DOES PARTICIPATION IN A WORKPLACE SPILL OVER INTO POLITICAL PARTICIPATION? A PERSPECTIVE ON THE ROLE OF SHARED CAPITALISM

By

JUNG OOK KIM

A thesis submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Master of Science

Graduate Program in Industrial Relations and Human Resources

Written under the direction of

Joseph Blasi

And approved by

New Brunswick, New Jersey

October, 2018

ABSTRACT OF THE THESIS

Does participation in a workplace spill over into political participation? A perspective on the role of shared capitalism

By JUNG OOK KIM

Thesis Director:

Joseph Blasi

Debate over democracy has been reemerging recently after decades of declining citizen participation in important political decisions and weakening significance of promoting democratic ideas into the world of work. This study tests the 'spillover thesis' advanced by Carole Pateman, which argues that democratic participation in the workplace will 'spill over' into political participation. This study added shared capitalism, which is a set of compensation schemes in which workers' wealth is linked with the firm performance, as a predictor of more participatory workplace culture, as evidenced by rich empirical studies. The analysis of the 2014 General Social Survey has discovered partial support for the direct association between workplace participation and political participation, and the mediated association of workplace and political participation through political efficacy. Shared capitalism showed direct effect on political participation in the mediated model of the spillover. Limitations and the future directions are discussed.

Keywords: Shared capitalism, spillover, participation, political efficacy, political deliberation

ii

Table of Contents

Abstract of the Thesis	ii
Introduction	1
Theoretical Review	3
Data and Methods	10
Independent variable: Shared Capitalism and Workplace participation	11
Outcome variables: Political activity	12
Mediator: Political efficacy/Political Discussion	12
Control Variables	13
Results	14
Discussion and Conclusion	30
References	40
Appendix. Variable List	43
Appendix. Descriptive Statistics	45
Appendix. Factor Analysis	46
Appendix. Regression Result Tables	50
Workplace Participation – Political Efficacy/Discussion	50
Shared Capitalism/Workplace Participation – Political Efficacy/Discussion	62
Workplace Participation – Political Participation	66
Shared Capitalism/Workplace Participation – Political Participation	88
Political Efficacy/Discussion – Political Participation	110
Workplace Participation – Political Efficacy/Discussion – Political Participation	132
Shared Capitalism/Workplace Participation – Political Efficacy/Discussion – Political Participation	143

Table 1 Summary of Linear Regression Analysis for Variables Predicting Political Participation 1	
	20
Table 2 Summary of Linear Regression Analysis for Variables Predicting Political Participation 2	
	21
Table 3 Summary of Linear Regression Analysis for Variables Predicting Political Participation 3	
	22
Table 4 Summary of Linear Regression Analysis for Variables Predicting Political Participation 4	
	23
Table 5 Summary of Linear Regression Analysis for Variables Predicting Workplace Participation 1	
	24
Table 6 Summary of Linear Regression Analysis for Variables Predicting Workplace	
Participation 2	
	25
Table 7 Summary of Linear Regression Analysis for Variables Predicting Shared Capitalism	
Participation	
	25

Introduction

After decades of declining citizen participation in important political decisions and weakening significance of promoting democratic ideas into the world of work (Casey, 2014), we see reemerging debates on democracy and participation in such phenomena as the Occupy Wall Street movement or the unforeseen emergence of democratic socialist Bernie Sanders, who emphasizes mass economic and political participation, as a strong candidate for the Democratic nomination for President of the United States in the 2016 election. Although the outcome of Occupy might have been disappointing to some and the result of the Presidential election might have been frustrating to many, these incidents generated interesting questions about whether direct mass participation can create a meaningful political impact and what can contribute to the direct political participation by the mass public.

Among numerous attempts to answer what leads people to participate in politics, Pateman's argument that participation in the workplace leads to increased political participation, namely, the 'spillover thesis,' has been continuously drawing attention and has encouraged empirical studies since 1970. Pateman (1970) advances her argument of participatory democracy based on the classical theories of democracy articulated by Rousseau, John Stuart Mill, and G. D. H. Cole. She builds on these theorists to argue that democracy can be self-sustaining because democratic participation is self-educative and therefore develops and refines the qualities of participants, such as political skills and knowledge, which are necessary for the sustainability of democracy. This means that the development of the social and political capacities of each individual, which is the outcome of participatory democracy, in turn contributes to democracy as input. Therefore, Pateman's argument emphasizes the importance of authority structures which are organized for individuals to take part in making decisions and which guarantee the equality of power in determining the outcome of decisions. Pateman (1970) effectively argues that the workplace is the most important area for socialization to strengthen real political participation to actually take place because most individuals spend a great deal of their lifetime at work and learn in their work how to manage collective affairs. Pateman's model [of democracy] is a model "where maximum input (participation) is required and where output includes not just policies (decisions) but also the development of the social and political capacities of each individual, so that there is 'feedback' from output to input (Pateman, 1970)."

Robert Dahl, although offering arguments for representative democratic system, also advocates the right to democracy within firms. His assertion is, with Kantian flavor in it and unlike that of the participatory theorists, is that "if democracy is justified in governing the state, then it must *also* [italics by the author] be justified in governing economic enterprises; and to say that it is *not* [italics by the author] justified in governing economic enterprises is to imply that it is not justified in governing the state (Dahl, 1985)." The essence of his argument is that "if we wish to achieve political equality, the democratic process, and primary political rights, then our economic order must help to bring about these values, or at the very least not impair them." Undemocratic ownership and control of economic enterprises creates great differences among citizens in wealth, status, skills, information, access to political leaders, and above all, in capacities and opportunities for participating in governing economic enterprises (2015). This is one of the major reasons Dahl argues that, albeit imperfect in practice, democracy in economic enterprises should be supported just as democracy in government is supported.

Despite the plentiful theoretical arguments, empirical analyses, and case discussions that Pateman's seminal work gave birth to, we see mixed evidence for whether workplace participation can result in more active political participation. Empirical findings indicate that overall, political participation is heavily influenced by socio-economic status (SES). People in the highest SES are most active in terms of political participation whereas people in the lowest SES are least active (Schlozman, Verba, & Brady, 2012; Gallup, 2008; Oser, Hooghe, & Marien, 2012). The effect of workplace participation is less unambiguous than that of the SES. Some studies find support for the spillover thesis while some others find the negative spillover, or no effect at all. This study will be another examination of the spillover thesis but with nationally representative data which contains a richer variety of political efficacy and participation questions that are now available. This analysis will add to our existing knowledge of the spillover thesis of how various efficacy indicators and political participation behaviors connect to each other or not.

Among the rich theoretical discussion on workplace democracy and the spillover thesis and a number of empirical studies, there has been no single empirical study that expanded the notion of workplace participation into a different type of ownership arrangement such as shared ownership. In revisiting the spillover thesis, this study will focus first on the relationship between shared capitalism and participation in the workplace. In the next step of the analysis, this study will examine whether workplace participation enhances participants' political discussion and the sense of political efficacy, which are argued to be positively related to political participation. By analyzing nationally representative data with shared capitalism indicators, this study will empirically examine whether the hypothesized path from workplace democracy toward political participation, which is mediated by political efficacy, is empirically supported and whether shared ownership arrangements play a particular role. It will be a small first step of expanding the study of the spillover thesis into the realm of democratic ownership research.

Theoretical Review

The spillover thesis, which argues that democratic participation in one arena can enhance the participant's political knowledge and skills and, in turn, leads to more active participation in democratic politics, has originally been presented by Pateman as the antithesis to the arguments of representative democratic theorists. Schumpeter (1947), the most prominent figure among these theorists, argued strongly for the representative form of democracy and presented the theory of competition for political leadership. From his perspective, the primary role of the public is to produce a government or an intermediate body which will produce a national executive or government, and the democratic method is defined as an "institutional arrangement for arriving at political decisions in which individuals acquire the power to decide by means of a competitive struggle for the people's vote (p. 269)." It is the political leaders who lead policy initiatives, and the role of the voters is confined to either accepting the bid by the candidate in preference to others or refusing it. This limited view on the role of the public originates from the experience of witnessing how mass public participation in politics degenerated into fascism in European counties in the first half of the twentieth century.

Pateman (1970) advances her argument based on the classical theory of democracy by Rousseau, John Stuart Mill, and G. D. H. Cole against Schumpeterian idea of representative democracy. For these theorists, including Pateman, the major function of participation is an educative one in terms of the psychological aspects and the democratic skills and procedures, which means that participants learn and refine their democratic political skills and knowledge through participation itself. And this is self-sustaining because participation develops the very qualities necessary for sustainability. This system of feedback, which is theorized to result in increased public participation in the wider polity, is now widely known as the 'spillover thesis.' From Pateman's perspective, 'participation develops and fosters the very qualities necessary for it; the more individuals participate the better able they become to do so (Pateman 1970, pp. 42–43).'

Among the many arenas where democratic processes can be applied, the workplace has been considered by some as one of the most important places for democratic participation. Pateman specifically focused on the importance of the workplace as one of the most important fields where participation can spill over outside work into political participation, because most of the people spend a significant amount of their lifetime in their workplaces and learn to handle collective affairs there in a collaborative manner. Direct participation in workplaces will, Pateman argues, enhance skills and the sense of political efficacy necessary for increased participation in politics. Robert Dahl, another prominent scholar who argued for the inevitable necessity of representative democracy due to the dilemma of the size of a political unit, later also advocated the right to democracy within firms.

As noted above, Dahl's basic assertion, with Kantian flavor in it unlike participatory theorists, is that "if democracy is justified in governing the state, then it must *also* [italics by the author] be justified in governing economic enterprises; and to say that it is *not* [italics by the author] justified in governing economic enterprises is to imply that it is not justified in governing the state (Dahl, 1985)." As seen from this statement implying the moral imperatives, Dahl's argument of economic democracy focuses less on the educational process and the spillover effect of democracy in the firm. Nevertheless, Dahl does recognize the instrumental function of economic democracy in the firm as he argues that 'full and equal citizenship in economic enterprises would greatly reduce the adversarial and conflictive relationships within firms, and indirectly in society and politics at large (p.109).' Although cautious about transforming attitudes, values, and the character of workers from greater democracy at work, Dahl argues that a system of self-governing enterprises can result in enhancing individuals' moral responsibility, and reduced income inequality among the members, which, in turn may lead to greater political equality. That is, Dahl only recognizes the political implications and the indirect effect workplace participation can have, instead of arguing explicitly that political efficacy is fostered directly through participation. When compared to Dahl, Pateman's argument of democratic spillover is relatively radical and optimistic.

The concept of political efficacy plays a critical role in Pateman's spillover thesis. In discussing how democratic participation in one arena spills over into another, Pateman argues that participation enhances knowledge, skills, confidence, and so forth of, namely, the political efficacy of the participant and that this is what leads to increased political participation. The concept of political efficacy was originally defined in unidimensional terms (as "the feeling that individual political action does have, or can have, an impact upon the political process"; Campbell, Gurin, and Miller, 1954, p. 187), but subsequent theory and research demonstrated that both the concept and the items usually employed to measure it contain two separate components: (1) internal efficacy, referring to beliefs about one's own competence to understand and to participate effectively in politics, and (2) external efficacy, referring to beliefs about the responsive- ness of governmental authorities and institutions to citizen demands (Craig, Niemi, & Silver, 1990). In discussing the spillover from workplace participation to political participation, however, Pateman adopts only the internal efficacy as a mechanism of the spillover. Because the spillover thesis does not include the external political efficacy. However, the external efficacy will also be tested informally in order to clarify whether the external efficacy plays any role in the spillover process.

This study first hypothesizes a simple and classic spillover effect from workplace participation into political participation, mediated by internal political efficacy. This study will test if workplace participation and political participation are directly associated by hypothesizing that:

Hypothesis 1: Participation in workplace decision making has positive association with political participation.

Then this study will also test whether political efficacy mediates the association between workplace participation and political participation. As mentioned earlier, this study formally hypothesizes only the role of internal political efficacy. However, external political efficacy will also be tested. *Hypothesis 2: The association between participation in workplace decision making and political participation is mediated by internal political efficacy.*

Hypotheses 1 and 2 will be testing the classical spillover effect. This study goes a step further from examining a typical spillover thesis to incorporate relatively the recent advancements of theoretical and empirical works on deliberative democratic theory. The deliberative model of democracy has emerged as a new way of thinking about what democracy is and how it should work. This model views participation as a way of finding out "what" to say (Teorell, 2006), rather than how. The focus of the deliberative model is on political discussion which precedes decision making. According to Chambers (2003), deliberation can be defined as "debate and discussion aimed at producing reasonable, well-informed opinions in which participants are willing to revise preferences in light of discussion, new information, and claims made by fellow participants." Cohen (2007) argues that deliberative democracy combines deliberation and democracy, neither reducible to the other. It is about making collective decisions and exercising power in ways that trace to the reasoning of the equals who are subject to the decisions: not only to their preferences, interests, and choices, but to their reasoning. The important point lies not only in discussing, but in reasoning. Deliberation is about weighing the reasons relevant to a decision with a view to making a decision on the basis of the weighing. Empirical studies based on the deliberative model of democracy found that political discussion and deliberation affects the enhancement of the political efficacy. These findings indicate that it can be political discussion, instead of workplace participation, which fosters political efficacy. However, although the deliberative model argues for the effect of engaging in political discussion and deliberation on forming and enhancing political efficacy, there is neither theoretical nor empirical basis upon which we can hypothesize the effect of workplace participation on political discussion. This study, therefore, formally hypothesizes only the association of political discussion with political efficacy and political participation.

Hypothesis 3: Political discussion has a positive association with political efficacy.

The spillover thesis has been tested by numerous political scientists since its introduction. These studies, however, rarely consider how workplace participation has been established or how it interacts with other human resource management policies and practices. Instead, industrial relations studies and human resource management studies have been pioneering in this particular area of research. These studies have identified reasons why a firm formally and informally encourages its employees to participate in making work- and business-related decisions. Of particular interest of this study is the role of shared capitalism in democratic workplace participation. Shared capitalism is defined as "a diverse set of compensation practices through which worker pay or wealth depends on the performance of the firm or work group (Freeman, Blasi, & Kruse, 2010)." There are several types of shared capitalism practices through which worker compensation can be tied to the company performance, such as direct employee ownership including the Employee Stock Ownership Plan or ESOP, individual stock ownership, profit sharing, gain sharing, or broad-based stock options and other forms of equity participation such as grants of restricted stock units. The definition of each type is based on the most widely accepted conceptualization by Freeman, Blasi, and Kruse (2010).

Freeman, Blasi, and Kruse (2010) emphasized that although there are some independent effects of shared capitalism, it is the combination of shared capitalism, employee involvement, and other positive labor practices that are the key features of shared capitalism's success. Empirical studies have discovered a high correlation between shared capitalism and participation and provided systemic or theoretical reasons why workplace participation should be prevalent in workplaces with shared capitalism. For instance, Blasi, Freeman, and Kruse (2016) discovered that employees in the firms that use group incentive methods of compensation including broadbased employee ownership, profit sharing and stock options participate more extensively in decision making at the job and department level, have greater information sharing, trust supervisors more and report a more positive workplace culture than in other companies. Dube and Freeman (2010) found a statistical association between shared capitalism and shared decision making, where employees are more involved in corporate decision-making.

A number of researchers have identified actual practices of workplace democracy including formal participation in workplace and direct employee ownership. The most frequently discussed practices of workplace democracy are various approaches of employee participation in decision making (Bernstein, 1979; Mason, 1982; Zipp, Luebke, & Landerman, 1984; Budd, Gola, & Wilkinson, 2010; Knudsen, Busck, & Lind, 2012). Self-management by workers is also presented as a main component or a form of workplace democracy (Blumberg, 1968; Pateman, 1970; Gui, 1996; Prasnikar, 1996). Profit sharing and employee ownership are another set of practices discussed by several researchers as the economic dimension of workplace democracy (Blumberg, 1968; Pateman, 1970; Nightingale, 1982; Bernstein, 1983, Ben-Ner, Han, & Jones, 1996; Uvalic, 1996). Because shared capitalism, and particularly employee ownership, often is introduced and/or operated with entitlement of the formal decision making authority to the workers, shared capitalism can be assumed to have relatively close association with democratic participation in the workplace.

This study will test whether shared capitalism can have direct or indirect effect on the mechanism of the democratic spillover in combination with workplace participation. For this aim, this study hypothesizes that shared capitalism will be in a close association with workplace participation.

Hypothesis 4: Shared capitalism will have positive association with participation in workplace decision making.

Hypothesis 5: Shared capitalism and participation in workplace decision making will be positively associated with political participation. *Hypothesis* 6: *The association between shared capitalism and participation in workplace decision making and political participation will be mediated by internal political efficacy.*

These hypotheses predict that shared capitalism, either in combination with workplace participation or as a precedent of workplace participation, will have some impact on political participation through enhanced political efficacy. Through testing these hypotheses, this study will examine the role of shared capitalism with regard to the democratic spillover process, while reconfirming whether the classical spillover thesis can still be supported empirically.

Data and Methods

This study will analyze the 2014 General Social Survey (GSS) data. The GSS has several different modules and this study particularly focuses on workplace participation variables, citizenship variables from the GSS International Social Survey Programme (ISSP), forms of political and social action variables, and political efficacy variables. The questions in the 2014 General Social Survey on shared capitalism are the result of a special module funded by the Employee Ownership Foundation of Washington D.C. on contract with the National Opinion Research Center at the University of Chicago. The General Social Survey is conducted every two years and obtains information through face-to-face interviews in the homes of more than 1,500 randomly selected adults (Blasi, Freeman, & Kruse, 2013). The shared capitalism module of the GSS asks private wage salary workers whether their income depended upon company performance, and if they were eligible for other types of shared capitalism compensation such as gain sharing, Employee Stock Ownership Plan, broad-based stock options, and so forth. Blasi, Freeman, and Kruse (2013) produced detailed snapshot of shared capitalism in the United States based on the GSS data.

The analysis will explore the relationship between participation in decision making in workplaces and a set of dependent variables in political activity, and perceptions on citizen's and the government's obligations. The analysis also will examine the mediating effect of political efficacy between workplace participation and the outcome variables¹.

Independent variable: Shared Capitalism and Workplace participation

Shared capitalism is measured with the Shared Capitalism Index. The Shared Capitalism Index simply adds up the number of shared capitalism programs in which employees participate and their intensity. Specifically, this index measures eight- point index with one point each for profit sharing eligibility, gain sharing eligibility, owning any company stock, holding any stock options, receiving a profit sharing bonus in the past year, receiving a gain- sharing bonus in the past year, having an above median profit and gain sharing bonus as a percent of pay, and having an above median company stock holding as a percent of pay. In total, the index adds up the number of shared capitalism programs in which employees participate and their extent². Although not formally hypothesized, I will explore if shared capitalism is related to other variables tested in this thesis. I will also test whether different forms of shared capitalism, such as profit sharing, gain sharing, or employee ownership, have separate effects on different variables of interest.

Participation in workplace decision making is measured with two questions. One is "Are you personally involved in any group, team, committee, or task force that addresses issues such as product quality, cost cutting, productivity, health and safety, or other workplace issues?" and the other is "In your job, how often do you take part with others in making decisions that affect you?" The responses for the former—namely, formal participation—are coded as "yes" and "no" and the latter—work decision—are "3=often," "2=sometimes," "1=rarely," and "0=never."

¹ The list of all variables is available in the appendix.

² Shared Capitalism Index (GSS): Eight- point index with one point each for profit- sharing eligibility, gain-sharing eligibility, owning any company stock, holding any stock options, receiving a profit-sharing bonus in the past year, receiving a gain-sharing bonus in the past year, having an above-median profit- and gain-sharing bonus as a percent of pay, and having an above median company stock holding as a percent of pay (Kruse, Freeman, & Blasi, 2010). Because the dollar amount of profit sharing was not available in this data, the index is seven-point without the profit sharing dollar value.

Outcome variables: Political activity

Brady, Verba, and Schlozman (1995) construed political participation quite broadly and included the following in their scale of political participation: voting, contacting the government at the federal or local level, giving campaign money, working informally with others on community problems, campaign work, protesting, and board membership or regular meeting attender.

In the GSS, political activity is asked with a number of questions including "How important is it always vote in elections?" or "Do you remember for sure whether or not you voted in that election?" or whether the respondents signed a petition, took part in demonstration, contacted or attempted to contact a politician or a civil servant to express their views, and so forth, in the past year or in the more distant past or never done. The responses are coded as "yes" and "no" or "1= have done it in the past year," "2=have done it in the more distant past," "3=have not done it but might do it," and"4=have not done it and would never do it." For this study, I recoded "have done it in the past year" into 1, and "have done it in the more distant past," "have not done it but might do it" and "have not done it and would never do it" into 0 in order to categorize respondents into groups who have done it before and who have not done it.

Mediator: Political efficacy/Political Discussion

Questions related to political efficacy query whether respondents agree or disagree with the statements such as:

 Internal efficacy; "People like me don't have any say about what the government does," "I feel that I have a pretty good understanding of the important political issues facing our country." • External efficacy; "I don't think the government cares much what people like me think," "People we elect to Congress try to keep the promises they have made during the election."

The frequency of political discussion is measured with questions such as "When you get together with your friends, relatives or fellow workers, how often do you discuss politics?" and "When you hold a strong opinion about politics, how often do you try to persuade your friends, relatives or fellow workers to share your views?" responses are coded as "1=often," "2=sometimes," "3=rarely," and "4=never." Questions on political efficacy query whether respondents agree or disagree with the statements such as "people like me don't have any say about what the government does," "I feel that I have a pretty good understanding of the important political issues facing our country," and "I think most people are better informed about politics and government than I am." Responses are coded as "1=strongly agree" and "5=strongly disagree."

Control Variables

Respondents' characteristics that can affect the degree of political participation will be controlled. These include respondents' age, race, gender, educational level, and family income.

Unique limitation of the GSS needs to be noted here. In the 2014 GSS, not all the respondents are asked the same questions. Only the fraction of the respondents was asked all the questions included in this study and this reduces the number of available sample size for this study significantly. For instance, when the regression analysis is conducted only with shared capitalism and the three workplace participation questions, the total sample size is 1,941. However, when shared capitalism, workplace participation, political efficacy and discussion, and political participation questions were all included in the same model, the total sample size

becomes 183. This study first eliminated the cases that were not available for the questions of our interest and this resulted in the sample size of 183.

Results

For the analysis, the cases are selected based on the responses to questions of interest, including shared capitalism, workplace participation, political discussion and efficacy, and political participation behaviors. Only the cases that have responses to all the relevant questions are selected for the analysis. This leaves 183 cases for analysis.

Factor analysis is first conducted in order to assess whether the questions can be merged into scales and be tested in a more efficient way. Factors of political discussion and interest ($\alpha = .780$), external efficacy ($\alpha = .770$), and evaluation of democracy in the past 10 years, future 10 years, and today ($\alpha = .794$) showed satisfactory loading and reliability as scales. Some factors of political participation loaded well but the result of the reliability analysis was unsatisfactory and thus they are tested not as scales but each as separate variable. Two political discussion questions and political interest loaded as a single scale (PDINT) and two external political efficacy questions and two questions on political parties and politicians loaded onto a single scale of external efficacy (PE-ext). Evaluation of how well democracy will work in 10 years from now, how well it worked 10 years ago, and how well it works now loaded into another scale (FNCTDEMO)³.

Workplace participation – political participation

 Voted in the presidential election of 2008 (VOTE08): Involvement in decision making unit (Sig.=022., Exp(B)=3.220) was found to have significant association with voting in the 2008 presidential election (Chi-square=39.948, Sig.=.000, -2Log likelihood=143.127, df=8).

³ Factor analysis table is included in the appendix. Frequency table is also available in the appendix.

Signed a petition (SIGNDPET): Involvement in the decision making unit (Sig.=.028, Exp(B)=2.331) was also positively associated with signing a petition in the past 12 months (Chi-square=22.391, Sig.=.050, -2Log likelihood=201.231, df=8).

No other direct association between workplace participation and political participation was found. The result indicates that there is little direct association between workplace participation and political participation, disapproving the spillover thesis. In order for the spillover thesis to be statistically supported, there needs to be significant association first between workplace participation and political participation. Then the mediation by political efficacy can be tested as a way of identifying—or in this case reassuring—the mechanism of how workplace participation indirectly affects political participation through enhancing political efficacy. Nevertheless, this study analyzes the mediation of political efficacy in order to examine the spillover thesis more closely.

Workplace participation – Political efficacy and discussion – Political participation

Mediated logistic regression analysis is conducted using the SPSS PROCESS to examine whether workplace participation has positive association with political participation behaviors either directly or indirectly mediated by political discussion and efficacy.

Eleven political participation behaviors were tested— voted in the presidential election of 2008 (VOTE08) and 2012 (VOTE12), attended a political meeting or rally (ATTRALLY), boycotted, or deliberately bought, certain products for political, ethical or environmental reasons (AVOIDBUY), contacted, or attempted to contact, a politician or a civil servant to express your views (CNTCTGOV), took part in a demonstration (JOINDEM), donated money or raised funds for a social or political activity (POLFUNDS), joined an Internet political forum or discussion group (POLINTER), signed a petition (SIGNDPET), contacted or appeared in the media to express your views (USEMEDIA), and whether the respondent belongs to a political party (GRPPRTY).

- Voted in the presidential election of 2008 (VOTE08): Involvement in decision making unit was associated with one of the mediator, the evaluation of democracy scale, which is a scale of the perception of a respondent of how well democracy worked, works, and will work. However, this mediator was not associated with voting. Instead, the political discussion-interest scale and external efficacy scale were found to be positively linked to voting in 2008.
- 2. Voted in the presidential election of 2012 (VOTE12): Involvement in decision making unit was associated with the evaluation of democracy scale, but no mediator predicted voting in 2012. It means that none of the political efficacy and discussion variables included in this study were associated with voting in 2012 presidential election.
- 3. Attended a political meeting or rally (ATTRALLY): Although involvement in a decision making unit was associated with the evaluation of democracy scale, this scale was not linked to attending a rally. Instead, the external political efficacy scale and how a respondent thinks political parties encourage people to be active in politics were found to be associated with rally attendance. The result indicates that when a person has high trust in the political system, including the belief that the political parties encourage people to be political parties encourage people to be political parties encourage people to be active in a person has high trust in the political system, including the belief that the political parties encourage people to be politically active, s/he is more likely to attend a political meeting or rally.
- Boycotted, or deliberately bought, certain products for political, ethical or environmental reasons (AVOIDBUY): No statistically significant association between workplace participation and political efficacy, and the AVOIDBUY variable was found.
- 5. Contacted, or attempted to contact, a politician or a civil servant to express your views (CNTCTGOV): involvement in decision making unit was associated with evaluation of democracy scale, but this scale was not linked to attending a rally. The frequency of workplace participation was associated with political discussion-interest scale. This scale was in turn positively associated with the CNTCTGOV variable. Based on the spillover thesis, the result can be interpreted as more frequent workplace participation enhanced

interest in politics and tendency to engage in political discussion, and in turn, this has led to increased political activism as a form of attempting to contact politicians to express the political view.

- 6. Belongs to a political party (GRPPRTY): In this model, frequency of workplace participation and involvement in decision making unit were associated with the evaluation of democracy scale. However, this scale was not associated with political party affiliation.
- Took part in a demonstration (JOINDEM): Although involvement in the decision making unit was associated with evaluation of democracy scale, this scale was not linked to joining demonstration.
- 8. Donated money or raised funds for a social or political activity (POLFUNDS): Although involvement in the decision making unit was associated with evaluation of democracy scale, this scale was not linked to donating money or raising funds for a social or political activity.
- 9. Expressed political views on the internet (POLINTER): Involvement in decision making unit was positively linked to the evaluation of democracy scale, which was not associated with POLINTER variable. Frequency of workplace participation was associated with political discussion-interest scale, which was also positively linked to POLINTER variable. The result indicates that when a worker participates in making decisions more frequently, s/he is more likely to be encouraged to engage in political discussion and have increased political interest, which leads him/her to more actively express political views on the internet.
- Signed a petition (SIGNDPET): Involvement in the decision making unit was positively linked to the evaluation of democracy scale, but the scale was not associated with signing a petition.

11. Contacted or appeared in the media to express your views (USEMEDIA): Involvement in a decision making unit was positively linked to the evaluation of democracy scale, but the scale was not linked to contacting or appearing in the media to express views.

The result of this mediation analysis discovered statistical support for the spillover thesis regarding a few of the tested political participation behaviors. This result is only a partial support for the spillover thesis because in this model none of the other internal efficacy variables were linked to political participation. In both cases where the mediation association was supported, the only relevant mediator was the scale of political discussion-interest. Some other political efficacy variables also predicted political participation behaviors, but they were not associated with workplace participation. Based only on this result, it can be said that it is political interest and discussion—not exactly the internal efficacy—that leads to political participation.

Political discussion – Political efficacy

Based on the theorization and the findings of the empirical studies in the field of deliberative democratic theory, this study tested whether political discussion has any association with political efficacy, even when the factor analysis merged political discussion with internal political efficacy and interest into a single factor. In this analysis, the PDINT variable is excluded from the outcome variables because it contains the two political discussion variables which are independent variables in this model.

The frequency of political discussion (Std. B=.343, Sig.=.000) predicted one of the internal efficacy variables (POLEFF19; I feel I have a pretty good understanding of the important political issues facing America. 5=strongly agree, 1=strongly disagree). Frequency of political persuasion variable (Std. B=.212, Sig.=.013) was associated with another internal political efficacy variable (POLEFF20; I think most people in America are better informed about politics and government than I am. 5=strongly agree, 1=strongly disagree). The result supports the

argument of deliberative democratic theory, showing that the frequency of political discussion and persuasion leads to enhanced political efficacy.

