IMPROVING APPLICATION INFRASTRUCTURE PROVISIONING USING RESOURCE USAGE PREDICTIONS FROM CLOUD METRIC DATA ANALYSIS

by

MAHESH HARIHARASUBRAMANIAN

A thesis submitted to the
School of Graduate Studies
Rutgers, The State University of New Jersey
In partial fulfillment of the requirements
For the degree of
Master of Science
Graduate Program in Electrical and Computer Engineering
Written under the direction of
Maria Striki
and approved by

New Brunswick, New Jersey
October, 2018
There has been a huge interest by companies to utilize the cloud for their day-to-day operations. Cloud providers like AWS, Microsoft Azure, Google have been quite successful in serving its ever-increasing customer base. It is interesting to study how these companies use the cloud metrics to efficiently schedule their customers’ jobs and thereby utilize the shared infrastructure effectively. A lot of research has been done with the Google cloud cluster data released publicly in 2011 to analyze the task and job failure rates and predict failures thereby optimizing the resource utilization by smart scheduling techniques. 6 years from then, Microsoft Azure has also released their VM CPU utilization data publicly in October 2017 along with the SOSP 2017 paper called “Resource Central”. We will be one of the first to analyze this data set. In this work, we analyze this data and try to answer the following questions:

1. What are the VM CPU usage patterns by Azure subscribers?

2. Can we predict the future usage if yes, how and who all can benefit from this data?
3. Which techniques among statistical machine learning and deep learning are most suited to the Microsoft Azure data?

4. Can the learning models so formed be generalized for other similar data sets and problems like anomaly detection using log analysis at the application level?

5. How can these models augment the performance of existing VM scheduling algorithms?
Acknowledgements

I would first like to thank my thesis advisor Prof. Maria Striki, faculty in the Electrical and Computer Engineering (ECE) Department at the Rutgers, The State University of New Jersey, for her immense support throughout this journey. Be it for the courses that I have taken under her or research guidance for this thesis, I have always received encouragement, motivation and advice that will help me not only in my professional but also my personal life.

I would also like to thank Dr. Zoran Gajic, professor and graduate director of the ECE department at Rutgers, The State University of New Jersey for his guidance which helped me plan my coursework and graduation time-line. The ECE department faculty also deserves credit since my graduate courses were also helpful in gaining new insights to my research problem. I thank the rest of my thesis committee: Dr. Athina Petropulu and Dr. Yingying Chen to have taken time out of their busy schedules to review, critique and share their feedback. It also feels great to have ever helpful ECE administrative staff like Christy Lafferty, Arletta Hoscilowicz and John Scaffidi assisting students like me with our doubts and clarifications.

It was also a great learning experience during my internship with New York Property Insurance Underwriting Association [1] where I was exposed to real world software application workloads, enterprise software architecture, infrastructure provisioning and setting up jobs using a workload automation tool called BMC Control-M. [2]

A big thank you to all my friends, roommates, colleagues, on-campus job supervisors to have eased my stay at Rutgers as an international student by helping out when in need.

Finally, I do not want to forget to express my profound gratitude to my mother Padmavathi Hariharasubramanian, my father Hariharasubramanian Kuppusamy and my
elder sister Rama Hariharasubramanian who have always backed me and also without whose support I could not have afforded to pursue a Master’s degree.
Table of Contents

Abstract ... ii
Acknowledgements ... iv
List of Tables .. ix
List of Figures .. x
1. Introduction .. 1
 1.1. Motivation ... 3
 1.2. Contribution .. 4
 1.3. Outline .. 4
2. Related Work/ Literature survey 5
 2.1. Cluster Trace Analysis ... 5
 2.2. Virtual Machine (VM) consolidation 6
 2.3. KPIs (Key Performance Indicators) 7
3. Azure Public Dataset .. 9
 3.1. Main Characteristics ... 9
 3.2. First glance at the Azure public data 10
 3.2.1. subscriptions.csv ... 10
 3.2.2. deployment.csv ... 11
 3.2.2.1. deployment query for VM0 12
 3.2.3. vmtable.csv .. 12
 3.2.3.1. Some simple vmtable queries 14
 3.2.3.2. Given deployment id find all VM data 14
3.2.3.3. Given subscription id find all VM data 15
3.2.4. vm_cpu_readings-file-1-of-125.csv 15
3.2.5. vm_cpu_readings-file-2-of-125.csv 16
3.2.6. CPU Readings every 5 minutes 18
 3.2.6.1. CPU readings for VM0 from file 1 18
 3.2.6.2. CPU readings for VM0 from file 2 18

4. Analysis of the Data ... 20
 4.1. Techniques, Tools and Technologies 20
 4.2. Digging into the Vmtable.csv dataset 20
 4.2.1. Correlation of the whole vmtable.csv data 22
 4.2.2. Correlation for interactive VMs for a chosen subscription id ... 28
 4.2.3. Correlation for Delay-insensitive VMs for the chosen subscription id ... 29
 4.2.4. Linear Regression .. 30
 4.2.5. Lasso Regression .. 36
 4.2.6. Ridge Regression .. 40
 4.2.7. Support Vector Regression (SVR) 44
 4.2.8. Interactive VMs v/s Delay Insensitive VMs 48
 4.2.8.1. Correlation for the Delay Insensitive and Interactive VMs 50
 4.2.8.2. Plot Correlation for Delay Insensitive VMs 50
 4.2.8.3. Plot Correlation for Interactive VMs 51
 4.3. RNN with LSTMs ... 52
 4.3.1. Import the Keras, scikit-learn and python libraries 53
 4.3.2. Load the input dataset generated for the VM 53
 4.3.3. Build our Model .. 54
 4.3.4. Plot for minimum CPU utilization 58
 4.3.5. Plot for maximum CPU utilization 59
 4.3.6. Plot for average CPU utilization 60
5. Discussion and Future Work ... 62
 5.0.0.1. Summarizing the Regression techniques 62
 5.0.0.2. Summarizing the LSTM RNN prediction 62
5.1. Discussion ... 63
5.2. Future Work ... 64

6. Conclusion ... 65

References ... 66
5.1. Results of applying various regression techniques to predict 95 percentile

CPU utilization .. 62
List of Figures

4.1. Correlation plot for the entire vmtable.csv file data 23
4.2. Correlation plot for Interactive VMs for a chosen subscription id ... 28
4.3. Correlation plot for Delay-insensitive VMs for the chosen subscription id 29
4.4. p95maxcpu prediction for Interactive VMs using Linear Regression ... 34
4.5. p95maxcpu prediction for Delay-insensitive VMs using Linear Regression 35
4.6. p95maxcpu prediction for Interactive VMs using Lasso Regression ... 39
4.7. p95maxcpu prediction for Delay-insensitive VMs using Lasso Regression 39
4.8. p95maxcpu prediction for Interactive VMs using Ridge Regression ... 43
4.9. p95maxcpu prediction for Delay-insensitive VMs using Ridge Regression 43
4.10. p95maxcpu prediction for Interactive VMs using SVR 46
4.11. p95maxcpu prediction for Delay-insensitive VMs using SVR 47
4.12. Correlation plot for Delay-insensitive VMs 51
4.13. Correlation plot for Interactive VMs 52
4.14. Plot of LSTM model training v/s validation loss 57
4.15. Graph showing minimum CPU utilization predictions 59
4.16. Graph showing maximum CPU utilization predictions 60
4.17. Graph showing average CPU utilization predictions 61
Chapter 1

Introduction

Computers have revolutionized the way we do things today. Starting from the dot com boom [5] in the 1990s to the cloud computing and machine learning/ artificial intelligence boom that we see today, technology has never been this dynamic and interesting. There has been a lot of investment of time and efforts in increasing the efficiency of data centers which store the ever increasing data. Even though a data center is efficient, 42% power is said to be used by the air conditioning systems according to [6]. While this paper talks about solar powered data centers being the future of the infrastructure fabric to save energy, our work is about how we can gain valuable insights out of cpu usage data. Our research is valuable because CPU utilization is one of the key contributors to heat generated in a datacenter as indicated by the energy consumption modeling equations in this paper [7].

The main driver of data analysis is data. In order for the machine learning learning tools to show useful results, it needs lot of training data. This training data is something that we extract and massage from a much large source data set. 90% of the data has been created over the last 20 years and it is expected to grow in the near future as shown in Figure 1.1. This requires sophisticated CPU processing, distributed computing, storage equipments programming methodologies and tools. We have evolved a lot to be able to manufacture efficient storage devices to store such excessive amounts of data. At the same time GPU processing power has also been improving at an exponential rate (to be confirmed). All these technologies put together has set the stage just right for gaining value out of massive data analysis.
According to the RightScale 2018 State of the Cloud Report [4], the biggest challenge for beginner cloud adopters is security, but as they deal with it over time, the top challenge becomes optimizing for costs. These mature cloud users are known to waste 35%, approximately $10 billion [8] of the cloud bills due to their inefficiencies and very few companies are making efforts to employ automated policies to monitor the usage and optimize cloud costs. Figure 1.2 shows the currently employed methodologies to save cloud usage costs. Our thesis work aims to help such companies monitor their cloud resource utilization, gain insights and take corrective actions accordingly.

Data Volume Growth graph from Internet Trends 2017- Code Conference [3]
How Companies are Optimizing Cloud Cost [4]

Before the era of cloud computing, it was virtualization that helped companies efficiently utilize the datacenters. Virtualization is still a key aspect of Cloud computing. According to a technical report by VMWare [9], private cloud can be cheaper than public cloud. Private cloud is a recommended option if you are looking for speed, agility and efficiency along with maintaining security of sensitive workloads and data governance. [10]. But the major cloud providers have been working towards these challenges of security and data governance with commendable success. It is evident that we are going to make these third party cloud providers richer in the years to come, but we can control the expenditure if we can see for ourselves how much resources we will require in the future and provision VMs accordingly from the cloud service providers. The usual practice of always over provisioning to be safe can be needless if we can accurately estimate our requirement during the initial few runs of the workload. So, be it public cloud, your own private cloud or hybrid cloud, collecting metrics and using it for better resource usage is a rewarding choice.

1.1 Motivation

Due to rapid research in the machine learning and artificial intelligence field, it is faster and easier to apply machine learning models to the data collected. Libraries in Python and frameworks like TensorFlow and Keras provide higher level abstractions making
it easier for all kinds of users, developers as well as business analysts. Companies can start collecting metrics from their own infrastructure or applications and analyze them using appropriate machine learning algorithms and greatly improve performance by later moving the workload to any of the trusted third party cloud service providers.

Our end goal is to apply analysis, similar to ours, to other type of datasets that can be collected and stored by the information technology departments of enterprises. Examples of these include and are not limited to logs [11] [12] from application servers, web servers, transactional data and so on. The results of such analysis can be used to augment existing scheduling algorithms [13].

1.2 Contribution

We first analyze the overall dataset of Microsoft Azure, then further analyze a particular virtual machine’s CPU usage details to predict the future usage patterns. This is done using the RNNs with LSTMs.

We further analyze all the VMs data irrespective of which customer it belonged to. We wanted to see if there exists any characteristic difference in the usage metrics for those classified as delay insensitive as opposed to delay sensitive VMs. We use the correlation values for the features chosen to share our findings.

