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ABSTRACT OF THE THESIS

A STUDY ON THE SELECTION OF RESOURCES FROM XSEDE

SUPERCOMPUTERS AND THE OPEN SCIENCE GRID

By Ming Tai Ha

Thesis Directors:

Shantenu Jha and Matteo Turilli

The effective selection of resources on supercomputers and grids improves workload schedul-

ing and reduces workload time-to-completion. Lower workload time-to-completions allow scien-

tists to gain scientific insights from simulations more quickly. For example, molecular dynamics

(MD) simulations are revolutionizing the development of new therapeutics. In the past 6 years,

at least 4 billion core-hours consumed on XSEDE machines were from MD software packages

alone. Given the increasing number of MD simulations executed and the increasing amounts of

computation they require, there is a need for greater efficiency in resource utilization. Thus, we

investigate how resources from XSEDE supercomputers and OSG can be effectively selected to

reduce workload time-to-completion.

Effective resource selection on grids and supercomputers is difficult. Grids have heterogeneous

and transient pools of resources, whose availability and performance vary over time. This makes

it difficult to collect information, such as benchmarking results, application profiles and hardware

capabilities, used by techniques like application performance modeling and benchmarking to best

select grid resources. While the performance of supercomputing resources are easier to assess

for grid resources, the acquisition of these resources requires waiting on a queue, sometimes for

long periods of time. However, accurately predicting queue waiting time remains difficult.

In this thesis, we studied how to effectively select resources from XSEDE supercomputers and

OSG in the presence of limited information. We developed a formalism that allows us to model

the cost of task execution based on the information available from XSEDE supercomputers and

XSEDE OSG. On the base of our formalism, we constructed the Limited Information Model

(LIM) to predict the execution times of compute-intensive, single-threaded, single-process tasks.

We evaluated the accuracy of these predictions and the resources selected using these predictions
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to gain insight into what information, if any, would be needed to operate better predictions and

resource selections. To overcome the difficulty of selecting resources using queue waiting times,

we also developed the resource re-selection process, by which tasks are re-assigned to different,

acquired resources at runtime. Resource re-selection uses task execution times and resource

acquisition times, but not queue waiting times. We show that tasks can be effectively re-assigned

even when using inaccurate execution time predictions.

Experimental validation of LIM shows that LIM’s predictions are within 157–171% error

on XSEDE supercomputers and 18–31% on OSG. By accounting for the differences in software

configurations on XSEDE supercomputers and OSG, LIM’s predictions can still be used correctly

rank XSEDE supercomputers and OSG. Experiments also show that workloads executed using

resources selected with LIM’s predictions have 67–78% lower workload time-to-completion than

those executed using randomly selected resources. However, executing workloads on resources

selected using LIM’s predictions contributed to ∼29–99% of the reduction in workload time-

to-completion. We found that the queue waiting times largely influences workload time-to-

completion and should also be considered to effectively select resources from supercomputers

and grids.

Finally, experiments show that performing resource re-selection allows tasks to avoid expe-

riencing large queue waiting times on XSEDE supercomputers by executing on OSG instead.

Despite using inaccurate task execution time predictions and no queue waiting time predictions,

experiments show that resource re-selection reduces task queue waiting times by up to 99%

and workload time-to-completion by up to 73% when the queue waiting time experienced on

XSEDE supercomputers are high. However, resource re-selection shows little to no reductions

in task queue waiting times and workload time-to-completions when the queue waiting times

experienced on XSEDE supercomputers are small.
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Chapter 1

Introduction

Motivation

Scientists from various fields perform computational simulations in order to gain insights into

physical systems that are difficult, if not infeasible, to gain with analytical models or experiments

alone. For example, molecular dynamics (MD) simulations are used in biochemistry to study

how drugs bind to ligands, contributing to advances in the design of new therapeutics [1–3].

According to Ref. [4], at least 4 billion core-hours were consumed on XSEDE machines using

community MD software packages, 1 billion-core hours with the package GROMACS alone. This

number is expected to grow as scientists run larger simulations to gain more insights into the

atomic interactions of complex systems [5].

Traditionally, MD simulations are executed on a specific supercomputer, and are expressed

as a collection of tasks, i.e, a workload. Given their strong computational capabilities, supercom-

puters can more quickly perform the large amounts of computations required by MD simulations.

However, organizations like XSEDE provide scientists access to multiple supercomputers as well

as the Open Science Grid (OSG), a large pool of transient, heterogeneous resources to run many

short-lived, mostly single-threaded and single-core applications. Grids like OSG can offer users

up to tens of thousands of CPU cores, and excel at executing large numbers of independent

tasks [6–8]. Ref. [9] has shown that distributing the execution of workloads of simulations of

identical physical systems (i.e., ensembles), across multiple supercomputers can reduce workload

time-to-completion. Access to both supercomputers and grids offers the opportunity to improve

resource utilization and the concurrent execution of MD ensembles.

However, a consequence of using different heterogeneous, distributed resources is the re-

source selection problem. This problem can be formulated as: “The selection of a subset of

resources available to a user to execute a workload”. The resource selection problem requires
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answering two main questions: one question is of resource viability, which asks “Which re-

sources can be used to execute a given workload?”; the other question is of execution affinity,

which asks “Which viable resources should be used to execute a given workload?”. While many

measures can be used to determine how to select resources, task execution time is one of partic-

ular interest to scientists. Scientists often select resources based on task execution times in order

to minimize a workload’s execution time, which is an important time-component of workload

time-to-completion.

The resource viability problem has been addressed by [10], which provided a general method

that uses task requirements and resource capabilities to determine whether a resource can ex-

ecute the task. Addressing the execution affinity problem requires the ability to assess how a

resource performs when executing an application. For assessing task execution times on differ-

ent resources, several techniques have been used to inform scientists on how to effectively select

resources. Benchmarking is used to rank different resources using performance metrics indica-

tive of how resources perform when executing different tasks. The performance of a resource is

ascertained by executing benchmarks on the resource and measuring its performance with re-

spect to the given performance metrics. Performance modeling and statistical modeling are used

to predict execution times. Performance models use benchmarking results, as well as hardware

architecture and application profiles, to predict execution times. Statistical models use datasets

of similar tasks that were previously executed to predict execution times.

Literature on the aforementioned techniques implicitly assumed that the information required

to select resources, like benchmarking results, hardware architecture and historical information,

can be easily collected. However, this is not the case for grid resources. Due to the heterogeneity

and transience of grid resources, both the hardware architecture of the grid and the capabilities

of its constituent resources can vary over time. On some grids, like OSG, users have limited

knowledge of the capabilities of OSG resources and little control over their software environment.

As such, it is difficult to collect application profiles. Thus, it can be difficult to collect the

information required by the aforementioned techniques to accurately assess how grid resources

execute different tasks. This negatively impacts the performance of many workload scheduling

algorithms as they implicitly perform resource selection and assume accurate knowledge of task

execution times.

When selecting resources from supercomputers, queue waiting times, the amounts of time

spent acquiring resources, should also be considered. The queue waiting time experienced when

executing a workload can be a large, if not the dominant, time-component of workload time-

to-completion. Despite many attempts to predict queue waiting times using historical datasets,

queue waiting times on production-grade supercomputers remain difficult to predict accurately.
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This is partly because sudden and sharps increases in resources requested by individual users,

called flurries, can greatly increase the queue waiting times experienced by all users of the

supercomputer. Also, the presence of flurries in historical datasets can skew queue waiting time

predictions as they are not representative of how resources are normally requested by users of a

supercomputer.

Objective

The objective of this thesis is to provide insight into how supercomputing and grid resources can

be effectively selected to execute workloads in the presence of limited information. This selection

depends on knowing task execution times and resource queue waiting times, both of which can

seldom be accurately predicted on both types of infrastructure.

The first contribution of this thesis is a formalism that allows us to model task execution

costs based on the information available from supercomputers and grids. This formalism provides

the flexibility to construct a model based on the limited information available from grids. We

show that our formalism can be integrated with the Condor Matchmaking algorithm to address

the resource selection problem. Any model created based on our formalism can be used to

perform resource selection.

The second contribution is the Limited Information Model (LIM). On the base of the

formalism previously described, we constructed LIM using information that can be currently col-

lected from both the XSEDE supercomputers (Bridges, Comet, SuperMIC) and OSG. We used

this model to predict the execution times of single-threaded, single-process, compute-intensive

applications. These predictions are then used to operate resource selection across XSEDE su-

percomputers and OSG. Evaluating the accuracy of our predictions and the effectiveness of the

resource selections, we gained insight into what additional information, if any, would be needed

to operate better predictions and resource selection. Further, we also evaluated the effectiveness

of resource selection across XSEDE supercomputers and OSG when using only task execution

time predictions, but not queue waiting times.

The third contribution of this thesis is the process called resource re-selection, by which

tasks are re-assigned to different resources that are acquired at runtime. The resource re-selection

process uses information of task execution times and resource acquisition times and does not use

information of queue waiting times. We show that the resource re-selection process can still be

used to correctly re-assign tasks to resources using inaccurate task execution time predictions.

We show experimentally that resource re-selection effectively reduces time-to-completions of

workload executed across resources from XSEDE supercomputers and OSG.
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Overview

The motivation and objective for this thesis is given in Ch. 1. In Ch. 2, we provide a brief

overview on the state-of-the-art of the resource selection problem. In Ch. 3, we provide a

formalism which allows us to construct a model to predict the execution times of single-threaded,

single-process tasks running on a resource based on the information that can be collected from

XSEDE supercomputers and OSG. We also show that models constructed using this formalism

addresses the resource selection problem. In Ch. 3, we develop the resource re-selection process

and show how tasks can be correctly re-assigned to execute on resources even with inaccurate

knowledge of task execution times.

