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Retinal detachment is an affliction of the eye in which the nine layers of the neurosensory

retina detach from the outer layers of the eye along its interface with the retinal pigment

epithelium. This dissertation represents a study of the application of mechanics based

mathematical modeling to age-related and myopia-induced retinal detachments. A review

of the theory of shells of arbitrary shape which provides clarification on the change in

curvature of the shell is also presented. A corresponding multi-directional growth law for

the propagation of detachments of arbitrary shape is established.

A mechanics based mathematical model for retinal detachment in the emmetropic eye

that takes contraction of the vitreous and extension of its fibrils, along with a pressure dif-

ference across the retina, as the impetus for detachment propagation is presented. A second

mechanics based mathematical model for retinal detachment due to the geometric changes

of the eye associated with the evolution of myopia is also developed. The model for myopic

retinal detachment includes deformation of the retina due to biological growth of the retina,

as well as elastic deformation imposed on the retina by the myopic change in shape of the

much stiffer choroid and sclera. The models are formulated as propagating boundary value

problems in the calculus of variations. This approach yields the self-consistent governing

equilibrium equations, boundary conditions, and transversality conditions that establish the
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location of the propagating boundaries that correspond to equilibrium configurations of each

the detaching ocular systems. Axisymmetric conditions are considered and exact analytical

solutions to the corresponding boundary value problems are obtained for detaching retinas

with and without a tear. The effects of changes in material and geometric parameters, as

well as the influence of the presence and size of the retinal tear, on detachment propagation

are also studied.

The emmetropic model predicts that retinal detachment propagates catastrophically,

which is in agreement with clinical observations. From application of the emmetropic model

presented herein, a value of the bond energy of the retina to retinal pigment epithelium

interface is estimated using material properties found in the literature. Simulations based

on the analytical solutions for the myopic model of the detaching retina are performed

for a detachment in the retina located at either the posterior or superior pole of the eye.

The results support the clinical finding of an increased prevalence of retinal detachment in

myopic eyes and provide insight into the potential causation for the increased prevalence.
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Chapter 1

Introduction

1.1 Motivation

Retinal detachment is an affliction of the eye in which the nine layers of the neurosensory

retina detach from the outer layers of the eye along its interface with the retinal pigment

epithelium (RPE). The RPE remains securely attached to the choroid on the inner surface

of the eye, while the choroid in turn remains attached to the sclera. Common risk factors for

retinal detachment include advanced age, myopia, cataract surgery, and trauma. Patients

experiencing retinal detachment may experience light flashes, floaters, peripheral visual

field loss, and blurred vision (Gariano & Kim [25]). Surgical intervention is often successful

at restoring visual acuity when the detachment does not involve the clinical macula but

detachment involving the macula often has a permanent adverse effect on vision (Wilkinson

& Rice [84]).

Retinal detachments are classified as exudative, tractional, or rhegmatogenous (see, for

example Gariano & Kim [25]). Exudative retinal detachment occurs due to an accumulation

of fluid in the subretinal space, which is often the result of an underlying disease. Tractional

retinal detachment results from mechanical forces on the retina that arise from the fibrotic

scar tissue associated with previous hemorrhage, injury, surgery, infection of inflammation.

Rhegmatogenous retinal detachment (RRD) is the most common type and occurs when

a tear forms in the retina, allowing fluid to enter the subretinal space. In a review of

epidemiology studies concerning RRD dating from 1970 to 2009, Mitry et al. [52] found

a median annual incidence rate of 1.05 per 10,000 of population. Incidence varied with

geographical population, but the largest annual incidence of RRD occurred in the 60-70

year age group with a secondary peak in young myopic patients.

