
Energy Management of Virtual Memory on Diskless Devices

Jerry Hom Ulrich Kremer∗

Department of Computer Science
Rutgers University

Technical Report: DCS–TR–456, September, 2001

Abstract

In a pervasive computing environment, applications are
able to run across different platforms with significantly
different resources. Such platforms range from high-
performance desktops to handheld PDAs. This paper dis-
cusses a compiler approach to reduce the energy consump-
tion of a diskless device where the swap space is provided
by a remotely mounted file system accessible via a wire-
less connection. Predicting swapping events at compile
time allows effective energy management of a PDAs wire-
less communication component such as a 802.11 or Blue-
tooth card.

The compiler activates and deactivates the communica-
tion card based on compile-time knowledge of the past and
future memory footprint of an application. In contrast to
OS techniques, the compiler can better predict future pro-
gram behavior, and can change this behavior through pro-
gram transformations that enable additional optimizations.

A prototype compilation system EELRM has been im-
plemented as part of the SUIF2 compiler infrastructure.
Preliminary experiments based on the SimpleScalar sim-
ulation toolset and three numerical programs indicate the
potential benefits of the new technique.

1 Introduction

Many handheld devices and machines already have wire-
less communication capabilities, allowing them to be part
of a large and pervasive computing environment that sup-
ports sharing of resources across the network. Traditional
desk-top applications will become increasingly important
for handhelds which have developed from electronic ad-
dress books and appointment schedulers to portable work-
stations. For instance, the newest Compaq iPAQ H3600

∗{jhom,uli}@cs.rutgers.edu; This work was partially supported by
NSF CAREER award No. CCR-9985050. To appear in Proceedings of
the Workshop on COLP’01.

handheld has 64MB of RAM, 16MB of flash memory, and
a 206MHz low-power StrongARM processor [8]. Such
devices will run spread-sheets, voice and image recogniz-
ers, and even computation intensive simulation programs,
just to mention a few. However, many mobile machines
may not have secondary storage such as a disk. Giving
mobile machines the ability to support virtual memory
through a wireless connection can significantly increase
their functionality since the same programs can be exe-
cuted on a desktop machine and the handheld. This is par-
ticularly important for programs where the memory needs
vary significantly based on the provided input data. How-
ever, the option of swapping pages over the wireless con-
nection comes with the price of additional energy require-
ments due to the wireless networking card and communi-
cation costs. In this paper we discuss a compilation strat-
egy that will reduce the energy overhead of swapping over
a wireless network through network card hibernation.

Resource hibernation is an effective strategy to save
power and energy of system components and resources
that are not needed during some parts of a program exe-
cution. While not in use, these components and resources
consume energy which may be saved by transferring them
into a hibernation or sleep state during their idle periods.
System resources may implement different levels of hiber-
nation, where each level has a specific tradeoff between
power saved vs. the time it takes to deactivate or reacti-
vate the resource. Typically, the “deeper” the hibernation
or sleep mode, the longer it will take to make a transition
to and from this hibernation state, but the less power will
be used by the resource during the hibernation period. Ef-
fective power and energy management of a wireless con-
nection is crucial for handheld devices that rely on battery
power since the communication component typically con-
sumes a substantial share of the overall energy and power
budget. On Compaq’s iPAQ H3600 pocketPC, commu-
nication via an Orinoco WaveLAN 802.11b wireless card
consumes more than 40% to the overall energy budget of
an image processing application [14].

9-1



The ACPI (Advanced Configuration and Power Inter-
face [9]) standard specifies hibernation states for different
system resources such as disks, wired and wireless Ether-
net controllers, processors, and displays. ACPI conform-
ing systems are possible target systems for our compilation
strategy. Most work in resource management for power
and energy savings purposes has concentrated on operat-
ing system and hardware techniques [11, 6, 15, 16, 19]. In
this paper, we investigate the potential benefit of compiler
directed resource management for a system resource such
as a wireless communication card. We will also compare
our approach with an OS approach where deactivation is
based on a threshold strategy, and activation is done on de-
mand. Our benefit study is based on a set of three numeri-
cal, array based applications (shal, adi, and tomcatv). All
three applications represent regular problems, for which
many program characteristics can be derived at compile
time. In the future, we will consider irregular problems
and pointer based programs. We believe that computation
intensive simulation codes will be part of the program mix
for portable workstations such as Compaq’s iPAQ pock-
etPC.