In Ch. 4, using a GROMACS simulation of a protein in water, we evaluate the accuracy

of the predictions generated by LIM using information available from XSEDE supercomputers

and OSG. Then, we compare how selecting resources by using the predicted task execution

times, either before or during the execution of a bag-of-tasks workload of identical GROMACS

simulations, can reduce the time-to-completion of the workload. We study how the flexibility to

re-assign tasks originally assigned to execute on an XSEDE supercomputer to execute on OSG

can improve workload execution. While there are other important use-cases, we focus on the

use-case of executing GROMACS on XSEDE supercomputers and OSG as it applies to our lab’s

collaborators and to many users of XSEDE.

In Ch. 5, we discuss how selecting resources at runtime can be used to effectively select

resources when limited information is available. We also discuss how the ability to select resources

at runtime can be used to further improve the resource selection algorithm given in Ch. 3, as well

as workload scheduling algorithms. In Ch. 6, we conclude by reviewing the the contributions of

this thesis’ research and discuss future work.
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Chapter 2

Background

The problem of selecting resources in the presence of limited information is only one aspect of

the overall resource selection problem. In this chapter, we first provide a brief overview on how

the resource viability and execution affinity problems have been already addressed. At the same

time, we discuss how the effort required to collect information on grid resources makes it difficult

to effectively select resources. Then, we discuss how selecting resources in the presence of limited

information affects workload scheduling. Finally, we provide a brief overview on the approaches

to selecting resources from supercomputers based on their predicted queue waiting times.

Resource Viability

The resource viability problem focuses on identifying the resources,if any, that can be used to

execute a workload. This problem has been actively studied in the Grid Computing community.

Due to the heterogeneity and transience of grid resources, much of the research focused on: (i)

standardizing how jobs (or tasks) and resources are described [11–16]; (ii) providing ways to

discover grid resources [17,18]; and (iii) providing a general algorithm, called matchmaking [19],

to match jobs with resources whose capabilities satisfy jobs’ requirements. Often, the process

of matchmaking is carried out by resource brokers [20–23]. Due to the generality of the work

in [19], the solutions developed offer insight into how jobs and resources should be defined to

enable resource selection over a diverse set of computing tasks and resources.

Execution Affinity

The execution affinity problem focuses on selecting resources to execute a workload that opti-

mizes a given selection metric. Addressing the execution affinity problem requires the ability to

assess how effectively a resource executes a task. Given a task and a set of resources, the resource
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which most effectively executes a task is selected. Resources are often selected based on their

ability to minimize task’s execution time, but can also be selected using other metrics [24,25].

Consistently, literature on addressing the execution affinity problem primarily focuses on ac-

curately assessing the task’s execution time on a resource. It is assumed that input information

used to assess task execution times can be easily collected. This is true for many supercomput-

ers, where their hardware capabilities and architecture is well-known and relatively stable over

time, i.e., static. On supercomputers, users can control the software environment to some ex-

tent. However, collecting the input information used to assess execution affinity on grids is often

difficult or infeasible. Focusing on the task execution time as the selection metric, we provide a

brief overview of three methods commonly used to identify resources that minimize a task’s ex-

ecution time: (1) performance modeling; (2) benchmarking; and (3) execution time predictions.

For each technique, we also discuss the difficulties in collecting the requisite information from

grid resources.

Performance Modeling

Performance models have been used to predict the execution times of workloads running on

resources based on salient characteristics of the workloads and resources. Performance models

can be used to gain insight on how different workloads execute on existing or future resources.

Thus, they are used not only for execution time predictions, but also for application and resource

tuning, the procurement of additional resources, and the design of future systems [26].

There are two main types of performance models: application-specific and trace-driven.

Application-specific performance models focus on (1) expressing the execution times on an appli-

cation running on a resource in terms of the operations performed by different code sections; (2)

parameterizing the execution times of each code section in terms of the application’s problem size

and the target machine’s capabilities. To predict an application’s execution time, application-

specific models [27–30] use detailed knowledge of the capabilities of the underlying hardware; this

knowledge can be collected either from documentation or by running benchmarks. These mod-

els have been shown to accurately predict the execution times of different application running

on different supercomputers.

Trace-based performance models are an alternative to application-specific performance mod-

els. Creating application-specific performance models is labor-intensive and requires extensive

guidance from domain scientists. Instead of analyzing code sections by hand, application re-

quirements are expressed in terms of the operations (e.g., floating-point calculations, memory

accesses, network communication) performed during execution. Usually, this information is

captured by using application profilers [31–35] while resource capabilities are measured using



7

benchmarks. The performance model proposed in Ref. [36] accurately predicts an application’s

execution time based on the memory access patterns and MPI function calls made during its ex-

ecution. There have also been initial work Ref. [37] to extrapolate application traces to predict

an application’s execution time when using core counts or resources different than those used

when profiling the application’s execution.

Unlike for supercomputers, it is difficult to construct performance models for grids. This

is because grids’ constituent resources are heterogeneous and transient, e.g., network topology,

number of cores, or amount of memory change over time. Thus, it is difficult to select resources

using techniques that depend on making assumptions about the resource capabilities. Moreover,

users may have little control over the software environment of grid resources. This makes it

difficult to use application profilers to characterize applications executions.

Benchmarking

Benchmarking is the act of running a suite of programs, called benchmarks, to assess the perfor-

mance of a resource when executing a well-defined set of operations. To get results that better

correlate with the execution costs of real workloads, benchmarks are often reduced versions of

operations commonly performed by real workloads. Given a set of resources, a set of performance

metrics and a benchmark suite, resources are ranked by the performance values measured when

executing the set of operations of the benchmarking suite. A resource ranking provides a simple

way to select resources based on their relative performance. Though first suggested by Ref. [38],

Ref. [39] showed that expressing application requirements using representative benchmarks via

resource brokers improves resource selection on grids.

In reality, ranking resources via benchmarking offers only an approximation of the relative

performance of a set of resources. Often, this approximation may not be sufficiently precise.

According to Ref. [40–42], an inversion between two resources occurs when the ordering of two

resources determined by their benchmarking results is the opposite of the ordering determined

by the execution cost of a real application. The ‘correctness’ of a ranking constructed using

a benchmark can be expressed by the number of inversions which occur. Work by Ref. [43]

showed that using simple benchmarks and assessing the performance of a resource using only one

metric can produce poor rankings of resources. To improve upon this, Ref. [40–42] showed that

better rankings can be constructed when using multiple performance metrics, and when using

benchmarks that use the machine hardware in a manner similar to the operations performed by

the workload of interest.

Despite these difficulties, there have been efforts in using benchmarks to characterize the

capabilities of grid resources to improve resource selection [44, 45]. Unfortunately, the act of
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benchmarking grids remains difficult [46]. To maintain an up-to-date characterization of the

performance of grid resources, benchmarks must be executed regularly [47]. There have been

efforts [48, 49] to benchmark grids using fewer benchmark executions, and to develop frame-

works [50–52] to simplify the process of benchmarking. Despite these efforts, the process of

benchmarking grid resources still requires extensive manual input [53] and the cooperation of

the grid’s stakeholders [51].

Execution Time Predictions

Various statistical and machine learning models have been constructed to predict the execu-

tion time of tasks for different problem sizes. Methods like k-Nearest Neighbors [54, 55], neural

networks [56–58], and maximum likelihood estimation and random forests [59] have been pro-

posed. Other methods of predicting the executions time of various tasks running on different

resources first classify tasks based on predefined attributes, then use various methods to predict

the execution times of similar tasks that have executed in the past [60–65]. Ref. [66] used lin-

ear regression, while Ref. [67, 68] used regression trees to classify tasks, then predict the task

execution times based on similar tasks that been executed in the past.

However, it can be difficult to collect the historical information needed to use the statistical

and machine learning models aforementioned. As seen with benchmarking, the heterogeneous

and transient nature of grids makes it difficult to develop a system that can collects reliable and

consistent historical information from across the grid resource pool in an automated fashion. The

limited ability to collect historical information limits the usefulness of statistical and machine

learning models to predict task execution times on grid resources.

Also, there is limited availability to existing datasets that can be used to evaluate the execu-

tion time of a task on different resources. While archives like the Grid Workloads Archive [69]

and Parallel Workloads Archive [70] provide datasets of jobs that executed on various super-

computers and grids, they cannot be used to study the selection of resources from different

supercomputers and/or grids for a particular application. This is because the names of the

applications executed on the machines are anonymized [69,71].

Resource Selection with Limited Information

In the presence of limited information, it can be difficult to accurately assess a task’s execution

time on a resource. It is well-known that the inability to accurately predict task execution times

negatively impacts the performance of many workload scheduling algorithms [72–84]. Many

workload scheduling algorithms implicitly perform resource selection when assigning tasks to
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execute on specific resources. Inaccurate knowledge of task execution times causes workload

scheduling algorithms to incorrectly postpone the execution of tasks [85]; incorrectly postponing

the execution of a workload’s tasks increases workload time-to-completions [85,86].

