
 

 

 

 

 

 

 

©2018 

Arielle J. Catalano 

ALL RIGHTS RESERVED 

 



STORM SURGE-PRODUCING EXTRATROPICAL CYLONES IN THE 

NORTHEASTERN UNITED STATES IN OBSERVATIONS AND MODELS 

By 

ARIELLE J. CATALANO 

A dissertation submitted to the 

School of Graduate Studies 

Rutgers, The State University of New Jersey 

In partial fulfillment of the requirement 

For the degree of 

Doctor of Philosophy 

Graduate Program in Atmospheric Science 

Written under the direction of 

Anthony J. Broccoli 

And approved by 

_________________________ 

_________________________ 

_________________________ 

_________________________ 

 

New Brunswick, New Jersey 

October, 2018 

 

 



	  

	  ii	  

ABSTRACT OF THE DISSERTATION 

 
Storm Surge-Producing Extratropical Cyclones in the Northeastern United States in 

Observations and Models 
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Dissertation Director: 

Anthony J. Broccoli 

 

 

In the northeastern United States, extratropical cyclones (ETCs) are associated 

with the majority of the largest storm surges, which significantly impact coastal regions. 

We characterize the synoptic evolution of the largest ETC-driven surge events in 

observations and a long record from a coupled climate model representing recent climate 

conditions. A k-means cluster analysis is applied to the top 100 observed surge-producing 

ETCs at select locations (Sewells Point, Virginia; The Battery, New York; and Boston, 

Massachusetts) to group similar circulation features. These distinct patterns suggest that 

the largest surges are generated when slowly propagating ETCs encounter a strong 

anticyclone, which produces a tighter pressure gradient and longer duration of onshore 

winds. Multiple clusters feature a slower-than-average storm and a strong anticyclone, 

indicating that various circulation scenarios with these features can produce a large surge. 

This favorable environment is influenced by El Niño conditions, and maximum surge 
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occurs preferentially during the positive phase of PNA and the negative phases of 

AO/NAO. 

Return periods of the largest ETC-driven surge events are difficult to estimate 

owing to the short duration of high-quality observational datasets, so a long simulation 

from a coupled model, GFDL FLOR, is employed. Distributions of meteorological 

quantities that influence surge height (i.e. central pressure and surface winds) indicate 

that the longer integration contains a greater number of extreme ETCs.  An exceedance 

probability risk assessment of the strongest impacts demonstrates a consistent 

underestimation in historical-length records compared to return levels estimated from the 

full FLOR simulation. This indicates that if the underlying distributions of observed 

metrics are similar to those of the 1505-year record, the actual frequency of extreme 

events is being underestimated. 

Comparisons of cyclone statistics between FLOR and a reanalysis product, CFSR, 

exhibit biases in quantitative measures of storm surge and intensity, but characteristics of 

the distributions of these quantities are representative of features of a climate constrained 

by observations.  A k-means cluster analysis of the synoptic evolution of storm surge 

events estimated using a regression-based index displays similar circulation features to 

clusters of observed events.  At The Battery and Sewells Point, clusters containing the 

majority of the largest estimated storm surges exhibit a strong anticyclone and a slow-

moving cyclone.  Discrepancies at Boston are related to approximations made by the 

regression index applied to identify and arrange clustered meteorological patterns. 
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CHAPTER 1 

Introduction and Review of Literature 

 

1.1. Motivation 

 

Severe coastal storms devastate communities around the world with significant 

socioeconomic impacts in densely populated areas.  These storms possess strong winds 

and heavy precipitation, which cause widespread flooding, property damage, and loss of 

life.  Increasing resilience of coastal communities and mitigating flood risks are ongoing 

efforts.  The North Atlantic Coast Comprehensive Study established a tiered management 

framework for vulnerable communities, which includes collaboration among 

shareholders, governing entities, and the public (USACE 2015).  Continued research 

informs these decision-making processes by increasing our understanding of coastal risks 

since uncertainty remains.  In October 2012, Hurricane Sandy caused an estimated $65 

billion in damages and losses, driving research to examine exposure to severe and 

devastating impacts including inundation.  Previous work has assessed flood risk (e.g. 

Lin et al. 2010; Lin et al. 2012; Reed et al. 2015; Orton et al. 2016) and storm track 

variability (Booth et al. 2015; Booth et al. 2016), which affects the frequency of coastal 

impacts.  However, few studies have investigated the physical mechanisms of inundation 

events such as atmospheric circulation features. 

 

Although Hurricane Sandy generated the largest storm surge (and storm tide) in recorded 

history at multiple tide gauges in the northeastern United States, the majority of large 
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surge events in this region are associated with extratropical cyclones (ETCs) rather than 

tropical systems.  Storm surge is measured as the difference between the overall water 

level and the astronomical tide, assuming nonlinear interactions are insignificant (Zhang 

et al. 2000).  ETCs have generated 88 of the top 100 storm surge events at The Battery in 

New York City, and 91 of the 100 largest at Boston, Massachusetts (Table 1.1).  Some of 

the most damaging surge-producing ETCs exhibit low central pressures or exceptionally 

strong low-level winds, the duration and direction of which drive ocean water inland 

(Bernhardt and DeGaetano 2012).  For example, the Storm of the Century in March 1993	  

experienced explosive cyclogenesis and deepened rapidly at a rate of over 1 hPa per hour 

at an unusually low latitude (Kocin et al. 1995). This storm was associated with the sixth 

largest ETC-driven storm surge recorded at The Battery, New York (1920–2010) and the 

eleventh largest at Boston, Massachusetts (1921–2010), with wind gusts exceeding 

hurricane force at Boston and Fire Island, NY.  Another notable ETC-driven storm surge 

event was the Great Appalachian Storm of November 1950 (Smith 1950), which 

produced gusts over 140 mph and up to 50 inches of snowfall in the mid-Atlantic region 

of the United States.  The storm surge generated was only 20% smaller than Hurricane 

Sandy (13% smaller after removing the trend in sea level).  However, the 1950 storm had 

a lower overall water level and caused less damage than Sandy because the greatest surge 

occurred close to low tide.  The timing of this event in the tidal cycle was a matter of 

chance, and thus there is the possibility that ETCs could produce coastal impacts of 

similar magnitude to those produced by Hurricane Sandy.	  

 

1.2. Relationships with large-scale modes of climate variability 
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Important influences on storm and surge climatology in the northeastern United States 

include large-scale modes of climate variability (Grise et al. 2013).  There has been 

extensive research on the impacts of El Niño Southern Oscillation (ENSO) on ETCs and 

associated surge.  ENSO warm events are positively correlated with storm surge > 0.3 m 

during the cool season owing to the meridional displacement of the subtropical jet (Sweet 

and Zervas 2011), which enhances the East Coast storm track (Eichler and Higgins 2006).  

Colle et al. (2010) also found an influence of ENSO on observed climatological 

frequency of minor- and moderate-surge events at The Battery.  Other large-scale 

teleconnection patterns may influence surge frequency, such as the Pacific-North 

American (PNA) pattern, Arctic Oscillation (AO), and North Atlantic Oscillation (NAO).  

The positive phase of PNA exhibits below-average geopotential heights over the eastern 

United States and is associated with an increase in deep-cyclone activity (Gulev et al. 

2001).  During a negative AO (also referred to as the Northern Hemisphere annular 

mode), there is a higher frequency of blocking days and frozen-precipitation events in the 

North Atlantic Ocean (Thompson and Wallace 2001).  Negative NAO conditions are also 

associated with blocking episodes (Shabbar et al. 2001) as well as increased ETC 

frequency in the western North Atlantic (Teng et al. 2008) and greater storm-tide 

variability in New York Harbor (Talke et al. 2014). 

 

1.3. Limitations of historical datasets 

 

Understanding the climatology of ETC-driven surge events is important for evaluating 
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the future risk of inundation events, particularly as sea level rise continues.  However, 

quantifying the risks of high-impact ETCs remains difficult, as examples of such storms 

are rare in the observational record.  High-quality observations for synoptic-scale events 

that incorporate satellite data are available extending back to the onset of the modern 

reanalysis era (1979), and the longest tide gauge records span approximately 100 years.  

Therefore, it is highly unlikely that the most extreme ETC-driven storm surge events that 

are physically possible are captured in either of these records.   

 

One approach to address the limitations of observational data is to develop a larger 

sample of ETCs through statistical modeling.  Numerous models have been developed for 

tropical cyclone (TC) hazard assessments (Emanuel et al. 2006; Hall and Yonekura 2013).  

Lin et al. (2012) analyzed storm surge risk in New York City using a statistical-

deterministic model to generate a large sample of TCs.  The larger population of TCs 

included surge-producing storms that do not appear in observations but may be possible, 

dubbed “grey swans” (Lin and Emanuel 2016).  To examine the risks posed by ETCs, 

Hall and Booth (2017) developed a statistical-stochastic model trained on historical ETC 

tracks (1979–2015) to estimate rates of severe ETCs in North America, which included 

grey-swan-type events.  However, the model does not simulate wind fields, so impacts 

associated with severe winds such as storm surge cannot be considered.  Large samples 

of ETCs that also include meteorological information for hazard assessment can be 

obtained from three-dimensional models of the atmospheric general circulation.  A long 

(i.e. multi-century) simulation of current climate conditions from a coupled atmosphere-

ocean general circulation model would provide a better opportunity to sample the tail of 
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the distribution of high-impact ETC characteristics including severe winds and low 

central pressures.  A longer record also enables an assessment of circulation features 

during storm surge events that are more extreme than previously observed. 

 

1.4 Scientific objectives 

 

This body of work addresses three principal questions: 

 

1) What are the similarities in the synoptic evolution of ETCs that generated a 

large storm surge in the northeastern United States, and how do large-scale 

atmospheric circulation patterns influence these events? 

 

We examine the local, regional, and large-scale atmospheric circulation accompanying 

the 100 largest ETC-driven surge events at three locations along the northeast coast of the 

United States: Sewells Point (Norfolk), Virginia; The Battery (New York), New York; 

and Boston, Massachusetts.  A statistical analysis of the conditional probability of surge 

given the large-scale atmospheric circulation is also explored.  By comparing circulation 

patterns of surge-producing ETCs and the conditions under which they occur, we provide 

a comprehensive evaluation of atmospheric properties associated with the largest 

observed storm surge events. 

 

2) What is the potential value of a physically-based sample of high-impact ETCs 

that is much larger than can be obtained from historical records? 
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The utility of using a long integration from a general circulation model to analyze the 

most extreme impacts associated with ETCs is demonstrated.  In exceedance probability 

estimation of extremes at The Battery, uncertainty is reduced using a longer record rather 

than records of historical-length.  Circulation features associated with a select set of 

unique high-impact events are also examined to reveal types of ETCs that have not been 

observed but are physically possible.  The examination of a larger sample of high-impact 

ETCs indicates the potential for more extreme cyclones as well as a greater number of 

intense storms than have been previously observed, although model biases preclude a 

quantitative assessment. 

 

3) How does a regression model developed to identify ETC-driven storm surge 

events in the northeastern United States perform on a general circulation 

model? 

 

Modified regression-based storm surge indices are applied at Sewells Point, The Battery, 

and Boston to estimate simulated storm surge.  Local circulation patterns associated with 

the largest storm surge index events are compared with features of clustered observed 

surge events.  We also employ a coupled circulation-wave model to evaluate select cases 

of large surge index events.  This work supports the efficiency of using a regression 

model to identify potential storm surge events in a long record, although a circulation-

wave model may provide more accurate surge estimates.  
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CHAPTER 2 

Synoptic Characteristics of Surge-Producing Extratropical Cyclones along the Northeast 

Coast of the United States 

 

2.1. Introduction 

 

We expand on previous work by analyzing aspects of the large-scale atmospheric 

circulation associated with surge-producing ETCs.  We use observations collected from 

tide gauges to obtain the highest storm surge levels at our chosen locations, and we use a 

reanalysis product to analyze accompanying atmospheric circulation for these events.  

