
©2018

QIONG HU

ALL RIGHTS RESERVED



BOUNDLESS DATA ANALYTICS THROUGH

PROGRESSIVE MINING

by

QIONG HU

A Dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Tomasz Imieliński

And approved by

New Brunswick, New Jersey

October, 2018
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Multidimensional distributions in data mining are often represented as plots: scatter

plots between two numerical variables; heat maps, bar graphs, histograms, box plots - they

either relate two variables together or show frequency distributions of one variable. What

makes one distribution more interesting than the other? What if we could generate all

possible relationships and rank the most interesting ones at the top - do it all automatically,

thus saving days of repetitive human work?

We define an attribute-value pair from a dimension as a descriptor, and a conjunction

of k descriptors is used to slice a dataset. The problem of generating all possible large

data slices is formalized as the frequent itemset mining problem. Because the number of

dimensions may also include derived dimensions so we do not know ahead of time how long

the process will take, may even take an unbounded amount of time. We explore solutions

which can answer the following questions: 1) Can we provide some progress indicator

during this process? 2) Is the best-so-far partial solution available at any time? To this end,

we investigate the anytime algorithms and propose a dynamic approach called ALPINE

that allows us to achieve flexible trade-offs between efficiency and completeness. ALPINE

is to our knowledge the first algorithm to progressively mine frequent itemsets and closed

itemsets support-wise. It guarantees that all itemsets with support exceeding the current
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checkpoint’s support have been found before it proceeds further. ALPINE runs literally

forever without a priori decided minimum support value. The ALPINE approach is also

generalized to multiple tables based on the Entity-Relationship Modeling without joining

the tables to form a single big table.

Finally, we build a boundless analytics system, which can slice a given dataset in all

possible ways and generate very large (unbounded) number of plots. The generated plot

objects are organized and indexed in a plot base to support the user queries. A search

interface with user-friendly search query language is designed to explore all the plots and

the query response are sorted nicely based on some interestingness measure. The system is

used to analyze the extensive historical NBA Players stats data with promising results.
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Chapter 1

Introduction

Multidimensional distributions are often used in data mining to describe and summarize

different features of large dataset. Skilled data analysts usually use exploratory statistics

and data mining techniques to explore the data before they do any formal modeling. As

a result, the multidimensional distributions are represented as plots: scatter plots between

two numerical variables; heat maps, bar graphs, histograms, box plots - they either relate

two variables together or show frequency distributions of one variable.

A typicalworkflowof analysts is launching an analytic process, waiting for it to complete,

inspecting the results, and then re-launching the computationwith adjusted parameters. This

manual exploration process is labor-intensive and error-prone for many real-world tasks.

What makes one distribution more interesting than the other? What if we could generate all

possible relationships and rank the most interesting ones at the top - do it all automatically,

thus saving days of repetitive human work?

In this dissertation, we propose a boundless analytics framework, which can harness the

computational resources to work for us automatically and isolate only plots which have huge

potential interest (the interestingness of plots is measured based on their spread). Firstly,

pre-aggregations are calculated to derive new dimensions or facts for the multidimensional

dataset. Then a global slicing process and a local plotting process are operated on the
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supplemented dataset, which can slice the given dataset in all possible ways and generate

very large (unbounded) number of plots.

When an attribute-value pair from a dimension is defined as a descriptor, a conjunction

of k descriptors denotes a data slice. The problem of generating all possible large data slices

is formalized as the frequent itemset mining problem. Because the number of dimensions

may also include derived dimensions so we do not know ahead of time how long the process

will take, may even take an unbounded amount of time. How to quickly get those interesting

plots? Or canwe at least partially analyze the data during such a longmining processwithout

waiting until completion, i.e., first analyzing those larger data slices? Could an algorithm

guarantee that all slices with support exceeding the current checkpoint’s support have been

found before it proceeds further?

To solve this problem, we explore some data mining technique, i.e., progressive itemset

mining, which slices the data progressively based on the size or support of a slice, i.e., first

generate slices with larger support, then gradually output slices with lower support. At any

moment in time, it can guarantee the completeness of the set of data slices in the partial

answer up to the previous checkpoint.

As to the progressive paradigm, it should be familiar to computer users, for instance,

progressively loading of web apps, where the basic components quickly loaded initially,

followed by progressive loading of other UIs when required. By investigating such kind of

anytime algorithms, we propose a dynamic approach, ALPINE, that allows us to achieve

flexible trade-offs between efficiency and completeness.

ALPINE is to our knowledge the first algorithm to progressively mine all and closed

frequent itemsets support-wise. It guarantees that all itemsets with support exceeding

the current checkpoint’s support have been found before it proceeds further. ALPINE runs

literally forever without a priori decided minimum support threshold. For multidimensional

analysis, we generalized ALPINE to multiple tables based on the foreign-key reference in

entity-relationship modeling without joining the tables to form a single big table.



3

Finally, this dissertation ends with a boundless analytics system. We build a boundless

analytics system which can slice a given dataset in all possible ways progressively and

generate very large (unbounded) number of plots. The system can provide a progress meter

in terms of theminimum size of the data slices analyzed at any time. TheApache Solr search

platform and a proposed user-friendly keywords-based search query language powered the

searching module of the system, which can support various user queries to explore the plots

in the plot base. It is worth mentioning that this system is demonstrated on a large real-world

NBA stats data with over 3000 players for 67 NBA seasons.

1.1 Contributions

In this Section we briefly summarize the major contributions of this dissertation. We

classify them according to the area they naturally belong to.

1.1.1 Frequent Itemset Mining

• We define the progressive itemset mining paradigm for long mining tasks, which

progressively divide the itemset search space into sub-spaces with respect to a set of

decreasing minimum supports. Thus, it guarantees the partial completeness and has

the so-called anytime properties.

• We define a compact representation, itemset interval, which utilizes the itemset

closure operator to greatly reduce the search space and speed up the mining process.

• We propose a dynamic approach, ALPINE, for itemset mining that allows us to

achieve flexible trade-offs between efficiency and completeness, whose theoretic cor-

rectness and computational effectiveness are presented in the dissertation. ALPINE

is to our knowledge the first algorithm to progressively mine all frequent and closed

frequent itemsets “support-wise”. It guarantees that all itemsets with support exceed-
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ing the current checkpoint’s support have been found before it proceeds further. It

automatically lowers the minimum support on-the-fly without any a priori decided

minimum support threshold.

1.1.2 Automated Data Science

• We propose the boundless analytics engine, which consists of pre-aggregation, a

global slice operator and a local plot operator, for largemultidimensional data analysis.

It slices a given dataset in all possible ways and generates very large number of plots.

It may take an unbound amount of time due to the fact that we can keep deriving new

dimensions and facts by aggregation.

• We take advantage of the progressive mining paradigm to progressively slice a large

multidimensional database based on the attribute-value combinations from its di-

mensions. It can achieve flexible compromises between the mining time and the

completeness of the generated data slices.

• We employ the E-R modeling approach to analyze multidimensional data across

tables. The foreign-key reference based processing is adopted instead of joining all

the involving tables to form a single big table.

• Webuild a boundless analytics system, which includes the datamodule, the generating

module, the indexing module and the searching module. The generating module uses

the boundless analytics engine, the indexing module employs the Apache Solr search

platform which supports full-text search and the searching module is defined based

on bags of keywords.

• We show an application on sport data analysis. The boundless analytics system is

applied to analyze the historical NBA Players stats data. Some interesting trends

among the player’s individual attributes are discovered by the system.
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1.2 Dissertation Structure

The remainder of this dissertation is organized as follows. In Chapter 2, we propose

the progressive itemset mining problem and design three variant algorithms, APLINE,

ALPINEclosed and ALPINE+, for frequent itemset, closed frequent itemset and general

non-boolean data mining. Extensive computational evaluations are also included. In

Chapter 3, the boundless data analytics is introduced with basic notations and prerequisite

information, then each step in the framework, i.e., the pre-aggregation, the slicing and the

plotting processes, are explained in detail. Sequentially, a boundless analytics system with

an application on NBA sport data analysis is built in Chapter 4, where each module of the

system, i.e., the data module, the generating module, the indexing module and the searching

module, is introduced as well. Finally, we conclude the dissertation and discuss the future

directions in Chapter 5.
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Chapter 2

Progressive Itemset Mining

Boundless analytics can generate an unbounded number of plots for large multidimensional

dataset, the key is to automatically slice the data into all possible large sub-groups. When

an attribute-value pair from a dimension is defined as an item, the data slicing problem can

be formulated as the frequent itemset mining problem. As datasets grow and computations

becomemore complex, the execution time of itemsetmining becomes critical formany large-

scale or time-sensitive applications. We propose a dynamic approach, ALPINE, for itemset

mining that allows us to achieve flexible trade-offs between efficiency and completeness.

ALPINE is to our knowledge the first algorithm to progressively mine itemsets and closed

itemsets “support-wise”, which can be generalized to handle richer database types like

taxonomic or quantitative data. It guarantees that all itemsets with support exceeding the

current checkpoint’s support have been found before it proceeds further. Thus, it is very

attractive for extremely long mining tasks with very high dimensional data because it can

offer intermediate meaningful and complete results. This feature is the most important

contribution of ALPINE, which is also fast but not necessarily the fastest algorithm around.

Another critical advantage of ALPINE is that it does not require the a priori decided

minimum support threshold.



7

2.1 Introduction

Nowadays, automated data science would encompass attempts to automate the cumbersome

data science process, the process of extracting knowledge and insight from data, which are

usually represented as 1-D and 2-D plots. Boundless data analytics (Figure 2.1) is such an

attempt. Boundless analytics is a mining process with the objective to generate all possible

univariate and bivariate relationships or plots with sufficient support and isolate only plots

which have huge potential interest.

A boundless analytics engine can slice a given large multidimensional dataset in all

possible ways based on its dimensions and derived dimensions and generate very large

(unbounded) number of plots. As shown in Figure 2.1, it mainly consists of two crucial

steps: (a) globally slice the data into different data slices; (b) locally generate all the plots

for each data slice. The most challenge part is step (a), how to efficiently discover all the

large slices with sufficient support. That’s what we’ll solve in this chapter.

If we denote each possible attribute-value pair as an item, then a data slice defined by

the conjunction of k descriptors in the form of (attribute, value) can be represented as a

k-itemset. In this way, to find all large data slices from a multidimensional database is

exactly the problem to mine all frequent itemsets from a transaction set [1]. Specifically, to

mine all the frequent combination of attribute-value pairs in its dimensions.

Because the number of dimensions may also include derived dimensions so we do not

know ahead of time how long the process will take, may even take an unbounded amount

of time. How to quickly get some interesting plots? Or can we at least partially analyze the

data during such a longmining process without waiting until completion, i.e., first analyzing

the larger data slices? Could an algorithm guarantee that all slices with support exceeding

the current checkpoint’s support have been found before it proceeds further?

ALPINE is such an algorithm, it progressively mine frequent itemsets (attribute-value

combinations) support-wise. It can be stopped at any time and return the frequent itemsets

for someminimal support (that is lower if the analyst waits longer). Therefore, it exhibits so-
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Figure 2.1: Boundless analytics

called anytime feature. An anytime algorithm uses well-defined quality measures to monitor

the progress in problem-solving and is expected to improve the quality of the solution

as the computational time increases [75]. Anytime algorithms have been categorized

into two types: interruptible and contract algorithms [4]. An interruptible algorithm can

be interrupted at any time. A contract algorithm, if interrupted at any point before the

termination of the contract time, might not yield any useful results. From this definition, an

anytime algorithm is able to return many possible intermediate partial approximate answers

to any given input. Thus, it is useful for solving problems where the search space is large

and the quality of the results can be compromised [42]. Clearly, the anytime approach is

particularly well suited for data mining and more generally for intelligent systems.

In the context of frequent itemset mining, the common framework is to use a minsup

threshold to ensure the generation of the correct and complete set of patterns [69]. We require

that a progressive mining algorithm reaches partial completeness through checkpoints,

which define the exploration of well-defined sub-spaces of the entire problem. According

to the law of diminishing marginal utility in economics [52], we believe that the additional

benefit derived from the completeness of itemsets with a minsup diminishes with the
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Figure 2.2: Progressive itemset mining. A long mining task, is progressively divided into k sub-search spaces w.r.t. a set of decreasing
minimum supports {minsupk

i=1 }. The utility of the current solution is plotted as a function of time, where {Pn
j=1 } is a set of randomly

selected probes in time.

decrease of the value of minsup (refer to the upper right graph in Figure 2.2). The

total utility derived from the outcome of the mining algorithm can be utilized to quantify

the usefulness of its intermediate results. The proposed progressive mining framework

is illustrated in Figure 2.2, {minsupk
i=1} is the set of all distinct itemset supports in a

transaction database in decreasing order and {Pn
j=1} is a set of randomly selected probes in

time. Upon the completion of all the itemsets with support greater than or equal to minsupi,

the utility associated with the minimum support, U(minsupi), is obtained instantly. The

goal of a progressive miner is to maximize the utility at anytime. Mathematically, we want

to maximize the average utility at a set of random probes, i.e., max 1
n
∑n

j=1 U(Pj).

In this chapter, we propose a dynamic approach for itemset mining and present the

ALPINE algorithm [36, 37], namely, Automatic minsup Lowering with Progress Indicator

in practically “Never-Ending”mining. The ALPINE algorithm proceeds progressively from

checkpoint to checkpoint. In ALPINE, the checkpoints correspond to decreasing values of

minsups. Itmight be generalized to other anti-monotone interestingnessmeasures. ALPINE

guarantees that all itemsets with support exceeding the current checkpoint’s support have



10

been found before it proceeds further. In this way, we know that we have completed a

well-defined subset of the overall, potentially enormous search space.

ALPINE proceeds in this “monotonic” manner with minimal computational overhead as

compared to the best existing frequent itemset mining algorithms. In ALPINE, though the

mining process is continuous, it does not go totally unchecked. ALPINE can be stopped at

any point and we will always be able to offer partial conclusions based on the last checkpoint

reached as indicated in Figure 2.2. In contrast, the traditional itemset mining algorithms do

not give any intermediate partial completeness guarantees, requiring the user to wait until

completion to get any definite result.

There is another very critical advantage of ALPINE. It does not require setting the

minimum support a priori. This requirement has always been problematic for all frequent

itemset generation algorithms. How do we set the minimum support if we do not know the

data? We only learn the data as we continue mining it, but then it is too late to change the

value of minimum support. However, it is not the case for ALPINE. ALPINE moves the

minimum support as it goes ahead from checkpoint to checkpoint.

ALPINE is, to our knowledge, the first algorithm to progressivelymine frequent itemsets

and closed frequent itemsets “support-wise”. It guarantees that all itemsets with support

exceeding the current checkpoint’s support have been found before it proceeds further.

Firstly, related work in the literature and some basic definitions and notations will

be introduced in Section 2.2 and Section 2.3, respectively. Then we describe the details

of different variants of the ALPINE algorithm in Section 2.4. In Section 2.5, extensive

experiments are carried out to evaluate this progressive approach and analyze the added

value of the anytime feature of the algorithm. We analyze the effectiveness and efficiency

of the algorithm in comparison with: 1) the benchmarking approach; 2) sequential top-k

mining algorithm, i.e., Seq-Miner [43]; and 3) frequent itemset mining algorithm. Finally,

we’ll conclude this chapter in Section 2.6.
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2.2 Related Work

2.2.1 Frequent itemset mining

Itemset mining is a popular research area with wide applications in domains like bioin-

formatics [46], text mining [74], product recommendation [44], e-learning [5, 51], web

click stream analysis [41], etc. The traditional task of frequent itemset mining is to dis-

cover groups of items (more generally, attribute-value pairs) that frequently co-occurring

in databases. Finding all frequent patterns from large databases is NP-hard for it’s an

exhaustive search problem [72].

A lot of algorithms have been proposed to mine itemsets in the past decade [2, 17, 18,

32, 48, 65, 71], the key is how to efficiently reduce the search space. Apriori-like methods

utilize the anti-monotone property to prune candidates [2, 71], FP-growth family employs

some highly condensed data structure, such as FP-tree [32] or PPC-tree [18], to confine

the search space, while PrePost+ [17] introduces the children-parent equivalence pruning

strategy. However, the pruning might be incomplete. Thus, the closure operator I(T (·)) is

incorporated in other algorithms [48, 65, 66] as we do. In[48], duplicated closed itemset

may be generated. The most similar work to ours is the LCM algorithm [65, 66], which also

transverses a tree composed of closed itemsets. However, LCM requires to set the minsup

threshold and no completeness guarantees are given for its intermediate results.

In summary, all existing frequent itemset mining algorithms [12, 23]: 1) require the

user to specify a fixed minimum support threshold in advance, 2) do not give any definite

feedback to the user while they are running. The high response time and the need to guess

the optimal parameter setting limit the performance of current data mining technologies.

2.2.2 Top-k mining

In “concept mining”, the top-k mining can gradually raise the minsup to mine “the k-most

interesting patterns” without specifying a minsup threshold in advance to increase the us-
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ability of a data mining algorithm. Shen et al. [54] first introduced the top-k mining problem

to generate an appropriate number of most interesting itemsets. The Itemset-Loop/Itemset-

iLoop algorithm [15] based on Apriori [2] and the TFP algorithm [69] extending the

FP-growth method [32] are developed to mine the k-most interesting patterns thereafter.

Generally, these algorithms follow the same process: Initially, the minsup threshold is

set to 0 to ensure no pattern will be missing, then the minsup is gradually raised by the

algorithm to prune the search space until top-k patterns are found. When k is too large,

mining takes an unacceptably long time; on the contrary, when k is too small, it will miss a

lot of potential interesting patterns. The problem of setting up the value of minsup is now

replaced with setting the value of k. Thus, Hirate et. al. [35] propose the TF2P-growth

algorithm to mine the top-k patterns sequentially without any thresholds.

TF2P-growth outputs every top nc patterns, where nc is some user-defined chunk size.

