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ABSTRACT OF THE DISSERTATION
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By XIANYI GAO

Dissertation Director:

Prof. Janne Lindqvist

Advances in technology have provided ways to measure driving behavior. Recently,

this technology has been applied to usage-based automotive insurance. Policy holders may

opt-in to monitoring for the hope of reduced insurance premiums. Although some of these

monitoring devices are based upon GPS information and offer no location privacy pro-

tections, several companies are aware of the privacy concerns and therefore measure only

speed data. However, does collecting the speed data really preserve privacy? Our work

investigates how much location information we can actually obtain from the speed data

and why the speed data should also be protected against malicious third parties. In this the-

sis, we present our algorithm to track drivers’ locations when only speed data and starting

locations are known. The starting locations are mostly home addresses that insurance com-

panies know. The algorithm fits the speed data to a trajectory path on a map and evaluates

which path should be the actual driving route. To demonstrate the algorithm’s real-world

applicability, we evaluated its performance with driving datasets from New Jersey and Seat-

tle, Washington, representing suburban and urban areas.

We present the Elastic Pathing algorithm to track drivers, the enhanced version of Elas-
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tic Pathing algorithm with several optimizations, and a final machine learning approach by

learning how a speed pattern can indicate the driving direction. Our Elastic Pathing algo-

rithm can estimate destinations with error within 250 meters for 17% traces and within 500

meters for 24% traces in the New Jersey dataset (254 traces). For the Seattle dataset (691

traces), we similarly estimated destinations with error within 250 and 500 meters for 16%

and 28% of the traces respectively. At the end, based on the challenge from previous ap-

proach, we designed and implemented the machine learning approach for the current New

Jersey dataset in order to achieve higher accuracy. With machine learning, our algorithm

was able to estimate destinations with error within 250 and 500 meters for 25% and 30%

of traces respectively in our New Jersey dataset. This work shows that speed data enable a

substantial breach of privacy.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Technological advances have created ways to observe driving behaviors using odometer

readings and in-vehicle telecommunication devices. Taking advantage of this technology,

some US-based automotive insurance companies (Allstate, 2013; GMAC, 2015; Progres-

sive, 2013; StateFarm, 2016) offer consumers the ability to opt-in to the usage-based in-

surance (UBI) for reduced premiums by allowing companies to monitor their driving be-

havior. These policies are different from traditional insurance policies, which use record

of past driving violations to differentiate between safe and aggressive drivers. The UBI

policy applies devices to monitor directly while people are driving and provide insurance

companies with real-time driving data.

Although the UBI policy has advantages for both insurers and consumers (e.g. insurers

monitor consumers’ driving behaviors as a way to encourage safe driving, and consumers

get lower premiums), the privacy concern of collecting driving behavior data should not

be neglected. Some of these monitoring devices are even based upon GPS information

and offer no privacy protection, such as OnStar (General Motors, 2016). Many insurance

companies are aware of the privacy issue and only use devices that collect time-stamped

speed data, making the claim that it is privacy-preserving. However, it is still possible to
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deduce location data from speed traces. In this thesis, we demonstrate that logging this

time-stamped speed data is also not privacy-preserving, despite the insurance companies’

claims.

The privacy problem introduced in this thesis is significant because the data collection

by insurance companies is an always on activity. Data may be logged forever, and thus,

deducing location data from speed traces represents a huge breach of privacy for drivers

having these types of insurance policies. Even if insurance companies are not currently

obtaining location traces from their data today, this does not guarantee that it will not

present problems in the future. The data is not considered to be sensitive data, and therefore

is also unlikely to be treated as sensitive. This means that the data may eventually be

obtained by any number of antagonists that do know how to process the data traces to obtain

location information. For example, it is foreseeable that law enforcement agencies would

request the information as they have done with other driving related data, for example,

electronic toll records (Apuzzo, 2003).

Tracking drivers and estimating their trip destinations are very challenging with only a

starting location and the time-stamped speed data, otherwise insurance companies would

not claim that the information being gathered is privacy-preserving. Indeed, matching a

single speed trace to all of the roads in a country or state is intuitively extremely difficult.

However, the home address of a person is available to insurance companies, making a

starting location available for some paths.

It is not obvious that these data are sufficient to reproduce an exact driving path. Speed

data does not indicate if a person is turning at an intersection or merely stopping and going

straight after. Without information about driving directions, there may be multiple alter-
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Figure 1.1: Number of paths within a given distance of a starting location. The pattern
of growth on a log-linear scale shows that the number of paths increases exponentially.
Within one mile there are over 106 paths diverging from a grocery store and over 104

paths from a residential area. Locations central to major transportation routes, such
as a grocery store, will see a higher increase in paths compared to a residential location
which is more likely to lead to a dead end. Residential roads are also more likely to
lead to a dead end: in this example the number of paths from the residence actually
falls at the beginning because only one path does not dead-end immediately.

native paths that match with the speed data. Of course multiple routes can be explored.

However, even within a few minutes drive of a person’s home, there may be thousands of

turns the person could have taken, so blindly exploring every single possible path is not

feasible. Figure 1.1 shows the growth of possible paths within a distance of just one mile

from a starting location. Within that one mile, there are over 100,000 possible paths the

driver could have taken when the trip starts from a grocery store, and over 10,000 paths

from a residential area.

A general approach to reducing the space of possible paths would be to build an error

metric for all paths and choose the path that minimizes the error. Due to the rapid growth
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rate of paths, the number of possible paths at the end of a trip is very large. Simple solutions,

such as greedy algorithms, will end in failure without even finding any solution; for instance

when the path chosen by a greedy algorithm suddenly comes to a dead end.

This thesis presents and applies several innovative ways (e.g. use of speed limit, turn-

speed limitation, error metric, priority first search, and machine learning) to approach the

problem. Despite the challenge, with our enhanced Elastic Pathing algorithm, we are able

to estimate destinations with error within 250 meters for 17% of the traces and within 500

meters for 24% of the traces in the New Jersey dataset, and with error within 250 and 500

meters for 16% and 28% of the traces, respectively, in the Seattle dataset. After analyzing

on our algorithm and factors that can mislead our algorithm, we designed and implemented

the machine learning approach that adds probabilistic information for driving directions at

intersections. With this final machine learning approach, we were able to further improve

our algorithm’s estimation accuracy: 25% traces from New Jersey dataset were estimated

with destination error less than 250 meters, and 30% traces were estimated with destination

error less than 500 meters.

1.2 Organization

Chapter 2 describes the background and related work of location prediction based on sensor

data. Chapter 3 presents the design and implementation of our innovative Elastic Pathing

algorithm and the corresponding accuracy with our datasets. Chapter 4 presents the en-

hanced version of the Elastic Pathing algorithm. Chapter 5 presents the machine learning

approach which further improves the estimation accuracy. Chapter 6 discusses our algo-

rithm, results, and location privacy with driving data. Chapter 7 concludes this thesis.
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1.3 Contributions

This work makes following contributions:

1. We present our innovative Elastic Pathing algorithm which estimates location traces

from speed data and starting locations.

2. We built a tool to visualize how our algorithm tracks drivers. Our tool, utilizing

Google Maps APIs, can be applied to any application having driving traces.

3. We tested our algorithm on real world traces to show how the data collected by many

insurance companies is not privacy-preserving despite their claims.

4. We explored the effect of adapting OpenStreetMap routing into our algorithm and

showed it does not benefit our algorithm but can be potentially useful on estimating

routes for a subset of drivers.

5. We analyzed how information about speed limits would affect our estimation accu-

racy in two distinct driving environments: urban and suburban areas.

6. We prepared three large datasets for testing: New Jersey dataset representing subur-

ban driving traces, Seattle dataset representing urban driving traces, and an identical-

route dataset of 30 drivers.

7. We explored how our algorithm performs for various drivers and driving behaviors.

8. We presented the innovative machine learning approach and how this can be com-

bined with our algorithm to achieve an improved estimation accuracy.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Location Data and Privacy Protection

Many studies have shown the importance of location data for personal behavioral infor-

mation. For example, Brush et.al. did a study with 32 participants from 12 house holds

about their location privacy concerns (Brush, Krumm, & Scott, 2010). Different loca-

tion obfuscation schemes were presented to participants to find the most comfortable one

to help with privacy protection. Their findings suggested that designers may be able to

provide an informed choice about location obfuscation based on user’s personal privacy

concerns. In addition, Ludford et. al. investigated on the sharing and protecting of the lo-

cation information through conducting two empirical studies (Ludford, Priedhorsky, Reily,

& Terveen, 2007). They found that new local knowledge about a variety of places can be

discovered from location data. Meanwhile, Patil and Lai’s study showed that people are

sensitive to location information but they are still willing of sharing location information

to close groups (e.g. family, team) (Patil & Lai, 2005). Their findings suggested that some

group-level based mechanisms can be used to balance privacy control and configuration

burden. On the other hand, Tsai et. al. focused on the impact of feedback in the context

of mobile location sharing (Tsai et al., 2009). They found participants having very strong

concern on their privacy information. They showed that feedback is an important factor
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to improve user comfort levels and peer opinion plays an important role on determining

whether participants would continue to use a mobile location technology.

The importance of location privacy has encouraged a large body of work to concentrate

on protecting, anonymizing, or obfuscating location traces. For example, Brush’s work fo-

cused on location obfuscating methods (Brush et al., 2010). Popa et. al. developed a system

called “PrivStats” to guarantee the protection of location privacy (Popa, Blumberg, Balakr-

ishnan, & Li, 2011; Gruteser & Grunwald, 2003). The system achieved effective protection

by using an novel protocol to upload data anonymously. Gruteser and Grunwald’s work

also focused on location data anonymization (Gruteser & Grunwald, 2003). Through ad-

justing resolution of location information spatially or temporally, the algorithm was able to

meet specified anonymity constraints for location-based services. Another study used false

location reports combined with a probabilistic model producing realistic driving trips to

confuse location attacker (Krumm, 2009a). Similarly, a study used spatial cloaking, noise,

and rounding to obscure location data in order to prevent location attacks (Krumm, 2007;

Zhou et al., 2013). In addition, Krumm has written an overview of computational location

privacy techniques (Krumm, 2009b), and Zang and Bolot have recently questioned the pos-

sibility of releasing privacy-preserving cell phone records while still maintaining research

utility in those records (Zang & Bolot, 2011).

Based on analysis of location data, researchers have shown that the nature of individual

mobility patterns is bounded, and that people visit only a few locations most of the time

(e.g. just two (Gonzle, Hidalgo, & Barabasi, 2008; Eagle & Pentland, 2009; Golle & Par-

tridge, 2009)). In most cases, there is high level of predictability for future and current

locations (e.g. (Song, Qu, Blumm, & Barabsi, 2010; Farrahi & Gatica-Perez, 2011) – most
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trivially, “70% of the time the most visited location coincides with the user’s actual loca-

tion” (Song et al., 2010)). Mobility patterns can also be used to predict social network ties

(e.g. (Wang, Pedreschi, Song, Giannotti, & Barabasi, 2011)). In a more applied domain,

GPS traces have been used to learn transportation modes (Zheng, Chen, Li, Xie, & Ma,

2010), to predict routes (Ziebart, Maas, Dey, & Bagnell, 2008), to predict family routines

(e.g. picking up or dropping off children) (Davidoff, Ziebart, Zimmerman, & Dey, 2011),

to distinguish when people are home or away (Krumm & Brush, 2011), and to recommend

friends and places (Zheng, Zhang, Ma, Xie, & Ma, 2011). However, none of the above

work can be used to discover locations based solely on speed data and a driver’s starting

location.

2.2 Location Tracking with Various Sensors

The world’s first navigating system from Etak in 1985 showed how well a car could be

located without using GPS (Zavoli & Honey, 1986). The navigating system used a map

database, a dead reckoning system with motion sensors, and a magnetic compass to track

the driving direction, distance, and ultimately the real time location. This system cannot

be simply applied to our work as we do not have the information about driving direction.

Other related work in the field of dead reckoning also suggests that speedometer traces

should have some level of information to extract. Dead reckoning works by using speed

or movement data starting from a known location to deduce a movement path. Dead reck-

oning has been previously used for map building with mobile robots (Golfarelli, Maio,

& Rizzi, 1998) or as an addition to Global Navigation Satellite Systems (GNSS) such

as GPS (Krakiwsky, Harris, & Wong, 1988; Zhao, Ochieng, Quddus, & Noland, 2003).
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These systems, however, require very accurate measurements of speed and acceleration,

and utilize very precise gyroscopes to determine changes in direction. When supplement-

ing GNSS data, dead reckoning was only used when GNSS information is unavailable,

such as when a vehicle passes through a tunnel.

In the specific area of usage-based insurance, the privacy concerns of these insurance

programs have been studied before by Troncoso et al. (Troncoso, Danezis, Kosta, Balasch,

& Preneel, 2011). However, this work dates back to schemes which would send raw loca-

tion (GPS) coordinates to either insurance providers or brokers. Troncoso et al. proposed a

cryptographic scheme PriPAYD to address the problem (Troncoso et al., 2011). Our work

shows that speedometer-based solutions, which were not considered by Troncoso, are not

privacy-preserving either. Technically similar to our work are side-channel attacks using

accelerometer data from smartphones to infer user location (Aviv, Sapp, Blaze, & Smith,

2012). Projects such as ACComplice (Han, Owusu, Nguyen, Perrig, & Zhang, 2012) and

AutoWitness (Guha et al., 2010) have used accelerometers and gyroscopes for localization

of drivers. However, the information from the smartphone can be used to detect when turns

occur. In contrast, we have only a time series of speed data available. It does not indicate

if any turn is taken.

2.3 Location Tracking with Speed Data

Finally, the most closely related work to our own is a project to infer trip destinations

from driving habits data by Dewri et al. (Dewri, Annadata, Eltarjaman, & Thurimella,

2013; Bellatti et al., 2017). Their work used time, speed, and driving distance data to

estimate destinations. Their algorithm is based on depth-first search (DFS) to explore all
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the paths within the range. After generating candidate paths, post-processing is needed to

calculate the actual ranking of paths. The average time complexity is equivalent to the DFS

exploration plus the postprocessing, which increases exponentially with the length of speed

data. The algorithm also needs to store all the exploring paths within the range. In contrast,

our algorithm has much less time and space overhead because of the use of error metrics

and prioritizing the search of best paths.

Dewri et. al. tested the algorithm with only 30 trips in Denver, Colorado area and men-

tioned the estimated destinations are close to the actual one (within 0.5 mile) (Dewri et

al., 2013; Bellatti et al., 2017). However, each of the 30 trips was pre-processed to “re-

move data points that may correspond to driving in traffic condition” (Dewri et al., 2013).

The algorithm also assumes that “all left turns happen at a speed of 15 mph and all right

turns happen at 10 mph” (Dewri et al., 2013; Bellatti et al., 2017). It is unclear how this

assumption stands for different drivers. The algorithm has not been tested in a large set

of non-ideal driving routes with a collection of different drivers and driving habits. In

contrast, our elastic pathing algorithm estimated about 37% of all traces within 0.5 miles

using datasets with nearly one thousand daily driving traces. Our algorithm works in realis-

tic driving conditions without manual pre-processing or pre-selecting the collected driving

traces.