First, local circulation patterns are clustered to observe similarities among development 

of large surge events at each location.  Second, we explore relationships of surge events 

with modes of climate variability, which influence regional circulation features.  Third, a 

statistical analysis of the conditional probability of surge given the large-scale 

atmospheric circulation is explored.  Our focus will be on storm surge events that occur 

in the northeastern United States, although the method could be applied elsewhere.  The 

material in this chapter is primarily from the Journal of Applied Meteorology and 

Climatology article “Synoptic Characteristics of Surge-Producing Extratropical Cyclones 

along the Northeast Coast of the United States” by Arielle J. Catalano and Anthony J. 

Broccoli.  Hereinafter, this article will be referred to as CB18. 

 

2.2. Data and methodology 
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The largest surge events produced by ETCs were selected using NOAA tide gauge 

records (http://tidesandcurrents.noaa.gov) for three locations: Sewells Point, Virginia; 

The Battery, New York; and Boston, Massachusetts.  These locations were chosen for the 

length and completeness of records (1927–present, 1920–present, and 1921–present, 

respectively).  Mean sea level trends were removed from the observed water level, with 

detrending centered on the 19-year epoch 1983–2001, a datum to which gauge 

measurements are referenced.  Surge residuals were calculated by then subtracting the 

astronomical tide, and the 100 largest surges associated with ETCs were retained.  Large 

surge residuals are designated as surge events whether or not a well-defined cyclone is 

present, although for the vast majority of cases there is a storm in the vicinity.  Storms are 

classified as tropical or extratropical based on their properties at the time of maximum 

surge (verified using synoptic weather maps and the National Hurricane Center archive).  

Only separate storm systems are considered – if the same ETC or circulation pattern 

produces multiple large surges, duplicate values are discarded.  Also, hybrid systems that 

were either in transition or considered tropical up to 18 hours prior to a large storm surge 

(such as Hurricane Sandy) are removed from this study.  Note that raw tide gauge records 

sometimes contain spurious data due to human or technical errors.  We manually remove 

these portions at each location before detrending and performing additional analysis. 

 

To investigate the historical climatology of surge-producing ETCs, we require a 

relatively long dataset with high temporal and spatial resolution and homogeneity.  Thus, 

we utilize the latest ECMWF atmospheric reanalysis of the twentieth century (ERA-20C), 

which has a horizontal resolution of approximately 125 km, 91 vertical levels, and output 
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spanning 1900–2010 (Poli et al. 2016), sampled at 6-h intervals (0000, 0600, 1200, 1800 

UTC) for the purpose of this study.  ERA-20C was chosen rather than the twentieth-

century reanalysis produced by NOAA/CIRES because it has greater spatial resolution.  

Comparisons between CIRES and ERA-20C indicate strong similarities in the areas of 

interest, suggesting that our results are not sensitive to the choice of ERA-20C.  Tide 

gauge data are hourly, so the closest 6-hourly snapshot previous to the time of maximum 

surge for a given storm is designated as t = 0.  This choice is based on previous work that 

has shown that the maximum wind speed occurs prior to the peak of maximum surge 

(Colle et al. 2010).  For consistency with the temporal duration of the ERA-20C dataset, 

surge events were selected for the period from the beginning of the tide gauge records 

through 2010.  The 100 largest ETC surge events at Sewells Point, The Battery, and 

Boston range from 0.731 to 1.657 m, 0.896 to 2.400 m, and 0.800 to 1.912 m respectively. 

The 10 largest surge-producing ETCs at each location are listed in Table 2.1. 

 

We employ k-means cluster analysis (MacQueen 1967) to explore natural subdivisions of 

the 100 largest surge events.  K-means has been widely used in atmospheric science to 

analyze features such as storm tracks (Blender et al. 1997, Xia et al. 2013), seasonal wind 

events (Leckebusch et al. 2008, Burlando 2009, Clifton and Lundquist 2012), and 

associated atmospheric quantities such as geopotential height (Michelangeli et al. 1995), 

temperature, and precipitation (Whitfield et al. 2004). 

 

We cluster sea level pressure (SLP) data because of their utility in depicting the location 

and intensity of ETCs.  Because we are interested in the synoptic evolution of each ETC 
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surge event, we cluster the combined set of SLP fields at t = 0, t = –6 h, t = –12 h, and t = 

–18 h.  We find our chosen time period of 18 h preceding a storm surge to be suitable for 

capturing cyclogenesis and the duration of low-level flow inducing the surge (particularly 

for slower storms with a larger fetch).  The spatial domain used for clustering surrounds 

the East Coast and includes almost 650 grid points (Fig. 2.1).  The domain is designed to 

include local atmospheric circulation essential to storm surge development and exclude 

any extraneous features.  Cluster analysis demonstrates some sensitivity to variations in 

the spatial region, but resulting cluster centroids based on alternate domains are very 

similar to those displayed in this paper. 

 

SLP values at each grid point from all four 6-hourly snapshots are combined into a vector 

x for each surge event, creating an array of data for k-means cluster analysis.  The 

algorithm partitions vectors into K clusters by minimizing the sum S over all clusters of 

the Euclidean distance of each vector x from its respective cluster centroid m: 

𝑆 =    (𝑥!,! −𝑚!)!
!

!!!

!

!!!

,                                                                                        (1) 

 

where N is the length of vector x   (which includes grid points from four SLP maps 

resulting in approximately 2600 elements). 

 

Several classification schemes of ideal cluster separation such as silhouette values and 

complete-linkage hierarchical clustering were considered in our subjective choice of 

cluster number (Kaufman and Rousseeuw 1990).  These visualizations of the optimal 

cluster number use the Euclidean distance as a metric of dissimilarity, and are therefore 
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subject to further examination depending on the number of observations and purpose of 

the analysis.  In our study, these choices were made to avoid having clusters with too few 

storms (subjectively determined to be less than four).  The optimal number of clusters for 

the 100 largest surge events at Sewells Point was chosen to be six, whereas seven clusters 

were chosen for The Battery and Boston.  A visual inspection of individual surge events 

assigned to sparsely populated clusters (e.g. cluster 4 at Sewells Point) suggests that 

nearly all events are well represented by the centroid pattern and amplitude.  One 

limitation is that the average pattern may not represent the synoptic evolution of a large 

surge event with unique characteristics such as unusual propagation or speed.  One 

example is the “Perfect Storm” of October 1991, which was a late-season tropical 

cyclone in the North Atlantic Ocean that was absorbed by an ETC and propagated 

westward toward the northeastern coast of the United States.  This unusual track coupled 

with a well-developed and intense cyclone produced a major storm surge at both Boston 

and The Battery (third and 10th highest respectively).  Although a few ETCs have 

distinct characteristics that differentiate them from other cyclones, particularly in 

synoptic evolution and propagation, there are similarities among surge-producing ETCs 

that a cluster analysis reveals. 

 

The relationship between surge-producing ETCs and large-scale atmospheric circulation 

is explored.  We analyze upper-level circulation and anomalies of geopotential height 

(GPH) at 500 hPa during maximum surge events.  Anomalies are calculated by removing 

the 5-day running mean of the daily climatological average over the entire record.  Surge-

producing ETC events are also examined in the context of large-scale modes of climate 
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variability including PNA, NAO, AO, and ENSO.  Time-series of indices of these modes 

of variability are available from the NOAA Climate Prediction Center and the KNMI 

Climate Explorer. 

 

2.3. Cluster analysis 

 

Results from the cluster analysis for the 6-hourly evolution of surge-producing ETCs are 

displayed in Fig. 2.2 ordered from highest to lowest associated median surge (see Fig. 

2.4).  (Recall that SLP fields at t = 0, t = –6 h, t = –12 h, and t = –18 h were used to 

determine the clusters even though only the t = 0 field for the cluster centroid is plotted.)  

Upper-air circulation influences the development and trajectory of surge-producing ETCs, 

and therefore GPH fields for all clusters are presented in Fig. 2.3.  There are a variety of 

attributes across all clusters.  The average storm track may propagate along the east coast, 

offshore, or from the Midwest, and some centroids exhibit a weaker cyclone that 

encounters a strong anticyclone as it progresses.  At each location, a few clusters may 

appear similar, but there are subtle differences. 

 

At The Battery, for example, clusters 3, 5, and 7 depict a storm track with secondary 

cyclogenesis, and the isobars tend to be stretched out along the northwest-southeast axis 

(Fig. 2.2).  There is a stronger anticyclone coupled with a weaker cyclone originating 

near the Gulf Coast in cluster 5, however, whereas cluster 7 exhibits pressure systems 

with the opposite intensity and the primary cyclone is near the Great Lakes at t = –18.  

Cluster 3 has a track that is similar to that of cluster 5, although the average cyclone is 
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stronger at t =0.  Comparison of these three clusters at 500 hPa indicates that the GPH 

anomalies and negative tilt are strongest for the deeper storm (cluster 7) and the GPH 

field has a longer wavelength than in the other two clusters (Fig. 2.3).  Cluster 5 has the 

shortest wavelength since a second trough is present around 48°W.  The positive and 

negative GPH anomalies have higher amplitudes in cluster 3 than in cluster 5. 

 

Other clusters at The Battery are more diverse.  Cluster 6 depicts an average storm with a 

center jump at t = –6 and no anticyclone present to the north, whereas cluster 2 is a 

moderate cyclone with an East Coast storm track.  Clusters 1 and 4 are both offshore 

systems, but the cyclone in cluster 4 is stronger and the anticyclone is weaker.  The 

strength of these features is evident in GPH anomalies at 500 hPa (Fig. 2.3). 

 

A similar analysis of cluster features can be conducted at the other locations.  At Sewells 

Point, clusters 1, 2, 3, and 6 feature the average storm advancing from the southwest to 

Virginia along the East Coast, although with anticyclones of varying intensity and 

location (Fig. 2.2).  For example, cluster 1 features a strong anticyclone over Maine, 

whereas cluster 2 has a weaker anticyclone over the North Atlantic.  GPH anomalies also 

differ in strength and location in these clusters, and the wavelength of the GPH field is 

shorter in cluster 3 than in cluster 2 (Fig. 2.3).  The shape of the average storm in each 

centroid has a west-southwest–east-northeast orientation, whereas at Boston, systems are 

more symmetrical.  ETCs at Boston are also generally better developed than at Sewells 

Point before and at the time of maximum surge. 
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Table 2.2 lists the average speed of clustered storms, calculated using 6-hourly storm 

track centers in the 18 h prior to maximum surge.  A cyclone-detection algorithm 

developed at the Geophysical Fluid Dynamics Laboratory identifies cyclone centers using 

local minimum SLP, and centers are combined into a track through a trajectory analysis 

(Zhang et al. 2017; Zhao et al. 2009).  The criteria for cyclone detection is as follows: 

• The requirement of warm core structure is deactivated. 

• The minimum lifetime requirement is set to 24 h. 

• A SLP minimum with at least one closed 4-hPa contour is required. 

 

The 6-hourly propagation speed is calculated using the difference between a cyclone’s 

current position (xt=0) and previous position (xt= –6) measured along great circles.  For the 

period 1920–2010, the average propagation speed for all cyclone tracks during the cold 

season (November–April) in a region surrounding the three locations (30º–40ºN, 82º–

64ºW) is 13.8 m s–1. 

 

For Sewells Point, all clusters have speeds slower than the average speed of all storm 

tracks (Table 2.2).  Cluster 1 has the slowest average ETC propagation speed, with the 

centroid exhibiting a strong anticyclone (Fig. 2.2).  Storms propagating more quickly 

near The Battery originate in the Midwest at t = –18 (clusters 3, and 7), and slow-moving 

systems remain offshore and are also inhibited by a strong anticyclone (clusters 1 and 4).  

In Boston, strong anticyclones are associated with a stationary cyclone offshore (clusters 

1, 2, and 3), whereas faster-than-average storms travel northeastward along the coast 

(clusters 4, 5, and 6). 
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The largest surge events are divided among the clusters, although some clusters contain 

more of the higher surges (Fig. 2.4).  At Sewells Point, the cluster with the highest 

median surge (Fig. 2.4a) consists of a strong anticyclone and a slowly progressing 

cyclone (Table 2.2) that developed within 48 h of the maximum surge (t = 0).  Cluster 6 

has the lowest median surge, and all the surge events in cluster 5 are below 1 m.  The two 

highest median surge values at The Battery (Fig. 2.4b) belong to clusters in which over 

75% of the surge events are above 1 m.  These centroids exhibit a strong anticyclone and 

a slow-moving cyclone with an East Coast storm track originating off the southeastern 

coast at t = –18 [a common storm track for large surge events also observed by Colle et al. 