For instance, nc = 1000, it sequentially returns exactly the top 1000, 2000, 3000 patterns

etc. For nc is a user specified number, it might not return all itemsets having the same

support as the last one. Minh et al. [43] overcame this shortcoming and proposed an

improved algorithm, the Seq-Miner. These methods have a flavor of the contract-type

anytime algorithms [75], but they can not be interrupted before the termination of every top

nc patterns. In contrast, ALPINE monotonically explores itemsets with descending values

of support and mines continuously from checkpoint to checkpoint, which guarantees the

quality of the partial results are checked at any time.

2.2.3 Pattern sampling

Zhang et al. [73] used sampling and incremental mining to support multiple-user inquiries

at any time. Boley et al. [10, 11] proposed to use Metropolis-Hastings sampling for the

construction of data mining systems that do not require any user-specified threshold, i.e.,

minsup or mincon f . However, all the algorithms generate approximate results and the

completeness cannot be guaranteed.
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2.3 Preliminaries

Let I = {i1, i2, .., in} be a set of literals, called items, and T = {t1, t2, ..., tm} be a transaction

database, where each transaction tk (k = 1,2, ...,m) in T is a set of items such that tk ⊆ I.

A unique transaction identifier, tid, is associated with each transaction. Each nonempty

subset of I is called an itemset and a transaction is said to contain an itemset if all the

items in the itemset are present in the transaction [1, 2]. For an itemset X , the cover

T(X) = {t ∈ T |X ⊆ t} (a tidset) be the set of transactions it is contained in and the support

of X , denoted as sup(X), is the number of these transactions. Hence, sup(X) = |T (X)| [12].

If sup(X) exceeds a minimum support threshold minsup, then X is called a frequent

itemset [2, 12]. For a transaction set S ⊆ T , its intersection is I(S) = ∩T∈ST . If an itemset

X satisfies I(T (X)) = X , then X is called a closed itemset [48].

To avoid enumerating itemsets with duplications, it’s natural to order the items to

structure the search space. We define a total order among the set of items such that item

i < item j iff sup(i) < sup( j). The search is confined to extend an itemset only with items

greater than all the items inside it. All the items from I can be recoded to 0, 1, ..., |I | − 1

according to this order. Let X = {x1, ..., xn} be an itemset as an ordered sequence such that

x1 < ... < xn, the tail of X is tail(X) = xn [65]. Itemset X will only be extended with all

items greater than tail(X), resulting in a tree structured lattice.

To further reduce the search tree size, the closure operator I(T (·)) is utilized at each step.

Together with the above extension rule, we define the closure of itemset X as X∗ = X ∪ E ,

where E = {e ∈ I|e ∈ I(T (X)) ∧ e > tail(X)}, for we know that X union any subset of

E is supported exactly by T(X) (E is a shortcut of support equivalence extension). Thus

X does not need to be extended with items belonging to E . If |E | = k, this operation will

reduce the size of the sub-tree rooted at X by a factor of 2k . In general, for itemset P and

Q, with P ⊆ Q and T(P) = T(Q), the set of all itemsets Y which is a superset of P and a

subset of Q can be compactly represented as an itemset interval: (P,Q) = {Y |P ⊆ Y ⊆ Q},
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for they all share the same supporting transactions as P. In this definition, P and Q specify

the minimum itemset and the maximum itemset in an itemset interval, respectively.

We also define a mapping, sup−1, from support to set of itemsets, which is applicable

to both frequent and closed itemsets. We name it support index, for it is used to index

all the itemsets from T by support. Given a support s, the indexed set of itemsets is

sup−1(s) = {X |sup(X) = s}. The degree of completeness for a specific support s, Dc(s),

is defined as the number of itemsets discovered so far with support s divided by the total

number of itemsets with support s from the transaction database, i.e., |sup−1(s)|.

2.4 The Algorithm

The proposed progressive itemset miner (Figure 2.2) requires to systematically explore

the itemset search space. In ALPINE, itemsets are discovered in order of their supports

– from higher support to lower support. ALPINE will automatically lower the minsup

threshold to the next possible, lower value and continue mining. The basic idea of ALPINE

is to dynamically build the support index, from the highest possible support gradually to

the lowest possible value of support in the given transaction database. It progressively

partitions itemset intervals into disjoint bins of different supports.

ALPINE starts with the index built from all the itemset intervals (I, I∗) of singleton

itemsets I from a transaction database in Figure 2.3a. In this figure, all singleton itemset

intervals are sorted in decreasing support from left to right and binned based on their support

values. This index is not static, though, it is updated by new itemset intervals generated by

extending the minimum itemset of an itemset interval. At any point in time, we are working

on the uncompleted bin (there are still some remaining itemset intervals in this bin) with

the highest support value s. To enumerate all itemsets with support above or equal to s, we

extend the minimum itemset of each itemset interval in this bin. Let (P,Q) be an itemset

interval we are currently working on, we extend P with all items j greater than tail(P)
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Figure 2.3: Dynamically index itemset intervals by their supports in ALPINE

and not contained in Q. Denote P ∪ { j} as itemset R, we also find R∗ according to the

definition of an itemset closure. We can prove Lemma 2.4.1 and get the itemset interval for

R accordingly: (R,S), where S = R∗ ∪Q.

Lemma 2.4.1 All itemsets in the itemset interval (R,S), where S = R∗ ∪ Q, are supported

by T(R).

Proof ∀ itemset X ∈ itemset interval (R,S), we can denote X as X = R∪Y , whereY ⊆ S\R.

For S = R∗ ∪ Q, we can further decompose Y into two disjoint subsets YR and YQ, with

YR ⊆ R∗ and YQ ⊆ Q \ R∗. Then, the cover T(X) = T(R ∪ YR ∪ YQ). According to the

definition of R∗, we have T(R ∪ YR) = T(R), so T(X) = T(R ∪ YQ). Since R = P ∪ { j},

then T(X) = T(P ∪ { j} ∪ YQ). The itemset P ∪ YQ is in the itemset interval (P,Q), so it is

supported by T(P). Thus, T(X) = T(P ∪ { j}) = T(R).

All of the newly generated itemset intervals (R,S) are segregated by their support values

into different bins of the support index. Admittedly, sup(R) will always be smaller than

sup(P) according to the closure operation, otherwise, item j will belong to Q. There are

two situations: 1) the support of R is already associated with some existing bin and we only

need to add itemset interval (R,S) to that bin; 2) the support of R is a new value, which

hasn’t been indexed yet and we need to create a new bin to place (R,S) in it. An example

is given in Figure 2.3b, the itemset interval under exploration is on top of bi and supporti

corresponds to the highest uncompleted bin. We extend P with items greater than tail(P)
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and not contained in Q. Suppose item j and item k belong to such set of items. When P is

extended with item j, we obtained itemset R = P ∪ { j} and S = R∗ ∪ Q. It happens that

sup(R) is equal to some supporth indexed, so the itemset interval (R,S) will be added to

bh as indicated by the red dashed line. However, when it comes to item k, the support of

U = P ∪ {k} has not been indexed yet, a new bin bl is created to place the itemset interval

(U,V), with V = U∗ ∪Q.

Only when we finished exploring all itemset intervals in a bin, we are safe to conclude

that we have discovered all itemsets with support above or equal to the support associated

with the bin. That’s when we can declare that support as a new minimum support, minsup,

and we have reached the subsequent checkpoint. This checkpoint completes a subspace of

all itemsets with support above or equal to minsup, even though the bins with lower supports

are not complete yet. ALPINE always continues to build new bins for new possible supports

or extends existing bins. In this way, ALPINE mines patterns with descending supports and

outputs partially complete information from checkpoint to checkpoint.

In summary, APLINE initializes the support index from all itemset intervals of the sin-

gleton itemsets in a given transaction database, then it repeatedly works on the uncompleted

bins of successively lower supports until the support index is complete. ALPINE explores

all itemset intervals in a bin one by one as exemplified by Figure 2.3b, in which theminimum

itemset of each itemset interval is extended with all possible items in descending support

order. A checkpoint is reached after exploring all itemset intervals in a bin. The ALPINE

algorithm can be interrupted at any moment (that is, it retains the anytime feature). Based

on the description, we can deduce the following lemma and observations:

Lemma 2.4.2 Each itemset will be output in exactly one itemset interval.

Proof This lemma can be proved by contradiction. Suppose the same itemset X can be

output in two different itemset intervals: (P1,Q1) and (P2,Q2) with P1 , P2. Then we have,

P1 ⊆ X ⊆ Q1 and P2 ⊆ X ⊆ Q2 and T(P1) = T(P2) (*). Thus, P1 and P2 cannot be

inclusion relation with each other, otherwise, T(P1) , T(P2). If we sort the items in P1
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and P2 as ordered sequence according to the order defined in preliminaries and denote the

first different item between them as x1i and x2i (x1 j = x2 j, f or j = 0,1, ..., i − 1, and we

denote this set of items as P0 and the associated itemset interval as (P0,Q0). Without loss

of generality, we can assume x1i < x2i. From (*), we have x1i ∈ X and x2i ∈ X . Consider

itemset R1 = P0 ∪ {x1i}, since the itemset is only extended with items not in Q0, we have

x1i < Q0. Regarding itemset R2 = P0 ∪ {x2i}, S2 = R∗2 ∪Q0. According to the definition of

R∗2, it doesn’t include any item less than x2i, so x1i must be in Q0, which is a contradiction.

Observation 2.4.1 Every itemset with support above or equal to some minimum support

has been output at the related checkpoint.

With the defined total order among items in Section 2.3 and the exploration procedure in

Figure 2.3b, each item greater than tail(P) is either extended explicitly, or it has already been

contained in Q, which completes the search space for a specific bin. All itemsets generated

from the itemset intervals in the bins with lower supports are less than the minimum support

of the current checkpoint according to the anti-monotone property of itemset support.

Observation 2.4.2 Every distinct support count of an itemset in the transaction database

T will be minsup value of some ALPINE’s checkpoint.

This observation is readily obtained from the monotonic manner the ALPINE algorithm

explores successive bins of the support index. Thus, ALPINE will proceed “support-

wise” during the mining process. It is not hard to verify the following two properties:

Property 2.4.1 Given a transaction database T with m transactions over n items, the

number of checkpoints from it is bounded by min{2n,m}.

Property 2.4.2 The minimum support of the first checkpoint is equal to the highest support

of the singleton itemsets in T .

Remark 2.4.1 The highest support value which will correspond to the first and highest

checkpoint for ALPINE is equal to the support of the most frequent item. If no other
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item shares that support, that item alone constitutes the first checkpoint. In this case, the

subspace of itemsets corresponding to the first checkpoint has just one singleton set - that

most frequent item.

Remark 2.4.2 It may be the case that several items share the same, highest support. In

such case, ALPINE needs to do more work to reach the first checkpoint. In the extreme

case, these top support items may be perfectly correlated (that is, all their combinations

also have the same support). This is, of course, unlikely but possible. Suppose there are

k such items iπ1, iπ2, ..., iπk sharing the highest value of support, and the item order among

them is iπ1 < iπ2 < ... < iπk . Then ALPINE needs to explore and output these k itemset

intervals before reaching the first checkpoint: ({iπ1}, {iπ1iπ2 ..iπk }), ({iπ2}, {iπ2iπ3 ..iπk }), ...,

({iπk−1}, {iπk−1iπk }), ({iπk }, {iπk }), even though all the k itemset intervals are contained in

ONE closed itemset {iπ1iπ2 ..iπk }.

In this situation, it might be beneficial to confine the tree-shaped transversal routes of

ALPINE to only closed itemsets, which can reduce the work for the aforementioned extreme

case to explore only one itemset interval.

2.4.1 The ALPINE Algorithm for Frequent Itemset Mining

Now let uswork through an example in Table 2.1 (a:{1,3,5}, b:{2,3,4,5}, c:{1,2,3,5},d:{1},

e:{2,3,4,5}) to see how the ALPINE algorithm works for frequent itemset mining. The

total order among items in T is defined in Section 2.3, i.e., item e > item c > item b > item

a > item d, and the support index S is initialized from all itemset intervals of the singleton

itemsets as shown in Fig. 2.4a. In the support index S, the highest support value is 4, and in

the corresponding indexed bin, itemset interval ({e}, {e}) is on the top (highlighted in red),

that’s where the search starts. In the same figure, we also plot the subset lattice on the right

to show the exploration process.
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Table 2.1: An example transaction set T. (a) the horizontal representation; (b) the vertical representation.

(a)

tid items
1 {a, c, d}
2 {b, c, e}
3 {a, b, c, e}
4 {b, e}
5 {a, b, c, e}

(b)

item tidset
a {1, 3, 5}
b {2, 3, 4, 5}
c {1, 2, 3, 5}
d {1}
e {2, 3, 4, 5}

For item e is the highest ordered item on the total order chain, no further extension

is possible after reporting it (indicated by the thick green bounding box in Fig. 2.4b). So

the algorithm continues to the next itemset interval ({c}, {c}). The minimum itemset {c}

in the interval is extended with item e to itemset {ce} (indicated by the red arrow), and

the corresponding itemset interval is calculated according to Lemma 2.4.1, yielding to

({ce}, {ce}) with support 3. As support 3 has already been indexed in the support index S,

highlighted by blue in the figures, we add the itemset interval ({ce}, {ce}) into the indexed

bin for support 3 (Figure 2.4c).

Now the algorithm continues with the itemset interval ({b}, {be}), though both item c

and item e have higher order than item b, for item e is included in the interval, we only

need to extend the minimum itemset {b} with item c to get ({bc}, {bce}) with support 3 in

Figure 2.4c. Note that item e here is inherited from the maximum itemset {be}. We also

put the newly generated itemset interval into the bin with support 3. Now, the indexed bin

for support = 4 is empty, which means no more itemset intervals having support ≥ 4. The

subspace for support ≥ 4 is completed and we are safe to issue this guarantee at this point.

Then the algorithm automatically lowers the minimum support to the next possible

value, 3, and continues. It fetches itemset interval ({a}, {ac}) at the top of the bin with

support 3 (see Figure 2.4d). Similarly, item c with a higher order than item a is neglected,

for it has already been included in {ac}. So we extend the minimum itemset {a} with item

e then with item b. When itemset {a} is extended with item e, we get the itemset interval

({ae}, {ace}), where item c is inherited from the original itemset interval. When itemset
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Figure 2.4: The first few steps of the ALPINE algorithm on the example transaction set T for frequent itemset mining

{a} is extended with item b, we get ({ab}, {abce}), where item e is added due to the fact

that it is in the closure of itemset {ab}.

However, both itemset interval ({ae}, {ace}) and ({ab}, {abce}) have support equal to

2, which has not been indexed in the support index yet. We create a new bin with this
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Algorithm 1 ALPINE(Transactionset T , Support index S)
1: Init S by all itemset interval (I, I∗) of singleton itemset I in T ;
2: repeat
3: Get the bin b with the highest support s from S;
4: for all itemset interval (P,Q) in b do
5: Explorer(P, Q, S);
6: end for
7: Declare s to be minsup;
8: Issue checkpoint: complete subspace of all itemsets ≥ minsup;
9: if toTerminate == true then
10: break; // terminate requested by user
11: end if
12: until the support index is complete

Algorithm 2 Explorer(Minimum itemset P, Maximum itemset Q, Support index S)
1: Output itemset interval: (P,Q);
2: for all item j = |I | − 1; j > tail(P); j– – do
3: if j ∈ Q then
4: continue; // no need to extend with item ∈ Q
5: end if
6: R← P ∪ { j};
7: S ← R∗ ∪Q;
8: if sup(R) is already indexed in S then
9: Add (R,S) to the indexed bin;
10: else
11: Create a new bin with support sup(R) for S and add (R,S) to it;
12: end if
13: end for

support and put them into this bin (see Figure 2.4e). The similar procedure continues until

we finished building the full support index for this transaction set.

We can summarize the pseudo-code of our prototypical algorithm - ALPINE (Algo-

rithm 1) from this example. It starts from the bin of the highest support and it explores all

itemset intervals in that bin one by one. Then it continues with the bins of successively lower

support values. The initialization process in Line 1 initializes the support index from all the

itemset intervals of the singleton itemsets in the given transaction database T in decreasing

support order. Each itemset interval in a given bin is explored by the sub-routine Explorer

given in Algorithm 2 (Line 5), in which the minimum itemset of each itemset interval is
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extended with all possible items in descending support order from the most promising one

to the least promising one. Line 8 issues a checkpoint after completing all itemset intervals

in a bin (with support above or equal to the support of that bin). The anytime feature makes

the ALPINE algorithm can be interrupted at any moment (Line 9 - 11).

2.4.2 The ALPINEclosed Algorithm for Closed Itemset Mining

The ALPINE algorithm elaborated in Section 2.4.1 can build the full support index of all

itemsets from a transaction database T in decreasing support order. If we denote F and C

the sets of all frequent itemsets and all closed frequent itemsets, respectively. According

to their definitions, we know that C is a subset of F . Thus, a straightforward way to adapt

ALPINE for closed itemset mining is to add the closeness check for the maximum itemset

of an itemset interval at each step of the mining process.

Observation 2.4.3 Let (P,Q) be an itemset interval, then Q is closed if and only if Q =

I(T (P)).

From the definition of itemset interval, we have Q is supported exactly by T(P), i.e.

T(Q) = T(P). Thus, Q = I(T (P)) = I(T (Q)). According to the definition of closed

itemset given in Section 2.3, Q is a closed itemset.

