 

be training our deep net on a range of hyper-parameters which are not suitable. Instead, if 

we rather do the random search, we select the values for hyper-parameters randomly 

across the grid rather than using the uniform scale and then we narrow down our search 

for the hyper-parameters values which works well enough (Bergstra and Bengio, 2012).  
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 Proposed Methodologies With Features CHAPTER 3 

Extracted by Autoencoder. 
 

Our methodology is based on the essence of accurately modeling the VM prediction 

problem for a very high dimensional dataset by retaining most of the information. So, to 

reduce the dimension taking non-linearity into account, we adopt a deep neural network 

based feature extraction method known as autoencoder which learns new features in a 

low dimensional space by reconstructing the input.  

We propose two methodologies for VM incorporating feature learning through 

autoencoder. Firstly, we adopt autoencoder for feature extraction from process statistic 

data, on which conventional VM modeling approaches have been based, and the extracted 

features are used for the prediction in VM. To convert the raw sensor dataset into process 

statistics dataset, various statistics like mean, median, skewness, kurtosis etc. to name a 

few are being used. Then we learn new features on this process statistics data with the help 

of different autoencoders and use the extracted features for prediction modeling. On the 

other hand, we propose the other approach that autoencoder is employed for feature 

extraction directly from raw sensory data, and the extracted features are used for the 

prediction in VM. Both the methodologies are being discussed in detail in section 3.1 and 

3.2 respectively. 

In both the methodologies, we fix the encoding dimension for our autoencoder to 

learn new features. For different encoding dimensions in a one hidden layer autoencoder, 

we calculate the reconstruction error by computing mean squared error (MSE).  The MSE 

value will slow down in improvement after a certain value of hidden neurons. We adopt 

that number of hidden neurons in the encoder layer as our input dimension for the 
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prediction models. This method helps in reducing the dimension and at the same time 

also helps to retain a reasonable amount of information for the functional sensor data by 

mapping non-linear functions. 

3.1 VM with Features from Process Statistics. 

Typically we are given a raw sensor data from a semiconductor fabrication process which 

is monitored by certain numbers sensors on the process equipment, and which consists of 

number of recipe steps also called sub-operations. The signals from the process 

equipment sensors are stored over the time duration and so the sensors provide the signals 

of   time points for each wafer. A critical dimension of wafer quality characteristics is 

measured after being processed. 

In the first methodology, we convert the raw sensor dataset into a design matrix by 

extracting certain useful features such as summary statistics like mean, variance, standard 

deviation,  skewness,  kurtosis etc. There are a few advantages of extracting features from 

these signals. First, features extracted from signals are more robust to noise as compared 

to signal itself.  Secondly, sometimes the precise value of the signal at a point of time may 

not make as much sense as the trend in the signal over the time. Third, the process 

information may be stored in a smaller memory space making the statistical analysis easier 

and faster. Let us suppose we extract   statistics from each of the   sensors for each of 

the   sub operations. Thus, now our new process statistics dataset has       number of 

predictor variables which is equal to „ ‟ i.e. total number of predictor variables as stated 

earlier in the section. Conventionally, this process statistics dataset which is high 

dimensional is being used for prediction with VM.  
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In our methodology, we learn new features on this process statistics dataset using 

autoencoder and its variants in a low dimensional space with non-linear activations at the 

hidden units. Then, we use these new features for deploying VM prediction models. This 

methodology is summarized in the Figure 3.1 below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Methodology for VM based on feature learning by autoencoder on 

process statistics data. 

 

Suppose that, for each wafer, the fabrication process is monitored by   sensors on 

the process equipment over time    Consider there are   sub-operations also called recipe 

steps for the process. For sub-operations,           the signals from the sensors are 

stored over the time duration   , and so the sensors provide the signals of   time points for 
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each wafer where   ∑   
 
   . Then   summary statistics such as mean, standard 

deviation, skewness, kurtosis etc. are extracted from the signal of each sub-process.  

Let *     +   
  be a dataset from   observed wafers where    are  -dimensional 

input vectors and    are output values for   = 1, 2, …,  . To be specific, each    consists of 

  summary statistics from raw signals for the  -th wafer concatenated in a vector    for   

sensors as      , and    is a measured critical dimension from a fabrication process.  In 

our case of semiconductor manufacturing, the number of observations   are basically the 

number of wafers.  