Another advantage of our elastic pathing algorithm over Dewri’s algorithm is the appli-

cability to real-time tracking, since our search algorithm is only based on the current and

past speed samples. No post-processing or information of future speed samples are needed

to estimate the current location. The efficient search algorithm can generate the estimations

quickly with some optimization. Therefore, it is potentially useful for this type of adaption.
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The most recent work on driving location tracking based on speed data was in 2017

through using a particle-based framework to estimate a driver’s location (Wahlstrm, Skog,

Rodrigues, Hndel, & Aguiar, 2016). The main idea was to implement a particle filter to

propagate estimated driver locations, modeled by particles with estimated yaw angles, yaw

rates, and target speeds, by using two measurement functions for weight updates. The first

function was derived based on the assumed condition that the lateral force on the vehicle

does not exceed critical limits (e.g. usually smaller than 0.6 g and larger than a lower

bound) and assuming the uniform probability distribution between the two limits. The

second function was based on the assumption of a target speed that a driver was probably

going to reach. The idea and the estimation of the target speed were based on assumptions

that drivers tend to maintain a speed as much as possible near the speed limit and driver’s

acceleration is proportional to the difference between the current speed and the target speed.

This work was very innovative of using probability model combined with proper par-

ticle filters for measurement value updates (Wahlstrm et al., 2016). While the information

provided to the particle filters appear to be quite limited (e.g. without the use of speed

limits and other features of speed data), the model was able to prediction with relatively

good accuracy with 18 traces (e.g. 25% traces with error less than 200 meters with the

best probability model). However, similar to Dewri’s work (Dewri et al., 2013), this model

was only tested among very small set of driving traces (Wahlstrm et al., 2016), making

the comparison to our algorithm not feasible (i.e. very different approach with datasets in

very different size and driving area). The model processing time and complexity were also

not reported in the paper. When the driving dataset gets more comprehensive, assumptions

from the model may not always hold. For example, the assumption of target speed and
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the idea of drivers maintaining speed near speed limit may vary in different driving routes

(e.g. highway vs. local), different traffic conditions, and different drivers (e.g. aggressive

vs. defensive drivers). Therefore, it is unclear how the model performs with large collec-

tion of driving datasets with various driving routes and drivers. However, this work shows

a good potential to solve this problem through statistical modeling.
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CHAPTER 3

ELASTIC PATHING ALGORITHM AND ESTIMATION ACCURACY

3.1 Chapter Overview

In this section, we describe the Elastic Pathing algorithm used to recreate a person’s driving

route when the time-stamped speed data and the starting location are given. In the follow-

ing, we start with discussing the basic requirements for a generic algorithm and continue by

presenting the design of our Elastic Pathing algorithm. Then, we present the datasets used

to test the algorithm. At the end, we show the estimation accuracy with this initial version

of our algorithm. This section of the work has also been published (Gao et al., 2014).

3.2 Requirements for a Generic Algorithm

To solve this path recreation problem, any generic algorithm needs to consider: resources,

restrictions, and scoring metric for ranking. Resources are all of the contextual data that

will help us deduce a path from speed data. For example, a map is a useful resource to

apply. Restrictions are physical or behavioral limitations to any automotive driving be-

havior. Finally, a scoring metric is needed to choose the best path out of several possible

candidates.

Applying Available Resources: First, we would need the information about how dif-

ferent paths are connected in the area. OpenStreetMap (OSM) is a great option for this
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purpose. A path (or a way (OpenStreetMap, 2016b)) in OSM is represented with an or-

dered list of nodes (OpenStreetMap, 2016a). From the paths of the OSM, we know which

nodes are adjacent, and once a node is reached, we know which nodes we can move to-

wards next. For example, a four-way intersection will have a single node at the intersection

and four adjacent nodes. Since we reach the intersection from one direction, we have three

possible next nodes from which to choose. The distance between road segments and the

angles required to make a turn from the latitude and longitude pairs of the nodes can also

be calculated.

OSM also includes other information such as speed limits that are useful for path predic-

tion. Having speed limits for paths should improve the algorithm accuracy and efficiency

by eliminating impossible candidate paths given speed trace. Other information included

in OSM such as turn restrictions and way types are also helpful for the algorithm.

At the same time, time-stamped speed data also contain essential information. For

example, we can easily obtain the driving distance and acceleration for the speed data.

Therefore, a generic algorithm should use these quantities as part of the match criteria

when fitting a speed trace to paths in the map.

Adapting to Driving Restrictions: There are physical limitations to a vehicle’s turning

radius at a high speed. When a vehicle travels a particular path, it must travel at a speed

at or below the maximum speed possible to make the turn. Also, when driving in a road,

drivers need to obey speed limits. Although driving under maximum speed limit may not

be always true for each driver, it still provides useful boundary cases for the algorithm.

During normal driving, people only stop when they have to. There are only a few

scenarios when people would commonly stop: (1) they encounter red traffic lights or stop
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signs, (2) they start off from a place, (3) they reach to a destination, and (4) other cases

such as road constructions, traffic, and pedestrians crossing the street. Our algorithm does

not consider the last case since it happens randomly and it is not a common artifact in all

traces.

Using an Error Metric for Paths: A comparison metric is needed for the algorithm

to determine the best path. There should be a scoring system representing how well a path

matches with the speed trace. It is difficult to find a path that perfectly matches the speed

data, because drivers may swerve around objects in the road, or take turns more widely or

sharply than we expect. Thus, the actual driving distance may not perfectly match with the

path length calculated using the map. The challenge is that in some scenarios, these errors

might cause even correct path to seem impossible. For example, if the model progresses

past the vehicle’s actual position along a segment of road, then the model may conclude that

the vehicle is moving too quickly to make a turn. If we corrected the distance traveled to

account for some of these distance estimation errors, then we may find that the speed traces

line up perfectly with the turn. Thus, any algorithm must correct paths while it explores

them in an attempt to take into account these variations in the travel distance.

3.3 Elastic Pathing Algorithm

The elastic pathing algorithm is based on compressing or stretching the estimated distance

that was traveled as we attempt to match the speed data to the path. We match zero speeds

to intersections in the map and slow speeds to turns. Based on the daily driving scenario,

these can only be one-way matching – if the speed is zero, there needs to be an intersection;

but if there is an intersection, the speed does not have to be zero (e.g. when the traffic light
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is green). Similarly, if there is a turn, the speed needs to be slow enough to make the turn;

but if the speed is slow (greater than zero), the car may not be turning. The compressing

or stretching is done when there is a mismatch between the calculated distance from speed

data and the length of a path segment in the map. Compressing means subtracting from the

estimated distance by a specific amount. Stretching means adding to the estimated distance

by a specific amount.

After reconciling differences between a section of road and the speed trace, we must

pin the path at that point (which we call a landmark) because any movement would cause a

mismatch between the two. For instance, if the driving speed in a trace is reduced to zero,

indicating a stop, where there is no intersection we might pull the path forward by some

distance to reach an intersection. All points that are pinned cannot be moved since they

align with features in the road. We call this approach elastic pathing because the stretching

and compressing of the speed traces to fit the road is conceptually similar to stretching a

piece of elastic along a path while pinning it into place at different points. To understand

the algorithm, we first introduce a set of definitions:

• Calculated Distance: The distance a vehicle traveled calculated from speed and

time values in the speed trace.

• Predicted Distance: The distance along a possible route on the road at a certain time

in the speed trace.

• Error: The difference between calculated distance and predicted distance of a pos-

sible route.
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Input: The starting point-StartNode, a set of speed samples- Samples, and a
threshold within the best possible score to accept- δ

Result: Complete = list of possible paths within δ of the best possible
1 begin
2 Partial←− {[StartNode ]}
3 Complete←− ∅
4 while Complete = ∅ OR
5 Partial.first.error < δ× Complete.first.error do
6 // Pop out the partial path with smallest error to

advance
7 P’←− gotoBranch (Partial.pop)
8 // New paths are found after gotoBranch, then

check for completed paths
9 join (Complete, {x ∈ P’ | x complete })

10 join (Partial, {x ∈ P’ | x incomplete })
11 // Sort by error: the first partial path

(Partial.first) has the smallest error
12 sort (Partial)
13 end
14 // The first completed path found has the smallest

error
15 end
Algorithm 1: Pseudocode for the elastic pathing algorithm. Starting with the
StartNode, partial paths are added and processed through gotoBranch function. In
each iteration, partial paths are sorted so that the one with smallest error gets prior-
itized in search.

• Feature: A vehicle stop in the speed trace, an intersection in the road, or speed slow

enough to make a turn.

• Landmark: A place (e.g. intersection or turn) where the speed trace and road data

need to be checked to match.

The pseudocode for our elastic pathing algorithm is given in Algorithm 1. We measure

the fit of a path by the amount of stretching or compressing that needs to be done for the

speed data to match the path. The more stretching or compressing along a path, the worse

this path scores. In Algorithm 1, the error attribute for each candidate path measures this
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quantity. The algorithm stops exploring when it finds a set of possible solution paths (stored

in “Complete” array) and the smallest error from other left-over uncompleted paths (stored

in “Partial” array) is much worse than the best path that we have already found.

At each iteration of the algorithm we sort all of the partial paths by their current error

and then explore the path with the smallest error (see while loop in Algorithm 1). This path

is advanced until it reaches a feature that requires the pin operation. At this point there may

be multiple ways to advance the path so several new paths may be created. Each new path’s

error is adjusted to reflect the stretching or compressing of the distance traveled from the

last pinned landmark. The algorithm proceeds to the next iteration and follows the path

with the smallest error, and thus, the first path to finish cannot be worse than any other

path. The value of parameter δ (greater than one) determines the number of finished paths

we can obtain. This allows us to observe the top n paths. However, its value does not affect

the selection of the best path, since the first solution path found is always the best. We set

δ to be 1.1 when only interested in finding the best path.

Our algorithm uses maximum speed limits from OSM to determine whether a candi-

date path is possible. We have attempted several methods to apply speed limits to our

algorithm such as segmenting out steady speed intervals for speed limit checking, sepa-

rating highway and non-highway segments, and segmenting transient speed intervals for

way entrance speed checking. However, they did not work out well experimentally. In the

end, a simple solution of comparing vehicular speed to the maximum speed limit worked

well. If the speed exceeds the maximum limit by more than 20 mph, the path is no longer

considered possible. After trying different upper bounds, we found that speed limit plus 20

mph provides the best result overall in our testing stage. This seemed to be the upper bound
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Input: A path-P, speed samples-S, and the current index into the speed samples-i
1 while i < S.length do
2 // Match turns at intersections to slower speeds.
3 if P at intersection then
4 P’←− ∅
5 foreach Edge ∈intersection (P) do
6 if S[i].speed ≤ maxSpeed (P, Edge) then
7 Pin (P)
8 join (P’, P ∪ Edge)
9 end

10 else
11 Fore←− compressA (P)
12 Back←− stretchA (P)
13 join (P’, Fore)
14 join (P’, Back)
15 end
16 end
17 return P’
18 end
19 // Match 0 speeds to intersections.
20 if S[i].speed ≈ 0 then
21 while S[i].speed ≈ 0 AND
22 i < S.length do
23 ++ i
24 end
25 if P at intersection then
26 Pin (P)
27 return P
28 end
29 else
30 Fore←− compressB (P)
31 Back←− stretchB (P)
32 return {Fore, Back }
33 end
34 end
35 // Process normally
36 if speed higher than way max speed + 20 then
37 drop the current path
38 end
39 else
40 update total traveled distance
41 end
42 ++ i
43 end

Algorithm 2: Pseudocode for the gotoBranch function used in the elastic pathing
algorithm. This code advances a single path until it reaches discrepancy between
the speed trace and road. When this happens the path is corrected with compression
or stretching and the path is pinned at what we call a landmark and the path’s error
is recomputed. Multiple possible paths may be returned at intersections.
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that drivers in our datasets were willing to exceed the speed limit on the roads traveled.

The most complicated operation done in the ElasticPathing algorithm is the gotoBranch

function (pseudocode appears in Algorithm 2). The gotoBranch function first verifies that

the current speed does not exceed the speed limit of the road by more than 20 mph. It then

advances the path until it comes to a feature on the map, finds every possible path branching

from that feature, and returns those new paths. There are two types of feature matching we

consider: a zero speed for an intersection and a slow enough speed for a turn.

When a possible path calculated by the algorithm reaches an intersection it explores

every possible direction. If a vehicle on the possible path is going at a speed that can move

along the curve in the road then a landmark is set at that location with the Pin function. If

the curve in the road is too great for the current speed, we can rewind the speed cursor by

a few samples to find a past speed sample that is slow enough to make the turn. This is

equivalent to compressing the traveled distance. The amount of compressed distance can

be calculated and added to the path error. This is done through our compressA function. We

can also advance the speed cursor to find a speed sample that is slow enough to make the

turn. Our stretchA function is used in this situation. Therefore, when there is a mismatch

between speed samples and road data, there are two ways to resolve it, and thus, two new

possible paths.

A similar situation occurs when the speed data indicates that the vehicle has come to a

stop. If the path is already at an intersection then the landmark is set with the Pin function.

Otherwise the two solutions are found with the compressB and stretchB functions. These

two functions do not require rewinding or advancing the speed cursor. They directly com-

pare the calculated distance from speed data to the road distance in the map and compute
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the difference (or error). They are still based on the concept of compressing and stretch-

ing the distance but have different implementation compared with compressA and stretchA

functions mentioned above.

After any landmarks are set, the amount of stretching or compressing from the last

landmark increases the error of each path. This means that an existing path may have less

error than the current paths and should be explored instead. Therefore, all possible branches

are returned to the elastic pathing function and the paths are placed in sorted order by their

error. The pathing then continues with the new best path.

There are several details that we do not show in the pseudo-code. For instance, when

we check if we are at an intersection, we allow space for the number of lanes in the road and

offset for another car in front of our vehicle. Determining the minimum safe turn radius for

a speed value is done by assuming the maximum allowed incline in the road (8%) (Roess,

Prassas, & McShane, 2011). The equation that we use comes from Roess et al. (Roess et

al., 2011), and it is given as:

r safe =
speed2

(15× (0.01× DEFAULT ELEVATION + friction))
(3.1)

In the safe turn radius equation, friction is the dry coefficient of sliding side friction for

tires. Maximum default elevation is assumed to be 8% which is the maximum allowed for

areas where ice can form on the road. Setting maximum elevation allows the minimum

radius to make a safe turn, allowing more paths than rejecting them. The minimum safe

turn radius for a speed is then compared with the actual turn radius of the road which can be

determined based upon the number of lanes in the road and typical lane widths (AASHTO,



- 22 -

2011). If the actual turn radius is smaller than the safe turn radius, the vehicle cannot make

the turn at the given speed.