There have been efforts to perform workload scheduling by using inaccurate knowledge of task

execution time. One approach is to execute a workload according to an initial schedule, monitor

the workload’s execution and re-schedule tasks at runtime based on the task execution time

measured at runtime [81, 87–91]. Ref. [81] showed that the ability to re-schedule tasks allows

workloads to meet their deadlines, even when using execution time predictions with a 20%

variance. Work in Ref. [92] assumed no knowledge of task execution time when constructing a

workload scheduling algorithm. Ref. [92] showed that when no task execution time prediction

was used, greedily scheduling tasks to idle processors yields lower workload execution times and

higher maximal resource utilization than scheduling tasks based on their execution ordering.

Still, there has been little work on understanding how inaccurate task execution time knowl-

edge impacts workload scheduling across heterogeneous resources. While the work of Ref. [85]

provides a systematic study on how different workload scheduling algorithms perform, it pri-

marily focuses on homogeneous systems. Thus, additional studies are required to understand

the impact of inaccurate task execution times when scheduling workloads across heterogeneous

resources.

Resource Selection on Supercomputers

While knowledge of task execution times is important, queue waiting times should also be con-

sidered when selecting resources from supercomputers. Most supercomputers use resource man-

agement systems [93–96] to enable users to submit jobs to request resources, and to allocate

resources to users. The acquisition of resources requires waiting on the queue of the resource

management system. When supercomputers are heavily utilized, users can experience queue

waiting times longer than the execution times of their tasks [97]. Refs. [97, 98] showed that

using queue waiting time predictions to select resources can greatly reduce workload time-to-

completion.

One method of selecting resources supercomputers is to select resources from the super-

computer with the lowest predicted queue waiting time. Ref. [99] proposed to first model the

execution times of jobs on supercomputers using the uniform-log distribution, then predict the

queue waiting times of new jobs based on the probabilities that running jobs will end. Work

by Ref. [100] provided upper confidence bounds on queue waiting times by first clustering jobs

based on their walltimes, then modeling queue waiting times based on the binomial distribution.
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Instance-based learning methods [101–105] have also been used to predict queue waiting times,

and has been used by Karnak. [106] to predict queue waiting times on XSEDE supercomputers.

However, accurately predicting queue waiting times on supercomputers remains difficult.

Refs. [107, 108] demonstrated that flurries, submissions of similar jobs by a single user within a

small period of time that drastically alters the utilization of resources, are commonly found on

supercomputers and can greatly increase queue waiting times. Flurries introduce noise in the

historical datasets used to create queue waiting time prediction models as they do not reflect the

normal usage of resources. Moreover, since each flurry is unique, it is difficult to use historical

datasets of past flurries to predict future flurries. While some prediction methods [100, 104]

indirectly address this problem by using more recently collected data points to make predictions,

it remains difficult to develop models predicting queue waiting times that account for the impact

of flurries.

Rather than using queue waiting time predictions to select supercomputers to use, users

can request resources from multiple supercomputers and assign tasks at runtime to execute on

resources that are acquired first. Doing so allows tasks to avoid experiencing large queue wait-

ing times on heavily utilized supercomputers, thereby reducing workload time-to-completion [9].

Ref. [109] developed abstractions representing application requirements and resource availabil-

ities and capabilities. Furthermore, Ref. [109] showed that middleware implementing these ab-

stractions can acquire information from application and resources to distribute the execution

of workloads across multiple resources at scale. Refs. [9, 109] also showed that distributing a

workload across resources from three supercomputers based on their acquisition times results in

smaller and more stable workload time-to-completion.
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Chapter 3

Resource Selection

To address the problem of selecting resources with limited information, we define a formalism to

evaluate the cost of executing a single-threaded, single-process task on a resource without spec-

ifying beforehand the system-resources used to characterize tasks and resources. This provides

the flexibility to construct a model to predict task execution costs based on the information

that can be collected. This flexibility is important as grids may provided little to no informa-

tion about the capabilities of their resources. We show that this formalism can be incorporated

into the Condor Matchmaking algorithm, thereby providing a solution to the resource selection

problem.

Using the defined formalism, we constructed the Limited Information Model (LIM) to pre-

dict the execution times of single-threaded, single processes, compute-intensive tasks running

on resources. We use information that can be collected from XSEDE supercomputers (i.e.,

Bridges, Comet, SuperMIC) and from XSEDE OSG, separately. We use predictions generated

with LIM to select resources that minimize task execution time. Based on the accuracy of the

predictions and the resources selected using these predictions, we evaluate the effectiveness of

selecting resources to gain insight into what information, if any, would be needed to operate

better predictions and resource selections.

LIM does not take into account code structure or the resource’s hardware architecture, and

assumes that a task executes the same sequence of instructions identically on any resource. In

this way, we trade off between the prediction accuracy and the effort required to collect data for

execution cost prediction. Lack of accuracy is acceptable if LIM predictions support effective

resource selection for the distributed execution of a given workload over a given set of resources.

Building upon the resource selection process, we developed a process called ‘resource re-

selection’ to re-assign tasks to resources based on task execution times and resource acquisitions

times. Resource re-selection re-assigns tasks to execute on resources different from those on
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which they were originally assigned. We explore how using task execution time predictions can

increase the task’s time-to-completion. We show that even inaccurate execution time predictions

can be used to re-select resources without increasing the task’s time-to-completion.

Task Execution Cost Formalism

The formalism centers around the definition of the consumable, an entity that represents one

functionality used by a task during its execution. From this, we define an instruction, which

uses different amounts of different consumables in a well-defined manner. Then, we define a task

as a sequence of instructions. Similarly, we define a resource to be an entity which offers the use

of different consumables at different rates. In this way, we define the cost of executing a task on

a resource as the cost of using the consumables specified by the task’s constituent instructions

at the rates specified by the resource. Cost evaluation can be based on different metrics such

as execution time, allocation usage, currency or energy. To simplify the construction of the

formalism, we assume: (1) the consumables required by a task is independent from the resource

that offers them; (2) the cost of using any consumable offered by a resource is fixed. Here, we

define the following terms from first principles:

Consumable: An entity representing a unit of work. A consumable has two properties: (1)

type, which determines the kind of work the entity can perform; and (2) form, which

specifies the conditions that must be satisfied for the consumable to be used to perform

work.

Requirement: Amount of a consumable, where the amount is assumed to be fixed.

Instruction: Set of tuples, each specifying a certain requirement.

Task: Sequence of instructions, executed in the order specified by the sequence.

Workload: Set of tasks, where all tasks can run concurrently.

Capability: Rate at which a consumable is offered, assumed to be fixed.

Resource: Set of tuples, each specifying a certain capability.

Formally, a consumable c is a set {type, form}, where type is a single value while form is a

set of pairs. For any pair in form, the first element is the attribute attr that uniquely identifies

the pair in form; the second element of the pair is the condition cond, expressed as a set of

values that specifies how c can be used.

A requirement req is a tuple (c, amt) where c is a consumable and amt > 0 specifies some

fixed amount of the consumable c. An instruction ins is a set {req1, . . . , reqn}, where each
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requirement reqi specifies the amount of consumable required by ins. A task task is a sequence

of instructions [ins1, . . . , insn]. By the definition of an instruction, we can express a task as a

sequence of sets of requirements. For brevity, we use the term ‘task requirements’ to be set of

requirements specified by the instructions that compose a task. We define a workload W as a

set of tasks {task1, . . . , taskn}.

We define a capability cap as a set {c, rate}, where c is a consumable and rate > 0 is fixed.

rate represents the number of consumables offered per unit of cost (e.g., in terms of time, money,

or energy). In this way, we establish a relationship between the use of a consumable and the cost

of using a consumable. We define a resource res as a set {cap1, . . . , capn}, where each capability

capj offers the use of a unique consumable at a fixed rate.

Assuming that a given task can run on a given resource, we define the cost K of running

a task on a resource as the total cost required to sequentially consume the amounts of con-

sumables specified by the requirements of every instruction of a task at the rate offered by the

corresponding resource capabilities. The cost of running the task on a resource is expressed se-

quentially because our formalism does not consider the order (or concurrency) in which tasks

can use consumables.

Let there be a task task = [ins1, . . . , insm], where each insi = {req1, . . . , reqpi} is set of pi

requirements, and a resource res = {cap1, . . . , capn}. Then, K is defined as:

K =

m∑
i=1

pi∑
k=1

n∑
j=1

insi.reqk.amt

capj .rate
1{insi.reqk.c=capj .c} (3.1)

where 1 is the indicator function, which equals 1 if the consumable c specified by the k-th

requirement of the i-th instruction of task is the same consumable specified by the j-th capability

of the resources res, and 0 otherwise.

Limited Information Model

Using the above formalism, we construct the Limited Information Model (LIM) to predict the

execution times of single-threaded, single-process compute-intensive tasks running on a resource

based on the information available from XSEDE supercomputers (Bridges, Comet, SuperMIC)

and from XSEDE OSG. Though we can collect more information on XSEDE supercomputers, we

were able to query the processors of OSG resources and perform profiling using Linux perf only

on some OSG resources. Using perf, we were able to measure the task’s execution time, number

of cycles used, number of instructions executed, the average number of instructions executed per

cycle (i.e., instruction rate) and the average clock speed experienced during execution. We use

our formalism to construct LIM to predict the execution time (denoted Tx) using the number of
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cycles required by a task and the processor clock speed of a resource.

Constructing the model

We define a cycle as a compute-type consumable that can only be used on processors supporting

x86 ISA. Formally, cycle = {“compute′′, {“ISA′′ : {“x86′′}}}. Next, we define a compute

requirement as req = {num cy, cycle}, where num cy > 0. A compute instruction instr = {req}

specifies its compute requirement. Since tasks are assumed to be compute-intensive, we consider

only the computational requirements of a task. Thus, we define a task as a sequence of compute

instructions task = [instr1, . . . , instrm].

