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ABSTRACT OF THE THESIS 

 

SINGLE CELL TRANSCRIPTOME ANALYSIS REVEALS DISCRETE EVENTS 

DURING NEURAL PRECURSOR CELL DIFFERENTIATION INTO NEURON 

By SATYA PAVITRA RANI 

Thesis Director: 

Dr. Li Cai 

 

Neurogenesis is a complex process which is controlled by intrinsic programs and 

exogenous signals among the cells resulting in formation of progressively committed 

neurons. The complex processes governing neurogenesis can be elucidated by determining 

the developmental stages and compositions of the cells along with their molecular 

determinants. The single cell RNA sequencing (scRNA-seq) study of undifferentiated 

neural precursor cells ultimately differentiating into neurons is an effort to understand these 

mechanisms. This study is performed on a dataset (GEO accession #GSE102066) 

consisting of four cell types, i.e., neural precursor cell, differentiating neural cell, immature 

neuron and neuron. A comprehensive analysis examining the trajectory path of neural 

precursor cells to neurons, the highest expressed genes and marker genes of each cell type 

and the gene ontology (GO) terms associated with these genes has revealed critical 

observations. Lack of similar intrinsic properties revealed heterogeneity among immature 

neurons and neurons through trajectory analysis. The genes which were expressed highest 

among all the cell types was associated with GO term for housekeeping genes which are 

crucial for maintaining cell functions. The marker genes of each cell type were associated 
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with many relevant GO terms such as neurogenesis, neuron projection, olfactory lobe 

development, forebrain generation of neurons and central nervous system development. 

Key factors having discrete gene expression activity as cells transitioned from one state to 

another were revealed in this study. Genes which drastically decreased their expression 

levels over a period of two days (day 5 to day 7) were SFRP1 and SFRP2, genes which 

gradually decreased their expression activity from day 0 to day 30 were WNT5A and 

EFNA5, known neuronal marker genes DCX, MAP2 and STMN2 were upregulated 

gradually as the cells reached mature neuron stage. This study has helped in revealing 

transcriptional profiles of cells differentiating through a critical period of time with the key 

genes responsible for maintaining cell states and determining cell fates.  
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1. Introduction 

 

1.1 Human Embryonic Stem Cells 

Human embryonic stem cells (hESCs) are derived from pre-implantation or peri-

implantation embryos having the ability for self-renewal, which is the ability to proliferate 

without differentiation [1]. The hESCs cells are pluripotent and have the potential to give 

rise to three germ layers- ectoderm, mesoderm and endoderm, which undergo 

organogenesis[2]. The ectoderm germ layer forms the nerve cells within the brain, spinal 

cord, hair, skin, teeth, sensory and pigment cells. The mesoderm forms connective tissues, 

blood vessels, and muscles in the body. The endoderm forms the gut, lungs, bladder and 

germ cells [2]. 

The paper by James A. Thomson, et al. describing the generation of hESCs stated 

that ‘these cell lines should be useful in human developmental biology, drug discovery and 

transplantation medicine’[3].  The hESCs can show great promise in areas of tissue repair 

and regeneration by generating a clinically relevant number of cell populations and also 

patient specific ESC equivalents to study disease mechanisms, establish screens for drug 

discovery and mechanisms of the immune systems [4].  

Studies have been conducted to understand the biology of hESCs to achieve neural 

differentiation as obtaining the samples from postmortem mammalian brain, especially 

human brain can be challenging due to the presence of highly dense and myelinated 

extracellular tissue [5]. Also the dissociation of a whole intact cell is difficult due to the 

conditions in which the postmortem sample are stored [5]. The therapeutic potential of 
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hESCs derived dopaminergic neurons in Parkinson’s rat model showed improved 

functionality [6]. Motor defects in hemi Parkinson mice model showed improvement in 

motor skills through dopamine neuron engraft by ESC-derived neuronal progenitor cell 

transplantation [7]. 

 

1.2 Neural Stem Cells and Brain 

Molecular clues and developmental processes can be studied by differentiating 

hESCs into neural lineage. This can help in understanding mechanisms underlying early 

neurogenesis involved in the development of the human nervous system [8]. Neurogenesis 

is defined as the transition of neural precursor cells (NPCs) or neural stem cells (NSCs) to 

differentiated mature neurons [9]. The coordinated action of multiple cues and gene 

expression pattern act on NSCs ultimately giving rise to a population of neuronal cells and 

glial cells present in the mature brain [10].  During the brain development, NPCs and 

neurons form a complex neural network along with the glial precursor cells, astrocytes, and 

oligodendrocytes which support the neural function and metabolic activities [11]. 

It is necessary to track dynamic cell differentiation guided by expression and 

repression of specific genes at the experimental and computational level in order to 

understand and reveal discrete events between cell states [12], which can be linked to cell 

fate specification[10]. In vivo, clonal analysis of individual NSCs show they have only 

neuronal lineages, whereas the in vitro time lapses analysis of NSCs show that they either 

generate neurons or astrocytes [13]. 

Throughout the years there has been significant evidence that the NSCs are 

persistent in the adult life of all mammals including humans. They have the capacity to 

proliferate and produce glial cells and neurons in the canonical regions (subventricular 
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zone, sub granular zone) and non-canonical regions (neocortex, striatum and 

hypothalamus) of the brain [11].  

Understanding these processes and how neurons integrate themselves into complex 

neural networks can help in developing novel strategies for brain repair.  Current studies 

focus on taking advantage of the NSCs regenerative capacities by examining and 

manipulating the regulatory mechanisms. Future studies will benefit by focusing on 

identification of subpopulation and state-specific markers [13]. This can be achieved by 

performing single cell analysis to reveal the properties of various neural stem cell or 

precursor cell properties within their sub-populations and dynamic states. 

 

1.3 Single cell RNA sequencing analysis of mammalian brain 

Traditionally, the cells within the brain are classified based on morphology, molecular 

markers, location and electrophysiological characteristics [14]. The limitations of markers 

for the identification and isolation of rare neurons from nervous tissues makes it 

challenging to capture rare dynamic processes in adult neurogenesis [15]. The neurons 

belonging to a subtype have variance in their properties which constantly change with time 

[16]. These challenges make it difficult to identify the dynamic changes within the neuron 

types and elucidate the heterogeneity properties of cells within the brain. 

Single-cell RNA sequencing (scRNA-seq) is one of the high throughput sequencing 

methods that provides us with insights into the transcriptome of a cell [17]. Recent studies 

have demonstrated that the scRNA-seq helps in transcriptional profiling of each individual 

cell revealing the rare cell types and short-lived cell populations as the cells transition 

through different regulatory mechanisms and biological processes [14], it has been used to 



 

 

4 

 

study the cell diversity of many tissues such as the spleen, embryonic brain and the lung 

epithelium [18]. ScRNA-seq analysis is a useful means to elucidate the differences between 

different cell subpopulations during their development and the mechanisms which have 

helped to attain these cell fates.  

The number neural subtypes present in the brain is not clear [19]. There have been 

recent studies single cell profiling studies of the brain, while substantial progress has been 

made in mice a full understanding of adult human neurons on basis of single cell 

transcriptomics is yet to be realized [20]. Recently, single cell studies characterizing the 

dopaminergic neurons (DA) in embryonic and post-natal mouse revealed gene expression 

profiles specific to certain DA subtypes such as postnatal neuroblast population and 

substantia nigra DA neurons [21]. Previously, scRNA-seq analysis of region-specific cells, 

such as the mouse hypothalamus have revealed 11 non-neuronal and 34 neuronal cell 

clusters having distinct transcriptional profiles [22]. The heterogeneity of the cell 

population within the regions of the brain were understood by examining the cerebral 

cortex transcripts of the mouse brain revealing similar interneurons in different regions of 

the brain and that the oligodendrocytes differentiated into many cell types due to changes 

in their molecular signatures [18]. Gokce, et al. focused on analyzing 1,208 mouse striatum 

single cells which revealed 10 differentiated cell types including neurons, astrocytes, 

vascular and immune cells, oligodendrocytes and ependymal cells, apart from examining 

cell diversity they were able to observe medium spiny neurons (MSNs) which 

overexpressed genes linked to cognitive disorders [23]. ScRNA-seq analysis has been 

helpful in studying the process of neurogenesis in dentate gyrus which is a part of the 

hippocampus region of the mouse [24, 25]. Shin, et al. studied the transcriptional activity 
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of quiescent NSCs in adult dentate gyrus, their activation and initiation of neurogenesis in 

a transgenic mouse model revealed a continuum in adult neurogenesis [24]. Recently, 

Hochgerner, et al. published a similar study, developing a map of granule cell development 

in a perinatal attempt to elucidate neurogenesis from early precursor cells to mature 

neurons revealed that neurogenesis is preceded by distinct cell states and the cell properties 

are conserved from E16.5 to P132 [25]. Other animal models such as the zebrafish [26] 

and drosophila [27, 28] have been studied to examine their neuron subtypes. A recently 

published paper by Pandey, et al. attempted to create a comprehensive gene expression 

atlas of the habenula region of the zebrafish brain. Their study revealed that the habenula 

which is a small region of the forebrain had 18 distinct habenular subtypes which were 

stable across larval and adult stages [26]. In case of drosophila, one study aimed at 

classifying the olfactory projection neuron transcripts [27] and another study focused on 

developing a complete atlas of the adult drosophila through its lifespan for examining 

cellular diversity [28]. This gives us an idea about the complexity of the mammalian brain 

and the need for gene expression-based classification of cell types in all the regions of the 

brain. 

Attempts have been made to elucidate the adult human brain by transcriptome analysis. 

A single cell transcriptome analysis of the human olfactory system revealed difference 

between olfactory progenitor cells (OPCs) and mature olfactory sensory neurons (OSNs) 

cells, it was governed by different signaling pathways that were upregulated in progenitor 

cells in early developmental stages [29]. ScRNA-seq has helped to validate the properties 

of cells developed from hESCs. A recent study showed medial ganglionic eminence 

(MGE)-like cells generated from in vitro hESCs mimicked the in vivo cells derived from 
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human fetal interneurons and glial cells in both early and mature stages [30], making it the 

first transcriptome analysis comparing in-vivo human fetal-derived interneurons and 

hESCs derived interneurons. Yao, et al. studied the early embryonic brain development by 

analyzing hESCs transcripts differentiating into distinct neural cell types revealing 

Wingless-Type MMTV Integration Site (WNT)- signaling governing the lineage of 

forebrain and mid/hindbrain neuron types which were validated by already established 

regional differences in neurogenesis [31]. Recent study by Fiddes, et al. by computational 

analysis revealed that the gene NOTCH2NL secretes NOTCH-like proteins that can 

prolong cortical neurogenesis by enhancing NOTCH signally and hence inhibit the 

differentiation of NPCs [32].  

