
COLLABORATIVE RANKING-BASED RECOMMENDER
SYSTEMS

by

JUN HU

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Ping Li

And approved by

New Brunswick, New Jersey

October, 2018



c© 2018

Jun Hu

ALL RIGHTS RESERVED



ABSTRACT OF THE DISSERTATION

Collaborative Ranking-based Recommender Systems

By JUN HU

Dissertation Director:

Ping Li

Recommender systems are by far one of the most successful applications of big data and ma-

chine learning. The goal of recommender systems is to find what is likely to be of interest, thus

enabling personalization and tailored services. Among all the recommendation algorithms,

collaborative filtering is the most common technique. In this thesis, we present our research

results in the field of ranking-based collaborative filtering. We view the task of recommenda-

tion as providing a personalized ranked list of items for each user and thus formulate it as a

ranking problem. In order to generate accurate recommended lists, we look into the technique

of combining learning-to-rank with conventional collaborative filtering methods for solving the

recommendation task and comprehensively discuss the challenges and advantages of this ap-

proach. Particularly, we propose an improved pairwise ranking model and a multi-objective

ranking framework to address the issues which occur during the combination of learning-to-

rank and collaborative filtering. In addition, we propose a new ordinal approach to modeling

the ordinal nature of user preference scores, which demonstrates distinct superiority compared

to the numerical and (nominal) categorical views of user ratings.

ii



Acknowledgements

Firstly, I would like to express my highest gratitude to my advisor Prof. Ping Li for the continu-

ous support of research, for his patience, motivation, immense knowledge. He always gave me

plenty of freedom and the best resources to investigate topics that I am interested in, and also

provided invaluable support and advice to help me make research progresses. Without him, it

is impossible to accomplish this thesis.

Besides my research advisor, I would like to thank the rest of my thesis defense committee:

Prof. Zheng Zhang, Prof. Yongfeng Zhang, and Prof. Han Xiao for their insightful comments

and encouragement. In addition, I would also like to thank Prof. Vladimir Pavlovic, Prof.

Desheng Zhang and Prof. Shan Muthukrishnan to serve as my qualified exam committee mem-

bers and Prof. Tomasz Imieliski, who gave me precious advice during the first two years of my

Ph.D. study.

I thank my current and previous labmates: Jie Shen, Jie Gui, Yuan Cao, Jing Wang, Martin

Slawski, Anshumali Shrivastava, Ji Zhang, for the stimulating discussions which inspire me

and widen my research from various perspectives, and for the fun we had during the past years.

In addition, I would thank my talented friends and collaborators: Chaolun Xia, Meng Li, Yan

Wang, Yan Zhu, Han Zhang, Ruilin Liu etc, for sharing creative ideas and pushing deadlines

together. Without their help, it would become extremely hard to constitute the success of this

research. My sincere thanks also go to my mentors at Yahoo! Research: Dr. Meizhu Liu, Dr.

Changwei Hu, and Dr. Yifan Hu, who provided me with an opportunity to join their team as an

intern.

Last but not the least, I would like to thank my parents for supporting me spiritually through-

out my life. I also thank my girlfriend for persistently supporting my research.

iii



Dedication

To my parents

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Overview of Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Collaborative Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Decoupled Collaborative Ranking . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3. Decoupled Collaborative Ranking . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1. Global Matrix Factorization . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2. Ordinal Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3. From Binary Classification to Ranking . . . . . . . . . . . . . . . . . 15

2.3.4. Empirical Study on Binary Classifications . . . . . . . . . . . . . . . . 17

2.4. Extension: Further Improve Ranking via Pairwise Learning . . . . . . . . . . . 18

2.5. Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1. Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.2. Empirical Study on DCR . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.3. Compare with Pointwise Approaches . . . . . . . . . . . . . . . . . . 23

v



2.5.4. Compare with Push Collaborative Ranking . . . . . . . . . . . . . . . 24

2.5.5. Compare with Pairwise and Listwise Approaches . . . . . . . . . . . . 25

2.5.6. Effectiveness of Pairwise DCR . . . . . . . . . . . . . . . . . . . . . . 27

2.6. Discussions on DCR-Logistic . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3. Collaborative Filtering via Additive Ordinal Regression . . . . . . . . . . . . . 30

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3. Additive Ordinal Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1. An Additive Way to View Ordered Values . . . . . . . . . . . . . . . . 34

3.3.2. Mapping Numerical Scale to Ordinal Scale . . . . . . . . . . . . . . . 34

3.3.3. Additive Ordinal Regression . . . . . . . . . . . . . . . . . . . . . . . 35

3.4. Decomposed Matrix Factorization . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1. Decomposing User Ratings . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2. Rating Prediction on Decomposed Binary Matrices . . . . . . . . . . . 38

3.4.3. Combining Predictions from Decomposed Matrices . . . . . . . . . . . 39

3.4.4. Comparisons with OrdRec and OMF . . . . . . . . . . . . . . . . . . 40

3.5. Parallel SGD for Learning DMF . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.1. Regularization Parameters . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.2. Parallelized Stochastic Gradient Descent . . . . . . . . . . . . . . . . 41

3.6. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6.1. Effectiveness of DMF . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6.2. Comparison with Other Ordinal Algorithms . . . . . . . . . . . . . . . 45

3.6.3. More Discussions on DMF . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.4. Comparisons with More Rating Predictors . . . . . . . . . . . . . . . . 49

3.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4. Improved Bradley-Terry Model for Collaborative Ranking . . . . . . . . . . . 52

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

vi



4.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1. Pairwise Learning to Rank . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2. Collaborative Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.3. Bradley-Terry Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3. Methodology and Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1. Bradley-Terry Model Meets Matrix Factorization . . . . . . . . . . . . 56

4.3.2. Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.3. Improved Bradley-Terry Model . . . . . . . . . . . . . . . . . . . . . 58

4.4. Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.1. Parallel Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . 60

4.4.2. Parallel Sampling-based Stochastic Gradient Descent . . . . . . . . . . 61

4.5. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.1. Dataset and Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.2. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.3. Parallelization and Scalability . . . . . . . . . . . . . . . . . . . . . . 66

4.5.4. Compare with other methods . . . . . . . . . . . . . . . . . . . . . . . 66

4.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5. Collaborative Multi-objective Ranking . . . . . . . . . . . . . . . . . . . . . . 69

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3. Modeling Row-wise Comparisons only generates effective “V” . . . . . . . . 74

5.3.1. Zero-one Loss and Its Approximation . . . . . . . . . . . . . . . . . . 74

5.3.2. Discussion on User Latent Factors . . . . . . . . . . . . . . . . . . . . 75

5.3.3. More Insight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.4. Combining Row-wise and Column-wise Comparisons . . . . . . . . . 76

5.4. Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.1. Rating Prediction through Matrix Factorization . . . . . . . . . . . . . 77

5.4.2. Pairwise Comparisons through Bradley-Terry Model . . . . . . . . . . 78

vii



5.4.3. Combining All Three Objectives . . . . . . . . . . . . . . . . . . . . . 79

5.4.4. The Advantages of CMR . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5. Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6. Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6.1. Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6.2. Performance Comparisons . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6. Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

viii



List of Tables

2.1. Popular datasets used in the experiment . . . . . . . . . . . . . . . . . . . . . 21

2.2. Compare with push-based top-K ranking algorithms. . . . . . . . . . . . . . . 24

2.3. Comparisons with pairwise and listwise approaches in terms of NDCG@10. . 26

2.4. Running time (seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1. Statistics of datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2. RMSE on MovieLens100K . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3. RMSE on MovieLens1M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4. RMSE on MovieLens20M . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5. Comparing DMF with ordinal rating predictors . . . . . . . . . . . . . . . . . 46

3.6. Comparisons of rating predictors. . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1. Scalability of proposed methods. . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2. Comparisons of collaborative ranking methods. . . . . . . . . . . . . . . . . . 67

4.3. Running time (seconds) of compared methods. . . . . . . . . . . . . . . . . . 68

5.1. An empirical study of BPR for personalized ranking in terms of updating dif-

ferent set of user (U) and item (V) latent factors, evaluated by NDCG@10 for

MovieLens1M data. “N” is the number of selected ratings per user for training. 70

5.2. Performance comparisons on the row-wise personalized ranking task. . . . . . 89

5.3. Performance comparisons on the column-wise user ranking task. . . . . . . . . 90

ix



List of Figures

1.1. The input data of collaborative filtering. Each row represents a user and each

column represents an item. One entry with a value represents the preference

score one user gives to an item. The scores in the empty entries are those we

need to estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. An example of matrix decomposition when C = 5. “?”s represent the unob-

served entries. Each binary matrix in the right column is obtained by classify-

ing the original rating matrix (left) based on the idea of ordinal classification.

For example, the top right matrix, i.e., R5, is obtained by grouping observed

entries: r ≥ 5 as “1” and r ≤ 4 as “0”. . . . . . . . . . . . . . . . . . . . . . 12

2.2. Comparison of ranking performance on individual rating matrices, including

original rating matrix R and each of the decoupled binary matrices. “Rank”

refers to the dimensionality for low-rank approximation. . . . . . . . . . . . . 17

2.3. Comparisons on the ranking performance of different relevance functions as a

function of rank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4. Comparisons with pointwise methods in terms of NDCG@K scores. K varies

from 2 to 10. rank = 20 in DCR and rank = 100 in other methods. . . . . . 24

2.5. Compare DCR with DCR-Logistic. . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1. An example to show the difference among (nominal) categorical, numerical

and ordinal values/labels. The colored (if visible) horizontal lines show the

distances between pairs of adjacent rating scores. . . . . . . . . . . . . . . . . 31

3.2. Matrix decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3. The impact of rank. Results are reported on the MovieLens20M dataset. . . . 47

3.4. The performance when the original rating matrix is decomposed into different

number of matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

x



3.5. The effectiveness of Algorithm 2. In each round, we first report the results after

updating {Uc,Vc}Cc=1 and then report the results after updating {wc}Cc=1. . . . 49

3.6. The accuracy of parallelized SGD measured by RMSE and MAE with respect

to running time. The experiments are reported on MovieLens1M dataset with

rank = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1. The preference graph of an example to show the numerical challenge. . . . . . 58

4.2. Experimental results measured by NDCG@10 on Movielens1M as a function

of varying balance factor γ. The number of training samples N is chosen from

{10, 20, 30, 40, 50, 80}. The pre-defined parameters include: regularization

parameter λ = 100, learning rate η = 0.01, and rank = 100. . . . . . . . . . . 64

4.3. The ranking performance of SGD and SSGD on Movielens1M dataset when

N = 20 and γ = 1 is reported. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4. The performance of parallel SGD and SSGD on Movielens1M dataset. Param-

eters are selected as: N = 20, η = 0.05, λ = 100, and rank = 100. . . . . . . 66

5.1. Our proposed framework. In this framework, three different objectives which

share the same set of user and item latent factors are jointly optimized. . . . . . 71

5.2. Approximation of zero-one loss using logistic function f(x) = 1
1+exp(−ax) , for

a = 0.5, 1, 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3. The performance of personalized ranking on MovieLens100K dataset in terms

of different α when β = 0. It is evaluated using NDCG@10. N is the number

of ratings used in the training per user. . . . . . . . . . . . . . . . . . . . . . . 85

5.4. The performance of user ranking on MovieLens100K dataset in terms of differ-

ent β when α = 0. It is evaluated by NDCG@10. N is the number of ratings

used in the training per item. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5. The ranking performance of personalized ranking (left panel) and user ranking

(right panel) in terms of different α and β combinations (α + β ≤ 1). The

brighter color represents the better performance. It is tested on the Movie-

Lens100K dataset when N = 50. . . . . . . . . . . . . . . . . . . . . . . . . . 86

xi



1

Chapter 1

Introduction

Recommender systems are by far one of the most successful applications of big data and ma-

chine learning. They are crucial to the success of many Internet companies. For example, Ama-

zon1 brings more than 30% of revenues from recommender systems, and 75% of what people

watch in Netflix2 is from some sort of recommendation. Recommender systems emerged as a

relatively independent research area in the mid-1990s with the rapid development of internet

services [1, 2, 3, 4]. The increasing importance of recommender systems as the mainstream

technique for e-commerce has attracted a large community of researchers and developers from

different fields to work together promoting the progress of recommendation technology.

1.1 Overview of Recommender Systems

Recommender systems are information filtering systems providing suggestions for items to be

of use to target users [5, 6, 3, 7]. The suggestions relate to various decision-making processes,

such as what items to buy, what music to listen to, or what online news to read. Common

recommender systems can be found in many web applications. For example, Netflix, a video-

on-demand company, matches tens of millions customers with a huge inventory of movies

based on the analysis of customers’ past tastes; Amazon is the pioneer in using recommender

systems. The recommendation in Amazon sits on a huge volume of collective information of its

customers and suggests interesting items to the potential users; Facebook3 and Linkedin4, the

social and professional networking sites, build very large social networks/graphs based on the

1https://www.amazon.com/
2https://www.netflix.com/
3https://www.facebook.com/
4https://www.linkedin.com/



2

relationships between users. Interesting services (e.g., friends, jobs) are often recommended

when users log in their websites. Other popular applications of recommender systems are also

seen in business [8, 9, 10], web search [11], education [12, 13, 14], e-government [15, 16, 17],

tourism [18, 19, 20] etc. In addition, there are many types of recommender systems developed

in order to make efficient and accurate recommendations in different scenarios, e.g., collabora-

tive filtering [21], content-based (CB) [22, 23] and knowledge-based (KB) [24] recommender

systems, network-based recommender systems [25, 26], fuzzy recommender systems [27], con-

text awareness-based recommender systems [28, 29] and group recommender systems [30].

There are various reasons why service providers may want to exploit the recommenda-

tion technology. Firstly, it is easy to increase the sales of products by applying a reasonable

recommender system. For example, after watching a movie at Netflix, a user is probably in-

terested in watching another interesting one and recommender systems can provide multiple

choices for satisfying users’ interests. Secondly, recommender systems are able to sell more

diverse items. Without applying typical recommendation approaches, only popular items may

be demonstrated to users while niche items will never be viewed by users. However, niche

products are able to grow to become a large share of total sales [31, 32, 33]. Thus, it is vital

to develop recommendation approaches to promote the sales of niche items. Moreover, recom-

mendation systems can increase user satisfaction. If service providers accurately recommend

interesting, relevant, high-quality products, then it will increase users’ subjective evaluation of

the systems and in turn increase the usage of provided services. In addition, when old customers

are recognized and taken seriously through personalized services, their fidelity to the products

can be hugely increased. In order to achieve the aforementioned functions, recommender sys-

tems are designed to increase the relevance, novelty [34], serendipity [35] and diversity.

Among all the requirements of recommender systems, the core problem is to find user per-

sonalization and thus enable customized recommendations. In order to analyze user behaviors,

many e-commerce websites provide different ways to collect users’ likes or dislikes through,

e.g., asking for a rating score for a purchase, providing text boxes to collect user reviews, etc.

Another effective approach to understanding user behavior is to track users’ activities in the

websites following the users’ click events or the act of a user buying or browsing an item,



3

which can be considered as an endorsement for that item. All the above users’ feedback pro-

vides rich knowledge for understanding users’ tastes. After collecting rich content from users,

items and user-item interactions, recommender systems are able to infer users’ internal interest

and then make customized services to satisfy users’ needs.

The basic principle of recommendation is that there are significant co-relationships be-

tween similar users or similar items and users generally show consistent behavior from the

past to the future. For example, users with similar personalities may demonstrate the similar

interest in the same set of items; items with similar features (e.g., same brand, similar func-

tion, and appearance, etc) may receive same rating scores. This intuition directly motivates the

set of neighborhood-based (so-called memory-based [36]) recommendation approaches, which

have been widely applied in commercial recommender systems. In addition, users generally

show consistent preferences over items. For example, users who watched many science fiction

movies in the past tend to like science fiction films more than other types of movies (e.g., lit-

erary movies or documentary films) in future. This consistency of users’ internal preferences

is an important assumption in many recommendation algorithms, even though users’ interests

may change a little over time.

The aforementioned users’ internal preferences can be learned in a data-driven manner from

a rating matrix, which is obtained from users’ rating history. The resulting recommendation

model is used to make predictions for target users. Generally speaking, the larger the number

of rated items that are available for a user, the easier it is to make robust predictions about the

future behavior of the user. In this thesis, we mainly discuss recommendation approaches when

only the rating matrix is given. This problem is always considered as the basic problem in the

research of recommender systems and collaborative filtering is one of the prominent algorithms

to solve this problem.

1.2 Collaborative Filtering

There are two typical kinds of data used as inputs for recommender systems. One is the user-

item interaction information, such as rating matrix or click events; the other one refers to at-

tributes associated with users and items, such as user profiles, item categories or keywords



4

Figure 1.1: The input data of collaborative filtering. Each row represents a user and each
column represents an item. One entry with a value represents the preference score one user
gives to an item. The scores in the empty entries are those we need to estimate.

describing items’ properties. The set of algorithms utilizing user-item interaction data are re-

ferred to as collaborative filtering algorithms. In Figure 1.1, it demonstrates a rating matrix as

the data processed by collaborative filtering algorithms. Another set of algorithms dealing with

attribute-based data are called content-based recommendation methods.

There are two types of collaborative filtering algorithms:

• Memory-based methods: it is also referred as neighborhood-based collaborative filtering

algorithms. In a user-centric manner described in [37], memory-based algorithms try

to find users that are similar to an active user (i.e., the target user we want to make

predictions for) and utilize the information collected from similar users to predict the

preferences for that active user. In an item-centric manner, items which have similar

properties to those a user likes in the past will be recommended to the user.

Practically, the memory-based methods are pretty easy to implement and the results have

high interpretability, and thus the memory-based recommender systems have been widely

used in the industry. On the other hand, memory-based algorithms generally perform un-

satisfactorily when the rating matrix is too sparse as the user or item similarity calculated

on a small set of observed rating scores is not always reliable.

• Model-based methods: In model-based methods, machine learning models are used to

solve the prediction problem. The common approach is to learn user latent factors and



5

item latent factors, and the predictions on unobserved entries in the rating matrix are

made through the combination of user and item latent factors. In this thesis, we mainly

discuss the matrix factorization approach [38, 39, 40, 41, 42, 43, 44], which is considered

as the most widely used collaborative filtering method. Matrix factorization approach

learns a user latent vector for each user and an item latent vector for each item, and

the final prediction is made through the dot product of one pair of user and item latent

vectors. There is another set of popular collaborative filtering methods which learn user

and item embedding through deep learning models [45, 46, 47, 48, 49, 48, 50, 51, 52].

Traditional collaborative filtering algorithms show very high accuracy in rating prediction

task. They are popularized through the Netflix Prize Challenge [53], which granted 1 million

dollars for the winner.

While collaborative filtering has been investigated and improved extensively over the past

years, there is still room for substantial improvement. In this thesis, we focus on improvement

by modeling the ordinal nature of user ratings. In current main-stream collaborative filtering

algorithms, discrete rating scores are often viewed as either numerical values or (nominal)

categorical labels. Practically, viewing user rating scores as numerical values or categorical

labels can not precisely reflect the exact degree of user preferences. Different users may have

distinct degrees of sensitivity over a sequence of ordered rating scores, resulting in that the

distances between any pair of adjacent ratings (e.g., 5-star and 4-star) are different for individual

users. Nevertheless, when user ratings are interpreted as numerical values, it equals to the

assumption that the user preferences modeled by several consecutive integers (e.g., “1”, “2” to

“5”) are equidistant. While from the viewpoint of (nominal) categorical labels, the distances

between pairs of ordered scores are ignored. In Chapter 3, we propose an additive ordinal

regression model which is able to model the ordinal nature of user rating scores.

1.3 Collaborative Ranking

The accuracy of recommender systems is generally evaluated using two kinds of metrics. One

set of metrics are used to evaluate the accuracy of rating prediction, e.g., root mean squared

error (RMSE), and the other set of metrics are used to evaluate the ranking performance of



6

recommendation, such as normalized discounted cumulative gain (NDCG).

Most of the collaborative filtering models treat the recommendation problem as a prediction

problem in which the squared error between estimated rating scores and observed rating scores

is minimized. However, the ultimate goal of recommender systems is to generate a personalized

ranked item list for each user. It is intuitive to think about that the relative order of items inferred

from algorithms is more important than accurately predicting the rating scores. For example,

suppose that the true rating score from a user to an item i is 3 and to an item j is 4 and thus

recommender systems should rank the item j in front of the item i in terms of user preference.

We develop one algorithm I which predicts the rating score for the item i as 3.6 and rating score

for the item j as 3.4. We also develop another algorithm II which predicts the rating score for

the item i as 3.4 and the rating score for the item j as 3.6. Then, we should prefer algorithm

II since the predicted score for the item j is higher than the score of the item i and thus item

j will be ranked in front of item i. However, algorithm I and algorithm II generate the same

prediction error in terms of the common metric for evaluating rating prediction accuracy (i.e.,

RMSE). [54]. Therefore, it is more reasonable to model the recommendation task as a ranking

problem.

In the real applications of recommender systems, we should emphasize more on the top

of a ranked list, since very few items can be presented to users at a time due to the limited

size of user interfaces. For example, when a user buys products through a smartphone, then

only top 3 or 5 recommended items can be viewed by the user because of the small size of

the phone screen. Furthermore, users generally pay no attention to the bottom of a ranked list

and thus the (rating prediction or ranking) accuracy at the bottom of the ranked list should

be less emphasized or even ignored. If the lower-ranked items are predicted accurately, while

higher-ranked items have severe prediction errors, then the recommender system actually fails

to deliver satisfactory results.

In order to achieve better ranking performance, it is proposed to incorporate learning-to-

rank techniques into collaborative filtering methods, forming a new set of collaborative ranking

algorithms. Since the ranking performance is evaluated using different ranking-centric evalu-

ations and thus the general collaborative ranking approaches are designed to directly optimize

different kinds of ranking metrics in order to provide more accurate ranked lists.



7

In accordance with the type of optimized ranking objectives, collaborative ranking methods

are generally divided into:

• Pointwise collaborative ranking methods. Most of rating prediction approaches are con-

sidered as pointwise methods. In general, the pointwise method can also be approximated

by a regression problem or a classification problem, where rating scores are accessed in

the form of single points throughout the learning process.

• Pairwise collaborative ranking methods. In pairwise ranking method, the correct order

of any observed rating pairs should be kept during optimization. We only care about the

relationship that one item is preferred over the other one, while the fact that whether the

rating scores are accurately predicted does not matter.

• Listwise collaborative ranking methods. The ranked list of items can be viewed as permu-

tations of items, and the best permutation of items should be the same with that generated

from the observed rating scores of items. Practically, it is unfeasible to evaluate all the

permutations generated from a large set of items, and thus the common approach of list-

wise methods is to optimize listwise ranking metrics, such as NDCG and reciprocal rank

[55]. However, general listwise ranking errors are not convex and thus it is proposed to

optimize the smooth version (or surrogate functions) of those errors.

Among the aforementioned three kinds of collaborative ranking approaches, pointwise

methods are more computationally efficient than pairwise and listwise methods because the

size of input data for pointwise methods is O(n), where n is the number of observed rating

scores, while the size of input data for pairwise methods is O(n2) and worst case of listwise

methods is O(n!) (i.e., total number of permutations). Therefore, pointwise methods are more

suitable for large-scale industrial applications. On the other hand, pairwise and listwise meth-

ods usually outperform pointwise methods in terms of ranking accuracy, because pairwise and

listwise methods directly optimize ranking metrics, which is more reasonable for the ranking

purpose.

In this thesis, we mainly establish research discussing the following two problems:

• Does there exist an algorithm which generates accurate ranked lists like pairwise and

listwise methods, but also operates as efficient as pointwise methods? To answer this



8

question, we propose a ranking method which transfers cumulative probability distribu-

tions of ordered rating scores to ranking scores. Our proposed method is a pointwise

method which models the ordinal nature of user ratings. In addition, we emphasize more

on higher rating scores in order to improve the ranking performance at the top of the

ranked list. This part of content is introduced in Chapter 2.

• Are there any technical issues in current collaborative ranking methods and how to solve

them? In essence, most of the current pairwise collaborative ranking methods are derived

from the combination of the Bradley-Terry Model and matrix factorization. However, if

we simply combine these two techniques without any further improvements, the pairwise

methods will encounter the identifiability issue and the objective function of the Bradley-

Terry model will have no minimizer. Therefore, we propose an improved Bradley-Terry

Model in Chapter 4 to solve the aforementioned two issues. Meanwhile, we further

observe that the user latent factors obtained from pairwise collaborative ranking methods

are noneffective for the personalized item recommendation task. We will look into the

problem why those user latent factors don’t contribute to the item recommendation task.

To that end, we propose a multi-objective method to learn both of effective user and item

latent factors. This part of content is introduced in Chapter 5.



9

Chapter 2

Decoupled Collaborative Ranking

In this chapter, we propose a new pointwise collaborative ranking approach for recommender

systems, which focuses on improving ranking performance at the top of recommended list.

Our approach is different from common pointwise methods in that we consider user ratings as

ordinal rather than viewing them as real values or categorical labels. In addition, positively

rated items (higher rating scores) are emphasized more in our method in order to improve the

performance at the top of recommended list.

In our method, user ratings are modeled based on an ordinal classification framework,

which is made up of a sequence of binary classification problems in which one discriminates be-

tween ratings no less than a specific ordinal category c and ratings below that category ({≥ c}

vs. {< c}). The results are used subsequently to generate a ranking score that puts higher

weights on the output of those binary classification problems concerning high values of c so

as to improve the ranking performance at the top of list. As our method crucially builds on a

decomposition into binary classification problems, we call our proposed method as Decoupled

Collaborative Ranking (DCR). As an extension, we impose pairwise learning on DCR, which

yields further improvement with regard to the ranking performance of the proposed method.

We demonstrate through extensive experiments on benchmark datasets that our method outper-

forms many considered state-of-the-art collaborative ranking algorithms in terms of the NDCG

metric.

2.1 Introduction

The main purpose of recommender systems is to make suitable recommendations of items that

are potentially interesting to users. We consider a general recommendation setting: a set of

ratings are recorded by m users over n items, which are represented by an m × n user-item



10

sparse rating matrix R, where the observed ratings take discrete scores and most of them are

absent due to incomplete observations. The task of item recommendation in this scenario boils

down to selecting the items which are potentially interesting to users based on predictions of

the unobserved entries in R.