3.4 Driving Data

To test how well our algorithm can reconstruct a driving route from a known starting point

and a speed trace, we applied driving traces with different drivers and various driving en-

vironments. We required both a ground truth of GPS data and a sample set of speed data.

This data was collected with the approach that the insurance companies use, by connecting

a device to the On-Board Diagnostics standard (OBD-II) connector. To log the required

data we used two devices: a GPS-enabled smartphone, and a Bluetooth-enabled ODB-II

device. We recorded the timestamped speed data and the corresponding GPS positions si-

multaneously. We also obtained a much higher volume of GPS-only data, from which we

reconstructed the speed traces.

To determine the appropriate sampling rate for data collection, we referred to how in-

surance companies collect speed data. Although companies do not directly disclose their

data sampling rate on their websites, Allstate (Allstate, 2013) stated that “hard braking

events are recorded when your vehicle decelerates more than 8 mph in one second (11.7

ft/s2); extreme braking events are recorded when your vehicle decelerates more than 10

mph in one second (14.6 ft/s2).” We know that the sampling rate must be faster than the

duration of the feature the insurance company wishes to observe. In the United States,

federal vehicular safety regulations mandate that vehicles traveling at 20 mph must be able

to brake to a full stop in 20 feet at a deceleration rate of 21 feet/second2 (U.S. Department

of Transportation, 2013).These events that should be detected occur over a time interval of
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one second (τ = 1). Using the Nyquist sampling theorem, we know that they must sample

at twice this rate (two samples per second) to detect these features. To ensure the lower

bound of sampling rates any company may use, we used sampling rate of one sample per

second. This is much slower than what insurance companies use. Slower sampling rate

means less information due to fewer samples, thus it is harder to estimate routes.

Using the speedometer data from the OBD-II device was straightforward because raw

speed data was immediately available. However, some driving traces were only avail-

able as GPS traces. This data required additional processing to obtain speed values from

latitude and longitude pairs. This was a two step process: (1) we applied the haversine

formula (Sinnott, 1984) to approximate distances from the raw GPS coordinates; (2) we

divided this value by the time interval to get an instantaneous speed value for each time

interval. Each speed value was then given a timestamp and was converted into the same

format as the speedometer traces. We note that we did not see differences in the accuracy

of our algorithm between the two approaches of data collection. We also verified that the

GPS data approximates actual speedometer data very well, and thus, does not affect our

results.

After obtaining driving data, we slip them into driving traces as units of inputs to our

algorithm. Our algorithm assumes that each driving trace does not have intermediate stops,

meaning that all stops between a start location and a destination can only be caused by road

conditions (e.g. traffic light, stop sign, or turns). We split the trip when the driver location

does not change for more than 5 minutes, since stops due to traffic conditions are usually

much less than 5 minutes.

We used two datasets to evaluate how our algorithm works with the real-world driving
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Figure 3.1: The number of driving traces for each volunteer in the New Jersey dataset
(top figure) and the Seattle dataset (bottom figure).

traces: the central New Jersey dataset representing suburban areas and the Seattle city

dataset representing urban areas with nearly one thousand testing traces in total.

3.4.1 Central New Jersey Dataset

We had six volunteers collecting data. Four volunteers collected GPS-only data over a

period of three months, and two volunteers gathered both GPS and speedometer data with

an OBD-II device over a period of one month. Examples of vehicles that were used in New

Jersey dataset collection were small sedans, sports utility vehicles, and a pickup truck. The

sampling rate for both the GPS and the speedometer was one second. Figure 3.1 shows

counts of individual driver traces collected. There were 254 data traces that we used for
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pathing with nearly 1250 miles (nearly 2012 km) in total, with a median trip length of 4.65

miles (7.5 km), minimum trip distance of 0.38 miles (0.62 km), and maximum trip length

of 9.96 miles (16.0 km). These traces comprise 46 unique destinations, with more than half

of these destinations visited multiple times by individual drivers. 28 locations were visited

more than once during data collection and ten locations were visited more than five times.

The total driving time for 254 data traces was about 77 hours with an average driving time

of 18 minutes for average driving distance of 4.9 miles. The driving areas were mostly not

dense urban areas, but residential, suburban and commercial areas connected by highways.

3.4.2 Seattle Dataset

To test our algorithm performance on denser urban areas, we used an external GPS dataset

from Microsoft Research (MSR) (Krumm & Brush, 2009). The MSR GPS data was col-

lected by 21 volunteers carrying a GPS logger for about eight weeks in the fall of 2009

in the region of Seattle, Washington. We had looked through several datasets available for

access from various research centers and selected this particular dataset for its large size

and great potential of extracting valuable driving traces for our testing. However, not all

the traces were driving traces, since volunteers also carried around the GPS logger while

they were walking or traveling by train or plane. This required the design of a trace filter to

pick out all the driving traces. We extracted all the GPS traces that matched the following

criteria: the trace consisted of driving in Seattle, and lasted for at least three minutes. This

was done in order to have a reasonable distance with all traces and exclude trivial examples.

Another issue we needed to consider with this dataset was how to handle the loss of GPS

signal while driving. For example, a car driving in a tunnel may lose GPS signal temporally.
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To ensure the accuracy of the speed calculation using GPS trajectories, two sequential GPS

readings should not be separated by more than five seconds. If this happens, they should

be considered as two different driving traces. The possibility of losing signal is the only

disadvantage of using a GPS device instead of using a speedometer. The dataset from New

Jersey did not have this issue.

After trace filtering, 691 traces were extracted with total driving distance of 1778 miles.

Figure 3.1 shows the counts of traces per participant. The mean driving distance per trace

was 2.6 miles with minimum 0.59 miles and maximum 19.9 miles. The average driving

time per trace was 11 minutes. Comparing with our own dataset collected by six volunteers,

the Seattle dataset has relatively shorter average driving distance. Since it is an urban area,

the participants’ average driving distance per trip may be shorter than in suburban areas.

We had no control of or information on the vehicles used since the dataset was from MSR

and was collected independently to our research efforts.

3.5 Results

We ran our algorithm and generated results for both the New Jersey and the Seattle datasets.

A Ruby implementation of the elastic pathing algorithm processed all of the New Jersey

traces (254 traces) in under 30 minutes on a two-core 2.2 GHz machine, with an average

running time of less than ten seconds per trace. For the Seattle dataset (691 traces), it

took about one hour with average running time of less than ten second per trace as well.

Even without an implementation in a high-performance language, the algorithm is able to

process traces far faster than they are generated. Since data analysis could essentially be

done in real-time as a vehicle’s speed trace is being collected, the limiting factor on the time
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delay between data recording and path prediction is likely the time overhead of collecting,

transmitting, and preprocessing (e.g. matching a trace to a specific driver and their known

locations) speed traces. This means that it may be entirely feasible to do near real-time

tracking of drivers with just speed data, although the tracking will not be 100% accurate.

3.5.1 New Jersey Dataset Result

For the New Jersey dataset, our algorithm predicted 14% of traces with destination error

less than 250 meters and about 24% of traces with destination error less than 500 meters.

Table 3.1 shows the distribution of the number of traces over endpoint error intervals. Fig-

ure 3.2 shows the percentage of individual driving traces with destination error less than

250 meters and 500 meters for each volunteer. The algorithm performance varies on dif-

ferent individual drivers. We refer to the six volunteers as P1 to P6. For P2, our algorithm

failed to find any match with endpoint error within 2 miles. In contrast, our algorithm pre-

diction did relatively well for participant P4’s driving traces. 20 out of 76 (26%) of traces

had endpoint error less than 250 meters. 31 out of 76 (41%) of traces had endpoint error

less than 500 meters. These results suggest that some driving styles are easier to localize

than others.

3.5.2 Seattle Dataset Result

Our elastic pathing algorithm gave destination prediction error within 250 meters for 13%

of traces in the Seattle dataset and within 500 meters for 26% of traces. Table 3.1 shows

the number of traces within each endpoint prediction error interval and the corresponding

percentage for the total of 691 traces. For 60% of traces, our algorithm gave the endpoint

(or destination) prediction error of less than one mile. However, 22% of traces had endpoint
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Endpoint Error New Jersey
Dataset

Seattle Dataset

meters miles Num. of
Traces

Percent Num. of
Traces

Percent

0-250 0-0.16 36 14% 90 13%
251-500 0.16-0.31 24 9.5% 92 13%
501-750 0.31-0.47 14 5.5% 59 8.5%
751-1000 0.47-0.62 11 4.3% 59 8.5%
1001-1250 0.62-0.78 11 4.3% 49 7.1%
1251-1500 0.78-0.93 35 14% 44 6.4%
1501-1750 0.93-1.09 2 0.79% 25 3.6%
1751-2000 1.09-1.24 6 2.4% 21 3.0%
2000-2250 1.24-1.40 5 2.0% 29 4.2%
2251-2500 1.40-1.55 6 2.4% 21 3.0%
2501-2750 1.55-1.71 8 3.2% 25 3.6%
2751-3000 1.71-1.86 4 1.6% 17 2.5%
3001-3250 1.86-2.02 6 2.4% 12 1.7%
Greater
than 3251

Greater
than 2.02

86 34% 148 21%

Total traces 254 100% 691 100%

Table 3.1: Results for both central New Jersey dataset and Seattle dataset from our
elastic pathing algorithm. Table shows the number of traces having endpoint (or des-
tination) error ranging from 0 to greater than 3.25 km, separated into 14 error in-
tervals as shown in rows. First two columns give endpoint error representations in
meters and miles.
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error more than 2 miles. For those traces having large endpoint error, their speed patterns

were very noisy. This could be due to heavy traffic which forced cars to stop frequently.

Figure 3.2 shows the percentage of individual driving traces with endpoint error less

than 250 meters and 500 meters for each volunteer. Volunteers are referred as P1 to P21 in

the following description. For P2, about 26% of the traces had endpoint error less than 250

meters. However, for P1, no trace had prediction error less than 250 meters. P20 had about

5% traces having prediction error less than 250 meters. Besides different driving habits,

the percentage difference between P1 and P2 may also due to the difference in number of

total traces (see Figure 3.1). From 21 volunteers, P2’s driving traces produced the best

results with 26% traces having endpoint error less than 250 meters and 48% traces having

endpoint error less than 500 meters, while P1 driving traces had the worst result with 0%

having endpoint error less than 250 meters and 22% having endpoint error less than 500

meters.

3.5.3 Analysis

The relative accuracy of our approach does not go down with trip distance through our

testing on both datasets. Errors were not highly correlated with the path distance. How-

ever, in general, shorter trips had smaller variance in error than most of the longer trips.

The percent of predicted endpoints within 250 meters of the actual endpoint also does not

decrease with distance in our dataset, with trips as long as 10.5 miles still having endpoints

correctly predicted to within 250 meters. Our approach clearly does much better than ran-

dom guessing and almost always correctly identifies at least the general direction of travel.

The direction of travel is not a very serious privacy concern though, so we will use another
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Figure 3.2: Percentage of individual driving traces that have endpoint error less than
250 meters and 500 meters. For NJ volunteer 2, there is no bar, which means 0% of
the traces had the corresponding error.

filtering step to screen out noise from incorrectly predicted points.

Our algorithm’s performance is dependent on the individual driving habit. Given the

same driving location, some individuals may have average speed much higher than others.

We assumed that drivers followed the speed limits to some extent to help prune possible

paths. This assumption is somewhat incorrect as many drivers speed on highways. How-

ever, most drivers obey local (residential) speed limits because of unpredictable driving

environments (e.g. children running in the streets). Additionally, local enforcement poli-

cies encourage adherence to said speed limits as traffic rules are more strongly enforced in

residential areas and fines in these areas are higher. The speed limits in these areas are used
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as an admissibility criteria for possible paths (e.g. if the driver is traveling at 55 mph (88.5

km/h), it is unlikely that they are on a 25 mph (40.2 km/h) residential road).

We can further take advantage of multiple available traces for each driver to screen out

points that may be noise. We note that erroneous predictions are unlikely to repeatedly find

the same wrong location and instead usually make mistakes in different locations. Thus,

we can use the frequency that locations are predicted as a way to remove poor predictions

and focus only on common destinations.

The pathing algorithm is able to do more than just identify the endpoint of a trip –

it also eliminates a large number of locations where the trip could not have ended. This

is also a serious privacy concern because it allows an antagonist to identify changes in

regular routines very easily. For example, if a person usually goes home after work but the

predicted path goes in a different direction then it is highly likely the person is breaking

their routine.

When the algorithm has enough information and a route is very unique, for instance

when the spacing between intersections on the road traveled does not match the spacing in

any other road, the algorithm can do very well. This is illustrated in Figure 3.3. However,

this case is not normal, and at the very end when the algorithm chooses the correct left turn,

it may just as well have chosen to turn right or gone straight. However, even if the algorithm

made the wrong choice it would still be within 100 meters of the actual destination.

We believe the probability of error is closely tied to a few factors:

• Homogeneity of roads. If every road seems the same (same speed, similar intersec-

tion intervals, especially as in areas built in a grid), then they cannot be distinguished.
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Figure 3.3: The best possible case, a path from a grocery store to a home with no error.
The ground truth is indicated with a solid line while the nodes along the predicted path
are shown as dots. In this case the predicted and actual paths match perfectly.

• Traces with only slow speeds. Without high speeds to rule out turns and constrain

paths to a few major roads, the correct path is indistinguishable from any other.

• Unpredictable stops, caused by traffic, construction, etc.

The largest barrier to improved performance is distinguishing one road from another.

If two roads have similar features (e.g. same speed, similarly spaced intersections) then

there is little possibilities for the algorithm to distinguish between the two. This is also

affected by the traffic pattern of the trip; if a vehicle stops at every intersection because of

red lights, then there is a great deal of information about the spacing of those intersections.

If, however, the vehicle stops at no lights, then there is no information about the spacing of

intersection on the current road. With more prior information we may be able to do better.
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For example, if we knew the average waiting time at different lights then the waiting time

at an intersection might distinguish one road from another even if a vehicle only stops at

one or two lights.

This additional information, such as the average wait time at certain lights, or the aver-

age traffic speeds of different roads during different times of day, may already be available

to insurance companies and this information is not difficult to gather. If the algorithm had

this information available, it could score different turning choices with higher accuracy,

leading to improved results.
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CHAPTER 4

ENHANCED ELASTIC PATHING ALGORITHM WITH IMPROVED ACCURACY

4.1 Chapter Overview

In this section, we describe the enhanced version of the Elastic Pathing algorithm with im-

proved accuracy. First, we present the new modifications and approaches made in this new

version to enhance our algorithm. Next, we show the visualization tool that we built using

Google Maps APIs to visualize how the algorithm tracks drivers. Then, we describe the

new dataset that we collected to analyze how our algorithm performs for various drivers and

driving behaviors. At the end, we present the improved results and analyze how different

aspects of the speed data and our algorithm can affect the prediction accuracy.

4.2 Optimization for Elastic Pathing Algorithm

In this section, we describe the key improvements and algorithm enhancements that we

made over the initial work (Gao et al., 2014).