Political discussion (Std. B=.219, Sig.=.021) was also associated with the thought of how important it is to keep watch on the actions of the government (WATCHGOV). For all other political efficacy variables, including the evaluation of democracy, political parties, politicians, external efficacy scale and so forth, no significant association was found. The result indicates that discussion may have direct effect on how a person thinks about his/her own capability to understand the important political issues and how well a person feels s/he is politically informed. However, it is interesting that political parties, politicians, and how well democracy works. The question of how the external political efficacy and views on politics are formed remains unanswered here and can lead to more interesting questions, which are beyond the scope of this study.

	P	OLEFF11 ¹)	Р	OLEFF18 ²	2)	Р	OLEFF19 ²	3)	P	OLEFF204	4)	Р	OLINT1 ⁵⁾	
	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.
(Constant)		1.453	0.148		1.041	0.299		5.521	0.000		2.909	0.004		1.073	0.285
AGE	0.034	0.430	0.668	0.063	0.815	0.416	0.123	1.664	0.098	0.132	1.836	0.068	0.194	2.928	0.004
SEX	-0.067	-0.867	0.387	-0.210	-2.779	0.006	0.017	0.235	0.814	0.113	1.618	0.108	0.040	0.622	0.535
RACE_dummy01	-0.083	-1.090	0.277	-0.062	-0.830	0.408	0.038	0.540	0.590	0.021	0.315	0.753	0.023	0.369	0.713
RACE_dummy02	-0.091	-1.144	0.254	-0.005	-0.060	0.952	-0.050	-0.682	0.496	-0.305	-4.263	0.000	0.058	0.877	0.382
RACE_dummy03	0.113	1.466	0.145	0.041	0.552	0.582	-0.064	-0.900	0.370	-0.054	-0.787	0.433	-0.049	-0.769	0.443
DEGREE_dummy01	0.052	0.415	0.678	0.023	0.193	0.847	0.100	0.865	0.388	0.170	1.524	0.129	0.138	1.346	0.180
DEGREE_dummy02	0.104	0.651	0.516	0.188	1.209	0.229	0.188	1.274	0.205	0.112	0.781	0.436	0.084	0.633	0.527
DEGREE_dummy03	0.014	0.123	0.903	0.069	0.619	0.537	-0.045	-0.426	0.671	-0.022	-0.219	0.827	0.057	0.607	0.545
DEGREE_dummy04	0.011	0.072	0.943	0.034	0.237	0.813	0.050	0.369	0.713	0.105	0.798	0.426	0.031	0.251	0.802
FAMILY INCOME	0.212	2.665	0.008	0.231	2.983	0.003	-0.123	-1.669	0.097	0.030	0.417	0.677	0.040	0.601	0.549
DISCPOL	0.025	0.257	0.797	0.024	0.263	0.793	0.343	3.868	0.000	0.148	1.725	0.086	0.317	4.006	0.000
CHNGEOTH	0.103	1.101	0.273	0.138	1.516	0.132	0.041	0.478	0.633	0.212	2.522	0.013	0.272	3.503	0.001
		N=17	$5 \text{ R}^2 = .096$		N=175	$5 \text{ R}^2 = .143$		N=17	$5 \text{ R}^2 = .224$	-	N=175	$5 R^2 = .274$	-	N=175	$R^2 = .381$
		F=1.438	Sig=.154		F=2.250	Sig=.012		F=3.899	9Sig=.000		F=5.073	Sig=.000		F=8.290	Sig=.000
1) POLEFF11: Peo	ople like me	e don't hav	e anv sav	about what	the gover	nment do	es. 1=stron	gly agree.	5=strongl	v disagree					

Summary of Linear Regression Analysis for Variables Predicting Political Participation 1

Table 1

POLEFF11: People like me don't have any say about what the government does. 1=strongly agree, 5=strongly disagree
POLEFF18: I don't think the government cares much what people like me think. 1=strongly agree, 5=strongly disagree
POLEFF19: I feel I have a pretty good understanding of the important political issues facing America. 5=strongly agree, 1=strongly disagree

4) POLEFF20: I think most people in America are better informed about politics and government than I am. 1=strongly agree, 5=strongly disagree

5) POLINT1: How interested would you say you personally are in politics? 4=very interested, 1=not at all interested

Table 2

	0	CHOICES ¹)	D	EM10FUT	2)	D	EM10PST	3)	DE	MTODAY	-4)
	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.
(Constant)		4.077	0.000		2.588	0.011		5.177	0.000		3.204	0.002
AGE	0.047	0.584	0.560	0.003	0.041	0.967	0.085	1.030	0.305	0.098	1.223	0.223
SEX	-0.084	-1.072	0.285	0.046	0.583	0.561	-0.151	-1.905	0.059	-0.024	-0.311	0.757
RACE_dummy01	0.100	1.297	0.196	0.103	1.325	0.187	-0.056	-0.717	0.474	-0.004	-0.058	0.954
RACE_dummy02	-0.057	-0.702	0.483	-0.036	-0.451	0.653	-0.176	-2.128	0.035	0.003	0.041	0.968
RACE_dummy03	0.086	1.095	0.275	0.206	2.574	0.011	0.118	1.497	0.136	0.233	3.008	0.003
DEGREE_dummy01	0.138	1.096	0.275	0.215	1.700	0.091	0.190	1.509	0.133	0.138	1.112	0.268
DEGREE_dummy02	0.187	1.152	0.251	0.414	2.597	0.010	0.229	1.427	0.156	0.331	2.099	0.037
DEGREE_dummy03	0.046	0.400	0.689	-0.013	-0.119	0.906	0.096	0.819	0.414	0.087	0.765	0.445
DEGREE_dummy04	0.026	0.172	0.864	0.183	1.224	0.223	0.126	0.843	0.400	0.151	1.028	0.306
FAMILY INCOME	0.114	1.415	0.159	0.057	0.712	0.478	-0.051	-0.626	0.532	0.114	1.429	0.155
DISCPOL	-0.117	-1.209	0.228	-0.063	-0.653	0.515	0.107	1.118	0.265	0.069	0.726	0.469
CHNGEOTH	0.065	0.683	0.495	-0.071	-0.743	0.458	0.050	0.531	0.596	-0.042	-0.457	0.648
		N=17	$5 R^2 = .070$		N=161	$1 R^2 = .156$	j.	N=16	$5 \text{ R}^2 = .102$		N=168	$3 R^2 = .127$
		F=1.021	Sig.=.432		F=2.271	Sig.=.011		F=1.435	Sig.=.156		F=1.877	Sig.=.041

Summary of Linear Regression Analysis for Variables Predicting Political Participation 2

1) CHOICES: Political parties do not give voters real policy choices. 1=strongly agree, 5=strongly disagree

2) DEM10FUT: How well do you think democracy will work in America then (10 years from now)? 1=very poorly, 10=very well

3) DEM10PST: How well did democracy work in America then (10 years ago)? 1=very poorly, 10=very well

4) DEMTODAY: How well does democracy work in America today? 1=very poorly, 10=very well

	GO	OVDOOK	1)	POLACTIVE ²⁾		POLGREED ³⁾		POLOPTS ⁴⁾		POLOPTS ⁴⁾		WATCHGOV ⁵⁾			
	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.
(Constant)		2.435	0.016		5.612	0.000		3.443	0.001		20.101	0.000		14.845	0.000
AGE	0.213	2.713	0.007	-0.061	-0.764	0.446	0.161	2.052	0.042	0.110	1.365	0.174	-0.016	-0.208	0.836
SEX	0.032	0.424	0.672	-0.026	-0.335	0.738	-0.218	-2.854	0.005	0.073	0.941	0.348	-0.032	-0.415	0.679
RACE_dummy01	-0.034	-0.455	0.649	0.012	0.158	0.875	-0.041	-0.549	0.584	0.080	1.045	0.298	0.042	0.567	0.571
RACE_dummy02	0.209	2.671	0.008	0.062	0.778	0.438	-0.079	-1.002	0.318	0.157	1.963	0.051	0.068	0.872	0.384
RACE_dummy03	0.122	1.608	0.110	0.117	1.527	0.129	0.089	1.178	0.240	0.042	0.539	0.590	0.146	1.922	0.056
DEGREE_dummy01	0.103	0.840	0.402	0.132	1.069	0.286	0.183	1.497	0.136	-0.093	-0.742	0.459	0.160	1.308	0.193
DEGREE_dummy02	0.109	0.692	0.490	0.194	1.223	0.223	0.184	1.170	0.244	-0.013	-0.079	0.937	0.220	1.401	0.163
DEGREE_dummy03	0.036	0.320	0.749	0.137	1.212	0.227	0.147	1.311	0.192	-0.028	-0.244	0.808	0.190	1.700	0.091
DEGREE_dummy04	-0.028	-0.196	0.845	0.166	1.139	0.257	-0.025	-0.171	0.865	0.100	0.676	0.500	0.119	0.827	0.409
FAMILY INCOME	0.040	0.517	0.606	0.057	0.720	0.473	0.029	0.365	0.716	0.027	0.343	0.732	-0.040	-0.518	0.605
DISCPOL	-0.062	-0.662	0.509	0.013	0.137	0.891	-0.083	-0.881	0.380	0.003	0.028	0.978	0.219	2.333	0.021
CHNGEOTH	0.108	1.167	0.245	0.259	2.780	0.006	0.044	0.473	0.637	0.101	1.075	0.284	0.109	1.180	0.240
		N=175	$5 R^2 = .127$		N=17:	$5 \text{ R}^2 = .108$		N=175	$5 \text{ R}^2 = .125$		N=17	$5 \text{ R}^2 = .086$		N=175	$R^2 = .128$
		F=1.959	Sig.=.031		F=1.638	Sig.=.086		F=1.931	Sig.=.034		F=1.261	Sig.=.246		F=1.980 S	Sig.=.029

Summary of Linear Regression Analysis for Variables Predicting Political Participation 3

Table 3

1) GOVDOOK: Most of the time we can trust people in government to do what is right. 5=strongly agree, 1=strongly disagree

2) POLACTIVE: Political parties encourage people to become active in politics. 5=strongly agree, 1=strongly disagree

3) POLGREED: Most politicians are in politics only for what they can get out of it personally. 1=strongly agree, 5=strongly disagree

4) POLOPTS: That people be given more opportunities to participate in public decision-making. 1=not at all important, 7=very important

5) WATCHGOV: To keep watch on the actions of government. 1=not at all important, 7=very important

Table 4

Summary of Linear Regression Analysis for Variables Predicting Political Participation 4

	1	PE_ext ¹⁾		FN	CTDEM	$2MO^{2}$		
	Std.			Std.				
	Beta	t	Sig.	Beta	t	Sig.		
(Constant)		3.083	0.002		2.724	0.007		
AGE	0.096	1.220	0.224	0.063	0.792	0.430		
SEX	-0.185	-2.416	0.017	0.073	0.948	0.344		
RACE_dummy01	-0.038	-0.504	0.615	0.042	0.555	0.580		
RACE_dummy02	-0.076	-0.963	0.337	-0.117	-1.466	0.145		
RACE_dummy03	0.107	1.413	0.159	0.145	1.880	0.062		
DEGREE_dummy01	0.120	0.983	0.327	0.187	1.505	0.134		
DEGREE_dummy02	0.208	1.326	0.187	0.262	1.651	0.101		
DEGREE_dummy03	0.085	0.760	0.448	0.030	0.266	0.791		
DEGREE_dummy04	0.015	0.102	0.919	0.136	0.927	0.355		
FAMILY INCOME	0.197	2.524	0.013	0.129	1.625	0.106		
DISCPOL	-0.039	-0.416	0.678	0.049	0.519	0.604		
CHNGEOTH	0.116	1.261	0.209	0.011	0.119	0.906		
		N=175	$R^2 = .124$		N=172	$R^2 = .113$		
	F	=1.913 S	ig.=.036	F	=1.684 S	ig.=.075		
1) PE_ext: Scale of H	POLEFFI	1, POLI	EFF18, C	HOICES	5,			
POLGREED								
2) FNCTDEMO: Sca	ale of DE	M10FU'	T, DEM1	OPST,				
DEMOTODAY								

Shared capitalism – Workplace participation

Multiple regression analyses are conducted to test the association between the Shared Capitalism Index, workplace participation and the efficacy-discussion-interest mediator. Because the results of the factor analysis were inconsistent with the prediction by the theories, as the result loaded political interest, internal efficacy, and political discussion onto a single factor, I first tested the mediators based on the factors and then also analyzed all the mediators separately⁴.

In the first stage, the association between shared capitalism and workplace participation is tested. As seen in the results, the regression analysis did not find any significant association between shared capitalism and two of three workplace participation variables, frequency of decision making (WKDECIDE) and degree of freedom in workplace (WKFREEDM). The other variable, participation in decision making unit (EMPINPUT), is binary coded and is tested with

⁴ The list of all the variables used is included as appendix.

logistic regression. The result indicated that the Shared Capitalism predicts involvement in the decision making unit.

When the three workplace participation variables are inputed as predictors, the frequency of decision making predicted shared capitalism. Although this is not as clear as is in prior studies that have discovered close association of shared capitalism with various types of employee participation in the workplace, the results are still partially supporting the hypothesis. The association is stronger and clearer when the entire GSS 2014 data is analyzed for these particular links of shared capitalism and workplace participation⁵.

Table 5

Summary of Linear Regression Analysis for Variables Predicting Workplace Participation 1

	V	WKDECIDE ¹⁾			WKFREEDM ²⁾		
	Std. Beta	t	Sig.	Std. Beta	t	Sig.	
(Constant)		10.240	0.000		18.412	0.000	
AGE	0.058	0.735	0.464	0.202	2.640	0.009	
SEX	-0.136	-1.788	0.076	0.032	0.431	0.667	
RACE_dummy01	0.010	0.129	0.898	-0.102	-1.390	0.166	
RACE_dummy02	0.045	0.558	0.578	0.047	0.604	0.547	
RACE_dummy03	-0.028	-0.360	0.720	0.045	0.596	0.552	
DEGREE_dummy01	0.254	2.055	0.041	-0.303	-2.521	0.013	
DEGREE_dummy02	0.227	1.434	0.153	-0.203	-1.315	0.191	
DEGREE_dummy03	0.100	0.882	0.379	-0.340	-3.094	0.002	
DEGREE_dummy04	0.172	1.179	0.240	-0.320	-2.248	0.026	
FAMILY INCOME	0.069	0.853	0.395	0.049	0.628	0.531	
SC_INDEX	0.220	2.737	0.007	0.078	1.000	0.319	
		N	$=175 \text{ R}^2 = .104$		N	$=175 \text{ R}^2 = .149$	
		F=1.	711 Sig.=.075		F=2.	583 Sig.=.005	

1) WKDECIDE: In your job, how often do you take part with others in making decisions that affect you?4=often, 3=sometimes, 2=rarely, 1=never

2) WKFREEDM: I am given a lot of freedom to decide how to do my own work. 4=very true, 3=somewhat true, 2=not too true, 1=not at all true

⁵ The table of the regression analysis of the entire GSS 214 data is available in the appendix.

Table 6

Summary	v of Linear	Regression	Analysis for	Variables	Predicting	Workplace	Participation 2
						· · · · · · · · · · · · · · · · · · ·	···· · · · · · · · · · · · · · · · · ·

DV: EMPINPUT ¹⁾	В	S.E.	Wald	df	Sig.	Exp(B)
AGE	0.009	0.014	0.438	1	0.508	1.009
SEX	0.074	0.345	0.046	1	0.830	1.077
RACE_dummy01	-0.027	0.596	0.002	1	0.963	0.973
RACE_dummy02	-0.871	0.914	0.909	1	0.340	0.419
RACE_dummy03	1.748	1.044	2.805	1	0.094	5.745
DEGREE_dummy01	-1.440	0.809	3.165	1	0.075	0.237
DEGREE_dummy02	-0.898	0.685	1.719	1	0.190	0.407
DEGREE_dummy03	-1.038	0.886	1.372	1	0.241	0.354
DEGREE_dummy04	-0.901	0.742	1.475	1	0.225	0.406
INC9806	0.049	0.044	1.223	1	0.269	1.050
SC_INDEX	0.213	0.095	5.057	1	0.025	1.237
Constant	-1.460	1.093	1.783	1	0.182	0.232
				N=	74 Chi-square=2	0.601 Sig.=.038
					-2Log likelihoo	d=210.737 df=8

 EMPINPUT: Some companies have organized workplace decision-making in ways to get more employee input and involvement. Are you personally involved in any group, team, committee, or task force that addresses issues such as product quality, cost cutting, productivity, health and safety, or other workplace issues? 1=yes, 0=no

Table 7

Summary of Linear Regression Analysis for Variables Predicting Shared Capitalism Participation

		SC_INDEX					
	Std. Beta	t	Sig.				
(Constant)		-1.376	0.171				
AGE	-0.026	-0.346	0.730				
SEX	0.103	1.407	0.161				
RACE_dummy01	0.045	0.627	0.532				
RACE_dummy02	-0.196	-2.613	0.010				
RACE_dummy03	0.085	1.153	0.251				
DEGREE_dummy01	0.047	0.380	0.705				
DEGREE_dummy02	-0.076	-0.498	0.619				
DEGREE_dummy03	0.101	0.906	0.366				
DEGREE_dummy04	-0.053	-0.371	0.711				
FAMILY INCOME	0.219	2.908	0.004				
WKDECIDE	0.165	2.190	0.030				
EMPINPUT	0.121	1.535	0.127				
WKFREEDM	0.026	0.330	0.742				
		N	$=174 \text{ R}^2 = .200$				
		F=3.	067 Sig.=.000				

Shared capitalism, Workplace participation – Political participation

In the next stage, shared capitalism was included as an independent variable along with workplace participation in order to test whether it changes the statistical association with political participation.

- Voted in the presidential election of 2008 (VOTE08): Involvement in the decision making unit (Sig.=.028, Exp(B)=3.090) showed significant association with having voted in the 2008 presidential election (Chi-square=40.297, Sig.=.000, -2Log likelihood=142.779, df=8). Workers who are involved in a decision making unit such as group, team, committee, or task force that addresses issues such as product quality, cost cutting, productivity, health and safety, or other workplace issues were more likely to vote.
- 2. Voted in the presidential election of 2012 (VOTE12): Shared Capitalism Index (Sig.=.046, Exp(B)=1.339) was found to have a positive association with having voted in the 2012 presidential election (Chi-square=63.598, Sig.=.000, -2Log likelihood=133.557, df=8). As explained earlier, the Shared Capitalism Index is a combination of the eligibility for different types of shared capitalism and the dollar amount of the shared capitalism compensation. It can be inferred that when a worker is eligible for multiple types of the shared capitalism mode of compensation and receives greater amount of pay, they were more likely to vote.

No other political participation behaviors showed significant association with the Shared Capitalism Index or workplace participation. The result is somewhat disappointing in that the shared capitalism and workplace participation did not successfully explain any political behaviors except for voting. This is in line with the previous findings where only a few associations, both directly and indirectly, were discovered between workplace participation, political efficacy, and political participation. However, it is interesting to find that the Shared Capitalism Index directly affects the voting in 2012. Mediation analysis may provide a better understanding of the role of shared capitalism in enhancing political participation.

Shared capitalism, Workplace participation - Political efficacy and discussion – Political participation

Mediation analysis is conducted with the Shared Capitalism Index and workplace participation included as independent variables and political efficacy and discussion as mediators.

- Voted in the presidential election of 2008 (VOTE08): The political discussion-interest scale and external political efficacy scale were positively associated with voting. However, neither shared capitalism nor workplace participation predicted any of the mediators, leaving the mediation association unestablished.
- Voted in the presidential election of 2012 (VOTE12): No associations between the variables were found.
- 3. Attended a political meeting or rally (ATTRALLY): Mediation was not established. Although involvement in the decision making unit was associated with evaluation of democracy scale, this scale was not linked to attending a rally. Instead, the external political efficacy scale and how a respondent thinks political parties encourage people to be active in politics were found to be associated with rally attendance. Interestingly, the Shared Capitalism Index was found to have a direct effect on the attendance. The result indicates that a worker with shared capitalism compensation and the greater amount of such compensation is more likely to attend political rally or meeting.
- 4. Boycotted, or deliberately bought, certain products for political, ethical or environmental reasons (AVOIDBUY): Involvement in the decision making unit was linked to the evaluation of democracy scale, but no other associations were found.
- 5. Contacted, or attempted to contact, a politician or a civil servant to express your views (CNTCTGOV): Involvement in the decision making unit was associated with evaluation of democracy scale, but this scale was not linked to contacting behavior. Instead, the

thought on how important it is to keep on watching the actions of the government was positively associated with the behavior, indicating that when a person believes that it is important for people to watch how and what the government does, s/he is more likely to contact or attempt to contact a politician or a civil servant to express your views.

- 6. Belongs to a political party (GRPPRTY): Involvement in the decision making unit was associated with the evaluation of democracy scale. However, this scale was not associated with political party affiliation. One of the internal political efficacy variables and the perception of whether the political parties encourage people to be politically active were associated with party affiliation. The result indicates that when an individual thinks that political parties are genuinely encouraging people to be politically active, s/he is more likely to belong to a political party.
- 7. Took part in a demonstration (JOINDEM): Although involvement in the decision making unit was associated with evaluation of democracy scale, this scale was not linked to joining a demonstration.
- 8. Donated money or raised funds for a social or political activity (POLFUNDS): Although involvement in a decision making unit was associated with the evaluation of democracy scale, this scale was not linked to donating money or raising funds for a social or political activity.
- 9. Expressed political views on the internet (POLINTER): Involvement in the decision making unit was positively linked to the evaluation of democracy scale, which was not associated with the internet use to express political views. Instead, political discussion-interest scale and trust in the government were found to be associated with the internet use for political expression. The result indicates that an individual is more likely to more actively express political views on the internet when s/he engages in political discussion more frequently and have higher level of political interest. Also, when an individual

believes that most of the time the people in government can be trusted to do what is right, s/he is more likely to express political views on the internet.

- 10. Signed a petition (SIGNDPET): Involvement in the decision making unit was positively linked to the evaluation of democracy scale, but the scale was not associated with signing a petition. Instead, the Shared Capitalism Index was directly linked to signing a petition. Although interesting, this result in difficult to interpret as we do not have reliable theorization that can connect shared capitalism and political participation behavior. The result can be understood as a sign that having shared capitalism compensation scheme available and getting paid significant amount of it may have some direct effect on certain types of political behaviors. This can be further discussed in the next chapter.
- 11. Contacted or appeared in the media to express your views (USEMEDIA): Involvement in the decision making unit was positively linked to the evaluation of democracy scale, but the scale was not linked to contacting or appearing in the media to express views.

The result shows close similarity with that of the mediation analysis without shared capitalism, except for the noted differences that shared capitalism had a direct effect on rally or meeting attendance and signing a petition. The direct impact of shared capitalism on certain political participation behaviors merit further research and discussion, which is beyond the scope of this study and thus will only be discussed briefly in the next chapter.

Overall, the analysis discovered only a partial support for the spillover thesis. Involvement in a decision making unit was found to be the most effective predictor of political efficacy, but was not associated with almost any political participation behaviors. In predicting voting, rally attendance, party affiliation, joining a demonstration, fundraising or donating to a political or social cause, signing a petition, and contacting media or using the internet to express political views, involvement in the decision making unit was associated with the respondent's evaluation of how well democracy worked, works, and will work. However, none of the political participation behaviors could be predicted by the evaluation of democracy, and therefore the analysis fails to establish a mediated link. Instead, political discussion and interest predicted voting, contacting a politician or a civil servant, and expressing political views on the internet. External political efficacy and the opinion on political parties showed associations with voting, rally attendance, and contacting a politician or a civil servant. However, when shared capitalism was included along with workplace participation, shared capitalism showed direct association with the rally attendance and signing a petition. The result failed to find support for the spillover thesis.

Discussion and Conclusion

This study has analyzed the GSS data to find the evidence of the spillover thesis, with additional consideration on the role of shared capitalism in relations to the associations between workplace participation, political efficacy, and political participation. Both the direct association between workplace participation and political participation, and the mediated association of workplace and political participation through political efficacy were partially supported. Shared capitalism showed some interesting direct effect on political participation in the mediated model of the spillover.

Consistent with the previous studies (Blasi, Freeman, & Kruse, 2016; Dube & Freeman, 2010; Freeman, Blasi, & Kruse, 2010), shared capitalism was shown to be closely associated with workplace participation. Shared capitalism was found to be associated with the frequency of workplace participation and employee involvement in a decision making unit in the selected sample. Workplace participation, in turn, showed direct association with voting and signing a petition. Unfortunately no other direct impact of workplace participation on political participation was found. The result partially supported the spillover thesis, indicating that shared capitalism can have indirect effect on some forms of political participation of workers through increased level of workplace participation. When shared capitalism was included as an additional predictor along with workplace participation, the predictors only predicted voting in presidential elections and no other political participation behaviors. The result demonstrated that workplace participation and shared capitalism can predict at least limited types of political participation voting and signing a petition.

The original argument of the spillover thesis, which hypothesizes the mediating role of political efficacy, was also partially supported. When shared capitalism was included as an additional predictor along with the workplace participation in the mediated model of workplace participation—political efficacy—political participation, shared capitalism showed direct effect on a couple of political participation behaviors—signing a petition, and attending a political rally. Although only a few of the political participation behaviors tested were found to be affected by the mediated influence of workplace participation and shared capitalism, it has been made clear by the result that political efficacy independently affects various political participation behaviors such as voting, attending rallies, contacting the officials or politicans, party affiliation, and expressing political views on the internet. The result is encouraging in that closer examination of the association between political efficacy and more specific workplace-related predictors will help understand better the spillover thesis. An additional analysis on workplace democracy and political efficacy, which is included in the appendix, has shown this possibility by producing very encouraging results of the positive association between workplace participation and political efficacy.

Finally, political discussion was found to be closely associated with political efficacy. This study has tested whether political discussion affects political efficacy, as predicted by the theory of deliberative model of democracy, and found that the frequency of political discussion and persuasion are associated with indicators of both internal and external political efficacy. This result implies that political discussion and persuasion can indirectly affect political participation through their influence on political efficacy.

The mediation analysis with logistic regressions partially supported the spillover thesis. The results indicated that when a worker participates in workplace decision making more frequently, s/he is more likely to be interested in politics and to try to engage in political discussion with friends, relatives, or coworkers. This, in turn, may lead the person to attempt to contact a politician or civil servant, or join an internet political forum. For other political participation behaviors tested, such as voting, boycotting, joining a rally or a demonstration, participating in a fundraising, signing a petition, and so forth, no significant effect of political efficacy was found. The result of this analysis, to some extent, is consistent with that of Adman. Adman (2008) argues that the support for the spillover thesis has largely been found from crosssectional data, than the panel data, and that the careful analysis of the panel data unambiguously rejected the importance of workplace participation in enhancing political activity. Except for a small number of certain political activities, this study also did not find support for the spillover thesis, even when the data is cross-sectional.

One possible explanation for this insufficient support for the spillover thesis is that, as Greenberg (2008) pointed out, the treatment effect of participation and cooperation in the workplace in the real world of work organizations are not very substantial. What Greenberg is suspicious about is that the magnitude of the positive experiences at work including participation in workplace decision-making may not be sufficient magnitude to matter when compared to other possible influences such as family, income and economic stability, health and safety, and so forth (Greenberg, 2008). He presents the evidence that when workplace participation in decision making was indirect and distant as in the case of electing a member of the board of directors or a leadership team, and nothing more direct, no positive spillover occurred at all. It is only the worker cooperative where decision making is closest to direct democracy that showed significant
spillover from workplace decision making into political participation. What Greenberg argues is that certain conditions found in the worker coops—making decisions about everyday operations, long-term planning, face-to-face decision making process, full information sharing, etc.—may be the keys conditions for the spillover (Greenberg, 2008). Unfortunately, these conditions were not specified in the data used in this study and it can be the reason for this study finding little support of the spillover thesis.

Political discussion was found be associated with internal political efficacy. Although simple and not rigorously standardized measures of political discussion were used, the finding adds to the recently flourishing discussion of the deliberative democratic theory. In actuality, deliberation can take several forms—civic dialogue, deliberative discussion, and deliberative decision-making (Morrell, 2005) and it would expand our understanding of how deliberation contributes to internal political efficacy if we could specify from the data the types of deliberation and deliberative situations where the functioning of internal political efficacy becomes salient. Unfortunately it was unlikely in the data this study used, but the result clearly added up to the argument that political discussion contributes to the internal political efficacy.

This study also contributed to our knowledge by analyzing nationally representative GSS survey with rich information of political efficacy and political participation. Sobel (1993), for instance, analyzed national data but was limited in its information of political discussion and efficacy. Sobel identified four types of occupational involvement—authority supervisory responsibility, work participation, and job participation—and did not analyzed the mediation. Ayala (2000) used the 1990 Citizen Participation Survey by Verba, Schlozman and Brady. The data include information of political efficacy, which raises a concern of how exactly the questions categorize into internal or external efficacy. The four questions were used to measure respondents' belief about their own local and national ability to affect government and be heard. Two questions ask the respondent's belief about how much influence someone like him/her can have over local

and national government. Another question asks if the respondent will be able to speak well enough in a public meeting. The last questions asks whether the public would pay attention when the respondent speaks up, which can be seen both as internal and external efficacy questions. However, it is not exactly about the self-efficacy of the respondent to make an effective speech in front of people, and it is also not exactly about the belief about how the existing political system would be responsive to the respondent because it is about the public meeting setting in the previous question. The use of this question raises concerns that this one particular question may conflate the results. Another concern is related to the use of the eight political participation questions as an eight-point scale. This study added up the questions about voting in the 2008 election, participating in campaign work, campaign contributions, contacting governmental authorities, participating in a protest, informal community work, serving on local/community board, and involvement in a political organization. The questions can be raised as this is not based on the factor analysis. Instead, the scale is created arbitrarily and it might have contributed in some way to the results of the study. As seen from the exploratory factor analysis of this study, similar political participation variables did not load into any reliable factors and this raises a concern of the reliability of the political participation scale used.

