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Dissertation Director:

Prof. Siddhartha Sahi

In this dissertation, a generalized version of Dirac cohomology is developed.

It is shown that Dirac operators can be defined and their cohomology can be studied

for a general class of algebras, which we call Hopf–Hecke algebras. A result relating the

Dirac cohomology with central characters is established for a subclass of algebras, which

we call Barbasch–Sahi algebras. This result simultaneously generalizes known results

on such a relation for real reductive Lie groups and for various kinds of Hecke algebras,

which all go back to a conjecture of David Vogan [Vog97].

A variety of algebraic concepts and techniques is combined to create the general

framework for Dirac cohomology, including central simple (super)algebras, Hopf alge-

bras, smash products, PBW deformations, and Koszul algebras.

Classification results on the studied classes of algebras are obtained, and infinitesimal

Cherednik algebras of the general linear group are studied as novel examples for algebras

with a Dirac cohomology theory.
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Preface

Dirac operators have played an important role in several areas of mathematics and

mathematical physics, starting with the work of Paul Dirac [Dir28a, Dir28b]. While

as differential operators, Dirac operators have been crucial in the Atiyah–Singer index

theorem [AS63], algebraic Dirac operators have been important tools in representation

theory.

This thesis is motivated by recent developments in two different fields of algebra and

representation theory which it combines in order to obtain a generalized theory of Dirac

cohomology: versions of Dirac cohomology for various algebraic objects and parallel

results on the connection between this cohomology theory and central characters on

the one hand [HP02, Ciu16] and the theory of PBW deformations of smash products

on the other hand, which unify many relevant algebraic structures, like Drinfeld Hecke

algebras [Dri86], symplectic reflection algebras and rational Cherednik algebras [EG02],

and infinitesimal Hecke and Cherednik algebras [EGG05]. Additionally, central simple

(super)algebras prove a useful ingredient for the presented theory.

The generalization of Dirac cohomology to a wider class of algebras was suggested

by D. Barbasch and S. Sahi, which is why those algebras for which a generalized Dirac

cohomology and a result on its connection to central characters is proved in this thesis

are called Barbasch–Sahi algebras.

Some results of this thesis have already been published: The pin cover constructions

of Section 4.1 – Section 4.3 and a version of Dirac cohomology and Vogan’s conjecture

as in Chapter 6, but largely without the use of superalgebraic concepts or central simple

superalgebras are contained in the accepted article [Fla16]. Most of the classification

results in Chapter 5 and the applications to infinitesimal Cherednik algebras (Chapter 7)

are contained in the preprint [FS16].
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Chapter 1

Introduction

The Dirac operator was introduced by Paul Dirac in 1928 [Dir28a, Dir28b] to formulate

a quantum mechanical wave equation for electrons which is consistent with special rela-

tivity. The new operator serves as a “square root” of the d’Alembert operator, and just

as a square root of −1 can only be found in a suitable field extension of the real num-

bers, the operator Dirac constructed is an element in an extended algebra of operators

which act on wave functions with multiple components. The theory described by the

Dirac equation was the first theory combining quantum mechanics and special relativity,

it predicted the existence of antimatter years before its experimental confirmation and

gave a theoretical justification for wave functions with multiple components, which had

previously been used by Wolfgang Pauli to explain the spin of elementary particles as

manifest, for instance, in the Stern–Gerlach experiment.

Dirac operators have subsequently played an important role in many ares of physics

and mathematics, in particular, in the Atiyah–Singer index theorem [AS63]. Algebraic

Dirac operators were first used by R. Parthasarathy [Par72] to realize the discrete se-

ries of a non-compact semisimple Lie group. In a certain sense, they can be viewed

as “square roots” of Casimir operators and they have proven important tools to study

representations of real reductive groups [Vog81], in particular, unitary representations,

where they were used to investigate the classification of unitary highest weight repre-

sentations [EHW83, Jak83] and of unitary representations with non-zero cohomology

[VZ84].

By the work of Harish-Chandra, the study of irreducible unitary representations of

a real reductive Lie group G boils down to the study of a class of unitarizable (g,K)-

modules, where g is the complexified Lie algebra of G and K is a maximal compact
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subgroup. These unitarizable (g,K)-modules are special cases of admissible (g,K)-

modules, which were classified by Langlands in 1973 [Lan89, BW00], so the problem

reduces to identifying those admissible (g,K)-modules which are, in fact, unitarizable.

For any (g,K)-module M and a suitable spin representation S, the Dirac operator D

acts on the tensor product module M ⊗ S and the kernel kerD of this action is a K̃-

module, where K̃ is a certain double cover of K. For unitarizable (g,K)-modules M ,

the action of D is semisimple and Parthasarathy proved [Par72] an inequality relating

the action of the Casimir operator of G on M with the action of the Casimir operator

of K̃ on kerD which can be used as a criterion for unitarizability.

For non-unitary admissible modules M , the action of D might not be semisimple.

However, David Vogan suggested [Vog97] considering the cohomology of the action of

D on M ⊗ S, the Dirac cohomology

HD(M) = kerD/(kerD ∩ imD) .

He conjectured that this cohomology, if non-zero, should determine the infinitesimal

character of M . Since for unitary representations, the Dirac cohomology is just the

kernel of the Dirac operator and the infinitesimal character, in particular, governs the

action of the Casimir element, this idea extends Parthasarathy’s theory. Vogan’s con-

jecture was proved by Huang and Pandžić [HP02].

Barbasch, Ciubotaru, and Trapa established a p-adic analog of Vogan’s conjecture

[BCT12], where the role of (g,K)-modules is played by modules of graded affine Hecke

algebras. The result was extended to more general types of Hecke algebras, including

rational Cherednik algebras and symplectic reflection algebras by Ciubotaru [Ciu16].

The starting point of this thesis is the observation that the different versions of

Dirac cohomology and Vogan’s conjecture can be treated uniformly using the theory

of Hopf algebras, smash products, PBW deformations, and superalgebras. From this

perspective, (g,K)-modules and modules of Hecke algebras are special cases of modules

of a smash product algebra constructed from a Hopf algebra and a Koszul algebra, or a

PBW deformation of such a smash product. If the Hopf algebra is a group algebra, these

deformations include graded affine Hecke algebras, symplectic reflection algebras, and
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rational Cherednik algebras. If the Hopf algebra is the universal enveloping algebra of a

Lie algebra, the original setting is recovered, but also novel examples like infinitesimal

Cherednik algebras arise.

We explain how Dirac operators and Dirac cohomology can be defined in our gen-

eral setting and how this yields an analog of Vogan’s conjecture relating the Dirac

cohomology with central characters (Theorem 6.4.5) for a certain subclass of deforma-

tions which includes the mentioned known special cases. An important step in the proof

of the generalized Vogan’s conjecture is to find a suitable concept of the pin cover of a

cocommutative Hopf algebra. We construct this pin cover object explicitly (Section 4.3),

but also explain how it can be derived abstractly from the theory of Hopf algebra actions

on central simple superalgebras (Section 4.4).

PBW deformations of smash products of a Hopf algebra and a Koszul algebra have

been an active field of research in its own right. Various special cases haven been

studied by Drinfeld [Dri86], Braverman–Gaitsgory [BG96], Etingof–Ginzburg [EG02],

Ram–Shepler [RS03], Etingof–Gan–Ginzburg [EGG05], Khare [Kha17], and the most

general situation relevant for our purposes by Walton and Witherspoon [WW14]. In all

these cases, it is known that PBW deformations can be characterized by an equivariance

condition and an identity which generalizes the classical Jacobi identity for Lie algebras.

If the Hopf algebra factor of the deformed smash product is a group algebra, then an

explicit classification of the deformations was given by Drinfeld [Dri86] (see also Ram–

Shepler [RS03]). In analogy to this, we obtain partial results on the classification of the

deformations for which our theory of Dirac cohomology applies. For instance, we prove

that these deformations have to be supported on a certain subspace of bireflections in

the Hopf algebra (Proposition 5.1.7). We also construct a family of explicit examples of

PBW deformations parameterized by a space of Hopf algebra invariants (Section 5.2),

and we prove that the family contains all PBW deformations under additional assump-

tions, like in the case of a group algebra. Our results are first steps towards a complete

classification of the discussed PBW deformations, which would contain the classification

of infinitesimal Hecke algebras and is an interesting open problem.

We study infinitesimal Cherednik algebras as a novel class of algebras with a Dirac
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cohomology and with an analog of Vogan’s conjecture. Infinitesimal Cherednik algebras

are a special case of infinitesimal Hecke algebras which were defined by Etingof–Gan–

Ginzburg [EGG05] as infinitesimal analogs of Hecke algebras, where the role of the

finite group is played by a Lie algebra. By definition, they are PBW deformations and

some infinitesimal Hecke algebras, including all infinitesimal Cherednik algebras, satisfy

the orthogonality condition which is required for our definition of a generalized Dirac

operator. We derive a formula for the square of this Dirac operator for the infinitesimal

Cherednik algebras associated with the general linear group (and its Lie algebra), and

we show that they are, in fact, Barbasch–Sahi algebras (Proposition 7.2.14), that is,

a version of Vogan’s conjecture is available for them. We demonstrate that for finite-

dimensional representations, the Dirac cohomology is non-zero, so by Vogan’s conjecture

(Corollary 7.3.12), it determines the central character, but we even show directly how

it determines the precise module.

Organization of this thesis. The first two chapters following this introduction

are dedicated to the necessary preliminaries. In Chapter 2, we recall definitions and ba-

sic properties of superalgebras, Clifford algebras and their substructures, central simple

(super)algebras, Hopf (super)algebras, smash products, and PBW deformations thereof,

before we review Dirac operators and different known versions of Dirac cohomology, for

(g,K)-modules just as for Hecke algebras, in Chapter 3. We explain explicit pin cover

constructions for groups, Lie algebras, and pointed cocommutative Hopf algebras and

we interpret these using the theory of coalgebra measurings and the Skolem–Noether

theorem for central simple (super)algebras in Chapter 4. In Chapter 5, we derive results

on the classification of PBW deformations of certain smash products. Both the con-

cept of pin covers and that of PBW deformations of smash products are incorporated

into a generalized framework for Dirac operators and Dirac cohomology in Chapter 6,

where also a version of Vogan’s conjecture is proved. Finally, in Chapter 7, we study

infinitesimal Cherednik algebras as novel examples of algebras with a Dirac cohomology

theory. The thesis is concluded by a summary of our results and an outlook containing

a selection of open questions (Chapter 8).
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Chapter 2

Preliminaries: Algebraic structures

F will generally be a field of arbitrary characteristic, although we will frequently assume

charF 6= 2 and we will want to specialize F or its characteristic even further for various

special statements. For an F-vector space V , we will denote the tensor algebra, the

symmetric algebra, and the exterior algebra by the symbols T (V ), S(V ), and Λ(V ), and

a typical basis element by v1 . . . vm, v1 . . . vm, and v1 ∧ · · · ∧ vm, respectively, for m ≥ 1,

v1, . . . , vm ∈ V .

2.1 Superalgebras

Let us use the words superspace and superalgebra for a Z2-graded vector space over F or

a Z2-graded F-algebra, respectively. If a is a Z2-homogeneous element in a superspace,

we denote its degree by |a| ∈ {0, 1}.

As superspaces can be regarded as ordinary vector spaces, we have a tensor product

for them, and the tensor product of two superspaces has a natural Z2-grading, where

tensor products of homogeneous elements are homogeneous, their degree being the sum

of the degrees of the two factors. The superspaces form a tensor category with the

base field viewed as a one-dimensional even superspace as the unit object. What makes

superspaces (or superalgebras) interesting is the fact that this tensor category has a

non-trivial braiding . For superspaces V and W , we define the map

cV,W : V ⊗W →W ⊗ V , v ⊗ w 7→ (−1)|v||w|w ⊗ v (2.1.1)

for all homogeneous v ∈ V,w ∈W . Note that c2 = id on any pair of superspaces, which

means that the braiding is symmetric. Let us also observe that this braiding becomes

trivial in characteristic 2, so the category of superspaces is just the category of ordinary
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vector spaces in this case.

The braiding affects many notions in the category of super vector spaces, for instance,

it determines the algebra structure of tensor products of algebras in this category (see

also Section 2.4.1): If A,A′ are superalgebras with multiplication maps µ : A⊗ A→ A

and µ′ : A′ ⊗ A′ → A′, then A⊗ A′ is the superalgebra whose underlying superspace is

the tensor product space and whose multiplication is defined for homogeneous elements

(and hence, for arbitrary elements) by

(a1 ⊗ a′1)(a2 ⊗ a′2) = (µ⊗ µ′) ◦ (1⊗ cA′⊗A ⊗ 1)(a1 ⊗ a′1 ⊗ a2 ⊗ a′2)

= (−1)|a
′
1||a2|a1a2 ⊗ a′1a′2 for all a1, a2 ∈ A, a′1, a′2 ∈ A′ .

We also use the braiding to define left actions from right actions. Let A be a superalge-

bra, letM be a right A-moduleM , that is, an A-module in the category of superspaces,

and let Aop be the opposite algebra, that is, the superspace A with multiplication

Aop ⊗Aop ' A⊗A cA,A−−−→ A⊗A→ A ' Aop ,

where the second arrow is the multiplication in A. ThenM is a left Aop-module through

the map

Aop ⊗M cA,M−−−→M ⊗A→M ,

where the second arrow is the right action. In particular, any superalgebra A is a left

A⊗Aop-module through the map

(A⊗Aop)⊗A idA⊗cA,A−−−−−−→ A⊗A⊗A→ A ,

where the second arrow is the multiplication in A.

Now, just as for ordinary algebras, any invertible element a ∈ A comes with a

conjugation automorphism ρa of A defined by

ρa(b) = (a⊗ (a−1)op) · b for all b ∈ A . (2.1.2)

Lemma 2.1.1. A× → Aut(A), a 7→ ρa, is a well-defined group homomorphism.

Also the supercommutator of elements a, b in a superalgebra A can be defined using

this action, namely as

[a, b] = (a⊗ 1op − 1⊗ aop) · b . (2.1.3)
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If a, b are homogeneous with respect to the Z2-grading, then

[a, b] = ab− (−1)|a||b|ba . (2.1.4)

The supercommutator satisfies super skew-symmetry and the super Jacobi identity ,

which are Z2-graded analogs to their classical counterparts: for homogeneous a, b, c ∈ A,

[a, b] = −(−1)|a||b|[b, a] , (2.1.5)

(−1)|a||c|[a, [b, c]] + (−1)|b||a|[b, [c, a]] + (−1)|c||a|[c, [a, b]] = 0 . (2.1.6)

A linear endomorphism of A is called even if it preserves the Z2-grading, or odd if it

reverses the Z2-grading. The space of all linear endomorphisms End(A) is a direct sum

of the subspaces consisting of even or odd endomorphisms, and End(A) is a superalgebra

with these spaces as Z2-homogeneous subspaces.

An even endomorphism δ is called an even derivation if

δ(ab) = δ(a)b+ aδ(b) for all a, b ∈ A , (2.1.7)

and an odd endomorphism δ is called an odd derivation if

δ(ab) = δ(a)b+ (−1)|a|aδ(b) for all homogeneous a, b ∈ A . (2.1.8)

The spaces of even and odd derivations together form a Z2-graded subspace Der(A) in

End(A) which is closed under the supercommutator in End(A).1

Now any a in A defines an endomorphism δa = [a, ·].

Lemma 2.1.2. A → Der(A), a 7→ δa, is a well-defined linear map which preserves the

Z2-grading and the supercommutator.

Proof. If a, b ∈ A are Z2-homogeneous, then δa(b) is a linear combination of products

of a and b, hence, δa(b) is homogeneous of degree |a| + |b|. Thus, δa is an even or odd

endomorphism of A if a is even or odd, respectively.

1We want to avoid the subtleties of the definition of a Lie superalgebra here, since it will not be
necessary for our purposes.
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For all homogeneous a, b, c ∈ A,

[a, bc] = abc− (−1)|a||bc|bca

= abc− (−1)|a||b|bac+ (−1)|a||b|bac− (−1)|a||b|(−1)|a||c|bca

= δa(b)c+ (−1)|a||b|bδa(c) ,

so δa is an even or odd derivation, depending on the homogeneous degree of a.

Also, for all homogeneous a, b, c ∈ A, using super skew-symmetry and the super

Jacobi identity we get

[δa, δb](c) = [a, [b, c]]− (−1)|a||b|[b, [a, c]] = −(−1)|b||c|[a, [c, b]]− (−1)|a||b|[b, [a, c]]

= (−1)|b||c|(−1)|a||b|(−(−1)|a||b|[a, [c, b]]− (−1)|b||c|[b, [a, c]])

= (−1)|b||c|(−1)|a||b|(−1)|c||a|[c, [b, a]] = [[a, b], c] = δ[a,b](c) .

2.1.1 Ideals of superalgebras

A (left/right/two-sided) ideal of a superalgebra is graded , if it is a graded subspace,

that is, if it is spanned by homogeneous elements. For any superalgebra, we define the

graded Jacobson radical as the intersection of all maximal (proper) graded left ideals.

Any superalgebra is, in particular, an ordinary ungraded algebra, or alternatively, a

trivially graded superalgebra, so we could also consider the Jacobson radical of this

ungraded algebra, or equivalently, this trivially graded superalgebra. However, if the

characteristic is not 2, this turns out to be the same object by a result of Bergman

[Ber75] (see also [CM84, CM87]).

Proposition 2.1.3 ([Ber75, Thm. 1, Prop. 14]). For any algebra over a field of char-

acteristic not 2, the graded and the ungraded Jacobson radical coincide.

A superalgebra is simple, if it has no non-zero proper two-sided graded ideals.

Lemma 2.1.4 ([Rac98, Thm. 3, Prop. 4]). Let A be a finite-dimensional simple su-

peralgebra. Then there is exactly one finite-dimensional irreducible A-module up to

isomorphism and parity change.
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Proof. Let I be a minimal non-zero graded left ideal of A. Then I is a finite-dimensional

A-module. Any submodule is a left ideal, hence, I is irreducible.

Let M be any irreducible A-module. The annihilator of M is a graded two-sided

ideal properly contained in A, since it does not contain 1 ∈ A. Hence, M is faithful, and

there is a homogeneous m ∈ M such that Im 6= 0. Consider f : I → M,x 7→ xm. The

map is an A-module map whose kernel is the annihilator of m in I, a left-ideal in I, but

not I. Hence by minimality of I, f is injective. The image of f is a non-zero submodule

of M , so as M is irreducible, this must be M . Hence, f is an A-module isomorphism

between I and M .

As m is homogeneous, f is an even or odd isomorphism. This completes the proof.

A superalgebra is semisimple if it is the direct sum of simple superalgebras. The

connection between the Jacobson radical and semisimple superalgebras is a close analog

of its classical counterpart. In particular, the Jacobson radical is a graded two-sided

ideal and we have the following results.

Lemma 2.1.5. Assume A is a superalgebra which is the direct sum of minimal (non-

zero) graded left ideals. Then A is semisimple.

Proof. Let S be the set of minimal graded left ideals whose direct sum is A and let T

be the set {IA | I ∈ S}. The elements of T are graded two-sided ideals in A and their

sum is A. We claim that these graded two-sided ideals are, in fact, minimal: Assume

K is a non-zero graded two-sided ideal in IA for I ∈ S. Then K contains a minimal

graded left ideal, say J ∈ S, that is, there is a non-zero homogeneous a ∈ A such that

0 6= Ia ⊂ J , because otherwise, K would be contained in the direct sum of the minimal

graded left ideals S \ {J}. Hence, due to minimality of I and J and by Schur’s lemma,

the right-multiplication with a is an isomorphism of I and J as graded left A-modules.

Let f : J → I be the inverse A-module isomorphism. Let b be the component of 1 ∈ A

in J , then J = Jb and

Jf(b) = f(Jb) = f(J) = I .
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As K is a two-sided ideal containing J , this means, K contains I, so it contains IA.

Hence, IA is a minimal graded two-sided ideal.

Being minimal graded two-sided ideals, the elements of T intersect trivially, so A is

a direct sum of minimal graded two-sided ideals

A = ⊕K∈TK .

Consider a single K ∈ T . The component of 1 ∈ A in K is an identity element in K

making it a graded subalgebra, any graded two-sided ideal of which is a graded two-

sided ideal in A, because KL ⊂ K ∩ L = 0 for all K 6= L ∈ T . Hence, K is a simple

superalgebra, as desired.

Lemma 2.1.6. Let A be a finite-dimensional superalgebra with Jacobson radical J .

Then A/J is a semisimple superalgebra and if a homogeneous element x ∈ A has an

invertible image in the quotient algebra A/J , then x is invertible in A.

Proof. Let K be any graded left-ideal in A/J . Then due to finite-dimensionality, there

is a minimal non-zero graded left ideal I in K. The preimage of I under the canonical

projection is a graded left ideal I in A which contains J properly. Hence, there is

a maximal graded left ideal M of A such that M ∩ I ( I. But M contains J and

I is minimal in A/J , so M and I intersect trivially in A/J . On the other hand,

I +M is a graded left-ideal in A which contains M properly, so it has to be A. Hence

K = I ⊕ (M ∩K).

Set K0 = A/J , and define the minimal graded left ideals (Ii)i≥1 in A/J and the

graded left ideals (Ki)i≥1 in A/J recursively such thatKi = Ii+1⊕Ki+1 untilKi+1 = 0.

Since A/J is finite-dimensional, this process will terminate, so A/J is the direct sum of

minimal graded left ideals

A/J = I1 ⊕ · · · ⊕ In ,

which proves the first part together with the previous lemma.

For the second part, consider an even element a ∈ J . Assume A(1 + a) 6= A, then

A(1+a) is contained in a maximal graded left ideal I of A. I contains J , so in particular,
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a, but also 1 + a. But then I contains 1, which is absurd. Hence, A(1 + a) = A, and

1 + a has a left inverse.

Consider an element x as in the assertion. Then there is an element y ∈ A such

that yx = 1 + a for some a ∈ J . As x is homogeneous and as J is graded, we may

assume y to be homogeneous and a to be even. But then 1 + a has a left-inverse in A,

so x has a left-inverse in A. This means the right-multiplication with x is an injective

endomorphism of the finite-dimensional vector space A. Hence, this endomorphism is

surjective, and x also has a right-inverse. That is, x is a unit in A, as desired.

Corollary 2.1.7. Let A be a finite-dimensional superalgebra over a field of characteristic

not 2 with Jacobson radical J . If an element of A has an invertible image in the quotient

superalgebra A/J , then it is invertible in A.

Proof. Consider A as a trivially graded superalgebra, then any element of A corresponds

to a homogeneous element, which is invertible, if it is invertible modulo the Jacobson

radical of this trivially graded algebra. But in characteristic not 2, this is the same

Jacobson radical by Proposition 2.1.3.

2.2 Clifford algebras

In this section, let us assume that the characteristic of F is not 2, and let V be a F-vector

space with a symmetric bilinear form 〈·, ·〉 : V ⊗V → k. We will recall results on Clifford

algebras and their substructures mostly following Meinrenken’s book [Mei13].

Definition 2.2.1. The Clifford algebra C = C(V, 〈·, ·〉) is the F-algebra generated by

elements v ∈ V subject to the relations

v2 = 〈v, v〉 for all v ∈ V . (2.2.1)

An immediate consequence is the relation

v1v2 + v2v1 = 2〈v1, v2〉 for all v1, v2 ∈ V (2.2.2)

if we consider (v1 +v2)2, and since we are not in characteristic 2, the two sets of relations

are in fact equivalent.
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We can reformulate this definition and view C as the quotient algebra of the tensor

algebra T (V ) (over F) by the ideal I generated by {v2 − 〈v, v〉}v∈V . If v1, . . . , vm

are elements in V for m ≥ 1, we will denote the congruence class of v1 . . . vm (i.e.,

v1 ⊗ . . .⊗ vm) in T (V ) in the quotient algebra C by the same expression v1 . . . vm, but

it should become clear from the context which algebra we are working in.

Now T (V ) is a filtered and even Z-graded algebra, where elements from V are

assigned degree 1. More precisely, the graded slices of T (V ) are

T 0(V ) = F , T 1(V ) = V , T 2(V ) = V ⊗ V ,

and so on, and the filtered subspaces are F, F⊕V , F⊕V ⊕V ⊗V , and so on. Consequently,

the quotient algebra C is a filtered algebra, where the filtered subspaces are just the

images of the filtered subspaces of T (V ) under the quotient map. Let us denote them

by C0, C1, C2, . . . . As I is generally not a homogeneous ideal with respect to the Z-

grading of T (V ), C does not become a Z-graded algebra in this way. However, let us

observe that the Z-grading induces a Z2-grading on T (V ), and that I is homogeneous

with respect to this grading. Hence, C is a superalgebra, and we denote the graded

subspaces by Ceven and Codd. Ceven is the image of F⊕ T 2(V )⊕ T 4(V ) . . . and Codd is

the image of V ⊕ T 3(V )⊕ T 5(V ) . . . under the quotient map.

To make the structure of C even more transparent, it can be instructional to compare

it with the exterior algebra Λ(V ), which is the special case of a Clifford algebra where

the bilinear form 〈·, ·〉 is just 0. The exterior algebra is hence the quotient of T (V )

by the ideal generated by {v2}v∈V , or equivalently, by the ideal generated by {v1v2 −

v2v1}v1,v2∈V . Conventionally, we express elements in Λ(V ) using the wedge symbol: if

v1, . . . , vm are elements in V for m ≥ 1, then the congruence class of v1 . . . vm ∈ T (V )

in the quotient algebra Λ(V ) is written as v1 ∧ · · · ∧ vm. Since in this special case

the defining ideal of Λ(V ) in T (V ) is homogeneous with respect to the Z-grading, the

exterior algebra is a Z-graded algebra.

Let us pick an orthogonal basis (ei)i of V with respect to 〈·, ·〉, that is, a basis
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satisfying 〈ei, ej〉 = 0 for i 6= j.2 We define

f : T (V )→ Λ(V ) , ei1 . . . eim 7→ ei1 ∧ · · · ∧ eim . (2.2.3)

If charF = 0, we also define the quantization map (antisymmetrization map)

q : T (V )→ C(V ) , v1 . . . vm 7→ 1
m!

∑
σ∈Sm

(−1)σvσ(1) . . . vσ(m) for all v1, . . . , vm ∈ V ,

(2.2.4)

where (−1)σ denotes the sign of the permutation σ.

Proposition 2.2.2 ([Mei13, 2.2.5]). The map f induces a vector space isomorphism

from C to Λ(V ) which is independent of the choice of the orthogonal basis (ei)i. If

charF = 0, then q induces an isomorphism from Λ(V ) to C.

Even in positive characteristic charF = p, q is well-defined on the p-th filtered sub-

space of T (V ), and induces an inverse isomorphism between the p-th filtered subspaces

of Λ(V ) and C. In particular, we can always identify C0 with F and C1 with F⊕ V .