Applying a New Model for Turn Radius Determination: The turn radius of the in-

tersection determines the maximum driving speed at which a vehicle could make the turn.

This provides an estimate of the feasibility that a driver can be in the turning location given

the speed in the corresponding time instance. Thus a good model to determine the actual

turn radius is essential to the algorithm. Our previous attempt was to assume a sharp turn
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Figure 4.1: (a) The figure in the left presents our initial approach to estimate the turn
radius which is set to be the radius of the circle inscribing the triangle (shaded gray in
the figure). (b) The right figure shows our enhanced turn radius calculation method.
The turning angle does not have to be 90 degrees and it has the maximum turn radius
among all possible turns made within the path boundary.

by drawing a circle to inscribe a triangle. Then, the radius of the circle was set to be the turn

radius (see Figure 4.1a): r = h/2 + c2/(8h) (Gao et al., 2014). Although a simple sharp

turn happens frequently in most four-way intersections, we realized that a better model is

necessary to account for different types of intersections (e.g. three-way intersections, inter-

sections with turning angles not equal to 90 degrees). In addition, the resulting radius from

the old model was not the maximum radius allowed given the geometric structure. This

would cause the calculated maximum speed to be smaller than the actual possible speed,

causing the algorithm to falsely reject candidate paths that may have been correct.

We used a new approach to model this turning event. Instead of having a sharp turn

in the intersection, one can gradually turn from the outer side of the path, passing the

intersection corner, and arriving to the outer edge of the other path (see Figure 4.1b). This
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model gives the largest possible turning radius. In this model, the turning angle α does not

have to be 90 degrees. The beginning path width x and the ending path width y can also be

different. To solve for the turn radius r, we just need to apply some simple trigonometric

functions and obtain the following equation:

cosα =
r − x
r
· r − y

r
−

√
r2 − (r − x)2

r
·
√
r2 − (r − y)2

r
(4.1)

Thus the turn radius r can be solved (e.g. there are two solutions, but we need the solution

with larger value in this case), which is:

r =
x+ y +

√
2xy(1 + cosα)

1− cosα
(4.2)

This turn radius is then compared with the minimum safe turn radius to determine whether

the speed is too fast to make the turn.

Routing Method as an Optional Customization: OpenStreetMap (OpenStreetMap,

2016) provides a routing (or navigating) feature to help users moving from one place to an-

other. The ruby version of the OSM routing is implemented in Mormon (Mormon, 2016)

based on pyroutelib2 (OpenstreetmapWiki, 2015). OSM routing, based on A* search algo-

rithm with weights, finds the shortest path between the two locations (Mormon, 2016). We

applied OSM routing as it is open source and provides free unlimited amount of usage on

a given amount of time period.

The idea is to run our main elastic pathing search function first and use routing informa-

tion to refine the score of our top candidate paths. After the main search function, there is
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a list of candidate paths ranked by their error. We only consider the top 10 candidate paths

to guarantee the quality of the selected candidate paths and avoid run-time overhead. Each

candidate path has an estimated route, estimated destination, and an error. By comparing

the length of a candidate path to the length of a navigated path, we can further evaluate the

candidate path: the smaller the difference between lengths, the better the candidate path is.

This is under the assumption that people usually take an efficient driving route which

should have a good match with the navigated route when comparing trip distance. However,

this may not be always true. For example, one may go with a much longer route to avoid

heavy traffic. The effect on estimation accuracy of adding this method can only be tested

with real-world datasets (see Section 5.5 for analysis).

We constructed our routing method as an optional function that could be easily switched

on or off. To explain how we modified the error metric to consider the routing distance, we

introduce the following parameters:

• CalcDist: This is the distance calculated from the speed and time values in the speed

trace as defined previously.

• RoutingDist: This is the routing distance, shortest distance in this case, obtained

using OSM routing method.

• Error: As defined previously, this is the difference between calculated distance and

predicted distance, accumulated while compressing and expanding the path.

• MaxError: This is the maximum Error among the top 10 candidate paths for a

driving trace.
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• CombScore: This is the final combined score used to determine how good a candi-

date path is – larger score (ranging from 0 to 1) indicates better path.

To obtain the final combined score, we need to properly weight the error from the two fac-

tors: the difference between calculated distance and predicted distance, and the difference

between calculated distance and routing distance.

There are three cases based on the value of the routing distance. The first case happens

when the routing distance is smaller than the calculated distance. Since the routing distance

is based on finding a shortest path, this case is expected to happen for some traces. We apply

the following formula to calculate the combined score:

CombScore = β · MaxError − Error
MaxError

+ ω · RoutingDist
CalcDist

(4.3)

where β and ω are weight coefficients for these two fractions such that β ∈ [0, 1], ω ∈

[0, 1], and β + ω = 1. The first fraction is simply the same as 1 − (Error/MaxError).

Error/MaxError gives how bad the trace error is in range of [0, 1] (the larger the value,

the worse the trace). As we want the fraction to reflect how good a trace is (the larger the

value, the better the trace), we use 1 − (Error/MaxError) to convert to what we need.

The second fraction we use for routing score is RoutingDist/CalDist. As RoutingDist

is smaller than CalDist, this gives value ranging in [0,1] with larger score representing

better routing match.

The second case is when routing distance is larger or equal to the calculated distance.

Theoretically, the routing distance should not be larger than calculated distance as routing

is the shortest one. This case may still happen considering the calculation rounding error
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and the possibility of map data not exactly matching the actual road length. In this case,

we use the following formula:

CombScore = β · MaxError − Error
MaxError

+ ω ·Ratio2 (4.4)

where

Ratio2 = 1− RoutingDist− CalcDist
CalcDist

(4.5)

(RoutingDist − CalcDist)/CalcDist measures the proportion of the difference to the

calculated trip distance: CalcDist. We restricted this range to also be in [0,1] (the larger

the value, the worse the trace). Note that if the RoutingDist is more than twice as long as

CalcDist, we set it to equal to twice of CalcDist as this is the worst case. Then, we similarly

use 1− (RoutingDist− CalcDist)/CalcDist to convert to what we need: the larger the

score, the better the trace.

The reason we use this formula (Ratio2 formula) is to ensure we rate both conditions

(routing distance being larger and shorter) in the same way. For example, if theCalcDist is

equal to 1 mile, we need to make sure the rating is the same when RoutingDist is equal to

0.8 miles and whenRoutingDist is equal to 1.2 miles, as they are both 0.2 miles difference

to the CalcDist. Inevitably, this requires cutting off the RoutingDist at 2∗CalcDist. An

alternative approach would be simply usingCalcDist/RoutingDist instead of ourRatio2

formula, but such metric will have distorted rating and lose the consistency between these

two conditions.

The third case is when routing distance cannot be found. This case happens when the
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OSM fails to find any route between two given points. However, this may not mean that

there is no route connecting two points based on our testing. Sometimes, OSM API just

failed to find the routes even for regular nodes. Thus we leave out the routing factor from

our formula in this case:

CombScore =
MaxError − Error

MaxError
(4.6)

In general, this combined score metric works for different types of routing methods

(e.g. shortest path, fastest path, path with light traffic), as it considers the matching with

two distances in general. In this paper, we only use it for the OSM routing of shortest path

due to the limitation of the OSM routing API.

Other Enhancements: We re-implemented the landmark setting function to match

with the new model for turn radius. We also adjusted the way we duplicate landmarks for

newly generated candidate paths. We did minor modifications on the error accumulation

functions to rematch beginning and ending points while calculating error based on speed

traces. Finally, we corrected some minor issues while moving the time index in the speed

trace to eliminate any offset it may produce during the path expanding and compressing.

Space and Time Complexity: Our elastic pathing algorithm is essentially a search

algorithm optimized with a priority search queue. Different from depth-first search and

breadth-first search, our algorithm prioritize the search on paths that are most likely to be

the solution path. Therefore, our algorithm does not require searching through the whole

path space. The first path found is the best path, and the first n path found are the top n

ranked paths.
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To estimate the space and time complexity, we can assume that there are N paths within

the range that can be reached by the given driving distance. There are K nodes for each

path (recall that nodes are locations representing a path). There are M samples in the

given speed trace. M is much larger than K. The worst case happens when all paths are

equally bad matches. The algorithm has to advance and shift among all the paths, resulting

exploring all the paths within the range. The time complexity is M×N, which can be noted

as O(MN). The algorithm needs to at least store all the paths and the speed trace, so the

space complexity in this case needs to be M+K×N. The best case happens when there is

only one distinct path matching well with the given speed trace. Then, the time complexity

is about M, or O(M). The space complexity is about M+K. The average case time and

space complexity of our algorithm depends on the actual driving environment or the path

structure. With our datasets, fewer than 100 paths are explored in average based on the

examination of our candidate path array list.

4.2.1 Visualization Tool

We built a visualization tool to show how our algorithm matches a speed trace to different

paths along the map. The visualization interface was implemented using HTML5 and

JavaScript for its convenience to host either locally or on the web. It takes an input file

generated from our elastic pathing algorithm recording how each decision was made on

each step. Then, using Google Maps APIs, we transferred the input data into the map with

animation showing how our algorithm explores and selects paths (e.g. see Figure 4.2). The

ground truth GPS data were plotted in the map with markers showing the starting location

and the current position where the algorithm was exploring. Several top candidate paths
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Figure 4.2: The visualization tool for our elastic pathing algorithm: The upper
marker indicates the starting location and the lower marker indicates the current lo-
cation the algorithm was exploring. The yellowish green line shows the ground truth
GPS points plotted with a heatmap (e.g. the more the color shifts towards red, the
denser the GPS points are – thus the slower the car moves). Gray lines show sev-
eral top candidate paths that the algorithm has explored. The red line shows the best
candidate path up to the current time point.

that were explored upto the current time were also shown in the map.

The visualization of our algorithm is essential for the algorithm testing and debugging.

Since our visualization tool takes separate input files instead of tying the implementation

to our algorithm, it can be easily customized to similar applications that require the display

of driving routes in the map.

4.3 New Driving Data

We used three datasets to evaluate how our algorithm works with the real-world driving

traces: two datasets, the central New Jersey dataset representing suburban areas and the

Seattle city dataset representing urban areas with nearly one thousand testing traces in total,
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to estimate the overall estimation accuracy of our algorithm, and one identical-route dataset

to further explore how different driving behaviors may affect our algorithm performance.

The central New Jersey dataset and the Seattle dataset were used to test our algorithm in

our initial work (Gao et al., 2014). The description of these two datasets can be found

in previous chapter of this thesis. The third data set, named the identical-route dataset,

was newly added to assist further analysis on individual driving behavior in this part of the

work.

4.3.1 Identical-Route Dataset

To investigate how individual difference may affect our algorithm accuracy, we recruited 30

participants (18 males and 12 females) to collect driving data. 20 of them were recruited

in December 2014 and 10 were recruited in January and February of 2015. All of them

were at least 18 years old and had a valid driving license. They were required to be an

active driver during the past three months. Although our recruitment was done through

online social media which was open to the general population, all our participants were

affiliated with our university. Their educational background varies, however, most of them

were undergraduate students while six had or were pursuing graduate degree. Each of them

was compensated with a $50 visa gift card for completing the driving study. We labeled

these participants as P1, P2, ..., P30.

We required all participants to drive in the same route twice. The route was for a round

trip where participants needed to drive from point a to point b, and then return to point

a from a different path. We split this round-trip route into the leaving route (denoted as

route A) and the returning route (denoted as route B). Thus both route A and route B were
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traveled twice for each participant. These two routes were across different areas and have

different driving environments: Route A consists of more traffic lights and intersections

than route B. Figure 4.3 shows route A and route B in the map.

A 2002 Hyundai Accent car was used for all the driving traces in this dataset. Both

the speed data and GPS trace were collected using a smartphone and an OBD-II connector.

Before the driving data collection, participants were allowed to drive with the test car in the

corresponding area to get familiar with the vehicle and the driving environment. This was

done to familiarize the participants with the vehicle and road ways so that any adjustment

or learning effects were eliminated from consideration. To avoid heavy traffic and ensure

similar driving condition, all the driving traces were collected during late morning and early

afternoon. The weather condition was also similar (e.g. either slightly cloudy or sunny) for

all participants.

In this dataset we used a sampling rate of one sample per second. There are 60 driving

traces in route A (4.8 miles) and 60 driving traces in route B (5.1 miles) by 30 different

drivers. However, one participant (e.g. P19) once drove to a wrong route during the study,

resulting only 59 valid driving traces for route A.

4.4 Results

We present results of the enhanced algorithm in this section. We start by presenting the

overall accuracy of our algorithm when testing with two comprehensive datasets: New

Jersey dataset (representing sub-urban areas) and Seattle dataset (representing urban areas).

Then, we discuss the effect of applying OSM routing and road speed limits by comparing

estimation accuracy. Next, we investigate how different drivers and driving behaviors may
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Figure 4.3: Route A shows the driving route from point a to point b, which comprises
residential and commercial areas with some traffic lights. Route B shows the return-
ing route from point b back to point a. This route consists of a long highway segment
which connects local paths with a few traffic lights.

affect our algorithm by analyzing the result from our new dataset: identical-route dataset.

Finally, we analyze the traces with poor estimation accuracy and point out major factors

that may mislead our algorithm.

4.4.1 Overall Accuracy

The Ruby implementation of our algorithm processed all of the New Jersey traces (254

traces) in about one hour on a two-core 2.2 GHz machine. For the Seattle dataset (691

traces), it took about two hours. With nearly one thousand traces in total, about 80% of

them had running time within just a couple of seconds per trace while remaining ones took
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Destination Error New Jersey Seattle
Meters Miles Trace

Count
Percent Trace

Count
Percent

0-250 0-0.16 44 17% 107 15%
250-500 0.16-0.31 18 7.1% 83 12%
500-750 0.31-0.47 15 5.9% 82 12%
750-1000 0.47-0.62 12 4.7% 65 9.4%
1000-1250 0.62-0.78 7 2.8% 43 6.2%
1250-1500 0.78-0.93 14 5.5% 26 3.8%
1500-1750 0.93-1.09 7 2.8% 31 4.5%
1750-2000 1.09-1.24 14 5.5% 34 4.9%
2000-2250 1.24-1.40 8 3.2% 17 2.5%
2250-2500 1.40-1.55 10 3.9% 16 2.3%
2500-2750 1.55-1.71 3 1.2% 26 3.8%
2750-3000 1.71-1.86 4 1.6% 9 1.3%
3000-3250 1.86-2.02 3 1.2% 10 1.5%
>3250 >2.02 95 37% 142 21%
Total traces 254 100% 691 100%

Table 4.1: Results from the enhanced version of our elastic pathing algorithm for
both the New Jersey and the Seattle dataset. Table shows the number of traces having
destination error ranging from 0 to greater than 3.25 km, separated into 14 intervals
as shown in rows. First two columns give destination error representations in meters
and miles.
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Destination
Error
(meters)

New Jersey Seattle
Initial
Version

Enhanced
Version

Initial
Version

Enhanced
Version

<250 14% 17% 13% 15%
<500 24% 24% 26% 28%
<750 29% 30% 35% 39%
<1000 33% 35% 43% 49%
<1250 38% 38% 51% 55%

Table 4.2: Comparison of estimation accuracy between two versions of our algorithm.
Table shows percentages of traces that has destination error within certain range for
both New Jersey and Seattle dataset.

much longer and usually had much worse accuracy. The processing speed for traces can be

done much faster than the rate at which those same traces are generated. This may enable

real-time tracking of drivers with just speed data, however it will not be 100% accurate.