As Sekerak and Valkovicova (2014) pointed out, political culture of the United States, which is not included in this study, may have had some unidentified effect because the development and character of a political culture can influence individuals to be in favor of a particular form of participation. In addition, some forms of political participation had a very small number of participants in the sample tested in this study and that had significant impact on the results. For instance, 6.3 percent have attended a rally or a meeting, 6.9 percent were affiliated with a political party, 4.6 percent have participated in a demonstration, and 3.6 percent have contacted or appeared in the media to express your views in the past 12 months prior to the survey. However, participation in a demonstration in the United Kingdom is 5.4 (N=2,263)

percent, in France 14.2 percent (N=1,917), and in Spain it is high as 23.2 percent (N=1,923, from the European Social Survey 2014). The difference may be due to the different cultures and the political situations these countries have been experiencing around when the survey was implemented. These are hardly captured in many studies on the spillover thesis as in this study. Based on these observations and discussions, some limitations of this study and the suggestions for the future research need to be discussed.

Frist, because this study has used the cross-sectional GSS data, the result does not guarantee any causal relationship between workplace participation and the outcomes including political activities and political efficacy and discussion. As Adman (2008) pointed out, this study has its limitations in using the current time measures of workplace participation and analyzing the past year experience of political participation. Considering the time lag for the spillover to have an effect on political participation, arguing for the causality between workplace participation and political participation becomes arduous and problematic. One thing worth mentioning is, however, that it is also unclear how often firms can change systematically their worker participation schemes or cultures. If the existing participatory environment within a firm has been in place longer than at least a year, this time lag argument becomes less important and is more or less identical to a cross-sectional data issue. Carefully designed longitudinal surveys or qualitative research will be useful in clarifying the causality and eliminating the selection issue.

In addition, although very useful, the GSS is not designed particularly for a study on political participation, engagement, or perceptions. Therefore, the result is not directly comparable or compatible with earlier works by democratic theorists. As mentioned earlier in the discussion, measures of political efficacy and political participation did not load into reliable scales and this may have contributed to the result in an unidentified way. Future research may benefit from more standardized items and constructs of workplace participation, political participation, and political efficacy. Other limitations of the data are worth noting. First, among the items of workplace participation in the GSS, only three items—frequency, degree of freedom, and involvement in decision making unit—are used. More detailed information regarding the types, quality, depth, or breadth of participation, such as direct or indirect, formal or informal, short- or long-term, degree of employee influence, content of the decisions, as used in Cotton et al. (1998) were not included in the GSS. Although this categorization of workplace participation has been effectively criticized by Leana et al. (2000), more systematic categorization may result in a deeper understanding of how the different types of workplace participation may produce different outcomes. To this end, more reliable and systematic categorization of workplace participation is needed.

Second, in relation to the degree of influence and the content of the decisions in the categories above, the GSS does not contain any information about the experience or outcomes of participating in the workplace. For instance, we can easily assume that if participating in making decisions did not make any difference of the workplace outcomes, this experience will be largely different from the case of workplace participation which produced substantial workplace outcomes. Workers of the latter case are probably more encouraged to participate again in the future and show a higher level of efficacy due to the experience. The experience of participation which did not produce any visible changes will also be different from the case where there was a retaliatory outcome or negative outcomes as a result of the decision made by the workers. That is, experiencing different outcomes of participation potentially have differential efficacy outcomes. Therefore, understanding the types of different participatory experiences in the workplace will deepen our understanding of the spillover mechanism. Insights can be borrowed from the discussion of pseudo-, partial or such categorization of full participation, or categorization of consultative, substantive, and representative participation in workplace as in Levine and Tyson (1990).

Third, this study did not control for the industry, occupation, job tenure, supervisory roles and job position, and similar occupational characteristics because including these items would have significantly reduced the sample size. For instance, Sobel (1993) found that authority at work was a significant predictor of voting and attending a protest, and supervisory responsibility was a predictor of campaign participation. It can be assumed that the level and frequency of participation in workplace decision making can be different by position within an organization, or types of occupation such as between administrative and sales occupations, or industries such as between manufacturing and the professional service industry. In line with this, this study did not consider the union membership as a potential factor of political efficacy, discussion, and participation. This is due to the limitation of the data which makes it impossible to maintain the minimal sample size when the union variable is included in the analysis. As it is well accepted that unions have the strong potential to increase political participation among its members (Budd et al, 2015), including the union effect on political efficacy and participation will be an opportunity to expand our understanding of how workplace-related factors contribute to individual's political efficacy and behavior. In sum, due to the small sample size available in the GSS and to the lack of specification of types and outcomes of democratic participation in the workplace, this study has contributed to the understanding of the democratic spillover to only limited extent.

Future research also can examine whether the relationship between workplace participation and political participation can compensate for the inequality of political participation due to differences in socioeconomic status. As Brady, Verba, and Schlozman (1995) argued, because of the lack of necessary resources such as time, money, and civic skills, or the lack of interest in politics and a lack of concern with public issues, or isolation from the recruitment networks through which citizens are mobilized into politics, people in the lower socioeconomic status (SES) are less likely to be politically engaged and participating. As Sekerak and Valkovicova (2014) pointed out, it is a different question from the simple spillover whether the "politicized individuals will present the necessary energy to participate beyond the factory gate." It is also unclear how democratic workplace participation needs to be in order to take effect or how long it takes for the spillover to occur. Future studies will benefit from carefully specifying the time lapse between, for instance, democratization of the workplace and the emergence of the spillover effect by analyzing longitudinal data, or from comparing multiple workplaces with different level of democratic participation to identify how democratic a workplace needs to be in order to affect the workers' political efficacy.

As noted earlier, national differences may be contributing to shaping political efficacy and the likelihood of individuals to act and participate politically. It is often argued that countries with a high standard of living and satisfaction of citizens with their employment (or at least their salary) generate a disinterest in politics (Sekerak & Valkovicova, 2014). Differences may also be due to the availability of political resources such as how accessible it is to local politicians or civic servants or how many political organizations are in operation within a given locality. These conditions can have direct impact on an individual's political knowledge, interest, and efficacy and need to be considered as influential factors of the spillover. Comparative studies would provide substantial contribution to our current knowledge around the spillover thesis and will be critically helpful in refuting or validating the thesis.

In line with the national or local factors that affect political knowledge and efficacy, combining existing knowledge of social capital will be of tremendous help in understanding and testing the spillover effect. Although unfortunately this study did not include the consideration of social capital-related factors, future research will significantly benefit from considering local political resources available to individuals, organizational affiliation and activities outside the workplace, community involvement and participation (Putnam, 2000), use of the internet as a means of learning and development of political efficacy (Kenski & Stround, 2006), and so forth.

Although the limitations are clear, this study, as a direct extension of Pateman's idea, attempted to test the spillover thesis with the nationally representative survey data which contains rich information on political efficacy and participation. This study also expanded the research on the spillover thesis by incorporating shared capitalism, an important form of workplace democracy, and discovered small but potentially encouraging results. There still remain plenty of unknown possibilities of democratic ownership structures to be studied so that we can better understand whether and how democratically shared ownership contributes to political democracy. As noted by Blasi, Freeman, and Kruse (2013), the idea that the property ownership is essential for democracy is as old as the United States. The Early leaders of the American Revolution believed that the land ownership provides personal independence with no need to rely on others for the basic means of existence and therefore was more likely to lead individuals to participate responsibly in the political process. To the founders of America, property ownership was the necessary basis for a committed republican citizenry (Blasi, Freeman, & Kruse, 2013). Connecting the shared ownership to political and civic participation will provide research opportunities of revisiting the ideas of the leaders of the American Revolution and finding out how economic democracy is associated with political democracy.

References

- Adman, P. (2008). Does workplace experience enhance political participation? A critical test of a venerable hypothesis. *Political Behavior*, *30*(1), 115-138.
- Ayala, L. J. (2000). Trained for democracy: The differing effects of voluntary and involuntary organizations on political participation. *Political Research Quarterly*, 53(1), 99-115.
- Balch, G. I. (1974). Multiple indicators in survey research: The concept" sense of political efficacy". Political Methodology, 1-43.
- Ben-Ner, A., Han, T. S., & Jones, D. C. (1996). The productivity effects of employee participation in control and in economic returns: A review of empirical evidence. In R. Rowthorn & U. Pagano (Eds.), *Democracy and efficiency in the Economic Enterprise* (pp.209-244), London: Routledge
- Bernstein, P. (1976). *Workplace democratization: Its internal dynamics*. Kent State University Press, Comparative Administration Research Institute.
- Blasi, J., Freeman, R., & Kruse, D. (2016). Do Broad-based Employee Ownership, Profit Sharing and Stock Options Help the Best Firms Do Even Better? *British Journal of Industrial Relations*, 54(1), 55-82.
- Blasi, J. R., Kruse, D. L., & Markowitz, H. M. (2010). Risk and lack of diversification under employee ownership and shared capitalism. In D. L. Kruse, R. B. Freeman, & J. R. Blasi (Eds.), *Shared capitalism at work: Employee ownership, profit and gain sharing, and broad-based stock options* (pp. 105-136). University of Chicago Press.
- Blumberg, P. (1973). *Industrial democracy: The sociology of participation*. New York: Schocken Books.
- Budd, J. W., Gollan, P. J., & Wilkinson, A. (2010). New approaches to employee voice and participation in organizations. *Human Relations*, 63(3), 303-310.
- Budd, J. W., Ryan, L. J., & Timming, A. R. (2015). Learning about democracy at work: Evidence on the societal effects of employee participation in decision-making. ILERA 17th ILERA World Congress.
- Campbell, A., Gurin, G., & Miller, W. E. (1954). *The voter decides*. Oxford, England: Row, Peterson, and Co.
- Carnoy, M., & Shearer, D. (1980). *Economic democracy: The challenges of the 1980s*. New York, NY: M. E. Sharpe, Inc.
- Casey, C. (2014). We, the people at work: propositions for revitalizing industrial democracy through the use of Étienne Balibar's concepts. *Work, employment and society,* 28(3), 469-480.
- Chambers, S. (2003). Deliberative democratic theory. *Annual Review of Political Science*, 6(1), 307-326.
- Cohen, J. (2007). *Deliberative democracy. In Deliberation, Participation and Democracy* (pp. 219-236). Palgrave Macmillan UK.

- Converse, P. E. (1972). *Change in the American electorate*. The human meaning of social change, 263-337.
- Cotton, J. L., Vollrath, D. A., Froggatt, K. L., Lengnick-Hall, M. L., & Jennings, K. R. (1988). Employee participation: Diverse forms and different outcomes. *Academy of Management review*, 13(1), 8-22.
- Craig, S. C., Niemi, R. G., & Silver, G. E. (1990). Political efficacy and trust: A report on the NES pilot study items. *Political Behavior*, *12*(3), 289-314.
- Dahl, R. A. (1985). A preface to economic theory. Berkeley, CA: University of California Press
- Dahl, R. A. (1998). On democracy. New Haven, CT: Yale University Press
- Dube, A., & Freeman, R. B. (2010). Complementarity of shared compensation and decisionmaking systems: evidence from the American labor market. In D. L. Kruse, R. B. Freeman, & J. R. Blasi (Eds.), Shared capitalism at work: Employee ownership, profit and gain sharing, and broad-based stock options (pp. 167-199). University of Chicago Press.
- Elden, J. M. (1981). Political efficacy at work: The connection between more autonomous forms of workplace organization and a more participatory politics. *American Political Science Review*, 75(1), 43-58.
- Ewing, D. (1977). Freedom Inside the Corporation. New York: E. P. Dutton
- Finkel, S. E. (1985). Reciprocal effects of participation and political efficacy: A panel analysis. *American Journal of political science*, 29(4), 891-913.
- Fung, A., & Wright, E. O. (2001). Deepening democracy: innovations in empowered participatory governance. *Politics & Society*, 29(1), 5-41.
- Greenberg, E. S. (2008). Spillovers from cooperative and democratic workplaces: have the benefits been oversold? In M. Snyder, B. Sullivan, and J. Sullivan (Eds.), *Cooperation: The Political Psychology of Effective Human Interaction* (pp.219-239). Malden, MA: Blackwell
- Greenberg, E. S., Grunberg, L., & Daniel, K. (1996). Industrial work and political participation: Beyond "simple spillover". *Political research quarterly*, 49(2), 305-330.
- Knudsen, H., Busck, O., & Lind, J. (2011). Work environment quality: The role of workplace participation and democracy. *Work, Employment and Society*, 25(3), 379-396.
- Kruse, D. L., Freeman, R. B., & Blasi, J. R. (2010). Shared capitalism in the U.S. economy: Prevalence, characteristics, and employee views of financial participation in enterprises. In D. L. Kruse, R. B. Freeman, & J. R. Blasi (Eds.), *Shared capitalism at work: Employee ownership, profit and gain sharing, and broad-based stock options* (pp.41-76). University of Chicago Press.
- Leana, C. R., Locke, E. A., & Schweiger, D. M. (1990). Fact and fiction in analyzing research on participative decision making: A critique of Cotton, Vollrath, Froggatt, Lengnick-Hall, and Jennings. Academy of Management Review, 15(1), 137-146.

- I. Levine, D & Tyson, Laura. (1990). Participation, productivity, and the firm's environment. *California Management Review.* 32, 183-243
- Lupia, A., & Matsusaka, J. G. (2004). Direct democracy: New approaches to old questions. *Annual Review of Political Science*, 7, 463-482.
- Mason, R. M. (1982). Participatory and workplace democracy: A theoretical development in critique of liberalism. Carbondale, IL: Southern Illinois University Press.
- Morrell, M. E. (2005). Deliberation, democratic decision-making and internal political efficacy. *Political Behavior*, 27(1), 49-69.
- Nightingale, D. V. (1982). Workplace democracy. Toronto: University of Toronto Press
- Oser, J., Hooghe, M., & Marien, S. (2013). Is online participation distinct from offline participation? A latent class analysis of participation types and their stratification. *Political Research Quarterly*, 66(1), 91-101.
- Pateman, C. (1970). Participation and democratic theory. Cambridge University Press.
- Prasnikar, J. (1996). Participation and self-management in developing countries. In R. Rowthorn & U. Pagano (Eds.), *Democracy and efficiency in the Economic Enterprise* (pp.269-305), London: Routledge.
- Schlozman, K. L., Verba, S., & Brady, H. E. (2012). *The unheavenly chorus: Unequal political voice and the broken promise of American democracy*. Princeton University Press.
- Schumpeter, J. A. (1947). *Capitalism, socialism, and democracy*. New York, NY: Harper & Brothers Publishers.
- Sekerák, M., & Valkovicová, V. (2014). Political effects of employee participation: an empirical conundrum. *Teorija in Praksa*, *51*(5), 944-1001.
- Sobel, R. (1993). From occupational involvement to political participation: An exploratory analysis. *Political Behavior*, 15(4), 339-353.
- Teorell, J. (2006). Political participation and three theories of democracy: A research inventory and agenda. *European Journal of Political Research*, 45(5), 787-810.
- Uvalic, M. (1996). People's capitalism: Profit sharing and financial participation in capitalist enterprises. In R. Rowthorn & U. Pagano (Eds.), *Democracy and efficiency in the Economic Enterprise* (pp.245-268). London: Routledge.
- Verba, S., Schlozman, K. L., & Brady, H. E. (1995). *Voice and equality: Civic voluntarism in American politics*. Boston: Harvard University Press.
- Zipp, J. F., Luebke, P., & Landerman, R. (1984). The social bases of support for workplace democracy. *Sociological Perspectives*, 27(4), 395-425.

Appendix. Variable List

Independent variables: Independent variable: Shared Capitalism and Workplace participation

IV set 1: Frequency of workplace participation (WKDECIDE), involvement in decision making team (EMPINPUT), freedom in deciding how to do the job (WKFREEDM), and their interaction (three interaction terms)

IV set 2: Shared capitalism index, frequency of workplace participation (WKDECIDE), involvement in decision making team (EMPINPUT), freedom in deciding how to do the job (WKFREEDM), and their interaction (three interaction terms)

Mediators: Political efficacy/discussion and participation

- 1) POLEFF11: People like me don't have any say about what the government does. 1=strongly agree, 5=strongly disagree
- 2) POLEFF18: I don't think the government cares much what people like me think. 1=strongly agree, 5=strongly disagree
- 3) POLEFF19: I feel I have a pretty good understanding of the important political issues facing America. 5=strongly agree, 1=strongly disagree
- 4) POLEFF20: I think most people in America are better informed about politics and government than I am. 1=strongly agree, 5=strongly disagree
- 5) POLINT1: How interested would you say you personally are in politics? 4=very interested, 1=not at all interested
- 6) DISCPOL: When you get together with your friends, relatives or fellow workers, how often do you discuss politics? 4=often,32=sometimes, 2=rarely, 1=never
- CHNGEOTH: When you hold a strong opinion about politics, how often do you try to persuade your friends, relatives or fellow workers to share your views? 4=often, 3=sometimes, 2=rarely, 1=never
- 8) CHOICES: Political parties do not give voters real policy choices. 1=strongly agree, 5=strongly disagree
- 9) DEM10FUT: How well do you think democracy will work in America then (10 years from now)? 1=very poorly, 10=very well
- 10) DEM10PST: How well did democracy work in America then (10 years ago)? 1=very poorly, 10=very well
- 11) DEMTODAY: How well does democracy work in America today? 1=very poorly, 10=very well
- 12) GOVDOOK: Most of the time we can trust people in government to do what is right. 5=strongly agree, 1=strongly disagree
- 13) POLACTIVE: Political parties encourage people to become active in politics. 5=strongly agree, 1=strongly disagree
- 14) POLGREED: Most politicians are in politics only for what they can get out of it personally. 1=strongly agree, 5=strongly disagree
- 15) POLOPTS: That people be given more opportunities to participate in public decisionmaking. 1=not at all important, 7=very important
- 16) WATCHGOV: To keep watch on the actions of government. 1=not at all important, 7=very important

Dependent variables: Political activities

- 1) Voted in the presidential election of 2008 (VOTE08)^{*}
- 2) Voted in the presidential election of 2012 (VOTE12)

- 3) Attended a political meeting or rally (ATTRALLY)^{**}
- 4) Boycotted, or deliberately bought, certain products for political, ethical or environmental reasons (AVOIDBUY)
- 5) Contacted, or attempted to contact, a politician or a civil servant to express your views (CNTCTGOV)
- 6) Belongs to a political party (GRPPRTY)
- 7) Took part in a demonstration (JOINDEM)
- 8) Donated money or raised funds for a social or political activity (POLFUNDS)
- 9) Expressed political views on the internet (POLINTER)
- 10) Signed a petition (SIGNDPET)
- 11) Contacted or appeared in the media to express your views (USEMEDIA)

* Questions on the voting are coded as: 1=voted, 2=did not vote, 3=ineligible. These are recoded as 1=voted, 0=did not vote, and all the rest are coded as system missing.

** Responses for the items 3) to 11) are originally coded as: 1=have done it in the past year, 2=have done it in the more distant past, 3=have not done it but might do it, and 4=have not done it and would never do it. These are recoded as 1=have done it in the past year, and 0=all the rest.

Appendix. Descriptive Statistics

DESCRIPTIVE STATISTICS

		Std.	
	Mean	Deviation	Ν
VOTE08	0.741	0.439	166
VOTE12	0.721	0.450	176
ATTRLLY	0.069	0.254	183
AVDBUY	0.242	0.429	180
CNTGOV	0.217	0.414	182
GRPPRTY	0.072	0.259	177
JOINDM	0.024	0.153	182
POLFND	0.224	0.418	182
POLINTR	0.186	0.390	181
SGNDPET	0.344	0.476	183
USEMDA	0.033	0.178	183

		D	escriptive	Statistics			
			Analysis		Std.	Analysis	
	Mean	Std. Deviation	N	Mean	Deviation	N	Mean
SC_INDEX	2.1888	1.87487	141	VOTE08	0.7358	0.44249	141
WKDECIDE	2.3758	0.69827	141	VOTE12	0.7279	0.44663	141
EMPINPUT	0.3787	0.48680	141	ATTRALLY	0.0791	0.27091	141
WKFREEDM	3.40	0.723	141	AVOIDBUY	0.2694	0.44525	141
POLEFF11	2.90	1.291	141	CNTCTGOV	0.2674	0.44417	141
POLEFF18	2.43	1.147	141	GRPPARTY	0.0904	0.28775	141
POLEFF19	3.60	1.003	141	JOINDEM	0.0275	0.16420	141
POLEFF20	3.30	1.041	141	POLFUND	0.2450	0.43160	141
POLINT1	2.62	0.930	141	POLINTER	0.1959	0.39832	141
DISCPOL	2.45	0.909	141	SGNDPET	0.3192	0.46784	141
CHNGEOTH	2.21	0.904	141	USEMEDIA	0.0423	0.20192	141
CHOICES	2.57	0.924	141				
DEM10FUT	5.06	2.601	141				
DEM10PST	6.46	1.895	141				
DEMTODAY	5.75	1.821	141				
GOVDOOK	2.46	1.027	141				
POLACTIVE	3.3943	0.87769	141				
POLGREED	2.33	1.033	141				
POLOPTS	6.22	0.917	141				
WATCHGOV	6.22	1.261	141				

Appendix. Factor Analysis

Kaiser-Meyer-Olkin Me	easure of Sa	mpling Adequacy.	0.695		
Bartlett's Test of Spheri	city A	pprox. Chi-Square	1525.076		
	di	f	465		
	S	ig.	0.000		
Comr	nunalitie	s			
	Initial	Extraction		Initial	Extraction
SC_INDEX	1.000	0.724	VOTE08	1.000	0.808
WKDECIDE	1.000	0.647	VOTE12	1.000	0.741
EMPINPUT	1.000	0.596	ATTRALLY	1.000	0.735
WKFREEDM	1.000	0.715	AVOIDBUY	1.000	0.561
POLEFF11	1.000	0.649	CNTCTGOV	1.000	0.583
POLEFF18	1.000	0.784	GRPPARTY	1.000	0.665
POLEFF19	1.000	0.672	JOINDEM	1.000	0.461
POLEFF20	1.000	0.643	POLFUND	1.000	0.622
POLINT1	1.000	0.732	POLINTER	1.000	0.482
DISCPOL	1.000	0.646	SGNDPET	1.000	0.654
CHNGEOTH	1.000	0.642	USEMEDIA	1.000	0.721
CHOICES	1.000	0.667			
DEM10FUT	1.000	0.794			
DEM10PST	1.000	0.767			
DEMTODAY	1.000	0.828			
GOVDOOK	1.000	0.745			
POLACTIVE	1.000	0.571			
POLGREED	1.000	0.686			
POLOPTS	1.000	0.518			
WATCHGOV	1.000	0.641			

KMO and Bartlett's Test

Extraction Method: Principal Component Analysis.

		Initial Eigenvalues		Ext	raction Sums of Squa	red Loadings	Ro	otation Sums of Squar	ed Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	4.976	16.051	16.051	4.976	16.051	16.051	3.004	9.692	9.692
2	3.791	12.230	28.281	3.791	12.230	28.281	2.961	9.551	19.243
3	2.102	6.782	35.064	2.102	6.782	35.064	2.513	8.106	27.349
4	1.837	5.927	40.990	1.837	5.927	40.990	2.256	7.276	34.626
5	1.652	5.330	46.320	1.652	5.330	46.320	2.096	6.762	41.388
6	1.581	5.100	51.420	1.581	5.100	51.420	1.756	5.663	47.051
7	1.398	4.510	55.930	1.398	4.510	55.930	1.692	5.459	52.510
8	1.198	3.865	59.795	1.198	3.865	59.795	1.575	5.082	57.592
9	1.152	3.717	63.512	1.152	3.717	63.512	1.510	4.870	62.461
10	1.010	3.259	66.771	1.010	3.259	66.771	1.336	4.310	66.771
11	0.942	3.038	69.809						
12	0.849	2.739	72.548						
13	0.823	2.656	75.203						
14	0.752	2.426	77.630						
15	0.713	2.300	79.930						
16	0.681	2.196	82.125						
17	0.622	2.005	84.131						
18	0.569	1.836	85.967						
19	0.558	1.799	87.766						
20	0.509	1.642	89.408						
21	0.467	1.505	90.913						
22	0.446	1.439	92.352						
23	0.400	1.292	93.644						
24	0.348	1.121	94.765						
25	0.319	1.028	95.793						

Total Variance Explained

26-31 omitted. Extraction Method: Principal Component Analysis.

Rotated Component Matrix Component

					Comp	onem				
	1	2	3	4	5	6	7	8	9	10
SC_INDEX	-0.091	0.013	-0.018	0.097	0.175	0.051	0.201	0.046	-0.001	0.794
WKDECIDE	0.432	0.185	-0.175	-0.075	-0.039	0.441	-0.048	-0.115	-0.114	0.407
EMPINPUT	0.037	0.050	0.134	0.129	0.173	0.602	-0.143	0.010	-0.095	0.368
WKFREEDM	-0.063	-0.017	0.001	0.100	-0.009	0.833	0.053	-0.032	0.030	-0.048
POLEFF11	0.031	0.710	0.129	0.205	0.232	0.089	-0.096	0.098	-0.044	0.050
POLEFF18	0.063	0.819	0.086	0.233	0.110	-0.130	-0.050	-0.064	0.113	-0.007
POLEFF19	0.550	0.068	-0.041	0.138	0.040	0.456	0.256	0.112	-0.017	-0.234
POLEFF20	0.324	-0.070	-0.069	0.044	0.519	0.264	0.323	0.090	-0.093	-0.257
POLINT1	0.668	0.110	-0.058	0.101	0.269	0.226	0.179	0.263	0.062	-0.177
DISCPOL	0.761	-0.006	0.074	0.107	0.151	-0.083	0.089	0.086	-0.069	0.024
CHNGEOTH	0.785	0.019	0.008	0.075	0.053	-0.073	0.019	0.106	0.008	0.029
CHOICES	0.007	0.709	0.283	-0.057	-0.065	0.167	0.016	-0.214	-0.007	0.049
DEM10FUT	-0.278	0.318	0.681	-0.020	0.140	0.117	0.116	0.168	0.257	-0.103
DEM10PST	0.109	0.013	0.847	0.080	0.012	-0.026	-0.071	-0.068	-0.105	-0.096
DEMTODAY	-0.093	0.256	0.830	0.018	0.103	0.047	0.078	0.181	0.074	0.079
GOVDOOK	0.134	0.425	0.008	-0.006	-0.087	-0.017	0.042	0.187	0.708	-0.035
POLACTIVE	0.368	0.103	0.542	0.045	-0.159	-0.081	-0.098	-0.191	0.143	0.176
POLGREED	0.036	0.672	0.071	-0.050	0.039	-0.014	0.043	-0.269	0.388	0.007
POLOPTS	0.189	-0.160	0.040	0.036	-0.125	-0.013	-0.030	0.659	0.023	0.041
WATCHGOV	0.337	-0.211	0.145	-0.121	0.208	0.012	0.006	0.634	0.031	0.029
VOTE08	0.104	0.147	0.042	0.059	0.867	0.069	-0.001	0.030	-0.037	0.105
VOTE12	0.125	0.094	0.064	0.103	0.813	-0.051	0.076	-0.086	0.013	0.157
ATTRALLY	0.027	0.076	0.099	0.808	0.129	0.148	0.056	-0.036	0.135	0.065
AVOIDBUY	0.186	0.105	-0.214	-0.096	0.043	-0.039	0.451	0.119	-0.483	0.080
CNTCTGOV	0.349	0.074	0.066	0.523	0.130	0.142	0.153	0.053	-0.218	0.259
GRPPARTY	0.208	-0.104	0.183	0.548	0.066	-0.033	0.199	-0.362	0.317	0.016
JOINDEM	-0.087	0.288	-0.176	0.289	-0.010	-0.099	0.253	0.384	-0.084	-0.164
POLFUND	0.074	0.301	0.040	0.453	-0.002	-0.007	0.546	-0.031	0.038	0.134
POLINTER	0.291	-0.152	-0.047	0.143	-0.018	0.133	0.371	0.082	-0.433	-0.042
SGNDPET	0.109	-0.165	0.061	0.029	0.130	-0.005	0.761	-0.047	-0.020	0.111
USEMEDIA	0.112	0.239	-0.120	0.691	-0.017	0.071	-0.106	0.173	-0.319	-0.102

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. Rotation converged in 22 iterations.

