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ABSTRACT OF THE THESIS

Modeling of acoustic waves in pipes with impedance walls

and double roots

By MATTHEW KELSTEN

Thesis Director:

Dr. Andrew Norris

Non-Hermitian systems can exhibit exceptional points (EPs) at which modes coalesce. The connec-

tion between EPs and acoustic damping goes back to the observation of Cremer (1953) that optimal

attenuation in a duct occurs when the two lowest modes have equal complex-valued eigenvalues,

although the physical basis for this effect remains unclear. In an attempt to understand Cremer’s

observation we consider the model cases of a two and three-dimensional waveguide with different

impedance conditions on the boundaries. Introductory work delves into the intricacies of waveguide

modeling such as solution obtaining methodologies, modal dependencies, phase velocities, group ve-

locities, Green’s function solutions, and impedance discontinuity effects. An EP existence condition

is derived and explored for both cases. Doing so in this order allows for the determination of the

complete set of all possible pairs of passive impedance conditions that give rise to EPs, and from

these to select impedances appropriate to a particular frequency band. Numerical and computational

simulations are presented to demonstrate modeling legitimacy with the inclusion of some prelimi-

nary experimental work for the purpose of establishing experiments to test physically realizable EP

behavior. All results point towards promising alternatives and or explanations for large and almost

perfect broadband absorption. The theoretical findings are compared to realistic passive impedance

values based on models for boundary impedance. These comparisons are discussed to illustrate the

feasibility of optimized wall impedances in absorbing sound passing through ducts.
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Chapter 1

Introduction

Studying the behavior of acoustical waves traveling through a waveguide has been a popular topic

of investigation dating back to the 1930’s. These solutions typically create a solid foundation from

which to build upon for more complicated and applicable problems. For instance, eliminating exhaust

noise stemming from internal combustion engines or minimizing air duct noise when considering

architectural work are just two relevant topics that depend on fundamental solutions of this sort,

as pointed out by Lapin [2]. Morse was one of the orginal pioneers in the field. In 1939 [3] he

had delved into the effects of acoustical impedances on wave attenuation within the waveguide. His

main findings include that attenuation is higher for wall impedances that exhibit higher elasticity

over ones with higher inertial effects, given that they have equal acoustic resistances (real part of

the impedance), and that lower order waves typically experience less attenuation than higher order

ones. In 1940 [4], Morse looked at the correlating effects between impedance and absorption while

comparing his predictions with measured industry standard values. For the time his models showed

great accuracy. Shenderov in [5] built upon the models at the time by considering more complicated

solutions to the zero eigenvalue mode, also referred to as the fundamental mode. He makes use of a

linear solution to the Helmholtz equation and found the specific condition in which this mode can

exist outside of a completely rigid-walled waveguide; the condition being that at least one of the

walls of the waveguide must have a purely positive imaginary impedance.

All previously mentioned work has been based off of separable solutions to the wave equation, i.e.

an infinite amount of distinct modes all contributing to overall acoustic fields which are determined

by boundary conditions. However, it was not until Cremer [1] in 1953 when it is unveiled that there

exist modes that can be of equal complex value that are completely controlled by wall impedances,

commonly referred to as double roots, mode coalescence, or exceptional points (EPs). Within his

work, he goes on to claim that EPs are the driving force behind achieving optimal attenuation in

waveguides; a very sought after attribute. As time passed, more publications had added to Cremer’s

findings. Shenderov [6] published his work on deriving EP conditions via non-separable solutions to

the Helmholtz equation in addition to extending the phenomena to higher order EPs for both a two

and three dimensional pipe. Both Shenderov [6] and Tester [7] present their own derivations to a
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corrected Green’s function solutions which is quite useful when considering the fact that the classic

approach is undefined when EPs are involved.

Despite the numerous publications on the topic, there are questions still left to be answered. It

is still unclear how to close the gap between mathematical entities and physically realizable cases in

the context of double roots. What is presented in this work will shed light on this topic as we explore

not just the existence of EPs themselves, but the effect they have on other well known waveguide

parameters. In chapter 2 We will consider both a two and three dimensional pipe with uniform

thickness and varying wall impedances where we first work at the general separable solutions in

order to provide a solid foundation into the minutiae of classical waveguide modeling. A derivation

of EP conditional existence follows suite in chapter 3, similar to that of [6], in an effort to redefine

those conditions for the use of a better launching point into the discussion on feasibility. Chapter 4

covers impedance discontinuity modeling techniques in order to look at realistic cases of reflection

and transmission trends between EP and non-EP hybrid waveguide systems, all while comparing the

performance to traditional energy dissipation techniques in pipes like that of perforated sections [14].

The promising effect EPs have on the overall acoustic pressure fields are highlighted with numerical

and simulated results/comparisons in chapter 4. Physical constraints of general impedances are

derived in chapter 5 to supplement the discussion of EP feasibility. To bring this work full circle,

chapter 5 gives some preliminary experimental research and testing of a custom impedance tube

apparatus and is shown to be useful in the future categorizing of realized EP wall impedances. The

conclusion can be found in chapter 6.
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Chapter 2

Equations for a damped waveguide

2.1 General solution for a 2D waveguide

Consider a two dimensional waveguide with width h depicted in Figure 2.1. The governing equation

for the behavior of sound in any waveguide is the wave equation,

∂2p

∂t2
− c2 52 p = 0 (2.1)

where p is the acoustic pressure and c is the acoustic wave speed. One may arrive at the wave equa-

tion by considering a continuum model approximation of the fluid medium. A pressure differential

across a fluid element will cause it to undergo volumetric changes and translation. Interrelating

both of these effects will result in equation (2.1). The solution of (2.1) by means of separation of

variables is

p(x, y, t) =
∑

φn(y) ei(γnkx−ωt), (2.2)

where k = ω/c and γn is a separation constant for the nth mode. The dependence ei(γnkx−ωt) is

omitted but understood in the remainder. The modal dependence in the y−direction is

φn(y) = An cosβn
y

h
+Bn sinβn

y

h
, (2.3)

where βn is the nth eigenvalue, related to the wavenumber in the x−direction by

γn =

√
1−

(βn
kh

)2

. (2.4)

The upper and lower walls of the waveguide are characterized by the effective impedances Z1eff and

Z2eff. We assume they are complex valued, of the form

Zeff = −iωM + ζ +
iK

ω
. (2.5)

The effective impedance takes into consideration the superposition of inertial effects (M = mass

per unit area), elastic effects (K = elasticity per unit area), and the dissipation ζ. Note that we
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will assume the impedance is locally reacting. Applying continuity of velocity at both walls in

conjunction with the momentum equation, v = 1
iωρ

∂p
∂x , generates the boundary conditions

p = −α1h
∂p

∂y

∣∣∣
y= h

2

, p = α2h
∂p

∂y

∣∣∣
y=−h

2

, (2.6)

with

αj =
Zjeff

−iωρh
=

1

ρh

(
Mj +

iζj
ω
− Kj

ω2

)
for j = 1, 2. (2.7)

Note Equations (2.3) and (2.6) give
cos βn

2 − α1βn sin βn

2 sin βn

2 + α1βn cos βn

2

cos βn

2 − α2βn sin βn

2 − sin βn

2 − α2βn cos βn

2



An

Bn

 =


0

0

 (2.8)

and setting the determinant to zero yields the first eigenvalue relation [5]

F1(β) ≡ (1− α1α2β
2
n) sinβn + (α1 + α2)βn cosβn = 0. (2.9)

For later use we define solutions that satisfy the boundary conditions on y = h/2 and y = −h/2,

respectively,

φ(1)
n (y) = − sin

(
βn
y

h
− βn

2

)
+ α1βn cos

(
βn
y

h
− βn

2

)
,

φ(2)
n (y) = sin

(
βn
y

h
+
βn
2

)
+ α2βn cos

(
βn
y

h
+
βn
2

)
.

(2.10)

Note either φ
(1)
n (y) or φ

(2)
n (y) are functional for (2.2), the only difference lies in which wall impedance

is preferably used. With that being understood, we will continue with φ
(2)
n (y) where the superscript

will be omitted.

2.1.1 Symmetric waveguide

If the wall properties are identical (α1 = α2 = α) then eq. (2.9) reduces to(
cos

βn
2
− αβn sin

βn
2

)(
sin

βn
2

+ αβn cos
βn
2

)
= 0. (2.11)

The parenthetical terms in equation (2.11) correspond respectively to symmetric (φn(y) = φn(−y))

and antisymmetric (φn(y) = −φn(−y)) modes, i.e.

tan
βn
2

=


1

αβn
, symmetric,

−αβn, antisymmetric.

. (2.12)

This can be rewritten
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x

y

-h/2

h/2
,c

Figure 2.1: Waveguide sketch with width h. ρ, c are the fluid medium density and wave speed
respectively.

βn + 2 tan−1 αβn =


(2n− 1)π, symmetric, αβn ≥ 0

(2n− 3)π, symmetric, αβn < 0

for n = 1, 2, . . . .

βn + 2 tan−1 αβn =


2nπ, antisymmetric, αβn ≥ 0

2(n− 1)π, antisymmetric, αβn ≤ 0

for n = 1, 2, . . . .

(2.13)

Hence, for n ≥ 2,

βn ≈


(

2n− 1− 2
π tan−1

(
(2n− 1)πα

))
π, symmetric,(

2n− 2
π tan−1

(
2nπα

))
π, antisymmetric,

for αβn ≥ 0, (2.14)

βn ≈


(

2n− 3− 2
π tan−1

(
(2n− 1

)
πα)

)
π, symmetric,(

2(n− 1)− 2
π tan−1

(
2(n− 1)πα

))
π, antisymmetric,

for αβn < 0. (2.15)

with the approximation improving with n.