Roughly half of the traces can be estimated with destination error less than one mile

for both the New Jersey dataset and the Seattle dataset (see Table 4.1). A significant per-

cent of traces can be estimated with very high accuracy: 17% of traces with destination

error less than 250 meters and 24% of traces with destination error less than 500 meters

for the New Jersey dataset, and 16% and 28% of traces with destination error less than 250

meters and 500 meters respectively for the Seattle dataset. There is a noticeable improve-

ment (especially for error less than 250 meters) in the estimation accuracy compared to

our initial version (Gao et al., 2014) (see Table 4.2 for comparison). Overall, 150 traces

having destination error within 250 meters, comparing to 125 traces in our initial work:

there are 25 more traces (or 20 percent improvement of 125 traces) in this highly accurate

estimation range. The detailed cumulative distribution functions (CDFs) of the destination

error (within one mile) for New Jersey and Seattle datasets are shown in Figure 4.4 and

Figure 4.5.
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Figure 4.4: The cumulative distribution function curve for destination error within
one mile from our New Jersey dataset.
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Figure 4.5: The cumulative distribution function curve for destination error within
one mile from our Seattle dataset.
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To provide additional context of our results from enhanced version of our elastic pathing

algorithm, we analyze how estimation accuracy depends on the trip length. Figure 4.6

shows the distribution of trip lengths within each interval of estimation accuracy – from

highly accurate interval (destination error less than 0.16 miles or 250 meters) to very rough

estimation interval (error greater than 2 miles). In New Jersey dataset, for traces estimated

with high accuracy (error less than 0.16 mile or 250 meters), trip length varies from 0.38

miles to 9.64 miles. This means that not only can our algorithm predict short traces with

good accuracy, it can also predict very long traces with good accuracy. The average trip

length for those with error less than 0.16 mile is about 4 miles. While the average trip

length varies for traces in different error intervals, we did not see any clear dependence of

our algorithm’s performance to the trip length based on the figure. For Seattle dataset, the

general variance of trip length is smaller than the one in New Jersey dataset, since Seattle

traces have much shorter average trip length. Similarly, our algorithm can predict traces

with both short and long trip lengths with good accuracy. While the average trip length

for error larger than 2 miles is slightly longer than others, we did not find any consistent

trend of trip length being larger in larger error interval. For example, traces in 0-0.16 mile

interval has longer average trip length than those in 1.71-1.86 mile interval; the longest

trace with 20 mile length has error between 0.31 and 0.47 mile.

4.4.2 Comparison with Naive Guessing

We implemented a naive guessing algorithm to provide a baseline accuracy to compare

with elastic pathing algorithm. The naive guessing algorithm takes the map data, a starting

location, and the speed data as inputs, but it does not utilize any logic about matching zero
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Figure 4.6: Box plots of estimation accuracy (or destination error) vs. driving trip
length for the enhanced version of elastic pathing algorithm. The destination error
is split into 14 intervals (e.g. interval 0-0.16 miles, interval 0.16-0.31 miles) with each
interval equal 0.155 miles or (250 meters). Trip length distribution for each error
interval is presented with a box-plot bar, showing: minimum, maximum, first quartile
to third quartile range (blue box), median (red line), and mean (blue circle).
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speeds to intersections or any scoring metric. From the starting location, the algorithm

calculates the traveled distance from the speed data and selects a path randomly to advance.

When encountering an intersection, the algorithm randomly selects a path to continue –

each direction has an equal chance of selection.

We found that our elastic pathing algorithm achieves much higher estimation accuracy

than naive guessing algorithm. Since naive guessing algorithm is based upon random se-

lection, the solution path can be different each time the algorithm runs. We ran the guessing

algorithm for ten times to obtain a rough range of its estimation accuracy. For error within

250 meters, naive guessing algorithm only estimates 0.87% (average value with min 0%

and max 2.4%) of traces in New Jersey dataset and 4.6% (average value with min 4.1%

and max 5.1%) of traces in Seattle dataset. This is much lower than our elastic pathing

algorithm’s accuracy: 17% for New Jersey dataset and 15% for Seattle dataset. We can

see that naive guessing algorithm has higher accuracy in Seattle dataset than New Jersey

dataset. This is due to Seattle dataset has much shorter average trip length than New Jersey

dataset (2.6 miles vs. 4.65 miles).

4.4.3 Effect of Applying OSM Routing

We applied the routing (or navigating) method into our algorithm and compared its esti-

mation accuracy with the version without it. The routing feature is provided by the Open-

StreetMap (OSM) API. In order to obtain the combined score for each driving trace, we

need to determine these constants: β which is the weight of the error accumulated by com-

pressing and extending paths, and ω (equivalent to 1−β) which is the weight of the routing

error (see Equations 4.3 to 4.6). We enumerated β from 0 to 1 with 0.1 incremental steps.
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One extreme case is when β equals 0. This means that only the routing error is consid-

ered to re-rank the top several candidate paths selected by our algorithm. Another extreme

case is when β equals 1. This is when OSM routing error is not used at all. The error is

contributed sorely by compressing and extending error.

We found that applying OSM routing drops the overall accuracy for both New Jersey

and Seattle datasets. Varying the value of β from 0.1 to 0.9 does not have noticeable dif-

ference for the overall accuracy. Table 4.3 (“Add Routing”) shows the estimation accuracy

when both β and ω are set to 0.5. As shown in the table, our enhanced version without

routing (happens when β=1) has better overall accuracy.

We found that OSM routing affects different drivers differently, especially for the New

Jersey suburban dataset. There are six drivers in the New Jersey dataset. When β changes

from 0.5 to 1 for P1 and P3, the portion of driving traces having error within 500 meters

increases (P1: 10% to 20%, P3: 18% to 32%), meaning that our algorithm has higher

estimation accuracy without using OSM routing. However, for P4 and P6, OSM routing

helps increase the estimation accuracy for error less than 500 meters (P4: 22% to 28%, P6:

21% to 45%). For Seattle dataset, the accuracy of driving traces from 19 out of 21 drivers

do not vary with β value. In other words, routing calculation mostly agrees with the best

path selected by elastic pathing algorithm. From the reminding two drivers, OSM routing

increases the estimation accuracy for P13 but decreases the accuracy for P15.

Applying OSM routing method also increases the algorithm execution time given that a

corresponding navigated path needs to be found for each of the top ranked candidate paths.

Our algorithm takes about 11 hours to process all the traces in the New Jersey dataset and

25 hours for Seattle dataset.
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β=0.5,
ω=0.5

New Jersey Seattle

Destination
Error
(meters)

Enhanced
Version

Add Rout-
ing

Enhanced
Version

Add Rout-
ing

<250 17% 15% 15% 15%
<500 24% 20% 28% 27%
<750 30% 29% 39% 39%
<1000 35% 33% 49% 49%
<1250 38% 36% 55% 55%

Table 4.3: Comparison of estimation accuracy when OSM routing is applied to our
algorithm. Table shows percentages of traces that has destination error within certain
range for both New Jersey and Seattle dataset.

4.4.4 Effect of Applying Road Speed Limits

Our algorithm applied road speed limits obtained from OSM to determine how well a path

matches with a give speed trace. In this section, we explore how the algorithm performs

when we relax this condition. This provides insights on how much the speed limit affects

the estimation accuracy for different driving environments: urban and sub-urban.

We found that without using speed limits, the estimation accuracy for Seattle dataset

does not drop a lot (e.g. only a few traces difference) while the accuracy drops noticeably

by several percentage points for New Jersey dataset (see Figure 4.7). In New Jersey dataset,

there are 15% of traces (37 out of 254) having destination error within 250 meters when

speed limits are not applied. This is 7 traces fewer than the one using speed limits. For

error within 500 meters, there are 19% of driving traces when speed limits are not applied

(e.g. 13 traces fewer than the one with speed limits). Interestingly, for Seattle dataset, when

we do not apply speed limits, the number of driving traces with destination error within 250

meters is only one trace fewer. The numbers of driving traces distributed in different error

intervals are similar.
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Figure 4.7: Effect of applying speed limits on the New Jersey and the Seattle dataset.
Figure shows the percent of driving traces from the corresponding dataset with desti-
nation error within different intervals: from 0-250 meters (0.16 mile) to greater than
3250 meters (2 miles).

4.4.5 Results for Identical-Route Dataset

As different drivers can have very different speed patterns even for the same route, we

present results for the identical-route dataset with 30 drivers to investigate how driving

behaviors may affect our algorithm.

Overall Accuracy: We processed all the driving traces (59 traces for route A and 60

traces for route B) in this dataset to see the distribution of destination errors. It took about

2 hours in total. We used the New Jersey map during the processing.

During the result analysis, we discovered and fixed some issues of the New Jersey map

provided by OSM. (1) The nodes in route A and route B were not connected in a region

(about 0.5 miles starting from point a in Figure 4.3). Thus, the routes were disconnected

from the map, resulting the ground truth path never reached by our algorithm. (2) There



- 56 -

were other minor node connection issues: a short two-way road connecting to a local path

in route A was mistakenly structured as one-way road in the map, a one-way road in route B

was mistakenly structured as two-way road, and a node in one path was wrongly connected

to a node in another path in route B. (3) There were many rail ways connecting together

with driving ways in the OSM, misleading the algorithm to explore rail ways as well. The

name of rail ways were sometimes not specified and sometimes not distinguishable from

actual driving ways, making it difficult to separate with programming approaches. We fixed

the nodes that were connected in route A and route B, making sure the ground truth path is

reachable through the map. However, these issues may still happen in many regions of the

map.

We compared the estimation accuracy of our algorithm using the original map and the

fixed map (see Figure 4.8 for comparison). We found that fixing the map had a huge impact

on the estimation accuracy for both route A and route B. We did not see any difference on

the overall accuracy when we applied this fixed map for the New Jersey dataset with 254

traces. This is not surprising, since we only fixed a small region related to the two routes.

The overall estimation accuracy for the identical-route dataset is much lower than the

New Jersey and Seattle datasets: 15%-33% traces with error less than 1 mile comparing to

about 50% traces with error less than 1 mile for New Jersey and Seattle datasets. This is

because the identical-route dataset only consists of two driving routes with fixed region for

all drivers. We selected these two driving routes to pass areas with driving environments

that were shown to be difficult for our algorithm based on our prior work (Gao et al.,

2014). These routes consists of highways, local and dense streets where there are many

turns and intersections. We selected two relatively complex routes so that they can cover
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Figure 4.8: Comparison of estimation accuracy when using the original map and the
fixed map. Figure shows the percent of traces with destination error within different
intervals: from 0-1 mile to 6.5 miles. There is no driving trace with destination error
greater than 6.5 miles.

a large variety of driving environments and the results would have reasonable variation for

different drivers to analyze how different drivers and different driving behaviors may affect

our algorithm.

Driving Behaviors vs. Estimation Accuracy: Different driving behaviors should re-

sult in different patterns of speed traces. For example, drivers who drive faster would

usually have higher average speed than others given the same route and similar traffic

condition. Drivers who brake harder than others would have higher average braking de-

celeration. For both route A and route B, we extracted some common features from speed

traces:

• Average Speed: This is the mean of speed values within one driving trace.
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• Average Braking Deceleration: We extracted all the monotonically decreasing speed

intervals from a speed trace. For each speed interval with at least 10 mph decrement,

we calculated the average deceleration. We further average these values from dif-

ferent intervals to obtain the overall average braking deceleration. Given only speed

trace, it is not easy to extract only braking intervals without complicated analysis

since the driving speed can also decrease when releasing the gas petal. Setting thresh-

old for instant braking deceleration may bias some drivers. For our dataset, we found

that 10 mph is a great threshold to filter out most non-breaking events for different

drivers.

• Number of Braking Events: This is the number of monotonically decreasing speed

intervals that have speed drop with at least 10 mph.

• Number of Stops: This is the number of stops in one driving trace. We are including

the starting and ending stops, so there are at least two stops for each trace.

Figure 4.9 shows the percentage of driving traces that have destination error less than

one mile for each interval of average speed and average braking deceleration. For driving

traces corresponding to route A (e.g. 59 traces in total), there are 22 traces with average

speed between 18 and 20 mph, and 32% of them (7 out of 22) have destination error within

one mile. This percentage is relatively high comparing to other speed intervals. Thus, our

algorithm has slightly better estimation accuracy when the average speed is around 18 to

20 for route A. When the average speed is too slow or too fast, the probability of our al-

gorithm providing good estimates drops rapidly. For instance, there is no trace with error

within one mile among the 10 traces with average speed between 14 to 16 mph. For route
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B, the distribution of relatively accurate traces (e.g. error less than one mile) over the aver-

age speed is different from route A’s. The average speed is generally higher than route A.

This is due to route B having a long segment of highway path while route A does not pass

highways. Relatively low or high average speeds help on our algorithm’s estimation in this

case (e.g. see figure 4.9). This result is also intuitive for route B: based on our trace anal-

ysis, slow average speed usually indicates more stops before or after the highway segment

which then provides more information for our algorithm about intersections, and very fast

average speed indicates high driving speed in highway segment which helps eliminate some

unrelated local candidate paths during the algorithm’s speed limit testing. When looking

at average braking deceleration, our algorithm has higher probability of giving accurate

estimation when the average deceleration is relatively low for both route A and route B.

Figure 4.10 shows how brakes and stops may affect algorithm’s estimation accuracy. In

general, drivers brake more often in route A than route B. For route A, majority of traces

have a number of braking events between 17 to 19. These traces have the highest estimation

accuracy. Similarly, for route B, the majority of traces have number of braking events

between 8 to 11, and these traces also have the highest estimation accuracy. However, the

distribution of accurate traces over the number of stops is different between route A and

route B. 8 to 12 stops appear to be the best for our algorithm to estimate route A. While,

more stops favors our algorithm’s estimation in route B. We found that all 5 traces with 7

to 8 stops in route B have relatively low average speed (e.g. 23-27 mph in Figure 4.9). This

aligns with the previous statement about why low average speed in route B may increase

the estimation accuracy. We should, however, note that the data sets contained relatively

few low and high average driving speeds, as these are extreme cases correspond to distinct



- 60 -

driving styles.

We analyzed how brakes and stops correlate with the average speed. We found that

stops and the average speed in route A have a high linear correlation (R2 = 0.7553). It is

also intuitive that the number of stops in route A, which does not consist of highways but

passes through streets in grid path structure, has a large effect on the average speed. Others

have relatively low correlation coefficient. For example, the second largest correlation (with

R2 = 0.2984) is from stops and the average speed for route B. Brakes and the average speed

have very small linear correlation.