Methods designed for the purpose of item recommendation can be classified into three

categories: pointwise, pairwise, and listwise. The pointwise approaches are quite similar to

regression or classification methods, which access user ratings in the form of single points and

optimize squared errors or classification errors. Most of the collaborative filtering (CF) ap-

proaches are pointwise approaches. Pairwise or listwise approaches usually optimize ranking-

based evaluations and access observed ratings in the form of ordered pairs or lists. Considering

the computational efficiency of algorithms, pointwise approaches are always preferred since the

computational complexity of pointwise methods scales linearly with data size, while it scales

quadratically in pairwise approaches. Listwise approaches are even more computationally ex-

pensive since they optimize an objective function with respect to a large set of permutations

where one permutation defines one potential order of all the rated items. Adding one rating

value may generate many permutations as input for optimizing the listwise objective function.

On the other hand, pairwise and listwise collaborative ranking methods generally outper-

form pointwise methods in terms of ranking performance [42, 43, 56]. In pointwise approaches,

user ratings are usually defined as numerical value or categorical labels. In many studies con-

cerning item recommendation [42, 57, 58, 59], it is argued that viewing ratings as numerical

values or class labels may not accurately reflect user feedback as provided by qualitative ratings.

For example, the difference of user preference between a 5-star rating score and a 4-star rating

score could be different from that between 4-star and 3-star. Nevertheless, if we view ratings as

numerical, the distance between 5-star and 4-star is considered identical to that between 4-star

and 3-star. If ratings are considered as categorical labels, then all the rating scores are treated

equally as nominal class labels. In view of this factor, pairwise and listwise methods were

proposed to model the ordinality of user ratings, which demonstrated improvement of ranking

performance compared with common pointwise approaches in the task of item recommenda-

tion. Practically, modeling user ratings as ordinal in the style of pointwise is not straightforward



11

since pointwise methods access data in the form of single points, while the ordinality of user

ratings is usually revealed as pairs or ordered lists.

In this chapter, we propose a pointwise collaborative ranking method for item recommenda-

tion. Different from common pointwise approaches, we view user ratings as ordinal categorical

labels. In addition, we care more about the performance at the top of recommended items, i.e.,

the items users are more likely to have a closer look at. Through empirical study, we observe

that higher rating scores have a greater impact on the top-N ranking performance, compared

with lower rating scores. Hence, in our method, we emphasize more on the higher rating values.

Our approach is based on an idea of ordinal classification [60]. More specifically, given

a user-item preference matrix R where the ratings range from 1-star to C-star, we firstly de-

compose R into C binary matrices. An example of matrix decomposition is shown in Fig. 2.1

when C = 5. After the matrix decomposition, we then collaboratively learn user and item la-

tent factors through binary classification on each of the decoupled matrices. The final ranking

score of an item is generated as a weighted sum of the predictions from each of the decou-

pled binary matrices. The purpose of this approach is to place an emphasis on higher rating

scores. As our method crucially builds on a decomposition into binary classification problems,

we call our proposed method as Decoupled Collaborative Ranking (DCR). As an extension,

we combine pairwise strategies with DCR, which further improves the ranking performance of

the proposed method. Through extensive experiments on benchmark datasets, we demonstrate

that our method is competitive, usually markedly better than existing collaborative ranking ap-

proaches in terms of the NDCG metric [54]. Besides, DCR, as a pointwise approach, shows

better performance in terms of time efficiency compared to pairwise or listwise approaches.

2.2 Related Work

Item recommendation algorithms are usually inspired by learning-to-rank (LTR), where meth-

ods can be classified into pointwise, pairwise and listwise approaches.

Most of the collaborative filtering (CF) methods lie in the set of pointwise methods. CF

algorithms can be categorized into two classes: neighborhood-based and model-based. One

class of the neighborhood-based methods [36] aggregate similar users or items and predict the



12

Figure 2.1: An example of matrix decomposition when C = 5. “?”s represent the unobserved
entries. Each binary matrix in the right column is obtained by classifying the original rating
matrix (left) based on the idea of ordinal classification. For example, the top right matrix, i.e.,
R5, is obtained by grouping observed entries: r ≥ 5 as “1” and r ≤ 4 as “0”.

unobserved ratings based on the collected set of users or items [61, 62]. The other class of

model-based approaches apply machine learning and data mining methods in the context of

predictive models. For example, they assume that the sparse rating matrix R has low rank and

hence matrix factorization techniques can be applied [38, 39, 40, 41, 42, 43, 44]. In particular,

algorithms based on matrix factorization have attracted great attention because of their scal-

ability and high prediction accuracy, demonstrated in the Netflix Prize competition [63]. In

general, pointwise methods are efficient since their computational complexity scales linearly in

the size of input data.

Pointwise approaches generally define user ratings as numerical values or categorical labels,

and optimize regression-based or classification-based objective functions. In recent years, there

have been many studies arguing that modeling ratings as numerical or categorical labels is

improper for the task of item recommendation [57, 64, 56]. They propose strategies to combine

pairwise or listwise LTR methods with matrix factorization, where user ratings are defined as

ordinal. For example, a listwise approach named Cofirank [43] optimizes a surrogate convex

upper bound of NDCG error and matrix factorization is used as the basic rating predictor.

Besides, Rendle et al. [65] and Liu et al. [66] model pairwise comparisons of observed ratings

using Bradley-Terry model (a typical pairwise model) with low-rank structure. In [42], it is



13

assumed that rating matrix R is locally low-rank and optimization is conducted on several

pairwise surrogate ranking losses. In practice, these approaches which impose the ordinality

of user ratings improve the ranking performance compared with general pointwise approaches.

Therefore, in order to improve the ranking performance, we propose an approach to modeling

the ordinality of user ratings in our pointwise method.

2.3 Decoupled Collaborative Ranking

Our pointwise approach is based on two key ideas: (i) we consider rating scores as ordinal

labels; (ii) focus more on higher rating scores in order to improve the ranking performance at

the top of recommended list.

At the beginning of this section, we recall notations from previous sections: the rating

matrix is denoted by R ∈ Rm×n whose entry (rating) values are selected from a set of discrete

ordered values {1, 2, ..., C}, with rui representing the observed rating of user u gives to item i.

2.3.1 Global Matrix Factorization

The basic idea of matrix factorization (MF) is that we assume R is low-rank and thus it can be

approximated by R̂ = UVᵀ, where U ∈ Rm×f and V ∈ Rn×f , f is the rank of approximation

and f � min(m,n). The latent factors in U and V can be obtained by optimizing a non-

convex objective function. When it comes to ranking/recommendation, the items corresponding

to unobserved entries of R are sorted in descending order of the numerical values obtained from

matrix factorization. In this approach, the observed ratings in R are considered as real values.

2.3.2 Ordinal Classification

In our method, rating scores are considered as ordinal categorical labels. We merely concern the

order among different rating scores. This ordinal view generally better reflects user feedback

provided by qualitative rating scores.

We capture the ordinal nature of user ratings based on an ordinal classification method [60].

Given an C-level (i.e., r ∈ {1, 2, 3, ..., C}) rating matrix R, we decompose it into C binary

matrices. The observed entry values in the t-th decoupled binary matrix (t ∈ {1, 2, ..., C}) are



14

obtained by partitioning the ratings in R in the following manner: if r ≥ t, then the entry is

assigned a positive label “1” and if r ≤ t − 1, then a label “0” is assigned. The correspond-

ing missing/unobserved entries in the decoupled binary matrices are still missing/unobserved.

Finally, we obtain C binary matrices R1, R2,...,R(C). A case example is shown in Fig. 2.1

when C = 5. This idea originated from classical statistics, e.g., the so-called cumulative logit

model [67].

Binary Classification

After matrix decomposition, we then model the ranking problem in each of the decoupled

binary matrices as a binary classification problem. Assuming that each binary matrix has low

rank, we apply matrix factorization and model the probability that rtui is predicted as label “1”

as follows:

P (rtui = 1) = P (rui ≥ t) =
Ut
uV

t
i
ᵀ

+ 1

2

s.t. ‖Ut
u ‖ ≤ 1, ‖Vt

i ‖ ≤ 1

(2.1)

rtui is the label in the (u, i)-th entry of the t-th binary matrix. P (rtui = 1) = P (rui ≥ t)

since if rui ≥ t, we will assign label “1” to the corresponding entry in t-th binary matrix. Ut
u ∈

Rf and Vt
i ∈ Rf are the latent factors of u-th user and i-th item in the t-th decoupled binary

matrix. By imposing the constraint: ‖Ut
u ‖ ≤ 1 and ‖Vt

i ‖ ≤ 1, the predicted probability will

locate in the range from 0 to 1.

Let Ωt (t ∈ {1, 2, ..., C}) denote all the observed binary labels in the t-th decoupled binary

matrix and let (u, i, rt) denote one observed entry. The latent factors Ut
u and Vt

i for all the

users and items can be learned by maximizing the log-likelihood on the training data:

Lt =
∑

(u,i,rt)∈Ωt

logP (rtui = rt|Ut
u,V

t
i)

Learning proceeds by stochastic gradient ascent on Lt. Given a training example (u, i, rt), the

derivatives of the parameters are calculated as follows:

∂Lt

∂Ut
u

=
1

P (rtui = rt|Ut
u,V

t
i)

∂P (rtui = rt|Ut
u,V

t
i)

∂Ut
u

∂Lt

∂Vt
i

=
1

P (rtui = rt|Ut
u,V

t
i)

∂P (rtui = rt|Ut
u,V

t
i)

∂Vt
i



15

if rt=1, ∂P (rtui=r
t|Ut

u,V
t
i)

∂Ut
u

=
Vt
i

2 and ∂P (rtui=r
t|Ut

u,V
t
i)

∂Vt
i

= Ut
u

2 ; if rt=0, ∂P (rtui=r
t|Ut

u,V
t
i)

∂Ut
u

=−Vt
i

2

and ∂P (rtui=r
t|Ut

u,V
t
i)

∂Vt
i

=−Ut
u

2 . The constraints in Eq. (2.1) can be satisfied through gradient

projection: Ut
u ←

Ut
u

‖Ut
u ‖
,Vt

i ←
Vt
i

‖Vt
i ‖

.

After learning the latent factors Ut
u and Vt

i, we can compute the probability of P (rtui = 1)

(i.e., P (rui ≥ t)) for all items through Eq. (2.1). We then sort all the items in descending order

of their predicted probabilities (i.e., P (rui ≥ t)) and recommend the top-N ranked items to

users.

2.3.3 From Binary Classification to Ranking

In order to utilize all the information from each of the decoupled binary matrices, we need

a mechanism to convert the binary classification results into a ranking score. We apply the

following approach [60]:

SCui =
C∑
t=1

f(t)P (rui = t) (2.2)

where f(t) is a relevance function of t. Given a user u, we first compute the ranking score

SCui, ∀i, and then sort all the items in descending order of SCui. Finally, we recommend the

items at the top of ranked list to user u.

In Eq. (2.2), the probability distribution over expected item ratings can be obtained through

a simple transformation from binary classifications as follows:

P (rui = t) = P (rui ≥ t)− P (rui ≥ t+ 1) (2.3)

Combining Eq. (2.2) and Eq. (2.3), we reformulate the scoring function for ranking as:

SCui =
C∑
t=1

f(t)(P (rui ≥ t)− P (rui ≥ t+ 1))

= f(1)P (rui ≥ 1) + (f(2)− f(1))P (rui ≥ 2) + ...

+ (f(C)− f(C − 1))P (rui ≥ C)− f(C)P (rui ≥ C + 1)

Ratings are selected from {1, 2, ..., C}, and thus P (rui ≥ C + 1) = 0. The above formulation

can be written as:

SCui = f(1)P (rui ≥ 1) +

C∑
t=2

(f(t)− f(t− 1))P (rui ≥ t) (2.4)



16

We call the above method as Decoupled Collaborative Ranking (DCR). The basic steps

of DCR are summarized as follows:

1. collaboratively learn all the user and item latent factors {Ut
u,V

t
i}, ∀u, i, t from each of

the decoupled binary matrices through binary classification. The learning process in each

of the binary matrices can be done in parallel;

2. calculate the ranking scores SCui for all users and items through Eq. (2.1) and Eq. (2.4);

3. for a user u, sort all the items in descending order of SCui and recommend items at the

top of sorted list.

Question: how to set f(t) for ranking?

In this chapter, we particularly want to improve the ranking performance at the top of recom-

mended list. For this purpose, we propose to emphasize more on the probabilities of higher

rating scores. It is motivated from empirical study that higher rating scores demonstrate a

greater impact on top-N ranking performance.

We set f(t) as a monotone increasing function of relevance level t. Consider two items A

and B with probability distributions as follows (given that r ∈ {1, 2, 3, 4}):

Items P (r = 1) P (r = 2) P (r = 3) P (r = 4)

A 0.1 0.1 0.2 0.6
B 0.1 0.1 0.4 0.4

In the above example, we prefer item A to B, since item A is more likely to have a higher

predicted rating score than B, and hence A should be put in front of B in the ranked list. For

this purpose, we can choose any monotone increasing function as f(t). In this chapter, we

investigate three typical monotone increasing functions: f(t) = log(t), f(t) = t, f(t) =

exp(t), and comprehensively compare the performance of them (see Fig. 2.3). We recommend

to use f(t) = t in terms of the ranking performance at the top of recommended list. To the best

of our knowledge, there is no typical objective function for top-N recommendation formulated

in the form of pointwise, and hence we are unable to learn the relevance function.



17

0 20 40 60

Rank

0.6

0.65

0.7

N
D

C
G

@
1

0

Movielens100K (N=20)

R1

R2

R3
R4
R5

R

0 20 40 60

Rank

0.55

0.6

0.65

0.7

N
D

C
G

@
1

0

Movielens100K (N=50)

R1

R2

R3
R4

R5

R

0 20 40 60

Rank

0.55

0.6

0.65

0.7

0.75

N
D

C
G

@
1

0

Netflix1M (N=20)

R1

R2

R3

R4

R5

R

0 20 40 60

Rank

0.55

0.6

0.65

0.7

0.75

N
D

C
G

@
1

0

Netflix1M (N=50)

R1

R2

R3

R4
R5
R

Figure 2.2: Comparison of ranking performance on individual rating matrices, including orig-
inal rating matrix R and each of the decoupled binary matrices. “Rank” refers to the dimen-
sionality for low-rank approximation.

2.3.4 Empirical Study on Binary Classifications

We implement ranking algorithms on each of the binary matrices R1, R2,..., R5 (r ∈ {1, 2, ..., 5})

and test the performance of top-N recommendation in terms of NDCG@10 score on two

datasets: Movielens100K and Netflix1M. Given one binary matrix, e.g., R(t), we first cal-

culate the probability of P (r ≥ t) for all the items whose rating scores are unobserved through

binary classification on this binary matrix, and then sort these items in descending order of

value P (r ≥ t). Finally, for each user we recommend the top-10 items in the ordered list. We

also conduct global matrix factorization (see Section 2.3.1) on the original rating matrix R as

the comparison. The performance is reported in Fig. 2.2. There are two important observations:

(1) Higher rating scores are more informative for top-N recommendation. Let us compare

rating scores “4” and “5” as an example. We know that the items in R5 are sorted in terms of

the probability P (r ≥ 5) and hence observed rating score “4” is considered as negative label

(i.e., “0”) in R5, while the items in R4 are sorted in descending order of P (r ≥ 4) and hence

rating score “4” is considered as positive label (i.e., “1”). In Fig. 2.2, it demonstrates that the



18

ranking performance of R5 is better than R4, which infers that mixing rating score “4” to

“5” makes negative contribution to the ranking performance in terms of NDCG measure. This

observation tells that “5”s are more important than “4”s.

(2) It is not sufficient to rank items based on the information from a single binary matrix. It

is shown in Fig. 2.2 that the ranking performance achieved through binary classification on a

single binary matrix is worse than the performance achieved through matrix factorization on

the original rating matrix. This result is understandable since each binary matrix only captures

part information of the rating scores.

In a word, the first observation tells that we should emphasize more on higher rating scores

for top-N recommendation and the second observation motivates us to propose a scoring func-

tion which should combine the results from the decoupled binary matrices. The scoring func-

tion in Eq. (2.4) satisfies both of these two requirements.

Careful readers may ask why we do not remove R 1 since all the labels in R1 is “1” and

hence this matrix is non-informative. Actually, R1 reflects certain kind of hidden profile of

user actions. For example, r1
ui = 1 in R 1 can represent that uth user has watched the ith

movie. It is reasonable to consider that a user demonstrates more interests in a movie which he

has watched than the one he just skipped. The SVD++ approach [39] also includes this kind

of hidden information into their rating prediction model. Therefore, we still keep R1 in our

approach.

2.4 Extension: Further Improve Ranking via Pairwise Learning

In previous sections, we proposed the pointwise approach for item recommendation. As an

extension, we leverage the learning-to-rank approach to further improving the ranking perfor-

mance of DCR. Since this part concerns pairwise learning, we do not include it in the method

of DCR. We propose it separately in case that users may need algorithms for more accurate

recommendations. One issue with DCR is that the latent factors of all the users and items are

learned through maximizing a log-likelihood in binary classification on each of the decoupled

binary matrices, and it is not clear that these are the optimal features to use for the final ranking

purpose. Ideally, one would expect to use features best suited for the final ranking task at hand.



19

Hence, we propose to refine the features learned from DCR via optimizing a pairwise objective

function.

The minimization of pairwise loss can lead to the maximization of ranking [68]. However,

pairwise loss is usually not continuous and minimizing it is computationally intractable. There-

fore, the popular way of optimization is to minimize a surrogate loss that forms a convex upper

bound of the intractable loss. In this chapter, we minimize the following loss:

E(g) =
∑

(u,i,j)∈O

L(Yuij · g(u, i, j)) + λ
∑
t

(‖Ut ‖2F + ‖Vt ‖2F )

s.t. ‖Ut
u ‖

2 ≤ 1, ‖Vt
i ‖

2 ≤ 1 ∀u, i, t (2.5)

where O is the observed pairs of ratings and (u, i, j) ∈ O denotes one observed pair. Yuij

indicates the comparison of observed pairs such that if “Yuij = 1” then user u prefers item i to

item j and “Yuij = −1” indicates that user u prefers item j to item i. g(u, i, j) = SCui−SCuj ,

where SCui and SCuj are the ranking scores and we choose f(t) = t as the relevance function

when computing ranking score. L is a non-increasing function and in our approach, we adopt

L(x) = log(1 + exp(−x)), which is often used in collaborative ranking (e.g., see [42, 58]).

We apply gradient descent method in the learning process. The first derivatives of E with

respect to the latent factors in each binary matrix are calculated using chain rule:

∂E
∂Ut

u

=
∑

(u,i,j)∈O

∂L
∂g(u, i, j)

∂g(u, i, j)

∂Ut
u

+ 2λUt
u (2.6)

∂E
∂Vt

i

=
∑
u

( ∑
j:rui>ruj

∂L
∂g(u, i, j)

∂g(u, i, j)

∂Vt
i

+
∑

j:rui<ruj

∂L
∂g(u, i, j)

∂g(u, i, j)

∂Vt
i

)
+ 2λVt

i

(2.7)

It should be mentioned that there are two cases when calculating Vt
i: the derivative of Vt

i

when i is preferred to j is different from that when j is preferred to i, which is shown in Eq.



20

(2.7). The partial derivatives are:

∂L
∂g

= − Yuij
1 + exp(Yuijg(u, i, j))

∂g

∂Ut
u

=
Vt
i−Vt

j

2

∂g

∂Vt
α

=


1
2 U

t
u if α = i

−1
2 U

t
u if α = j

The full algorithm is shown in Algorithm 1.

Algorithm 1: Pairwise DCR
Input : {Ut

u,V
t
i} learned from DCR, observed pairs of ratings O; learning rate η;

regularization parameter λ
Output: {Ut

u,V
t
i}, ∀u, i, t

1 while not converged do
2 for all users u do
3 find (u, i, j) ∈ O, all rating pairs by user U;
4 calculate ∆Ut

u using Eq.(2.6);
5 calculate ∆Vt

i using Eq.(2.7);
6 Ut

u ← U tu − η∆Ut
u;

7 Vt
i ← V t

i − η∆Vt
i;

8 Ut
u ←

Ut
u

‖Ut
u ‖

; Vt
i ←

Vt
i

‖Vt
i ‖

9 end
10 end

2.5 Experiment

2.5.1 Experimental Settings

Datasets and settings Our algorithms are tested on four benchmark datasets: Movie-

lens100K, Movielens1M, Movielens10M1 and Netflix Prize dataset. The Movielens100K,

Movielens1M, Movielens10M datasets are collected through the Movielens website during dif-

ferent periods. Netflix Prize dataset consists of three parts: training set, probe set and quiz set.

The Netflix dataset in this chapter refers to the first part. Netflix1M dataset is randomly sampled

from Netflix training set. More statistics of these datasets are collected in Table 2.1.

1http://grouplens.org/datasets/movielens/



21

Table 2.1: Popular datasets used in the experiment

Datasets Users Items Scale Ratings
Movielens100K 943 1,682 1 - 5 100,000
Movielens1M 6,040 3,706 1 - 5 1,000,209
Movielens10M 71,567 10,681 0.5 - 5.0 10,000,054

Netflix1M 48,018 1,777 1 - 5 1,020,752
Netflix 480,189 17,770 1 - 5 100,480,507

We follow a popular setup [43, 42, 59] to partition each dataset into training and test sets.

For each user in the dataset, we randomly select N items as training data and all the remaining

items are used as test data. Therefore, users who have not rated N + 10 will be dropped to

guarantee that there would be at least 10 items in the test set for each user. In the experiments,

we adopt the same settings in [43, 42, 59] by choosing N : 10, 20, 50.

Performance metric In our experiments, we evaluate our proposed algorithms by Nor-

malized Discounted Cumulative Gain (NDCG) [54], which is probably the most popular rank-

ing metric for capturing the importance of retrieving good items at the top of ranked lists. It is

formally given by:

NDCG@K(u) =
DCG@K(u, πu)

DCG@K(u, π∗u)

where

DCG@K(u, πu) =

K∑
k=1

2ruπu(k) − 1

log2(k + 1)

πu is a permutation of items for user u, and π∗u is the permutation that generates the maximum

of DCG@K. πu(k) is the index of the k-th ranked item generated by our ranking model. In

accordance with the setting of datasets, the largest value of K is 10.

2.5.2 Empirical Study on DCR

In this section, we conduct empirical study on DCR. A crucial problem in DCR is how to choose

the relevance function f(t). It is explained in Section 2.3.3 that we should choose a monotone

increasing function for the purpose of top-N recommendation. We investigate three typical

monotone increasing functions, including: “f(t) = log(t)”, “f(t) = t”, and “f(t) = exp(t)”.

We report the ranking performance of these three relevance functions as a function of rank

(rank refers to the dimension of user and item latent factors) in terms of NDCG@10 scores in



22

20 40 60

Rank

0.68

0.69

0.7

0.71

N
D

C
G

@
1

0

Movielens100K(N=20)

f(t)=log(t)

f(t)=t

f(t)=exp(t)

20 40 60

Rank

0.69

0.7

0.71

0.72

0.73

N
D

C
G

@
1

0

Movielens100K(N=50)

f(t)=log(t)

f(t)=t

f(t)=exp(t)

20 40 60

Rank

0.725

0.73

0.735

0.74

0.745

N
D

C
G

@
1

0

Netflix1M(N=20)

f(t)=log(t)

f(t)=t

f(t)=exp(t)

20 40 60

Rank

0.735

0.74

0.745

0.75

0.755

N
D

C
G

@
1

0

Netflix1M(N=50)

f(t)=log(t)

f(t)=t

f(t)=exp(t)

Figure 2.3: Comparisons on the ranking performance of different relevance functions as a
function of rank.

Fig. 2.3.

Comparisons of relevance functions

From the results in Fig. 2.3, we can clearly observe that “f(t) = t” performs the best, and

“f(t) = log(t)” performs slightly worse than “f(t) = t”, while “f(t) = exp(t)” performs

the worst in most of the test cases, which tells that we should not choose a steeply increasing

function which emphasizes “excessively” on the higher rating values. This observation can

be explained in that if we extremely emphasize on the highest rating score, then we may lose

too much information from the lower rating scores. The most extreme case is that we set the

weight for the highest rating score as 1 while the weights for all the other scores are set as

0. Therefore, we only need to calculate the probability of P (r = C), which can be obtained

through binary classification on a single binary matrix R(C). However, from the results in Fig.

2.2, it is suggested to avoid ranking items based on the information from a single binary matrix.

In terms of the empirical ranking performance, we choose “f(t) = t” as the relevance function

of DCR.



23

It should be mentioned that it makes no sense to emphasize equally on all the ordered

scores, i.e, choose f(t) = c (c is a constant). If we do so, then Eq. (2.4) reduces to: SCui =

f(1)P (rui ≥ 1), which merely considers R 1. From the observation in Fig. 2.2, this setting

should be avoided.

Effect of Parameter rank

From the observations in Fig. 2.2 and Fig. 2.3, we can see that increasing the rank can always

improve the performance. From this point of view, we would prefer a higher rank. However,

if we constantly increase the dimension of latent factors, we also increase the computational

cost. In particular, in the Pairwise DCR method, we should not choose a too large rank since

pairwise learning is much more time consuming than pointwise approaches.

2.5.3 Compare with Pointwise Approaches

We compare DCR with several pointwise methods: (1) MF: the global matrix factorization as

a baseline method; (2) SVD++: SVD++ is [39] considered as one of the most accurate rating

predictors. (3) Scale-MF: we first scale the values of observed ratings by yui = 2rui − 1 and

conduct the global matrix factorization on the scaled rating scores. This scaling of rating can

better reflect NDCG [69].

We demonstrate the performance of all the compared methods in terms of NDCG@K,

where “K” is a variable, ranging from 2 to 10. We conduct experiments on two datasets using

two different settings of partitions on training and test data. In order to make pair comparisons

in the setting of same number of latent factors, we set rank = 20 for DCR and rank = 100 for

other methods, since our method hasC times more parameters than a single matrix factorization

where C = 5 in these test datasets. The results are reported in Fig. 2.4.