For singleton itemset I, we know its itemset interval is (I, I∗). The closeness condition in

Observation 2.4.3 for I∗ is violated if and only if there exists some item e < tail(I) such that

e occurs in every transaction in T(I). For an itemset interval (R,S) generated from some

itemset interval (P,Q) in the intermediate stages of ALPINE, where S = R∗ ∪ Q, things

are slightly different. To fail the closeness check, there must exist some item e < tail(R)

and e < R satisfies: (1) e is shared by every transaction of T(R); (2) e < Q. In other words,

for closed itemset S, item e < tail(R) and e < R and e ∈ I(T (R)) can only be obtained

from itemset Q.
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Algorithm 3 ALPINEclosed(Transactionset T , Support index S)
1: Init S by itemset intervals (I, I∗) of singleton itemset I in T s.t. I∗ = I(T (I)) (closed);
2: repeat
3: Get the bin b with the highest support s from S;
4: for all itemset interval (P,Q) in b do
5: Explorer2(P, Q, S);
6: end for
7: Declare s to be minsup;
8: Issue checkpoint: complete subspace of all closed itemsets ≥ minsup;
9: if toTerminate == true then
10: break; // termination requested by user
11: end if
12: until the support index is complete

Algorithm 4 Explorer2(Minimum itemset P, Maximum itemset Q, Support index S)
1: Output closed itemset: Q;
2: for all item j = |I | − 1; j > tail(P); j– – do
3: if j ∈ Q then
4: continue; // no need to extend with item ∈ Q
5: end if
6: R← P ∪ { j};
7: S ← R∗ ∪Q;
8: if S = I(T (R)) (closed) then
9: if sup(R) is already indexed in S then
10: Add (R,S) to the indexed bin;
11: else
12: Create a new bin with support sup(R) for S and add (R,S) to it;
13: end if
14: end if
15: end for

With this observation, we can modify the ALPINE algorithm given in Section 2.4.1 to

the ALPINEclosed algorithm (Algorithm 3). Note that in Line 8 of Algorithm 4, to test the

closeness of itemset S, we only need to check all the items k < tail(R) and k < R and k < Q.

For any nonempty closed itemset S ∈ C, its parent is always defined and belongs to C [65].

This guarantees the completeness of the ALPINEclosed algorithm in mining all closed

frequent itemsets. The difference of the ALPINE and ALPINEclosed algorithm lies in:
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• Initialization: ALPINE is initialized with all itemset intervals of singleton itemsets

from a database T (Line 1 of Algorithm 1). In contrast, ALPINEclosed is initialized

with those itemset intervals passing the closeness test (Line 1 of Algorithm 3).

• Exploration: ALPINE outputs itemset interval and keeps all newly generated

itemset intervals (R,S) in the mining process (Algorithm 2). On the other hand,

ALPINEclosed only outputs closed itemset and maintains itemset intervals (R,S)

meeting the closeness condition (Algorithm 4).

• Status report: ALPINE reports the completion of the subspace of all frequent itemsets

above the current minsup (Line 8 of Algorithm 1). Instead, ALPINEclosed issues

checkpoint about finishing all closed frequent itemsets above the current minsup

(Line 8 of Algorithm 3).

2.4.3 The Generalized ALPINE+ Algorithm for Non-Boolean Data

Conceptually, the ALPINE and the ALPINEclosed algorithm mine itemsets from relational

tableswhere the attributes are boolean: the value of an attribute for a given record is “1” if the

item corresponding to the attribute is present in the transaction corresponding to the record,

“0” else. The problem is most data from many real-life applications besides the standard

market-basket analysis, like in the business and scientific domains, is non-boolean. It has

richer attribute types, which can be taxonomic [57] or quantitative [58]. A pre-processing

can be done to make the data into boolean. Or we can generalize the ALPINE algorithm to

mine itemsets from those non-boolean datasets, namely, the ALPINE+ algorithm.

All the generic individual items from a transaction set, i.e., taxonomic items are those at

the top-most concept level (a set) and quantitative items are those with the largest possible

interval (an interval), are sorted in decreasing support. This defines the total order among

the generic items. ALPINE+ starts with the index built from all the itemset intervals of
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those generic individual items and bins them based on their support values. This index is

also dynamically maintained.

At any point in time, we are working on the uncompleted bin with the highest support

value s. To enumerate all itemsets with support above or equal to s, we process each

itemset interval in the bin in two directions: 1) extending the minimal itemset of the itemset

interval with all generic items greater than the tail of this itemset if exist; 2) finding the

most frequent divisible item inside the minimum itemset, either going to a lower concept

level if it is taxonomic or dividing it into sub-intervals if it is quantitative.

For a quantitative attribute, it is partitioned into intervals (can be a single value when the

lower and the upper bound of an interval is the same) and mapped to consecutive integers,

such that the order of the intervals is preserved. Suppose the interval of a quantitative

attribute consists of n ordered elements (e1 < e2 < ... < en), each time we divide it into

two sub-intervals, [e1, en−1] and [e2, en] by eliminating one element.

This divide approach is applied recursively until an interval only has one element. To

avoid duplication of the generated sub-intervals, we confine to keep both sub-intervals if the

smallest element e1 is inside the original interval, otherwise, we only keep the sub-interval

with the larger lower bound. For instance, the interval [e1, en−1] is divided into [e1, en−2]

Algorithm 5 ALPINE+(Transactionset T , Support index S)
1: Init S by all itemset interval (I, I∗) of singleton itemset I from the generic individual

items in T ;
2: repeat
3: Get the bin b with the highest support s from S;
4: for all itemset interval (P,Q) in b do
5: Explorer3(P, Q, S);
6: end for
7: Declare s to be minsup;
8: Issue checkpoint: complete subspace of all itemsets ≥ minsup;
9: if toTerminate == true then
10: break; // terminate requested by user
11: end if
12: until the support index is complete
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Algorithm 6 Explorer3(Minimum itemset P, Maximum itemset Q, Support index S)
1: Output itemset interval: (P,Q);
2: N ← ∅
3: // Find all possible extensions for P
4: if P consists of only generic items then
5: for all generic item j = |I | − 1 ∧ j < Q; j > tail(P); j– – do
6: R← P ∪ { j};
7: S ← R∗ ∪Q;
8: N ← N ∪ {(R,S)}
9: end for
10: end if
11: //Divide the most frequent divisible item to the next concept level or sub-intervals
12: if itemset P is divisible then
13: Identify the most frequent divisible item i from P
14: if item i is taxonomic then
15: Access the next lower level in the concept hierarchy of item i: L = {it1, it2, ..., itk}
16: for all items it in L do
17: N ← N ∪ {(it ∪ (P \ i), (it ∪ (P \ i))∗ ∪Q)}
18: end for
19: else if item i is quantitative then
20: Divide item i into sub-intervals subI (do not keep duplicate sub-intervals)
21: for all sub-interval ii in subI do
22: N ← N ∪ {(ii ∪ (P \ i), (ii ∪ (P \ i))∗ ∪Q)}
23: end for
24: end if
25: end if
26: // Index the newly generated itemset intervals
27: for all itemset interval (P′,Q′) in N do
28: if sup(P′) is already indexed in S then
29: Add (P′,Q′) to the indexed bin;
30: else
31: Create a new bin with support sup(P′) for S and add (P′,Q′) to it;
32: end if
33: end for

and [e2, en−1], we keep both intervals for e1 is included in it; while the interval [e2, en] is

divided into [e2, en−1] and [e3, en], we only keep the sub-interval [e3, en] to avoid explore

sub-interval [e2, en−1] twice.

Let (P,Q) be an itemset interval we are currently working on. When P only consists

of generic items, we extend P with all possible generic items j greater than tail(P) and

not contained in Q. The corresponding itemset intervals for the newly generated itemsets
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are obtained according to Lemma 2.4.1. At the same time, we identify one most frequent

divisible item i from P (if exists) and go to the next concept level if item i is taxonomic or

divide it into sub-intervals if item i is quantitative, then union it with the rest part of P, i.e.,

P \ i, to generate the new itemset interval.

All of the newly generated itemset intervals (P′,Q′) are segregated by their supports

into different bins of the support index. Obviously, the support of the newly generated

itemset intervals will always be smaller than sup(P). There are two different situations: a)

the support is already associated with some existing bin and we only need to add the newly

generated interval to that bin; b) the support is a new value, which has not been indexed yet

and we need to create a new bin to place the itemset interval. The pseudo-code of ALPINE+

is given in Algorithm 5 with the exploration subroutine is defined in Algorithm 6.

2.5 Computational Experiments

In this section, we extensively explore the ALPINE algorithm and empirically evaluate and

analyze the ALPINE algorithm in comparison with related works in both frequent itemset

mining and sequential top-k itemset mining. For frequent itemset generation, we choose

three of the best existing frequent itemset generation algorithms in literature, i.e., Eclat [71],

FPGrowth [31] and LCM [66]. Of which, the LCM algorithm is closely related with our

work and we downloaded its implementation - LCM (ver. 3) from the author’s website1.

Eclat and FPGrowth algorithms are implemented in SPMF open-source library [22]. The

utility gained at each probe of all algorithms can be used to quantify the usefulness of the

intermediate partial solutions. As the measure of utility is usually application-dependent,

we don’t define the concrete utility function form here, but directly list the minsups reached

at each probe. In top-k mining, we select the Seq-Miner [43] that mines the top-k frequent

patterns sequentially without any minimum support. The proposed ALPINE algorithm

1http://research.nii.ac.jp/~uno/codes.htm

http://research.nii.ac.jp/~uno/codes.htm
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is implemented in JAVA and all the experiments were carried out on our department

research cluster2. Both the experimental datasets from the FIMI repository3 and a real gene

expression dataset from the Cancer Cell Line Encyclopedia (CCLE) project4 are used here.

The computational overhead of ALPINE in comparison with LCM is also analyzed.

2.5.1 Support-wise Progress Analysis

Let us start with emphasizing the benefits of progressive data mining. Since all conventional

frequent itemset generation algorithms [2, 48, 31, 71, 49, 66, 18, 17, 19] require setting up

a-priori minimum support by the user, what if the minimum support is set too low and the

transaction database is too large? If this happens, such algorithms may run for very long

time (practically forever), “hanging” without providing any information to the user, except

generating huge numbers of itemsets. However, no guarantees on the minsup reached at

each point are given.

ALPINE, on the other hand, will provide the user with checkpoints which guarantee the

partial completeness. It will provide lower and lower values of minimum support for which

the set of frequent itemsets ALPINE produces is complete. These guarantees will offer the

user a measure of progress and knowledge about the subspace of the entire itemset search

space that has been completely explored. A set of experiments is designed here to check

how ALPINE systematically explores the itemset search space and to verify the added value

of the ALPINE algorithm.

Experiment on Experimental Datasets

In the first set of experiments, we study how ALPINE and LCM proceed support-wise on

experimental datasets from the FIMI repository. To illustrate the benefits of ALPINE, two

relatively large transaction databases, i.e., T40I10D100K and Kosarak, which have many

2http://research.cs.rutgers.edu/~watrous/research-profile.html
3http://fimi.ua.ac.be/data/
4http://www.broadinstitute.org/ccle/data/browseData

http://research.cs.rutgers.edu/~watrous/research-profile.html
http://fimi.ua.ac.be/data/
http://www.broadinstitute.org/ccle/data/browseData
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Table 2.2: The minsups reached at probes (in hour) by LCM and ALPINE on the T40I10D100K (left) and the Kosarak (right) dataset.

T40I10D100K
Probe LCM ALPINE
1 7314 116
2 6390 56
3 5855 34
4 5317 22
5 4873 16
6 4499 13
7 4168 11
8 3882 10
9 3575 9
10 3313 8

Kosarak
Probe LCM ALPINE
1 10178 982
2 9569 926
3 9264 907
4 8955 894
5 8810 885
6 8684 878
7 8645 872
8 8450 867
9 8379 862
10 8158 858

items and many transactions, are selected here. T40I10D100K has 100,000 transactions

over 1,000 items generated by the IBM Quest Synthetic Data Generator, while Kosarak

has 990,000 transactions over 41,270 items containing the click-stream data of a Hungarian

on-line news portal. To reduce the number of mined itemsets, both ALPINE and LCM are

confined to mine closed frequent itemsets in this experiment.

The experimental setting is as follows: we start both theALPINE and the LCMalgorithm

at the same time, and probe every hour since they are started, i.e., Hour 1, Hour 2, ..., to

check the status of both algorithms. Since ALPINE is parameter-free, it is not required

to set any threshold. It just continuously mines itemsets from checkpoint to checkpoint

and tries to build the full support index for a given transaction database T . Different from

ALPINE, LCM must be initialized with some user-provided minimum support threshold.

In this experiment, we set the minimum support threshold of LCM to 1 to mine all the

itemsets from T in consideration of building the full support index. The minimum support

reached, that is, all the itemsets with support greater than or equal to the minimum support

are discovered, at each probe t by the ALPINE algorithm is readily obtained from its

last checkpoint before t, while this information for the LCM algorithm is obtained by

post-processing all its output itemsets up to time t.
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The results of both algorithms for the set of probes up to ten hours on T40I10D100K

and Kosarak datasets are shown in Table 2.2. For both datasets, the first column is the probe

time in hour, and the second and third column list the minsup reached at each probe by

LCM and ALPINE, respectively. It’s clear from the table that ALPINE can quickly reach

some lower minimum support value than LCM. For instance, on the T40I10D100K dataset,

ALPINE can reach the minimum support of 116 in the first hour while LCM only completes

the subspace of all itemsets with support above 7314. The same trend is also observed in

the Kosarak dataset. For the Kosarak dataset has more items, it’s even harder for the LCM

algorithm to move minimum support. We notice that even after twenty hours, the minimum

support LCM reached on the Kosarak dataset is 7920, while ALPINE has already finished

all itemsets with support greater than or equal to 835.

The underlying reason is ALPINE systematically explore the itemset space in a “mono-

tonic” manner. ALPINE guarantees that all itemsets with support exceeding the current

checkpoint’s support have been found before it proceeds further, to build the support index

for a lower minimum support. In contrast, LCM directly enumerate itemsets in a depth-

first-search manner. To understand how these two algorithms behavior differently, we have

taken the partial solutions generated for the T40I10D100K dataset at one hour, three hours,

six hours and ten hours as slices to look into the algorithms. We analyze these intermediate

results and calculate the degree of completeness for all possible support values s from this

dataset, i.e., Dc(s).

The results are plotted in Figure 2.5. In each graph, the horizontal axis is the support

value in a log scale, and the vertical axis is the normalized degree of completeness for

each support s. For example, in Figure 2.5a, it plots the partial answer generated by LCM

and ALPINE after one hour. For LCM, in this intermediate solution, we can find itemsets

with almost all different possible support values s from this dataset, but the majority of

these supports are incomplete (i.e., Dc(s) < 1). Different from LCM, in ALPINE’s partial

output, all supports larger than the support of the current working bin (to the left of it) are
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Figure 2.5: Progress of the LCM and the ALPINE algorithm at probes on the T40I10D100K dataset. The horizontal axis is the support
in decreasing order in a log scale and the vertical axis is the degree of completeness of each distinct support value.

complete, while none of the itemsets from a lower support bin have been explored. Thus,

the computational overhead of ALPINE at each checkpoint is minimum.

By checking all the graphs in Figure 2.5 together, we can intuitively perceive how both

algorithms make progress as the computational time increases. The quality of the solution

from ALPINE improves as the built support index is more and more complete. For LCM,

though the completeness of a specified support value improves, in terms of the moving

of minimum support, the progress is not so obvious. Imagine a dataset with even more

items, the LCM algorithm might be stuck computing while ALPINE can report useful and
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actionable knowledge in time through checkpoints. In the next subsection, we’ll test both

algorithms on a real gene expression dataset.

Experiment on Real Gene Expression Dataset

In the second set of experiments, we use LCM and ALPINE to mine all the co-regulated

genes or gene groups from a real gene expression dataset from the Cancer Cell Line En-

cyclopedia project for the drug sensitivity analysis [8]. The gene-centric RMA-normalized

mRNA expression data [30] consists of the expression values of 18,988 genes against 1,037

cell lines (patients).

To make the dataset applicable for both the LCM algorithm and the ALPINE algorithm,

each column pertaining to the expression of a single gene is split into several binary columns.

Since the data has been properly normalized, we simply adopt the equal-depth (frequency)

partitioning [25] method to discretize each gene expression into five bins. The resulting

transaction database has 94,940 items and 1,037 transactions, with a density of 20 percent.

We name this dataset as the CCLE_Expression dataset. To compress the output from this

high-dimensional dataset, only closed frequent patterns are mined in this experiment.

We ran both LCM and ALPINE on the gene expression dataset. The minimum support

threshold of LCM is set to 80, due to the huge number of resulting closed frequent patterns

from this dataset. Similar to the experimental setting for the experimental datasets used in

the previous subsection, a series of random probes are selected in time and the minimum

support reached by both algorithms are checked at every probe. The results are presented

in Table 2.3. We find that ALPINE can continuously make progress in terms of lowering

the reached minimum support. However, the LCM algorithm is stuck in this case at the

minimum support of 208. Since ALPINE always focuses on building the uncompleted bin

with the highest support from the index, while LCM spreads its power to the whole support

spectrum, making all bins to be completed almost at the same time.
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Table 2.3: The minsups reached at probes (in hour) by the LCM and the ALPINE algorithm on the CCLE_Expression dataset.

Probe 2 3 4 5 6 7 8 9 10 13 15 18 23

LCM 209 208 208 208 208 208 208 208 208 208 208 208 208
ALPINE 136 125 122 120 119 118 117 116 115 114 113 112 111

In practical scenarios like this one, it is generally reasonable to have some time period for

most data analysis operations. Though ALPINE might also not be able to finish the whole

mining task within the time period, but it is always able to offer a partial solution based

on its last checkpoint. Furthermore, the partial solution offered by ALPINE is complete

in itself and has the definite guarantee with regard to a certain minimum support. Thus,

these complete sets of co-regulated genes or gene groups with a higher minimum support

returned early by ALPINE can be used to predict the drug response even though the mining

process continues. The high support implies high coverage, which might lead to more

widely applicable associations in this case. Besides, as the computational time increases,

the built support index is more and more complete and ALPINE continues to offer those

lower support patterns.

2.5.2 Comparison with The Benchmark Approach

Tušar et al. propose an approach for benchmarking budget-dependent algorithms that allows

anytime performance assessment of their results [62] based on the Comparing Continuous

Optimizers (COCO) platform [34]. The idea is very simple: the algorithm is run with

increasing budgets and the resulting runtimes are presented in a single data profile (an

empirical cumulative distribution function) [45].