In this paper, we assume that only a single applica-
tion is executing on the handheld machine. In a multi-
programming environment, the information collected by
our compiler can be used by the underlying operating sys-
tem to effectively schedule page requests across different
active processes.

2 Related Work

The idea of remote virtual memory, particularly dis-
tributed and/or shared, has been an ongoing subject for
over 15 years. Comer and Griffioen examine the useful-
ness of a dedicated memory server in [7]. They make the
distinction of separating the paging operation from the file
backing store operation. Then they can focus on designing
efficient memory and file servers. Another approach views
the sum total memory of a cluster as a single cache space
[10]. Dahlin et al. suggest utilizing the memory of idle
nodes. These approaches improve performance by opti-
mizing the use of extended virtual memory.

Recognizing the utility of remote resources, Schilit and
Duchamp make the case for thin clients [18]. They con-
clude the feasibility and desirability for thin clients with-
out a disk and smaller amounts of memory. While not nec-
essarily studying energy consumption impacts, their work
establishes a reference point in motivating low power de-
signs of diskless devices. From a compiler point of view,
we attempt to optimize energy demands by managing re-

shut down
threshold

active

idle

hibernating

shut down / wake up
p

o
w

er
p

o
w

er
p

o
w

er

OS directed
power management

no
power management

execution time

execution time

execution time

power management
compiler directed

Figure 1: Comparison of compiler vs. OS directed power
mangement.

sources such as virtual memory paging.

3 Problem Formulation

For simplicity, we assume that a communication card only
supports three power mode states: active, idle, and sleep
(hibernate). In the active mode, the card is transmitting
data. In idle mode, the card is not sending messages, but
listens to the wireless networking traffic. Finally, in the
sleep or hibernation mode, the card has been shut down
to save power. There is an overhead for transitions be-
tween hibernation modes. We assume that the perfor-
mance penalties for shutting down and waking up the card
are the same.

Figure 1 shows the power profile of a sample appli-
cation without any power management, with operating
system guided, and with compiler-directed power man-
agement. The simple OS based technique transfers the
card into sleep mode after a predefined (static) inactiv-
ity threshold. The wake-up operation is performed on de-
mand, and as a result incurs a performance penalty.

This simple example illustrates the advantages of a
compiler-directed approach vs. a threshold based OS ap-
proach. In the former approach, system resources can
make the transition into power saving states earlier, can
be reactivated just-in-timeto avoid performance penalties,

9-2



and enable additional optimization opportunities for idle
periods which are shorter than the threshold used by the
OS based technique. It is important to note that there are
more sophisticated OS based dynamic power management
techniques than the simple technique discussed here [15,
19]. However, the point we want to make is that in many
cases the compiler can predict future program behavior
and resource requirements more accurately than OS based
techniques, allowing additional opportunities for power
and energy management optimizations.

The handheld device is connected to a network file sys-
tem (NFS) via the wireless connection. Each time a page
fault occurs, the required page has to be requested over the
wireless link, and the program blocks until the page is re-
ceived. Each page fault event leads to a new working set,
with the empty set as the initial working set of an applica-
tion.

Our compilation strategy tries to identify program parts
of the program execution where the working set is either

1. the same for the next x machine cycles, or

2. is about to change in y machine cycles.

This information is used to suspend the wireless card if x

is larger than a predetermined benefit threshold, or resume
the card in y cycles, where y is the time needed to reacti-
vate the card. Both entities will be determined by the com-
piler using static performance prediction.