The vitreous body is the most important intraocular tissue in the pathogenesis of retinal
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detachment (Wilkinson & Rice [84]). In young healthy eyes, the vitreous body is composed

of a gel that fills the vitreous cavity and is randomly interspersed with collagen fibrils. As

the eye ages, the vitreous liquefies leading to the collapse of the matrix of collagen fibrils

which, in turn exerts traction on the vitreoretinal interface (Sebag [71]). Often the vitreous

will separate from the retina in an acute manner beginning at the posterior of eye, which is

know as posterior vitreous detachment (PVD). The traction acting on the retina from the

vitreous fibrils in addition to the onset of PVD are factors that predispose elderly patients

to retinal tears and RRD.

Retinal detachment is also known to have a much higher prevalence in individuals with

myopic eyes when compared to individuals with emmetropic or hyperopic eyes (Wilkinson

& Rice [84]). According to Wilkinson & Rice [84], RRD is associated with the risk factors

of vitreous liquefaction, PVD, and lattice degeneration. These risk factors are also more

prevalent in myopic eyes than non-myopic eyes (Akiba [1] and Celorio & Pruett [13]).

Myopic foveoschisis is another common complication affecting eyes with high myopia and

is often accompanied by foveal retinal detachment without the presence of a macular hole

(Alkuraya [2]).

This dissertation presents a study of the application of mechanics based mathematical

modeling to age-related and myopia-induced retinal detachments. A brief summary of

some applications of theoretical fluid and solid mechanics to the ocular system is found in

Gonzalez & Fitt [30], in which tonometry, scleral buckle surgery, and retinal detachment was

considered. The following section shows a more complete review of the literature concerning

the application of mechanics and mathematical modeling to the study of the ocular system,

with a focus on retinal detachment specifically.

1.2 A Survey of Relevant Literature

Some of the earliest work in the literature concerned with applying the principals of mechan-

ics to the ocular system was done in studying the relationship between force/displacement

and intraocular pressure (IOP) in tonometry. Friedenwald [24] modeled the cornea as a

shell using membrane theory which assumes that the corneal tissue provides no resistance
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to bending. The author however comments that the results of the model suggest that the

cornea does offer a small but real resistance to bending. Schwartz et al. [70] later approached

the same problem by modeling the cornea using a shallow shell theory that includes the

effects of transverse shear (Naghdi [55]) to accurately model the pressure distribution that

arises between the indenter and the cornea. Seeking to improve the model of tonometry,

Mow [54] applied a small deflection sandwich-shell theory (Reissner [61]) to better incor-

porate the material properties of the layers of the cornea. Finite element modeling was

applied to this problem by Kobayashi et al. [40] to incorporate the nonspherical geometry

and nonhomogenous material properties of the corneo-sclera shell and was later advanced

in Woo et al. [86] to incorporate nonlinear elastic material properties.

In seeking a mechanical explanation for the onset of myopia, Greene [31] studied the

stress exerted on the posterior sclera from the extraocular muscles, as well as the stress that

would develop in the sclera from changes in IOP during accommodation and convergence.

The author took the stress that developed in the sclera to be the superposition of the

stress in a spherical pressure vessel resulting from the IOP with the stress field resulting

from a point force acting on a flat plate for the extraocular muscles. Consideration was

given to the optic nerve by a discussion of the stress concentration that develops in a plate

with a circular hole. Another model considering mechanical forces is found in Michels et

al. [50], where the authors provide a discussion of the forces in epiretinal membranes that

can facilitate retinal detachment. The authors also discuss the effect that application of

a scleral buckle has on these forces in order to potentially bring the detached retina back

into contact with the RPE. In other studies on retinal reattachment, Voltairas et al. [80]

modeled reattachment due to the magnetic forces between a magnetic silicone band and a

silicone ferrofluid internal tamponade. In their two dimensional model, a retina with a tear

is represented by a rigid rod hinged at one end. Foster & Chou [22] studied the interaction

of surface tension and buoyancy forces in retinal reattachment through injection of gas or

perfluoron into the eye during pneumatic retinopexy, with the retina modeled as a two

dimensional flap.