Consider K increasing budgets b1, b2, ..., bK and K budget-dependent algorithm variants

Ab1 , Ab2 , ..., AbK . The algorithm Ã first works as algorithm Ab1 for budgets b ≤ b1, then

works as algorithm Ab2 for budgets b, where b1 < b ≤ b2, and so on, finishing bymimicking

algorithm AbK for budgets b, where bK−1 < b ≤ bK . Back to the frequent itemset mining

problem, the budget-dependent algorithm variants could be the frequent itemset mining



34

Table 2.4: Properties of datasets

Dataset Number of Items Number of Transactions
BMS-WebView-1 497 59,602
BMS-WebView-2 3,340 77,512

Retail 16,470 88,162
T10I4D100K 870 100,000

Chess 75 3,196
Mushroom 119 8,124

algorithm with different minimum support thresholds. Thus, the benchmarking process is

similar to the parameter tuning process in interactive pattern mining [67].

Rather than setting the minimum support a priori, a user may run a mining algorithm

sequentially with the successively smaller values of the minimum support threshold. This

will of course result in repeated work. Every time a new call to themining algorithm is made

with smaller value of minimum support, the most frequent itemsets are generated again and

again. The advantage however is similar to the one provided by ALPINE, checkpoints

can now be provided just like they are produced by ALPINE. However, such recursive

process, not surprisingly, incurs substantial time penalty as compared with ALPINE. In

this subsection, we compare ALPINE with the benchmark approach of recursive evaluation

of frequent itemset mining algorithms, Eclat [71], FPGrowth [31] and LCM [66], with

decreasing minimum support thresholds.

In the set of experiments, we select BMS-WebView-1, BMS-WebView-2, Retail,

T10I4D100K, Chess and Mushroom datasets from the FIMI repository. The transaction

instances can be classified into two groups. The first group are sparse datasets, composed of

BMS-WebView-1/ BMS-WebView-25, Retail and T10I4D100K datasets, while the second

group are dense datasets, i.e., Chess and Mushroom. The properties of these datasets are

listed in Table 2.4.

A set of minsups from the checkpoints of ALPINE are applied to Eclat, FPGrowth and

LCM recursive for multiple runs. The resulting accumulated runtimes are plotted in a single

5click-stream data from a webstore used in KDD-Cup 2000
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Figure 2.6: Comparison with the benchmark approach

data profile for each algorithm respectively in Figure 2.6. From the figure, we can verify that

the rate of runtime increase of ALPINE is much slower than the rest algorithms for almost all

the datasets, eventually ALPINE becomes faster than the three algorithms, although it might

take a bit longer than them at the beginning, for ALPINE takes time to initialize the support
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index. The reason is that APLINE mines contiguously from checkpoint to checkpoint in

a monotonic manner without any repeated work (never starting from scratch), while the

benchmarking process restarts a variant of the algorithm every time. It is not difficult to

verify in Figure 2.6, the advantage of ALPINE increases as the number of iterations of

frequent pattern mining algorithm increases in this benchmarking process.

2.5.3 Comparison with Sequential Top-k Mining

A sequential top-k miner shares some flavor of the contract-type anytime algorithm [75]

and it can also provide definite results at each chunk, i.e, all itemsets with support above

or equal to the support of the last one in the chunk. The advantage is similar to the

one provided by ALPINE, checkpoints can now be provided just like ALPINE. As shown

in [35], the sequential top-k mining algorithm ismore efficient than the benchmark approach,

running the traditional data mining algorithms recursively with successively smaller values

of minsup. That’s why we also compared our algorithm with a sequential top-k miner

- Seq-Miner [43]. Seq-Miner mines the top-k frequent patterns sequentially and outputs

every top nc (a user defined chunk size) patterns.

From the set of datasets used in Section 2.5.2, we selected two sparse datasets and

one dense dataset as representatives for this experiment, namely, BMS-WebView-2,

T40I10D100K and Mushroom. For Seq-Miner, the chunk size nc of these datasets are

selected to be 105, 104 and 106, respectively, according to the density and output number of

frequent patterns of each dataset. The number of patterns generated at each checkpoint and

the time to reach that checkpoint is plotted in Figure 2.7 for both algorithms. In this figure,

the horizontal axis is the running time since the algorithm starts and the vertical axis is the

number of generated patterns.

From these graphs, it’s easy to verify the facts: 1) ALPINE produces many more

checkpoints than Seq-Miner given the same execution time; 2) the step size (time between

two successive checkpoints) of Seq-Miner is much longer than that of ALPINE, and it
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(a) BMS-WebView-2
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(c) Mushroom

Figure 2.7: Comparison with sequential top-k mining algorithm

grows as the running time increases. The reason is a new and larger FP-tree has to be

rebuilt from scratch whenever a given top-k is changed in the Seq-Miner. Every time a new

call to the mining algorithm is made with the smaller value of minsup discovered in the

VirtualGrowth. Thus, the FP-tree is built many times and the most frequent itemsets are

generated again and again.

Different from Seq-Miner, ALPINE monotonically explores itemset intervals with de-

scending values of support and mines continuously from checkpoint to checkpoint without

any redundancy (it never starts from scratch). Not surprisingly, the iterative process of

Seq-Miner incurs substantial time penalty as compared to that of ALPINE. The step size of

Seq-Miner is related with the parameter - chunk size nc, and we can reduce the step size by

reducing its chunk size. In that case, it will result in more iterations in this iterative process

and more repeated work in total.

In general, the number of iterations and the total runtime of Seq-Miner might grow

dramatically as we generate more and more frequent patterns. This is consistent with

the trend displayed in the graphs of Figure 2.7 that the runtime difference of Seq-Miner

and ALPINE grows with the increasing of the number of generated patterns. Thus, the

superiority of ALPINE increases with the number of iterations of frequent pattern mining

in Seq-Miner. Given the same time, ALPINE can always generate more frequent patterns

than Seq-Miner. In otherwords, usingALPINE, users can obtain the complete set of itemsets

above a lower minsup in the equivalent execution time in comparison with using Seq-Miner.
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ALPINE turns out to be even more efficient than the contract-type like algorithm, though it

is interruptible at any time.

2.5.4 Computational Overhead of ALPINE

Many frequent pattern discovery algorithms have been developed in literature [2, 48, 31,

71, 49, 66, 18, 17, 19] and it is not our intention to develop yet another efficient algo-

rithm. Instead, our aim here is to show the usefulness of a miner with partial completeness

guarantees. To complete the picture, we also conducted experiments to evaluate the perfor-

mance of ALPINE in mining all frequent or closed itemsets in comparison with LCM (for

it performed better than Eclat and FPGrowth in Section 2.5.2).

In this set of experiments, we use the same set of datasets as in Section 2.5.2.

ALPINE started without any parameter, while LCM was initialized with some minsup

from ALPINE’s checkpoints. The results are displayed in Figure 2.8. The horizontal axis

is the absolute minimum support value, and the vertical axis is the runtime. Note that for

every transaction database, ALPINE executes once to mine all frequent or closed itemsets,

while LCM runs multiple times for the set of different initial minsup values. The curves

for alpine_all and alpine_closed in the plots are continuous in the sense that the runtime is

known for each distinct minsup value, indicated by solid lines. In contrast, the lcm_all and

lcm_closed are plotted in dashed lines for only the results at markers are evaluated.

Overall, for all instances and minsup values, ALPINE is comparable to LCM, which

can be verified from the graphs. The results validate the effectiveness of the itemset closure

operator and the compact itemset interval representation. For closed itemset mining,

ALPINE is slightly slower than LCM, however, the trend and the order of magnitude of

the runtime of both algorithms are similar. For all frequent itemset mining, ALPINE catch

up with or even compete with LCM as they get to lower and lower minsup. The reason is

ALPINE processes and outputs groups of itemsets compactly in itemset intervals instead of

enumerating each individual itemset in an interval.
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Figure 2.8: Computational overhead of ALPINE

For sparse datasets like Figure 2.8a - Figure 2.8d, the graphs show similar trends: the

curves of LCM and ALPINE are close to each other and ALPINE is slightly slower than

LCM at the beginning. The difference between them might further increase in the middle

of the curves as they are mining all frequent itemsets, for the overhead in generating and
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maintaining a large number of itemset intervals below the current minsup might dominate

the acceleration of the itemset closure operator and itemset interval compression. However,

as the minsup gets lower and lower, the previously built partial index for lower minimum

supports saves the cost for later stages and the low support itemsetsmight bemore compactly

grouped in itemset intervals. That’s why we can see ALPINE might compete with LCM at

some lower minimum support value for all frequent itemset mining on these datasets.

For dense datasets in Figure 2.8e and Figure 2.8f, the compression ratio of itemset

intervals is even higher, so ALPINE becomes faster than LCM for mining all frequent

itemsets. This advantage will become more obvious as we get to lower and lower minimum

support, as indicated in Figure 2.8f.

2.6 Summary

In this chapter, we defined the progressive itemset mining framework for long mining tasks

like slicing large multidimensional dataset in boundless data analytics. A dynamic approach

- the ALPINE algorithm is proposed. ALPINE allows us to achieve flexible trade-offs

between efficiency and completeness. ALPINE proceeds support-wise from checkpoint

to checkpoint and can be interrupted at any time but offer intermediate meaningful and

complete results with definite guarantees. ALPINE is evaluated to be superior to the

benchmark approach and more efficient than the contract-type like algorithm, Seq-Miner,

though it is interruptible at any time. It has minimal computational overhead as compared

to the best existing frequent itemset mining algorithms. The progressive mining framework

might be generalized to other anti-monotone itemset interestingness measures as well.



41

Chapter 3

Boundless Data Analytics

Multidimensional distributions in data mining are often represented as plots: scatter plots

between two numerical attributes; heat maps, bar graphs, histograms, box plots - they

either relate two attributes together or show frequency distributions of one attribute. What

makes one plot more interesting than the other? What if we could generate all possible

relationships and rank the most interesting ones at the top - do it all automatically, thus

saving days of tedious and repetitive human work? The value of this work lies in dramatic

reduction of human work needed to analyze data. We would like to harness computational

resources to work for us, doing mundane work (at least for a creative data scientist) and

isolate only plots which have huge potential interest.

3.1 Introduction

Multidimensional distributions are often used in data mining to describe and summarize

different features of large datasets [3]. Multidimensional analysis [60] is an informational

analysis on data which takes into account many different relationships, each of which

represents a dimension. It is a data analysis process which groups data into two categories:

data dimensions and data measurements1. For example, a wine retail analyst may want to

1https://en.wikipedia.org/wiki/Multidimensional_analysis

https://en.wikipedia.org/wiki/Multidimensional_analysis
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understand how the relationship between price and alcohol level varies by region, by wine

type, by manufacture, by year of production, i.e., the French chardonnays from 1990s may

have quite different joint distribution of price and alcohol from Italian cabernets from the

1980s. Multi-dimensional analysis will yield results for these complex relationships. The

challenge is how to handle large data sets in a large number of dimensions [28]. It may

calculate an unbounded number of plots and subgroups in two directions:

I.We can keep supplementing themultidimensional databasewith any arbitrary aggregated

dimensions and measurements, i.e., sum, avg (average), max, min, quartile, percentile,

count, rank(n) [68], variance [53], mode, or other relational aggregate functions of an

attribute aggregated over the population of a specific group.

II. We can keep exploring the multidimensional data and selecting subsets of it in all

possible ways: 1) by classical navigational operators like roll−up, drill−down, slice,

dice and pivot based on the data dimensions [50] and new derived dimensions; 2) by

slicing based on an interval-discretized numeric attribute [70]; 3) by dividing the 2D

geometric plane of two numeric attributes into sectors and slicing the data sector-wise etc.

For instance, a typical multidimensional database has five to seven dimensions, an

average of three levels hierarchy on each dimension and aggregates more than a million

rows [53]. The above form of data analysis and manual exploration process can get tedious

and error-prone for large datasets that commonly appear in real-life. What if we could give

the work to the computer and automate this data analysis process?

Given a large multidimensional database along with its schema, the boundless data

analytics is a mining process with the objective to generate all possible univariate and

bivariate relationships or plots with sufficient support. Because the number of dimensions

may also include derived dimensions so we do not know ahead of time how long the process

will take, may even take an unbounded amount of time. This process is briefly mentioned

in Chapter 2 and we’ll elaborate it in detail in this chapter.
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Data DB Schema

Pre-aggregate via Group-bys

Global Operator: Slice()

Data Slices

A Data Slice

Local Operator: Plot()

Univariate and Bivariate Plots

(a) (b)

Figure 3.1: The framework of boundless analytics: (a) global slicing process, (b) local plotting process.

The proposed framework of automated boundless analytics is sketched in Figure 3.1. Ini-

tially, aggregates are pre-calculated by performing SQLGroup by queries on the relationship

tables to supplement involving entities with new summarized statistics or measurements.

Then the augmented multidimensional database goes through (a) a global slicing process

and (b) a local plotting process. The global operator, Slice(·), operates on the supplemented

multidimensional database and tries to partition the data into different subgroups or data

slices based on its dimensions. We utilize the progressive itemset mining paradigm intro-

duced in Chapter 2 to slice the data progressively in descending support. The local operator,

Plot(·), will do the univariate and bivariate analysis for each large data slice output from

the global slice operator and generate all the 1-D and 2-D plots in a slice.

The rest of this chapter is organized as follows. Section 3.2 introduces the basic concept

and notations used throughout this chapter. Section 3.3 discusses how we score the plots

based on their spread. Section 3.4 illustrates how to pre-aggregate the relationship tables

by the set of foreign keys. Then Section 3.5 and Section 3.6 explain the global slicing

operator and the local plotting operator, respectively. Finally, we conclude this chapter in

Section 4.7.
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3.2 Basic Notations

3.2.1 Entity-Relationship Model

A multidimensional database is usually organized as a set of decentralized tables forming

the star-schema model [7, 39, 47], Franconi et al. [24] generalize it in an extended version

of the entity-relationship conceptual data model [61], which is able to handle more complex

descriptions of aggregated entities. We will also use the E-R model to represent a dataset

in this chapter, where dimension is a synonym for a domain of an attribute that is structured

by a hierarchy or an order.

Conceptually, let S = {E,R} represents a database schema, where E = {ei}, i =

1,2, ...,m, be the set of entities and R = {r j}, j = 1,2, ...,n, be the set of relationships

connecting those entities. Each entity ei contains the information specific to itself, while

the relationship r j connects some entities fromE and contains attributes for the relationship.

Let R[e] be a relational table scheme corresponding to the entity e, which has one

primary key and no foreign keys; the table may have other fields that are categorical,

numerical or boolean. R[r] be a relational table scheme corresponding to the relationship

r , which contains foreign keys to other entities; in general, a relationship table also contains

some other attributes called measurements about the relationship. Given an entity e in E,

let FK[e] be the set of relationships in R where e is a foreign key.

We’ll use the well known bar-beer-drinker database schema [63] as a running example

in this chapter. The E-R diagram for the data is displayed in Figure 3.2, in which we can

find three entities, Beers, Bars and Drinkers and two relationships, Sells and Frequents.

Beers(name, manf);

Bars(name, addr, license);

Drinkers(name, addr, phone);

Sells(bar, beer, price);

Frequents(drinker, bar, spending).
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Bars

name VARCHAR(50)

license VARCHAR(7)

addr VARCHAR(200)

Indexes

Beers

name VARCHAR(50)

manf VARCHAR(50)

Indexes

Drinkers

name VARCHAR(50)

phone VARCHAR(12)

addr VARCHAR(200)

Indexes

Frequents

drinker VARCHAR(50)

bar VARCHAR(50)

spending DECIMAL(9,2)

Indexes

Sells

bar VARCHAR(50)

beer VARCHAR(50)

price DECIMAL(9,2)

Indexes

Figure 3.2: Entity-Relationship representation of the bar-beer-drinker database

The three entity tables, Beers, Bars and Drinkers, have a unique name field to record

the information of beers, bars and drinkers, respectively. Each entity table has a number of

attributes about the entity. To ensure uniqueness, we refer to an attribute by concatenating

it with the table name, for instance, Beers.name and Bars.name.

The relationship table, Sells, stores information on all menus in bars. In this table,

except the attribute bar references the name in Bars and beer references the name in Beers,

the price information of a beer sold in a bar is also recorded, which is a measurement about

this relationship. Similarly, in the relationship table, Frequents, drinker references the name

in Drinkers and bar references the name in Bars, and spending tracks the amount a drinker

spends in a bar monthly. An instance of the database schema is shown in Table 3.1.

3.2.2 Plots Parameterized by Data Slice

Let I = {i1, i2, ..., im} be a finite set of distinct items. In the case of a relational database, an

item corresponds to a descriptor of the form (attribute, value) [56], specifically, attribute =

value if the attribute is a discrete attribute, i.e., categorical or ordinal, or attribute ∈ interval

if the attribute is a continuous attribute. For instance, for the example given in Table 3.1,

an item can be represented as Beers.manf = ‘Anheuser-Busch’ or Bars.addr = ‘New York’.

A set of items is denoted as an itemset, which corresponds to a transaction in a database.
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Table 3.1: An example instance of bar-beer-drinker schema: entity tables (a) Beers, (b) Bars and (c) Drinkers, and the relationship tables
(d) Sells and (e) Frequents.

(a) Entity: Beers

name manf
Budweiser Anheuser-Busch
Michelob Ultra Anheuser-Busch
Blue Moon Coors Brewing Company
Zima Coors Brewing Company

(b) Entity: Bars

name addr license
Cabana San Francisco CA4567
Seven Bamboo New York NY1234
Hedley Club New York NY1235
Blue Angel San Francisco CA4578

(c) Entity: Drinkers

name addr phone
Bob San Francisco 415-234-6789
Vince New York 234-456-7890
Jesse San Francisco 415-234-7642
Rebecca New York 234-456-4114

(d) Relation: Sells

bar beer price
Cabana Budweiser 5
Cabana Blue Moon 7.5
Cabana Zima 4.25
Seven Bamboo Budweiser 5.5
Seven Bamboo Michelob Ultra 6
Seven Bamboo Blue Moon 7
Hedley Club Budweiser 5.75
Hedley Club Michelob Ultra 6
Blue Angel Blue Moon 6.75
Blue Angel Budweiser 5.25

(e) Relation: Frequents

drinker bar spending
Bob Cabana 35
Bob Blue Angel 65
Bob Seven Bamboo 25
Vince Seven Bamboo 50
Vince Hedley Club 60
Jesse Cabana 30
Jesse Blue Angel 75
Rebecca Cabana 30
Rebecca Seven Bamboo 45
Rebecca Hedley Club 25

A conjunction of k descriptors is denoted as a k-conjunct. For a given k-conjunct and a

database of objects [38]:

• The set of objects that satisfy the k-conjunct define the slice for that conjunct. Logi-

cally, a slice depicts a multidimensional view of the data.