It demonstrates that DCR outperforms other pointwise methods. The difference between

DCR and other methods is that we model the ordinality of user ratings in DCR and all the other

methods treat user ratings as numerical values. Therefore, defining user ratings as ordinal more

appropriately reflects the degree of user references. Besides, by comparing the performance of

scale-MF with MF, we observe that reasonably scaling rating values can further improve the

top-N ranking performance.



24

2 4 6 8 10

K

0.72

0.73

0.74

0.75

0.76

N
D

C
G

@
K

Movielens1M(N=20)

SVD++ Scale-MF DCR MF

2 4 6 8 10

K

0.74

0.76

0.78

N
D

C
G

@
K

Movielens1M(N=50)

SVD++ Scale-MF DCR MF

2 4 6 8 10

K

0.71

0.72

0.73

0.74

0.75

N
D

C
G

@
K

Netflix1M(N=20)

SVD++ Scale-MF DCR MF

2 4 6 8 10

K

0.73

0.74

0.75

0.76

N
D

C
G

@
K

Netflix1M(N=50)

SVD++ Scale-MF DCR MF

Figure 2.4: Comparisons with pointwise methods in terms of NDCG@K scores. K varies from
2 to 10. rank = 20 in DCR and rank = 100 in other methods.

Table 2.2: Compare with push-based top-K ranking algorithms.

Datasets Movielens100K Movielens1M

Method NDCG@5 NDCG@10 NDCG@5 NDCG@10
Inf-Push 0.6652 0.6733 0.7157 0.7210
RH-Push 0.6720 0.6823 0.7182 0.7225
P-Push 0.6530 0.6620 0.7104 0.7156
DCR 0.6931 0.7073 0.7441 0.7432

2.5.4 Compare with Push Collaborative Ranking

In this section, we compare DCR with a state-of-art collaborative ranking algorithm-Push Col-

laborative Ranking [70], which also aims at improving the ranking performance at the top

of recommended list. We compare the ranking performance of DCR with three push algo-

rithms: collaborative p-norm push, infinite push, and reverse-height push, on Movielens100K

and Movielen1M datasets in terms of NDCG@5 and NDCG@10 scores. In each dataset, we

choose N = 20 ratings as training samples and the other ratings are used as test data. We set

rank = 20 in DCR and rank = 100 in push algorithms. For each method, we conduct 5

times of individual experiments and the average score is reported. The result is shown in the

following table, which demonstrates the superiority of our approach in terms of the ranking



25

performance.

2.5.5 Compare with Pairwise and Listwise Approaches

In this section, we compare DCR with pairwise and listwise approaches, where user ratings are

modeled as ordinal. It includes the comparisons with:

• Pairwise models: (i) Bradley-Terry model(BT). BT model is the most widely used

method for modeling pairwise user preferences. It optimizes a pairwise objective func-

tion as:

−
∑

(u,i,j)∈Ω

log
exp(UuV

ᵀ
i )

exp(UuV
ᵀ
i ) + exp(UuV

ᵀ
j )

+ λΘ‖Θ‖2

where Ω = {(u, i, j) : rui > ruj} is the observed set of pairs of preferences and λΘ‖Θ‖2

is the regularization term for all model parameters (i.e., U and V). Actually, the BT

method is almost the same with Bayesian Personalized Ranking (BPR) model [65].

(ii) Local Collaborative Ranking (LCR) [36] is another collaborative ranking method

which also optimizes a pairwise ranking loss. In LCR, R is approximated by many

locally low-rank matrices.

• Listwise approach: CofiRank [43] also known as maximum margin matrix factoriza-

tion is a famous collaborative ranking algorithm and it is always considered as a strong

baseline method for collaborative ranking. It directly optimizes a surrogate convex upper

bound of the NDCG error.

Settings In the experiment, we set the number of ratings for training N = 10, 20, 50, which

is often used in collaborative ranking literature [36, 58, 43]. Besides, for each method, we

conduct 5 times of independent experiments and report the average and standard deviation

of NDCG@10. All the source code for the baseline methods can be found on the websites

together with their original papers. We compare DCR with other methods in the setting of

same number of latent factors, that is, if we set rank = k for DCR, then rank = C · k for

other methods, where C is the number of different ordered rating scores in a specific data set.

In the experiments, we choose rank = 40. The regularization parameter of DCR is chosen



26

Table 2.3: Comparisons with pairwise and listwise approaches in terms of NDCG@10.

Datasets Methods N=10 N=20 N=50

Movielens100K

CofiRank 0.6625 ± 0.0023 0.6933 ± 0.0018 0.7021 ± 0.0031
BT 0.6342 ± 0.0038 0.6487 ± 0.0052 0.7061 ± 0.0021

LCR 0.6623 ± 0.0028 0.6680 ± 0.0028 0.6752 ± 0.0024
DCR 0.6901 ± 0.0012 0.7082 ± 0.0035 0.7241 ± 0.0021

Movielens1M

CofiRank 0.7041 ± 0.0023 0.7233 ± 0.0013 0.7256 ± 0.0042
BT 0.6752 ± 0.0021 0.7104 ± 0.0017 0.7528 ± 0.0030

LCR 0.6978 ± 0.0031 0.7012 ± 0.0025 0.7252 ± 0.0018
DCR 0.7261 ± 0.0025 0.7431 ± 0.0027 0.7622 ± 0.0013

Movielens10M

CofiRank 0.6902 ± 0.0012 0.7050 ± 0.0032 0.6971 ± 0.0015
BT 0.7106 ± 0.0024 0.7160 ± 0.0032 0.7352 ± 0.0024

LCR 0.6921 ± 0.0024 0.6877 ± 0.0027 0.6854 ± 0.0035
DCR 0.7132 ± 0.0017 0.7251 ± 0.0021 0.7421 ± 0.0018

Netflix1M

CofiRank 0.7090 ± 0.0023 0.7188 ± 0.0034 0.7111 ± 0.0015
BT 0.7183 ± 0.0024 0.7174 ± 0.0018 0.7451 ± 0.0031

LCR 0.7014 ± 0.0026 0.7040 ± 0.0023 0.6847 ± 0.0029
DCR 0.7351 ± 0.0032 0.7381 ± 0.0024 0.7522 ± 0.0032

Netflix

CofiRank 0.6615 ± 0.0051 0.6927 ± 0.0034 0.7058 ± 0.0054
BT 0.7121 ± 0.0021 0.7320 ± 0.0041 0.7319 ± 0.0024

LCR - - -
DCR 0.7801 ± 0.0021 0.7914 ± 0.0021 0.8001 ± 0.0007

from {0.01, 0.001}, and the initial learning rate is chosen from {0.05, 0.04, 0.03, 0.02, 0.01}

and the best ranking performance is reported.

Performance Comparisons

An extensive performance comparison of all the methods is shown in Table 2.3. We report the

average and standard deviation over 5 times of independent experiments. We can see from the

results that our proposed DCR method performs the best on all the datasets. In most of the

test cases, the DCR method can improve the ranking performance by 2% to 6% against the

best-performing baseline method. In particular, in Netflix dataset when N = 10, our method

achieves over 10% performance improvement. Based on the t-test results, it is noticeable that

on all datasets, the improvements of our ranking algorithm against all the other baseline ap-

proaches are statistically significant at the p-value<0.01. Besides, our proposed approach could

consistently perform well in different settings of N .



27

Comparisons of Efficiency

We also report the running time (seconds) for the comparison methods on Netflix1M dataset in

Table 2.4. The running time of Cofirank, LCR is obtained based on the software implemented

by their authors. From the observation in Table 2.4, we see that our proposed method can run

more than one hundred times faster than several algorithms, such as LCR and CofiRank. The

results are understandable in that DCR is a pointwise approach, which is considered more com-

putationally efficient than pairwise and listwise approaches. Based on the ranking performance

and time efficiency, DCR can be considered as a notable approach for practical usage.

Table 2.4: Running time (seconds)

Methods CofiRank BT LCR DCR
N=20 399.0 130.6 602.2 1.05
N=50 898.1 269.4 1232.1 2.31

2.5.6 Effectiveness of Pairwise DCR

We report the performance of Pairwise DCR and compare it with Improved Bradley-Terry

model (Improved-BT) [59]. Pairwise DCR is an approach that first obtains the latent features

through the pointwise DCR, and then refines these obtained features through optimizing a pair-

wise model, and thus Pairwise DCR can be considered as a combination of pointwise and

pairwise methods. We compare it with Improved-BT, which can also be considered as a hybrid

approach combining both of pointwise and pairwise collaborative ranking methods. We report

the performance of DCR as a comparison. The ranking performance in terms of NDCG@10 on

Movielens1M and Netflix1M datasets is shown in the following table when we choose N=10

and 20.

Datasets Movielens1M Netflix1M
Method N=10 N=20 N=10 N=20
Improved-BT 0.7368 0.7511 0.7355 0.7400
DCR 0.7261 0.7431 0.7351 0.7381
Pairwise DCR 0.7471 0.7596 0.7495 0.7552

Comparing the results of DCR with Pairwise DCR, we conclude that refining the latent

features of DCR by pairwise learning is able to improve the ranking performance. On the other



28

20 40 60

Rank

0.73

0.74

0.75

0.76

Movielens1M

DCR

DCR-Logistic

20 40 60

Rank

0.735

0.74

0.745

0.75

0.755
Netflix1M

DCR

DCR-Logistic

Figure 2.5: Compare DCR with DCR-Logistic.

hand, Improved-BT, a model which combines pointwise and pairwise learning, slightly out-

performs DCR. Based on this observation, it may infer that combining different collaborative

ranking approaches (e.g., combine pointwise with pairwise methods) could be a new direction

for improving the performance of collaborative ranking. We can also observe that our proposed

Pairwise DCR method outperforms Improved-BT. In Fig. 2.2, we have concluded that higher

rating scores are more important than lower rating scores for top-N recommendation. There-

fore, in Pairwise DCR higher rating values are emphasized more than lower rating values, while

there is no such knowledge included in the Improved-BT model.

2.6 Discussions on DCR-Logistic

Readers may ask why we use a predictive model as that in Eq. (2.1), rather than a seemingly

more popular logistic mapping function as follows:

P (rui ≥ t) =
1

1 + exp(−Ut
uV

t
i
ᵀ
)

(2.8)

Indeed, in this chapter we also implemented it using Eq. (2.8) (we call it DCR-Logistic).

We report the ranking performance in terms of NDCG@10 in Fig. ?? on Movielens1M and

Netflix1M datasets when N is set as 50. We observe that DCR outperforms DCR-Logistic. To

some extent, this result can be explained in that in Eq. (2.1), the parameters are bounded in a

unit ball (i.e., ‖Ut
u ‖ ≤ 1, ‖Vt

i ‖ ≤ 1), while the logistic link function has no constraints on

the parameters and hence it might be prone to overfit. Even though we can set more constraints

to the parameters in DCR-Logistic to avoid overfitting, this strategy will make this model more



29

complicated. In particular, if we replace Eq. (2.1) by Eq. (2.8) in Pairwise DCR and add

more constraints to the parameters, then the optimization of Pairwise DCR model will be quite

computationally expensive.

2.7 Conclusion

In this chapter, we focus on improving the ranking performance at the top of recommended

list. We propose a pointwise collaborative ranking approach, named decoupled collaborative

ranking (DCR). Different from common pointwise methods which consider user ratings as

numerical values or categorical labels, in our method, we view rating scores as ordinal. For

this purpose, we decompose the user-item rating matrix R into a sequence of binary matrices

based on an ordinal classification method. After obtaining the predictions from each of the

binary matrices, we finally form a ranking score through the weighted summation of the results

from binary classifications. The weights are set for the purpose that we can emphasize more on

higher rating scores, since we observe from empirical study that higher rating scores are more

important than lower rating scores for top-N recommendation. In the end, as an extension of the

DCR model, we improve the ranking performance of our method through optimizing a pairwise

objective function. It is shown in the experiments that our proposed method can significantly

outperforms many state-of-the-art recommendation algorithms in terms of the NDCG metric.

Besides, our proposed method, as a pointwise approach, shows better performance in terms of

time efficiency compared to pairwise or listwise approaches.



30

Chapter 3

Collaborative Filtering via Additive Ordinal Regression

Accurately predicting user preferences/ratings over items are crucial for many Internet appli-

cations, e.g., recommender systems, online advertising. In current main-stream algorithms

regarding the rating prediction problem, discrete rating scores are often viewed as either numer-

ical values or (nominal) categorical labels. Practically, viewing user rating scores as numerical

values or categorical labels cannot precisely reflect the exact degree of user preferences. It is

expected that for each user, the quantitative distance/scale between any pair of adjacent rating

scores could be different.

In this chapter, we propose a new ordinal regression approach. We view ordered preference

scores in an additive way, where we are able to model users’ internal rating patterns. Specifi-

cally, we model and learn the quantitative distances/scales between any pair of adjacent rating

scores. In this way, we can generate a mapping from users’ assigned discrete rating scores

to the exact magnitude/degree of user preferences for items. In the application of rating pre-

diction, we combine our newly proposed ordinal regression method with matrix factorization,

forming a new ordinal matrix factorization method. Through extensive experiments on bench-

mark datasets, we show that our method significantly outperforms existing ordinal methods, as

well as other popular collaborative filtering methods in terms of the rating prediction accuracy.

3.1 Introduction

Accurately predicting user preferences/ratings over items can be beneficial to many applica-

tions, such as recommender systems, personalized search, online advertising, etc. Generally

speaking, rating prediction is the task of predicting a user’s rating score for a given item based

on her/his past ratings or other information [71]. Given a sparse user-item rating matrix R

where observed ratings take discrete values, the rating prediction task boils down to imputing



31

Figure 3.1: An example to show the difference among (nominal) categorical, numerical and
ordinal values/labels. The colored (if visible) horizontal lines show the distances between pairs
of adjacent rating scores.

the unknown entries in R based on a small portion of observed ratings. Collaborative filtering

(CF) is one of the prominent approaches for rating prediction task [72].

In most collaborative filtering algorithms, user ratings are often viewed as numerical values

or (nominal) categorical labels. Such a numerical or categorical view may not precisely capture

the exact magnitude/degree of user preferences. Practically it is expected that for each user, the

scale between any pair of adjacent rating scores should be different. For example, assuming that

rating values range from 1-star to 5-star, one user may be clear about the difference between

assigning a 5-star rating or a 4-star rating, while he/she may be confused about assigning a 4-

star rating or a 3-star rating. In this case, the distance between “5-star” and “4-star” should be

greater than that between “4-star” and “3-star” if we quantify the star-based rating values to the

real magnitude in terms of user preferences. On the other hand, different users may have distinct

degrees of sensitivity over a sequence of ordered rating scores, resulting in that the distances

between any pair of adjacent ratings (e.g., 5-star and 4-star) are different for individual users.

Nevertheless, when user ratings are interpreted as numerical values, it equals to the assumption

that the user preferences modeled by several consecutive integers (e.g., “1”, “2” to “5”) are

equidistant. While from the viewpoint of (nominal) categorical labels, the distances between

pairs of ordered scores are ignored. An example of three different views of rating scores is

shown in Fig. 3.1. In view of aforementioned reasons, it is considered to be more natural to

view user ratings as ordinal.

In this work, we propose a new ordinal regression model. Most of current statistical ordinal

regression methods, e.g., logistic ordinal regression [73], ordinal classification [60, 74], can be

performed using a generalized linear model [74]. They view ordered scores as categorical labels

and model the ordinality by transforming the cumulative probabilities of these ordered scores to



32

their posterior probability distributions. Different from those ordinal regression models viewing

preference scores as ordinal categorical labels, we introduce a new ordinal regression approach

by viewing ordered and discrete rating scores as ordinal real values. The advantage of our

ordinal method is that we can learn a (quantified) mapping from discrete rating scores to the

exact magnitude/degree in terms of user’s internal preferences. Specifically, we view ordered

scores in an additive way, and by optimizing a utility function (e.g., squared loss between

observed and estimated scores) which is defined in a measurable ordinal scale, we will learn

the exact magnitude between any pair of adjacent rating scores. By correctly learning the

personalized mappings for individual users, it is reasonable to expect that the rating prediction

can be more accurate.

We apply our newly proposed ordinal regression model in collaborative filtering by combin-

ing matrix factorization, forming a new ordinal collaborative filtering method, called “decom-

posed matrix factorization (DMF)”. More specifically, in the first step, our ordinal regression

method introduces a decomposition of a sparse rating matrix into a sequence of decomposed

binary matrices and matrix factorization is then applied on each of the decomposed matrices.

The final predicted rating scores are formed as a weighted sum of the predictions from each of

the decomposed matrices, where the weights model the internal distances/scales between dif-

ferent pairs of adjacent rating values. Through extensive experiments on benchmark datasets,

we demonstrate that DMF is competitive, often substantially better than existing ordinal col-

laborative filtering methods, as well as other popular rating prediction algorithms.

3.2 Related Work

Rating prediction has been by far widely discussed in the literature. Collaborative filtering (CF)

is the most popular approach for the rating prediction problem, which is based on the assump-

tion that users who have expressed similar interests in the past will share common interests in

the future [1, 75, 76].

There are several broad categories of collaborative filtering approaches developed for pre-

dicting ratings [36, 77]. One category of common approaches: neighborhood-based CF algo-

rithms [61, 62, 78], also referred to as memory-based methods, predict the rating that one user



33

gives to an item by aggregating the ratings from similar users to that item (i.e., user-based CF)

or from the ratings given by that user to similar items (i.e., item-based CF). Another class of so-

called model-based approaches use machine learning and data mining methods in the context

of predictive models. Matrix factorization is the most popular one, which imposes a low-rank

assumption on the given sparse U-I rating matrix R [39, 79, 42, 40, 41, 80, 81, 82, 83]. In

general, based on the low-rank assumption, it factorizes R into UVᵀ, where U ∈ Rm×f and

V ∈ Rn×f (m is the number of rows, n is the number of columns in R and f is the rank for

approximation). This category of matrix factorization approaches have attracted great attention

because of their scalability and high prediction accuracy, as demonstrated in the Netflix Prize

competition [63].

In most of the aforementioned CF models, user ratings are considered as numerical values

or (nominal) categorical labels and it is arguable that these two views of rating values may

not precisely reflect the degree in terms of user’s internal preferences. Thus, a small number

of works propose to view rating scores as ordinal categorical labels in the rating prediction

problem. For example, in [57, 84] authors apply logistic ordinal regression [73] to model the

ordinality of user feedbacks. They feed a robust rating predictor (i.e., SVD++[39]) into the

logistic ordinal regression model and jointly learn model parameters of SVD++ and logistic

ordinal model by maximizing a likelihood, which is transformed from cumulative probabilities

of ordered rating scores. Another model called “Ordinal Matrix Factorization (OMF)” [85]

also combines matrix factorization with logistic ordinal regression. In that work, the ordinality

of ratings is modeled as cumulative Gaussian density and then the cumulative probabilities are

coupled into a hierarchical Bayesian framework. Different from OrdRec, the parameters of

OMF are learned in the Bayesian framework through Gibbs sampling, while in OrdRec param-

eters are learned through gradient method. As shown in [84, 85], ordinal methods generally

outperform other rating prediction methods.

Our proposed ordinal regression model differs with logistic ordinal regression in that we

are able to learn a mapping to quantify discrete rating scores to the exact degree in terms of

individual users’ internal preferences. Specifically, we transfer discrete rating scores to the

magnitude which is defined in the ordinal scale and learn/train model in the ordinal space. It

is expected that by accurately learning individual users’ internal rating patterns can generate



34

more accurate rating predictions.

3.3 Additive Ordinal Regression

In this section, we introduce a new ordinal regression method called “additive ordinal regres-

sion”, as we define rating scores in an additive fashion.

3.3.1 An Additive Way to View Ordered Values

We view discrete ordered scores in an additive way and define their magnitudes in a measurable

ordinal scale. The “magnitude” in the ordinal scale can be interpreted differently in individual

applications. For example, in recommender systems, it can be considered as the degree of user

preferences. Without loss of generality, let’s consider discrete ordered scores {1, 2, ..., C} and

let l(c) represent the magnitude of a given ordered score c ∈ {1, 2, ..., C}. Assuming that there

is a base label which can be viewed as “0” and let the magnitude of this base label be 0, i.e.,

l(0) = 0. We obtain l(c) in an additive way:

l(c) = l(c− 1) + scale(c− 1, c) =
c∑
i=1

scale(i− 1, i) (3.1)

where scale(c− 1, c) is the scale/distance between ordered scores “c− 1” and “c”. If discrete

ordered scores are viewed as numerical values, then it equals to the assumption that scale(c−

1, c) = 1, ∀c ∈ {1, 2, ..., C}.

3.3.2 Mapping Numerical Scale to Ordinal Scale

In the above subsection, we compute the magnitude for all the discrete integer values l(c) (

∀c ∈ {1, 2, ..., C}). However, we do not know the magnitudes for real values between any two

consecutive integer scores, e.g., l(1.5). Here we propose the mechanism to map from the whole

numerical scale to the ordinal space. Without loss of generality, we consider continuous values

between two discrete ordered values c− 1 and c, and values in other intervals can be computed

the same way.



35

Given that t locates in the interval [c− 1, c], we model the magnitude of t as:

l(t) = l(c− 1) + scale(c− 1, c) · ratio(t, c− 1)

=
c−1∑
i=1

scale(i− 1, i) + scale(c− 1, c) · ratio(t, c− 1) (3.2)

where l(c− 1) and scale(c− 1, c) are defined in Eq. (3.1). ratio(t, c− 1) is a value between

[0,1], formulated as follows:

ratio(t, c− 1) =
dist(c− 1, t)

dist(c− 1, t) + dist(t, c)
(3.3)

where dist(·, ·) is a distance measure (or kernel) (e.g., Euclidean distance). This ratio value

tells which score (i.e., c− 1 or c) t is closer to and how much t is closer to c− 1 or c than the

other one. For example, if ratio = 0.5, then t is in the middle of c− 1 and c.

Given than t ∈ [c− 1, c], Eq. (3.2) can also be represented as:

l(t) =

C∑
i=1

scale(i− 1, i) · ratio(t, i− 1) (3.4)

if we set ratio(t, i − 1) = 1, ∀i, 1 ≤ i ≤ c − 1, and set ratio(t, i − 1) = 0, ∀i, c < i ≤ C.

This kind of setting to the ratio can be explained in that since we know t ∈ [c − 1, c] and the

magnitude is defined in an additive way (i.e., adding from small scores), then we should add

the magnitudes of all the intervals which are less than c−1, while ignore all the intervals which

are greater than c.

Additionally, it should be mentioned that the method to calculate the ratio is not unique.

Practitioners can develop different functions to calculate the ratio in different applications.

3.3.3 Additive Ordinal Regression

In real applications such as search and recommendation, we generally deal with problems in

which we are given an observed (training) set of data and each data entry contains an input

feature vector x and a response score y which takes values from a discrete set of ordered scores

{1, 2, ..., C}. The task is to develop a predictive model to estimate a score ŷ for a test input x.

The estimated score ŷ can be either discrete or continuous based on different applications. In

this section, we propose a new ordinal regression model, which returns a continuous value as



36

the response for a given input feature vector x, rather than probability distributions over ordered

labels which is the general output of logistic ordinal regression.

In our model, the observed scores and estimated responses are defined in a measurable

ordinal scale. We cannot directly formulate the predicted value using Eq. (3.2), since we are

merely given input feature x and do not know which interval the estimated value ŷ will locate

in. Therefore, we formulate ŷ as follows:

ŷ =

C∑
c=1

scale(c− 1, c) · ratio(f[c−1,c](x), c− 1) (3.5)

where f[c−1,c](x) is an internal model used to generate the ratio for interval [c − 1, c]. Since

ŷ has chance to be located in all intervals, every interval (i.e., [c− 1, c], ∀c) should potentially

contribute to the computation of ŷ. The degree of contribution for each interval is decided by

the ratio value.

The parameters of our proposed ordinal regression method, including scale(c− 1, c), ∀c ∈

{1, 2, ..., C} and all the parameters in the internal model f[c−1,c](x) can be jointly learned

by optimizing a squared loss between observed scores and estimated scores on the training

samples. It should be emphasized that in our method the objective function is defined in the

ordinal scale where the distances more accurately reflect individual users’ internal preferences.

Practically, the scale/distance between adjacent ordered scores models a single user’s dis-

crimination ability between these two adjacent scores. For example, if we enlarge the interval

between labels “4” and “5”, and shrink the interval between “3” and “4” (see the example in

Fig. 3.1), then it can be explained in that for someone, it is much easier to discriminate between

labels “4” and “5” compared with scores “4” and “3”. In real applications such as personalized

search and collaborative filtering, different users may have different degrees of sensitivity over

a sequence of ordered scores, and thus the internal scale between a specific pair of adjacent

scores can also be different for individual users.

3.4 Decomposed Matrix Factorization

In this section, we apply our newly proposed ordinal regression method in collaborative fil-

tering for the task of rating prediction. In this problem, a set of ratings or preference scores

are recorded by m users over n items, which are represented by an m × n user-item matrix



37

R ∈ Rm×n. The ratings take discrete ordered values, e.g., 1-star to 5-star, and most of them

are absent due to incomplete observations, making R a highly sparse matrix. The task of rat-

ing prediction then boils down to predicting the unknown ratings based on a small portion of

observed ratings in R.

We combine matrix factorization with ordinal regression model, forming a new ordinal

collaborative filtering method. In order to simplify the notations, we usewc to replace scale(c−

1, c), representing the magnitude between ordered scores c− 1 and c. We replace ŷ with r̂ here

and use rc to represent ratio(f[c−1,c](x), c−1), where the internal model f[c−1,c](x) is obtained

from matrix factorization and feature vector x refers to user and item latent factors. Finally, Eq.

(3.5) is reformulated as follows:

r̂ =
C∑
c=1

wc · rc (3.6)

Note that this formulation (3.6) is related to that in [60], with a distinction. For the purpose

of ranking, [60] predicted rating as r̂ =
∑C

c=1 cProb(r = c), and the task boils down to esti-

mating the class probabilities, which was formulated both as a multi-class classification prob-

lem and as an ordinal classification problem. [60] commented that using either
∑C

c=1 2cProb(r =

c) or
∑C

c=1 cProb(r = c) does not make a noticeable difference in the ranking accuracy. In

this study, however, since our goal is to accurately predict the ratings instead of rankings, we

must learn the weights wc carefully.