1.3 Outline

Chapter 2 includes the literature survey that describes the previous work done in this field. Chapter 3 discusses the Azure Public Data data released by Microsoft with the help of a Jupyter Notebook. Chapter 4 describes our work analyzing this data and making prediction models for CPU utilization using regression and LSTM RNN. We discuss the results and future work in Chapter 5. We finally summarize and conclude in chapter 6.

When we say machine learning we may use it to collectively imply both statistical techniques as well as deep learning techniques leveraging neural networks.
Chapter 2

Related Work/ Literature survey

In this section, we go through some of the extensive work done by fellow researchers in the field of cloud trace analysis, CPU usage prediction, Virtual Machine scheduling and Key Performance Indicators (KPIs) in cloud computing. Having done a thorough review of such work, it gives us scope and foundation to build on it and explore new avenues along with the new developments in the field of cloud computing.

2.1 Cluster Trace Analysis

The Google cluster trace contains data [14] collected from 12500 machines running for about a month in May 2011. Many researchers have explored the machine, jobs and tasks information to come up with job failure prediction or resource usage prediction models. One such work is Failure Analysis of Jobs in Compute Clouds: A Google Cluster Case Study [15] where they predict application failures using the resource usage data from the Google cluster traces. They leverage the Recurrent Neural Networks \(RNNs \) for the analysis and quote 6% to 10% savings on resource.

Analysis and Lessons from a Publicly Available Google Cluster Trace [16], a technical report published by the University of California, Berkeley shares the statistical profile of the Google trace along with many key metrics like job arrival patterns, CPU and memory usage and task durations to name a few. This analysis was intended to aid system designers with capacity planning and system tuning.

Learning from Failure Across Multiple Clusters: A Trace-Driven Approach to Understanding, Predicting, and Mitigating Job Terminations [17] analyses the Google cluster trace, CMU OpenCloud [18], LANL HPC Cluster [19] datasets. They first study
the data to detect patterns of unsuccessful jobs with respect to their resource consumptions and job configuration. Further, they propose and demonstrate a machine learning framework to predict job and task terminations which can be useful in terminating tasks that are going to fail much earlier thus saving on cloud resource consumption.

Another work based on the Google cluster trace data is Predicting Scheduling Failures in the Cloud [20], where they use statistical models to predict task failures, so that they can be rescheduled earlier thus saving on the cluster resources.

2.2 Virtual Machine (VM) consolidation

LiRCUP Linear regression based CPU usage prediction algorithm for live migration of virtual machines. [21] focuses on the reducing SLA (Service Level Agreement) violation and cutting down power costs from the data center. To achieve this, a CPU usage prediction using linear regression technique is proposed. This approach when applied in the VM live migration process to identify under-loaded and over-loaded hosts is said to reduce the energy consumption and SLA violation significantly.

Some papers have considered the VM consolidation as a bin or vector packing NP-hard optimization problem. [22] [23] [24]. The bins are server hosts (or data centers) with different capacities whereas the different size objects that need to be fit are the virtual machines (or servers). The most optimal solution is the least number of bins that can fit all the various objects which implies more efficient energy consumption and reduced running costs.

One of a research paper coming out of IBM Watson Research center [25], talks about how dynamic server consolidation technique using forecasting based on time series analysis of historical data helps reduce SLA violations.

Virtual Machine Consolidation with Usage Prediction for Energy-Efficient Cloud Data Centers [26] talks about VM consolidation but with help of multiple resource prediction rather than just a single metric like CPU utilization. They use the current usage data as well as the historical data together to characterize overloaded and underloaded servers which can then be used for reducing the load and power consumption after the
VM consolidation process. They also compare their VM consolidation with multiple usage prediction (VMCUP-M) with BG (black box gray box) algorithm described in [22] and claim that VMCUP-M is better in terms of number of server switches and SLA compliance.

Psychas and Ghaderi’s paper [13] takes the problem of multi-resource jobs scheduling further by taking the queuing theory approach. Using the Google cloud cluster trace, they prove that their proposed randomized scheduling algorithm for placing jobs in servers achieves better throughput and low computational complexity as opposed to Bin Packing and Max Weight alternate solutions.

Some of the recent work make use of neural networks too. Once such paper is [27]. It makes use of Long Short-Term Memory Recurrent Neural Network (LSTM RNN) to predict CPU usage values and avoid slash-dot effects. This is useful in auto scaling virtual resources thus reducing the slash-dot effects in cloud.

2.3 KPIs (Key Performance Indicators)

Key Performance Indicators for Cloud Computing SLAs [28] proposes some of the KPIs that needs to be considered while trying to adhere to the SLA agreed upon between the customer and the cloud provider. It also explains the general SLA life cycle and provide five KPI categories namely the General Service, Network Service, Cloud Storage, Backup and Restore and Infrastructure as a Services (IaaS).

SLA Violation Prediction In Cloud Computing: A Machine Learning Perspective: There is some work done to predict the SLA violation before it actually occurs. One of them is [29]. It uses Naive Bayes and Random Forest Classifiers to predict SLA violations from the re-sampled Google cluster dataset.

Performance Challenges in Cloud Computing [30] gives an overview of the obstacles and opportunities with respect to Cloud Computing. They put the SLAs into five service-level categories: Availability, Performance, Capacity, Reliability, Scalability and explain the importance of performance engineering and capacity management of cloud environments.
We see a more systematic and mathematical approach in [31] regarding optimizing performance of Cloud Computing centers and coming up with the KPIs. It also uses a queuing theory to model the load balancer and data center to do performance analysis. Finally, it gives a balanced scorecard for KPIs across four domains: financial, customer, process, innovation and learning.
Chapter 3

Azure Public Dataset

For any kind of machine learning techniques to be applied, we need to have data. This is not enough alone. This data needs to be in a particular format and needs to be filtered so that it has only the features that matter to our end goal. Having this readily available expedites the research to a great extent. The challenge with obtaining cloud workload trace data is its relevance and concealing of private information about the customers. As we have seen in Chapter 2, most of the research has been done on the Google Cluster workload traces [14]. This contains a month long period trace of around 12500 machines and is a valuable data to be worked with for machine learning purposes. Since this data contains information for machines during May 2011, we were looking for sources for more recent trace data which will also count for the recent developments in the cloud services domain. Microsoft’s Azure VM Trace Data [32] provides us just that, the trace data being released last year, i.e. October 2017. So, we decided to work with this dataset and explore the possibilities to use some of the modern machine learning and deep learning techniques to predict the future resource usage values. This data was released as part a paper titled ”Resource Central: Understanding and Predicting Workloads for Improved Resource Management in Large Cloud Platforms” [33].

3.1 Main Characteristics

It should be noted that the Azure Public Dataset is sanitized representative subset of the actual first-party VM workload of Microsoft Azure in a particular geographical region. Even then this public data is said to exhibit same overall trends as the full original dataset used for the paper [33].
3.2 First glance at the Azure public data

The Azure public dataset has information of about 2013767 VMs. The details of each of the VM is provided in the vmtable.csv file as shown in 3.2.3

```python
In [1]: import numpy as np
import pandas as pd
from IPython.display import display
import matplotlib.pyplot as plt
%matplotlib inline
import tensorflow as tf

```

3.2.1 subscriptions.csv

```python
In [2]: data_path = 'data/subscriptions.csv'
headers=['subscriptionid','timestamp first vm created','count vms created']
subscriptions_df = pd.read_csv(data_path, header=None,
index_col=False,names=headers,delimiter=',
subscriptions_df.head()
```

```python
Out[2]: subscriptionid timestamp first vm created count vms created
0 ++OvONy4Fe3c5KwLPfuOZ9o0oUwYS9s0oRfnPDP4EFfkhI...
1 +/7swedsYYdH5dEQHPkzhMkq/z6yFfYCU7RmWNUI0WvgV3q7...
2 +0QR7710PkahCGSRRhi9aJ5m+04stqyoSy8VZ2gDGFXBNy...
3 +1/71ic/xJ3q8kuoCIJeSaRBKsxEq0Pa0r7RLAlyG9M7CI...
4 +1/Tx/1utSDCXsZsojwxMiw4iDwne0iSwceIdymloihZST...

timestamp first vm created count vms created
0 0 11
1 0 220
```
In [3]: subscriptions_df.describe()

Out[3]:

<table>
<thead>
<tr>
<th></th>
<th>count</th>
<th>mean</th>
<th>std</th>
<th>min</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp</td>
<td>5.958e+03</td>
<td>1.033e+05</td>
<td>3.858e+05</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.587e+06</td>
</tr>
<tr>
<td>first vm created</td>
<td>5958.0000</td>
<td>337.9938</td>
<td>3562.628063</td>
<td>1.0</td>
<td>2.0</td>
<td>10.0</td>
<td>49.0</td>
<td>128047.00</td>
</tr>
<tr>
<td>count vms created</td>
<td>62</td>
<td>3562.628063</td>
<td>3562.628063</td>
<td>1.0</td>
<td>2.0</td>
<td>10.0</td>
<td>49.0</td>
<td>128047.00</td>
</tr>
</tbody>
</table>

3.2.2 deployment.csv

In [4]: data_path = 'data/deployment.csv'
headers=['deployment id','deployment size']
deployment_df = pd.read_csv(data_path, header=None,
index_col=False,names=headers,delimiter=',',)
deployment_df.head()

Out[4]:

<table>
<thead>
<tr>
<th>deployment id</th>
<th>deployment size</th>
</tr>
</thead>
<tbody>
<tr>
<td>++mNOLj64R5/YiUoKgebbCmqw1BIDN2kpttl4qjuT0pW...</td>
<td>4</td>
</tr>
<tr>
<td>+/vGhVS4Q5V4gdBh6Z7eZimqTcgIn5i13AG8dHyxV1brIy...</td>
<td>12</td>
</tr>
<tr>
<td>+0d60C0i0UG5ZMhf5fpjW5p7x/kuY9JndgnDh3AjdWmlt9...</td>
<td>1</td>
</tr>
<tr>
<td>+0xejKJ4d+6XRcUXYJdXghnRZaQdiiA02cFyEbwge953Ok...</td>
<td>3</td>
</tr>
<tr>
<td>+1Krd7Z8ixfESvcHj0omEBWt1HFg82qEyWq040mHusnk...</td>
<td>1</td>
</tr>
</tbody>
</table>

In [5]: deployment_df.describe()

Out[5]:

<table>
<thead>
<tr>
<th>deployment size</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
</tr>
<tr>
<td>35941.000000</td>
</tr>
</tbody>
</table>
mean 18.063243
std 65.145059
min 1.000000
25% 2.000000
50% 4.000000
75% 14.000000
max 1814.000000

3.2.2.1 deployment query for VM0

In [6]: dep4VM0 = deployment_df.loc[deployment_df['deployment id'] == 'Pc2VLB8aDxK2DCC96itq4vW/zVDp4wioAUiB3HoGSFYQ0o6/ZCegTpb9vEH4LeMTFbV0bHTPRYEY81TY1vZCMQ==']

Out[6]:

<table>
<thead>
<tr>
<th>deployment id</th>
<th>deployment size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pc2VLB8aDxK2DCC96itq4vW/zVDp4wioAUiB3HoGSFYQ0o...</td>
<td>2</td>
</tr>
</tbody>
</table>