OS guided hibernation may use threshold techniques to
shut down system components such as a wireless card.
Threshold techniques assume that if a resource has not
been used within the past threshold time units, it will not
be used in the future.

4 EELRM Prototype Compiler

The EELRM
1 prototype compiler is based on the SUIF2

compilation infrastructure [1]. The compilation strategy
consists of two main phases, with each phase having mul-
tiple steps. During the first phase, program regions are
identified for which the wireless connection needs to be
activated or deactivated. The data objects accessed in each
region are summarized, and a forward data flow problem
approximates the data objects that will be in memory be-
fore entering each region. If the set of data objects that will
be referenced in a region is a subset of the data objects cur-
rently in memory, the execution of the region does not re-
quire the wireless connection to be active.

1EEL stands for Energy Efficiency and Low-power, and RM stands
for Resource Management. Information about the EEL laboratory can
be found at http://www.cs.rutgers.edu/∼uli/eel.

In the second phase, system calls are inserted that either
activate or deactivate the wireless PC card. Deactivation is
done as soon as possible, and activation is performed on-
demand. Activation and deactivation operations are as-
sumed to be atomic, i.e., once the PC card is in the pro-
cess of being shut-down, a pending wake-up request has
to wait until the shut-down has been completed and vice
versa. The second phase requires performance prediction
for efficiently placing activation requests. An activation
request before a program region should only be executed if
the card is in a hibernationstate. If the card is active, no ac-
tion needs to be taken. This can be easily handled through
the activation routine itself, or through compiler generated
guards for each activation or deactivation request.

Performance prediction is needed to activate the PC
card just in time. For instance, if the overhead of activation
is 106 cycles, the activation request should be issued 106

cycles before the card needs to be active. In addition, per-
formance prediction is required to assess the benefit of de-
activating the PC card. Deactivating the card is not benefi-
cial if the next activation request follows too closely (i.e.,
before the card is shut-down, a request to reactivate it is
already pending).

4.1 Phase 1 - Analysis

This analysis phase consists of several subtasks.

1. Program regions are identified that will serve as the
basis for our analysis. The compiler will insert hi-
bernate or activate instruction only before such re-
gions. The initial prototype system recognizes inner-
most loop nests, called phases [12], and calls to run-
time system functions (e.g. printf) as program re-
gions. REGIONS denotes the resulting set of re-
gions. The region control flow graph (RCFG) has
REGIONS as its set of nodes, with edges represent-
ing the possible control flow between these regions.
The RCFG is similar to the phase control flow graph
(PCFG) introduced by Kennedy and Kremer [12].

2. Initially, data objects are scalar variables and arrays
with their declared sizes. For instance, subcompo-
nents of arrays, such as single rows and columns in
the two-dimensional case, are not considered. For
each region r ∈ REGIONS, two sets of data ob-
jects d are determined:

(a) d ∈ MUST REF (r), if d is referenced dur-
ing every execution of region r;

(b) d ∈ MAY REF (r), if d may be referenced
during an execution of region r;

9-3



The MUST REF sets are used to describe data ob-
jects that will be in memory after the execution of the
corresponding region, and MAY REF sets are the
basis to predict future data object references that may
require swapping over the wireless connection.

3. The data flow problem IN MEM(r) is solved. For
each entry point of a region r the set of data objects
that are in memory is determined. Since cache poli-
cies such as LRU keep track of the sequence of data
references within a finite window of past references,
a notion of time or decay has to be incorporated into
the data flow formulation. Initially, we will solve this
problem by a simulation process.

4. Each region r is labeled as yes or no depending on
whether the region may require swapping over the
wireless connection or not.

if MAY REF (r) ⊆ IN MEM(r)

then no, otherwise yes

4.2 Phase 2 - Code Generation

The compiler inserts calls to runtime routinesactivate and
hibernate. The effect of these routines are

activate⇔

{

system call “card on” if card is inactive
no action if card is active

hibernate ⇔

{

system call “card off” if card is active
no action if card is inactive

The initial approach will place calls to activate and
hibernate at region entry points. A limited set of reshap-
ing transformations to enable additional optimizations will
be considered. Performance prediction will be used to
move activate statements up the region control flow graph
to program points that allow the overhead of the activation
to be overlapped with program execution.