3.4.1 Decomposing User Ratings

Before discussing our proposed rating prediction model, we introduce a decomposition pro-

cedure: given a sparse rating matrix R where observed user ratings take values from a set of

discrete scores {1, 2, ..., C}, we decompose the C-level rating matrix R into C binary matrices

R1, R2,..., R(C) (R(c) ∈ Rm×n, ∀c). Each binary matrix discriminates between observed

ratings no less than a specific ordinal category c and ratings below that ordinal category ({≥ c}

vs. {≤ c− 1}). For example, the entries in the c-th decomposed matrix R(c) are set in the fol-

lowing manner: if the observed rating value ru,i ≥ c in R, then we set “1” at the corresponding

position of R(c) (i.e., the intersection of u-th row and i-th column); if ru,i ≤ c− 1 in R, then

we set “0” at the corresponding position of R(c); if an entry is missing (unobserved) in R,



38

then its corresponding position in R(c) is still missing. Therefore, the observed values in R(c)

discriminate rating scores {r ≥ c} and {r ≤ c− 1}. An example is shown in 3.2 when C = 4,

m = n = 2, where a “?” represents a missing entry. On the left side of the vertical line is the

original rating matrix R and the right side of the vertical line are decomposed binary matrices

R1, R2, R3, R4.

Figure 3.2: Matrix decomposition.

The purpose of matrix decomposition is that each binary matrix can provide information

for each interval of the ordered scores. For example, the c-th decomposed binary matrix R(c)

captures information for the interval [c − 1, c], since this binary matrix discriminates ratings

{r ≥ c} with {r ≤ c − 1}. We then apply matrix factorization on each of the decomposed

sparse binary matrices. The imputed values in the entries of binary matrix to some extent model

how much the estimations of rating scores are closer to c − 1 or c, which is interpreted as the

ratio value in Eq. (3.3) (or rc in Eq. (3.6)). We will explain the procedures in details.

3.4.2 Rating Prediction on Decomposed Binary Matrices

We assume that each decomposed binary matrix has low rank and apply matrix factorization

on each of them. Specifically, given any matrix R(c) (c ∈ {1, 2, ..., C}), we formulate a rating

predictor on the sparse decomposed binary matrix as follows:

rc =
ucvcᵀ + 1

2

s.t. ‖uc‖2 ≤ 1, ‖vc‖2 ≤ 1

(3.7)

where uc ∈ Rf is a row vector of user latent factors and vc ∈ Rf is a row vector of item latent

factors on c-th decomposed matrix and f is the dimensionality of low-rank approximation.

rc ∈ [0, 1] is the predicted value on R(c). We set constraints ‖uc‖2 ≤ 1 and ‖vc‖2 ≤ 1 since

we expect that the predicted value rc ranges from 0 to 1. This formulation is inspired by [86].



39

The predicted value rc calculated from the latent features in the c-th decomposed matrix

represents the “ratio” for interval [c − 1, c] in Eq. (3.5). Recall that in the c-th decomposed

matrix, “1” is set if the original observed rating score “r ≥ c”, and “0” is set when observed

rating score “r ≤ c− 1”. Thus, the estimated vale of rc (0 ≤ rc ≤ 1) indicates how much r is

closer to c or c− 1.

3.4.3 Combining Predictions from Decomposed Matrices

The task of rating prediction is to generate an estimated rating value for a user-item combina-

tion. After obtaining the predictions from each of the binary matrices through Eq. (3.7), we

then use Eq. (3.6) to generate the final prediction.

In practice, it is expected that each user has distinct rating pattern or degree of sensitivity

over the same set of ordered scores. Therefore, the value of wc (i.e., scale between c− 1 and c

) in Eq. (3.6) should be different for individual users. Then, the prediction model becomes:

r̂u,i =

C∑
c=1

wcu · rcu,i (3.8)

where r̂u,i is the final predicted rating value that the u-th user gives to the i-th item and rcu,i is

the prediction in the corresponding entry of the c-th decomposed binary matrix. wcu represents

that each user has distinct ordinal scale over interval [c− 1, c].

By combining Eq. (3.7) and Eq. (3.8), we formulate the final ordinal rating predictor as

follows:

r̂u,i =

C∑
c=1

wcu
2

(
Uc
uV

c
i
ᵀ + 1

)
=

C∑
c=1

wcu
2

( f∑
j=1

Uc
u,j ·Vc

i,j +1
)

s.t. ‖Uc
u ‖

2 ≤ 1, ‖Vc
i ‖

2 ≤ 1 ∀u, i, c

(3.9)

where Uc
u (the u-th row of Uc) and Vc

i (the i-th row of Vc) denote the latent factors for the

u-th user and the i-th item from matrix factorization on the c-th binary matrix.

Finally, model parameters, including the latent factors from each of decomposed matrices

and the scale variables between any pair of adjacent rating scores, are jointly learned through

minimizing a regularized squared loss between estimated scores and observed scores, which is



40

formulated as follows:

min
∑

(u,i)∈Ω

(
ru,i −

C∑
c=1

wcu
2

(
Uc
uV

c
i
ᵀ + 1

))2
+
∑
u,c

λU,u‖Uc
u ‖

2 +
∑
i,c

λV,i‖Vc
i ‖

2

s.t. ‖Uc
u ‖

2 ≤ 1, ‖Vc
i ‖

2 ≤ 1 ∀u, i, c

(3.10)

where Ω is the observed set of rating values, and ru,i ∈ Ω represents one observed rat-

ing score. Shown in the above objective function, we introduce regularization terms (i.e.,∑
u,c λU,u‖U

c
u ‖

2 and
∑

i,c λV,i‖V
c
i ‖

2) in order to prevent from overfitting. We call this new

ordinal collaborative filtering method “decomposed matrix factorization (DMF)”, as our model

is based on matrix factorization on a sequence of decomposed matrices.

As an extreme case of our ordinal method, if we set identical weights (i.e.,wc = 1, ∀c), then

the ratings are still defined as numerical, since now all the ordered rating scores are equidistant

(see Fig. 3.1 as an example). Then, our method seemingly just models “residuals” incremen-

tally, where the “residuals” are the difference between small rating values and large rating val-

ues. If we use predefined wc, then DMF is similar to a method called decoupled collaborative

ranking proposed in [86] which also introduces the idea of decomposing R.

3.4.4 Comparisons with OrdRec and OMF

There are two principal differences between DMF with OrdRec and OMF, which are imple-

mented based on the logistic ordinal regression method. Firstly, DMF factorizesC decomposed

binary matrices where each one captures the insight of user assigning one pair of adjacent rating

scores, while OrdRec and OMF factorize only one matrix. This property indicates that DMF

essentially catches more patterns when users assign rating scores than the other two methods.

Secondly, additive ordinal regression defines the full mapping from users’ rating scores to uni-

fied ordinal magnitudes, allowing us to easily compare the magnitudes of the same rating score

from individual users. Suppose that “4-star” from user A assigned to item i maps to 4.2 (in the

ordinal scale) while “4-star” from user B assigned to item i maps to 3.7 (in the ordinal scale)

and then we can conclude that user A is probably more interested in item i than user B even

though they gave the same rating score to that item. Our ordinal method provides a simpler and

more straightforward way to quantify this kind of difference than logistic ordinal regression.



41

3.5 Parallel SGD for Learning DMF

Methods based on stochastic gradient descent (SGD) have become increasingly important, es-

pecially for large-scale industrial applications. It is also fairly easy for practitioners to re-

produce the SGD methods. Hence, in this chapter, we develop an algorithm based on SGD

to solve the optimization problem in Eq. (3.10). Besides, we adopt a notable share-memory

parallelized algorithm, which is called HOGWILD! [87], to make the learning process of our

proposed method scalable to multi-core machines.

3.5.1 Regularization Parameters

As shown in Eq. (3.10), we set different regularization parameters for different users and items.

In practice, we apply a popular strategy to reduce the number of regularization parameters:

λU,u =
λ

#observed ratings given by user u

λV,i =
λ

#observed ratings gave to item i

As a result, we only have one hyper-parameter λ for all the regularization parameters.

3.5.2 Parallelized Stochastic Gradient Descent

In this section, we develop an EM-like SGD algorithm to learn the model parameters. We

divide the model parameters of DMF into two groups: {Uc,Vc}Cc=1 and {wc}Cc=1. The first

set of parameters represent the user and item latent factors and the other set of parameters are

the weights set for each of the decomposed matrices, modeling the different scales/distances

between any pair of adjacent scores. Our SGD algorithm alternatively updates these two set of

parameters. Let eu,i denote the predicted error, ru,i − r̂u,i. We summarize the EM-like SGD

algorithm as follows:

1. Firstly, we initialize the model parameters: {Uc,Vc}Cc=1 and {wc}Cc=1. In our method,

we initialize {Uc,Vc}Cc=1 from a normal distribution and {wc}Cc=1 are all set to 1.

2. We then fix {wc}Cc=1 and estimate {Uc,Vc}Cc=1 by minimizing the loss function in Eq.

(3.10). Given an observed rating ru,i (i.e., (u, i) ∈ Ω ), we update the model parameters



42

as:

Uc
u ← Uc

u +η1 · (eu,i · wcu ·Vc
i − 2λU,u ·Uc

u) (3.11)

Vc
i ← Vc

i +η1 · (eu,i · wcu ·Uc
u − 2λV,i ·Vc

i ) (3.12)

The constraints in Eq. (3.10) can be satisfied by gradient projection during the update

of model parameters: Uc
u ←

Uc
u

‖Uc
u ‖

and V t
i ←

Vc
i

‖Vc
i ‖

. By looping through all the

training samples several iterations, we will obtain a basic estimation of the parameters

{Uc,Vc}Cc=1.

3. Similar to step 2, we then fix {Uc,Vc}Cc=1 and estimate {wc}Cc=1 by minimizing the

same loss function in Eq. (3.10). The update formulation of {wc}Cc=1 is given as:

wcu ← wcu + η2 · eu,i · (Uc
uV

c
i
ᵀ + 1) (3.13)

By looping through all the training samples in Ω several iterations, we obtain the updated

parameters of {wc}Cc=1.

4. We repeat step 2 and step 3 for several rounds until meeting the stopping criteria and

return {wc,Uc,Vc}Cc=1. The procedure stops when the prediction error on the validation

set does not decrease or the program exceeds the number of rounds initially set.

We implement scalable DMF model based on the HOGWILD! framework. Let T be the

number of threads and S be the sample size for each thread. In the chapter, we take the value

S = |Ω|
T . The pseudo-code of the algorithm is described in Algorithm 2.

3.6 Experiments

We empirically investigate the performance of our ordinal regression method in the context of

rating prediction.

Datasets Our algorithms are tested on four public datasets. A full statistic of datasets is

described in Table 3.1. In each dataset, we randomly partition the data into two parts: 4/5 as

training and 1/5 as test. We perform 5-fold cross validation on the training data.

Performance Metrics: Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)

are two popular quantified measurements used to evaluate the accuracy of rating prediction.



43

Algorithm 2: Parallelized SGD for DMF
Input : observed set Ω; max round of update MAXROUND; regularization parameters

λ; learning rate η1 for user and item latent factors, η2 for scale parameters;
number of threads T ; rank of approximation

Output: {wc,Uc,Vc}Cc=1

1 while stopping criteria is not met do
2 while stopping criteria is not met do
3 for each thread t ∈ {1, 2, ..., T} do
4 repeat
5 choose ru,i ∈ Ω uniformly at random;
6 for each c ∈ {1, 2, ..., C} do
7 update Uc

u by Eq. (3.11);
8 update Vc

i by Eq. (3.12);
9 Uc

u ←
Uc
u

‖Uc
u ‖

and V t
i ←

Vc
i

‖Vc
i ‖

;

10 end
11 until sampling S times is done;
12 end
13 end
14 while stopping criteria is not met do
15 for each thread t ∈ {1, 2, ..., T} do
16 repeat
17 choose ru,i ∈ Ω uniformly at random;
18 for each c ∈ {1, 2, ..., C} do
19 update wc by Eq. (3.13);
20 end
21 until sampling S times is done;
22 end
23 end
24 η1 = η1

2 , η2 = η2
2 ;

25 end

They are defined as: RMSE =

√∑
i (yi−ŷi)2
N and MAE =

∑
i |yi−ŷi|
N . In our problem setting,

yi is the real rating value in the test set, ŷi is the predicted rating value and N is the size of the

test data.

3.6.1 Effectiveness of DMF

In order to study the principles in our method, we compare the performance of DMF with two

baseline methods which have been discussed in the previous sections: (i) Matrix Factorization

(MF). In MF, an estimated rating value is represented as r̂u,i = UuV
ᵀ
i and these latent factors

could be learned through minimizing an objective function in the form of squared loss with



44

Table 3.1: Statistics of datasets

Datasets #Users #Items Rating Scale #Ratings Density
MovieLens100K 943 1,682 1 - 5 (5 levels) 100,000 6.30%
MovieLens1M 6,040 3,706 1 - 5 (5 levels) 1,000,209 4.47%
MovieLens20M 138,493 27,278 0.5 - 5.0(10 levels) 20,000,263 5.29%
Netflix100K 13,632 586 1 - 5 (5 levels) 112,244 1.20%
Netflix1M 48,018 1,777 1 - 5 (5 levels) 1,020,752 1.41%
Netflix 480,189 17,770 1 - 5 (5 levels) 100,480,507 1.18%

quadratic regularization terms. (ii) We preset wc = 1, ∀c, in Eq. (3.9), then DMF just models

the incremental “residuals” between small rating values and large rating values, where the rating

values are defined as numerical values. We call this method DMF-Res and set it as a baseline

method for comparison. The DMF-Res method is similar to applying decoupled collaborative

ranking [86] for the rating prediction task.

Results are reported in different settings of rank (i.e., the f in Eq. (3.9)) for low-rank

approximation. In the experiments, we choose rank from the set of {20, 50, 100}, and the

prediction accuracy of different approaches is evaluated in terms of RMSE metric. Other pa-

rameters, e.g., learning rate, regularization parameter, are selected by cross-validation. The

experimental results on some datasets are shown from Table 3.2 to Table 3.4.

Table 3.2: RMSE on MovieLens100K

Methods rank=20 rank=50 rank=100
MF 0.925 0.923 0.922

DMF-Res 0.920 0.919 0.917
DMF 0.904 0.902 0.901

Table 3.3: RMSE on MovieLens1M

Methods rank=20 rank=50 rank=100
MF 0.872 0.870 0.869

DMF-Res 0.867 0.865 0.864
DMF 0.848 0.846 0.845

MF vs. DMF-Res. The difference between MF and DMF-Res is that MF model is based

on matrix factorization on the original rating matrix R, while in DMF-Res model, each binary

matrix is factorized. Hence, by setting same rank to both methods, DMF-Res has C times



45

Table 3.4: RMSE on MovieLens20M

Methods rank=20 rank=50 rank=100
MF 0.812 0.808 0.802

DMF-Res 0.790 0.787 0.786
DMF 0.769 0.767 0.766

more model parameters than MF. To make fair comparison between MF and DMF-Res in the

setting of equal number of model parameters, we can compare MF of “rank = 100” with

DMF-Res of “rank = 20” on MovieLens100K and MovieLens1M datasets since in both of

these two datasets, there exist 5 different rating values. In such setting, Tables 3.2 and 3.3

show that DMF-Res slightly outperforms MF. In view of this, DMF-Res method in which we

assume that all the ordered rating scores are equidistant (i.e., wc = 1, ∀c ∈ {1, 2, ..., C}) is

still considered as another way of matrix factorization approach to modeling user ratings as

numerical.

DMF vs. DMF-Res. DMF and DMF-Res differ in that in DMF, the scales between any

pair of adjacent rating scores (i.e., {wc}Cc=1) are learned, while in DMF-Res, all these variables

are preset as identical values. Hence, DMF is an ordinal regression method while DMF-Res

does not apply ordinal information. Through the comparisons of DMF with DMF-Res from

Table 3.2 to Table 3.4, it clearly shows that the weight variables have significant impact on the

rating prediction performance. In other words, modeling user ratings as ordinal is sound for

rating prediction and our proposed ordinal regression method works well in this problem.

3.6.2 Comparison with Other Ordinal Algorithms

In this section, we compare our proposed DMF method with two existing ordinal matrix fac-

torization methods: OrdRec [57] and OMF [85], which are both built on the logistic ordinal

regression framework. In OrdRec, authors feed SVD++ rating predictor as an internal model.

Model parameters of OrdRec are learned through gradient ascent on a likelihood. OMF is a

hierarchical Bayesian model and ordinal information of ratings is coupled into the model using

logistic ordinal regression by changing logistic function to the cumulative Gaussian density.

The performance comparison is shown in Table 3.5. All the methods are compared in the



46

Table 3.5: Comparing DMF with ordinal rating predictors

Datasets Metrics OrdRec OMF DMF

MovieLens1M
MAE 0.672 0.675 0.666

RMSE 0.857 0.862 0.846

MovieLens20M
MAE 0.603 0.608 0.586

RMSE 0.783 0.787 0.766

Netflix1M
MAE 0.735 0.738 0.722

RMSE 0.932 0.938 0.914

Netflix-Training
MAE 0.662 0.670 0.642

RMSE 0.851 0.858 0.823

same number of latent factors. More specifically, we set rank = 20 for DMF and rank =

C · 20 for OrdRec and OMF. Based on the t-test results, it is noticeable that on all large-scale

datasets, the improvement of our prediction algorithm against all the other ordinal approaches

(i.e., OrdRec and OMF) are statistically significant at p-value< 0.01. The results show the

superiority of additive ordinal regression over general logistic ordinal regression on the rating

prediction problem.

The results of performance comparison among these ordinal methods can be explained in

that: logistic ordinal regression focuses on learning a correct probability distribution over a

sequence of ordered rating scores, while our proposed ordinal regression method focuses more

on learning the correct mapping from user assigned rating scores to the exact degree of user

preference. That is, our ordinal regression model has greater power in quantifying the given

rating score to a preference score. Besides, evaluation metric such as RMSE is calculated using

squared distance, and it is possible that directly minimizing this loss (in our method) is more

suitable than a classification loss (logistic ordinal regression). Other advantages of DMF over

OrdRec and OMF are explained in Section 3.4.4.

3.6.3 More Discussions on DMF

The impact of rank for matrix approximation

The rank is a tuning parameter for matrix factorization. From Table 3.2 to Table 3.4, we

observe that increasing the value of rank can always slightly improves the prediction perfor-

mance. In order to investigate the impact of rank more detailedly, we report the prediction



47

performance of MF and DMF on the MovieLens20M dataset as a function of rank in Fig. 3.3,

which also shows that DMF is able to achieve a stable performance at a relative lower rank.

10 20 30 40

rank

0.76

0.78

0.8

0.82

0.84

0.86
R

M
S

E

DMF

MF

10 20 30 40

rank

0.58

0.6

0.62

0.64

0.66

0.68

M
A

E

DMF

MF

Figure 3.3: The impact of rank. Results are reported on the MovieLens20M dataset.

Discussion on the number of decomposed matrices

Given that observed rating scores take from a discrete set of values {1, 2, ..., C}, an interesting

question concerning our ordinal regression method is that why rating values are decomposed

into C different intervals, rather than less interval scales such as C
2 or more intervals such as

2C. In order to answer this question, we conduct experiments by decomposing the original

rating matrix into different number of matrices and investigate the prediction performance as a

function of the number of decomposed matrices.

The performance on MovieLens1M dataset is shown in Fig. 3.4. In that dataset, ratings

take discrete values from {1, 2, 3, 4, 5}. We decompose the original rating matrix into different

number of binary matrices in each experiment. For example, if we only obtain 1 binary ma-

trix, then this matrix only distinguishes ratings between two groups: {1, 2} ≤ 5
2 = 2.5 and

{3, 4, 5} > 5
2 = 2.5. Readers can also understand it as we treat C in Eq. (3.9) as a tuning

parameter, and test this parameter here.

The results in Fig. 3.4 show that: (i) when the number of decomposed matrices ≤ 5, we

obtain better performance as the increasing number of decomposition; (ii) While the number

of decomposed matrices ≥ 8, we obtain poorer prediction performance as the increasing num-

ber of decomposed matrices. The first observation can be explained in that as the number of



48

1 2 3 4 5 6 7 8 10 12 15

number of decomposed matrices

0.845

0.85

0.855

0.86

0.865

0.87

R
M

S
E

DMF

Figure 3.4: The performance when the original rating matrix is decomposed into different
number of matrices.

decomposition increases (when this number ≤ 5), we captures more information about the

distinct rating values. When we have 5 decomposed matrices (i.e., we model 5 intervals), the

information of distinct ordered scores is fully used. When using more than 5 intervals, we ac-

tually capture redundant information. For example, if scores are decomposed into 10 intervals,

i.e., < 1, [1,1.5), [1.5-2),..., [4.5-5.0), ≥5, some intervals (e.g., [1.5, 2), [2.5, 3)) are meaning-

less, since no score in the training set locates in this interval. The performance becomes poorer

due to overfitting. Therefore we choose the number of decomposed matrices as the number of

distinct ordered scores.

Effectiveness of parallelized SGD

In Fig. 3.5, we empirically evaluate the effectiveness of our proposed parallelized SGD algo-

rithm on the two largest datasets in terms of RMSE metric. The prediction accuracy after each

round of updating parameters is reported. As shown in Algorithm 2, in each round, we first fix

{wc}Cc=1 and update {Uc,Vc}Cc=1 and then fix {Uc,Vc}Cc=1 and update {wc}Cc=1. Therefore,

there are 2 experimental results shown within one round on the performance curve. In Fig. 3.5,

it shows that after each update of model parameters the prediction performance can be gradu-

ally improved. We also observe that much of the improvement takes place in the first 2 rounds

and after 3 rounds the performance becomes stable and thus in practice, it might be enough to

update model parameters in only 2 or 3 rounds.



49

1 2 3 4 5

round

0.76

0.78

0.8

0.82

0.84

R
M

S
E

Movielens-20m

1 2 3 4 5

round

0.82

0.84

0.86

0.88

0.9

0.92

R
M

S
E

Netflix-Training

Figure 3.5: The effectiveness of Algorithm 2. In each round, we first report the results after
updating {Uc,Vc}Cc=1 and then report the results after updating {wc}Cc=1.

0 50

Time (seconds)

0.8

1

1.2

1.4

1.6

R
M

S
E

threads=1

threads=4

threads=16

0 50

Time (seconds)

0.6

0.8

1

1.2

1.4

M
A

E

threads=1

threads=4

threads=16

Figure 3.6: The accuracy of parallelized SGD measured by RMSE and MAE with respect to
running time. The experiments are reported on MovieLens1M dataset with rank = 20.

We also demonstrate the parallelization performance of our proposed algorithm in Fig. 3.6.

All the experiments were conducted on a single workstation: DELL Precision T7600 with two

Intel@Xeon(R) E5-2687W 3.10GHZ 16-core CPUs. Fig. 3.6 plots the prediction performance

as a function of running time. We see that the rating prediction accuracy in terms of both RMSE

and MAE metrics converges to similar results in different number of threads.

3.6.4 Comparisons with More Rating Predictors

In this section, we compare DMF with many rating prediction methods, to demonstrate the

superiority of our ordinal regression method when applied to the rating prediction problem.

We first compare DMF to two baseline neighborhood-based methods: UserAvg which predicts



50

Table 3.6: Comparisons of rating predictors.

Datasets Metrics UserAvg ItemAvg MF BPMF BSVD FM DMF

MovieLens100K
MAE 0.835 0.817 0.723 0.722 0.723 0.721 0.710

RMSE 1.041 1.025 0.923 0.920 0.917 0.912 0.901

MovieLens1M
MAE 0.830 0.782 0.704 0.696 0.673 0.668 0.666

RMSE 1.036 0.978 0.869 0.865 0.862 0.855 0.846

MovieLens20M
MAE 0.751 0.732 0.638 0.632 0.609 0.599 0.586

RMSE 0.963 0.941 0.802 0.798 0.788 0.783 0.766

Netflix100K
MAE 0.872 0.871 0.851 0.858 0.852 0.848 0.826

RMSE 1.122 1.120 1.126 1.098 1.088 1.075 1.035

Netflix1M
MAE 0.810 0.809 0.742 0.739 0.735 0.734 0.722

RMSE 1.024 1.023 0.947 0.943 0.935 0.933 0.914

Netflix-Training
MAE 0.812 0.809 0.687 0.677 0.667 0.656 0.642

RMSE 1.016 1.015 0.880 0.865 0.855 0.843 0.823

rating values by averaging the ratings which are given by the same active user; ItemAvg which

predicts rating values by averaging the ratings given to the same item. We then compare DMF to

model-based methods: MF as a baseline method. BPMF [41], a Bayesian probabilistic matrix

factorization method; BSVD [40] is an improved regularized matrix factorization approach;

Factorization Machine (FM) [80] is popular in recommender systems, which can mimic a lot

of matrix factorization methods (e.g., SVD++ [39]). In the experiment, we model the feature

of FM as SVD++ (see section 4.1.3 in paper [80]) since it achieves the best performance. The

main purpose of this chapter is to discuss our newly proposed ordinal regression approach

and therefore we mainly compare DMF with other methods which also apply the same basic

predictive model-matrix factorization. Practically, we can also combine other basic predictive

models such as neural network in our ordinal regression method and we leave it as future work.

We report our settings used in the DMF method: the regularization parameter λ is set as 0.5;

learning rates η1 = 10−2 and η2 = 10−3 are used in the first round, and updated by η1 = η1/2

and η2 = η2/2 in the following rounds. All the other matrix factorization-based methods are

compared in the setting of equal number of model parameters. For example, if there are 5

distinct rating scores and we set rank = k in DMF, then we will set rank = 5k in other

methods. This setting of comparison is fairer than the setting of comparison in same rank,

considering both of the model complexity and performance. If we compare in the setting of

same rank, one may still doubt that the improvement of performance results from adding more

model parameters. Besides, DMF with rank = k generally performs slightly worse than DMF



51

with rank = C · k, which demonstrates more superiority of our proposed method if it even

outperforms other methods in the setting of rank = k. In our experiments, we set rank = 20

for DMF, and set rank = C · 20 for other compared methods.