An autoencoder is trained through Backpropagation for reconstruction of inputs 

i.e. the output layer, in this case, is same as the input layer.  Let us consider a general 

feed-forward neural network with   hidden layers and    neurons in the     layer. The 

output vectors at the     layer  ( )      for   = 0, …,   are computed as: 

 
 (   )   (   ) ( )   (   ) (3) 

 

  (   )   ( )( 
(   )) 

 
(4) 

 

where,  ( )           is a              ,   ( )       is a bias vector, and  ( )  is 

an element-wise activation function on the     layer.  ( ) indicates the given input 

vector       and the output vector at the     hidden layer is  (   ) =  (   ) where   

is the set of all the weight parameters in  . Now we need to learn a new representation of  

 -dimensional input   into a lower dimension space through autoencoders. That is, the 

input vector   is taken in the autoencoder as  ( ) in (3). In case of a single-hidden-layer 
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autoencoder, we get the reconstructed input vector  ( ) at the output layer given by (3) 

and (4). Particularly,  ( ) becomes the extract feature vector at the hidden layer as the 

latent space representation based on the encoded input. To obtain the features, we train 

the autoencoder by minimizing the cost function  ( ) given by 

 

 
 ( )    ∑‖  

( )      
(   )‖

 

 
 

   

 (5) 

  

where   
( )

 is the activation for the  -th observation on the  -th layer, and ‖ ‖  is a L2 

vector norm. So, we need to calculate min  ( ) i.e. find the values of parameters 

(weights) that minimize this cost function. We try to find these optimal values of 

parameters through an iterative algorithm known as the Backpropagation algorithm 

(Rumelhart et al., 1986). The Backpropagation algorithm updates the parameters by 

calculating the cost function at the last layer and backpropagating the error using chain 

rule through gradients of weights in a deep neural network.  

 We can also use other types of autoencoders to learn new features which we 

discussed in chapter 2. In addition to basic and deep autoencoder, we have the regularized 

autoencoder. In case of regularized autoencoder, the cost function  ( )  gets modified 

only keeping rest of the model as same. Now we can add a regularization constraint in the 

form of L1 and L2 penalization on the activation at the hidden layer of this autoencoder 

to form regularized autoencoder. This regularization term forces the autoencoder to learn 

the input representation through a small number of nodes by penalizing some nodes to 

zero.  
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Firstly, we add the regularization constraints on the activation at the hidden units 

of the autoencoder to learn new features with sparsity. For L1 sparse autoencoder this 

 ( ) gets modified due to the addition of regularization constraint and becomes:  

 
 ( )  ∑‖  

( )      
(   )‖

 

 
 

   

   ∑‖ ( )‖
 

 

   

 

 

(6) 

where ‖ ‖  is a L1 vector norm.This regularization term with L1 norm in (6) penalizes 

the activations at hidden units thereby producing a more compact representation. This 

compact representation can be more effective in getting better prediction performance 

than the basic autoencoder. 

Similarly, for L2 norm autoencoder, the equation for loss function becomes: 

 

 
 ( )  ∑‖  

( )      
(   )‖

 

 
 

   

   ∑‖ ( )‖
 

 
 

   

   

 

(7) 

 

This regularized autoencoder also provides better features for prediction modeling 

by penalizing the activations at hidden units by a rather different norm. The L2 norm 

does not penalize the activations to an extreme zero value. This could be effective when 

sensor signals are highly correlated, since losing features due to extreme penalization as 

in the previous case can lead to the loss of important process information. 

So, depending on the amount of correlation between the sensor signals, this kind 

of regularized variants of autoencoder can provide useful new features for prediction. 

Once we have learned the new features, we use these features for predicting our 

metrology values with the help of various prediction models. The prediction models take 
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the data in the form output vector at the     hidden layer of our autoencoder which are 

basically our features learnt by autoencoder i.e.  ( )  for the     observation which is    

for   = 1, 2, …,  . Let a prediction model be   and the output from the prediction model 

be  ̂  as 

 

   ̂   (  )  (8) 

 

The performance of various prediction models is then evaluated in terms of mean 

squared errors (MSE) through equation 9 where  ̂  being predicted output and    being the 

actual output. 