Performance prediction will also be used to eliminate
hibernate statements that are considered unprofitable due
to subsequent activate operations. If the distance in terms
of execution cycles between a hibernate and activate op-
eration is too close, the benefit of shutting-down the card
is lost. A backward-flow, ∀-information data flow prob-
lem can be used to determine the length of the minimal
activate-free path for any region exit point. Hoisting of
activate operations, and elimination of hibernate opera-
tions may be done in a combined analysis pass.

float A(n), B(n), C(n)
R1 do i = 1, n

A(i) = . . .

enddo
R2 do i = 1, n

B(i) = . . .

enddo
R3 do i = 1, n

C(i) = . . .

enddo

R4 do i = 1, n
B(i) = . . . C(i) . . .

enddo
R5 do i = 1, n

A(i) = . . . B(i) . . .

enddo

R6 print A

Figure 2: Sample code

Our initial benefit analysis assumes that the compiler
performs a reshape optimization called page fault clus-
tering. Assuming that swapping operations are atomic,
i.e., cannot be overlapped, this transformation will not im-
pact the overall performance of the program. Page fault
clustering is applied if the memory footprint of a region
(MAY REF (region)) fits into memory. Prefetch in-
structions are generated before such regions, allowing all
potential page faults to occur before the execution of the
region, leaving the region free of page faults. This trans-
formation allows potential hibernation of the communica-
tion card during the entire region execution.

4.3 Performance Model

For each region, the performance model has to report
the number of cycles needed to execute it. In our initial
system, symbolic entities such as program size and loop
bounds are assumed to be known at compile time. We
will use a micro-benchmarking approach to determine ba-
sic computation and memory access costs as well as the
suspension and activation time of the wireless communi-
cation card [4, 17, 13].

At a later point, we will consider parameterized (sym-
bolic) performance expressions. Our analysis and code
generation strategy has to be modified in order to allow
the evaluation of these expressions at runtime, and based
on the results, will executed the guarded activate and
hibernate operations.

4.4 Example

9-4



region memory size
4 8 12

R1 miss miss miss
R2 miss miss miss
R3 miss miss miss
R4 miss no miss no miss
R5 miss miss no miss
R6 miss no miss no miss

Table 1: Page faults for different memory sizes in terms of
pages, assuming that each array requires 4 pages of mem-
ory space.

In the example program shown in Figure 2, we assume
a memory size of 4, 8, and 12 pages, a write-allocate pag-
ing strategy, and a LRU page replacement policy. The ar-
ray size n is set such that each array occupies 4 pages. To
simplify the example, scalar variables are ignored, and ar-
rays are assumed to be aligned at page boundaries. Table 1
lists the data space page faults expected to occur for differ-
ent memory sizes.

Whether a card should be shut down for a region that
does not incur a page fault will depend on the predicted
execution times for the region. For example, if it takes
longer to shut down the card than executing regions R4 or
R6, then it is unprofitable to shut down the card for these
two regions for the 8 page memory case. However, for the
12 page memory, shuttingdown the card will be profitable.

4.5 Implementation Issues

For our initial implementation, we started with a simple
memory access model to see how closely we approach ac-
tual behavior. In simplifying the memory access, we as-
sume an entire array will be loaded (used) whenever there
is a reference to it. By examining the array’s declared size
and data type, we calculate the number of required mem-
ory pages. However, there are instances where only a sin-
gle row/column is accessed, or the array is accessed in a
triangular pattern. In such cases, we will need more accu-
rate tools to analyze memory patterns. We plan to use a
modified form of Data Access Descriptors (DADs [5, 3]).