Let us specialize F = C and V = Cn for some n ≥ 0. Then there is a unique non-

degenerate symmetric bilinear form 〈·, ·〉 on V up to a change of basis, defining a unique

Clifford algebra C(V, 〈·, ·〉) up to isomorphism, which we denote by C(n). We denote

the matrix rings over the complex numbers by Mm(C) for m ≥ 1. For any m ≥ 0, we

can identify M2m(C) with End(Λ(Cm)), since dim Λ(Cm)) = 2m, and as Λ(Cm) is a

superalgebra if we assign elements from Cm odd degree, End(Λ(Cm)) is a superalgebra

(recall that End of a superspace is the superalgebra of all linear endomorphisms, not just

the graded ones, while the graded endomorphisms form the homogeneous subspaces).

Proposition 2.2.3 ([Mei13, Prop. 2.4]). For all m ≥ 0,

C(2m) ∼= M2m(C) and C(2m+ 1) ∼= C(2m)⊗ C(1) ∼= M2m(C)⊕M2m(C)

as complex algebras, while

C(2m) ∼= End(Λ(Cm)) and C(2m+ 1) ∼= C(2m)⊗ C(1)

as complex superalgebras, where C(1) is the superalgebra C[u]/(u2 − 1) with an even

generator u.

2For instance, we can start with any basis and orthogonalize it using the Gram–Schmidt algorithm.
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This result on the structure of complex Clifford algebras immediately implies:

Corollary 2.2.4. As ungraded algebras, C(2m) has a unique irreducible module up

to isomorphism (which has dimension 2m) and C(2m + 1) has exactly two irreducible

modules up to isomorphism (each of which has dimension 2m, as well).

Corollary 2.2.5. The center of C(2m) as an ungraded algebra and the supercenter of

C(2m) or C(2m+ 1) as superalgebras are one-dimensional. The center of C(2m+ 1) is

two-dimensional.

Proof. The (super)center of a full endomorphism algebra of a (super)space is one-

dimensional, which proves the assertions on C(2m). It also implies that the (su-

per)center of C(2m + 1) is the (super)center of C(1). C(1) = C[u]/(u2 − 1) is a

commutative algebra, hence, the center of C(2m + 1) is two-dimensional. However,

the homogeneous generator u cannot be in the supercenter, as [u, u] = 2u2 = 2 6= 0.

Hence, the supercenter of C(2m+ 1) is one-dimensional.

2.2.1 Pin group

What follows can also be found in [Mei13, 3.1.1, 3.1.2].

As in any ring, we can consider the group of units C× of the algebra C. The units in

the zeroth filtered subspace C0 can be identified with the set F×. An element v ∈ V ⊂ C1

is a unit in C if and only if v2 = 〈v, v〉 is not 0.

Let us define the non-isotropic vectors in V with respect to 〈·, ·〉,

V × = {v ∈ V | 〈v, v〉 6= 0} , (2.2.5)

and let Γ = Γ(V, 〈·, ·〉), the Clifford group, be the subgroup of C× generated by non-zero

scalars and non-isotropic vectors. As a set,

Γ = Γ(V, 〈·, ·〉) = {rv1 . . . vm ∈ C | r ∈ F×,m ≥ 0, v1, . . . , vm ∈ V ×} . (2.2.6)

As a subgroup of the Clifford group, we define the pin group as

Pin = Pin(V, 〈·, ·〉) = {rv1 . . . vm ∈ Γ(V, 〈·, ·〉) | r2〈v1, v1〉 . . . 〈vm, vm〉 = 1} . (2.2.7)
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In particular, if F contains a square root of 〈v, v〉 for all v ∈ V , for instance, if F

is algebraically closed or if F = R and 〈·, ·〉 is an inner product, then we can normalize

every vector in V with respect to 〈·, ·〉, and for any v ∈ V with 〈v, v〉 = 1, we obtain an

element v ∈ C× which is its own inverse. In this situation, the pin group equals {±1}

if V = 0, or otherwise

Pin = {v1 . . . vm ∈ C | v1, . . . , vm ∈ V, 〈v1, v1〉 = · · · = 〈vm, vm〉 = 1} . (2.2.8)

Now any element of Pin comes with a conjugation automorphism of the superalgebra

C (see Section 2.1). We want to make this more explicit. For any vector u ∈ V ×, we

define the reflection τu to be the linear transformation of V given by

τu(v) = v − 2u〈u, v〉/〈u, u〉 for all v ∈ V . (2.2.9)

Then τ2
v is the identity transformation, in particular, τu is an invertible linear transfor-

mation of V .

Lemma 2.2.6. Consider any vector u ∈ V × as an invertible element in C. Then the

conjugation automorphism ρu leaves the subspace V ⊂ C invariant. More precisely, ρu

is the unique automorphism ρ of C satisfying ρ(v) = τu(v) for all v ∈ V .

Proof. The inverse element of u in C is given by u/〈u, u〉. Now pick any v ∈ V . As u, v

are odd elements in the superalgebra C,

ρu(v) = 〈u, u〉−1(u⊗ uop) · v = −uvu/〈u, u〉 = v − 2u〈v, u〉/〈u, u〉 = τu(v) .

Also, V generates the Clifford algebra C, so any automorphism is determined by its

action on V .

We observe that this yields a group homomorphism from Pin to GL(V ). To describe

its image, we define O = O(V, 〈·, ·〉) as the group of invertible linear transformations

GL(V ) formed by those transformations A ∈ GL(V ) which preserve 〈·, ·〉:

O = O(V, 〈·, ·〉) = {A ∈ GL(V ) | 〈Av1, Av2〉 = 〈v1, v2〉 ∀v1, v2 ∈ V } . (2.2.10)

We call this the orthogonal group.
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For any u ∈ V ×, the reflection τu is an element in O, since for v, w ∈ V ,

〈τu(v), w〉 = 〈v, w〉 − 2〈u, v〉〈u,w〉/〈u, u〉 = 〈v, τu(w)〉 .

As τ2
u = id, this proves 〈τu(v), τu(w)〉 = 〈v, w〉.

But even more is true:

Theorem 2.2.7 (Cartan-Dieudonné, [Mei13, Thm. 1.1]). If 〈·, ·〉 is non-degenerate,

then the group O is generated by reflections.

Remark 2.2.8 (Historical remark). The more precise fact that every orthogonal transfor-

mation of an n-dimensional vector space over R or C is a product of at most n reflections

was proved by Élie Cartan in 1937 [Car38a, Car38b]. This result was generalized to ar-

bitrary fields of characteristic not 2 by Jean Dieudonné [Die48].

Lemma 2.2.9. If 〈·, ·〉 is non-degenerate and F contains a square root of 〈v, v〉 for

all v ∈ V , then the conjugation action of Pin on V ⊂ C defines a surjective group

homomorphism φ : Pin→ O with kernel {±1} ⊂ C. More explicitly, φ is determined by

φ(u) = τu for all u ∈ V with 〈u, u〉 = 1.

Proof. The previous lemma immediately implies that the conjugation action leaves V

invariant, and that this action defines a group homomorphism from Pin to O on a set

of generators by u 7→ τu for all u ∈ V with 〈u, u〉 = 1. Since F contains a square-root of

〈v, v〉 for any v ∈ V , we can normalize any vector in V . So by the Cartan–Dieudonné

theorem, the image of φ contains a set of generators of O, so φ is surjective.

An element c in Pin is mapped to the identity in O if and only if

(c⊗ (c−1)op) · v = v for all v ∈ V ,

that is, c supercommutes with each such element v. As such elements generate the

superalgebra C, this means c lies in the supercenter, so by Corollary 2.2.5, c ∈ F. Since

c lies in Pin, c2 = 1, so c = ±1, and both of these elements are indeed mapped to the

identity transformation by φ.
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2.2.2 Pin Lie algebra

Although we use some slightly different notations, most of what follows can be found in

[Mei13, 2.2.10].

Recall the definition of the quantization map q (Equation (2.2.4)). Let us define the

subspace

pin = pin(V, 〈·, ·〉) = q(V ∧ V ) ⊂ C2 ∩ Ceven ⊂ C , (2.2.11)

that is, the space spanned by elements of C of the form

q(v ∧ w) = 1
2(vw − wv) = vw − 〈v, w〉 for all v, w ∈ V . (2.2.12)

Let us consider linear transformations of V of the form

Av,w : V → V , Av,w(w) = −2〈v, w〉w + 2〈w,w〉v , (2.2.13)

for vectors v, w ∈ V .

Lemma 2.2.10. For any v, w ∈ V , the derivation δq(v∧w) of the superalgebra C leaves

the subspace V ⊂ C invariant. More precisely, it is the unique even derivation δ of C

satisfying δ(v′) = Av,w(v′) for all v′ ∈ V .

Proof. For any v′ ∈ V ,

dq(v∧w)(v
′) = [vw, v′] = vwv′ − v′vw = −2〈v, v′〉w + 2〈w, v′〉v = Av,w(v′) .

Since q(V ∧ V ) lies in the even part of C, δq(V ∧V ) is an even derivation and as such

uniquely determined by the images of elements of V , which generate the algebra C.

This implies that:

Lemma 2.2.11. pin is a Lie algebra with the commutator (which equals the supercom-

mutator for elements in pin).

Proof. Consider v, w, v′, w′ ∈ V and let A = Av,w. Then

[q(v ∧ w), q(v′ ∧ w′)] = δq(v∧w)(
1
2v
′w′ − 1

2v
′w′)

= 1
2(A(v′)w′ + v′A(w′)−A(w′)v′ − w′A(v′))

= q((A(v′) ∧ w′ + v′ ∧A(w′))



18

The commutator equals the supercommutator, since pin is a purely even subspace

of C.

In order to describe this Lie algebra more accurately, we define the Lie algebra of

skew-adjoint operators so on V with respect to 〈·, ·〉,

so = so(V, 〈·, ·〉) = {A ∈ End(V ) | 〈Av,w〉 = −〈v,Aw〉 ∀v, w ∈ V } , (2.2.14)

a Lie subalgebra of gl(V ). We can verify that for all v, w, v′, w′ ∈ V ,

〈Av,w(v′), w′〉 = −〈v, v′〉〈w,w′〉+ 〈w, v′〉〈v, w′〉 = −〈v′, Av,w(w′)〉 ,

hence, Av,w ∈ so.

As we have seen in 2.1.2, the derivation action preserves the (super)commutator, so

we obtain an action of the Lie algebra pin on V which, in fact, yields a Lie algebra map

pin→ so. But even more is true:

Proposition 2.2.12. The derivation action of pin on C restricted to V defines a Lie

algebra homomorphism φ : pin→ so and φ(q(v ∧w)) = Av,w. If 〈·, ·〉 is non-degenerate,

then φ : pin→ so is an isomorphism.

Proof. It only remains to prove that φ is an isomorphism if 〈·, ·〉 is non-degenerate. But

in this case, we can choose a pair of dual bases (vi)i and (wi)i of V with respect to 〈·, ·〉,

and we can check directly that

so→ pin , A 7→ q(
∑
i

A(vi) ∧ wi) ,

is an inverse map for φ.

Remark 2.2.13. So both Pin and pin act on C leaving V invariant, the first by conjugation

(in the sense of superalgebras) and the second by taking the commutator. Considering

the restricted actions on V , we obtain a group homomorphism φ : Pin → O and a Lie

algebra morphism φ : pin → so. If 〈·, ·〉 is non-degenerate and F contains a square root

of 〈v, v〉 for all v ∈ V , then the first is surjective with kernel {±1} and the second is an

isomorphism.
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To complete the picture , have the following result:

Lemma 2.2.14. Pin acts on pin by the conjugate action, and this action is compatible

with the maps φ in the sense that

φ((g⊗(g−1)op)·x)v′ = φ(g)(φ(x)(φ(g)−1v′)) for all g ∈ Pin, x ∈ pin, v′ ∈ V . (2.2.15)

Proof. Let us consider u, v, w ∈ V such that 〈u, u〉 = 1. If we view u as an element in

Pin, then

(u⊗ (u−1)op) · q(v ∧ w) = (u⊗ uop) · (2vw − 〈v, w〉)

= 2τu(v)τu(w)− 〈τu(v), τu(w)〉 = q(τu(v) ∧ τu(w)) .

As elements u as the one considered generate Pin and as elements q(v ∧ w) as the one

considered span pin, this shows that Pin acts on pin.

Applying φ to the the result of our previous computation and acting on a vector

v′ ∈ V yields

Aτu(v),τu(w)(v
′) = −2〈τu(v), v′〉τu(w) + 2〈τu(w), v′〉τu(v)

= τu(−2〈v, τ−1
u (v′)〉w + 2〈w, τ−1

u (v′)〉v)

= φ(u)(φ(q(u ∧ w))(φ(u)−1v′)) ,

as desired, and as above, this proves the desired compatibility for all of Pin and pin.

2.3 Central simple (super)algebras and the Skolem–Noether theorem

All algebras in this section will be over an arbitrary field F. Central simple superalgebras

were first studied by Wall [Wal64], see also Deligne’s article [Del99]. We will follow

Varadarajan’s book [Var04].

Definition 2.3.1. An (ungraded) algebra A is central simple if A is finite-dimensional,

the center of A is F, and A has no non-zero proper two-sided ideals.

Central simple algebras have various characterizations.

Proposition 2.3.2 ([Var04, Prop. 6.2.1]). Let A be a finite-dimensional F-algebra. The

following are equivalent:



20

• A is a central simple algebra

• A⊗Aop → End(A), a⊗ bop 7→ (x 7→ (a⊗ bop) · x), is an isomorphism

• A is semisimple and its center is F

Example 2.3.3. For n ≥ 1, the complex Clifford algebra C(n) is central simple if and

only if n is even by Proposition 2.2.3 and Corollary 2.2.5.

An important result for central simple algebras is the following.

Theorem 2.3.4 (Skolem–Noether). Let A be a simple algebra, B a central simple al-

gebra, and f, g : A → B algebra maps. Then f, g are conjugate, that is, there is an

invertible element b ∈ B such that f(a) = bg(a)b−1 for all a ∈ A.

An analogous notion exists also for superalgebras and this is what will be most

important for us.

Definition 2.3.5. A superalgebra A is central simple if A is finite-dimensional, the

supercenter of A is F, and A has no non-zero proper two-sided graded ideals.

Recall from Section 2.1 that for a superalgebra A, End(A) denotes the space of all

linear endomorphisms of A (not just the graded ones). Also recall that we have an

action of A ⊗ Aop on A for any superalgebra A, where the action of Aop is the right

multiplication in A after applying the braiding in the category of superspaces.

Proposition 2.3.6 ([Var04, Thm. 6.2.5]). Let A be a finite-dimensional F-superalgebra.

The following are equivalent:

• A is a central simple superalgebra

• A⊗Aop → End(A), a⊗ bop 7→ (x 7→ (a⊗ bop) · x), is an isomorphism

• A is a semisimple superalgebra and its supercenter is F

• A is semisimple as an ungraded algebra and its supercenter is F

Remark 2.3.7. Yet another characterization of central simple (super)algebras is as ma-

trix (super)algebras over (super) division algebras, see [Var04, 6.2]. We will not use this

characterization here.
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Example 2.3.8. For all n ≥ 1, the complex Clifford algebra C(n) is a central simple

superalgebra by Proposition 2.2.3 and Corollary 2.2.5. In fact, the Clifford algebra over

any field of characteristic not 2 with respect to a non-degenerate symmetric bilinear

form is a central simple superalgebra by [Wal64, Thm. 4].

The following generalization of the classical Skolem–Noether theorem to superalge-

bras is almost covered by [Jab10, Thm. 3.2] or [CVOZ97, Cor. 3.6]. We will prove it in

Lemma 4.4.10, because we will make use of it for our purposes.

Theorem 2.3.9 (Skolem–Noether). Let A be a simple superalgebra, B a central simple

superalgebra, and f, g : A → B graded algebra maps. Then f, g are conjugate, that is,

there is an invertible element b ∈ B such that f(a) = (b⊗ (b−1)op) · g(a) for all b ∈ B.

2.4 Hopf algebras

We will recall the definitions and basic properties of Hopf algebras. A good modern

reference for the theory is Montgomery’s book [Mon93].

Let us fix a base field F for all vector spaces and tensor products in this section. We

can observe that a vector space A with maps η : F→ A and µ : A⊗A→ A is a (unital

associative) F-algebra if and only if the following diagrams are commutative:

F⊗A A⊗A A⊗ F A⊗A⊗A A⊗A

A A⊗A A

η⊗idA

µ

idA⊗η

∼=

µ⊗idA

idA⊗µ µ
∼= µ

.

More precisely, the image of 1 in F under the map η corresponds to the multiplicative

identity element in A and the second diagram corresponds to the associativity of the

multiplication map µ. Dualizing these diagrams defines the notation “coalgebra”3: A

vector space C with maps ε : C → F and ∆: C ⊗ C → C is a coalgebra if the following

3A mathematical folklore quotation, widely attributed to Paul Erdős, but originally due to Alfréd
Rényi is: “A mathematician is a machine for turning coffee into theorems.” It has the less known
variation “A comathematician is a machine for turning theorems into ffee,” which was communicated
to the author by Fei Qi.
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diagrams are commutative:

F⊗ C C ⊗ C C ⊗ F C ⊗ C ⊗ C C ⊗ C

C C ⊗ C C .

ε⊗idC

idC ⊗ε

∼=

∆⊗idC

∆∼=
idC ⊗∆

∆

∆ .

The commutativity of the second diagram is called coassociativity , the maps ε and

∆ are called counit and coproduct (or comultiplication), respectively. Note that these

diagrams allow the definition of algebras and coalgebras not just for vector spaces as

base objects, which is the case we are most interested in, but in any monoidal category.

It is convenient to use Sweedler’s notation for images of the coproduct map: for c ∈ C,

we can represent ∆(C) ∈ C ⊗ C as a finite sum
∑

i c1,i ⊗ c2,i with suitable elements

(c1,i)i and (c2,i)i from C, but we will often omit the summation sign and the index i

and write

∆(c) = c(1) ⊗ c(2) ,

instead, where a finite sum and an additional index is implied. Now the coassociativity

axiom means that for any element c of a coalgebra and n ≥ 1, there is a unique n-fold

coproduct, which we denote by

∆n(c) = c(1) ⊗ . . .⊗ c(n+1) in C⊗(n+1) .

Using Sweedler’s notation, the commutativity of the left diagram translates to the com-

patibility condition

ε(c(1))c(2) = c = c(1)ε(c(2)) for all c ∈ C . (2.4.1)

Although coalgebras are formally very similar (“dual”) to algebras, they are distin-

guished from them by an implicit finiteness condition: any element of a coalgebra, and

hence, any finite-dimensional subspace, is contained in a finite-dimensional subcoalge-

bra.

For vector spaces V,W let us define the map

τV,W : V ⊗W →W ⊗ V , v ⊗ w 7→ w ⊗ v for all v ∈ V,w ∈ V . (2.4.2)

These maps can be regarded as the braiding in the tensor category of vector spaces. A

coalgebra is called cocommutative if τC,C ◦∆ = ∆.
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If (C, ε,∆) is a coalgebra and (A, η, µ) is an algebra, then the space of linear functions

Hom(C,A) can be equipped with an algebra structure whose identity element is (η◦ε) ∈

Hom(C,A) and whose product operation is defined by

f ? g = µ ◦ (f ⊗ g) ◦∆ for all f, g ∈ Hom(C,A) . (2.4.3)

Using elements,

(f ? g)(c) = f(c(1))g(c(2)) for all f, g ∈ Hom(C,A), c ∈ C . (2.4.4)

This ?-product of Hom(C,A) is called convolution product . In particular, for any coal-

gebra C, its dual space C∗ = Hom(C,F) is an algebra.

Analogs for many concepts from the theory of algebras exist for coalgebras. A

coalgebra is called simple if it does not contain any non-zero proper subcoalgebra. With

this definition, a coalgebra is simple if and only if its dual space is a simple algebra.

A coalgebra is called pointed , if any simple subcoalgebra is one-dimensional. Over

an algebraically closed field, any simple cocommutative coalgebra is one-dimensional

(because the dual spaces of simple coalgebras are field extensions of the base field), so

all cocommutative coalgebras are pointed.

For any algebra A, the tensor product space A⊗A can be turned into an algebra in

a natural way using the twist map τA,A and similarly, the tensor products of a coalgebra

with itself is a coalgebra in a natural way. Let us consider a vector space H which is

an algebra with structure maps η, µ as above and at the same time a coalgebra with

structure maps ε,∆ as above. Then η, µ are coalgebra maps if and only if ε,∆ are

algebra maps, and if this is the case, we call H a bialgebra. For a bialgebra, Hom(H,H)

is an algebra with the convolution product, and the identity map idH is a distinguished

element in it (though not the multiplicative identity, which is η ◦ ε). H is a Hopf

algebra if idH is an invertible element in this algebra, i.e., if there is an endomorphism

S ∈ Hom(H,H) such that

S ? idH = η ◦ ε = idH ?S (2.4.5)

or, equivalently, if

S(h(1))h(2) = ε(h) = h(1)S(h(2)) for all h ∈ H . (2.4.6)



24

The map S is called antipode, it is unique if it exists, and it is an anti-algebra and

anti-coalgebra map, that is,

S ◦ µ = µ ◦ (S ⊗ S) ◦ τH,H and ∆ ◦ S = τH,H ◦ (S ⊗ S) ◦∆ . (2.4.7)

For a commutative or cocommutative Hopf algebra, S2 = idH .

An element c of a coalgebra is called group-like if ∆(c) = c ⊗ c and ε(c) = 1. An

element h of a bialgebra is called primitive if ∆(h) = h ⊗ 1 + 1 ⊗ h and ε(h) = 0. If

h is a group-like element in a Hopf algebra, then h is invertible with respect to the

multiplication in H and S(h) = h−1, so the set of group-like elements of a Hopf algebra

is a subgroup of its multiplicative group H×, which we denote by G(H). On the other

hand, if h is primitive, then S(h) = −h and the set of primitive elements is a Lie

subalgebra of H with the commutator in H, which we denote by P (H). In fact, the

subsets G(H) and P (H) generate Hopf subalgebras, as follows.

Example 2.4.1. Let G be a group with identity element e. Then the vector space F[G]

with basis {g}g∈G is a Hopf algebra with all structure maps defined as linear maps by

letting

η(1) = e , µ(g ⊗ h) = gh , ε(g) = 1 , ∆(g) = g ⊗ g , S(g) = g−1

for all g, h ∈ G. Note, in particular, that all elements from G are defined to be group-

likes. This Hopf algebra is called group algebra. Any Hopf algebra H has a distinguished

Hopf subalgebra F[G(H)].

Example 2.4.2. Let g be a Lie algebra over F. Then the universal enveloping algebra

U(g) is a Hopf algebra if all elements from g are defined to be primitives

ε(x) = 0 , ∆(x) = x⊗ 1 + 1⊗ x , S(x) = −x

for all x ∈ g. Any Hopf algebra has a distinguished Hopf subalgebra U(P (H)).

Both group algebras and universal enveloping algebras are examples of cocommuta-

tive Hopf algebras and for both algebras, S2 = idH .

Example 2.4.3. Let G be a finite group with identity element e, then the dual space

F[G]∗ of the group algebra is an algebra with the convolution product, and it is a Hopf
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algebra with the additional structure maps defined by

ε(f) = f(e) , ∆(f)(g ⊗ g′) = f(gg′) , S(f)(g) = f(g−1)

for all f ∈ F[G]∗, g, g′ ∈ G. It is a commutative algebra, but cocommutative as a

coalgebra if and only if G is abelian.

Example 2.4.4 (Taft Hopf algebra). For n ≥ 2, let q be a primitive n-th root of unity

in F, and let H be the F-algebra generated by two elements g and x subject to the

relations

gn = 1 , xn = 0 , gxg−1 = qx .

This is a Hopf algebra with the additional structure maps defined by

ε(g) = 1 , ∆(g) = g ⊗ g , S(g) = gn−1 ,

ε(x) = 0 , ∆(x) = g ⊗ x+ x⊗ 1 , S(x) = −gn−1x .

The Taft Hopf algebra is neither commutative nor cocommutative.

2.4.1 Super Hopf algebras

We have mentioned that algebras and coalgebras can be defined in any monoidal cat-

egory. In order find good analogs for bialgebras, Hopf algebras, and cocommutative

coalgebras, we should require the monoidal category to be braided, i.e., there should

be a braiding map cV,W : V ⊗ W → W ⊗ V satisfying certain compatibility axioms.

Having such a braiding, we can explain the algebra structure on the tensor products of

two algebras, or the coalgebra structure on the tensor product of two coalgebras. For

the category of vector spaces, the braiding is just τ . As we have seen earlier, for the

category of super vector spaces, a braiding is defined by

v ⊗ w 7→ (−1)|v||w|w ⊗ v

for Z2-homogeneous elements v, w in super vector spaces V,W (see Section 2.1).

To make this more concrete, a supercoalgebra is a coalgebra C whose underlying

vector space is a superspace, say with even subspace C0 and odd subspace C1, such that
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for i = 0, 1,

∆(Ci) ⊂
⊕
k+l=i

Ck ⊗ Cl .

A superbialgebra is superalgebra which is also a supercoalgebra such that its coalge-

bra structure maps ε,∆ are algebra maps, or equivalently, such that its algebra structure

maps η, µ are coalgebra maps. Note that a superbialgebra H is not necessarily an un-

graded bialgebra if we forget the Z2-grading, because, for instance, the algebra structure

of H ⊗H depends on the braiding in the respective category, so the notion of the co-

product being an algebra maps depend on this braiding, too. However, we can identify

purely even superbialgebras with ungraded bialgebras, because for purely even spaces,

the braidings agree.

Finally, a Hopf superalgebra is a superbialgebra with an antipode, i.e., a ?-inverse of

the identity map. Just as for bialgebras, Hopf superalgebras do not become ungraded

Hopf algebras if we forget the grading, but purely even Hopf superalgebras can be

identified with ungraded Hopf algebras.

A superalgebra A with multiplication map µ is called supercommutative, if µ◦cA,A =

µ, and a coalgebra C with coproduct ∆ is called supercocommutative if cC,C ◦∆ = ∆.

2.5 Hopf algebra actions and smash products

Group algebras and universal enveloping algebras have their origins in representation

theory, and in fact, the notion of a Hopf algebra has a more representation theoretic

interpretation, as well: if H is a Hopf algebra with modules V,W , then the base field

F, the dual space V ∗, and the tensor product V ⊗W all have a natural structure as

H-modules defined by

h · 1 = ε(h) , (h · f)(v) = f(S(h) · v) , h · (v ⊗ w) = (h(1) · v)⊗ (h2 · w) (2.5.1)

for all h ∈ H, f ∈ V ∗, v, w ∈ V . This makes the category ofH-modules a tensor category

itself.

Example 2.5.1. As an important consequence, we record that for any bialgebra H and
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an H-module V , the tensor algebra is an H-module by

h · 1 = ε(h) and h · (v1 . . . vn) = (h(1) · v1) . . . (h(n) · vn)

for all h ∈ H, v1, . . . , vn ∈ V . If H is cocommutative, then the sets of elements of the

form vw±wv in T (V ) are stable under this action of H for both choices of the sign ±.

Hence in this case, the symmetric and the exterior algebra of V are H-modules, as well.

