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This thesis presents the development of CAM, a Cranial Angle Monitor, using a Metawear Cpro 

Inertial Measurement Unit (IMU). The goal of CAM is to measure static cranial position, so the 

major task was to optimize the accuracy and stability of components of the IMU, by developing 

algorithms to compensate for errors. It was found that the gyroscope drift was linear, but varied 

among IMUs and among axes. Gyroscope performance was measured during multiple test runs 

under static conditions, to test the influence of several parameters, including, device, axis, run 

time, orientation, and time between runs.  Drifts between devices and the 3 angular axes were 

tested and found to be inconsistent and could not be used for calibration. Other factors, including 

run duration, orientation, and time between runs, did not significantly influence repeatability, and 

results were consistent within 1°/min. Static tests were done with the IMU sitting on a table or 

attached to a vertical surface. Dynamic tests were done with the IMU fixed to a robotic arm and 

rotated 1 radian in each gyroscope axis individually to determine the sensor’s accuracy. While the 

IMU proved highly accurate for dynamic motions, with < 0.33 degrees error, the inherent 

baseline drift of the gyroscope proved too large for static applications of hour long testing, such 

as HoBE tracking in hospitals. These results provide the first systematic test of factors 

influencing IMU accuracy in static and dynamic conditions for the CAM. 
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Introduction

For patients who are confined to bed for long periods In the hospital, positioning the 

patient’s head with respect to gravity is a simple but critical maneuver that attempts to optimally 

adjust cerebral blood flow (CBF). Maintaining proper levels of CBF, and the related parameter, 

intracranial pressure (ICP), is necessary to reduce the risk of ventilator-associated pneumonia and 

aspiration [1-3], as well as the risk of bedsores [1]. Its efficacy depends on several factors. Firstly, 

bed angle does not necessarily correlate with head posture: the patient’s head seldom aligns with 

bed angle, due to bedding and other materials. Patients will also migrate on the bed, usually 

toward the foot, which reduces the torso and head angle [4]. Secondly, although 

recommendations of 30° or 45° head of bead elevation (HoBE) are generally followed in different 

situations, no clear standards exist for monitoring the cranial angle of Patients with Traumatic 

Brain Injury (TBI) during treatment in the Surgical Intensive Care Unit (SICU). Furthermore, 

compliance with recommendations is variable in ICUs [5-7]. Thirdly, reporting accuracy and 

perception of HoBE by clinicians can be poor, with only 53% of Physicians, and 50% of Nurses 

estimating it within ±5° in a study of compliance [8]. Finally, there is evidence that raising the 

head may not always be efficacious for patients with brain injury [9]. These factors must be 

understood and/or corrected in order to optimize treatments for TBI in the SICU, and are 

addressed here.  

There is a need for an autonomous monitor of HoBE. Various HoBE sensing systems 

have been developed, but none are ideal. Beds can be instrumented with positional sensors 

[10,11], but these do not directly measure head angle as stated above, and are impractical to 

install in several beds of the SICU. Some advanced beds (i.e. Hill-Rom Advanta 2) include a 

digital goniometer that displays, but does not transmit bed angle. Motion capture systems have 

been applied to quantifying HoBE for research [4,12], however these are impractical in the SICU 
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for reasons of bulkiness and privacy. Inclinometers for measuring torso angle in bed, via a sensor 

placed on the sternum have been designed, but these are not yet commercially available, and may 

not be appropriate [11,13].  My design for monitoring HoBE is the Cranial Angle Monitor 

(CAM), which is an adaptation of Inertial Measurement Units (IMUs) that are in common use 

within our lab for the past 10 years. 

HoBE is a common and simple intervention, that when properly used in the ICU, can 

make the difference between (1) preserving or losing brain function, (2) aspirating fluid and 

contracting pneumonia or breathing normally, and possibly (3) acquiring bed sores or not. As 

noted, current practice in HoBE is sometimes arbitrary, not quantitative, and often inaccurately 

estimated. Electronic HoBE monitoring is a fairly small but necessary step to achieving these 

clinical goals. 