Using DADs can aid our analysis in two ways. First,
DADs describe an iteration order in walking through the
dimensions of an array. As pages are swapped out after a
given loop, we may reasonably estimate which pages of
an array remain in memory. For instance, one loop may
iterate forward over an array, while another loop may it-
erate backward over the same array. It can be safe to as-
sume the last x pages of the array are still in memory. Sec-
ondly, DADs also help by more accurately indicating the

accessed regions of an array. If only a single row/column
is needed, then the array’s memory access summary is
given by the necessary page(s), and the overall loop mem-
ory block summary will be more concise.

The current prototype implementation approximates
LRU. Our LRU simulation strategy does not consider vir-
tual addresses, but instead uses data and code access sum-
mary information. For each region, a single data struc-
ture describes all data and system calls (printf) refer-
enced in the region. In addition, the total number of pages
needed to store all data and code in memory is recorded.

A key component for approximating LRU is the notion
of age. Along with summarizing array accesses at a region
level, we associate a relative age for each region. Hence,
all array accesses within a region have the same age and
will be replaced at the same time. This is easily repre-
sented in a queue, where each element is the region sum-
mary information. In addition, we can remove elements
from anywhere in the queue. For example, if a referenced
array is found somewhere in memory, the containing re-
gion is removed and placed at the end. If a region is larger
than the total memory, the net effect is to clear the contents
in memory.

The current implementation computes MAY REF (r)
for each region r. Instead of computing separate
MUST REF (r) sets, we set MUST REF (r) :=
MAY REF (r), which is a simplification. The solution
to IN MEM(r) is approximated by applying the LRU
simulation process to nodes in the RCFG, starting with
the entry node, and choosing the next node according
to the rPOSTORDER numbering [2]. The initial value
of IN MEM(r) is ∅. If a loop is encountered, its
entire body is visited twice. The resulting values in
IN MEM(r) represent the final solution for region
r. This process is applied recursively for nested loops.
Our heuristic is motivated by the observation that the
stable state typically occurs after a loop has iterated at
least twice. The heuristic may lead to visiting sequences
exponential in the loop nesting depths. However, the
maximal loop nesting depth in a program is typically a
small constant. Our current implementation always picks
the most frequently executed branch of a conditional
statement as the only branch that is ever executed.

Although we have used and made several simplifying
assumptions, our analysis is able to predict most page
faults correctly. Table 2 shows the total number of cor-
rectly predicted hits and misses (True Hit/Miss) as well
as incorrect predictions (False Hit/Miss). The parameters
used in these benchmarks are listed in Table 3. The page
size is assumed to be 4KB. Only in the case of tomcatv, the
False Miss count was significant. The misprediction oc-

9-5



shal adi tomcatv
True Hit 17 62 304
True Miss 9 1 304
False Hit 1 0 2
False Miss 2 0 100

Table 2: Dynamic page hit/miss prediction accuracy.

curred for a rather small region, resulting in no significant
impact on the overall energy savings and performance.
Detailed energy and performance results are given in the
next section.

5 Experiments

We modified the SimpleScalar simulator to keep track of
page faults that occur during the execution of a program.
In addition, the simulator logs the cycle times where pro-
gram regions such as loops are entered and exited. The
simulator allows the assessment of the amount of compu-
tation performed for a given working set, and the resulting
potential benefit of suspension and resumption of the wire-
less card.

For three different programs, we evaluated the work-
ing sets for different memory and program sizes. Given a
particular overhead of the suspend and resume operation
(25,000 CPU cycles), we determined the performance im-
pact and energy savings of our optimization.

If working sets change frequently, the wireless card
should never be suspended. If the working sets are
changed very infrequently, both OS and compiler based
approaches will lead to similar results. Compiler tech-
niques are superior to OS techniques in cases where a
working set does not change for a length of time that is
comparable to the OS based suspension threshold and on-
demand resumption times.