Appendix. Regression Result Tables Workplace Participation – Political Efficacy/Discussion *WKDECIDE*

	P	OLEFF11 ¹)	P	OLEFF18 ²	2)	P	OLEFF19 ³	6)	P	OLEFF20	4)	Р	OLINT1 ⁵⁾	
	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.
(Constant)		0.691	0.490		1.123	0.263		3.625	0.000		2.295	0.023		0.903	0.368
AGE	0.032	0.406	0.686	0.066	0.848	0.398	0.158	2.055	0.042	0.145	1.955	0.052	0.227	2.998	0.003
SEX	-0.034	-0.442	0.659	-0.181	-2.396	0.018	0.107	1.433	0.154	0.186	2.579	0.011	0.159	2.159	0.032
RACE_dummy01	-0.080	-1.057	0.292	-0.055	-0.735	0.463	0.028	0.387	0.699	0.028	0.387	0.699	0.028	0.382	0.703
RACE_dummy02	-0.072	-0.917	0.361	0.020	0.263	0.793	-0.015	-0.193	0.847	-0.257	-3.473	0.001	0.129	1.715	0.088
RACE_dummy03	0.110	1.427	0.155	0.037	0.485	0.629	-0.071	-0.945	0.346	-0.063	-0.872	0.385	-0.063	-0.846	0.399
DEGREE_dummy01	0.020	0.157	0.875	0.013	0.105	0.916	0.052	0.422	0.673	0.134	1.134	0.258	0.091	0.750	0.454
DEGREE_dummy02	0.068	0.426	0.671	0.166	1.057	0.292	0.111	0.716	0.475	0.052	0.344	0.731	-0.008	-0.054	0.957
DEGREE_dummy03	-0.012	-0.102	0.919	0.050	0.450	0.653	-0.119	-1.081	0.281	-0.075	-0.703	0.483	-0.030	-0.278	0.782
DEGREE_dummy04	-0.019	-0.132	0.895	0.014	0.093	0.926	-0.012	-0.086	0.932	0.053	0.379	0.705	-0.050	-0.351	0.726
FAMILY INCOME	0.207	2.617	0.010	0.238	3.060	0.003	-0.099	-1.290	0.199	0.046	0.619	0.537	0.076	0.994	0.322
WKDECIDE	0.114	1.483	0.140	0.031	0.407	0.685	0.211	2.813	0.006	0.131	1.809	0.072	0.190	2.570	0.011
	N=175 R ² =.094				N=175	$5 R^2 = .121$		N=175	$5 \text{ R}^2 = .143$		N=17	5 R ² =.195		N=175	$R^2 = .164$
	F=1.559 Sig=.11		Sig=.115		F=2.052	Sig=.027		F=2.472	Sig=.007		F=3.573	Sig=.000		F=2.892	Sig=.002

1) POLEFF11: People like me don't have any say about what the government does. 1=strongly agree, 5=strongly disagree

2) POLEFF18: I don't think the government cares much what people like me think. 1=strongly agree, 5=strongly disagree

3) POLEFF19: I feel I have a pretty good understanding of the important political issues facing America. 5=strongly agree, 1=strongly disagree

4) POLEFF20: I think most people in America are better informed about politics and government than I am. 1=strongly agree, 5=strongly disagree

5) POLINT1: How interested would you say you personally are in politics? 4=very interested, 1=not at all interested

	D	DISCPOL ¹⁾		CH	NGEOTI	$H^{2)}$	Cl	HOICES	3)	DE	M10FU1	Г ⁴⁾	DE	M10PS	Г ⁵⁾	DEI	MTODA	Y ⁶⁾
	Std.			Std.			Std.			Std.			Std.			Std.		
	Beta	t	Sig.	Beta	t	Sig.	Beta	t	Sig.	Beta	t	Sig.	Beta	t	Sig.	Beta	t	Sig.
(Constant)		1.207	0.229		1.679	0.095		2.249	0.026		3.261	0.001		5.240	0.000		3.597	0.000
AGE	0.125	1.608	0.110	-0.005	-0.057	0.954	0.025	0.308	0.758	0.000	0.000	1.000	0.099	1.209	0.229	0.116	1.466	0.145
SEX	0.190	2.514	0.013	0.179	2.333	0.021	-0.079	-1.020	0.309	0.012	0.149	0.882	-0.141	-1.773	0.078	-0.036	-0.466	0.642
RACE_dummy01	-0.025	-0.340	0.734	0.053	0.701	0.484	0.104	1.359	0.176	0.115	1.497	0.137	-0.060	-0.760	0.449	-0.008	-0.103	0.918
RACE_dummy02	0.084	1.077	0.283	0.166	2.110	0.036	-0.056	-0.704	0.483	-0.031	-0.396	0.692	-0.156	-1.899	0.059	0.001	0.013	0.990
RACE_dummy03	-0.017	-0.218	0.828	-0.032	-0.410	0.683	0.086	1.110	0.269	0.208	2.643	0.009	0.114	1.440	0.152	0.233	3.034	0.003
DEGREE_dummy01	-0.014	-0.114	0.909	-0.073	-0.582	0.561	0.097	0.766	0.445	0.265	2.106	0.037	0.216	1.681	0.095	0.173	1.380	0.169
DEGREE_dummy02	-0.116	-0.732	0.465	-0.135	-0.845	0.399	0.161	1.000	0.319	0.463	2.939	0.004	0.243	1.491	0.138	0.358	2.272	0.024
DEGREE_dummy03	-0.152	-1.351	0.179	-0.106	-0.933	0.352	0.040	0.349	0.728	0.031	0.282	0.779	0.086	0.732	0.465	0.098	0.861	0.391
DEGREE_dummy04	-0.098	-0.673	0.502	-0.130	-0.886	0.377	0.006	0.042	0.966	0.234	1.587	0.115	0.129	0.858	0.392	0.170	1.164	0.246
FAMILY INCOME	0.120	1.531	0.128	0.034	0.426	0.671	0.084	1.058	0.292	0.069	0.864	0.389	-0.032	-0.400	0.690	0.132	1.674	0.096
WKDECIDE	0.152	2.004	0.047	0.198	2.573	0.011	0.137	1.768	0.079	-0.186	-2.407	0.017	-0.069	-0.857	0.393	-0.114	-1.474	0.142
		N=175	$R^2 = .117$		N=175	$R^2 = .095$		N=175	$R^2 = .080$		N=161	$R^2 = .175$		N=165	$R^2 = .088$		N=168	$R^2 = .136$
	F=	1.958 Si	ig.=.036	F	F=1.544 Sig.=.120		F	=1.281 S	ig.=.239	F	=2.861 Si	ig.=.002	F	=1.334 S	ig.=.211	F	=2.231 Si	g.=.015

1) DISCPOL: When you get together with your friends, relatives or fellow workers, how often do you discuss politics? 4=often, 32=sometimes, 2=rarely, 1=never

2) CHNGEOTH: When you hold a strong opinion about politics, how often do you try to persuade your friends, relatives or fellow workers to share your views? 4=often, 3=sometimes, 2=rarely, 1=never

3) CHOICES: Political parties do not give voters real policy choices. 1=strongly agree, 5=strongly disagree

4) DEM10FUT: How well do you think democracy will work in America then (10 years from now)? 1=very poorly, 10=very well

5) DEM10PST: How well did democracy work in America then (10 years ago)? 1=very poorly, 10=very well

6) DEMTODAY: How well does democracy work in America today? 1=very poorly, 10=very well

	G	OVDOOK	-1)	PC	DLACTIVI	$\Xi^{(2)}$	PC	DLGREED	³⁾	Р	OLOPTS ⁴)	WA	TCHGOV	⁷⁵⁾
	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.
(Constant)		2.732	0.007		4.012	0.000		1.741	0.084		17.473	0.000		12.817	0.000
AGE	0.209	2.692	0.008	-0.067	-0.841	0.401	0.143	1.860	0.065	0.114	1.434	0.153	0.015	0.181	0.856
SEX	0.031	0.414	0.680	0.038	0.484	0.629	-0.210	-2.813	0.006	0.083	1.072	0.285	0.021	0.270	0.788
RACE_dummy01	-0.025	-0.339	0.735	0.023	0.297	0.767	-0.039	-0.534	0.594	0.087	1.140	0.256	0.044	0.569	0.570
RACE_dummy02	0.222	2.871	0.005	0.106	1.330	0.185	-0.078	-1.020	0.309	0.174	2.202	0.029	0.105	1.299	0.196
RACE_dummy03	0.119	1.576	0.117	0.109	1.401	0.163	0.090	1.198	0.233	0.038	0.494	0.622	0.138	1.753	0.081
DEGREE_dummy01	0.115	0.933	0.352	0.079	0.620	0.536	0.145	1.180	0.240	-0.079	-0.620	0.536	0.168	1.304	0.194
DEGREE_dummy02	0.117	0.743	0.459	0.131	0.806	0.421	0.159	1.017	0.311	-0.010	-0.059	0.953	0.195	1.189	0.236
DEGREE_dummy03	0.043	0.383	0.702	0.092	0.803	0.423	0.138	1.248	0.214	-0.029	-0.255	0.799	0.154	1.325	0.187
DEGREE_dummy04	-0.025	-0.170	0.865	0.111	0.748	0.456	-0.044	-0.304	0.761	0.099	0.670	0.504	0.095	0.632	0.528
FAMILY INCOME	0.046	0.589	0.557	0.051	0.638	0.524	0.003	0.039	0.969	0.041	0.518	0.605	-0.001	-0.018	0.986
WKDECIDE	-0.062	-0.823	0.412	0.181	2.320	0.022	0.132	1.760	0.080	-0.061	-0.784	0.434	-0.018	-0.223	0.824
		N=17	5 R^2 =.123	.123 N=175 R ² =.072				N=17	5 R ² =.138		N=175	$5 \text{ R}^2 = .079$		N=175	$R^2 = .049$
	F=2.079 Sig.=.02				F=1.152	Sig.=.326		F=2.360	Sig.=.010		F=1.270	Sig.=.246		F=.758 \$	Sig.=.681

1) GOVDOOK: Most of the time we can trust people in government to do what is right. 5=strongly agree, 1=strongly disagree

2) POLACTIVE: Political parties encourage people to become active in politics. 5=strongly agree, 1=strongly disagree

3) POLGREED: Most politicians are in politics only for what they can get out of it personally. 1=strongly agree, 5=strongly disagree

4) POLOPTS: That people be given more opportunities to participate in public decision-making. 1=not at all important, 7=very important

5) WATCHGOV: To keep watch on the actions of government. 1=not at all important, 7=very important

	Р	DINT ¹⁾		Р	'E_ext ³⁾		FNC	TDEM	$O^{4)}$
	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.
(Constant)		1.567	0.119		1.796	0.074		2.995	0.003
AGE	0.138	1.809	0.072	0.084	1.090	0.277	0.074	0.933	0.352
SEX	0.213	2.876	0.005	-0.158	-2.108	0.037	0.075	0.986	0.326
RACE_dummy01	0.022	0.307	0.759	-0.033	-0.444	0.657	0.043	0.569	0.570
RACE_dummy02	0.153	2.013	0.046	-0.060	-0.773	0.440	-0.111	-1.416	0.159
RACE_dummy03	-0.044	-0.594	0.553	0.105	1.390	0.166	0.143	1.869	0.063
DEGREE_dummy01	0.000	-0.003	0.998	0.082	0.666	0.507	0.206	1.649	0.101
DEGREE_dummy02	-0.106	-0.684	0.495	0.173	1.105	0.271	0.271	1.713	0.089
DEGREE_dummy03	-0.117	-1.065	0.288	0.065	0.585	0.560	0.031	0.275	0.784
DEGREE_dummy04	-0.112	-0.792	0.429	-0.014	-0.101	0.920	0.142	0.972	0.333
FAMILY INCOME	0.092	1.203	0.231	0.182	2.353	0.020	0.146	1.844	0.067
WKDECIDE	0.218	2.927	0.004	0.131	1.738	0.084	-0.070	-0.906	0.366
		N=175	$R^2 = .164$		N175	$R^2 = .156$		N=175	$R^2 = .131$
	F=	2.892 Si	ig.=.002	F=	2.727 Si	ig.=.003	F=	2.231 Si	g.=.015

1) PDINT: Scale of DISCPOL, CHNGEOTH, POLINT1

2) PE_ext: Scale of POLEFF11, POLEFF18, CHOICES, POLGREED

3) FNCTDEMO: Scale of DEM10FUT, DEM10PST, DEMOTODAY

EMPINPUT

EMFINFUI															
	PO	OLEFF11 ¹)	PO	OLEFF18 ²	2)	PO	OLEFF19	3)	PO	OLEFF20 ⁴)	Р	OLINT1 ⁵⁾	
	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.
(Constant)		1.928	0.056		1.732	0.085		6.615	0.000		4.184	0.000		3.061	0.003
AGE	0.043	0.542	0.589	0.072	0.932	0.353	0.157	2.032	0.044	0.153	2.057	0.041	0.232	3.005	0.003
SEX	-0.063	-0.820	0.413	-0.189	-2.504	0.013	0.078	1.050	0.295	0.156	2.165	0.032	0.139	1.848	0.066
RACE_dummy01	-0.082	-1.085	0.279	-0.056	-0.749	0.455	0.033	0.448	0.655	0.027	0.372	0.710	0.033	0.439	0.661
RACE_dummy02	-0.065	-0.817	0.415	0.018	0.228	0.820	0.005	0.059	0.953	-0.246	-3.294	0.001	0.134	1.730	0.085
RACE_dummy03	0.093	1.185	0.238	0.039	0.503	0.616	-0.102	-1.334	0.184	-0.088	-1.200	0.232	-0.070	-0.910	0.364
DEGREE_dummy01	0.066	0.522	0.602	0.015	0.125	0.901	0.149	1.216	0.226	0.196	1.658	0.099	0.152	1.234	0.219
DEGREE_dummy02	0.109	0.679	0.498	0.167	1.057	0.292	0.199	1.274	0.204	0.107	0.712	0.478	0.043	0.271	0.787
DEGREE_dummy03	0.011	0.098	0.922	0.051	0.456	0.649	-0.071	-0.640	0.523	-0.045	-0.418	0.677	-0.002	-0.016	0.988
DEGREE_dummy04	0.029	0.199	0.842	0.021	0.145	0.885	0.052	0.364	0.716	0.110	0.793	0.429	-0.015	-0.107	0.915
FAMILY INCOME	0.215	2.704	0.008	0.247	3.165	0.002	-0.101	-1.301	0.195	0.048	0.640	0.523	0.092	1.181	0.239
EMPINPUT	0.077	0.980	0.329	-0.027	-0.346	0.730	0.197	2.587	0.011	0.127	1.731	0.085	0.048	0.628	0.531
	N=174 R ² =.093				N=174	$4 R^2 = .124$		N=174	$4 R^2 = .138$		N=174	$R^2 = .196$		N=174	$4 R^2 = .132$
		F=1.502	Sig=.135		F=2.075	Sig=.021		F=2.347	Sig=.010		F=3.592	Sig=.000		F=2.231	Sig=.015

1) POLEFF11: People like me don't have any say about what the government does. 1=strongly agree, 5=strongly disagree

2) POLEFF18: I don't think the government cares much what people like me think. 1=strongly agree, 5=strongly disagree

POLEFF19: I feel I have a pretty good understanding of the important political issues facing America. 5=strongly agree, 1=strongly disagree
 POLEFF20: I think most people in America are better informed about politics and government than I am. 1=strongly agree, 5=strongly disagree

5) POLINT1: How interested would you say you personally are in politics? 4=very interested, 1=not at all interested

	D	SCPOL	1)	CHI	NGEOTH	$H^{2)}$	Cl	HOICES	3)	DE	M10FU	Γ ⁴⁾	DE	M10PS7	Г ⁵⁾	DEN	ATODA	$Y^{6)}$
	Std.			Std.			Std.			Std.			Std.			Std.		
	Beta	t	Sig.	Beta	t	Sig.	Beta	t	Sig.	Beta	t	Sig.	Beta	t	Sig.	Beta	t	Sig.
(Constant)		3.039	0.003		3.960	0.000		4.121	0.000		2.161	0.032		6.060	0.000		3.369	0.001
AGE	0.128	1.617	0.108	0.005	0.065	0.949	0.032	0.400	0.690	-0.001	-0.016	0.987	0.090	1.108	0.270	0.104	1.326	0.187
SEX	0.176	2.303	0.023	0.143	1.841	0.067	-0.102	-1.312	0.191	0.019	0.234	0.815	-0.138	-1.751	0.082	-0.031	-0.413	0.680
RACE_dummy01	-0.021	-0.274	0.784	0.054	0.705	0.482	0.105	1.358	0.176	0.105	1.334	0.184	-0.062	-0.785	0.434	-0.012	-0.154	0.877
RACE_dummy02	0.088	1.116	0.266	0.180	2.241	0.026	-0.049	-0.615	0.539	-0.046	-0.576	0.565	-0.147	-1.792	0.075	0.018	0.225	0.822
RACE_dummy03	-0.023	-0.292	0.771	-0.057	-0.722	0.472	0.073	0.923	0.358	0.210	2.584	0.011	0.092	1.146	0.254	0.205	2.649	0.009
DEGREE_dummy01	0.037	0.293	0.770	0.007	0.053	0.958	0.147	1.154	0.250	0.223	1.733	0.085	0.224	1.759	0.081	0.175	1.411	0.160
DEGREE_dummy02	-0.073	-0.455	0.650	-0.064	-0.397	0.692	0.204	1.254	0.211	0.433	2.692	0.008	0.255	1.579	0.116	0.367	2.346	0.020
DEGREE_dummy03	-0.128	-1.124	0.263	-0.067	-0.579	0.563	0.064	0.554	0.580	0.008	0.076	0.939	0.094	0.802	0.424	0.102	0.908	0.365
DEGREE_dummy04	-0.071	-0.488	0.626	-0.063	-0.425	0.671	0.046	0.310	0.757	0.214	1.425	0.156	0.139	0.931	0.353	0.185	1.279	0.203
FAMILY INCOME	0.131	1.650	0.101	0.042	0.527	0.599	0.094	1.165	0.246	0.042	0.514	0.608	-0.059	-0.720	0.473	0.096	1.205	0.230
EMPINPUT	0.048	0.611	0.542	0.134	1.695	0.092	0.065	0.817	0.415	0.021	0.268	0.789	0.132	1.631	0.105	0.161	2.074	0.040
		N=174	$R^2 = .097$		N=174 I	$R^2 = .072$		N=174	$R^2 = .066$		N=160	$R^2 = .142$		N=164	$R^2 = .099$		N=167	$R^2 = .148$
	F=1.587 Sig.=.10		ig.=.107	F=	=1.140 Si	g.=.334	F	=1.308 Si	g.=.415	F	=2.215 S	ig.=.016	F	=1.512 S	ig.=.132	F=	2.448 Si	ig.=.008

1) DISCPOL: When you get together with your friends, relatives or fellow workers, how often do you discuss politics? 4=often, 32=sometimes, 2=rarely, 1=never

2) CHNGEOTH: When you hold a strong opinion about politics, how often do you try to persuade your friends, relatives or fellow workers to share your views? 4=often, 3=sometimes, 2=rarely, 1=never

3) CHOICES: Political parties do not give voters real policy choices. 1=strongly agree, 5=strongly disagree

4) DEM10FUT: How well do you think democracy will work in America then (10 years from now)? 1=very poorly, 10=very well

5) DEM10PST: How well did democracy work in America then (10 years ago)? 1=very poorly, 10=very well

6) DEMTODAY: How well does democracy work in America today? 1=very poorly, 10=very well

	G	OVDOOK	-1)	PC	DLACTIVI	$\Xi^{(2)}$	PC	DLGREED	³⁾	Р	OLOPTS ⁴	•)	WA	ATCHGOV	7 ⁵⁾
	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.
(Constant)		2.866	0.005		6.776	0.000		3.570	0.000		21.494	0.000		16.062	0.000
AGE	0.211	2.725	0.007	-0.062	-0.766	0.445	0.155	2.002	0.047	0.118	1.485	0.139	0.005	0.062	0.950
SEX	0.038	0.510	0.611	0.022	0.277	0.782	-0.226	-3.007	0.003	0.081	1.048	0.296	0.026	0.334	0.739
RACE_dummy01	-0.027	-0.365	0.715	0.028	0.362	0.718	-0.038	-0.505	0.614	0.083	1.084	0.280	0.045	0.587	0.558
RACE_dummy02	0.213	2.745	0.007	0.108	1.329	0.186	-0.084	-1.083	0.280	0.172	2.162	0.032	0.114	1.407	0.161
RACE_dummy03	0.133	1.725	0.086	0.107	1.327	0.186	0.098	1.272	0.205	0.039	0.495	0.621	0.126	1.582	0.115
DEGREE_dummy01	0.080	0.653	0.515	0.133	1.031	0.304	0.167	1.358	0.176	-0.101	-0.798	0.426	0.183	1.428	0.155
DEGREE_dummy02	0.084	0.534	0.594	0.174	1.060	0.291	0.173	1.098	0.274	-0.028	-0.176	0.860	0.211	1.293	0.198
DEGREE_dummy03	0.025	0.225	0.822	0.117	1.002	0.318	0.147	1.317	0.190	-0.040	-0.345	0.731	0.163	1.401	0.163
DEGREE_dummy04	-0.046	-0.319	0.750	0.136	0.899	0.370	-0.029	-0.201	0.841	0.097	0.658	0.511	0.100	0.669	0.504
FAMILY INCOME	0.051	0.653	0.515	0.069	0.842	0.401	0.029	0.369	0.713	0.040	0.497	0.620	-0.018	-0.219	0.827
EMPINPUT	-0.088	-1.149	0.252	0.026	0.320	0.749	-0.061	-0.788	0.432	-0.026	-0.325	0.745	0.091	1.140	0.256
		N=17	N=174 R ² =.127 N=174 R ² =.043				N=17-	$4 \text{ R}^2 = .125$	í	N=174	$4 \text{ R}^2 = .079$		N=174	$R^2 = .058$	
	F=2.130 Sig.=.02				F=.661	Sig.=.774		F=2.103	Sig.=.023		F=1.268	Sig.=.247		F=.903	Sig.=.539

1) GOVDOOK: Most of the time we can trust people in government to do what is right. 5=strongly agree, 1=strongly disagree

2) POLACTIVE: Political parties encourage people to become active in politics. 5=strongly agree, 1=strongly disagree

3) POLGREED: Most politicians are in politics only for what they can get out of it personally. 1=strongly agree, 5=strongly disagree

4) POLOPTS: That people be given more opportunities to participate in public decision-making. 1=not at all important, 7=very important

5) WATCHGOV: To keep watch on the actions of government. 1=not at all important, 7=very important

	PE	PDINT)	Р	'E_ext ³⁾		FNC	TDEM	$O^{4)}$
	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.
(Constant)		4.096	0.000		3.548	0.001		3.018	0.003
AGE	0.145	1.856	0.065	0.096	1.237	0.218	0.069	0.874	0.384
SEX	0.184	2.434	0.016	-0.183	-2.426	0.016	0.077	1.012	0.313
RACE_dummy01	0.027	0.354	0.724	-0.033	-0.446	0.656	0.040	0.530	0.597
RACE_dummy02	0.162	2.071	0.040	-0.058	-0.740	0.461	-0.106	-1.336	0.183
RACE_dummy03	-0.060	-0.776	0.439	0.098	1.267	0.207	0.134	1.714	0.089
DEGREE_dummy01	0.077	0.621	0.535	0.121	0.975	0.331	0.199	1.589	0.114
DEGREE_dummy02	-0.039	-0.248	0.805	0.205	1.295	0.197	0.268	1.687	0.094
DEGREE_dummy03	-0.080	-0.710	0.479	0.083	0.742	0.459	0.029	0.253	0.800
DEGREE_dummy04	-0.061	-0.420	0.675	0.022	0.151	0.881	0.144	0.989	0.324
FAMILY INCOME	0.106	1.356	0.177	0.199	2.536	0.012	0.131	1.643	0.102
EMPINPUT	0.093	1.206	0.230	0.019	0.253	0.801	0.053	0.678	0.499
		N=174	$R^2 = .119$		N=174	$R^2 = .118$		N=171	$R^2 = .112$
	F=	1.989 Si	ig.=.033	F=	1.974 Si	ig.=.034	F=	1.833 Si	g.=.052

1) PDINT: Scale of DISCPOL, CHNGEOTH, POLINT1

PE_ext: Scale of POLEFF11, POLEFF18, CHOICES, POLGREED
 FNCTDEMO: Scale of DEM10FUT, DEM10PST, DEMOTODAY

WKFREEDM

WAFKEEDM															
	PO	OLEFF11 ¹)	P	OLEFF18 ²	2)	P	OLEFF19 ³)	P	OLEFF20	4)	Р	OLINT1 ⁵⁾	
	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.
(Constant)		1.540	0.126		2.363	0.019		1.328	0.186		2.147	0.033		1.152	0.251
AGE	0.046	0.568	0.571	0.094	1.193	0.234	0.120	1.545	0.124	0.147	1.921	0.056	0.226	2.871	0.005
SEX	-0.045	-0.593	0.554	-0.179	-2.407	0.017	0.073	0.990	0.324	0.170	2.346	0.020	0.135	1.808	0.072
RACE_dummy01	-0.081	-1.064	0.289	-0.067	-0.901	0.369	0.057	0.772	0.441	0.033	0.456	0.649	0.038	0.504	0.615
RACE_dummy02	-0.071	-0.897	0.371	0.024	0.317	0.752	-0.022	-0.295	0.768	-0.258	-3.451	0.001	0.127	1.658	0.099
RACE_dummy03	0.111	1.437	0.153	0.044	0.578	0.564	-0.085	-1.134	0.258	-0.065	-0.890	0.375	-0.066	-0.881	0.380
DEGREE_dummy01	0.039	0.306	0.760	-0.018	-0.144	0.886	0.181	1.480	0.141	0.178	1.479	0.141	0.159	1.286	0.200
DEGREE_dummy02	0.084	0.524	0.601	0.146	0.932	0.353	0.207	1.337	0.183	0.086	0.561	0.575	0.044	0.282	0.778
DEGREE_dummy03	-0.010	-0.089	0.929	0.011	0.094	0.925	-0.013	-0.112	0.911	-0.050	-0.453	0.651	0.012	0.109	0.913
DEGREE_dummy04	-0.014	-0.092	0.926	-0.024	-0.165	0.869	0.100	0.697	0.487	0.082	0.581	0.562	0.000	-0.003	0.997
FAMILY INCOME	0.224	2.828	0.005	0.251	3.268	0.001	-0.090	-1.180	0.240	0.061	0.810	0.419	0.095	1.237	0.218
WKFREEDM	-0.038	-0.468	0.640	-0.130	-1.657	0.099	0.244	3.135	0.002	0.028	0.364	0.716	0.059	0.750	0.454
		N=17	$5 R^2 = .084$		N=175	$5 R^2 = .136$		N=175	$5 R^2 = .153$		N=17	$5 R^2 = .179$		N=175	$R^2 = .133$
		F=1.363	Sig=.195		F=2.319	9Sig=.011		F=2.666	Sig=.004		F=3.226	Sig=.001		F=2.261	Sig=.014

1) POLEFF11: People like me don't have any say about what the government does. 1=strongly agree, 5=strongly disagree

2) POLEFF18: I don't think the government cares much what people like me think. 1=strongly agree, 5=strongly disagree

POLEFF19: I feel I have a pretty good understanding of the important political issues facing America. 5=strongly agree, 1=strongly disagree
POLEFF20: I think most people in America are better informed about politics and government than I am. 1=strongly agree, 5=strongly disagree
POLINT1: How interested would you say you personally are in politics? 4=very interested, 1=not at all interested

	DISCPOL ¹⁾		CHN	IGEOTH	$H^{(2)}$	CH	OICES ³	i)	DEN	M10FU1	-4)	DEI	M10PST	-5)	DEM	ITODA	Y ⁶⁾	
	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.
(Constant)		2.563	0.011		3.326	0.001		1.663	0.098		1.645	0.102		3.440	0.001		2.534	0.012
AGE	0.150	1.867	0.064	0.026	0.324	0.747	0.017	0.212	0.832	0.002	0.030	0.976	0.092	1.102	0.272	0.117	1.446	0.150
SEX	0.176	2.317	0.022	0.160	2.068	0.040	-0.097	-1.260	0.209	0.029	0.370	0.712	-0.132	-1.669	0.097	-0.016	-0.208	0.836
RACE_dummy01	-0.030	-0.397	0.692	0.047	0.613	0.541	0.114	1.472	0.143	0.102	1.304	0.194	-0.059	-0.741	0.460	-0.014	-0.178	0.859
RACE_dummy02	0.086	1.096	0.275	0.169	2.113	0.036	-0.058	-0.728	0.467	-0.048	-0.610	0.543	-0.159	-1.932	0.055	0.004	0.047	0.962
RACE_dummy03	-0.013	-0.168	0.867	-0.027	-0.345	0.731	0.082	1.044	0.298	0.216	2.700	0.008	0.115	1.439	0.152	0.236	3.055	0.003
DEGREE_dummy01	0.003	0.022	0.983	-0.050	-0.391	0.697	0.156	1.214	0.227	0.208	1.614	0.109	0.200	1.545	0.125	0.124	0.986	0.326
DEGREE_dummy02	-0.100	-0.628	0.531	-0.114	-0.702	0.484	0.206	1.265	0.208	0.419	2.604	0.010	0.226	1.391	0.166	0.317	2.003	0.047
DEGREE_dummy03	-0.160	-1.376	0.171	-0.115	-0.975	0.331	0.081	0.686	0.494	-0.006	-0.055	0.956	0.080	0.664	0.508	0.062	0.533	0.595
DEGREE_dummy04	-0.100	-0.671	0.503	-0.131	-0.870	0.386	0.052	0.342	0.733	0.187	1.230	0.220	0.120	0.785	0.433	0.131	0.884	0.378
FAMILY INCOME	0.144	1.839	0.068	0.065	0.819	0.414	0.096	1.207	0.229	0.046	0.570	0.570	-0.038	-0.468	0.640	0.128	1.609	0.110
WKFREEDM	-0.079	-0.989	0.324	-0.100	-1.217	0.225	0.073	0.898	0.370	-0.037	-0.448	0.655	0.011	0.125	0.900	-0.055	-0.687	0.493
	1	N=175 F	$R^2 = .101$		N=175 I	$R^2 = .066$		N=175 I	$R^2 = .067$		N=161 l	$R^2 = .144$		N=165 l	$R^2 = .083$	5	N=168 I	$R^2 = .126$
	F=1	.653 Sig	g.=.089	F=	1.048 Si	g.=.407	F=	1.057 Si	g.=.400	F=	2.267 Si	g.=.014	F=	1.263 Si	g.=.251	F=	2.055 Si	g.=.027

1) DISCPOL: When you get together with your friends, relatives or fellow workers, how often do you discuss politics? 4=often, 32=sometimes, 2=rarely, 1=never

2) CHNGEOTH: When you hold a strong opinion about politics, how often do you try to persuade your friends, relatives or fellow workers to share your views? 4=often, 3=sometimes, 2=rarely, 1=never