CAM data can be used to estimate patient’s motions in the bed, in particular, sliding and 

subsequent repositioning by a nurse. Sliding in hospital beds can be detrimental to the patient, 

since they involve friction and shear to the skin, which are major sources of skin breakdown. It is 

also detrimental to the Nurses, who frequently injure their spines lifting the patient back up. The 

motion data will help to quantify these events, and possibly suggest improvements in bed 

adjustments. 

Besides HoBE, there are other uses for a small device that can measure human 

movements, including balance tests and athletic training. In the lab the CAM was being used to 

measure head angle while a person was brushing their teeth. The CAM was programed to start 

collecting head position at the same time as a Adafruit sensor in the Dynabrush recorded force, 

acceleration, and gyroscope data. Other methods used to measure head angles are depth cameras 

and motion capture suits. While each of these methods is well studied to measure position of the 

body, it would be more expensive, and very difficult to implement in a clinical setting. 



 

 

3 

 

 

 

 IMU’s are electronic devices that contain a accelerometer, gyroscope, and sometimes a 

magnetometer. The primary purpose of an IMU is to record its position in space. IMU’s can be 

used to help monitor and control unmanned aerial units, as well as help monitor movement of 

vehicles when a GPS signal is not available [14]. The difficulty in using an IMU is that 

accelerometer and gyroscope data cannot be simply integrated to determine the polar and 

cartesian position of the device. Some types of errors in position can result from numerous factors 

such as baseline offset, noise, and unstable mounting, but these are relatively easy to fix. The 

major problem with IMUs is signal drift with time, due to continuous accumulation of errors 

during the integration. Small errors in acceleration or angular velocity will continuously 

accumulate during integration, creating increasing signal error with time, which is referred to as 

drift [15].  To attempt corrections for the drift, filters, have been developed which incorporate 

both acceleration and gyroscopic data. For example, the Kalman filter minimizes error involved 

using mean-squared estimation, and is routinely used for autonomous manufacturing, and 

monitoring the altitude, position, and speed of ships, aircraft, and even satellites [16]. While very 

accurate, the Kalman filter would not be necessary for use in a CAM device. The other, more 

simplistic filter is the complementary filter, which used the equation  

                                              

As a loop calculation, i refers to the current time point in the raw data, and angle is the calculated 

angle at that given time point. Gyro is the current angular velocity in the raw data of the 

gyroscope, acc is the angular velocity measured using acceleration, and dt is the time difference 

between each data point. a is a constant that ranges from .9 to 1 to increase the effect of 

gyroscope data over acceleration. The purpose of the complementary filter is that angular velocity 

based on acceleration acts as a low pass filter minimizing the effect of drift on the final output 

[17].  
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Methods 

Design and Specification of CAM 

The CAM is a fixation 

device that attaches a gyroscope to 

the postauricular region. This is a 

location where skin movement is 

negligible during cervical joint 

articulation. The device has a 

hook, similar to modern bluetooth 

headsets, that attaches to the ear. The hook then connects to a 3D printed container for the sensor. 

The weight of the total package, when printed, should be less than 100 grams. The current design 

for the CAM used in the lab can be seen in figure 1. The container is used to stabilize the position 

of the sensor in the device as well as create a non-conducting barrier between the sensor and 

patients skin. The container is designed in an upper and lower component that has a lip for 

attachment. The top portion of the container has a small hole for access to the push-button switch 

as well as creating a visual marker for the current orientation of the sensor. Additionally the hook 

and container will be covered by silicone for further safety and comfort. The sensor used for our 

CAM device is the Metawear Cpro from Mbientlab. Currently mbientlab sells containers similar 

to the container that our lab designed for their metawear sensors. 

Metawear Cpro is a 9 axis IMU developed by mbientlab INC. For the implementation of 

the CAM we primarily used the gyroscope, the specifications of which can be found in table 1. 