The empirical results are reported in Table 3.6. Observed from that table, we see that DMF

outperforms all the methods for comparison in terms of both of RMSE and MAE metrics.

Except for the first two neighborhood-based models, all the other compared methods apply the

same basic predictive model (i.e., matrix factorization) by incorporating other understanding

of the patterns when users assign rating scores. For example, they combine more elements

such as mean, user’s rating bias, user’s rating history with basic user and item latent factors.

However, all of the compared methods in this section did not introduce the ordinal interpretation

of rating scores. From the performance comparisons shown in Table 3.6, we can conclude that

modeling the ordinal nature of user preference in a correct manner can significantly improve

the performance of rating prediction over methods which ignore the ordinal nature of user

preference scores.

3.7 Conclusion

In this chapter, we discussed the ordinality of user ratings: the distance/scale between any pair

of adjacent scores should be different. Based on this intuition, we proposed a new ordinal re-

gression approach to modeling the ordinal nature of user ratings. Different from current statistic

ordinal regression methods which consider ordered scores as ordinal categorical labels, in our

method discrete rating scores can be mapped to the exact magnitudes in terms of individual

users’ internal preferences. By combing matrix factorization, we applied our proposed ordinal

method in collaborative filtering for the task of rating prediction. Through extensive experi-

ments on popular datasets, we demonstrated the superiority of our proposed method over other

ordinal methods in terms of the accuracy of rating prediction. We also compared our method

with many notable collaborative filtering methods and show the effectiveness to model ordinal

user preference scores in order to improve the rating prediction accuracy.



52

Chapter 4

Improved Bradley-Terry Model for Collaborative Ranking

In order to improve the ranking performance of recommender systems in a basic setting where

only a user-item rating matrix is observed, many popular approaches combine learning-to-rank

strategies with matrix factorization, forming a new category of collaborative ranking meth-

ods. In collaborative ranking, the Bradley-Terry (BT) model is widely used for modeling pair-

wise user preferences. However, when this model is combined with matrix factorization on

sparsely observed ratings, an identifiability issue arises. Besides, in some situations, fitting the

Bradley-Terry model yields a numerical challenge as it may involve an objective function that

is unbounded from below. To the best of our knowledge, these two issues have not yet been

discussed in the collaborative ranking literature.

In this chapter, we will discuss and develop a simple strategy to resolve these issues. More

specifically, we propose an Improved-BT model by adding a penalty term. The resulting ob-

jective function of the proposed method has an interesting interpretation: it balances a regu-

larized pairwise model with a regularized regression model-regularized SVD, which is often

considered as a good rating predictor. We develop two algorithms for Improved-BT: a reg-

ular stochastic gradient descent (SGD) solver and a sampling-based stochastic gradient de-

scent (SSGD) solver. Moreover, we parallelize these two SGD solvers to make them scalable.

Through extensive experiments on benchmark datasets, we show that Improved-BT exhibits

excellent performance at different sparsity levels of user-item rating matrices. We also show

that our proposed method outperforms many considered state-of-the-art collaborative ranking

approaches in terms of both ranking performance and time efficiency.



53

4.1 Introduction

The main purpose of recommender systems (RS) is to make suitable recommendations of items

that are potentially interesting to users. In this chapter, we also consider the basic setting of

recommendation: a set of ratings are recorded by m users over n items, and represented by an

m×n user-item (U-I) matrix R ∈ Rm×n. It is a common situation that the ratings take discrete

values, e.g., 1 to 5, and most of them are absent due to incomplete observations, making R a

highly sparse matrix. The task of recommendation in such setting boils down to selecting the

items whose rating values are unobserved and that are predicted a high rating.

Collaborative filtering (CF) is a popular method for recommender systems. There are many

CF approaches proposed within the last decade, especially during the period of the Netflix-prize

competition [88]. In the literature of CF, matrix factorization (MF) might be the most popular

method (e.g., [44, 43, 39, 41, 40, 38]) due to its scalability and high prediction accuracy. In

matrix factorization, the sparse rating matrix R is assumed to be low-rank and hence can be

decomposed into the product of two low-dimensional matrices. Another class of interesting

methods for CF [36] propose to aggregate similar users or items and predict the unobserved

ratings based on the collected similar users or items (e.g., [61, 62]). It should be mentioned

that most of the CF methods aim at improving the rating prediction accuracy, which is usually

measured by root-mean-square error (RMSE).

However, in modern recommender systems, it is considered more crucial to investigate the

ranking performance, especially at the top of the ranked list of items. The normalized dis-

counted cumulative gain (NDCG) has probably become the most popular measure for modern

recommendations. In order to improve the ranking performance of recommender systems, it

has been widely proposed to combine learning-to-rank strategies with matrix factorization [56],

forming a new class of collaborative ranking methods.

In collaborative ranking, it is quite common to treat user ratings as ordinal. The Bradley-

Terry model is one of the most common approach for modeling pairwise preferences (e.g.,

[36, 65, 66, 89, 56]). In many other fields (e.g., learning-to-rank) where the Bradley-Terry

model is widely applied, in order to ensure the identifiability of the solutions, sum-to-zero or

sum-to-a-constant constraints are typically used to control the range of the model parameters



54

[90]. However, when the Bradley-Terry model is combined with matrix factorization, the cor-

responding constraints become non-convex, rendering the resulting optimization problem chal-

lenging. Besides, if we directly apply the Bradley-Terry model without any modification, we

may encounter an implicit numerical challenge: if we represent the pairwise user preferences

as graph and in some cases, adding and subtracting a same constant from specific nodes will not

change the preference graph, however the value of the objective function of the Bradley-Terry

model can go to infinity. We will discuss these issues in detail in this chapter.

In order to resolve the identifiability issue and the numerical challenge, we propose to add

a penalty term to the objective function of the Bradley-Terry model, a modification that we call

Improved-BT model. To the best of our knowledge, the presented chapter is the first to discuss

and deal with the above two issues when the Bradley-Terry model is combined with matrix

factorization for the purpose of collaborative ranking. At the same time, the Improved-BT

model gives rise to another interesting interpretation: it balances a regularized pairwise model

with a regularized SVD-like model (regularized SVD is considered as a good rating predictor),

although they are slightly different in the form of accessing the input data. We develop two

algorithms for optimizing the Improved-BT: a general stochastic gradient descent (SGD) solver

and another sampling-based stochastic gradient descent (SSGD) solver. Moreover, we make

both of these two solvers scalable by adopting a parallelized SGD framework. Finally, through

extensive experiments on popular benchmark datasets, it is demonstrated that the proposed

approach can achieve significant improvements with regard to ranking performance and time

efficiency relative to state-of-the-art collaborative ranking approaches.

4.2 Related Work

4.2.1 Pairwise Learning to Rank

In the field of learning-to-rank (LTR), the main problem is to estimate a ranking function that

maps given feature vectors to relevance scores, e.g., given a query as input, a ranking web page

is returned by a search engine. In LTR, it is quite popular to model relevance scores as pairwise,

e.g. SVMRank [91], LambdaRank [92], RankNet [93], RankBoost [94], BoltzRank [95]. In

the general document search problem where learning-to-rank techniques are most applied, the



55

content of documents represented as feature vectors plays a significant role in the final ranking

performance.

4.2.2 Collaborative Ranking

Collaborative ranking is quite different from LTR. In the basic setting of collaborative ranking,

there is no feature vector. The only observed data is a highly sparse user-item rating matrix.

However, the ranking models in LTR can be inspiring for collaborative ranking, e.g., regarding

the use of Bradley-Terry model. For example, Rendle et al. [65] and Liu et al. [66] model

pairwise comparisons of observed ratings using BT model with low-rank structure. Besides,

in [89], the authors formulated an objective function based on the Bradley-Terry model and

developed a large-scale non-convex implementation that trains a factored form of the matrix

via alternating minimization (which reduces to alternating SVM problems). There are also

many other interesting models for collaborative ranking: Cofirank [43] is a notable approach

which optimizes a surrogate convex upper bound of NDCG error and uses matrix factorization

as the basic rating predictor. Another interesting approach assumes that the rating matrix is

locally low-rank [42] and optimizes pairwise surrogate ranking losses.

4.2.3 Bradley-Terry Model

In 1952, Bradley and Terry [96] proposed a logit model for paired evaluations. Let P (i > j)

denote the probability that item i is preferred over item j. The Bradley-Terry (BT) model is

given by:

log
P (i > j)

P (j > i)
= βi − βj

Alternatively,

P (i > j) =
exp(βi)

exp(βi) + exp(βj)
=

exp(βi − βj)
1 + exp(βi − βj)

(4.1)

where βi and βj can be regarded as relevance scores for item i and item j (βi and βj may have

different interpretations in different settings).

The Bradley-Terry model can also be easily extended to model the preferences among a set

of objects, for example, let P (i > {j, k}) denote that i is preferred to {j, k}, then

P (i > {j, k}) =
exp(βi)

exp(βi) + exp(βj) + exp(βk)



56

4.3 Methodology and Strategy

In this section, we first explain how the Bradley-Terry model can be applied in collaborative

ranking, and point out two issues that need to be tackled when the Bradley-Terry model is

combined with matrix factorization. We then present an effective strategy for this purpose.

4.3.1 Bradley-Terry Model Meets Matrix Factorization

In recommender systems, the relevance scores βi and βj in Eq. (4.1) often refer to rating

values. Assuming that the rating matrix R has low rank, βi and βj can be obtained through

matrix factorization (MF). Suppose that there are m rows and n columns in R, then R can be

approximated by the product of two matrices U ∈ Rm×f and V ∈ Rn×f : R̂ = UVᵀ, where

f is the dimensionality/rank of the approximation. Each row of U and V describe the latent

features for a specific user u and an item i respectively. Therefore, the estimated rating a user

u gives to an item i could be obtained by r̂ui = 〈Uu,Vi〉, where Uu is the uth row of U, Vi

is the ith row of V and 〈·, ·〉 is the dot product.

Let us denote the observed set of ratings as O and the observed set of pairs of user prefer-

ences as Ω = {(u, i, j) : rui > ruj , rui ∈ O, ruj ∈ O} where Rui is an observed rating. We

replace the reference scores βi and βj in Eq. (4.1) with estimated rating values r̂ui and r̂uj ,

and then the pairwise ranking aggregation on the observed pairs can be directly formulated as

minimizing the negative log-likelihood function as follows:

BT-OPT := − log
∏

(u,i,j)∈Ω

P (r̂ui > r̂uj)

= −
∑

(u,i,j)∈Ω

logP (r̂ui > r̂uj)

= −
∑

(u,i,j)∈Ω

log
exp(r̂ui)

exp(r̂ui) + exp(r̂uj)

= −
∑

(u,i,j)∈Ω

log
exp(UuV

ᵀ
i )

exp(UuV
ᵀ
i ) + exp(UuV

ᵀ
j )

(4.2)

The above objective function in Eq. (4.2) has been widely used in collaborative ranking

for modeling pairwise preferences ([89, 56]). However, if we apply matrix factorization to the

Bradley-Terry model without any modification, then we will encounter an identifiability issue

as well as a numerical challenge.



57

ISSUE1: Identifiability issue (non-convex constraints)

In Eq. (4.2), if we add a same constant to r̂ui and r̂uj , then the likelihood will remain the same.

At a technical level, one says that the parameters are not identifiable. Similar identifiability

issues exist in many common problems, such as multiclass logistic regression.

In order to deal with this issue, the usual approach is to impose a sum-to-zero constraint

([97, 90]) to the model. In our case, assuming that there are n items, this yields constraints∑n
i=1 r̂ui = 0 for all u. In terms of the optimization variables U and V, we accordingly obtain

the constraints
∑n

i=1 UuV
ᵀ
i = 0 for all u. These constraints are non-convex and thus difficult

too handle from an optimization viewpoint. In particular, popular optimization methods used

in this context such as (stochastic) gradient descent or alternating optimization of U and V are

no longer applicable. As a result, dealing with non-identifiability becomes more challenging

when the Bradley-Terry model is combined with matrix factorization.

ISSUE2: Numerical challenge (no minimizer of objective function)

For better visualization and interpretation, pairwise comparisons can be represented by a di-

rected graph (item as vertex and pairwise relationship as edge). If item i is preferred to item j,

then we draw a directed edge from node i to node j and vice versa. If item i and item j have

the same level of preference, then we draw both directions. We show that if we directly apply

the Bradley-Terry model without any modification, we will encounter a numerical issue such

that we can not obtain a minimizer of the negative log-likelihood in Eq. (4.2). For example,

given a preference graph as shown in Fig. 4.1, for any solution βA, βB , βC , βD which sat-

isfies the comparison relationship in the figure, if we add a positive constant c to node A and

B and subtract the same constant from C and D, then the preference graph does not change.

However, the likelihood corresponding to A−→D (i.e., exp(βA+c)
exp(βA+c)+exp(βD−c) ) and B−→C (i.e.,

exp(βB+c)
exp(βB+c)+exp(βC−c) ) will always increase if we increase c, while the likelihood corresponding

to A←→B and C←→D does not change. Therefore, the negative likelihood is unbounded from

below, and consequently has no minimizer.



58

Figure 4.1: The preference graph of an example to show the numerical challenge.

4.3.2 Regularization

To avoid overfitting, regularization is popular in MF-based collaborative filtering methods. The

following is a common way of regularization:

BT-OPT(1) := −
∑

(u,i,j)∈Ω

log
exp(UuV

ᵀ
i )

exp(UuV
ᵀ
i ) + exp(UuV

ᵀ
j )

+ λU‖U ‖2F + λV ‖V ‖2F

where ‖ · ‖2F represents the squared Frobenius norm. Regularization is a good idea to prevent

overfitting in matrix factorization, but it cannot directly deal with the issues we have discussed.

Actually, both of the identifiability issue and numerical challenge result from the shift of the

values UuV
ᵀ
i and UuV

ᵀ
j , while regularization constrains Uu and Vi separately.

4.3.3 Improved Bradley-Terry Model

We propose a simple and yet effective way to deal with the aforementioned: identifiability

issue and numerical challenge. In fact, these two issues result from the shift of the estimated

rating values r̂ui and r̂uj (i.e., UuV
ᵀ
i and UuV

ᵀ
j ): (I) identifiability issue occurs because

adding a same constant to both of the estimated rating values will not affect the objective

function; (II) the numerical problem occurs because adding and subtracting a same constant

from specific nodes will not change the preference graph (e.g., an example is shown in Fig.

4.1), however the likelihood can go to infinity. Hence, we propose to restrain the shift of UuV
ᵀ
i

and UuV
ᵀ
j . For this purpose, we reformulate the objective function by adding a penalty term



59

as follows:

BT-OPT(2) :=
∑

(u,i,j)∈Ω

(
− log

exp(UuV
ᵀ
i )

exp(UuV
ᵀ
i ) + exp(UuV

ᵀ
j )︸ ︷︷ ︸

pairwise loss

+ γ
(
(rui −UuV

ᵀ
i )

2 + (ruj −UuV
ᵀ
j )

2
)︸ ︷︷ ︸

penalty

)

+ λU‖U ‖2F + λV ‖V ‖2F

(4.3)

where γ ≥ 0 is a balance factor between the pairwise loss and additive penalty term. By

setting a penalty term into the Bradley-Terry model will make the estimated rating values con-

verge to the real observed rating values and hence the situation that those estimated rating

values uncontrollably shift can’t happen. We call this new method as improved Bradley-Terry

model (Improved-BT).

The additive penalty term in Eq. (4.3) is similar to a squared regression loss even though

they are slightly different in the form of accessing input data: in Eq. (4.3), it accesses observed

ratings in the form of pairwise while regression losses usually access data in the form of single

point. Even though in this chapter we mainly discuss the pairwise BT model, it should be

mentioned that if we delete the pairwise term in Eq. (4.3), then we can still get reasonable

ranked lists of items by solely optimizing the penalty term, since in collaborative filtering, it

is quite common to set and optimize an regression-based objective function. Therefore, the

Improved-BT can be interpreted as a combination of a pairwise model and a regression model.

4.4 Learning

Methods based on stochastic gradient descent (SGD) have become increasingly important, es-

pecially for large-scale industrial applications. In this chapter, we develop SGD algorithms to

solve the Improved-BT model. Besides, we adopt a notable share-memory parallel algorithm-

HOGWILD! to make the learning process of our proposed method scalable to multicore ma-

chines. More details on the provably guarantees or analysis about HOGWILD! refer to the

paper [87].



60

4.4.1 Parallel Stochastic Gradient Descent

We first apply the general SGD algorithm for solving the Improved-BT model. In practice, we

set different regularization parameters for each user and item as:

λu =
λ

#observed pairs which contain user u

λv =
λ

#observed pairs which contain item i

As a result, we only have one hyperparameter γ for the regularization parameters. This is a

popular strategy to reduce the number of regularization parameters. Let r̂ui = UuV
ᵀ
i , r̂uj =

UuV
ᵀ
j , for any training example (u, i, j) ∈ Ω, partial derivatives of all the model parameters

are calculated as:

∂BT-OPT(2)
∂Uu

= − 1

1 + exp(r̂ui − r̂uj)
(Vi−Vj) + 2λuUu

+ γ
(
− 2Vi(rui − r̂ui)− 2Vj(ruj − r̂uj)

)
∂BT-OPT(2)

∂Vi
= − 1

1 + exp(r̂ui − r̂uj)
Uu +2λiVi +γ

(
− 2Uu(rui − r̂ui)

)
∂BT-OPT(2)

∂Vj
=

1

1 + exp(r̂ui − r̂uj)
Uu +2λj Vj +γ

(
− 2Uu(ruj − r̂uj)

)

Algorithm 3: Parallel SGD for Improved-BT
Input : observed rating matrix R; the set of observed rating pairs Ω; balance factor γ;

regularization parameter λ; learning rate η
Output: U and V

1 while not converged do
2 for each thread t ∈ {1, 2, ..., T} do
3 repeat
4 choose (u, i, j) ∈ Ω uniformly at random;
5 update Uu ← Uu−η ∂BT-OPT(2)

∂Uu
;

6 update Vi ← Vi−η ∂BT-OPT(2)
∂Vi

;

7 update Vj ← Vj −η ∂BT-OPT(2)
∂Vj

;

8 until sampling S times is done;
9 end

10 η ← η
2 ; // update learning rate

11 end

Let T be the number of threads and S be the sample size for each thread. In the chapter, we

take the value S = |Ω|
T . The full algorithm of parallel SGD is described in Algorithm 3.



61

Algorithm 4: Parallel SSGD for Improved-BT
Input : observed rating matrix R; the set of observed rating pairs Ω; balance factor γ;

regularization parameter λ; learning rate η
Output: U and V

1 while not converged do
2 for each thread t ∈ {1, 2, ..., T} do
3 repeat
4 choose (u, i, j) ∈ Ω uniformly at random;
5 sample z ∈ [0, 1] uniformly at random;
6 if z < 1

1+γ then
7 update Uu ← Uu−η ∂PairLoss

∂Uu
;

8 update Vi ← Vi−η ∂PairLoss
∂Vi

;

9 update Vj ← Vj −η ∂PairLoss
∂Vj

;

10 else
11 update Uu ← Uu−η ∂Penalty

∂Uu
;

12 update Vi ← Vi−η ∂Penalty
∂Vi

;

13 update Vj ← Vj −η ∂Penalty
∂Vj

;

14 end
15 until sampling S times is done;
16 end
17 η ← η

2 ; // update learning rate

18 end

Problem with SGD: In practice, we may need to investigate when γ is set to be very large.

In such situation, the Improved-BT will solely recover a regression model. However, if we set

a large value for γ (e.g., 1000000), then the entry values of the partial derivatives ∂BT-OPT(2)
∂Uu

,

∂BT-OPT(2)
∂Vi

, ∂BT-OPT(2)
∂Vj

become too large. As a result, after a few iterations of parameter update,

the algorithm will encounter a numerical error such that the values of entries in UVᵀ may

exceed the limitation of a real number that a machine can handle.

4.4.2 Parallel Sampling-based Stochastic Gradient Descent

In this part, we propose a sampling-based SGD method to tackle the problem with SGD.In the

community of LTR, it is known that ranking error could be bounded by both of regression error

[98] and pairwise error [68]. This fact motivates us to divide BT-OPT(2) into two partitions: a



62

regularized pairwise loss, represented by:

PairLoss :=−
∑

(u,i,j)∈Ω

log
exp(UuV

ᵀ
i )

exp(UuV
ᵀ
i ) + exp(UuV

ᵀ
j )

+ λU‖U ‖2F + λV ‖V ‖2F

(4.4)

and the penalty term which is similar to a regularized regression loss:

Penalty :=
∑

(u,i,j)∈Ω

(rui −UuV
ᵀ
i )

2 + (ruj −UuV
ᵀ
j )

2

+ λU‖U ‖2F + λV ‖V ‖2F

(4.5)

We can calculate the partial derivatives of Uu, Vi and Vj for these two objective function

separately. In this way, the balance factor γ is excluded in the calculation of each of the partial

derivatives and hence the update of model parameters will not be affected by large γ. The

balance factor is introduced into our algorithm in the following way: we first sample a real

number z uniformly at random between 0 and 1 and compare z with 1
1+γ . If z < 1

1+γ , then

we optimize the “PairLoss”; else we optimize the penalty term. A description of the sampling-

based SGD method (SSGD) is shown in Alg. 4.

4.5 Experiments

4.5.1 Dataset and Setting

Dataset Our algorithms are tested on three popular datasets: MovieLens1M, Movie-

Lens10M1 and Netflix Prize dataset. MovieLens1M contains 1,000,209 anonymous ratings

of 3,706 movies made by 6,040 MovieLens users who joined MovieLens in 2000. The ratings

in both of these two datasets range from 1 to 5 (5 stars). The data in MovieLens10M were

created by 71,567 users applied to 10,681 movies. Ratings in MovieLens10m are made on a

5-star scale, with half-star increments (0.5 stars - 5.0 stars). Netflix Prize dataset consists of

three parts: training set, probe set and quiz set. The Netflix dataset in this chapter refers to the

first part.

Setting In this chapter, we partition each dataset into training and test parts following a

popular setup in [43, 42, 89]. For each user, we randomly select N ratings as training samples

1http://grouplens.org/datasets/movielens/



63

Datasets # Users #Items #Ratings Density
Movielens1M 6,040 3,706 1,000,209 4.47 %

MovieLens10M 71,567 10,681 10,000,054 5.29%
Netflix 480,189 17,770 100,480,507 1.18%

and all the remaining observed ratings are used as test data. Since we will evaluate algorithms

using NDCG@10, there should be at least 10 observed ratings in the test set for each user.

Hence, users who have less than N+10 observed ratings will be dropped.

Ranking Metric In our experiments, we evaluate our proposed algorithms by Normalized

Discounted Cumulative Gain (NDCG). It is formally given by: NDCG@K(u) = DCG@K(u,πu)
DCG@K(u,π∗

u)

whereDCG@K(u, πu) =
∑K

k=1
2
ruπu(k)−1
log2(k+1) . πu is a permutation of items for user U, and π∗u is

the permutation that generates the maximum ofDCG@K. πu(k) is the index of the kth ranked

item generated by our ranking model. According to the settings of datasets, in the experiments

we set K to 10.

Regularization parameter and learning rate In the experiments, after tuning the regu-

larization parameter λ on several datasets, we observe that when λ locates in a specific range,

i.e., 1 to 1000, the ranking performance is not sensitive to the change of λ. Hence, we select

λ = 100 for all the experiments. In the experiment, learning rate is chosen from the set {0.1,

0.05, 0.01, 0.005, 0.001}. For the reproducibility of our proposed method, we recommend a

setting: λ = 100 and η = 0.01.

4.5.2 Discussion

We discuss the Improved-BT model through comprehensive experimental study on the Movie-

lens1M dataset. The results measured by NDCG@10 are reported in Fig. 4.2. Several model

parameters are set as: regularization parameter λ = 100, learning rate η = 0.01, rank = 100.

We vary the value of γ and the number of training samples N .

Impact of balance factor γ

The first interesting observation from Fig. 4.2 is that the best choice of γ is decided by the

size of training samples N . It is shown that when N gets larger, the best choice of γ becomes

smaller.



64

0 10
−2

10
0

10
2

10
4

γ

0.66

0.68

0.7

0.72

0.74

SSGD

SGD

N=10

0 10
−2

10
0

10
2

10
4

γ

0.7

0.72

0.74

0.76

SSGD

SGD

N=20

0 10
−2

10
0

10
2

10
4

γ

0.7

0.72

0.74

0.76

0.78

SSGD

SGD
N=30

0 10
−2

10
0

10
2

10
4

γ

0.72

0.74

0.76

SSGD

SGD

N=40

0 10
−2

10
0

10
2

10
4

γ

0.72

0.74

0.76

0.78

SSGD

SGD

N=50

0 10
−2

10
0

10
2

10
4

γ

0.7

0.75

0.8

SSGD

SGD

N=80

Figure 4.2: Experimental results measured by NDCG@10 on Movielens1M as a function of
varying balance factor γ. The number of training samples N is chosen from {10, 20, 30, 40,
50, 80}. The pre-defined parameters include: regularization parameter λ = 100, learning rate
η = 0.01, and rank = 100.

We know that in Eq. (4.3), the objective function recovers pairwise BT model when γ = 0

and recovers regression model when γ goes to infinity. Accordingly in Fig. 4.2, the leftmost

points of all the performance curves represent the results of pairwise BT model (γ = 0), while

the rightmost points of the performance curves roughly show the results of regression model.

In this figure, we can observe that the regression model outperforms pairwise BT model when

N is small, while pairwise BT performs better when N is large. This observation can be

explained by the fact that the number of training samples as pairwise increases quadratically in

N , while the number of training samples as single points increases linearly. Hence, the pairwise

model is given more training samples as the growth of N and more data often results in better

performance.

Besides of the aforementioned observations, it is clear that our proposed Improved-BT

model outperforms both of BT model and regression model, since we can always choose the

best γ according to different N . In particular, when N is chosen in a specific range (e.g., N =

30, 40, 50 in our example), Improved-BT model shows significant performance improvement



65

0 50 100 150 200

Rank

0.72

0.73

0.74

0.75

0.76

N
D

C
G

@
1

0

SSGD

SGD

Figure 4.3: The ranking performance of SGD and SSGD on Movielens1M dataset when N =
20 and γ = 1 is reported.

over those two methods when best γ is selected.