3.2.3 vmtable.csv

Total: 2013767 VMs

In [7]: data_path = 'data/vmtable.csv'
headers=['vmid', 'subscriptionid', 'deploymentid', 'vmcreated', 'vmdeleted', 'maxcpu', 'avgcpu', 'p95maxcpu', 'vmcategory', 'vmcorecount', 'vmmemory']
vmtable_df = pd.read_csv(data_path, header=None, names=headers, delimiter=',

Out[7]:

<table>
<thead>
<tr>
<th>vmid</th>
</tr>
</thead>
<tbody>
<tr>
<td>x/Xs0fH04ocsV99i4N1uqKDuXctW2MMVmwqOPA1g4wp8mq...</td>
</tr>
<tr>
<td>H5CxmMoVoCZSpjgGbohnVA3R+7uCTe/hM2ht2uIYi3t7KwX...</td>
</tr>
<tr>
<td>wR/G1YUpMP4zUbxGM/XJNhYS8cAK3SGKM2tqhF7VdeTUY...</td>
</tr>
<tr>
<td>1XiU+KpviA3T1XP8kk3ZY710f03+ogFL5Pag9Mc2jBuh0Y...</td>
</tr>
<tr>
<td>z5i2HiSaz6ZdLR6PXdnDjGva3jIlkMPXx23VtfXx9q3dXF...</td>
</tr>
</tbody>
</table>

subscriptionid \ \
deploymentid vmcreated vmdeleted
0 0 2591700
1 1 1539300
2 2188800 2591700
3 0 2591700
4 0 2188500

maxcpu avgcpu p95maxcpu vmcategory vmcorecount vmmemory
0 99.369869 3.424094 10.194309 Delay-insensitive 1 1.75
1 100.000000 6.181784 33.981360 Interactive 1 0.75
2 99.569027 3.573635 7.924250 Delay-insensitive 1 1.75
3 99.405085 16.287611 95.697890 Delay-insensitive 8 56.00
4 98.967961 3.036038 9.445484 Delay-insensitive 1 1.75

In [8]: vmtable_df.describe()
Out[8]: vmcreated vmdeleted maxcpu avgcpu p95maxcpu
 count 2.013767e+06 2.013767e+06 2.013767e+06 2.013767e+06
 mean 1.318097e+06 1.504673e+06 7.233878e+01 1.513443e+01 5.901889e+01
 std 7.806214e+05 7.535789e+05 3.385232e+01 1.534389e+01 3.561021e+01
 min 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
 25% 6.573000e+05 8.880000e+05 4.918151e+00 3.438740e+00 2.509601e+01
 50% 1.411200e+06 1.571100e+06 9.087399e+01 1.045594e+01 6.931068e+01
 75% 1.990800e+06 2.155350e+06 9.856823e+01 2.136583e+01 9.437023e+01
 max 2.591700e+06 2.591700e+06 1.000000e+02 1.000000e+02 1.000000e+02
vmcorecount vmmemory

count 2.013767e+06 2.013767e+06
mean 2.563461e+00 6.069098e+00
std 2.380495e+00 1.062382e+01
min 1.000000e+00 7.500000e-01
25% 1.000000e+00 1.750000e+00
50% 2.000000e+00 3.500000e+00
75% 4.000000e+00 7.000000e+00
max 1.600000e+01 1.120000e+02

3.2.3.1 Some simple vmtable queries

3.2.3.2 Given deployment id find all VM data

In [9]: deps4VM0 = vmtable_df.loc[vmtable_df['deploymentid'] == 'Pc2VLB8aDxK2DCC96itq4vW/zVDp4wioAUiB3HoGSFYQo6/ZCegTpbv9vEH4LeMTEWV0bHTP8Y8Y81TYyvZCMQ==']
deps4VM0

Out[9]:

<table>
<thead>
<tr>
<th>vmid</th>
<th>subscriptionid</th>
<th>deploymentid</th>
<th>vmcreated</th>
<th>vmdeleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>VDU4C8cqdr+ORcqqwMRcsBA210SC61CPys0wdghKR0uxP...</td>
<td>Pc2VLB8aDxK2DCC96itq4vW/zVDp4wioAUiB3HoGSFYQo6/ZCegTpbv9vEH4LeMTEWV0bHTP8Y8Y81TYyvZCMQ==</td>
<td>0</td>
<td>2591700</td>
</tr>
<tr>
<td>4</td>
<td>VDU4C8cqdr+ORcqqwMRcsBA210SC61CPys0wdghKR0uxP...</td>
<td>Pc2VLB8aDxK2DCC96itq4vW/zVDp4wioAUiB3HoGSFYQo6/ZCegTpbv9vEH4LeMTEWV0bHTP8Y8Y81TYyvZCMQ==</td>
<td>0</td>
<td>2188500</td>
</tr>
</tbody>
</table>

maxcpu avgcpu p95maxcpu vmcategory vmcorecount vmmemory

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>99.369869</td>
<td>3.424094</td>
<td>10.194309</td>
<td>Delay-insensitive</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>98.967961</td>
<td>3.036038</td>
<td>9.445484</td>
<td>Delay-insensitive</td>
<td>1</td>
</tr>
</tbody>
</table>
3.2.3.3 Given subscription id find all VM data

```python
In [10]: subs4VM0 = vmtable_df.loc[vmtable_df['subscriptionid'] == 'VDU4C8cqdr+0RcqquwMRcsBA210SC61CPys0wdghKR0uxPYSya2XYi9Y5ZkaYaq']
sube4VM0
```

Out[10]:
```
<table>
<thead>
<tr>
<th>vmid</th>
<th>subscriptionid</th>
</tr>
</thead>
<tbody>
<tr>
<td>x/Xs0fH04ocsV99i4NluqKDuxctW2MMVmwqOPA1g4wp8mq...</td>
<td>VDU4C8cqdr+0RcqquwMRcsBA210SC61CPys0wdghKR0uxP...</td>
</tr>
<tr>
<td>wR/G1YujpMP4zUbxGM/XJNhYS8cAK3SGKM2tqhF7VdeTUY...</td>
<td>VDU4C8cqdr+0RcqquwMRcsBA210SC61CPys0wdghKR0uxP...</td>
</tr>
<tr>
<td>z5i2HiSaz6ZdLR6PXdxnDy3jIlkMPXx23VtfXx9q3dXF...</td>
<td>VDU4C8cqdr+0RcqquwMRcsBA210SC61CPys0wdghKR0uxP...</td>
</tr>
</tbody>
</table>
```

```
deploymentid vmcreated vmdeleted
0 Pc2VLB8aDxK2DCC96itq4vW/zVDp4wioAUiB3HoGSFYQ0o... 0 2591700
2 Pc2VLB8aDxK2DCC96itq4vW/zVDp4wioAUiB3HoGSFYQ0o... 2188800 2591700
4 Pc2VLB8aDxK2DCC96itq4vW/zVDp4wioAUiB3HoGSFYQ0o... 0 2188500
```

```
maxcpu  avgcpu  p95maxcpu  vmcategory  vmcorecount  vmmemory
0  99.369869  3.424094  10.194309  Delay-insensitive  1  1.75
2  99.569027  3.573635  7.924250  Delay-insensitive  1  1.75
4  98.967961  3.036038  9.445484  Delay-insensitive  1  1.75
```

3.2.4 `vm_cpu_readings-file-1-of-125.csv`

```python
In [11]: data_path1 = 'data/vm_cpu_readings-file-1-of-125.csv'
headers=['timestamp','vm id','min cpu','max cpu','avg cpu']
cpu_readings1_df = pd.read_csv(data_path1, header=None, index_col=False, names=headers, delimiter=',')
cpu_readings1_df.head()
```

Out[11]:
```
<table>
<thead>
<tr>
<th>timestamp</th>
<th>vm id</th>
<th>min cpu</th>
</tr>
</thead>
</table>
```
max cpu avg cpu
0 3.911587 2.869790
1 8.794403 3.254472
2 6.941048 4.336240
3 2.046712 0.970692
4 4.471657 2.438805

In [12]: cpu_readings1_df.tail()

Out[12]:
 timestamp vm id
9999995 21000 fVp1qu/0+CVls8myZE8x4cnUY6KqEU1WV1m4vGhB2eVXw...
9999996 21000 gNEa2Sfj/+AFkdqegJKBYEiN1WuuxeFuDA7a0ncu8o2pQN...
9999997 21000 focrLM5imiU46iidLwZFnb+3fJ003uhC4zxtLlf7pprCX...
9999998 21000 e5B7mXjS3G5I+/p06MN3Hygpm8xWx4azc80u+80ZUWhnqY...
9999999 21000 hipzzpSIL409YN+4/YKAFHNpF8X+yVPi78BGN26nx890+

min cpu max cpu avg cpu
9999995 0.013784 3.082615 0.640116
9999996 1.229370 4.126575 2.469720
9999997 3.399143 5.843358 4.583291
9999998 5.915925 14.521810 8.124820
9999999 0.477585 16.732999 4.632007

3.2.5 vm_cpu_readings-file-2-of-125.csv

In [13]: data_path2 = 'data/vm_cpu_readings-file-2-of-125.csv'
headers=['timestamp', 'vm id', 'min cpu', 'max cpu', 'avg cpu']
```python
import pandas as pd

# Read CSV file with headers, delimiter=';' and index_col=False
cpu_readings2_df = pd.read_csv(data_path2, header=None, index_col=False, names=headers, delimiter=';')

cpu_readings2_df.head()
```

```
Out[13]:     timestamp     vm id  min cpu  \
0  21000    i602h+DF+Y8o9SXlfr1Y50nbfF6umaHHwcOG3ay28+xFZA...  0.585760
1  21000    jX+l+6KyENiJUls2xo1hfHgswnIb+odiW808cnUCEDgjMn...  2.998676
2  21000    hUgkAZ1yIFuiry7fA9KHjY4uRPVETFNGTcq1TeZeSD91DT...  2.900732
3  21000    jhdxmeolVH9yBwbBFDFxBTMBgnu3cgmP2USpFA2XONHa2a...  2.949930
4  21000    efWn5J2FyxlU+uTRt0C+ZpN88x121Te3Dpdeb0gUNX5lpD...  1.847758

max cpu  avg cpu  
0  2.691011  1.387735
1  7.888491
2  16.226454
3  4.039858
4  3.337690

In [14]: cpu_readings2_df.tail()
```

```
Out[14]:       timestamp     vm id  min cpu  \
99999995  42300 V8f/xbizJrnsaGpkgdXp3Llz7PoZCM3h1CPIq83Uyc8ez+2...  0.569823
99999996  42300 SwjP42rY7ZalDicXeB/iUdzuzl93zTwc6NwxfKKkukz0f...  0.381573
99999997  42300 XCG6q9qc+9xeNryWdxo+TKTEGAr+o3Vech0egPo4LvCrd9...  0.460615
99999998  42300 RkWiD2o0fhpq2UaSm6x4fa404FQ/erR70cReBIAAb1CQ...  0.622075
99999999  42300 YGp4BwhcSW06neLGPGucAJAJQgbBra6bBAjdzaW0Fa7u6...  0.449021

min cpu  max cpu  avg cpu  
99999995  0.569823  2.471833  1.123275
99999996  0.381573  0.461752  0.421770
99999997  0.460615  2.847367  1.325941
99999998  0.622075  3.071922  1.056286
99999999  0.449021  58.039647  12.905890
```
3.2.6 CPU Readings every 5 minutes