Here, we have attempted to elucidate the processes of neurogenesis by analyzing the 

dataset (GSE102066), consisting of undifferentiated NPCs which go through the main 

stages of differentiation in a 30-day period, previously this dataset has been analyzed by 

Wang, et al. by single cell RNA sequencing analysis. The scRNA-seq pipeline by Wang, 

et al. for processing, mapping and estimating gene expression was as follows—the data 

was processed and mapped using TopHat, the gene counts were obtained using HTSeq-

count, after applying a quality criterion to filter low expressed genes and cells a total of 

8957 expressed genes and 483 cells were normalized in DEseq2. A differential analysis 

using single-cell differential expression with significant cutoff criteria gave 528 

differentially expressed (DE) genes which were used to identify subpopulations within the 

cells as they transitioned through states [12]. 

Their study revealed that there are three cell subpopulations lineages, “a” and “b” in 

NPCs and a third lineage “c” arises from “b” when the cells enter the differentiating state 
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then eventually the lineage “a” and “b” combine to form “ab”. Hence at the end of day 30 

there are two subpopulations “ab” and “c”.  The lineages were determined by hierarchical 

clustering analysis at each time point for 528 dynamic classifier genes determining by 

bootstrapping. They performed a Pearson correlation analysis for DE genes which were 

common between two subpopulations at neighboring time points, a gene ontology analysis 

using David software [33, 34] revealed association with neuron function. The dynamic 

changes of well-known gene markers were also analyzed within the subpopulations and 

finally a regulatory network analysis of subpopulation “c” revealed POU3F2, MIAT and 

PBX1 were critical for neurogenesis and REST is a repressor of neurogenesis [12]. 

This study has revealed key points which were not observed previously. Here a 

computational analysis is performed for four cell types as the NPCs differentiated into 

neurons. The trajectory path from NPCs to neurons revealed heterogeneity among 

immature neurons and neurons. The GO analysis of highest expressed genes present across 

all the cell types were associated with GO term for house-keeping genes, genes which were 

highly expressed in cells once they entered differentiating state are associated with GO 

term for central nervous system development. The genes with discrete gene expression 

patterns unique to this study were EFNA5 whose expression gradually decreased as cells 

reached neuron state, SFRP1and SFRP2 both these genes decreased their gene expression 

activity from day 5 to day 7 and turned off. The marker gene analysis of the cell types 

reveal association with GO terms for neurogenesis, olfactory lobe development, forebrain 

generation of neurons, axonogenesis, synapse formation, neuron part, neuron projection 

and other terms related to neuronal function. The pipeline and results have been discussed 

in detail in later sections. The important genes which are highlighted in this study are 
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summarized in Table 1 below. The fate of NPCs and neurogenesis are controlled by 

dynamic processes related to time. The main goal of the project was to study what are the 

key genes involved in the transition of neural precursor cells to neurons in a time course 

profile.  

 

Gene 
Symbol 

Gene name Functional Roles 

WNT5A Wnt Family Member 5 A Regulates neural stem cell expansion, 
differentiation. 

EFNA5 Ephrin 5A Regulates proliferation of neural precursor cells. 

UGT8 UDP Glycosyltransferase 8 
Synthesizes galactosyl ceramide present in the 
myelin membrane of central nervous system 
(CNS) and peripheral nervous system (PNS). 

SALL3 Spalt like Transcriptional 
Factor 3 

Regulates neurogenesis and highly expressed in 
progenitor cells. 

SFRP1 Secreted Family related 
proteins 

Regulates growth, differentiation and axon 
guidance. 

SFRP2 Regulates proliferation, migration and 
differentiation. 

DCX Doublecortin Regulates neuron migration and dendritic growth 

MAP2 Microtubule associated 
protein-2 

Structural protein which maintains the 
cytoskeletal structures of neurons.  

STMN2 Stathmin-2 Regulates microtubule destabilization and 
cytoskeletal network in neurons. 

 
Table 1 Gene names and functional roles of some key genes highlighted in this study. 
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2. Materials and Methods 

 

2.1 Dataset  

The dataset was obtained from Gene Expression Omnibus (GEO), NCBI which is a 

public repository of functional genomics data. The dataset selected is GSE102066 which 

was published as a part of the paper “Single-cell gene expression analysis reveals regulators 

of distinct cell subpopulations among developing human neurons” by Wang, et al. at the 

Genome Institute of Singapore [12]. 

The data consists of 957 single cells at different time points over a 30-day period of 

non-differentiated human Neural Precursor Cells (NPCs) which were generated from 

human Embryonic Stem Cells (hESCs).  

  

 

Figure 1 The four cell types present in the dataset. 
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Based on the presence of cell type information the cells were filtered out. A total of 

573 single cells which consists of four cell types - Neural Precursor cell (NPC), 

Differentiating Neural Cell (DNC), Immature Neuron (IN) and Neuron (N) were obtained 

as the remaining cells were not classified into any cell types (Figure 1). The 573 single 

cells are spread across six-time points, the samples collected at each time points varied 

from 94-96 cells. The dataset has 96 NPCs at day 0, 94 DNCs at day 1, 288 IN cells at day 

5, day 7, day 10 with 96 cells each and 95 N cells at day 30 (Table 2). 

 

 

Table 2 Number of cells in each cell type along with the time points at which they were collected. 

 
 
2.2 Single cell RNA sequencing pipeline 

In order to perform Single cell RNA Sequencing analysis to extract relevant biological 

information the following protocol was followed (Figure 2): 

1. Unix Environment:  

The SRR files are fetched from GEO NCBI using the command “fastq-dump” for single 

ended data. The dumped files in “.fastq” format are aligned to the human genome using 

HISAT2.  

Cell Type Number of cells in each 
type 

Time points (days) 

Neural Precursor Cell (NPC) 96 Day 0 

Differentiating Neural Cell (DNC) 
 

94 Day 1 

Immature Neuron (IN) 
 

288 Day 5, Day 7, Day 10 

Neuron (N) 
 

95 Day 30 
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2. Python Environment: 

 The “.sam” format files generated from HISAT2 are inputted into HTSeq to obtain the 

counts of each gene for each cell. At this step, we generate “.csv” format files which 

each consists of all gene counts for that particular cell. In python environment, we 

further join all the .csv files in order to obtain a single file with gene names as the row 

names and “n” cells as the column names. Five joined “.csv” files are generated one 

containing the expression matrix for all the cell types which is for trajectory analysis 

and remaining four is one for each cell type which is used for generating highest 

expressed genes and marker genes. 

3. R environment:  

Various tools and packages are then used in R for preprocessing, filtering low quality 

cells and genes, data visualization and obtaining relevant gene information. The section 

2.3 discusses the types of analysis performed. 

 

 

Figure 2 Flowchart of scRNA-seq pipeline. 

Unix 
Environment

• Fetch SRR Files using fastq-dump
• Alignment to genome using HISAT2

Python 
Environment

• Counting of  mapped reads using HTSeq
• Merging of  count files of  all cells

R Environment
• Data visualization and analysis
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2.3 Analysis 

2.3.1 Trajectory Analysis 

The Monocle [35-37] package was used in order to perform an unsupervised 

analysis and obtain the trajectory of all the 573 cells. The monocle package orders the cells 

as they progress through a biological process with time. The “CellDataSet” is the main 

class of monocle which will hold three input files, the expression data consisting of counts 

for all the single cells, the phenoData is an annotated data frame with cell names, cell types 

batch numbers etc., the featureData consists of gene names. 

 The expression matrix consists of genes expressed in at least 10 cells and the low 

expressed genes were filtered by using a minimum threshold of 0.1. Now, monocle 

constructs a trajectory by choosing genes which defines the cells progress during 

differentiation. This is done by determining the differentially expressed (DE) genes using 

“differentialGeneTest”. These DE genes are then ordered and stored in a vector that will 

be used for ordering the cells later. The function “setOrderingFilter” marks the ordered DE 

genes from a total of 6241 DE genes. In Figure 3 the black dots represent the DE genes 

used to order the cells. 

The next step is to reduce the dimensionality of space in which the cells are present 

by using “reduceDimension” function. As a result, the cell data is transformed from a high-

dimensional space to a low-dimensional space. The reduced graph embedded algorithm is 

used to perform dimensionality reduction, it assigns each cell a position in the reduced 

space, here the data is reduced to two- dimensions for easy visualization. Finally, the cells 

are ordered by using “orderCells” function, and a trajectory of the cells is obtained. The 
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trajectory path is tree-like, where the cells start at the roots (starting point) and moves along 

the trunk finally reaching the leaf (ending point).  

 

Figure 3 Plot of genes by mean expression value vs dispersion from 573 cells. 

Each dot in the graph represents a differentially expressed (DE) gene. A total of 6241 DE genes 
are present out of which genes represented by black dots were selected to order the cells by 
monocle. Red curve is the mean-variance model learning curve. The X- axis represents the mean 
expression and Y-axis represents the dispersion of the genes. 

 

2.3.2 Preprocessing of the dataset and obtaining highest expressed genes 

The preprocessing for the dataset was performed using the Scater package [38]. The 

main class of Scater is “SingleCellExperiment”, which inputs the counts expression matrix 

along with metadata file. This file has information about the cell names, batch number, 

days etc. After constructing the class, pre-processing of the data is performed. The dataset 

was preprocessed for low counts of genes and cells, mitochondrial genes, ERCC genes and 
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housekeeping genes. Criteria for filtering the low expressed genes was to exclude genes 

with counts less than 3 in a particular cell and expression of a particular gene across all 

cells less than 35-65 counts (different for each cell type). The outliers and spike-ins caused 

due to presence of mitochondrial and ERCC genes were filtered out using “isOutlier” 

which helps detect outliers within the data. The total number of expressed features varied 

from 4000-8000 counts after preprocessing. The first 50 highest expressed genes were thus 

obtained by using plotQC with “highest-expression” type and the gene lists obtained were 

further analyzed. 

 

2.3.3 Marker Genes Analysis 

 Marker genes are computed using SC3 package [39]. It also uses 

“SingleCellExperiment” as the main class. Pre-processing of the data is not required as this 

was already performed for obtaining the highest expressed genes for each cell type. The 

command “sc3_plot_markers” assigns a p-value to each gene by using Wilcoxon signed 

rank test and the genes which are under the ROC curve (>0.85) and with a p-value < 0.01 

are selected to obtain top 10 marker genes for each cell type. These genes are tested for 

significant overlap with gene ontology terms. 

 

2.3.4 Gene Ontology (GO) Analysis 

Gene Set Enrichment Analysis software (GSEA) was used to perform gene ontology 

analysis [40-42]. It is a computational tool which helps interpret statistically significant 

difference within gene sets by comparing it to the collection of annotated gene sets in 

Molecular Signature Database (MSigDB) [41, 42]. The MSigDB consists of 8 major 
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collections out of which the Gene Ontology gene sets, denoted as C5, was selected to test 

for significant overlaps with FDR q-value 0.05. The GO gene sets are divided into three 

sub-collections based on the GO ontologies: GO biological processes (BP), GO cellular 

component (CC) and GO molecular function (MF). All the gene lists obtained from top 50 

highest expressed genes and marker genes for each cell type were tested for significant 

overlap with GO terms. 