Similarly, we consider the compute capabilities of a resource, namely its clock speed, as the

number of cycles it offers per unit of time. We define a compute capability cap = {rate cy, cycle},

where rate cy is a positive number given in units cycles
second . Thus, we define a resource as res =

{cap}. Since rate cy is given in terms of cycles
second , we define the execution time Tx of a task

running on a resource using Eq. 3.1. Based on our formalism, Tx is the amount of time required

for the task to use the number of cycles required by a task’s instructions at the rate at which the

resource offers cycles. Let total cy be the sum of the number of cycles specified by the compute

requirement of each instruction of a task task. Then, the execution time Tx of task running on

a resource res is:

Tx =
total cy

rate cy
, (3.2)

Equations

Since Tx, defined using Eq. 3.2, does not take into account any instruction-level parallelism

(ILP), we need a way to derive the number of cycles required to execute the task without ILP.

We show that this number of cycles can be calculated from the actual number of cycles used

during execution and the instruction rate.

We define #instr as the number of instructions the task executes. Since the only requirement

of the task is that it consumes some amount of cycles, we define:

#instr = #cycles× instr rate, (3.3)

where num cy, instr rate denote the number of cycles used to execute the instructions and the

average number of instructions executing per cycle, respectively. When only one instruction uses

a cycle at any point in time, instr rate = 1.

We define pred num cycles, act num cycles as the predicted and actual number of cycles
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used, respectively. Similarly, we define instr rate pred, instr rate act as the predicted and

actual number of instructions executed during the period of a cycle. Since we are comparing the

execution of the same task, #instr is fixed. From Eq. 3.3:

instr rate act

instr rate pred
=

pred num cycles

act num cycles
, (3.4)

We define p2a cy = pred num cycles
act num cycles to be the ratio between the predicted and actual number

of cycles used. Since LIM assumes that only one instruction uses a cycle, instr rate = 1:

p2a cy = instr rate act (3.5)

With Eq. 3.5, we can calculate the number of cycles required to execute a task without ILP by

measuring the actual number of cycles used and the instruction rate when the task was executed

on a baseline resource. We use Eq. 3.5 to derive the number of cycles necessary to execute a task

sequentially on any resource. We define ε as the percent error between p2a cy and instr rate act

to measure how much instruction-level parallelism affects the LIM’s prediction error:

ε =
|p2a cy − instr rate act|

p2a cy
× 100 (3.6)

If the prediction error in the number of cycles required is completely due to the instruction-level

parallelism, then ε = 0.

In the experiments, we used perf to profile the execution of a task on a ‘baseline’ resource

to measure the information necessary to predict the number of cycles required to without ILP.

We assume that the predicted number of cycles represents the number of cycles required to

execute the task on any machine in the absence of ILP. We use the predicted number of cycles

and the clock speed of the resource’s processor to predict the task’s execution time on each

resource. Though we sacrifice prediction accuracy by not accounting for the ILP during the

task’s execution, we simplify the process the collecting information to predict task execution

times. In Sec. 3.4 and Sec. 4.3, we show that even inaccurate task execution time predictions

can still be used to effectively select resources.

Resource Selection Process

To develop a formal solution to the resource selection problem, we provide solutions to the two

subproblems of the resource selection problem (see Ch. 2). To address the resource selection

problem, we adapt the Condor matchmaking algorithm to operate in terms of consumables. We
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call the resulting algorithm the ‘adapted matchmaking algorithm’ (AMA). We show that it is

possible, but not necessary, for AMA to select resources based on requirements and capabilities.

Resource Viability

To adapt the Condor matchmaking algorithm to operate in terms of consumables, we define

the algorithms SATISFY REQ and SATISFY TASK to determine whether a resource can

execute a task. SATISFY REQ (Alg. 1) takes as input a requirement and capability and

determines whether the consumable specified by the capability can be used by the requirement.

SATISFY REQ checks: (1) if the types of consumables of the requirement and capability

are the same; (2) if for every form attribute in the requirement there is a corresponding form

attribute in the capability; and (3) if for each form attribute in the requirement there is a value

in the condition of the form attribute of both the capability and the requirement. Note that the

comparison operator used to decide whether two values are equal depends on the data type of

the values (e.g., integer, float, string), as discussed in several specifications [11,12].

Algorithm 1 Check if capability (cap) consumable can be used to satisfy requirement (req)

Require: req ; cap
Ensure: True or False
1: procedure satisfy req(req, cap)
2: if req.c.type != cap.c.type then
3: return False
4: for all (attr, cond) in req.c.form do
5: if attr not in cap.c.form then
6: return False
7: if cap.c.form.cond ∩ cond = ∅ then
8: return False
9: return True

SATISFY TASK (Alg. 2) takes as input a task and resource and checks whether for each

requirement of each instruction of the task there is a capability of the resource that can satisfy the

given requirement. SATISFY TASK uses SATISFY REQ to determine whether a capability

can be used to satisfy a requirement. If SATISFY TASK returns True for a given task and

resource, then the task can execute on that resource.

SATISFY TASK can then be used determine for each task of a workload whether there

is a subset of resources that can execute that task. We call this subset of resources the “viable

resources set” of that task. If every task in the workload has a nonempty viable resources set,

then the workload can be executed across a subset of the available resources.
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Algorithm 2 Check whether a task (task) can execute on a resource (res)

Require: res = (cap1, . . . , capm); task = (ins1, . . . , insn),where insi = (req1, . . . , reqik)
Ensure: True or False
1: procedure satisfy task(res, task)
2: for all ins in task do:
3: for all req in ins do:
4: match ← 0
5: for all cap in res do
6: if SATISFY REQ(req, cap) = True then
7: match ← 1
8: if match = 0 then
9: return False

10: return True

Execution Affinity

We assume a workload, a set vrs of viable resources {res1, . . . , resn} for each task taskn of that

workload, and a function affinity which maps a set of input tuples to a totally order set (e.g.,

R): The higher the value, the better resn is for executing taskm. Note that for every pair of

(resn, taskm), there is only one input tuple that is used to determine the affinity value of that

(resn, taskm) pair.

Generally, the input of affinity does not necessarily include task requirements or resource

capabilities. However, if we want to select resources using only information about task require-

ments and resource capabilities, we can use Eq. 3.1 to select resources and provide the task

requirements and resource capabilities as input to affinity.

RES SELECT (Alg. 3) identifies the available resources that gives that highest affin-

ity value. We define the set vrs id = {res id1, . . . , res idn} to be the set of unique IDs of

every resource in a task’s viable resources set. We also define the task input set TIS =

{input1, . . . , inputn}, where inputi is the input tuple to affinity associated with res idi.

RES SELECT takes as input vrs id, TIS and affinity, and returns res ∈ vrs id, whose

associated input tuple gives the highest affinity value.

Algorithm 3 Determines the resources on which a task input set (TIS) should execute, given
the viable set (vrs id) of each task of TIS

Require: vrs id = {res id1, . . . , res idn}; TIS = {input1, . . . , inputn}; affinity()
Ensure: Resource ID res or NONE
1: procedure res select(res id, TIS, affinity)
2: best res ← NONE
3: best select val ← −∞
4: for i from 1 to n do
5: select val = affinity(inputi)
6: if best select val < select val then
7: best select val ← select val
8: best res ← res idi
9: return best res
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RES SELECT can be used in conjunction with SATISFY TASK to provide a formal

solution to the resource selection problem. Given a set of tasks and a set of resources,

SATISFY TASK can be used to identify the viable resource set of each task. If any vi-

able resource set of any task is empty, then the given resources cannot be used to execute the

workload. Otherwise, RES SELECT can be used to select the resource that yields the highest

affinity value. The set of resources used to execute the given tasks is the set of resources that

yielded the highest affinity value for at least one task.

It is important to note that the algorithms described are concerned only with selecting

resources. However, RES SELECT can be modified to return a list containing the affinity value

of each resource. This information can be incorporated into workload scheduling algorithms [72–

84,88–90] to decide which resources should be used to execute the tasks and the order in which

they execute. However, a discussion in this direction is beyond the scope of the resource selection

problem.

Resource Re-selection

Though important, Tx is only one time-component of a task’s overall time-to-completion; a

task’s time-to-completion, denoted TTC, is the total amount of time spent on the execution of

a task. Aside from Tx, TTC includes other time-components like Tq, the time spent acquiring

the resources necessary to execute the task. While the Tq experienced when acquiring grid

resources is usually low, the Tq experienced when acquiring supercomputing resources varies

and can be large. This is because many users are concurrently acquiring and using resources

from supercomputers to execute their respective applications. While resources may instead be

selected based on both Tx and Tq to minimize the task’s TTC, it remains difficult to predict

accurately Tq on production supercomputers [98–102,104–106].

Building upon the resource selection process, we developed a process called ‘resource re-

selection’ to re-assign tasks to execute on resources based on their capabilities and their acquisi-

tions at runtime. To focus on selecting resources based on how their capabilities and acquisitions

at runtime affect the task’s TTC, we define TTC = Tq + Tx. The intuition behind perform-

ing resource re-selection is to re-assign a task that can execute on a different, acquired resource

while waiting for its originally selected resource to be acquired. When the originally selected

resource is acquired, the task can decide either to continue executing on its newly assigned re-

source or restart its execution on its originally assigned resource. This decision depends upon

the task’s execution times and resource acquisition times of the originally and newly selected re-

sources. It is important to note that re-assigning a task to execute on a different resource implies
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performing resource re-selection.