 
    

 

 
∑( ̂    )

 

 

   

 (9) 

 

3.2 VM with Features from Raw Sensor Dataset. 

In our second methodology, autoencoder is employed for feature learning directly 

from the raw sensor data. In this, we first rearrange the dataset from raw sensor signals 

into a matrix for our regression problem by considering every time stamp for each sensor 

as a different feature. So, let‟s say there are   sensors and    time stamps for each sensor 

(time stamps may be different for different sensors), so our rearranged raw sensor dataset 

has        features or predictor variables.  

In our previous methodology, we extracted statistics from raw sensor dataset 

which can lead to losing some important process information. In this methodology, we 

learn new features directly on the raw sensor dataset. Learning new features directly on 
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the raw sensor dataset keeps the process information intact and may provide better 

features than our first methodology.  

We learn new features    from the  -dimensional raw sensor input vector     

directly in a lower dimension space with the help of autoencoder. We learn     for   = 1, 

2, …,   by getting output at the hidden layer through (3) and (4) by training our 

autoencoder through the Backpropagation. We can add the sparsity to the autoencoder 

while extracting features through (6) and (7) same as we did in our first methodology. 

The prediction models take the compact representation or the new features    for   = 1, 2, 

…,   as the input to get predicted output i.e.  ̂  with the help of (8) and we compare our 

model performances. This methodology summarized in Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Methodology for VM based on features learning by autoencoder on raw 

sensor data. 
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 Experiments and Results CHAPTER 4 
 

We consider an etching process in semiconductor manufacturing for our experimental 

work. Plasma Etching process is basically the removal of material from the surface by the 

plasma where the ions are bombarded on the surface of the wafer. It proposes various 

challenges like high dimensionality of data, equipment aging, changing process dynamics 

owing to maintenance activities, high correlation among various sensors, the introduction 

of outliers due to changing equipment conditions and various other challenges. The 

process also needs to be controlled in order to prevent etching of the following layers. So 

it is being monitored by various sensors measuring different physical parameters such as 

pressure, temperature, and others. Critical dimension values for various quality 

characteristics of the wafers e.g. “etch bias” in our case are being measured after 

completion of the etching process. 

The proposed autoencoder based VM model in this thesis is evaluated on the basis 

of various experiments conducted on sensor dataset which is basically the data collected 

from a plasma etching process of a semiconductor manufacturing plant. The raw data 

from the sensor was collected over the same time length for a wafer i.e. the time length of 

all sensors for a particular wafer is same. However, sub-operations timing is different for 

different wafers. As a result, the total lengths of sensor signals are different for different 

wafers. The average length of the signals for the wafers in the dataset is 650 and the 

standard deviation of 10.22. The dataset consists of data from 85 sensors (these 85 

sensors are picked out of approximately 200 sensors based on expert selection) for 298 

wafers. The etching process equipment has 58 sub-operations. Figure 4.1 below shows a 

snap of the raw sensor data. 
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    Figure 4.1 Raw sensor dataset from plasma etching process 

 

We conducted two different experiments which will be explained in section 4.1 

and 4.2 ahead. In our first experiment, we learned new features by four different 

autoencoders on process statistics data. In our second experiment, we learned new 

features directly on the raw sensor dataset. Then we deployed four different regression 

models on the new extracted features dataset in both the experiments for getting 

prediction performance.  In both the experiments, we first ran an initial experiment with 
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varying number of neurons in the encoder layer for one hidden layered autoencoder to fix 

the encoding dimension for minimum reconstruction error. The rate of improvement of 

MSE decreases after a certain number of neurons so we fixed this as the encoding 

dimension for our autoencoders in both the experiments respectively. 

The 298 observations are divided into two parts: 238 observations are used for 

model training and 60 observations are used for testing the model. 3- fold cross validation 

is adopted for the training set to avoid over-fitting and get a good generalization capability 

for the prediction model. Various set of hyper-parameters are tuned in by using grid search 

on this training set and the best combination of hyper-parameters are then tested on the 

test set to see if the model generalizes well enough.  