4.4.6 Analysis on Traces with Low Estimation Accuracy

We analyzed the traces with low estimation accuracy (destination error more than 2 miles).

For each of these traces, we analyzed the main cause of estimation mistakes. The factors

misleading the algorithm can be grouped into following categories:

• Homogeneity of roads: If an area consists of many similar roads (e.g. same speeds,

similar intersection intervals, areas built in a grid), they cannot be distinguished.

• Unpredictable stops: If there are several stops (due to traffic or constructions) not

near any intersection, the speed trace will mislead our algorithm to find a wrong path.

• Very few stops: A speed trace with very few stops lacks information about inter-

sections for the ground truth, resulting many candidate paths cannot be effectively

ranked.
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Figure 4.9: The effect of average speed and average braking deceleration to the esti-
mation accuracy. The range of average speed or average braking deceleration is split
into four intervals. Values in horizontal axis show both the interval and the number
of traces within the interval. The percentage value in vertical axis shows the percent
of driving traces within each interval having destination error within one mile.

• Traces with mostly slow speeds: Without high speeds to rule out turns and constrain

paths to a few major roads, the correct path is indistinguishable from any other. Road

speed limit testing also does not help in this case.

• Limitations of OSM: Nodes connected by the OSM are sometimes impossible to

reach in real driving: connecting a road to a bridge over it, and entering non-driving

paths (e.g. railways, non-existing paths, private regions).
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Figure 4.10: The effect of brakes and stops to the estimation accuracy. We use
“brakes” in the figure to denote “braking events”. Each range is split into four in-
tervals with integer values. Values in horizontal axis show both the interval and the
number of traces within the interval. The percentage value in vertical axis shows the
percent of traces within each interval having destination error within one mile.

• Unpredictable direction turnarounds: Some drivers turned around their car in the

midway of a path segment (e.g. illegal u-turn, or drive through a place and then

reverse direction).

Based on our analysis of low-accuracy traces from all three datasets, Table 4.4 repre-

sents the number of traces that have estimation mistakes caused by each of the six factors.

Although poor estimation of a trace may be due to several factors, we only labeled each

trace based on the suspected root cause. For New Jersey dataset, limitations of OSM and
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New Jersey
Dataset

Seattle
Dataset

Identical-route Dataset
Route A Route B

Homogeneity of roads 17 39 2 18
Unpredictable stops 17 28 5 6

Very few stops 13 21 1 10
Mostly slow speeds 22 25 1 3

OSM limitations 23 26 2 3
Direction turnarounds 3 3 0 0

Total 95 142 11 40

Table 4.4: Table shows number of traces with wrong estimation caused by each one of
the six factors.

traces with mostly slow speeds appear to be the top factors. For Seattle dataset, homogene-

ity of roads causes the most number of traces to have poor accuracy. Identical-route dataset

consists of two routes with (route B) and without (route A) highway segment. For route A,

unpredictable stops appears to be the main factor. However, for route B, homogeneity of

roads is the main factor due to several highways near the same region: most of these traces

end up in a different direction or on a different highway.
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CHAPTER 5

COMBINING MACHINE LEARNING WITH ELASTIC PATHING

5.1 Chapter Overview

In this chapter, we present a new approach by combining machine learning with our Elas-

tic Pathing algorithm to estimate the driver’s location based on speed trace. We start by

explaining why machine learning is appropriate for this problem and what information this

approach can add towards our Elastic Pathing algorithm. We explain the major challenge

that we have encountered while using previous plain searching algorithm and show why

machine learning approach can potentially further improve the driving route estimation.

We then present our overall structure for the algorithm design that well applies the ma-

chine learning prediction. Meanwhile, we present our testing datasets for machine learning

approach. Finally, we show the improved results compared to previous versions without

applying machine learning.

5.2 Introduction of Machine Learning Approach

We first introduce the idea of applying machine learning model to help estimating driving

direction when a driver reaches an intersection.

Challenges from Previous Algorithm: Although path reconstruction may seem sim-

ple in concept, it is actually very difficult. The first major difficulty is detecting turns with
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only speed data. When drivers break and then accelerate, did they make a turn or did they

slow down because the person in front of them was turning? If drivers come to a complete

stop and then accelerate, did they go straight or turn? The insufficient information about

turns is the main reason that many candidate routes all appear to fit well with a speed trace.

Our algorithm has difficulty determining which roads fit better, especially in areas having

similar roads within symmetrical path network region.

Machine Learning Approach: Since the heart of this pathing problem is the lack

of turn information, one approach is to treat this as a classification problem. We have

previously tried examining the speed traces to extract features: stop, right turn, left turn, or

straight road. Then, we could train the model to recognize different turns from the speed

trace. However, road intersections and turning options are very diverse. Based on the

testing with our datasets, we found various types of left turns and right turns with various

turning angles. Different intersections have different number of connecting paths. We

were unable to classify turn features with high accuracy due to large variation on turns and

intersections.

After trying out various enhancements with our original Elastic Pathing algorithm, we

revisited machine learning approach and figured that combining the information of the map

with the speed data can potentially lead to feasible model for machine learning. Previous

idea on classification only consider the pattern of the speed data and we attempted to label

based only on the speed pattern. Indeed, we also have the information of intersections

from the OpenStreetMap. If we train the model to learn whether the given speed segment

matches with a turn, it can provide a good estimate on the turning direction. With the

addition of intersection information from the map during training, the model can provide a
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good estimation on the quality of matching between speed trace and the turn direction from

the map. This can largely help on finding the ground-truth driving route.

Applying Machine Learning Model: In order to train the machine learning model for

speed and turn matching, we need to first extract the intersection locations and correspond-

ing speed segments. This sample extraction algorithm needs to follow these three steps

for each driving trace: (1) based on the ground-truth GPS coordinates of a driving trace,

select the corresponding nodes from the OpenStreetMap that can represent the actual path;

(2) extract the intersection nodes and other intersection information (e.g. number of con-

necting path, turn angle, turn direction); and (3) find the corresponding speed segments at

these intersections. Then, we should combine the intersection data with the corresponding

speed data to make samples for machine learning algorithm. The ground-truth label for

each sample is either “0” the speed trace does not match with the selected direction or “1”

the speed trace matches with the selected direction.

Secondly, we should select the best machine learning algorithm for this problem. We

can apply Random Forest (Ho, 1995) to train our data and provide prediction. Random For-

est estimates the importance of each feature through how much information gain the feature

can provide while splitting data into different groups. This machine learning algorithm usu-

ally splits feature value into several intervals in order to classify data. This concept fits well

with our matching problem because speed values can be intuitively grouped into different

regions for different values of turn angle and different turn direction for matching.

Combining the model to help with our algorithm on route tracking is the final step.

The model can provide a probability score for different driving directions in each intersec-

tion, representing how likely the driver would go for each road segment given the speed
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trace. Although simply picking the path with the highest probability may find the solution

path, this approach is less likely to work for the following reasons: (1) machine learning

predictions can make mistakes (e.g. having high prediction accuracy of 0.90 in each in-

tersection can still result in low accuracy if the path has to go through 20 intersections –

0.9020 = 0.12, which is pretty common in our datasets); (2) it may favor paths with few

intersections as the probability depends on the number of intersections; and (3) it is still

hard to determine solution path if probability values are close (e.g. is probability of 0.95

really much better than 0.90? Why not apply a secondary scoring/error metric to further

compare?). Therefore, machine learning and probability metric should be combined with

the matching error to better rank different candidate routes. One of the challenges on previ-

ous algorithm is that there are many paths all math well with the speed trace. After addition

of this probability score, the algorithm can further distinguish the solution route from other

similar candidate routes.

5.3 Algorithm Design: Machine learning with Elastic Pathing

In this section, we present our algorithm design that combines the machine learning model

with our Elastic Pathing error metric to find the solution path. We first present the overall

structure of the algorithm design. Then, we break down and describe details about how we

implement each component: machine learning and training, path selection and probability

estimation using trained model, and simplified Elastic Pathing to calculate error for final

ranking.
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5.3.1 Overall Structure of Our Algorithm

Figure 5.1 shows the overall structure of our algorithm for machine learning approach. For

each driving trace, the time-stamped speed data and the OpenStreetMap are the inputs for

the algorithm. The first step is to explore the map and find the most likely candidate paths

(“Path Selection and Probability Estimation” block in the figure) though the use of machine

learning prediction. We select this subset of candidate paths such that they have overall

higher probability to be the solution path than others in the map. This step effectively filter

out many unlikely routes, making later path ranking much easier.

If all the paths near this region do not seem to match well with the speed trace by using

machine learning prediction (e.g. all directions have very low probability value), we can

simply re-explore the map with our Elastic Pathing algorithm as described in the previ-

ous chapter. If we find a small subset of candidate paths, we can further rank these paths

through the error metric that we used in our Elastic Pathing algorithm. We call this error

calculation method as “Simplified Elastic Pathing” because it has been modified to only

calculate the total compression and expansion error needed to math the speed trace to the

candidate path. Please note that “Simplified Elastic Pathing” is a small method to calculate

the error, which is different from “Elastic Pathing” (our main algorithm to explore and se-

lect solution path). Finally, we can obtain the solution path either through machine learning

prediction combined with Simplified Elastic Pathing for ranking, or through running our

complete Elastic Pathing algorithm when machine learning does not find any path.

In the following subsections, we explain how we implement each component of the

design structure in Figure 5.1 in detail.
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Figure 5.1: Overall Structure of Our Algorithm. Figure shows how we apply and
combine machine learning model to our Elastic Pathing algorithm.
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5.3.2 Implementation of Our Machine Learning Model

Datasets: We used our Central New Jersey dataset (254 traces) and Identical-Route dataset

(119 traces) for the evaluation of our machine learning approach. These two datasets have

reliable, clean speed traces as well as good GPS ground-truth traces.

We did not use Seattle dataset for the testing of machine learning approach for the

following reasons: (1) the dataset is much noisier (i.e. recall that this dataset was a GPS

logger dataset containing walking, biking, flight, running, train, bus, taxi, and car driving

trips) than our own datasets; (2) despite our previous effort of filtering for car driving routes,

it is still hard to distinguish bus, taxi, and some of the motorcycle trips with the actual car

driving trips (i.e. buses and taxis tend to circle around streets and stop very often on random

places); (3) due to occasional GPS signal lost and pause of data collection, the Seattle

traces after our filtering are much shorter than our own datasets; and (4) machine learning

approach requires training and intersection data extracting, so it requires the dataset to

have high qualify speed data with high sampling rate and good match with intersections for

ground-truth data extracting and labeling.

Intersection Data Extraction: The first step is to extract and label data samples. Our

machine learning model aims to predict how likely a driving is going for one direction when

the driver reaches the intersection. Each direction (or turning option) in the intersection

needs to have a probability value. For example, if a driver reaches a four-way intersection,

the model needs to predict the three options (i.e. not considering the direction a driving

came from) one by one and provide a probability value for each direction. Therefore, each

option in an intersection is a data sample.
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Each data sample includes a set of features and a ground-truth label. These features

need to include a speed data segment near the intersection, information about the intersec-

tion, and information about the selected direction. The label is either “0” indicating the the

selected direction is not the ground-truth direction or “1” indicating a match with ground-

truth direction. A trained machine learning model can predict the label as “0” or “1” for

each direction and provide a confidence score ranging from 0 to 1 indicating the probability

of going for the selected direction.

Figure 5.2 shows an example intersection with selected direction going right with a 72

degree turn angle. Features about the intersection and selected direction can be obtained

through OSM. With this intersection, we can obtain features: number of path options (2 in

this case), turning direction (right, labeled as “-1”), and turn angle (72 degrees). Features

about speed segment can be obtained from the speed samples. We cut the speed segment

near the intersection: 50 meters before the intersection and 50 meters after the intersection.

As different intersections may have different lengths of speed segment (i.e. number of

speed samples for 100 meters depends on how fast a drive passes through the intersection,

given our sampling rate is 1 sample per second), we re-sampled the speed segment into a

fixed length of 10. Note that resampling still preserves the variation of speed values. If

the speed segment is shorter than 10, we interpolate to 10 points (or upsampling). If the

speed segment is longer than 10, we reduce to 10 points (or downsampling). This approach

guarantees that we have fixed number of total features for each training and testing sample

for our machine learning model.

Table 5.1 summarizes all the features that we extracted from our driving traces. For New

Jersey dataset, we extracted 11,439 samples from 6 drivers. For Identical-Route dataset,
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Figure 5.2: Intersection on the Map and Selected Direction. Figure shows the inter-
section that a driver is passing through. The marker 1 indicates the starting point of
entering the intersection. The marker 2 indicates the intersection point. The blue line
marked the selected direction. In this figure, we assume the driver is turning right
with 72 degree of turning angle. The ground-truth label indicates whether this is an
actual driving direction picked by the driver.

From OSM
From Driving
Speed Trace

Features
Number of

Path Options
Driving/Turn

Direction
Turn

Angle
Speed Segment
(length of 10)

Value Type Integer
Right (-1),

Straight (0),
Left (1)

Double
(in degrees)

Double
(in mph)

Table 5.1: Summary of Features for Machine Learning. Table shows all the features
and corresponding value types. Therefore, each training sample contains 13 features:
10 for speed segment, one for number of path options, one for selected driving direc-
tion, and one for turn angle.

we extracted 9,899 samples from 30 drivers. Please note that the number of samples for

machine learning model is much larger than the number of driving traces because each trace

contains many intersections and different turning options. Therefore, our datasets consist

of very large sample size for the purpose of machine learning.
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Model Training and Testing with Random Forest: We used Random Forest (Ho,

1995) to train our machine learning model. Considering the real-world attacking situation,

it is unlikely to obtain any ground-truth driving direction data from the targeting driver.

Therefore, we need to make sure that we do not use any of the targeting driver’s ground-

truth data for model training. We assume that attackers can obtain driving behavior data

(such as speed) and some amount of driving direction data from other existing or hacked

datasets. Alternatively, attackers can have volunteers driving around and collecting data

about turn and intersections for model training.

We need to train and test both New Jersey dataset and Identical-Route dataset. For

Central New Jersey dataset, we used the other 5 drivers data for training and validation.

The targeting driver’s samples were used for testing. For example, if we are testing for

driver P6, we use data from driver P1, P2, P3, P4, and P5 for training and validation. We

applied 10 fold cross-validation and used the best estimator for testing. For Identical-Route

dataset, we still extract all the samples for testing, but we use only data from Central New

Jersey dataset for training and validation. This is because Identical-Route dataset contains

only two different routes with 30 drivers. Using data from Identical-Route dataset to train

may result in machine learning simply memorizing correct driving directions for the same

set of intersections. Instead, we want our machine learning model to learn how different

speed patterns can indicate the chance of going to different directions.