Now consider the possibility of complex modal values. Start by assuming that the impedances of

both loseless walls are identical, i.e. α1 = α2, and βn = −i|βn|. The negative sign is present for the

fact that we are looking for mode values strictly in the fourth quadrant of the complex plane. As

mentioned in [5], this conclusion can be drawn by considering the imaginary part of the relationship

γ2
n = 1− (βn/kh)2, yielding

<γn=γn = −(kh)−2<βn=βn. (2.16)

Since <γn and =γn must both be positive in order to have only attenuating and forward-traveling

waves, Eq. (2.16) implies that <βn and =βn must be of opposite signs. It is also important to note

that changing the sign of the root, whether real or complex, does not produce new unique solutions.
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All of these points lead to the conclusion that maintaining a focus on the fourth quadrant for roots

is sufficient. Equation (2.12) then becomes

tanh
|βn|

2
=


− 1
α|βn| , symmetric,

−α|βn|, antisymmetric.

(2.17)

Due to the nature of tanh (|βn|/2), these complex modal values will only exist for α < 0, and in turn,

only be present for waveguides with elastically dominant impedances (K/w2 > M). For a graphical

representation, see Figure 2.2. Note that for a value of |α| > 0.5 only one intersection point, and

therefore only symmetric modes, exists while two intersection points will occur for |α| < 0.5, i.e.

both symmetric and antisymmetric modes can exist. It is easier to reconcile this effect by observing

the derivatives with respect to |βn| of tanh (|βn|/2) and −α|βn| at |βn| = 0. In order for these two

functions to meet, the slope of −α|βn| must be less than that of tanh (|βn|/2), or in inequality form:

α > −0.5. Figure 2.3 demonstrates the behavior of the complex roots of equation (2.17) in tandem

with the first real antisymmetric branch corresponding to the modes associated with the second

term of equation (2.11). It also introduces the non-dimensional frequency

Ω =
ωh

c
. (2.18)

This notation will be used in upcoming equations and figures.
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(a) An example with |α| > 0.5, specifically |α| = 1.

0 1 2 3 4 5| |
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1

3

2

(b) An example with |α| < 0.5, specifically |α| = 0.3.

Figure 2.2: Curves 1, 2, and 3 represent tanh (|β|/2), 1/(−α|β|), and −α|β| respectively. Black lines
signify intersection points, see Eq. (2.16).

Inspection of Figure 2.3 leads to a better understanding of complex modal behavior. Both the

symmetric and antisymmetric complex branches tend to be asymptotic to Ω = 10 (ω = 1) for the

set of parameters given in figure 2.3. Considering that this frequency corresponds to this particular

waveguide being acoustically soft (α = 0), the trend supports the claim that complex modes will
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Figure 2.3: Depiction of the first real antisymmetric mode branch (red, Ω − <β plane) in addition
to both the symmetric (blue) and antisymmetric (red, Ω − =β plane) complex mode branches of
a lossless waveguide. Parameters include K = M = ρ = 1, h = 10. A similar figure is found in
Shenderov [5].

only exist for waveguides experiencing higher elasticity than inertial effects. Also note at which

point the antisymmetric branch begins is also when both types of roots start to exist, suggesting

that it is at this frequency where |α| becomes less than a half.

2.2 Phase and Group Speeds

2.2.1 Phase Speed

Phase speed is defined as the rate at which each phase propagates along the waveguide. Consider

the phase of a given mode to be γnkx−ωt, where γn is the separation constant, as mentioned before,

that also pertains to the wave number of that particular mode. By differentiating the modal phase

with respect to time and setting it equal to zero we arrive at

vphn =
c√

1−
(
βn

Ω

)2 . (2.19)
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(a) Dotted line illustrates cutoff frequency trend.
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(b) Dotted lines and * signify cutoff frequencies and

zeroth mode, respectively.

Figure 2.4: Lossless mode shapes (a) and their respective phase speeds (b) for K = M = ρ = h = 1.

K and M values chosen to have acoustically soft impedances (α = 0) at Ω = 1. Red and blue signify

antisymmetric and symmetric modes, respectively.

Figure 2.4(b) refers to the phase speeds of each corresponding mode branch illustrated in figure

2.4(a). Notice how there are only two speed branches present for this range of frequencies. This is

due to the fact that all other modes lead to evanescent, or exponentially decaying, solutions because

they are all above the cutoff frequency. the cutoff frequency is simply defined as the frequency at

which point γn becomes complex for a set of given parameters. Revisiting the example of figure 2.4

with K = M = ρ = h = 1, this is illustrated by the relation Ωcutoff = ωcutoff = βn, where Ω is the

non-dimensional frequency. A graphical representation of the cutoff frequency is illustrated by the

dashed lines in figures 2.4(a) and 2.4(b). Changing certain parameters, such as the width of the

waveguide etc., will change the cutoff and allow for more modes to propagate. The aforementioned

method was used to achieve propagating phase speeds for a multitude of modes by increasing the

width of the guide and subsequently changing the cutoff relation to ωcutoff = βn/10 (or Ωcutoff = βn),

seen in figures 2.5(a) and 2.5(b). Note that a change in waveguide dimensions only does not lead

to a change in the non-dimensional cutoff frequency relation, but still allows for more propagating

modes.
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(a) Dotted line illustrates cutoff frequency trend.
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Figure 2.5: Lossless mode shapes (a) and their respective phase speeds (b) for K = M = ρ = 1, h =

10. K and M values chosen to have acoustically soft impedances (α = 0) at Ω = 10. Red and blue

signify antisymmetric and symmetric modes respectively.

2.2.2 Group Speed

Another characteristic of wave motion is known as the group speed, or the speed of the wave packet

composed of multiple individual waves that contribute to the overall waveform. Group speed will

be defined as vgrn = dω
dkx

where kx = kγn. Both group and phase speeds will not be one in the same

as long as there is dispersion present. Thus,

vgrn =
c

√
1−

(
βn

Ω

)2
1−

(
βn

Ω

)2
Γ

(2.20a)

where Γ =
ω

βn

dβn
dω

=
α− 1

ρh (M + Kh2

Ω2c2 )

α+ 1
2 + 1

2 (αβn)2
. (2.20b)

The expression for Γ follows by using Eq. (2.11) to get

dβn
dα

= −βn
(
α+

1

2
+

1

2
(αβn)2

)−1

(2.21)

for both symmetric and antisymmetric modes, and then using Eq. (2.7) for dα/dω. It is important to

note that all group speeds, regardless of which modal branch they originated from, are asymptotic to

the acoustic medium speed c. The peculiar value of the zeroth mode’s group speed will be discussed

in the next section.



10

0 10 20 30 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

v
gr

n

0

Figure 2.6: Group speeds corresponding to lossless mode shape branches of 2.5(a). Red and blue
signify antisymmetric and symmetric modes, respectively. Dotted line representative of the non-
dimensional frequency (Ω0 = ω0h

c ) correlating to α = −1/2 e.g. the zeroth mode. c = 1.

Perturbation: zeroth mode

Perturbation theory is applied to the zeroth mode (β = 0) of the first antisymmetric mode branch for

better understanding of exact roots. Consider the antisymmetric part of equation (2.11) expanded

into its Taylor series. We arrive at(βn
2
− β3

n

48
+

β5
n

120 ∗ 32
+ . . .

)
+ αβn

(
1− β2

n

8
+

β4
n

24 ∗ 16
+ . . .

)
= 0 (2.22)

Factoring out a βn and applying a perturbation around α = −1/2, specifically α = − 1
2 +ε, generates

the perturbed polynomial

ε+ β2
n

( 1

24
− ε

8

)
+ β4

n

(−1

960
+

ε

384

)
+ . . . = 0. (2.23)

Substituting in βn = εpx with p = 1/2 and grouping the coefficients together by powers of ε produces

the second order perturbation roots around zero

β2
01 ≈ β2

02 ≈ −ε
(

24 +
288

5
ε+

3492

25
ε2 +

15768

125
ε3 + . . .

)
. (2.24)
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Utilizing the perturbation series in conjunction with the group speed relations will provide some

insight on the group speed value of the zeroth mode. We start with substituting in equation (2.24)

into equation (2.20) in order to achieve a closed form expression of the perturbed group speeds.

After some amount of algebra we arrive at

vgr0 (ε) =
c
√

1 + 24ε
Ω2

0
(1 + 12

5 ε+ . . .)

1 + 12
Ω2

0

(
1 + 2M

ρh − 12ε
)
(1 + 24

5 ε+ . . .)
(2.25)

where Ω0 is the Ω value tied to α = −1/2 for a set of given parameters. More specifically, as ε goes

to zero the perturbed group speed of a lossless waveguide simplifies to

vgr0 (0) =
c

1 + 24Kh
κΩ4

0

by using Ω2
0 =

Kh

( 1
2 + M

ρh )κ
. (2.26)

The κ = ρc2 term in equation (2.26) is known as the bulk modulus of the fluid medium. We can

test the accuracy of equation (2.26) by plugging in the parameters used for 2.5(a) which include

K = M = ρ = c = 1, h = 10. A value of vgr0 (0) ≈ 0.536 is obtained when this is performed which

closely agrees with the result seen in figure 2.6. Now with equation (2.26) in hand, it is possible

to start considering and evaluating conditions relevant to maximizing this fundamental value. The

physical limitations considered here is that the group speed cannot be greater than that of the free

medium speed c. With this in mind, it is advantageous to study how this zeroth mode group speed

varies with changing parameters, more specifically how it increases approaching the free medium

speed. It is obvious that vgr0 approaches c as the denominator in (2.26) approaches unity, which can

be accomplished in different ways. The most evident of those being the wall elasticity measurement

K, going to infinity, or in other words the impedance of the waveguide becoming acoustically hard.