3) CHOICES: Political parties do not give voters real policy choices. 1=strongly agree, 5=strongly disagree

4) DEM10FUT: How well do you think democracy will work in America then (10 years from now)? 1=very poorly, 10=very well

5) DEM10PST: How well did democracy work in America then (10 years ago)? 1=very poorly, 10=very well

6) DEMTODAY: How well does democracy work in America today? 1=very poorly, 10=very well

	GOVDOOK ¹⁾		PC	LACTIVI	$\Xi^{(2)}$	PC	DLGREED	³⁾	Р	OLOPTS ⁴)	WA	TCHGO	/ ⁵⁾	
	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.
(Constant)		2.724	0.007		3.748	0.000		3.102	0.002		12.333	0.000		9.512	0.000
AGE	0.227	2.877	0.005	-0.060	-0.723	0.470	0.171	2.171	0.031	0.112	1.375	0.171	0.020	0.246	0.806
SEX	0.043	0.570	0.569	0.016	0.208	0.835	-0.221	-2.967	0.003	0.090	1.169	0.244	0.024	0.314	0.754
RACE_dummy01	-0.037	-0.496	0.620	0.028	0.354	0.724	-0.047	-0.628	0.531	0.085	1.110	0.269	0.041	0.520	0.604
RACE_dummy02	0.225	2.923	0.004	0.105	1.301	0.195	-0.075	-0.976	0.331	0.175	2.199	0.029	0.106	1.311	0.192
RACE_dummy03	0.125	1.657	0.099	0.108	1.359	0.176	0.095	1.256	0.211	0.039	0.498	0.619	0.140	1.774	0.078
DEGREE_dummy01	0.067	0.540	0.590	0.131	1.009	0.315	0.149	1.207	0.229	-0.096	-0.754	0.452	0.154	1.187	0.237
DEGREE_dummy02	0.082	0.520	0.604	0.171	1.042	0.299	0.165	1.054	0.294	-0.023	-0.144	0.885	0.184	1.125	0.262
DEGREE_dummy03	0.000	-0.001	0.999	0.119	0.991	0.323	0.120	1.055	0.293	-0.038	-0.325	0.746	0.141	1.185	0.238
DEGREE_dummy04	-0.069	-0.473	0.637	0.144	0.940	0.349	-0.056	-0.385	0.701	0.088	0.587	0.558	0.082	0.537	0.592
FAMILY INCOME	0.045	0.588	0.557	0.073	0.899	0.370	0.027	0.346	0.730	0.034	0.428	0.669	-0.001	-0.017	0.986
WKFREEDM	-0.107	-1.348	0.180	0.013	0.158	0.874	-0.102	-1.297	0.197	-0.005	-0.058	0.954	-0.033	-0.394	0.694
		N=17	$5 R^2 = .129$		N=17	$5 \text{ R}^2 = .042$		N=17	$5 \text{ R}^2 = .130$		N=175	$5 \text{ R}^2 = .076$		N=175	$5 R^2 = .049$
		F=2.196	Sig.=.017		F=.644	Sig.=.789		F=2.213	Sig.=.016		F=1.210	Sig.=.284		F=.768 \$	Sig.=.671

1) GOVDOOK: Most of the time we can trust people in government to do what is right. 5=strongly agree, 1=strongly disagree

2) POLACTIVE: Political parties encourage people to become active in politics. 5=strongly agree, 1=strongly disagree

3) POLGREED: Most politicians are in politics only for what they can get out of it personally. 1=strongly agree, 5=strongly disagree

4) POLOPTS: That people be given more opportunities to participate in public decision-making. 1=not at all important, 7=very important

5) WATCHGOV: To keep watch on the actions of government. 1=not at all important, 7=very important

	PE	PEPDINT ¹⁾			E_ext ³⁾		FNC	TDEM	$O^{4)}$
	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.
(Constant)		2.895	0.004		2.777	0.006		2.512	0.013
AGE	0.160	2.009	0.046	0.105	1.329	0.186	0.083	1.037	0.301
SEX	0.190	2.518	0.013	-0.171	-2.270	0.025	0.085	1.123	0.263
RACE_dummy01	0.022	0.292	0.771	-0.037	-0.494	0.622	0.034	0.448	0.655
RACE_dummy02	0.154	1.980	0.049	-0.057	-0.742	0.459	-0.109	-1.388	0.167
RACE_dummy03	-0.042	-0.555	0.580	0.108	1.420	0.157	0.148	1.920	0.057
DEGREE_dummy01	0.043	0.342	0.733	0.096	0.772	0.441	0.166	1.319	0.189
DEGREE_dummy02	-0.070	-0.443	0.658	0.186	1.180	0.240	0.242	1.529	0.128
DEGREE_dummy03	-0.107	-0.930	0.354	0.058	0.504	0.615	-0.002	-0.018	0.985
DEGREE_dummy04	-0.095	-0.642	0.522	-0.016	-0.112	0.911	0.107	0.726	0.469
FAMILY INCOME	0.123	1.574	0.117	0.204	2.622	0.010	0.143	1.814	0.072
WKFREEDM	-0.050	-0.627	0.532	-0.069	-0.872	0.385	-0.073	-0.911	0.364
	N=175 R ² =.113				N=175	$R^2 = .119$		N=172	$R^2 = .114$
	F=	1.891 Si	ig.=.044	F=	1.999 Si	g.=.031	F=	1.881 Si	g.=.045

1) PDINT: Scale of DISCPOL, CHNGEOTH, POLINT1

2) PE_ext: Scale of POLEFF11, POLEFF18, CHOICES, POLGREED

3) FNCTDEMO: Scale of DEM10FUT, DEM10PST, DEMOTODAY

	POLEFF11 ¹⁾		Р	OLEFF18 ²	2)	Р	OLEFF19 ³	5)	P	OLEFF20	4)	Р	OLINT1 ⁵⁾		
	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.
(Constant)		1.039	0.300		1.968	0.051		0.728	0.468	3	1.754	0.081	-	0.220	0.826
AGE	0.049	0.603	0.547	0.098	1.233	0.219	0.112	1.454	0.148	0.153	2.005	0.047	0.215	2.759	0.006
SEX	-0.046	-0.583	0.560	-0.184	-2.414	0.017	0.098	1.329	0.186	0.165	2.244	0.026	0.165	2.196	0.030
RACE_dummy01	-0.090	-1.173	0.242	-0.071	-0.947	0.345	0.050	0.687	0.493	0.023	0.314	0.754	0.034	0.453	0.651
RACE_dummy02	-0.069	-0.837	0.404	0.041	0.501	0.617	-0.024	-0.306	0.760	-0.234	-3.014	0.003	0.118	1.481	0.141
RACE_dummy03	0.099	1.259	0.210	0.039	0.503	0.616	-0.094	-1.256	0.211	-0.086	-1.166	0.245	-0.060	-0.785	0.434
DEGREE_dummy01	0.020	0.154	0.878	-0.035	-0.273	0.785	0.146	1.181	0.239	0.157	1.280	0.202	0.103	0.815	0.416
DEGREE_dummy02	0.072	0.439	0.661	0.140	0.876	0.382	0.180	1.165	0.246	0.082	0.535	0.593	-0.005	-0.032	0.975
DEGREE_dummy03	-0.020	-0.170	0.865	-0.003	-0.027	0.978	-0.032	-0.286	0.776	-0.070	-0.626	0.532	-0.015	-0.130	0.897
DEGREE_dummy04	-0.010	-0.068	0.946	-0.022	-0.153	0.879	0.069	0.483	0.630	0.088	0.620	0.536	-0.046	-0.320	0.749
FAMILY INCOME	0.213	2.579	0.011	0.233	2.883	0.004	-0.110	-1.406	0.162	0.027	0.345	0.731	0.082	1.026	0.306
SC_INDEX	-0.023	-0.264	0.792	0.062	0.742	0.459	-0.052	-0.646	0.519	0.051	0.635	0.526	-0.037	-0.449	0.654
WKDECIDE	0.103	1.274	0.204	0.034	0.427	0.670	0.174	2.266	0.025	0.096	1.253	0.212	0.196	2.502	0.013
EMPINPUT	0.073	0.863	0.390	-0.007	-0.088	0.930	0.110	1.369	0.173	0.099	1.248	0.214	-0.004	-0.045	0.964
WKFREEDM	-0.063	-0.743	0.459	-0.135	-1.625	0.106	0.193	2.393	0.018	-0.012	-0.151	0.880	0.037	0.449	0.654
		N=174	$4 \text{ R}^2 = .104$		N=174	$4 \text{ R}^2 = .142$		N=174	$4 R^2 = .196$	Ő	N=174	$4 \text{ R}^2 = .208$	8	N=174	$R^2 = .166$
		F=1.323	Sig=.199		F=1.871	Sig=.033		F=2.757	Sig=.001		F=2.975	Sig=.000)	F=2.263	Sig=.008

Shared Capitalism/Workplace Participation – Political Efficacy/Discussion *SC/WP*

1) POLEFF11: People like me don't have any say about what the government does. 1=strongly agree, 5=strongly disagree

2) POLEFF18: I don't think the government cares much what people like me think. 1=strongly agree, 5=strongly disagree

3) POLEFF19: I feel I have a pretty good understanding of the important political issues facing America. 5=strongly agree, 1=strongly disagree

4) POLEFF20: I think most people in America are better informed about politics and government than I am. 1=strongly agree, 5=strongly disagree

5) POLINT1: How interested would you say you personally are in politics? 4=very interested, 1=not at all interested

	D	ISCPOL ¹)	CHN	IGEOTH	$I^{(2)}$	CH	IOICES ³	i)	DEN	M10FU1	-4)	DEN	M10PST	-5)	DEM	ITODA	$Y^{6)}$
	Std.			Std. Beta			Std. Beta			Std. Beta			Std. Beta			Std. Beta		
	Beta	t	Sig.		t	Sig.		t	Sig.		t	Sig.		t	Sig.		t	Sig.
(Constant)		1.836	0.068		2.628	0.009		0.942	0.348		2.527	0.013		3.900	0.000		3.639	0.000
AGE	0.142	1.776	0.078	0.027	0.340	0.734	0.013	0.163	0.871	0.010	0.118	0.906	0.100	1.203	0.231	0.136	1.719	0.088
SEX	0.199	2.590	0.010	0.168	2.175	0.031	-0.082	-1.039	0.300	0.001	0.019	0.985	-0.154	-1.896	0.060	-0.061	-0.795	0.428
RACE_dummy01	-0.035	-0.465	0.643	0.035	0.456	0.649	0.109	1.409	0.161	0.116	1.490	0.138	-0.063	-0.800	0.425	-0.021	-0.276	0.783
RACE_dummy02	0.094	1.151	0.252	0.193	2.355	0.020	-0.071	-0.852	0.395	-0.017	-0.210	0.834	-0.147	-1.710	0.089	0.033	0.414	0.679
RACE_dummy03	-0.015	-0.193	0.848	-0.049	-0.628	0.531	0.082	1.024	0.307	0.193	2.395	0.018	0.086	1.050	0.295	0.194	2.528	0.013
DEGREE_dummy01	-0.042	-0.328	0.743	-0.091	-0.707	0.481	0.125	0.950	0.343	0.282	2.155	0.033	0.264	1.980	0.050	0.214	1.683	0.094
DEGREE_dummy02	-0.131	-0.815	0.416	-0.133	-0.827	0.410	0.175	1.065	0.288	0.481	2.991	0.003	0.293	1.768	0.079	0.415	2.632	0.009
DEGREE_dummy03	-0.188	-1.606	0.110	-0.146	-1.241	0.217	0.070	0.583	0.561	0.028	0.246	0.806	0.115	0.941	0.348	0.106	0.914	0.362
DEGREE_dummy04	-0.136	-0.918	0.360	-0.144	-0.963	0.337	0.033	0.219	0.827	0.259	1.706	0.090	0.163	1.062	0.290	0.205	1.400	0.163
FAMILY INCOME	0.117	1.441	0.152	0.023	0.277	0.782	0.095	1.136	0.258	0.059	0.709	0.480	-0.046	-0.536	0.593	0.099	1.221	0.224
SC_INDEX	0.010	0.115	0.908	0.032	0.382	0.703	-0.060	-0.699	0.485	0.031	0.362	0.718	-0.037	-0.414	0.679	0.021	0.253	0.801
WKDECIDE	0.157	1.965	0.051	0.177	2.198	0.029	0.134	1.632	0.105	-0.216	-2.618	0.010	-0.118	-1.336	0.184	-0.187	-2.267	0.025
EMPINPUT	0.040	0.484	0.629	0.130	1.555	0.122	0.026	0.307	0.760	0.086	1.011	0.314	0.182	2.053	0.042	0.246	2.921	0.004
WKFREEDM	-0.116	-1.385	0.168	-0.160	-1.893	0.060	0.058	0.672	0.502	-0.034	-0.401	0.689	-0.017	-0.191	0.849	-0.093	-1.126	0.262
		N=174 F	$R^2 = .129$		N=174 I	$R^2 = .119$		N=174 I	$R^2 = .085$		N=160	$R^2 = .182$		N=164 I	$R^2 = .113$		N=167	$R^2 = .184$
	F=	1.673 Sig	g.=.066	F=	1.532 Si	g.=.105	F=	1.060 Si	g.=.398	F=	2.297 Si	g.=.007	F=	1.358 Si	g.=.181	F=	2.462 Si	g.=.004

1) DISCPOL: When you get together with your friends, relatives or fellow workers, how often do you discuss politics? 4=often, 32=sometimes, 2=rarely, 1=never

2) CHNGEOTH: When you hold a strong opinion about politics, how often do you try to persuade your friends, relatives or fellow workers to share your views? 4=often, 3=sometimes, 2=rarely, 1=never

3) CHOICES: Political parties do not give voters real policy choices. 1=strongly agree, 5=strongly disagree

4) DEM10FUT: How well do you think democracy will work in America then (10 years from now)? 1=very poorly, 10=very well

5) DEM10PST: How well did democracy work in America then (10 years ago)? 1=very poorly, 10=very well

6) DEMTODAY: How well does democracy work in America today? 1=very poorly, 10=very well

	GOVDOOK ¹⁾		РО	LACTIVE	E ²⁾	PC	LGREED	3)	Р	OLOPTS ⁴⁾)	WA	TCHGOV	,5)	
	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.
(Constant)		2.420	0.017		2.563	0.011		1.948	0.053		11.173	0.000		8.950	0.000
AGE	0.227	2.852	0.005	-0.074	-0.904	0.367	0.166	2.113	0.036	0.115	1.412	0.160	0.015	0.177	0.860
SEX	0.039	0.508	0.612	0.056	0.713	0.477	-0.202	-2.666	0.008	0.079	1.000	0.319	0.033	0.412	0.681
RACE_dummy01	-0.034	-0.450	0.653	0.026	0.337	0.736	-0.050	-0.674	0.501	0.087	1.123	0.263	0.041	0.530	0.597
RACE_dummy02	0.211	2.601	0.010	0.079	0.939	0.349	-0.082	-1.023	0.308	0.156	1.866	0.064	0.095	1.131	0.260
RACE_dummy03	0.133	1.720	0.087	0.121	1.512	0.132	0.106	1.384	0.168	0.040	0.498	0.619	0.130	1.621	0.107
DEGREE_dummy01	0.076	0.590	0.556	0.078	0.590	0.556	0.093	0.734	0.464	-0.073	-0.551	0.582	0.184	1.381	0.169
DEGREE_dummy02	0.081	0.504	0.615	0.116	0.706	0.481	0.116	0.734	0.464	-0.014	-0.086	0.931	0.205	1.232	0.220
DEGREE_dummy03	0.010	0.087	0.931	0.099	0.823	0.412	0.094	0.815	0.416	-0.018	-0.147	0.883	0.159	1.314	0.191
DEGREE_dummy04	-0.062	-0.420	0.675	0.089	0.587	0.558	-0.090	-0.614	0.540	0.111	0.734	0.464	0.084	0.551	0.582
FAMILY INCOME	0.064	0.793	0.429	0.074	0.891	0.375	0.017	0.211	0.833	0.061	0.731	0.466	0.008	0.095	0.924
SC_INDEX	-0.030	-0.364	0.717	-0.099	-1.153	0.251	0.000	0.000	1.000	-0.067	-0.782	0.435	-0.089	-1.021	0.309
WKDECIDE	-0.037	-0.458	0.648	0.205	2.496	0.014	0.159	2.020	0.045	-0.053	-0.650	0.517	-0.021	-0.253	0.800
EMPINPUT	-0.051	-0.618	0.537	-0.006	-0.071	0.944	-0.071	-0.869	0.386	-0.006	-0.072	0.943	0.129	1.492	0.138
WKFREEDM	-0.082	-0.981	0.328	-0.005	-0.063	0.949	-0.099	-1.202	0.231	0.016	0.190	0.850	-0.064	-0.740	0.460
		N=174	$4 R^2 = .134$		N=174	$4 \text{ R}^2 = .082$		N=174	$4 \text{ R}^2 = .154$		N=174	$R^2 = .087$		N=174	$R^2 = .069$
		F=1.762	Sig.=.049		F=1.017	Sig.=.439	39 F=2.061 Sig.=.017 F=1.075 Sig.=.384			F=.838 \$	Sig.=.627				

1) GOVDOOK: Most of the time we can trust people in government to do what is right. 5=strongly agree, 1=strongly disagree

2) POLACTIVE: Political parties encourage people to become active in politics. 5=strongly agree, 1=strongly disagree

POLGREED: Most politicians are in politics only for what they can get out of it personally. 1=strongly agree, 5=strongly disagree
 POLOPTS: That people be given more opportunities to participate in public decision-making. 1=not at all important, 7=very important
 WATCHGOV: To keep watch on the actions of government. 1=not at all important, 7=very important

	PDINT ¹⁾			Р	E_ext ³⁾		FNC	TDEM	$O^{4)}$
	Std. Beta	t	Sig.	Std. Beta	t	Sig.	Std. Beta	t	Sig.
(Constant)		1.950	0.053		1.910	0.058		2.766	0.006
AGE	0.153	1.954	0.052	0.105	1.328	0.186	0.087	1.080	0.282
SEX	0.214	2.842	0.005	-0.163	-2.124	0.035	0.074	0.956	0.341
RACE_dummy01	0.013	0.177	0.860	-0.044	-0.584	0.560	0.034	0.446	0.656
RACE_dummy02	0.163	2.044	0.043	-0.057	-0.704	0.482	-0.108	-1.309	0.192
RACE_dummy03	-0.049	-0.650	0.517	0.105	1.359	0.176	0.133	1.695	0.092
DEGREE_dummy01	-0.014	-0.114	0.909	0.058	0.454	0.650	0.206	1.593	0.113
DEGREE_dummy02	-0.110	-0.697	0.487	0.157	0.980	0.328	0.274	1.702	0.091
DEGREE_dummy03	-0.141	-1.236	0.218	0.039	0.332	0.740	0.019	0.161	0.873
DEGREE_dummy04	-0.132	-0.909	0.365	-0.030	-0.201	0.841	0.135	0.904	0.367
FAMILY INCOME	0.089	1.113	0.268	0.190	2.345	0.020	0.150	1.822	0.070
SC_INDEX	0.003	0.033	0.974	-0.004	-0.050	0.960	-0.038	-0.441	0.660
WKDECIDE	0.213	2.714	0.007	0.135	1.701	0.091	-0.079	-0.969	0.334
EMPINPUT	0.068	0.836	0.404	0.011	0.130	0.897	0.103	1.229	0.221
WKFREEDM	-0.098	-1.193	0.235	-0.084	-1.006	0.316	-0.089	-1.048	0.296
		N=174	$R^2 = .165$		N=174	R ² =.139		N=171]	$R^2 = .127$
	F=2.238 Sig.=.009			F=	1.829 Si	g.=.039	F=	1.623 Si	g.=.078
1) DDINT: Scale of D		TUNCE	OTU D	OLINIT1					

PDINT: Scale of DISCPOL, CHNGEOTH, POLINT1
 PE_ext: Scale of POLEFF11, POLEFF18, CHOICES, POLGREED

FNCTDEMO: Scale of DEM10FUT, DEM10PST, DEMOTODAY

Workplace Participation – Political Participation

VOTE08

Omnibus Tests of Model Coefficients

		Chi- square	df	Sig.
Step 1	Step	6.350	3	0.096
	Block	6.350	3	0.096
	Model	39.948	13	0.000

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	143.127 ^a	0.222	0.325

a. Estimation terminated at iteration number 6 because parameter estimates changed by less than .001.

Contingency Table for Hosmer and Lemeshow Test

		VOTE08_01 = .00		VOTE08_	01 = 1.00	
		Observed	Expected	Observed	Expected	Total
Step 1	1	10	11.973	6	3.864	16
	2	9	7.881	8	8.762	17
	3	10	5.753	6	9.684	15
	4	5	4.671	11	11.028	16
	5	3	3.468	13	12.174	16
	6	3	2.777	13	13.196	16
	7	2	2.223	15	14.366	17
	8	1	1.568	14	14.036	16
	9	0	0.911	16	15.454	16
	10	1	0.408	15	15.189	16

			Predicted				
			Percentage				
Observed			.00	1.00	Correct		
Step 1	VOTE08_01	.00	12	30	28.8		
		1.00	8	110	93.6		
Overall Percentage		tage			76.7		

Classification Table^a

a. The cut value is .500

Variables in the Equation									
							95% C.I.for EXP(B)		
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE	0.044	0.020	4.948	1	0.026	1.045	1.005	1.086
1"	SEX	-0.469	0.443	1.125	1	0.289	0.625	0.263	1.489
	RACE_dummy01	0.380	0.747	0.258	1	0.611	1.462	0.338	6.325
	RACE_dummy02	-3.108	1.197	6.748	1	0.009	0.045	0.004	0.466
	RACE_dummy03	-0.783	1.061	0.544	1	0.461	0.457	0.057	3.655
	DEGREE_dummy01	-0.140	1.004	0.019	1	0.889	0.870	0.122	6.218
	DEGREE_dummy02	-0.479	0.827	0.336	1	0.562	0.619	0.122	3.133
	DEGREE_dummy03	2.483	1.725	2.073	1	0.150	11.979	0.408	352.037
	DEGREE_dummy04	0.356	0.939	0.144	1	0.704	1.428	0.227	8.990
	FAMILY INCOME	0.095	0.049	3.721	1	0.054	1.099	0.998	1.210
	WKDECIDE	-0.041	0.303	0.018	1	0.892	0.960	0.530	1.737
	EMPINPUT	1.169	0.510	5.263	1	0.022	3.220	1.186	8.743
	WKFREEDM	-0.001	0.333	0.000	1	0.997	0.999	0.520	1.919
	Constant	-2.413	1.711	1.989	1	0.158	0.090		

a. Variable(s) entered on step 1: WKDECIDE_rev, EMPINPUT_01, A LOT OF FREEDOM TO DECIDE HOW TO DO JOB.

VOTE12

Omnibus Tests of Model Coefficients

		Chi- square	df	Sig.
Step 1	Step	1.848	3	0.604
	Block	1.848	3	0.604
	Model	59.398	13	0.000

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	137.757 ^a	0.297	0.431

a. Estimation terminated at iteration number 6 because parameter estimates changed by less than .001.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	1.751	8	0.988

Contingency Table for Hosmer and Lemeshow Test

		$VOTE12_01 = .00$		$VOTE12_01 = 1.00$		
		Observed	Expected	Observed	Expected	Total
Step 1	1	15	14.714	2	2.624	17
	2	8	10.028	8	6.662	17
	3	8	6.640	9	10.114	17
	4	5	4.854	13	12.787	18
	5	3	3.352	14	13.706	17
	6	3	2.331	15	14.945	17
	7	2	1.609	15	14.888	16
	8	1	1.179	15	15.297	16
	9	1	0.723	14	14.210	15
	10	0	0.373	18	17.439	18
			Predicted			
----------	----------------	-------	------------	------	---------	
			Percentage			
Observed	1		.00	1.00	Correct	
Step 1	VOTE12_01	.00	23	23	50.3	
		1.00	10	112	91.7	
	Overall Percer	ntage			80.4	

a. The cut value is .500

			variable	es in the	Equation	1			
								95% (EXI	C.I.for P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE	0.064	0.020	10.591	1	0.001	1.067	1.026	1.109
I"	SEX	-0.288	0.449	0.413	1	0.521	0.750	0.311	1.806
	RACE_dummy01	0.935	0.870	1.156	1	0.282	2.547	0.463	14.009
	RACE_dummy02	-3.619	1.119	10.455	1	0.001	0.027	0.003	0.240
	RACE_dummy03	1.347	1.624	0.688	1	0.407	3.846	0.160	92.741
	DEGREE_dummy01	1.010	1.029	0.964	1	0.326	2.745	0.366	20.608
	DEGREE_dummy02	0.665	0.835	0.634	1	0.426	1.945	0.378	9.995
	DEGREE_dummy03	2.766	1.443	3.676	1	0.055	15.893	0.940	268.669
	DEGREE_dummy04	0.576	0.927	0.386	1	0.534	1.779	0.289	10.945
	FAMILY INCOME	0.200	0.054	13.570	1	0.000	1.222	1.098	1.359
	WKDECIDE	-0.113	0.316	0.129	1	0.719	0.893	0.481	1.657
	EMPINPUT	0.628	0.504	1.553	1	0.213	1.875	0.698	5.038
	WKFREEDM	-0.285	0.378	0.568	1	0.451	0.752	0.358	1.578
	Constant	-4.918	1.952	6.347	1	0.012	0.007		

Variables in the Equation

ATTRALLY

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	7.734	3	0.052
	Block	7.734	3	0.052
	Model	21.612	13	0.062

Model Summary

.