Compare SGD with SSGD

In Fig. 4.2, we see that the ranking performance of general SGD and SSGD is almost the same

when γ is relatively small (e.g., when γ ≤ 0.1). From this empirical results, it shows to some

extent that our proposed sampling SGD method which splits the Improved-BT model into two

objective functions and optimizes these two objective functions separately could be considered

as another effective SGD method for learning the user and item latent factors U and V.

Moreover, we point out several advantages of SSGD over SGD: (I) SSGD decouples the

learning rate with balance factor. As mentioned in section 4.4.1 that in the general SGD algo-

rithm, the learning rate and balance factor are coupled, and hence when γ is large, the SGD

algorithm may encounter a numerical error that the estimated rating value may exceed the lim-

itation of the numerical value that a program can handle. This issue is demonstrated through

the experiments in Fig. 4.2 that in all of the examples when γ ≥ 10, there is no result reported

for SGD since it will get into the numerical trouble. While as shown in the figure, SSGD never

runs into such trouble and hence make it possible for us to investigate the ranking performance

when γ is relatively large. (II) SSGD runs a little bit faster than SGD, because in each iteration

of parameter update, SSGD only optimizes one part of the objective function in Eq. (4.3). We

will show some results on the running time of these two algorithms in Table 4.1.



66

Table 4.1: Scalability of proposed methods.

Methods Cores 1 2 4 8 16

SGD
Time(sec) 5.976 3.949 2.602 1.603 0.923
Speedup 1x 1.5x 2.3x 3.7x 6.5x

SSGD
Time(sec) 4.451 3.289 2.025 1.322 0.742
Speedup 1x 1.4x 2.2x 3.4x 6.0x

4.5.3 Parallelization and Scalability

We also demonstrate the scalability of our proposed methods in Table 4.1 and Fig. 4.4. All

the experiments were conducted on a single workstation: DELL Precision T7600 with two

Intel@Xeon(R) E5-2687W 3.10GHZ 16-core CPUs. Fig. 4.4 plots the ranking performance as

a function of running time. We see that both of SGD and SSGD converge to similar results in

different number of threads. It is also shown that when provided more threads, the algorithms

always converge faster.

0 1 2

Time (seconds)

0

0.2

0.4

0.6

0.8

N
D

C
G

@
1

0

SGD

threads=1

threads=4

threads=16

0 1 2

Time (seconds)

0

0.2

0.4

0.6

0.8

N
D

C
G

@
1

0

SSGD

threads=1

threads=4

threads=16

Figure 4.4: The performance of parallel SGD and SSGD on Movielens1M dataset. Parameters
are selected as: N = 20, η = 0.05, λ = 100, and rank = 100.

4.5.4 Compare with other methods

Methods for comparison (1) Factorization Machine (FM) [44] is a notable rating predic-

tion method. (2) CofiRank [43] also known as maximum margin matrix factorization is al-

ways considered as a strong baseline method for collaborative ranking. (3) Local Collaborative

Ranking (LCR) [36] is a state-of-the-art collaborative ranking method where R is approxi-

mated by many locally low-rank matrices. (4) AltSVM [89] demonstrates very competitive

ranking performance in the original paper, which reduces matrix factorization to alternating



67

Table 4.2: Comparisons of collaborative ranking methods.

Datasets Settings CofiRank FM LCR AltSVM Improved-BT

Movielens1M
N=10 0.7280 ± 0.0023 0.7166 ± 0.0024 0.6978 ± 0.0031 0.6694 ± 0.0014 0.7407 ± 0.0012
N=20 0.7226 ± 0.0013 0.7194 ± 0.0033 0.7012 ± 0.0025 0.7154 ± 0.0032 0.7538 ± 0.0007
N=50 0.7287 ± 0.0042 0.7268 ± 0.0030 0.7152 ± 0.0018 0.7610 ± 0.0025 0.7756 ± 0.0031

Movielens10M
N=10 0.6902 ± 0.0012 0.7016 ± 0.0024 0.6921 ± 0.0024 0.6429 ± 0.0032 0.7106 ± 0.0035
N=20 0.7050 ± 0.0032 0.6990 ± 0.0032 0.6877 ± 0.0027 0.7058 ± 0.0015 0.7264 ± 0.0032
N=50 0.6971 ± 0.0015 0.6961 ± 0.0021 0.6854 ± 0.0035 0.7402 ± 0.0034 0.7502 ± 0.0021

Netflix
N=10 0.6615 ± 0.0051 0.7148 ± 0.0025 - 0.6461 ± 0.0013 0.7334 ± 0.0017
N=20 0.6927 ± 0.0034 0.7220 ± 0.0035 - 0.7303 ± 0.0024 0.7589 ± 0.0029
N=50 0.7058 ± 0.0054 0.7379 ± 0.0034 - 0.7520 ± 0.0047 0.7632 ± 0.0019

SVM problems.

Settings. In the experiment, we set N = 10, 20, 50 and we conduct 5 times of indepen-

dent experiments for each method in each setting. In order to make fair comparisons, we use

the source code given by the authors and adopt the best settings from their original papers or

software. For our proposed Improved-BT, we fix λ = 100, rank = 100, and learning rate η

is chosen from {0.1, 0.05, 0.01, 0.005, 0.001}. Since the best choice of γ is decided by the

sparsity level of training data, we recommend a setting: when N = 10, γ = 10; when N = 20,

γ = 0.1 or 1; when N = 50, γ = 0.01.

Performance comparisons. Table 4.2 shows the comprehensive comparisons of all the

methods. We report the NDCG@10 in the settings of N = 10, 20, 50 and values in bold-face

indicate the best performance. In the table, we can see that Improved-BT performs the best on

all the datasets. Since some datasets (e.g., Netflix) are fairly large, the improvement of most

cases in the Table 4.2 is fairly significant. Besides, the results show that our proposed approach

always obtains the best ranking performance in different settings of N . In particular, when

N locates within a specific sparsity range (e.g., N = 20 in the experiment), Improved-BT

demonstrates more convincing performance such that it achieves 3% to 5% improvement on

the ranking performance compared with the best performing baseline method.

Running time. We also report the running time for the comparison methods on Movie-

lens1M dataset in Table 4.3. Our method runs almost 100 times faster than several algorithms,

such as LCR and CofiRank, even in the 1-thread setting.



68

Table 4.3: Running time (seconds) of compared methods.

Methods CofiRank FM LCR AltSVM Improved-BT
N=10 230.4 107.2 499.3 3.5 2.1
N=20 399.0 214.3 1002.2 6.8 4.3
N=50 898.1 412.4 2432.1 24.6 13.7

4.6 Conclusion

Collaborative ranking is crucial for recommender systems. A modern approach for collabo-

rative ranking is to combine matrix factorization with Bradley-Terry model. However, there

comes an identifiability issue (non-convex constraints) when matrix factorization is combined

with the Bradley-Terry model. Besides, an implicit numerical error (no minimizer of objective

function) may occur if we directly apply the Bradley-Terry model for pairwise data without any

modification. In this chapter, we proposed an Improved-BT model to address the aforemen-

tioned issues. This model could also be interpreted as a combination of pairwise and regression

models. We solved Improved-BT through parallel stochastic gradient descent. It was shown in

the experiments that our proposed method outperforms many considered state-of-the-art col-

laborative ranking methods on both of ranking performance and time efficiency.



69

Chapter 5

Collaborative Multi-objective Ranking

This chapter proposes to jointly resolve row-wise and column-wise ranking problems when an

explicit rating matrix is given. The row-wise ranking problem, also known as personalized

ranking, aims to build user-specific models such that the correct order of items (in terms of

user preference) is most accurately predicted and then items on the top of ranked list will

be recommended to a specific user, while column-wise ranking aims to build item-specific

models focusing on targeting users who are most interested in the specific item (for example,

for distributing coupons to customers).

In recommender systems, ranking-based collaborative filtering (known as collaborative

ranking (CR)) algorithms are designed to solve the aforementioned ranking problems. The

key part of CR algorithms is to learn effective user and item latent factors which are com-

bined to decide user preference scores over items. In this chapter, we demonstrate that by

individually solving row-wise or column-wise ranking problems using typical CR algorithms

is only able to learn one set of effective (user or item) latent factors. Therefore, we propose to

jointly solve row-wise and column-wise ranking problems through a parameter sharing frame-

work which optimizes three objectives together: to accurately predict rating scores, to satisfy

the user-specific order constraints on all the rated items, and to satisfy the item-specific order

constraints. Our extensive experimental results on popular datasets confirm significant perfor-

mance gains of our proposed method over state-of-the-art CR approaches in both of row-wise

and column-wise ranking tasks.

5.1 Introduction

Recommender systems are by far one of the most successful applications of big data and ma-

chine learning algorithms. They are an integral part to the success of many giant web/Internet



70

Table 5.1: An empirical study of BPR for personalized ranking in terms of updating different
set of user (U) and item (V) latent factors, evaluated by NDCG@10 for MovieLens1M data.
“N” is the number of selected ratings per user for training.

Proposals in optimization N=10 N=20 N=50
Update both of U and V 0.6924 0.7168 0.7504
update V, fix U (uniform initialization) 0.6972 0.7201 0.7527
update V, fix U (normal initialization) 0.6968 0.7241 0.7522
update U, fix V 0.4831 0.4827 0.4832

companies, e.g., Amazon, Netflix, Google, where a large part of what customers purchase

comes from recommendation. The goal of recommender systems is to find what is likely to be

of interest to the user, thus enabling personalization and tailored services.

Collaborative filtering (CF) has been one of the most prominent algorithms to accurately

predict the user preference. In CF, given a set of user feedback to items, the input data can be

viewed as a sparse preference matrix, where rows represent users, columns represent items and

entry values indicate the preference scores that users give to items. In this chapter, we study the

problem in which preference scores are explicit, taking from a discrete set of values, e.g., a five-

star rating system. Two problems are generally discussed in the context of recommendation.

On the account of row-wise representation of given preference matrix, the personalized ranking

task is formed which aims to meet the user-specific information needs, i.e., to obtain a set of

interesting items that individual users like the most. On the other hand, if the problem is viewed

in a column-wise manner, then the user ranking task is formed which aims to find users who

are most interested in the specific item.

Ranking-based collaborative filtering, which is also called collaborative ranking (CR) [56],

has been proposed for the purpose of generating accurate ranked list of items. The general idea

of CR is to combine learning to rank techniques with matrix factorization [65, 42, 99, 86, 43,

100, 101]. The key task in CR algorithms is to learn both of effective user and item latent fac-

tors, which jointly generate estimated preference scores over unobserved items. Interestingly,

through an experimental study (see Table 5.1), we observe that individually solving row-wise

or column-wise ranking objectives is only able to learn one set of effective user or item latent

factors. For example, when we apply one of the most popular CR algorithms, Bayesian Person-

alized Ranking (BPR) [65], to solve the row-wise personalized ranking problem, it is shown



71

Figure 5.1: Our proposed framework. In this framework, three different objectives which share
the same set of user and item latent factors are jointly optimized.

in Table 5.1 that no matter how we update/learn user latent factors U or even do not update

them, the ranking performance is almost the same. This result suggests that we are unable to

learn effective user latent factors through BPR. We also test many other CR algorithms (e.g.,

local collaborative ranking [42], Bradley-Terry model [59], AltSVM [99], etc) and observe that

none of them learns effective user latent factors. In the meanwhile, we apply aforementioned

pairwise CR algorithms to solve the column-wise ranking problem and also observe that none

of them is able to learn effective item latent factors V for the user ranking task. In Sec. 5.3, we

will discuss the problem why we cannot learn effective user latent factors through optimizing

row-wise ordered rating pairs.

In order to learn both of effective user and item latent factors, we propose a unified frame-

work (see Fig. 5.1) that simultaneously resolves row-wise and column-wise ranking problems

by jointly optimizing three objectives, aiming to satisfy three different constraints: 1) row-wise

order constraint: the order of any pair of rating scores a user gives to two items should be pre-

served; 2) column-wise order constraint: the order of any pair of rating scores an item received



72

from two users should be estimated correctly; 3) pointwise prediction constraint: the prediction

of a rating score should be close to its real value. The first and second constraints are apparently

designed for personalized ranking and user ranking problems respectively. The third constraint

is considered because if all the rating scores are perfectly predicted, then both of correct row-

wise orders and column-wise orders can be obtained through comparing the order of predicted

rating scores.

With our proposed framework, we are able to learn effective user and item latent factors

though jointly optimizing column-wise and row-wise ranking objectives. In addition, by in-

corporating the pointwise rating regression objective, it brings in additional advantages. For

example, tie relationship does provide rich information for ranking purpose, however popular

CR models designed for the objectives 1 and 3 in Fig. 5.1 generally ignore tie pairs of rating

scores. This issue can be resolved by combining pointwise regression objective with ranking

objectives 1 and 3, since optimizing objective 2 will generate similar predicted values for any

tie pairs of rating scores, and this result will be propagated to the optimization of pairwise rank-

ing objectives because all the optimization problems share the same set of user and item latent

factors.

Despite the potential advantages of the framework, it is a great challenge to jointly optimize

multiple objectives than solving each one of them individually. In particular, we have to deal

with heterogeneous data inputs during the learning process. To address this challenge, we pro-

pose a stochastic gradient method which sequentially optimizes three individual objectives fol-

lowing a simple schema. The learning procedure is explained in details in Sec. 5.5. Compared

with state-of-the-art collaborative filtering/ranking algorithms, our proposed method is able to

achieve significant performance gains on both row-wise and column-wise ranking tasks.

5.2 Related Work

The literature on recommender systems has been largely focused on the row-wise personalized

ranking problem. The problem of column-wise ranking is rarely discussed, as they are two

symmetric tasks and most of the row-wise personalized ranking algorithms can be applied to

the other task. In the literature of personalized ranking, algorithms can be categorized into three



73

classes: pointwise, pairwise, and listwise, in accordance with the different types of ranking

objectives that they optimize [56, 86].

The principle of pointwise methods designed for ranking purpose is that popular ranking

metrics (e.g., NDCG [54]) can be approximated by regression loss or classification loss [98, 60].

The set of pointwise approaches have been widely proposed and particularly popularized by the

Netflix Prize competition [53] which granted 1 million dollar prize pool for the rating prediction

task. As accurately predicting rating scores can generate an accurate ranked list of items, rating

prediction algorithms have been widely used in recommender systems. Matrix factorization

is probably the most popular one for rating prediction [38, 39, 40, 57, 41, 42, 43, 44, 81,

102], which models the user-item interaction as the inner product of their latent vectors. In

particular, algorithms based on matrix factorization have attracted great attention because of

their scalability and high prediction accuracy. Matrix factorization methods are viewed as

pointwise methods as they generally optimize regression loss or classification loss where data

are accessed in the form of single points. In the meanwhile, we should mention that another

set of neighborhood-based CF methods are also popular in the task of item recommendation

[78, 61, 62, 103, 104].

In recent years, the research for personalized ranking has been shifted from rating prediction

to directly optimizing ranking based measurements defined on the observed user feedback.

For example, in the literature of Bayesian personalized ranking [65] and other similar works

[42, 99, 66, 105, 106, 107], it is proposed to model pairwise comparisons of observed ratings

using popular pairwise models (e.g., Bradley-Terry model [96]). Algorithms are also proposed

to optimize the surrogate function of listwise ranking measurements. For example, Cofirank

[43] optimizes a surrogate convex upper bound of NDCG error. CLiMF [101] and xCLiMF

[108] optimize (expected) mean-reciprocal rank (MRR), which has the tendency to obtain at

least a few interesting items at the top of ranked list. ListCF [109] directly predicts a total order

of items for each user based on similar users’ probability distributions over permutations of the

items. In addition, it is proposed to combine pointwise and pairwise CR methods to sort items

for recommendation [59, 110].

All the aforementioned collaborative ranking algorithms aim to learn effective user and item



74

latent factors and thus enable personalization in the recommendation. However, individually

optimizing row-wise or column-wise ranking objective is only able to learn one set of effective

latent factors. Therefore, in this chapter, we propose to combine different objectives for both

of row-wise and column-wise ranking purpose. The proposed framework not only generates

effective user and item latent factors but also resolve several typical issues existing in current

popular pairwise CR models.

5.3 Modeling Row-wise Comparisons only generates effective “V”

In this section, we try to explain why popular pairwise CR models only learn one set of effective

latent factors. Without loss of generality, we show that modeling row-wise comparisons is only

able to learn effective item latent factors V. User latent factors U learned through row-wise

ranking optimization are actually not effective.

5.3.1 Zero-one Loss and Its Approximation

The zero-one error is in general used as the measurement for evaluating the comparisons of

ordered pairs. In CR, the preference scores are often obtained through the dot product of user

and item latent factors, and then the zero-one error can be formulated as:

Ezero-one = −
∑

(u,i1,i2)∈Ω

δ(UuV
ᵀ
i1
−UuV

ᵀ
i2

) (5.1)

where Ω = {(u, i1, i2) : rui1 > rui2} is the set of pairwise comparisons. δ(x) is a zero-one

loss function (also known as Heaviside function): if x > 0, then δ(x) = 1, otherwise δ(x) = 0.

As the zero-one loss is not differentiable, the sigmoid function (i.e., f(x) = 1
1+exp(−x) ) is

routinely applied in CR algorithms to approximate the zero-one ranking loss [65, 42, 59, 89].

Given one pair of ordered rating scores (u, i1, i2) : rui1 > rui2 , the error can be rewritten as

follows:

Ezero-one-approximate = − 1

1 + exp(−Uu (Vi1 −Vi2)ᵀ)
(5.2)



75

5.3.2 Discussion on User Latent Factors

In the optimization for row-wise comparisons, many ordered pairs of items are formed for

each user, and all these ordered pairs from one user share the same user latent factors during

optimization. It is obvious that updating U for one pair of rating scores may destroy the correct

order of other pairs. For example, given two item pairs of user u: {(u, a, b) : rua > rub} ∈ Ω,

{(u, c, d) : ruc > rud} ∈ Ω, and currently we have item latent factors and their differences:

Va−Vb = [0,−1], Vc−Vd = [0, 1], then updating Uu in order to satisfy the correct order of

one pair (i.e., updating Uu to make Uu(Va−Vb)
ᵀ > 0 or Uu(Vc−Vd)

ᵀ > 0) will always

destroy the correct order of the other pair. Since there are many ordered pairs of items rated by

one user, this issue becomes even more severe. Therefore, it is a great challenge to learn useful

user latent factors from row-wise ranking optimization.

5.3.3 More Insight

In this part, we give more insight into the approximation function in Eq. (5.2). We assume

“rank=1” of latent factors, i.e., rui = Uu × Vi, Uu, Vi ∈ R1 and compare Eq. (5.2) with the

pure logistic function:

f(x) =
1

1 + exp(−ax)

In personalized ranking, all the ordered rating pairs are formed in the row-wise manner. When

processing all the rating pairs given by user u, it will update Uu and the latent factors of items

which have ratings assigned from user u. Comparing f(x) = 1
1+exp(−ax) with the formulation

in Eq. (5.2), it is intuitive to think of that the functionality of user factor Uu in Eq. (5.2) is

similar to that of “a” in logistic function as Uu is shared over all rated items, which is similar

to a (a weight parameter shared by all input x). The difference is that in logistic function the

input feature x is fixed, while in CR item factors V are model parameters.

In logistic function, the value of “a” determines the shape of the function. In other words, it

tells how close the approximation of logistic function to the zero-one loss (see Fig. 5.2). How-

ever, in the context of matrix factorization, the change of Uu doesn’t necessarily contribute to

the change of approximation to zero-one loss as any change to Uu (e.g., double Uu) can be



76

Figure 5.2: Approximation of zero-one loss using logistic function f(x) = 1
1+exp(−ax) , for

a = 0.5, 1, 2.

compensated by changing all the item factors Vi accordingly (e.g., reduce Vi by half). There-

fore, updating Uu is unnecessary, unless we set the constraint to Vi. The experimental results

shown in Table 5.1 verify the above discussions.

5.3.4 Combining Row-wise and Column-wise Comparisons

Through the above discussion, we know that optimizing row-wise comparisons cannot learn ef-

fective user latent factors. Symmetrically, we cannot learn effective item latent factors by solely

optimizing column-wise comparisons. In order to deal with this issue, we propose to combine

row-wise and column-wise ranking problems together. The procedure is simple: when optimiz-

ing row-wise ranking objective, we fix U and only update V; while during the optimization

of column-wise ranking objective, we only update U. This way we can learn both of effective

user and item latent factors.

5.4 Proposed Method

In this chapter, we investigate our proposed model on explicit preference scores (e.g., five-star

rating system). Given a set of observed rating scores from m users to n items, the data can be

represented as a sparse rating matrix R ∈ Rm×n where one observed rating from user u gives

to item i is represented as rui. The task of personalized ranking boils down to imputing the

missing entries in the sparse rating matrix R, and then sorting items in reverse order of imputed



77

values of each item in a row-wise manner (i.e., user-specific). Then items at the top of ranked

lists will be recommended to users. The task of column-wise ranking is symmetric to the task of

personalized ranking. It aims to target users who are most interested in an item (item-specific),

e.g., distributing coupons to customers who are most likely to consume the products.

In order to learn both of effective user and item latent factors, we introduce a learning

schema of jointly optimizing multiple objective functions which share the same set of model

parameters. The diagram of our proposed method is shown in Fig. 5.1. Given a sparse rating

matrix, we design multiple algorithms to deal with heterogeneous data inputs in order to satisfy

three different constraints: 1) row-wise order constraint which includes rating pairs that one

user gives to two items, 2) column-wise order constraint which introduces rating pairs that one

item received from two users, and 3) pointwise constraint which treats the rating score of one

user-item combination as a single data point. The key property of this framework is that all the

individual models share the same set of model parameters (i.e., user and item latent factors).

As this method simultaneously resolves both of row-wise and column-wise ranking tasks, we

name the proposed framework to be collaborative multi-objective ranking (CMR).

5.4.1 Rating Prediction through Matrix Factorization

Matrix factorization is probably the most widely used algorithm for the rating prediction task

(i.e., objective 2 in Fig. 5.1). The general idea of matrix factorization is to assume that the

rating matrix R ∈ Rm×n has low rank and thus it can be approximated by R = UVᵀ, where

U ∈ Rm×k and V ∈ Rn×k respectively represent user latent factors and item latent factors, and

k is the rank of approximation. In matrix factorization, the latent factors U and V are typically

learned through minimizing a regularized squared loss on the observed training ratings. This

prediction loss on the training set is formulated as:

Lpointwise =

m∑
u=1

n∑
i=1

(rui − r̂ui)2 +
∑
u

λU,u‖Uu ‖2 +
∑
i

λV,i‖Vi ‖2 (5.3)

where rui and r̂ui are respectively the observed and estimated rating scores. The regularized

term is set in order to prevent from overfitting. We use Lpointwise to represent the objective

function designed for solving objective 2 in our proposed framework (see Fig. 5.1). To optimize

the above loss we can apply a general stochastic gradient descent (SGD) method. Given an



78

observed rating score rui, the gradients of model parameters are calculated as follows:

∂Lpointwise

∂Uu
= −2(rui − r̂ui)Vi + 2λU,uUu (5.4)

∂Lpointwise

∂Vi
= −2(rui − r̂ui)Uu + 2λV,iVi (5.5)

where r̂ui = UuV
ᵀ
i . We then update Uu ← Uu−η

∂Lpointwise
∂Uu

and Vi ← Vi−η
∂Lpointwise
∂Vi

where

η is the learning rate.

5.4.2 Pairwise Comparisons through Bradley-Terry Model

We combine matrix factorization with the Bradley-Terry (BT) model [96] for solving the ob-

jectives 1 and 3 in Fig. 5.1. The Bradley-Terry model is widely used for modeling pairwise

preferences. Let P (i1 > i2) denote the probability that item i1 is preferred over item i2 for

user u. Typically, the model ignores ties and hence considers that P (i1 > i2)+P (i1 < i2) = 1

for all pairs. The Bradley-Terry model is given by:

P (i1 > i2) =
exp(βi1)

exp(βi1) + exp(βi2)
=

1

1 + exp(βi2 − βi1)
(5.6)

where βi1 and βi2 are relevance values for items i1 and i2. Most of the existing pairwise CR

methods (e.g., Bayesian personalized ranking [65]) apply BT to model the pairwise compar-

isons.

Row-wise comparisons: We resolve objective 1 in Fig. 5.1 by modeling row-wise compar-

isons of (user-specific) item pairs using Bradley-Terry model together with matrix factorization.

The row-wise comparisons can be formulated as follows:

P (rui1 > rui2) =
exp(UuV

ᵀ
i1

)

exp(UuV
ᵀ
i1

) + exp(UuV
ᵀ
i2

)
(5.7)

We then minimize negative log likelihood on all the comparisons of observed item pairs, ob-

taining the following objective function:

Lrow-wise = −
∑

(u,i1,i2)∈Ω

logP (rui1 > rui2) +
∑
i

λV,i‖Vi ‖2 (5.8)

where Ω = {(u, i1, i2) : rui1 > rui2} is the set of observed row-wise rating pairs. It should be

mentioned that in solving row-wise ranking problem, we only update V.



79

Again, we apply SGD to learn the model parameters. Given an observed pair (u, i1, i2) ∈

Ω, the derivatives of relevant model parameters are calculated as follows:

∂Lrow-wise

∂Vi1

= − 1

1 + exp(r̂ui1 − r̂ui2)
Uu + 2λV,i1 Vi1 (5.9)

∂Lrow-wise

∂Vi2

=
1

1 + exp(r̂ui1 − r̂ui2)
Uu + 2λV,i2 Vi2 (5.10)

where r̂ui1 = UuV
ᵀ
i1

and r̂ui2 = UuV
ᵀ
i2

.

Column-wise comparisons: The method to resolve objective 3 in Fig. 5.1 is symmetric to that

in modeling the row-wise comparisons. Concretely, we model the (item-specific) column-wise

comparisons as follows:

P (ru1i > ru2i) =
exp(Uu1 V

ᵀ
i )

exp(Uu1 V
ᵀ
i ) + exp(Uu2 V

ᵀ
i )

(5.11)

Then, the objective function becomes:

Lcolumn-wise = −
∑

(u1,u2,i)∈O

logP (ru1i > ru2i) +
∑
u

λU,u‖Uu ‖2 (5.12)

where O = {(u1, u2, i) : ru1i > ru2i} is the set of observed column-wise rating pairs. The

optimization process is similar to that in the row-wise ranking problem. We also should mention

that only U is updated in optimizing column-wise objective function.