An increase in waveguide width will also have a similar effect.

2.3 General solution for a 3D axisymmetric waveguide

A similar approach is taken in order to solve that of a uniform cylindrical waveguides with constant

radius b which is axisymmetric, or there are no geometric nor impedance changes with respect to the

circumferential direction. The Helmholtz equation with cylindrical coordinates and the axisymmetric

assumption is

(52 + k2)Ψ(r, θ, z) = 0 with 52 =
( ∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂x2

)
, (2.27)

where r, x are the radial and axial directions respectively. k is once again the wavenumber of the

medium. Separation of variables, Ψ = R(r)X(x), generates the ordinary differential equations
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(b) Group speeds of mode branches in 2.7(a), c = 1.

Figure 2.7: Lossless mode shapes (a) and their respective group speeds (b) for M = ρ = 1, h = 10,

and varying K. Dashed lines suggest location of non-dimensional frequency Ω0j =
ω0jh
c , for j =

1, 2, 3, that lead to α = −1/2 for each value of K. All branches are color coordinated.

(ODEs)

1

R

d2R

dr2
+

1

rR

dR

dr
+ k2 +

1

X

d2X

dx2
= 0→


1

X

d2X

dx2
= −k2γ2,

r2 d
2R

dr2
+ r

dR

dr
+ r2

(β
b

)2

R = 0,
(β
b

)
= k2 − k2γ2.

(2.28)

It is easily seen that the top ODE solution works out to be

X(x) = Aeikγx (2.29)

for forward traveling waves. The bottom ODE takes the form of Bessel’s equation which has the

known solution

R(r) = CJ0(βr/b) +DN0(βr/b), (2.30)

where J0 and N0 are the Bessel functions of the first ad second kind of order zero (attributed

to the axisymmetric assumption). the unknown coefficient D will be zero so the overall solution

remains bounded at r = 0. Application of the velocity continuity boundary condition at the wall,

∂Ψ
∂r = ikρc

Z Ψ
∣∣∣
r=b

= − 1
αbΨ

∣∣∣
r=b

(a direct consequence of the momentum equation v = 1
iωρ

∂p
∂x as seen

in the 2D case), bears the eigenvalue relation

F1(β) = J0(β)− αβJ1(β) = 0, α =
Z

−iωρb
. (2.31)

The modes given by (2.31) are dictated by the same second or fourth quadrant in the complex plane

restriction as the modes for the 2D case. Equation (2.29)-(2.31) gives all eigenfunctions Ψn:

Ψn = ψn(r)eikγnx = AnJ0(βnr/b)e
ikγnx. (2.32)
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Note that the coefficient An is not the same as in (2.29) and γn is given in (2.28). The overall

pressure fields now being defined as

p(x, r, t) =
∑

ψn(r)ei(kγx−ωt). (2.33)
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Chapter 3

Non-Separable Solutions to the Helmholtz Equation and

exceptional points

3.1 2D waveguide

In all of the previous findings above, a strictly separable solution to the Helmholtz equation was

assumed; however, this will not always be the case. As mentioned by Shenderov [6], there exist

possible solutions that require additional specifications on the waveguide impedances; once these

are met, they will start to contribute to the overall acoustic fields. For better comprehension let us

refer back to our original work, but consider the existence of less intuitive solutions. The original

problem had equation (2.9) to find the eigenvalues which have their own respective spatial solution

sn(x, y) = φn(y)eiγnkx, (3.1)

where each eigenfunction φn is a valid solution for the Helmholtz equation. Let us assess a new

function tq(x, y, βq) described by Shenderov in [6] and defined by

tq(x, y, βq) =
∂sq(x, y, βq)

∂βq
=
[∂φq(y, βq)

∂βq
− ixβq
kh2γq

φq(y, βq)
]
eiγqkx, (3.2)

where the subscript q refers to the mode βq and its subsequent modal conditions only. It is easy to

see that the term containing φq already satisfies the boundary conditions presented in (2.6), so the

next logical move is to find at what values of βq does
∂φq(y,βq)

∂βq
meet them as well. For instance, the

explicit form becomes

∂φq(y, βq)

∂βq
=
(y
h

+
1

2

)(
cos
(
βq
y

h
+
βq
2

)
− α2βq sin

(
βq
y

h
+
βq
2

))
+ α2 cos

(
βq
y

h
+
βq
2

)
. (3.3)

Application of equation (3.3) into the boundary conditions of (2.6) implies that a non-separable

solution of the form tq(x, y, βq) can occur only if βq is a root of (2.9) and F2(βq):

F1(βq) = (1− α1α2β
2
n) sinβq + (α1 + α2)βq cosβq = 0,

F2(βq) = βq sinβq

(
2α1α2 + α1 + α2

)
+ cosβq

(
α1α2β

2
q − α1 − α2 − 1

)
= 0.

(3.4)

βq is commonly referred to as a double root. More specifically, the smallest mode (in terms of

absolute value) to satisfy (3.4) will cause the first two adjacent symmetric modes to coalesce. The
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second smallest mode satisfying (3.4) will cause the first and second antisymmetric adjacent modes

to coalesce and so on. Note that ”order” of modes will be treated as low to high. The two former

instances are demonstrated in figure 3.1. However, in terms of absorption it will always be more

beneficial to have the first two symmetric modes coalesce for they are the least attenuated. This

attribute will become more clear in the coming sections under chapter 4. Again, the subscripts q
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Figure 3.1: First handful of modes for a 2D waveguide with EP impedance walls corresponding to
the first symmetric 3.1(a) and antisymmetric 3.1(b) double roots at 1000 Hz and h = 0.3m.

specifies modes that satisfy both equations of (3.4). It is important to note that F2 is the derivative

with respect to the mode of F1, dF1/dβ. Eliminating the trigonometric functions yields an algebraic

relation

α2
1α

2
2β

4
q +

(
(α1 + α2 + 2)α1α2 + (α1 − α2)2

)
β2
q + α1 + α2 + 1 = 0. (3.5)

While this can be solved to yield βq in terms of the impedances, we find it more constructive to

consider the impedances as dependent on βq. Following Shenderov [6], eliminating α1 between the

two relations (3.4) implies H(α2, βq) = 0 where

H(α2, βq) ≡
1

2

(
1 + 2α2 sin2 βq + β2

qα
2
2 + (β2

qα
2
2 − 1)

sin 2βq
2βq

)
. (3.6)

H(α2, βq) is related to the integral of φ2
q, i.e. the orthogonality relation:

H(α2, βq) =
1

h

∫ h/2

−h/2
φ2
q(y)dy. (3.7)

The equally symmetric dependence of α1 and α2 in (3.4) implies that H(α1) is zero at the double

root. Hence the conditions (3.4) can be replaced by a pair of identities each involving only one

impedance:

H(α1, βq) = 0 and H(α2, βq) = 0. (3.8)
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Note that

H(α, β) = 0 if α =

sin 2β
2β − 1

sin2 β ±
√

sin2 β − β2
. (3.9)

As previously stated, (2.16) showed that physical solutions for βq must lie in the second or fourth

quadrants. We restrict attention to double root values in the fourth quadrant. Numerical exper-

iments then show that the root with the + sign1 almost always yields an α with non-negative

imaginary part, consistent with a passive impedance condition2. The exception being when <βq is

exactly zero. The root with the − sign yields a passive impedance for some values of β. We can

therefore work backwards in a sense, and consider some value of βq and then define the impedances

by the two roots:

αn ≡
sin 2βq

2βq
− 1

sin2 βq − (−1)n
(

sin2 βq − β2
q

)1/2 , n = 1, 2. (3.10)

Any choice of βq gives a passive α1 as long as <βq > 0. Numerical experiments indicate that there

are no passive solutions for α2 if −=βq < C and <βq > 0, where C ≈ 1.105824. For larger values of

−=βq it is possible to obtain two passive but distinct values for the wall impedances.

-Im
q

Im(
1
)

Re
q

120
10

0.1

2 8

0.2

4

0.3

66

0.4

4

0.5

8
10 212 014 Re

q
-Im

q

Im(
2
)

12
100

8

0.1

62

0.2

4 46

0.3

8

0.4

210

0.5

12 014

Figure 3.2: Contour figures of passive α1 and α2 for a range of βq = <βq − i=βq values. The red
line in (b) represents the boundary =βq = C ≈ 1.105824.

We must interpret the above in terms of the known limiting cases: one or both walls acoustically

hard or soft and equal wall impedances. The symmetric waveguide case is simply when the square

root term in (3.10) is zero, i.e.

sinβq = ∓βq, α1 = α2 =
−1

1∓ cosβq
, (3.11)

1We assume the usual branch cut for the square root along the negative real axis such that the real part of the
square root is non-negative.