Here I tested two Cpro sensors with serial numbers of 00C08D and 00C500, which will be 

referred to as metawear 1 and 2 respectively.  

 

Figure 1- CAM Design 
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Table 1 - Metawear Cpro gyroscope specifications [18]. 

Specs Description Min. Typ. Max. Units 

 measurement range ±125  ±2000 °/s 

 Resolution 16  262 counts/° 

f data Data sample frequency  25  3200 Hz 

I gyro Gyro active current  850 900 uA 

 

Baseline Drift Correction: Static tests  

 While angular position theoretically is the integral of gyroscope angular velocity, this 

calculation is prone to errors, mainly due to baseline drift. To counter this implementation of 

complementary filter was attempted but difficult because the application used with the metawear 

sensor could not simultaneously measure both acceleration and gyroscope. During 

experimentation it was found that the drift for the Cpro gyroscopes is linear. This is a result of the 

gyroscope baseline being slightly off of zero, and stable. Assuming that the integration of this 

small offset is perfectly linear and consistent, it would be easy to correct for drift by measuring 

the baseline and removing it at every integration step instead of using the complementary filter. In 

fact, drift is linear during any given run, however, it is not consistent across all factors. For 

example, figure 2 shows that the drift varies greatly between each axis as well as between each 

device. Each axis and each device can be corrected for separately, but the drift might not be 

consistent between runs, or might be affected by the current orientation of the sensor. These two 

confounding factors would defeat attempts at baseline correction.  
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To determine what factors influence the drift, stationary tests were performed. Under 

different conditions each of the IMUs were held in a stationary position for at least 30 seconds. 9 

to 10 runs were measured back to back for each position.  

Figure 2- Line plot for angular position of metawear C sensor 1. The recorded angular position was integrated 

from angular velocity of the three angular axes, which was measured using the sensor’s gyroscope. Sensor was 

stationary throughout measurement.  

The average and standard deviation of these runs were calculated for comparison. To 

determine if orientation is a factor, each sensor underwent this test on a flat table as well as 

attached onto a vertical surface. The tests were conducted again after two weeks to determine if 

the drift remained consistent over time. In addition, differences among axes, x, y, and z, and 

between sensors were quantified for comparison. 

Three methods for correcting baseline drift were tested which can be seen as a matlab 

code in Appendix A. Method 1: During integration of the gyroscope’s angular velocity to polar 

position, a fixed value was removed after each integration step. The fixed value was the slope of 

the first 30 seconds of stationary recording. The effects of this method can be seen in figure 3, 

were each axis was rotated approximately 90° then brought back to its original position in 
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succession. Method 2:  Doing a linear fit of the integral of the gyroscope data, and then re-

integrating by removing the measured slope from the linear fit. Method 3 is similar to the first, 

but instead of measuring drift of each run, a calibration measurement is taken beforehand and 

used for all calculations using that metawear. While the third method will be insufficient if the 

baseline changes over time, it also can create a more reliable and streamlined method of removing 

drift.  

Figure 3- Comparison between raw (blue) and baseline corrected (red) angular positions of Metawear C sensor 

1. Raw data were measured by integrating the gyroscope angular velocity, while the base shift data had 

continuous removal of gyroscope data using a previous stationary test. Each axis of the sensor was rotated 

approximately 90 degrees followed by a 180 degree shift in the opposite direction.  
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Figure 4- CAM Setup on the robotic arm 

Figure 5- Arduino board with toothbrush 

Accuracy Testing with Robotic Arm.  

A robotic arm was used 

to determine how accurate the 

angular position calculated with 

the metawear. The robotic arm is 

a product developed by Barrett 

Technology called the WAM. 

The sensor was attached with 

velcro to the robot. The metawear 

was attached to what is effectively 

the wrist of the robot and oriented such that the x axis is aligned with the direction of the arm, as 

seen in figure 4. To quantify accuracy assuming significant angular velocity in one axis, one joint 

on the arm corresponding to a specific axis was rotated back and forth by one radian. This allows 

verification of sensor data with actual position of the robot.   