Step	-2 Log likelihood	Cox & Snell R Square	Nagelkerke R Square
1	68.642 ^a	0.117	0.289

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	4.511	8	0.808

	ATTRLLY_dmy = .00		ATTRLLY_			
		Observed	Expected	Observed	Expected	Total
Step 1	1	17	17.045	0	0.000	17
	2	17	16.925	0	0.006	17
	3	17	17.072	0	0.090	17
	4	17	17.234	0	0.230	17
	5	17	16.519	0	0.353	17
	6	17	16.761	0	0.616	17
	7	14	15.532	2	0.954	16
	8	16	15.338	1	1.694	17
	9	14	14.479	3	2.342	17
	10	15	14.284	5	6.290	21

			Predicted			
			ATTRL	LY_dmy		
Observed			.00 1.00 Percentage 0		Percentage Correct	
Step 1	ATTRLLY_dmy	.00	160	1	99.5	
		1.00	13	0	0.0	
	Overall Percentage				92.3	

a. The cut value is .500

	Variables in the Equation								
					d			95% EX	C.I.for P(B)
		В	S.E.	Wald	f	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	AGE	0.041	0.029	1.966	1	0.161	1.042	0.984	1.103
	SEX	0.233	0.672	0.120	1	0.729	1.262	0.338	4.709
	RACE_dummy01	-1.139	1.708	0.445	1	0.505	0.320	0.011	9.099
	RACE_dummy02	-17.414	10176.495	0.000	1	0.999	0.000	0.000	
	RACE_dummy03	-20.155	13958.798	0.000	1	0.999	0.000	0.000	
	DEGREE_dummy01	-0.989	2.176	0.207	1	0.649	0.372	0.005	26.453
	DEGREE_dummy02	0.329	1.367	0.058	1	0.810	1.390	0.095	20.264
	DEGREE_dummy03	-17.909	9096.242	0.000	1	0.998	0.000	0.000	
	DEGREE_dummy04	0.541	1.446	0.140	1	0.708	1.718	0.101	29.254
	FAMILY INCOME	0.057	0.097	0.348	1	0.555	1.059	0.875	1.281
	WKDECIDE	0.121	0.512	0.056	1	0.814	1.128	0.414	3.078
	EMPINPUT	1.355	0.717	3.574	1	0.059	3.877	0.951	15.794
	WKFREEDM	1.022	0.767	1.772	1	0.183	2.778	0.617	12.501
	Constant	-10.518	3.961	7.052	1	0.008	0.000		

AVOIDBUY

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	6.294	3	0.098
	Block	6.294	3	0.098
	Model	23.331	13	0.038

Т

Model Summary

Step	-2 Log likelihood	Cox & Snell R Square	Nagelkerke R Square
1	167.158 ^a	0.128	0.190

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer	and	Len	neshow	Test

Step	Chi-square	df	Sig.
1	4.828	8	0.776

		AVDBUY_	AVDBUY_dmy = $.00$		AVDBUY_dmy = 1.00	
		Observed	Expected	Observed	Expected	Total
Step 1	1	17	16.871	0	0.000	17
	2	16	16.138	1	0.928	17
	3	15	14.790	3	2.585	17
	4	12	13.998	5	3.475	17
	5	14	12.796	3	4.217	17
	6	12	12.515	6	4.844	17
	7	12	11.793	5	5.171	17
	8	13	11.329	4	5.805	17
	9	12	10.034	4	6.820	17
	10	7	8.607	10	8.121	17

Predicted AVDBUY_dmy .00 1.00 Percentage Correct Observed Step 1 AVDBUY_dmy .00 128 1 99.1 3 1.00 39 6.0 Overall Percentage 76.3

Classification Table^a

a. The cut value is .500

		v ai ia	Dies in the	Lyuuu	,,,,				
								95% (EXI	C.I.for P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	AGE	0.005	0.016	0.107	1	0.744	1.005	0.975	1.036
	SEX	0.267	0.391	0.466	1	0.495	1.306	0.607	2.809
	RACE_dummy01	-2.141	1.243	2.967	1	0.085	0.117	0.010	1.343
	RACE_dummy02	-20.510	11949.741	0.000	1	0.999	0.000	0.000	
	RACE_dummy03	-20.157	14994.324	0.000	1	0.999	0.000	0.000	
	DEGREE_dummy01	-0.804	0.990	0.660	1	0.417	0.448	0.064	3.113
	DEGREE_dummy02	-0.218	0.811	0.073	1	0.788	0.804	0.164	3.937
	DEGREE_dummy03	0.043	1.047	0.002	1	0.967	1.044	0.134	8.132
	DEGREE_dummy04	-0.611	0.892	0.468	1	0.494	0.543	0.094	3.122
	FAMILY INCOME	-0.012	0.045	0.067	1	0.796	0.988	0.905	1.080
	WKDECIDE	0.583	0.303	3.702	1	0.054	1.791	0.989	3.241
	EMPINPUT	0.133	0.416	0.102	1	0.749	1.142	0.505	2.583
	WKFREEDM	-0.481	0.303	2.517	1	0.113	0.618	0.341	1.120
	Constant	-0.480	1.565	0.094	1	0.759	0.619		

Variables in the Equation

CNTCTGOV

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	9.570	3	0.023
	Block	9.570	3	0.023
	Model	30.903	13	0.003

Model Summary

Step	-2 Log likelihood	Cox & Snell R Square	Nagelkerke R Square
1	150.187 ^a	0.164	0.252

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	6.156	8	0.630

		CNTGOV_	$CNTGOV_dmy = .00$		$CNTGOV_dmy = 1.00$	
		Observed	Expected	Observed	Expected	Total
Step 1	1	16	16.968	1	0.210	17
	2	17	15.965	0	0.791	17
	3	16	15.717	1	1.435	17
	4	14	14.648	3	1.979	17
	5	15	14.538	2	2.412	17
	6	12	13.576	4	3.032	17
	7	16	13.307	2	4.105	17
	8	12	11.754	5	5.302	17
	9	10	10.098	7	6.963	17
	10	8	8.685	12	11.379	20

				Predicted			
			CNTG	OV_dmy			
Observed			.00	1.00	Percentage Correct		
Step 1	CNTGOV_dmy	.00	128	7	94.8		
		1.00	27	10	27.5		
	Overall Percentage				80.1		

a. The cut value is .500

		v al la	bles in the	Lyuau	UII				
								95% (EXI	C.I.for P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	AGE	0.020	0.017	1.280	1	0.258	1.020	0.986	1.055
	SEX	-0.237	0.421	0.315	1	0.574	0.789	0.346	1.803
	RACE_dummy01	-1.280	0.969	1.746	1	0.186	0.278	0.042	1.856
	RACE_dummy02	-1.071	1.337	0.642	1	0.423	0.343	0.025	4.704
	RACE_dummy03	-20.888	13936.385	0.000	1	0.999	0.000	0.000	
	DEGREE_dummy01	-1.454	1.044	1.939	1	0.164	0.234	0.030	1.809
	DEGREE_dummy02	-0.818	0.818	1.000	1	0.317	0.441	0.089	2.194
	DEGREE_dummy03	-1.413	1.131	1.561	1	0.211	0.243	0.027	2.233
	DEGREE_dummy04	-0.727	0.894	0.661	1	0.416	0.484	0.084	2.787
	FAMILY INCOME	0.124	0.058	4.544	1	0.033	1.132	1.010	1.268
	WKDECIDE	0.590	0.342	2.971	1	0.085	1.804	0.922	3.528
	EMPINPUT	0.738	0.434	2.894	1	0.089	2.091	0.894	4.893
	WKFREEDM	0.174	0.361	0.232	1	0.630	1.190	0.587	2.414
	Constant	-5.874	1.961	8.975	1	0.003	0.003		

Variables in the Equation

GRPPARTY

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	1.663	3	0.645
	Block	1.663	3	0.645
	Model	17.727	13	0.168

Model Summary

Step	-2 Log likelihood	Cox & Snell R Square	Nagelkerke R Square
1	72.750 ^a	0.099	0.240

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	4.714	8	0.788

		GRPPRTY	_dmy = .00	GRPPRTY_	dmy = 1.00	
		Observed	Expected	Observed	Expected	Total
Step 1	1	17	17.076	0	0.000	17
	2	17	16.794	0	0.000	17
	3	16	16.558	0	0.097	17
	4	17	16.491	0	0.471	17
	5	14	14.857	1	0.620	15
	6	17	16.445	0	0.954	17
	7	16	15.555	1	1.263	17
	8	16	15.230	1	1.736	17
	9	13	14.334	4	2.393	17
	10	14	13.156	5	5.220	18

		Predicted				
			GRPPR	TY_dmy		
Observed			.00	1.00	Percentage Correct	
Step 1	GRPPRTY_dmy	.00	156	0	99.7	
		1.00	13	0	0.0	
	Overall Percentage				92.2	

a. The cut value is .500

		v	ariables in	ine Equ	auon	L			
								95%	C.I.for
								EX	P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	AGE	0.028	0.028	1.032	1	0.31	1.029	0.974	1.087
	SEX	-0.414	0.647	0.409	1	0.52	0.661	0.186	2.351
	RACE_dummy01	1.876	0.867	4.686	1	0.03	6.529	1.194	35.693
	RACE_dummy02	-17.247	11133.757	0.000	1	0.99 9	0.000	0.000	
	RACE_dummy03	-19.313	14541.818	0.000	1	0.99 9	0.000	0.000	
	DEGREE_dummy01	0.198	14025.875	0.000	1	1.00 0	1.219	0.000	
	DEGREE_dummy02	18.735	11754.305	0.000	1	0.99 9		0.000	
	DEGREE_dummy03	19.079	11754.305	0.000	1	0.99 9		0.000	
	DEGREE_dummy04	19.620	11754.305	0.000	1	0.99 9		0.000	
	FAMILY INCOME	0.016	0.082	0.040	1	0.84	1.017	0.865	1.194
	WKDECIDE	-0.080	0.500	0.025	1	0.87 3	0.923	0.347	2.460
	EMPINPUT	0.890	0.718	1.536	1	0.21 5	2.434	0.596	9.937
	WKFREEDM	-0.080	0.541	0.022	1	0.88	0.923	0.320	2.667
	Constant	-22.826	11754.305	0.000	1	0.99 8	0.000		
a. Varial	ole(s) entered on step 1: V	VKDECIDE	E rev. EMPIN	PUT 01. A	A LOT	OF FRF	EDOM TO D	ECIDE HO	W TO

riables in the F . 41 **x**7

JOINDEM

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	2.160	3	0.540
	Block	2.160	3	0.540
	Model	11.306	13	0.585

Model Summary

Step	-2 Log likelihood	Cox & Snell R Square	Nagelkerke R Square
1	29.347 ^a	0.063	0.302

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	2.242	8	0.973

		$JOINDM_dmy = .00$		JOINDM_0		
		Observed	Expected	Observed	Expected	Total
Step 1	1	17	17.014	0	0.000	17
	2	16	16.276	0	0.000	16
	3	17	17.089	0	0.000	17
	4	16	16.434	0	0.001	16
	5	17	16.579	0	0.020	17
	6	16	16.253	0	0.061	16
	7	17	16.756	0	0.151	17
	8	17	16.523	0	0.403	17
	9	16	16.648	2	0.796	17
	10	20	18.991	2	2.922	22

					Predicted
			JOIND	M_dmy	
Observed			.00	1.00	Percentage Correct
Step 1	JOINDM_dmy	.00	169	0	100.0
		1.00	4	0	0.0
	Overall Percentage				97.5

a. The cut value is .500

		• •	al labits in t	ne Equ	auoi	1			
								95% ΕΣ	C.I.for (P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	AGE	-0.006	0.043	0.019	1	0.890	0.994	0.913	1.082
	SEX	1.228	1.272	0.933	1	0.334	3.416	0.283	41.290
	RACE_dummy01	-17.542	8950.805	0.000	1	0.998	0.000	0.000	
	RACE_dummy02	-16.508	9771.818	0.000	1	0.999	0.000	0.000	
	RACE_dummy03	3.040	2.316	1.722	1	0.189	20.895	0.223	1956.099
	DEGREE_dummy01	-1.097	13054.789	0.000	1	1.000	0.334	0.000	
	DEGREE_dummy02	17.044	10878.133	0.000	1	0.999		0.000	
	DEGREE_dummy03	-1.810	14616.243	0.000	1	1.000	0.164	0.000	
	DEGREE_dummy04	14.161	10878.134	0.000	1	0.999		0.000	
	FAMILY INCOME	0.283	0.223	1.609	1	0.205	1.327	0.857	2.053
	WKDECIDE	-0.096	0.869	0.012	1	0.912	0.909	0.165	4.991
	EMPINPUT	-0.698	1.464	0.227	1	0.633	0.497	0.028	8.775
	WKFREEDM	-0.977	0.753	1.682	1	0.195	0.377	0.086	1.647
	Constant	-22.891	10878.135	0.000	1	0.998	0.000		

Variables in the Equation

POLFUND

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	0.784	3	0.853
	Block	0.784	3	0.853
	Model	19.244	13	0.116

Model Summary

.

Step	-2 Log likelihood	Cox & Snell R Square	Nagelkerke R Square
1	165.038 ^a	0.105	0.161

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	16.569	8	0.035

		POLFND_	dmy = .00	POLFND_dmy = 1.00		
		Observed	Expected	Observed	Expected	Total
Step 1	1	15	16.487	1	0.164	17
	2	14	14.683	1	1.253	16
	3	16	15.468	2	2.145	18
	4	15	14.474	2	2.822	17
	5	13	13.268	3	3.228	16
	6	13	11.932	3	3.676	16
	7	16	12.328	0	4.315	17
	8	12	11.571	4	5.073	17
	9	10	11.097	7	5.992	17
	10	9	12.909	14	10.168	23

				Predicted			
			POLFN	ND_dmy			
Observed			.00	1.00	Percentage Correct		
Step 1	POLFND_dmy	.00	132	2	98.3		
		1.00	39	0	0.0		
	Overall Percentage				76.2		

a. The cut value is .500

	Variables in the Equation										
				d			95% (EXI	C.I.for P(B)			
		В	S.E.	Wald	f	Sig.	Exp(B)	Lower	Upper		
Step 1 ^a	AGE	0.003	0.016	0.024	1	0.876	1.003	0.971	1.035		
	SEX	-0.205	0.402	0.259	1	0.611	0.815	0.371	1.791		
	RACE_dummy01	-0.043	0.687	0.004	1	0.950	0.958	0.249	3.682		
	RACE_dummy02	-19.542	11578.881	0.000	1	0.999	0.000	0.000			
	RACE_dummy03	0.043	0.950	0.002	1	0.964	1.043	0.162	6.715		
	DEGREE_dummy01	-0.406	1.158	0.123	1	0.726	0.666	0.069	6.450		
	DEGREE_dummy02	0.170	0.963	0.031	1	0.860	1.185	0.180	7.821		
	DEGREE_dummy03	-1.053	1.327	0.629	1	0.428	0.349	0.026	4.706		
	DEGREE_dummy04	0.260	1.005	0.067	1	0.796	1.297	0.181	9.296		
	FAMILY INCOME	0.158	0.060	6.987	1	0.008	1.171	1.042	1.317		
	WKDECIDE	0.187	0.314	0.355	1	0.551	1.206	0.651	2.233		
	EMPINPUT	-0.327	0.443	0.547	1	0.460	0.721	0.303	1.716		
	WKFREEDM	-0.036	0.321	0.013	1	0.909	0.964	0.514	1.809		
	Constant	-4.664	1.877	6.173	1	0.013	0.009				

POLINTER

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	4.470	3	0.215
	Block	4.470	3	0.215
	Model	8.250	13	0.827

Model Summary

Step	-2 Log likelihood	Cox & Snell R Square	Nagelkerke R Square
1	153.868 ^a	0.047	0.077

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	5.836	8	0.666

		POLINTR_dmy = .00 POLI		POLINTR_	NTR_dmy = 1.00		
		Observed	Expected	Observed	Expected	Total	
Step 1	1	16	16.269	1	1.168	17	
	2	14	15.017	2	1.519	17	
	3	14	14.672	2	1.955	17	
	4	14	14.845	3	2.148	17	
	5	16	14.442	1	2.407	17	
	6	13	13.732	3	2.773	17	
	7	14	14.492	4	3.713	18	
	8	14	12.960	3	3.920	17	
	9	15	12.456	2	4.413	17	
	10	10	13.143	10	6.817	20	

		Predicted				
			POLIN	TR_dmy		
Observed			.00	1.00	Percentage Correct	
Step 1	POLINTR_dmy	.00	142	0	100.0	
		1.00	31	0	0.0	
	Overall Percentage				82.2	

a. The cut value is .500

	Variables in the Equation									
								95% (EXI	C.I.for P(B)	
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper	
Step 1 ^a	AGE	-0.007	0.017	0.175	1	0.675	0.993	0.960	1.027	
	SEX	-0.267	0.422	0.400	1	0.527	0.766	0.335	1.750	
	RACE_dummy01	-0.194	0.806	0.058	1	0.810	0.824	0.170	4.002	
	RACE_dummy02	0.425	0.801	0.282	1	0.596	1.530	0.318	7.350	
	RACE_dummy03	0.099	1.073	0.009	1	0.926	1.104	0.135	9.035	
	DEGREE_dummy01	-0.435	0.937	0.215	1	0.643	0.648	0.103	4.065	
	DEGREE_dummy02	-0.246	0.744	0.110	1	0.740	0.782	0.182	3.358	
	DEGREE_dummy03	-0.048	1.056	0.002	1	0.963	0.953	0.120	7.546	
	DEGREE_dummy04	-0.428	0.868	0.243	1	0.622	0.652	0.119	3.573	
	FAMILY INCOME	-0.073	0.050	2.164	1	0.141	0.930	0.844	1.025	
	WKDECIDE	0.012	0.301	0.002	1	0.967	1.012	0.561	1.827	
	EMPINPUT	0.465	0.461	1.014	1	0.314	1.591	0.644	3.930	
	WKFREEDM	0.528	0.379	1.940	1	0.164	1.695	0.807	3.564	
	Constant	-1.473	1.768	0.694	1	0.405	0.229			

SGNDPET

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	6.333	3	0.096
	Block	6.333	3	0.096
	Model	22.397	13	0.050

Model Summary

Step	-2 Log likelihood	Cox & Snell R Square	Nagelkerke R Square
1	201.231 ^a	0.121	0.167

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

.

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	11.726	8	0.164

		SGNDPET	$SGNDPET_dmy = .00$		SGNDPET_dmy = 1.00	
		Observed	Expected	Observed	Expected	Total
Step 1	1	16	16.499	1	0.596	17
	2	16	14.018	1	3.654	18
	3	13	12.125	3	3.960	16
	4	12	12.542	5	4.971	18
	5	8	11.602	9	5.804	17
	6	11	10.966	7	6.493	17
	7	9	9.766	8	6.792	17
	8	7	9.465	10	7.716	17
	9	13	8.888	4	8.797	18
	10	8	7.548	11	11.193	19

			Predicted			
		SGNDPET_dmy				
Observe	ed		.00	1.00	Percentage Correct	
Step 1	SGNDPET_dmy	.00	98	15	86.8	
		1.00	48	12	19.6	
	Overall Percentage				63.5	

a. The cut value is .500

variables in the Equation									
					d			95% (EXI	C.I.for P(B)
		В	S.E.	Wald	f	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	AGE	0.004	0.014	0.084	1	0.772	1.004	0.976	1.033
	SEX	-0.665	0.355	3.516	1	0.061	0.514	0.257	1.031
	RACE_dummy01	-0.470	0.611	0.592	1	0.442	0.625	0.189	2.071
	RACE_dummy02	-20.364	11546.572	0.000	1	0.999	0.000	0.000	
	RACE_dummy03	-0.790	0.926	0.727	1	0.394	0.454	0.074	2.787
	DEGREE_dummy01	0.020	0.839	0.001	1	0.981	1.021	0.197	5.286
	DEGREE_dummy02	-0.058	0.707	0.007	1	0.934	0.943	0.236	3.774
	DEGREE_dummy03	-1.344	1.079	1.553	1	0.213	0.261	0.031	2.160
	DEGREE_dummy04	-0.145	0.771	0.035	1	0.851	0.865	0.191	3.920
	FAMILY INCOME	0.017	0.042	0.159	1	0.690	1.017	0.936	1.105
	WKDECIDE	-0.332	0.259	1.650	1	0.199	0.717	0.432	1.191
	EMPINPUT	0.846	0.385	4.820	1	0.028	2.331	1.095	4.961
	WKFREEDM	-0.363	0.280	1.686	1	0.194	0.695	0.402	1.203
	Constant	1.194	1.422	0.705	1	0.401	3.300		

Variables in the Equation

USEMEDIA

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	4.496	3	0.213
	Block	4.496	3	0.213
	Model	14.387	13	0.347

Model Summary

Step	-2 Log likelihood	Cox & Snell R Square	Nagelkerke R Square
1	37.559 ^a	0.079	0.308

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	7.545	8	0.479

		USEMDA_	_dmy = .00	USEMDA_		
		Observed	Expected	Observed	Expected	Total
Step 1	1	17	17.150	0	0.000	17
	2	17	17.279	0	0.000	17
	3	17	17.081	0	0.003	17
	4	17	16.991	0	0.034	17
	5	17	17.196	0	0.089	17
	6	16	17.263	1	0.176	17
	7	17	16.824	0	0.343	17
	8	17	16.506	0	0.567	17
	9	16	16.001	1	1.102	17
	10	16	15.508	4	3.650	19

	Predicted					
			USEMDA_dmy			
Observed			.00	1.00	Percentage Correct	
Step 1	USEMDA_dmy	.00	168	0	100.0	
		1.00	6	0	0.0	
	Overall Percentage				96.6	

a. The cut value is .500

	variables in the Equation										
							95% EX	95% C.I.for EXP(B)			
		В	S.E.	Wald	f	Sig.	Exp(B)	Lower	Upper		
Step 1 ^a	AGE	0.044	0.043	1.031	1	0.310	1.045	0.960	1.136		
	SEX	1.249	1.041	1.440	1	0.230	3.488	0.453	26.848		
	RACE_dummy01	-0.498	1.776	0.079	1	0.779	0.608	0.019	19.765		
	RACE_dummy02	-16.412	9312.962	0.000	1	0.999	0.000	0.000			
	RACE_dummy03	-18.670	13662.334	0.000	1	0.999	0.000	0.000			
	DEGREE_dummy01	-17.968	7252.209	0.000	1	0.998	0.000	0.000			
	DEGREE_dummy02	0.032	2.051	0.000	1	0.988	1.033	0.019	57.566		
	DEGREE_dummy03	-18.001	9317.532	0.000	1	0.998	0.000	0.000			
	DEGREE_dummy04	-1.203	2.217	0.294	1	0.587	0.300	0.004	23.170		
	FAMILY INCOME	0.150	0.169	0.793	1	0.373	1.162	0.835	1.619		
	WKDECIDE	0.891	0.942	0.897	1	0.344	2.439	0.385	15.438		
	EMPINPUT	1.580	1.144	1.907	1	0.167	4.857	0.516	45.761		
	WKFREEDM	-0.379	0.877	0.187	1	0.666	0.685	0.123	3.816		
	Constant	-10.579	5.728	3.411	1	0.065	0.000				

Variables in the Equation

Shared Capitalism/Workplace Participation – Political Participation

VOTE08

Omnibus Tests of Model Coefficients

		Chi-		
		square	df	Sig.
Step 1	Step	6.698	4	0.153
	Block	6.698	4	0.153
	Model	40.297	14	0.000

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	142.779 ^a	0.223	0.327

a. Estimation terminated at iteration number 6 because parameter estimates changed by less than .001.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	6.511	8	0.590

		$VOTE08_01 = .00$		VOTE08		
		Observed	Expected	Observed	Expected	Total
Step 1	1	10	11.953	6	3.628	16
	2	9	7.754	7	8.268	16
	3	9	6.157	7	10.286	16
	4	5	4.586	11	11.799	16
	5	3	3.441	13	12.323	16
	6	2	2.521	13	12.164	15
	7	1	2.233	16	14.176	16
	8	2	1.534	14	13.765	15
	9	0	0.970	16	15.188	16
	10	1	0.485	16	16.156	17

			Predicted					
	VOTE08_01				Percentage			
Observed			.00	1.00	Correct			
Step 1	VOTE08_01	.00	14	28	33.1			
		1.00	10	108	91.5			
Overall Percent		ntage			76.2			

a. The cut value is .500

Variables in the Equation									
								95% (EX	C.I.for P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	AGE OF RESPONDENT	0.044	0.020	5.023	1	0.025	1.045	1.006	1.086
	SEX	-0.495	0.446	1.234	1	0.267	0.609	0.254	1.460
	RACE_dummy01	0.342	0.750	0.208	1	0.648	1.408	0.324	6.117
	RACE_dummy02	-3.035	1.219	6.198	1	0.013	0.048	0.004	0.524
	RACE_dummy03	-0.823	1.082	0.578	1	0.447	0.439	0.053	3.662
	DEG_dummy01	-0.149	1.007	0.022	1	0.882	0.861	0.120	6.198
	DEG_dummy02	-0.464	0.828	0.314	1	0.575	0.629	0.124	3.187
	DEG_dummy03	2.335	1.715	1.853	1	0.173	10.331	0.358	297.979
	DEG_dummy04	0.356	0.940	0.143	1	0.705	1.428	0.226	9.009
	FAMILY INCOME	0.083	0.053	2.512	1	0.113	1.087	0.981	1.205
	SC_INDEX	0.077	0.132	0.344	1	0.557	1.080	0.835	1.398
	WKDECIDE	-0.075	0.308	0.059	1	0.807	0.928	0.507	1.697
	EMPINPUT	1.128	0.514	4.810	1	0.028	3.090	1.127	8.471
	WKFREEDM	-0.015	0.336	0.002	1	0.965	0.985	0.510	1.903
	Constant	-2.223	1.737	1.638	1	0.201	0.108		

VOTE12

Omnibus Tests of Model Coefficients

		Chi- square	df	Sig.
Step 1	Step	6.048	4	0.196
	Block	6.048	4	0.196
	Model	63.598	14	0.000

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	133.557 ^a	0.314	0.456

a. Estimation terminated at iteration number 6 because parameter estimates changed by less than .001.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	9.783	8	0.281

		$VOTE12_01 = .00$		$VOTE12_01 = 1.00$		
		Observed	Expected	Observed	Expected	Total
Step 1	1	16	14.702	1	2.328	17
	2	8	10.580	9	6.314	17
	3	9	6.946	8	9.965	17
	4	4	4.599	13	12.471	17
	5	0	3.024	16	13.677	17
	6	3	2.192	14	14.836	17
7 8	7	3	1.692	14	15.587	17
	8	2	1.145	15	15.964	17
	9	0	0.706	18	17.346	18
	10	0	0.218	14	14.185	14

			Predicted			
			VOTE	12_01	Percentage	
Observed		.00	1.00	Correct		
Step 1	VOTE12_01	.00	22	23	49.0	
		1.00	10	113	92.2	
	Overall Percer	ntage			80.4	

a. The cut value is .500

	Variables in the Equation									
								95% (EX	C.I.for P(B)	
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper	
Step 1 ^a	AGE OF RESPONDENT	0.065	0.020	10.493	1	0.001	1.067	1.026	1.110	
	SEX	-0.436	0.460	0.897	1	0.344	0.647	0.263	1.593	
	RACE_dummy01	0.652	0.878	0.551	1	0.458	1.919	0.343	10.732	
	RACE_dummy02	-3.297	1.148	8.243	1	0.004	0.037	0.004	0.351	
	RACE_dummy03	1.334	1.658	0.647	1	0.421	3.795	0.147	97.800	
	DEG_dummy01	0.873	1.031	0.717	1	0.397	2.393	0.318	18.037	
	DEG_dummy02	0.774	0.855	0.820	1	0.365	2.169	0.406	11.593	
	DEG_dummy03	2.331	1.445	2.601	1	0.107	10.286	0.605	174.734	
	DEG_dummy04	0.525	0.940	0.312	1	0.576	1.691	0.268	10.660	
	FAMILY INCOME	0.177	0.055	10.213	1	0.001	1.194	1.071	1.331	
	SC_INDEX	0.292	0.146	3.988	1	0.046	1.339	1.005	1.784	
	WKDECIDE	-0.217	0.325	0.445	1	0.505	0.805	0.426	1.522	
	EMPINPUT	0.438	0.521	0.705	1	0.401	1.549	0.558	4.302	
	WKFREEDM	-0.366	0.391	0.877	1	0.349	0.693	0.322	1.493	
	Constant	-4.358	1.953	4.979	1	0.026	0.013			

ATTRALLY

Omnibus Tests of Model Coefficients

		Chi-	16	G.
		square	df	Sig.
Step 1	Step	10.837	4	0.028
	Block	10.837	4	0.028
	Model	24.715	14	0.037

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	65.539 ^a	0.133	0.327

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	4.782	8	0.781

				ATTRLL		
		ATTRLLY	dmy = .00	1.00		
		Observed	Expected	Observed	Expected	Total
Step 1	1	17	17.045	0	0.000	17
	2	17	16.837	0	0.003	17
	3	17	16.654	0	0.046	17
	4	17	17.064	0	0.140	17
	5	17	16.675	0	0.275	17
	6	16	15.905	0	0.446	16
	7	17	16.661	1	0.859	18
	8	14	15.319	3	1.302	17
	9	16	13.985	0	2.518	17
	10	14	15.046	8	6.985	22

Predicted								
ATTRLLY_dmy					Percentage			
Observed		.00	1.00	Correct				
Step	ATTRLLY_dmy	.00	160	1	99.5			
1		1.00	10	2	18.7			
	Overall Percentage	e			93.7			

a. The cut value is .500

	Variables in the Equation								
								95% (EXI	C.I.for P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE OF RESPONDENT	0.048	0.031	2.415	1	0.120	1.049	0.988	1.115
ľ	SEX	-0.111	0.709	0.025	1	0.875	0.895	0.223	3.592
	RACE_dummy01	-0.926	1.704	0.295	1	0.587	0.396	0.014	11.181
	RACE_dummy02	-17.176	9614.457	0.000	1	0.999	0.000	0.000	
	RACE_dummy03	-20.619	13873.812	0.000	1	0.999	0.000	0.000	
	DEG_dummy01	-0.810	2.190	0.137	1	0.711	0.445	0.006	32.513
	DEG_dummy02	0.367	1.387	0.070	1	0.791	1.444	0.095	21.898
	DEG_dummy03	-17.821	8833.695	0.000	1	0.998	0.000	0.000	
	DEG_dummy04	0.788	1.450	0.295	1	0.587	2.199	0.128	37.737
	FAMILY INCOME	0.023	0.107	0.045	1	0.831	1.023	0.830	1.261
	SC_INDEX	0.309	0.177	3.058	1	0.080	1.362	0.963	1.926
	WKDECIDE	-0.096	0.543	0.031	1	0.860	0.909	0.314	2.633
	EMPINPUT	1.365	0.726	3.528	1	0.060	3.914	0.942	16.252
	WKFREEDM	1.341	0.851	2.486	1	0.115	3.823	0.722	20.250
	Constant	-11.532	4.420	6.808	1	0.009	0.000		

Variables in the Equation

AVOIDBUY

Omnibus Tests of Model Coefficients

		Chi- square	df	Sig.
Step 1	Step	7.107	4	0.130
	Block	7.107	4	0.130
	Model	24.144	14	0.044

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	166.344 ^a	0.132	0.196

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	6.171	8	0.628

		AVDBUY_dmy = $.00$		AVDBUY_dmy = 1.00		
		Observed	Expected	Observed	Expected	Total
Step 1	1	17	16.608	0	0.000	17
	2	17	16.417	1	0.913	17
	3	15	14.487	2	2.404	17
	4	14	13.774	3	3.299	17
	5	10	12.728	6	3.947	17
	6	14	12.703	3	4.892	18
	7	9	11.628	8	4.884	17
	8	13	11.274	4	5.886	17
	9	11	10.137	6	6.920	17
	10	9	9.116	9	8.823	18

Predicted								
AVDBUY_dmy					Percentage			
Observed		.00	1.00	Correct				
Step	AVDBUY_dmy	.00	125	4	96.7			
1		1.00	38	4	9.3			
	Overall Percentag	e			75.2			

a. The cut value is .500

	Variables in the Equation								
								95% (EXI	C.I.for P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE OF RESPONDENT	0.004	0.016	0.065	1	0.798	1.004	0.974	1.035
1"	SEX	0.226	0.395	0.326	1	0.568	1.253	0.578	2.718
	RACE_dummy01	-2.169	1.244	3.042	1	0.081	0.114	0.010	1.308
	RACE_dummy02	-20.395	11860.752	0.000	1	0.999	0.000	0.000	
	RACE_dummy03	-20.246	14965.033	0.000	1	0.999	0.000	0.000	
	DEG_dummy01	-0.849	0.994	0.730	1	0.393	0.428	0.061	3.000
	DEG_dummy02	-0.185	0.813	0.052	1	0.820	0.831	0.169	4.092
	DEG_dummy03	-0.023	1.052	0.000	1	0.983	0.977	0.124	7.678
	DEG_dummy04	-0.580	0.893	0.422	1	0.516	0.560	0.097	3.222
	FAMILY INCOME	-0.023	0.047	0.248	1	0.619	0.977	0.891	1.071
	SC_INDEX	0.101	0.111	0.816	1	0.366	1.106	0.889	1.376
	WKDECIDE	0.541	0.307	3.102	1	0.078	1.717	0.941	3.133
	EMPINPUT	0.097	0.419	0.054	1	0.817	1.102	0.485	2.505
	WKFREEDM	-0.477	0.304	2.463	1	0.117	0.621	0.342	1.126
	Constant	-0.316	1.582	0.040	1	0.841	0.729		

Variables in the Equation

CNTCTGOV

Omnibus Tests of Model Coefficients

		Chi- square	df	Sig.
Step 1	Step	11.648	4	0.020
	Block	11.648	4	0.020
	Model	32.980	14	0.003