(2010)].  The top three clusters at Boston also contain a system that is propagating more 

slowly than average (Fig. 2.4c, Table 2.2). 

 

To focus on the most impactful events, ETCs associated with the five largest surges at 

each location are analyzed (Fig. 2.5).  These surge events are associated with multiple 

clusters at each location, yet they are well represented by the associated centroid pattern 

(Fig. 2.2).  The strongest surge-producing cyclones occur at Boston, where all five ETCs 

deepen to an average of 984.4 hPa by t = 0.  The average central pressure of the top five 

storms at The Battery is 987.6 hPa, while at Sewells Point the average is 990.2 hPa.  All 

but one of the surge events encounter a strong surface anticyclone to the north with 

positive GPH anomalies at 500 hPa.  Also, these same ETCs propagate more slowly than 

average in the 18 h prior to maximum surge, with speeds ranging from 3.5 to 13.3 m s–1.  

This result agrees with our cluster analysis, which indicates that centroids of clusters with 
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the highest surge events feature a slow-moving system to the south of a strong 

anticyclone.  The similarity of the characteristics of the five largest surge events to those 

of the cluster centroids suggests that the cluster analysis is successfully identifying 

patterns associated with large surge events. 

 

2.4. Teleconnection patterns 

 

Teleconnection patterns can affect the regional circulation associated with surge events. 

The influence of large-scale modes of climate variability on surge events is assessed by 

examining the frequency distributions of AO, NAO, PNA, and ENSO index values for 

the top 100 surge events at each location. Daily indices for AO, NAO, and PNA are 

obtained from the NOAA Climate Prediction Center (at 

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/). These time series extend back 

to 1950, so only the events occurring from 1950 to 2010 are included in this analysis 

(reducing the number of events to ~70 at each location).  A monthly Niño-3.4 Index for 

ENSO spanning 1920 – present is available from the KNMI Climate Explorer.  Niño-3.4 

is calculated using SST anomalies over a region of the Pacific Ocean, and the index is 

commonly used to monitor and analyze ENSO conditions (Trenberth and Stepaniak 

2001; Chen et al. 2004).   

 

The majority of surge events at The Battery and at Boston occur during the negative 

phase of the AO, whereas the relationship between surge events and the AO at Sewells 

Point is unclear (Fig. 2.6a).  The influence of the AO on surge events increases from 
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south to north, with nearly 75% of surge events at Boston occurring during a negative 

phase of AO.  The relationship with NAO is similar although not as pronounced, and 

there is a positive shift in the frequency distribution at Sewells Point (Fig. 2.6b).  The 

median PNA value is positive at all three locations (Fig. 2.6c), indicating that top 100 

surge events are more likely when the PNA is in its positive phase, which is associated 

with an amplified trough along the East Coast.  The negative shift in AO and NAO 

frequency distributions during surge events extends to antecedent conditions for 

approximately 10 days, and the positive shift in PNA distributions persists for 5 days (not 

shown).  This persistence is generally consistent with the time scales of AO, NAO, and 

PNA as determined by Feldstein (2000). 

 

The statistical significance of these shifts in frequency distributions is analyzed using two 

methods: a two-tailed Student’s t-test with a hypothesized population mean of index 

values equal to zero, and a bootstrap analysis in which index values are randomly 

sampled N times with replacement and averaged (where N is the total remaining indices 

at each location for 1950–2010).  This process is repeated 1,000 times to generate a 

distribution of 1,000 sample means and a 95% confidence interval is determined as the 

2.5th and 97.5th percentiles of this distribution.  If a confidence interval does not include 

zero, the shift in a frequency distribution is deemed significant at the 5% level. 

 

Significant shifts in the frequency distributions of some teleconnection indices are 

consistently identified by both bootstrap and t-test results.  The relationship between 

surge events and AO is statistically significant at the 5% level at Boston and The Battery 
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but not at Sewells Point.  Statistically significant relationships with NAO and PNA are 

similarly confined to Boston and The Battery.  The negative phases of NAO and AO are 

generally associated with anomalous positive GPH over southeastern Canada, which are 

evident in the majority of clusters (Fig. 2.3) and the top five storms (Fig. 2.5) at Boston 

and The Battery. 

 

Using a statistical–stochastic model based on reanalysis cyclone tracks, Hall and Booth 

(2017) determined that a negative NAO is associated with slower tracks, which supports 

our cluster-analysis results that centroids associated with the highest median surges 

exhibit slow-moving ETCs.  Hall and Booth (2017) also observe that positive NAO is 

associated with enhanced rate of ETCs in the mid-Atlantic region.  However, their 

approach differs because they analyze extreme ETCs (a central SLP anomaly of < –50 

hPa), whereas this work focuses on surge-producing ETCs, which have a range of 

intensities.  A more extensive analysis of track properties for surge-producing ETCs 

would provide a better comparison with Hall and Booth (2017), but it is outside the scope 

of this study. 

 

ENSO, a large-scale pattern associated with variations in SST in the tropical Pacific 

Ocean, can influence atmospheric circulation in the North Atlantic (Sweet and Zervas 

2011).  Both the two-tailed t-test and bootstrap method reveal significance at the 5% level 

for the positive shifts in ENSO distributions at Boston and Sewells Point at t = 0 (Fig. 

2.6d).  This result suggests that strong surge events at these locations are more likely 

during the positive phase of ENSO.  The relationship between El Niño and large storm 
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surge may be linked to a southward shift in the subtropical jet over the northeastern 

United States, which increases storm activity along the East Coast (Sweet and Zervas 

2011; Eichler and Higgins 2006).  Hall and Booth (2017) also observe enhanced zonal 

propagation during ENSO, but they also observed a reduction in extreme ETC formation 

in the Northeast. 

 

2.5. Conditional probabilities 

 

In this section, we investigate the probabilities of substantial surge events conditioned 

upon different local and large-scale atmospheric circulation patterns as defined by the k-

means cluster analysis and normalized teleconnection indices.  To remove the influence 

of tropical cyclones, only cold season (November–April) events are considered.  A small 

number of late-season tropical cyclones may remain after this seasonal filtering, but 

rigorous event-specific screening by manual evaluation of synoptic maps is impractical 

[e.g., 132,860 maps (four maps per day ×365 days per year × 91 years in the longest tide 

gauge record)]. 

 

To understand the influence of local circulation patterns, we calculate the probability of a 

large surge (≥1 m), a medium surge (≥0.5 m), and a positive surge (≥0 m) occurring for 

cyclones that most closely resemble a given cluster pattern (Table 2.3).  Using all cold-

season 6-hourly SLP data corresponding to the period of available tide gauge data, 

combined SLP maps (at t = 0, t = –6 h, t = –12 h, and t = –18 h) are assigned to one of 

the previously determined clusters (Fig. 2.2) that they most closely resemble based on the 
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smallest Euclidean distance from each cluster's centroid.  Note that if the distance to the 

centroid is greater than the maximum distance calculated for previously clustered ETCs 

(Fig. 2.2), the four-panel SLP map is not assigned to any cluster.  The number of 

unassigned events is two to three times the size of the collection assigned to previously 

determined clusters, and probabilities of large surge events are substantially lower (i.e. 

one order of magnitude).  These new collections of assigned events, which are based on 

all possible cold-season SLP patterns, regardless of whether there is a cyclone present, 

are designated as “superclusters.”  At Sewells Point, the probability of a large or medium 

surge is greatest for superclusters 1, 2, and 4.  These corresponding centroids to which 

surge values were assigned depict some of the slowest progressing systems for all 

centroids (Fig. 2.2).  At The Battery, the corresponding centroids of the superclusters 

with the highest probabilities of a positive, medium, or large surge also exhibit a slow-

moving cyclone as well as a strong anticyclone (Table 2.3; Fig. 2.2).  In a similar way, 

centroids at Boston with a slower-than-average cyclone and strong anticyclone have the 

greatest probabilities of large or medium surges (Table 2.3; Fig. 2.2).  Overall, the 

probability of a positive surge event corresponding to a particular supercluster ranges 

from 73% to 100% across all three locations.  

 

We also explore the relative risk of a large (≥ 1 m) surge during negative and positive 

phases of PNA, NAO, and AO in the cold season (Table 2.4).  Normalized index values 

are binned into four intervals {strong negative (≤ –1), weak negative (–1,0], weak 

positive (0,1], and strong positive (>1)}, and associated daily maximum surge values are 

calculated (1950–2010).  Relative risk is defined as the ratio of the probability of surge 
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events ≥ 1 m in each index interval to the overall probability of surge events of that 

magnitude.  For example, the risk of a surge exceeding 1 m at The Battery is increased by 

a factor of 1.86 for AO indices ≤ –1.  An enhanced risk (>2.00) occurs during the strong 

negative phase of NAO at all three locations and during the strong negative phase of AO 

at Sewells Point and Boston.  There is also an enhanced risk of a large surge at Sewells 

Point for PNA indices in the strong positive interval.  Conversely, there is a substantial 

reduction in the relative risk (<0.50) of a large surge for NAO and AO indices in the 

strong positive interval at all three locations and for PNA indices in the strong negative 

interval at Sewells Point. 

 

For the relative risk of a large surge during phases of ENSO, daily maximum surge 

values are assigned to corresponding monthly indices of Niño-3.4.  At all three locations, 

the relative risk is greatest when Niño-3.4 index values are > 1, and risk decreases at 

Boston and The Battery as indices become more negative (Table 2.4). 

 

2.6. Discussion 

 

A set of distinct, local circulation patterns associated with the 100 largest surge-

producing ETCs in the northeastern United States are identified using the k-means 

clustering algorithm.  These events are influenced by a variety of synoptic patterns, 

including intense cyclones, secondary cyclogenesis, and strong pressure gradients 

associated with relatively weak cyclones coupled with strong anticyclones. Across all 

locations, average surge levels associated with clustered ETCs are largest for SLP 
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patterns that include a strong anticyclone to the north of a cyclone propagating more 

slowly than the average speed of 13.8 m s–1.  In addition, superclusters (created with all 

6-hourly SLP data for the cold season) that exhibit these features have the highest 

probability of experiencing a medium (≥0.5 m) or large (≥1 m) surge.  In a similar way, 

the majority of the largest five surge events at each location are deep cyclones to the 

south of a strong anticyclone.  The strength of these features persists at 500 hPa, where 

there are positive GPH anomalies overlying the anticyclone.  Conversely, clusters 

associated with the smallest average surge levels generally include fast-moving storms 

coupled with weaker anticyclones.  Approximately 93% of the top five surge-producing 

ETCs moved more slowly than average up to 18 h prior to maximum surge and 

experienced GPH anomalies at 500 hPa to the north of the storm. 

 

Large surge events occur preferentially during certain phases of large-scale atmospheric 

circulation patterns.  At Boston and The Battery, AO and NAO are more likely to be 

negative and PNA is more likely to be positive, with these relationships statistically 

significant at the 5% level.  Surge events are more likely to occur under El Niño 

conditions, with relationships statistically significant at the 5% level at Boston and 

Sewells Point.  Conditional probabilities of surge events also suggest that large surges are 

more common when teleconnection indices have a specific polarity.  At all three 

locations, the relative risk of a large surge event occurring is greatest for NAO and AO 

indices in the strong negative interval (≤ –1), and is smallest for positive indices. 

 

In attempting to quantify relationships between atmospheric circulation and storm surge 
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events with storm surge defined as the difference between storm tide and astronomical 

tide, there may be an implicit assumption that the magnitude of the storm surge depends 

only on the large-scale meteorological conditions.  There does exist a small, nonlinear 

interaction between astronomical tides and storm surge (Lin et al. 2012), which affects 

surge magnitude; storm surge may be larger for events occurring at low tide than for 

those occurring at high tide.  However, this nonlinearity may be minimal at locations 

along the East Coast (Zhang et al. 2000), especially when its magnitude is compared with 

the large surge heights involved in this study.  