Coordination with Other Sensors 

One other aspect for the development of 

the Metawear Cpro into a medical device is 

having it work in tandem with multiple sensors. 

Being able to collect multiple types of data in 

multiple locations allows for the device to be 

used for more diverse applications. Currently 

mbientlab has already designed a mobile 

application that allows for multiple metawear sensors to be recorded at the same time. On the 

other hand there was no way of having different types of sensors synchronized with the Cpro. 

Creating a bluetooth connection and a simultaneous starting signal are the two important aspects 

Figure 4- CAM Setup on the robotic arm 

Figure 5- Dynabrush and Arduino board used to 

test synchronization with Metawear Cpro 
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of recording data from both sensors. To implement and test a Bluetooth connection we decided to 

use the Dynabrush system in figure 5. A bluetooth connection was formed using a bluetooth 

module that attached to the arduino board. In addition the mobile application needed to be 

programed to allow for non metawear bluetooth connections. The new application code was 

programed using android studio and the original Metawear application code from mbientlab. The 

code that was designed by us can be found in Appendix B.  The arduino program was used to 

start data collection of the arduino sensor. We added code that can be seen in Appendix C, which 

would send a 5 digit signal from the bluetooth module when the arduino started recording. If the 

metawear application was connected to the bluetooth signal, the metawear would read the signal 

and start collecting data.  

The metawear would always start recording after the Adafruit sensor in the Dynabrush, 

so this needed correction. Figure 6 shows recordings of both sensors when the metawear was 

attached to the Dynabrush. 

While this could be corrected 

by shifting one set over, when 

the sensors are measuring 

separately it would be very 

difficult to match them 

together. To alleviate this 

problem calibration tests were 

performed to determine if the offset between the two sensors is consistent. The Cpro was 

attached, with velcro, to the Dynabrush with a similar orientation and position to the sensor in the 

Dynabrush. Five runs were performed, and points that were easily distinguishable in both sensors 

were picked for each of the three axes. The difference in time between the two sensors was 

measured and compared.  

Figure 6– Time lag between metawear sensor (blue) and arduino 

sensor (red) using edited mbientlab application. 
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Results  

Baseline Correction 

 To determine the best baseline correction of IMU signals, stationary tests were conducted 

to measure the drift slope. These tests were performed to determine the linearity and consistency 

of the slope, and the results are displayed in tables 2 and 3. The factors included (1) the measured 

axis, (2) time between runs (3) device, and (4) the current angular position of the sensor. The 

recording of table 2 and 3 were taken 2 weeks apart to measure the consistency over long period 

of time. When comparing between the 4 major factors, instead of using standard deviation, the 

average difference between the angular drift averages is recorded.  

Table 2- 30 second recordings of two stationary metawear devices on February 22nd, 2018. Recordings were 

taken between 9 to 10 times on a flat table (labeled ad 0 degree position) and attached to a vertical object with 

velcro(labeled as 90 degree position). Averages and standard deviations of angular drift were calculated using 

Excel.  

Metawear  Axis Position (°) Duration (s) Iterations Angular Drift Average ± 

S.D. (°/s) 

1 x 0  30 9  0.29266 ± 0.00258  

1 y 0 30 9 -0.94509 ± 0.00577  

1 z 0 30 9  0.82520 ± 0.00225  

1 x 90  30 10  0.32767 ± 0.00658 

1 y 90 30 10 -0.92189 ± 0.00831  

1 z 90 30 10  0.82041 ± 0.00335  

2 x 0  30 10 -0.17152 ± 0.00761 

2 y 0 30 10 -0.24403 ± 0.00798  

2 z 0 30 10  0.56894 ± 0.00460  

2 x 90  30 10 -0.17172 ± 0.00708  

2 y 90 30 10 -0.26093 ± 0.00356  

2 z 90 30 10  0.57133 ± 0.00262  
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Table 3- 30 second recordings of two stationary metawear devices on March 8th, 2018. Recordings were taken 

10 times on a flat table (labeled ad 0 degree position) or attached to a vertical object with velcro (labeled as 90 

degree position). Averages and standard deviations of angular drift were calculated using Excel.  