2A passive impedance is one that takes away energy, as opposed to an active impedance which supplies energy
from an exterior source. They are defined by the sign of the real part of the impedance Z, or equivalently, by the
imaginary part of α. The signs are positive for passive impedances, and negative for active ones.
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where the −(+) corresponds to symmetric (antisymmetric) mode shapes. The roots of Eq. (3.11)

are discussed in Appendix A.. Now imagine a waveguide in which the lower wall was acoustically

rigid, i.e. |α2| = ∞. In order for that to be true, the denominator in equation (3.10) must go to

zero, giving us the modal condition sin 2βq = −2βq. Substitution into equation (3.10) and some

manipulation shows the necessary impedance of the other wall for these double roots to occur in

this scenario. Hence,

sin 2βq = −2βq, α1 =
−2

1− cos 2βq
, 1/α2 = 0. (3.12)

A slightly different method can be helpful in determining the results for α1 = 0, or the upper

wall being acoustically soft. Consider the numerator in equation (3.10) approaching zero by letting

sin 2βq

2βq
− 1 = ε

βq
for ε� 1 and taking the limit. Substitution into equation (3.10) and some algebra

produces α2 = εβ−1
q [sin2 βq − (sin2 βq + ε cotβq +O(ε2))]−1, which implies, in the limit that

sin 2βq = 2βq, α2 =
−2

1 + cos 2βq
, α1 = 0. (3.13)

Note that for the acoustically hard or soft cases, a reverse methodology where the opposite α is

fixed to explicitly solve for βq and the remaining α will provide the same βq relation but only trivial

α pairs (α1 = α2 = ∞ or α1 = α2 = 0). Comparison of Eqs. (3.11), (3.12) and (3.13) shows, as

noted by [6], that the values of βq for the waveguide with one face soft or hard are equal to one

half of the corresponding values for the symmetric waveguide, and the associated impedances are

twice the impedances of the symmetric waveguide. Figure 3.3 is the result of a refined interpolation

method that successfully mimics the boundary between passive and non-passive α2 values that will

satisfy the double root condition. The corresponding value of α1 is given in (3.10). Since we are

only considering passive α2, figure 3.3 graphically illustrates the real and imaginary mode pairs

that are of any significance to the discussion (above the black line) while highlighting the cases of

(3.11)-(3.13). It is important to note that both the acoustically hard and acoustically soft cases lie

directly on this boundary suggesting that they are, in a way, limiting cases.

The black curve in Figure 3.3(a) is where α2 is real valued. Using Eq. (3.10), the values of βq on

the boundary curve satisfy

α2
2β

2
q

(
1 +

sin 2βq
2βq

)
+ 2α2 sin2 βq +

(
1− sin 2βq

2βq

)
= 0. (3.14)

This can be written

2βq + sin 2θ − sin 2(βq + θ) = 0 where θ = tan−1(α2βq). (3.15)

Note that Eqs. (3.12) and (3.13) are recovered when α2 = 0 (θ = 0) and α2 = ∞ (θ = π
2 ),
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(b) Overlay comparison between interpolated boundary
and actual contour boundary.

Figure 3.3: The black curve is the interpolation of the passive α2 boundary presented in Fig. 3.2(b).
Every α2 point above this curve corresponds to a passive pair of impedances that give rise to a
double root: the corresponding value of α1 is given by Eq. (3.10). The specific points are defined
as follows: red, blue and black are for numerical approximations of acoustically hard (|α2| = ∞),
acoustically soft (α2 = 0), and symmetrical waveguide (α1 = α2) solutions, respectively. Symmetric
and antisymmetric mode types differentiated by ”*” and ”o” symbols. Red dashed line marks
−=βq ≈ 1.105824. The Green points are those for which =α2 ≈ 0 and were used to generate the
boundary curve.

respectively. Differentiation of Eq. (3.14) yields

dβq
dα2

=


−βq, α2 = 0,

0, α2 =∞.
(3.16)

This demonstrates that the globally minimum value of −=βq corresponds to the first acoustically

hard mode (α2 = ∞). Inspection of figure 3.3 shows an identifiable pattern between the real and

imaginary parts of symmetric and antisymmetric double root modes for a symmetric waveguide.

Further investigation produced Figure 3.4, the result of an expanded numerical approximation in

conjunction with a curve fitting method that models the modes as a two term power equation:

=βq = 162.3(<βq)0.005943 − 161.5. (3.17)

3.2 3D axisymmetric waveguide

Consider the 3D axisymmetric waveguide introduced in section 2.3. Likewise, non-separable solutions

and exceptional points exists for this system as well. Because of its 3D nature, its derivations are

more likely to be linked to physically realizable waveguides making it highly serviceable. We could
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Figure 3.4: Higher order symmetric ”*” and antisymmetric ”o” double root solutions to the sym-
metric waveguide case (α1 = α2). Red dashed line is a result of a numerical curve fitting that takes
the form of the two term power equation =βq = 162.3(<βq)0.005943 − 161.5.

start with a similar technique as before and introduce a new function

gq(x, r, βq) =
∂Ψq(x, r, βq)

∂βq
, (3.18)

where Ψn is defined by (2.32) and find the secondary modal condition that way. However, a simpler

method exists that was highlighted in the previous section, i.e. the non-separable solution and

exceptional point condition F2(βq) is just the derivative of the separable eigenvalue relation with

respect to the mode. ergo, taking dF1/dβ of equation (2.31) yields

F2(βq) =
dF1(βq)

dβ
= J1(βq) + αβqJ0(βq) = 0, (3.19)

providing a more timely and efficient approach. With F2 in hand the rest is identical to that of the

2D case; solving for α in F1 and substitution back into F2 gives the alternate condition

Hq = J2
1 (βq) + J2

0 (βq) = 0, (3.20)

where Hq is again related to the orthogonality of the eigenfunction itself

∫ b

0

ψiψjrdr =


= 0, i 6= j,

= Hi, i = j.
(3.21)

Hq can be rewritten as

Hq = J2
1 (βq) + J2

0 (βq) = 0→
(
J0(βq) + iJ1(βq)

)(
(J0(βq)− iJ1(βq)

)
= 0 (3.22)

where only one of the parenthetical terms needs to be solved. If βq is a root of one then so is −βq, β∗q ,

and −β∗q ; ”*” refering to the complex conjugate. Figure 3.5 provides a graphical depiction. Since

the fourth quadrant is all that is necessary to completely describe the phenomenon, we will focus
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our attention there. This observation provides an ease to numerical mode computations that would

normally be tedious. As before, we can instead work backwards and use Hq to find the EP modes

which can be utilized to find the corresponding wall impedance,

αep = J0(βq)/βqJ1(βq), (3.23)

found via rearranging F1.
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Figure 3.5: EP mode symmetry across four quadrants of the complex plane for a cylindrical axisym-
metric waveguide.

3.3 Green’s Function for a Two-Dimensional Waveguide around the Pres-

ence of Double Roots

Consider a concentrated source located at (x0,y0) within the waveguide presented in figure 2.1. In

order to solve for the acoustic field generated by this source, the Green’s function is introduced

which satisfies

(∇2 + k2)G(x, y|x0, y0) = −δ(x− x0)δ(y − y0), (3.24)

i.e. the spatial wave equation. A two-dimensional waveguide equipped with impedance boundary

conditions that does not exhibit double roots has a well-known Green’s function of the form of an

infinite series of eigenfunctions,

G =
∑
n

Fn(x)φn(y). (3.25)

φn(y) is the known characteristic eigenfunction above stemming from homogenous Helmholtz equa-

tion with impedance boundary conditions. Fn(x) can be obtained via insertion into (3.24), followed
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by multiplying both sides by φn(y) and integrating over the waveguide width. After taking into

consideration the slope discontinuities at x0, the results become (see Morse and Ingard [?])

Fn =
iφn(y0)

2khγnHn
eikγn|x−x0|, G(x, y|x0, y0) =

i

2kh

∑
n

φn(y)φn(y0)

γnHn
eikγn|x−x0|. (3.26)

Equation (3.26) explicitly shows the inherent problem of using this Green’s function when double

roots occur. G is undefined when Hn is zero which is an unavoidable property of double root

existence. Hence, an updated Green’s function that compensates for this behavior is mandatory.

Two different approaches to a corrected Green’s function are established in [6] and [7]. What is of

bigger concern is how the Green’s function solution behaves as you approach the double root. In

more detail, we will look at the effect of two adjacent modes of similar symmetry approaching one

another has on the classic Green’s function. Numerical tests of G(x, y|x0, y0) in equation (3.26) for

a monopole source located at (0, 0) suggest that the classic function remains defined regardless of

how close these modes become. In fact, figures figures 3.6-3.7 illustrate that the two modes expected

to equate at the EP impedance have equal and opposite contributions to the acoustic fields. So

although their magnitudes increase to a great extent with respect to the higher modes, they are kept

in check by one another.
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(a) First two symmetric modes of a symmetric waveguide
with walls close to that of the first EP impedance.
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(b) Modal contributions to the Green’s function. Modes
approaching one another have equal and opposite effects.

Figure 3.6: 3.6(a) illustrate the first two symmetric modes for a symmetric waveguide with α = αep+ε
where ε = 10−6i. 3.6(b) are the Green’s function magnitude per mode. Note that the modes close
to one another have almost equal and opposite contributions.
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Figure 3.7: Field distribution for a monopole source located at (0, 0) for a symmetric waveguide
where the boundary impedances are close to that of the first EP impedance, α = αep + 10−6i.
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Chapter 4

Reflection and transmission effects at impedance

discontinuities

In this chapter we introduce the concept of impedance discontinuities by considering waveguides

with two different wall impedances separated at an interface. When an incoming wave reaches the

interface its energy will be both reflected and transmitted similar to that of sound incident on a

fluid-solid interface. The purpose of this chapter lies in the inherent reality of discontinuities of this

sort in applicable systems. For example, most automotive mufflers will have metal tubing which

connects to either expansion chambers for reactive noise control or perforated tubing for dissipative

noise control [14]. In addition, these models provide an excellent source of analytical comparisons

for different tests performed with an impedance tube. Once models are derived, their validity is

discussed following a non-EP into EP hybrid system performance study.