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	148.109 ^a	0.174	0.268

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	11.583	8	0.171

		CNTGOV	_dmy = .00	CNTGOV_dmy = 1.00		
		Observed	Expected	Observed	Expected	Total
Step 1	1	17	17.244	1	0.219	17
	2	17	16.465	0	0.762	17
	3	16	15.672	1	1.467	17
	4	16	15.103	1	1.812	17
	5	12	14.926	5	2.452	17
	6	13	14.141	4	3.241	17
	7	17	13.355	1	4.100	17
	8	12	11.327	5	5.496	17
	9	11	9.532	6	7.421	17
	10	5	7.492	13	10.637	18

	-			Predicted	.
			CNTGC	V_dmy	Percentage
Observe	ed		.00	1.00	Correct
Step 1	CNTGOV_dmy	.00	130	5	96.0
		1.00	26	12	32.2
	Overall Percentag	;e			82.1

a. The cut value is .500

	Variables in the Equation								
								95% (EXI	C.I.for P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE OF RESPONDENT	0.020	0.017	1.275	1	0.259	1.020	0.986	1.056
1"	SEX	-0.347	0.435	0.638	1	0.424	0.707	0.301	1.657
	RACE_dummy01	-1.273	0.956	1.773	1	0.183	0.280	0.043	1.824
	RACE_dummy02	-0.947	1.374	0.475	1	0.491	0.388	0.026	5.735
	RACE_dummy03	-21.116	13751.637	0.000	1	0.999	0.000	0.000	
	DEG_dummy01	-1.450	1.051	1.901	1	0.168	0.235	0.030	1.842
	DEG_dummy02	-0.783	0.828	0.894	1	0.344	0.457	0.090	2.316
	DEG_dummy03	-1.513	1.143	1.752	1	0.186	0.220	0.023	2.070
	DEG_dummy04	-0.687	0.898	0.586	1	0.444	0.503	0.087	2.922
	FAMILY INCOME	0.105	0.060	3.055	1	0.080	1.111	0.987	1.249
	SC_INDEX	0.166	0.116	2.047	1	0.153	1.180	0.940	1.482
	WKDECIDE	0.501	0.350	2.048	1	0.152	1.651	0.831	3.279
	EMPINPUT	0.721	0.437	2.718	1	0.099	2.056	0.873	4.845
	WKFREEDM	0.183	0.362	0.256	1	0.613	1.201	0.590	2.443
	Constant	-5.653	1.967	8.260	1	0.004	0.004		

Variables in the Equation

GRPPARTY

Omnibus Tests of Model Coefficients

		Chi-	df	Sig
Step 1	Step	2.739	4	0.602
~~r -	~~~P			
	Block	2.739	4	0.602
	Model	18.803	14	0.173

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	71.674 ^a	0.105	0.254

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	8.026	8	0.431

		GRPPRTY $dmv = .00$		GRPPRTY_dmy = 1.00		
		Observed	Expected	Observed	Expected	Total
Step 1	1	16	16.258	0	0.000	16
	2	17	16.852	0	0.000	17
	3	17	17.045	0	0.051	17
	4	16	16.329	0	0.337	17
	5	17	16.246	0	0.580	17
	6	16	15.973	1	0.903	17
	7	15	15.234	1	1.266	17
	8	17	15.483	0	1.811	17
	9	11	14.196	6	2.465	17
	10	14	12.880	4	5.342	18

		Predicted						
	Percentage							
Observe	ubserved .00		1.00	Correct				
Step 1	GRPPRTY_dmy	.00	156	0	99.7			
		1.00	13	0	0.0			
	Overall Percentage	e			92.2			

a. The cut value is .500

	variables in the Equation								
								95% (EXI	P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE OF RESPONDENT	0.031	0.029	1.150	1	0.284	1.031	0.975	1.091
I"	SEX	-0.628	0.688	0.833	1	0.361	0.534	0.139	2.056
	RACE_dummy01	2.085	0.904	5.315	1	0.021	8.044	1.367	47.343
	RACE_dummy02	-17.130	10806.362	0.000	1	0.999	0.000	0.000	
	RACE_dummy03	-19.543	14449.427	0.000	1	0.999	0.000	0.000	
	DEG_dummy01	0.084	13645.228	0.000	1	1.000	1.088	0.000	
	DEG_dummy02	18.937	11467.264	0.000	1	0.999	#########	0.000	
	DEG_dummy03	19.301	11467.264	0.000	1	0.999	#########	0.000	
	DEG_dummy04	19.932	11467.264	0.000	1	0.999	#########	0.000	
	FAMILY INCOME	-0.001	0.087	0.000	1	0.988	0.999	0.843	1.183
	SC_INDEX	0.179	0.170	1.102	1	0.294	1.196	0.856	1.670
	WKDECIDE	-0.185	0.520	0.127	1	0.722	0.831	0.300	2.304
	EMPINPUT	0.937	0.722	1.683	1	0.194	2.553	0.620	10.516
	WKFREEDM	-0.037	0.547	0.005	1	0.946	0.964	0.330	2.813
	Constant	-23.060	11467.264	0.000	1	0.998	0.000		

Variables in the Equation

JOINDEM

Omnibus Tests of Model Coefficients

		Chi- square	df	Sig.
Step 1	Step	2.742	4	0.602
	Block	2.742	4	0.602
	Model	11.888	14	0.615

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	28.765 ^a	0.066	0.317

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	2.004	8	0.981

		JOINDM_	dmy = .00	JOINDM_dmy = 1.00		
		Observed	Expected	Observed	Expected	Total
Step 1	1	17	17.279	0	0.000	17
	2	17	16.714	0	0.000	17
	3	17	17.444	0	0.000	17
	4	17	16.908	0	0.001	17
	5	17	17.120	0	0.020	17
	6	17	16.827	0	0.056	17
	7	17	16.440	0	0.151	17
	8	17	16.719	0	0.334	17
	9	15	15.836	2	0.848	17
	10	18	17.275	2	2.944	20

	Predicted							
JOINDM_dmy					Percentage			
Observed		.00	1.00	Correct				
Step 1	JOINDM_dmy	.00	169	0	100.0			
		1.00	4	0	0.0			
	Overall Percenta	ge			97.5			

a. The cut value is .500

	Variables in the Equation									
								95% ЕХ	C.I.for XP(B)	
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper	
Step	AGE OF RESPONDENT	0.001	0.042	0.000	1	0.985	1.001	0.921	1.088	
1"	SEX	1.150	1.265	0.827	1	0.363	3.158	0.265	37.663	
	RACE_dummy01	-17.601	8916.532	0.000	1	0.998	0.000	0.000		
	RACE_dummy02	-16.699	9721.112	0.000	1	0.999	0.000	0.000		
	RACE_dummy03	3.559	2.682	1.761	1	0.185	35.130	0.183	6740.811	
	DEG_dummy01	-1.537	12824.967	0.000	1	1.000	0.215	0.000		
	DEG_dummy02	17.010	10808.283	0.000	1	0.999	#########	0.000		
	DEG_dummy03	-1.554	14572.541	0.000	1	1.000	0.211	0.000		
	DEG_dummy04	13.726	10808.284	0.000	1	0.999	#########	0.000		
	FAMILY INCOME	0.309	0.223	1.913	1	0.167	1.362	0.879	2.108	
	SC_INDEX	-0.259	0.348	0.551	1	0.458	0.772	0.390	1.528	
	WKDECIDE	0.010	0.895	0.000	1	0.991	1.010	0.175	5.840	
	EMPINPUT	-0.539	1.435	0.141	1	0.707	0.583	0.035	9.708	
	WKFREEDM	-0.971	0.774	1.573	1	0.210	0.379	0.083	1.727	
	Constant	-23.444	10808.285	0.000	1	0.998	0.000			

Variables in the Equation

POLFUND

Omnibus Tests of Model Coefficients

		Chi-	df	Sig
		square	ui	Dig.
Step 1	Step	3.675	4	0.452
	Block	3.675	4	0.452
	Model	22.136	14	0.076

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	162.147 ^a	0.120	0.183

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	12.086	8	0.147

		$POLFND_dmy = .00$		$POLFND_dmy = 1.00$		
		Observed	Expected	Observed	Expected	Total
Step 1	1	16	16.784	1	0.166	17
	2	14	15.754	3	1.306	17
	3	17	15.285	0	1.930	17
	4	13	12.889	2	2.387	15
	5	16	13.646	1	3.280	17
	6	15	13.133	2	3.952	17
	7	13	12.626	4	4.523	17
	8	11	12.153	б	5.130	17
	9	9	11.194	8	5.786	17
	10	11	10.752	10	10.377	21

	Predicted							
	Percentage							
Observed		.00	1.00	Correct				
Step 1	POLFND_dmy	.00	130	4	97.2			
		1.00	36	3	7.6			
Overall Percentage		ge			77.1			

a. The cut value is .500

		Va	riables in t	he Equa	ation				
								95% (EXI	C.I.for P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE OF RESPONDENT	0.002	0.017	0.022	1	0.883	1.002	0.970	1.036
I"	SEX	-0.282	0.412	0.468	1	0.494	0.754	0.337	1.691
	RACE_dummy01	-0.045	0.682	0.004	1	0.947	0.956	0.251	3.638
	RACE_dummy02	-19.277	11494.120	0.000	1	0.999	0.000	0.000	
	RACE_dummy03	-0.178	0.972	0.034	1	0.854	0.837	0.125	5.621
	DEG_dummy01	-0.441	1.173	0.141	1	0.707	0.643	0.065	6.414
	DEG_dummy02	0.242	0.977	0.061	1	0.805	1.273	0.188	8.641
	DEG_dummy03	-1.135	1.340	0.717	1	0.397	0.322	0.023	4.444
	DEG_dummy04	0.358	1.016	0.124	1	0.725	1.430	0.195	10.475
	FAMILY INCOME	0.142	0.062	5.318	1	0.021	1.153	1.022	1.300
	SC_INDEX	0.181	0.108	2.806	1	0.094	1.199	0.970	1.481
	WKDECIDE	0.099	0.324	0.094	1	0.759	1.104	0.585	2.083
	EMPINPUT	-0.380	0.448	0.719	1	0.397	0.684	0.284	1.646
	WKFREEDM	-0.042	0.322	0.017	1	0.897	0.959	0.510	1.802
	Constant	-4.511	1.913	5.561	1	0.018	0.011		

Variables in the Equation

POLINTER

Omnibus Tests of Model Coefficients

		Chi- square	df	Sig.
Step 1	Step	7.589	4	0.108
	Block	7.589	4	0.108
	Model	11.369	14	0.657

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	150.750 ^a	0.064	0.105

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	8.638	8	0.374

		$POLINTR_dmy = .00$		POLINTR_		
		Observed	Expected	Observed	Expected	Total
Step 1	1	16	16.532	2	0.892	17
	2	18	16.179	0	1.435	18
	3	17	15.353	0	1.720	17
	4	15	14.803	2	2.048	17
	5	14	14.902	4	2.478	17
	6	14	14.365	4	2.894	17
	7	15	14.397	3	3.595	18
	8	11	12.923	6	4.235	17
	9	15	12.279	3	5.108	17
	10	9	10.296	7	6.429	17
		POLINT	R_dmy	Percentage		
----------	-------------------	--------	-------	------------	-------	--
Observed		.00	1.00	Correct		
Step 1	POLINTR_dmy	.00	142	0	100.0	
		1.00	31	0	0.0	
	Overall Percentag	je			82.2	

a. The cut value is .500

		Var	iables in	the Equ	ation				
								95% (EXI	C.I.for P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	AGE OF RESPONDENT	-0.006	0.017	0.109	1	0.741	0.994	0.961	1.029
	SEX	-0.363	0.432	0.707	1	0.400	0.695	0.298	1.622
	RACE_dummy01	-0.304	0.817	0.139	1	0.710	0.738	0.149	3.657
	RACE_dummy02	0.719	0.827	0.755	1	0.385	2.052	0.406	10.386
	RACE_dummy03	-0.220	1.121	0.039	1	0.844	0.802	0.089	7.215
	DEG_dummy01	-0.503	0.940	0.287	1	0.592	0.605	0.096	3.813
	DEG_dummy02	-0.210	0.745	0.079	1	0.778	0.811	0.188	3.491
	DEG_dummy03	-0.180	1.069	0.028	1	0.866	0.835	0.103	6.791
	DEG_dummy04	-0.389	0.866	0.202	1	0.653	0.678	0.124	3.699
	FAMILY INCOME	-0.099	0.053	3.539	1	0.060	0.906	0.817	1.004
	SC_INDEX	0.212	0.120	3.126	1	0.077	1.236	0.977	1.563
	WKDECIDE	-0.082	0.311	0.070	1	0.792	0.921	0.501	1.695
	EMPINPUT	0.370	0.467	0.630	1	0.427	1.448	0.580	3.614
	WKFREEDM	0.532	0.384	1.917	1	0.166	1.702	0.802	3.612
	Constant	-1.205	1.801	0.448	1	0.503	0.300		

a. Variable(s) entered on step 1: SC_INDEX, WKDECIDE_rev, EMPINPUT_01, A LOT OF FREEDOM TO DECIDE HOW TO DO JOB.

SGNDPET

Omnibus Tests of Model Coefficients

		Chi- square	df	Sig.
Step 1	Step	11.482	4	0.022
	Block	11.482	4	0.022
	Model	27.545	14	0.016

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	196.083 ^a	0.147	0.203

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	3.162	8	0.924

		SGNDPET_dmy = .00		SGNDPET_dmy = 1.00		
		Observed	Expected	Observed	Expected	Total
Step 1	1	16	16.329	1	0.532	17
	2	15	14.014	2	2.904	17
	3	13	13.021	4	3.800	17
	4	12	12.184	4	4.461	17
	5	12	12.030	5	5.212	17
	6	10	11.057	7	6.038	17
	7	10	10.067	7	6.760	17
	8	8	9.062	9	7.955	17
	9	10	8.060	6	8.751	17
	10	7	7.594	14	13.560	21

			Predicted					
	Percentage							
Observed			.00	1.00	Correct			
Step 1	SGNDPET_dmy	.00	98	15	86.6			
		1.00	41	19	31.6			
	Overall Percentage	e			67.6			

a. The cut value is .500

		va	riables in t	he Equa	ition				
								95% (EXI	C.I.for P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE OF RESPONDENT	0.005	0.015	0.121	1	0.728	1.005	0.977	1.034
ľ	SEX	-0.765	0.365	4.396	1	0.036	0.465	0.228	0.951
	RACE_dummy01	-0.558	0.625	0.797	1	0.372	0.572	0.168	1.948
	RACE_dummy02	-20.065	11404.223	0.000	1	0.999	0.000	0.000	
	RACE_dummy03	-1.076	0.977	1.214	1	0.271	0.341	0.050	2.313
	DEG_dummy01	-0.110	0.855	0.017	1	0.897	0.896	0.168	4.784
	DEG_dummy02	-0.025	0.715	0.001	1	0.972	0.976	0.240	3.961
	DEG_dummy03	-1.499	1.090	1.892	1	0.169	0.223	0.026	1.891
	DEG_dummy04	-0.110	0.777	0.020	1	0.887	0.896	0.195	4.106
	FAMILY INCOME	-0.004	0.044	0.009	1	0.925	0.996	0.913	1.086
	SC_INDEX	0.221	0.100	4.896	1	0.027	1.248	1.026	1.518
	WKDECIDE	-0.442	0.269	2.710	1	0.100	0.643	0.379	1.088
	EMPINPUT	0.783	0.390	4.044	1	0.044	2.189	1.020	4.696
	WKFREEDM	-0.376	0.286	1.733	1	0.188	0.686	0.392	1.202
	Constant	1.472	1.456	1.023	1	0.312	4.360		

Variables in the Equation

a. Variable(s) entered on step 1: SC_INDEX, WKDECIDE_rev, EMPINPUT_01, A LOT OF FREEDOM TO DECIDE HOW TO DO JOB.

USEMEDIA

Omnibus Tests of Model Coefficients

		Chi-	16	G.
		square	ar	51g.
Step 1	Step	5.313	4	0.257
	Block	5.313	4	0.257
	Model	15.204	14	0.364

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	36.742 ^a	0.084	0.324

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	13.074	8	0.109

		$USEMDA_dmy = .00$		USEMDA_dmy = 1.00		
		Observed	Expected	Observed	Expected	Total
Step 1	1	16	15.604	0	0.000	16
	2	17	16.782	0	0.000	17
	3	17	17.319	0	0.000	17
	4	17	17.364	0	0.019	17
	5	17	16.623	0	0.054	17
	6	16	16.806	1	0.116	17
	7	17	17.046	0	0.304	17
	8	17	16.276	0	0.537	17
	9	17	15.798	0	0.962	17
	10	17	18.180	5	3.972	22

			Predicted				
			USEMD	Percentage			
Observe	ed		.00 1.00		Correct		
Step 1	USEMDA_dmy	.00	168	0	100.0		
		1.00	6	0	0.0		
	Overall Percentag	je			96.6		

a. The cut value is .500

		Va	riables in t	he Equa	ation				
								95% (EXI	C.I.for P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE OF RESPONDENT	0.050	0.044	1.289	1	0.256	1.052	0.964	1.147
I"	SEX	1.609	1.150	1.957	1	0.162	4.996	0.525	47.568
	RACE_dummy01	-0.828	1.836	0.203	1	0.652	0.437	0.012	15.965
	RACE_dummy02	-16.661	9268.644	0.000	1	0.999	0.000	0.000	
	RACE_dummy03	-18.645	13021.868	0.000	1	0.999	0.000	0.000	
	DEG_dummy01	-18.487	6968.312	0.000	1	0.998	0.000	0.000	
	DEG_dummy02	-0.307	2.134	0.021	1	0.886	0.736	0.011	48.260
	DEG_dummy03	-18.249	9226.670	0.000	1	0.998	0.000	0.000	
	DEG_dummy04	-1.718	2.399	0.513	1	0.474	0.179	0.002	19.767
	FAMILY INCOME	0.178	0.166	1.142	1	0.285	1.194	0.862	1.654
	SC_INDEX	-0.241	0.276	0.761	1	0.383	0.786	0.457	1.351
	WKDECIDE	1.190	1.039	1.312	1	0.252	3.289	0.429	25.209
	EMPINPUT	1.699	1.165	2.127	1	0.145	5.466	0.558	53.599
	WKFREEDM	-0.568	0.926	0.377	1	0.539	0.567	0.092	3.479
	Constant	-10.984	5.621	3.818	1	0.051	0.000		

• • • • • • • **T** 7 ...

a. Variable(s) entered on step 1: SC_INDEX, WKDECIDE_rev, EMPINPUT_01, A LOT OF FREEDOM TO DECIDE HOW TO DO JOB.

Political Efficacy/Discussion – Political Participation⁶

VOTE08

Omnibus Tests of Model Coefficients

		Chi- square	df	Sig.
Step 1	Step	26.011	9	0.002
	Block	26.011	9	0.002
	Model	59.774	19	0.000

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	121.278 ^a	0.313	0.461

a. Estimation terminated at iteration number 6 because parameter estimates changed by less than .001.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	9.574	8	0.296

		$VOTE08_01 = .00$		VOTE08_01 = 1.00		
		Observed	Expected	Observed	Expected	Total
Step 1	1	14	13.604	2	2.616	16
	2	7	9.199	9	6.487	16
	3	8	6.347	8	9.646	16
	4	4	4.469	11	11.344	16
	5	5	2.834	11	13.155	16
	6	0	1.757	17	14.814	17
	7	1	1.197	15	14.616	16
	8	0	0.718	15	14.762	15
	9	1	0.462	15	15.831	16
	10	1	0.201	15	14.910	15

⁶ Tables of the logistic regression using an individual political efficacy/discussion variable at a time are also available. They are omitted due to the limited space.

			Predicted				
			VOTE	VOTE08_01			
Observed			.00	1.00	Correct		
Step 1	VOTE08_01	.00	21	19	52.2		
		1.00	9	109	92.0		
	Overall Percer	ntage			81.8		

a. The cut value is .500

	Variables in the Equation								
								95% (EX	C.I.for P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	AGE OF RESPONDENT	0.050	0.022	4.946	1	0.026	1.051	1.006	1.099
	SEX	-0.590	0.529	1.243	1	0.265	0.554	0.196	1.564
	RACE_dummy01	0.371	0.831	0.199	1	0.655	1.449	0.284	7.389
	RACE_dummy02	-2.765	1.217	5.165	1	0.023	0.063	0.006	0.684
	RACE_dummy03	-0.224	1.206	0.035	1	0.853	0.799	0.075	8.493
	DEG_dummy01	-1.290	1.115	1.340	1	0.247	0.275	0.031	2.447
	DEG_dummy02	-1.114	0.952	1.369	1	0.242	0.328	0.051	2.122
	DEG_dummy03	2.032	1.825	1.239	1	0.266	7.628	0.213	272.919
	DEG_dummy04	0.090	1.049	0.007	1	0.931	1.095	0.140	8.550
	FAMILY INCOME	0.102	0.059	2.942	1	0.086	1.107	0.986	1.243
	PDINT	0.249	0.146	2.925	1	0.087	1.283	0.964	1.706
	PE_ext	0.157	0.091	2.982	1	0.084	1.170	0.979	1.398
	FNCTDEMO	-0.014	0.046	0.095	1	0.758	0.986	0.901	1.079
	POLEFF19	-0.207	0.326	0.405	1	0.524	0.813	0.429	1.539
	POLEFF20	0.449	0.268	2.803	1	0.094	1.566	0.926	2.648
	GOVDOOK	-0.347	0.276	1.582	1	0.209	0.707	0.412	1.213
	POLACTIVE	-0.087	0.298	0.085	1	0.770	0.917	0.511	1.644
	POLOPTS	-0.418	0.289	2.090	1	0.148	0.658	0.374	1.160
	WATCHGOV	0.447	0.208	4.635	1	0.031	1.564	1.041	2.350
	Constant	-4.589	2.795	2.697	1	0.101	0.010		

---.

a. Variable(s) entered on step 1: PDINT, PLF11 + PLF18 + CHOICES + POLGREED, FNCTDEMO, R HAVE A GOOD UNDERSTANDING OF POL ISSUES , MOST PPL ARE BETTER INFORMED ABOUT POLITICS THAN R IS, Most of the time we can trust people in government to do what is right, POL PARTY ENCOURGE PPL TO BE ACTIVE IN POLITICS IN AM, HOW IMPORTANT: PPL GIVEN CHANCE TO PARTICIPATE IN DECI, HOW IMPORTANT TO KEEP WATCH ON ACTION OF GOVT .

Vote12

Omnibus Tests of Model Coefficients

		Chi-	đf	Sig
		square	ui	Sig.
Step 1	Step	25.356	9	0.003
	Block	25.356	9	0.003
	Model	82.807	19	0.000

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	108.959 ^a	0.391	0.573

a. Estimation terminated at iteration number 7 because parameter estimates changed by less than .001.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	12.878	8	0.116

		VOTE12	$_01 = .00$	VOTE12_		
		Observed	Expected	Observed	Expected	Total
Step 1	1	15	15.101	2	1.979	17
	2	13	11.520	3	4.993	17
	3	6	7.795	11	9.252	17
	4	4	4.166	12	12.366	17
	5	1	2.319	15	14.459	17
	6	2	1.373	15	16.209	18
	7	1	0.739	17	16.678	17
	8	0	0.404	17	16.987	17
	9	0	0.212	17	16.854	17
	10	1	0.034	13	13.323	13

			Predicted			
			VOTE	Percentage		
Observed	Observed .00		.00	1.00	Correct	
Step 1	VOTE12_01	.00	31	12	71.4	
		1.00	9	115	93.1	
Overall Percentag		ntage			87.4	

a. The cut value is .500

								95% EX	C.I.for (P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE OF RESPONDENT	0.076	0.023	10.860	1	0.001	1.079	1.031	1.129
1.	SEX	-0.574	0.587	0.956	1	0.328	0.563	0.178	1.779
	RACE_dummy01	1.311	1.018	1.660	1	0.198	3.709	0.505	27.256
	RACE_dummy02	-3.611	1.294	7.783	1	0.005	0.027	0.002	0.342
	RACE_dummy03	2.954	1.788	2.729	1	0.099	19.180	0.576	638.171
	DEG_dummy01	0.617	1.052	0.345	1	0.557	1.854	0.236	14.568
	DEG_dummy02	0.624	0.925	0.455	1	0.500	1.867	0.304	11.445
	DEG_dummy03	3.635	1.809	4.037	1	0.045	37.897	1.093	1313.981
	DEG_dummy04	0.617	1.009	0.375	1	0.541	1.854	0.257	13.387
	FAMILY INCOME	0.247	0.066	14.192	1	0.000	1.280	1.126	1.455
	PDINT	0.309	0.159	3.786	1	0.052	1.362	0.998	1.859
	PE_ext	0.050	0.091	0.304	1	0.581	1.052	0.879	1.258
	FNCTDEMO	-0.029	0.047	0.396	1	0.529	0.971	0.886	1.064
	POLEFF19	0.238	0.295	0.647	1	0.421	1.268	0.711	2.263
	POLEFF20	0.314	0.303	1.077	1	0.299	1.369	0.756	2.479
	GOVDOOK	-0.412	0.302	1.862	1	0.172	0.662	0.366	1.197
	POLACTIVE	-0.015	0.323	0.002	1	0.962	0.985	0.523	1.855
	POLOPTS	-0.856	0.344	6.211	1	0.013	0.425	0.217	0.833
	WATCHGOV	0.093	0.231	0.162	1	0.687	1.098	0.698	1.726
	Constant	-5.167	2.481	4.337	1	0.037	0.006		

a. Variable(s) entered on step 1: PDINT, PLF11 + PLF18 +CHOICES + POLGREED, FNCTDEMO, R HAVE A GOOD UNDERSTANDING OF POL ISSUES , MOST PPL ARE BETTER INFORMED ABOUT POLITICS THAN R IS, Most of the time we can trust people in government to do what is right, POL PARTY ENCOURGE PPL TO BE ACTIVE IN POLITICS IN AM, HOW IMPORTANT:PPL GIVEN CHANCE TO PARTICIPATE IN DECI, HOW IMPORTANT TO KEEP WATCH ON ACTION OF GOVT .

ATTRALLY

Omnibus Tests of Model Coefficients

		Chi-		
		square	df	Sig.
Step 1	Step	23.384	9	0.005
	Block	23.384	9	0.005
	Model	36.919	19	0.008

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	53.077 ^a	0.193	0.474

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	1.672	8	0.989

		ATTRLLY $dmv = .00$		ATTRLLY_dmy = 1.00		
		Observed	Expected	Observed	Expected	Total
Step 1	1	17	16.867	0	0.000	17
	2	16	16.432	0	0.000	16
	3	17	16.570	0	0.004	17
	4	17	16.603	0	0.017	17
	5	17	17.436	0	0.061	17
	6	16	16.508	0	0.209	17
	7	16	15.692	0	0.417	16
	8	16	15.522	1	0.930	16
	9	15	15.042	2	2.130	17
	10	13	12.806	8	8.806	22

ATTRLLY_dmy				Percentage	
Observed			.00	1.00	Correct
Step	ATTRLLY_dmy	.00	158	1	99.1
1		1.00	8	5	39.2
	Overall Percentage	e			94.7

a. The cut value is .500

		v a	riadies in t	ne Equa	uon				
								95% (C.I.for
								EXI	P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE OF RESPONDENT	0.049	0.034	2.067	1	0.151	1.050	0.982	1.123
1 ^a	SEX	0.943	0.892	1.119	1	0.290	2.568	0.447	14.745
	RACE_dummy01	-1.946	2.082	0.874	1	0.350	0.143	0.002	8.453
	RACE_dummy02	-17.592	9799.915	0.000	1	0.999	0.000	0.000	
	RACE_dummy03	-20.596	12593.398	0.000	1	0.999	0.000	0.000	
	DEG_dummy01	-2.783	2.413	1.330	1	0.249	0.062	0.001	7.004
	DEG_dummy02	-0.711	1.655	0.185	1	0.667	0.491	0.019	12.580
	DEG_dummy03	-22.148	7171.638	0.000	1	0.998	0.000	0.000	
	DEG_dummy04	-0.200	1.745	0.013	1	0.909	0.819	0.027	25.042
	FAMILY INCOME	0.036	0.102	0.128	1	0.721	1.037	0.849	1.267
	PDINT	0.112	0.265	0.179	1	0.673	1.119	0.665	1.882
	PE_ext	0.228	0.138	2.740	1	0.098	1.257	0.959	1.647
	FNCTDEMO	-0.051	0.105	0.237	1	0.627	0.950	0.773	1.168
	POLEFF19	1.483	0.736	4.058	1	0.044	4.405	1.041	18.641
	POLEFF20	0.435	0.469	0.860	1	0.354	1.545	0.616	3.876
	GOVDOOK	0.867	0.527	2.708	1	0.100	2.379	0.847	6.677
	POLACTIVE	1.116	0.577	3.745	1	0.053	3.054	0.986	9.462
	POLOPTS	-0.425	0.437	0.949	1	0.330	0.654	0.278	1.538
	WATCHGOV	-0.167	0.348	0.230	1	0.631	0.846	0.427	1.675
	Constant	-18.159	5.725	10.061	1	0.002	0.000		

Variables in the Equation

a. Variable(s) entered on step 1: PDINT, PLF11 + PLF18 + CHOICES + POLGREED, FNCTDEMO, R HAVE A GOOD UNDERSTANDING OF POL ISSUES , MOST PPL ARE BETTER INFORMED ABOUT POLITICS THAN R IS, Most of the time we can trust people in government to do what is right, POL PARTY ENCOURGE PPL TO BE ACTIVE IN POLITICS IN AM, HOW IMPORTANT:PPL GIVEN CHANCE TO PARTICIPATE IN DECI, HOW IMPORTANT TO KEEP WATCH ON ACTION OF GOVT .