The deformation of the eye due to the application of a cerclage is studied in Keeling

et al. [39], where the eye is modeled as a spherical elastic membrane that is filled with an
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incompressible fluid. The cerclage is modeled as a linear elastic cylindrical band applied

around the eye and the resulting intraoperative and postoperative shape of the eye is deter-

mined through minimization of a potential energy functional. The shape of the eyeball after

application of an elastic scleral buckle is also determined in Ismail et al. [35] by modeling

the eye as a spherical membrane. Foster et al. [23] studied the effects of the fluid motion

of the vitreous after application of a scleral buckle. The authors modeled this system by

laminar flow over a flat plate with an indentation that represented the indentation in the eye

wall due to the scleral buckle. The retina was modeled as a flat elastic membrane initially

separated from the eye wall and finite element simulations were performed. Finite element

models for the shape of the eye after application of segmented scleral buckles and encircling

scleral buckles are found in Wang et al. [83] and Lanchares et al. [44], respectively.

David et al. [17] modeled the eye wall as a thin isotropic spherical shell and studied

the axisymmetric vibrational response induced on the eye by the external muscles during

saccadic motion. The muscles were modeled as band loading acting around the equator and

the saccades were given by a step function. The authors varied the radius of the eye and the

tissue thickness and found that the stress in the eye wall increases with increasing eye radius

and decreasing tissue thickness. They proposed this as an explanation for why myopic

eyes have a larger tendency toward retinal detachment. Subsequently, David et al. [18]

represented saccadic motion as a sine wave and presented the corresponding analytical

viscoelastic and numerical Newtonian solutions for the fluid motion of the spherical vitreous

cavity. The authors evaluated the time-dependent fluid shear stress acting on the eye wall

and found larger shear stress with increasing eye size.

The stress exherted on the retina by a vitreous membrane undergoing saccadic motion

was studied in Repetto et al. [62]. In their model for small-amplitude eye rotations, the

vitreous was represented by a Newtonian, incompressible fluid in irrotational motion within

a spherical cavity separated by an impermeable, pre-stressed elastic membrane. In an

experimental study, Repetto et al. [63] sought to verify the results of David et al. [18] by

studying the motion of glycerol, a high viscosity Newtonian fluid, in a spherical cavity

subject to sinusoidal motion. The authors then proceeded to determine the experimental

motion under more realistic saccadic motion and found that the maximum shear stress at
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the wall was not strongly dependent on the amplitude of the saccade. In similar work,

Dyson et al. [19] studied the wall shear stress due to saccadic motion of the vitreous in

normal eyes (hollow sphere filled with viscoelastic fluid) and post vitrectomy eyes (hollow

sphere filled with a fluid of known viscosity). The authors found the wall shear stress to be

larger in normal eyes than in post-operative eyes.

Repetto et al. [64] studied the influence of saccadic motion on PVD using a two di-

mensional planar model, in which the gel-like vitreous is represented by a viscoelastic solid

separated by an elastic membrane from the detached portion, which is given as a Newtonian

fluid. Finite element simulations of the rotation of the eye found the largest traction on

the retina near the attachments points of the membrane representing the posterior vitreous

cortex. This traction was found to be the same order of magnitude as the adhesive force

between the retina and RPE, measured from animal subjects in Kita & Marmor [37]. The

influences of myopia and scleral buckling on the fluid shear stress due to saccadic motions

of the vitreous was studied in Meskauskas et al. [49]. The vitreous humor was modeled as

a viscoelastic fluid and the shear stress acting on the retina from the vitreous was found

analytically for emmetropic and myopic spheroids. The shape changes associated with my-

opia led to much higher shear stresses in myopic eyes and stress concentrations were found

around the indentation in the eye wall representing a scleral buckle.