Metawear  Axis Position (°) Duration (s) Iterations Angular Drift Average ± 

S.D. (°/s) 

1 x 0  30 10  0.29473 ± 0.00268  

1 y 0 30 10 -0.93504 ± 0.00562  

1 z 0 30 10  0.77847 ± 0.00451  

1 x 90  30 10  0.29408 ± 0.00220  

1 y 90 30 10 -0.95385 ± 0.00846  

1 z 90 30 10  0.77228 ± 0.00145  

2 x 0  30 10 -0.14406 ± 0.00819  

2 y 0 30 10 -0.26186 ± 0.003021  

2 z 0 30 10   0.56432 ± 0.00592  

2 x 90  30 10 -0.14223 ± 0.00270  

2 y 90 30 10 -0.28351 ± 0.00357  

2 z 90 30 10  0.56147 ± 0.00382 

 

Recorded average slopes from Tables 2 and 3 ranged from -0.9539°/s to 0.8252°/s. If the 

raw data were integrated without any correction, the largest magnitude of drift would result in a 

3433.86° error over 1 hour. To correct this drift, previous data were used as calibration to remove 

error at every integration step. But if the expected linear drift is not consistent then there would 

still exist drift errors in the final results. For comparison the difference between average drift 

readings were recorded, which was used to approximate expected error if one was used to 

calibrate the other. The average difference between two axes of the same metawear is 1.2316°/s, 

and between the same axis of different metawear is 0.4562°/s. If we were to use measurements 

from one to remove the drift of the other the resulting errors would respectively create an offset 

of 4433.76° and 1642.32° over 1 hour. The average standard deviation is 0.004718°/s which 

relates to an offset of 16.986°/hr. The average difference in drift between 0 and 90 degree 
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recordings was 0.0112°/s which would result in a shift of 40.32°/hr. Lastly the average difference 

in drift over a two week period is 0.0237 °/s which results in a shift of 85.32°/hr.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 - Comparison between raw angular position (blue) with angular position with a baseline shift using 

measured average (red), and with a baseline shift using linear regression (yellow) over 1 hour. 

 

 A long stationary test was performed to determine if drift remained linear over a 1 hour 

period of time. Figure 7 shows the total shift in the raw data over the 1 hour period. Figure 8 also 

shows the result of using the two methods to correct the base line. The average method used the 

average slope of stationary tests performed a few weeks prior. Linear fit used the matlab function 

to correct for baseline. Table 4 shows the measured angle at 60 seconds for the raw data as well 

as the two baseline corrective methods.         
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Table 4- Final angular positions measured after one hour without moving sensor, starting at 0°. Comparison 

between data without any baseline shift, using a measured average to shift base, and a linear fit attached to shift 

baseline. Results visualized in figure 7. 

Axis Final Time (s) Raw Final 

Position(°) 

Average Final 

Position(°) 

Linear Fit  

Final Position(°) 

x 3604 1424 438.5 -0.2048 

y 3604 -3672 -574 2.463 

z 3604 2997 -35.23 -1.768 

 

Accuracy Analysis 

 After analysis of drift it is important to determine if the sensor and integration of the 

angular velocity can accurately measure the angular position of the device. Accuracy is being 

accessed through the three methods of movement of one axis, movement of multiple axes, and 

consistency of cyclic movement. Table 5 shows the results of repetitive 1 radian shift of each axis 

individually. The amplitude of after rotation was recorded and each axis differed by less than 0.3° 

over the three rotations. 

Table 5- Recorded angular position after 1 radian rotations of metawear Cpro using WAM robotic arm.  