4.1 One discontinuity

A general approach to solving waveguides with wall impedance discontinuities is given. Consider

the two-dimensional case of a symmetric waveguide with two unique and different wall impedances

separated by a line at x = 0. In equation form this looks like

Z1 = Z2 =


Za x < 0,

Zb, x > 0.

(4.1)

Subscripts 1 and 2 correlate to upper wall and lower wall respectively. This impedance discontinuity

acts as an interface where reflection and transmission phenomena can occur. In order to solve for

said reflection and transmission coefficients, continuity conditions of pressure and velocity at the

separation x = 0 are applied. These take the form of

φ
(L)
inc(y)eiγinckx +

∞∑
m=1

Rmφ
(L)
m (y)e−iγmkx =

∞∑
n=1

Tnφ
(R)
n (y)eiθnkx pressure continuity,

γincφ
(L)
inc(y)eiγinckx −

∞∑
m=1

γmRmφ
(L)
m (y)e−iγmkx =

∞∑
n=1

θnTnφ
(R)
n (y)eiθnkx velocity continuity,

(4.2)
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where the subscript ”inc” is for the incoming wave originating from the left and traveling to the

right and Rm (Tn) is the reflection (transmission) coefficient. φ
(L)
m (y)/γm and φ

(R)
n (y)/θn are the

eigenfunction/effective wave number pairs present for the portion of the waveguide with impedance

Za (Left) and impedance Zb (Right), respectively. Either can be found by utilizing equation (2.4)

in tandem with (2.10) for the specific impedance used on that corresponding side of x = 0. If we

take both equations of (4.2), multiply them by φ
(R)
j (y), integrate over y and set x = 0, we get the

following relations:

−
∞∑
m=1

RmCnm + TnHn = An,

∞∑
m=1

γmRmCnm + θnTnHn = γincAn,

where

Cnm =
1

h

∫ h/2

−h/2
φ(R)
n (y)φ(L)

m (y)dy, Hn =
1

h

∫ h/2

−h/2
(φ(R)
n (y))2dy, An =

1

h

∫ h/2

−h/2
φ(R)
n (y)φ

(L)
inc(y)dy.

(4.3)

Note that orthogonality was used to simplify the transmission series into a single term proportional

to Hn, as seen here by

1

h

∫ h/2

−h/2
φ(R)
n (y)φ

(R)
j (y)dy =


0 n 6= j,

Hn n = j.

(4.4)

If we consider the incoming wave as a plane wave and the left-portion impedance to be hard, it is

easily seen that An = Cn1. The results above can be expressed as a matrix allowing for a conventional

computational method to be used in order to solve for the unknown coefficients Rm and Tn as seen

below.

−C11 −C12 −C13 . . . −C1M H1 0 0 . . . 0

−C21 −C22 −C23 . . . −C2M 0 H2 0 . . . 0

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

−CN1 −CN2 −CN3 . . . −CNM 0 0 0 . . . HN





R1

...

RM

T1

...

TN



=



A1

A2

A3

...

...

AN



(4.5)
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

γ1C11 γC12 γ3C13 . . . γLC1M H1θ1 0 0 . . . 0

γ1C21 γ2C22 γ3C23 . . . γLC2M 0 H2θ2 0 . . . 0

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

γ1CN1 γ2CN2 γ3CN3 . . . γ1CNM 0 0 0 . . . HNθN





R1

...

RM

T1

...

TN



=



A1

A2

A3

...

...

AN


(4.6)

Matrix (4.5) and (4.6) can be combined in order to find the M + N unknown coefficients, M and

N being the number of terms taken from the left-hand (reflection) and right-hand (transmission)

series. The results presented below correspond to an incoming plane wave of unity in a waveguide

with acoustically hard walls for x < 0 (i.e. |Za| = ∞) and acoustically soft walls for x > 0 (i.e.

Zb = 0). The respective eigenfunctions, effective wave numbers, and integrals belonging to equation

(4.3) simplify to

φ(L)
m (y) = cos

(
π(m− 1)

(y
h

+
1

2

))
, φ(R)

n (y) = sin
(
nπ
(y
h

+
1

2

))
,

γm =

√
1−

( (m− 1)π

kh

)2

, θn =

√
1−

(nπ
kh

)2

,

Cnm =
n

π

[ (−1)n+m + 1

(n+m− 1)(n−m+ 1)

]
, Hn =

1

2
, An = Cn1,

where n,m = 1, 2, 3, . . . .

(4.7)

Here, Hn is found via equation (3.6). It is important to note that there exists pairs of n and m

such that the denominator of Cnm is zero, however, those exact pairs also leave the numerator

zero. Thus, we will treat them as defined and equal to zero without sacrificing the accuracy of the

approach. Value comparisons between the worked out matrix solution approach against an FEM

simulation of the same hard/soft discontinuity taken at a point far away from the interface and at

constant width (h = 0.3m) are shown in figure 4.1. The greater transmission response compared to

that of the incoming unity plane wave, measured at about 560 Hz, can be attributed to a resonance

effect with the first eigenfrequency of the soft case. Now that we have established the accuracy and

legitimacy of the approach, we can start looking at more interesting cases. Let’s consider the the

same waveguide with an incoming plane wave of unity, however, we apply an impedance condition
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Figure 4.1: Matrix solution compared with a finite elements simulation (COMSOL) for a two-
dimensional waveguide with an incident plane wave of unity incoming onto a acoustically hard/soft
discontinuity. Reflection is differentiated from transmission by color (red for reflection and blue
for transmission) while matrix and FEM methods of solutions are differentiated by lines an ”*”’s,
respectively. Waveguide width is kept at a constant value of h = 0.3m. FEM measurements are
taken far from the interface on both sides to avoid inclusion of evanscent modes.

of some complex non-zero α on the right side of the interface. Note that the left side is unchanged

and the same left eigenfunction φ
(L)
m and effective wave number γm are still applicable. With regards

to the new right-side solution, the boundary conditions of equation (2.6) are used for the walls in

tandem with equation (2.10) for the eigenfunction. The new solution takes the form of

φ(L)
m (y) = cos

(
π(m− 1)

(y
h

+
1

2

))
, φ(R)

n (y) = sin
(
βn

(y
h

+
1

2

))
+ αβn cos

(
βn

(y
h

+
1

2

))
,

γm =

√
1−

( (m− 1)π

kh

)2

, θn =

√
1−

(βn
kh

)2

,

Cnm = βn

[ (−1)m cosβn + (−1)m−1αβn sinβn + 1

(βn + (m− 1)π)(βn − (m− 1)π)

]
, An = Cn1,

Hn =
1

2

(
1 + 2α sin2 βn + β2

nα
2 + (β2

nα
2 − 1)

sin 2βn
2βn

)
,

where βn is the eigenvalue of the nth mode and n,m = 1, 2, 3, . . . .

(4.8)

It is beneficial to verify that the matrix methodology is accomplishing exactly what we set out to

do and that is match the pressure and velocity profiles on both sides of the discontinuity. Figure

4.2 and 4.3 suggest just that, demonstrating that the difference of the two profiles approaches zero

as we increase the number of modes for the case described in (4.8) using an α close to the first

symmetric EP value. Due to the fact that computation times can be lengthy, only 100 and 200
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modes are compared, however, these incorporate the aforementioned trends quite sufficiently. To

eliminate any remaining doubt about the accuracy of the model, figure 4.4 finishes us off with

another side by side comparison of a FEM simulation to the matrix method. Both are solv-

ing for the reflected and transmitted pressures at a point 0.5m away from the interface on both

sides and on the waveguide centerline. By inspection, it is evident that the agreement is spot on.

Pr =

∞∑
m=1

Rmφ
(L)
m (y)e−iγmkx, Pt =

∞∑
n=1

Tnφ
(R)
n (y)eiθnkx,

vr = −
∞∑
m=1

Rmγmφ
(L)
m (y)e−iγmkx, vt =

∞∑
n=1

Tnθnφ
(R)
n (y)eiθnkx.
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Figure 4.2: Pressure continuity at the interface (x = 0). Values presented are at the point (0, 0)
for f = 500Hz. The figures differ by 100 modes (left) and 200 modes (right) to illustrate how the
pressure difference approaches zero as more modes are taken.
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Figure 4.3: Velocity continuity at the interface (x = 0). Values presented are at the point (0, 0)
for f = 500Hz. The figures differ by 100 modes (left) and 200 modes (right) to illustrate how the
velocity profile difference approaches zero as more modes are taken.



28

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

|P
r
|,|P

t
|

Figure 4.4: Matrix solution compared with a finite elements simulation (COMSOL) for a
two-dimensional waveguide with an incident plane wave of unity incoming onto a acoustically
hard/impedance discontinuity. Reflection is differentiated from transmission by color (red for re-
flection and blue for transmission) while matrix and FEM methods of solutions are differentiated
by lines an ”*”’s, respectively. Waveguide width is kept at a constant value of h = 0.3m. Both
measurements are taken from 0.5m away from the interface on both sides and on the centerline.