Chou & Siegel [16] developed a model for exudative retinal detachment which included

flows across the retina due to pressure differences and active RPE pump flows, along with

retinal adhesion forces and tension in the retina. The retinal detachment was represented by

a two dimensional blister lifting off from a flat layer and the bending stiffness of the retina

was neglected. The forces included in the model are balanced and the resulting stress is said

to result in detachment of infinite extent if it exceeds the adhesive force per unit area of the

retina to RPE. Additionally the dependence of the shape of the detached retinal blister on

the stretching elasticity of the retina and the adhesive force was found. Exudative retinal

detachment was also modeled by Avtar & Srivastava [5], in which the authors consider the

fluid flow in the subretinal space. The RPE was treated as a fixed plane and the retina was

modeled as a beam under the condition of plane strain.

Numerous studies have focused on finite element modeling of trauma to the ocular
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system. Uchio et al. [77] and Stitzel et al. [75] developed finite element models of the eye to

predict globe rupture under impact loading and blunt trauma. Similarly, Rossi et al. [67]

and Bhardwaj et al. [6] used finite element models to study the deformation of the eye globe

under blast loading. Liu et al. [46] also used a finite element model of the eye to study blunt

trauma, but focused on retinal detachment due to that trauma. In the model, the eye is

struck by a BB and compresses, which is then followed by a decompression stage. During

decompression the negative pressure acting on the retina is of large enough magnitude to

exceed the adhesion force between the retina and RPE, measured from animal subjects in

Kita & Marmor [37], resulting in the prediction of retinal detachment near and anterior to

the equator. The model also predicts when the impact speed of the BB is large enough, the

retina will experience sufficient straining in order to cause a break in the retina.

Of the models reviewed thus far regarding the mechanics of the ocular system and reti-

nal detachment, none have adequetely described the fundamental mechanics of detachment

propagation. To this end, a mechanics based mathematical model for quasi-static and

axisymmetric retinal detachment, incorporating an energy based criterion for detachment

propagation, was developed by Bottega et al. [12]. The model considered retinas with and

without central tears, with contraction of the vitreous and extension of its fibrils, along

with a pressure difference across the retina, taken as the stimuli for detachment propaga-

tion. The problem was approached as a propagating boundary value problem in the calculus

of variations, where the boundaries of the detaching retina are allowed to vary arbitrarily,

as well as the deflections of the retina along and transverse to the meridian. The variational

formulation yields the self-consistent energy release rate that governs detachment propa-

gation, in addition to the corresponding equilibrium equations, boundary, and matching

conditions.

In Bottega et al. [12], the meridian displacements of the retina were treated as negligible

in order to simplify the coupled equations of equilibrium derived therein into a single dif-

ferential equation in terms of the radial displacements. When considering deformations of

a complete sphere under symmetric loading, the meridian displacements do in fact vanish

identically and the obtained solution remains exact. For the present case, however, the

uniform symmetry of the sphere is altered by the presence of the detached region and/or
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the tear in the retina. As a result, inclusion of the meridian displacements is necessary in

order to accurately predict the behavior of the detaching retina. In Lakawicz et al. [42],

the meridian displacements were retained and exact analytical solutions to the model were

presented. Inclusion of the meridian displacements resulted in substantially larger trans-

verse displacements of the retina, while the critical stress for detachment propagation was

substantially decreased.

The solutions found in Lakawicz et al. [42] were later employed in Ge et al. [27] and [26]

to study the influence of an equatorial cerclage, and the effects of its material properties, on

the deformation of the outer eye and the corresponding influence on the closure of posterior

retinal detachment, respectively. The results of Ge et al. [27] and [26] improve upon the

previous studies in the literature on the effects of an equatorial cerclage by including the

effects of bending of the retina which occur in the vicinity of the detached portion of the

retina. Pavlou [58] approached the propagation of the vitreo-retinal interface during PVD as

caused by saccadic motion of the eye in a manner similar to the model of retinal detachment

found in Bottega et al. [12]. A two dimensional viscoelastic boundary value problem was

formulated in the calculus of variations in order to obtain a detachment criterion for the

vitreous during a saccade. The results of that study indicate that if a saccade is large

enough to cause the propagation of PVD, then the vitreous will detach until it reaches a

point of abnormal vitreo-retinal adhesion.