Rather than selecting resources using inaccurate Tq predictions on different supercomputers,

we re-assign tasks using knowledge of a task’s Tx on different resources and the acquisition times

of those resources. After providing the assumptions under which we explore resource re-selection,

we discuss how resources are re-selected using actual task execution times. Then, we discuss

the consequences of selecting resources using predicted task execution times instead. While re-

selecting resources using predicted task execution times can negatively impact a task’s TTC,

resources can still be effectively re-selected using such predictions.

Assumptions

We assume the following when performing resource re-selection:

1. The workload, the resources used to execute the workload, and the execution times of tasks

running on any of those resources are known and fixed.

2. Resource used to execute the workload are initially unacquired, and can be acquired at

different points in time.

3. Tasks can only execute on acquired resources.

4. Each task is initially assigned to a viable resource, and can be re-assigned to execute on

other viable resources that have been acquired.

5. A task must restart its execution when re-assigned to execute on a different resource.

6. Re-assigned tasks begin executing on a resource immediately after re-assignment.

Assumptions (2)–(4) captures how users typically acquire and use resources from supercom-

puters or grids. Users submit job requests to the machine’s local resource management system

(LRMS), specifying the capabilities of the resources they want to acquire. The requested re-

sources cannot be used to execute a task until the machine’s LRMS provides the user with the

resources specified by the previously submitted job request. Once the user acquires the desired

resources from the machine’s LRMS, the resources can be used to execute the user’s tasks.

Re-selection with Actual Execution Times

Here, we describe the process of performing resource re-selection with knowledge of the actual

task execution times. Let:

• s be a task.
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• R be a set with at least two resources that can execute s when acquired.

• t denote time.

• t = 0 be the time at which all resources from R are unacquired.

• r ∈ R be the resource on which s has been initially assigned to execute.

• t = ar be the time at which r is acquired and can be used to execute s.

• r′ ∈ R be a different resource that is acquired before r, i.e., ar′ < ar.

• Tx,r be the actual execution time of s on r.

We perform resource re-selection whenever s assigned to execute on r can be re-assigned to

execute on a different but acquired resource r′ when r is unacquired.

We define the re-selection window Wr′,r between r and r′ to be Wr′,r = Tx,r′−Tx,r. When

a task can be re-assigned to execute on r′ instead of r, the task s should execute on r′ for a

duration of at most Wr′,r before it commits to executing on r′. There are two cases to consider:

(1) Wr′,r ≤ 0; (2) Wr′,r > 0. If Wr′,r ≤ 0, then at t = ar′ , s should be re-assigned to execute on

r′ as Tx,r′ ≤ Tx,r and TTCr′ ≤ TTCr. If Wr′,r > 0, then s should execute on r′ while waiting

for r to be acquired. Assuming that task s has not finished executing on r′ before r is acquired,

s should be re-assigned back to r if ar − ar′ < Wr′,r, and continue executing on r′ otherwise.

The re-selection process can be generalized to allow tasks to be re-assigned to multiple,

different, concurrently acquired resources. When multiple, different resources are concurrently

acquired before its originally assigned resource, a task is re-assigned to the acquired resource

that yields the lowest TTC. Any further task re-assignment will be between the task’s originally

assigned and newly re-assigned resources.

Re-selection with Predicted Execution Times

Here, we describe the consequences of performing resource re-selection using task execution

time predictions rather than with the actual task execution times. We explore the conditions

under which the resource re-selected using execution time predictions differ from the resource

re-selected using actual task execution times. We provide bounds on the increase in the task’s

TTC as a result of executing on a resource re-selected using task execution time predictions

rather than using actual task execution times.

Given a task s and a resource r, we denote the predicted task execution time and actual

task execution time of a task s on a resource r as T̂x,r and Tx,r, respectively. We define Tq,r

as the amount of time spent acquiring resource r. Since each resource r is unacquired at t = 0
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and is acquired at t = ar, Tq,r = ar − 0 = ar. We define a task’s actual time-to-completion as

TTCr, where TTCr = Tq,r + Tx,r. Note that the definition of TTCr is calculated by measuring

when resource r is acquired. Given two resources r and r′, we denote the predicted re-selection

window of r and r′ as Ŵr′,r = T̂x,r′ − T̂x,r.

We define the act of performing resource re-selection using actual task execution times as the

function RESEL, where:

RESEL(Tx,r, Tx,r′ , ar, ar′) =


r, (Wr′,r > 0) ∧ (ar − ar′ < Wr′,r)

r′, (Wr′,r ≤ 0) ∨ ((Wr′,r > 0) ∧ (ar − ar′ ≥Wr′,r))

We define the act of performing resource re-selection using predicted task executions times

as the function P RESEL, where:

P RESEL(T̂x,r, T̂x,r′ , aq,r, aq,r′) =


r, (Ŵr′,r > 0) ∧ (ar − ar′ < Ŵr′,r)

r′, (Ŵr′,r ≤ 0) ∨ ((Ŵr′,r > 0) ∧ (ar − ar′ ≥ Ŵr′,r))

We say that the use of predicted task execution times incorrectly re-selects resources if

RESEL(Tx,r, Tx,r′ , ar, ar′) 6= P RESEL(T̂x,r, T̂x,r′ , ar, ar′), where ar, ar′ are fixed inputs to

functions RESEL and P RESEL. Given fixed values of Tx,r, Tx,r′ , T̂x,r, T̂x,r′ , ar, ar′ for task

s and resources r and r′, we express the penalty of incorrectly re-selecting resources using

predicted task execution times as penalty = |TTCP RESEL − TTCRESEL|. Going forward, we

use RESEL(. . .) and P RESEL(. . .) as shorthand for the functions RESEL(Tx,r, Tx,r′ , ar, ar′)

and P RESEL(T̂x,r, T̂x,r′ , ar, ar′), respectively.

We consider Case 1, where Wr′,r ≤ 0. So RESEL(. . .) = r′. If Ŵr′,r ≤ 0, then

P RESEL(. . .) = RESEL(. . .) = r′. If Ŵr′,r > 0, then P RESEL(. . .) = r′ if ar − ar′ ≥ Ŵr′,r

and P RESEL(. . .) = r if ar−ar′ < Ŵr′,r. So, when Wr′,r ≤ 0, Ŵr′,r > 0 and ar−ar′ < Ŵr′,r,

penalty = |TTCr − TTCr′ |

= |(Tq,r − Tq,r′) + (Tx,r − Tx,r′)|

< ||Ŵr,r′ |+ |Wr,r′ ||

= |Ŵr′,r|+ |Wr′,r|

(3.7)

We consider Case 2, where Wr′,r > 0. If Ŵr′,r ≤ 0, then P RESEL(. . .) = r′. If ar − ar′ ≥

Wr′,r, then RESEL(. . .) = r′. However, if r is acquired at t = ar such that ar − ar′ < Wr′,r,

then RESEL(. . .) = r. So, when Wr′,r > 0, Ŵr′,r ≤ 0 and ar − ar′ < Wr′,r,
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penalty = |TTCr′ − TTCr| < Wr′,r (3.8)

If Ŵr′,r > 0, it may still be possible to incorrectly re-select resources if Wr′,r 6= Ŵr′,r. If

Wr′,r > Ŵr′,r, then it is possible that resource r is acquired at time ar, where ar′ + Ŵr′,r <

ar < ar′ + Wr′,r. In this case, P RESEL(. . .) = r′ and RESEL(. . .) = r. So,

penalty = |TTCr′ − TTCr|

= |Tq,r′ + Tx,r′ − (Tq,r + Tx,r)|

= |(Tx,r′ − Tx,r)− (Tq,r − Tq,r′)|

≤ |Wr′,r − Ŵr′,r|

(3.9)

If instead Wr′,r′ < Ŵr′,r, then it is possible that resource r is acquired at time ar, where

ar′ + Wr′,r < ar < ar′ + Ŵr′,r. In this case, P RESEL(. . .) = r and RESEL(. . .) = r′. So,

penalty = |TTCr − TTCr′ |

= |Tq,r + Tx,r − (Tq,r′ + Tx,r′)|

= |(Tq,r − Tq,r′)− (Tx,r′ − Tx,r)|

≤ |Ŵr′,r −Wr′,r|

(3.10)

Based on the penalties incurred for incorrectly re-selecting resources, we see that it is more

important that the predictions accurately predict the re-selection windows of resource pairs than

it is to accurately predict the task execution times on each resource. Even if inaccurate, if the

predicted task execution times correctly rank resources, i.e. Tx,r ≤ Tx,r′ ⇔ T̂x,r ≤ T̂x,r′ ,∀r, r′ ∈

R, then a penalty for incorrectly re-selecting resources is only incurred when Wr′,r 6= Ŵr′,r. This

is because Tx,r ≤ Tx,r′ ⇔ T̂x,r ≤ T̂x,r′ ,∀r, r′ ∈ R is equivalent to Wr′,r ≤ Ŵr′,r.

In fact, predicted task execution times will always correctly re-select resources if ∀r ∈ R,

T̂x,r = Tx,r + c, c ∈ R as it implies that Wr′,r = Ŵr′,r. From this, we see that re-selecting

resources with actual task execution times is a special case of T̂x,r = Tx,r + c, where c = 0.

Thus, accurate execution time predictions are sufficient but not necessary to guarantee correct

resource re-selection.