• The attributes that constitute the k-conjunct define the dimensions of the slice.

• Distributions of attributes (1-dimensional or 2-dimensional) over objectswhich satisfy

the slice definition define the plots of the slice.
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A slice S′ is defined to be a specialization or a subslice of another slice S if the set of

records in S′ is a subset of the set of records in S. As an example, the slice of the sales of

beers fromAnheuser-Busch in bars in NewYork from Table 3.1 is denoted by (Beers.manf =

‘Anheuser-Busch’ ∧ Bars.addr = ‘NewYork’). The dimensions for this slice are Beers.manf

and Bars.addr. If we look at the relationship between Sells.price and Sells.beer in this slice,

then the side-by-side box plots will be generated for ‘Budweiser’ and ‘Michelob Ultra’,

respectively. A possible subslice of the slice would be (Beers.manf = ‘Anheuser-Busch’ ∧

Bars.addr = ‘New York’ ∧ Sells.price ∈ [5, 6]). Note that if anm-conjunct T is a superset of

an n-conjunct T ′ (m ≥ n), then the slice defined with T is a subslice for the slice described

by T ′. Usually, given a dataset, we treat the categorical attributes as its dimensions (or the

independent attributes).

3.2.3 Univariate and Bivariate Plots

Both discrete and continuous attributes are of our concern here. For a data slice with

sufficient support, we will do univariate and bivariate analysis. Univariate analysis is the

simplest form of data analysis where the data being analyzed contains only one variable,

while bivariate analysis is used to find out if there is a relationship between two different

variables. Technically, we could extend to multivariate analysis, it just becomes harder to

visualize. Thus, we confine to generate all the possible 1-D and 2-D plots for a data slice.

Distribution of a single attribute

Single discrete attribute (like Beers.manf): The distribution of a variable shows its pattern

of variation, as given by the values of the variable and their frequencies. To get an idea of

the pattern of variation of a discrete variable, we can display the information with a bar

graph as indicated by Figure 3.3a.

Single continuous attribute (like Sells.price): For this kind of attributes, we should use a

histogram. Histograms differ from bar graphs in that they represent frequencies by area and
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(a) (b)

(c) (d)

(e)

Figure 3.3: Examples of univariate and bivariate plots: (a) bar graph, (b) histogram, (c) heatmap, (d) scatter plot and (e) side-by-side
box plots

not by height. A good display will help to summarize a distribution by reporting the center,

spread, and shape for that variable. One example is given in Figure 3.3b.

Relationship of two attributes

Two discrete attributes (like Sells.bar and Beers.manf): We analyze an association through

a comparison of conditional probabilities and represent the data using contingency tables.

Graphically, a contingency table is shown as a heatmap like Figure 3.3c.
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Twocontinuous attributes (likeFrequents.spending and aggregated attributeBars.avg_price):

To analyze this situation we consider how one attribute, called a response attribute, changes

in relation to changes in the other attribute, called an explanatory attribute. Graphically, we

use a scatter plot like Figure 3.3d to display the distribution over two continuous attributes.

One discrete attribute and one continuous variable (like Sells.price and Beers.manf): These

are best compared by using side-by-side box plots to display any differences or similarities

in the center and variability of the continuous attribute across the discrete attribute. An

example is shown in Figure 3.3e.

3.3 Score the Plots

As mentioned in the opening of this chapter, we intend to find those “interesting” plots.

How to measure the interestingness of a plot? In this section, we propose to quantify/score

the interestingness of a plot based on its spread. The proposed score function favors the

inequality or unbalance of a plot. The intuition is that themore unbalanced the distribution is,

the more strategies can be taken to promote the response for segmented groups. Otherwise,

if the data is evenly distributed across the variable, no group segmentation is necessary, for it

is an irrelevant factor for the response. This is just one way to score the plots, not a universal

approach, other user-in-the-loop and application-aware measures are yet to develop.

The Gini coefficient [13] (sometimes expressed as a Gini ratio or a normalized Gini

index) is a general measure of statistical dispersion and the most commonly used measure of

inequality. Thus, we employ it here to score the plots. Another reason the Gini coefficient

is chosen over the standard deviation is that it is invariant to scale and is bounded within

[0, 1]. A Gini coefficient of 0 expresses perfect equality, where all values are the same. A

Gini coefficient of 1 expresses maximal inequality among values.

Mathematically, the Gini coefficient is defined as a ratio of the areas on the Lorenz curve

diagram (Figure 3.4). If the area between the line of perfect equality and Lorenz curve is
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Figure 3.4: Graphical representation of the Gini coefficient2

A, and the area under the Lorenz curve is B, then the Gini coefficient is A/(A + B). Since

A + B = 0.5, the Gini coefficient, G = 2A = 1 − 2B. If the Lorenz curve is represented by

the function Y = L(F), the value of B can be found with integration and:

G = 1 − 2
∫ 1

0
L(F)dF (3.1)

In some cases, this equation can be applied to calculate the Gini coefficient without

direct reference to the Lorenz curve. For example: for a population with values yi, i = 1 to

n, that are indexed in non-decreasing order (yi ≤ yi+1):

G =
1
n
(n + 1 − 2

∑n
i=1(n + 1 − i)yi∑n

i=1 yi
) (3.2)

This formula actually applies to any real population, since each sample can be assigned

its own yi. The Gini coefficient’s main advantage is that it is a measure of inequality by

means of a ratio analysis, rather than a variable unrepresentative of most of the population.

For plots of distributions of single attributes (like bar graphs or histograms), the Gini

coefficient can be calculated directly among values of the frequency distribution. For plots

of relationships of two attributes, a heat map can be flattened and vectorized as a 1-D bar

2https://en.wikipedia.org/wiki/Gini_coefficient

https://en.wikipedia.org/wiki/Gini_coefficient
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graph and the Gini coefficient is calculated thereafter; for side-by-side box plots, the Gini

coefficient can be calculated for the mutability of the five-number summary of each box.

As to the scatter plot, which uses Cartesian coordinates to display values of two variables

for a set of data. Strength refers to the degree of “scatter” in the plot. If the dots are widely

spread, the relationship between variables is weak. If the dots are concentrated around a

line, the relationship is strong. We’ll score this kind of plots by measuring the strength

of a linear relationship between the two variables. In statistics, the Pearson correlation

coefficient [9] is such a measure:

ρX,Y =
cov(X,Y )
σXσY

=
E[(X − µX)(Y − µY )]

σXσY
(3.3)

where cov(X,Y ) is the covariance between X and Y , σX and σY are the standard deviation

of X and Y , respectively. µX and µY are their means. E is the expectation operation.

Standard deviation is a measure of the dispersion of data from its average. Covariance is

a measure of how two variables change together, but its magnitude is unbounded so it is

difficult to interpret. By dividing covariance by the product of the two standard deviations,

a normalized version of the statistic is calculated. Thus, it has a value between +1 and

-1, where +1 is total positive linear correlation, 0 is no linear correlation, and -1 is total

negative linear correlation. To make the range be [0, 1] and it an indication of the degree

of correlation/strength between two attributes, no matter they are positively or negatively

correlated, we use |ρX,Y | as the score function for a scatter plot.

After introducing the basic notations and concepts, now we are ready to discuss each

step, i.e., pre-aggregation, slicing and plotting, in boundless data analysis in Figure 3.1.

3.4 Pre-Aggregate the Relationship Tables

Let’s first look at several examples. The wine analyst mentioned in Section 3.1 might want

to study the general trend of the price of a wine with respect to its year of production, for all
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wines, not for a specific type or brand of wine. Or an analyst would like to study the beers’

selling price for each manufacturer in Table 3.1. These kinds of analysis requires to change

the granularity of the data and can not be conducted directly from the original data, which

motivates us to pre-calculate some summary statistics for our boundless analytics.

Kimball et al. [40] mentioned that the single most dramatic way to affect performance in

a large multidimensional database is to provide a proper set of aggregate (summary) records

that coexist with the primary base records. At the simplest form an aggregate is a simple

summary table that can be derived by performing a Group by SQL query [26]. Using the

same data model and notations introduced in Section 3.2, now we will describe the process

of expanding the entity tables R[e] into R∗[e] with additional attribute aggregates resulting

from participation of e as foreign key in relationships in FK[e]. Each relationship r in

FK[e] will provide additional attributes to the supplemented table R∗[e] as follows: for

each attribute in r , we will group them by the key of e based on Formula 3.4:

agge(a j) =


avge(a j), if a j is continuous

counte(distinct a j), if a j is discrete
(3.4)

where {a j} is the set of attributes in r . This processwill result inm new aggregatedmeasures

for entity e, where m is the number of attributes in r . If e participate in n relationships

as foreign key, i.e., |FK[e]| = n, then the additional attribute aggregates resulting from

participation of e as foreign key in relationships in FK[e] should be in the order of O(m∗n).

We’ll explain the process in detail by an example. For instance, the entity Bars has

participated as a foreign key in two relationships: Sells and Frequents, in the entity-

relationshipmodel given in Figure 3.2. In notation, we have FK[Bars] = {Sells, Frequents}.

The relational table schema for these two relationships are: Sells(bar, beer, price) and

Frequents(drinker, bar, spending).

Firstly, let’s aggregate the relationship table Sells based on bar. For the attribute beer,

which is a discrete attribute, according to Formula 3.4, we’ll count the distinct values of



53

beer for each bar, whose physical meaning is the number of beers sold at a bar (denoted as

num_of_beers_sold). When it comes to the continuous attribute price, we’ll calculate its

average for each bar, meaning the average price of beers sold at each bar (avg_beer_price).

Both num_of_beers_sold and avg_beer_price describe some properties of a bar. Thus, we

can supplement the entity table Bars with new, unanticipated, aggregated attributes from

the aggregates [40], yielding larger entity tables with more columns.

Similarly, we will aggregate the relationship table Frequents based on bar, getting

count(distinct drinker) and avg(spending) for each bar, which mean the number of drinkers

frequenting a bar (num_of_drinkers_frequenting) and the average amount spent by drinkers

frequenting the bar (avg_spending). As a result, we can get the supplemented entity table:

Bars∗(name, addr, license, num_of_beers_sold, num_of_drinkers_frequenting,

avg_beer_price, avg_spending)

When the entity tables are supplemented with pre-calculated aggregates, we can cal-

culate a lot of new interesting plots which are not possible from the original database.

For instance, we can plot the relationship between num_of_drinkers_frequenting and

avg_beer_price. Is it the cheaper the average beer price sold in a bar, the more drinkers will

frequent the bar or vice versa? Or we can look at how the location of a bar influences the

average spending of drinkers visiting the bar and so on.

A more common use of aggregates is to take an entity and change the granularity of

this entity. For instance, finding the sells by manufacturer for Table 3.1, which changes the

granularity in entity Beers. When changing the granularity of the entity, the relationship

table has to be partially summarized to fit the new grain of the new entity, thus creating

new entity and relationship tables, fitting this new level of grain3. Having aggregates and

atomic data increases the complexity of the data model. The number of possible aggregates

is determined by every possible combination of dimension granularities.

3https://en.wikipedia.org/wiki/Aggregate_(data_warehouse)

https://en.wikipedia.org/wiki/Aggregate_(data_warehouse)
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3.5 Slice a Dataset

With the supplemented database from Section 3.4, the decision of how to proceed with a

dataset becomes a subjective choice by many data scientists, for they typically choose to

perform their ad-hoc querying on manually extracted samples of data in a domain-specific

manner [14]. However, domain expertise is required to find the right slices and may not

scale if there are many features [16]. Such solutions result in tedious workflows and a lot

of human efforts, yet subjective analytic choices influence research results [55]. In this

section, we’ll address the data slicing problem by applying some data mining techniques,

i.e., progressive itemset mining [37] to systematically discover the large slices with sufficient

support, where the slicing can be done on one or more dimensions.

Table 3.2: Example data slices for Sells

data slice support
(Beers.manf, ‘Anheuser-Busch’) 6
(Bars.addr, ‘New York’) 5
(Beers.manf, ‘Anheuser-Busch’) ∧ (Bars.addr, ‘New York’) 4
(Beers.manf, ‘Coors Brewing Company’) ∧ (Bars.addr, ‘San Francisco’) 3
(Beers.manf, ‘Anheuser-Busch’) ∧ (Bars.name, ‘Seven Bamboo’) 2

For example, a slice of sells of beers from Anheuser-Busch at bars in New York is

expressed as a conjunction of descriptors (Beers.manf, ‘Anheuser-Busch’) ∧ (Bars.addr,

‘New York’). Each discriptor is an attribute-value pair. Some slices for the example

Sells data are given in Table 3.2. A slice needs to be large in the sense that it has sufficient

population, which ismeasured in terms of support, as shown in the right column of Table 3.2.

The problem is to automatically divide a given large multidimensional dataset into all

possible data slices with sufficient support based on its dimensions. Each data slice provides

a distinct perspective to look at the given dataset. The more perspectives we have looked

into, the clearer the understanding of a dataset we have. The problem is exacerbated by

the exponential nature of the combination of descriptors from all dimensions, especially

when the number of dimension of a dataset is large. To solve this problem, we utilize the
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progressive miner in Chapter 2 to slice a single entity or relationship table, or multiple

tables based on the entity-relationship modeling, which can generate early partial complete

results at any time during the long mining process, specifically, it can generate a set of large

data slices with a certain time-dependent minimum support.

3.5.1 Data Slicing and Frequent Itemset Mining

Table 3.3: Conceptual representation of example bar-beer-drinker database.

(a) Beers

beer items
b1 {x1}
b2 {x1}
b3 {x2}
b4 {x2}

(b) Bars

bar items
bar1 {y1, y3}
bar2 {y2, y4}
bar3 {y2, y5}
bar4 {y1, y6}

(c) Drinkers

drinker items
d1 {z1, z3}
d2 {z2, z4}
d3 {z1, z5}
d4 {z2, z6}

(d) Sells

bar beer price
bar1 b1 5
bar1 b3 7.5
bar1 b4 4.25
bar2 b1 5.5
bar2 b2 6
bar2 b3 7
bar3 b1 5.75
bar3 b2 6
bar4 b3 6.75
bar4 b1 5.25

(e) Frequents

drinker bar spending
d1 bar1 35
d1 bar4 65
d1 bar2 25
d2 bar2 50
d2 bar3 60
d3 bar1 30
d3 bar4 75
d4 bar1 30
d4 bar2 45
d4 bar3 25

In Section 3.2.2, we defined that an item in a relational database corresponds to a

descriptor of the form (attribute, value). For the example database given in Table 3.1, we

can denote each possible attribute and value pair as an item, i.e., xi, yi and zi represent
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Table 3.4: Data slicing and market basket analysis

(a) Slices from Sales

slice support
{x1} 6
{y2} 5
{x1, y2} 4
{x2, y1} 3
{x1, bar2} 2

(b) Market Basket

tid items
1 {milk, bread}
2 {butter}
3 {beer, diapers}
4 {milk, bread, butter}
5 {bread}

(c) Frequent Itemsets

itemset support
{bread} 3
{milk, bread} 2
{butter} 2
{milk, bread, butter} 1
{beer, diapers} 1

each possible item from the three entity tables, Beers, Bars and Drinkers, respectively. For

instance, x1 corresponds to (Beers.manf, ‘Anheuser-Busch’), y1 corresponds to (Bars.addr,

‘San Francisco’) and z1 corresponds to (Drinkers.addr, ‘San Francisco’) and so on.

In this way, the conceptual representation of Table 3.1 is displayed in Table 3.3 and the

example slices given in Table 3.2 can be reproduced in Table 3.4a. Compared with the

frequent itemsets in Table 3.4c for the market basket analysis example given in Table 3.4b,

it’s easy to verify that the data slices have similar form. Thus, the data slicing problem in a

multidimensional database can be formulated as the frequent itemset mining problem [1]:

to find all the frequent combination of attribute-value pairs from its dimensions.

As datasets grow and computations become more complex, response time suffers and

data exploration is severely hampered [21]. To address this problem, a new computation

paradigm has emerged in the last decade: progressive approach [27, 59, 21, 37]. It consists

of splitting long computations into a series of approximate results improving with time; in

this process, partial or approximate results are then rapidly returned to the user and can be

interacted with in a fluent and iterative fashion.

ALPINE [37] is such an progressive algorithm proposed for long mining tasks. It

progressively mines itemsets and closed itemsets “support-wise”. It can guarantee that all

itemsets with support exceeding the current checkpoint’s support have been found before it

proceeds further. Wewill utilize the algorithm here to slice large multidimensional database

progressively, i.e., first generate slices with higher support, then gradually outputs slices

with lower support.
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3.5.2 Slice Data in Single Table

When ALPINE is applied to slice the data in a single table, we can code the (attribute,

value) pairs from its dimensions as described in Section 3.2.2. One example is shown in

Table 3.3, for each single table in the example database, all the (attribute, value) pairs have

been encoded to distinct items, i.e., xi, yi, zi for table Beers, Bars andDrinkers, respectively.

Based on the coded items, we can directly apply the ALPINE Algorithm (Algorithm 1)

to find all frequent (attribute, value) combinations for each table, respectively. The only

variant lies in the Explorer subroutine at Line 5, for the mutual exclusion relation among

the (attribute, value) pairs from the same attribute, namely, homologous items (refer to

Definition 3.5.1).