We assume a performance predictor tells us which re-
gions take longer than the time required for a suspend op-
eration and then use on-demand resume. We compared
the potential energy savings of our compiler techniques
vs. OS static inactivity thresholds strategies of varying
lengths. Through ACPI, the OS allows the user to tune
threshold levels for various devices. Therefore, we use
thresholds relative to the suspend operation time (suspend
overhead).

From simulation traces, we have a notion of time (cycle
counts) for each benchmark. We also have a correlation
of system power consumption given that earlier measure-
ments show the WaveLAN card to consume 40% of to-

Parameters shal adi tomcatv
N 32 16 32
M 32 16 16

Table 3: Benchmark parameters.

tal system power (iPAQ + WaveLAN). However, hiberna-
tion mode still draws a small amount of power. Therefore,
while in hibernation we consider total power demands to
drop by 1/3. The power level actually drops a little more
than 1/3, so this is a slightly conservative over-estimate
(which also makes calculations easier!). Translating this
into energy comparisons is just a summation or integral
under the curve of the power levels across execution (cy-
cle) time.

5.1 Benchmark Characteristics

In shal, there are few regions which access the same arrays
consecutively across loops. Conversely with adi, each
loop uses all arrays; hence there is one large region to
suspend the card (after the arrays have been loaded). We
see more interesting behavior in tomcatv where there are
some opportunities to suspend within a large loop (con-
taining several nested loops), yet the entire loop does not
fit into memory. Thus, each iteration should use some
power management policy to save overall energy.

These three benchmarks use two dimensional arrays of
size N×N . We chose sizes of N along with the num-
ber of memory pages M that exhibited interesting behav-
ior. Each memory page is assumed to have 4KB. If M is
too large, then after initial array accesses there will be no
more page faults. If M is too small, arrays may not fit at
all, requiringpage faults everywhere. AdjustingN mainly
affects the simulation execution time, therefore we try to
keep it small. The parameters used in these benchmarks
are as shown in Table 3.

We want to use OS inactivity thresholds relative to the
suspend operation, however we have measured both sus-
pend/resume times to be about 130ms under Linux 2.4
for the iPAQ, which amounts to about 25 million cycles.
For interesting benchmark results, this requires simulation
runs on the order of days. In order to reduce simulation
times, our analysis scales this factor by 1000 before calcu-
lating potential energy benefits (i.e., assumes a more ideal
situation in terms of suspension/resumption overhead).

9-6



EELRM Energy Results
OS threshold shal adi tomcatv tomcatv (PFC)

1× 101.0 99.3 126.5 95.3
10× 100.1 92.6 116.3 87.6
20× 99.7 86.2 104.2 78.5
24× 99.4 — — —
30× 99.7 80.6 98.6 74.3
35× 99.7 78.1 96.7 72.9
54× 99.7 69.1 96.7 72.8
∞ 99.7 71.3 96.7 72.8

Table 4: Energy consumption of benchmark programs
with EELRM energy management. Energy figures relative
to OS approach.

5.2 Simulation Results

Table 4 shows the effectiveness of our compilation strat-
egy over an operating system approach which is based on
inactivity thresholds for card suspension. The reported
figures assume a 25,000 CPU cycles suspension overhead.
Results for different OS threshold values are listed, where
each such value is a multiple of the suspension overhead
of the wireless communication card. The ∞ threshold
represents the case where the communication card is al-
ways on (i.e., never suspended). Boldface numbers indi-
cate the points at which longer thresholds have equivalent
energy/performance characteristics as the ∞ threshold.

Comparing a range of thresholds reveals subtle results.
Picking an optimal value is impossible because program
behavior is unique. Furthermore, small changes to the
threshold, in hopes of tuning energy/performance, have
negligible impact. A slight change may allow the OS
to hibernate during an additional region, but possibly at
the cost of incurring a performance penalty at another re-
gion. Conversely, adjusting the threshold to avoid a per-
formance penalty may prohibit the OS from hibernating at
another region. An example of this behavior was observed
in shal. From 1x – 10x, energy usage vacillated while per-
formance improved marginally.