 

2.3.5 Statistical analysis 

 Key genes obtained from scRNA-seq analysis were tested for significant 

difference in mean expression between neighboring time points. All statistical analysis was 

performed using GraphPad Prism software [43]. To determine the choice of statistical test, 

it is necessary to know whether the gene expression has a Gaussian distribution or not. For 

this, a normality test was performed using D’Agostino-Pearson omnibus normality test 

which is recommended by GraphPad Prism software. The normality test was performed at 

alpha= 0.05 and a confidence interval of 95%. Genes did not pass the normality test thus 

confirming that the scRNA-seq data has a Non-Gaussian distribution.  

Non-parametric Kruskal-Wallis test was the statistical method of choice used to 

determine statistically significant difference in mean expression of genes between 

neighboring time points from day 0 to day 30. The post-hoc analysis is performed by using 

Dunn’s multiple comparisons test by comparing the mean rank of each time point with 

mean rank of every other time point. The graphs plotted are a single bar column for each 

time point with standard error from mean for each bar. The X-axis represents time in days 

and the Y- axis represents gene expression in counts. 
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3. Results 

 

3.1 Trajectory Analysis reveals heterogeneity among neuronal cell types 

Heterogeneity can be observed among different species, but it is also present in 

living cells belonging to the same cell type or the same multicellular organism. This 

behavior is a result of molecular interactions within each cell giving rise to heterogenous 

cell phenotypes [44]. Cell-to-cell variances are present in a population of cells and these 

differences have relevant biological importance. It is important to note that the behavior of 

a population cannot be a true representation of the behavior of individual cells [45]. Studies 

have revealed that the NSCs or the NPCs exist in a continuum when they get activated and 

differentiated. Their cell population studies of neural cell types have identified 

heterogeneity and rare intermediate states with discrete transcriptional profiles [46].  

Single cell analysis considers asynchronous activity of individual cells by profiling 

the transcriptional activity of complex biological processes within the heterogeneous cell 

populations. Cells do not progress in perfect synchrony. Among cells which are captured 

at the same time some might be far along in their biological progress, and other might not 

have started that particular process yet. Taking this into consideration Monocle [35-37] 

orders the cells by their biological progress rather than by the time at which the cells were 

collected. Monocle constructs a trajectory by identifying the longest path measured in 

pseudo time value, which is the distance any a particular cell will have to travel in order to 

get back to the root. 
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Figure 4 Trajectory path of NPCs differentiation into Neurons 

A visual representation of the transcriptional profile of all cells progressing through different 
stages of differentiation i.e., NPCs to neurons. Each dot in the plot represent one cell and their 
positions assigned is based on differentially expressed genes used to order the cells. The 
trajectory path of 573 single cells is a tree-like structure starting at the root (top of branch 1) 
and ending in the leaf (end of branch 2). Branches 1 & 2 are the two branch points of the tree. 
The x-axis and the y-axis represents the two principal components of the reduced space. 

 

The 573 single cells occupy an assigned position in the low-dimensional space. The 

position occupied by each cell depends on the DE expressed genes used to order the cells. 

The cells are distributed along a trajectory path which shows their transition from a starting 

state, which is NPCs to an ending state of neurons through differentiation. The trajectory 
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is a tree-like structure which starts at the roots and ends at the leaves progressing along the 

trunk. The cells start off at the top of branch 1 (roots) on the left side. As the time progresses 

the cells travel along the trajectory path and reach the end of branch 2 (leaf) (Figure 4).  

The cells do not have any alternative cell fate and with time they will differentiate 

to form mature neuron at the end point of branch 2. The NPCs (red) are present 

predominantly at the root (day 0). The DNCs (green) occupy their positions at the end of 

branch 1 and starting of branch 2 as cells progress on the trajectory path (day 1). It is also 

seen that some NPCs and DNCs are present at the end of branch 2 (leaf) which is a possible 

indication for the presence of outliers within the scRNA-seq data which must be filtered 

out during preprocessing for accurate results (Figure 4). 

The cells of immature neurons (blue) occupy positions all along the trajectory 

indicating heterogeneity in the cell population (Figure 4). Since the immature neurons are 

present at three-time points day 5, day 7 and day 10, the cells at each time point are 

evaluated by their biological progress in terms of pseudo time (Figure 5). Here, pseudo 

time measures the progress of individual cell through differentiation. While immature 

neurons have progressed and are present on branch 2 many of these cells at day 5 and day 

7 are present at the end of branch 1 and starting point of branch 2 where the DNCs were 

present at day 1. At day 10 all the immature cells are present at branch 2 indicating that the 

cells have reached immature stage. The results clearly indicate heterogeneous behavior of 

the cells at earlier time points. 
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Figure 5 Trajectory path of NPCs to neurons in Pseudo time 

Pseudo time shows the progress of the cells during a biological process. Each point represents a 
cell and the color gradient shows the biological progress of the cells at each time point. The cells 
travel along the trajectory path to form neurons (day 30). The results indicate heterogeneity 
among immature neurons and neurons. The X-axis and Y-axis represent the principal 
components of the reduced space. 

 
 

The neurons (purple) also exhibit some degree of heterogeneity based on the 

positions occupied by cells on the trajectory, this is because all the cells have not progressed 

in synchrony (Figure 4). The pseudo time analysis of neurons also shows that even though 

at day 30 a large number of cells have reached the end point (light blue) on branch 2 many 



 

 

20 

 

cells are still in the transitioning state to form neurons. The scRNA-seq analysis by using 

monocle shows that the neuronal types have heterogeneity in their cell populations. While 

heterogeneity is observed mostly in immature neurons and to some extent in neurons, this 

behavior is not observed widely among NPCs and DNCs in pseudo time (Figure 5). This 

indicates that all the cells do not differentiate at the same time. These variances at the 

molecular level are concealed when a population-based identification of cell types are 

employed [46]. These results clearly indicate that neurogenesis is a continuous ongoing 

process and the classification of cells into only four cell types overlooks the cell subtypes 

and transitioning states arising during differentiation. 

 

 

3.2 Top 50 Highest Expressed Genes reveals common and unique genes among the 

four cell types  

Top 50 highest expressed genes of each cell type are generated and the list of all 

these genes is present in the appendix in Table a. Firstly, the initial results were filtered 

for the presence of housekeeping genes taken from Human housekeeping genes, revisited 

published in Trends in Genetics [47]. A total of 20 housekeeping genes were filtered out 

manually from all cell types (refer Table b in Appendix). Top 50 highest expressed genes 

thus obtained were analyzed for the presence of common and unique genes between cell 

types. These gene lists are checked for association with relevant Gene Ontology (GO) 

terms.  

A Venn diagram is generated from the gene lists using a user-friendly web tool 

which can detect intersection of genes within the four cell types, giving a graphical output 
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for easy visualization along with their gene lists. The tool used to generate these results 

was developed by Bioinformatics Evolutionary Genomics [48]. There were an overall of 

79 unique genes from a list consisting of 200 genes corresponding to the four cell types. 

The Venn diagram and table with gene list of common and unique genes are represented 

by Figure 6 below and Table c in Appendix respectively. These specific set of genes were 

investigated for statistically significant overlaps with gene ontology terms. The genes were 

not investigated if there were no significant overlap with any gene ontology term. 

 

 
 

Figure 6 Venn diagram with intersection of common genes for all cell types 

 

The 27 genes which were common to all cell types were tested with curated 

pathway database and gene ontology terms. Out of the 27 genes, 15 genes were associated 

with GO term for housekeeping genes which are expressed by 19 normal tissue [49] within 

the body responsible to maintain basic cellular function. This is an expected result as they 
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are expressed in all the cells under normal physiological conditions [47]. Apart from this 

gene were associated with roles in translation and protein metabolism (Figure 7(a)). 

 
                                (a)  
 

       

 

Figure 7 GO results for highest expressed genes common among all cell types and three cell 
types- DNC, IN and N. 

(a) represents the GO results for 27 common genes present in all cell types and (b) represents 
the GO results for genes calm2, sox4 and stmn1 common in DNC, IN and N. The relevant 
overlap and genes are highlighted by red parenthesis. 

(b) 
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The genes CALM2, SOX4 and STMN1 were common to three cell types- DNC, 

IN and N. They were associated with GO term for central nervous system development 

(figure 7(b)). Previous studies have indicated that these three genes have important 

biological roles in the development of neurons and mamalian brain. Calmodulin (CALM2) 

is found in abundance within the human brain and is principally responsible for regulating 

calcium signals, it also participates in proliferation and cell cycle progression [50], SRY-

box 4 (SOX4) acts as transcriptional factors which activate the neuronal gene promoter 

along with other roles in maintaining the central nervous system [51, 52]. In vivo analysis 

of Stathmin-1 (STMN1) during adult hippocampus neurogenesis revealed upregulation 

with maturity of cells [24], it is a microtubule destabilizer maintaining cell cycle 

progression motility and survival [53].  

The genes WNT5A, EFNA5, ADNP out of the 5 genes unique to NPCs are 

associated with GO terms for positive regulation of neuron development which is a process 

resulting in neuron development over time. Other GO terms were regulation of synapse 

assembly, synapse organization and axonogenesis, positive regulation of neuron projection 

development and regulation of synapse structure (Figure 8(a)). 

WNT family member-5A (WNT5A) is a non-canonical wnt-molecule which is 

involved in neural stem cell expansion, differentiation and are highly expressed in 

proliferative cells [54]. The Activity Dependent Neuroprotective Protein (ADNP) gene 

regulates the expression of multiple genes which are responsible for organogenesis, 

neurogenesis, lipid transport etc. The deletion of ADNP is shown to have effects on 

neurogenesis and embryogenesis which was based on ADNP knockout mouse models [55].  
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(a) (b)  

 

 

 

               

 

Figure 8 GO results for highly expressed genes unique to NPCs and gene expression of efna5 
and wnt5a.  

(a) represents the GO results for genes wnt5a, efna5 and adnp which are highly expressed in 
NPCs alone. The relevant overlap and genes are highlighted by red parenthesis. (b) represents 
gene expression trend for genes efna5 and wnt5a. Both genes show a decreasing trend from day 
0 to day 30.  