Many representation theoretic notations carry over to Hopf algebras. Let H be a

Hopf algebra. An element v in an H-module V is called H-invariant if

h · v = ε(h)v for all h ∈ H . (2.5.2)

The space of H-invariants is denoted by V H . A map f between two H-modules V,W

is H-equivariant if

f(h · v) = h · f(v) for all h ∈ H, v ∈ V . (2.5.3)

Identifying Hom(V,W ) with V ∗ ⊗W , a map f ∈ Hom(V,W ) is H-equivariant if and

only if it is an H-invariant element in V ∗ ⊗W .

We consider more examples of Hopf algebra modules:

Example 2.5.2. Let g be a Lie algebra and let H be a cocommutative bialgebra acting

on g such that the Lie bracket as a map g ∧ g → g is H-equivariant. Then U(g) is an

H-module with the H-module structure it inherits from T (g).

Example 2.5.3. If G is a group, then the representations of F[G] are exactly the F-linear

representations of G. If g is a Lie algebra, then the representations of U(g) are exactly

the representations of g.

Example 2.5.4. There is another important Hopf algebra action. Let K be an algebra

with a subalgebra H which is a Hopf algebra. Then H acts on K according to the

formula

h · k = h(1)kS(h(2)) for all h ∈ H, k ∈ K . (2.5.4)

This is called the adjoint action. If g, x ∈ H are a group-like and a primitive element

in H, respectively, then for all k ∈ K,

g · k = gkg−1 and x · k = [x, k] .
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Example 2.5.5. In partiular, we can take K = H to obtain the adjoint action of H

on itself. Then for any group-like element g in H and any primitive element x in H,

g · x = gxg−1 is a primitive element in H, because the coproduct is an algebra map.

That is, for any Hopf algebra H, the group G(H) acts on the space P (H), and what

is more, the commutator in H is a F[G(H)]-equivariant Lie bracket for P (H). Hence,

U(P (H)) is an F[G]-module algebra for any Hopf algebra H.

Almost all of these examples of bialgebra actions have in common that the module

in each case is itself an algebra. Let H be a bialgebra and let A be an algebra which is

an H-module. A is called H-module algebra if

h · 1 = ε(1) and h · (ab) = (h(1) · a)(h(2) · b) for all h ∈ H, a, b ∈ A .

All of the above mentioned bialgebra actions on algebras make the latter indeed H-

module algebras, for the respective bialgebra H: T (V ), S(V ) and Λ(V ) for a cocommu-

tative bialgebra acting on a module V , U(g) for a cocommutative bialgebra acting on g

as described above, or an algebra which is a module for a contained Hopf algebra via

the adjoint action.

Let H be a Hopf algebra with an H-module algebra A. Then we define the smash

product (or semidirect product) A oH as the algebra generated by H and A with the

additional relation

h(1)aS(h(2)) = h · a for all h ∈ H, a ∈ A , (2.5.5)

that is, we identify the adjoint action in the algebra generated by H and A with the

given action. More explicitly, AoH is the tensor product A⊗H as a vector space with

a multiplication operation given by

(a⊗ h)(a′ ⊗ h′) = a(h(1) · a′)⊗ h(2)h
′ for all a, a′ ∈ A, h, h′ ∈ H . (2.5.6)

In particular, we can construct the smash products T (V )oH for any Hopf algebra H

with a module V , or the smash products S(V )oH and Λ(V )oH for a cocommutative

Hopf algebra with a module V .

Furthermore, for any Hopf algebraH, we can construct the smash product U(P (H))o

F[G(H)], where the action of G(H) on U(P (H)) comes from the adjoint action of
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G(H) on P (H) in H as described above. In fact, such smash products form an impor-

tant class of Hopf algebras as described by the following result, which is usually called

Cartier–Kostant theorem, Cartier–Kostant–Milner–Moore theorem, or Cartier–Gabriel–

Kostant–Milner–Moore theorem.

Theorem 2.5.6 ([Mon93, Cor. 5.6.4, (3) and Thm. 5.6.5]). If H is a pointed cocommuta-

tive Hopf algebra over a field of characteristic 0, for instance, if H is any cocommutative

Hopf algebra over an algebraically closed field of characteristic 0, then it is isomorphic

to U(P (H)) o F[G(H)].

2.5.1 Orthogonal modules

Let 〈·, ·〉 : V ⊗ V → F be a bilinear form on an H-module V .

Lemma 2.5.7. We consider the following conditions:

1. 〈h(1) · v, h(2) · w〉 = ε(h)〈v, w〉 for all h ∈ H, v,w ∈ V .

2. 〈h · v, w〉 = 〈v, S(h) · w〉 for all h ∈ H, v,w ∈ V .

3. Group-like elements of H act as orthogonal linear operators on V and primitive

elements of H act as skew-adjoint linear operators on V with respect to 〈·, ·〉.

Then (1) ⇔ (2) ⇒ (3) and if H is generated by group-likes and primitives (e.g.,

H is cocommutative over an algebraically closed field of characteristic 0), then even

(1)⇔ (2)⇔ (3).

Proof. Let h be an element in H and let v, w be elements in V . If we assume (1) holds,

then

〈h · v, w〉 = 〈h(1) · v, h(2) · (S(h(3)) · w)〉 = ε(h(1))〈v, S(h(2)) · w〉 = 〈v, S(h) · w〉 ,

so (2) holds. If we assume that (2) holds, then

〈h(1) · v, h(2) · w〉 = 〈v, S(h(1)) · (h(2) · w)〉 = ε(h)〈v, w〉 ,

which proves (1). So (1) and (2) are equivalent.
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(3) follows from (2), because S(h) = h−1 for a group-like element h ∈ H and

S(h) = −h for a primitive element h ∈ H, respectively.

(2) follows from (3) if H is generated as algebra by group-likes and primitives,

because S is an anti-algebra map.

Definition 2.5.8. In the situation of the lemma, the bilinear form 〈·, ·〉 on V is called

H-invariant if it satisfies any of the equivalent conditions (1), (2) considered in the

lemma.

Definition 2.5.9. An H-module V of H is called orthogonal if V is finite-dimensional

and V has an H-invariant non-degenerate symmetric bilinear form.

Lemma 2.5.10. Let V be an orthogonal H-module. Then V ∼= V ∗.

Proof. If 〈·, ·〉 is an H-invariant non-degenerate symmetric bilinear form on V , then

v 7→ 〈v, ·〉 is an H-module isomorphism.

Lemma 2.5.11. Let H be a cocommutative Hopf algebra and let V be an orthogonal

H-module with the bilinear form 〈·, ·〉. Then the action of H on T (V ) induces an action

of H on C(V, 〈·, ·〉).

Proof. The defining ideal of the Clifford algebra is stable under the action of H on T (V ),

since for all h ∈ H, v,w ∈ V ,

h · (vw − wv − 2〈v, w〉) = (h(1) · v)(h(2) · w)− (h(2) · w)(h(1) · v)− 2〈h(1) · v, h(2) · w〉 .

2.6 PBW deformations of smash products

The theory of PBW deformations is an active field of interest in its own right, whose

starting point is the Poincaré-Birkhoff-Witt (PBW) theorem for Lie algebras. If g is

a Lie algebra with Lie bracket [·, ·] over any field F, then we can pick an ordered F-

basis (xi)i of g. We can construct the universal enveloping algebra U(g) as the quotient

algebra of the tensor algebra T (g) by the ideal I generated by element of the form
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(xy − yx − [x, y]) for x, y ∈ g, i.e., the commutator is identified with the Lie bracket.

Now the PBW theorem states that U(g) has a basis consisting of ordered products of

basis elements, meaning a basis consisting of equivalence classes of products in T (g) of

the form xi1 · · ·xin for n ≥ 0 and i1 ≤ · · · ≤ in.

We can rephrase the PBW theorem as follows. We recall that T (g) is naturally

Z-graded, where elements in g are assigned degree 1. If the Lie bracket is zero, then

the ideal I is graded with respect to this Z-grading and the Z-graded quotient algebra

is just the symmetric algebra S(g). However, if the Lie bracket is non-zero, then the

ideal is not graded and U(g) becomes a filtered algebra. So in general, U(g) is a filtered

algebra and the quotient map T (g)→ U(g) induces a surjective algebra map from S(g)

to the associated graded algebra gr(U(g)) of U(g). The PBW theorem for Lie algebras

now states that this map is, in fact, an isomorphism.

The classical PBW theorem has several generalizations of which the most general

version relevant for our purposes concerns deformations of smash products between a

Hopf algebra and a Koszul algebra. Let H be a Hopf algebra and let B be an H-

Koszul algebra. By that we mean more explicitly that there is an H-module V , whose

tensor algebra T (V ) thus is an H-module algebra, and an H-submodule R ⊂ V ⊗V , the

“relations”, such that the Z-graded quotient H-module algebra B = T (V )/(R) is Koszul.

We define A0 = BoH and we want to study deformations of this smash product which

are given by a deformation map κ : R→ H ⊕ (V ⊗H) ⊂ T (V ) oH explicitly as

Aκ = (T (V ) oH)/Iκ , (2.6.1)

where Iκ is the ideal in T (V )oH generated by elements of the form (r−κ(r)) for r ∈ R.

In this situation, again, T (V ) is a Z-graded algebra and if κ = 0, then Iκ = (R)

is homogeneous and Aκ = A0 is Z-graded. In general, Iκ is not homogeneous, but Aκ

is filtered and the quotient map T (V ) o H → Aκ induces a surjective algebra map

A0 → gr(Aκ).

Definition 2.6.1. We say that Aκ is a PBW deformation of A0 if this map is an

isomorphism.

To see how this generalizes the situation of the classical PBW theorem, we can take
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H = F, the base field, V = g, R the span of the elements xy − yx for x, y ∈ g and

κ : R→ H ⊕ (V ⊗H) to be the Lie bracket of g.

In our general situation we have the following characterization of PBW deformations:

Let us write κ as κC + κL for maps κC : R→ H and κL : H → V ⊗H. Then

Theorem 2.6.2 ([WW14, Thm. 3.1]). Aκ is a PBW deformation of A0 if and only if

κ is H-equivariant and

• im(κL ⊗ id− id⊗κL) ⊂ R

• κL ◦ (κL ⊗ id− id⊗κL) = −(κC ⊗ id− id⊗κC)

• κC ◦ (κL ⊗ id− id⊗κL) = 0

as maps on (R⊗ V ) ∩ (V ⊗R) in V ⊗ V ⊗ V .

In particular, in the classical situation, for a Lie algebra g, we see that κC = 0 and

κ = κL yields a PBW deformation if and only if it satisfies the classical Jacobi identity

κ ◦ (κ⊗ id) = 0 on (R⊗ V ) ∩ (V ⊗R) . (2.6.2)

For our purposes, another special case will be of special relevance. Assume H is a

cocommutative Hopf algebra with a module V and R is the space spanned by elements

of the form vw − wv for v, w ∈ V . As long as the characteristic of our base field F is

not 2, we can identify R with V ∧ V . Then T (V )/(R) ∼= S(V ), the symmetric algebra,

and A0 = S(V ) o H. Let us also assume κL = 0, so deformation maps will be of the

form κ : V ∧ V → H. Then Aκ is a PBW deformation if and only if κ is H-equivariant,

that is,

κ((h(1) · v) ∧ (h(2) · w)) = h · κ(v ∧ w) for all h ∈ H, v,w ∈ V (2.6.3)

and it satisfies the Jacobi identity

[κ(u ∧ v), w] + [κ(v ∧ w), u] + [κ(w ∧ u), v] for all u, v, w ∈ V (2.6.4)

in A0 = S(V ) oH.
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As we have seen in Section 2.4, the most important cocommutative Hopf algebras

are group algebras, universal enveloping algebras of Lie algebras, and smash products

of the former two. PBW deformations of the form S(V ) oH where H is the universal

enveloping algebra of a Lie algebra contain deformations of universal enveloping algebras

of a Lie algebra relative to the universal enveloping algebra of a Lie subalgebra and, more

generally, continuous Hecke algebras as defined by Etingof–Gan–Ginzburg [EGG05], see

Chapter 7.

If the Hopf algebra H is the group algebra of a finite group G over C, and V is a

finite-dimensional faithful G-module over C, then the deformation maps κ : V ∧ V →

C[G] can be written as κ =
∑

g∈G κgg with maps κg : V ∧ V → C for all g ∈ G and

there is a characterization of those maps κ which yield a PBW deformation Aκ of

A0 = S(V )oC[G]. For every g ∈ G, we have an operator (g− 1) acting on the module

V with image im(g − 1). Any h ∈ G which commutes with G acts on im(g − 1). Let S

be the set of elements g ∈ G for which dim im(g − 1) = 2 and det(h|im(g−1)) = 1 for all

h ∈ G which commute with g.

Theorem 2.6.3 ([Dri86],[RS03, Thm. 1.9]). The maps κ yielding PBW deformations

Aκ are exactly the maps of the form

κ(v ∧ w) = θ1(v ∧ w) +
∑
g∈S

θg(v ∧ w)g (2.6.5)

with θ1 ∈ ((V ∧V )∗)G and θg ∈ (V ∧V )∗ for all g ∈ S such that the kernel of θg contains

the kernel of (g − 1) and the family θg is G-invariant.

This determines the family (θg)g∈S up to a scalar for each conjugacy class in S, so

the space of maps κ which yield the PBW property for Aκ has dimension |S|+dim((V ∧

V )∗)G).
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Chapter 3

Preliminaries: Dirac cohomology

As we have already mentioned, our work is motivated by two mathematical theories,

the theory of algebraic Dirac operators and their applications to representation theory

on the one hand and the theory of PBW deformations of smash products on the other

hand. Our main results will connect the two theories leading to a generalized theory of

Dirac operators. Having discussed PBW deformations in the previous chapter, we will

now recall the original motivation for the Dirac operator in physics and various forms

of Dirac cohomology.

3.1 Dirac operator in physics

The Dirac operator was introduced by British physicist Paul Dirac in 1928 [Dir28a,

Dir28b] who sought to derive an equation for the electron (and more generally, so called

fermions, a group of similar physical particles) which is compatible with both quantum

mechanics and special relativity. According to quantummechanics, the state of a particle

should be described by a wave function φ = φ(x, y, z, t), where x, y, z, t are three spatial

coordinates and one time coordinate, respectively. If the particle has a mass m, then

its momentum should be described by the vector field p = p(x, y, z, t) of first-order

derivatives

p = ∇φ = (∂xφ, ∂yφ, ∂zφ) ,

and its energy should be given by the energy operator defined by

Eφ = |p|2/2m = − 1

2m
∇2φ ,

where we use physical units such that the Planck constant ~ and the speed of light c both

have the value 1 (“natural units”). Quantum mechanic postulates that the dynamics of
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the massive particle should be governed by the Schrödinger equation

i∂tφ = Eφ = − 1

2m
∇2φ , (3.1.1)

where i is the complex root of −1, ∂t is the (first-order) derivative in t and ∇2 =

∂2
x + ∂2

y + ∂2
z is a second-order differential operator in the spatial coordinates. The

Schrödinger equation is not compatible with special relativity, as it treats space and

time coordinates on an unequal footing, which becomes clear when comparing the cor-

responding differential operators.

According to the theory of relativity, the quantities energy and momentum should

be related by the equation

E2 = m2 + |p|2 (3.1.2)

(which recovers the famous equation E = mc2 for p = 0, since c = 1). In an attempt to

combine quantum mechanics with the theory of relativity, we could replace E and p in

the relativistic energy equation by their quantum mechanical counterparts. We obtain

the Klein–Gordon equation

(∇2 − ∂2
t )φ = m2φ . (3.1.3)

The equation visibly incorporates the relativistic concept of a unified space-time in that

it is a second-order differential equation in each of the coordinates. However, being

second-order in t, the equation only determines the state of the particle up to a choice

of initial values for both φ and ∂tφ, hence, it does not control the dynamics of the

particle, as desired.

Dirac’s idea to solve this dilemma was to find a “square-root” of the second-order

differential operator on the left-hand side of the Klein–Gordon equation, i.e., a linear

differential operator D such that

D2 = ∇2 − ∂2
t . (3.1.4)

With such an operator at our disposal, we could replace the Klein–Gordon equation by

the linear differential equation

Dφ = mφ , (3.1.5)

the celebrated Dirac equation.
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Now if such an operator D exists, we can write it using coefficients cx, cy, cz, ct for

the respective linear partial differential operators, but the condition

(cx∂x + cy∂y + cz∂z + ct∂t)
2 = D2 = ∇2 − ∂2

t = ∂2
x + ∂2

y + ∂2
z − ∂2

t

implies c2
x = c2

y = c2
z = (ict)

2 = 1 and cαcβ + cβcα = 0 for indices α, β ∈ {x, y, z, t} with

α 6= β, which is clearly impossible if the coefficients cx, cy, cz, ct are ordinary scalars.

Dirac realized that the relations are indeed satisfied if the coefficients are chosen to be

certain complex 4 × 4-matrices, so-called Dirac matrices. For instance, a set of Dirac

matrices for our version of the problem is given by

cx =

(
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)
, cy =

(
0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

)
, cz =

(
0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0

)
, ct =

(
0 0 −i 0
0 0 0 −i
−i 0 0 0
0 −i 0 0

)
.

Mathematically, the relations defining the coefficients cx, cy, cz, ct are just the defin-

ing relation of the complex Clifford algebra associated with a four-dimensional vector

space (as discussed in Section 2.2). We saw that this Clifford algebra has dimension

24 = 16, it is, in fact, isomorphic to the algebra of complex 4× 4-matrices.

An important physical consequence of Dirac’s discovery was the implication that

passing to 4×4-matrices we have to assume a four-dimensional vector-valued wave func-

tion. Choosing a suitable basis, two of the four components recover the two-component

wave function Pauli had introduced “ad hoc” to explain the spin of elementary particles,

as observed, for instance, in the Stern–Gerlach experiment. The experiment showed

that a beam of Silver atoms splits up into two parts in a strong inhomogeneous mag-

netic field, and it was inferred from this observation, that elementary particles possess

a quantized intrinsic angular momentum, the so called spin. Dirac’s idea yielded a the-

oretical justification for Pauli’s two-component theory of the spin, which could be seen

as the low-energy limit or non-relativistic limit. The two additional components fea-

tured in Dirac’s four-component wave function could be interpreted using the concept

of antimatter, which makes its first appearance in Dirac’s theory, before being observed

only years later.
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3.2 Dirac cohomology for (g, K)-modules

We recall the theory of Dirac cohomology for (g,K)-modules which was developed by

Huang and Pandžić [HP02] following ideas of David Vogan [Vog97].

Let G be a connected real semisimple Lie group with finite center, let g0 and g be

its real and its complexified Lie algebra, respectively, and let K be a maximal compact

subgroup with real and complexified Lie algebra k0 and k. Harish-Chandra showed that

any irreducible unitary representation of G is determined by its Harish-Chandra module,

the submodule of all K-finite smooth vectors, and that the Harish-Chandra module of

an irreducible unitary representation is a (g,K)-module, that is, it is a g-module and a

K-module V such that all vectors are K-finite, the g- and the K-action determine the

same k-action, and the g-action is K-equivariant:

k(x(k−1v))) = adk(x)v for all v ∈ V, k ∈ K,x ∈ g , (3.2.1)

where ad is the adjoint action of K on g (the definition in this form is due to James

Lepowsky, see [Wal88, 3.3.1]).

Since the Lie algebra g0 is semisimple, its Killing form B0 is non-degenerate (in fact,

the statements are equivalent), and we have a Cartan decomposition g0 = k0⊕p0, where

B is negative definite on k0 and positive definite on p0. Complexifying these spaces and

the Killing form yields the Cartan decomposition g = k⊕p for g and the non-degenerate

form B on g.

Remark 3.2.1. In this situation, we can observe that

• [k, k] ⊂ k, so k is a subalgebra of g,

• [k, p] ⊂ p, so p is a k-module,

• [p, p] ⊂ k, so the Lie bracket defines a map κ : p ∧ p→ k.

Moreover, the Killing form restricts to a non-degenerate k-invariant symmetric bilinear

form on p, so p is an orthogonal k-module, and the map κ is k-equivariant and satisfies

the Jacobi identity

[κ(x ∧ y), z] + [κ(y ∧ z), x] + [κ(z ∧ x), y] = 0 , (3.2.2)
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so we are precisely in the situation described by Section 2.6 and, in particular, by

Equation (2.6.2).

An important tool for the study of representations of a semisimple Lie algebra g is its

universal enveloping algebra U(g), which allows us to employ the theory and techniques

of associative algebras. Representations of g can be identified with representations of

U(g) and over C, the eigenspaces of any central element will be submodules, hence

by Schur’s lemma, all elements of the center act as scalars on any finite-dimensional

irreducible module. We obtain an algebra map Z(U(g)) → C, the central character

of the representation, and in fact, a finite-dimensional irreducible g-module is uniquely

determined by its central character. The idea of central characters can be extended to

irreducible (g,K)-modules, and in fact, there are only finitely many (g,K)-modules for

any given central character.

For any semisimple Lie algebra g, we have a distinguished element in the center of

U(g). Let us pick bases (Wk)k and (Zi)i of k and p such that B(Wk,Wl) = −δk,l and

B(Zi, Zj) = δi,j for all i, j, k, l. Then the Casimir element is defined as

Ω =
∑
i

W 2
i +

∑
k

Z2
k in U(g) . (3.2.3)

It can be shown that the definition does not depend on the choice of (Wk)k and (Zi)i

and that the Casimir element is central. Being central, it acts as a scalar on finite-

dimensional irreducible g-modules. The Dirac operator D, which we will introduce

next, can be regarded as a “square root” of the Casimir element in a certain sense.

Having a central element in U(g) which squares to Ω would allow a finer study of

representations, since two irreducible modules on which Ω acts as the same scalar λ

might become distinguishable from each other if the scalars by which D acts on these

modules correspond to different roots of λ. However, there is a priori no such element

in U(g).

Very similar to Paul Dirac’s idea described in Section 3.1, we can again resort to the

Clifford algebra. More precisely, let C(p) be the Clifford algebra of p with the restriction

of the Killing form, which is the algebra generated by (Zi)i and the relations

Z2
i = 1 and ZiZj = −ZjZi for all i 6= j .
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Then the Dirac operator is defined as

D =
∑

Zi ⊗ Zi in U(k)⊗ C(p) . (3.2.4)

To make more precise in which sense the Dirac operator “squares to Ω”, we will need a

Lie algebra map γ : k → C(p) which exists, because p is an orthogonal k-module, and

which gives rise to a diagonal map ∆C : k→ k⊗C(p) defined by ∆C(x) = x⊗1+1⊗γ(x)

for x ∈ k.

Let Ωg,Ωk be the Casimir elements of g and k, respectively, and let ρg, ρk be the

respective Weyl vectors, i.e., half the sum of the positive roots.

Lemma 3.2.2 ([Par72]). Then

D2 = −Ωg + ∆C(Ωk) + C (3.2.5)

where C = −|ρg|2 + |ρk|2.

In particular, ∆2 differs from −Ωg only by a scalar and by the image of a central

element in U(k) under the diagonal map ∆C .

However, just as in Paul Dirac’s physical problem, the Dirac operator does not act

directly on the objects in question, namely (g,K)-modules, anymore. Instead, we have

to fix an irreducible C(p)-module S, so D will act on M ⊗S for any g-module M . Now

the Dirac cohomology is defined as

HD(M) = kerD/(kerD ∩ imD) . (3.2.6)

In certain situations, for instance, for unitary modules or for finite-dimensional modules,

D acts semisimply, which implies HD(M) = kerD = kerD2.

In the general situation, the following result on the connection between Dirac co-

homology and central characters is established, where we identify K̃-types with their

highest weights and K-weights with central characters of g using the Harish-Chandra

homomorphism.

Theorem 3.2.3 ([HP02, Thm. 2.3]). LetM be an irreducible (g,K)-module with HD(M) 6=

0. Then the central character of M is given by γ + ρk for any K̃-type γ which occurs in

HD(M).
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Corollary 3.2.4. Let M be an irreducible unitary (g,K)-module with kerD 6= 0. Then

the central character of M is given by γ + ρk for any K̃-type γ which occurs in kerD.

3.3 Dirac cohomology for Hecke algebras

Motivated by the analogy between the representation theory of real reductive Lie groups

and p-adic reductive Lie groups, Barbasch, Ciubotaru and Trapa established a version of

Dirac cohomology for graded affine Hecke algebras [BCT12]. Ram and Shepler [RS03]

had previously shown that graded affine Hecke algebras are special cases of a family

of algebras which was studied by Drinfeld [Dri86], and which are often called Drinfeld

Hecke algebras. Ciubotaru then realized that the program of Dirac cohomology could

be carried out for this more general family of algebras [Ciu16], which also includes

symplectic reflection algebras and rational Cherednik algebras.

Let us explain what Drinfeld Hecke algebras are. We consider a finite group G with

a finite-dimensional faithful module V over C. Then also the group algebra C[G] acts

on V . Assume that, additionally, we have a linear map κ : V ∧ V → C[G], then we can

define Hκ to be the algebra generated by C[G] and V with the relations

gvg−1 = g · v and vw − wv = κ(v ∧ w) for all g ∈ G, v,w ∈ V . (3.3.1)

Hκ becomes a filtered algebra if we assign elements from V the degree 1. Let us denote

the algebra we obtain in this fashion for κ = 0 by H0. It is isomorphic to the smash

product S(V ) oC[G].

Definition 3.3.1. The algebra Hκ is called Drinfeld Hecke algebra if it is a PBW

deformation of H0, that is, if its associated graded algebra is isomorphic to H0.

In order to establish his version of Dirac cohomology, Ciubotaru assumed that V

carries a non-degenerate G-invariant symmetric bilinear form.

Remark 3.3.2. Let us observe and record that in this situation C[G] is an algebra with

an orthogonal module V (by assumption). Also, it is known ([RS03, Thm. 1.5]; see

Equation (2.6.3) and Equation (2.6.4)) that the PBW requirement is met if and only if
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the map κ is G-equivariant, that is,

κ((g · v) ∧ (g · w)) = gκ(v ∧ w)g−1 for all g ∈ G, v,w ∈ V in H0 , (3.3.2)

and it satisfies the following Jacobi identity

[κ(u ∧ v), w] + [κ(u ∧ v), w] + [κ(u ∧ v), w] = 0 for all u, v, w ∈ V in H0 . (3.3.3)

Similar as for (g,K)-modules as described in the previous section, Ciubotaru defined

a Dirac operator D and Dirac cohomology as follows. Choosing a pair of dual bases

of (vi)i, (vi)i of V with respect to the assumed non-degenerate G-invariant symmetric

bilinear form, we can write the Dirac operator as

D =
∑
i

vi ⊗ vi in Hκ ⊗ C(V ) ,

where C(V ) is the Clifford algebra of V and the mentioned bilinear form. The definition

turns out to be independent of the choice of dual bases.

If we also fix an irreducible C(V )-module S, then D acts on the tensor product

M ⊗S for any Hκ-module M . The Dirac cohomology of such a module M is defined as

HD(M) = kerD/(kerD ∩ imD) .

It can be shown that a certain covering group G̃ of G acts on HD(M), G̃ is called the

pin cover of G.