In practice, it is advantageous to measure the energy loss in the presence of attenuation and

damping caused by the impedance wall conditions. This is calculated by first introducing the

following:

Re =

∫ h/2
−h/2 |Pr|

2dy∫ h/2
−h/2 |Pinc|2dy

, Te =

∫ h/2
−h/2 |Pt|

2dy∫ h/2
−h/2 |Pinc|2dy

. (4.9)

Re and Te can be thought of the reflected and transmitted energies at a fixed x. With that said, we

can now define what we will refer to as the absorption coefficient µ, a non-dimensional measure of

energy loss

µ = 1−Re − Te. (4.10)

It is important to note that Re and Te are not equal to the previously used reflection and transmission

coefficients, R and T . Figure 4.5 depicts absorption coefficients for three different α values with

varying real part and equal imaginary part. This is done in order to erase any stipulation that

would be caused for changing the resistive portion of the impedance, i.e. the imaginary part of

α. All are centered around a slight change in the first symmetric double root α (on the order of

O(10−4)) with different perturbations from then on. The perturbation have been restricted to just

changing <α and range from zero (red), +0.3 (blue) and −0.3 (green). For the majority of studied
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frequencies, the case closest to the double root α experiences the highest absorption as expected,

However, for some lower frequencies this is not the case. This can be attributed to higher back-

pressure, and therefore more energy reflected back for that of the red case compared to the others.

Also note the slight dip for all three occurring at about 1130 Hz. A direct link can be drawn

to this and the cut-on frequency of the next mode which occurs at that particular frequency for a

waveguide with acoustically rigid walls. Absorption curves of hard-perforated hybrid waveguides are

illustrated in figures 4.6 and 4.7. Their performance regarding energy dissipation seems lackluster

when juxtaposed with µ for a hard-EP impedance hybrid system.
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Figure 4.5: Three separate absorption coefficients measured at different α values with varying real

part and constant imaginary part.

4.2 One discontinuity terminated by a rigid boundary

We seek out to set up the preliminary work required to verify our claims experimentally which re-

quires an accurate model of the test methods being used. Consider the axisymmetric 3D waveguide

discussed in section 2.3 containing an impedance discontinuity located at x = 0 and a rigid termi-

nation located at x = a seen in figure 4.11. There are several variations of experimental procedures

discussed in section 5.2 that incorporate a rigid wall at the end of the testing apparatus so for

comparison purposes we include one in the model. The following pressures involved are defined as
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Figure 4.6: Three separate absorption coefficients measured at different α values. Red defines an α
value around the first symmetric double root, while blue and green are the absorption coefficients
for α’s with regard to perforated plate impedances studied in the appendix. Specifically, blue is for
plate A1 with a fibrous material lining of ρ = 100kg/m3 and green is for plate A1 with a fibrous
material lining of ρ = 200kg/m3.

such,

Pin = ψ
(L)
in (y)eiγinkx, Pr1 =

∞∑
m=1

Rmψ
(L)
m (y)e−iγmkx,

Pr2 =

∞∑
n=1

R′nψ
(M)
n (y)e−iθnkx, Pt1 =

∞∑
n=1

Tnψ
(M)
n (y)eiθnkx,

where ψn(r) = J0(
βnr

b
), γm =

√
1−

(βm
kb

)2
, θn =

√
1−

(βn
kb

)2
.

(4.11)

As explained in the previous section, ”inc” establishes the incoming forward-traveling wave and

φ
(L)
m (y)/γm (φ

(R)
n (y)/θn) is the eigenfunction/effective wave number pair present in the portion of

the waveguide that is influenced by the wall impedance ZA (ZB). Once again we have pressure and

velocity continuity at the interface separating the two wall impedances, however, we introduce a

third condition to incorporate the effect of adding a rigid termination; the velocity at x = a must
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Figure 4.7: Three separate absorption coefficients measured at different α values. Red defines an α
value around the first symmetric double root, while blue and green are the absorption coefficients
for α’s with regard to perforated plate impedances studied in the appendix. Specifically, blue is for
plate A1 with a fibrous material lining of ρ = 100kg/m3 and green is for plate B1 with a fibrous
material lining of ρ = 100kg/m3.

be zero. Both condition types take the form

x = 0 : Pressure-Velocity

−
∞∑
m=1

RmCnm + (Tn +R′n)b2Hn = An,

∞∑
m=1

γmRmCnm + θn(Tn −R′n)b2Hn = γincAn,

x = a : Velocity

θn(Tne
iθnka −R′ne−iθnka)b2Hn = 0,

(4.12)

with orthogonality of the eigenfunctions used to create the integral coefficients

Cnm =

∫ b

0

φ(R)
n (r)φ(L)

m (r)rdr, Hn =

∫ b

0

(φ(R)
n (r))2rdr, An =

∫ b

0

φ(R)
n (r)φ

(L)
in (r)rdr. (4.13)

(4.13) can be simplified with the help of Bessel function identities to

Cnm =

∫ b

0

φ(R)
n (r)φ(L)

m (r)rdr =
βmJ1(βm)J0(βn)− βnJ1(βn)J0(βm)

(βm

b )2 − (βn

b )2
,

An =

∫ b

0

φ(R)
n rdr =

b2

βn
J1(βn) when φ

(L)
in = 1,

Hn =
(
J2

0 (βn) + J2
1 (βn)

)
/2.

(4.14)
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Figure 4.8: Three absorption curves for exceptional point cases where different modes are coalesced.
Red defines an α value around the first symmetric double root, while blue and green is for an α
value around the first asymmetric double root and second symmetric double root, respectively.

φ
(L)
in = 1 is assuming plane wave incidence. Equation (4.12) has a matrix form that is advantageous

for numerically determining the unknown reflection and transmission coefficients Rm, R
′
n and Tn,

−CNxMnm , b2HnI
NxN , b2HnI

NxN

γmC
NxM
nm , −b2θnHnI

NxN , b2θnHnI
NxN

0NxM , −b2θne−iθnkaHnI
NxN , b2θne

iθnkaHnI
NxN





RM

R′N

TN


=



AN

AN

0Nx1


. (4.15)

Unfortunately, the matrix of (4.15) has the tendency to have a high degree of singularity with

singularity increasing with matrix size (determined by how many modes are needed to accurately

define the system). A way was discovered to combat this by revisiting the termination velocity

condition at x = a:

x = a : Velocity

θn(Tne
iθnka −R′ne−iθnka)b2Hn = 0→ R′n = Tne

2iθnka,
(4.16)
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Figure 4.9: Simulation results of waveguide with impedance discontinuity at 830 Hz and h=0.3m
using COMSOL. The wall impedance descriptions are as follows: Top: x < 0 hard and x > 0
around EP impedance, Middle: x < 0 hard and x > 0 perforated impedance with fibrous lining
(ρ = 100kg/m3), Bottom: x < 0 hard and x > 0 perforated impedance with fibrous lining (ρ =
200kg/m3). Perforated impedance values measured through the use of equation (B.1) and tables
6.2-6.3.

redefining matrix (4.15) to
−CNxMnm , b2Hn(1 + e2iθnka)INxN

γmC
NxM
nm , b2θnHn(1− e2iθnka)INxN



RM

TN

 =


AN

AN



R′n = Tne
2iθnka.

(4.17)

(4.16) does not exhibit the singularity problem of the previous matrix and we can continue with the

analysis. By solving an example with our model and comparing it to that of a FEM simulation we

will be able to test the legitimacy of the model in addition to erasing any questions regarding it’s

accuracy. The problem we’ll consider will consists of the axisymmetric waveguide terminated by a

rigid plate which will start with acoustically hard walls (|ZA| = ∞) and transition to an EP wall

impedance (B = Zep) via the discontinuity. Zep is calculated via equation (3.23) where we will be

using the first EP mode that satisfies (3.22), βq = 2.9804 − 1.2796i. When the walls are hard the

eigenvalue equation of (2.31) become J1(βm) = 0. The first ten modes for both waveguide partitions

are illustrated in figure 4.12. Note the mode coalescence in 4.12(a). Because of the rigid termination

at the end, transmission energy is not able to propagate away from the interface and will only be
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Figure 4.10: Simulation results of waveguide with impedance discontinuity at 830 Hz and h=0.3m
using COMSOL. The wall impedance descriptions are as follows: Top: x < 0 hard and x > 0
around EP impedance, Middle: x < 0 hard and x > 0 perforated impedance with fibrous lining
(ρ = 100kg/m3), Bottom: x < 0 hard and x > 0 perforated impedance with fibrous lining (ρ =
200kg/m3). Perforated impedance values measured through the use of equation (B.1) and tables
6.2-6.3.

reflect back towards it. It is because of this fact that we redefine the absorption coefficient as

µ = 1−Re, where Re =

∫ b
0
|PR1|2rdr∫ b

0
|Pinc|2rdr

. (4.18)

This is analogous to the absorption performance of porous material backed by a rigid plate. The

energy being dissipated by the porous sample can be determined solely by the ratio of reflected

energy at its surface to that of incident energy without directly considering the wave behavior inside

of it. This is typically done experimentally with the use of two microphones measuring inside the

hard portion of the tube, x < 0, with the use of signal processing techniques to differentiate the

incoming and reflected pressure fields (a common test method seen in 5.2). Utilization of (4.11) with

(4.17) completely defines the system and their results are presented in figure 4.13. Results are also

compared side-by-side to the solution generated by a FEM simulation with COMSOL. Accuracy is

shown to be satisfactory with agreement increasing with number of modes used for the model.

Now with an established legitimacy of the matrix method (4.17), absorption curves for any

uniform wall impedances ZA and ZB are possible to obtain. Another test is done where ZB is

switched for a perforated plate impedance found in appendix B. to compare with the EP wall

impedance. The outcome is depicted in figure 4.14 and inspection clearly shows that EPs possess

a large amount of potential with this regard keeping in mind that perforated plates are a common

tactic used in passive energy dissipation in waveguides.
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Figure 4.11: Depiction of waveguide model for various test methods. Includes impedance disconti-
nuity at x = 0 and rigid plate termination at x = a. Respective incoming, reflected, and transmitted
pressures are shown.