	  

	  

24	  

CHAPTER 3 

High-Impact Extratropical Cyclones in a Long Coupled Climate Model Simulation 

 

3.1. Introduction 

 

This work is presented as a demonstration of the potential value of a physically-based 

sample of ETCs that is much larger than can be obtained from the observed record.  After 

a brief description of the model and methodology, results are divided into three sections.  

First, we establish the value of using a long integration to analyze the most extreme 

impacts associated with ETCs.  Second, we examine the circulation and propagation of 

notable high-impact ETCs.  Third, we evaluate the realism of simulated ETCs through 

comparisons with a reanalysis product. 

 

3.2. Data and methodology 

 

The long model simulation utilized is from the Forecast-Oriented Low Ocean Resolution 

(FLOR) version of the Geophysical Fluid Dynamics Laboratory (GFDL) CM2.5 model 

(Jia et al. 2015).  The simulation is 1,505 years in length, and incorporates radiative 

forcing and land-use conditions at 1990 levels to represent recent conditions.  FLOR 

differs from the original CM2.5 model (Delworth et al. 2012) by virtue of its lower ocean 

resolution, which reduces computational expense so that long (i.e., centuries to millennia) 

simulations can be run.  The atmospheric component of FLOR has a horizontal resolution 

of 50 km with 32 vertical levels, whereas the ocean component has a nominal 1° 
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horizontal resolution, as in the earlier CM2.1 model (Delworth et al. 2006).  Since we are 

most concerned with atmospheric characteristics of ETCs such as circulation patterns, the 

difference in ocean resolution should not substantially affect our results.  Seasonal 

hindcasts using FLOR indicate that the model is capable of reproducing geographic 

features important to ETC development such as large-scale mean flow as well as storm 

track variability (Yang et al. 2015). 

 

To detect and track high-impact ETCs, we use an algorithm developed at GFDL for TCs 

(Zhang et al. 2017; Zhao et al. 2009) and modified to include ETCs.  Criteria are outlined 

below: 

• Using 6-hourly, instantaneous gridded data, potential storm centers are identified 

from the local minimum SLP, which has been shown to produce similar results in 

the western Atlantic Ocean compared to trackers using vorticity (Colle et al. 

2013). 

• To qualify as a cyclone, the area of low SLP must possess at least one closed 

contour measured at a maximum of 1021 hPa. 

• The system must propagate at least 500 km and have a minimum lifetime of 24 h. 

 

Although other ETC trackers generally apply a minimum distance threshold of 1000 km, 

we set a 500-km limit.  The slowest average propagation speed for clustered ETC-driven 

surge events in the Northeast is 6.6 m s–1 (see Table 2.2).  For 6-hourly data and a 24 h 

minimum lifetime requirement, an ETC propagating at 6.6 m s–1 travels a distance of 

approximately 570 km.  Since this is an average speed, the minimum distance is lowered 
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to 500 km to include all potential high-impact cyclones.  In addition, previous studies 

have applied lifetime thresholds ranging from 12 h to 72 h (e.g., Gulev et al. 2001; Raible 

et al. 2008; Hoskins and Hodges 2002), but Colle et al. (2013) found 24 h to be optimal 

in the western North Atlantic.  We are most concerned with capturing all significant 

ETCs, some of which have a short duration, so including brief or weak storms will not 

affect our analysis.   

 

3.3. Utility of a long integration for estimating probabilities of extreme events 

 

In this section, the utility of the larger record of high-impact events in the FLOR 

simulation for estimating probabilities of extreme events is explored.  To estimate the 

return periods of the strongest events in the record, we employ the block maxima 

approach of the generalized extreme value (GEV) theorem (Coles 2001).  The most 

extreme value of the variable in question for each year of the simulation is selected, and a 

three-parameter GEV distribution is fitted to all 1,505 values using maximum likelihood 

estimation.  We calculate the annual exceedance probability curves and 95% confidence 

intervals for two measures of high-impact ETCs: minimum SLP and maximum wind 

speed.  Only values that occur during the cold season (November–April) are considered.  

Exceedance curves for these quantities are also computed for consecutive, non-

overlapping 31-year and 100-year portions of FLOR to quantify the spread of 10-year, 

50-year, 100-year, 200-year, and 500-year return levels as would be estimated from 

records of comparable length to reanalysis and tide-gauge datasets, respectively.     

 



	  

	  

27	  

For each year of the record, the lowest SLP values occurring within 500 km of The 

Battery measured along great circles are identified.  This region is chosen to contain 

average ETC positions from clustered SLP maps at the time of maximum storm surge at 

The Battery (see Fig. 2.2).  As a measure of intensity, annual minimum SLP values are 

subtracted from the global mean SLP, 1013.25 hPa; thus largest positive values 

correspond to the deepest ETCs.  The annual exceedance probability for intensity values 

is displayed in Fig. 3.1a.  The GEV curve corresponds well to the actual distribution of 

intensity values, although the largest 10-15 events generally lie above the best-fit 

estimate, suggesting that the distribution of actual extreme SLP values has a fatter tail.  

The median of GEV estimates determined from the 31-year subsamples of the FLOR 

simulation (hereafter FLOR31) for a 10-year return level is 52.0 hPa, which is close to 

the value of 52.7 hPa estimated from the full record.  However, at return periods beyond 

the length of the FLOR31 subsamples, uncertainty in return level estimation increases.  

For example, the range of FLOR31 estimates of 10-year return levels is 10.1 hPa, 

whereas the range increases to 28.0 hPa and 66.9 hPa for 100-year and 500-year return 

periods, respectively.  At a 100-year return period, GEV analysis estimates a 95% 

confidence range of 5.1 hPa for an intensity of 62.6 hPa in the full FLOR record. 

 

The narrowing of uncertainties in return levels determined from the longer record is not 

surprising, as the full record is longer than all the return periods examined (10, 50, 100, 

200, and 500 years).  But it is noteworthy that the FLOR31 estimates are systematically 

biased.  At each return period examined, the median value of the FLOR31 return level 

estimates is lower than the return level estimated from the full FLOR sample.  This 
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underestimation is likely due to the fat tail of the actual distribution.  The majority of 

FLOR31 subsamples do not include the most extreme events that lie above the fitted 

GEV distribution based on the full record.  Thus, an underestimation of the return levels 

in the FLOR31 subsamples relative to those determined from the full sample, which does 

contain these most extreme events, would be expected.  Similar behavior is found for the 

estimates derived from the 100-year FLOR subsample, so they will not be discussed 

further. 

 

The distribution of annual maximum wind speeds within 100 km of The Battery (Fig. 

3.1b) demonstrates similar behavior to that of SLP intensity values.  All the actual wind 

speed values are located within the 95% confidence limits of the GEV fit determined 

from the full FLOR sample, although the GEV curve underestimates the most extreme 

wind speeds in the record.  As observed for SLP extremes, the range of FLOR31 return 

levels for wind speed increases as the return period increases.  The difference between 

the highest and lowest 10-year return level is 3.0 m s–1, whereas the range for a 500-year 

return level is 15.8 m s–1.  The median FLOR31 return levels are again consistently lower 

than the full record GEV curve. 

 

A significant impact of ETCs near New York City is the storm surge produced.  Storm 

surge potential of simulated systems is evaluated by applying a surge index developed by 

Roberts et al. (2015) for The Battery.  This regression model assumes a linear 

combination of the local pressure perturbation of the sea level and surface wind stress 

components.  Persistence of strong winds can augment surge height (Bernhardt and 
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DeGaetano 2012), so the duration of wind stress over the region is included.  Since our 

model output is 6-hourly whereas the index was trained using 3-hourly data, we 

determined that a zonal integration period of 18 hours and a meridional period of 24 

hours for wind stress components yield the best results at The Battery.  The index is 

applied over a comparable region southeast of The Battery (see Fig. 3.4).  Hereafter, an 

estimated surge value is defined as a storm surge index (SSI). 

 

As in Figs. 3.1a and 3.1b, the spread of FLOR31 SSI values is wider at larger return 

periods, with a range over 2 m for subsample estimates of a 500-year event (Fig. 3.1c).  

Unlike wind and intensity distributions, the four largest SSI events lie along the GEV 

curve.  The previous 15 events lie above the fit, yet all SSI values are within the 95% 

confidence intervals.  Median FLOR31 SSI return levels are lower than actual levels 

estimated from the full record, although the underestimation is small compared to that of 

intensity and wind distributions.  This difference could be a result of an underprediction 

bias for the largest surge events using a regression-based index (Roberts et al. 2015). 

 

The systematic underestimation of return levels determined from the short subsamples 

may have important implications for estimating extreme events in the real climate system.  

If the frequency distribution of FLOR ETCs resembles the distribution of actual ETCs in 

the region of interest (i.e., has a fatter tail than would be expected from GEV theory), 

then it would be likely that the return levels of ETC-related extremes of SLP, wind speed, 

and storm surge estimated from the observed climate record would also be 

underestimated, with a concomitant overestimation of return periods. 
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3.4. Characteristics of selected extreme events 

 

We adopt the phrase “grey swans” (Lin and Emanuel 2016) to describe high-impact 

ETCs that have not been observed but are physically possible.  In this section, we 

describe some broad synoptic characteristics of several cold-season grey swans that 

would have high impacts at New York: the lowest pressure event within 500 km of The 

Battery, the highest wind event within 100 km of the same location, and the second 

largest SSI event from the full FLOR record.  (We cannot analyze the largest SSI event 

from the record because upper-level atmospheric circulation variables are unavailable for 

that portion of the FLOR simulation).  Instantaneous values of upper-level circulation 

variables were not available from any portion of the run.  Thus the analysis employs daily 

averages, which we determine to be sufficient in resolving general patterns and features. 

 

The lowest SLP value within 500 km of The Battery is associated with a March ETC in 

model year 1307 (Fig. 3.2).  The cyclone deepened explosively to 934.9 hPa, intensifying 

by more than 55 hPa over 24 hours.  This rapid development produced an intense 

pressure gradient immediately south of the ETC center.  The highest 10-m wind speeds, 

which are greater than hurricane-force, are located in this region of the storm.  An 

examination of upper-level circulation for select days prior to the time of lowest central 

pressure shows a steep 850-hPa temperature gradient in the region of cyclone 

intensification over the northeastern United States on March 9th, and a 500-hPa GPH 

cutoff low, which deepened by 240 m in 24 hours (Fig. 3.5).  The ETC formed from the 
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phasing of two troughs.  Ridging in Alaska and northwest Canada on March 4th was 

associated with a downstream shortwave trough in the northern branch of the 500-hPa 

flow.  This trough phased with a second trough in the southern branch propagating from 

California, and the resulting feature extended over the entire North American continent 

by March 6th. 

 

The highest wind event within 100 km of The Battery occurred in December of model 

year 996, and also developed from the phasing of a short-wave trough near California 

with a trough to the north (Fig. 3.5).  On December 2nd, a trough developed at 130°W 

with a jet streak to the west, which amplified deepening.  As the trough progressed 

eastward over the Rocky Mountains, it flattened a prevailing ridge and merged with the 

northern trough.  By December 7th, the surface cyclone propagated along the northeast 

coast, encountering an anticyclone over Maine beneath a ridge at 500 hPa.  These 

elements formed a strong pressure gradient, which produced nearly hurricane-force winds 

at 31.6 m s–1 (Fig. 3.3).  For over 36 hours, the prevailing 10-m wind direction near The 

Battery possessed an eastward component.  This orientation, strength, and location of 

winds generated an SSI of 1.56 m. 

 

The second largest SSI event at The Battery reached 2.09 m, occurring in November of 

model year 780.  This system featured greater than storm-force east-northeasterly winds 

six hours preceding the time of the maximum index value on November 3rd (Fig. 3.4).  