As an analog of Lemma 3.2.2 in Section 3.2, a formula for D2 is derived [Ciu16,

Thm. 2.7]. Let π1 : C[G]→ C be the projection onto the span of the identity element in

G (the 1-element in the algebra C[G]) along the span of all other group elements, and

let κ1 be π1 ◦ κ. Then the following analog of Theorem 3.2.3 is obtained:

Theorem 3.3.3 ([Ciu16, Thm. 3.14, Rem. 3.15]). If κ1 = 0, assume M is an Hκ-

module with a central character and with HD(M) 6= 0. Then HD(M) determines the

central character.

More precisely, there is an algebra map from the center of Hκ to the center of C[G̃],

and the scalar by which a central element in Hκ acts on M is just the scalar by which

its image acts on an arbitrary irreducible G̃-submodule of HD(M).
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The result applies, for instance, to rational Cherednik algebras with the parameter

t equal to 0.
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Chapter 4

Pin covers

4.1 Pin cover of a group

Let G be a group and let V be a G-module over the field F. A bilinear form 〈·, ·〉 on V

is called G-invariant if

〈gv1, gv2〉 = 〈v1, v2〉 for all v1, v2 ∈ V, g ∈ G . (4.1.1)

The definition can be stated without the use of elements, since it is equivalent to re-

quiring that the adjoint operator of the action of some g ∈ G be given by the action

of g−1, or also, to requiring that 〈·, ·〉 be a G-module map, where we use the natural

G-actions, the diagonal one for the tensor product and the trivial one for the field F.

The module V is called orthogonal if it carries a non-degenerate G-invariant symmetric

bilinear form.

Assume now that 〈v, v〉 has a square-root in F for all v ∈ V . This is the case,

for instance, if F is algebraically closed, or also if F = R and 〈·, ·〉 is positive-definite.

Recall from Section 2.2.1 that in this case, Pin = Pin(V, 〈·, ·〉) is the subgroup generated

by unit vectors in C×, that O = O(V, 〈·, ·〉) is defined as the group of general linear

transformations A of V which preserve 〈·, ·〉 in the sense that

〈Av,Aw〉 = 〈v, w〉 for all v, w ∈ V ,

and that we have a surjective group homomorphism φ : Pin→ O which can be described

with the conjugation action of Pin ⊂ C× on C (in the superalgebraic sense), which

leaves the subspace V ⊂ C invariant, or more explicitly by φ(u) = τu for any element

u ∈ U with 〈u, u〉 = 1 (see Lemma 2.2.9).

Now the action of G on V can be regarded as a group homomorphism G→ O, and
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the fact that the action of G corresponds to operators in O could be taken as another

definition of “orthogonal module”.

Definition 4.1.1. Let the pin cover of G with respect to (V, 〈·, ·〉) be the triple (G̃, π, γ)

defined by the following commutative diagram (pullback) of groups:

G̃ Pin C×

G O

γ

π φ (4.1.2)

By construction, G̃ is a group, π and γ are group homomorphisms and π is surjective,

because φ is so. Furthermore, if we denote the action of G on V by a dot, as in g · v,

then by commutativity of the above diagram and by Lemma 2.2.9, for all g̃ ∈ G̃, v ∈ V ,

π(g̃) · v = (γ(g̃)⊗ γ(g̃−1)op) · v (4.1.3)

as elements in C.

4.2 Pin cover of a Lie algebra

Let g be a Lie algebra over F and let V be a g-module. A bilinear form 〈·, ·〉 on V is

called g-invariant if

〈xv1, v2〉 = −〈v1, xv2〉 for all x ∈ g, v1, v2 ∈ V . (4.2.1)

This is equivalent to the adjoint of the action of x being given by the action of −x, or to

〈·, ·〉 being a g-module map, where g-acts on the tensor product diagonally and trivially

on F (but note the different definitions of diagonal and trivial actions compared to the

group case). V is called orthogonal if it has a non-degenerate g-invariant symmetric

bilinear form.

Recall from Section 2.2.2 that so = so(V, 〈·, ·〉) was defined as the space of linear

transformations A of V satisfying

〈Av1, v2〉 = −〈v1, Av2〉 for all v1, v2 ∈ V ,

which, in fact, is a Lie subalgebra of gl(V ). Also recall that the pin Lie algebra pin was

defined as q(V ∧V ) in the Clifford algebra C, where q is the quantization map, and that
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we defined a Lie algebra isomorphism φ : pin→ so which was given by the action of pin

on C by taking the supercommutator, which leaves V ⊂ C invariant, or more explicitly

by φ(q(v ∧ w)) = Av,w (Proposition 2.2.12).

Now V is orthogonal if and only if the image of the action of g in gl(V ) lies in so.

Definition 4.2.1. Let the pin cover of g with respect to (V, 〈·, ·〉) be the triple (g, idg, γ),

where γ is defined by the following commutative diagram of Lie algebras:

g pin C

g so

γ

idg φ (4.2.2)

By construction, γ is a Lie algebra homomorphism and if we denote the action of g on

V by a dot, then commutativity of the diagram and Proposition 2.2.12 imply, for all

x ∈ g, v ∈ V ,

x · v = [γ(x), v] (4.2.3)

as elements in C.

4.3 Pin cover of a pointed cocommutative Hopf algebra

Let H be a pointed cocommutative Hopf algebra over a field F of characteristic 0, and

let V be an orthogonal H-module (Definition 2.5.9), that is, V has an H-invariant

non-degenerate symmetric bilinear form 〈·, ·〉. Let us also assume that F contains a

square root of 〈v, v〉 for all v ∈ V , i.e., that we can normalize any non-zero vector in

V with respect to 〈·, ·〉. For instance, this is the case if F = C or if F = R and 〈·, ·〉 is

positive-definite.

Let us recall (Theorem 2.5.6) that any pointed cocommutative Hopf algebra H over

a field of characteristic 0 is of the form H = U(g) o F[G] for the group of group-likes

G, the Lie algebra g of primitives and an action of G on g. By Lemma 2.5.7, V is an

orthogonal module for G and g, so by Sections 4.1 and 4.2 we have pin covers (G̃, πG, γG)

and (g, idg, γg) at our disposal. Our aim is now to construct a pin cover for H from

these.
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Let us define H̃ = U(g) o F[G̃], by construction another pointed cocommutative

Hopf algebra, where the action of an element g̃ ∈ G̃ on g shall be given by the action of

πG(g̃) ∈ G. That is, H̃ is the algebra generated by U(g) and F[G̃] with the additional

relations

g̃xg̃−1 = πG(g̃) · x for all g̃ ∈ G̃, x ∈ g .

Let us further define the algebra map π : H̃ → H on generators by π(g̃) = πG(g̃) and

π(x) = x for all g̃ ∈ G̃, x ∈ g.

Lemma 4.3.1. π is a well-defined surjective Hopf algebra map.

Proof. π is a well-defined algebra map, since for g̃ ∈ G̃, x ∈ g, the following holds in H:

π(g̃)π(x)π(g̃−1) = πG(g̃)xπG(g̃)−1 = πG(g̃) · x = π(πG(g̃) · x) .

Thus, we can verify on generators that it is a Hopf algebra map. Consider g̃ ∈ G̃, then

ε(π(g̃)) = 1 = π(ε(g̃)) , ∆(π(g̃)) = π(g̃)⊗ π(g̃) = (π ⊗ π)∆(g̃)

and S(π(g̃)) = π(g̃)−1 = π(S(g̃)) .

The corresponding checks for x ∈ g are trivial, because π|g = idg. Hence indeed, π is a

Hopf algebra map.

And π is surjective, since its image contains G and g, which generate H is an

algebra.

Similarly, we define an algebra γ : G̃ → C on generators by γ(g̃) = γG(g̃) and

γ(x) = γg(x) for all g̃ ∈ G̃, x ∈ g.

Lemma 4.3.2. γ is a well-defined algebra map.

Proof. For g̃ ∈ G̃, x ∈ g, let us use the shortcut p = γG(g̃) ∈ Pin. Then

pvp−1 = (−1)pπG(g̃) · v
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holds in C for any v ∈ V and similarly for g̃−1, p−1. Thus for any v ∈ V , we can

compute in C:

[γ(g̃)γ(x)γ(g̃−1), v] = [pγg(x)p−1, v] = p[γg(x), p−1vp]p−1

= (−1)pπG(g̃) · (x · ((−1)p
−1
πG(g̃)−1 · v))

= πG(g̃) · (x · (πG(g̃)−1 · v)) . . . ,

but this last expression is the same as the element πG(g̃)xπG(g̃)−1 in H acting on V .

By the smash product relation in H, this is just

· · · = (πG(g̃) · x) · v = (g̃ · x) · v = [γ(g̃ · x), v] .

We recall from Lemma 2.2.14, that the pin Lie algebra is a pin group submodule of C

under the adjoint action. Hence, γ(g̃)γ(x)γ(g̃−1) is a bivector just as γ(g̃ · x), and we

have just shown that their images under the isomorphism pin→ so, b 7→ [b, ·], coincide.

Hence, the elements coincide, and γ is a well-defined algebra map, as desired.

Definition 4.3.3. We define the pin cover of H with respect to (V, 〈·, ·〉) to be the triple

(H̃, π, γ).

Now H̃ is a pointed cocommutative Hopf algebra, π : H̃ → H is a Hopf algebra

epimorphism by Lemma 4.3.1, γ : H̃ → C is an algebra map.

We want to find analogs for the compatibility conditions of π and γ as in Equa-

tions (4.1.3) and (4.2.3). To this end, it will be useful to consider C as a superalgebra

as before. Let us record the following observation:

Lemma 4.3.4. If g̃ ∈ H̃ is a group-like element, then (−1)γ(g̃) is just the ordinary

determinant of the action of π(g̃) on V , and if x ∈ H̃ is a primitive element, then

(−1)γ(x) = 1.

Proof. For a primitive element g̃, its action on V will be the same as the action of

γ(g̃), so what we want to show is that for any p in the pin group Pin, (−1)p equals the

determinant of p acting on V . We can write p = v1 . . . vm with m ≥ 0 and vi ∈ V such

that 〈v, v〉 = 1. Now each of the vi acts on V as a reflection with determinant −1, so

the determinant of p is (−1)m, which is also its degree in the superalgebra C.
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For a primitive element x, γ(x) will be in pin, which is in the even part of C, so

(−1)γ(x) = 1.

Now let us recall (Section 2.1) that for any superalgebra A, the superalgebra A⊗Aop

acts on A from the left, where we use the superspace braiding c to turn the right action

of A on itself into a left action of Aop on A.

Proposition 4.3.5. For all h̃ ∈ H̃, v ∈ V ,

π(h̃) · v = (γ(h̃(1))⊗ γ(S(h̃2))op) · v (4.3.1)

as elements in C.

Proof. The map

H̃ → C ⊗ Cop , h̃ 7→ γ(h̃(1))⊗ γ(S(h̃(2)))
op ,

is an algebra map, because ∆ and γ are algebra maps and S is an anti-algebra map.

Hence we can verify the asserted equation on a set of algebra generators of H.

For g̃ ∈ G̃ and v ∈ V ,

(γ(g̃(1))⊗ γ(S(g̃(2)))
op) · v = (γ(g̃)⊗ γ(g̃−1)op) · v = π(g̃) · v in C

by Equation (4.1.3).

For x ∈ g, v ∈ V ,

(γ(x(1))⊗ γ(S(x(2)))
op) · v = (γ(x)⊗ 1− 1⊗ γ(x)op) · v = [γ(x), v] = x · v in C

by Equation (4.2.3). This proves the desired formula.

4.4 Coalgebra measurings of central simple superalgebras

In this section, we work over an arbitrary field F. Let C be a coalgebra and A an algebra

over F.

Definition 4.4.1. We say that C measures A if we have a map C ⊗ A → A sending

c⊗ a to c · a such that

c · 1 = ε(c) and c · (ab) = (c(1) · a)(c(2) · b) for all c ∈ C, a, b ∈ A . (4.4.1)



49

In other words, a measuring is characterized by the associated map

A→ Hom(C,A) , a 7→ (c 7→ c · a) (4.4.2)

being an algebra map, where Hom(C,A) is an algebra with the convolution and with

ε(·)1 as the identity element (see Section 2.4).

Example 4.4.2. There is a trivial measuring c · a = ε(c)a for all c ∈ C, a ∈ A for any

coalgebra C and any algebra A.

Example 4.4.3. More generally, if C is a coalgebra, A is an algebra and u ∈ Hom(C,A)

is ?-invertible with inverse u−, then the map

C ⊗A→ A , c⊗ a 7→ u(c(1))au
−(c(2)) for all c ∈ C, a ∈ A ,

is a measuring.

Example 4.4.4. If H is a bialgebra and V is an H-module algebra, then the action of H

is a measuring.

Definition 4.4.5. We say that the measuring is inner , if it is like Example 4.4.3, that

is, if there is a ?-invertible u ∈ Hom(C,A) such that

c · a = u(c(1))au
−(c(2)) for all c ∈ C, a ∈ A .

In other words, a measuring is inner, if the map in Equation (4.4.2) is conjugate to

the trivial measuring corresponding to the map

A 7→ Hom(C,A) , a 7→ (c 7→ ε(c)a) (4.4.3)

via an invertible element in Hom(C,A).

Example 4.4.6. The adjoint action of a Hopf algebra on itself is an inner measuring with

u = S, the antipode of H.

In certain situations, all measurings are inner. The following result can be viewed

as a Skolem–Noether theorem for coalgebra measurings.

Theorem 4.4.7 ([Mas90a, Thm. 3.1(c)],[Kop91, Thm. 1.1]). Let C be a coalgebra mea-

suring a central simple algebra A. Then the measuring is inner.
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Remark 4.4.8. This result generalized the well-known facts that in a central simple alge-

bra, any automorphism or any derivation is inner, where the automorphism is regarded

as the measuring of a group-like element in a one-dimensional coalgebra and the deriva-

tion as the measuring of a primitive element in the universal enveloping algebra of a

one-dimensional Lie algebra.

We want to prove that the theorem can be extended to the category of superspaces.

In what follows, all superspaces (algebras, coalgebras, . . . ) will be over a field of char-

acteristic not 2 (so the braiding is non-trivial).

We start with the Skolem–Noether theorem for superalgebras, versions of which

follow from [Jab10, Thm. 3.2] or [CVOZ97, Cor. 3.6].

Definition 4.4.9. We say that two maps f, g to a superalgebra A are conjugate if there

is an invertible a ∈ A such that g = (a⊗ (a−1)op) · f .

Lemma 4.4.10 (Skolem–Noether for superalgebras). Let A be a finite-dimensional sim-

ple superalgebra, B a central simple superalgebra, and f, g graded algebra maps from A

to B. Then f, g are conjugate by a homogeneous element in B×.

Proof. Since A is a finite-dimensional simple superalgebra and B is a central simple

superalgebra, E = A ⊗ Bop is a finite-dimensional simple superalgebra. The graded

algebra maps f, g can be extended to graded algebra maps f ⊗ idBop , g ⊗ idBop from E

to B ⊗Bop and the latter algebra acts on B, so the simple algebra E acts on B in two

ways.

By Lemma 2.1.4, B decomposes as a direct sum of copies of the simple E-module

which is unique up to isomorphism and parity change. Hence there is a graded E-module

automorphism s of B such that

s((f(a)⊗ bop) · x) = (g(a)⊗ bop) · s(x) for all a ∈ A, b, x ∈ B .

This equation implies

s(f(a)) = s((f(a)⊗ 1op) · 1) = (g(a)⊗ 1op) · s(1) = g(a)s(1) ,

s(f(a)) = s((1⊗ f(a)op) · 1) = (1⊗ f(a)op) · s(1) = (−1)|s(1)||f(a)|s(1)f(a) ,
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for all a ∈ A. As both s and s−1 are Bop-module maps,

1 = s(s−1(1)) = s(1⊗ (s−1(1))op) · 1) = (1⊗ s−1(1)op) · s(1) = ±s(1)s−1(1) ,

1 = s−1(s(1)) = (1⊗ s(1)op) · s−1(1) = ±s−1(1)s(1) ,

where the sign is the same in both equations, namely + if s is an even automorphism

of B or − if s is odd.

Hence, s(1) is invertible in B and, as |s(1)−1| = |s(1)|, we get

g(a) = (−1)|s(1)||f(a)|s(1)f(a)s(1)−1 = (s(1)⊗ (s(1)−1)op) · f(a) ,

as desired.

The Skolem–Noether theorem for algebras has a counterpart in the theory of coal-

gebras, namely the fact that certain coalgebra measurings of central simple algebras

are inner. This was first proven by Koppinen [Kop91] and independently, by Masuoka

[Mas90a]. A review of these ideas can also be found in Montgomery’s book [Mon93,

Ch. 6].

We follow the ideas of Milinski [Mil93] who derived the coalgebra results from the

classical algebra result, and transfer them to superalgebras and supercoalgebras, respec-

tively.

Lemma 4.4.11. Let A be a central simple superalgebra, B a finite-dimensional super-

algebra, and f, g graded algebra maps from A to B. Then f, g are conjugate.

Proof. First assume B is simple. Let Z be the supercenter of B. If there was a non-zero

odd element z ∈ Z, then z2 = 0 and z would generate a non-trivial two-sided graded

ideal in B, which contradicts simplicity of B. Hence Z is purely even and commutative,

and again by simplicity of B, it is a field.

Now B is a central simple superalgebra over Z, Z ⊗A is a simple superalgebra over

Z and we have two graded algebra maps from Z ⊗ A to B sending z ⊗ a in Z ⊗ A to

zf(a) and zg(a), respectively.
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Hence, by the previous lemma, these maps are conjugate, i.e., there is an invertible

homogeneous b ∈ B such that

zf(a) = (b⊗ (b−1)op) · (zg(a)) for all z ∈ Z, a ∈ A ,

in particular, for z = 1 we obtain that f and g are conjugate, as desired. This completes

the proof for the case where B is simple.

In general, let J be the Jacobson radical of the superalgebra B (as discussed in

Section 2.1). Then by Lemma 2.1.6, B/J is a direct sum of simple superalgebras,

hence, the canonical maps f, g : A → B/J are conjugate, say, by an invertible element

b ∈ B/J .

Consider B as an A⊗Aop-module via the action

(a⊗ (a′)op) · b = (f(a)⊗ g(a′)op) · b for all a ∈ A, (a′)op ∈ Aop, b ∈ B

and similarly B/J using f and g. Then the canonical quotient map B → B/J is an

A⊗Aop-module map. Now f, g being conjugate via b means

(f(a)⊗ 1) · b = (1⊗ g(a)op) · b for all a ∈ A .

As A is a central simple superalgebra, A⊗Aop is a simple superalgebra, so there is

an A⊗ Aop-module splitting of the canonical quotient map B → B/J . Hence, there is

an element b ∈ B which is mapped to b under this quotient map and which satisfies

(f(a)⊗ 1) · b = (1⊗ g(a)op) · b .

b is invertible by Corollary 2.1.7, since it is invertible modulo the Jacobson radical.

Hence, f, g are conjugate via b.

Definition 4.4.12 (measuring, inner measuring for supercoalgebras). Let C be a su-

percoalgebra and let A be a superalgebra. A map C ⊗ A→ A, sending c⊗ a to c · a is

a measuring if the map

A→ Hom(C,A) , a 7→ (c 7→ c · a) (4.4.4)
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is a superalgebra map. A measuring defined in this way is inner if it is conjugate to the

trivial measuring

a 7→ (c 7→ ε(c)a) (4.4.5)

via an invertible element u ∈ Hom(C,A), that means, if

c · a = (u(c(1))⊗ u−(c(2))
op) · a (4.4.6)

where we use the action of A⊗Aop on A for a superalgebra A defined in Section 2.1.

Proposition 4.4.13. Let C be a finite-dimensional supercoalgebra which measures a

central simple superalgebra A. Then the measuring is inner.

Proof. We have two graded algebra maps f, g : A → Hom(C,A) = C∗ ⊗ A which are

defined by f(a)(c) = c · a and g(a)(c) = ε(c)a, respectively.

C∗ is a simple superalgebra, so C∗ ⊗ A is a simple superalgebra. Hence, f, g are

conjugate by an invertible element u ∈ Hom(C,A) according to the lemmas. This means

f(a) = (u⊗ (u−)op) · g(a) ,

i.e.,

c · a = f(a)(c) = (u(c(1))⊗ (u−(c(3)))
op) · ε(c(2))a = (u(c(1))⊗ u−(c(2))

op) · a

for all a ∈ A, c ∈ C, as desired.

To extend this result to arbitrary supercoalgebras, we use the existence of a largest

inner sub-supercoalgebra. For ungraded coalgebras, the corresponding result was estab-

lished by Masuoka [Mas90b]. Schneider [Sch94] found a simpler proof, whose arguments

were generalized to H-comodule coalgebras by Ulm [Ulm03], where H is a bialgebra

over a field. For H = FZ2, H-comodule coalgebras are just Z2-graded coalgebras, i.e.,

supercoalgebras.

Theorem 4.4.14. Let C be any supercoalgebra which measures a central simple super-

algebra A. Then the measuring is inner.
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Proof. By [Ulm03, Thm. 4.1.2], there is a largest inner Z2-graded subcoalgebra C ′ of C,

i.e., a largest graded subcoalgebra restricted to which the measuring is inner. Just as

in the ungraded situation [Mon93, Thm. 5.1.1], any homogeneous element of a super-

coalgebra is contained in a finite-dimensional graded subcoalgebra. Hence, any graded

coalgebra is the union of its finite-dimensional graded subcoalgebras, so by Proposi-

tion 4.4.13, C ′ = C.

Corollary 4.4.15. Let H be a Hopf superalgebra and let A be central simple superalgebra

such that A is an H-module algebra. Then there is a ?-invertible graded map u ∈

Hom(H,A) such that

h · a = (u(h(1))⊗ u−(h(2))
op) · a for all h ∈ H, a ∈ A .

Proof. The conditions for A to be an H-module algebra imply that the action of H is

a measuring.

Note that the corollary does not make any statement about the compatibility of the

algebra structure of H with the map u. In order to make such a statement, we need the

following

Definition 4.4.16. Let H be a Hopf algebra (i.e., a purely even Hopf superalgebra).

A map σ ∈ Hom(H ⊗H,F) is a (normalized) Hopf 2-cocycle if σ is ?-invertible and for

all x, y, z ∈ H,

σ(σ(x(1), y(1))x(2)y(2), z) = σ(x, σ(y(1), z(1))y(2)z(2)) and σ(x, 1) = ε(x) = σ(1, x) .

The significance of this definition for us is the following result by Doi and Takeuchi

[DT86].

Lemma 4.4.17 ([Mon93, Lem. 7.1.2]). Let H be a Hopf algebra with multiplication map

µ : H ⊗H → H and with a Hopf 2-cocycle σ : H ⊗H → F. Then µσ = σ ? µ defines an

associate multiplication for the vector space H.

The new Hopf algebra is called the crossed product Hσ.



55

Even though the map u realizing the action of a Hopf algebra H on a central simple

superalgebra as an inner measuring might not be an algebra map, it is an algebra map

up to a Hopf 2-cocycle in important special case, in the following sense:

Proposition 4.4.18. In the situation of Corollary 4.4.15 assume H is a cocommutative

(purely even) Hopf algebra. Then there is a Hopf 2-cocycle σ : H ⊗H → F such that the

map

∆u = (idH ⊗u) ◦∆: H → H ⊗A , h 7→ h(1) ⊗ u(h(2)) ,

is an algebra isomorphism from Hσ to ∆u(H) ⊂ H ⊗A.

Proof. We define σ : H ⊗H → A by

σ(x, y) = u−(x(1)y(2))u(x(2))u(y(2)) for all x, y ∈ H .

Fix a homogeneous element a ∈ A and let ω be the involution b 7→ (−1)|a||b|b of A.

Now we can use the fact that u and u− are mutual ?-inverses and that u realizes the

(algebra) action of H on A as an inner measuring to show that for all x, y ∈ H, in the

algebra A we have

au−(xy) = ω(u−(x(1)y(1))u(x(2)y(2))ω(a)ω(u−(x(3)y(3)))

= ω(u−(x(1)y(1))((u(x(2)y(2))⊗ u−(x(3)y(3))
op) · ω(a)))

= ω(u−(x(1)y(1))((u(x(2))⊗ u−(x(3))
op) · ((u(y(2))⊗ u−(y(3))

op) · ω(a))))

= ω(u−(x(1)y(1))u(x(2))u(y(2))ω(a)ω(u−(y(3)))ω(u−(x(3))))

= ω(u−(x(1)y(1))u(x(2))u(y(2)))au
−(y(3))u

−(x(3))

= ((1⊗ aop) · (u−(x(1)y(1))u(x(2))u(y(2))))u
−(y(3))u

−(x(3)) ,

hence,

au−(x(1)y(1))u(x(2))u(y(2)) = (1⊗ aop) · (u−(x(1)y(1))u(x(2))u(y(2))) ,

so σ(x, y) lies in the supercenter of A, so it lies in F.
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σ is a Hopf 2-cocycle, since for all x, y, z ∈ H, σ(x, 1) = σ(1, x) = x · 1 = ε(x),

σ(σ(x(1), y(1))x(2)y(2), z) = u−(x(1)y(1))u(x(2))u(y(2))u
−(x(3)y(3)z(1))u(x(4)y(4))u(z(2))

= u−(x(1)y(1)z(1))u(x(2))u(y(2))u(z(2)) , and

σ(x, σ(y(1), z(1))y(2)z(2)) = u−(y(1)z(1))u(y(2))u(z(2))u
−(x(1)y(3)z(3))u(x(2))u(y(4)z(4))

= u−(x(1)y(1)z(1))u(x(2))u(y(2))u(z(2)) ,

where we can move scalars freely within each expression and relabel the indices in

Sweedler’s notation as we like, since H is assumed to be cocommutative. Hence, Hσ is

an associative algebra

Finally, since u is ?-invertible, ∆u is injective with the inverse map

∆−1
u : ∆u(H)→ H ⊗ 1 ⊂ H ⊗ C , h⊗ c 7→ h(1) ⊗ u−(h(2))c .

Now for any x, y ∈ H,

∆−1
u (∆u(x)∆u(y)) = ∆−1

u (x(1)y(1) ⊗ u(x(2))u(y(2)))

= x(1)y(1) ⊗ u−(x(2)y(2))u(x(3))u(y(3)) = σ(x(1), y(1))x(2)y(2) ⊗ 1 ,

which is the product in Hσ.

Remark 4.4.19. For instance, if H is a cocommutative purely even Hopf superalge-

bra over C (or R) with an orthogonal purely odd module V with non-degenerate H-

invariant (positive definite) symmetric bilinear form, then H acts on the Clifford alge-

bra C(V ) by Lemma 2.5.11, which is a central simple superalgebra (see Example 2.3.3

and Example 2.3.8), so by the previous results, this action is inner via an invertible

γ ∈ Hom(H,C(V )), and there is an algebra monomorphism

∆C : Hσ → H ⊗ C(V ) , h 7→ h(1) ⊗ γ(h(2)) ,

for the Hopf 2-cocycle σ(x, y) = γ(x(1))γ(y(1))γ
−(x(2)y(2)).