In Lakawicz et al. [43], a mechanics based mathematical model of retinal detachment due

to the geometric changes of the eye associated with the evolution of myopia was developed.

The model included deformation of the retina due to biological growth of the retina, as

well as elastic deformation imposed on the retina by the myopic change in shape of the

much stiffer choroid and sclera. From analysis of the energy release rate, it was seen that at

severe levels of myopia, even in the absence of stress acting on the retina, a sufficient energy

release for detachment propagation was achieved. Correspondingly, the critical stress for

detachment propagation was found to be lower for the myopic retina when compared to that

of the emmetropic retina. The results support the clinical finding of an increased prevalence

of retinal detachment in myopic eyes and provide insight into the potential causation for

the increased prevalence.
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1.3 Outline of the Dissertation

This dissertation presents a study of the application of mechanics based mathematical mod-

eling to age-related and myopia-induced retinal detachments. The dissertation is presented

in five chapters. Chapter 2 reviews the theory of the bending of shells that is employed

in the later Chapters and establishes a growth law for detachment propagation in layered

shells. In Chapter 3, the solution found in Lakawicz et al. [42] for the model of retinal

detachment propagation in emmetropic eyes is presented and results are discussed in fur-

ther detail. In Chapter 4, the mechanics based mathematical model for retinal detachment

propagation in myopic eyes developed in Lakawicz et al. [43] is presented. Finally, Chapter

5 offers a thorough discussion of the results found in this study, followed by a review of

potential issues to explore in future work.
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Chapter 2

A Growth Law for Detachment Propagation in Layered

Shells

In studying the propagation of retinal detachment, the retina is modeled as a thin elastic

shell delaminating from the much stiffer choroid and sclera. As such, the model is that of

the inner elastic layer of a layered composite shell detaching from a rigid outer layer. Before

proceeding to the analysis of retinal detachment propagation, the kinematic and constitutive

relations associated with the first-order linear theory of thin, elastic shells is presented. The

potential energy functional for a generic shell of revolution is formulated and the theorem

of stationary potential energy is applied, where the detachment boundary of the detaching

inner layer of the composite shell is allowed to vary arbitrarily. This leads to the governing

differential equations and boundary conditions, as well as the transversality condition that

governs the location of the curvilinear detachment boundary of the evolving structure. The

transversality condition yields the general form of the multi-directional growth law for a

layered shell structure, analogous to the growth law for layered plates derived by Bottega

[7].

The general theory of thin elastic shells found its initial development in the work of

A.E.H. Love [47] in the late 19th century. Love applied the Kirchhoff assumptions associated

with plate theory, along with assumptions on the thinness of the shell, in his first-order

approximation shell theory. Despite its success, Love’s theory suffered from inconsistencies

in its treatment of small terms. As summarized in Naghdi [56], Love’s theorem 1) was

not invariant under coordinate transformation, 2) strains did not vanish for rigid body

displacements, 3) did not satisfy the balance of moments about the transverse axis, and

4) did not satisfy the theorem of reciprocity. Many attempts were made to refine Love’s

theory, noteworthy of which is Reissner [60], which removed many of the inconsistencies of
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Love’s theory but still suffered from the fact that its strains did not vanish under rigid-body

rotation for all possible shell geometries. The Koiter-Sanders theory for thin shells (Koiter

[41], Sanders [68]) is widely credited with total elimination of the inconsistencies in Love’s

theory.

The derivation of the linear theory of thin, elastic shells presented herein follows the

derivation found in Møllmann [53] of the Koiter-Sanders theory for thin shells. The linear

theory considers infinitesimal displacements and rotations of the shell. In addition, the

effects of transverse shear stresses and the deformation through the thickness of the shell

are neglected. In the derivation, the work of Ventsel & Krauthammer [78] and Soedel [74]

served as additional sources of reference.