We deployed four different regression methods i.e. SVM for regression, Ridge 

regression,  Lasso regression and deep neural networks to evaluate the performance of our 

autoencoder based proposed method with existing methods. Support vector machine 

(SVM) for regression (Vapnik, 1999) is known for its good generalization capability. The 

objective is to minimize the sum of the ε-insensitive loss function. SVM needs the 

parameters „C‟  for the regularization cost and „𝛆‟ for error from the margins to be tuned in 

along with different kernel functions. We tested both linear and radial basis kernel to get 

the best solution with again 3-fold cross-validation. Lasso is another commonly used 

regression method. Lasso regression has also the capability of getting a sparse solution by 

penalizing some coefficient values to zero. The variable selection and regularization 

capability of Lasso by L1 penalization make it suitable to generalize well enough for 

regression task. The regularization parameter here is „alpha‟ which is the only hyper-

parameter fined tuned again with a 3-fold cross-validation. Ridge regression is found be 
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suitable for regression tasks which involve highly correlated variables. It invokes 

penalization by L2 norm. For deep neural network, a predetermined structure based on 

preliminary experiments done for fine tuning of different hyperparameters was adopted. 

The hyper-parameters to be tuned in for all the models are being summarized in Table 4.1 

below. 

Table 4.1 Hyperparameters to be tuned for various prediction models 

Virtual Metrology Models Hyper-Parameters to be tuned 

(3- fold cross validation used) 

Support Vector Machine 
C for regularization and type of kernel and 

its parameters 

Lasso and Ridge Regression   for regularization 

Deep Neural Network 

Learning rate, number of epochs, batch size, 

optimizer, dropout rate, number of hidden 

layers, number of neurons in each hidden 

layer. 

 

To summarize, given the raw sensor data, we convert the raw sensor dataset into 

the design matrix for regression problem with respect to two different methodologies in 

our research. We then carry out the data preprocessing such as feature rescaling. A new 

representation of input features is learned by autoencoders for minimum reconstruction 

error. On this new transformed data, we deploy various prediction models such as SVM, 

Lasso, Ridge, deep neural networks to test the model performance. We do the fine-tuning 

of hyper-parameters for various prediction models with a randomized grid search and K-

fold cross-validation to get the best configuration of the model with best parameters. 

The computation for the experiments was implemented based on the python 

libraries: keras and scikit-learn. 
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4.1 VM with Autoencoder for Features from Process Statistics Data. 

Nine different statistics shown in Table 4.2 were extracted from each sub-operation of 

each sensor signal for model implementation. Features are extracted from a discretized 

signal   of   observed time points. We have 85 sensors and 9 input statistics are extracted 

from 58 sub-operations of each sensor signal for the etching process. So, all together we 

have 85*9*58= 44370 input features and one output which is basically equal to the 

number of response variables (critical dimensions) which in our case is only one. 

 

Table 4.2 Summary statistics extracted for each sensor signal 

Feature Expression 

Length   

Minimum    ( ) 

Maximum    ( ) 

Range    ( )     ( ) 

Mean  

 
∑  
 

 

Median       ( ) 

Variance  

 
∑(    ̅)

 

 

 

Skewness 
∑(

    ̅

 
)
 

 

 

Kurtosis 
∑(

    ̅

 
)
 

 

 

 

 

On this process statistics dataset, we ran our first experiment for fixing the encoding 

dimension for our autoencoder as explained earlier. We get the following graph shown 

below and we fixed the encoding dimension as 2000 for our autoencoder as we can see 



30 

 

 

 

from Figure 4.2 that there is no substantial improvement in MSE after we increase our 

dimension from 2000 neurons. 

 

Figure 4.2 Graph of MSE and number of hidden neurons for process 

statistics dataset. 

 

The Table 4.3 below show the testing MSE for various prediction models on the 

features learned by various autoencoders and we can see that the features learned by one 

hidden layered autoencoder provide better performance for various prediction models. 