5.4.3 Combining All Three Objectives

Similar to the work in [111] which linearly combines two objectives using one balance factor,

we introduce two balance factors α ∈ [0, 1] and β ∈ [0, 1], s.t., α + β ≤ 1, to combine afore-

mentioned three losses. The final integrated loss is introduced in the following formulation:

L = αLrow-wise + βLcolumn-wise + (1− α− β)Lpointwise (5.13)

where balance factors α and β are set to model the importance of individual losses. Intuitively,

the weight of each loss function should be set differently in solving different problems. For

example, when we consider row-wise ranking problem, Lrow-wise and Lpointwise are more im-

portant than Lcolumn-wise, as individually optimizing Lrow-wise or Lpointwise is able to provide a

reasonable ranked list of items. The key property of our proposed model is that these three



80

individual loss functions are able to communicate with each other during joint optimization as

they share the same set of latent factors, i.e., U and V. This optimization scheme brings in

multiple advantages compared with learning three models separately.

5.4.4 The Advantages of CMR

In addition to learning both of effective user and item latent factors, there are other advantages

of our proposed CMR model. This section discusses these advantages of learning multiple

objectives together, compared with methods that solve each objective separately.

Before discussion on the advantages of our framework, we show some limitations or issues

if we solely apply pointwise matrix factorization method or Bradley-Terry models for the per-

sonalized ranking or user ranking problem. We then show how our proposed method resolves

the mentioned issues.

Limitation of matrix factorization: The major problem of matrix factorization as a point-

wise collaborative filtering method is that rating scores in this method are generally considered

as numerical values or nominal categorical labels. Both numerical view and the categorical

view can’t accurately reflect the intuition when users assign rating scores. For example, it is

expected that for each user, the distances (in terms of user preferences) between different pairs

of adjacent rating scores should not be the same, e.g., “5-star”-“4-star” 6=“4-star”-“3-star”. Both

numerical and nominal categorical views of rating scores ignore this information. As a result,

pointwise methods generally perform worse than ranking-based methods for the task of per-

sonalized ranking [43, 56, 42].

Issues with pairwise model: There are two typical issues when we combine matrix factor-

ization with the Bradley-Terry model (or the pairwise CR models) for the personalized ranking

or user ranking problem.

(i) Ignore tie comparisons: Intuitively, tie comparisons in multi-level rating systems pro-

vide useful information for the ranking purpose. However, most pairwise collaborative ranking

model, such as the Bradley-Terry model, ignore the tie pairs of rating scores.

(ii) Identifiability issue: This issue is apparent in the Bradley-Terry model [112]. If we

add a same constant “c” to both of UuV
ᵀ
i1

and UuV
ᵀ
i2

in Eq. (5.7), then the likelihood



81

P (rui1 > rui2) will remain the same, i.e.,

exp(UuV
ᵀ
i1

)

exp(UuV
ᵀ
i1

) + exp(UuV
ᵀ
i2

)
=

exp(UuV
ᵀ
i1

+c)

exp(UuV
ᵀ
i1

+c) + exp(UuV
ᵀ
i2

+c)

At a technical level, one says that the parameters are not uniquely identifiable. Similar iden-

tifiability issues exist in other common problems, such as multi-class logistic regression. The

common practice to deal with this issue is to add a sum-to-zero or sum-to-constant constraint,

however, when we apply matrix factorization as the predictive model, the sum-to-zero con-

straint (i.e.,
∑n

i=1 UuV
T
i = 0 ) becomes non-convex and thus difficult to handle in the op-

timization process. In particular, popular optimization methods used in this context such as

(stochastic) gradient descent or alternating optimization of U and V are no longer applicable.

The limitations or issues aforementioned can be easily resolved by combining the pointwise

method with the Bradley-Terry model by sharing the same set of latent factors. By combining

these two approaches, it not only incorporates the numerical interpretation of rating scores by

optimizing the pointwise regression loss in Eq. (5.3) but also includes the ordinal interpretation

of rating scores by optimizing the pairwise ranking loss. Then, tie comparisons will not be ig-

nored in the integrated model, as optimizing pointwise regression loss will push the predictions

of any tie pairs of rating scores to be the same, and this result will be propagated to the pairwise

ranking loss as these two objectives share the same set of model parameters. Meanwhile, the

identifiability issue existing in the Bradley-Terry model can also be resolved by combining it

with a pointwise loss. Recall that identifiability issue occurs when adding a same constant “c”

to both of the estimated rating values of two items. If we add a regression loss, then the opti-

mization of regression loss will make the estimated rating values converge to the real observed

rating scores. Therefore, the same constant can never be arbitrarily added to any estimated

scores, as it may increase the regression loss.

The technique of combining pointwise and pairwise CR models is also mentioned in [110],

but the underlying reason why the combined model outperforms individual models is not fully

discussed.



82

5.5 Learning

The difficulty in jointly optimizing an integrated objective function (shown in Eq. (5.13)) is

that we have to simultaneously deal with heterogeneous data inputs: regression loss requests

input data as (numerical) rating values; Bradley-Terry model for personalized ranking requests

row-wise rating pairs; while Bradley-Terry model for the task of user ranking requests column-

wise rating pairs. In order to handle the heterogeneity of input data, we propose a stochastic

gradient descent method by interactively updating the three individual objectives included in

Eq. (5.13). The idea is summarized as follows:

(1) we firstly sample a random value a from the uniform distribution between 0 and 1;

(2) if a < α, then we randomly sample a row-wise rating pair and update Lrow-wise; else

if α ≤ a < α + β, then we randomly sample a column-wise rating pair and update

Lcolumn-wise; else, we randomly sample a rating score and update Lpointwise;

(3) repeat (1)(2) until the procedure converges or meets the end condition.

Note that in this algorithm, we only update V when optimizing Lrow-wise and only update U

when optimizing Lcolumn-wise.

Additionally, we choose to set user and item specific regularization parameters as follows:

λU,u =
λ

#observed pairs/ratings which contain user u

λV,i =
λ

#observed pairs/ratings which contain item i

Afterwards, we only have one tuning parameter λ in the regularization term. This is a popular

strategy used in many collaborative ranking algorithms ([89, 44]) to reduce the number of tun-

ing parameters. In addition, in order to efficiently learn model parameters, we apply a parallel

framework called HOGWILD! ([87]). The concrete parallel SGD algorithm is introduced in

Alg. 5 1.

1Code is available at https://github.com/bssbbsmd/Collaborative Multi-task ranking



83

Algorithm 5: Parallel SGD for learning our model
Input : observed rating matrix R; observed (row-wise and column-wise) rating pairs Ω

and O; balance factor α and β; regularization parameter λ; initial learning rate
η; Imax: maximum number of iterations

Output: user and item latent factors U and V
1 while not converged and iteration < Imax do
2 for each thread t ∈ {1, 2, ..., T} do
3 repeat
4 sample a ∈ [0, 1] randomly;
5 if a < α then

// optimize objective 1
6 choose (u, i1, i2) ∈ Ω uniformly at random;
7 calculate ∂Lrow-wise

∂Vi1
, ∂Lrow-wise

∂Vi2
and update Vi1 , Vi2 accordingly;

8 else if α < a < α+ β then
// optimize objective 3

9 choose (u1, u2, i) ∈ O uniformly at random;
10 calculate ∂Lcolumn-wise

∂Uu1
, ∂Lcolumn-wise

∂Uu2
and update Uu1 , Uu2 accordingly;

11 else
// optimize objective 2

12 randomly sample an observed rating rui;

13 calculate ∂Lpointwise
∂Uu

, ∂Lpointwise
∂Vi

and update Uu, Vi accordingly;
14 end
15 until sampling S times is done;
16 end
17 η ← η

2 ; // update learning rate

18 end

5.6 Experiment

Data preparation. We test our proposed method on MovieLens100K [113], MovieLens1M,

Netflix1M, Amazon Instant Video datasets [114]. MovieLens100K dataset contains 100,000

rating scores assigned from 943 users to 1,682 items; MovieLens1M dataset contains 1,000,209

rating scores collected from 6,040 users and 3,706 items. Netflix1M dataset contains 1,020,752

ratings assigned by 48,000 users give to 1800 items. Amazon Instant Video dataset is a subset

of Amazon review dataset, which contains 583,933 ratings.

Evaluation metric. We apply the standard Normalized Discounted Cumulative Gain (NDCG) [54]

as the metric for evaluating both personalized ranking and user ranking tasks. NDCG not only

evaluates the ranking performance of a ranked list but also emphasizes more on the top of the



84

ranked list. In the real world, most customers are only interested in the items recommended in

the first one or two pages. Particularly, on the mobile devices, e.g., smartphones or pads, the

performance at the top of the ranked list becomes even more crucial as users can only view few

top-ranked items because of the limited size of a screen.

When we evaluate personalized ranking, NDCG score is defined as: NDCG@K(u) =

DCG@K(u,πu)
DCG@K(u,π∗

u) , where DCG@K(u, πu) =
∑K

k=1
2
ruπu(k)−1
log2(k+1) . πu is a permutation of items for

user u, and π∗u is the permutation that generates the maximum of DCG@K. Symmetrically,

when evaluating user ranking performance, the permutation is formulated in the column-wise

manner.

Settings for experiments. We follow the general setting for testing CR algorithms [43, 42,

86, 99]: when testing the row-wise personalized ranking performance, we sample N rating

scores from each row as the training set, and the remaining observed rating scores are used as

test data. As NDCG@10 is used as the ranking metric, 10 rating scores must be kept in each

row of the test data and thus rows containing less than N + 10 rating scores will be dropped.

We use N = 10, 20, 50, as commonly used in other papers. Symmetrically, when testing the

column-wise ranking performance, training pairs and test pairs are selected from each column.

5.6.1 Discussion of Results

To help explain the advantage of CMR (which combines three objectives), we first discuss the

combinations of only two objectives.

(i) Combining Lrow-wise with Lpointwise for the task of personalized ranking. If we optimize

Lrow-wise or Lpointwise individually, both methods are able to provide reasonable results for the

task of personalized ranking. In this section, we investigate the idea by combining these two

approaches. In order to provide an empirical study on the combination of these two methods,

we set β = 0 in Eq. (5.13) and report the ranking results as a function of α, since only α bal-

ances the importance of these two individual objectives. We choose α ∈ {0, 0.1, 0.2, ..., 0.9, 1}

and the experimental results on MovieLens100K dataset are reported in Fig. 5.3. Particularly,

it only optimizes Lpointwise when α = 0 and only optimizes Lrow-wise when α = 1. The re-

sults demonstrate that when we jointly learn pointwise and pairwise models (i.e., α 6= 0 and



85

α 6= 1), the ranking performance can be significantly improved, compared with solving them

individually (i.e., α = 0 or α = 1).

Figure 5.3: The performance of personalized ranking on MovieLens100K dataset in terms of
different α when β = 0. It is evaluated using NDCG@10. N is the number of ratings used in
the training per user.

(ii) Combining Lcolumn-wise with Lpointwise for the task of user ranking. Symmetrically, we

investigate the impact of combining Lcolumn-wise with Lpointwise, as individually optimizing ei-

ther of these two objectives is able to provide reasonable results for the user ranking task. We

set α = 0 and tune the value of β in Eq. (5.13). Particularly, it only optimizes Lpointwise when

β = 0 and only optimizes Lcolumn-wise when β = 1. Experimental results on MovieLens100K

dataset are reported in Fig. 5.4, which demonstrates that the combination of the pointwise and

pairwise methods also significantly improves the performance of user ranking, compared with

applying these two methods separately (i.e., when β = 0 or β = 1).

The reason why the combination of pointwise with pairwise objectives is able to improve

the ranking performance is that the combination incorporates tie comparisons of rating scores

into the pairwise model, as well as solving the identifiability issue. The concrete explanation is

provided in Sec. 5.4.4.

(iii) Learning both of effective user and item latent factors by combining row-wise and

column-wise comparisons.

Individually optimizing row-wise or column-wise ranking objective is only able to learn one



86

Figure 5.4: The performance of user ranking on MovieLens100K dataset in terms of different
β when α = 0. It is evaluated by NDCG@10. N is the number of ratings used in the training
per item.

set of effective latent factors. In this section, we empirically study the problem that if combin-

ing row-wise and column-wise objectives can help to learn both effective user and item latent

factors.

In the experiment, we choose balance factors α and β from {0, 0.1, 0.2, ..., 0.9, 1}, s.t.,

α+β ≤ 1 and conduct experiments on the MovieLens100K dataset. The experimental results of

personalized ranking and user ranking by choosing different α and β combinations are reported

in Fig. 5.5. In the figure, the brighter color represents the better performance.

Figure 5.5: The ranking performance of personalized ranking (left panel) and user ranking
(right panel) in terms of different α and β combinations (α + β ≤ 1). The brighter color
represents the better performance. It is tested on the MovieLens100K dataset when N = 50.

On the left panel of Fig. 5.5, we observe that the setting of α and β which generates best



87

personalized ranking performance is: α = 0.7 and β = 0.1 or α = 0.6 and β = 0.2. More

specifically, when we combine Lpointwise and Lrow-wise in optimization, the NDCG@10 score is

0.727 (see in Fig. 5.3), and after adding Lcolumn-wise in optimization, the ranking performance

can be further improved by 2% (now 0.740). Similar results are observed when we focus on

the user ranking task. Both of them tells that combing row-wise and column-wise objectives

is able to improve individual row-wise or column-wise ranking task through learning both of

effective user and item latent factors.

Another interesting observation from the experimental results is that the best setting of α

and β combination for these two symmetric tasks is almost symmetric: the best performance

of personalized ranking is obtained when we choose a relatively large α (e.g., 0.6, 0.7) and

small β (e.g., 0.1), while the best performance of user ranking is obtained when we choose a

relatively small α (e.g., 0.1) and large β (e.g., 0.6, 0.7). This fact may help to tune parameters

when we need to solve both of these two ranking tasks.

5.6.2 Performance Comparisons

In this section, we compare our proposed method with many notable collaborative ranking

algorithms on both of row-wise and column-wise ranking tasks.

Compared methods

. We use the following state-of-the-art CR methods as baselines:

• CofiRank [43]: It is also known as maximum margin matrix factorization which opti-

mizes the surrogate function of NDCG error. CofiRank is always considered as a strong

baseline method for collaborative ranking.

• BPR-MF [65]: Bayesian personalized ranking is initially proposed to model implicit

feedbacks. The idea of BPR-MF is almost the same as the algorithm introduced in Sec.

5.4.2.



88

• Factorization Machine (FM) [44]: FM is known for performing well in the rating pre-

diction task. It can mimic many rating prediction algorithms by adapting the feature rep-

resentations. In this thesis, we apply the SVD++ [39] type of feature for the FM method,

as SVD++ is considered as one of the most accurate rating prediction algorithms.

• AltSVM [89]: This method demonstrates very competitive ranking performance in the

original paper if the sizeN of training samples is relatively large. It trains a factored form

of the matrix via alternating minimization, which reduces to alternating SVM problems.

• Decoupled Collaborative Ranking (DCR) [86]: DCR is probably one of the best per-

forming collaborative ranking methods, which combines ordinal regression with matrix

factorization for solving the top-K ranking problem, which is defined in the rating matrix.

We compare the performance of all the methods on both of the row-wise and column-wise

ranking problems and the results are reported in Table 5.2 and Table 5.3, where our proposed

method is called Collaborative Multi-objective Ranking (CMR). For each method, we conduct 5

times of independent experiments and report the average and standard deviation of NDCG@10

value.

Comparisons on the performance of personalized ranking: In order to make fair com-

parisons, we set the dimension of latent factors as 50 for all the compared methods. In our

proposed algorithm, we use the following parameter settings: α = 0.7, β = 0.1, learning

rate is chosen from {0.01, 0.03, 0.05, 0.1}, and regularization parameter λ is chosen from

{1,10,100}. The row-wise and column-wise comparisons of rating scores are obtained from

the training set, where for each user we select N = 10, 20, 50 rating scores. The empirical

results in Table 5.2 show that our method outperforms all the baseline algorithms. Since all the

compared baseline methods are learned by optimizing a single objective: CofiRank optimizes

NDCG metric, BPR-MF and AltSVM optimize pairwise ranking aggregations, FM optimizes

regression loss, and DCR optimizes ordinal classification loss, the superiority of our method

in ranking performance demonstrates that learning multiple objectives together is an effective

way to generate better performance than learning single models individually.

Comparisons on the performance of user ranking: The setting of parameters in our



89

Table 5.2: Performance comparisons on the row-wise personalized ranking task.

Datasets Methods N=10 N=20 N=50

MovieLens100K

CofiRank 0.6625 ± 0.0023 0.6933 ± 0.0018 0.7021 ± 0.0031
BPR-MF 0.6432 ± 0.0045 0.6567 ± 0.0047 0.7101 ± 0.0032
AltSVM 0.6295 ± 0.0075 0.6564 ± 0.0027 0.6960 ± 0.0021

FM 0.6623 ± 0.0028 0.6680 ± 0.0028 0.6752 ± 0.0024
DCR 0.6881 ± 0.0031 0.7018 ± 0.0044 0.7181 ± 0.0025
CMR 0.7121 ± 0.0031 0.7151 ± 0.0023 0.7341 ± 0.0058

MovieLens1M

CofiRank 0.7041 ± 0.0023 0.7233 ± 0.0013 0.7256 ± 0.0042
BPR-MF 0.6852 ± 0.0021 0.7111 ± 0.0035 0.7468 ± 0.0020
AltSVM 0.6694 ± 0.0014 0.7154 ± 0.0032 0.7610 ± 0.0025

FM 0.7143 ± 0.0028 0.7221 ± 0.0045 0.7245 ± 0.0024
DCR 0.7261 ± 0.0034 0.7389 ± 0.0027 0.7601 ± 0.0033
CMR 0.7562 ± 0.0025 0.7558 ± 0.0027 0.7802 ± 0.0013

Netflix1M

CofiRank 0.7077 ± 0.0025 0.7192 ± 0.0027 0.7092 ± 0.0045
BPR-MF 0.7213 ± 0.0011 0.7224 ± 0.0015 0.7414 ± 0.0021
AltSVM 0.6592 ± 0.0017 0.7013 ± 0.0046 0.7405 ± 0.0018

FM 0.7190 ± 0.0027 0.7124 ± 0.0034 0.7384 ± 0.0031
DCR 0.7332 ± 0.0037 0.7381 ± 0.0024 0.7522 ± 0.0032
CMR 0.7488 ± 0.0014 0.7565 ± 0.0014 0.7712 ± 0.0033

Amazon Instant
Video

CofiRank 0.7377 ± 0.0025 0.7382 ± 0.0021 0.7102 ± 0.0012
BPR-MF 0.7151 ± 0.0008 0.7011 ± 0.0011 0.6922 ± 0.0024
AltSVM 0.7242 ± 0.0018 0.6878 ± 0.0031 0.6841 ± 0.0020

FM 0.7291 ± 0.0022 0.7172 ± 0.0008 0.6084 ± 0.0031
DCR 0.7342 ± 0.0017 0.7281 ± 0.0011 0.7091 ± 0.0022
CMR 0.7511 ± 0.0014 0.7532 ± 0.0027 0.7231 ± 0.0027

method for user ranking problem is similar to that in the personalized ranking task, except that

we choose α = 0.1, β = 0.7. The row-wise and column-wise comparisons of rating scores

are obtained from the training set, where for each item we also choose N = 10, 20, 50 rating

scores and report the results in different settings of N .

Table 5.3 reports similar results to that in the personalized ranking task: our proposed

method significantly outperforms other baseline methods in all settings (i.e., N = 10, 20, 50).

Another interesting observation is that when the same set of individual methods are applied for

row-wise and column-wise ranking problems, they don’t perform consistently well in different

tasks. For example, DCR performs the best among all the compared methods in the personal-

ized ranking task. However, when it is applied in the user ranking problem, some other single

models outperform it, e.g., factorization machine outperforms DCR in all test datasets when

N = 10. This observation indicates that individual row-wise or column-wise ranking algo-

rithms may only be able to perform well in specific situations. From this point of view, com-

bining models and objectives probably provides a reasonable way to improve the robustness of



90

Table 5.3: Performance comparisons on the column-wise user ranking task.

Datasets Methods N=10 N=20 N=50

MovieLens100K

CofiRank 0.6152 ± 0.0035 0.6691 ± 0.0027 0.6867 ± 0.0022
BPR-MF 0.6475 ± 0.0043 0.6670 ± 0.0021 0.6935 ± 0.0015
AltSVM 0.5632 ± 0.0023 0.6012 ± 0.0013 0.6832 ± 0.0031

FM 0.6571 ± 0.0031 0.6802 ± 0.0017 0.7056 ± 0.0022
DCR 0.6412 ± 0.0025 0.6745 ± 0.0021 0.7092 ± 0.0044
CMR 0.6778 ± 0.0023 0.7002 ± 0.0015 0.7261 ± 0.0031

MovieLens1M

CofiRank 0.5927 ± 0.0045 0.6206 ± 0.0027 0.6427 ± 0.0035
BPR-MF 0.6103 ± 0.0027 0.6341 ± 0.0056 0.6652 ± 0.0013
AltSVM 0.5644 ± 0.0008 0.6136 ± 0.0023 0.6417 ± 0.0007

FM 0.6115 ± 0.0022 0.6444 ± 0.0053 0.6736 ± 0.0041
DCR 0.6002 ± 0.0013 0.6324 ± 0.0045 0.6722 ± 0.0031
CMR 0.6420 ± 0.0037 0.6668 ± 0.0013 0.6882 ± 0.0043

Netflix1M

CofiRank 0.5924 ± 0.0013 0.6217 ± 0.0030 0.7034 ± 0.0051
BPR-MF 0.6157 ± 0.0042 0.6355 ± 0.0028 0.6792 ± 0.0014
AltSVM 0.6074 ± 0.0009 0.6350 ± 0.0011 0.6634 ± 0.0021

FM 0.6122 ± 0.0021 0.6309 ± 0.0024 0.6953 ± 0.0011
DCR 0.5720 ± 0.0016 0.6178 ± 0.0027 0.7107 ± 0.0038
CMR 0.6240 ± 0.0041 0.6692 ± 0.0025 0.7382 ± 0.0023

Amazon Instant
Video

CofiRank 0.7451 ± 0.0018 0.7571 ± 0.0022 0.7623 ± 0.0035
BPR-MF 0.7521 ± 0.0023 0.7581 ± 0.0011 0.7610 ± 0.0015
AltSVM 0.7292 ± 0.0017 0.7331 ± 0.0021 0.7399 ± 0.0028

FM 0.7538 ± 0.0027 0.7610 ± 0.0014 0.7743 ± 0.0031
DCR 0.7467 ± 0.0021 0.7581 ± 0.0011 0.7731 ± 0.0015
CMR 0.7610 ± 0.0013 0.7720 ± 0.0024 0.7841 ± 0.0033

predictions, as we can see that our method consistently performs the best in all situations.

5.7 Conclusion

In this chapter, we propose a method which jointly resolves row-wise and column-wise ranking

problems, in order to learn both of effective user and item latent factors, since individually

solving row-wise or column-wise ranking task is only able to learn one set of effective latent

factors. Our approach simultaneously optimizes three objectives through a parameter sharing

framework: one aims to accurately predict rating scores, one aims to learn the correct row-wise

order of rating scores and the other one aims to learn the correct column-wise order of rating

scores. In addition, we propose a simple yet effective stochastic gradient descent method to deal

with heterogeneous data inputs. Through the comprehensive empirical study, we demonstrate

the effectiveness of our method over other collaborative ranking approaches.



91

Chapter 6

Summary and Future Work

In this thesis, we discuss collaborative ranking-based recommender systems. In previous chap-

ters, we introduced our contributions to improving the ranking performance of recommender

systems.

In Chapter 2, we discussed the ordinal view of user rating scores, which more accurately

reflect users’ internal preferences. In order to capture the ordinal nature of rating scores, we

proposed a pointwise method that transfers cumulative probability distributions of rating scores

to ranking scores. In addition, in order to improve the recommendation performance at the

top of a ranked list, our proposed method adopts a weighted summation of the cumulative

probabilities where higher rating scores are emphasized more than lower rating scores. Through

extensive experimental evaluations, our proposed method is verified to significantly outperform

state-of-the-art methods.

In chapter 3, we also discussed the ordinality of user ratings. Different from previous

statistic ordinal regression methods which consider ordered rating scores as ordinal categorical

labels, in Chapter 3 we directly calculate the magnitudes of user ratings in the ordinal scale,

which quantitatively evaluate individual users’ internal preferences. Through extensive exper-

iments on popular datasets, we demonstrated that our proposed ordinal regression method is

able to significantly improve the rating prediction accuracy over common collaborative filter-

ing methods.

In Chapter 4 and Chapter 5, we discussed three issues existing in current pairwise collab-

orative ranking methods: (1) identifiability issues; (2) the pairwise ranking objective function

has no minimizer; (3) current pairwise collaborative ranking methods fail to learn effective

user latent factors. In order to address the above issues, we proposed to combine pointwise



92

and pairwise ranking objectives together. We also proposed to combine row-wise and column-

wise ranking problems. The idea of the ensemble method is a simple, quick, and effective

mechanism to address all the aforementioned issues.

Even through collaborative ranking-based recommender systems have been investigated

and improved extensively over the past years, there is still room for substantial improvement.

In the following, we propose several interesting problems which deserve more research:

• Understanding the relationship between data sparsity with ranking performance. In the

comparative study of collaborative filtering [115], the level of data sparsity significantly

affects the performance of different rating prediction algorithms. In this thesis, we also

observed that the ranking performance of various methods differs substantially based on

the choice of different data sparsity levels. Specifically, we observed that pointwise meth-

ods perform relatively well when data are highly sparse, while pairwise methods perform

better when data become less sparse. In order to investigate this kind of knowledge, we

need a more comprehensively comparative study of collaborative ranking, (probably)

including comparing the traditional collaborative filtering methods, ranking-based meth-

ods, neural collaborative filtering/ranking methods, etc. What is more, it could be very

interesting if we are able to understand why certain kind of methods perform the best in a

specific range of data sparsity. This knowledge is very helpful when we decide to choose

an algorithm for a specific recommendation scenario.