3.2.6.1 CPU readings for VM0 from file 1

In [15]: vm0_cpu_readings1 = cpu_readings1_df.loc[cpu_readings1_df['vm id'] == 'x/XsOfHO4ocsV99i4NluqKDuxctW2MMVmqwOPlg4wp8mqbB0e3uxB1Qo0+Qx+uf']
vm0_cpu_readings1.head()

Out[15]:
<table>
<thead>
<tr>
<th>timestamp</th>
<th>vm id</th>
</tr>
</thead>
<tbody>
<tr>
<td>137885</td>
<td>0</td>
</tr>
<tr>
<td>282440</td>
<td>300</td>
</tr>
<tr>
<td>424613</td>
<td>600</td>
</tr>
<tr>
<td>565644</td>
<td>900</td>
</tr>
<tr>
<td>714365</td>
<td>1200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>min cpu</th>
<th>max cpu</th>
<th>avg cpu</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.755203</td>
<td>4.391175</td>
<td>3.420025</td>
</tr>
<tr>
<td>2.786546</td>
<td>4.339331</td>
<td>3.267826</td>
</tr>
<tr>
<td>2.878095</td>
<td>6.680684</td>
<td>3.635158</td>
</tr>
<tr>
<td>2.327555</td>
<td>4.282121</td>
<td>3.367871</td>
</tr>
<tr>
<td>2.925309</td>
<td>6.182837</td>
<td>3.601547</td>
</tr>
</tbody>
</table>

In [16]: vm0_cpu_readings1.count()

Out[16]:
<table>
<thead>
<tr>
<th>timestamp</th>
<th>vm id</th>
<th>min cpu</th>
<th>max cpu</th>
<th>avg cpu</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>
| dtype: int64

3.2.6.2 CPU readings for VM0 from file 2

In [17]: vm0_cpu_readings2 = cpu_readings2_df.loc[cpu_readings2_df['vm id'] == 'x/XsOfHO4ocsV99i4NluqKDuxctW2MMVmqwOPlg4wp8mqbB0e3uxB1Qo0+Qx+uf']
vm0_cpu_readings2.head()
Out[17]:

<table>
<thead>
<tr>
<th>timestamp</th>
<th>vm id</th>
</tr>
</thead>
<tbody>
<tr>
<td>33526</td>
<td>21000</td>
</tr>
<tr>
<td>178273</td>
<td>21300</td>
</tr>
<tr>
<td>312333</td>
<td>21600</td>
</tr>
<tr>
<td>455262</td>
<td>21900</td>
</tr>
<tr>
<td>595134</td>
<td>22200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>min cpu</th>
<th>max cpu</th>
<th>avg cpu</th>
</tr>
</thead>
<tbody>
<tr>
<td>33526</td>
<td>2.666365</td>
<td>4.209862</td>
</tr>
<tr>
<td>178273</td>
<td>2.759352</td>
<td>4.081712</td>
</tr>
<tr>
<td>312333</td>
<td>2.831082</td>
<td>4.460893</td>
</tr>
<tr>
<td>455262</td>
<td>2.560338</td>
<td>4.127717</td>
</tr>
<tr>
<td>595134</td>
<td>2.909225</td>
<td>4.583207</td>
</tr>
</tbody>
</table>

In [18]: vm0_cpu_readings2.count()

Out[18]:

<table>
<thead>
<tr>
<th>timestamp</th>
<th>vm id</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>min cpu</th>
<th>max cpu</th>
<th>avg cpu</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>71</td>
<td>3.330772</td>
</tr>
</tbody>
</table>

In [18]: vm0_cpu_readings2.count()
Chapter 4
Analysis of the Data

This chapter describes the process of how we analyzed and got the results in a step by step manner.

4.1 Techniques, Tools and Technologies

We used Jupyter Notebook with Python to run the entire analysis. Python supports a lot of useful frameworks like Pandas for data cleaning and machine learning libraries such as Keras and Tensorflow.

4.2 Digging into the Vmtable.csv dataset

Import python libraries

```python
In [1]: import numpy as np
import pandas as pd
from IPython.display import display
import matplotlib.pyplot as plt
%matplotlib inline
import tensorflow as tf
```

Developing feature columns for the data in vmtable.csv

We get the VM lifetime in hours by subtracting the ‘vmcreated’ value from
'vmdeleted' value and dividing by 3600. We then, populate a new column called "core-hour" by multiplying this lifetime with the vmcorecount value.

```python
In [2]:
data_path = 'data/vmtable.csv'
headers=['vmid', 'subscriptionid', 'deploymentid', 'vmcreated', 'vmdeleted', 'maxcpu', 'avgcpu', 'p95maxcpu', 'vmcategory', 'vmcorecount', 'vmmemory']
vmtable_df = pd.read_csv(data_path, header=None, index_col=False, names=headers, delimiter=',')
vmtable_df['lifetime'] = np.maximum((vmtable_df['vmdeleted'] - vmtable_df['vmcreated'])),300)/ 3600
vmtable_df['corehour'] = vmtable_df['lifetime'] * vmtable_df['vmcorecount']
vmtable_df = vmtable_df.drop(['vmcreated', 'vmdeleted', 'vmcorecount', 'lifetime'], axis=1, inplace=False)
vmtable_df.head()
```

```
Out[2]:
vmid \
0   x/Xs0fH04ocsV99i4N1uqKDXuctW2MMVmwqOPlg4wp8mq...
1   H5CxmMoVcZSpjgBcoonVA3R+7uCTe/hM2ht2uYi3t7KwX...
2   wR/G1YuP4zUbxGM/XJNhysS8cAK3SGK2tqhf7VeTYU...
3   1XiU+KpvA3T1XP8kk3ZY710f03+ogFL5Pag9Mc2jBuh0Y...
4   z5i2HiSaz6ZdLR6PXdnDjGva3j1lkMPXx23Vtfxx9q3dXF...
subscriptionid \
0   VDU4C8cqdr+ORcqqwMRcsBA210SC61CPys0wdghKROuxP...
1   8SX0cywx8pU00DueDo6UMol1Yr6tn47KLEKaoXp0a1bf2...
2   VDU4C8cqdr+ORcqqwMRcsBA210SC61CPys0wdghKROuxP...
3   8u+M3WcFp8pq183WoMB79PhK7xUzbaviOBv0qWN6Xn4mbu...
4   VDU4C8cqdr+ORcqqwMRcsBA210SC61CPys0wdghKROuxP...
deploymentid maxcpu avgcpu \
0   Pc2VLB8aDxK2DCC96itq4vW/zVDp4vioAUiB3HoGFyQ0o... 99.369869 3.424094
1   3J17LcV4gXjFat62qhvVFRfoiWArHnY763HQvqf6orJcFV8... 100.000000 6.181784
2   Pc2VLB8aDxK2DCC96itq4vW/zVDp4vioAUiB3HoGFyQ0o... 99.569027 3.573635
3   DHbeI+pYTIFyjH8JAF8SewM0z/4sQcxtvxcBRGIrGlBmeLW... 99.405085 16.287611
4   Pc2VLB8aDxK2DCC96itq4vW/zVDp4vioAUiB3HoGFyQ0o... 98.967961 3.036038
```
p95maxcpu vmcategory vmmemory corehour
0 10.194309 Delay-insensitive 1.75 719.916667
1 33.981360 Interactive 0.75 427.583333
2 7.924250 Delay-insensitive 1.75 111.916667
3 95.697890 Delay-insensitive 56.00 5759.333333
4 9.445484 Delay-insensitive 1.75 607.916667

Clean up data

In [3]: vmtable_df.shape

Out[3]: (2013767, 9)

In [4]: vmtable_df.isnull().values.any()

Out[4]: False

4.2.1 Correlation of the whole vmtable.csv data

In [5]: def plot_corr(df,size=10):

 '''Function plots a graphical correlation matrix for each pair of columns in
 the dataframe.

 Input:

 df: pandas DataFrame

 size: vertical and horizontal size of the plot'''

 corr = df.corr()
 fig, ax = plt.subplots(figsize=(size, size))
 ax.matshow(corr)
 plt.xticks(range(len(corr.columns)), corr.columns);
 plt.yticks(range(len(corr.columns)), corr.columns);

 In [6]: vmtable_df.corr()

Out[6]:

 maxcpu avgcpu p95maxcpu vmmemory corehour
 maxcpu 1.000000 0.480313 0.718682 0.057079 0.151668
 avgcpu 0.480313 1.000000 -0.718682 -0.057079 -0.151668
In [7]: plot_corr(vmtable_df)

Correlation plot for the entire vmtable.csv file data

In [8]: vmtable_df.vmcategory.unique()

Out[8]: array(['Delay-insensitive', 'Interactive', 'Unkown'], dtype=object)

We have three VM categories. i.e. 'Delay-insensitive', 'Interactive', 'Unkown'.
We map these strings to numbers for ease of further analysis.
```python
In [9]: vm_category_map = {'Delay-insensitive':0,'Interactive':1,'Unknown':np.nan}

In [10]: vmtable_df['vmcategory'] = vmtable_df['vmcategory'].map(vm_category_map)

In [11]: vmtable_df.vmcategory.unique()

Out[11]: array([ 0., 1., nan])

In [12]: vmtable_df.head(5)

Out[12]:
```
<table>
<thead>
<tr>
<th>vmid</th>
<th>subscriptionid</th>
<th>deploymentid</th>
<th>maxcpu</th>
<th>avgcpu</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>VDU4C8cqdr+ORcqquwMRcsBA2l0SC61CPys0wdghKR0uxP...</td>
<td>Pc2VLB8aDxK2DCC96itq4vW/zVDP4wioAUiB3HoGSFYQ0o...</td>
<td>99.369869</td>
<td>3.424094</td>
</tr>
<tr>
<td>1</td>
<td>BSX0cywx8pUUDDueDo6UMol11YzR6tn47KLEKaoXp0a1bf2...</td>
<td>3J17LcV4gXjFat62qhVFRfoiWArHnY763HVqqI6orJcfV8...</td>
<td>100.000000</td>
<td>6.181784</td>
</tr>
<tr>
<td>2</td>
<td>VDU4C8cqdr+ORcqquwMRcsBA2l0SC61CPys0wdghKR0uxP...</td>
<td>Pc2VLB8aDxK2DCC96itq4vW/zVDP4wioAUiB3HoGSFYQ0o...</td>
<td>99.569027</td>
<td>3.573635</td>
</tr>
<tr>
<td>3</td>
<td>8u+M3WcFp8pq183WoMB79PhK7xUzbavi10BV0qWN6Xn4mbu...</td>
<td>DHbeI+pYTFjH8JAF8SewM0z/4SqQctvxcBRGIRgLmELW...</td>
<td>99.405085</td>
<td>16.287611</td>
</tr>
<tr>
<td>4</td>
<td>VDU4C8cqdr+ORcqquwMRcsBA2l0SC61CPys0wdghKR0uxP...</td>
<td>Pc2VLB8aDxK2DCC96itq4vW/zVDP4wioAUiB3HoGSFYQ0o...</td>
<td>98.967961</td>
<td>3.036038</td>
</tr>
</tbody>
</table>
```

<table>
<thead>
<tr>
<th>p95maxcpu</th>
<th>vmcategory</th>
<th>vmmemory</th>
<th>corehour</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.194309</td>
<td>0.0</td>
<td>1.75</td>
<td>719.916667</td>
</tr>
</tbody>
</table>
```
In [13]: vmtable_df.isnull().values.any()