Finally, let us observe:

Lemma 4.4.20. In the situation of Proposition 4.4.18, im ∆u is a graded subspace of

H ⊗A.
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Proof. Any cocommutative coalgebra is the direct sum of its irreducible components,

that is, maximal subcoalgebras each containing a unique simple subcoalgebra, because

the dual space of a cocommutative coalgebra is a commutative algebra which is the

direct sum of local subalgebras (see [Mon93, Thm. 5.6.3]).

Consider a fixed irreducible component C, then the proofs of Lemma 4.4.11 and

Proposition 4.4.13 show that the map u realizing the measuring as an inner measuring

is actually a graded map: Hom(C,A) = C∗ ⊗ A is a commutative algebra with a

unique proper non-zero graded ideal, which is the Jacobson radical. Hence, the proof of

Lemma 4.4.11 shows that the algebra maps

f, g : A→ Hom(C,A) , f(a)(c) = c · a , g(a)(c) = ε(c)a ,

are conjugate via a homogeneous element modulo the Jacobson radical. Hence f, g

themselves are conjugate via an invertible homogeneous element, which is the graded

map realizing the measuring of A by C as an inner measuring.

Hence the image of ∆u = (idH ⊗u) ◦∆ restricted to any irreducible component is a

graded subspace of H ⊗A, which implies the assertion.

Remark 4.4.21. Let us compare this with our observations regarding the explicit pin

cover construction: For a pointed cocommutative Hopf algebra H over a field of char-

acteristic 0, the irreducible components are just the subcoalgebras (H1g)g∈G, where H1

is the sub Hopf algebra generated by all primitive elements of H. In Section 4.3, we

constructed a map γ realizing the action of H on C(V ) for an orthogonal module V

as an inner action. In Lemma 4.3.4 we observed that γ(g) ∈ C(V ) is homogeneous of

degree det(g|V ) (where we identify Z2
∼= {±1}), so the image of γ restricted to H1g,

and hence, the image of (idH ⊗γ) ◦H restricted to H1g is homogeneous in H ⊗ C, the

homogeneous degree being det(g|V ), for each g ∈ G(H).
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Chapter 5

Hopf–Hecke algebras

In this chapter, we fix a cocommutative Hopf algebra H over the field F of characteristic

not 2 and a finite-dimensional H-module V . We denote the antipode of H by S and

to make some formulae more readable, we will sometimes omit the parentheses when

applying the linear operator S to an element of H, as in “Sh”.

As H is cocommutative, it not only acts on the tensor algebra T (V ), but also on

the symmetric algebra S(V ) and the exterior algebra Λ(V ). Even though the antipode

and the symmetric algebra are denoted using the same symbol S, the meaning of this

symbol should always be clear from the context.

Let κ : V ∧ V → H be a linear map. We define A = Aκ as the algebra generated by

H and V subject to the relations

h(1)vS(h(2)) = h · v , vw − wv = κ(v ∧ w) for all h ∈ H, v,w ∈ V , (5.0.1)

that is,

A = Aκ = (T (V ) oH)/Iκ , (5.0.2)

where Iκ is the ideal in T (V )oH generated by elements of the form vw−wv−κ(v∧w)

for v, w ∈ V .

As explained in Section 2.6, Aκ is, in general, a filtered algebra with elements v ∈ V

in degree 1. If κ = 0, then Aκ is even a Z-graded algebra, namely the smash product

S(V ) oH which we denote by A0. The quotient map T (V ) oH → Aκ descends to a

surjective algebra map A0 → gr(Aκ), where gr(Aκ) is the associated graded algebra of

the filtered algebra Aκ.

Definition 5.0.1. Aκ is a PBW deformation (or flat deformation) of A0 if this map is

an isomorphism.
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Definition 5.0.2. Aκ is a Hopf–Hecke algebra if H is a Hopf algebra, V is an orthogonal

H-module, and Aκ is a PBW deformation of A0.

5.1 Hopf–Hecke algebras as PBW deformations

An interesting problem is the question, which maps κ yield PBW deformations for a

given choice ofH and V . It is known that this can be answered in terms of two properties

of the map κ.

Definition 5.1.1. For a map κ : V ∧ V → H, we say:

• κ has the PBW property if Aκ is a PBW deformation of A0.

• κ is H-equivariant if κ is an H-module map, that is, if

κ(h(1) · v ∧ h(2) ·w) = κ(h · (v ∧w)) = h · κ(v ∧w) = h(1)κ(v ∧w)S(h(2)) (5.1.1)

for all h ∈ H, v,w ∈ V (where the first and last identity are just the definition of

the action of H on Λ2(V ) and H, respectively).

• κ has the Jacobi property if

[κ(u, v), w] + [κ(v, w), u] + [κ(w, u), v] = 0 in T (V ) oH for all u, v, w ∈ V .

(5.1.2)

Maps κ with the PBW property have been studied for several special cases of H

starting with the work of Drinfeld [Dri86], Braverman and Gaitsgory [BG96], Etinof

and Ginzburg [EG02], see also the survey article by Shepler–Witherspoon [SW15].

The following version required for our general setting is covered by results of Wal-

ton [WW14, Thm. 3.1] or Khare [Kha17, Thm. 2.5], see also Etingof–Gan–Ginzburg

[EGG05, Thm. 2.4].

Theorem 5.1.2. κ has the PBW property if and only if κ is H-equivariant and has the

Jacobi property.

We set off to describe maps with the Jacobi property more explicitly. For instance,

in the case where H is a group algebra, we have seen in Theorem 2.6.3, that the image of
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κ has to be in the span of group elements satisfying a certain rank condition. To obtain

a similar result in our more general situation, let us define a filtration on H depending

on V . For h ∈ H, v ∈ V we define a linear action

h . v = h · v − ε(h)v . (5.1.3)

Definition 5.1.3. For i ≥ 0, we define the subspace Ki ⊂ H as

Ki = {h ∈ H | (h(1) . v1) ∧ · · · ∧ (h(i+1) . vi+1)⊗ h(i+2) = 0

for all v1, . . . , vi+1 ∈ V } . (5.1.4)

Remark 5.1.4. For example, K0 is the space of all h ∈ H for which

h(1) . v ⊗ h(2) = 0

for all v ∈ V . Hence, if H ′ is the space of h ∈ H which act on V as ε(h), then

K0 = ∆−1(H ′⊗H) = ∆−1(H ′⊗H ′), since H is cocommutative. In particular, applying

id⊗ε, we see that K0 ⊂ H ′.

Lemma 5.1.5. (Ki)i≥0 is a finite algebra filtration of H.

Proof. We first check Ki ⊂ Ki+1. Consider h in Ki, then

(h(1) . v1) ∧ · · · ∧ (h(i+2) . vi+2)⊗ h(i+3)

= (h(1) . v1) ∧ · · · ∧ (h(i+1) . vi+1) ∧ ((h(i+2))(1) . vi+2)⊗ (h(i+2))(2) = 0

for all v1, . . . , vi+2 ∈ V , so indeed, h lies in Ki+1.

Also, ΛdimV+1(V ) = 0, so KdimV = H, and (Ki)i is a finite filtration of subspaces.

To see that this is an algebra filtration, we observe that for a, b ∈ H and all v ∈ V ,

(ab) . v = (ab− ε(a)ε(b)) · v = a · (b . v) + ε(b)(a . v) = P (a, b, v) +Q(a, b, v)

using the shorthands P (a, b, v) = a · (b . v) and Q(a, b, v) = ε(b)(a . v).
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Then for all i, j ≥ 0, m = i+ j, a ∈ Ki, b ∈ Kj , and v1, . . . , vm+1 ∈ V :

((ab)(1) . v1) ∧ · · · ∧ ((ab)(m+1) . vm+1)⊗ (ab)(m+2)

= ((a(1)b(1)) . v1) ∧ · · · ∧ ((a(m+1)b(m+1)) . vm+1)⊗ (a(m+2)b(m+2))

= (P (a(1), b(1), v1) +Q(a(1), b(1), v1)) ∧ . . .

· · · ∧ (P (a(m+1), b(m+1), vm+1) +Q(a(m+1), b(m+1), vm+1))⊗ (a(m+2)b(m+2))

Once we expand the (m + 1)-fold wedge product, we obtain a sum of wedge products

with factors of the form P (. . . ) or Q(. . . ). Since there are m+ 1 of these factors, each

summand will have at least (i+ 1) factors of the form P (. . . ) or at least (j + 1) factors

of the form Q(. . . ). Hence we can swap wedge factors for the cost of a minus sign

and relabel v1, . . . , vm+1 using cocommutativity of H such that each summand of the

expansion will contain a term of the form

P (a(1), b(1), v1) ∧ · · · ∧ P (a(i+1), b(i+1), v(i+1))

or Q(a(1), b(1), v1) ∧ · · · ∧Q(a(j+1), b(j+1), v(j+1)) .

Both terms vanish, since a ∈ Ki and b ∈ Kj . Hence, ab ∈ Km and the filtration is an

algebra filtration, as desired.

However, (Ki)i is more than an algebra filtration of H.

Lemma 5.1.6. Ki is a subcoalgebra of H and a submodule of H under the adjoint

action for each i ≥ 0.

Proof. To see that Ki is a subcoalgebra, we consider h ∈ Ki and we write ∆(h) =∑
k r

k ⊗ hk for linearly independent (hk)k in H and suitable elements (rk)k in H. For

a given index j, let pj be a projection of H onto the span of hj along the span of all hk

for k 6= j. Then

(rj(1) . v1) ∧ · · · ∧ (rj(i+1) . vi+1)⊗ rj(i+2) ⊗ h
j

= (id⊗ id⊗pj)
(∑

k

(rk(1) . v1) ∧ · · · ∧ (rk(i+1) . vi+1)⊗ rk(i+2) ⊗ hk
)

= (id⊗ id⊗pj)
(∑

k

(rk(1) . v1) ∧ · · · ∧ (rk(i+1) . vi+1)⊗ hk(1) ⊗ hk(2)

)
= 0 ,
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for all v1, . . . , vi+1 ∈ V , where we have used the coassociativity of the coproduct and our

assumption that h ∈ Ki. So rj ∈ Ki, and as H is cocommutative, Ki is a subcoalgebra.

To see that Ki is a submodule of H under the adjoint action, we first note that

(k · h) . v = (k(1)hSk(2)) . v = k(1) · (h . (Sk(2) · v)) for all h, k ∈ H, v ∈ V .

Now let us assume h ∈ Ki. Then

((k · h)(1) . v1) ∧ · · · ∧ ((k · h)(i+1) . vi+1)⊗ (k · h)(i+2)

= (k(1) · (h(1) . (Sk(2) · v1)) ∧ . . .

· · · ∧ (k(2i+1) · (h(i+1) . (Sk(2i+2) · vi+1))⊗ k(2i+3) · h(i+2)

= k(1) · ((h(1) . ·) ∧ . . . (h(i+1) . ·))(Sk(2) · (v1 ∧ · · · ∧ vi+1))⊗ k(3) · hi+2

= 0

for all v1, . . . , vi+1 ∈ V , where we have used the action of H on Λi+1(V ). Thus indeed,

k · h ∈ Ki.

As in the proof of [EGG05, Prop 2.8] we define the notation

(v1, . . . , vk|x, y) = (κ(x, y)(1).v1)∧· · ·∧(κ(x, y)(k).vk)⊗κ(x, y)(k+1) ∈ ΛkV ⊗H (5.1.5)

for all v1, . . . , vk, x, y ∈ V .

We use the filtration (Ki)i to obtain a counterpart to [EGG05, Prop. 2.8] on the

“support” of maps κ with the Jacobi identity:

Proposition 5.1.7. Assume κ : V ∧V → H has the Jacobi property and charF 6∈ {2, 3}.

Then imκ ⊂ K2.

Proof. This is a word-for-word translation of [EGG05, Prop. 2.8] and the associated

lemmas (Lem. 2.10, Lem. 2.11) to our situation:

Note that in Aκ,

[h, v] = (h(1) · v)h(2) − ε(h(1))vh(2) = (h(1) . v)h(2) ,

so using our new notation, the Jacobi identity reads

(v|x, y) + (x|y, v) + (y|v, x) = 0 for all v, x, y ∈ V . (5.1.6)
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From this we get

(z, u|x, y) = −(z, x|y, u)− (z, y|u, x) ,

(z, u|x, y) = −(u, z|x, y) = (u, x|y, z) + (u, y|z, x) ,

but now taking the average on both sides and applying Equation (5.1.6) we obtain

(z, u|x, y) = (x, y|z, u) for all z, u, x, y ∈ V . (5.1.7)

In turn, this implies

(z, u, v|x, y) = (z, x, y|u, v) ,

(u, v, z|x, y) = (u, x, y|v, z) ,

(v, z, u|x, y) = (v, x, y|z, u) ,

but the right-hand sides are the same, so we can again take averages on both sides and

apply Equation (5.1.6) to obtain

(z, u, v|x, y) = 0 for all z, u, v, x, y ∈ V . (5.1.8)

Hence if h = κ(x, y) ∈ H for elements x, y ∈ V , then

(h(1) . z) ∧ (h(2) . u) ∧ (h(3) . v)⊗ h(4) = 0

for all z, u, v ∈ V , so h ∈ K2.

Note that in order to average in this proof we implicitly used our assumption that

the characteristic of the base field is not 2 or 3.

Remark 5.1.8. Assume H = C[G] for a finite group G. Then a basis element g ∈ G of

C[G] is in K2 if and only if rnk(g|V − 1) ≤ 2, and a general element
∑

g αgg is in K2 if

αg = 0 for all g for which rnk(g|V −1) > 2. Hence, Proposition 5.1.7 is compatible with

and, in fact, already recovers a large part of the known classification of Drinfeld Hecke

algebras as explained in Theorem 2.6.3.

Remark 5.1.9. We compare this with [Kha17, Prop. 4.3] which is formulated over a

field k of arbitrary characteristic, for a cocommutative bialgebra and with an additional
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deformation parameter λ. In case we specialize to a Hopf algebra and to λ = 0, the

cited proposition yields the following result: Assume h′, h′′ are non-zero elements of H,

U ⊂ H is a vector space complement of kh′′, imκ ⊂ h′⊗h′′+H⊗U , but imκ 6⊂ H⊗U .

Then the operator h′|V − ε(h′) has rank at most 2. In this context, let us note that our

definition of the Jacobi property and our proof of Proposition 5.1.7 works even if H is

a bialgebra.

We can reformulate the recent findings:

Definition 5.1.10. For each i ≥ 0, we define the linear map

Ti : H/Ki → End(∧i+1V )⊗H, h 7→ (h(1) . ·) ∧ · · · ∧ (h(i+1) . ·)⊗ h(i+2) .

By the definition of Ki, the map is well-defined and injective, so there is an inverse

map T−1
i : imTi → H/Ki.

For a linear map κ : V ∧ V → H, let us use the notation [κ]i for its image in

Hom(V ∧ V,H/Ki) for any i ≥ 0.

Corollary 5.1.11. If κ : V ∧ V → H has the Jacobi property, then for all x, y ∈ V ,

[κ]0(x, y) = T−1
0 (T0 ◦ [κ]0(x, ·)(y) + T0 ◦ [κ]0(·, y)(x)) ,

[κ]1(x, y) = T−1
1 (T1 ◦ [κ]1(·, ·)(x, y)) ,

and [κ]i = 0 for all i ≥ 2.

Proof. The three statements are reformulations of the Jacobi identity Equation (5.1.6),

Equation (5.1.7) and Equation (5.1.8), respectively.

5.2 A family of examples

Extending the class of examples we obtain from transferring the discussion in [EGG05,

Sec. 2.3] to our setting, we have the following family of examples of maps with the

Jacobi property and PBW property, respectively:

Definition 5.2.1. Consider elements τ ∈ (V ∧ V )∗ ⊗K0,

σ =
∑
m

σm ⊗ hm ∈ (V ∧ V )∗ ⊗K1 , θ =
∑
i

θi ⊗ ki ∈ (V ∧ V )∗ ⊗K2 , (5.2.1)



65

which is to say, linear maps from V ∧ V to K0, K1 and K2, respectively.

Using those we define new linear maps from V ∧ V to H: κτ (x, y) = τ(x, y),

κσ(x, y) =
∑
m

σm(hm(1) . x, y)hm(2) + σm(x, hm(1) . y)hm(2) , (5.2.2)

κθ(x, y) =
∑
i

θi(k
i
(1) . x, k

i
(2) . y)ki(3) (5.2.3)

for all x, y ∈ V , and

κ = κτ + κσ + κθ . (5.2.4)

Remark 5.2.2. κσ and κθ actually only depend on [σ] and [θ] in Hom(V ∧ V,K1/K0)

and Hom(V ∧ V,K2/K1), respectively. This is, because if h ∈ K0 and k ∈ K1, then

h(1) . x⊗ h(2) = h(1) . y ⊗ h(2) = 0 and (k(1) . x) ∧ (k(2) . y)⊗ k(3) = 0

for all x, y ∈ V .

Lemma 5.2.3. Each of κτ , κσ or κθ as in the definition is H-equivariant if and only

if the corresponding map τ , σ or θ is H-equivariant, respectively. In particular, κ is

H-equivariant if τ , σ and θ are H-equivariant.

Proof. For κτ , the assertion is tautological. For κσ, κθ let us first note that for any

h, k ∈ H and any x ∈ V ,

k . (Sh · x) = Sh(1) · ((h(2)kSh(3)) . x) = Sh(1) · ((h(2) · k) . x)

using the adjoint action in H. Now a linear map from V ∧ V to H is H-equivariant if

the corresponding element in (V ∧ V )∗ ⊗ H is H-invariant. So we can verify for any

h ∈ H,x, y ∈ V :

(h · κθ)(x, y) =
∑
i

θi(k
i
(1) . (Sh(1) · x), ki(2) . (Sh(2) · y))h(3) · ki(3)

=
∑
i

θi(Sh(1) · ((h(2) · ki(1)) . x), Sh(3) · ((h(4) · ki(2)) . y))h(5) · ki(3)

=
∑
i

(h(1) · θi)((h(2) · ki)(1) . x, (h(2) · ki)(2) . y)(h(2) · ki)(3)

= κh·θ(x, y) ,

and analogously for κσ.
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Remark 5.2.4. One way of obtaining H-equivariant τ, σ, θ is by choosing H-invariant

elements in (V ∧ V )∗ and H-invariant (that is, H-central) elements in K0, K1, and K2.

The map κ generated according to Equation (5.2.4) will be H-equivariant and will have

the Jacobi property, so AH,V,κ will be a PBW deformation. If additionally, V is an

orthogonal H-module, AH,V,κ will be a Hopf–Hecke algebra.

Proposition 5.2.5. Let κ be as in Equation (5.2.4). Then it has the Jacobi property.

In particular, if additionally, τ , σ, θ are H-equivariant, then A = AH,V,κ has the

PBW property.

Proof. As in [EGG05, Thm. 2.13]: By Theorem 5.1.2, the PBW property is equivalent

to the Jacobi identity if κ is H-equivariant.

To verify the Jacobi property, we consider elements x, y, z ∈ V . Recall that the

Jacobi identity reads

0 = (κ(x, y)(1) . z)κ(x, y)(2) + (κ(y, z)(1) . x)κ(y, z)(2) + (κ(z, x)(1) . y)κ(z, x)(2) .

Now for all h ∈ K0 and all v ∈ V ,

0 = (h(1) . v)⊗ h(2) ,

which verifies the Jacobi identity for κτ .

Also, for every index m and all x, y, z ∈ V ,

0 = (hm(1) . x) ∧ (hm(2) . y) ∧ z ⊗ hm(3) ,

because hm ∈ K1, so applying σm we get

0 = σm(hm(1) . x, h
m
(2) . y)z ⊗ hm(3) + σm(hm(1) . y, z)(h

m
(2) . x)⊗ hm(3)

+ σm(z, hm(1) . x)(hm(2) . y)⊗ hm(3)

= σm(hm(1) . y, z)(h
m
(2) . x)⊗ hm(3) + σm(z, hm(1) . x)(hm(2) . y)⊗ hm(3) ,

again, because hm ∈ K1.
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Thus,

0 = σm(hm(1) . x, y)(hm(2) . z)h
m
(3) + σm(x, hm(1) . y)(hm(2) . z)h

m
(3)

+ σm(hm(1) . z, x)(hm(2) . y)hm(3) + σm(z, hm(1) . x)(hm(2) . y)hm(3)

+ σm(hm(1) . y, z)(h
m
(2) . x)hm(3) + σm(y, hm(1) . z)(h

m
(2) . x)hm(3) ,

which verifies the Jacobi identity for κσ.

Finally for every index i and all x, y, z ∈ V ,

0 = (ki(1) . x) ∧ (ki(2) . y) ∧ (ki(3) . z)⊗ ki(4) ,

because ki ∈ K2, so

0 = (θi(k
i
(1) . x, k

i
(2) . y)(ki(3) . z) + θi(k

i
(1) . z, k

i
(2) . x)(ki(3) . y)

+ θi(k
i
(1) . y, k

i
(2) . z)(k

i
(3) . x))ki(4) ,

which verifies the Jacobi identity for κθ.

Corollary 5.2.6. In the situation of the proposition, if H is a Hopf algebra and V is

an orthogonal H-module, then A = Aκ is a Hopf–Hecke algebra.

Definition 5.2.7. We call a PBW deformation A = Aκ with a deformation map κ as

in Equation (5.2.4) a standard PBW deformation or, if additionally, V is an orthogonal

H-module, a standard Hopf–Hecke algebra.

Next, we will investigate conditions under which PBW deformations or Hopf–Hecke

algebras are standard.

5.3 The pointed case

In the following, we consider the case of a pointed cocommutative Hopf algebra H over

F, a field of characteristic 0. We recall that all cocommutative Hopf algebras are pointed

if F is algebraically closed.

Recall that by the structure theorem for cocommutative pointed Hopf algebras over

a field of characteristic 0, H = H1 o F[G(H)], where H1 is the universal enveloping
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algebra of the Lie algebra of primitive elements in H and F[G(H)] is the group algebra

of the group of group-likes G(H) in H. For each group-like element g ∈ G(H), H1g is

a subcoalgebra of H and H =
⊕

g∈G(H)H
1g as coalgebras.

We continue to assume that V is a finite-dimensional H-module.

Definition 5.3.1. Let κ be a linear map V ∧ V → H. Then we write

κ =
∑

g∈G(H)

κg (5.3.1)

with component maps κg : V ∧ V → H1g for all g ∈ G(H).

Lemma 5.3.2. A linear map κ : V ∧ V → H has the Jacobi property if and only if κg

has the Jacobi property for all g ∈ G(H).

Proof. For every g ∈ G(H), let pg : H → H1g be the linear projection along
⊕

g′ 6=gH
1g′.

Then we can apply idV ⊗pg to the Jacobi identity in V ⊗H to obtain the Jacobi identity

for κg.

Definition 5.3.3. Let C be a coalgebra. A filtration (Ck)k≥0 of C as vector space is

called a coalgebra filtration if

∆(Ck) ⊂
∑

0≤i≤k
Ci ⊗ Ck−i for all k ≥ 0 . (5.3.2)

Let C0 be the coradical of C, i.e. the sum of all simple subcoalgebras of C. The coradical

filtration of C is defined inductively by Ck+1 = ∆−1(C0 ⊗ C + C ⊗ Ck).

We recall well-known facts from the theory of coalgebras: The coradical filtration is

a coalgebra filtration such that C =
⋃
k≥0Ck for every coalgebra C. If C is a pointed

coalgebra, for instance, any cocommutative coalgebra over C, then C0 =
⊕

g∈G(C) Fg

for the set of group-like elements G(C) in C.

We record a useful lemma.

Lemma 5.3.4. We consider an element g ∈ G(H) with rnk(g|V −1) = 1 and we assume

that G(H) is finite or that V is orthogonal (i.e., there is a non-degenerate H-invariant

symmetric bilinear form 〈·, ·〉 on V ). Then g acts diagonalizably on V .
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Proof. We can write g|V − 1 = f(·)v with suitable non-zero f ∈ V ∗, v ∈ V . It is enough

to show that f(v) 6= 0, since then, v is an eigenvector of g|V with eigenvalue different

than 1 and ker(g|V − 1) is spanned by (dimV − 1) eigenvectors of g|V with eigenvalue

1.

In the first case, we assume f(v) = 0. Then for all k ≥ 1,

g|kV = (1 + f(·)v)k = 1 + kf(·)v ,

so g|V cannot have finite order, which is a contradiction. Hence f(v) 6= 0.

In the second case, assume f(v) = 0 and consider x ∈ ker f . Then for all y ∈ V ,

〈x, y〉 = 〈gx, gy〉 = 〈x, y + f(y)v〉 ⇒ 0 = f(y)〈x, v〉 ,

so 〈x, v〉 = 0, since f 6= 0. In particular, 〈v, v〉 = 0. Also, for all x ∈ V ,

〈x, x〉 = 〈gx, gx〉 = 〈x+ f(x)v, x+ f(x)v〉 ⇒ 0 = 2f(x)〈x, v〉 ,

so 〈x, v〉 = 0 for all x 6∈ ker f . Together, these statements imply that 〈x, v〉 = 0 for all

x ∈ V , which is a contradiction. Hence f(v) 6= 0.

We have the following information on the group-like elements g which can contribute

to deformation maps κ with the Jacobi property, and their corresponding contributions

κg (see [RS03, Sec. 1], [EGG05, Sec. 2.3]):

Proposition 5.3.5. Let κ : V ∧V → H be a linear map with the Jacobi property. Then

the following holds for every g ∈ G(H), where (g−1) denotes the corresponding operator

on V :

• κg = 0 if rnk(g − 1) 6∈ {0, 1, 2}.

• If rnk(g − 1) = 1, then κg(x, y) = 0 for all x, y ∈ V satisfying

((g − 1) · x)⊗ y − ((g − 1) · y)⊗ x = 0 .

• If rnk(g − 1) = 1 and g acts diagonalizably on V (for instance, if G(H) is finite

or V is an orthogonal H-module, see Lemma 5.3.4), then κg(x, y) = 0 for all

x, y ∈ V satisfying

((g − 1) · x) ∧ y + x ∧ ((g − 1) · y) = 0 .
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• If rnk(g − 1) = 2, then κg(x, y) = 0 for all x, y ∈ V satisfying

((g − 1) · x) ∧ ((g − 1) · y) = 0 .

Proof. We fix g ∈ G(H). Then by Lemma 5.3.2, κg has the Jacobi property, so it is

enough to consider the case κ = κg.

It is a basic statement on coalgebras that every finite-dimensional subspace is con-

tained in a finite-dimensional subcoalgebra. Let C be such a finite-dimensional subcoal-

gebra of H1g (which is a subcoalgebra of H) containing (imκg). Let (Ck)k≥0 be the

coradical filtration of C and let k be minimal such that imκ ⊂ Ck. Note that C0 = Fg

now, because g is the unique group-like element in C.