We deploy prediction models on process statistics dataset (FE), on features learnt by one 

hidden layer autoencoder from process statistics dataset (AE+FE), on features learnt by 

L1 autoencoder from process statistics dataset (L1-AE+FE), on features learnt by L2 

autoencoder from process statistics dataset (L2-AE+FE) and on features learnt by deep 

autoencoder from process statistics dataset (DAE+FE). 
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We also calculated the Pearson and Spearman correlation coefficients between 

features and the output variable for the new features learned by all different 

Autoencoders (AE) shown in Table 4.4 and Table 4.5 respectively. This gives an idea of 

the features learned by various autoencoders.  The improvement in VM performance due 

to the new features learned by autoencoders can be attributed to correlation coefficients 

in the tables. In the following tables, Pr_Mean stands for mean of top 30 Pearson 

correlation coefficients. Similarly, Pr_Max stands for maximum of all the Pearson 

correlation coefficients. Likewise,  Sr_Mean stands for mean of top 30 Spearman 

correlation coefficients and Sr_Max stands for maximum of all the Spearman correlation 

coefficients. Pearson correlation provides the measure of linear correlation between two 

variables. Table 4.4 shows that the features learned by one hidden layer autoencoder have 

reasonably comparable values of Pearson coefficients with process statistics dataset. But, 

it should be noted here that the autoencoder features are in a very low dimensional space 

with just 2000 features compared to almost 44000 features from process statistics dataset. 

In case of process statistics dataset, we can see that only 69 features are useful out of 

44370 features which unnecessarily increase the model complexity thereby lowering the 

testing MSE. Also, if we calculate the ratio of critical features (i.e. features having 

correlation value >0.3 out of the total number of features), it is almost equal i.e. 0.0015. 

But as mentioned earlier we have a reduced model complexity in case of features learned 

by autoencoders by having more useful features in a low dimensional space. Hence, we 

can see the prediction models accuracy is better with features learned by autoencoder. 

Like Pearson correlation, Spearman correlation also measures the relationship between 

two variables. The difference between the two is that Pearson correlation coefficient 
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measures linear relationship between variables while Spearman correlation coefficient 

measures the monotonic relationship between variables. So, here we again see from the 

Table 4.5 below that the correlation coefficients improved for the features learned by 

autoencoder when we took non-linearity into account. This again explains why we have 

better prediction performance with the features learnt from autoencoder. 

 

Table 4.3 Testing MSE for various prediction models 

Models LASSO RIDGE SVM DNN 

FE 0.150969 0.146868 0.138563 0.171452 

AE+FE 0.147364 0.157370 0.127266 0.150757 

L1-AE + FE 0.153619 0.161069 0.132117 0.167345 

L2-AE + FE 0.153374 0.170123 0.136617 0.179518 

DAE + FE 0.154102 0.182613 0.136749 0.196976 

 

Table 4.4 Statistics for top 30 Pearson correlation coefficients 

Models Pr_Mean Pr_Max Number of coefficients> 0.3 

FE 0.4361 0.4812 69 

AE+FE 0.1990 0.4879 3 

L1-AE + FE 0.2074 0.2898 0 

L2-AE + FE 0.1917 0.3241 1 

DAE + FE 0.1844 0.2399 0 

 

Table 4.5 Statistics for top 30 Spearman correlation coefficients 

Models Sr_Mean Sr_Max Number of coefficients> 0.3 

FE 0.3190 0.3573 55 

AE+FE 0.2410 0.3178 1 

L1-AE + FE 0.2385 0.2934 0 

L2-AE + FE 0.2375 0.3180 1 

DAE + FE 0.2386 0.3046 1 
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4.2 VM with Autoencoder for Features from Raw Sensor Data. 

In this experiment, the raw sensor dataset was directly used to deploy machine learning 

models. So, each time stamp for every sensor is a feature and we don‟t extract process 

statistics like we did in the previous experiment. So, we have 85*654 = 55590 features 

and 298 observations. The raw sensor dataset was rescaled in the range of -1 to 1. As an 

initial experiment, we fixed the encoding dimension for our autoencoder same as we did 

in the previous experiment. We get the following graph shown below in Figure 4.3. 

Though from the graph we can see that there is no substantial improvement in MSE after 

3000 neurons but due to memory constraints, we needed to further lower our encoding 

dimension for learning features by autoencoders from raw sensor dataset. We finally 

fixed 2000 neurons as our encoding dimension. 