Out[13]: True

Drop rows whose VM category is unknown (null)

In [14]: vmtable_df = vmtable_df.dropna()

In [15]: vmtable_df.count()

Out[15]: vmid 841170
subscriptionid 841170
deploymentid 841170
maxcpu 841170
avgcpu 841170
p95maxcpu 841170
vmcategory 841170
vmmemory 841170
corehour 841170
dtype: int64

So we lost 2013767 - 841170 = 1172597 rows Further analysis is only on these 841170 VMs

In [16]: vmtable_df.dtypes

Out[16]: vmid object
subscriptionid object
deploymentid object
maxcpu float64
avgcpu float64
p95maxcpu float64
vmcategory float64
vmmemory float64
corehour float64
dtype: object

Get the number of VMs for each subscriptionid,deploymentid combination sorted desc VM count

In [17]: sub_dep_sort_by_vm_cnt_desc_df = vmtable_df.groupby(['subscriptionid','deploymentid']).agg({'vmid':'count'}).sort_values('vmid', ascending=False)

In [18]: sub_dep_sort_by_vm_cnt_desc_df.head()

Out[18]:

<table>
<thead>
<tr>
<th>vmid</th>
<th>subscriptionid</th>
<th>deploymentid</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBRuELx83... GVubwtq7m...</td>
<td>75007</td>
<td></td>
</tr>
<tr>
<td>1pvP5oaK4... qNRw2mFob...</td>
<td>61847</td>
<td></td>
</tr>
<tr>
<td>qNRw2mFob...</td>
<td>61847</td>
<td></td>
</tr>
<tr>
<td>qNRw2mFob...</td>
<td>61847</td>
<td></td>
</tr>
<tr>
<td>IBRuELx83... GVubwtq7m...</td>
<td>10098</td>
<td></td>
</tr>
</tbody>
</table>

Get the number of VMs for each subscriptionid combination sorted desc VM count

In [19]: sub_sort_by_sub_id_desc_df = vmtable_df.groupby(['subscriptionid']).agg({'vmid':'count'}).sort_values('vmid', ascending=False)

In [20]: sub_sort_by_sub_id_desc_df.head()

Out[20]:

<table>
<thead>
<tr>
<th>vmid</th>
<th>subscriptionid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1pvP5oaK47WSSY0IZRNEQYdTLEx79rf7Gj1isBYWl1jD0FGZ...</td>
<td>75007</td>
</tr>
<tr>
<td>IBRuELx83WZHd8ZBmRnQ7nN53DxcMPA07szqGt218k7STW7...</td>
<td>61847</td>
</tr>
<tr>
<td>BShs5OvpbfrccmXj7X4MwSxkSFVNdSOzhYaDEKCIjpvxWWk...</td>
<td>59707</td>
</tr>
<tr>
<td>+9OPyI+/Eeu5PSXVMdKpW3cB99+uk+YiAwMRGJU1cDm2ESA...</td>
<td>38140</td>
</tr>
<tr>
<td>0vdSquMKtCTJfHp792xq9WDE7nsLRulmPdbdqDAR/F/SaEU...</td>
<td>31512</td>
</tr>
</tbody>
</table>
In [21]: vmtable_df[(vmtable_df['subscriptionid'] == 'IBRuELx83WZH08ZBmRnQ7nN530xMPA07szqGt218k7STW7rr0pjgj5eLJ0FLbm') & (vmtable_df['deploymentid'] == 'GVubtq7m5aulrutGFAvy2EXO6igAq7T9miuDadJS4tSiLP0Srfk11eezfpDDq/0XtD6x3PMyxga34uuCpDA==')].count()

Out[21]:

<table>
<thead>
<tr>
<th>vmid</th>
<th>13256</th>
</tr>
</thead>
<tbody>
<tr>
<td>subscriptionid</td>
<td>13256</td>
</tr>
<tr>
<td>deploymentid</td>
<td>13256</td>
</tr>
<tr>
<td>maxcpu</td>
<td>13256</td>
</tr>
<tr>
<td>avgcpu</td>
<td>13256</td>
</tr>
<tr>
<td>p95maxcpu</td>
<td>13256</td>
</tr>
<tr>
<td>vmcategory</td>
<td>13256</td>
</tr>
<tr>
<td>vmmemory</td>
<td>13256</td>
</tr>
<tr>
<td>corehour</td>
<td>13256</td>
</tr>
<tr>
<td>dtype: int64</td>
<td></td>
</tr>
</tbody>
</table>

given sub id = kaj8MGQgQTpbMpV6FhQnK... (because it has interactive VMs), find all VM data

In [22]: sub_sort_by_sub_id_desc_has_interactive_df = vmtable_df.loc[vmtable_df['subscriptionid'] == 'kaj8MGQgQTpbMpV6FhQnK6xzG0QDju9Q7VZlXkVX5R4784RQ18nT'].count()

Out[22]:

<table>
<thead>
<tr>
<th>vmid</th>
<th>21637</th>
</tr>
</thead>
<tbody>
<tr>
<td>subscriptionid</td>
<td>21637</td>
</tr>
<tr>
<td>deploymentid</td>
<td>21637</td>
</tr>
<tr>
<td>maxcpu</td>
<td>21637</td>
</tr>
<tr>
<td>avgcpu</td>
<td>21637</td>
</tr>
<tr>
<td>p95maxcpu</td>
<td>21637</td>
</tr>
<tr>
<td>vmcategory</td>
<td>21637</td>
</tr>
<tr>
<td>vmmemory</td>
<td>21637</td>
</tr>
<tr>
<td>corehour</td>
<td>21637</td>
</tr>
<tr>
<td>dtype: int64</td>
<td></td>
</tr>
</tbody>
</table>
for this group only interactive vmcategory

```
In [23]: sub_sort_by_sub_id_desc_only_interactive_df =
vmtable_df.loc[(vmtable_df['subscriptionid'] ==
'ka8NGqGTpbMPqjKq7jy5KwCd06zSHXqQGQDJu9Q7VLJkV5SRA7Rg848Q18nT') &
(vmtable_df['vmcategory'] > 0) ]
sub_sort_by_sub_id_desc_only_interactive_df =
sub_sort_by_sub_id_desc_only_interactive_df.drop(['vmcategory','maxcpu'],
axis=1, inplace=False)
```

4.2.2 Correlation for interactive VMs for a chosen subscription id

```
In [24]: plot_corr(sub_sort_by_sub_id_desc_only_interactive_df)
```

Correlation plot for Interactive VMs for a chosen subscription id

for this group only Delay-insensitive vmcategory
In [25]: sub_sort_by_sub_id_desc_only_batch_df =
vmtable_df.loc[(vmtable_df['subscriptionid'] ==
"kaj8MgQgQTpbMpV6FhQnKYduXCc06zGQ0DJu9Q7VLZLkVX5RA7Rg84R18nT") &
(vmtable_df['vmcategory'] < 1)]
sub_sort_by_sub_id_desc_only_batch_df =
sub_sort_by_sub_id_desc_only_batch_df.drop(['vmcategory', 'maxcpu'], axis=1,
inplace=False)

4.2.3 Correlation for Delay-insensitive VMs for the chosen subscription id

In [26]: plot_corr(sub_sort_by_sub_id_desc_only_batch_df)

Correlation plot for Delay-insensitive VMs for the chosen subscription id

As we can see, for the above sub id batch vms have greater correlation for corehour,
lifetime, avgcpu, p95cpu features and compared to the interactive VMs. Here the interactive VMs were only (716/21637) i.e 3.31% of the total VMs provisioned for this subscription id. So, we have to keep this bias in mind.

4.2.4 Linear Regression

```
In [27]: sub_sort_by_sub_id_desc_only_interactive_df.describe()
```

```
Out[27]:
         avgcpu  p95maxcpu  vmmemory  corehour
       count     716.000000       716.000000  716.000000  716.000000
      mean   16.242731      63.001301      4.394553   997.655726
      std    13.912855      32.951065      1.833560   738.619372
     min    0.651969       4.759536      3.500000   142.500000
    25%    3.834555     26.366134      3.500000   509.791667
    50%   15.057395     79.985456      3.500000   808.166667
    75%   17.728612    90.368223      3.500000  1439.833333
      max   64.070261    99.171042    14.000000  5759.333333

In [28]: sub_sort_by_sub_id_desc_only_batch_df.describe()
```

```
Out[28]:
         avgcpu  p95maxcpu  vmmemory  corehour
       count    20921.000000    20921.000000  20921.000000  20921.000000
      mean    7.840270       28.824360      4.331629    37.083760
      std     9.435212       29.069097      2.215359   211.001410
     min     0.020781       0.049428      1.750000    0.083333
    25%     0.580033       0.494286      1.750000    0.083333
    50%    4.843454      21.907838      3.500000    0.333333
    75%   12.095304      44.764788      3.500000    0.666667
      max   83.171846    100.000000     14.000000  5759.333333
```

Create training and test data using train_test_split

```
In [29]: from sklearn.model_selection import train_test_split
```
X = sub_sort_by_sub_id_desc_only_interactive_df.drop(['p95maxcpu','vmid','subscriptionid','deploymentid'], axis=1)

Taking the labels (avg_cpu)
Y = sub_sort_by_sub_id_desc_only_interactive_df['p95maxcpu']

Spliting into 80% for training set and 20% for testing set so we can see our accuracy
X_train, x_test, Y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0)

Delay-insensitive

In [30]: X_subid_batch = sub_sort_by_sub_id_desc_only_batch_df.drop(['p95maxcpu','vmid','subscriptionid','deploymentid'], axis=1)

Taking the labels (avg_cpu)
Y_subid_batch = sub_sort_by_sub_id_desc_only_batch_df['p95maxcpu']

Spliting into 80% for training set and 20% for testing set so we can see our accuracy
X_train_subid_batch, x_test_subid_batch, Y_train_subid_batch, y_test_subid_batch = train_test_split(X_subid_batch, Y_subid_batch, test_size=0.2, random_state=0)

Create a LinearRegression model with our training data

Interactive

In [31]: from sklearn.linear_model import LinearRegression

linear_model = LinearRegression()
linear_model.fit(X_train, Y_train)

Out[31]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

Delay-insensitive

In [32]: linear_model_subid_batch = LinearRegression()
linear_model_subid_batch.fit(X_train_subid_batch, Y_train_subid_batch)

Out[32]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
Check R-square on training data
Interactive

In [33]: linear_model.score(X_train, Y_train)

Out[33]: 0.33079005962722097

Delay-insensitive

In [34]: linear_model_subid_batch.score(X_train_subid_batch, Y_train_subid_batch)