Definition 3.5.1 (Homologous Items) Two coded items from attribute-value pairs, I1 =

(a1, v1) and I2 = (a2, v2) are homologous iff a1 = a2 and v1 , v2. Homologous items are

said to be homologous to each other.

For instance, item x1 (Beers.manf = ‘Anheuser-Busch’) and item x2 (Beers.manf = ‘Coors

Brewing Company’), both items are from the same attribute, Beers.manf. In general, a beer

can only be produced by one of those manufacturers, but not multiple manufacturers. In

other words, item x1 won’t co-occur with item x2. Thus, we can omit to extend an itemset

Algorithm 7 SliceExplorer(Minimum itemset P, Maximum itemset Q, Support index S)
1: Output itemset interval: (P,Q);
2: for all item j = |I | − 1; j > tail(P); j– – do
3: if j ∈ Q ∨ j is homologous to any item in P then
4: continue; // no need to extend with item ∈ Q or homologous items
5: end if
6: R← P ∪ { j};
7: S ← R∗ ∪Q;
8: if sup(R) is already indexed in S then
9: Add (R,S) to the indexed bin;
10: else
11: Create a new bin with support sup(R) for S and add (R,S) to it;
12: end if
13: end for
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with such homologous items in the Explorer subroutine (see Line 3 - 5 in Algorithm 7).

The result will be the set of large slices in each single table in the database. However,

there might be multiple tables in a multidimensional database as shown in Table 3.1, we’ll

address the data slicing problem across tables in the next subsection.

3.5.3 Slice Data across Multiple Tables

Available data mining technology usually applies to centrally stored data in one single

repository [1, 31, 37, 65, 71]. However, information may be dispersed among different

tables like the Enter-Relationship model shown in Figure 3.2. It would be necessary to

compute first the join of the relationship table with its involving entity tables to form a

single table, i.e., T = Sells ./ Bars ./ Beers.

This approach has two drawbacks: 1) the join is a very cost-expensive operator and a

joined table has many more columns and rows which needs a lot of space; 2) it can produce

rules which may not reflect accurately the actual relationships existing in data. For instance,

with a minimum support threshold set to 0.3, the item for Beers.name = ‘Budweiser’ won’t

be frequent in the example given in Table 3.1, for its support is 1
4 in the Beers table, while in

the joined table, this item will be frequent with support equal to 4
10 for the beer Budweiser

has occurred four times in the Sells table. In consideration of both reasons, we should avoid

using the join operation.

In contrast to first join all the involving entity tables with the relationship table to form

a single table, we exploit the inter-table foreign key reference relationships to adapt the

ALPINE algorithm for slicing data across multiple tables. This process will be explained

by an example, for instance, we would like to slice the Sells data based on the descriptor

Beers.manf = ‘Anheuser-Busch’ for the running example in this chapter, where the slicing

condition is from a dimension table, but not in the relationship table.

Firstly, we’ll compute a projection of the relationship table Sells in Table 3.3d onto its

foreign key beer referencing the Beers table. For each value of bi, we’ll find the set of
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records in the relationship table having beer = bi (An id filed is added to identify each

record in the relationship table). This projection will result in k lists of ids. Note that k is

equal to the number of rows in the referenced entity table, Beers in this example and where

k = 4. We can find the four projected id lists for beers in Table 3.5.

Table 3.5: Project the relationship table Sells to its foreign key beer

id bar beer price
1 bar1 b1 5
2 bar1 b3 7.5
3 bar1 b4 4.25
4 bar2 b1 5.5
5 bar2 b2 6
6 bar2 b3 7
7 bar3 b1 5.75
8 bar3 b2 6
9 bar4 b3 6.75
10 bar4 b1 5.25

⇒

(a) beer = b1

id
1
4
7
10

(b) beer = b2

id
5
8

(c) beer = b3

id
2
6
9

(d) beer = b4

id
3

From the Beers table, we can find the set of transactions with Beers.manf = ‘Anheuser-

Busch’ (highlighted in red in Table 3.6), that is, {b1, b2}. A union of the projected id

lists for those transactions will give us the desired data slice. Specifically, in the example,

transaction b1 and transaction b2, so we will union the id lists for beer = b1 and beer = b2, as

indicated in Table 3.6. The resulting data slice for Sells satisfying the condition Beers.manf

= ‘Anheuser-Busch’ is shown in Table 3.6c.

Table 3.6: Union the projected id lists to get the data slice for Beers.manf = ‘Anheuser-Busch’

beer manf
b1 Anheuser-Busch
b2 Anheuser-Busch
b3 ...
b4 ...

⇒

(a) beer = b1

id
1
4
7
10

⋃ (b) beer = b2

id
5
8

⇒

(c) manf = ‘Anheuser-
Busch’

id
1
4
5
7
8
10
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In this way, we have avoided the expensive join between tables for slicing across multiple

tables in a multidimensional database. When the slicing condition (attribute, value) is from

the relationship table, the ALPINE algorithm can be applied directly.

3.6 Generate Plots in A Data Slice

The global slice operator can find all the large data slices with sufficient support from

a multidimensional dataset as described in Section 3.5, while the goal of a boundless

analytics engine is to generate all possible 1-dimensional and 2-dimensional plots among

the attributes. The gap is connected by the local plot operator, which operates on each large

data slice output from the slicing process and does the univariate and bivariate analysis

for all objects in the data slice. In this section, we’ll describe how to do the analysis and

generate those plots, after that the score of each plot can be calculated.

3.6.1 Univariate Analysis

Univariate analysis is perhaps the simplest form of statistical analysis. The key fact is that

only one variable is involved. It doesn’t deal with causes or relationships and it’s major

purpose is to describe [20]. For each data slice, the univariate analysis tries to describe the

objects within this group or subgroup.

For discrete variables, the frequency distribution is an organized tabulation/graphical

representation of the number of individuals in each category on the scale of measure-

ment [29]. A frequency distribution shows us a summarized grouping of data divided into

mutually exclusive classes and the number of occurrences in a class. For the distribution

of a discrete variable in a data slice, each entry contains the frequency or count of the

occurrences of values within this slice, for instance, the distribution of the manufacturers of

beers. Graphically, we represent it as a bar graph, where the horizontal (x) axis represents

the values and the vertical (y) axis represents the frequencies or counts for those values.
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For continuous variables like Sells.price, we’ll plot a histogram instead. To construct

a histogram, the first step is to “bin” (or “bucket”) the range of values, that is, divide the

entire range of values into a series of intervals and then count how many values fall into

each interval [64]. The bins are usually specified as consecutive, non-overlapping intervals

of a variable. Each bin has its area proportional to the frequency of cases in the bin. The

last step is to plot the histogram with suitable scales for each axis.

3.6.2 Bivariate Analysis

Bivariate analysis is the simultaneous analysis of two variables (attributes) X and Y , to

explore the concept of relationship between the two variables [6]. Graphs that are appropri-

ate for bivariate analysis depend on the type of variables. For two continuous variables, a

scatter plot is a common graph. When one variable is discrete and the other is continuous,

side-by-side box plots are common and when both variables are discrete a mosaic plot or

heat map is common.

The results from bivariate analysis can be stored in a two-column data table. When both

variables are from the same table, it can be either an entity table or a relationship table,

firstly a SQL selection [26] like operation can get all the objects satisfying the conditions

for a data slice, then a SQL projection [26] like operation can project those records to a

two-column data table, where each row contributes a data point in the form of (Xi,Yi) in the

two dimensional space. From which, the correspondence and relationship between these

two variables can be directly established.

However, when the two variables, X and Y , are from two different tables, they might

differ in the number of records. The two-column data table cannot be directly extracted

from the original tables, as a result, we couldn’t establish the relationship between them.

Similar to slice data across multiple tables in Section 3.5.3, we utilize the inter-table foreign

key reference relationships to establish the mapping and get the plot of X and Y .
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If variable X is from an entity table R[e] and variable Y is from a relationship table

R[r], for instance, we would like to establish the relationship between Beers.manf and

Sells.price in Table 3.1. Firstly, we will project the relationship table R[r] onto its foreign

key referencing the entity e. In this example, we project the Sells table to its foreign key

beer as displayed in Table 3.5. Then we augment the relationship table with an attribute X ,

where each subgroup of the projected id lists will have the same value for attribute X from

the entity table. As to the example, the process is shown in Table 3.7 and the resulting manf

column is displayed in Table 3.7e. Thereafter the box plots between manf and price can be

generated.

Table 3.7: Augment the values for attribute manf with the same value for each projected id list

beer manf
b1 Anheuser-Busch
b2 Anheuser-Busch
b3 Coors Brewing Company
b4 Coors Brewing Company

+

(a) beer = b1

id
1
4
7
10

(b) beer = b2

id
5
8

(c) beer = b3

id
2
6
9

(d) beer = b4

id
3

⇒

(e)

id bar beer manf price
1 bar1 b1 Anheuser-Busch 5
2 bar1 b3 Coors Brewing Company 7.5
3 bar1 b4 Coors Brewing Company 4.25
4 bar2 b1 Anheuser-Busch 5.5
5 bar2 b2 Anheuser-Busch 6
6 bar2 b3 Coors Brewing Company 7
7 bar3 b1 Anheuser-Busch 5.75
8 bar3 b2 Anheuser-Busch 6
9 bar4 b3 Coors Brewing Company 6.75
10 bar4 b1 Anheuser-Busch 5.25

If variable X and variable Y are from two different entity tables R[e1] and R[e2], which

are connected by some relationship table R[r], i.e., Beers.manf and Bars.addr connected

by the relationship Sells. In this case, we need to project R[r] to both key of e1 and key of

e2, and augment both attributes like the process in Table 3.7. After that, the relationship

between the two variables can be established.
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3.7 Summary

In this chapter, we described the boundless data analytics process with motivation, goal

and procedures. A boundless analytics framework is proposed to automatically discover all

possible large data slices and generate an unbounded number of univariate and bivariate

plots. This framework consists of three major components, namely, the pre-aggregation

process, the global slice operator and the local plot operator. For pre-aggregation, an entity-

relationship model based approach is proposed to calculate attribute aggregates, which

increase the complexity and expressiveness of the data model, for new dimensions and

measurements can be derived. For data slicing, we encode each distinct attribute-value

pair as an item and formulate the large data slice discovery problem as the frequent itemset

mining problem, where the progressive mining paradigm introduced in Chapter 2 can be

employed. Besides, the inter-table foreign-key reference relationship is exploited in the

slice and plot operators without joining the involving tables to form a single big table.
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Chapter 4

Boundless Analytics System

In this chapter, we build a boundless analytics system and illustrate how our system works

by example of the historical NBA stats data from Kaggle1. In particular, we present (i) a

boundless analytics engine which can slice the data in all possible ways and generate the

plots among the attributes (including pre-aggregates) for all large data slices; (ii) an Apache

Solr search platform based plotbase to organize and index all the generated plot objects;

(iii) a frontend webapp search system to explore the data in various ways and return the

plots sorted nicely according to some interestingness measure. The system can provide a

progress meter in terms of the minimum size of data slices analyzed at any time and some

initial analysis results returned from the system are very promising.

4.1 System Overview

In this section, we give an overview of the boundless analytics system, thenwewill introduce

each module of the system in detail in the following sections: Section 4.2 - Section 4.5. In

Figure 4.1, we outline the boundless analytics system into layers, i.e., the data module, the

1https://www.kaggle.com/drgilermo/nba-players-stats

https://www.kaggle.com/drgilermo/nba-players-stats
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Figure 4.1: Overview of the boundless analytics system. It consists of the data module, the generating module, the indexing module and
the searching module.

generating module (the analytics engine), the indexing module (Solr2 index storage) and

the searching module (the webapp).

For the datamodule, the input is the set of relational tables for each entity and relationship

in the database along with its schema specification, which goes through a pre-processing

step to (1) filter the noisy data, (2) generate the pre-aggregated measurements by the SQL

group by operation on the participating relationships for each entity in the input database,

which will be introduced in Section 4.2.

In Section 4.3, we elaborate the generatingmodule (the analytics engine), which consists

of two major components, the data slicer and the plot generator. The data slicer will

apply the progressive mining algorithm for each single table and across multiple tables to

progressively find all possible large data slices in the dataset. Then for each large data

2http://lucene.apache.org/solr/

http://lucene.apache.org/solr/
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slice output from the slicer, a plot generator will do the univariate and bivariate analysis

for the data belonging to the slice and output all the plot objects. Each plot object will be

represented as a json object and a plot API can render a plot object into a graphical chart.

The open source enterprise search platform, Solr, from the Apache Lucene project, has

a lot of valuable features, including full-text search, faceted search, NoSQL features and

rich document handling. In Section 4.4, we utilize the Solr platform to organize and index

all the generated plot objects in two layers: (1) the plot type layer, which groups all the plots

involving the same set of attributes together with some information about the group, i.e.,

the number of plots, the score distribution, the gini index and variance of scores of plots

within this group, (2) the plot layer, which includes all the information about each plot,

like its plot type, score, support, slice information as well as all the data needed to render a

graphical chart. Thanks to the full-text search feature of Solr, this module powers the web

search interface for various kinds of queries from the end-users.

The last part of this system, is the searching module. The search interface does not

require any data science expertise or experience from the end-users, they can search for

their interested plots just like doing a web search with keywords. They can query for plot

types, or plots with a score range, with a minimum support threshold, for a specific season,

or for a specific team or player, or other slicing conditions. Some demonstration queries

with the query response will be displayed in Section 4.5.

The system flowchart is depicted in Figure 4.1 (see the arrows). The data module feed

the generating module with processed data, where the data slicer mines the large data slices

for the plot generator. All the plot objects generated by the analytics engine will be sent

to the indexing module, which index every field of them. Finally, the end-users query the

plots stored in Solr index storage through the front-end interface in the searching module.
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4.2 The Data Module

The data module will feed the boundless analytics system with data. The input data is

composed of two parts: database and the db schema. For the database part, each entity or

relationship will be represented as a relational table in a csv file, where the header gives

the attribute names for each field. In the db schema, we need to specify more information

about the input databse, like the database name, number of tables in the database, entity

tables, relationship tables, etc. For each table, we need to tell the system the property of

each attribute, like whether it is numerical or it is categorical. Besides, the primary key and

foreign key reference information among the tables is also entered into the system. All the

schema information of a database is written in a json file.

4.2.1 The NBA Players Stats Data

We illustrate how our system works by example of the NBA stats data from Kaggle3, which

is scraped from Basketball-reference4. The database contains individual statistics for 67

NBA seasons since 1950 for over 3000 players. It includes over 50 features per player, from

basic attributes such as points, assists, rebounds to more advanced features like value over

replacement, etc. The database is represented as the E-R diagram in Figure 4.2 with tables:

Players(Player, height, weight, college, born, birth_city, birth_state)

SeasonsStats(Year, Player, Pos, Age, Tm, G, GS, MP, PER, TS%, 3PAr, FTr, ORB%,

DRB%, TRB%, AST%, STL%, BLK%, TOV%, USG%, OWS, DWS, WS, WS/48, OBPM,

DBPM, BPM, VORP, FG, FGA, FG%, 3P, 3PA, 3P%, 2P, 2PA, 2P%, eFG%, FT, FTA,

FT%, ORB, DRB, TRB, AST, STL, BLK, TOV, PF, PTS)

where the meaning of each column can be referred to the original Kaggle page or the

basketball glossary5.

3https://www.kaggle.com/drgilermo/nba-players-stats
4https://www.basketball-reference.com/
5https://www.basketball-reference.com/about/glossary.html

https://www.kaggle.com/drgilermo/nba-players-stats
https://www.basketball-reference.com/
https://www.basketball-reference.com/about/glossary.html
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Figure 4.2: The entity-relationship diagram of the NBA players stats data.

4.2.2 Data Pre-processing

Data Cleaning

According to Basketball-reference, there are some minimum rate statistic requirements6.

For instance, to be a league leader in a category in the NBA, a player need to play for a

minimum of 1500 minutes in a season; to qualify for free throw percentage (FT%), a player

need to have 125 free throws. In this dataset, we find that on average there are 75 players

who played less than 500 minutes in a season, that is, less than 6 minutes per game. We

don’t want these players to skew the distribution of an attribute or the relation among the

stats, which might hide a useful pattern or trend in the noisy data. To solve this, we filter

out players that don’t play enough minutes per season, i.e., 500 minutes.

One example is shown in Figure 4.3, we can identify that the trend between assist

percentage and the player height is more obvious after the data cleaning, i.e., the correlation

coefficient between them increases from 0.524 to 0.795. The higher a player, the less likely

the player will assist someone else while he is on the floor.

6https://www.basketball-reference.com/about/rate_stat_req.html

https://www.basketball-reference.com/about/rate_stat_req.html
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(a) (b)

Figure 4.3: The relation between assist percentage and player height (a) before and (b) after the data cleaning.

Algorithm 8 Preaggregate(Entity set E , Relationship set R)
1: for all Entity e ∈ E do
2: R∗[e] ← R[e]
3: for all Relationship r ∈ the participating relationships FK[e] do
4: Group the relational table R[r] by foreign key e
5: for all Attribute a in table R[r] do
6: if Attribute a is continuous then
7: Add aggregated attribute avge(a) to R∗[e]
8: else
9: Add aggregated attribute counte(distinct a) to R∗[e]
10: end if
11: end for
12: end for
13: Return the supplemented table R∗[e]
14: end for

Pre-aggregation

As described in Section 3.4, the pre-aggregation process will expand the entity tables R[e]

into R∗[e] with additional aggregated attributes resulting from participation of e as foreign

key in relationships in FK[e] (Algorithm 8). For the NBA Players Stats Data, the entity

table is Players and the relationship table is SeasonsStats. We’ll group the seasons stats

by players and supplement the Players table with the aggregated measures like number

of seasons a player participated in, number of positions played, average age during all

participating seasons, number of teams served, average number of games played, average

number of games started, average minutes played etc.
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4.3 The Generating Module

The generating module is the engine of the whole boundless analytics system, which

progressively slices the multidimensional database in decreasing support and generates

all the univariate and bivariate plot objects (1) for attribute(s) from each single entity or

relationship table and (2) for attributes acrossmultiple tables. It consists of two components:

the data slicer and the plot generator. The data slicer continuously supply the plot generator

with large data slices in lower and lower support; while the plot generator will do the

univariate and bivariate analysis for each slice and generate those 1-D and 2-D plot objects.