SSI values remained above 1 m during this period, which is the level at which a coastal 

flood warning is issued by the National Weather Service (Colle et al. 2010).  The SSI 
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event encountered a strong anticyclone to the north, producing a steep pressure gradient 

in the region and reducing the rate of propagation to a 12-hour average of 4.1 m s–1, 

which is slower than the lowest average speed for clustered ETC-driven surge events in 

the Northeast (CB18; 6.6 m s–1).  The strength of these features is evident at 500 hPa, 

where large GPH anomalies and a cutoff low are present over five days prior to the time 

of the maximum SSI value.  The development of a strong ridge in the northern branch of 

the flow leads to the formation of a persistent Rex (or “high-over-low”) block (Rex 1950) 

on November 1st (Fig. 3.5), with 500 hPa height anomalies of more than 480 m near 

Hudson Bay.  This block persists for several days, maintaining a strong pressure gradient 

between high pressure over eastern Canada and a broad cyclone east of the Carolinas.  

The associated pressure gradient resulted in gale-force onshore winds in the New York 

Bight for more than 24 hours.  CB18 found that synoptic characteristics such as those 

found in this event were associated with the majority of the largest observed ETC-driven 

surge events at The Battery. 

	  

3.5. Fidelity of the model 

 

The utility of such simulations for quantitatively assessing the probabilities of extreme 

ETC impacts depends upon model fidelity.  In this section, we compare simulated and 

observed ETC properties in more detail through a comparison with an atmospheric 

reanalysis product, CFSR (Saha et al. 2010).  CFSR provides continuous data for the 

period 1979 through 2009, and was used to train and test the storm surge index (Roberts 

et al. 2015).  The native atmospheric resolution is 38 km (T382), but for comparable 

horizontal resolution to FLOR we use output at 0.5°.  Reanalyses have been used 
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previously to evaluate models with respect to simulated cyclones (Bengtsson et al. 2009; 

Catto et al. 2011).  CFSR compares well with other reanalysis products in the spatial 

distribution of cyclones (Hodges et al. 2003) and propagation of intense ETCs in the 

Northern Hemisphere (Hodges et al. 2011).  Also, CFSR matches well with upper 

percentiles of buoy and altimetry wind data, suggesting CFSR is more useful than other 

reanalysis products for analyzing extremes (Stopa and Cheung 2014).  Although CFSR is 

ultimately chosen, we note that a preliminary analysis of climatological wind speeds over 

the northwestern Atlantic Ocean shows substantial differences among reanalyses.  

Ascertaining why these differences exist would be valuable as they can affect the utility 

of reanalysis products for evaluating the fidelity of a model. 

 

Fig. 3.6 displays spatial cyclogenesis rates and feature densities for CFSR and FLOR.  As 

in Hoskins and Hodges (2002), feature density is computed using all 6-hourly cyclone 

centers passing through a prescribed grid box, even if the centers belong to the same ETC.  

This gives more weight to slowly moving cyclones, which have been associated with 

high-impact events in the northeastern United States (e.g., the “Perfect Storm” of October 

1991).  Spatial densities are normalized by the total record length (1,505 or 31 years). 

 

Comparisons of cyclogenesis and feature densities indicate similarities between CFSR 

and FLOR.  Both CFSR and FLOR exhibit the highest frequency of cyclone development 

along the East Coast of the United States and extending along the 40ºN parallel (Fig. 3.6a, 

c).  Feature densities are largest in the northwestern Atlantic Ocean including the Bay of 

Fundy, as well as a localized maximum over Hudson Bay (Fig. 3.6b, d).  Since the FLOR 
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record is considerably longer than CFSR, model output is also subdivided into 

consecutive, non-overlapping segments of 31 years to compute the spread across these 

subsamples [FLOR31, as in section (a)].  CFSR feature densities are within one standard 

deviation (σ) of FLOR values, whereas ETC frequencies differ by approximately 3σ for 

the region of highest cyclogenesis rates east of Cape Hatteras. 

 

To further diagnose the inconsistency between simulated and observed ETCs, metrics of 

storm intensity for cold-season ETCs within 500 km of The Battery are evaluated.  For 

each 31-year period of FLOR, minimum central pressures and maximum 10-m wind 

speeds associated with ETCs are binned in intervals of 4 hPa or 2 m s–1 to obtain the 

spread of subsample frequencies, which are then compared against CFSR frequencies.  In 

over 50% of the bins, the frequency of CFSR wind speeds lies within the 25th to 75th 

percentile range of FLOR31 values (Fig. 3.7a).  However, at several higher wind speed 

intervals such as 24–26 m s–1 and 28–30 m s–1, CFSR values lie outside the spread of the 

FLOR31 subsamples.  Similarly, the frequencies of observed minimum pressures are 

within the range of FLOR31 values for ETCs with central pressures greater than 990 hPa, 

but are lower than the range of FLOR31 frequencies for values less than 980 hPa (Fig. 

3.7b).  This suggests that although the longer record of FLOR provides more examples of 

ETCs in each wind and pressure interval, as well as values that are more extreme than 

observed, the model simulates too many intense ETCs. 

 

Because the storm surge index is a combination of central pressure and low-level wind 

values, biases in the simulation of these quantities may also affect SSI values.  Therefore, 
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the distribution of SSI values for the entire FLOR simulation is compared to the 

distributions from CFSR and the ECMWF atmospheric reanalysis of the 20th century 

(ERA-20c; Poli et al. 2016).  ERA-20c has a lower spatial resolution than CFSR (125 

km), but a longer record spanning 1900–2010.  CFSR and ERA-20c data were sampled at 

6-hour intervals (00, 06, 12, 18 GMT) for consistency with FLOR output.  The additional 

years of data in the ERA-20c record result in a greater range of SSI values than CFSR, 

but the distributions are otherwise similar (Fig. 3.8).  The spread of ERA-20c SSI values 

between the 1st and 99th percentiles is 0.96 m with a maximum value of 1.65 m, and the 

spread for CFSR is 0.86 m with a maximum value is 1.56 m.  The SSI distribution for 

FLOR exhibits longer tails for both positive and negative values, and the maximum index 

is 2.19 m.  However, the spread between the 1st and 99th percentiles is wider than 

observational datasets, with a range of 1.3 m.  The longer FLOR record contains a greater 

number of large SSI values, but the larger spread of the distribution suggests that FLOR 

simulates more extreme SSI events, which is consistent with the apparent biases in the 

variables used to compute the index (10-m wind speed and SLP). 

 

Vecchi et al. (2014) documented a cold bias in FLOR SSTs, which may affect the 

quantities analyzed in this study.  To test the effects, we use an available 500-year 1990 

control simulation using a flux-adjusted version of the model (FLOR-FA).  FLOR-FA 

modifies momentum, freshwater, and enthalpy fluxes between the ocean and atmosphere 

so that the long-term climatology of simulated SSTs resembles observations over the 

period 1979–2012.  When compared with CFSR, normalized cyclone statistics and 

frequency distributions of intensity metrics in FLOR-FA show a reduced bias relative to 
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FLOR, but substantial biases remain.  As an example of the reduction in bias, annual 

maximum SLP anomalies in FLOR, FLOR-FA, and CFSR are displayed as a function of 

return period in Fig. 3.9.  Compared to FLOR events, FLOR-FA return values are 

somewhat closer to those of CFSR, but large differences remain, especially at shorter 

return periods.  A more realistic SST distribution improved the simulation of ETC 

intensities, but there are still differences in the distribution and magnitude of extreme 

values when compared to CFSR; this suggests that a systematic bias in the simulation of 

ETCs exists in FLOR with or without flux adjustment. 

 

3.6. Discussion 

 

Using a multi-century simulation from the GFDL FLOR coupled climate model, we 

demonstrate the utility of a longer record.  The 1505-year simulation includes intense 

high-impact ETCs that may not be present in a sample of historical-length.  Examining a 

few select FLOR cases, the most extreme ETCs are accompanied by unusually low SLP 

(934.9 hPa), hurricane-force winds (34.5 m s–1), and a storm surge index value more than 

35% larger than the largest computed from reanalysis.  ETC events such as these would 

have potentially severe impacts for coastal regions in their proximity. 

 

Results from an extreme value analysis illustrate that there is a greater uncertainty in 

estimates of large (> 50-year) return levels for high wind and intensity events near The 

Battery using 31-year subsamples of FLOR than using the full record.  Although this 

greater uncertainty is not unexpected, the wide range of return levels also suggests the 
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difficulty in predicting the occurrence rate of high-impact ETCs from shorter records. 

This has been addressed in previous work examining other extreme climate events in the 

modeling suite employed here including extreme precipitation events on land (Van der 

Wiel et al. 2017) and Mississippi floods (Van der Wiel et al. 2018).  Perhaps more 

important, the tendency for return levels to be underestimated when using short (i.e., 31-

year) samples has important implications for estimates of ETC impacts using 

observations.  If the distributions of annual maximum wind, intensity, or surge index in 

the real climate system resemble the model, then statistical analyses using historical 

records currently available may be underestimating the actual frequency of extreme 

events. 

 

Comparing the climatological distribution of ETCs in FLOR with a reanalysis product 

reveals important similarities and differences.  The highest frequency of cold-season 

cyclone development and propagation occurs in the northwestern Atlantic Ocean in both 

FLOR and CFSR, but the magnitude of the observed cyclogenesis density is nearly three 

standard deviations higher than the mean FLOR density.  Also, minimum SLP and 

maximum wind speed values associated with simulated ETCs are too frequent in higher 

intensity ranges compared to CFSR cyclones.  Previous work comparing CFSR surface 

winds with buoys over the North Atlantic identified a slight overestimation in wind 

magnitude (Stopa and Cheung 2014).  This suggests that the differences in ETC intensity 

between FLOR and CFSR are primarily a result of a model bias in storm strength.  

Employing a version of FLOR that forces SSTs to be more realistic improves some 

estimates, but there are still substantial biases present.  
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CHAPTER 4 

Evaluating Storm Surge in a Long Coupled Climate Model Simulation 

 

4.1. Introduction 

 

This section explores the ability of a long simulation from a coupled climate model to 

realistically simulate atmospheric circulation features associated with the largest ETC-

driven storm surge events.  We employ a 1505-year record from the Forecast-Oriented 

Low Ocean Resolution (FLOR) version of the Geophysical Fluid Dynamics Laboratory 

CM2.5 model (Vecchi et al. 2014; Jia et al. 2015), the utility of which has been 

demonstrated by previous work (see section 3.3).  A multilinear regression model is 

modified and applied to estimate the largest ETC-driven surge events in FLOR at select 

locations in the northeastern United States.  Then, index performance is assessed through 

a synoptic analysis of simulated ETCs associated with these events. 

 

4.2. Multilinear regression-based storm surge index 

 

A multilinear regression model (Roberts et al. 2015) is applied to FLOR to identify the 

largest ETC-driven surge events.  This storm surge index is a linear combination of the 

local minimum sea level pressure P and accumulated surface wind stress components Aτx 

and Aτy over a region [Eq. (2)]. 

 

Estimated Surge 𝑡   =   𝛽! +   𝛽!𝐴𝜏! 𝑡 +   𝛽!𝐴𝜏! 𝑡 +   𝛽!𝑃 𝑡 ,                           2  
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The duration of the zonal (U  ) and meridional (V  ) wind stress is included as a spatially-

averaged sum over a number of data intervals (LΔt, in hours) prior to the time of 

maximum surge [Eq. (2)]. 

𝐴𝜏   ! 𝑡   =    𝜏   !(𝑡  –   𝐿!𝛥𝑡),
!

!!!

                                                                                  (3) 

In Roberts et al. (2015), the temporal resolution of data was 3-hourly (Δt  = 3), whereas 

FLOR output is 6-hourly (Δt  = 6).  To estimate storm surge at The Battery in the FLOR 

record, the integration terms (Lx and Ly) and beta coefficients from the original model 

were adjusted (see section 3.3).  We expand on this work by modifying the index to 

determine the storm surge potential of ETCs at The Battery and at two additional 

locations along the northeast coast of the United States: Sewells Point, Virginia; and 

Boston, Massachusetts.  Circulation patterns associated with observed ETC-driven surge 

events at these locations have been previously evaluated (CB18), which presents an 

opportunity to compare simulated and observed synoptic-scale features.  Since we are 

interested in storm surge events influenced by ETCs rather than tropical systems, we 

focus on cold-season events (April–November). 