Then we can write κg =
∑

i θih
i with suitable non-zero (θi)i in (V ∧V )∗ and linearly

independent (hi)i in Ck. Let J be the set of indices j such that hj ∈ Ck \ Ck−1 (where

we set C−1 = 0). Since k was chosen minimally, J 6= ∅. For every j ∈ J , let pj be a

projection of Ck onto Fhj along Ck−1 and along hi for all i 6= j. Then

(id⊗pj) ◦∆(hi) = δijg ⊗ hj

for all i.

Thus if we apply (id⊗pj) to Equation (5.1.8), this yields

0 = (g − 1) · z ∧ (g − 1) · u ∧ (g − 1) · v ⊗ θj(x, y)hj

for all z, u, v, x, y ∈ V , so the operator (g − 1) has rank at most 2.

If we apply (id⊗pj) to the Jacobi identity 0 = (x|y, z) + (y|z, x) + (z|x, y) in V ⊗H

for any x, y, z ∈ V , we obtain

0 = (((g − 1) · x)θj(y, z) + ((g − 1) · y)θj(z, x) + ((g − 1) · z)θj(x, y))⊗ hj .

Let us assume that (g − 1) has rank 1, and let us pick f ∈ V ∗ and z ∈ V such that

f((g − 1) · z) = 1. Then the last equation implies

θj(x, y) = f((g − 1) · z)θj(x, y) = −(f ⊗ θj(·, z))(((g − 1) · x)⊗ y − ((g − 1) · y)⊗ x) ,

so that θj(x, y) = 0 if ((g − 1) · x)⊗ y − ((g − 1) · y)⊗ x = 0.
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If additionally, g acts diagonalizably, then we can pick f, z such that (g − 1) · v =

f((g − 1) · v)z for all v ∈ V , so

θj(x, y) = −θj(y, (g − 1) · x) + θj(x, (g − 1) · y) = θj((g − 1) · x ∧ y + x ∧ (g − 1) · y) ,

which confirms that θj(x, y) = 0 if (g − 1) · x ∧ y + x ∧ (g − 1) · y = 0.

Let us assume that (g − 1) has rank 2. We apply (id⊗pj) to Equation (5.1.7) to

obtain

(g − 1) · z ∧ (g − 1) · u⊗ θj(x, y) = (g − 1) · x ∧ (g − 1) · y ⊗ θj(z, u)

for all z, u, x, y ∈ V . Since (g−1) has rank 2, we can pick z, u such that (g−1)·z∧(g−1)·u

is non-zero. So θj(x, y) has to be zero if (g − 1) · x ∧ (g − 1)y = 0.

Hence, θj has to vanish on the subspaces as stated for every j ∈ J . Thus, if we

define

κ′(x, y) =
∑
i 6∈J

θi(x, y)hi ,

then κ(x, y) equals κ′(x, y) on these subspaces, but imκ′ ⊂ Ck−1. We repeat the

argument inductively replacing κ by κ′ each time until imκ′ ⊂ C−1 = 0.

To compare this with the classical situation of H being the group algebra of a finite

group, we note:

Corollary 5.3.6. Let κ : V ∧V → H be an H-equivariant F-linear map with the Jacobi

property, and fix g ∈ G(H) such that rnk(g − 1) = 1 and g acts diagonalizably on V

(which is true, for instance, if G(H) is finite or V is an orthogonal H-module, see

Lemma 5.3.4). Let r be the non-zero eigenvalue of (g − 1). Then

imκg ⊂ {x ∈ H1g | gxg−1 = (r + 1)x} .

In particular, if H is the group algebra of a finite-group, then κg = 0 for all g with

rnk(g − 1) = 1.

Proof. Let v ∈ V be an eigenvector of (g − 1) with eigenvalue r ∈ F \ {0} such that

V = Fv ⊕ ker(g − 1). Now κg(x, y) = 0 for all x, y ∈ ker(g − 1) and κg(x, y) = 0 for all
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x, y ∈ Fv, because in both cases,

(g − 1) · x ∧ y + x ∧ (g − 1) · y = 0 .

Assume x = v and y ∈ ker(g − 1). Then due to H-equivariance,

gκg(x, y)g−1 = κg(g · x, g · y) = (r + 1)κg(x, y) ,

so indeed imκg lies in the subspace of H1g on which g acts by (r + 1).

If H is the group algebra of a finite group, then H1g = Fg, so any g acts trivially

on H1g, but r + 1 6= 1.

Definition 5.3.7. For every p ≥ 0 and a linear map κ : V ∧ V → H, we define

κ(p) =
∑

g∈G(H),rnk(g−1)=p,imκg⊂Kp

κg .

We observe that if κ has the Jacobi property, by Proposition 5.1.7 and Proposi-

tion 5.3.5, κ(p) = 0 for p > 2 and the condition imκg ⊂ K2 in the definition of κ(2)

is vacuous. We also note that if κ has the Jacobi property, then κ(p) has the Jacobi

property for every p ≥ 0 by Lemma 5.3.2, since κ(p) is a sum of κg’s.

Lemma 5.3.8. For every κ : V ∧ V → H with the Jacobi property, κ(0) is of the form

of Equation (5.2.4).

Proof. This is immediate from the definition of κ(0).

Proposition 5.3.9. Assume G(H) is finite or V is an orthogonal H-module. Then for

every κ : V ∧ V → H with the Jacobi property, κ(1) is of the form

κ(1)(x, y) =
∑
m

σm(hm(1) . x, y)hm(2) + σm(x, hm(1) . y)hm(2)

with hm in K1 and σm ∈ (V ∧ V )∗ for every m. In particular, it is of the form of

Equation (5.2.4).

Proof. By Lemma 5.3.2, it is enough to show the assertion for κ = κg for a fixed

g ∈ G(H) with rnk(g − 1) = 1 and such that κg ⊂ K1.
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We can write κ =
∑

i σih
i with linearly independent hi in H1g ∩K1 and suitable σi

in (V ∧V )∗. Let J be the set of indices j such that hj lies in a maximal degree d of the

coradical filtration. Since rnk(g − 1) = 1, by Proposition 5.3.5 we know that

σj(x, y) = σ̃j((g − 1) · x ∧ y + x ∧ (g − 1) · y)

for some σ̃j in (V ∧ V )∗. We define

κ′(x, y) =
∑
j∈J

σ̃j(h
j
(1) . x, y)hj(2) + σ̃j(x, h

j
(1) . y)hj(2) ,

then by Proposition 5.2.5, κ′ has the Jacobi property, so κ′′ = κ − κ′ has the Jacobi

property, but the image of κ′′ lies in degree ≤ d−1 of the coradical filtration, because the

highest degree terms of κ and κ′ cancel. We can replace κ by κ′′ and proceed inductively

until the image of κ′′ lies in degree −1, so κ′′ = 0.

Finally, for all g ∈ G(H) with rnk(g − 1) = 2, let us fix θg ∈ (V ∧ V )∗ which do not

vanish on the one-dimensional spaces (g − 1)V ∧ (g − 1)V . Now the restriction of any

skew-symmetric bilinear form on V to (g − 1)V ∧ (g − 1)V is just a scalar multiple of

the restriction of θg.

Proposition 5.3.10. For every κ : V ∧ V → H with the Jacobi property, κ(2) is of the

form

κ(2)(x, y) =
∑

g∈G(H),rnk(g−1)=2

θg(h
g
(1) . x, h

g
(2) . y)hg(3)

with hg in H1g ∩K2 for every g. In particular, it is of the form Equation (5.2.4).

Proof. By Lemma 5.3.2, it is enough to show this for κ = κg for a fixed g ∈ G(H) with

rnk(g − 1) = 2.

We can write κ =
∑

i θik
i with linearly independent ki in H1g ∩K2 and suitable θi

in (V ∧ V )∗. Let J be the set of indices j such that kj lies in a maximal degree d of the

coradical filtration. Since rnk(g − 1) = 2, by Proposition 5.3.5 we know that

θj(x, y) = θ̃j((g − 1) · x, (g − 1) · y) = rjθg((g − 1) · x, (g − 1) · y)

for some θ̃j in (V ∧ V )∗ and for some rj ∈ F. We define hj = rjk
j and

κ′(x, y) =
∑
j∈J

θg(h
j
(1) . x, h

j
(2) . y)hj(3) ,
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then by Proposition 5.2.5, κ′ has the Jacobi property, so κ′′ = κ − κ′ has the Jacobi

property, but the image of κ′′ lies in degree ≤ d−1 of the coradical filtration, because the

highest degree terms of κ and κ′ cancel. We can replace κ by κ′′ and proceed inductively

until the image of κ′′ lies in degree −1, so κ′′ = 0. This way we see that

κ(x, y) =
∑
p

θg(h
p
(1) . x, h

p
(2) . y)hp(3)

for some (hp)p in H1g ∩ K2, but now we can define hg =
∑

p h
p and the assertion

follows.

Definition 5.3.11. Let us denote the class of Hopf–Hecke algebras AH,V,κ by H and

the class of standard Hopf–Hecke algebras by S (see Definition 5.2.7). For every PBW

deformation A = AH,V,κ (even if V is not an orthogonal module) we define hs(κ) =

κ(0) + κ(1) + κ(2) and hs(AH,V,κ) = AH,V,hs(κ). We can view hs as a map H → S.

Remark 5.3.12. To summarize Proposition 5.2.5, Lemma 5.3.8, Proposition 5.3.9 and

Proposition 5.3.10, for every κ with the Jacobi property, hs(κ) = κ(0) + κ(1) + κ(2) is of

the form Equation (5.2.4) and has the Jacobi property. In other words, for every PBW

deformation A = AH,V,κ, the deformation hs(A) = AH,V,κ(0)+κ(1)+κ(2) is standard. It

might be an interesting question which maps κ have the Jacobi property other than the

ones of the form Equation (5.2.4), that is, which PBW deformations A = AH,V,κ are

not standard PBW deformations.

Note that by Lemma 5.3.2 and Proposition 5.3.10, it is enough to consider the

case κ = κg for a fixed group-like g with rnk(g − 1) ∈ {0, 1}, and by the results

in Lemma 5.3.8, and Proposition 5.3.9, an example with orthogonal V extending our

partial characterization would necessarily satisfy imκg 6⊂ Krnk(g−1).

If H is the group algebra of a finite group, there can be no such maps, because by

Corollary 5.3.6, κg = 0 for all g ∈ G(H) with rnk(g − 1) = 1 and for all g ∈ G(H) with

rnk(g−1) = 0, imκg ⊂ H1g = kg ⊂ K0 automatically, so κ = κ(0) +κ(2). In particular,

all PBW deformations are standard in this case.

Assume H = U(g), the universal enveloping algebra of a Lie algebra g over C, V

is an H-module and A = AH,V,κ is a PBW deformation for some deformation map



75

κ : V ∧ V → H. Then G(H) = 1, so κ(1) = κ(2) = 0 and κ(0) is a map of the

form V ∧ V → K0 ⊂ H. However, we will see in Section 7.2 that there are standard

deformation maps κ yielding PBW deformations (even Hopf–Hecke algebras) which may

not be of this form (for a special choice of the module V ). Hence hs is not surjective

onto S.
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Chapter 6

Generalized Dirac cohomology and Vogan’s conjecture

In this chapter, let F be a field of characteristic 0. We fix a Hopf–Hecke algebra A =

A(H,V, 〈·, ·〉, κ), that is,

• H is a cocommutative Hopf algebra over F,

• V is a finite-dimensional H-module,

• 〈·, ·〉 is an H-invariant non-degenerate symmetric bilinear form on V (Defini-

tion 2.5.8, Definition 2.5.9),

• κ : V ∧ V → H is a map with the PBW property, that is, κ is H-equivariant (in

particular, F-linear) and has the Jacobi property (Definition 5.1.1),

and A is the algebra generated by elements from H and V subject to the relations

h(1)vS(h(2)) = h · v and vw − wv − κ(v ∧ w) for all h ∈ H, v,w ∈ V ,

or in other words, A is the quotient (T (V ) oH)/Iκ, where Iκ is the ideal generated by

elements of T (V ) o H of the form vw − wv − κ(v ∧ w) for v, w ∈ V . Since κ has the

PBW property, A is a PBW deformation of A0 = S(V ) oH (see Chapter 5).

We also fix the Clifford algebra C = C(V, 〈·, ·〉).

6.1 Dirac operator and Dirac cohomology

Since A has the PBW property, there is, in particular, an injective map ιA sending

v ∈ V to the corresponding element in A, and since C is isomorphic to Λ(V ) as filtered

vector spaces, there is also an injective map ιC sending v ∈ V to the corresponding

element in C:

ιA : V → A , ιC : V → C .
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Now A and C are H-modules, where the action on A is just the adjoint action h 7→

h(1) · S(h(2)) and the action on C is induced from the action on T (V ). By the smash

product relation in A, ιA is H-equivariant, and ιC is H-equivariant, since it is induced

from the natural embedding of V into T (V ).

We will often omit the symbols ιA and ιC when discussing elements in A ⊗ C. Let

us pick a pair of dual bases (vi)
i, (vi)i of V with respect to 〈·, ·〉.

Definition 6.1.1. We define the Casimir element

Ω =
∑
i

ιA(vi)ιA(vi) =
∑
i

viv
i in A (6.1.1)

and the Dirac operator

D =
∑
i

ιA(vi)⊗ ιC(vi) =
∑
i

vi ⊗ vi in A⊗ C (6.1.2)

of the Hopf-Hecke algebra A = A(H,V, 〈·, ·〉, κ).

As immediate consequences of these definitions, we have:

Lemma 6.1.2. The definitions of Ω and D do not depend on the choice of dual bases.

Ω is an H-invariant element in A and D is an H-invariant element in A⊗ C.

Proof. Let us define a map φ : V → V ∗, v 7→ 〈v, ·〉. As discussed earlier (see Lemma 2.5.10),

the fact that the symmetric bilinear form 〈·, ·〉 is non-degenerate and H-invariant implies

that φ is injective and H-equivariant (there is even an equivalence of the corresponding

statements). So, as V is finite-dimensional, φ is an H-module isomorphism.

We can view the identity map idV ∈ End(V ) as an element in V ∗⊗V . This element

can be written as
∑〈vi, ·〉 ⊗ vi in V ∗ ⊗ V for any pair of dual bases (vi)

i, (vi)i. Since

idV is H-equivariant, the element is H-invariant. Ω and D are images of this element

under suitable tensor products and compositions of the H-equivariant maps φ−1, ιA, ιC ,

so they are H-invariant, as well.

Recall from Section 2.2 the definition of the quantization map q, in particular, that

q(v ∧ w) = 1
2(vw − wv) in C for all v, w ∈ V . Fixing a choice of dual bases (vi)

i, (vi)i,

we also have the following relation between Ω and D:
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Lemma 6.1.3. For Ω and D as just defined,

D2 = Ω⊗ 1 +
∑
i<j

κ(vi ∧ vj)⊗ q(vi ∧ vj) . (6.1.3)

in A⊗ C.

Proof. This is a straight-forward computation using the relations in C:

D2 =
∑
i,j

vivj ⊗ vivj =
∑
i,j

vivj ⊗ (1
2(vivj − vjvi) + 〈vi, vj〉)

=
∑
i,j

vivj〈vi, vj〉 ⊗ 1 +
∑
i,j

vivj ⊗ q(vi ∧ vj)

=
∑
i

viv
i ⊗ 1 +

∑
i<j

(vivj − vjvi)⊗ q(vi ∧ vj)

= Ω⊗ 1 +
∑
i<j

κ(vi ∧ vj)⊗ q(vi ∧ vj) .

We are ready for the definition of Dirac cohomology. Let us fix an irreducible C-

module S. Then for any A-module M , D ∈ A⊗ C acts on M ⊗ S.

Definition 6.1.4. We define the Dirac cohomology as

HD(M) = HD(M ;S) = kerD/(imD ∩ kerD) . (6.1.4)

As an important special case, we record:

Lemma 6.1.5. If D acts semisimply on M ⊗ S, then HD(M) = kerD = kerD2.

Proof. If M ⊗ S has a basis consisting of eigenvectors of D, then imD and kerD are

the span of all eigenvectors with non-zero and zero eigenvalues, respectively. Hence,

(imD ∩ kerD) = 0, so HD(M) = kerD. Also, the same basis is a basis of eigenvectors

forD2 and the eigenvectors for the eigenvalue 0 are the same. Hence, HD(M) = kerD =

kerD2.
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6.2 Dirac operator and pin cover

Let us recall that C is a superalgebra with a Z2-grading inherited from the Z-grading

of the tensor algebra, which C is a quotient of, so the equivalence classes of elements

v ∈ V have odd degree. Let us consider A as a purely even superalgebra, then A⊗C is a

superalgebra whose grading is inherited from C, in particular, all elements in H = H⊗1

are even.

Since H is a cocommutative Hopf algebra acting orthogonally on V , the action of H

on the tensor algebra descends to an action on the Clifford algebra C (see Lemma 2.5.11)

and in fact, this action is inner, that is, there is a ?-invertible γ in Hom(H,C) such that

h · c = (γ(h(1))⊗ γ−(h(2))
op) · c for all h ∈ H, c ∈ C , (6.2.1)

where the action on the right-hands side is the action of C ⊗ Cop on C.

Definition 6.2.1. We define the map ∆C ∈ Hom(H,A ⊗ C) to be the composition

(id⊗γ) ◦∆.

The following results on ∆C are immediate:

Lemma 6.2.2. Then ∆C is ?-invertible with ?-inverse ∆−C = (S ⊗ γ−) ◦∆.

Proof. We verify that

∆C ?∆−C = µH⊗C ◦ (idH ⊗γ ⊗ S ⊗ γ−) ◦∆3

= (µH ⊗ µC) ◦ (idH ⊗S ⊗ γ ⊗ γ−) ◦∆3 = ε ,

because idH and S are ?-inverses just as γ and γ−. A similar computation shows that

∆−C ? ∆C = ε. Note that the braiding in the category of superspaces is trivial for the

tensor product A⊗ C, since A is purely even.

Lemma 6.2.3. There is a Hopf 2-cocyle σ : H ⊗ H → F such that ∆C is an algebra

isomorphism from Hσ to im ∆C .

Proof. This follows directly from Proposition 4.4.18.



80

Now H acts on A via the adjoint action h 7→ h(1) · S(h(2)) and also on C through

its action on T (V ). Hence H acts on A⊗C. The way we have defined ∆C implies that

this is the inner action we get from ∆C :

Lemma 6.2.4. We have

h · x = (∆C(h(1))⊗∆−C(h(2))
op) · x for all h ∈ H,x ∈ A⊗ C . (6.2.2)

Proof. The right-hand side is just ((h(1)⊗S(h(2))
op)·)⊗ ((γ(h(3))⊗ γ−(h(4))

op)·) acting

on A⊗ C.

In the superalgebra A ⊗ C, we have a supercommutator [·, ·], which specialized to

the ordinary commutator if at least one of the elements commuted is homogeneous of

even degree.

Lemma 6.2.5. If x ∈ A⊗ C is an H-invariant element, then

[∆C(h), x] = 0 in A⊗ C for all h ∈ H .

Proof. We have

[∆C(h), x] = ∆C(h)x− (1⊗∆C(h)op) · x

= (1⊗∆C(h(1))
op)(∆C(h(2))⊗∆−C(h(3))

op) · x− (1⊗∆C(h)op) · x

= (1⊗∆C(h(1))
op) · (ε(h(2))x)− (1⊗∆C(h)op) · x = 0 ,

where we use Equation (6.2.2) and the fact that x is H-invariant, so h · x = ε(h)x for

all h ∈ H.

Regarding A ⊗ C as a superalgebra, let us recall from Lemma 2.1.2 that there is a

linear map δ : A⊗C → Der(A⊗C) sending any element x ∈ A⊗C to δx = [x, ·] which

preserves graded degrees and supercommutators.

Definition 6.2.6. We define d = δD ∈ Der(A⊗ C).

Definition 6.2.7. We say that D meets the Parthasarathy condition if

D2 ∈ Z(A)⊗ 1 + im ∆C ⊂ A⊗ C ,

and we say that A = A(H,V, 〈·, ·〉, κ) is a Barbasch–Sahi algebra if D satisfies the

Parthasarathy condition.
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Note that since C is a central simple superalgebra and A is purely even, Z(A) ⊗ 1

equals the supercenter of the superalgebra A ⊗ C, where Z(A) is both the center and

the supercenter of A.

Lemma 6.2.8. The following can be said about d:

• d is an odd derivation,

• d2 = [D2, ·], which is also the ordinary commutator in A⊗ C,

• d ◦∆C = 0,

• d preserves the subspace of H-invariants (A⊗ C)H ,

• If A is a Barbasch–Sahi algebra, i.e., if D satisfies the Parthasarathy condition,

then d|(A⊗C)H = 0.

Proof. By Lemma 2.1.2, d is an odd derivation, because D is an odd element of the

superalgebra A⊗ C, and δ is preserves the supercommutator, so

δ2
D = 1

2 [δD, δD] = 1
2δ[D,D] = δD2 .

D2 is an even element, so [D2, ·] is also the ordinary commutator.

As D is H-invariant, Lemma 6.2.5 imply that d ◦∆C = 0.

To see that d preserves the H-invariants in A ⊗ C, consider h ∈ H,x ∈ (A ⊗ C)H ,

then

h · [D,x] = [h(1) ·D,h(2) · x] = ε(h)[D,x] ,

as desired, where the first identity holds, since A⊗ C is an H-module algebra.

Now if D satisfies the Parthasarathy condition, then D2 ∈ Z(A) ⊗ 1 + im ∆C , but

for all h ∈ H, x ∈ (A⊗ C)H ,

[∆C(h), x] = 0

by Lemma 6.2.5, so D2 (super)commutes with elements from (A⊗ C)H .
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6.3 The undeformed situation

In the following, let us assume that A is not only a PBW deformation of A0 = S(V )oH,

but that actually κ = 0 and A = A0 = S(V ) oH. In this situation, we have an even

more concise picture of the cohomology of the differential d.

We can identify C with Λ(V ) as superspaces using the quantization map (see Sec-

tion 2.2), so we can identify S(V )⊗ C with the Koszul complex of S(V ), and we have

a differential d′ on this space.

Lemma 6.3.1. If A = A0, then d preserves the subspace S(V ) ⊗ C of A ⊗ C and

d|S(V )⊗C agrees with 2d′.

Proof. From Lemma 6.2.8, we know that d is an odd derivation, just as d′. We also

know that elements of the form v ⊗ 1 or 1 ⊗ v for v ∈ V generate both S(V ) ⊗ C and

S(V )⊗ Λ(V ). Since also the quantization map identifies these kinds of elements in the

two algebras, it is enough to verify the statement for them. Now

d(v ⊗ 1) = [D, v ⊗ 1] =
∑
i

(viv − vvi)⊗ vi = 0 and

d(1⊗ v) = [D, 1⊗ v] =
∑
i

vi ⊗ (viv + vvi) = 2
∑
i

vi〈v, vi〉 ⊗ 1 = 2v ⊗ 1 ,

so d preserves the subspace S(V )⊗ C of A⊗ C and agrees with 2d′.

To make the connection between d and d′ even more transparent, let us define two

maps,

f : A⊗ C = (S(V ) oH)⊗ C → H ⊗ S(V )⊗ C,

f(s⊗ h⊗ c) = h(1) ⊗ s⊗ cγ−(h(2)) ,

g : H ⊗ S(V )⊗ C → A⊗ C = (S(V ) oH)⊗ C,

f(h⊗ s⊗ c) = s⊗ h(1) ⊗ cγ(h(2)) .

,
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Proposition 6.3.2. Then f, g are mutual inverse maps and the following diagram com-

mutes:
A0 = (S(V ) oH)⊗ C H ⊗ S(V )⊗ C

A0 = (S(V ) oH)⊗ C H ⊗ S(V )⊗ C

f

d id⊗2d′

g

.

Proof. To see that f, g are mutual inverses, we observe that for all h ∈ H, s ∈ S(V ), c ∈

C,

s⊗ h(1) ⊗ cγ−(h(2))γ(h(3)) = s⊗ h⊗ c = s⊗ h(1) ⊗ cγ(h(2))γ
−(h(3)) ,

because γ, γ− are mutual ?-inverses.

We can now verify that the diagram commutes. For h, s, c as before,

g ◦ (1⊗ 2d′) ◦ f(s⊗ h⊗ c) = h(1) ⊗ (2d′(s⊗ cγ−(h(2)))(1⊗ γ(h(3))))

= d(1⊗ s⊗ cγ−(h(1)))∆C(h2) = d((1⊗ s⊗ cγ−(h(1)))∆C(h2))

= d(h(1) ⊗ cγ−(h(1))γ(h(3))) = d(h⊗ s⊗ c) ,

where we have used that d is an odd derivation which vanishes on the image of ∆C =

(id⊗γ) ◦∆.

Proposition 6.3.3. If A = A0, then we have the following relation of subspaces in

A⊗ C:

ker d = im ∆C ⊕ im d . (6.3.1)

Proof. Since f, g are isomorphisms and the above diagram commutes, the kernel of d

is the image of the kernel of (id⊗2d′) under g, but d′ is the differential in the Koszul

complex, so ker d′ = F⊕ im d′. Hence the kernel of (id⊗2d′) is H ⊗ 1⊗ 1 +H ⊗ im d′.

Now g maps the first space to im ∆C . Consider h⊗ d′(y) for h ∈ H, y ∈ S(V )⊗C, then

g(h⊗ d′(y)) = d′(y)(1⊗ h(1) ⊗ γ(h(2))) = d(y)∆C(h) = d(y∆C(h)) ,

again, since d is an odd derivative which vanishes on the image of ∆C . Hence g maps

the kernel of (1⊗ 2d′) to im ∆C + im d, so this space has to be the kernel of d.

Finally, the sum is direct, because the image of ∆C lies in degree 0 of the Z-grading

of S(V ), whereas the image of d lies in all higher degrees of this grading.
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Now let dH be the restriction of d to the subspace (A ⊗ C)H . We have seen in

Lemma 6.2.8, that d preserves this subspace, so dH is an endomorphism of (A⊗ C)H .

Corollary 6.3.4. If A = A0, then we have the following relation of subspaces in (A⊗

C)H :

ker dH = im ∆H
C ⊕ im dH . (6.3.2)

Proof. We take H-invariants of Equation (6.3.1) and we note that d is H-equivariant,

because D is H-invariant.

6.4 Proof of Vogan’s conjecture

We return to the general situation where A = Aκ is a PBW deformation of A0. As seen

in Lemma 6.2.8, the odd derivation d can be restricted to an odd derivation dH of the

subspace (A ⊗ C)H , such that (dH)2 = 0 and dH vanishes on the subspace (im ∆C)H .

We will show now that the statement of Corollary 6.3.4 holds also in the deformed

situation.

For the proof, we will heavily rely on the filtration of the algebra A. We recall

that A = Aκ is the quotient of T (V ) oH by the ideal Iκ. The tensor algebra T (V ) is

Z-graded, where elements in V have degree 1 and elements in H have degree 0, and the

ideal Iκ is, in general, not homogeneous, so the quotient A is filtered. Let us denote

the filtration by 0 = F−1 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ A. Since we require A to be a PBW

deformation of A0, elements in V have filtered degree 1 in A, that is, they are in F1 \F0.