 
 

Ephrin A5 (EFNA5) plays role in embryonic and adult neurogenesis signaling but 

the number of publications which can clearly identify the role of ephrin family in self-

renewal, proliferative and non -proliferative cells is still unclear [56]. These genes play 

critical roles in the development of the nervous system. Examining the expression of these 

genes showed that there is a decrease in the levels of WNT5A and EFNA5 as the cells 
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mature while they are highly expressed at proliferative stages (Figure 8(b)), their statistical 

significance is studied in section 3.4 

 
 
 
3.3  Gene Ontology analysis of marker genes reveals discrete events among cell types  

The marker genes obtained for each cell type using SC3 package [39] are checked 

for association with significant GO terms and the results are analyzed. Refer Table d. of 

Appendix for list of marker genes of all cell types. 

 

3.3.1 Neural Precursor cells 

The marker genes of NPCs are associated with GO terms for forebrain neuron 

development, neurogenesis and forebrain generation of neurons. These GO terms imply 

generation of cells within the forebrain, ultimately resulting in its progression into a fully 

developed differentiated cell.  

The genes WNT5A, SLIT2 and SALL3 are associated with GO terms for olfactory 

bulb lobe development (Figure 9(a)). This shows that the cells have the potential to 

differentiate into sensory neurons within the olfactory bulb which is located in the 

forebrain. There are six genes- WNT5A, SLIT2, SALL3, MEIS1, B2M and UGT8 

associated with neurogenesis (Figure 9(a)). Expression of these genes is responsible for 

generation of cells within the nervous system through cell differentiation. In the absence 

of genes SALL3 and UGT8, remaining four genes are associated with GO terms for 

negative regulation of neuron differentiation and negative regulation of nervous system 

development (Figure 9(a)).  
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(a)                                                                       (b) 

       

Figure 9 GO results for marker genes of NPCs and DNCs. 

(a) represents the GO terms for marker genes of NPCs and (b) represents the GO results for 
marker genes of DNCs. The relevant overlap and genes are highlighted by red parenthesis. 

 

 

UDP Glycosyltransferase 8 (UGT8) is involved in regulating enzyme activity in 

case of nerve injuries, it synthesizes glycosphingolipids in the myelin sheath [57]. UGT8 

is mainly responsible for the production of galactosyl ceramide (GalCer), a major 

glycosphingolipid present in the myelin membrane of central and peripheral nervous 

systems [58]. GalCer importance was studied in UGT8 knockout mice, where a breakdown 

of axon insulation was observed [59]. Splat like transcription factor 3 (SALL3) is involved 
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in development of the olfactory bulb in dopaminergic neurons which was observed by 

examining sall3-null mice and mutations in vertebrate homologues of splat genes are linked 

with several human disorders [60]. Other studies have found that SALL3 and its related 

family are expressed in cortical neural progenitor cells, interacting with each other to 

regulate neurogenesis [61]. The functions of these two genes indicate significant roles in 

the development of neurons and nervous system. Future research focusing on their 

regulatory pathway and interaction with other proteins could help understand unexpected 

GO results obtained here. 

 
3.3.2 Differentiating Neural Cell 

There are four marker genes which are common in both NPCs and DNCs- WNT5A, 

SLIT2, SALL3, and SPARC hence we observe association with similar GO terms. The 

marker genes of DNCs were associated with GO terms for forebrain neuron development, 

forebrain generation of neurons and olfactory bulb development (Figure 9(b)).  

The marker genes of NPCs were associated with GO terms involved in negative 

regulation of nervous system development these terms were not observed as cells reached 

day 1 which is the differentiating state. Instead, they were associated with central nervous 

system development involving five genes WNT5A, SLIT2, SALL3, SFRP2, and ZIC2.  

 

3.3.3 Immature Neurons 

The marker genes of immature neurons are associated with GO terms for neuron 

projection, neuron part and neurogenesis which are involved in the generation of cells 

within the nervous system (Figure 10).  
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There are seven genes- DCX, MAP1B, KIF5A, MAP2, STMN2, SFRP2 and 

SFRP1 associated with GO term for neurogenesis (Figure 10). As mentioned earlier 

neurogenesis is a cell differentiation process which will help in the formation of neurons 

within the nervous system. Neuron projection represents a process or a projection from a 

nerve cell, which can either be an axon or a dendrite [62], and the neuron part represents 

any constituent part of a neuron, a part of the nervous system, showing the cells have begun 

to differentiate into neurons [63]. Neuron projection and neuron part overlapped with the 

same set of seven genes out of with five genes were common with neurogenesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 GO results for marker genes 
of INs. 

The figure to the left represents the GO 
terms for marker genes of INs. The 
relevant overlap and genes are 
highlighted by red parenthesis. 
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The immature neurons were collected at three-time points- day 5, day 7 and day 10, 

the trajectory of the cells suggest that the immature state is heterogeneous in nature and all 

the cells do not exhibit the same transcriptional activity at all three points, this behavior is 

also reflected from the GO terms observed. 

The association of genes with neuron projection and neuron part was observed only 

in the absence of genes SFRP1 and SFRP2, which were among the seven genes which were 

associated with neurogenesis. As a result, genes SFRP1 and SFRP2 were further 

investigated and it is observed that the gene expression levels of SFRP1 and SFRP2 

decreases sharply from day 5 to day 7 after which the cells have low expression as they 

reach day 30 (Figure 11(a)).  

The members of SFRP  (Secreted Frizzled Related Proteins) family are antagonists 

for WNT-signaling pathway but certain members of SFRP family positively regulate WNT 

pathway through WNT diffusion [64]. In humans, among the five members of SFRP family 

- SFRP1, SFRP2 and SFRP 5 belong to one subfamily. SFRP1 is expressed in anterior 

neural plate and in early developmental stages [65], and SFRP2 is involved in various 

functions of proliferation, migration and differentiation in vertebrates [66]. A study in 1998 

showed that SFRP2 is turned off as cells attain cell differentiation indicating that these 

genes are only involved in early developmental processes in mice during nephrogenesis 

[67], but here we observe similar expression during in vitro development of neurons 

derived from hESCs. 
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Figure 11 Gene expression pattern for certain marker genes of INs. 

(a) represents the gene expression trend for genes sfrp1 and sfrp2 which drastically decreases 
after day 5 and (b) represents the gene expression for genes dcx, map2 and stmn2 which increases 
as the cells reach day 30. 
 

 

 

 

(a) (b) 
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Doublecortin (DCX) is a known immature neuron marker which is highly expressed 

by migrating neurons of developing and adult nervous system [68]. It is a neuronal 

microtubule binding protein and studies show defects in its expression affects neuronal 

migration, axon and dendritic growth [69]. This gene shows increase in expression as the 

cells change from one state to another. At day 0 maximum cells have zero expression of 

DCX. It is expressed at day 1 and is upregulated as cells reach day 30. There are no cells 

which have zero expression of DCX from day 10 to day 30 (Figure 11(b)), implying to its 

critical role in developing neurons. 

Microtubule associated protein (MAP2) is found in neurons, they are crucial for 

neuromorphogenic processes and reorganization of microtubule and F- actin [70]. They are 

predominantly expressed in the cytoskeletal structures of neurons and act as a substrate for 

protein kinases and phosphatases present in neurons. Its other functions include organelle 

transport in axons and dendrites [71]. As expected the expression of MAP2 gradually 

increases as the cells form mature neuron. Stathmin-2 (STMN2) is a neuronal protein 

which regulates the cytoskeletal and microtubule network [72]. Previous study revealed 

that STMN2 is expressed in immature olfactory neurons and has supporting role during 

neurogenesis [73]. The expression of STMN2 is low at days 0 and day 1, it is upregulated 

in cells at day 30 (Figure 11(b)). The statistical analysis is performed to determine whether 

there is significance difference in expression of these genes between neighboring time 

points in section 3.4. 
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3.3.4 Neurons 

The five marker genes- SOX4, SOX11, SALL1, POU2F2 and DCX of neurons are 

associated with GO term for cell development. It is a biological process representing 

progression of any cell through time to form a mature state. This process does not involve 

any steps of committing cell to a specific fate [74], which shows that the cell fate was 

attained at previous stages (Figure 12(a)). 

Neurons have the ability to mature into different types- Glutamatergic, GABAergic, 

Dopaminergic, Serotonergic and Cholinergic neurons. Well-known marker genes for these 

types of neurons were tested, and their expression levels were observed. The only markers 

which had basal level expression till day 30 were Gamma-Aminobutyric Acid Type B 

Receptor Subunit 1 (GABBR1), marker for GABAergic neurons, Glutaminase (GLS) and 

Glutamine Synthase (GLUL), markers for glutamatergic neurons.  

Glutamate is an excitatory and GABA is an inhibitory neurotransmitter in the cortex 

and controls cortical excitability [75]. Studies have shown that within the mature brain 

glutamate and GABA regulate activation of ionotropic and metabotropic receptors. Apart 

from these roles they also influence proliferation, migration, differentiation and survival of 

neural cells during early development [76]. The is no visible change in expression levels 

of marker genes for glutamatergic and GABAergic neurons as the cells transition from one 

state to another state (Figure 12(b)). To critically analyze their expression levels the 

scRNA-seq data after day 30 will be required. 
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Figure 12 GO results for marker genes of Ns and Gene expression for marker gene of neuron 
types 

(a) Represents the GO terms for marker genes of Ns, the relevant overlap and genes are 
highlighted by red parenthesis and (b) gene expression of marker genes for Glutamatergic and 
GABAergic neurons (gls, glul and gabbr1). 

 

(a) (b) 
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3.4 Statistical Analysis 

The analysis was performed for key genes to observe whether there is any 

statistically significant difference in mean expression as cells transitioned from one cell 

type to another with time. Statistical analysis is done for neighboring time points as the cell 

types changed from NPCàN (Day 0 vs Day1, Day 1 vs Day 5, Day 5 vs Day 7, Day 7 vs 

Day 10, Day 10 vs Day 30). Kruskal-Wallis non-parametric analysis and Dunn’s Multiple 

Comparisons post hoc test was performed for downregulated genes SFRP1 and SFRP2 

(sharp), WNT5A and EFNA5 (gradual) and upregulated genes DCX, MAP2 and STMN2. 

 

• Genes whose expression decreases sharply -SFRP1 and SFRP2 
 

 
 

Figure 13 Plot showing mean expression of sfrp1 and sfrp2 with time in days on x-axis and 
expression in counts on y-axis 
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• Genes whose expression decrease gradually - WNT5A and EFNA5 

 

 Figure 14 Plot showing mean expression of efna5 and wnt5a with time in days on x-axis and 
expression in counts on y-axis 

 

• Genes whose expression increase gradually- DCX, MAP2 and STMN2. 

 

Figure 15 Plot showing mean expression of dcx, map2 and stmn2 with time in days on x-axis 
and expression in counts on y-axis 
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3.4.1 SFRP1 and SFRP2 

 The Kruskal-Wallis non-parametric test for SFRP1 and SFRP2 shows there is 

significant difference in both the genes at the same neighboring time points. The Dunn’s 

post hoc test showed significant difference from day 0 to day 1 and day 5 to day 7.  From 

day 0 to day 1 SFRP1 has a p-value <0.0001 and SFRP2 has a p-value 0.001. Both the 

genes showed a significant drop in gene expression from day 5 to day 7 with p-value 

<0.0001. The cells show very low expression levels after day 7 (Figure 16). 