Still, the penalty incurred for incorrectly re-assigning a task can be nontrivial. In our exper-

iments, we performed resource re-selection to re-assign tasks originally assigned to execute on

XSEDE supercomputers to OSG using task execution time predictions that correctly rank the

supercomputers and OSG. While some tasks were incorrectly re-assigned, we show experimen-

tally that the increase in TTC experienced by some tasks as a result of incorrect re-assignment

is acceptable as resource re-selection reduced the TTC of the workload.
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Chapter 4

Experiments

We performed three sets of experiments to measure the performance of selecting resources based

on the information available from XSEDE supercomputers and XSEDE OSG using LIM, intro-

duced Sec. 3.2. The first set of experiment studies the accuracy of the Tx predictions generated

by LIM for single-threaded, single-process, compute intensive tasks on XSEDE supercomputers

and OSG. The second set of experiments compares the TTC of workloads executed on resources

selected using Tx predictions generated by LIM with the TTC of workloads executed on ran-

domly selected resources. The third set of experiments compares the TTC of workloads executed

by performing resource re-selection with the TTC of the workloads executed in the second set

of experiments.

Machines: The machines used in all experiments are the XSEDE supercomputers Bridges [110],

Comet [111] and SuperMIC [112], and the XSEDE OSG VirtualCluster [113] resource pool (here-

after just OSG). We submitted jobs to the RM, compute, and workq queues of, respectively,

Bridges, Comet and SuperMIC. Though OSG is a heterogeneous collection of machines, we use

the term ‘target machines’ to indicate the XSEDE supercomputers and OSG resource pool.

Application: For all experiments, we used a task simulating the dynamics of a protein in

water, representative of many tasks routinely executed on a diverse type of machines. We used

GROMACS 5.0, compiled with single-precision floating-point and SSE4.1 SIMD instructions as it

was the default version supported by OSG. Though the XSEDE supercomputers support newer

versions of GROMACS, we compiled GROMACS 5.0 to match the GROMACS configuration on

OSG because we had little control over the software environment of OSG. Further, since OSG is

primarily designed for loosely-coupled, single-threaded jobs, we executed the simulations using

a single thread and process on all target machines.

Since the task used for the experiments is ‘compute-intensive’ with limited I/O load, we
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Table 4.1: Clock Speeds, in GHz

DCR base avg

Bridges 2.30 2.732 (0.038)
Comet 2.50 2.888 (0.001)

SuperMIC 2.80 3.589 (0.002)
OSG 2.50 2.930 (0.227)

focused only on its computational requirements. Using LIM, we expressed the task’s requirements

in terms of the number of cycles to consume using x86 instructions. Similarly, we focused only

on the computational capabilities of the resource used, as determined by the clock speed the

resource’s processor.

Experiment 1: Execution Time Accuracy

We designed a set of experiments to characterize the accuracy of LIM to predict the execution

time Tx of a task on the target machines. We used the Amarel cluster [114] as the baseline

machine from which to collect the information required by LIM. From Amarel, we only used

nodes which had Intel Xeon e5-2680 Broadwell cores and 128GB or 256GB memory. While

other machines could have been used, Amarel offered rapid access to its resources. Using the

information collected from Amarel and from the target machines, we predicted the Tx of the

task running on each target machine. We executed the same simulation on the target machines

to measure the prediction error of LIM.

Setup

The same MD simulation was executed for 1000, 5000, 10000, 25000, 50000, 75000, and 100000

timesteps on the baseline and target machines. We used perf [115] to profile the execution of

the simulation on Amarel. We ran each simulation between 35–60 times for each number of

timesteps. Using the number of cycles used and the instruction rate measured when executing

the simulation on Amarel, we predicted the number of cycles required by the task when executed

without ILP with Eq. 3.5. We used this prediction along with the base clock speed of the CPUs

on the target machines to predict the execution times of simulations when executing on the

target machines.

We used XSEDE documentation and processor specifications to identify the base clock speeds,

denoted base, of the processors of the target machines. Unlike the XSEDE supercomputers, OSG

is a pool of heterogeneous resources. For OSG, base represents the weighted average of the base

clock frequencies of the processors of OSG resources. To calculate the weighted averages, we

collected information on the processors available in the OSG resource pool at the beginning of

the experimental campaign. Tab. 4.1 shows the values for base for the target machines.
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We executed the same simulations on each target machine to measure LIM’s prediction er-

ror. We profiled the execution of the simulation on the target machines with perf. Again, we

executed the simulation 35–60 times for each number of timesteps. We compared the number of

instructions executed on each target machine with that measured from Amarel. We also com-

pared the number of cycles used with the predicted number of cycles used. We measured the

average clock speed, denoted avg, experienced when executing the simulations on the target

machines. Tab. 4.1 shows the average clock speeds measured and their sample standard devia-

tions (given in parenthesis) for each target machine. We used perf to measure the simulation’s

Tx on the XSEDE supercomputers. On OSG, however, we found that only ∼1.2% of the trial

runs on OSG resources were able to use both perf and GROMACS. Thus, we used the wall-

time measurements in the log files of GROMACS simulations to measure the simulation’s Tx on

OSG.

Results

For any number of timesteps, we found that the number of instructions required to execute a

GROMACS simulation on resources from the XSEDE supercomputers is within ∼3% of that

executed on Amarel. However, the number of instructions executed on OSG resources is on

average 22–24% more than that executed on Amarel. This is likely because the GROMACS

software configuration on OSG is different than that on Amarel and XSEDE supercomputers,

despite the fact that the version, floating-point precision and SIMD instruction set are the same.

Figs. 4.1 – 4.5 give a summary of our findings. All values are shown in the figures as averages,

along with their sample standard deviations as error bars. Fig. 4.1 shows the number of cycles

required to execute a simulation on Amarel and on the target machines, as well as the predicted

number of cycles required. Fig. 4.2 shows the instruction rate measured when executing the

simulations on the target machines. It is important to note that the stability of the instruction

rate for the XSEDE supercomputers is due to the homogeneity of their resources.

Fig. 4.3 shows that LIM overpredicts the actual number of cycles needed to execute the

simulations on XSEDE supercomputers by ∼110–125%. This is because LIM does not take

into account the code structure of the GROMACS simulation or the hardware architecture of

resources from the target machines. By calculating p2a cy for each simulation, we find that the

average ε for the simulations on the XSEDE supercomputers is less than 3%. This means that

LIM overpredicts because LIM does not consider information that describes the ILP which the

code exploits in the hardware. However, we see that LIM reasonably predicts the number of

cycles used to execute the simulations on OSG. This is likely because LIM underpredicted the

number of instructions required to execute the simulation on OSG.
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Figure 4.1: Average number of cycles measured on Amarel, Bridges, Comet, SuperMIC, OSG,
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Figure 4.2: Instruction Rate (Instructions executed per cycle) of GROMACS simulations running
on Bridges, Comet, SuperMIC and OSG
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Figure 4.5: Prediction errors of the predicted execution times (using base frequencies) of GRO-
MACS simulations running on Bridges, Comet, SuperMIC and OSG

Figs. 4.4 and 4.5 show that LIM overpredicts the task’s execution time by 157–171% for

the XSEDE supercomputers, and by 18–31% for OSG. While the prediction error in the task

execution time is largely due to the prediction error in the number of cycles required, it is also

due to the difference in clock frequencies base and avg. Despite LIM’s prediction error, we can

select resources from the XSEDE supercomputers using the resource ranking created using the

execution time predictions generated from LIM. Fig. 4.4 shows that the rankings of XSEDE

supercomputers made using T̂x and using actual Tx are the same.

However, the ranking of XSEDE supercomputers and OSG made using execution time pre-

dictions is not the same as that made using actual execution times. The predicted execution

time on OSG is equal to that on Comet, and less than that on Bridges. In reality, the actual ex-

ecution time on OSG is greater than that on Comet and Bridges. The inversions in the resource

rankings created from the predicted execution times likely occurred because the task executes

∼22–24% more instructions on OSG than on the XSEDE supercomputers. To account for the

additional instructions executed, we increased the predicted number of cycles required on OSG

by 22%. Doing so makes the ranking of XSEDE supercomputers and OSG created using exe-

cution time predictions the same as that created using actual execution times. This shows that

additional information on the software configurations on OSG resources can improve execution

time predictions to correctly rank XSEDE supercomputers and OSG.
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Experiment 2: Resource Selection

We performed a set of experiments executing a bag-of-tasks workload across the target machines

to compare the performance of selecting resources based on the task’s predicted execution time

against that of selecting resources randomly from the target machines. The workload is composed

of identical MD simulations, each running for 105 timesteps as specified in Sec. 4.1. We measured

the performance of each resource selection strategy in terms of the execution time and time-to-

completion of the workload, both of which are metrics of particular interest to users. We call

the set of runs where the resources were selected randomly or selected using LIM the ‘random’

and ‘model’ runs, respectively.

Setup

We executed workloads with 64, 128, 256, 512, and 1024 tasks across the target machines,

repeatedly over the course of a month. Only one distributed execution of the workload occurred

at any given time, preventing self-competition for resource acquisition. We used RADICAL-

Pilot (RP) [116] to concurrently acquire resources from the target machines and to distribute

the execution of the workload across those resources.

We submitted at most one pilot [117] to the local resource manager of any XSEDE super-

computer to acquire the resources necessary to execute the workload. Concurrently submitting

multiple pilots to the same supercomputer would have created self-competition for resources,

requiring further investigation of the effects of pilot sizing on the distributed execution of the

workload [118]. On OSG, we submitted only single-core pilots to acquire the number of cores

required execute the workload. While it is possible to submit multi-core pilots to OSG, the

XSEDE OSG documentation recommends against it.