Overall, the results show that for shal, the OS technique
and our EELRM compiler perform roughlyequivalent with
little, if any, energy savings. Our compiler does a better
job against larger thresholds in the adi case due to the fact
that it is able to suspend the card earlier. Since there is one
large suspended region, the compiler’s advantage grows
linearly with respect to varying the threshold limit. This
results in energy savings of almost 30% over the OS based
technique.

For tomcatv, our compiler does not perform well com-
pared to short OS threshold values. This occurs because

OS and EELRM Performance Results
OS threshold shal adi tomcatv

1× 101.3 101.7 105.4
10× 100.3 100.2 103.0
20× 100.2 100.2 102.9
24× 100.3 100.2 —
30× 100.0 100.2 101.0
35× 100.0 100.2 101.5
54× 100.0 103.2 100.0
∞ 100.0 100.0 100.0

EELRM 100.2 101.7 101.0/103.9 (PFC)

Table 5: Execution times relative to the ∞ threshold.

of computationally large loops which contain page faults.
Our compiler identifies this and keeps the card enabled.
Therefore, we miss large opportunities for hibernation.
However, we examined page fault clustering as an en-
abling optimization. By swapping in all necessary data be-
fore a regions, the compiler can direct the card to hiber-
nate within the region. In the presence of page fault clus-
tering (tomcatv (PFC)), our approach always does better
than the OS approach, with energy savings of up to 27%.
In all cases, the compiler based approach reduced the en-
ergy consumption of all benchmarks as compared to the
case without any power management.

Note that there is an implicit asymptotic limit of the en-
ergy savings attainable by power managing the wireless
card (i.e., shutting down the card immediately after pro-
gram start and for the entire duration). For the case of
a WaveLAN on iPAQ, the energy savings limit is about
33%. Indeed, results from adi show our technique reaches
28.7% savings. On the opposite extreme, we cannot do
much for shal, but neither can the OS. In programs exhibit-
ing behavior similar to that of Figure 1, tomcatv reveals the
potential for more intelligent power management through
those idle periods than the OS.

Although the reported results were obtained for small
problem and main memory sizes, we expect the results to
scale well if both entities grow proportionally (N2 ∝ M ).
However, if the problem sizes grow faster than the main
memory sizes, enabling transformations such as page fault
clustering and index set splittingwill become increasingly
important for effective compiler-based techniques.

Using a power management approach may lead to per-
formance degradation due to the on-demand resumption
penalty of the wireless card. A summary of the overall per-
formance penalties is given in Table 5. The largest penalty
we observed for EELRM was 3.9% relative to the program
performance without any power management. Overall,
the performance penalties can be considered insignificant.

9-7



6 Future Work

Clearly, more advanced analysis techniques and experi-
ments are needed to further validate the effectiveness of
our approach. Our current implementation does not use
a performance model to eliminate hibernate statements or
perform just-in-timecard activation. We are in the process
of integrating page fault clustering as an enabling transfor-
mation into our compiler. In addition, we will consider in-
dex set splitting as an additional enabling transformation
in cases where the working set of a region is too large to
fit into memory.

We are planning to extend our method to consider
explicit file I/O, irregular applications, and programs
with pointer-based data structures. We will investigate
how much improvement over our current approach can
be achieved by using refined DAD-based implementa-
tions for MAY REF , MUST REF , and solving the
IN MEM data flow problem. We are also planning to
apply our techniques to non-scientific applications such
as browsers, voice recognition, and image understanding
codes.

7 Conclusion

Compiler-directed energy management of a wireless com-
munication card can be an effective strategy as compared
to an OS based energy management approach. Simulation
results showed energy savings of up to 30% over the OS.
For OS inactivity threshold of 10x – 20x card suspension
overhead, energy savings improvements of up to 21.5%
were observed, assuming that page fault clustering was ap-
plied to enable energy optimizations. Not only do these
results show potential energy benefits, but we also wish to
emphasize, even under adverse conditions, our compiler
does not perform significantly worse than the OS. That is,
our analysis tries to ensure actual energy savings before di-
recting the wireless card to hibernate.