The endomorphism d = [D, ·] is filtered of degree one, because D is in degree 1 of our

filtration. We can pass to associated graded objects. The associated graded object of A

is the graded algebra gr(A) =
⊕

i≥0 Fi/Fi−1 and we have projections πi : Fi → Fi/Fi−1

for all i ≥ 0. By our assumption, gr(A) is the algebra A0 and
⊕

i≥0 πi is an isomorphism.

Note that π is H-equivariant (i.e., an H-module isomorphism), because the actions on

A and A0 both are derived from the action on T (V )oH. The associated graded object

of the endomorphism d is the endomorphism gr(d) defined by

gr(d)(πi(x)) = πi+1(d(x)) = πi+1([D,x]) for all i ≥ 0, x ∈ Fi ,
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but the last expression is just the commutator [D,x] computed in gr(A), so this is just

the differential d in the undeformed situation. Let us denote this differential gr(d) by

d0 and its restriction to the H-invariants by dH0 .

We can now use the results of Section 6.3 on d0 to infer the desired results on d.

Lemma 6.4.1. The intersection of the spaces im dH and F0 is 0.

Proof. Consider an element x in the intersection, we want to show x = 0. The filtration

(Fi)i yields a filtration (FHi )i of (A⊗C)H . Let i ≥ −1 be minimal such that x ∈ dH(FHi )

and let us pick y ∈ FHi such that x = dH(y). Let us assume i ≥ 0. Now y has filtered

degree i, that is, it cannot lie in Fi−1, due to minimality of i. Then

dH0 (πi(y)) = πi+1(d(y)) = πi+1(x) = 0 ,

since x lies in F0. Hence, πi(y) lies in the kernel of d0 and Corollary 6.3.4 applies.

According to this, πi(y) lies in (im ∆C)H if i = 0 or in im dH0 if i > 0. Thus, y lies in

(im ∆C)H + FHi−1 if i = 0 or in im dH + Fi−1 if i > 0. But dH annihilates the subspaces

(im ∆C)H and im dH , so x = d(y) lies in dH(Fi−1), which contradicts the minimality of

i. Hence i = −1 and x = 0, as desired.

Proposition 6.4.2. We have the following relation of subspaces of (A⊗ C)H :

ker dH = (im ∆C)H ⊕ im dH .

Proof. By Lemma 6.2.8, the two spaces on the right-hand side are contained in the

left-hand side, and by the previous lemma, the sum on the right-hand side is direct,

because im ∆C lies in F0. It remains to show that ker dH lies in P = (im ∆C)H ⊕ im dH ,

and we prove this by induction on the filtration.

For the base case, we note that ker dH ∩ F−1 = {0} ⊂ P . Let us assume ker dH ∩

Fi−1 ⊂ P for some i ≥ 0, and let us consider x ∈ ker dH ∩ (Fi \ Fi−1). Then for the

graded map d0 we get

dH0 (πi(x)) = πi+1(d(x)) = 0 ,

hence, Corollary 6.3.4 applies, so π(x) lies in (im ∆C)H + im dH0 , that is, x lies in

(im ∆C)H + im dH + Fi−1, hence, in P .
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The last result implies what is sometimes called “algebraic Vogan’s conjecture”

([HP02, Ciu16]):

Corollary 6.4.3. For any z ∈ Z(A), there is an odd element y ∈ (A ⊗ C)H and a

uniquely determined element ζ(z) ∈ Z(Hσ) such that

z ⊗ 1 = ∆C ◦ ζ(z) + dH(y) in A⊗ C , (6.4.1)

and ζ : Z(A)→ Z(Hσ) is an algebra map.

Proof. z ⊗ 1 is an even element in (A ⊗ C)H which (super)commutes with D. Hence

Proposition 6.4.2 applies, and z ⊗ 1 can be written as a + dH(y) with unambiguous

elements a ∈ (im ∆C)H and dH(y).

As d is a supercommutator with an odd element, it is an odd endomorphism, and

its image is a graded subspace, just as the image of ∆C (by Lemma 4.4.20). Since the

action of H is graded, the respective invariant spaces are graded subspaces, as well.

Hence, we can consider the homogeneous components and assume a is even and y is

odd.

The fact that a is H-invariant and in im ∆C implies with Lemma 6.2.5 that it is in

the supercenter of im ∆C , but being even, this means it is also in the center. Now ∆C

is an algebra isomorphism between Hσ and im ∆C (Lemma 6.2.3), so a = ∆C(h) for an

unambiguous h ∈ Z(Hσ), which we take to be ζ(z).

Let us define the shorthand ζ ′ = ∆C ◦ ζ : Z(A) → im ∆C ⊂ H ⊗ C. Consider

z1, z2 ∈ Z(A) and y1, y2 ∈ (A⊗C)H such that zi ⊗ 1 = ζ ′(zi) + dH(yi) for i = 1, 2. Let

ω be the linear involution of A ⊗ C which multiplies odd elements by −1 while fixing

even elements. Then

z1z2 ⊗ 1 = (ζ ′(z1) + dH(y1))(ζ ′(z2) + dH(y2))

= ζ ′(z1)ζ ′(z2) + ζ ′(z1)dH(y1) + dH(y1)ζ ′(z2) + dH(y1)dH(y2)

= ζ ′(z1)ζ ′(z2) + dH(ω(ζ ′(z1))y1 + y1ζ
′(z2) + y1d

H(y2)) ,

because d is an odd derivation which vanishes on im ∆C and on im d. By Lemma 6.2.3,

im ∆C and hence also (im ∆C)H are closed under multiplication, thus ζ ′(z1)ζ ′(z2) is an
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element in (im ∆C)H , so it has to be the unique ζ ′(z1z2) satisfying Equation (6.4.1) for

z = z1z2. For z = 1, 1⊗ 1 is the unique ζ(1) satisfying Equation (6.4.1). Hence, ζ is an

algebra map.

To make the connection with Dirac cohomology, let us recall that this was defined

for any A-module M to be

HD(M) = HD(M ;S) = kerD/(kerD ∩ imD)

for D acting on M ⊗ S, where S is a fixed chosen irreducible C-module.

Now for any A-module M , M ⊗ S is an Hσ-module via ∆C .

Lemma 6.4.4. This induces an action of Hσ on HD(M).

Proof. For any h ∈ H, the supercommutator [D,∆C(h)] vanishes by Lemma 6.2.5.

Hence, the action of ∆C(h) on M ⊗ S preserves the kernel and the image of D.

Theorem 6.4.5 (Vogan’s conjecture). Let M be an A-module with central character χ

and with HD(M) 6= 0. Then the central character of any non-zero Hσ-submodule (U, σ)

of HD(M) determines the central character χ according to the formula

χ = σ ◦ ζ ,

where ζ : Z(A)→ Z(Hσ) is the algebra map from Corollary 6.4.3.

Proof. Consider z ∈ Z(A), then by Corollary 6.4.3,

z ⊗ 1−∆C ◦ ζ(z) = dH(y) = [D, y]

for some y ∈ (A⊗ C)H . Let u be a non-zero element of U , then

(χ(z)− σ ◦ ζ(z))u = (z ⊗ 1−∆C ◦ ζ(z)) · u = [D, y] · u = 0 ,

because D annihilates HD(M). Hence χ(z) = σ ◦ ζ(z), as desired.

Remark 6.4.6. If g is a complex semisimple Lie algebra with the Cartan decomposition

g = k⊕ p, then we can take H = U(k) and V = p. In this case, the map γ realizing the

action of H on C(V ) is already an algebra map (see Section 2.2.2), the Hopf 2-cocycle
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is trivial and ζ is an algebra map from Z(U(g)) to Z(U(k)), which is essentially the

situation studied by Huang–Pandžić ([HP02], see Section 3.2).

On the other hand, if G is a finite group with a faithful orthogonal module V over C,

then the pin cover construction for groups (Section 2.2.1) yields a group homomorphism

γ : G̃→ Pin, where G̃ is the pin cover of G, or in terms of Hopf algebras, an algebra map

γ from H̃ = C[G̃] to C(V ). H̃ acts on M ⊗ S via ∆C = (π ⊗ γ) ◦∆, where π : H̃ → H

is the projection coming from the pin cover construction. Hence, also H ′ = H̃/(ker ∆C)

acts, and a computation shows that this quotient, in fact, corresponds to a Hopf 2-cocyle

deformation Hσ of H = C[G]. This is the situation studied by Ciubotaru ([Ciu16], see

Section 3.3).



89

Chapter 7

Infinitesimal Cherednik algebras

7.1 Motivation

We fix a cocommutative Hopf algebraH over C and a completely reducibleH-module V .

We recall that a bilinear form on an H-module is called H-invariant, if it corresponds to

an H-invariant element in the the dual space of the second tensor power of the module,

or equivalently, if the image of any element of the Hopf algebra under the antipode map

acts as the adjoint operator on the module with respect to the form in question (see

Definition 2.5.8).

Proposition 7.1.1. If V admits both a symmetric and a skew-symmetric non-degenerate

H-invariant bilinear form, then V is of the form V ∼= W ⊕W ∗ for an H-module W .

Proof. Since V is completely reducible, we can decompose V as a direct sum of simple

submodules, and we can group these simple submodules such that

V =

k⊕
i=1

V ai
i ⊕

m⊕
j=1

W
bj
j ⊕ (W ∗j )cj

with positive integers (ai)i, (bj)j , (cj)j and self-dual modules (Vi)i and such that (Vi)i,

(Wj)j , (W ∗j )j are all pairwise non-isomorphic simple H-modules. As V admits a non-

degenerate H-invariant bilinear form, it is self-dual, so bj = cj for each j. Hence, it is

enough to show that ai is even for each i.

Consider two simple submodules V ′ and V ′′ of V and let α be a non-degenerate

H-invariant bilinear form on V . Then v 7→ α(·, v) is an H-linear map from V ′ to (V ′′)∗,

but since V ′ and V ′′ are simple, the map has to be an isomorphism or 0. Hence the

restriction of α to V ai
i has to be non-degenerate for each i. This means that V ai

i admits
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both a symmetric and a skew-symmetric non-degenerate H-invariant bilinear form for

each i.

We consider a fixed index i. Since Vi is self-dual, there is an H-linear isomorphism

Vi → V ∗i or, equivalently, a non-degenerate H-invariant bilinear form α on Vi. We can

view α as the sum of a symmetric and a skew-symmetric bilinear form, and since α is H-

invariant, both summands have to be H-invariant, as well. Since Vi is simple, the space

of H-linear endomorphisms, equivalently, H-invariant bilinear forms is one-dimensional.

Hence α has to be symmetric (case a) or skew-symmetric (case b).

We write V ai
i = Vi ⊗ Cai and we pick a basis (ep)1≤p≤ai of Cai . Let β be a non-

degenerate H-invariant skew-symmetric (case a) or symmetric (case b) bilinear form

on V ai
i . Now for every 1 ≤ p, q ≤ ai, the map (v, v′) 7→ β(v ⊗ ep, v′ ⊗ eq) is an H-

invariant bilinear form on Vi, so it has to be a multiple of α. Hence β(v⊗ ep, v′⊗ eq) =

γ(ep, eq)α(v, v′) for scalars (γ(ep, eq))p,q, which defines a bilinear form γ on Cai . For

β to be skew-symmetric (case a) or symmetric (case b), γ has to be skew-symmetric.

Now if ai is odd, γ cannot be non-degenerate, so there is a vector e ∈ Cn such that

γ(e, e′) = 0 for all e′ ∈ Cn, and consequently, β(v ⊗ e, v′ ⊗ e′) = 0 for all v, v′ ∈ Vi and

e′ ∈ Cn. This is a contradiction, since β was assumed to be non-degenerate. Hence ai

has to be even, which was to be shown.

Proposition 7.1.2. The finite-dimensional H-modules V which admit both a symmet-

ric and a skew-symmetric non-degenerate H-invariant bilinear form are exactly the H-

modules of the form V ∼= W ⊕W ∗ for finite-dimensional H-modules W .

Proof. It remains to show that modules of the form W ⊕ W ∗ admit both forms as

required. Let (·, ·) : W ⊗W ∗ → C be the natural pairing. By definition of the con-

tragredient action of H on W ∗, the pairing is H-invariant. We define the forms α, β

by

α(y + x, y′ + x′) = (y, x′) + (y′, x) , β(y + x, y′ + x′) = (y, x′)− (y′, x)

for all y, y′ ∈W,x, x′ ∈W ∗. Then since (·, ·) isH-invariant, α and β areH-invariant. By

definition, they are non-degenerate, bilinear and also symmetric and skew-symmetric,

respectively.
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Remark 7.1.3. One might want to look for Hopf–Hecke algebras constructed from com-

pletely reducible orthogonal H-modules V with a non-degenerate H-invariant skew-

symmetric bilinear form. Then Proposition 7.1.2 tells us that these modules are exactly

the ones of the form W ⊕W ∗.

Now if we take H to be the universal enveloping algebra of the Lie algebra of a reduc-

tive algebraic group, a class of such Hopf–Hecke algebras called infinitesimal Cherednik

algebras is defined in [EGG05].

Remark 7.1.4. The infinitesimal Hecke algebras of Sp2n with the standard module V =

C2n classified in [EGG05, Sec. 4.1.2] and studied in [Kha05, TK10, DT13, LT14] are

not Hopf–Hecke algebras, since the module does not have a non-degenerate invariant

symmetric bilinear form; this follows from the above discussion, for instance, because

we saw that a simple module cannot have a symmetric and a skew-symmetric non-

degenerate invariant form at the same time.

We will study the Dirac cohomology of the infinitesimal Cherednik algebras for the

group GLn.

7.2 Infinitesimal Cherednik algebras of GLn as Hopf–Hecke algebras

For a fixed n ≥ 1 and with F = C, we consider the general linear group GLn(C), its

Lie algebra gln(C), and its universal enveloping algebra H = U(gln). We consider

the standard Lie algebra (and hence H-)module h = Cn. We define the H-module

V = h⊕ h∗, where h∗ is the usual contragredient module, and we denote the pairing of

h∗ and h by (·, ·).

The following definitions are from [EGG05]:

Definition 7.2.1 (rm). For all m ≥ 0, x ∈ h∗ and y ∈ h, let rm(x, y) be the coefficient

of τm in the expansion of the polynomial function with a formal variable τ

A 7→ (x, (1− τA)−1 · y) det(1− τA)−1 (7.2.1)

in S(gl∗n) viewed as an element in S(gl∗n) ' S(gln) ' U(gln), where the first identification

is via the trace pairing gln ⊗ gln → C, (A,B) 7→ Tr(AB) and the second identification

is via the symmetrization map.
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Let ξ(z) =
∑

m≥0 ξmz
m be a polynomial. We define a map κ = κξ : V ∧ V → H by

κ(x, x′) = κ(y, y′) = 0 and

κ(y, x) =
∑
m≥0

ξmrm(x, y) (7.2.2)

for all x, x′ ∈ h∗ and all y, y′ ∈ h. Let Iκ be the ideal of T (V )oH generated by elements

of the form vw − wv − κ(v, w) for v, w ∈ V . The algebra

Hξ = (T (V ) oH)/Iκ

is called infinitesimal Cherednik algebra.

There is an alternative definition of κ in terms of ξ as explained in [EGG05, Sec. 4.2]

(see also [DT13, Sec. 3.1]):

Definition 7.2.2. Let ξ̃ be the polynomial

ξ̃(z) =
1

2πn
∂n(znξ(z)) =

∑
m≥0

1

2πn
(m+ n)!

m!
ξmz

m . (7.2.3)

We define the notations 〈v, w〉H = vTw, which is a Hermitian inner product on h, and

|v| = (
∑

i |vi|2)1/2 for all v ∈ h, the Euclidean norm.

For every non-zero v ∈ h, let v ⊗ v denote the rank-one endomorphism v〈·, v〉H of h

viewed as an element in gln, so ξ̃(v ⊗ v) can be viewed as an element in S(gln) or U(gln)

(using the symmetrization map).

Lemma 7.2.3 ([EGG05, Sec. 4.2]). With the definitions as above,

κ(y, x) =

∫
|v|=1

(x, (v ⊗ v) · y)ξ̃(v ⊗ v) dv , (7.2.4)

for all x ∈ h∗, y ∈ h.

Proof. We recall results from [EGG05, Sec. 4.2]: Let Fm ∈ S(gl∗n) be defined by

Fm(A) =

∫
|v|=1
〈A · v, v〉m+1

H dv

for all A ∈ gln. According to the computations in [EGG05, Sec. 4.2], Fm(A) equals the

coefficient of τm+1 in

2πn
(m+ 1)!

(m+ n)!
det(1− τA)−1 .



93

As explained in [EGG05, Sec. 4.2], under the identification S(gln) ' S(gl∗n),∫
|v|=1

(x, (v ⊗ v) · y)(v ⊗ v)m dv =

∫
|v|=1

(x, (v ⊗ v) · y)〈A · v, v〉mH dv

=
1

m+ 1
dFm|A(y ⊗ x) = 2πn

m!

(m+ n)!
rm

where A ∈ gln symbolizes the argument of a polynomial function in S(gl∗n), and where

rm is the coefficient of τm in (x, (1− τA)−1 · y) det(1− τA)−1 as in Definition 7.2.1.

Now if we write ξ̃(z) =
∑

m≥0 ξ̃mz
m, then by definition, ξ̃m = 1

2πn
(m+n)!
m! ξm for all

m ≥ 0, so∫
|v|=1

(x, (v ⊗ v) · y)ξ̃(v ⊗ v) dv =
∑
m≥0

2πn
m!

(m+ n)!
ξ̃mrm(x, y) =

∑
m≥0

ξmrm(x, y) .

Remark 7.2.4. In fact, [EGG05, Thm. 4.2] says that (T (V ) o H)/Iκ has the PBW

property if and only if κ is of the described form (for some polynomial ξ). Since we

will see that V is an orthogonal U(gln)-module, the Hopf–Hecke algebras (H,V, κ) with

H = U(gln) and V = h⊕ h∗ are exactly the infinitesimal Cherednik algebras.

We also note that the presentation of infinitesimal Cherednik algebras is in “reverse

order” here: In [EGG05], infinitesimal Cherednik algebras for a reductive algebraic

group G with a module h are parametrized by G-invariant distributions on the closed

subscheme of “complex reflections” Φ ⊂ G defined by ∧2(1 − g|h) = 0 which are sup-

ported at 1. It is shown that for G = GLn, those distributions are parametrized by

polynomials in one variable. The relation between polynomials and resulting deforma-

tions is computed to be Equation (7.2.4). After evaluating the integral, the equivalent

formulation Equation (7.2.2) is given.

The center of these algebras has been shown to be a polynomial algebra in n variables

in [Tik10]. Their representation theory has been studied and, in particular, their finite-

dimensional irreducible modules have been classified in [DT13]. Universal infinitesi-

mal Cherednik algebras, which are the analogs of infinitesimal Cherednik algebras with

ξ1, . . . , ξn viewed as formal parameters have been identified withW -algebras of the same

type and a 1-block nilpotent element in [LT14].
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We want to see that Hξ is a Hopf–Hecke algebra in our notation and we want to

find a description of D2.

Definition 7.2.5. Let (·, ·) : h∗ ⊗ h→ C be the natural pairing, which is gln-invariant.

We define a form 〈·, ·〉 on V by

〈x+ y, x′ + y′〉 = (x, y′) + (x′, y) (7.2.5)

for all x, x′ ∈ h∗ and y, y′ ∈ h.

We pick dual bases (xi)i, (yi)i of h∗ and h, respectively, and we define

(vk)k = (x1, . . . , xn, y1, . . . , yn), (vk)k = (y1, . . . , yn, x1, . . . , xn) . (7.2.6)

Lemma 7.2.6. In the situation as in the definition, 〈·, ·〉 is a symmetric gln-invariant

bilinear form on V , i.e., V is an orthogonal H-module and Hξ is a Hopf–Hecke algebra,

and (vk)k, (vk)k is a pair of dual bases for V with respect to 〈·, ·〉.

Proof. 〈·, ·〉 makes V an orthogonal H-module with the described pair of dual bases,

because the natural pairing (·, ·) is gln-invariant, as we have seen in Proposition 7.1.2

already.

By construction, Hξ has the PBW property, so it is a Hopf–Hecke algebra.

For 1 ≤ i, j ≤ n, let Eij be the elementary matrix as an element in gln. Recall

(Lemma 2.5.11) that the action of a cocommutative Hopf algebra on an orthogonal

module comes with an action of the Clifford algebra which can be realized as an inner

measuring by a suitable map γ from the Hopf algebra to the Clifford algebra.

Proposition 7.2.7. The map γ : H = U(gln) → C realizing the action of H on C as

an inner measuring is an algebra map given by γ(Eij) = 1
2q(yi ∧xj) for all 1 ≤ i, j ≤ n.

Proof. We are in the situation of Section 2.2.2 and Section 4.2, where the action of gln

on the orthogonal module V corresponds to a map gln → so(V ). Now the action of

so(V ) on V is realized as an inner action by mapping Av,w to q(v ∧ w). The action of

Eij on V is just

〈xj , ·〉yi − 〈yi, ·〉xj = 1
2Ayi,xj ,
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which is mapped to

1
2q(yi ∧ xj) = 1

4(yixj − xjyi) .

The Lie algebra map defined like this is promoted to an an algebra map from H to

C.

We recall the definitions of the Casimir element Ω =
∑

k vkv
k in A = Hξ and of the

Dirac element D =
∑

k vk ⊗ vk in A ⊗ C (Definition 6.1.1) for any pair of dual bases

(vk)k and (vk)k, so, in particular, for the choice made in Definition 7.2.5.

Lemma 7.2.8. Let D ∈ A⊗ C be the Dirac element for A = Hξ. Then

D2 = Ω⊗ 1− 2

∫
|v|=1

ξ̃(v ⊗ v)⊗ γ(v ⊗ v) dv , (7.2.7)

where v ⊗ v stands for a rank-one matrix in gln for any non-zero v ∈ h.

Proof. We invoke Equation (6.1.3) to obtain

D2 = Ω⊗ 1 +
∑
k<l

κ(vk, vl)⊗ q(vk ∧ vl) = Ω⊗ 1 +
∑
i,j

κ(yj , xi)⊗ q(xj ∧ yi)

= Ω⊗ 1− 2
∑
i,j

κ(yj , xi)⊗ γ(Eij) ,

where Eij = yi⊗ xj as above is an element in gln for all i, j. Using the integral formula

Equation (7.2.4) for κ, we obtain

∑
i,j

κ(yj , xi)⊗ γ(Eij) =
∑
i,j

∫
|v|=1

ξ̃(v ⊗ v)⊗ (xi, (v ⊗ v)yj)γ(Eij) dv

=

∫
|v|=1

ξ̃(v ⊗ v)⊗ γ(v ⊗ v) dv ,

as desired.

In the following, we want to find an even more explicit expression for D2 in terms of

polynomials derived from ξ̃, which will allow us to prove thatD satisfies the Parthasarathy

condition and hence, Hξ is a Barbasch–Sahi algebra. We need some auxiliary lemmas.

In the following, polynomials without further specifications are univariate and with

complex coefficients.
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Definition 7.2.9. For any ε ∈ C, we define ∇ε, a difference operator on univariate

complex polynomials, by

∇εf(z) = f(z + ε)− f(z + ε− 1) . (7.2.8)

For k ≥ 0, let Bk = Bk(z) be the k-th Bernoulli polynomial defined by the generating

series ∑
k≥0

Bk(z)
tk

k!
=

tetz

et − 1
(7.2.9)

([AS92, Eq. 23.1.1]).

We recall that Bk satisfies

∇1Bk(z) = Bk(z + 1)−Bk(z) = kzk−1 (7.2.10)

for every k ≥ 0 ([AS92, Eq. 23.1.6]).

Lemma 7.2.10. Let p = p(z) be a polynomial and ε ∈ C. Then there is a polynomial

f = f(z) satisfying ∇εf(z) = p(z) and f is characterized by this relation uniquely up to

the constant term.

Proof. To construct f , we write p(z) =
∑

i≥0 piz
i and we let Bn(z) be the n-th Bernoulli

polynomial.

Then

∇εf(z) = p(z) ⇔ ∇1f(z) = p(z + 1− ε) =
∑
i≥0

pi
i+ 1

(i+ 1)(z + 1− ε)i ,

hence, f(z) =
∑

i≥0
pi
i+1Bi+1(z + 1 − ε) + f0 satisfies this recurrence relation for any

scalar f0.

For uniqueness, let f2 be another polynomial satisfying the same recurrence relation.

Then fd = f − f2 is a polynomial satisfying ∇εfd(z) = fd(z + ε) − fd(z + ε − 1) = 0.

Hence fd attains the same value at, say, all integer numbers, so it has to be a constant

polynomial.

Lemma 7.2.11. For a fixed polynomial p = p(z), let f = f(z) be a polynomial satisfying

∇1/2f(z) = p(z). Then

p(z)ω = f(z + ω) + 1
2p(z)− f(z + 1

2) in C[z, ω] mod (ω2 − 1
4)· (7.2.11)
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Proof. We claim that for every polynomial p, there are polynomials f, q such that

p(z)ω = f(z + ω) + q(z) in C[z, ω] mod (ω2 − 1
4) . (7.2.12)

First, we note that it is enough to show this for polynomials p of the form p(z) = (k+

1)zk, because those form a basis. Consider k = 0. Then p(z)ω = ω = (z+ω)− z, which

verifies the claim. Assume the claim is true for all non-negative integers 0 ≤ k < K for

some K ≥ 1, and hence for all polynomials p of degree at most K − 1. We consider

p(z) = (K + 1)zK , f(z) = zK+1, and q(z) = −zK+1, then

p(z)ω = f(z + ω) + q(z) + p′(z)ω + q′(z)

for polynomials p′, q′ (because ω2 ≡ 1
4), and deg p′ ≤ K − 1. This proves the claim by

induction.

We assume now f, q are as in Equation (7.2.12). Then we can substitute ω = ±1
2 to

get

q(z) = ±1
2p(z)− f(z ± 1

2) .

However, the two choices of substitution should yield the same result, so

1
2p(z)− f(z + 1

2) = −1
2p(z)− f(z − 1

2) ⇔ f(z + 1
2)− f(z − 1

2) = p(z)

and using the choice ω = 1
2 to obtain the above expression of q in terms of p, f , we have

p(z)ω = f(z + ω) + 1
2p(z)− f(z + 1

2) ,

as desired.

Lemma 7.2.12. Let v be a vector in h with |v| = 1, and let v ⊗ v be the corresponding

rank-one matrix in gln. Then γ(v ⊗ v)2 = 1
4 in C(V ).