5.3.3 Path Selection and Probability Estimation

Path selection and probability estimation step (see Figure 5.1) requires trace inputs (speed

and map data) and a trained machine learning model for prediction on intersections. An
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efficient searching algorithm is needed to explore and select a subset of the most likely

candidate paths. When reaching each intersection, we use the trained machine learning

model to estimation the probability of going for each direction. At the end, there should be

a probability map allowing us to select the top routes with the highest probability.

As the probability score for a candidate path is very important on path selection, we

need to have an appropriate way to calculate the probability score for each candidate path.

Theoretically, the probability that a driver can go to a candidate path is equal to the multi-

plication of probabilities along all the intersections within this path. Following shows the

equation for calculating this probability for candidate path i:

pi =
n∏

j=1

pij (5.1)

where n is the number of intersections this candidate path passes through, and pij is the

probability of going to the corresponding direction in intersection j. However, if we use

this probability as the scoring metric, it is highly dependent on the number of intersections

and it prefers selecting routes passing through fewer intersections. Therefore, we applied

average probability as the scoring metric:

pi = 1/n ∗
n∑

j=1

pij (5.2)

Note that this average probability is simply the mean of all probabilities along intersections

from a candidate route. It is not equal to the probability of the driver going for this route.

For convenience, we refer this average probability as “probability score” in following.
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We also need to set a threshold on the minimum probability for us to consider the driv-

ing direction. If the machine learning model predicts probability lower than this threshold,

we need to discard this direction completely. In default, machine learning usually uses 0.5

as the threshold. In our case, we used slightly smaller value of 0.3 because we do not want

to discard the actual solution path. In other words, we want the false negative error rate

of the model to be as small as possible. Note that setting this threshold is very important

given that we used average probability as the scoring metric to select paths (i.e. a path with

very low probabilities on several intersections may have fine average probability overall).

This also effectively reduce the computational cost of the algorithm while searching for

best candidate paths. Our threshold value of 0.3 has been tested to work well with our ma-

chine learning model: setting this threshold too high will result in most paths (including the

solution path) not selected, and setting it too low will result in too many paths to explore,

making the solution path hard to distinguish from others.

Figure 5.3 shows an example of how our path selection algorithm makes decisions. We

assume that a driver enters this region from point A. When the driver reaches the intersec-

tion (point B), we use our trained model to estimate the probability of going to each of the

three directions (BK, BC, and BF). We assume that we obtain the probability values for

different directions of each intersection as labeled in the figure (point B, G, and H). The

direction HE has probability value of 0.1 smaller than 0.3, so it has been discarded. For

this example, there are 4 active candidate path: ABKGI with probability score 0.9 (average

of 0.9 and 0.9), ABF with probability score 0.5, ABCDE with probability score 0.8, and

ABKGHJ with probability score 0.67 (average of 0.9, 0.5, and 0.6). The probability score

needs to be updated as the algorithm further explores each path.
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Figure 5.3: Example of how our path selection algorithm explore and select. We
assume that driver enters this region from point A.

Algorithm 3 shows the pseudocode of our path selection and probability score calcula-

tion. The algorithm applies prioritized searching method to find the most likely candidate

paths. Each time, the algorithm searches and advances the partial path having the highest

probability score at the moment. In this way, the first completed set of candidate paths

should be the best paths. Initially, a starting node needs to be assigned to the starting par-

tial path as shown in Algorithm 3. Then, we need to initialize the probability score for

this partial path as well. The while loop does the searching of candidate path. The par-

tial path having the highest probability score (or the average probability) gets advanced

first. “advanceUntilIntersection” is a function that calculates distance from the speed trace

and matches the distance to the OSM. This function also does the prediction based on the

trained machine learning model. The directions with probability less than the threshold

are not included when finding new paths. Next, the probability score for each new path

needs to be updated and the set of partial paths needs to be sorted by probability score.

The while loop exits when we find the top 30 candidate paths or when all the partial paths
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Input: The starting point-StartNode, a set of speed samples- Samples, a
threshold for the probability value to accept- δ = 0.3, and a maximum
number of top traces considered- MaxNumTrace = 30

Result: Complete = list of most likely candidate paths
1 begin
2 Partial←− {[StartNode ]}
3 // Set the initial probability score as 1.0 for the

current path, need to be replaced with actual
average probability value later

4 Partial.setProbScore(1.0)
5 Complete←− ∅
6 while Complete < MaxNumTrace AND
7 Partial.size > 0 do
8 // Pop out the partial path with highest

probability score to advance
9 P’←− advanceUntilIntersection (Partial.pop, δ)

10 // New paths are found after the intersection,
then update the probability score for each new
path

11 updateProbScore (P’)
12 // Check for completed paths
13 join (Complete, {x ∈ P’ | x complete })
14 join (Partial, {x ∈ P’ | x incomplete })
15 // Sort by probability score
16 sort (Partial)
17 end
18 // The first completed path found has the highest

probability score, but we will extract and keep
the top paths for later processing.

19 end
Algorithm 3: Pseudocode for path selection and probability score estimation

have been explored. The maximum traces of 30 has been determined experimentally with

our algorithm. Candidate paths that are not in top 30 usually have very small probability

scores. For a few exceptions, if there are more than 30 candidate paths all having similarly

high probability scores, we may as well cut off in 30 traces because our machine learning

model has difficulty selecting routes for the given speed trace in any case (i.e. many routes

all seem very good for the algorithm).
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One key point to note is that this path selection algorithm does not always find the

candidate path with the highest probability score, but it fits our problem the best. Recall

that our probability score for one candidate path is the average probability across inter-

sections and we always search for the path with current best average probability score.

Different from error that can only increase, average probability score can increase or de-

crease depending on future prediction on intersections. This means that a path with low

current average probability score may end up having high value if future prediction have

high probabilities. Unless we actually search through all paths in the whole region, we

cannot really find the path with the highest average. Our search that prioritizes the highest

current average probability score actually matches well with our problem. This is because

the beginning of the prediction is actually more important than the later predictions (e.g. if

we predict the first intersection wrong, we may guess a completely different direction than

the ground-truth). Therefore, for those paths that have low probabilities in the beginning

of the search but having high average probability at the end, they are not as good as others

that have high probabilities at the beginning. Our algorithm automatically considers this.

5.3.4 Simplified Elastic Pathing for Ranking of Selected Paths

After path selection with the trained machine learning model, we need to further pick the

best path as the solution path. Simply selecting the candidate path does not work well

because top selected paths often has similar probability scores. We decided to use the error

metric that is similar to our Elastic Pathing algorithm. The purpose is to estimate how

each of these candidate paths match with the speed trace. We called this modified error

calculation method as “Simplified Elastic Pathing”.
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Simplified Elastic Pathing follows similar idea of matching zero speeds to intersections

of the candidate path and matching slow speeds to turns of the path. While we match the

speed trace with a candidate path, error can occur if the driver stops in the mid-way (speed

is zero but not in intersection) or the car is too fast to turn. Similarly, we can correct the

path through advancing or rewinding speed samples, if the speed is too fast to turn. We can

find the nearest intersection by advancing or rewinding the path if the driver stops in the

mid-way.

The difference of this Simplified Elastic Pathing is that we only consider either rewind-

ing or advancing instead of implementing both when error happens. Our main Elastic

Pathing algorithm needs to explore both advancing and rewinding because it is searching

for different path options while calculating error. When the candidate path and the speed

samples are both known and we only want to estimate how well they matches with each

other, only one option is actually needed (e.g. the one that gives smaller error) each time

error happens. For instance, if the candidate path is the ground-truth path, the speed trace

should have small or no error while matching. If the error happens, it is mostly because

there are small offsets on distances (e.g. driver stops one or two cars behind the intersection,

the actual turning point is just one or two speed samples away). Therefore, whichever error

(by rewinding or advancing) that has smaller value should be the correct one. Although

checking both rewinding and advancing each time will find similar results eventually, this

greedy approach is much more efficient and works well in most cases. The computation

cost for checking both rewinding and advancing is at least 2n where n is the number of

times error happens. On the other hand, the computational cost is only n using this greedy

approach.
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There are some specially cases that we need to consider. First, if there is no candi-

date path found through machine learning model, we need to use the our complete Elastic

Pathing algorithm to re-search and find the solution path. Through our testing, this case can

happen quite many times in our datasets because our machine learning approach is much

more restrict than our Elastic Pathing algorithm while picking paths. However, if it finds

candidate paths, it often finds a small subset of most likely paths with the actual solution

path. On the other hand, Elastic Pathing algorithm can find one solution path even if the

speed trace is bad (e.g. traffic, stops in random places). Therefore, machine learning ap-

proach and our previous Elastic Pathing algorithm actually complement with each other:

machine learning approach predicts directions but does not do well on correcting error, and

Elastic Pathing corrects and quantifies error but does not know about directions.

Another special case is when the machine learning selection already finds the best path,

meaning that we are confident that the path with the highest probability score can be the

solution path. This happens when it fits following condition: (1) the path with the highest

probability score has value greater than 0.95, (2) this probability score is more than 0.5

larger than the second highest probability score, and (3) this candidate path passes through

more than 10 intersections. When all the conditions are met, we can consider our machine

learning model is very confident about this candidate path.

Algorithm 4 shows the pseudocode for our Simplified Elastic Pathing function. Except

for the two special cases mentioned above, each of the selected candidate path from our

machine learning approach needs to pass through this function to calculate the path error.

The candidate path has the smallest error is the solution path.
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Input: A path-P, speed samples-S, the current index into the speed samples-i, and the current node
index in the candidate path-j.

1 while i < S.length AND j < P.length do
2 // Match 0 speeds to intersections.
3 if S[i].speed ≈ 0 then
4 while S[i].speed ≈ 0 AND i < S.length do
5 ++ i
6 end
7 if P[j] at intersection then
8 Pin (P)
9 end

10 else
11 Fore←− compressB (P)
12 Back←− stretchB (P)
13 if Fore.error < Back.error then
14 moveTo (Fore) // Move to Fore and update path error
15 end
16 else
17 moveTo (Back) // Move to Back and update path error
18 end
19 end
20 end
21 // Match turns at intersections to slower speeds.
22 if P[j] at intersection then
23 if S[i].speed ≤ maxSpeed (P[j− 1], P[j], P[j + 1]) then
24 Pin (P)
25 end
26 else
27 Fore←− compressA (P)
28 Back←− stretchA (P)
29 if Fore.error < Back.error then
30 moveTo (Fore) // Move to Fore and update path error
31 end
32 else
33 moveTo (Back) // Move to Back and update path error
34 end
35 end
36 end
37 // Process normally
38 // Update total traveled distance
39 totalDis←− updateDistance (S[i].speed, S[i].deltaTime)
40 ++ i
41 if totalDis reaches node P[j] then
42 // Advance to next node in the path
43 ++ j
44 end
45 end

Algorithm 4: Pseudocode for the Simplified Elastic Pathing function used to cal-
culate the error, indicating how well the speed trace matches with a path.
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5.4 Results

In this section, we present results of this new machine learning approach. We first show

the overall accuracy after testing it with our Central New Jersey dataset and Idential-Route

dataset. Then, we present separately the results of our machine learning model on predict-

ing driving directions alone.

5.4.1 Overall Accuracy

New Jersey Dataset: We tested our machine learning approach with our New Jersey

dataset with 254 traces (mean trip length of 4.65 miles). Table 5.2 shows the overall es-

timation accuracy using our machine learning approach. We are mostly interested on the

number of traces that can be estimated with destination error less than 250 meters and 500

meters. For error less than 250 meters, there are 63 traces from New Jersey dataset (or

25%) having this high estimating accuracy. There are 75 traces (or 30%) with destination

error within 500 meters (i.e. 0-250m and 250-500m intervals in the table).

Table 5.2 also shows the results from both branches of our algorithm (i.e. see Figure 5.1

for the two branches based on whether a subset of candidate paths can be found through

path selection and probability estimation). As shown in the table, our path selection and

probability estimation with our machine learning model can find a set of candidate paths

for 147 of 254 traces. For these 147 traces (column “ML+SEP” in Table 5.2), final path

ranking through Simplified Elastic Pathing finds 55 traces with destination error within

250 meters. 55 is more than one third of the 147. This means that when our machine

learning model can select out a subset of paths, there is a very high chance that the solution

path is within these selected path and our Simplified Elastic Pathing has a high chance of
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Destination Error New Jersey
Meters Miles ML+SEP CEP Total Percent
0-250 0-0.16 55 8 63 25%

250-500 0.16-0.31 9 3 12 4.7%
500-750 0.31-0.47 5 7 12 4.7%

750-1000 0.47-0.62 8 5 13 5.1%
1000-1250 0.62-0.78 4 2 6 2.4%
1250-1500 0.78-0.93 5 8 13 5.1%
1500-1750 0.93-1.09 0 2 2 0.79%
1750-2000 1.09-1.24 5 9 14 5.5%
2000-2250 1.24-1.40 3 3 6 2.4%
2250-2500 1.40-1.55 4 6 10 3.9%
2500-2750 1.55-1.71 4 1 5 2.0%
2750-3000 1.71-1.86 1 1 2 0.79%
3000-3250 1.86-2.02 3 1 4 1.6%
>3250 >2.02 41 51 92 36%

Total traces 147 107 254 100%

Table 5.2: Overall results of our machine learning approach for New Jersey dataset.
Table shows the number of traces that our algorithm can estimate with a destination
error within different intervals. For example, the first error interval is 0-250 meters.
Traces that has destination error within this interval are considered as the most ac-
curate traces predicted by our algorithm. Column “ML+SEP” indicates the part of
driving traces that have candidate paths selected through our machine learning model
and then these candidate paths are passed to our Simplified Elastic Pathing to find the
solution path. Column “CEP” indicates the part of driving traces that do not have any
highly likely candidate path selected through our machine learning model. Then, they
are re-run to find the solution path through our complete Elastic Pathing algorithm.
“Total” column shows the total number of traces that are estimated with destination
error within the corresponding error interval.

picking it out. For the part of traces (107 out of 254) that our machine learning model is not

able to find good candidate paths, our complete Elastic Pathing algorithm complements it.

There are 8 additional traces with error less than 250 meters found by our complete Elastic

Pathing algorithm. However, most of the accurate traces (55 out of 63) are found by the

“ML+SEP” branch.

Our machine learning approach shows an improvement on estimation accuracy com-

pared with previous Elastic Pathing alogrithm. We compare the estimation accuracy of this
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Destination
Error

(meters)

New Jersey
Enhanced
Version

Machine Learning
Version

<250 17% 25%
<500 24% 30%
<750 30% 34%
<1000 35% 39%
<1250 38% 42%

Table 5.3: Comparison of overall results for New Jersey dataset: the enhanced version
of our Elastic Pathing algorithm vs. the machine learning version that we present in
this chapter.

machine learning version to our previous enhanced version of Elastic Pathing algorithm

in Table 5.3. There are three versions of our algorithm presented in this thesis: the initial

version (presented in Chapter 3), the enhanced version (presented in Chapter 4), and the

machine learning version (presented in Chapter 5). As our enhanced version is better than

the initial version, we compare the enhanced version to the machine learning version in

this section to show our new improvements on accuracy. The machine learning version has

about 25% traces having destination error less than 250 meters, which is much better than

our enhanced version of Elastic Pathing that has about 17% traces in this same error inter-

val. Similarly, for error less than 500 meters, the machine learning version shows better

estimation accuracy than the enhanced version (30% vs 24%). The detailed cumulative dis-

tribution function for New Jersey dataset and its comparison to enhanced version of Elastic

Pathing are shown in Figure 5.4.