The metric used to select resources is the task’s predicted execution time T̂x,task. Values of

T̂x,task used are LIM’s predictions made using base. Since we found in Sec. 4.1 that running the

task on OSG requires ∼22–24% more instructions than on XSEDE supercomputers, we increased

the number of cycles required to execute the task without ILP on OSG by 22%.

We define the time-to-completion of a workload TTCwkd as Tq,wkd + Tx,wkd, where Tq,wkd

is the time spent only acquiring resources and Tx,wkd is the amount of time spent executing at

least one task. Since no data movement or pre-processing and post-processing occurs during the

workload’s execution, TTCwkd only involves Tq,wkd and Tx,wkd. Similarly, we define TTCtask as

Tq,task + Tx,task, where Tq,task is the amount of time a task waits before executing and Tx,task

as the task’s actual execution time.
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Results

Fig. 4.6 shows the average Tx,wkd, Tq,wkd and TTCwkd and the sample standard deviations of the

runs we performed over a month. During the period in which the ‘model’ runs were performed,

LIM selected SuperMIC as it yielded the lowest T̂x,task. From Fig. 4.6a, we see that the average

Tx,wkd of the ‘model’ runs were 67–78% smaller than that of the ‘random’ runs. This is because

tasks experienced the lowest actual Tx,task when executed on SuperMIC. Thus, assigning tasks

to execute on SuperMIC minimized Tx,wkd.

For the ‘model’ runs, Fig. 4.6a shows that the Tx,wkd of the ‘model’ runs for each workload

size are almost identical, and that the sample standard deviations are almost negligible. This is

because all tasks in the ‘model’ runs executed on SuperMIC. The sample standard deviations are

larger for ‘random’ runs because tasks were randomly assigned to execute on the target machines.

Moreover, tasks assigned to OSG experienced different Tx,task as OSG is a heterogeneous pool

of resources.

From Fig. 4.6b, we see that the average Tq,wkd and the sample standard deviation from the

‘model’ runs are smaller than those from the ‘random’ runs. This is due to the different Tq,task

experienced on different machines. For the ‘model’ runs, all tasks were assigned to execute on

SuperMIC, whose queue waiting times were on much lower and more stable than that of Bridges

of Comet. This observation is consistent with the historical data of XDMoD [119].

Since tasks were randomly distributed across multiple machines for the ‘random’ runs, the

queue waiting times experienced by the tasks were largely determined by the queue waiting

times experienced by the pilots acquiring the resources. For ‘random’ runs of workload size 64

or 128, all pilots experienced relatively small queue waiting times. For ‘random’ runs of larger

workload sizes, pilots submitted to Comet or Bridges commonly experienced large queue waiting

times. From Fig 4.6b, we see that the average Tq,wkd for workload sizes 64 and 128 are smaller

than that for larger workload sizes. However, additional experiments are required to determine

whether there is a relationship between the sample standard deviation and workload size.

Fig. 4.6c shows that the average TTCwkd measured from the ‘model’ runs was 67–85% lower

than that measured from the ‘random’ runs. Based on Figs. 4.6a and 4.6c, we see the the reduc-

tion in Tx,wkd as a result of selecting resources using task execution time predictions contributed

to a 29–99% reduction in TTCwkd. The large variation in the reduction in TTCwkd as a result

of a reduction in Tx,wkd is due to the queue waiting times experienced by the pilots. By defini-

tion of TTCwkd, the reduction in TTCwkd due to the reduction in Tx,wkd is inversely related to

the reduction in TTCwkd due to the reduction in Tq,wkd. From Figs. 4.6a and 4.6c, we see larger

reductions in TTCwkd as a result of the reduction in Tx,wkd when pilots experienced lower queue
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waiting times.

While selecting resources using T̂x,task minimized Tx,wkd and reduced TTCwkd, TTCwkd

is still largely influenced by Tq,wkd. Thus, the effective selection of resources from XSEDE

supercomputers and OSG should account for the queue waiting times experienced when acquiring

resources.

Experiment 3: Resource Re-Selection

We study how the flexibility to re-assign tasks at runtime affects TTCwkd. We used the log files

collected from the ‘random’ runs in Sec. 4.2 to simulate the process of resource re-selection.

We study how resource re-selection affects the Tx,task, Tq,task and TTCtask of re-assigned

tasks. Furthermore, we compare the Tx,wkd, Tq,wkd and TTCwkd measured from the resource

re-selection simulation with those measured from the ‘random’ and ‘model’ runs discussed in

Sec. 4.2. Though they are simulations, we refer to the set of resource re-selection simulation as

‘re-selection’ runs.

Setup

Assumption (6) (given in Sec. 3.4) restricts us to only re-assign tasks originally assigned to

an XSEDE supercomputer to execute on XSEDE OSG. Since the queue waiting times of jobs

submitted to XSEDE OSG are generally low, tasks re-assigned to OSG can begin executing

relatively quickly. This is not the case for jobs submitted to XSEDE supercomputers as the queue

waiting times these jobs experience can vary greatly. Strategies to acquire excess resources from

supercomputers to allow tasks to be re-assigned to supercomputers is considered future work.

With these constraints, we simulated the process of resource re-selection by identifying tasks

originally assigned to an XSEDE supercomputer that should be re-assigned to execute on OSG

instead. For each run, we simulated the act of re-assigning tasks to OSG by changing the task’s

timestamps to the timestamps of the task which had the largest measured TTCtask of all tasks

that executed on OSG in that run. We used T̂x predictions generated using LIM for each target

machine, with the 22% increase in the predicted number of cycles on OSG, to determine whether

a task should be re-assigned.

Results

Fig. 4.7 shows the average percentage improvements to the Tx,task, Tq,task and TTCtask and the

standard deviations of tasks after they have been re-assigned to execute on OSG. However, there

are missing data points as not all tasks were candidates for re-assignment. No tasks assigned
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(a) Change in Tx,task

(b) Change in Tq,task

(c) Change in TTCtask

Figure 4.7: Percentage improvements of Tx,task, Tq,task and TTCtask when resource re-selection
was performed on tasks from random runs. Positive improvement means decreased time; negative
improvements means increased time.
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Figure 4.8: Tx,wkd, Tq,wkd and TTCx,wkd measured from the random, re-selection and model
runs
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to SuperMIC were re-assigned to OSG because of the small queue waiting times experienced on

SuperMIC. Also, we find that 50% of ‘random’ runs had tasks originally assigned to Comet or

Bridges re-assigned to OSG instead. For ‘random’ runs of workload size 64, no tasks assigned to

Bridges were re-assigned to OSG. Also, for ‘random’ runs of workload size 128, no task assigned

to Bridges or Comet were re-assigned to OSG.

Fig. 4.7a shows that average Tx,task of re-assigned tasks were increased by 240–280%. This

is because the task’s Tx is larger on OSG than on Comet or Bridges. From Fig. 4.7b, we see that

the average Tq,task of re-assigned tasks were reduced by at least 90%, with the exception of tasks

originally assigned to Bridges that belonged to workloads of size 1024. This is because the Tq,task

experienced by tasks running on Comet or Bridges dominated their TTCtask. Fig. 4.7c shows

how the increase in Tx,task and decrease in Tq,task affects the TTCtask of the re-assigned tasks.

From Fig. 4.7c, we see that re-assigning tasks generally reduced their TTCtask. By re-assigning

tasks that were originally assigned to Comet or Bridges to OSG instead, tasks were able to begin

their execution immediately and avoided experiencing large Tq,task on Comet or Bridges.

Of the tasks that were re-assigned to OSG, ∼30% of tasks originally assigned to Comet

and ∼50% of tasks originally assigned to Bridges experienced an increase in TTCtask. This is

because the difference in the queue waiting times experienced on Bridges (or Comet) and OSG

was larger than the predicted re-selection window of Bridges (or Comet) and OSG, but smaller

than the actual re-selection of Bridges (or Comet) and OSG, i.e. ŴOSG,Bridges < (Tq,Bridges −

Tq,Bridges) < WOSG,Bridges and ŴOSG,Comet < (Tq,Comet − Tq,Comet) < WOSG,Comet. From

Sec. 3.4, we see that increases in TTCtask caused by this type of incorrect re-assignment is

bounded above by |ŴOSG,Bridges −WOSG,Bridges| for tasks originally assigned to Bridges, and

|ŴOSG,Comet−WOSG,Comet| for those originally assigned to Comet. Nonetheless, from Fig. 4.7c,

we see that the reduction of TTCtask due to correct re-assignment was often much larger than

the increase in TTCtask caused by incorrect re-assignment.

Fig. 4.8 shows the average Tx,wkd, Tq,wkd and TTCwkd and the sample standard deviations

of the ‘re-selection’, ‘random’ and ‘model’ runs. From Fig. 4.8b, we see that the average Tq,wkd

from ‘re-selection’ runs is 0–99% lower than of the ‘random’ runs. The wide range of reduction

in Tq,wkd is due to the queue waiting times experienced by pilots acquiring resources.

For ‘random’ runs of workload sizes 64 and 128, all pilots experienced relatively low queue

waiting times before acquiring their resources, and tasks generally executed on their originally

assigned resources. So, the average Tq,wkd of ‘re-selection’ runs of workload sizes 64 and 128

is only 0–9% smaller than that of the ‘random’ runs of the corresponding workload sizes. For

‘random’ runs of workload size 256 and higher, pilots submitted to Comet or Bridges com-

monly experienced large queue waiting times before acquiring resources. Performing resource
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re-selection allowed tasks originally assigned to Comet or Bridges to OSG instead to avoid ex-

periencing large Tq,task. As a result, the average Tq,wkd of ‘re-selection’ runs of workload sizes

256 or higher is 97–99% smaller than that of the ‘random’ runs of the corresponding sizes.