Although our intent is to show the benefits and feasibil-
ity of compiler techniques, our results provide an interest-
ing guide for ACPI. In general, smaller thresholds yielded
modest energy gains with little performance delay. This
can be understood by noticing that

execution time ≫ resume overhead

Our preliminary estimates in eliminating this performance
delay by assuming just-in-time activation provide up to an
additional 5% energy savings.

References
[1] National Compiler Infrastructure (NCI) project. Overview avail-

able online at http://www-suif.stanford.edu/suif/nci/index.html.,
Co-funded by NSF/DARPA, 1998.

[2] A. V. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Tech-
niques, and Tools. Reading, MA, second edition, 1986.

[3] V. Balasundaram. A mechanism for keeping useful internal in-
formation in parallel programming tools: The data access descrip-
tor. Journal of Parallel and Distributed Computing, 9(2):154–170,
June 1990.

[4] V. Balasundaram,G. Fox, K. Kennedy, and U. Kremer. A static per-
formance estimator to guide data partitioning decisions. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pages 213–223, Williamsburg, VA, April 1991.

[5] V. Balasundaram and K. Kennedy. A technique for summarizing
data access and its use in parallelism enhancing transformations.
In Proceedings of the SIGPLAN ’89 Conference on Programming
Language Design and Implementation, Portland, OR, June 1989.

[6] T. Burd and R. Brodersen. Processor design for portable systems.
Journal of VLSI Signal Processing, 13(2-3):203–222, 1996.

[7] D. Comer and J. Griffioen. A new design for distributed systems:
The remote memory model. In Proc. Summer 1990 USENIX Conf.,
pages 127–126, Anaheim, CA (USA), 1990.

[8] Compaq Corp. iPAQ H3600 handheld PC.
http://www.handhelds.org/Compaq.

[9] Intel Corp., Microsoft Corp., and Toshiba Corp. ACPI imple-
menters’ guide. Draft, February 1998.

[10] M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Cooperative
caching: Using remote client memory to improve file system per-
formance. In Proc. Symp. on Operating Systems Design and Im-
plementation, pages 267–280, Monterey CA (USA), 1994.

[11] S. Devadas and S. Malik. A survey of optimization techniques tar-
geting low power VLSI circuits. In Proceedings of the 32th Design
Automation Conference, 1995.

[12] K. Kennedy and U. Kremer. Automatic data layout for distributed
memory machines. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 20(4):869–916, 1998.

[13] U. Kremer. Fortran RED – a retargetable environment for auto-
matic data layout. In Eleventh Workshop on Languages and Com-
pilers for Parallel Computing, Chapel Hill, NC, August 1998.

[14] U. Kremer, J. Hicks, and J. Rehg. A compilation framework for
power and energy management on mobile computers. In Interna-
tional Workshop on Languages and Compilers for Parallel Com-
puting (LCPC’01), August 2001.

[15] J. Lorch and A. Smith. Software strategies for portable computer
energy management. IEEE Personal Communications Magazine,
5(3), June 1998.

[16] E. Macii, M. Pedram, and F. Somenzi. High-level power modeling,
estimation, and optimization. IEEE Trans. on Computer Aided De-
sign, 17(11), November 1998.

[17] R. Saavedra-Barrera. CPU Performance Evaluation and Execution
Time Prediction Using Narrow Spectrum Benchmarking. PhD the-
sis, U.C. Berkeley, February 1992. UCB/CSD-92-684.

[18] B. Schilit and D. Duchamp. Adaptive remote paging for mobile
computers. Technical Report CUCS-004-91, 1991.

[19] T. Simunic, L. Benini, P. Glynn, and G. De Micheli. Dynamic
power management for portable systems. In Proceedings of the
Sixth Annual International Conference on Mobile Computing and
Networking (MobiCom), Boston, MA, August 2000.

9-8