 

   

 

Figure 16 Plot showing statistical analysis of sfrp1 and sfrp2. 

The statistical difference in gene expression of (a) sfrp1 and (b) sfrp2 as cells transition from 
NPCà N is obtained by Kruskal-Wallis non-parametric test followed by Dunn’s test for multiple 
comparisons. * p£0.05; ** p£0.01; *** p£0.001; **** p£0.0001. 

 

(a) (b) 
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3.4.2 WNT5A and EFNA5 

The gene expression levels of WNT5A and EFNA5 decrease as cells change state 

from NPC to mature neurons. The Dunn’s post hoc test reveals that there is a significant 

decrease in expression of WNT5A from day 7 to day 10 with a p-value of 0.039 and in 

EFNA5 from day 5 to day 7 with a p-value of 0.0001. There is no significant difference 

between any other time points for both the genes (Figure 17). 

 

 

 

 

 

Figure 17 Plot showing statistical analysis of wnt5a and efna5. 

The statistical difference in gene expression of (a) wnt5a and (b) efna5 as cells transition from 
NPCà N is obtained by Kruskal-Wallis non-parametric test followed by Dunn’s test for multiple 
comparisons. * p£0.05; ** p£0.01; *** p£0.001; **** p£0.0001. 

 

(a) (b) 
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3.4.3 DCX, MAP2 and STMN2 

Among the upregulated genes, expression of DCX is highly significant from day 0 

to day 1 with p-value of <0.001 and from day 1 to day 5 with p-value of 0.0047 which is 

relatively lower, there is no significant difference between other time points. MAP2 has 

highly significant difference in gene expression from day 0 to day 1 with p-value <0.001 

and small significant difference from day 10 to day 30 with p-value 0.0258. STMN2 has 

significant difference as cells transition from day 1 to day 5 with p-value <0.001 and from 

day 10 to day 30 with p-value 0.001 (Figure 18).   

 

 

  

 

 

 

 

(a) (b) 
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Figure 18 Plot showing statistical 
analysis of dcx, map2 and stmn2. 

The statistical difference in gene 
expression of (a) dcx, (b) map2 and (c) 
stmn2 as cells transition for NPCà N is 
obtained by Kruskal-Wallis non-
parametric test followed by Dunn’s test 
for multiple comparisons. * p£0.05; ** 
p£0.01; *** p£0.001; **** p£0.0001. 

(c) 
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4. Discussion 

 

The single cell analysis of neuronal subtypes has helped elucidate the mechanisms 

underlying neurogenesis. These mechanisms at molecular and cellular level govern 

heterogeneity within the cell types which are concealed by population-based cell 

identification approaches. Trajectory analysis revealed that the cells have a single fate of 

forming neurons but the rate at which all the cells will attain this state is not the same. 

Neurogenesis is a continuous dynamic process and previous studies have shown presence 

of rare cell types within a cell population. As expected trajectory analysis indicates 

heterogeneity because cells do not progress in synchrony during differentiation. Trajectory 

analysis of immature neurons in pseudo time revealed that some cells at day 5 and day 7 

showed biological activity similar to DNCs. None of the cells at day 10 exhibited this 

behavior clearly indicating presence of a transitioning population at earlier time points. 

Neurons are predominantly present at the end point of the trajectory path, but some cells 

are still behind in terms of their biological progression which has resulted in a heterogenous 

population. Heterogeneity has suggested presence of transitioning cell subpopulations. 

Critical insights during neurogenesis were concealed due to classification of neuronal cells 

into only four cell types based on time stamp at which they were collected. Previously, 

Wang, et al. performed hierarchical clustering for these cell types to detect presence of 

subpopulations within them. It is based on p-values assigned to genes or cells used to 

determine the clusters. They revealed presence of two subpopulations “a” and “b” in NPCs 

and a third subpopulation “c” in DNCs. Later the subpopulations “a” and “b” merged and 

two distinct populations “ab” and “c” were present at day 30. While their analysis aims at 
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detecting presence of subpopulations at different time points, it fails to track individual cell 

progress, variability and their expression profile at a particular time point by examining the 

pattern of gene expression. One of its disadvantages is that clustering is sensitive to noise 

and outliers within the dataset while monocle find noise or variability as useful biological 

information and effectively identifies presence of outliers as seen in NPCs and DNCs. 

Key regulators obtained from highest expressed genes and marker genes were 

evaluated for unique gene expression dynamics. Our observations revealed genes which 

were down regulated and upregulated as cells formed differentiated neurons. The members 

of the SFRP family act as WNT signaling pathway inhibitors [77], in addition to this they 

have specific biological function. SFRP2 plays important biological proliferation, 

migration and differentiation [66], and SFRP1 is expressed in embryonic brain [67], and 

helps in axon guidance regulation [77]. But studies have indicated that SFRPs also have 

WNT- independent function [78], where SFRP1 interacts with SFRP2 to promote axon 

guidance [77]. Another study revealed that SFRP1 and SFRP2 positively regulated the 

WNT- signaling pathway necessary for the development of mouse optic cup [64].  Previous 

studies have also revealed that the gene SFRP2 turned off when the cells attained terminal 

differentiation in mice during nephrogenesis [67]. SFRP1-/- and SFRP2 -/- mice indicated 

increased proliferation and generation of early born neurons in retinal neurogenesis study 

[78]. Low-medium concentrations of SFRP1 and SFRP2 has facilitated in in-vivo 

differentiation of dopaminergic neurons [79]. In this study, genes SFRP1 and SFRP2 

showed decreased level of gene expression over a period of two days (day 5 to day 7) and 

very low expression at days 7, 10 and 30. The heterogeneous nature of immature neurons 

and this gene activity suggests that the cells have attained differentiation after the decrease 
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in expression level of SFRP 1 &2. But given the wide range of biological functions of 

SFRPs with other factors their functional roles during in vitro and in vivo neurogenesis 

must be evaluated in the future. The gene expression of these two genes were not studied 

by Wang, et al., instead they showed downregulation of neuronal differentiation repressor 

REST as cells reached neuron stage.   

Genes which downregulated gradually over the time course profile were WNT5A and 

EFNA5. WNT5A has a non-canonical mode of action by activating wnt/planar cell polarity 

pathway [80]. It regulates the proliferation of neural precursor cells, the downregulation of 

WNT5A is due to decrease in the number of proliferating neural progenitor cells [81]. 

Wang, et al. also tested for WNTs among which only WNT5A was found to be highly 

expressed among precursor cells and then was downregulated. In our analysis, it is also 

observed that only WNT5A is expressed among all the other WNTs which was gradually 

downregulated indicating crucial role of WNT5A during proliferation of NPCs. Eph 

receptors are responsible for cell-to-cell signaling and are involved in neurogenesis, 

axonogenesis, neural migration, synapse formation and axon guidance by ephrin-eph 

signaling [56, 82]. EFNA5 (EphrinA5) is a neurogenesis factor [82], studies in mice have 

revealed lack of EFNA5 can severely reduce neuron survival and reduced cell proliferation 

[83]. The main function of EFNA5 is to modulate proliferation of neural progenitors cells 

[56]. Here we observed that EFNA5 is highly expressive at day 0 and is gradually 

downregulated as the cells reach neuron state. The downregulation is probably due to the 

decrease in the number of proliferative cells and this gene was not studied by Wang, et al.  

The genes DCX, MAP2 and STMN2 are well established neuronal markers. They were 

tested by Wang, et al. who observed upregulation of all the three genes. In contrast to their 
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approach of testing well-known neuronal markers our method of determining these genes 

was by performing marker gene analysis using SC3 [39]. DCX is a microtubule associated 

protein which is expressed in immature neurons during migration and dendritic growth and 

turned off as neurons reach a matured state [68, 84]. Here we observe that there is a gradual 

increase in the expression levels of DCX as the cells reach day 30. MAP2 is a structural 

protein necessary to maintain the cytoskeletal structure, mainly present in the dendrites of 

the neurons [85]. The expression levels of MAP2 also increases gradually as the cells reach 

neurons. STMN2 is upregulated from day 5 to day 30, it is a neuronal-growth associated 

protein (nGAP) and its expression is highly correlated to neuronal process, regeneration 

and outgrowth, other functions of this gene include regulation of neuronal cytoskeleton by 

microtubule destabilization [86]. Previous studies have shown that NPCs after 

differentiation showed expression of neuronal markers MAP2 (day 14) and STMN2 (day 

50) [87]. The upregulation of DCX, MAP2 and STMN2 is expected based on their 

biological functions and roles in neuronal development. 

The GO analysis by Wang et al. was performed using David software [33, 34] for two 

gene sets that distinguished the subpopulations. These gene sets were associated to 

anterior/posterior pattern, axon, neuron differentiation and other relevant terms. In contrast 

to their approach here the GO analysis was performed for highest expressed genes and 

marker genes for each cell type using GSEA software [40-42, 48]. Some of the key terms 

include neurogenesis, synapse formation, forebrain generation of neurons, olfactory lobe 

development, central nervous system development and others discussed in earlier sections. 

Some unexpected GO terms included negative regulation of neuron differentiation and 

nervous system development in the absence of two genes- UGT8 and SALL3. Both genes 
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have important biological functions, they are involved in regulation of synthesis of myelin 

sheath and olfactory bulb development respectively [57, 60], but the exact reasons for these 

GO terms observed is unclear and their regulatory pathways need further studies to 

elucidate the results.  