Identical-Route Dataset: In this subsection, we present the estimation results for the

Identical-Route dataset (30 drivers with 159 traces, recall that we discarded one trace due

to one participant went to the wrong route). Trip lengths for this dataset are all about 5

miles. In general, our estimation accuracy is much lower on this dataset compared with
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Figure 5.4: Figure shows the cumulative distribution function curves for destination
error within one mile from our New Jersey dataset. The CDFs for both machine learn-
ing version and enhanced version of previous Elastic Pathing algorithm are shown in
the figure for comparison.
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other datasets. This is not surprising as we intentionally selected two routes (Route A and

Route B) that have comprehensive driving environments to analyze how different drivers

can affect our algorithm’s estimation accuracy (see Chapter 4 for analysis). If the selected

routes were to easy for our algorithm, we could not analyze individual driving behavior

differences on estimation accuracy (because our algorithm may estimate all routes very

well for all drivers).

Table 5.4 shows the overall estimation accuracy with our machine learning approach.

For Route A, the “ML+SEP” branch of our algorithm processed 28 traces. The reminding

31 traces were processed through our complete Elastic Pathing algorithm. Most of the ac-

curate traces (16 out of 19), meaning traces with error less than one mile, are found by our

“ML+SEP” branch. However, for Route B, our machine learning path selection and prob-

ability estimation only find high candidate paths for 9 traces. 51 traces have solution path

found by our complete Elastic Pathing algorithm. Our complete Elastic Pathing branch

finds most of the accurate traces in this case (18 out of 20). Still, for the 9 traces that our

“ML+SEP” found, there are 2 traces (22%) having error less than one mile. This shows

that our machine learning model still finds good traces effectively. In other words, our path

selection with the machine learning model is rather conservative: it does not select any can-

didate path if it is not sure they are good. On the other hand, our complete Elastic Pathing

always finds a solution even if candidate paths are mostly bad. The overall distribution

(CDF) of destination error within one mile for Identical-Route dataset and its comparison

to previous Elastic Pathing algorithm are shown in Figure 5.5.

The difference of the results in Route A and Route B also reflects an interesting fact

about the two branches (i.e. “ML+SEP” and “CEP”) of our machine learning approach.
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Figure 5.5: Figure shows the cumulative distribution function curves for destination
error within one mile from our Identical-Route dataset. The CDFs for both ma-
chine learning version and enhanced version of previous Elastic Pathing algorithm
are shown in the figure for comparison.
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Recall that Route A passes through many intersections (and traffic lights) with commercial

areas and grid type of residential areas, while Route B consists of only a few intersec-

tions with a long highway segment. Our path selection based on machine learning model

is mostly focus on predicting driving directions in intersections. For Route A that has

many intersections, “ML+SEP” branch has obvious advantage on estimating routes. For

Route B that has very few intersections, the “CEP” branch does better than the “ML+SEP”.

This is because our complete Elastic Pathing is good at estimating errors based on distance

mismatch but weak on estimating directions especially on intersections. The only sim-

ple information our complete Elastic Pathing algorithm can use during the intersections is

whether the speed is slow enough to make the turn. If a driver stops or drives slowly in in-

tersections (which happens a lot), our complete Elastic Pathing algorithm simply considers

all directions to be equally good.

Table 5.5 shows the improved accuracy (33% vs. 24% with error less than one mile)

of our machine learning approach compared with enhanced version of our Elastic Pathing

algorithm for the Identical-Route dataset. If we look at two routes separately, for Route A,

our machine learning version estimated 32% of traces with error less than one mile. For

Route B, our machine learning version performs the same as the enhanced version (both

having 60 traces with error less than one mile).

Compared with accuracy for other datasets, the Identical-Route dataset still has lower

accuracy overall even with our machine learning approach. This shows that the traces with

comprehensive driving environments and complex intersections are also challenging for

our machine learning approach. However, we are able to put the estimation accuracy one

step further with our new machine learning approach.
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Miles
Route A Route B

Total Percent
ML+SEP CEP ML+SEP CEP

0-1 16 3 2 18 39 33%
1-2 0 20 1 0 21 18%
2-3 9 7 0 0 16 13%
3-4 0 1 1 4 6 5.0%
4-5 2 0 0 23 25 21%
>5 1 0 5 6 12 10%

Total 28 31 9 51 119 100%

Table 5.4: Overall accuracy of our machine learning approach for Identical-Route
dataset. We use a different scale for destination error measurement because the esti-
mation accuracy for this dataset is lower than other datasets. Intervals are: 0-1 mile,
1-2 miles, 2-3 miles, 3-4 miles, 4-5 miles, and greater than 5 miles. We mostly consider
the 0-1 mile error interval as our algorithm predicts to the right direction when the
error is within one mile (given that each trip length is about 5 miles). Again, column
“ML+SEP” indicates the part of driving traces that have candidate paths selected
through our machine learning model and then these candidate paths are passed to our
Simplified Elastic Pathing to find the solution path. Column “CEP” indicates the part
of driving traces that do not have any candidate path selected by our machine learn-
ing model and the solution path was found through rerunning our complete Elastic
Pathing algorithm.

Identical-
Route

Dataset

Number
of

Traces

Destination Error <1 mile
Enhanced
Version

Machine Learning
Version

Route A 59 15% 32%
Route B 60 33% 33%
Overall 119 24% 33%

Table 5.5: Comparison of overall results for Identical-Rout dataset: the enhanced
version of our Elastic Pathing algorithm vs. the machine learning version that we
present in this chapter.

5.4.2 Evaluation of Machine Learning Model

In this subsection, we show how our machine learning model predicts driving direction.

Machine learning model is the most important part of our path selection and probability

estimation block in our overall algorithm structure (see Figure 5.1). Therefore, the good

prediction accuracy from our machine learning model places an important role on the whole
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algorithm.

Overall, for New Jersey datasets, our prediction accuracy ranges from 0.86 to 0.92 for

different drivers. The equal error rates from our machine learning models range from 0.08

to 0.14 for different drivers. Each driver’s model was trained using other drivers’ data,

so different drivers have different trained models. For Identical-Route dataset, there is

only one model (trained using New Jersey data and tested with Identical-Route data). Our

prediction accuracy is 0.81 and the equal error rate (EER) is 0.19 for this model.

New Jersey Dataset: Figure 5.6 shows ROC curve for six driver in the New Jersey

dataset about how well their trained machine learning model predicts the driving direction.

Driver 2 has the smallest EER value of 0.08. Driver 1 and Driver 5 have the largest EER

value of 0.14. On the point having equal error rate, the threshold probabilities for deter-

mining whether a direction is correct for six drivers are: 0.49 (Driver 1), 0.54 (Driver 2),

0.54 (Driver 3), 0.49 (Driver 4), 0.47 (Driver 5), and 0.46 (Driver 6). These are all close to

0.5, so their values are reasonable within practical cases. As mentioned in previous section,

in our algorithm, we used probability threshold of 0.3 because we do not want to falsely

exclude driving directions that are actually correct (i.e. we prefer very small false negative

rate) and we do not want to include a lot of less likely directions (i.e. the threshold cannot

be too low).

Identical-Route Dataset: Figure 5.7 shows ROC curve for the Identical-Route dataset.

This whole dataset is the testing dataset, so we do not need to have models for different

drivers. The EER value for this machine learning model is 0.19 with prediction accuracy

of 0.81. The probability threshold for the point with equal error rate is 0.44. Again, we use

much smaller probability threshold of 0.3 within our algorithm.
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For both datasets, these testing accuracies from our machine learning model are actu-

ally pretty good given the large challenge of our problem. For example, each driver uses

model that is trained using other drivers’ data with different driving environments and driv-

ing routes. In addition, the predicting can be very challenging in many cases: different

intersections (e.g. “Y” shape, “T” shape, “+” shape, and other irregular shapes), different

drivers (e.g. speed variance), and the similarity of speed pattern for different directions

(e.g. left vs. right).
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Figure 5.6: Receiver Operating Characteristic (ROC) curves and EER values from
six drivers in the New Jersey dataset. The horizontal axis shows the false positive rate
(FPR) and the vertical axis shows the true positive rate (TPR).
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Figure 5.7: The Receiver Operating Characteristic (ROC) curve and the EER value
for the machine learning model for the Identical-Route dataset. The horizontal axis
shows the false positive rate (FPR) and the vertical axis shows the true positive rate
(TPR).
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CHAPTER 6

DISCUSSION

This chapter discusses different versions of our algorithm, improvements on estimation

accuracy, limitations, and the importance of privacy-preserving data collection.

Algorithms and Improvements on Estimation Accuracy: This thesis presents three

different versions (i.e. the initial version, the enhanced version, and the machine learning

version) of our algorithm to estimate driving routes based on the starting location and the

speed data.

Our initial version and the enhanced version of our Elastic Pathing algorithm share sim-

ilar overall structure: using a prioritized search algorithm combined with an effective error

metric for path selecting and ranking. The enhanced version presents several optimizations

over the initial version, such as applying a new comprehensive mathematical model for

turn radius determination, and it shows a noticeable improvement on estimation accuracy:

it estimated 17% (was 14%) of traces from New Jersey dataset and 16% (was 13%) traces

from Seattle dataset with error within 250 meters. Our Elastic Pathing algorithm provides

reliable estimation results for traces having good speed patterns. Such traces have no heavy

traffic, have very few random stops or maneuvers, and carry enough information (e.g. rea-

sonable stops and speed values) to distinguish with other roads. This search algorithm

can automatically prioritize those directions that seem to match well with the speed traces.

Thus, it usually generates results instantly or within seconds for good speed traces. For
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ambiguous driving trips (e.g. either because of homogeneous driving environments or poor

speed patterns), it may take much longer and the estimation is usually not good.

Based on our results, OSM routing with shortest path does not improve the overall

accuracy of our existing datasets. However, it can be useful in estimating routes for a

subset of drivers who mostly drive shortest routes in their daily commuting. Based on our

results, routing method had different effects on suburban (New Jersey) and urban (Seattle)

datasets. It also showed improvements on the accuracy for P4 and P6 in our New Jersey

dataset and P13 in the Seattle dataset. In our case, the datasets are very comprehensive with

various driving environments. The routing approach brings more penalty than benefits for

our datasets.

On the other hand, using speed limits is important for our algorithm – there is a large

accuracy drop when removing this constraint for New Jersey dataset. However, removing

speed limit constraint has very small impact for the Seattle dataset. This may be because

the traces in Seattle dataset have similar speed limits. The types of roads (mainly consists

of streets built in a grid) in urban areas are not as diverse as those in suburban areas. In this

case, speed limits does not help in eliminating candidate paths.

Our algorithm accuracy highly depends on different driving habits as shown in our

analysis for identical-route dataset. For route A and route B, our algorithm favors different

behaviors (e.g. different distribution patterns for stops and average speeds in Figure 4.10

and Figure 4.9) due to different driving environments. However, they also favor some

common driving features: both routes have high estimation accuracy when average braking

deceleration is low, and the effect of braking has similar patterns.

Our final approach using machine learning with our New Jersey dataset shows further
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improvements on estimation accuracy. As machine learning model provides information

that complements with our Elastic Pathing algorithm, the overall combination works well

when tested with both New Jersey dataset and the Identical-Route dataset. For the New Jer-

sey dataset, our machine learning version can estimate 25% (was 17% with the enhanced

version) traces with destination error less than 250 meters. This is a big improvement com-

pared to previous accuracy improvement from the initial version to the enhanced version.

Even with the Identical-Route dataset where the two driving routes are very comprehen-

sive, the machine learning version shows improvements on the accuracy as well (e.g. 33%

traces compared with previous 24% traces having destination error less than one mile).

Compared with previous approach with only search algorithm, machine learning ver-

sion requires some driving data and training. However, once the machine learning model

has been trained, the algorithm run time is very similar to our Elastic Pathing algorithm.

The path selection and probability estimation step can automatically prioritize the search

from the current best path. It finds a set of candidate paths very quickly if the speed trace

is good. In the machine learning path selection, the speed trace appears to be good when

speed segments for intersections can easily indicate driving direction with high confidence.

If there is no candidate path looking good for the machine learning model, it usually makes

decision fast as well. Then, these traces get passed into our complete Elastic Pathing algo-

rithm to find a solution path. There is only one case that requires our path selection to run

for a long time: many candidate paths appears to be good and path selection has to switch

the searching direction all the time until the first set of candidate paths found. This case

usually results in many candidate paths found from probability estimation and it is also less

likely to find the ground-truth path at the end.
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Limitations: One limitation is from the OSM routing. We applied OSM routing API

currently available: finding the route with shortest distance. It does not have options to

customize and find the fastest route to reach the destination for example. Intuitively, finding

the fastest route is more challenging than finding the shortest route, as selection of fastest

route depends on the traffic condition at the moment of driving. Drivers may not necessarily

take the shortest route, so a better routing API allowing different customization and settings

(e.g. finding the fastest route) may help improve our algorithm’s estimation accuracy.

Notes on Privacy-Preserving Data Collection: Our work is not directed against any

company or organization. However, prior experience has shown that even well-intentioned

uses of data can result in losses of privacy, and thus, we wish to highlight potential dangers

of this type of data collection. We do not claim that insurance companies are violating

policy holder privacy in this way. However, the general principle of any privacy-preserving

data collection is to collect only the data that is necessary for a particular application, and

no more.
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CHAPTER 7

CONCLUSION

In this thesis, we presented our elastic pathing algorithm which demonstrates an effective

attack against user location privacy that uses only speed data from driving traces and an

initial starting location. Over the three versions of our algorithms, we have shown im-

provements on the estimation accuracy. For New Jersey dataset, we can estimate around

25% of traces with destination error less than 250 meters with our machine learning ap-

proach. Although our Seattle dataset (e.g. relatively noisy traces with buses and taxes,

having mostly short traces with few intersections to extract and train) does not match the

requirement for the machine learning approach, our enhanced Elastic Pathing algorithm

still estimates destinations with a good accuracy that effectively attacks location privacy:

16% traces with destination error less than 250 meters.

In addition, we performed a comprehensive analysis on our algorithm and data: we

evaluated effect of applying speed limits, compared how different driving behaviors can

affect our algorithm with a new identical-route dataset, built a tool that can visualize any

driving trace data with animation in the Google map, and analyzed traces with low estima-

tion accuracy and summarized the cases that can mislead our algorithm. To the end, we

have effectively shown that our algorithm can solve the major challenge of estimating the

driving route using very limited data.
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