 

To evaluate the storm surge index model developed at each location, index values are 

compared to observed surge levels from the NOAA Center for Operational 

Oceanographic Products and Services tide gauges (http://tidesandcurrents.noaa.gov).  To 

compute surge residuals, hourly water levels measured at the gauges were detrended for 

sea level changes centered on the 19-year epoch (1983–2001), and the astronomical tide 

was subtracted.  Remaining values represent fluctuations in the ocean surface related to 
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meteorological influences including wind velocity.  Data inconsistencies such as 

abnormal spikes or tidal shifts are identified and removed (Zhang et al. 2000; CB18).  We 

use SLP and 10-m meridional and zonal wind data from two reanalysis products, CFSR 

(Saha et al. 2010) and ERA-20c (Poli et al. 2016).  CFSR output is 31 years in length 

(1979–2009) with a horizontal resolution of 0.5 degrees, which is comparable to the 

atmospheric resolution of FLOR.  CFSR was also used by Roberts et al. (2015) to train 

and test the storm surge index.  ERA-20c has a coarser horizontal resolution at 

approximately 125 km, but a longer record (1900–2010), which enables a better 

assessment of index performance given the length of available tide gauge records (1927–

present, 1920–present, and 1921–present, for Sewells Point, The Battery, and Boston, 

respectively).  For the purpose of this study, data from tide gauge records and reanalysis 

products were sampled at 6-hour intervals (00, 06, 12, 18 GMT).  Overlapping periods 

for each reanalysis product at each location are used for consistent comparisons with tide 

gauges.  For example, the comparison between tide gauge and CFSR data at The Battery 

is conducted over the period 1979–2009, whereas storm surge indices using ERA-20c are 

evaluated against observed surge levels for the period 1920–2010. 

 

The region, integration terms, and coefficients for the storm surge index at each location 

were chosen based on the highest correlation between observed surge levels and index 

values.  First, index values using coarser ERA-20c data are computed over multiple 

regions, which are designed to contain relevant wind velocity information (i.e. direction, 

magnitude, and persistence) from the 100 largest clustered surge-producing ETCs (CB18).  

Over each region, we test integration periods of the zonal and meridional wind 
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components from 6 to 48 hours, resulting in 64 combinations.  Then, we determine the 

combination that yields the highest correlation between indices and observed values.  The 

region that produced the strongest correlation is retained for the second phase of 

screening.  In the second phase, the region chosen using ERA-20c is adjusted to 

correspond to the CFSR native grid resolution.  Then, combinations with integration 

terms from 6 to 48 hours are evaluated.  As before, the combination that produces the 

highest correlation between observed values and indices is selected as the best regression 

model, and the computed index coefficients, integration terms, and region are retained 

and applied to FLOR output.  The final regions over which the indices are applied are 

displayed in Fig. 4.1, and coefficient and integration terms are presented in Table 4.1.  

CFSR terms are also compared with ERA-20c terms from the first phase of screening to 

examine the dependency of index performance on spatial and temporal resolution.  We 

find that the highest correlation using each dataset involves identical integration terms 

and similar beta coefficients (not shown).  Note that the size of regions chosen influences 

the surge-producing ETCs identified.  The storm surge index SLP term identifies spatial 

minimum values, whereas the wind stress terms compute a spatial average.  Therefore, a 

larger region would capture a greater number of storm centers, but potentially include 

winds unimportant to storm surge development at the location of interest.  Further 

analysis of the impact of region selection may be beneficial, such as determining the 

ability of the storm surge index to identify large surge events driven by ETCs at a 

considerable distance (e.g., the “Perfect Storm” of October 1991). 

 

Storm surge indices (SSIs) estimated using CFSR data (1979–2009) plotted against 
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observed surge values illustrate the proficiency of chosen regression models (Fig. 4.2).  

At Boston, almost all SSI values are within bounds denoting an error of ± 0.5 m, and only 

a few values are grossly underestimated or overestimated (i.e., beyond 0.5-m bounds).  

The scatterplot is approximately linear along the 1:1 line, except in the negative tail of the 

distribution.  The nonlinearity in negative values is also a feature of scatterplots at The 

Battery and Sewells Point, where the index is not as skillful as at Boston.  At The Battery, 

observed storm surge levels above 1 m are estimated to be between 0.4 to 1.6 m by the 

index, and many negative values are overestimated.  Also, the relationship at Sewells 

Point is not as linear for observed surge values greater than 0.5 m.  This suggests that the 

underlying relationship between low-level circulation and storm surge may not be linear, 

as assumed by a multilinear regression index.  However, the approximation is beneficial 

for identifying a large sample of sizeable surge events.  Future work improving the 

estimation of simulated storm surge would be useful, but it is beyond the scope of this 

study.   

 

4.3. Cluster analysis 

 

To characterize natural patterns in the atmospheric circulation associated with the largest 

SSI events, we perform a k-means cluster analysis (MacQueen 1967).  K-means has been 

applied previously to cluster storm tracks (Blender et al. 1997), GPH fields (Michelangeli 

et al. 1995), and SLP (CB18).  Since we are interested in the synoptic evolution of storms 

that produced a large SSI value, we cluster the combined set of SLP fields up to 18 hours 

prior to the time of the largest SSI value (t = 0 h, t = –6 h, t = –12 h, t = –18 h), over a 
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comparable domain to CB18 (Fig. 2.1), which surrounds the East Coast.  Only separate 

storm systems associated with the largest SSI values are considered, which are manually 

identified using associated circulation maps.  To facilitate comparisons with clusters of 

observed surge events, we use the same number of clusters as CB18: seven at The Battery 

and Boston, and six at Sewells Point. 

 

At each location, the storm surge index is applied to FLOR data, and k-means is 

performed to analyze the circulation patterns of the largest ETC-driven SSI events in a 

multi-century record.  Resulting average cluster patterns, or centroids, at the time of the 

maximum SSI value (t = 0) are displayed in Fig. 4.3, ordered from highest median SSI 

value to lowest.  Cluster patterns at all locations exhibit an average cyclone that 

propagates along the coast from t = –18.  The first two centroids at Sewells Point and 

The Battery contain an average ETC that encounters a strong anticyclone to the north, 

which tightens the pressure gradient and reduces ETC propagation speed.  Average storm 

speeds are slower than the overall average speed for all observed, cold-season ETCs in a 

region surrounding the East Coast (13.8 m s–1; Table 4.2).  This agrees with the CB18 

cluster analysis, in which centroids containing the largest median observed surge levels 

are associated with slow-moving ETCs near the coast and a strong anticyclone over 

southeastern Canada (Fig. 2.2).  However, the top centroids at Boston do not possess 

these characteristics.  Clusters 4 and 5 exhibit the strongest anticyclones, and clusters 6 

and 7 contain the slowest average cyclones (Fig. 4.3).  There are also differences in 

average cyclone symmetry between clustered SSI events and observed storm surge events.  

As in CB18, most storm systems at Boston are more symmetrical than those at Sewells 
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Point, which tend to be stretched along the west-southwest–east-northeast axis.  However, 

with the exception of cluster 6, centroids at The Battery do not exhibit a cyclone with a 

northwest to southeast orientation, which is common among clusters of observed surge 

events.  This difference may be a consequence of biases in the simulation of ETCs, or a 

bias in identification of surge events using a regression-based index, but additional 

analysis is required. 

 

At Boston, differences in propagation speed and anticyclone strength between the top 

clusters of FLOR SSI events and observed storm surge events in CB18 may be related to 

an inaccurate estimation of surge levels, which are used to arrange the clusters.  To 

illustrate this, the index is applied to ERA20c data (1921–2010), and SLP fields 

associated with the top 100 SSI events at Boston are clustered (recall that combined 

snapshots at t = 0 h, t = –6 h, t = –12 h, and t = –18 h are used).  As in CB18, snapshots at 

t = 0 are the closest maps prior to the time of maximum surge.  For each ETC identified 

using the index, observed storm surge levels are also computed.  Centroids are then 

arranged from highest median SSI value to lowest, as well as highest median observed 

surge value to lowest to compare the sequence of maps (Fig 4.4).  For clusters arranged 

by median SSI values, centroids containing strong anticyclones or slow-moving systems 

do not always contain the largest SSI events.  However, after arranging clusters by 

observed surge levels, centroids 1 and 2 exhibit strong anticyclones, and contain an 

average cyclone that propagates slower than the overall average of 13.8 m s–1.  This 

indicates that the synoptic analysis of the largest SSI events is affected by the ability of 

the storm surge index to quantify storm surge in the positive tail of the distribution (Fig. 
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4.2). 

 

Another concern is the inconsistency between observed and simulated surge levels in 

cluster samples.  The lower limits of surge values for the 100 largest SSI events at 

Sewells Point, The Battery, and Boston are 1.45 m, 1.51 m, and 1.25 m, respectively, 

whereas in CB18, the lowest values are 0.73 m, 0.90 m, and 0.80 m.  To explore the 

influence of including moderate SSI events in the cluster analysis, k-means is performed 

using SLP snapshots associated with all ETC-driven SSI events above the CB18 limits.  

This increases the number of individual FLOR events to over 1,700 at each location, but 

identical cluster numbers are used for comparison.  At Boston, resulting centroids (not 

shown) are qualitatively similar to centroids of the top 100 SSI events (Fig. 4.3), and the 

sequence of the first four clusters is the same.  Also, the strongest anticyclones are not 

located in clusters containing the largest median SSI values.  However, top clusters 

possess moderately strong anticyclones as well as the slowest propagating cyclones on 

average.  Centroid features for this larger sample of SSI events are more consistent with 

results from CB18, but this may be related to biases in the storm surge index.  Since the 

index underestimates the majority of observed surges in the positive tail, ETCs associated 

with SSI values less than 1 m could generate an actual surge that is much larger.  Thus, 

the addition of events with smaller index values to cluster samples may, in fact, include 

events with actual storm surges much larger than the top 100 SSI values. 

 

4.4. Simulated storm surge levels 
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To provide more reliable storm surge estimates and explore biases in the storm surge 

index, we utilize the two-way coupled ADvanced CIRCulation model and Simulating 

WAves Nearshore model, referred to as ADCIRC+SWAN (Dietrich et al. 2011).   

Simulations using ADCIRC+SWAN are conducted by Ning Lin and Reza Marsooli at 

Princeton University.  ADCIRC+SWAN is forced with surface wind and pressure fields 

from SSI events to simulate ETC-driven storm surge along the coast with a five-day spin-

up period.  Previous work utilized the modeling system of SWAN coupled with ADCIRC 

to better define hydrodynamics in the presence of meteorological influences (e.g., 

Dietrich et al. 2012; Hope et al. 2013).  SWAN is a spectral wave model that simulates 

surface gravity waves as they propagate towards the coast (Booij et al. 1999; Ris et al. 

1999).  ADCIRC is a hydrodynamic model that solves time-dependent, circulation and 

transport problems along shelves and coasts using unstructured grids (Luettich et al. 

1992; Westerink et al. 1994).  Storm surge and storm tide simulations have been 

previously evaluated at a number of coastal regions (e.g., Colle et al. 2008; Lin et al. 

2010; Lin et al. 2012).  To increase computational efficiency of ADCIRC+SWAN, a ~1 

km mesh is applied along the East Coast of the United States, and resulting surge levels 

are output at 10 minute intervals.  For more information on configuration and 

development, see Marsooli et al. (2018). 

 

Five select SSI values are compared with ADCIRC+SWAN storm surge levels at The 

Battery.  Results show a substantial overestimation by the index at the time of maximum 

surge (Fig. 4.5).  The largest SSI value is 2.19 m and occurred in January of model year 

97, but the surge simulated by ADCIRC+SWAN is only 0.87 m.  The other selected 
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surge events also possess index values approximately 1 m larger than modeled surge 

levels.  This is inconsistent with the underprediction bias exhibited by the largest SSIs 

(determined using winds and SLP from CFSR) compared with observed storm surge 

levels from tide gauges (Fig. 4.2).  The timing of the peak storm surge simulated by 

ADCIRC+SWAN is within ± 9 h of peak index values, and four of the five modeled 

surge levels occur following index peaks.  The maximum index value for each storm 

occurs at 120 h, whereas maximum ADCIRC+SWAN surge levels occur at 123 h, 112 h, 

123 h, 129 h, and 123 h for events in model years 98, 780, 965, 996, and 1490, 

respectively.  Although there are differences in storm surge height and timing, the shapes 

of the distributions of estimated and modeled surge over time are similar.  For example, 

following the peak storm surge during the December ETC in model year 996, the index 

and ADCIRC+SWAN both capture the subsequent fall and rise in surge values, although 

the amplitude of these features differs.  Estimated and modeled surge values are most 

similar during the February ETC in model year 965, excluding a period of two days 

around the time of maximum surge. 