Despite current research and new findings, our understanding of neurogenesis is still 

limited in terms of molecular mechanisms which dictate cell proliferation, differentiation 

and survival [88]. ScRNA-seq analysis is a better tool to elucidate heterogeneity during 

development and differentiation by providing information regarding the genomic, 

epigenomic and transcriptomic states of cells during biological processes [89]. Even 

though this study provides new insights regarding in vitro neurogenesis many questions 

still remain unanswered. Based on previous studies, the decrease in gene expression of 

SFRP1 and SFRP2 is due to differentiation of the cells. But the SFRP proteins have a range 

of functions and they regulate the WNTs in both canonical and non-canonical pathways 

[90]. Whether they act as antagonists or protagonist of the WNT-signaling pathway is 

unclear. Previously it is observed that SFRP1 and SFRP2 do not directly regulate WNT5A 

[90]. In-depth understanding of the molecular interactions between SFRPs and WNTs can 

help answer why the only WNT being highly expressed during initial proliferative stages 

is WNT5A. Whether SFRP1 and SFRP2 interacts with WNT5A in a direct or indirect 

manner or has an independent mode of action is not understood yet. EFNA5 maintains the 

neural stem cell survival and proliferation [91], which explains high expression levels of 

EFNA5 in NPCs. Studies have showed that Eph:ephrin regulates axon guidance and 

synaptogenesis in the CNS [91]. It promotes or inhibits neurogenesis depending on specific 

Eph and ephrin interactions in forward or reverse manner [56]. While the GO analysis 



 

 

45 

 

revealed that EFNA5 is associated with axonogenesis, synapse formation and assembly, it 

is unclear how its decrease regulates these biological processes. Whether it has a forward 

or reverse action during neurogenesis is still unanswered. Future studies focusing on 

answering some of these questions can help in understanding the complex mechanisms and 

dynamic states of the cells during neurogenesis. 
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5. Conclusion 

 

The single cell analysis of the undifferentiated NPCs to neurons suggests that there 

exists heterogeneity within the cell types which is governed by the changes in expressed 

genes. The trajectory path of NPCs to neurons gives a visual representation of the 

biological activity of individual cells revealing heterogeneous nature of immature neurons 

and neurons. The GO results for highest expressed genes revealed that genes common 

among all the cell types were associated with GO terms for housekeeping. These genes are 

crucial to all the cells to maintain their proper functioning. Genes CALMN2, STMN1, 

SOX4 were highly expressed across all cell types except the NPCs. They were associated 

with GO term for the development of the central nervous system. Among highest expressed 

genes unique to only NPCs- WNT5A, EFNA5 and ADNP were associated with GO terms 

related to neuron development. The GO results for marker genes of each cell type revealed 

association with relevant GO terms such as forebrain generation of neurons, neurogenesis, 

olfactory lobe development and other related terms. In this study, we observed genes that 

were upregulated and downregulated as cells transitioned from one state to the other. Genes 

DCX, MAP2 and STMN2 were upregulated, whereas a gradual downregulation was 

observed in WNT5A and EFNA5, and SFRP1 and SFRP2 downregulated over a period of 

two days (day 5 to day 7). In summary, the study reveals critical factors which play 

important role in neurogenesis. Yet, there are a significant number of unanswered questions 

which can hinder progress in this area of research. Nevertheless, employing scRNA-seq 

technology has shown great promise in unfolding some novel insights regarding 

neurogenesis. 
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6. Future Directions 

 

The analysis performed in this study and results drawn are purely computational 

and hence the scRNA-seq pipeline can be completely automated to save computational 

time. ScRNA-seq platform is constantly improving with new technology and tools for 

analysis, it is necessary to update the pipeline in order to obtain more robust results. 

Different tools such as such as Seurat [92], and TSCAN [93] will be used to perform 

analysis to either validate or improvise the existing results. This study focus on four cell 

types and overlooks the presence of transitioning states. An analysis using dropClust will 

be employed for identification of these minor cell subtypes [94]. An unsupervised analysis 

which does not consider any prior information regarding cell states will be insightful. A 

better understanding of the biological activity of the cells and gene expression activity will 

be possible if the scRNA-seq data is generated for nearer time points. In case of genes 

SFRP1 and SFRP2 transcriptional profile of the cells at day 6 could help us understand 

functioning of the genes better. While the roles of WNT5A, DCX, MAP2 and STMN2 

have been studied excessively, experimental studies to elucidate the functional roles of the 

genes EFNA5, SFRP1 and SFRP2 and their interactions with other closely related proteins 

during neurogenesis should be done. This will help to validate results and to reveal their 

clinical implications. Defects in these factors could play key roles in neurodegenerative 

diseases. A comparative analysis of neurodegenerative disorders against a healthy brain 

will elucidate the mechanisms leading to the development of Parkinson’s, Schizophrenia 

and Alzheimer’s. 
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7. Appendix 

A.: Supplementary Tables 

Table a.: List of top 50 expressed genes in four cell types 

NPC (19.3%) DNC (18.7%) IN (17.8%) N (22.9%) 
LSM12  TMSB4X  NREP  LDHB  
ENO1 YWHAZ RPL10 SET 
RPL7P9 ZNF286A HNRNPA2B1 SAT1 
EFNA5 SCUBE3 ATP5A1 MAP2 
YWHAZ PPIA YWHAZ EIF2S3 
LDHB ATP5A1 LDHB YWHAZ 
MARCKS NR6A1 TBL1XR1 NKTR 
ZNF286A NPM1 DCX TXNIP 
ARRDC3 PAFAH1B2 KPNA2 WSB1 
NR6A1 NASP CAPZA1 FTL 
HSP90AA1 ANP32E H2AFZ SRSF6 
H3F3B H3F3B ETNK1 RPS18 
ADNP SOX4 HSP90AA1 HMGCS1 
RPL41 LDHB PPIA HSP90AA1 
SAT1 MAPK1IP1L ARRDC3 CKB 
DDX5 SOX11 H3F3B RPL7P9 
WNT5A RPL41 PAFAH1B2 RPL10 
MALAT1 CALM2 RPL7 CALM2 
MAPK1IP1L MORF4L1 RPL41 RPL41 
RACK1 H2AFZ CALM2 DAAM1 
RPL7 RPL7 SOX11 KCNQ1OT1 
H2AFZ HSP90AA1 SRSF3 NREP 
SRSF3 PPP1CB HMGN2 ALDOA 
RPL15 CAPZA1 PPP1CB SOX11 
NPM1 RACK1 ENO1 DDX5 
HMGN2 HMGN2 EIF2S3 RPL7 
CNOT9 DDX5 ANP32E NEAT1 
ETNK1 EIF2S3 RACK1 H3F3B 
PAFAH1B2 CBX5 HSP90AB1 RACK1 
PPP1CB RPL15 RPL15 HSP90AB1 
SOX11 SRSF3 SET SCD 
GAPDH HSP90AB1 SOX4 ARRDC3 
RPLP0 SET CBX5 RPL15 
ACTG1 RPLP0 DDX5 STMN1 
RPL3 GAPDH RPL3 RPLP0 
HSP90AB1 MARCKS RPLP0 DCX 
CAPZA1 RPL3 STMN1 MARCKS 
EEF1A1P6 STMN1 GAPDH RPL3 
ANP32E MALAT1 ACTG1 ACTG1 
TUBA1A PRTG MARCKS GAPDH 
CBX5 ACTG1 SRSF6 ENO1 
EEF1A1P5 MAP1B ACTB MTCO1P12 
ACTB DPYSL2 EEF1A1P6 EEF1A1P6 
MTCO1P12 SRSF6 DPYSL2 SOX4 
DPYSL2 EEF1A1P6 EEF1A1P5 EEF1A1P5 
MAP1B EEF1A1P5 MTCO1P12 MAP1B 
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EIF2S3 ACTB MALAT1 DPYSL2 
SET TUBA1A MAP1B TUBA1A 
SRSF6 MTCO1P12 TUBA1A MALAT1 
EEF1A1 EEF1A1 EEF1A1 EEF1A1 

 

Table b.: The 20 housekeeping genes filtered 

ANKDR10 TLK1 ADNP YWHAE CHP1 
TUBA1C MARK1IPIL HNRNPH1 HMGB1 RPL4 
UBC TUBB C6orf62 HSPA8 TPI1 
TUBA1B MARCH6 FDFT1 MDRF4L2 GPI 

 

Table c.: Gene list for common and unique highest expressed genes among four cell types 

 

 

 

 

Cell type Number of 
Genes 

List of Genes 

NPC Ç DNCÇ IN Ç N  
 
 
 

27 SET HSP90AB1 MAP1B EEF1A1P5 
MTCO1P12 EIF2S3 GAPDH RPL7 DDX5 
MALAT1 RPLP0 EEF1A1 SOX11 RPL41 
MARCKS DPYSL2 RPL3 LDHB RACK1 
HSP90AA1 EEF1A1P6 TUBA1A YWHAZ 
ACTG1 RPL15 H3F3B SRSF6 

N 13 ALDOA SCD CKB DAAM1 NEAT1 RPS18 
KCNQ1OT1 TXNIP MAP2 WSB1 NKTR FTL 
HMGCS1 

NPC Ç DNC Ç IN  9 PPP1CB ACTB PAFAH1B2 CBX5 SRSF3 
HMGN2 H2AFZ ANP32E CAPZA1 

DNC 5 NASP TMSB4X PRTG MORF4L1 SCUBE3 

NPC 5 WNT5A EFNA5 ADNP LSM12 CNOT9 
IN 3 HNRNPA2B1 KPNA2 TBL1XR1 
NPC Ç DNC 4 ZNF286A MAPK1IP1L NPM1 NR6A1 
DNC Ç IN Ç N 3 CALM2 STMN1 SOX4 
IN Ç N 3 RPL10 NREP DCX 
DNC Ç IN 2 PPIA ATP5A1 
NPC Ç IN Ç N 2 ENO1 ARRDC3 
NPC Ç N 2 RPL7P9 SAT1 
NPC Ç IN 1 ETNK1 
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Table d.: List of marker genes of all cell types 

NPC DNC IN N 
PRTG  ZIC2  STMN2  ADCY2 
MEIS1  SLIT2 DCX POU2F2 
HOXB−AS3  WNT5A MLLT11 SOX4 
WNT5A  CWC22 ELAVL4 DCX 
HOXA3  SPARC KIF5A CADM1 
MLLT3  SALL3 NEFM SOX11 
UGT8  SFRP2 MAP2 SALL1 
SLIT2  RPL3 GNG3  
SALL3  EEF1A1 INA  
B2M  EEF1A1P6 MAP1B  
SPARC EEF1A1P5 PRTG  
 RP11−889L3.1 SFRP2  
 RPL3P7 SFRP1  
 RPL19   
 RPL3P4   
 EEF1A1P11   

 

 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

51 

 

8. References 

 
1. Turksen K. and T. Troy, Human Embryonic Stem Cells Protocols. Methods in 

Molecular Biology, 2006. 331. 
2. Yu, J. and J. Thomson. Stem Cell Information. 2016. 
3. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., 

Marshall, V. S., & Jones, J. M, Embryonic stem cell lines derived from human 
blastocysts. . Science, 1998. 282(5391): p. 1145-1147. 

4. Murry, C.E. and G. Keller, Differentiation of embryonic stem cells to clinically 
relevant populations: lessons from embryonic development. Cell, 2008. 132(4): p. 
661-680. 

5. Johnson, M.B., & Walsh, C. A., Cerebral cortical neuron diversity and 
development at single-cell resolution. . Current opinion in neurobiology, 2017. 42: 
p. 9-16. 

6. Yang, D., Zhang, Z. J., Oldenburg, M., Ayala, M., & Zhang, S. C., Human 
embryonic stem cell-derived dopaminergic neurons reverse functional deficit in 
parkinsonian rats. Stem Cells, 2008. 26(1): p. 55-63. 