To avoid the expensive operation to join each relationship table with all the referenced

entities to form a large relational table withmore columns (including both attributes from the

involving entities as well as the relationship attributes) and to avoid generating superficial

relations due to the fact that an entity has occurred in a relationship table multiple times,

we abandon the straight-forward way of joining. Instead, to adapt the progressive mining

algorithm, ALPINE, to find all the large data slices for a database with multiple relational

tables, i.e., both the entity tables and the relationship tables, we suggest a two-phase strategy

to solve the problem.

4.3.1 The Two-Phase Approach

Our algorithm mines the large data slices and generates the plot objects in two phases:

Phase I: run the analytics engine on each single entity or relationship table

1. Slice the table using the progressive miner, ALPINE, based on its dimensions. Each

attribute-value pair from the dimensions of the table is encoded as an item and the support

index structure in ALPINE is initialized from those single items. Then we can directly apply

the ALPINE algorithm (Algorithm 1) with the SliceExplorer in Algorithm 7 to identify all

the frequent combinations of attribute-value pairs.
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2. Generate the univariate and bivariate plot objects in each data slice. For all data belongs

to the data slice, we’ll generate the five concerned types of plots, i.e., bar graph, histogram,

heatmap, scatter plot and side-by-side boxplots, from each single attribute or two-attribute

pair from the table.

Phase II: run the analytics engine across multiple tables

1. Compute the projection of each relationship table to its foreign keys. Access a relationship

table r ∈ R to find the occurrences of each value for each foreign key ei. Store the set of

supporting transactions as a tidlist. Note that for a foreign key, the number of projected

tidlists is equal to the number of records in the referenced entity table. For instance, in the

NBA stats data, we project the relationship table SeasonsStats to its foreign key Player as

shown in Figure 4.4, a tidlist will be generated for each player.

TID Year Player Pos Age Tm G GS MP …

1 1991 Rolando 

Blackman

SG 31 DAL 80 80 2965

2 1995 Scott Brooks PG 25 MIN 80 5 980

…

7553 2017 Tony Brown SG 30 UTA 23 0 267

…

TID

1

14165

…

17323

…

Rolando Blackman

TID

2

3797

…

4591

…

Scott Brooks

TID

7553

9550

…

10016

…

Tony Brown

… …

Figure 4.4: Project the relationship table SeasonsStats to its foreign key Player.

2. Progressively slice each relationship table across multiple tables through the foreign key

reference (refer to Section 3.5). If a slicing attribute is from the relationship table, we can

slice the data directly by find all records with the attribute equal to some specific value;

otherwise, if the slicing attribute is from one referenced entity table, the slicing cannot be

done directly. We need to first identify the set of values for the foreign key which satisfy the
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slicing condition attribute = value, then a union of all the tidlists for those values will give

us the desired data slice. In Figure 4.5, we show an example to slice SeasonsStats based on

birth_state = “New York”.

Player … birth_state

Andrew 

Levane

New York

Billy Kenville New York

…

Mike Davis New York

…

TID

3567

8410

10884

…

21041

…

Andrew Levane

TID

18

6275

9141

…

17316

…

Billy Kenville

TID

5252

7578

13546

…

19845

…

Mike Davis

…

TID

18

3567

5252

…

21041

…

New York

Figure 4.5: Slice the relationship table SeasonsStats based on an entity attribute birth_state through the foreign key reference.

3. Generate all the bivariate plot objects across relationship table and referenced entity

tables (refer to Section 3.6). No plots for attribute(s) from a relationship will be generated,

for they have already been generated in Phase I. In this phase, we only focus on the relation

between attributes from the relationship table and the referenced entity tables. Since the

two attributes are from different tables, they might differ in the number of records, the

correspondence between them can not be established directly. Similar to Step 2, firstly we

get the projected tidlists for each value of the foreign key, then we augment the attribute for

tuples in each tidlist with the same value, thus the relation between the two attributes can

be plotted. To establish the relation between the player Height to the season statistics field

goals (FG) for the slice shown in Step 2, we need to first augment attribute Height to have

the same number of records as the relationship table as shown in Figure 4.6.

Player … Height

Andrew 

Levane

188

Billy Kenville 186

…

Mike Davis 190

…

TID

3567

8410

10884

…

21041

…

Andrew Levane

TID

18

6275

9141

…

17316

…

Billy Kenville

TID

5252

7578

13546

…

19845

…

Mike Davis

…

TID Height

18 186

3567 188

5252 190

…

21041 188

…

Figure 4.6: Augment the values for an entity attribute Height with the same value for tuples in each tidlist.
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For the NBA Players Stats Data used in this chapter, in Phase I, we generate all the

plots about the entity table Players or the relationship table SeasonsStats. For instance, the

geographic distribution of the birth place of all the players or the relation between player

height and their average win shares for table Players, or the distribution of rebounds or

the relation between the minutes played and their points for table SeasonsStats. In this

phase, 183,122 plot objects are generated. In Phase II, the plots for attributes across the two

tables are generated, like the relation between the player height and their assist percentage

in games. 434,121 plot objects involving attributes from multiple tables are generated in

the second phase for the NBA dataset. In total, the analytics engine generates 617,243 plot

objects (with a minimum support threshold of one percent) for the NBA stats data.

4.3.2 The Representation of A Plot Object

Each plot can be represented as a chart, then to explore the plots will be like an image

retrieval process. To query those plots by their “content”, we need to store a lot of tags for

each plot, for instance, the score (refer to Section 3.3) and support of a plot, the attribute(s)

involved in the plot, the data slice information for the plot, etc. In regard to the huge number

of plots generated, i.e., 617,243 plots for the NBA stats data, the charts (images) along

with the tags will take a lot of space, which largely affects the scalability of the boundless

analytics system. From this perspective, we make each plot a json object with all the tags

and required data to render a chart, one example plot object is displayed below:

{
"dataset": "NBAPlayers",
"table": "Players",
"plottype": "height",
"dimensions": 1,
"x": "height",
"type": "histogram",
"support": 0.088,
"score": 0.567,
"slice": [["birth_state", "California"]],
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"data": [[179, 3], [181, 5], [183, 2], [185, 6], [187, 0],
[189, 13], [191, 25], [193, 37], [195, 0], [197, 31],
[199, 33], [201, 48], [203, 27], [205, 0], [207, 43],
[209, 34], [211, 19], [213, 13], [215, 0], [217, 3],
[219, 1], [221, 0], [223, 0], [225, 1]],

"url": "http://foreveranalytics.com/Render-Chart/..."
}

A plot object won’t be rendered to a chart only when the user would like to explore it.

When a user clicked on a plot, it would be plotted to a chart through a visualizer powered

by Highcharts7. For the example plot object listed above, which is the height distribution

of all players born in California, the corresponding graphic chart is displayed in Figure 4.7.

Figure 4.7: An example chart from a plot object.

4.4 The Indexing Module

The indexing module indexes all the plot objects generated by the generating module,

providing a plot base for the searching module which directly interacts with the end-users.

The Apache Solr is a powerful tool with tremendous search capability, supporting indexing,

querying, mapping and ranking [33], which is employed here to power the boundless

7https://api.highcharts.com/

https://api.highcharts.com/
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analytics system. The basic data structure for data being fed into a Solr index is a document

containing multiple fields, each with a name and containing content, which may be empty,

like the json plot object shown in Section 4.3.

The boundless analytics engine based on some pre-defined scoring function (Section 3.3)

to provide “high-quality” plots might not well satisfy the possible multiple information

needs of users, for there is no universal standard for the quality of a visual plot. The proposed

scoring function based on their spread favors “inequality” or “correlation”, while what the

analyst seeks might be something different. As an alternative, the plot diversity can be

promoted to comprise various needs, which describes how a distribution or relation varies

across various factors. Thus, we group all the plots involving the same set of attributes

across the data slices together, which we call it as a plot type. Then the Solr powered plot

base organized the plot objects in two layers: the plot type layer and the plot layer.

4.4.1 Definition of a Plot Type

A plot type is a set of plots. It is the relation of the same set of variable(s) over all possible

data slices. Say, we take the joint distribution P of two attributes X and Y . P is an example

of a plot type. You can think of the remaining attributes, a1, ..., an, as parameters of

plot type P. Now we instantiate P over all possible slices made from the attribute-value

combinations from a1, ..., an. Each slice defines simply a subset of the original data over

which we observe a plot of type P.

Given a univariate or bivariate plot type P in a multidimensional dataset with n

dimensions, P can be parameterized by the slice S with n attribute-value pairs like

(a1, v1), (a2, v2), ..., (an, vn), which can be visualized as a plot, namely, Plot(P,S). Each

dimension ai has its own range of values {ai j | j = 1,2, ...,ni}. An attribute ai can also have

the value ∗, where ∗ represents a “don’t care” value, meaning this attribute is ignored. All

attributes may be ignored as well - that we just have a slice S which includes the whole data

set, not sliced by any attribute.
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Then a plot type P is such a relation in the space of all possible combinations of values

of a1, ..., an. For each plot type, we can keep the information about each group, i.e., the

number of plots (nplots), the type of chart (type), the gini index (metagini) and variance of

scores of plots within this group, which measure of the diversity of plots from a plot type.

One example plot type is listed here:

{
"dataset": "NBAPlayers",
"nplots": "158",
"plottype": "3P%-height",
"x": "3P%",
"y": "height",
"type": "scatter",
"metagini": 0.633,
"variance": 0.013,
"stats": [0.01, 0.15, 0.25, 0.3, 0.54]

}

It’s a plot type about the relation between 3-point field goal percentage (3P%) and player

height, which contains 158 plots in total across various data slices with a score variance

of 0.013 and the gini index of scores of plots in this group is 0.633. The five number

summary of scores, i.e., the minimum, the first quartile, the median, the third quartile, and

the maximum, are listed by the key “stats” and the score distribution of this example plot

type is displayed in Figure 4.8. This information will guide the user when exploring and

searching the plots for a plot type.

Figure 4.8: The score distribution of plots in the example plot type.
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4.4.2 Layered Indexing in the Plot Base

A plot type and a plot object describes a univariate or bivariate relation at different levels of

granularities. At the coarse level, the plot types can be ranked based on their diversity (gini

index or variance of scores of plots belonging to the plot type); at the fine level, we can

sort the plots based on their support or score values. The two layers can be used to serve

different needs of users. At the plot type level, it can help the user to quickly locate those

interesting relations which varies a lot across different data slices; at the plot level, the users

can identify a specific interesting plot with a high score or support. Taking advantage of

the search capability of Solr, we index at both levels as shown in Figure 4.9.

(a) (b)

Figure 4.9: Layered indexing of plots in the plot base: (a) by plot type and (b) by plot.

In Figure 4.9a, we can find in total there are 5,510 plot types from the NBA players

dataset indexed in the plot base and sorted nicely according to their metagini values,

including the original attributes as well as derived features by pre-aggregations, like number

of seasons a played participated in (Num_of_Seasons) and average defensive box plus/minus

(Avg_DBPM), etc. From the list, we can find relations from single entity or relationship

tables like born year vs. birth state, or relations across multiple tables like the average

defensive box plus/minus value (Avg_DBPM) vs. the offensive win shares (OWS).
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For the plot type of number of seasons and player age, we can find that it contains 167

plot objects with scores in the range of [0.11, 0.86]. When we zoom in to this plot type, we

can find all the plots in this group in Figure 4.9b. The plot objects can be ranked by score

or by support (in the figure, the plots are ranked by score). The layered organization greatly

increases the flexibility of the searching module in the next section.

4.5 The Searching Module

As mentioned in Chapter 3, the data exploration process requires a lot of human efforts in

terms of tedious and repetitive programming, especially when the number of dimensions is

large. Thus, wewould like to build a boundless analytics system to harness the computational

resources to automatically find the large data slices and generate all possible univariate and

bivariate plot objects. The arisen issue then is that it’s impossible to manually exam the

numerous plot objects output from the generating module one by one, in consideration of

an unbounded number of plots might be produced. Can we reduce the data exploration

process to simple search? While the generating module is cranking plot objects, we can

query those plots based on variables involved.

In this section we show how indeed we can reduce data analytics to search - by repre-

senting data exploration as search of continuously generated (or pre-generated) database of

plot objects.

4.5.1 The Search Query Language

A query language in which users can declaratively specify their information needs and the

data patterns of interest is needed in the searching module of the boundless analytics system.

Our search query language is close to the regular Google query language8 - basically bags of

8https://developers.google.com/issue-tracker/concepts/
search-query-language

https://developers.google.com/issue-tracker/concepts/search-query-language
https://developers.google.com/issue-tracker/concepts/search-query-language
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keywords. Keywords are text strings that you can use to search across the fields of indexed

json objects, which will be used to represent:

• Metadata. Metadata will include some but not necessarily all of (a) types of plot,

for instance, bar graph, histogram, heat map, scatter plot and box plot etc, and (b)

attribute names like 3-point field goals (3P), free throws (FT), 2-point field goals (2P),

rebounds, height, weight, player positions (Pos) etc. in the NBA Players dataset. For

more attribute names, readers can refer to Section 4.2.

• Data. Data will include data values from the input database. Consider the NBA

Players stats data, some possible data values will be like ‘Celtics’ for team, or ‘Lebron

James’ for player, or ‘University of California, Los Angeles’ for college, or ‘New

York’ for birth state, etc.

• Numerical conditions on support and score. Those conditions can specify the mini-

mum support, for example, support ≥ 0.05, and range for the interestingness score of

a plot, say, 0.50 ≤ score ≤ 0.95.

Searches you perform can containmultiple criteria, including a combination ofmetadata,

data and numerical conditions. Queries will be bags of keywords - some of them are types

of plots, others are names of attributes, data values and numerical conditions. The query

parser will transform the query to lower level query (like Solr query) if Solr is the underlying

storage system. Some example queries for the boundless analytics system are given below:

Q = ‘scatter, 3P, 2P, Celtics’

The query would return all scatter plots of 3-point field goals vs. 2-point field goals for all

seasons and all Celtics players, but also such plots for each season, each player and each

position etc. Each plot will have a score and plots in the answer to this query will be ranked

according to some interestingness measure, i.e., score or support.
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One can imagine queries which simply ask for a single player, for example

Q = ‘Lebron James’

which would return all plots from the plot base about LeBron James. This means for every

single season, distributions of NBA stats and relationships between them all limited only to

LeBron James.

One may of course limit plots about LeBron James to only plots about number of rebounds

and only when he was in Cleveland Cavaliers, this query would look like this:

Q = ‘Lebron James, Cleveland Cavaliers, Rebounds’

and will return plots showing rebounds for different seasons he played for Cavaliers etc.

Queries should be as simple as Google queries - and if there is any parsing necessary, it

will be done by our system. Thus, we want to limit any syntax which would help the parser

but make the learning curve for a user steeper. In particular, we want to avoid using “query

languages” with new syntaxes such as Solr language. These languages will play the role of

the internal languages which we parse user queries to - before they are executed against our

plot object database. But they will never be used directly by the user but be intermediate,

executable form of user query in the system.

4.5.2 Query Examples and Discussions

We can address pretty sophisticated data analytics tasks using such simple keyword queries

introduced in Section 4.5.1.

Example 1: a user would like to explore all the plots about an attribute, i.e., assist percentage

(AST%).

While assists in themselves are kind of useful to look at, assist percentage is a much better

statistic to cite when trying to make a case for a player’s skill in the passing department,

for assist percentage is free from the effects of pace and volume. Assist percentage is an
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estimate of the percentage of teammate field goals a player assisted while he was on the

floor. The formula is given in Equation 4.1

AST% =
AST

((MP/(Tm MP/5)) ∗ Tm FG) − FG
∗ 100 (4.1)

where AST = Assists, MP = Minutes Played, Tm MP = Team Minutes Played, Tm FG =

Team Field Goals, FG = Field Goals. In terms of the search query language introduced in

the previous subsection, this query can be written as:

Q = ‘AST%’

which will be transformed to the low-level Solr query syntax:

q = plottype:AST%

by our boundless analytics system before actually executing the query against the Solr search

platform based plotbase.

(a) (b)

Figure 4.10: Query response for Q = ‘AST%’: (a) ranked by score and (b) ranked by support.
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The answer returned is a list of plots about the distribution of assist percentage across

all possible data slices, like slice satisfying the conditions Tm = ‘TOT’ (‘TOT’ is just the

cumulative score from all of the teams a player played for a year) and Pos = ‘C’ (the center

position) or slice with Year = ‘1981’. Plots in the answer to this query can be ranked based

on (a) their score (interestingness) or (b) their support (coverage) as shown in Figure 4.10.

In Figure 4.10a, it’s easy to verify that the interestingness score is in decreasing order, while

the plots are ordered in decreasing support in Figure 4.10b.

(a) (b)

Figure 4.11: Top-2 high-score plots for Q = ‘AST%’.

(a) (b)

Figure 4.12: Top-2 high-support plots for Q = ‘AST%’.
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We can compare the top-2 high-score plots with the top-2 high-support plots for the

query, Q = ‘AST%’, in Figure 4.11 and Figure 4.12, respectively. In Figure 4.11, the top-2

high-score plots with an interestingness score above 0.85 have some “outstanding” bar(s)

with a very high frequency, like the assist percentage around 4 on the left and the assist

percentage around 9 on the right chart. By contrast, the distribution is more widely spread

across the spectrum of assist percentage values in those high-support (high-coverage) plots

in Figure 4.12, there are significant occurrences for a range of assist percentage values, i.e.,

from 4.5 to 11.5 on the left and from 4 to 9 on the right graph.

Based on the slicing conditions for those high-score and high-support plots, we would

like to explore how the assist percentage distribution varies among different positions. In

terms of the search query language of keywords, the query will be modified to:

Q = ‘AST%, Pos’

which will return all plots from the plot base about assist percentage slicing based on the

playing position, in addition to plots which show relationships between these two attributes.