2.1 The Geometry of the Middle Surface

A thin shell is a curvilinear structure whose thickness, h, is small when compared to its

radius of curvature, R. The middle surface lies equal distances from the two bounding

curved surfaces of the shell. The form of the middle surface and the thickness of the

shell completely define the geometry of the shell structure. The position vector, r, of any

point along the middle surface measured from the origin is determined by the orthogonal

curvilinear coordinates θ1 and θ2, as shown in Figure 2.1.

Figure 2.1: A differential element of the middle surface of a shell.

The derivatives of the position vector with respect to the curvilinear coordinates give

the tangent vectors to the curvilinear coordinate curves. It follows that these derivatives
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represent the curvilinear base vectors, a1 and a2, for the middle surface, defined as

a1 =
∂r

∂θ1
and a2 =

∂r

∂θ2
(2.1)

The third basis vector for the middle surface, a3 = a1 × a2, is given by the normal vector

to the surface directed away from the origin.

On the differential surface element shown in Figure 2.1, the infinitesimal linear change

in distance between points P1 and P2 follows as

dr =
∂r

∂θ1
dθ1 +

∂r

∂θ2
dθ2 =

2∑
i=1

∂r

∂θi
dθi =

2∑
i=1

aidθi (2.2)

In the same figure, the arc length between points P1 and P2 is given as ds. In the limit of

the infinitesimal surface element, the magnitude of dr is ds, which is given as

ds2 = dr · dr =
∂r

∂θ1
· ∂r
∂θ1

(dθ1)2 + 2
∂r

∂θ1
· ∂r
∂θ2

(dθ1dθ2) +
∂r

∂θ2
· ∂r
∂θ2

(dθ2)2

ds2 =

∣∣∣∣ ∂r∂θ1

∣∣∣∣2 (dθ1)2 +

∣∣∣∣ ∂r∂θ2

∣∣∣∣2 (dθ2)2

(2.3)

From Eq. (2.3), it is defined that

A1 = |a1| =
∣∣∣∣ ∂r∂θ1

∣∣∣∣ =

√
∂r

∂θ1
· ∂r
∂θ1

(2.4a)

A2 = |a2| =
∣∣∣∣ ∂r∂θ2

∣∣∣∣ =

√
∂r

∂θ2
· ∂r
∂θ2

(2.4b)

where A1 and A2 are referred to as the Lamé parameters of the surface. In comparing

Eqs. (2.1) and (2.4) it is seen that physically, the Lamé parameters represent the length of

the curvilinear base vectors a1 and a2, respectively.

Substitution of Eq. (2.4) into Eq. (2.3) results in

ds2 = ds2
1 + ds2

2 = A2
1 (dθ1)2 +A2

2 (dθ2)2 (2.5)

which is known as the first fundamental form of the surface. The coefficients of the first

fundamental form are identified in index notation as

aij = ai · aj = aji (2.6)

where in this derivation, i, j represent the indices 1, 2 and there is no summation taken on

the indices unless a summation symbol is explicitly shown. Hence, from Eq. (2.1), and the
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mutual orthogonality of the base vectors, the coefficients in Eq. (2.6) are given explicitly as

a11 = A2
1, a12 = a21 = 0, a22 = A2

2 (2.7)

The first fundamental form defines the intrinsic geometry of the surface which includes the

distance along an arc between two points on the surface and the area of the surface. Hence,

changes in the first fundamental form will lead to the strain measures governing the change

of length of the surface.

The normal curvature of the differential shell element is defined as

Ka3 = −dt

ds
(2.8)

where K is the normal curvature, a3 is the base vector normal to the curve, and t is the

unit vector tangent to the curve, all as shown in Figure 2.2. Equation (2.8) can then be

rewritten as follows

K = −dt

ds
· a3

K = − d

ds

(
t · a3

)
+

da3

ds
· t

K =
da3

ds
· t

(2.9)

since a3 and t are mutually orthogonal.

Figure 2.2: The normal curvature of a differential element of the middle surface.