X axis 

height(°) 

Y axis 

height(°) 

Z axis 

height(°) 

 

56.26  -55.69  56.17  

56.52  -55.44  56.25  

56.57  -55.43  56.35  

56.49  -55.36  56.35  

56.5  -55.4  56.27  
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Calibration with Arduino Sensor 

 To calibrate the metawear to an arduino sensor, the time difference between the two 

sensors accelerometer data was recorded. The time difference exists because when the arduino 

starts recording the metawear is waiting for a Bluetooth signal, and therefore will begin recording 

later that the arduino. For calibration purposes it would be best if time differences between the 

two are consistent. Table 6 shows 15 different measurements over 5 different runs. The average 

difference was 0.2996 ± 0.0374 s. The points were picked by finding distinguishable peaks in 

both the arduino and metawear data. In conclusion the two signals were in concordance with each 

other, but had a lag of approximately 0.3 s between when the Adafruit and metawear started 

recording. 

Table 6- Time differences between peak acceleration values of metawear sensor and arduino sensor contained 

inside the Dynabrush.  

Run Axis Metawear Time (s) Toothbrush Time (s) Difference (s) 

1 X 10.4 10.75 .35 

  Y 7.68 8 .32 

  Z 6.76 7.062 .302 

2 X 5.82 6.098 .278 

  Y 4.8 5.060 .26 

  Z 2.94 3.187 .247 

3 X 5.12 5.4 .28 

  Y 3.1 3.355 .255 

  Z 1.68 1.917 .237 

4 X 5.7 6.033 .333 

  Y 4.28 4.627 .347 

  Z 1.66 1.984 .324 

5 X 3.18 3.489 .309 

  Y 5.2 5.531 .331 

  Z 2.5 2.821 .321 
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Discussion 

For practical use in testing and clinical settings as a HoBE, the CAM would need to be 

accurate within a few degrees. While recording short term tests such as balance or doing activities 

such as tooth brushing, the accuracy should hold true for approximately 10 minutes. On the other 

hand measuring HoBE would require hours of continuous recording. As such, it is necessary to 

judge the applicability of the Metawear Cpro for both long and short term testing separately. 

Based off of data in tables 2 and 3, differences in drift between each axis and sensor would lead 

to hundreds of degrees of error over the course of 10 minutes. Errors of this magnitude are 

unacceptable, but could be corrected on specific metawear sensors. The difference in drift 

correlated to a two week gap between measurements would result in an 85.32°/hr error. 

Compared to axis and device data the difference is significantly smaller, but would still be 

unacceptable in either short or long term testing. While calibration data from previous weeks are 

capable of being used depending on the length of the test and necessary accuracy, it would be 

recommended that calibration is redone for each testing session or everyday.  

 If the differences in standard deviation between sets of back to back runs are too large, 

than that would mean that calibration would have to be performed before each run or though post 

processing. For use in a clinical setting, constant calibrations would create more work for nurses, 

which is counterproductive to the purpose of the CAM. Similarly post processing the data defeats 

the entire purpose of continuous real time monitoring of HoBE. The standard deviations for back 

to back runs ranged from 0.00145°/s to 0.00846°/s which would result in 5.22°/hr and 30.456°/hr 

shifts respectively. The large difference makes it unreliable to us an average standard deviation. 

Even the largest drift is suitable for short term testing but cannot be used for long periods.    

If the drift has significant differences at different orientations, it that would suggest that 

orientational factors such as gravity affects the baseline. If true, the possibility of removing drift 

through a linear manner would be impossible because the linearity would change as the device is 
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moving. Orientation testing resulted in an error of 40.32°/hr which is usable for short term but 

should not be used for long-term testing. While the average deviation of orientation is larger than 

any specific set of runs, the difference is not large and might be attributed to the less secure 

method of holding the metawear device vertically with Velcro. The orientation of the device does 

not seem to have significant enough impact on the drift to eliminate the possibility of baseline 

correction though linear drift removal.  