All plots might also be further segregated based on other attributes, like team, year etc.

(a) (b)

Figure 4.13: (a) The joint distribution of assist percentage and position, (b) The distribution of assist percentage slicing on postions.
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The highest score for the relation between assist percentage and position is 0.761, as

shown in Figure 4.13a, while the score and support information of the distribution of the

assist percentage for the five basketball positions, namely, the power forward (PF), the small

forward (SF), the center (C), the shooting guard (SG) and the point guard (PG), are listed

in Figure 4.13b. We can compare the top-scored one with the least-scored one among the

five positions in Figure 4.14. Both charts are close to the normal curve. For the position

power forward (PF) on the left, the standard deviation is small, the curve is tall and narrow;

while for the position point guard (PG) on the right, the standard deviation is big, the curve

is short and wide.

(a) (b)

Figure 4.14: Comparison of the distribution of assist percentage for position (a) the power forward (PF) and (b) the point guard (PG).

Example 2: a user would like to explore all the plots between two attributes, one is

categorical, while the other is numerical. i.e., position (Pos) vs. number of seasons

(Num_of_Seasons).

Here the attribute number of seasons a player participated in is calculated during the pre-

aggregation process. Does the position played influence the career length of a professional

basketball player? Which playing position has the longest career length? To explore answers

to this kind of questions, an analytics using our boundless analytics system might query for:
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Figure 4.15: The general relationship between attribute Pos and attribute Num_of_Seasons.

Q = ‘Pos, Num_of_Seasons’

The corresponding low-level Solr query is:

q = plottype:Pos-Num_of_Seasons

The query returns a list of plots satisfying the filtering condition of this query. Firstly, we

rank the response by the support values of plots, and find the general trend of the relationship

between the two attributes with the largest support in Figure 4.15. In this plot, it displays

the side-by-side box plots of how the career length of a player varies by the playing position.

We can find that the support of this plot is 1, while the interestingness score is 0, for the

majority boxes for different positions have a median value around 9. It seems that position

played is not a significant factor to affect the number of seasons a player participated in.

Then we switch to rank the results in decreasing interestingness score, the plots are

listed in Figure 4.16, where the top-ranked plots have a pretty high interestingness score,

0.738 for the first plot and 0.654 for the second one. If we further scrutinize the slicing

conditions for these high-score plots, it’s easy to verify that the top two are sliced based on
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Figure 4.16: Query response for Q = ‘Pos, Num_of_Seasons’, ranked by score.

the college a player attended. The college might be a more crucial factor in this relation,

which guides us to query for:

Q = ‘Pos, Num_of_Seasons, college’

and the query is automatically transformed to the Solr query language before executing by

the analytics system:

q = +plottype:Pos-Num_of_Seasons +slice:college

which would return all plots from the plot base about Pos and Num_of_Seasons for each

college, might also be sliced based on other dimensions like birth state. The resulting plots

are listed in Figure 4.17a. For instance, for Michigan State University in Figure 4.17b, the

plot has the highest score in this group, for the median career length of players attended

this university changes dramatically, from 14 for the power forward (PF) to 3 for power

forward - center (PF-C). As to University of Maryland, the variation in the medium values

for different positions is relatively small, as indicated in Figure 4.17c. When it comes to the
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(a) (b)

(c) (d)

Figure 4.17: (a) Query response for Q = ‘Pos, Num_of_Seasons, college’; Example plots between Pos and Num_of_Seasons for (b)
Michigan State University, (c) University of Maryland and (d) Indiana University.

Indiana University (Figure 4.17d), the medium values tend to stable in the range of 7 to 10,

and the difference across positions is not significant enough, thus, the score goes to 0.

Example 3: a user would like to explore how the player height influences rebounding,

specifically, the relation between player height and the total rebound percentage (TRB%).

Rebounding is an imperative key to winning in basketball. Offensive rebounding leads

to more opportunities to score, while defensive rebounding prevents the opponent from

attempting more field goals. The total rebounds will take account of both. Total rebound
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percentage is an estimate of the percentage of available rebounds a player grabbed while he

was on the floor. It is calculated by Formula 4.2:

T RB% =
T RB ∗ (Tm MP/5)

MP ∗ (Tm T RB +Opp T RB)
∗ 100 (4.2)

where TRB = Total Rebounds, MP = Minutes Played, Tm MP = Team Minutes Played, Tm

TRB = Team Total Rebounds and Opp TRB = Opponent Total Rebounds. The question is

whether or not height truly matters when it comes to rebounding. To find answer to this

question, we use the search query language of the system to compose the following query:

Q = ‘TRB%, height’

with the corresponding low-level Solr query to search the underlying plotbase.

q = plottype:TRB%-height

which will return all plots about the relationship between the total rebound percentage

(TRB%) and the player height, possibly sliced by other attributes, like the season, position

played in a game, and the birth city, birth state and college of a player. Whenwe explore those

returned plots based on their support, we can get a list of plots displayed in Figure 4.18a.

(a) (b)

Figure 4.18: (a) Query response for Q = ‘TRB%, height’ ranked by support; (b) the relationship between TRB% and height over the
whole dataset.
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From this list, we can make two remarks: (i) In general, these two variables, TRB% and

height, are correlated, for the score for the largest data slice with support equal to 1 is 0.685.

The trend can be verified in Figure 4.18b, the data points follow a line, that is, TRB% is

positively correlated with player height, the higher a player, the more likely he can grab a

rebound when it is available. Height is so import for rebounding, and great rebounders tend

to be tall and strong from real-world experience. (ii) The position is not a good factor to

further segregate this relation, as the trend has become less obvious in each subgroup, for

instance, the interestingness score reduces to 0.031 and 0.195 for the power forward (PF)

and the point guard (PG), respectively. The reason might be every position even each player

has very clear division of work, not all positions/players have the chance to rebounding.

Alternatively, when we rank the query response by score, the returned list of plots

is displayed in Figure 4.19a, in which we can find the scores of the top three plots are

above the general one (0.685 in Figure 4.18b). They are corresponding to the three slices:

players born in Wisconsin, players attended Georgetown University and players attended

University of Maryland, respectively, and their scores are greater than 0.8, which indicate

a strong correlation between the two variables. For players born in Wisconsin, we plot the

relationship between TRB% and height in Figure 4.19b.

(a) (b)

Figure 4.19: (a) Query response for Q = ‘TRB%, height’ ranked by score; (b) the relationship between TRB% and height for players
born in Wisconsin
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In this subsection, we have exemplified three queries using the simple keyword based

search query language introduced in Section 4.5.1. During the data exploration process,

the intermediate query responses can guide our search and we can take the clues from the

responses to refine our query as we are doing a web search. It is indeed possible to replace

the tedious data science work just by search.

4.6 System Scalability

Up to this point, the readers should have a clear understanding of the boundless analytics

system after introducing each module of the system, i.e., the data module, the generating

module, the indexing module and the searching module, from Section 4.2 to Section 4.5 in

detail. Now we know how the system works, we also interested in how the system response

to changes. To check the capability of the system in handling changes in terms of size

and volume, we also conduct the scalability testing of the system. Two sets of experiments

are carried out here: one is to vary the minimum support threshold for large data slices;

the other is to change the number of seasons (or number of records) in the dataset. In all

experiments, we used the NBA players stats data introduced in this chapter.

4.6.1 Variation in Minimum Support Threshold

In this set of experiments, we decrease the minimum support threshold from 3% to 1%,

with a step size of 0.5%. As we learned from frequent itemset mining, the decrease of

the minimum support threshold leads to an exponential increase in the number of frequent

itemsets, which consequently results in an exponential increase in runtime during themining

process. In boundless analytics system, the decrease of minimum support might lead to

an exponential increase in the number of generated plots. To check the scalability of the

system, we keep track of the number of plots generated and the runtime at Phase I and Phase

II (refer to Section 4.3.1 about the two phases) for each specific minimum support value of
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Table 4.1: System scalability in the variation of the minimum support threshold (runtime in minutes)

minsup(%) Phase I Phase II Total
nplots runtime nplots runtime nplots runtime

3 36,745 310 81,918 613 118,663 923
2.5 49,721 315 116,274 679 165,995 994
2 91,673 414 203,162 891 294,835 1,305
1.5 143,929 513 323,127 1,126 467,056 1,639
1 183,122 562 434,121 1,312 617,243 1,874

the large data slices, while the column “Total” calculates the sum from both phases. The

results are listed in Table 4.1, where minsup is the minimum support threshold, nplot and

runtime are the number of plot objects generated and the computational time of the process,

respectively. Note that the runtimes in the table are in minutes.

From this table, we can find that in each phase the number of plots generated increases

to about 5 times from the minimum support of 3% to 1%, i.e., from 36,745 to 183,122 in

Phase I and from 81,918 to 434,121 in Phase II, while the runtime doubled in this parameter

change. In terms of generating those univariate and bivariate plots in the boundless analytics

system, the runtime is linear with respect to the number of generated plots.

4.6.2 Variation in Number of Seasons

After the pre-processing by the data module as introduced in Section 4.2.2, the NBA players

stats data has 66 seasons, from 1952 to 2017. We vary the number of seasons in the data,

i.e., 20%, 40%, ..., 100% of all seasons. For 20% of the seasons, only the most recent 13

seasons (66 ∗ 20% ' 13) from 2005 to 2017 are selected, while for 40% of the seasons, the

most recent 26 seasons since 1992 are selected, and so on and so forth.

In this set of experiments, we fix the minimum support threshold for large data slices to

be 2% and change the number of seasons incorporated in the analysis, from 20% to 100%,

with a step size of 20%. This change varies the number of records in the database. In this

scenario, we keep track of the number of records in both the Players table and SeasonsStats

table as well as the runtime at Phase I and Phase II for each database instance, for the number
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Table 4.2: System scalability in the variation of the number of seasons (runtime in minutes)

nseasons(%) num_o f _records runtime
Players SeasonsStats Phase I Phase II Total

20 956 5,772 80 148 228
40 1,515 10,660 203 410 613
60 2,044 14,961 347 704 1051
80 2,339 17,328 404 852 1256
100 2,569 18,597 414 891 1305

of generated plots is more or less the same through the changes. The results are recorded

in Table 4.2, where nseasons is the number of seasons in percentage, num_o f _records is

the number of records in a relational table, and the runtime keeps the computational time

in minutes.

As the relationship table SeasonsStats has much more number of records (see Table 4.2)

and attributes (check the database schema given in Section 4.2.1) than the entity table

Players, the influence of the number of records on the computational time is dominated

by table SeasonsStats. From Table 4.2, we can verify that the runtimes for both phases

increase linearly with the increase of the number of records in table SeasonsStats.

4.7 Summary

In this chapter, we built a novel boundless analytics system to automatically analyze large

multidimensional dataset and isolate relations which have huge potential interest, which is

demonstrated on a real-world NBA player stats data for over 3000 players since 1950. The

system consists of four modules: the data module, the generating module, the indexing

module and the searching module. We described each module of the system in detail in

this chapter. The data module cleans the data and pre-aggregates the data based on the

entity-relationship modeling to supplement entities with new, unanticipated, aggregated

measures based on their participation as foreign keys in the relationships, which greatly

increases the complexity of the data. The generating module is the “engine” of the system,
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which systematically explores the attribute-value pair space from all dimensions through

the progressive miner and generates all possible univariate and bivariate plot objects for

each large data slice. The indexing module indexes those plot objects in two layers, namely,

the plot type layer and the plot layer, together with a simple keyword based search query

language and the search interface developed in the searching module, to support various

full-text search queries on the plots from users. This whole system makes it possible

to replace the tedious data exploration process by search. Example queries with query

responses on the real NBA stats data validate the effectiveness and usefulness of the system,

which can be utilized to analyze other multidimensional datasets as well.
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Chapter 5

Conclusion and Future Work

What if data science was as simple as search? Automated data science wound encompass

attempts to automate and simplify the cumbersome data science process. Boundless An-

alytics is such an attempt. In this dissertation, we studied boundless analytics, which is a

data mining process with the objective to generate all possible univariate or bivariate plots

with sufficient support and isolate potential interesting ones. It can slice a large multidi-

mensional dataset in all possible ways based on its dimensions and derived dimensions and

generate an unbounded number of plots. The challenge lies in: (a) how to provide some

kind of progress meter in the long mining task to discover all large data slices; (a) how

to automatically isolate interesting plots from uninteresting ones from the huge number of

generated plots. To solve these problems, we proposed a progressive mining paradigm and

designed the ALPINE algorithm (which works in the progressive manner) for large slice

(frequent itemset) discovery, which can provide definite guarantees at any time. To rank

the generated plots based on their interestingness, we scored the plot based on their spread.

Moreover, we built a boundless analytics system with simple keyword based search query

language to analyze the large historical NBA player stats data, which showed that it is indeed

possible to replace data analytics by search.
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5.1 Conclusion

In conclusion, this dissertation has contributed to the following two research areas: frequent

itemset mining and automated data science. Let me recap the work in this section.

For frequent itemset mining, especially those long mining tasks, we defined the pro-

gressive itemset mining paradigm. A progressive miner progressively divides the itemset

search space into sub-spaces with respect to a set of decreasing minimum supports and it

guarantees the completeness of the partial solution at any time and has the so-called anytime

properties. Thus, it is well suited for solving problems where the search space is large and

the quality of the results can be compromised. In addition, we designed a compact rep-

resentation, namely, itemset interval, which utilizes the itemset closure operator to further

reduce the itemset search space and speed up the data mining process.

Based on this compact itemset interval representation, we proposed a dynamic approach,

ALPINE, for itemset mining that allows us to achieve flexible trade-offs between efficiency

and completeness. It works in the progressive manner and proceeds support-wise. The

theoretic correctness and the computational effectiveness of ALPINE were presented in the

dissertation. In conclusion, ALPINE is to our knowledge the first algorithm to progressively

mine all frequent and closed frequent itemsets “support-wise”. It guarantees that all itemsets

with support exceeding the current checkpoint’s support have been found before it proceeds

further. It automatically lowers theminimum support on-the-flywithout any a priori decided

minimum support threshold.

As to automated data science, we proposed the boundless data analytics framework,

which automatically slices a given multidimensional dataset in all possible ways and gener-

ates very large number of plots. Due to the fact that we can keep deriving new dimensions

and facts by SQL group-by aggregation, the boundless analytics process might take an

unbounded amount of time. Thus, the progressive mining paradigm is very suitable in this

scenario. That’s why it was incorporated into boundless analytics.
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We denoted an attribute-value pair from the dimensions of a large multidimensional

dataset as an item and formulated the problem to find all large data slices as the frequent

itemset mining problem, thus, the ALPINE algorithm can be utilized here to slice the

data progressively and give us flexible compromises between the mining time and the

completeness of the generated data slices. However, the ALPINE algorithm is designed

for centrally stored data in one single repository, while a multidimensional dataset might

be dispersed across multiple tables. To this end, we employed the foreign-key reference

relationship in the entity-relationship model of the multidimensional dataset to slice data

across multiple tables and generate the relations or plots for attributes from different tables

without the cost-expensive operation of joining tables.

In addition, we built a boundless analytics system, which includes the data module,

the generating module, the indexing module and the searching module. The generating

module, composed of the progressive data slicer and the plot generator, is the engine of the

whole system. The indexing module takes advantage of the full-text search support from

the Apache Solr platform to index all generated plot objects. Then the searching module

defined based on simple bags of keywords responses all user queries. The system was

demonstrated on a large real-world historical NBA player stats dataset of over 3000 players

since 1950. The effectiveness and usefulness of the system was validated by real query

examples and query responses. With this system, the tedious data science process can be

replaced by just simple search.

In summary, the methods explored in this dissertation make steps toward the automation

and simplification of the data science process, harnessing the cheaper and cheaper com-

putational resources and reducing the expensive human efforts. We believe these methods

should be considered by professional data analysts to enhance or replace current processes

that require strong domain expertise and intensive human labor.
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5.2 Future Work

Though this dissertation has contributed in the field of frequent itemset mining and auto-

mated data science, it also reveals someopportunities for further improvement and extension.

Here we just listed a few:

Pattern Sampling. While the progressive mining paradigm has successfully staged a long

mining task with minimum support defined milestones or checkpoints to guide the mining

process, the exponential computational complexity (in terms of the number of items) of the

exhaustive itemset mining problem remains unchanged. One potential improvement is to

incorporate highly scalable pattern sampling algorithms into progressive itemset mining,

which sacrifices the exactness of the partial solution at any time for further scalability of

the algorithm. For instance, the completeness requirement for frequent itemsets at each

checkpoint relaxes to be some acceptable range, i.e., greater than or equal to 80%, in

exchange for a substantial improvement in the computational efficiency.

Plot Scoring Functions. The Gini coefficient and the Pearson correlation coefficient

have been exploited in this thesis to score a univariate or bivariate plot based on its data

spread straightforwardly. However, there is no universal interestingness measure of a plot,

it’s more like a process to fit the needs or expectations of the users. More complicated

application-aware or user-in-the-loop measures are worth exploring. Moreover, assume

there was some interface for a user to customize his/her scoring function based on the

application needs, some entropy or information theory based methods should be studied

to find those best-fitting plots from the huge plot base for the end-users.

Dynamic Workflows. Currently, the schema of the input data is kind of pre-defined and

static. However, a user might want to modify the data schema after exploring some plots

in the response of some initial query. For instance, for the NBA players stats data, a user

may discover that the attribute free throws (FT) is perfectly correlated with the attribute

free throw attempts (FTA) when exploring those high-score plots returned by the system.
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Under this circumstance, he/she would like to delete one of the two attributes. Or after

gaining some knowledge about the data through search, an analyst carefully constructed a

new schema attribute, the total rebounds dividing by the total number of minutes a player

played in a season, and would like to add this feature to the schema. For both cases, of

course, the user does not want to modify the schema and then rerun the entire process. A

dynamic workflow should be able to handle those dynamic modifications or changes.
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