 

4.5. Discussion 

 

A storm surge index previously developed by Roberts et al. (2015) to estimate surge 

events at The Battery is modified to develop indices at two new locations, Sewells Point 

and Boston.  Comparisons of estimated surge levels with observed surge levels at all 

locations demonstrate the overall proficiency of chosen index models, with correlation 

coefficients greater than 0.6.  We apply the index to the 1505-year record of FLOR to 
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identify the largest storm surge index events associated with ETCs.  At Sewells Point and 

The Battery, average circulation patterns of the largest events exhibit a strong anticyclone 

to the north of a slow-moving system, although these features are present in multiple 

clusters.  This agrees with results from a cluster analysis of observed surge events in 

CB18.  The top clusters at Boston do not contain these features, but further examination 

indicates that the analysis is influenced by errors in storm surge height estimates.  Also, 

almost all centroids at The Battery do not exhibit a northwest to southeast orientation, as 

in CB18.  Differences in cyclone symmetry may be related to biases in the simulation of 

surge-producing ETCs, which requires further investigation. Cyclone-relative composites 

of difference fields between FLOR and observations could reveal potential biases in 

storm structure (Bengtsson et al. 2009; Booth et al. 2013). 

 

The storm surge index underestimates actual surge levels in the positive tail of the 

distribution at all locations.  However, the index identifies a large sample of surge values 

with low computational demand, whereas methods such as high-resolution hydrodynamic 

surge modeling can be costly.  To explore the utility of a surge model, we perform 

several case studies using a notable circulation-wave model, ADCIRC+SWAN.  The 

performance of the storm surge index at The Battery is evaluated during five simulated 

ETCs.  The regression model captures the shape of the distribution of surge levels over 

time when compared with surge model values.  However, results show a substantial 

overestimation by the storm surge index during peak surge levels, which occur prior to 

almost all maximum surge heights simulated in ADCIRC+SWAN.  A potential factor in 

this overestimation is uncertainty introduced by the circulation-wave surge model, which 
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must be explored further.  An important next step is evaluating ADCIRC+SWAN against 

observations using meteorological conditions from reanalysis products such as CFSR and 

ERA-20c.  Also, since the computational demand in using a 1505-year record to force 

ADCIRC+SWAN is considerable, a subset of the largest estimated events could be 

identified by the storm surge index prior to running ADCIRC+SWAN.  Using the index 

as a screening procedure and analyzing a larger sample of surge-producing ETCs will be 

the focus of future work.  
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CHAPTER 5 

Summary, Implications, and Future Directions 

 

5.1. Summary 

 

In the northeastern United States, coastal areas have higher exposure to storm surges 

associated with ETCs than with tropical cyclones (Booth et al. 2016; Orton et al. 2016). 

ETC-driven storm surge events threaten densely populated, low-lying coastal areas such 

as New York City.  This body of work characterizes the synoptic-scale features and 

circulation patterns associated with the largest storm surge events at these locations in 

observations and models. 

 

Chapter 2 expands on previous work concerning regional differences in ETC activity 

(Zhang et al. 2000; Booth et al. 2015) by analyzing the local, regional, and large-scale 

atmospheric circulation properties for large ETC-driven storm surge events at Sewells 

Point, The Battery, and Boston.  We develop a framework for analyzing the synoptic 

climatology of surge-producing ETCs, although our methods are applicable elsewhere.  

Surface pressure patterns for the clusters containing larger storm surge events exhibit a 

cyclone encountering a strong anticyclone and propagating slower-than-average.  When 

considering all ETC-driven surge levels, the probability of an event greater than 1 m 

occurring is highest for clusters with these features.  An exploration of upper-air 

circulation reveals similar patterns in GPH fields during the largest surge events.  Also, 

certain teleconnection patterns, such as negative phases of AO and NAO, have significant 
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relationships with large storm surge events.  Our examination provides an extensive 

overview of common configurations of circulation associated with observed surge-

producing ETCs. 

 

Observational analyses can be limited by sparse or incomplete historical records, so 

statistical or numerical models are often used.  Chapter 3 emphasizes the utility of a long 

simulation of meteorological data to characterize high-impact ETCs in the tails of the 

distribution, including storms that produce strong winds, possess low central pressures, or 

generate large storm surges.  In the 1505-year FLOR simulation representing present 

climate conditions, a greater number of extreme ETCs are identified with higher intensity 

than observed cold-season storms.  Annual exceedance curves of metrics of ETC strength 

using a record of historical-length rather than the full simulation indicate an 

underestimation bias in exposure risk.  Overall, we outline a modeling approach for more 

robust statistical analyses of the types of hazardous ETCs that could cause significant 

impacts.  However, comparisons with CFSR reveal ETC intensity biases in FLOR.  Thus, 

this section can be regarded as a proof of concept, the implementation of which will 

require models with even greater realism. 

 

Although there are intensity biases in FLOR, previous work has evaluated qualitative 

features of ETC variability against observations (Yang et al. 2015).  Therefore, we assess 

the synoptic evolution of simulated ETC-driven surge events in Chapter 4 using k-means 

cluster analysis.  We apply a modified storm surge index to FLOR to identify potential 

surge events in the northeastern United States.  Then, characteristics of circulation 
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patterns of storm surge index events are compared to patterns of observed surge events 

using the cluster analysis outlined in section 2.2.  Circulation patterns for the largest 

surge events from the long simulation are qualitatively similar to clustered surge events 

from observations.  However, there are deficiencies in the index, which influence results.  

There is evidence of underestimation for the largest SSI events compared against actual 

surge levels (section 4.3), and in exceedance probability curves of annual maximum SSI 

values at The Battery (section 3.3).  However, peak FLOR SSI values are substantially 

larger than simulated storm surge levels generated by ADCIRC+SWAN during select 

events.  This inconsistency points to potential biases in ADCIRC+SWAN, which requires 

further investigation.  Overall, this work provides the foundation for a more accurate 

assessment of surge-producing ETCs as physically-based models improve. 

 

5.2. Implications 

 

This research increases understanding of the atmospheric circulation associated with the 

largest storm surge events in the northeastern United States.  An analysis of common 

circulation characteristics among observed or simulated surge-producing ETCs reveals 

that the largest storm surge events include a slow-moving cyclone and an anticyclone to 

the north.  This result suggests that strong anticyclones may be particularly important in 

the development of large storm surge events by inhibiting ETC movement, thus causing a 

longer duration of onshore winds.  Longer duration can lead to an accumulation of water 

over multiple tidal cycles, which augments surge height (Bernhardt and DeGaetano 2012).  

Also, the largest ETC-driven surge events in FLOR and observations are scattered among 
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multiple clusters because of differences in storm development and trajectories.  This 

finding indicates that many types of circulation patterns can influence local development 

of strong surges.  In general, similarities between synoptic characteristics of observed and 

simulated ETC clusters suggest that results are robust. 

 

One of the novel aspects of this work is the availability of a climate simulation of recent 

conditions with over 1,500 years of output and 50-km horizontal resolution.  Although 

there are biases in metrics of cold-season ETC development and intensity, we 

demonstrate that a long model record is useful for a statistical assessment of extreme 

ETC characteristics and an examination of rare but impactful events that may occur 

including surge-producing storms.  Using the results from FLOR for a robust quantitative 

assessment of high-impact ETC risks may be precluded by the biases we have found.  

Nonetheless, results demonstrate that multi-century model runs, should they be of high 

enough fidelity, could be used to produce more accurate assessments of return levels and 

return periods for extreme ETCs and their impacts. 

 

5.3. Future directions 

 

Some important aspects of surge-producing ETCs were not addressed and could be a 

focus of future work.  Further exploration of the influences of modes of climate 

variability on surge-producing ETCs would illuminate the mechanisms involved in these 

events.  The tendency for the top 100 observed storm surge events at Boston and The 

Battery to occur during the negative phase of AO and NAO and the positive phase of 
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PNA suggests the importance of the influence of these large-scale circulation patterns on 

storm tracks and persistence of anticyclones.  Recent work by Munroe and Curtis (2017) 

also establishes a connection between these phases of PNA/NAO and surge duration at 

Duck, North Carolina. The negative phase of AO/NAO is associated with a southward 

shift of the Atlantic storm track, which would increase the likelihood of cyclones passing 

to the south and east of Boston and The Battery.  The negative phase of AO/NAO is also 

associated with more frequent blocking over Canada and the Atlantic Ocean (Shabbar et 

al. 2001), which may contribute to storm surge events by slowing ETCs and tightening 

the pressure gradient to their north.  The positive phase of PNA can be regarded as an 

intensification of the climatological trough over eastern North America in the middle and 

upper troposphere, which would enhance activity in the western portion of the Atlantic 

storm track.  Analyzing the relationship between modes of climate variability and storm 

surge events in a long model record such as FLOR would be beneficial.  A larger sample 

of surge-producing ETCs decreases uncertainty in statistical analyses such as those 

applied in sections 2.4 and 2.5. 

 

This dissertation analyzes surge-producing ETCs under present climate conditions.  

However, an important concern going forward is the impact of anthropogenic climate 

change on inundation risks to coastal communities.  The rate of increase in mean sea 

level over the past century contributed to an increase in 5- and 10-year return period 

estimates of storm surge in the New York Harbor region (Talke et al. 2014).  Sea level 

rise is likely to be the dominant contributor to future changes in inundation risk (Roberts 

et al. 2017, Sweet et al. 2013, Lin et al. 2012), but exploring potential changes in surge-
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producing ETC climatology under a warming climate is also important, as changes in 

storm tracks or intensity could have disproportionate effects on distribution tails.  By 

applying the regression surge index to several CMIP5 models and the CESM large 

ensemble, Roberts et al. (2017) observe a poleward shift and intensification of ETCs with 

the potential to produce a large storm surge.  Seasonal changes in atmospheric circulation 

features such as the mid-latitude jet stream, which has been shown to affect storm track 

variability (Eichler and Higgins 2006; Athanasiadis et al. 2010), have the potential to 

alter storm surge risks at specific locations.  Also, large storm surge-producing ETCs in 

the Northeast occur preferentially during certain modes of climate variability (i.e. 

negative NAO, AO) and synoptic-scale circulation patterns (CB18).  Whether these 

circulation features respond to a changing climate will affect ETC propagation and 

associated impacts on different timescales. 

 

Quantifying storm surge risk requires a comprehensive understanding of the natural 

variations in surge-producing ETCs, as well as an understanding of the influence of 

climate change on storm climatology.  However, the models used in this work do not 

adequately simulate all aspects of the climate system.  Intensity biases in FLOR affect 

return level estimates of high-impact ETCs, and estimation biases by the storm surge 

index affect analyses of atmospheric circulation patterns associated with the largest surge 

events.  As advancements are made in these representations of the climate system and 

longer records are produced, our ability to identify physical mechanisms influencing 

surge-producing ETCs and quantify the risks posed by infrequent and impactful events 

will be realized.  
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 Extratropical Tropical 

Sewells Point 71 29 

The Battery 88 12 

Boston 91 9 

Table 1.1. Percentage of the 100 largest surge events at Sewells Point, The Battery, and 

Boston categorized by storm type (i.e., extratropical or tropical). 

 

Table 2.1. The 10 largest storm surges associated with an ETC (detrended for sea level 

changes), measured at the NOAA tide gauges in Sewells Point, The Battery, and Boston. 