Out[34]: 0.7302633566441574

View coefficients for each feature
Interactive

In [35]: linear_model.coef_

Out[35]: array([1.15866841, -0.54319514, 0.01428175])

Delay-insensitive

In [36]: linear_model_subid_batch.coef_

Out[36]: array([2.45957045, 1.8644932 , -0.00385822])

A better view of the coefficients List of features and their coefficients, ordered by coefficient value
Interactive

In [37]: predictors = X_train.columns
 coef = pd.Series(linear_model.coef_,predictors).sort_values()

print(coef)

vmmemory -0.543195
corehour 0.014282
avgcpu 1.158668
dtype: float64
Delay-insensitive

In [38]: predictors_subid_batch = X_train_subid_batch.columns
coeff_subid_batch =
pd.Series(linear_model_subid_batch.coef_,predictors_subid_batch).sort_values()

print(coef_subid_batch)
corehour -0.003858
vmmemory 1.864493
avgcpu 2.459570
dtype: float64

Make predictions on test data
Interactive

In [39]: y_predict = linear_model.predict(x_test)

Delay-insensitive

In [40]: y_predict_subid_batch = linear_model_subid_batch.predict(x_test_subid_batch)

Compare predicted and actual values of p95maxcpu
Interactive

In [41]: %pylab inline
pylab.rcParams['figure.figsize'] = (15, 6)

plt.plot(y_predict, label='Predicted')
plt.plot(y_test.values, label='Actual')
plt.ylabel('p95maxcpu')
plt.legend()
plt.show()

Populating the interactive namespace from numpy and matplotlib
Delay-insensitive

In [42]: %pylab inline
pylab.rcParams['figure.figsize'] = (15, 6)

plt.plot(y_predict_subid_batch, label='Predicted')
plt.plot(y_test_subid_batch.values, label='Actual')
plt.ylabel('p95maxcpu')
plt.legend()
plt.show()

Populating the Delay-insensitive namespace from numpy and matplotlib
p95maxcpu prediction for Delay-insensitive VMs using Linear Regression

R-square score For our model, how well do the features describe the p95maxcpu?

Interactive

In [43]: r_square = linear_model.score(x_test, y_test)
r_square

Out[43]: 0.40748150843068387

Delay-insensitive

In [44]: r_square_subid_batch = linear_model_subid_batch.score(x_test_subid_batch,
y_test_subid_batch)
r_square_subid_batch

Out[44]: 0.7500118594887903

Calculate Mean Square Error

Interactive

In [45]: from sklearn.metrics import mean_squared_error

linear_model_mse = mean_squared_error(y_predict, y_test)
linear_model_mse
4.2.5 Lasso Regression

Cost Function: \(\text{RSS} + \alpha \cdot (\text{sum of absolute values of coefficients})\)

\(\text{RSS} = \text{Residual Sum of Squares}\)

Larger values of \(\alpha\) should result in smaller coefficients as the cost function needs to be minimized.

Interactive

In [49]: from sklearn.linear_model import Lasso

lasso_model = Lasso(alpha=0.7, normalize=False)
lasso_model.fit(X_train, Y_train)
Out[49]: Lasso(alpha=0.7, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

Delay-insensitive

In [50]: lasso_model_subid_batch = Lasso(alpha=0.5, normalize=False)
lasso_model_subid_batch.fit(X_train_subid_batch, Y_train_subid_batch)

Out[50]: Lasso(alpha=0.5, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

Check R-square on training data
Interactive

In [51]: lasso_model.score(X_train, Y_train)

Out[51]: 0.3305669233028511

Delay-insensitive

In [52]: lasso_model_subid_batch.score(X_train_subid_batch, Y_train_subid_batch)

Out[52]: 0.7302021565572885

Coefficients when using Lasso
Interactive

In [53]: coef = pd.Series(lasso_model.coef_,predictors).sort_values()
print(coef)

vmmemory -0.212193
corehour 0.013789
avgcpu 1.151806
dtype: float64

Delay-insensitive
In [54]: coef_subid_batch = pd.Series(lasso_model_subid_batch.coef_, predictors_subid_batch).sort_values()
print(coef_subid_batch)

corehour -0.003814
vmmemory 1.758096
avgcpu 2.462035
dtype: float64

Make predictions on test data

Interactive

In [55]: y_predict = lasso_model.predict(x_test)

Delay-insensitive

In [56]: y_predict_subid_batch = lasso_model_subid_batch.predict(x_test_subid_batch)

Compare predicted and actual values of p95maxcpu

Interactive

In [57]: %pylab inline
pylab.rcParams[‘figure.figsize’] = (15, 6)

plt.plot(y_predict, label=’Predicted’)
plt.plot(y_test.values, label=’Actual’)
plt.ylabel(’p95maxcpu’)
plt.legend()
plt.show()

Populating the interactive namespace from numpy and matplotlib
p95maxcpu prediction for Interactive VMs using Lasso Regression

Delay-insensitive

In [58]: %pylab inline
pypal.rcParams['figure.figsize'] = (30, 10)

plt.plot(y_predict_subid_batch, label='Predicted')
plt.plot(y_test_subid_batch.values, label='Actual')
plt.ylabel('p95maxcpu')
plt.legend()
plt.show()

Populating the Delay-insensitive namespace from numpy and matplotlib

p95maxcpu prediction for Delay-insensitive VMs using Lasso Regression

Check R-square value on test data
Interactive

In [59]: r_square = lasso_model.score(x_test, y_test)
r_square

Out[59]: 0.40841470247604866

Delay-insensitive

In [60]: r_square_subid_batch = lasso_model_subid_batch.score(x_test_subid_batch,
y_test_subid_batch)
r_square_subid_batch

Out[60]: 0.7496365151711825

Is the root mean square error any better?

Interactive

In [61]: lasso_model_mse = mean_squared_error(y_predict, y_test)
math.sqrt(lasso_model_mse)

Out[61]: 26.346604054318284

Delay-insensitive

In [62]: lasso_model_mse_subid_batch = mean_squared_error(y_predict_subid_batch,
y_test_subid_batch)
math.sqrt(lasso_model_mse_subid_batch)

Out[62]: 14.38683248761928

4.2.6 Ridge Regression

Cost Function: RSS + \(\alpha \)\(^*\)(sum of squares of coefficients)

RSS = Residual Sum of Squares

Larger values of \(\alpha \) should result in smaller coefficients as the cost function needs to be minimized

Ridge Regression penalizes large coefficients even more than Lasso as coefficients are squared in cost function

Interactive
In [63]: from sklearn.linear_model import Ridge

ridge_model = Ridge(alpha=0.1, normalize=True)
ridge_model.fit(X_train, Y_train)

Out[63]: Ridge(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=None, normalize=True, random_state=None, solver='auto', tol=0.001)

Delay-insensitive

In [64]: #from sklearn.linear_model import Ridge

ridge_model_subid_batch = Ridge(alpha=0.1, normalize=True)
ridge_model_subid_batch.fit(X_train_subid_batch, Y_train_subid_batch)

Out[64]: Ridge(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=None, normalize=True, random_state=None, solver='auto', tol=0.001)

Check R-square on training data

Interactive

In [65]: ridge_model.score(X_train, Y_train)

Out[65]: 0.32753252981125314

Delay-insensitive

In [66]: ridge_model_subid_batch.score(X_train_subid_batch, Y_train_subid_batch)

Out[66]: 0.7246368614895887

Coefficients when using Ridge

Interactive

In [67]: coef = pd.Series(ridge_model.coef_,predictors).sort_values()
print(coef)

vmemory -0.004598
corehour 0.012278
avgcpu 1.049424
dtype: float64
Delay-insensitive

In [68]: coef_subid_batch = pd.Series(ridge_model_subid_batch.coef_,predictors_subid_batch).sort_values()
print(coef_subid_batch)

corehour -0.001351
wmmemory 2.001922
avgcpu 2.215234
dtype: float64

Make predictions on test data

Interactive

In [69]: y_predict = ridge_model.predict(x_test)

Delay-insensitive

In [70]: y_predict_subid_batch = ridge_model_subid_batch.predict(x_test_subid_batch)

Compare predicted and actual values of p95maxcpu

Interactive

In [71]: %pylab inline
pylab.rcParams['figure.figsize'] = (15, 6)

plt.plot(y_predict, label='Predicted')
plt.plot(y_test.values, label='Actual')
plt.ylabel('p95maxcpu')
plt.legend()
plt.show()

Populating the interactive namespace from numpy and matplotlib
p95maxcpu prediction for Interactive VMs using Ridge Regression

Delay-insensitive

In [72]: %pylab inline

```
pylab.rcParams['figure.figsize'] = (15, 6)
```

```
plt.plot(y_predict_subid_batch, label='Predicted')
plt.plot(y_test_subid_batch.values, label='Actual')
plt.ylabel('p95maxcpu')
plt.legend()
plt.show()
```

Populating the Delay-insensitive namespace from numpy and matplotlib

p95maxcpu prediction for Delay-insensitive VMs using Ridge Regression
Get R-square value for test data

Interactive

In [73]: r_square = ridge_model.score(x_test, y_test)
r_square

Out[73]: 0.4020324715291811

Delay-insensitive

In [74]: r_square_subid_batch = ridge_model_subid_batch.score(x_test_subid_batch, y_test_subid_batch)
r_square_subid_batch

Out[74]: 0.7408046772480763

Interactive

In [75]: ridge_model_mse = mean_squared_error(y_predict, y_test)
math.sqrt(ridge_model_mse)

Out[75]: 26.488341033523948

Delay-insensitive

In [76]: ridge_model_mse_subid_batch = mean_squared_error(y_predict_subid_batch, y_test_subid_batch)
math.sqrt(ridge_model_mse_subid_batch)

Out[76]: 14.638388637696366

4.2.7 Support Vector Regression (SVR)

Interactive

In [77]: from sklearn.svm import SVR

regression_model = SVR(kernel='linear', C=2)
regression_model.fit(X_train, Y_train)
Out[77]: SVR(C=2, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='auto', kernel='linear', max_iter=-1, shrinking=True, tol=0.001, verbose=False)

R-square on training data

In [78]: regression_model.score(X_train, Y_train)

Out[78]: 0.2732295573490885

In [79]: coef = pd.Series(regression_model.coef_[0], predictors).sort_values()
 print(coef)

vmmemory -1.491601
corehour 0.015023
avgcpu 1.047717
dtype: float64

In [80]: y_predict = regression_model.predict(x_test)

In [81]: %pylab inline
 pylab.rcParams['figure.figsize'] = (15, 6)

plt.plot(y_predict, label='Predicted')
plt.plot(y_test.values, label='Actual')
plt.ylabel('p95maxcpu')
plt.legend()
plt.show()

Populating the interactive namespace from numpy and matplotlib
p95maxcpu prediction for Interactive VMs using SVR

R-square on test data

In [82]: r_square = regression_model.score(x_test, y_test)
r_square

Out[82]: 0.33512860915120257

In [83]: regression_model_mse = mean_squared_error(y_predict, y_test)
math.sqrt(regression_model_mse)