0 5 10 15 20 25 30

n

-1

-0.5

0

0.5

1

n

0 10 20 30 40 50 60

n

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

n

Figure 4.12: First ten modes for 3D axisymmetric waveguide with hard and EP impedance walls at
1000Hz and b = 0.5”.
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Figure 4.13: Absorption curves obtained via matrix model (blue) vs. COMSOL FEM simulation
(red). Sudden drop linked to cut-on of second mode for acoustically hard walls.
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Figure 4.14: Absorption curves for |ZA| = ∞ and ZB = Zep (red) verse |ZA| = ∞ and ZB =
Zperforated (blue).
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Figure 4.15: Simulation results of waveguide with impedance discontinuity at 5900 Hz and b=0.5in
using COMSOL. The wall impedance descriptions are as follows: Top: x < 0 hard and x > 0
around EP impedance, Bottom: x < 0 hard and x > 0 perforated impedance with fibrous lining
(ρ = 100kg/m3). Perforated impedance values measured through the use of equation (B.1) and
tables 6.2-6.3.
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Chapter 5

EP feasibility

This chapter discloses the next steps in the ongoing search for physically realizable double roots.

We start with a deeper look into a general impedance to try and find physical constraints. It will

serve as a starting point into the investigation of realistic EPs where we will answer the question

can a simple system exhibit double roots, is one of higher complexity needed, or are they not within

the realm of possibility. What follows is the introduction to a test method which may be used to

justify theorized EP impedances through experimental validation if they are found to be possible.

5.1 Physical constraints

EP impedance walls have demonstrated to be an above average tool in energy absorption for uniform

waveguides. While the above chapter suggests better performance for a wide range of frequencies,

the obvious next question becomes how is this achieved realistically? Perforates have served as our

go to real-world comparison due to how common they are for this purpose, however, their impedance

models (while arguably slightly different from Lee’s [9]) can never exhibit EP behavior. This claim is

evident when inspecting the impedance of perforated plates (B.1) to that of an impedance generating

EPs for the lowest two symmetric modes

Zep = ωhρ(0.1478 + i0.1184) (2-D planar WG),

Zep = ωbρ(0.2833 + i0.1216) (axisymmetric cylindrical WG).
(5.1)

The main difference being the positive linear frequency dependence of both the resistive and reactive

portion of Zep. That is, to acquire a wall impedance equal to that of equation (5.1) for their respective

cases would have the first two symmetric modes coalescing for every frequency. In order to continue

further with the investigation of feasibility for exceptional points, it is first beneficial to consider

any physical constraints regarding impedance values in general. As stated previously, an e−iωt

dependence is omitted but understood leading to the derivation of equation (2.7) stated again here:

Z = ζ − iωM +
iK

ω
(5.2)
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where M is an inertial component, K is a bulk modulus component, and ζ is a damping factor. A

plethora of different impedance models like that of Helmholtz resonators, membranes, porous media,

etc. have impedances that take on this form. We start by performing a lumped parameter study

of various passive and lossless acoustic networks (analogous to electrical networks) as seen in [15].

To clarify, think of a lumped acoustic network as a multiple degree of freedom mass-spring systems

interconnected. Each equation of motion will consist of individual terms which correlate to specific

masses and cross terms which physically represent the mutual dependence of one mass on the other,

varying only by how they are connected. In equation form, this appears as the system

z11u1 + z12u2 + . . .+ z1nun = p1

z21u1 + z22u2 + . . .+ z2nun = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

zn1u1 + zn2u2 + . . .+ znnun = 0

(5.3)

where p1 is the driving pressure, u’s are the network particle velocities, and

zrs = zsr =
iKrs

ω

(
1− ω2

ω′rs

)
, ω′rs =

√
Krs

Mrs
(5.4)

are the mesh (r=s) or mutual impedances (r 6= s). More favorably, it is possible to write equation

(5.3) into a fairly simple matrix form

z−→u = −→p

z =



z11 z12 z13 . . . z1n

z21 z22 z23 . . . z2n

...
. . .

...

...
. . .

...

...
. . .

...

zn1 zn2 zn3 . . . znn



, −→u =



u1

...

un


, −→p =



p1

0

0

...

0



.
(5.5)

Solving (5.3) for velocities yields

−→u = z−1−→p =
AT−→p
D

=
A−→p
D

(5.6)
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where A is the matrix of cofactors of z and D is the determinant of z. Note that A = AT due to

the symmetrical nature of z. simplifying (5.6) further leads to

ur =
A1rp1

D
(5.7)

due to the fact that the only nonzero element in −→p is the first element. Therefore the driving-point

impedance, or input impedance, of the acoustic network is

Z11 =
p1

u1
=

D

A11
. (5.8)

The following can be drawn from equation (5.7): the resonances of the acoustic network are related

to the zeros of D and the antiresonances relate to the zeros of A11. An impedance requires a positive

linear frequency response or regime in order to meet the conditions for exceptional points with an

e−iωt dependence. With that being said, it is imperative to look at the slope of the driving-point

impedance of any general acoustic network to gauge it’s feasibility. Differentiating (5.8) gives

∂Z11

∂(iω)
= − p1

u2
1

∂u1

∂(iω)
, where

∂u1

∂(iω)
=

n∑
s=1

GsA1s and Gs =
1

D

n∑
r=1

(
Mrs +

Krs

ω2

)
ur. (5.9)

Note that ∂u1

∂(iω) was found via differentiating (5.5) by iω and variable isolation. Substitution of (5.7)

for the A1s’s yields
∂u1

∂(iω)
=

1

p1

( n∑
r,s=1

urusKrs

ω2
+

n∑
r,s=1

urusMrs

)
. (5.10)

Further inspection of the two terms associated with (5.10) shows that they are in fact the total

potential and kinetic energies, respectively, for an n degree of freedom system which is time harmonic

i.e.

V = −1

2

n∑
r,s=1

urusKrs

ω2
, T = −1

2

n∑
r,s=1

urusMrs. (5.11)

Both terms can be physically interpreted as being always positive. (5.10) can be written as

∂u1

∂(iω)
=

2

p1

(
V + T

)
(5.12)

redefining (5.9) to
∂Z11

∂(iω)
=

2

u2
1

(
V + T

)
. (5.13)

For a real driving pressure p1, u1 will be purely imaginary concluding that the driving-point

impedance will always be decreasing with increasing frequency, also referred to as Foster’s theorem

for an acoustic system. For all the cases previously studied, waveguides varying in wall impedance

with and without discontinuities act as limiting cases to the lumped parameter study. In more detail,

those cases behave as distributed systems which can be modeled as a large number of infinitesimal

constituents, each having the nature of a lumped element as stated by Maa [15]. The observation
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implies that Foster’s theorem will apply to them as well. As for final remarks, in order to have

the necessary linearly increasing frequency dependence necessary for exceptional points, either a

negative bulk modulus, negative mass density, or a combination of the two is required.

5.2 Test methods

The purpose of this section serves to give detail on a test method used in order to determine the

acoustic response of, for the most part, any sample. The general purpose for this technique is to

classify the acoustic response of porous media, however, it can be useful in determining physically

realizable EP behavior. Code used and preliminary results are given in addition to possible sources

of error.

5.2.1 Two-mic transfer function method

The general layout for the two-microphone method is shown in figure 5.1 which highlights the

necessary equipment. Specifically, the overall process requires two microphones (hence the name),

a speaker, a rigid pipe, a rigid termination, a function generator capable of frequency sweeps and

signal processing equipment i.e. a data acquisition board (DAQ). The microphones do not need

to be moved unless calibration is necessary. Tests using the two-mic method have to be operated

within a certain frequency range. This is to account for accuracy of the equipment used in addition

to a plane wave assumption. In equation form this is

s >
0.01c

fl
,

c

2s
<< fu <


0.586c

d
or

0.4c

s
,

(5.14)

where s is microphone spacing, c is the fluid medium sound speed, d is the diameter of the tube,

fl is the lower frequency limit, and fu is the upper frequency limit. Note that fu is dictated

by the smaller of the two bracketed terms. A plane wave frequency sweep is generated by the

speaker/function generator that travels down the tube until it meets the sample where energy is

reflected and transmitted. The energy that is transmitted is assumed to be completely reflected back

at the rigid termination as depicted and modeled in section 4.2. Using a signal processing parameter

known as a transfer function, H12 (also commonly referred to as a frequency response function), the

data received from the microphones is able to be decomposed into incident and reflected pressure

fields. H12 can be calculated via the auto and cross spectrum which is equivocally the ratio of the

Fourier transforms of the measured pressure seen here:

H12 =
G12

G11
=
S1S

∗
1

S1S∗2
where Sn = F(pn), n = mic number. (5.15)
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Note ”*” signifies complex conjugates. The reflection coefficient is now defined as

R =
H12 − e−iks

eiks −H12
e2ikx1 , (5.16)

where x1 is the distance between the start of the sample to the furthest microphone. With the

reflected fields in hand, one may calculate the absorption coefficient and the surface impedance with

the following relations:

µ = 1− |R|2, Zs = ρc
1 +R

1−R
, ρ = fluid medium density. (5.17)

µ in (5.17) is a limiting case of (4.18) when there is only one plane wave mode present. More detail

regarding this method is given in [16]. A more complicated test, like that discussed in [18], is needed

for the direct measurement of characteristic impedance and complex wave number.

Figure 5.1: Setup of custom made impedance tube. Figure labeling goes as follows: 1) speaker 2)
amplifier 3) computer running MATLAB 4) DAQ board 5) microphones flush with inside of tube 6)
sample 7) rigid end cap.