7. Ganat, Y.M., Calder, E. L., Kriks, S., Nelander, J., Tu, E. Y., Jia, F, Identification 
of embryonic stem cell–derived midbrain dopaminergic neurons for engraftment. 
The Journal of clinical investigation., 2012. 122(8): p. 2928-2939. 

8. Roubal, I., Park, S. J., & Kim, Y. , Derivation of Neural Precursor Cells from 
Human Embryonic Stem Cells for DNA Methylomic Analysis. In Embryonic Stem 
Cell Protocols, 2014: p. 345-357. 

9. Ming, G.L., & Song, H. , Adult neurogenesis in the mammalian brain: significant 
answers and significant questions. Neuron, 2011. 70(4): p. 687-702. 

10. Urbán, N., & Guillemot, F., Neurogenesis in the embryonic and adult brain: same 
regulators, different roles. . Frontiers in cellular neuroscience, 2014. 8. 

11. Jin, X., The role of neurogenesis during development and in the adult brain. 
European Journal of Neuroscience, 2016. 44(6): p. 2291-2299. 

12. Wang, J., Jenjaroenpun, P., Bhinge, A., Angarica, V. E., Del Sol, A., Nookaew, I., 
... & Stanton, L. W., Single-cell gene expression analysis reveals regulators of 
distinct cell subpopulations among developing human neurons. Genome research, 
2017. 27(11): p. 1783-1794. 

13. Bond, A.M., Ming, G. L., & Song, H., Adult mammalian neural stem cells and 
neurogenesis: five decades later. Cell Stem Cell, 2015. 17(4): p. 385-395. 

14. Ofengeim, D., Giagtzoglou, N., Huh, D., Zou, C., & Yuan, J. , Single-Cell RNA 
sequencing: unraveling the brain one cell at a time. Trends in molecular medicine, 
2017. 23(6): p. 563-576. 

15. Habib, N., Li, Y., Heidenreich, M., Swiech, L., Avraham-Davidi, I., Trombetta, J. 
J., ... & Regev, A., Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare 
adult newborn neurons. Science, 2016. 353(6302): p. 925-938. 

16. Lengler, J., Jug, F., & Steger, A., Reliable neuronal systems: the importance of 
heterogeneity. PloS onw, 2013. 8(12). 

17. Kukurba, K.R. and S.B. Montgomery, RNA Sequencing and Analysis. Cold Spring 
Harb Protoc, 2015. 2015(11): p. 951-69. 



 

 

52 

 

18. Zeisel, A., Muñoz-Manchado, A. B., Codeluppi, S., Lönnerberg, P., La Manno, G., 
Juréus, A., ... & Rolny, C. , Cell types in the mouse cortex and hippocampus 
revealed by single-cell RNA-seq. Science, 2015. 347(6226): p. 1138-1142. 

19. Tao, Y., & Zhang, S. C. , Neural subtype specification from human pluripotent stem 
cells. Cell Stem Cell, 2016. 19(5): p. 573-586. 

20. Lake, B.B., Ai, R., Kaeser, G. E., Salathia, N. S., Yung, Y. C., Liu, R., ... & 
Vijayaraghavan, R., Neuronal subtypes and diversity revealed by single-nucleus 
RNA sequencing of the human brain. Science, 2016. 352(6293): p. 1586-1590. 

21. Hook, P.W., McClymont, S. A., Cannon, G. H., Law, W. D., Morton, A. J., Goff, 
L. A., & McCallion, A. S. , Single-Cell RNA-Seq of Mouse Dopaminergic Neurons 
Informs Candidate Gene Selection for Sporadic Parkinson Disease. . The American 
Journal of Human Genetics, 2018. 102(3): p. 427-446. 

22. Chen, R., Wu, X., Jiang, L., & Zhang, Y. , Single-cell RNA-seq reveals 
hypothalamic cell diversity. Cell reports, 2017. 18(13): p. 3227-3241. 

23. Stanley, G., Gokce, O., Treutlein, B., Sudhof, T. C., & Quake, S., Cellular 
Taxonomy of the Mouse Striatum as Revealed by Single Cell RNA Sequencing. 
Biophysical Journal, 2016. 110(3): p. 321a. 

24. Shin, J., Berg, D. A., Zhu, Y., Shin, J. Y., Song, J., Bonaguidi, M. A., ... & Song, 
H., Single-cell RNA-seq with waterfall reveals molecular cascades underlying 
adult neurogenesis. . Cell Stem Cell, 2015. 17(3): p. 360-372. 

25. Hochgerner, H., Zeisel, A., Lönnerberg, P., & Linnarsson, S. , Conserved 
properties of dentate gyrus neurogenesis across postnatal development revealed by 
single-cell RNA sequencing. . Nature Neuroscience 2018: p. 1. 

26. Pandey, S., Shekhar, K., Regev, A., & Schier, A. F. , Comprehensive identification 
and spatial mapping of habenular neuronal types using single-cell RNA-seq  
Current Biology, 2018. 28(7): p. 1052-1065. 

27. Li, H., Horns, F., Wu, B., Xie, Q., Li, J., Li, T., ... & Luo, L. , Classifying 
Drosophila Olfactory Projection Neuron Subtypes by Single-Cell RNA Sequencing. 
Cell, 2017. 171(5): p. 1206-1220. 

28. Davie, K., Janssens, J., Koldere, D., De Waegeneer, M., Pech, U., Kreft, Ł., ... & 
Poovathingal, S., A single-cell transcriptome atlas of the aging Drosophila brain. 
Cell, 2018. 

29. Tietjen, I., Rihel, J. M., Cao, Y., Koentges, G., Zakhary, L., & Dulac, C, Single-
cell transcriptional analysis of neuronal progenitors. Neuron, 2003. 38(2): p. 161-
175. 

30. Close, J.L., Yao, Z., Levi, B. P., Miller, J. A., Bakken, T. E., Menon, V., ... & 
Nelson, A. M., Single-cell profiling of an in vitro model of human interneuron 
development reveals temporal dynamics of cell type production and maturation. . 
Neuron, 2017. 93(5): p. 1035-1048. 

31. Yao, Z., Mich, J. K., Ku, S., Menon, V., Krostag, A. R., Martinez, R. A., ... & 
Gregor, B. W., A single-cell roadmap of lineage bifurcation in human ESC models 
of embryonic brain development. Cell Stem Cell, 2017. 20(1): p. 120-134. 

32. Fiddes, I.T., Lodewijk, G. A., Mooring, M., Bosworth, C. M., Ewing, A. D., 
Mantalas, G. L., ... & Lorig-Roach, R., Human-specific NOTCH2NL genes affect 
Notch signaling and cortical neurogenesis. Cell, 2018. 173(6): p. 1356-1369. 



 

 

53 

 

33. Huang, D.W., Sherman, B. T., & Lempicki, R. A. , Systematic and integrative 
analysis of large gene lists using DAVID bioinformatics resources. Nature 
Protocols, 2008. 4(1): p. 44. 

34. Huang, D.W., Sherman, B. T., & Lempicki, R. A. , Bioinformatics enrichment 
tools: paths toward the comprehensive functional analysis of large gene lists. 
Nucleic acids research, 2008. 37(1): p. 1-13. 

35. Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., ... & 
Rinn, J. L., The dynamics and regulators of cell fate decisions are revealed by 
pseudotemporal ordering of single cells. Nature Biotechnology, 2014. 32(4): p. 
381. 

36. Qiu, X., Hill, A., Packer, J., Lin, D., Ma, Y. A., & Trapnell, C. , Single-cell mRNA 
quantification and differential analysis with Census. Nature methods, 2017. 14(3): 
p. 309. 

37. Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., Pliner, H., & Trapnell, C. , 
Reversed graph embedding resolves complex single-cell developmental 
trajectories. BioRxiv, 2017. 110668. 

38. McCarthy, D.J., Campbell, K. R., Lun, A. T., & Wills, Q. F. , Scater: pre-
processing, quality control, normalization and visualization of single-cell RNA-seq 
data in R. . Bioinformatics, 2017. 33(8): p. 1179-1186. 

39. Kiselev, V.Y., Kirschner, K., Schaub, M. T., Andrews, T., Yiu, A., Chandra, T., ... 
& Hemberg, M., SC3: consensus clustering of single-cell RNA-seq data. . Nature 
Methods, 2017. 14(5): p. 483. 

40. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, 
M. A., ... & Mesirov, J. P., Gene set enrichment analysis: a knowledge-based 
approach for interpreting genome-wide expression profiles. Proceedings of the 
National Academy of Sciences 2005. 102(43): p. 15545-15550. 

41. Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., & 
Mesirov, J. P. , Molecular signatures database (MSigDB) 3.0. Bioinformatics, 
2011. 27(12): p. 1739-1740. 

42. Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P., & 
Tamayo, P. , The molecular signatures database hallmark gene set collection. Cell 
systems, 2015. 1(6): p. 417-425. 

43. X, G.P.v.f.M.O., Normality test and Kruskal-Wallis non-parametric test followed 
by Dunnett’s multiple comparisons test. 2017: La Jolla California USA. p. 
GraphPad Prism Software. 

44. Komin, N., & Skupin, A., How to address cellular heterogeneity by distribution 
biology. Current Opinion in Systems Biology, 2017. 3: p. 154-160. 

45. Altschuler, S.J., & Wu, L. F. , Cellular heterogeneity: do differences make a 
difference? Cell, 2010. 141(4): p. 559-563. 

46. Dulken, B.W., Leeman, D. S., Boutet, S. C., Hebestreit, K., & Brunet, A. , Single-
cell transcriptomic analysis defines heterogeneity and transcriptional dynamics in 
the adult neural stem cell lineage. Cell reports, 2017. 18(3): p. 777-790. 

47. Eisenberg, E., & Levanon, E. Y., Human housekeeping genes, revisited. Trends in 
Genetics, 2013. 29(10): p. 569-574. 

48. Bioinformatics and Evolutionary Genomics. Available from: 
http://bioinformatics.psb.ugent.be/webtools/Venn/. 



 

 

54 

 

49. Hsiao, L.L., Dangond, F., Yoshida, T., Hong, R., Jensen, R. V., Misra, J., ... & 
Weng, Z., A compendium of gene expression in normal human tissues. 
Physiological genomics, 2001. 7(2): p. 97-104. 

50. Toutenhoofd, S.L., Foletti, D., Wicki, R., Rhyner, J. A., Garcia, F., Tolon, R., & 
Strehler, E. E., Characterization of the human CALM2 calmodulin gene and 
comparison of the transcriptional activity of CALM1, CALM2 and CALMS. . Cell 
calcium, 1998. 23(5): p. 323-338. 

51. Bergsland, M., Werme, M., Malewicz, M., Perlmann, T., & Muhr, J., The 
establishment of neuronal properties is controlled by Sox4 and Sox11. Genes & 
development, 2006. 20(24): p. 3475-3486. 