 Sewells Point The Battery Boston 
Cluster 1 9.2 10.4 7.9 

Cluster 2 6.6 10.3 8.8 

Cluster 3 11.3 15.9 7.1 

Cluster 4 9.7 8.6 14.0 

Cluster 5 11.1 14.2 14.2 

Cluster 6 9.5 13.8 14.1 

Cluster 7 N/A 15.0 10.2 

 
Table 2.2. Average speed (m s–1) of cyclones in each cluster at Sewells Point, The Battery, 

and Boston.  As discussed in the text, the average speed of all cyclones in the region 

surrounding these locations is 13.8 m s–1. 

Sewells Point The Battery Boston 
Date (GMT) Surge 

(m) 
Date (GMT) Surge 

(m) 
Date (GMT) Surge 

(m) 
11/13/2009  03:00 1.657 11/25/1950  20:00 2.400 02/26/2010  04:00 1.912 
03/07/1962  19:00 1.558 12/11/1992  17:00 1.809 11/30/1945  08:00 1.526 
02/05/1998  02:00 1.503 03/29/1984  14:00 1.587 10/31/1991  02:00 1.488 
01/28/1998  22:00 1.388 11/10/1932  05:00 1.547 03/29/1984  19:00 1.383 
10/25/1982  12:00 1.357 11/17/1935  21:00 1.478 04/14/1961  00:00 1.381 
04/26/1978  23:00 1.286 03/13/1993  22:00 1.476 02/07/1978  08:00 1.380 
01/24/1940  08:00 1.210 11/07/1953  10:00 1.459 11/18/1935  02:00 1.350 
01/29/1937  10:00 1.208 10/27/1943  04:00 1.429 02/15/1940  03:00 1.270 
01/25/2000  11:00 1.200 01/25/1979  02:00 1.418 11/12/1968  19:00 1.238 
04/12/1956  07:00 1.192 10/31/1991  09:00 1.414 03/03/1947  06:00 1.233 
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 Cluster # Storms Surge ≥ 0 m Surge ≥ 0.5 m Surge ≥ 1 m 

Sewells Point 

1 2,011 83.1 6.7 0.5 

2 1,099 97.5 11.7 1.0 

3 4,739 86.4 4.7 0.4 

4 186 100.0 36.0 5.4 

5 1,167 92.3 4.5 0.0 

6 5,746 73.8 3.4 0.1 

The Battery 

1 717 96.7 16.2 1.7 

2 675 99.4 31.6 4.3 

3 3,451 93.0 8.5 0.4 

4 912 97.4 21.3 2.0 

5 1,631 94.0 10.8 0.7 

6 3,202 87.3 4.6 0.3 

7 5,323 89.7 5.9 0.2 

Boston 

1 404 96.0 17.3 1.7 

2 311 99.4 44.7 3.9 

3 687 99.0 14.1 0.4 

4 1,849 99.6 13.7 0.5 

5 5,114 90.7 5.2 0.2 

6 10,547 91.1 2.6 0.1 

7 3,089 94.0 5.1 0.2 
 
Table 2.3.  Probability (%) of surge ≥ 0, 0.5, and 1 m for all events assigned to previously 

determined clusters at Sewells Point, The Battery, and Boston. 
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Table 2.4. Relative risk of surge events ≥ 1 m for PNA, NAO, AO, and ENSO index 

values within four intervals at Sewells Point, The Battery, and Boston.  Relative risk is 

defined as the ratio of the probability of surge events ≥ 1 m in each index interval to the 

overall probability of surge events of that magnitude. 

Location β0 β1 β2 β3 Lx Ly R2 

Boston 0.0087 –0.3219 –0.0245 –0.0083 1 6 0.625 

The Battery 0.0407 –0.2769 –0.0254 –0.0072 3 4 0.642 

Sewells 
Point 0.0140 –0.1919 –0.2763 –0.0076 6 2 0.604 

 
Table 4.1. Values of beta coefficients and integration terms in the storm surge index 

equation, and the correlation coefficient between CFSR index values and observed surge 

values at each location. 

 

 Index ≤ -1 -1 < Index ≤ 0 0 < Index ≤ 1 Index > 1 

Sewells 
Point 

PNA 0.27 0.65 0.81 3.00 

NAO 2.17 1.37 0.44 0.48 

AO 2.04 1.08 0.66 0.22 

ENSO 0.40 1.05 0.33 2.68 

The 
Battery 

PNA 0.57 1.05 0.99 1.38 

NAO 2.51 0.96 0.77 0.26 

AO 1.86 0.80 0.99 0.35 

ENSO 0.33 0.78 1.28 1.63 

Boston 

PNA 0.70 1.45 0.70 1.18 

NAO 2.80 1.18 0.47 0.21 

AO 2.86 0.70 0.45 0.19 

ENSO 0.66 0.77 1.21 1.40 
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 Sewells Point The Battery Boston 

Cluster 1 5.6 13.2 8.9 

Cluster 2 3.4 5.4 9.1 

Cluster 3 2.8 7.1 10.0 

Cluster 4 7.0 8.0 11.6 

Cluster 5 6.8 4.0 10.0 

Cluster 6 8.6 8.8 6.0 

Cluster 7 N/A 8.2 8.0 

 

Table 4.2.  Propagation speed (m s–1) of average cyclones in each centroid for clustered 

FLOR SSI events at Sewells Point, The Battery, and Boston. 
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Fig. 2.1. The spatial domain in which k-means clustering is performed using ERA-20c 

sea level pressure data.  Red points indicate the locations of the tide gauges at Boston, 

The Battery, and Sewells Point. 
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Fig. 2.2. Cluster centroids (numbered from top to bottom on the right-hand side) for the 

100 largest surge-producing ETCs at Sewells Point, The Battery, and Boston organized 

by decreasing associated surge values.  Each map depicts the cluster centroid at the time 

before maximum surge (t = 0). Average cyclone centers at 0-, 6-, 12-, and 18-h lags (t = 0, 

t = –6, t = –12, t = –18) are marked in magenta. 
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Fig. 2.3. Composite maps of atmospheric circulation at 500 hPa at t = 0 for the clusters in 

Fig. 2.2.   Average cyclone centers at 0-, 6-, 12-, and 18-h lags (t = 0, t = –6, t = –12, and 

t = –18) are marked in magenta.  Solid green contours represent GPH (m), and shaded 

regions are GPH anomalies (m). 
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Fig. 2.4. Box-and-whisker plots of surge values (m) associated with the 100 largest ETC 

events at (a) Sewells Point, (b) The Battery, and (c) Boston organized by cluster.  The top 

and bottom of the boxes represent the 75th and 25th percentiles, respectively, and red 

lines within each box indicate the median value.  Open circles are surge values that lie 

outside the 25th and 75th percentiles. 
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Fig. 2.5. Atmospheric circulation at time before maximum surge (t = 0) for the five 

largest surge events (decreasing from top to bottom) at Sewells Point, The Battery, and 

Boston. Solid black contours represent SLP (hPa), and shaded regions are GPH 

anomalies (m). 
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Fig. 2.6. Box-and-whisker plots of (a) AO, (b) NAO, (c) PNA, and (d) ENSO index 

values for the 100 largest surge events at Boston, The Battery, and Sewells Point.  
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Fig. 3.1.  FLOR annual exceedance probability curves of (a) maximum intensity values 

within 500 km of The Battery (in hPa),  (b) maximum wind speed values within 100 km 

of The Battery (in m s–1) and (c) storm surge index values (in m) at The Battery as a 

function of return period. Grey lines are 95% confidence bounds on the distribution 

curve. Box-and-whisker plots indicate the range of estimated values for FLOR 31-year 

subsamples at designated return periods (10, 50, 100, 200, and 500 years). The top and 

bottom of the boxes represent the 75th and 25th percentiles, respectively, and red lines 

within each box indicate the median value. 
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Fig. 3.2. Contoured SLP maps of the deepest simulated ETC during the cold season 

within 500 km of The Battery (in turquoise).  Vector overlay and shaded regions are 10-m 

wind speeds categorized according to the Beaufort scale wherein 17.5 m s–1 is gale, 21.0 

m s–1 is strong gale, 24.5 m s–1 is storm, 29.0 m s–1 is violent storm, and > 33.0 m s–1 is 

hurricane-force wind. 

Fig. 3.3. As in Fig. 3.2 but for a simulated ETC associated with the highest wind speed 

during the cold season within 100 km of The Battery (in turquoise). 
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Fig. 3.4. As in Fig. 3.3 but for a simulated ETC associated with the second largest storm 

surge index (SSI) during the cold season calculated over a region southeast of The 

Battery (in turquoise). The SSI values from left to right are 1.57 m, 2.02 m, and 2.09 m.  
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Fig. 3.5. Daily average atmospheric circulation at 500 hPa and temperature at 850 hPa for 

select days associated with the lowest pressure event (first column), the highest wind 

event (second column), and the second largest storm surge index event (third column) 

near The Battery (see Figs. 3.2–3.4).  Solid black contours represent GPH (m), shaded 

regions are wind speeds at 500 hPa (m s–1), and colored contours represent 850-hPa 

temperature (°C) where solid red are positive values, dashed purple are negative values, 

and the magenta line is zero.  Note, maps increase in time from top to bottom, but 

intervals between maps differ. 
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Fig. 3.6.  FLOR (a, b) and CFSR (c, d) cyclogenesis and feature densities per cold season 

normalized by record length (1,505 and 31 years, respectively).  Black contours represent 

one standard deviation spread over 31-year subsets [contoured at intervals of 0.04 (a) and 

0.16 (b)].  Feature density measures the number of cyclone centers passing through the 

region.  
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Fig. 3.7.  Box-and-whisker plots of (a) maximum 10-m wind speed values (in m s–1) and 

(b) minimum SLP values (in hPa) within 500 km of The Battery for cold-season storms 

across FLOR 31-year subsamples.  Black asterisks indicate CFSR values.  The top and 

bottom of the boxes represent the 75th and 25th percentiles, respectively, and red lines 

within each box indicate the median value.  Whiskers span the range of data (minimum to 

maximum). Note: frequency intervals differ below the dashed line to magnify lower 

frequency behavior.  
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Fig. 3.8.  Box-and-whisker plots of storm surge indices (in m) for all 6-hourly data from 

FLOR, ERA20c, and CFSR.  The top and bottom of the boxes represent the 75th and 

25th percentiles, respectively, and red lines within each box indicate the median value.  

Blue circles indicate 5th and 95th percentiles, and red circles specify surge values at 1st 

and 99th percentiles. Whiskers span the range of data (minimum to maximum). 

Fig. 3.9.  Maximum annual cold-season intensity values (in hPa) within 500 km of The 

Battery as a function of return period for FLOR (black), FLOR-FA (blue) and CFSR 

(red). Rightmost points indicate the lengths of the records. 
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Fig. 4.1.  Regions over which the storm surge index is applied at Boston, Massachusetts 

(blue); The Battery, New York (turquoise); and Sewells Point, Virginia (red).  Locations 

are identified by filled circles in corresponding colors.  
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Fig. 4.2.  Scatterplots of observed storm surge and CFSR surge index values (m) during 

the cold season (November–April) at Boston, The Battery, and Sewells Point (1979–

2009). The dashed black line represents a 1:1 ratio, and dashed red lines are residuals ± 

0.5 m as a measure of uncertainty.  Green circles highlight surge values that are 

overestimated by the index, whereas magenta circles indicate underestimated values. 
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Fig. 4.3. Cluster centroids (numbered top to bottom) for 100 largest SSI events at Sewells 

Point, The Battery, and Boston organized by decreasing associated surge values.  Each 

map depicts the cluster centroid at time before maximum surge (t = 0).  Average cyclone 

centers at 0-, 6-, 12-, and 18- hour lags (t = 0, t = –6, t = –12, t = –18) are marked in 

magenta. 
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Fig. 4.4. As in Fig. 4.3, but for clustered SLP fields (in hPa) from ERA20c associated 

with the 100 largest SSI events at Boston (1921–2010).  Centroids in the left column are 

organized by decreasing SSI values (numbered), whereas centroids in the right column 

are organized by decreasing observed surge levels for related events.  Numbers in the 

right column correspond to numbered clusters from the left column.  
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Fig. 4.5. Simulated surge levels from ADCIRC+SWAN (blue) and estimated surge 

values from the storm surge index (red) for five select events in FLOR.  The dashed line 

separates positive and negative surge values.  
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