5.3 Implementation and results

An impedance tube was designed and constructed around the criteria stated in [16]. The upstream

tubing and perforated cylindrical sample were made out of 1 inch (.0254 m) in diameter schedule-40

PVC and were connected via PVC flanges. A 6 inch full range driver speaker is used and powered by

a 5.1A AudioSource mono-block amplifier supplying 100 Watts at 4 Ω in addition to being housed

by a wooden box to minimize any back reverberation. A PVC cone 10 inch (.254 m) in length
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connects the speaker to the upstream tube while also serving as a sound funnel. When a test is

initiated, a function generator phone application generates a frequency sweep played by the speaker.

The pressure field in the upstream tube during the duration of the test is acquired through the use

of two Brüel & Kjaer multi-field microphones spaced 1 1
8 inch apart connected to a NI 9234 module

inside a NI cDAQ 9284 chassis. Due to the microphone spacing and tube diameter the frequency

range measurable is approximately 200 < f < 4500 Hz to comply with the constraints explained in

equation (5.14). All pre and post-processing is done with a laptop running MATLAB. It was also

found that the MATLAB operation ”tfestimate” proved to result in accurate transfer functions in a

time efficient manner.

Preliminary results of experiments run with a perforated PVC cylinder sample with dimensions

length: 12”, hole diameter: 0.919”, hole spacing: 1”, and porosity: 8.1% is presented below. Note

that the absorption coefficient in figure 5.2 was normalized with respect to the absorption curve of

tests run with an empty tube to account for any unaccountable absorption. Inspection of figure 5.2

Figure 5.2: Absorption curves for a perforated sample made experimentally (blue) and computa-
tionally through COMSOL (red).

tells us that the overall shapes of the curves are in agreement, however the experimental setup is

exhibiting higher than expected absorption values especially for low frequencies. This effect may

be attributed to the fact that the cone was not completely flush to the speaker housing which

might have led to air leakage causing the absorption to read higher than normal. One might look
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into adopting a smaller speaker approach that way all airtight PVC and PVC connectors may be

used to remedy this problem. Additionally, it has been noted by [17] that custom-made tubes

with smaller diameters tend to read higher absorption values compared to that of industrial-grade

prebuilt impedance tube especially when empty. A physical argument can be made that if a tube

is not properly clean or contains rough surfaces, the plane wave assumptions can become less valid

and a viscous boundary layer originating at the inner surface of the tube can lend itself to higher

than average energy dissipation. Matlab code for the two-mic transfer function method is provided

in the appendix.
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Chapter 6

Conclusion

A general sense of the effects EPs have on waveguide solutions is developed through analytical,

numerical and computational studies. Chapter 2 discusses waveguide modeling techniques for a two

and three dimensional case in order to create a foundation in which to build off of. Properties like

that of phase speeds, group speeds, and modal dependencies are explored for a 2D waveguide with

equal impedance on both walls. Perturbation method is applied to the zeroth mode to explain its

associated group speed value through an analytical approach.

EP conditions for both cases are derived by considering non-separable solutions to the Helmholtz

equation and mode coalescence is demonstrated in chapter 3. First variations of conditions are

reworked in order to obtain explicit expressions for EP wall impedance that depend solely on what

mode one wants to coalesce. From these conditions stem simplified limiting cases and constraints on

EP impedance values made to comply with passive impedance conditions. The traditional Green’s

function solution is shown to fail at modes that satisfy the EP conditions, but is fully defined around

that value.

A matrix model is developed in chapter 4 for problems containing impedance discontinuities and

side-by-side comparisons are done of the model with FEM simulations via COMSOL. Results show

great agreement and the model is then utilized to generate absorption curves for waveguides with

portions of the wall having EP impedance values. Inspection of the resulting curves conclude that

EPs are a promising phenomenon regarding broadband absorption for both the two and three dimen-

sional cases and preform better than perforated walls with and without fibrous linings. Snapshots

of COMSOL simulations are also supplied for visual representation of the resulting pressure fields.

Feasibility of EPs is addressed in chapter 5; it is rationalized that the only way to obtain EP

behavior is through negative parameters like that of mass density. For the sake of experimentally

creating the theorized absorption curves of EP walled waveguides, a common impedance tube exper-

iment is given with preliminary results and sources of error. Finding an analytic impedance model

that exhibits the required double root impedance values discussed in chapter 5 is left for future work.
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Appendix

A. Roots for a symmetric waveguide

Let βn = p− iq, where we are looking for roots with p ≥ 0, q ≥ 0. The real and imaginary parts of

Eq. (3.10)1 become

sin p cosh q = ∓p, (A.1a)

cos p sinh q = ∓q. (A.1b)

The identities cos2 p+ sin2 p = 1 and cosh2 q− sinh2 q = 1 allow us to write p in terms of q, and vice

versa: p = cosh q
√

1− (q/ sinh q)2, q = ∓ cos p
√

(p/ sin p)2 − 1. Using the first of these with (A.1b)

gives √
1− (q/ sinh q)2 cosh q = cos−1

(
∓ q/ sinh q

)
+ 2mπ (A.2)

where m is an integer.

Equations (A.1) imply that the modally symmetric (antisymmetric) roots correspond to sin p =

cos p = −1(+1), respectively. Using this and (A.2) implies that the nth symmetric and antisymmetric

roots correspond to the − and + signs, respectively, where

p =
√

1− (q/ sinh q)2 cosh q, (A.3a)√
1− (q/ sinh q)2 cosh q = ∓π

2
− π

2
+ 2nπ + cos−1

(
q/ sinh q

)
(A.3b)

and the principal branch of cos−1 is used, i.e. from zero to π/2. Equation (A.3b) can be solved

using the initial estimate q ≈ cosh−1(2nπ ∓ π
2 ), and p then follows from (A.3a). In particular, for

large values of n,

βn ≈ 2nπ ∓ π

2
− i ln 2

(
2nπ ∓ π

2

)
. (A.4)

B. Impedance models

B..1 Perforated plates

As a primary focus we consider the ”straight-through” muffler, a cylindrical waveguide with perfo-

rated walls and absorbing material (such as fibrous foam) on the other side. Models for perforated

panels as acoustic silencers have been studied exhaustively (with no pun intended), e.g. recent

survey can be found in [8, 9, 10, 11]. Despite the successful application of acoustic principles in

the development of this technology, there has been no overlap with the concepts first proposed by
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Cremer. Our purpose is to fill this gap and provide a sound (again, NPI) basis for optimal damping

in waveguides.

In models of perforated side walls the resistive component of the effective impedance arises from

the air viscosity. This resistivity can be augmented by the addition of an absorbing fibrous material.

The main contribution to the reactive part of the impedance arises from the geometry of the perfora-

tion (circular or slit like) to account for the inertial behavior of the column of air inside and around

the perforate in addition to the end corrections that compensate for interactions between perfora-

tions. End corrections are typically perforation geometry and fluid medium dependent. Porosity, or

the degree of perforation, will affect both the resistive and reactive component of the impedance.

The equation form of the nondimensional impedance for a perforated plate with or without fibrous

material proposed by Lee [9] looks like

Zp
Z0

=
R− ik(tw + δdh)

η
, (B.1)

where R is the dimensionless resistance, tw is the wall thickness, dh is the hole diameter, δ is the

end correction, and η is the porosity. an e−iωt is omitted but understood. η will be defined as the

ratio between the individual perforation and waveguide areas in conjunction with a proportionality

to the number of perforations, i.e.

η =
nhAh
A1

. (B.2)

It is important to note that the resistive component of the impedance in equation (B.1) is assumed

to be frequency independent, a fair assumption experimentally supported by [9]-[12]. Tables were

provided of experimentally determined R and δ in Lee [9],

Plate tw (cm) dh (cm)

A 0.08 0.249

B 0.16 0.249

C 0.08 0.498

Table 6.1: Plate thickness and hole diameters
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Plate No fibrous ρ = 100 kg
m3 ρ = 200 kg

m3

A1 0.007624 0.03054 0.04935

A2 0.005101 0.02996 0.04575

A3 0.004437 0.02298 0.03610

A4 0.004500 0.02716 0.04447

B1 0.008429 0.03133 0.05770

B2 0.006074 0.02793 0.04900

B3 0.005744 0.02444 0.04142

B4 0.005539 0.02657 0.05076

C2 0.005318 0.04728 0.09015

C3 0.005013 0.04598 0.09308

C4 0.004395 0.03973 0.07604

Table 6.2: Resistance R for different test sam-

ples. Let 1-4 correspond to a porosity of

2.1%, 8.4%, 13.6%, and 25.2% respectively.

Plate No fibrous ρ = 100 kg
m3 ρ = 200 kg

m3

A1 0.5350 0.6989 0.7769

A2 0.4409 0.6471 0.7412

A3 0.2506 0.4576 0.4999

A4 0.1286 0.4717 0.4590

B1 0.5179 0.6514 0.7663

B2 0.4224 0.6026 0.6758

B3 0.2666 0.4661 0.5048

B4 0.1066 0.3951 0.3980

C2 0.4707 0.6206 0.7167

C3 0.4473 0.6269 0.7142

C4 0.2471 0.4504 0.4926

Table 6.3: End Corrections δ for different test

samples. Let 1-4 correspond to a porosity of

2.1%, 8.4%, 13.6%, and 25.2% respectively.

C. MATLAB code

1.png

Figure 6.1: Two-mic transfer function MATLAB code part 1.
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2.png

Figure 6.2: Two-mic transfer function MATLAB code part 2.

3.png

Figure 6.3: Two-mic transfer function MATLAB code part 3.
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