It is important to note that resource re-selection is useful in allowing tasks to avoid experi-

encing large Tq,task on their originally assigned resource by re-assigning them to execute on a

different, acquired resource. However, resource re-selection is less useful if the tasks experience

small Tq,task before they begin executing on their originally assigned resource. Still, for work-

load sizes of 128 and larger, Fig. 4.8b shows that the average Tq,wkd of the ‘re-selection’ runs is

similar to that of the ‘model’ runs.

Fig. 4.8a shows that the average Tx,wkd of ‘re-selection’ runs is generally smaller than that

of ‘random’ runs. This is because the tasks that were originally assigned to Comet or Bridges

and were re-assigned to OSG were able to execute concurrently with tasks that were originally

assigned to OSG. An increase in the number of concurrently running tasks decreases the amount

of time spent executing all tasks of the workload. So, for runs of all workload sizes except 128,

Fig. 4.8a shows that the average Tx,wkd of ‘re-selection’ runs are smaller than that of ‘random’

runs. The average Tx,wkd of ‘random’ and ‘re-selection’ runs of workload size 128 are the same

because no tasks were re-assigned.

While resource re-selection can reduce Tx,wkd by increasing the number of concurrently ex-

ecuting tasks, Tx,wkd can never be smaller than the largest Tx,task experienced by any of the

tasks. Since Tx,task is highest on OSG, the Tx,wkd of a ‘re-selection’ run is no smaller than the

largest Tx,task experienced by any task that was assigned/re-assigned to execute on OSG. As a

result, from Fig. 4.8a, we see that the average Tx,wkd of the ‘model’ runs are consistently smaller

than that from the re-selection’ runs. This is because every task from the ‘model’ runs executed

on SuperMIC, which has a lower Tx,task than on OSG.

From Fig. 4.8c, we see that the average TTCwkd of the ‘re-selection‘ runs is 0–73% smaller

than that of the ‘random‘ runs. Again, the reduction in TTCwkd is dependent upon the queue

waiting times experienced by the pilots. For the ‘random runs’ of workload sizes 64 and 128,

the resources were quickly acquired from the target machines, and only a few tasks were re-

assigned. For workload sizes 64 and 128, the average TTCwkd of the ‘random’ runs is only 0–4%

smaller than that of the ‘re-selection runs’. For workload sizes 256 and larger, the queue waiting

times experienced on Comet and Bridges were large, and many tasks were re-assigned. As such,

for workload sizes 256 and larger, the average TTCwkd is a ∼33–73% smaller than that of the

‘random’ runs.
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Chapter 5

Discussions

From the results of Sec. 4.1, we found that additional information on the GROMACS configu-

ration on OSG should be provided to the user. Despite attempts to replicate the GROMACS

configuration on OSG on the other target machines, GROMACS simulations executed 22–24%

more instructions on OSG than on the other machines. By adjusting for the additional instruc-

tions, we were able to correctly rank all target machines using their predicted task execution

times. Using this adjusted ranking, we were able to effectively perform both resource selection

and resource re-selection, as shown in Secs. 4.2 and 4.3. We claim that a better understanding

of the software environment on OSG resources can improve resource selection across XSEDE

supercomputers and grids.

From Secs. 4.2 and 4.3, we see that resources can be effectively selected using inaccurate task

execution time predictions if these predictions correctly rank resources. As such, it may not be

necessary to collected detailed information about resource capabilities, as was done in [27–30,36],

to generate task execution time predictions for resource selection or re-selection. This is re-

assuring as the information required to accurately predict task execution times can be difficult,

if not infeasible, to collected from grid resources [51,53].

From Sec. 4.3, we see that resource re-selection can reduce the Tq,wkd as it allows tasks

to execute on other acquired resources. An advantage of resource re-selection is that it does

not use queue waiting time predictions, which are difficult to predict accurately. However, the

ability to re-assign tasks depends upon which and how many resources are acquired. In Sec. 4.3,

tasks were only re-assigned from XSEDE supercomputers to OSG. Resource re-selection can be

correctly performed between XSEDE supercomputers with more accurate task execution time

predictions by taking advantage of the abundance of information that can be collected about

XSEDE supercomputers.

Resource re-selection can be further improved if excess resources from XSEDE supercomput-
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ing were acquired. This allows tasks to be re-assigned to execute on different XSEDE supercom-

puters, further reducing Tx,wkd and Tq,wkd. Deciding the amout of excess resources to acquire

from supercomputers for re-assignment touches upon the job sizing problem [118], which stud-

ies how many resources should be acquired from batch systems so that the amount of unused

resources is minimized. Work in this direction will focus on the trade-offs between the acquisi-

tion and utilization of excess resources for resource re-selection and the reduction in TTCwkd as

a result of performing resource re-selection.

Since resource re-selection focuses on selecting resources during the execution of a workload,

it can be used in conjunction with methods that select resources before the execution of a

workload. As an example, the resource re-selection process can be incorporated into the Condor

matchmaking algorithm discussed in Sec. 3.3). Rather than returning only one resource with the

highest affinity value, RES SELECT can return a set of resources with the k highest affinity

values. Initially, a task is assigned to execute on one of the k resources. If a resource with

a higher or lower affinity value is acquired, the task can decide whether or not to restart its

execution on the newly acquired resource based on the affinity values of the two resources and

the cost for restarting its execution.

Resource re-selection can also be incorporated into plan-based workload scheduling algo-

rithms to enable them to re-assign tasks based on resource acquisitoins at runtime. Many

workload scheduling algorithms do not consider resource acquisition times when performing re-

source selection [72–84]. While some workload scheduling algorithms are able to decide whether

to acquire and use additional resources during the execution of the workload [81, 87–91], they

assume that resource acquisition times are small and negligible. As such, they lack the ability to

effectively schedule or re-schedule tasks when resources acquisition times are lage. By incorpo-

rating resource re-selection, workload scheduling algorithms can adaptively schedule tasks based

on resource acqusitions at runtime.
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Chapter 6

Conclusions and Future Work

In this thesis, we studied how to effectively select resources from XSEDE supercomputers and

OSG in the presences of limited information. In Ch. 3, we presented a formalism that provided

us with the flexibility to model the cost of task execution based on the information available

from XSEDE supercomputers and OSG. We showed that this formalism can be incorporated

into the Condor matchmaking algorithm to address the resource selection problem. On the base

of this formalism, we created the Limited Information Model (LIM) to predict the execution

times of compute-intensive, single-threaded, single-process tasks. To overcome the difficulty of

selecting resources using queue waiting times, we developed a process called resource re-selection

to re-assign tasks to execute on different, acquired resources at runtime using task execution time

predictions and resource acquisition times, but not queue waiting time predictions.

In Ch. 4, we investigated whether task execution time predictions generated using the in-

formation from XSEDE supercomputers and OSG can be used to correctly select resources to

execute GROMACS simulations. We found that additional information on the GROMACS con-

figuration on OSG is required since GROMACS simulations running on OSG can execute 22–24%

more instructions than on XSEDE supercomputers. By accounting for the additional instruc-

tions executed on OSG, we were able to generate tasks execution time predictions that correctly

ranked the XSEDE supercomputers and OSG.

Also in Ch. 4, we studied how selecting resources based on the predicted task execution

times of GROMACS simulations can reduce the time-to-completion of bag-of-task workloads

composed of identical GROMACS simulations. We found that selecting resources based on the

predicted task execution times resulted in 67–85% lower workload time-to-completion than when

resources are selected randomly. However, executing workloads on resources selected using LIM’s

predictions contributed to ∼29–99% of the reduction in workload time-to-completion. We found

that the queue waiting times largely influences workload time-to-completion and should also be
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considered to effectively select resources from XSEDE supercomputers and OSG.

Using the log files collected when executing workloads using randomly selected resources, we

simulated the act of performing resource re-selection during workload execution. By re-selecting

tasks originally assigned to XSEDE supercomputers to OSG instead, tasks were able to avoid

experiencing large queue waiting times. Though their execution times increased, most tasks ex-

perienced reduced task time-to-completions. As a result, re-selecting resources reduced workload

queue waiting times by up to 99% and workload time-to-completion by up to 73%. However,

resource re-selection provides little to no reductions in task queue waiting times and workload

time-to-completions when the queue waiting times experienced on XSEDE supercomputers are

small. Still, results show that resource re-selection can be used to reduce the time-to-completions

of workloads executed using supercomputing and grid resources.

One direction in which this work can evolve is by extending the formalism so that it can de-

scribe computing tasks which use multithreading or multiprocessing. This extended formalism

can be used to create models to predict the execution times of parallel applications using infor-

mation available from supercomputers and grids. This can inform designers of large computing

systems on the type, amount and granularity of information to provide to users to enable them

to effectively select resources from multiple infrastructures.

Another direction in which this work can evolve is by investigating how incorporating re-

source re-selection into workflow scheduling algorithms can affect the execution of workflows

using supercomputers. While queue waiting times experienced on supercomputers can be large,

many workflow scheduling algorithms do not account for queue waiting times when scheduling

workflows. Additional studies can be performed to determine how resource re-selection can be

incorporated into existing workflow scheduling algorithms to improve the execution of workloads

using supercomputers.
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