• More understanding on different kinds of collaborative filtering/ranking models. While

the comparative experimental study is very valuable for the real applications, we might

still need a better understanding of models and their relationships. For example, the

multilayer perceptron (MLP) rating prediction model can be mimicked by matrix factor-

ization [46], which builds a simple connection between the neural network with matrix

factorization. However, there are still many other collaborative filtering models, such as

autoencoder, graph-based factorization methods, restricted Boltzmann machine, etc. It

could be very interesting if we are able to understand the relationships between them,

which may result in a proposal of a unified model or learning framework, such as factor-

ization machine.



93

• Fast Recommendation. In this thesis, we mainly discussed the offline ranking perfor-

mance of recommender systems. While in the real applications, it is vital to provide a

fast real-time recommendation of items, which are selected from a very large dataset.

To that end, a common approach is to learn a binary representation of user and item

latent factors through discrete matrix factorization. However, discrete optimization on

matrix factorization problem is relatively time-consuming and does not scale well. In

addition, the matrix factorization approach is not able to handle the cold-start problem

(e.g., meet a new user) well, compared with neighbor-hood based methods. It could be

interesting to develop an effective unsupervised hashing schema for the fast and accurate

recommendation, which are suitable for different recommendation algorithms.



94

References

[1] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collaborative filtering to weave
an information tapestry,” Communications of the ACM, vol. 35, no. 12, pp. 61–70, 1992.

[2] S. S. Anand and B. Mobasher, “Intelligent techniques for web personalization,” in Pro-
ceedings of the 2003 international conference on Intelligent Techniques for Web Person-
alization. Springer-Verlag, 2003, pp. 1–36.

[3] T. Mahmood and F. Ricci, “Improving recommender systems with adaptive conversa-
tional strategies,” in Proceedings of the 20th ACM conference on Hypertext and hyper-
media. ACM, 2009, pp. 73–82.

[4] F. McSherry and I. Mironov, “Differentially private recommender systems: Building
privacy into the netflix prize contenders,” in Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 2009, pp.
627–636.

[5] P. Resnick and H. R. Varian, “Recommender systems,” Communications of the ACM,
vol. 40, no. 3, pp. 56–58, 1997.

[6] R. Burke, “Hybrid web recommender systems,” in The adaptive web. Springer, 2007,
pp. 377–408.

[7] F. Ricci, L. Rokach, and B. Shapira, “Recommender systems: introduction and chal-
lenges,” in Recommender systems handbook. Springer, 2015, pp. 1–34.

[8] J. B. Schafer, J. Konstan, and J. Riedl, “Recommender systems in e-commerce,” in Pro-
ceedings of the 1st ACM conference on Electronic commerce. ACM, 1999, pp. 158–166.

[9] T. Lee, J. Chun, J. Shim, and S.-g. Lee, “An ontology-based product recommender sys-
tem for b2b marketplaces,” International Journal of Electronic Commerce, vol. 11, no. 2,
pp. 125–155, 2006.

[10] J. L. de la Rosa, N. Hormazábal, S. Aciar, G. A. Lopardo, A. Trias, and M. Montaner,
“A negotiation-style recommender based on computational ecology in open negotiation
environments,” IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2073–
2085, 2011.

[11] K. Sugiyama, K. Hatano, and M. Yoshikawa, “Adaptive web search based on user pro-
file constructed without any effort from users,” in Proceedings of the 13th international
conference on World Wide Web. ACM, 2004, pp. 675–684.

[12] O. C. Santos, Educational Recommender Systems and Technologies: Practices and
Challenges. IGI Global, 2011.



95

[13] O. R. Zaı́ane, “Building a recommender agent for e-learning systems,” in Computers in
education, 2002. proceedings. international conference on. IEEE, 2002, pp. 55–59.

[14] C.-M. Chen, L.-J. Duh, and C.-Y. Liu, “A personalized courseware recommendation
system based on fuzzy item response theory,” in null. IEEE, 2004, pp. 305–308.

[15] L. Terán and A. Meier, “A fuzzy recommender system for eelections,” in Interna-
tional Conference on Electronic Government and the Information Systems Perspective.
Springer, 2010, pp. 62–76.

[16] X. Guo and J. Lu, “Intelligent e-government services with personalized recommendation
techniques,” International Journal of Intelligent Systems, vol. 22, no. 5, pp. 401–417,
2007.

[17] P. De Meo, G. Quattrone, and D. Ursino, “A decision support system for designing new
services tailored to citizen profiles in a complex and distributed e-government scenario,”
Data & Knowledge Engineering, vol. 67, no. 1, pp. 161–184, 2008.

[18] R. D. Burke, K. J. Hammond, and B. C. Young, “Knowledge-based navigation of com-
plex information spaces,” in Proceedings of the national conference on artificial intelli-
gence, vol. 462, 1996, p. 468.

[19] H.-W. Tung and V.-W. Soo, “A personalized restaurant recommender agent for mobile
e-service,” in e-Technology, e-Commerce and e-Service, 2004. EEE’04. 2004 IEEE In-
ternational Conference on. IEEE, 2004, pp. 259–262.

[20] A. Garcı́a-Crespo, J. Chamizo, I. Rivera, M. Mencke, R. Colomo-Palacios, and J. M.
Gómez-Berbı́s, “Speta: Social pervasive e-tourism advisor,” Telematics and informatics,
vol. 26, no. 3, pp. 306–315, 2009.

[21] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, “Collaborative filtering recom-
mender systems,” in The adaptive web. Springer, 2007, pp. 291–324.

[22] M. J. Pazzani and D. Billsus, “Content-based recommendation systems,” in The adaptive
web. Springer, 2007, pp. 325–341.

[23] P. Lops, M. De Gemmis, and G. Semeraro, “Content-based recommender systems: State
of the art and trends,” in Recommender systems handbook. Springer, 2011, pp. 73–105.

[24] S. Trewin, “Knowledge-based recommender systems,” Encyclopedia of library and in-
formation science, 2000.

[25] J. He and W. W. Chu, “A social network-based recommender system (snrs),” in Data
mining for social network data. Springer, 2010, pp. 47–74.

[26] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King, “Recommender systems with social reg-
ularization,” in Proceedings of the fourth ACM international conference on Web search
and data mining. ACM, 2011, pp. 287–296.

[27] Z. Zhang, H. Lin, K. Liu, D. Wu, G. Zhang, and J. Lu, “A hybrid fuzzy-based person-
alized recommender system for telecom products/services,” Information Sciences, vol.
235, pp. 117–129, 2013.



96

[28] G. Adomavicius and A. Tuzhilin, “Context-aware recommender systems,” in Recom-
mender systems handbook. Springer, 2011, pp. 217–253.

[29] K. Verbert, N. Manouselis, X. Ochoa, M. Wolpers, H. Drachsler, I. Bosnic, and E. Duval,
“Context-aware recommender systems for learning: a survey and future challenges,”
IEEE Transactions on Learning Technologies, vol. 5, no. 4, pp. 318–335, 2012.

[30] J. Masthoff, “Group recommender systems: Combining individual models,” in Recom-
mender systems handbook. Springer, 2011, pp. 677–702.

[31] H. Yin, B. Cui, J. Li, J. Yao, and C. Chen, “Challenging the long tail recommendation,”
Proceedings of the VLDB Endowment, vol. 5, no. 9, pp. 896–907, 2012.

[32] A. Elberse, “Should you invest in the long tail?” Harvard business review, vol. 86, no.
7/8, p. 88, 2008.

[33] R. Armstrong, “The long tail: Why the future of business is selling less of more,” Cana-
dian Journal of Communication, vol. 33, no. 1, 2008.

[34] D. M. Fleder and K. Hosanagar, “Recommender systems and their impact on sales di-
versity,” in Proceedings of the 8th ACM conference on Electronic commerce. ACM,
2007, pp. 192–199.

[35] N. Good, J. B. Schafer, J. A. Konstan, A. Borchers, B. Sarwar, J. Herlocker, J. Riedl
et al., “Combining collaborative filtering with personal agents for better recommenda-
tions,” in AAAI/IAAI, 1999, pp. 439–446.

[36] Y. Shi, M. Larson, and A. Hanjalic, “Collaborative filtering beyond the user-item matrix:
A survey of the state of the art and future challenges,” ACM Computing Surveys (CSUR),
vol. 47, no. 1, p. 3, 2014.

[37] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predictive algorithms
for collaborative filtering,” in Proceedings of the Fourteenth conference on Uncertainty
in artificial intelligence. Morgan Kaufmann Publishers Inc., 1998, pp. 43–52.

[38] O. Koyejo, S. Acharyya, and J. Ghosh, “Retargeted matrix factorization for collaborative
filtering,” in Proceedings of the 7th ACM conference on Recommender systems. ACM,
2013, pp. 49–56.

[39] Y. Koren, “Factorization meets the neighborhood: a multifaceted collaborative filtering
model,” in Proceedings of the 14th ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, 2008, pp. 426–434.

[40] A. Paterek, “Improving regularized singular value decomposition for collaborative fil-
tering,” in Proceedings of KDD cup and workshop, vol. 2007, 2007, pp. 5–8.

[41] R. Salakhutdinov and A. Mnih, “Bayesian probabilistic matrix factorization using
markov chain monte carlo,” in Proceedings of the 25th international conference on Ma-
chine learning. ACM, 2008, pp. 880–887.

[42] J. Lee, S. Bengio, S. Kim, G. Lebanon, and Y. Singer, “Local collaborative ranking,”
in Proceedings of the 23rd international conference on World wide web. International
World Wide Web Conferences Steering Committee, 2014, pp. 85–96.



97

[43] M. Weimer, A. Karatzoglou, Q. V. Le, and A. J. Smola, “COFI RANK -
maximum margin matrix factorization for collaborative ranking,” in Proceedings of
the Twenty-First Annual Conference on Neural Information Processing Systems,
2007, 2007, pp. 1593–1600. [Online]. Available: http://papers.nips.cc/paper/
3359-cofi-rank-maximum-margin-matrix-factorization-for-collaborative-ranking

[44] S. Rendle, “Factorization machines with libfm,” ACM Transactions on Intelligent Sys-
tems and Technology (TIST), vol. 3, no. 3, p. 57, 2012.

[45] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson,
G. Corrado, W. Chai, M. Ispir et al., “Wide & deep learning for recommender sys-
tems,” in Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.
ACM, 2016, pp. 7–10.

[46] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural collaborative filtering,”
in Proceedings of the 26th International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 2017, pp. 173–182.

[47] X. Wang, X. He, L. Nie, and T.-S. Chua, “Item silk road: Recommending items from
information domains to social users,” in Proceedings of the 40th International ACM
SIGIR conference on Research and Development in Information Retrieval. ACM, 2017,
pp. 185–194.

[48] F. Strub, R. Gaudel, and J. Mary, “Hybrid recommender system based on autoen-
coders,” in Proceedings of the 1st Workshop on Deep Learning for Recommender Sys-
tems. ACM, 2016, pp. 11–16.

[49] H. Wang, N. Wang, and D.-Y. Yeung, “Collaborative deep learning for recommender
systems,” in Proceedings of the 21th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. ACM, 2015, pp. 1235–1244.

[50] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester, “Collaborative denoising auto-encoders
for top-n recommender systems,” in Proceedings of the Ninth ACM International Con-
ference on Web Search and Data Mining. ACM, 2016, pp. 153–162.

[51] H. Wang, X. Shi, and D.-Y. Yeung, “Relational stacked denoising autoencoder for tag
recommendation.” in AAAI, 2015, pp. 3052–3058.

[52] H. Wang and D.-Y. Yeung, “Towards bayesian deep learning: A framework and some
existing methods,” IEEE Transactions on Knowledge and Data Engineering, vol. 28,
no. 12, pp. 3395–3408, 2016.

[53] J. Bennett, S. Lanning et al., “The netflix prize,” in Proceedings of KDD cup and work-
shop, vol. 2007. New York, NY, USA, 2007, p. 35.

[54] K. Järvelin and J. Kekäläinen, “IR evaluation methods for retrieving highly relevant
documents.” in SIGIR, Athens, Greece, 2000, pp. 41–48.

[55] O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan, “Expected reciprocal rank for
graded relevance,” in Proceedings of the 18th ACM conference on Information and
knowledge management. ACM, 2009, pp. 621–630.

http://papers.nips.cc/paper/3359-cofi-rank-maximum-margin-matrix-factorization-for-collaborative-ranking
http://papers.nips.cc/paper/3359-cofi-rank-maximum-margin-matrix-factorization-for-collaborative-ranking


98

[56] S. Balakrishnan and S. Chopra, “Collaborative ranking,” in Proceedings of the fifth ACM
international conference on Web search and data mining. ACM, 2012, pp. 143–152.

[57] Y. Koren and J. Sill, “Ordrec: an ordinal model for predicting personalized item rating
distributions,” in Proceedings of the fifth ACM conference on Recommender systems.
ACM, 2011, pp. 117–124.

[58] D. Park, J. Neeman, J. Zhang, S. Sanghavi, and I. S. Dhillon, “Preference
completion: Large-scale collaborative ranking from pairwise comparisons,” in
Proceedings of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, 2015, pp. 1907–1916. [Online]. Available:
http://jmlr.org/proceedings/papers/v37/park15.html

[59] J. Hu and P. Li, “Improved and scalable bradley-terry model for collaborative ranking,”
in Data Mining (ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016,
pp. 949–954.

[60] P. Li, C. J. Burges, and Q. Wu, “Mcrank: Learning to rank using multiple classification
and gradient boosting,” in Advances in neural information processing systems, 2007, pp.
897–904.

[61] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender systems:
A survey of the state-of-the-art and possible extensions,” Knowledge and Data Engi-
neering, IEEE Transactions on, vol. 17, no. 6, pp. 734–749, 2005.

[62] Y. Shi, M. Larson, and A. Hanjalic, “Exploiting user similarity based on rated-item
pools for improved user-based collaborative filtering,” in Proceedings of the third ACM
conference on Recommender systems. ACM, 2009, pp. 125–132.

[63] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender
systems,” Computer, no. 8, pp. 30–37, 2009.

[64] H. Steck, “Evaluation of recommendations: rating-prediction and ranking,” in Proceed-
ings of the 7th ACM Conference on Recommender Systems. ACM, 2013, pp. 213–220.

[65] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr: Bayesian per-
sonalized ranking from implicit feedback,” in Proceedings of the twenty-fifth conference
on uncertainty in artificial intelligence. AUAI Press, 2009, pp. 452–461.

[66] N. N. Liu, M. Zhao, and Q. Yang, “Probabilistic latent preference analysis for collabora-
tive filtering,” in Proceedings of the 18th ACM conference on Information and knowledge
management. ACM, 2009, pp. 759–766.

[67] A. Agresti, Categorical Data Analysis, 2nd ed. Hoboken, NJ: John Wiley & Sons, Inc.,
2002.

[68] W. Chen, T.-Y. Liu, Y. Lan, Z.-M. Ma, and H. Li, “Ranking measures and loss functions
in learning to rank,” in Advances in Neural Information Processing Systems, 2009, pp.
315–323.

[69] D. Cossock and T. Zhang, “Statistical analysis of bayes optimal subset ranking,” Infor-
mation Theory, IEEE Transactions on, vol. 54, no. 11, pp. 5140–5154, 2008.

http://jmlr.org/proceedings/papers/v37/park15.html


99

[70] K. Christakopoulou and A. Banerjee, “Collaborative ranking with a push at the top,” in
Proceedings of the 24th International Conference on World Wide Web. ACM, 2015,
pp. 205–215.

[71] C. C. Aggarwal, Recommender Systems. Springer, 2016.

[72] F. Ricci, L. Rokach, and B. Shapira, Introduction to recommender systems handbook.
Springer, 2011.

[73] P. McCullagh, “Regression models for ordinal data,” Journal of the royal statistical so-
ciety. Series B (Methodological), pp. 109–142, 1980.

[74] A. Agresti, “Introduction to generalized linear models,” Categorical Data Analysis, Sec-
ond Edition, pp. 115–164, 2002.

[75] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, “Grouplens: an open
architecture for collaborative filtering of netnews,” in Proceedings of the 1994 ACM
conference on Computer supported cooperative work, 1994, pp. 175–186.

[76] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and J. Riedl,
“Grouplens: applying collaborative filtering to usenet news,” Communications of the
ACM, vol. 40, no. 3, pp. 77–87, 1997.

[77] M. D. Ekstrand, J. T. Riedl, J. A. Konstan et al., “Collaborative filtering recommender
systems,” Foundations and Trends R© in Human–Computer Interaction, vol. 4, no. 2, pp.
81–173, 2011.

[78] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative filtering rec-
ommendation algorithms,” in Proceedings of the 10th international conference on World
Wide Web. ACM, 2001, pp. 285–295.

[79] A. Mnih and R. Salakhutdinov, “Probabilistic matrix factorization,” in Advances in neu-
ral information processing systems, 2007, pp. 1257–1264.

[80] S. Rendle, “Factorization machines,” in Data Mining (ICDM), 2010 IEEE 10th Interna-
tional Conference on, 2010, pp. 995–1000.

[81] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit feedback datasets,”
in Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on. Ieee, 2008,
pp. 263–272.

[82] Y. Koren, “Factor in the neighbors: Scalable and accurate collaborative filtering,” ACM
Transactions on Knowledge Discovery from Data (TKDD), vol. 4, no. 1, p. 1, 2010.

[83] J. Hu and P. Li, “Improved and scalable bradley-terry model for collaborative ranking,”
in Data Mining (ICDM), 2016 IEEE 16th International Conference on, 2016, pp. 949–
954.

[84] Y. Koren and J. Sill, “Collaborative filtering on ordinal user feedback,” in IJCAI 2013,
Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Bei-
jing, China, August 3-9, 2013, 2013, pp. 3022–3026.

[85] U. Paquet, B. Thomson, and O. Winther, “A hierarchical model for ordinal matrix fac-
torization,” Statistics and Computing, vol. 22, no. 4, pp. 945–957, 2012.



100

[86] J. Hu and P. Li, “Decoupled collaborative ranking,” in Proceedings of the 26th Interna-
tional Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 2017, pp. 1321–1329.

[87] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach to parallelizing
stochastic gradient descent,” in Advances in Neural Information Processing Systems,
2011, pp. 693–701.

[88] A. Töscher, M. Jahrer, and R. M. Bell, “The bigchaos solution to the netflix grand prize,”
Netflix prize documentation, 2009.

[89] D. Park, J. Neeman, J. Zhang, S. Sanghavi, and I. S. Dhillon, “Preference comple-
tion: Large-scale collaborative ranking from pairwise comparisons,” arXiv preprint
arXiv:1507.04457, 2015.

[90] A. Agresti and M. Kateri, Categorical data analysis. Springer, 2011.

[91] T. Joachims, “Optimizing search engines using clickthrough data,” in Proceedings of
the eighth ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2002, pp. 133–142.

[92] C. J. Burges, “From ranknet to lambdarank to lambdamart: An overview,” Learning,
vol. 11, pp. 23–581, 2010.

[93] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullen-
der, “Learning to rank using gradient descent,” in Proceedings of the 22nd international
conference on Machine learning. ACM, 2005, pp. 89–96.

[94] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, “An efficient boosting algorithm for
combining preferences,” Journal of machine learning research, vol. 4, no. Nov, pp. 933–
969, 2003.

[95] M. N. Volkovs and R. S. Zemel, “Boltzrank: learning to maximize expected ranking
gain,” in Proceedings of the 26th Annual International Conference on Machine Learning.
ACM, 2009, pp. 1089–1096.

[96] R. A. Bradley and M. E. Terry, “Rank analysis of incomplete block designs: I. the
method of paired comparisons,” Biometrika, vol. 39, no. 3/4, pp. 324–345, 1952.

[97] P. Li, “Abc-boost: Adaptive base class boost for multi-class classification,” in Proceed-
ings of the 26th Annual International Conference on Machine Learning. ACM, 2009,
pp. 625–632.

[98] D. Cossock and T. Zhang, “Subset ranking using regression,” in Learning theory.
Springer, 2006, pp. 605–619.

[99] D. Park, J. Neeman, J. Zhang, S. Sanghavi, and I. S. Dhillon, “Preference completion:
Large-scale collaborative ranking from pairwise comparisons,” in Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11
July 2015, 2015, pp. 1907–1916.

[100] Y. Shi, M. Larson, and A. Hanjalic, “List-wise learning to rank with matrix factorization
for collaborative filtering,” in Proceedings of the fourth ACM conference on Recom-
mender systems. ACM, 2010, pp. 269–272.



101

[101] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, N. Oliver, and A. Hanjalic, “Climf:
learning to maximize reciprocal rank with collaborative less-is-more filtering,” in Pro-
ceedings of the sixth ACM conference on Recommender systems. ACM, 2012, pp.
139–146.

[102] J. Hu and P. Li, “Collaborative filtering via additive ordinal regression,” in Proceedings
of the Eleventh ACM International Conference on Web Search and Data Mining. ACM,
2018, pp. 243–251.

[103] J. Zhang and P. Pu, “A recursive prediction algorithm for collaborative filtering recom-
mender systems,” in Proceedings of the 2007 ACM conference on Recommender systems.
ACM, 2007, pp. 57–64.

[104] G. Linden, B. Smith, and J. York, “Amazon. com recommendations: Item-to-item col-
laborative filtering,” IEEE Internet computing, no. 1, pp. 76–80, 2003.

[105] F. Zhuang, D. Luo, N. J. Yuan, X. Xie, and Q. He, “Representation learning with pair-
wise constraints for collaborative ranking,” in Proceedings of the Tenth ACM Interna-
tional Conference on Web Search and Data Mining. ACM, 2017, pp. 567–575.

[106] W. Pan and L. Chen, “Cofiset: Collaborative filtering via learning pairwise preferences
over item-sets,” in Proceedings of the 2013 SIAM International Conference on Data
Mining. SIAM, 2013, pp. 180–188.

[107] S. Rendle and C. Freudenthaler, “Improving pairwise learning for item recommendation
from implicit feedback,” in Proceedings of the 7th ACM international conference on Web
search and data mining. ACM, 2014, pp. 273–282.

[108] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, and A. Hanjalic, “xclimf: optimizing
expected reciprocal rank for data with multiple levels of relevance,” in Proceedings of
the 7th ACM conference on Recommender systems. ACM, 2013, pp. 431–434.

[109] S. Huang, S. Wang, T.-Y. Liu, J. Ma, Z. Chen, and J. Veijalainen, “Listwise collaborative
filtering,” in Proceedings of the 38th International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM, 2015, pp. 343–352.

[110] Y. Lei, W. Li, Z. Lu, and M. Zhao, “Alternating pointwise-pairwise learning for person-
alized item ranking,” in Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management. ACM, 2017, pp. 2155–2158.

[111] D. Sculley, “Combined regression and ranking,” in Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,
2010, pp. 979–988.

[112] A. Agresti, Categorical data analysis. John Wiley & Sons, 2013.

[113] F. M. Harper and J. A. Konstan, “The movielens datasets: History and context,” ACM
Transactions on Interactive Intelligent Systems (TiiS), vol. 5, no. 4, p. 19, 2016.

[114] R. He and J. McAuley, “Ups and downs: Modeling the visual evolution of fashion trends
with one-class collaborative filtering,” in proceedings of the 25th international confer-
ence on world wide web. International World Wide Web Conferences Steering Com-
mittee, 2016, pp. 507–517.



102

[115] J. Lee, M. Sun, and G. Lebanon, “A comparative study of collaborative filtering algo-
rithms,” arXiv preprint arXiv:1205.3193, 2012.


	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Overview of Recommender Systems
	Collaborative Filtering
	Collaborative Ranking

	Decoupled Collaborative Ranking
	Introduction
	Related Work
	Decoupled Collaborative Ranking
	Global Matrix Factorization
	Ordinal Classification
	From Binary Classification to Ranking
	Empirical Study on Binary Classifications

	Extension: Further Improve Ranking via Pairwise Learning
	Experiment
	Experimental Settings
	Empirical Study on DCR
	Compare with Pointwise Approaches
	Compare with Push Collaborative Ranking
	Compare with Pairwise and Listwise Approaches
	Effectiveness of Pairwise DCR

	Discussions on DCR-Logistic
	Conclusion

	Collaborative Filtering via Additive Ordinal Regression
	Introduction
	Related Work
	Additive Ordinal Regression
	An Additive Way to View Ordered Values
	Mapping Numerical Scale to Ordinal Scale
	Additive Ordinal Regression

	Decomposed Matrix Factorization
	Decomposing User Ratings
	Rating Prediction on Decomposed Binary Matrices
	Combining Predictions from Decomposed Matrices
	Comparisons with OrdRec and OMF

	Parallel SGD for Learning DMF
	Regularization Parameters
	Parallelized Stochastic Gradient Descent

	Experiments
	Effectiveness of DMF
	Comparison with Other Ordinal Algorithms
	More Discussions on DMF
	Comparisons with More Rating Predictors

	Conclusion

	Improved Bradley-Terry Model for Collaborative Ranking
	Introduction
	Related Work
	Pairwise Learning to Rank
	Collaborative Ranking
	Bradley-Terry Model

	 Methodology and Strategy
	Bradley-Terry Model Meets Matrix Factorization
	Regularization
	Improved Bradley-Terry Model

	Learning
	Parallel Stochastic Gradient Descent
	Parallel Sampling-based Stochastic Gradient Descent

	Experiments
	Dataset and Setting
	Discussion
	Parallelization and Scalability
	Compare with other methods

	Conclusion

	Collaborative Multi-objective Ranking
	Introduction
	Related Work
	Modeling Row-wise Comparisons only generates effective ```39`42`"613A``45`47`"603AV''
	Zero-one Loss and Its Approximation
	Discussion on User Latent Factors
	More Insight
	Combining Row-wise and Column-wise Comparisons

	Proposed Method
	Rating Prediction through Matrix Factorization
	Pairwise Comparisons through Bradley-Terry Model
	Combining All Three Objectives
	The Advantages of CMR

	Learning
	Experiment
	Discussion of Results 
	Performance Comparisons

	Conclusion

	Summary and Future Work
	References