For short term testing the use of a calibration method to remove drift is sufficient, but 

unfortunately it would not work for long term tests such as HoBE monitoring. The hour long 

stationary test in figure 7 shows that using previously measured drift could still result in hundreds 

of degrees of error. While the calibration method is not sufficient it is possible to use the linear fit 

method of correcting the baseline. In short term testing using a linear fit would often create 

significantly more error than using the calibration method. Large fluctuations of the data in a 

short period of time made linear fitting unreliable, but if used over hour long periods linear fitting 

in combination with the calibration method could correct the leftover drift. In particular a linear 

fit would work well with HoBE monitoring because the purpose of the device is to keep the 

position of the CAM stationary at its initial position.  

 When using the robotic arm to determine accuracy of the Cpro the device was rotated in 

one axis for a radian. The measured change using post processing drift removal ranged from 

55.36° to 56.57°. A radian is approximately 57.3° which creates a maximum difference of 2° 

between expected and measured change. While 2° is significant it falls within the necessary 

range. Previous studies using IMUs also commonly have errors between 0.5° and 2° of error [19]. 

The largest difference between readings of a single axis was 0.33° which shows that the 

metawear device is very precise and that the error in accuracy might be a result of the robotic arm 

rather than the sensor. Other studies find much larger values for precision, as high as 4.3°, but 

these test are done on a human where movements are more dynamic, sporadic, and less 
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controllable [20]. It is important to note that the only method of recording real angle is the 

program controlling the WAM which could have had a small error with calibration. While other 

studies tracking human motion with IMUs have used robotic arms for testing, the gold standard 

for tracking movement is using a optical motion sensor (OMS) [21]. To further verify the 

accuracy of the Metawear Cpro it might be useful to incorporate an OMS.  

 The average difference when measuring time points for the metawear and arduino sensor 

was 0.2996 ± 0.0374 s. For practical purposes adding a shift of 0.3 seconds could potentially 

create a time shift of 0.05s between the two measurements. It is important to note that the Cpro 

has a frequency of 25 Hz which is significantly larger than the 3 Hz of the Adafruit sensor. The 

difference in time was recorded by determining distinguishable peaks in both data sets and 

measuring the time difference between them. Due to the difference in sampling rates there is a 

chance that despite being similar the peaks were not actually the same point, which could 

exaggerate the standard deviation. Even if this was not true a difference of 0.05 seconds is not 

relevant for most practical purposes.  

 Compared to other similar studies using IMUs [19-21], we share similar problems. They 

also seemed to find that the drift was linear but changed between runs and patients, with 

differences up to 116° over 6 minutes [21]. Even though all of the other studies used Kalman or 

some alteration of Kalman filtering, none performed long term testing. Normally tests were a few 

minutes long with a one lasting 15 minutes [21]. Common difficulties of other studies such as soft 

tissue artifacts and calibration based on location and expected movement were not yet explored 

using our method and the Metawear Cpro. Soft tissue artifacts are a displacement of the device 

compared to the bone, and can cause significant errors in IMU measurement and differ depending 

on where the IMU is placed [20]. For the CAM soft tissue artifacts would not be as large of an 

issue due to its position behind the ear with small amounts of tissue, but would have to be 

accounted for other applications. It was found that the placement of the IMU and the expected 
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movement have to be taken into account, for example some algorithms were specifically designed 

for gait or IMU placement on the thigh [20]. 

To make the CAM a product for clinical use, several steps must be taken. First, long-term 

non-stationary measurements should be taken to determine if a linear fit can correct drift for hour 

long uses. Second, if linear fitting seems usable, data from the metawear needs to be accessible 

through a computer and integrated in real time. While linear fitting can increase the accuracy of 

results over long periods of time, the initial results of the test might be too unreliable for use. A 

combined method of calibration and linear fitting could decrease the effect of drift is for initial 

readings as well as long-term results. Other research involving use of IMUs for study of human 

movement sometimes use sections of stationary movement to help in reduction of drift [21]. 

While not ideal, stationary readings during each run would eliminate the need of preliminary 

calibration. If the sensor is still incapable of measuring accurate head position over hour long 

periods, it would be best to implement the complementary or Kalman filter.  
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