Proof. We write v =
∑

i aiyi with coefficients (ai)i in C, then by linearity of γ,

γ(v ⊗ v) =
∑
i,j

aiajγ(Eij) = 1
2

∑
i,j

aiajq(yi ∧ xj) = 1
2q(v ∧ v∗)

for v∗ =
∑

i aixi ∈ h∗, where we used the value of γ(Eij) as discussed in Proposi-

tion 7.2.7.
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v and v∗ can be regarded as elements in V or in C(V ) and in C(V ),

v2 = 〈v, v〉 = 0 , (v∗)2 = 〈v∗, v∗〉 = 0 , and vv∗ + v∗v = 2〈v, v∗〉 = 2 ,

because 〈h, h〉 = 0, 〈h∗, h∗〉 = 0 and 〈yi, xj〉 = δij . Hence,

γ(v ⊗ v)2 = 1
16(vv∗vv∗ + v∗vv∗v − v(v∗)2v − v∗v2v∗)

= 1
16(v(2− vv∗)v∗ + v∗(2− v∗v)v) = 1

8(vv∗ + v∗v) = 1
4 ,

as desired.

We are ready to give a refined formula for D2.

Definition 7.2.13. Let fξ = fξ(z) be the polynomial defined up to a constant by

∇0fξ(z) = fξ(z)− fξ(z − 1) = ξ̃(z) = 1
2πn∂

n(znξ(z))

(the first and the last equality being the definitions of ∇0 and ξ̃, respectively). Further-

more, we define α, β ∈ U(gln) by

α =

∫
|v|=1

−ξ̃(v ⊗ v) + 2fξ(v ⊗ v) dv , β =

∫
|v|=1

2fξ(v ⊗ v − 1
2) dv ,

and C ′ =
∫
|v|=1 fξ(v ⊗ v) dv.

Proposition 7.2.14. Let f = fξ, α, β as in the definition. Then we have the following

formula for D2:

D2 = (Ω + α)⊗ 1−∆C(β) . (7.2.13)

Furthermore, (Ω+α) = 2(
∑

i xiyi+C
′) and this element is central in A, and β, C ′ are

central in H. In particular, D satisfies the Parthasarathy condition (Definition 6.2.7)

and Hξ is a Barbasch–Sahi algebra.

Proof. We fix v ∈ h with |v| = 1 and define elements z = (v ⊗ v)⊗ 1, ω = 1⊗ γ(v ⊗ v)

in A ⊗ C. Then z + ω = ∆C(v ⊗ v) and ω2 = 1
4 by Lemma 7.2.12. We observe

that ∇1/2f(z − 1
2) = ∇0f(z) = ξ̃(z) by the definition of f = fξ. So we can apply

Lemma 7.2.11 to obtain

ξ̃(v ⊗ v)⊗ γ(v ⊗ v) = f(∆C(v ⊗ v)− 1
2) + (1

2 ξ̃(v ⊗ v)− f(v ⊗ v))⊗ 1 ,
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which implies the new formula for D2 with Equation (7.2.7).

We define the shorthand Mv = v ⊗ v ∈ gln for any v ∈ h. To obtain the alternative

formula for (Ω + α) we note that

Ω =
∑
i

xiyi + yixi =
∑
i

2xiyi + [yi, xi] =
∑
i

2xiyi +

∫
|v|=1

(xi,Mv · yi)ξ̃(Mv) dv

= 2
∑
i

xiyi +

∫
|v|=1

ξ̃(Mv) dv ,

where we use that
∑

i(xi, (v ⊗ v) · yi) =
∑

i |vi|2 = 1.

We want to show now that Ω+α is central in A. We will prove that Ω+α commutes

with a set of algebra generators of A⊗ C, so we consider elements of h, h∗ and gln.

Let us first fix y, v ∈ h such that |v| = 1 and M = Mv. We regard M as an element

in a universal enveloping algebra, so Mk denotes a tensor power of M for all k ≥ 0. If

µ : gl⊗kn → gln is the matrix multiplication, then we have µ(Mk) = M for all k ≥ 1, so

we can compute in A = T (V ) o U(gln):

[Mk, y] = Mky − yMk = ((Mk)(1) · y)(Mk)(2) − yMk

=
k∑
i=0

(
k

i

)
(µ(Mk−i) · y)M i − yMk

=
k−1∑
i=0

(
k

i

)
(M · y)M i = (M · y)((M + 1)k −Mk) ,

because M is a primitive element, so the coproduct of Mk is just
∑k

i=0

(
k
i

)
Mk−i ⊗M i.

Hence, for any polynomial g = g(z),

[g(M), y] = (M · y)∇1g(M) .

In particular,[∫
|v|=1

f(Mv) dv, y

]
=

∫
|v|=1

(Mv · y)∇1f(Mv) dv =

∫
|v|=1

(Mv · y)ξ̃(Mv + 1) dv .

On the other hand,

M(M · v) = (M(1) · (M · v))M(2) = M · (M · v) + (M · v)M = (M · v)(M + 1) ,

because M · (M · v) = M · v. Hence, for any polynomial g = g(z),

g(M)(M · v) = (M · v)g(M + 1) .
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In particular,[∑
i

xiyi, y

]
=
∑
i

[xi, y]yi = −
∑
i

∫
|v|=1

(xi,Mv · y)ξ̃(Mv)yi dv

= −
∫
|v|=1

ξ̃(Mv)(Mv · y) dv = −
∫
|v|=1

(Mv · y)ξ̃(Mv + 1) dv .

So indeed, Ω + α commutes with any y ∈ h. An exactly parallel argument shows that

Ω + α commutes with any x ∈ h∗. (Alternatively, this follows from the existence of an

anti-involution of Hξ sending yi ↔ xi and Eij ↔ Eji as described in [DT13, Sec. 2].)

Furthermore, we have seen already that Ω commutes with elements from gln, so it

remains to show that α, β and C ′ are central in U(gln), too. Let q be any polynomial

and consider the element hq =
∫
|v|=1 q(Mv) dv in U(gln). We note that hq is invariant

under the adjoint action of U(h) ⊂ GL(h), the unitary group of h with 〈·, ·〉H , because

QMvQ
∗ = MQv for all Q ∈ U(h), v ∈ h and the integral is invariant under the transfor-

mation v 7→ Qv. Now gln is just the complexified Lie algebra of U(h), so the center of

U(gln) is just the space of U(h)-invariants in U(gln). Hence hq is central in U(gln), and

in particular, α and β are central in H = U(gln).

The various centrality statements proven together imply thatD satisfies the Parthasarathy

condition.

Remark 7.2.15. We compare this with the results in [DT13]: The polynomial fξ corre-

sponds to the polynomial called “2πnf ” there, the central element (Ω + α) is just “2t′1”

in the notation of the reference, where t′1 is the Casimir element studied there, and C ′

is what is denoted by C ′ there, as well.

7.3 Dirac cohomology for infinitesimal Cherednik algebras of GLn

Having seen that Hξ is what we call a Barbasch–Sahi algebra, we can explore the Dirac

cohomology of its modules. Here we will focus on the finite-dimensional irreducible

modules, which have been studied in [DT13].

Let us recall the definition of the complete symmetric homogeneous polynomial hk
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of degree k: it is the polynomial in n variables defined by

hk(z1, . . . , zn) =
∑

l1+···+ln=k,li≥0

zl11 . . . zlnn .

Definition 7.3.1. Let w =
∑

k≥0wkz
k be a polynomial of degree (deg ξ+ 1) satisfying

2πnfξ(z) = (2 sinh(∂/2))n−1zn−1w(z) .

(We observe that 2 sinh(∂/2) = (e∂/2 − e−∂/2) is just the operator ∇1/2 which sends

a polynomial p(z) to p(z + 1
2) − p(z − 1

2).) We define a polynomial in n variables

P (µ) =
∑

k≥0wkhk(µ+ ρ), where ρ is the Weyl vector of gln.

We denote by C ′(λ) the scalar by which C ′ acts on an irreducible highest weight

gln-module with highest weight λ and we cite the following result from [DT13]:

Lemma 7.3.2 ([DT13, Thm. 3.2]). w exists and is uniquely defined up to a constant,

and C ′(λ) = P (λ).

We compute the relations between w, ξ̃, and ξ:

Lemma 7.3.3. w is the polynomial uniquely defined up to a constant by

(2 sinh(∂/2))nzn−1w(z) = 2πnξ̃(z + 1
2) .

Equivalently, w is the polynomial uniquely defined up to a constant by

e−∂/2(2 sinh(∂/2))nzn−1w(z) = ∂n(znξ(z)) .

Proof. We verify that by definition of w and fξ,

(2 sinh(∂/2))nzn−1w(z) = 2πn(2 sinh(∂/2))fξ(z) = 2πn(fξ(z + 1
2)− fξ(z − 1

2))

= 2πnξ̃(z + 1
2) .

Now the polynomial w̃ satisfying

(2 sinh(∂/2))n−1zn−1w̃(z) = ξ̃(z + 1
2)

is uniquely defined, so w is uniquely defined up to a constant by Lemma 7.2.10.

We can apply the bijective translation operator e−∂/2 on both sides and use the

definition of ξ̃ to obtain the second assertion.
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From here we can go on to compute the action ofD2 and finally to study the the Dirac

cohomology for all finite-dimensional irreducible Hξ-modules. These were classified in

[DT13] and we now recall the classification.

In the following, we identify (a1, . . . , an) ∈ Cn with the weight a1E
∗
11 + · · ·+ anE

∗
nn

of gln. For every dominant integral gln-weight λ = (λ1, . . . , λn), that is, (λi − λi+1)

is a non-negative integer for all 1 ≤ i < n, let Vλ be the finite-dimensional irreducible

highest weight gln-module with highest weight λ.

Definition 7.3.4. We define the set

Λ̃ = {λ dominant integral gln-weight | ∃νn ∈ Z≥0 : P (λ) = P (λ− (0, . . . , 0, νn + 1))}

and for any λ ∈ Λ̃, we define ν = ν(ξ, λ) ∈ Zn≥0 by letting νi be the minimal non-negative

integer such that λ′ = λ− (0, . . . , 0, νi + 1, 0, . . . , 0) is either not a dominant weight or

P (λ) = P (λ′), for each 1 ≤ i ≤ n.

Proposition 7.3.5. [DT13, Thm. 4.1] For any λ ∈ Λ̃, there exists a unique irreducible

finite-dimensional Hξ-module L(λ). More precisely,

L(λ) =
⊕

0≤ν′≤ν
Vλ−ν′

as a gln-module, where ν = ν(ξ, λ) is as defined above and ν ′ ∈ Zn≥0 runs over all tuples

satisfying 0 ≤ ν ′i ≤ νi for all 1 ≤ i ≤ n.

The irreducible finite-dimensional Hξ-modules are exactly the modules L(λ) for λ ∈

Λ̃.

Since dimV is even, the Clifford algebra C(V ) has a unique finite-dimensional

irreducible module S (see Section 2.2), which is a gln-module via the algebra map

γ : U(gln) → C(V ). Let nµ be the multiplicity of Vµ in M ⊗ S for every dominant

integral gln-weight µ.

Proposition 7.3.6. Consider M = L(λ) for a λ ∈ Λ̃ as in Proposition 7.3.5. Then

the kernel of D2 acting on M ⊗ S is
⊕

µ nµVµ, where the sum ranges over all those µ

satisfying

P (λ) = P (µ− (1
2 , . . . ,

1
2))
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(where nµ is the full multiplicity in M ⊗ S, as just defined).

Proof. First, we recall that D2 = (Ω + α)−∆C(β) according to Proposition 7.2.14.

Let vλ ∈ Vλ ⊂M be a highest weight vector. From Proposition 7.2.14 we also know

that Ω + α = 2(
∑

i xiyi + C ′), so Ω + α acts on vλ, and hence on M , by the scalar

2C ′(λ) = 2P (λ) .

We want to find the scalar by which β acts on Vµ ⊂M⊗S via ∆C , i.e., via the diagonal

tensor product action, where the second tensor factor is a gln-module via γ. Recall that

β = 2

∫
|v|=1

fξ(v ⊗ v − 1
2) dv .

Let t be the diagonal matrices in gln. We use the twisted Harish-Chandra map Z(U(gln))→

S(t) to see that this scalar is

2

∫
|v|=1

fξ(〈µ+ ρ, (|v1|2, . . . , |vn|2)〉 − 1
2) dv

= 2

∫
|v|=1

fξ(〈µ+ ρ− (1
2 , . . . ,

1
2)), (|v1|2, . . . , |vn|2)〉) dv

= 2C ′(µ− (1
2 , . . . ,

1
2)) = 2P (µ− (1

2 , . . . ,
1
2)) .

This yields the desired characterization of the highest weight submodules contained in

kerD2.

We have the following information on the structure of S as a gln-module via γ

(see [Kos99, Prop. 3.17]):

Lemma 7.3.7. The weights of S are exactly the weights (s1, . . . , sn) in {±1
2}n, and all

weight spaces are one-dimensional. Hence S ∼= Λ(h)⊗ (−1
2 Tr) as gln-modules.

Proof. We can take S to be the left ideal generated by u = y1 . . . yn in C(V ), which is

irreducible (this is explained, for instance, in [Kos99, Sec. 3]).

Hence, a basis of S is given by the elements xe11 . . . xenn u for exponents e1, . . . , en ∈

{0, 1}. We can compute directly

γ(Eii)xi = 1
4(yixi − xiyi)xi = −1

4xiyixi = −1
2xi ,

γ(Eii)yi = 1
4(yixi − xiyi)yi = 1

4yixiyi = 1
2yi ,
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and γ(Eii) commutes with xj or yj in C(V ) for all j 6= i, so

γ(Eii)x
e1
1 . . . xenn u = 1

2(−1)eixe11 . . . xenn u

for all 1 ≤ i ≤ n.

We can use this result to obtain the structure of L(λ)⊗ S:

Proposition 7.3.8. For any λ ∈ Λ̃, L(λ)⊗ S decomposes as

⊕
0≤ν′≤ν

⊕
{Vµ | µ dominant integral weight, µi−(λi−ν ′i) ∈ {±1

2} ∀1 ≤ i ≤ n} . (7.3.1)

In particular, the irreducible modules Vµ occurring are those with dominant integral

weight µ satisfying

µi ∈ {λi + 1
2 , λi − 1

2 , . . . , λi − νi − 1
2}

for all 1 ≤ i ≤ n.

Proof. Let λ′ be a highest gln-weight and Vλ′ the corresponding irreducible highest

weight gln-module. Then by the Pieri rule, Vλ′ ⊗ Λ(h) decomposes as

⊕
{Vµ | µ dominant integral weight, µi − λ′i ∈ {0, 1} ∀1 ≤ i ≤ n} .

Now since L(λ) =
⊕

0≤ν′≤ν Vλ−ν′ and S = Λ(h) ⊗ (−1
2 Tr), L(λ) ⊗ S decomposes as

asserted, and listing the weights occurring just gives the desired characterization.

This allows us the following conclusions on the irreducible highest weight gln-submodules

of kerD2:

Corollary 7.3.9. The kernel of D2 acting on L(λ)⊗ S is the sum of those irreducible

submodules Vµ appearing in Equation (7.3.1) for which P (λ) = P (µ− (1
2 , . . . ,

1
2)).

We define distinguished weights λ0 := λ+ (1
2 , . . . ,

1
2),

λ′i := λ− (0, . . . , 0, νi + 1, 0, . . . , 0) , and λi := λ+ (1
2 , . . . ,

1
2 ,−νi − 1

2 ,
1
2 , . . . ,

1
2) ,

for 1 ≤ i ≤ n.
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Corollary 7.3.10. Vλ0 and Vλn appear with multiplicity one in the kernel of D2 acting

on L(λ)⊗ S.

For 1 ≤ i < n, if λ′i is a dominant weight, then Vλi appears with multiplicity one in

kerD2.

Proof. Examining Equation (7.3.1), we see that for each 0 ≤ i ≤ n, there is only one

possible weight ν ′ in the outer sum such that µ = λi can be obtained in the inner sum,

so all λi appear with multiplicity one in L(λ)⊗ S.

Now

P (λ) = P (λ0 − (1
2 , . . . ,

1
2)) = P (λn − (1

2 , . . . ,
1
2)) ,

hence, Vλ0 and Vλn lie in kerD2.

Also, if λ′i is dominant, then by Proposition 7.3.5,

P (λ) = P (λ′i) = P (λi − (1
2 , . . . ,

1
2)) ,

so Vλi lies in kerD2 in this case, as well.

Proposition 7.3.11. Let M be any Hξ-module. Then all gln-weights appearing in

kerD2 ⊂M ⊗ S with odd multiplicity appear in the Dirac cohomology HD(M).

If M = L(λ), then the multiplicity-free gln-weights of kerD2 described in Corol-

lary 7.3.10, and, in particular, the highest gln-weight of M ⊗ S, λ0 = λ + (1
2 , . . . ,

1
2),

appears in the Dirac cohomology.

Proof. We have already observed that D commutes with elements of the form ∆C(h) ∈

A ⊗ C for h ∈ H = U(gln) (Lemma 6.2.5). Hence, the action of D on M ⊗ S is a

gln-module map. Now if N ⊂ kerD2 ⊂ M ⊗ S is an irreducible gln-submodule with

multiplicity space N ′ of odd dimension, then D acts on N ′ such that D2 acts as 0.

Hence the action of D on N ′ has a Jacobi block of size 1 for the eigenvalue 0, which

corresponds to a copy of N annihilated by D and not in the image of D. This copy of

N appears in HD(M) = kerD/(kerD ∩ imD).

In particular, this applies to the weights described in Corollary 7.3.10.
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Corollary 7.3.12. Any finite-dimensional irreducible representation of the infinitesimal

Cherednik algebra Hξ is uniquely determined by its Dirac cohomology.

Proof. The highest gln-weight occurring in the Dirac cohomology determines the highest

gln-weight occurring in the finite-dimensional irreducible representation, which deter-

mines the representation.

Let us consider examples for n = 1 and n = 2 (see the examples in [DT13, Sec. 4]).

Example 7.3.13. For n = 1, λ is a complex number and ν is a non-negative integer

(minimal) such that P (λ) = P (λ− ν − 1). Then L(λ) = Vλ ⊕ · · · ⊕ Vλ−ν . Hence,

L(λ)⊗ S = V
λ+

1
2
⊕ 2V

λ−1
2
⊕ · · · ⊕ 2V

λ−ν+
1
2
⊕ V

λ−ν−1
2
.

Now the only weights µ occurring in L(λ)⊗S such that P (λ) = P (µ− 1
2) are obviously

λ0 = λ + 1
2 and λn = λ1 = λ − ν − 1

2 . So the kernel of D2 and by Proposition 7.3.11

the Dirac cohomology is just Vλ0 ⊕ Vλ1 .

Example 7.3.14. For n = 2, we identify weights with points in the two-dimensional plane

and we consider the gln-weight λ = (3, 0)− ρ together with a polynomial P satisfying

P (3, 0) = P (3,−3) and P (3,−k) 6= P (3, 0) 6= P (3− k, 0) for k = 1, 2 .

Then ν1 = 3, because −ρ = (3, 0)− (3, 0)− ρ is not a dominant gln-weight and ν2 = 3,

because P ((3, 0) − (0, 3)) agrees with P (3, 0) by assumption. Hence the irreducible

gln-submodules occurring in M(λ) form a 3 × 3-grid and their highest weights are

those µ satisfying λ ≥ µ ≥ λ− (3, 3). Each of these irreducible gln-submodules yields 4

irreducible gln-submodules when tensored with the spin module S, for an irreducible gln-

module with highest weight µ they have highest gln-weight µ+(±1
2 ,±1

2) (see Figure 7.1).

Now we specialize P (µ) = −27h1(µ)−2h2(µ)+3h3(µ) with the completely symmetric

polynomials in two variables h1, h2, h3. We can check that P satisfies the conditions

mentioned so far and also

P (3, 0) = P (3,−3) = P (2,−1) = P (0,−3) .
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Figure 7.1: Weights of a finite-dimensional module M (filled gray circles), of the tensor

product M ⊗ S (white circles with dark outlines indicating multiplicities), and of the

kernel of D2 (four highlighted circles, with multiplicities). The shadowed region in the

top-left corner indicates non-dominant weights. As explained in Example 7.3.14, the

three multiplicity-free weights in kerD2 appear in the Dirac cohomology.
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Hence, the kernel of D2 is the sum of the irreducible gln-submodules of highest weight

(3.5, 0.5)− ρ, (3.5,−2.5)− ρ, (0.5,−2.5)− ρ and (2.5,−0.5)− ρ with full multiplicity 1,

1, 1, and 4, respectively.

By Proposition 7.3.11, the three multiplicity-free weights occur also in the Dirac

cohomology.
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Chapter 8

Summary and Outlook

In this thesis we explain how Dirac operators can be defined in a generalized setting for

PBW deformations of smash products with an orthogonality condition. We construct

pin covers of cocommutative Hopf algebras extending the known pin cover constructions

for groups or Lie algebras, and we interpret these constructions using (superalgebraic

versions of) the Skolem–Noether theorem, inner coalgebra measurings, and Hopf 2-

cocycles. The classification of the considered class of PBW deformations is explored and

partial results are presented, including the fact that they are supported on a subspace of

reflections in the Hopf algebra with respect to a module. We also construct a family of

examples of such PBW deformations and we show that they recover known classification

results in special cases. A theory of Dirac cohomology is developed in our general

framework and a version of Vogan’s conjecture, which relates the central character of a

module with its Dirac cohomology, is proved. It recovers versions of Vogan’s conjecture

for various known special cases. The theory is then applied to a novel special case

of PBW deformations, namely, infinitesimal Cherednik algebras of the general linear

group. We show that they, indeed, fall into the class of algebras which is covered by our

version of Vogan’s conjecture, and we prove that the Dirac cohomology does not vanish

for and, in fact, determines any finite-dimensional irreducible module.

The discussed results raise many new questions, for instance, regarding the scope of

the presented theory or regarding extensions and further generalizations. We conclude

with a series of open questions and the partial answers we can give, including based on

ongoing research.
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8.0.1

Which infinitesimal Hecke algebras are Barbasch–Sahi algebras? Since all these al-

gebras are PBW deformations of smash products in our sense, they are Hopf–Hecke

algebras if and only if the involved Hopf algebra module is orthogonal. Are all these

Hopf–Hecke algebras Barbasch–Sahi algebras, i.e., does their Dirac operator satisfy the

Parthasarathy condition Definition 6.2.7? In Section 7.2, we have answered this ques-

tions in the affirmative for the general linear group and the module which is the direct

sum of the standard module and its contragredient. In ongoing research, we also con-

firm that the infinitesimal Hecke algebra of the orthogonal group is a Barbasch–Sahi

algebra. A family of infinitesimal Hecke algebras arises from symmetric spaces, but

our computations indicate that for Hermitian symmetric spaces, all these infinitesimal

Hecke algebras are essentially either universal enveloping algebras of Lie algebras or

infinitesimal Cherendik algebras of the general linear group, which we studied. On the

other hand, rational Cherednik algebras with the parameter t 6= 0 are Hopf–Hecke al-

gebras which are not Barbasch–Sahi algebras, but their center consists of scalars only

(see [Ciu16, Prop. 4.9 (3), Rem. 4.10]).

8.0.2

Which examples of Barbasch–Sahi algebras exist for which the role of the cocommutative

Hopf algebra is not played by a group algebra or a universal enveloping algebra? For

instance, if G is a finite group acting on a Lie algebra g, which Barbasch–Sahi algebras

exists for the cocommutative smash product Hopf algebra H = U(g) o F[G]?

8.0.3

What is the classification of Barbasch–Sahi algebras, Hopf–Hecke algebras or the under-

lying PBW deformations? While the PBW deformations have been classified in special

cases, for instance, for finite groups with faithful modules over C (see Theorem 2.6.3),

other special cases like the classification of infinitesimal Hecke algebras are open prob-

lems.
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8.0.4

Can the theory be completely carried out in the superalgebraic setting? In Section 4.4

we already explain how the pin cover can be generalized to this situation, and in ongoing

research we explore how amenable the proof of Vogan’s conjecture is to such a gener-

alization. Interesting examples in this setting are deformations of universal enveloping

algebras of Lie superalgebras (Dirac cohomology for Lie superalgebras was studied in

[HP05]).

Can we even pass to the module category of a general quasitriangular Hopf algebra?

These categories correspond to rigid braided monoidal tensor categories with a fiber

functor via a Tannaka–Krein duality, and for a special choice of the quasitriangular Hopf

algebra, they recover the category of superspaces. Or similarly, can we pass to Yetter–

Drinfeld categories? These are a related general class of braided monoidal categories,

and the superspaces form a subcategory of the Yetter–Drinfeld categorie of the Hopf

algebra F[Z2]. Do generalizations exist even to monoidal categories which do not “live

over” the vector spaces (i.e., which do not have a fiber functor), like Deligne’s category

Rep(St)?

8.0.5

Let H be any Hopf algebra and let B be a Koszul algebra which is an H-module algebra.

Can the theory be extended to PBW deformations of BoH, which we discussed briefly

in Section 2.6? Such PBW deformations have been studied by Walton and Witherspoon

in [WW14, WW18], they include the braided Chrednik algebras constructed by Bazlov

and Berenstein [BB09a, BB09b]. Does a version of Vogan’s conjecture hold for them?

8.0.6

Can the theory be extended to include Kostant’s cubic Dirac operator [Kos99, Kos03]

or Drinfeld orbifold algebras as defined by Shepler and Witherspoon [SW12]? This

extension corresponds to deformation maps κ with an image not only in the Hopf algebra

H, but in H ⊕ V or H ⊕ (V ⊗H), and in the Lie algebra situation, a Dirac operator
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with the desired properties is obtained by adding a “cubic” term.

8.0.7

Which new representation theoretic results can be obtained using Dirac operators and

Dirac cohomology? For instance, which classical results can be transferred to new alge-

braic structures via our generalized framework? Classically, Dirac operators have proven

particularly important for the study of unitary representations, so are they similarly use-

ful for studying suitably defined unitary representations in non-classical contexts? For

infinitesimal Cherednik algebras of GLn, we have seen that the Dirac cohomology de-

termines any finite-dimensional module and in ongoing work, we compute their Dirac

cohomology completely. Can our generalized Dirac cohomology, for instance in this sit-

uation, be connected to other cohomology theories, generalizing known connections to

nilpotent Lie algebra cohomology (see, for instance, [HPR06, Hua15])?
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even derivation, 7
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flat deformation, 58
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group-like, 24

Harish-Chandra module, 37

Hopf 2-cocycle, 54

Hopf algebra, 23

Hopf superalgebra, 26

Hopf–Hecke algebra, 59

infinitesimal Cherednik algebra, 91, 92

inner measuring, 49, 53

Jacobi property, 59

Killing form, 37

Klein–Gordon equation, 35

measuring, 48, 52

non-isotropic vector, 14
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odd derivation, 7
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orthogonal group, 15

Parthasarathy condition, 80

PBW deformation, 31, 58

PBW property, 59

pin cover, 41, 44, 45
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pin Lie algebra, 17

pointed, 23

primitive, 24

quantization map, 13

reflection, 15

Schrödinger equation, 35

semidirect product, 28

semisimple superalgebra, 9

simple coalgebra, 23

simple superalgebra, 8

smash product, 28

standard Hopf–Hecke algebra, 67

standard PBW deformation, 67

super Jacobi identity, 7

super skew-symmetry, 7

superalgebra, 5

superbialgebra, 26
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supercommutative, 26
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Sweedler’s notation, 22
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tensor algebra, 5, 27
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