 

Figure 4.3 Graph of MSE and number of hidden neurons for raw sensor dataset. 
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We deploy prediction models on raw sensor dataset (RSD), on features learnt by 

one hidden layer autoencoder from raw sensor dataset (AE+RSD), on features learnt by 

L1 autoencoder from raw sensor dataset (L1-AE+RSD), on features learnt by L2 

autoencoder from raw sensor dataset (L2-AE+RSD) and on features learnt by deep 

autoencoder from raw sensor dataset (DAE+RSD). 

 

Table 4.6 Testing MSE for various prediction models   

Models LASSO RIDGE SVM DNN 

RSD 0.018793 0.026347 0.019961 0.042531 

AE+RSD 0.018793 0.028658 0.019954 0.038543 

L1-AE+RSD 0.018704 0.029371 0.019969 0.036850 

L2-AE+RSD 0.019132 0.03328 0.019951 0.044230 

DAE+RSD 0.018793 0.042783 0.019966 0.056706 

 

Table 4.7 Statistics for top 30 Pearson correlation coefficients 

Models Pr_Mean Pr_Max Number of coefficients> 0.3 

RSD 0.31410 0.613 18 

AE+RSD 0.17434 0.223 0 

L1-AE+RSD 0.17336 0.237 0 

L2-AE+RSD 0.16920 0.211 0 

DAE+RSD 0.17174 0.219 0 

 

Table 4.8 Statistics for top 30 Spearman correlation coefficients 

Models Sr_Mean Sr_Max Number of coefficients> 0.3 

RSD 0.34378 0.3566 237 

AE+RSD 0.29834 0.4025 10 

L1-AE+RSD 0.30627 0.3642 14 

L2-AE+RSD 0.30180 0.3861 16 

DAE+RSD 0.29508 0.3254 9 

 

Table 4.6 shows that the features learned by one hidden layer autoencoder provide 

better performance for various prediction models. This can be attributed to correlation 
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coefficients also which is evident from Table 4.7 and Table 4.8. The interpretation of the 

correlation coefficients can be done in a similar way as done for section 4.1. We can 

clearly see that we have a comparable ratio of critical or useful features with autoencoder 

but in a low dimensional space which explains why we have better prediction 

performance with autoencoder learnt features.  

So, it is evident from the above experiments that the features learned by 

autoencoder provide better prediction performance for most of the existing models. 

Another important conclusion is that learning features directly on the raw sensor dataset 

rather than extracting summary statistics provides better model performance since 

extracting statistics leads to losing the process information. So, we conclude from the 

results that learning new features through autoencoders improves the prediction accuracy 

of various existing models. 
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 Conclusion and Future Work CHAPTER 5 
 

In this thesis, we proposed new deep learning based VM models for semiconductor 

manufacturing process which is effectively able to learn a better representation of inputs 

in a low dimensional feature space and improves the performance of various prediction 

models. The proposed model highlights the importance of learning better features by 

using neural network models which enhances the performance of existing VM modeling 

techniques. We used a 3 cross-validation for hyper-parameter tuning to get the best 

performing parameters for prediction models. To verify the effectiveness of our proposed 

VM model, we compared it with existing methods using real-life plasma-etching sensor 

data. Our experimental results have shown that the proposed VM model provides better 

results than existing VM techniques. 

In future, we may develop our own customized autoencoder for this complex 

regression task. An autoencoder which can be specifically suited for learning better 

representations of functional data from raw sensor signals can be highly effective.  One 

more issue which can be addressed in the future is increasing the robustness of our 

prediction model. VM modeling requires a method which along with estimating non-

linear functional mapping between predictor and response variable also deals with 

outliers. The robust kernel-based regression method proposed by Hwang et al. (2015) can 

prove to be effective in VM applications for the reason stated above.  

This thesis is the first of its kind approach in adopting the modern neural network 

models to learn better features for regression task of VM modeling.  There is also a good 

amount of future research scope in adopting this proposed model and improving the 

performance of VM models by designing a new custom autoencoder as stated above 
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which can be suitable for functional data coming from the monitoring sensors. Further 

research with our proposed model can prove to be very effective for VM applications in 

semiconductor manufacturing and can make the process highly efficient.  
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