AVOIDBUY

Omnibus Tests of Model Coefficients

		Chi-	df	Sig
a	~	square	u 1	015.
Step 1	Step	26.248	9	0.002
	Block	26.248	9	0.002
	Model	43.778	19	0.001

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	145.739 ^a	0.228	0.338

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	2.168	8	0.975

		AVDBUY_dmy = $.00$		AVDBUY_dmy = 1.00		
		Observed	Expected	Observed	Expected	Total
Step 1	1	18	17.607	0	0.000	18
	2	17	16.417	0	0.479	17
	3	16	15.396	1	1.167	17
	4	15	14.773	2	2.148	17
	5	12	13.394	5	3.102	16
	6	13	12.887	4	3.913	17
	7	10	10.542	5	4.668	15
	8	12	10.967	5	6.032	17
	9	10	9.099	7	7.574	17
	10	5	6.076	14	12.885	19

			Predicted			
			AVDBU	Percentage		
Observed		.00	1.00	Correct		
Step 1	AVDBUY_dmy	.00	121	6	95.1	
		1.00	28	14	32.6	
	Overall Percentage				79.6	

a. The cut value is .500

	variables in the Equation								
								95% (C.I.for
								EXI	P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE OF RESPONDENT	-0.013	0.018	0.524	1	0.469	0.987	0.953	1.022
1ª	SEX	-0.377	0.443	0.726	1	0.394	0.686	0.288	1.633
	RACE_dummy01	-2.330	1.271	3.360	1	0.067	0.097	0.008	1.175
	RACE_dummy02	-20.194	11885.400	0.000	1	0.999	0.000	0.000	
	RACE_dummy03	-19.963	13251.380	0.000	1	0.999	0.000	0.000	
	DEG_dummy01	-0.061	1.056	0.003	1	0.954	0.941	0.119	7.452
	DEG_dummy02	0.399	0.896	0.198	1	0.656	1.490	0.258	8.620
	DEG_dummy03	1.577	1.145	1.896	1	0.168	4.839	0.513	45.630
	DEG_dummy04	-0.239	0.983	0.059	1	0.808	0.788	0.115	5.409
	FAMILY INCOME	-0.023	0.054	0.189	1	0.664	0.977	0.879	1.086
	PDINT	0.274	0.142	3.692	1	0.055	1.315	0.995	1.738
	PE_ext	0.008	0.082	0.010	1	0.919	1.008	0.859	1.184
	FNCTDEMO	0.000	0.044	0.000	1	0.994	1.000	0.917	1.090
	POLEFF19	0.339	0.289	1.371	1	0.242	1.403	0.796	2.475
	POLEFF20	0.487	0.271	3.220	1	0.073	1.627	0.956	2.770
	GOVDOOK	-0.295	0.243	1.476	1	0.224	0.744	0.463	1.198
	POLACTIVE	-0.354	0.276	1.643	1	0.200	0.702	0.408	1.206
	POLOPTS	0.407	0.242	2.828	1	0.093	1.503	0.935	2.416
	WATCHGOV	-0.145	0.217	0.446	1	0.504	0.865	0.565	1.324
	Constant	-4.645	2.203	4.448	1	0.035	0.010		

Variables in the Equation

ī.

a. Variable(s) entered on step 1: PDINT, PLF11 + PLF18 + CHOICES + POLGREED, FNCTDEMO, R HAVE A GOOD UNDERSTANDING OF POL ISSUES , MOST PPL ARE BETTER INFORMED ABOUT POLITICS THAN R IS, Most of the time we can trust people in government to do what is right, POL PARTY ENCOURGE PPL TO BE ACTIVE IN POLITICS IN AM, HOW IMPORTANT:PPL GIVEN CHANCE TO PARTICIPATE IN DECI, HOW IMPORTANT TO KEEP WATCH ON ACTION OF GOVT .

CNTCTGOV

Omnibus Tests of Model Coefficients

		Chi-	10	G.
		square	ar	51g.
Step 1	Step	37.717	9	0.000
	Block	37.717	9	0.000
	Model	58.583	19	0.000

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	121.662 ^a	0.290	0.445

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	12.292	8	0.139

		CNTGOV	_dmy = .00	$CNTGOV_dmy = 1.00$		
		Observed	Expected	Observed	Expected	Total
Step 1	1	18	17.491	0	0.024	18
	2	17	17.005	0	0.186	17
	3	17	16.676	0	0.354	17
	4	16	16.043	1	0.857	17
	5	13	15.603	5	1.641	17
	6	17	14.582	1	2.939	18
	7	14	13.482	3	4.020	18
	8	9	10.460	7	6.219	17
	9	11	7.753	6	8.978	17
	10	3	4.450	14	12.390	17

			Predicted			
CNTGOV				V_dmy	Percentage	
Observed			.00	1.00	Correct	
Step 1	CNTGOV_dmy	.00	124	9	93.0	
		1.00	20	18	46.6	
Overall Percentage				82.8		

a. The cut value is .500

		va	riables in t	пе гдиа	luon				
								95% (C.I.for
								EXI	P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE OF RESPONDENT	0.010	0.021	0.220	1	0.639	1.010	0.969	1.052
1 ^a	SEX	-0.975	0.530	3.386	1	0.066	0.377	0.134	1.066
	RACE_dummy01	-1.373	1.021	1.808	1	0.179	0.253	0.034	1.875
	RACE_dummy02	-1.220	1.343	0.825	1	0.364	0.295	0.021	4.108
	RACE_dummy03	-21.268	12655.066	0.000	1	0.999	0.000	0.000	
	DEG_dummy01	-2.508	1.160	4.677	1	0.031	0.081	0.008	0.791
	DEG_dummy02	-1.525	0.937	2.650	1	0.104	0.218	0.035	1.365
	DEG_dummy03	-1.687	1.325	1.622	1	0.203	0.185	0.014	2.484
	DEG_dummy04	-1.352	1.035	1.707	1	0.191	0.259	0.034	1.966
	FAMILY INCOME	0.157	0.074	4.534	1	0.033	1.170	1.013	1.352
	PDINT	0.382	0.170	5.036	1	0.025	1.465	1.050	2.046
	PE_ext	0.161	0.089	3.290	1	0.070	1.175	0.987	1.399
	FNCTDEMO	-0.004	0.049	0.007	1	0.935	0.996	0.904	1.097
	POLEFF19	0.737	0.380	3.770	1	0.052	2.090	0.993	4.399
	POLEFF20	-0.026	0.290	0.008	1	0.929	0.974	0.552	1.721
	GOVDOOK	-0.272	0.283	0.921	1	0.337	0.762	0.438	1.327
	POLACTIVE	0.399	0.302	1.745	1	0.186	1.490	0.825	2.692
	POLOPTS	0.358	0.273	1.724	1	0.189	1.430	0.838	2.441
	WATCHGOV	0.419	0.284	2.167	1	0.141	1.520	0.870	2.655
	Constant	-15.752	3.426	21.142	1	0.000	0.000		

Variables in the Equation

a. Variable(s) entered on step 1: PDINT, PLF11 + PLF18 + CHOICES + POLGREED, FNCTDEMO, R HAVE A GOOD UNDERSTANDING OF POL ISSUES , MOST PPL ARE BETTER INFORMED ABOUT POLITICS THAN R IS, Most of the time we can trust people in government to do what is right, POL PARTY ENCOURGE PPL TO BE ACTIVE IN POLITICS IN AM, HOW IMPORTANT:PPL GIVEN CHANCE TO PARTICIPATE IN DECI, HOW IMPORTANT TO KEEP WATCH ON ACTION OF GOVT .

GRPPARTY

Omnibus Tests of Model Coefficients

		Chi-	đf	Sig
		square	u	Jig.
Step 1	Step	16.723	9	0.053
	Block	16.723	9	0.053
	Model	32.360	19	0.028

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	57.847 ^a	0.176	0.422

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	1.943	8	0.983

		GRPPRTY_dmy = .00		GRPPRT 1.		
		Observed	Expected	Observed	Expected	Total
Step 1	1	17	17.180	0	0.000	17
	2	16	16.373	0	0.000	16
	3	17	16.579	0	0.004	17
	4	17	17.056	0	0.053	17
	5	17	16.734	0	0.165	17
	6	16	16.124	0	0.473	17
	7	15	15.992	2	0.868	17
	8	14	15.168	2	1.552	17
	9	15	14.661	2	2.687	17
	10	10	8.916	6	6.953	16

Predicted								
GRPPRTY_dmy					Percentage			
Observed			.00	1.00	Correct			
Step 1	GRPPRTY_dmy	.00	154	1	99.4			
		1.00	7	5	42.1			
	Overall Percentage	e			95.1			

a. The cut value is .500

		v a	Tables III	ine Equ	auon				
								95% (EXI	C.I.for P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE OF RESPONDENT	0.015	0.031	0.249	1	0.618	1.015	0.956	1.078
1"	SEX	-0.453	0.804	0.318	1	0.573	0.636	0.132	3.072
	RACE_dummy01	2.403	1.091	4.849	1	0.028	11.057	1.302	93.872
	RACE_dummy02	-17.716	10599.327	0.000	1	0.999	0.000	0.000	
	RACE_dummy03	-19.421	12887.638	0.000	1	0.999	0.000	0.000	
	DEG_dummy01	1.397	12361.784	0.000	1	1.000	4.043	0.000	
	DEG_dummy02	19.621	9845.957	0.000	1	0.998	########	0.000	
	DEG_dummy03	20.648	9845.957	0.000	1	0.998	########	0.000	
	DEG_dummy04	20.546	9845.957	0.000	1	0.998	########	0.000	
	FAMILY INCOME	-0.015	0.097	0.025	1	0.874	0.985	0.814	1.192
	PDINT	0.477	0.273	3.049	1	0.081	1.611	0.943	2.751
	PE_ext	0.103	0.123	0.698	1	0.403	1.108	0.871	1.411
	FNCTDEMO	0.020	0.092	0.049	1	0.826	1.020	0.852	1.222
	POLEFF19	0.467	0.586	0.634	1	0.426	1.595	0.506	5.028
	POLEFF20	0.029	0.515	0.003	1	0.955	1.030	0.375	2.827
	GOVDOOK	0.051	0.415	0.015	1	0.902	1.053	0.466	2.375
	POLACTIVE	0.878	0.560	2.456	1	0.117	2.405	0.802	7.208
	POLOPTS	0.104	0.415	0.063	1	0.802	1.110	0.492	2.506
	WATCHGOV	-0.304	0.345	0.774	1	0.379	0.738	0.375	1.452
	Constant	-31.944	9845.958	0.000	1	0.997	0.000		

Variables in the Equation

a. Variable(s) entered on step 1: PDINT, PLF11 + PLF18 + CHOICES + POLGREED, FNCTDEMO, R HAVE A GOOD UNDERSTANDING OF POL ISSUES , MOST PPL ARE BETTER INFORMED ABOUT POLITICS THAN R IS, Most of the time we can trust people in government to do what is right, POL PARTY ENCOURGE PPL TO BE ACTIVE IN POLITICS IN AM, HOW IMPORTANT:PPL GIVEN CHANCE TO PARTICIPATE IN DECI, HOW IMPORTANT TO KEEP WATCH ON ACTION OF GOVT .

JOINDEM

Omnibus Tests of Model Coefficients

		Chi- square	df	Sig.
Step 1	Step	11.613	9	0.236
	Block	11.613	9	0.236
	Model	20.902	19	0.342

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	19.663 ^a	0.115	0.545

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	3.201	8	0.921

		JOINDM_	dmy = .00	JOINDM_		
		Observed	Expected	Observed	Expected	Total
Step 1	1	17	16.557	0	0.000	17
	2	17	16.988	0	0.000	17
	3	17	16.903	0	0.000	17
	4	17	16.545	0	0.000	17
	5	18	17.499	0	0.001	18
	6	17	17.382	0	0.008	17
	7	17	17.060	0	0.035	17
	8	17	16.915	0	0.096	17
	9	17	16.471	0	0.375	17
	10	14	14.528	4	3.838	18

			Predicted				
	JOINDM_dmy				Percentage		
Observed		.00	1.00	Correct			
Step 1	JOINDM_dmy	.00	167	0	100.0		
		1.00	3	2	39.6		
Overall Percenta		ge			98.5		

a. The cut value is .500

		va	riables in	the Equ	ation				
								95%	C.I.for
								EX	P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE OF RESPONDENT	-0.029	0.065	0.195	1	0.659	0.972	0.856	1.103
1-	SEX	1.543	1.877	0.676	1	0.411	4.680	0.118	185.382
	RACE_dummy01	-18.935	7334.942	0.000	1	0.998	0.000	0.000	
	RACE_dummy02	-13.767	9329.556	0.000	1	0.999	0.000	0.000	
	RACE_dummy03	1.670	2.520	0.439	1	0.508	5.312	0.038	741.432
	DEG_dummy01	2.138	10934.794	0.000	1	1.000	8.480	0.000	
	DEG_dummy02	18.821	8680.879	0.000	1	0.998	#########	0.000	
	DEG_dummy03	-3.448	11347.766	0.000	1	1.000	0.032	0.000	
	DEG_dummy04	15.787	8680.879	0.000	1	0.999	#########	0.000	
	FAMILY INCOME	0.680	0.410	2.748	1	0.097	1.974	0.883	4.409
	PDINT	-0.583	0.564	1.068	1	0.301	0.558	0.185	1.686
	PE_ext	0.371	0.307	1.463	1	0.227	1.449	0.794	2.642
	FNCTDEMO	-0.261	0.223	1.365	1	0.243	0.770	0.497	1.193
	POLEFF19	0.289	1.431	0.041	1	0.840	1.335	0.081	22.067
	POLEFF20	1.482	1.278	1.345	1	0.246	4.401	0.360	53.826
	GOVDOOK	0.835	0.911	0.841	1	0.359	2.306	0.387	13.754
	POLACTIVE	-0.059	1.167	0.003	1	0.960	0.943	0.096	9.288
	POLOPTS	0.699	1.019	0.470	1	0.493	2.011	0.273	14.823
	WATCHGOV	0.821	1.108	0.549	1	0.459	2.272	0.259	19.924
	Constant	-50.175	8680.893	0.000	1	0.995	0.000		

Variables in the Equation

a. Variable(s) entered on step 1: PDINT, PLF11 + PLF18 +CHOICES + POLGREED, FNCTDEMO, R HAVE A GOOD UNDERSTANDING OF POL ISSUES , MOST PPL ARE BETTER INFORMED ABOUT POLITICS THAN R IS, Most of the time we can trust people in government to do what is right, POL PARTY ENCOURGE PPL TO BE ACTIVE IN POLITICS IN AM, HOW IMPORTANT:PPL GIVEN CHANCE TO PARTICIPATE IN DECI, HOW IMPORTANT TO KEEP WATCH ON ACTION OF GOVT .

POLFUND

Omnibus Tests of Model Coefficients

		Chi- square	df	Sig.
Step 1	Step	22.136	9	0.008
	Block	22.136	9	0.008
	Model	38.919	19	0.005

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	141.249 ^a	0.203	0.312

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	16.267	8	0.039

		$POLFND_dmy = .00$		$POLFND_dmy = 1.00$		
		Observed	Expected	Observed	Expected	Total
Step 1	1	17	17.166	0	0.060	17
	2	15	16.997	2	0.599	18
	3	16	16.060	1	1.004	17
	4	16	15.202	1	1.628	17
	5	12	14.452	4	2.516	17
	6	16	13.591	1	3.258	17
	7	13	12.859	4	4.244	17
	8	15	10.952	2	5.547	16
	9	11	9.358	6	7.143	17
	10	3	7.162	16	11.542	19

			Predicted			
			POLFN	Percentage		
Observed			.00	1.00	Correct	
Step 1	POLFND_dmy	.00	131	3	97.8	
		1.00	23	14	38.6	
Overall Percenta		ge			84.8	

a. The cut value is .500

		v a	radies in t	пе гдиа	uon				
				_				95% (EXI	C.I.for P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE OF RESPONDENT	-0.010	0.018	0.310	1	0.578	0.990	0.955	1.026
1"	SEX	0.029	0.459	0.004	1	0.949	1.030	0.419	2.531
	RACE_dummy01	0.153	0.784	0.038	1	0.845	1.165	0.251	5.413
	RACE_dummy02	-19.781	10996.167	0.000	1	0.999	0.000	0.000	
	RACE_dummy03	0.115	1.064	0.012	1	0.914	1.121	0.139	9.027
	DEG_dummy01	-0.297	1.212	0.060	1	0.806	0.743	0.069	8.000
	DEG_dummy02	0.255	1.035	0.061	1	0.805	1.291	0.170	9.817
	DEG_dummy03	-0.878	1.417	0.384	1	0.535	0.416	0.026	6.678
	DEG_dummy04	0.768	1.071	0.514	1	0.473	2.155	0.264	17.579
	FAMILY INCOME	0.143	0.065	4.849	1	0.028	1.154	1.016	1.312
	PDINT	0.165	0.148	1.249	1	0.264	1.179	0.883	1.575
	PE_ext	0.125	0.077	2.647	1	0.104	1.133	0.975	1.316
	FNCTDEMO	-0.031	0.049	0.390	1	0.532	0.970	0.881	1.068
	POLEFF19	0.630	0.310	4.124	1	0.042	1.878	1.022	3.451
	POLEFF20	-0.167	0.259	0.415	1	0.519	0.846	0.509	1.406
	GOVDOOK	0.396	0.248	2.549	1	0.110	1.486	0.914	2.417
	POLACTIVE	-0.016	0.268	0.004	1	0.953	0.984	0.582	1.663
	POLOPTS	-0.336	0.237	2.015	1	0.156	0.714	0.449	1.137
	WATCHGOV	-0.250	0.201	1.548	1	0.213	0.779	0.525	1.155
	Constant	-5.274	2.403	4.819	1	0.028	0.005		

Variables in the Equation

ī.

a. Variable(s) entered on step 1: PDINT, PLF11 + PLF18 +CHOICES + POLGREED, FNCTDEMO, R HAVE A GOOD UNDERSTANDING OF POL ISSUES , MOST PPL ARE BETTER INFORMED ABOUT POLITICS THAN R IS, Most of the time we can trust people in government to do what is right, POL PARTY ENCOURGE PPL TO BE ACTIVE IN POLITICS IN AM, HOW IMPORTANT:PPL GIVEN CHANCE TO PARTICIPATE IN DECI, HOW IMPORTANT TO KEEP WATCH ON ACTION OF GOVT .

POLINTER

Omnibus Tests of Model Coefficients

		Chi-		
		square	df	Sig.
Step 1	Step	39.233	9	0.000
	Block	39.233	9	0.000
	Model	43.364	19	0.001

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	118.078 ^a	0.224	0.367

a. Estimation terminated at iteration number 7 because parameter estimates changed by less than .001.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	4.730	8	0.786

		$POLINTR_dmy = .00$		POLINTR_		
		Observed	Expected	Observed	Expected	Total
Step 1	1	17	16.919	0	0.053	17
	2	16	16.487	1	0.251	17
	3	16	16.243	0	0.579	17
	4	15	15.564	1	1.019	17
	5	15	15.452	2	1.660	17
	6	16	14.468	0	2.088	17
	7	14	14.131	3	2.772	17
	8	14	13.224	3	3.668	17
	9	10	10.946	6	5.746	17
	10	6	6.884	14	12.996	20

			Predicted			
POLINTR_dmy					Percentage	
Observed			.00	1.00	Correct	
Step 1	POLINTR_dmy	.00	134	6	95.5	
		1.00	17	14	44.0	
Overall Percentage				86.2		

a. The cut value is .500

	Variables in the Equation								
								95% (EXI	C.I.for P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	AGE OF RESPONDENT	-0.019	0.023	0.674	1	0.412	0.982	0.939	1.026
	SEX	-0.879	0.539	2.664	1	0.103	0.415	0.144	1.193
	RACE_dummy01	-0.341	0.884	0.149	1	0.700	0.711	0.126	4.022
	RACE_dummy02	0.220	1.037	0.045	1	0.832	1.246	0.163	9.513
	RACE_dummy03	0.820	1.327	0.382	1	0.536	2.271	0.169	30.576
	DEG_dummy01	-0.746	1.178	0.401	1	0.527	0.474	0.047	4.770
	DEG_dummy02	-0.446	0.992	0.202	1	0.653	0.640	0.091	4.476
	DEG_dummy03	0.476	1.279	0.138	1	0.710	1.609	0.131	19.750
	DEG_dummy04	-0.591	1.118	0.279	1	0.597	0.554	0.062	4.953
	FAMILY INCOME	-0.036	0.064	0.315	1	0.575	0.965	0.851	1.094
	PDINT	0.306	0.162	3.566	1	0.059	1.358	0.988	1.866
	PE_ext	-0.058	0.093	0.392	1	0.531	0.943	0.786	1.132
	FNCTDEMO	-0.007	0.047	0.025	1	0.875	0.993	0.904	1.089
	POLEFF19	0.901	0.386	5.466	1	0.019	2.463	1.157	5.243
	POLEFF20	-0.110	0.293	0.142	1	0.707	0.896	0.504	1.591
	GOVDOOK	-0.464	0.296	2.460	1	0.117	0.629	0.352	1.123
	POLACTIVE	-0.504	0.315	2.555	1	0.110	0.604	0.326	1.121
	POLOPTS	0.079	0.280	0.080	1	0.777	1.082	0.626	1.873
	WATCHGOV	0.781	0.446	3.069	1	0.080	2.183	0.911	5.229
	Constant	-6.787	3.648	3.460	1	0.063	0.001		

V · II · 4 **F** ...

a. Variable(s) entered on step 1: PDINT, PLF11 + PLF18 + CHOICES + POLGREED, FNCTDEMO, R HAVE A GOOD UNDERSTANDING OF POL ISSUES , MOST PPL ARE BETTER INFORMED ABOUT POLITICS THAN R IS, Most of the time we can trust people in government to do what is right, POL PARTY ENCOURGE PPL TO BE ACTIVE IN POLITICS IN AM, HOW IMPORTANT: PPL GIVEN CHANCE TO PARTICIPATE IN DECI, HOW IMPORTANT TO KEEP WATCH ON ACTION OF GOVT .

SGNDPET

Omnibus Tests of Model Coefficients

		Chi-		
		square	df	Sig.
Step 1	Step	17.298	9	0.044
	Block	17.298	9	0.044
	Model	32.177	19	0.030

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	187.661 ^a	0.171	0.237

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	13.529	8	0.095

		SGNDPET_dmy = .00		SGNDPET_dmy = 1.00		
		Observed	Expected	Observed	Expected	Total
Step 1	1	16	16.654	1	0.427	17
	2	16	14.719	2	2.646	17
	3	11	13.171	5	3.214	16
	4	13	12.870	4	4.191	17
	5	14	11.864	2	4.724	17
	6	10	11.112	7	5.890	17
	7	10	9.998	7	6.887	17
	8	8	9.395	9	7.953	17
	9	12	7.878	5	9.052	17
	10	3	5.848	16	13.186	19

			Predicted			
	SGNDPET_dmy				Percentage	
Observed			.00	1.00	Correct	
Step 1	SGNDPET_dmy	.00	101	12	89.3	
Overall Percentage		1.00	39	20	33.7	
		e			70.5	

								95% (EXI	C.I.for P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE OF RESPONDENT	0.001	0.015	0.007	1	0.934	1.001	0.972	1.032
1ª -	SEX	-0.937	0.393	5.697	1	0.017	0.392	0.182	0.846
	RACE_dummy01	-0.433	0.634	0.466	1	0.495	0.649	0.187	2.249
	RACE_dummy02	-20.576	10937.886	0.000	1	0.998	0.000	0.000	
	RACE_dummy03	-0.237	1.019	0.054	1	0.816	0.789	0.107	5.808
	DEG_dummy01	-0.203	0.862	0.056	1	0.814	0.816	0.151	4.421
	DEG_dummy02	-0.155	0.752	0.042	1	0.837	0.857	0.196	3.738
	DEG_dummy03	-0.934	1.072	0.759	1	0.384	0.393	0.048	3.213
	DEG_dummy04	-0.210	0.807	0.068	1	0.795	0.810	0.167	3.943
	FAMILY INCOME	0.023	0.046	0.250	1	0.617	1.023	0.935	1.120
	PDINT	0.116	0.117	0.988	1	0.320	1.124	0.893	1.414
	PE_ext	-0.131	0.067	3.765	1	0.052	0.877	0.769	1.001
	FNCTDEMO	0.008	0.037	0.042	1	0.837	1.008	0.938	1.083
	POLEFF19	0.196	0.234	0.704	1	0.402	1.217	0.769	1.926
	POLEFF20	0.350	0.221	2.507	1	0.113	1.419	0.920	2.190
	GOVDOOK	-0.041	0.203	0.040	1	0.841	0.960	0.644	1.430
	POLACTIVE	0.026	0.227	0.013	1	0.910	1.026	0.658	1.600
	POLOPTS	-0.203	0.198	1.054	1	0.305	0.816	0.554	1.202
	WATCHGOV	0.032	0.176	0.033	1	0.856	1.033	0.731	1.459
	Constant	-0.810	1.881	0.185	1	0.667	0.445		

a. Variable(s) entered on step 1: PDINT, PLF11 + PLF18 +CHOICES + POLGREED, FNCTDEMO, R HAVE A GOOD UNDERSTANDING OF POL ISSUES , MOST PPL ARE BETTER INFORMED ABOUT POLITICS THAN R IS, Most of the time we can trust people in government to do what is right, POL PARTY ENCOURGE PPL TO BE ACTIVE IN POLITICS IN AM, HOW IMPORTANT:PPL GIVEN CHANCE TO PARTICIPATE IN DECI, HOW IMPORTANT TO KEEP WATCH ON ACTION OF GOVT .

Variables in the Equation

USEMEDIA

Omnibus Tests of Model Coefficients

		Chi-		
		square	df	Sig.
Step 1	Step	23.597	9	0.005
	Block	23.597	9	0.005
	Model	33.393	19	0.022

Model Summary

		Cox &	
	-2 Log	Snell R	Nagelkerke
Step	likelihood	Square	R Square
1	18.433 ^a	0.176	0.678

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Hosmer and Lemeshow Test

	Chi-		
Step	square	df	Sig.
1	1.464	8	0.993

		USEMDA	_dmy = .00	$USEMDA_dmy = 1.00$		
		Observed	Expected	Observed	Expected	Total
Step 1	1	17	17.032	0	0.000	17
	2	17	17.166	0	0.000	17
	3	17	17.044	0	0.000	17
	4	17	16.822	0	0.000	17
	5	17	16.717	0	0.000	17
	6	17	17.239	0	0.002	17
	7	17	16.618	0	0.011	17
	8	17	16.963	0	0.068	17
	9	16	16.816	1	0.288	17
	10	14	13.670	5	5.596	19

			Predicted				
			USEME	Percentage			
Observed			.00	.00 1.00			
Step 1 USEMDA_dmy		.00	165	1	99.4		
		1.00	2	4	60.7		
	Overall Percentage				98.1		

a. The cut value is .500

		10	in labics in	ine Equ	auon				
								95%	C.I.for
								E	XP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE OF RESPONDENT	0.094	0.108	0.752	1	0.386	1.098	0.888	1.358
1ª	SEX	1.641	2.091	0.615	1	0.433	5.158	0.086	311.017
	RACE_dummy01	-0.133	2.923	0.002	1	0.964	0.875	0.003	268.998
	RACE_dummy02	-13.667	7949.901	0.000	1	0.999	0.000	0.000	
	RACE_dummy03	-19.494	10510.091	0.000	1	0.999	0.000	0.000	
	DEG_dummy01	-17.557	5958.275	0.000	1	0.998	0.000	0.000	
	DEG_dummy02	-0.068	2.756	0.001	1	0.980	0.934	0.004	207.166
	DEG_dummy03	-18.498	7563.011	0.000	1	0.998	0.000	0.000	
	DEG_dummy04	-3.900	4.409	0.783	1	0.376	0.020	0.000	114.490
	FAMILY INCOME	0.077	0.225	0.116	1	0.734	1.080	0.694	1.679
	PDINT	0.827	0.663	1.558	1	0.212	2.287	0.624	8.379
	PE_ext	0.591	0.361	2.678	1	0.102	1.806	0.890	3.666
	FNCTDEMO	-0.165	0.328	0.252	1	0.615	0.848	0.445	1.614
	POLEFF19	3.610	2.994	1.454	1	0.228	36.979	0.105	13076.039
	POLEFF20	-0.795	1.367	0.338	1	0.561	0.452	0.031	6.584
	GOVDOOK	-0.958	1.250	0.587	1	0.443	0.384	0.033	4.447
	POLACTIVE	-0.597	1.113	0.288	1	0.591	0.550	0.062	4.871
	POLOPTS	-0.020	1.267	0.000	1	0.988	0.981	0.082	11.754
	WATCHGOV	-0.531	0.933	0.323	1	0.570	0.588	0.094	3.664
	Constant	-25.537	13.765	3.442	1	0.064	0.000		

Variables in the Equation

a. Variable(s) entered on step 1: PDINT, PLF11 + PLF18 +CHOICES + POLGREED, FNCTDEMO, R HAVE A GOOD UNDERSTANDING OF POL ISSUES , MOST PPL ARE BETTER INFORMED ABOUT POLITICS THAN R IS, Most of the time we can trust people in government to do what is right, POL PARTY ENCOURGE PPL TO BE ACTIVE IN POLITICS IN AM, HOW IMPORTANT:PPL GIVEN CHANCE TO PARTICIPATE IN DECI, HOW IMPORTANT TO KEEP WATCH ON ACTION OF GOVT .

Workplace Participation – Political Efficacy/Discussion – Political Participation

CHOICES

POLACTV

POLOPTS

WTCHGV

POLFUND

WKDCD

EMPIN

WKFRD

139

Shared Capitalism/Workplace Participation – Political Efficacy/Discussion – Political Participation