52. Cheung, M., Abu-Elmagd, M., Clevers, H., & Scotting, P. J. , Roles of Sox4 in 
central nervous system development1. Molecular brain research, 2000. 79(1-2): p. 
180-191. 

53. Machado-Neto, J.A., Saad, S. T. O., & Traina, F. , Stathmin 1 in normal and 
malignant hematopoiesis. BMB reports, 2014. 47(12): p. 660. 

54. Lange, C., Mix, E., Rateitschak, K., & Rolfs, A., Wnt signal pathways and neural 
stem cell differentiation. . Neurodegenerative Diseases, 2006. 3(1-2): p. 76-86. 

55. Mandel, S., Rechavi, G., & Gozes, I., Activity-dependent neuroprotective protein 
(ADNP) differentially interacts with chromatin to regulate genes essential for 
embryogenesis. Developmental Biology, 2007. 303(2): p. 814-824. 

56. Laussu, J., Khuong, A., Gautrais, J., & Davy, A., Beyond boundaries—Eph: ephrin 
signaling in neurogenesis. . Cell adhesion & migration, 2014. 8(4): p. 349-359. 

57. Guan, Q., Wang, X., Jiang, Y., Zhao, L., Nie, Z., & Jin, L. , RNA-Seq Expression 
Analysis of Enteric Neuron Cells with Rotenone Treatment and Prediction of 
Regulated Pathways. Neurochemical research, 2017. 42(2): p. 572-582. 

58. Dziȩgiel, P., Owczarek, T., Plazuk, E., Gomułkiewicz, A., Majchrzak, M., 
Podhorska-Okołów, M., ... & Ugorski, M. , Ceramide galactosyltransferase 
(UGT8) is a molecular marker of breast cancer malignancy and lung metastases. . 
British journal of cancer, 2010. 103(4): p. 524. 

59. Hunter, M., Demarais, N. J., Faull, R. L., Grey, A. C., & Curtis, M. A., Layer-
specific lipid signatures in the human subventricular zone demonstrated by imaging 
mass spectrometry. Scientific Reports, 2018. 8(1): p. 2552. 

60. Heng, X., Breer, H., Zhang, X., Tang, Y., Li, J., Zhang, S., & Le, W., Sall3 
correlates with the expression of TH in mouse olfactory bulb. . Journal of Molecular 
Neuroscience, 2012. 46(2): p. 293-302. 

61. Harrison, S.J., Nishinakamura, R., Jones, K. R., & Monaghan, A. P., Sall1 regulates 
cortical neurogenesis and laminar fate specification in mice: implications for 
neural abnormalities in Townes-Brocks syndrome. Disease models & mechnisms, 
2012. dmm-002873. 

62. Quick GO: Neuron Projection. European Bioinformatics Institute; Available from: 
https://www.ebi.ac.uk/QuickGO/term/GO:0043005. 

63. Quick GO: Neuron Part. European Bioinformatics Institute; Available from: 
https://www.ebi.ac.uk/QuickGO/term/GO:0097458. 

64. Esteve, P., Sandonìs, A., Ibañez, C., Shimono, A., Guerrero, I., & Bovolenta, P. , 
Secreted frizzled-related proteins are required for Wnt/β-catenin signalling 
activation in the vertebrate optic cup. Development, 2011. 138(19): p. 4179-4184. 



 

 

55 

 

65. Bovolenta, P., Esteve, P., Ruiz, J. M., Cisneros, E., & Lopez-Rios, J. , Beyond Wnt 
inhibition: new functions of secreted Frizzled-related proteins in development and 
disease. J Cell Sci, 2008. 121(6): p. 737-746. 

66. Lin, X., Dong, R., Diao, S., Yu, G., Wang, L., Li, J., & Fan, Z. , SFRP2 enhanced 
the adipogenic and neuronal differentiation potentials of stem cells from apical 
papilla. Cell biology international, 2017. 41(5): p. 534-543. 

67. Leimeister, C., Bach, A., & Gessler, M. , Developmental expression patterns of 
mouse sFRP genes encoding members of the secreted frizzled related protein 
family. Mechanisms of Development, 1988. 75(1-2): p. 29-42. 

68. Gleeson, J.G., Lin, P. T., Flanagan, L. A., & Walsh, C. A. , Doublecortin is a 
microtubule-associated protein and is expressed widely by migrating neurons. 
Neuron, 1999. 23(2): p. 257-271. 

69. Yap, C.C., Digilio, L., McMahon, L., Roszkowska, M., Bott, C. J., Kruczek, K., & 
Winckler, B. , Different doublecortin (DCX) patient alleles show distinct 
phenotypes in cultured neurons: evidence for divergent loss-of-function and off-
pathway cellular mechanisms. Journal of Biological Chemistry, 2016. jbc-M116. 

70. Dehmelt, L., & Halpain, S. , The MAP2/Tau family of microtubule-associated 
proteins. Genome biology, 2005. 6(1): p. 204. 

71. Sanchez, C., Dıaz-Nido, J., & Avila, J., Phosphorylation of microtubule-associated 
protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton 
function. . Progress in neurobiology, 2000. 61(2): p. 133-168. 

72. Chiellini, C., Grenningloh, G., Cochet, O., Scheideler, M., Trajanoski, Z., Ailhaud, 
G., ... & Amri, E. Z., Stathmin-like 2, a developmentally-associated neuronal 
marker, is expressed and modulated during osteogenesis of human mesenchymal 
stem cells. Biochemical and biophysical research communications, 2008. 374(1): 
p. 64-68. 

73. Camoletto, P., Colesanti, A., Ozon, S., Sobel, A., & Fasolo, A. , Expression of 
stathmin and SCG10 proteins in the olfactory neurogenesis during development 
and after lesion in the adulthood. Brain research bulletin, 2001. 54(1): p. 19-28. 

74. Quick GO: Cell Development. European Bioinformatics Institute; Available from: 
https://www.ebi.ac.uk/QuickGO/term/GO:0048468. 

75. Petroff, O.A., Book review: GABA and glutamate in the human brain. The 
Neuroscientist, 2002. 8(6): p. 562-573. 

76. Lujan, R., Shigemoto, R., & Lopez-Bendito, G. , Glutamate and GABA receptor 
signalling in the developing brain. . Neuroscience, 2005. 130(3): p. 567-580. 

77. Nathan, E., & Tzahor, E. , sFRPs: a declaration of (Wnt) independence. Nature cell 
Biology, 2009. 11(1): p. 13. 

78. Esteve, P., Sandonìs, A., Cardozo, M., Malapeira, J., Ibañez, C., Crespo, I., ... & 
Shimono, A. , SFRPs act as negative modulators of ADAM10 to regulate retinal 
neurogenesis. Nature Neuroscience, 2011. 14(5): p. 562. 

79. Kele, J., Andersson, E. R., Villaescusa, J. C., Cajanek, L., Parish, C. L., Bonilla, S., 
... & Arenas, E. , SFRP1 and SFRP2 dose-dependently regulate midbrain dopamine 
neuron development in vivo and in embryonic stem cells. Stem Cells, 2012. 30(5): 
p. 865-875. 



 

 

56 

 

80. Andersson, E.R., Prakash, N., Cajanek, L., Minina, E., Bryja, V., Bryjova, L., ... & 
Arenas, E. , Wnt5a regulates ventral midbrain morphogenesis and the development 
of A9–A10 dopaminergic cells in vivo. PLoS one, 2008. 3(10): p. e3517. 

81. Subashini, C., Dhanesh, S. B., Chen, C. M., Riya, P. A., Meera, V., Divya, T. S., ... 
& James, J., Wnt5a is a crucial regulator of neurogenesis during cerebellum 
development. Scientific Reports, 2017. 7: p. 42523. 

82. Worku, T., Wang, K., Ayers, D., Wu, D., Ur Rehman, Z., Zhou, H., & Yang, L., 
Regulatory roles of ephrinA5 and its novel signaling pathway in mouse primary 
granulosa cell apoptosis and proliferation. Cell Cycle, 2018: p. 1-11. 

83. Hara, Y., Nomura, T., Yoshizaki, K., Frisén, J., & Osumi, N. , Impaired 
Hippocampal neurogenesis and vascular formation in ephrin-A5-deficient mice. 
Stem Cells, 2010. 28(5): p. 974-983. 

84. Spampanato, J., Sullivan, R. K., Turpin, F. R., Bartlett, P. F., & Sah, P., Properties 
of doublecortin expressing neurons in the adult mouse dentate gyrus. PLoS one, 
2012. 7(9): p. e41029. 

85. Johnson, G.V.W., & Jope, R. S., The role of microtubule-associated protein 2 
(MAP-2) in neuronal growth, plasticity, and degeneration. Journal of neuroscience 
research, 1992. 33(4): p. 505-512. 

86. Mori, N., & Morii, H. , SCG10-related neuronal growth-associated proteins in 
neural development, plasticity, degeneration, and aging. Journal of neuroscience 
research, 2002. 70(3): p. 264-273. 

87. Blair, J.D., Hockemeyer, D., Doudna, J. A., Bateup, H. S., & Floor, S. N., 
Widespread translational remodeling during human neuronal differentiation. Cell 
reports, 2017. 21(7): p. 2005-2016. 

88. Zhao, C., Deng, W., & Gage, F. H. , Mechanisms and functional implications of 
adult neurogenesis. Cell, 2008. 132(4): p. 645-660. 

89. Duran, R.C.D., Wei, H., & Wu, J. Q. , Single-cell RNA-sequencing of the brain. . 
Clinical and translational medicine, 2017. 6(1): p. 20. 

90. Satoh, W., Gotoh, T., Tsunematsu, Y., Aizawa, S., & Shimono, A., Sfrp1 and Sfrp2 
regulate anteroposterior axis elongation and somite segmentation during mouse 
embryogenesis. . Development, 2006. 133(6): p. 989-999. 

91. Jiao, J.W., Feldheim, D. A., & Chen, D. F., Ephrins as negative regulators of adult 
neurogenesis in diverse regions of the central nervous system. Proceedings of the 
National Academy of Sciences, 2008. 105(25): p. 8778-8783. 

92. Butler, A., Hoffman, P., Smibert, P., Papalexi, E., & Satija, R. , Integrating single-
cell transcriptomic data across different conditions, technologies, and species. 
Nature Biotechnology, 2018. 36(5): p. 411. 

93. Ji, Z., & Ji, H., TSCAN: Pseudo-time reconstruction and evaluation in single-cell 
RNA-seq analysis. Nucleic acids research, 2016. 44(13): p. e117-e117. 

94. Sinha, D., Kumar, A., Kumar, H., Bandyopadhyay, S., & Sengupta, D., dropClust: 
efficient clustering of ultra-large scRNA-seq data. Nucleic acids research, 2018. 
46(6): p. e36-e36. 

 