Out[83]: 27.93089046339419

Delay-insensitive

In [84]: #from sklearn.svm import SVR

regression_model_subid_batch = SVR(kernel='linear', C=2)
regression_model_subid_batch.fit(X_train_subid_batch, Y_train_subid_batch)

Out[84]: SVR(C=2, cache_size=200, coef0=0.0, degree=3, epsilon=0.1,
gamma='auto', kernel='linear', max_iter=-1, shrinking=True,
tol=0.001, verbose=False)

R-square on training data

In [85]: regression_model_subid_batch.score(X_train_subid_batch, Y_train_subid_batch)
Out[85]: 0.67538479854174

In [86]: coef_subid_batch = pd.Series(regression_model_subid_batch.coef_[0],
predictors_subid_batch).sort_values()
print(coef_subid_batch)
corehour -0.003186
vmmemory 1.141142
avgcpu 3.128491
dtype: float64

In [87]: y_predict_subid_batch = regression_model_subid_batch.predict(x_test_subid_batch)

In [88]: %pylab inline
pylab.rcParams['figure.figsize'] = (15, 6)

plt.plot(y_predict_subid_batch, label='Predicted')
plt.plot(y_test_subid_batch.values, label='Actual')
plt.ylabel('p95maxcpu')
plt.legend()
plt.show()

Populating the Delay-insensitive namespace from numpy and matplotlib

In [89]: r_square_subid_batch = regression_model_subid_batch.score(x_test_subid_batch,
y_test_subid_batch)
r_square_subid_batch

p95maxcpu prediction for Delay-insensitive VMs using SVR
Out[89]: 0.7079164741245016

In [90]: regression_model_mse_subid_batch = mean_squared_error(y_predict_subid_batch,
y_test_subid_batch)
math.sqrt(regression_model_mse_subid_batch)

Out[90]: 15.53936344115162

4.2.8 Interactive VMs v/s Delay Insensitive VMs

df with only interactive VMs not considering the subscription id

In [91]: only_interactive_df = vmtable_df.loc[vmtable_df['vmcategory'] > 0]

In [92]: only_interactive_df.describe()

Out[92]:

<table>
<thead>
<tr>
<th></th>
<th>maxcpu</th>
<th>avgcpu</th>
<th>p95maxcpu</th>
<th>vmcategory</th>
<th>vmmemory</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>60682.000000</td>
<td>60682.000000</td>
<td>60682.000000</td>
<td>60682.0</td>
<td>60682.000000</td>
</tr>
<tr>
<td>mean</td>
<td>97.420276</td>
<td>10.248779</td>
<td>38.870767</td>
<td>1.0</td>
<td>4.303088</td>
</tr>
<tr>
<td>std</td>
<td>5.824761</td>
<td>11.410434</td>
<td>28.542252</td>
<td>0.0</td>
<td>6.448530</td>
</tr>
<tr>
<td>min</td>
<td>12.511224</td>
<td>0.192261</td>
<td>0.312124</td>
<td>1.0</td>
<td>0.750000</td>
</tr>
<tr>
<td>25%</td>
<td>98.095370</td>
<td>4.175261</td>
<td>18.214594</td>
<td>1.0</td>
<td>1.750000</td>
</tr>
<tr>
<td>50%</td>
<td>99.114400</td>
<td>6.314372</td>
<td>26.766012</td>
<td>1.0</td>
<td>1.750000</td>
</tr>
<tr>
<td>75%</td>
<td>99.722199</td>
<td>11.324602</td>
<td>56.290819</td>
<td>1.0</td>
<td>3.500000</td>
</tr>
<tr>
<td>max</td>
<td>100.000000</td>
<td>97.800798</td>
<td>100.000000</td>
<td>1.0</td>
<td>112.000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>corehour</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>60682.000000</td>
</tr>
<tr>
<td>mean</td>
<td>1183.554909</td>
</tr>
<tr>
<td>std</td>
<td>1139.674975</td>
</tr>
<tr>
<td>min</td>
<td>70.083333</td>
</tr>
<tr>
<td>25%</td>
<td>719.916667</td>
</tr>
<tr>
<td>50%</td>
<td>719.916667</td>
</tr>
<tr>
<td>75%</td>
<td>1439.833333</td>
</tr>
<tr>
<td>max</td>
<td>11518.666667</td>
</tr>
</tbody>
</table>
df with only delay-insensitive VMs not considering the subscription id

In [93]: only_batch_df = vmtable_df.loc[vmtable_df['vmcategory'] < 1]

In [94]: only_batch_df.describe()

Out[94]:

<table>
<thead>
<tr>
<th></th>
<th>count</th>
<th>count</th>
<th>count</th>
<th>count</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>maxcpu</td>
<td>780488.000000</td>
<td>780488.000000</td>
<td>780488.000000</td>
<td>780488.000000</td>
<td>780488.000000</td>
</tr>
<tr>
<td>avgcpu</td>
<td>780488.000000</td>
<td>780488.000000</td>
<td>780488.000000</td>
<td>780488.000000</td>
<td>780488.000000</td>
</tr>
<tr>
<td>p95maxcpu</td>
<td>780488.000000</td>
<td>780488.000000</td>
<td>780488.000000</td>
<td>780488.000000</td>
<td>780488.000000</td>
</tr>
<tr>
<td>vmcategory</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>vmmemory</td>
<td>0.750000</td>
<td>0.750000</td>
<td>0.750000</td>
<td>0.750000</td>
<td>0.750000</td>
</tr>
<tr>
<td>corehour</td>
<td>0.083333</td>
<td>0.083333</td>
<td>0.083333</td>
<td>0.083333</td>
<td>0.083333</td>
</tr>
<tr>
<td>25%</td>
<td>8.768236</td>
<td>0.883998</td>
<td>5.099918</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>50%</td>
<td>78.915568</td>
<td>5.898452</td>
<td>35.982504</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>75%</td>
<td>98.182540</td>
<td>18.216650</td>
<td>89.361248</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>max</td>
<td>100.000000</td>
<td>100.000000</td>
<td>100.000000</td>
<td>0.0</td>
<td>112.000000</td>
</tr>
</tbody>
</table>

We can see that there are 780488 delay-insensitive VMs 60682 interactive VMs

Delay-insensitive

In [95]: only_batch_df.groupby(['vmid']).agg({'vmid': 'count'}).sort_values('vmid', ascending=False).head()

Out[95]:

<table>
<thead>
<tr>
<th>vmid</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmid</td>
</tr>
</tbody>
</table>
4.2.8.1 Correlation for the Delay Insensitive and Interactive VMs

Drop vmcreated, vmdeleted, vmcorecount columns to have only the features

In [97]: only_batch_features_df = only_batch_df.drop(['vmid','subscriptionid','deployment id','maxcpu','vmcategory'], axis=1, inplace=False)

In [98]: only_interactive_features_df = only_interactive_df.drop(['vmid','subscriptionid','deploymentid','maxcpu','vmcategory'], axis=1, inplace=False)

4.2.8.2 Plot Correlation for Delay Insensitive VMs

In [99]: only_batch_features_df.corr()
4.2.8.3 Plot Correlation for Interactive VMs

In [101]: only_interactive_features_df.corr()

Out[101]:

<table>
<thead>
<tr>
<th></th>
<th>avgcpu</th>
<th>p95maxcpu</th>
<th>vmmemory</th>
<th>corehour</th>
</tr>
</thead>
<tbody>
<tr>
<td>avgcpu</td>
<td>1.000000</td>
<td>0.709775</td>
<td>0.044812</td>
<td>0.036921</td>
</tr>
<tr>
<td>p95maxcpu</td>
<td>0.709775</td>
<td>1.000000</td>
<td>0.122231</td>
<td>0.130363</td>
</tr>
<tr>
<td>vmmemory</td>
<td>0.044812</td>
<td>0.122231</td>
<td>1.000000</td>
<td>0.608515</td>
</tr>
<tr>
<td>corehour</td>
<td>0.036921</td>
<td>0.130363</td>
<td>0.608515</td>
<td>1.000000</td>
</tr>
</tbody>
</table>
4.3 RNN with LSTMs

- Generating input file
 1. Select a VM
 2. from vmtable.csv, get the vmid, vmcreated, vmdeleted time.
 3. Go through the vm_cpu_readings files and get the row record corresponding to this VM ID and write to a file which will be input file for this VM

Repeat the above three steps for generating input files for other VMs.
4.3.1 Import the Keras, scikit-learn and python libraries

```python
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import math
from keras import metrics
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from keras.callbacks import Callback
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras import optimizers
```

Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
In [2]: headers=['timestamp','vm id','min cpu','max cpu','avg cpu']

4.3.2 Load the input dataset generated for the VM

```python
In [3]: df = pd.read_csv("input/input_vm0_cpu_readings-file-1-to-125.csv", header=None,
index_col=False,names=headers,delimiter="\",)
```

Since we require only the 'min cpu','max cpu','avg cpu' values, we take these values and convert as numpy array

```python
In [4]: df = df[['min cpu','max cpu','avg cpu']]
```

```python
In [5]: dataset = df.values
dataset = dataset.astype('float32')
```

Neural networks are sensitive to input data, especially when we are using activation functions like sigmoid or tanh activation functions are used. So we rescale our data to the range of 0-to-1, using MinMaxScaler.
In [6]: scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)

In [7]: train_size = int(len(dataset) * 0.8)
test_size = len(dataset) - train_size
train, test = dataset[:train_size, :], dataset[train_size:len(dataset), :]
print(len(train), len(test))

6905 1727

The create_training_dataset function below is used to convert an array of values into a dataset matrix. It takes two inputs: 1. dataset - numpy array to be converted into a dataset 2. look_back - number of previous time steps to use as input variables to predict the next time period

In [8]: def create_training_dataset(dataset, look_back=1):
dataX, dataY = [], []
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back), :3]
dataX.append(a)
dataY.append(dataset[i + look_back, :])
return np.array(dataX), np.array(dataY)

In [9]: look_back = 40
trainX, trainY = create_training_dataset(train, look_back=look_back)
testX, testY = create_training_dataset(test, look_back=look_back)

4.3.3 Build our Model

In [10]: model = Sequential()
model.add(LSTM(4, input_shape=(trainX.shape[1], trainX.shape[2])))
model.add(Dense(3))
adamOpt = optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None,
decay=0.0, amsgrad=False)
model.compile(loss='mean_squared_error', optimizer=adamOpt,
metrics=[metrics.mae])
history = model.fit(trainX, trainY, validation_split=0.25,epochs=40,
batch_size=64, verbose=2)

Train on 5148 samples, validate on 1716 samples
Epoch 1/40
Epoch 2/40
- 3s - loss: 0.0019 - mean_absolute_error: 0.0109 - val_loss: 6.3563e-04 - val_mean_absolute_error: 0.0093

Epoch 3/40
- 3s - loss: 0.0019 - mean_absolute_error: 0.0106 - val_loss: 6.2918e-04 - val_mean_absolute_error: 0.0088

Epoch 4/40
- 3s - loss: 0.0018 - mean_absolute_error: 0.0108 - val_loss: 6.3036e-04 - val_mean_absolute_error: 0.0092

Epoch 5/40
- 3s - loss: 0.0018 - mean_absolute_error: 0.0105 - val_loss: 6.3076e-04 - val_mean_absolute_error: 0.0094

Epoch 6/40
- 3s - loss: 0.0017 - mean_absolute_error: 0.0102 - val_loss: 6.2740e-04 - val_mean_absolute_error: 0.0087

Epoch 7/40
- 3s - loss: 0.0017 - mean_absolute_error: 0.0103 - val_loss: 6.3526e-04 - val_mean_absolute_error: 0.0097

Epoch 8/40
- 3s - loss: 0.0016 - mean_absolute_error: 0.0102 - val_loss: 6.2349e-04 - val_mean_absolute_error: 0.0088

Epoch 9/40
- 3s - loss: 0.0016 - mean_absolute_error: 0.0102 - val_loss: 6.2334e-04 - val_mean_absolute_error: 0.0089

Epoch 10/40
- 3s - loss: 0.0015 - mean_absolute_error: 0.0100 - val_loss: 6.1886e-04 - val_mean_absolute_error: 0.0085

Epoch 32/40
- 2s - loss: 0.0012 - mean_absolute_error: 0.0092 - val_loss: 5.9752e-04 - val_mean_absolute_error: 0.0077

Epoch 33/40
- 3s - loss: 0.0012 - mean_absolute_error: 0.0089 - val_loss: 6.0768e-04 - val_mean_absolute_error: 0.0095
Epoch 34/40
- 3s - loss: 0.0012 - mean_absolute_error: 0.0092 - val_loss: 5.9884e-04 - val_mean_absolute_error: 0.0073
Epoch 35/40
- 3s - loss: 0.0012 - mean_absolute_error: 0.0091 - val_loss: 5.9684e-04 - val_mean_absolute_error: 0.0075
Epoch 36/40
- 3s - loss: 0.0012 - mean_absolute_error: 0.0090 - val_loss: 6.0756e-04 - val_mean_absolute_error: 0.0098
Epoch 37/40
- 3s - loss: 0.0012 - mean_absolute_error: 0.0094 - val_loss: 5.9584e-04 - val_mean_absolute_error: 0.0076
Epoch 38/40
- 3s - loss: 0.0012 - mean_absolute_error: 0.0088 - val_loss: 5.9787e-04 - val_mean_absolute_error: 0.0088
Epoch 39/40
- 3s - loss: 0.0012 - mean_absolute_error: 0.0090 - val_loss: 5.9451e-04 - val_mean_absolute_error: 0.0081
Epoch 40/40
- 3s - loss: 0.0012 - mean_absolute_error: 0.0091 - val_loss: 5.9448e-04 - val_mean_absolute_error: 0.0084

In [11]: model.summary()

Layer (type) Output Shape Param #
==
lstm_1 (LSTM) (None, 4) 128

dense_1 (Dense) (None, 3) 15
==
Total params: 143
Trainable params: 143
Non-trainable params: 0

==
In [12]: # plot train and validation loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model train vs validation loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper right')
plt.show()

Plot of LSTM model training v/s validation loss

In [13]: trainPredict = model.predict(trainX)
testPredict = model.predict(testX)

We have to invert the predictions before calculating error to so that reports will be in same units as our original data

In [14]: trainY = scaler.inverse_transform(trainY)
trainPredict = scaler.inverse_transform(trainPredict)
testY = scaler.inverse_transform(testY)
testPredict = scaler.inverse_transform(testPredict)
In [15]: trainScore = math.sqrt(mean_squared_error(trainY[:,], trainPredict[:,]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(testY[:,], testPredict[:,]))
print('Test Score: %.2f RMSE' % (testScore))

Train Score: 3.11 RMSE
Test Score: 2.73 RMSE

4.3.4 Plot for minimum CPU utilization

In [16]: # shift train predictions for plotting
trainPredictPlot = np.empty_like(dataset[:,1:1])
trainPredictPlot[:, :] = np.nan
trainPredictPlot[look_back:len(trainPredict[:,1:1]) + look_back, :] =
trainPredict[:,1:1]

In [17]: # shift test predictions for plotting
testPredictPlot = np.empty_like(dataset[:,1:1])
testPredictPlot[:, :] = np.nan
testPredictPlot[len(trainPredict) + (look_back * 2) + 1:len(dataset) - 1, :] =
testPredict[:,1:1]

In [18]: plt.plot(df[['min cpu']], label='Actual')
plt.plot(pd.DataFrame(trainPredictPlot, columns=['min cpu'], index=df.index),
label='Training')
plt.plot(pd.DataFrame(testPredictPlot, columns=['min cpu'], index=df.index),
label='Testing')
plt.legend(loc='best')
plt.title('Predictions for minimum CPU utilization')
plt.ylabel('min CPU utilization')
plt.xlabel('time step')
plt.show()
4.3.5 Plot for maximum CPU utilization

```python
In [19]: # shift train predictions for plotting
    trainPredictPlot = np.empty_like(dataset[:,1:2])
    trainPredictPlot[:, :] = np.nan
    trainPredictPlot[look_back:len(trainPredict[:,1:1]) + look_back, :] =
    trainPredict[:,1:2]

In [20]: # shift test predictions for plotting
    testPredictPlot = np.empty_like(dataset[:,1:2])
    testPredictPlot[:, :] = np.nan
    testPredictPlot[len(trainPredict) + (look_back * 2) + 1:len(dataset) - 1, :] =
    testPredict[:,1:2]

In [21]: plt.plot(df['max cpu'], label='Actual')
    plt.plot(pd.DataFrame(trainPredictPlot, columns=['max cpu'], index=df.index),
             label='Training')
    plt.plot(pd.DataFrame(testPredictPlot, columns=['max cpu'], index=df.index),
             label='Testing')
    plt.legend(loc='best')
    plt.title('Predictions for maximum CPU utilization')
```
4.3.6 Plot for average CPU utilization

In [22]: # shift train predictions for plotting
 trainPredictPlot = np.empty_like(dataset[:,2:])
 trainPredictPlot[:, :] = np.nan
 trainPredictPlot[look_back:len(trainPredict[:,1]) + look_back, :1] =
 trainPredict[:,2:]

In [23]: trainPredictPlot[100]

Out[23]: array([3.3520565], dtype=float32)

In [24]: # shift test predictions for plotting
 testPredictPlot = np.empty_like(dataset[:,2:])
 testPredictPlot[:, :] = np.nan
 testPredictPlot[len(trainPredict) + (look_back * 2) + 1:len(dataset) - 1, :] =
 testPredict[:,2:]
In [25]: testPredictPlot[7000:7005]

Out[25]: array([[3.2191951,
[3.0679529,
[3.152328],
[3.0347176],
[3.1627386]], dtype=float32)

In [26]: plt.plot(df[['avg cpu']], label='Actual')
plt.plot(pd.DataFrame(trainPredictPlot, columns=['avg cpu'], index=df.index),
label='Training')
plt.plot(pd.DataFrame(testPredictPlot, columns=['avg cpu'], index=df.index),
label='Testing')
plt.legend(loc='best')
plt.title('Predictions for average CPU utilization')
plt.ylabel('avg CPU utilization')
plt.xlabel('time step')
plt.show()
Chapter 5
Discussion and Future Work

5.0.0.1 Summarizing the Regression techniques

<table>
<thead>
<tr>
<th>VM Type</th>
<th>Model</th>
<th>Interactive R-squared on training data</th>
<th>Delay In-sensitive</th>
<th>Interactive R-squared on test data</th>
<th>Delay In-sensitive</th>
<th>RMS Error Interactive</th>
<th>Delay In-sensitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Regression</td>
<td>Linear Regression</td>
<td>0.33</td>
<td>0.73</td>
<td>0.41</td>
<td>0.75</td>
<td>26.37</td>
<td>14.38</td>
</tr>
<tr>
<td>Lasso Regression</td>
<td>Lasso Regression</td>
<td>0.33</td>
<td>0.73</td>
<td>0.41</td>
<td>0.75</td>
<td>26.35</td>
<td>14.37</td>
</tr>
<tr>
<td>Ridge Regression</td>
<td>Ridge Regression</td>
<td>0.33</td>
<td>0.72</td>
<td>0.40</td>
<td>0.74</td>
<td>26.48</td>
<td>14.64</td>
</tr>
<tr>
<td>Support Vector Regression</td>
<td>Support Vector Regression</td>
<td>0.27</td>
<td>0.67</td>
<td>0.33</td>
<td>0.71</td>
<td>27.93</td>
<td>15.54</td>
</tr>
</tbody>
</table>

Results of applying various regression techniques to predict 95 percentile CPU utilization

5.0.0.2 Summarizing the LSTM RNN prediction

We wanted to predict the 'min cpu','max cpu','avg cpu' values using the below LSTM RNN configuration: Lookback = 40 time steps
Trainable parameters: 143
4 LSTM units
3 output units
Optimizer used: Adam optimizer
Learning rate: 0.001
Minimizing mean square error loss
Train Score: 3.10 RMSE
Test Score: 2.73 RMSE

5.1 Discussion

The results observed come from analyzing a small subset of data released by Microsoft Azure. The models were trained on my personal computer with below configuration:

Processor: Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz, 2701 Mhz, 2 Core(s), 4 Logical Processor(s)

System Type: x64-based PC

Total Physical Memory: 15.9 GB

OS Name: Microsoft Windows 10 Home

We can expect to achieve a greater accuracy with a larger training dataset and more hyper parameter tuning on a better infrastructure like a powerful GPU cluster.

For the regression based prediction, we chose to predict the 95 percentile CPU usage data since it is more useful than predicting maximum cpu usage. Predicting the average CPU usage may also be a good choice in some use cases. The regression coefficients and correlation plots both indicate that Delay Insensitive VMs are more stable and predictable than Interactive VMs.

The focus was not much on getting the best model possible using hyper-parameter tuning but to create framework that is generic and that can be extended to other datasets. We believe that with resource metric data analysis, application development teams can better request infrastructure for their applications and avoid over-provisioning.
Future resource metric usage predictions can be used in conjunction with VM scheduling algorithms as described in [13] for better results from optimizing algorithms.

5.2 Future Work

We could perform similar analysis on a different data set like Failure Trace Archive [34] or The Computer Failure Data Repository (CFDR) [35].

Newer algorithms such as reinforcement learning and attention model are evolving and it would be interesting to see how they perform with time series data.

Analyzing other features like memory usage or network I/O is another area that can be worked on.

We believe that making use of high power GPUs would help us analyze a larger dataset at once faster since modern machine learning frameworks like Tensorflow work well while training on a GPU. The prediction results can be used to simulate an actual datacenter on CloudSim. Ultimately, the goal should be testing the VM scheduling in a physical datacenter infrastructure using prediction results.
Chapter 6

Conclusion

We took a practical and data centric approach as opposed to developing mathematical models and optimization algorithms as seen in the related work section. As research continues in the field of Artificial Intelligence, Big Data Analysis, cloud and distributed computing, we can expect deriving greater value out of data center resource utilization prediction.

We recommend all organizations to start collecting data of their server infrastructure if they are not already doing so and to analyze for monitoring or prediction purposes. The accuracy of result is only going to improve as more data accumulates over the period of time.
References

[28] Stefan Frey, Claudia Lüthje, and Christoph Reich. Key Performance Indicators for Cloud Computing SLAs.