From Figure 2.2, the unit tangent vector is given by

t =
dr

ds
(2.10)
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In addition, it follows that

da3

ds
=
∂a3

∂θ1

dθ1

ds
+
∂a3

∂θ2

dθ2

ds
=

2∑
i=1

∂a3

∂θi

dθi
ds

(2.11)

Substitution of Eqs. (2.10) and (2.11), along with Eq. (2.2), into the final result of Eq. (2.9),

yields

K =

∑2
i=1

∑2
j=1

∂a3
∂θi
· ajdθidθj

ds2
(2.12)

The relation in the numerator of Eq. (2.12) is identified as the second fundamental form of

the surface. The coefficients of the second fundamental form are given in index notation as

bij =
∂a3

∂θi
· aj = −a3 ·

∂aj
∂θi

= −a3 ·
∂ai
∂θj

= bji (2.13)

where the mutual orthogonality of the basis vectors has again been employed.

Equation (2.12) can be rewritten through substitution of Eqs. (2.6) and (2.13) as

K =
b11 (dθ1)2 + 2b12dθ1dθ2 + b22 (dθ2)2

a11 (dθ1)2 + 2a12dθ1dθ2 + a22 (dθ2)2 (2.14)

Hence, the coefficients of the second fundamental form characterize the normal curvature

of the θ1 and θ2 coordinate curves, while the normal curvature of the surface is given by the

ratio of the first and second fundamental forms. Since the coordinate curves are mutually

orthogonal, the coefficient b12, which characterizes the twisting of the coordinate curves,

must vanish as did the coefficient a12 in Eq. (2.6).

It remains to define the association between the unit vectors (e1, e2, e3) shown in Figure

2.1, and the curvilinear base vectors (a1, a2, a3). We take the unit vectors to be in the

direction of the base vectors. Hence,

e1 =
a1

|a1|
=
a1

A1
and e2 =

a2

|a2|
=
a2

A2
(2.15)

with

e3 = e1 × e2 =
1

A1A2
(a1 × a2) = a3 (2.16)

The derivatives of the unit vectors with respect to the curvilinear coordinates θ1 and θ2

are needed in the derivation. Consider Eq. (2.9)3, with the normal curvature replaced by

K = 1/R where R is the radius of curvature. If the curve shown in Figure 2.2 is taken to

be the θ1 coordinate curve, Eq. (2.9) becomes

1

R1
=

de3

ds1
· e1 =

1

A1

∂e3

∂θ1
· e1 (2.17)
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where R1 is the principal radius of curvature in the θ1 direction and ds1 = A1dθ1, as given

in Eq. (2.3). Rearranging Eq. (2.17) yields

∂e3

∂θ1
=
A1

R1
e1 (2.18)

Similarly, if Figure 2.2 is taken to represent the θ2 coordinate curve, it is found that

∂e3

∂θ2
=
A2

R2
e2 (2.19)

where R2 is the principal radius of curvature in the θ2 direction. Substitution of Eqs. (2.18)

or (2.19) into Eq. (2.13) provides proof that the coefficient b12 does indeed vanish.

The derivatives of the unit vectors e1 and e2 follow. First, the identities e1 · e1 = 1 and

e1 · e3 = 0 are differentiated with respect to the coordinate θ2. Hence,

∂

∂θ2
(e1 · e1) =

∂e1

∂θ2
· e1 = 0 (2.20)

∂

∂θ2
(e1 · e3) =

∂e1

∂θ2
· e3 + e1 ·

∂e3

∂θ2
=
∂e1

∂θ2
· e3 = 0 (2.21)

Similarly, the identities e2 · e2 = 1 and e2 · e3 = 0 are differentiated with respect to the

coordinate θ1. Hence,

∂

∂θ1
(e2 · e2) =

∂e2

∂θ1
· e2 = 0 (2.22)

∂

∂θ1
(e2 · e3) =

∂e2

∂θ1
· e3 + e2 ·

∂e3

∂θ1
=
∂e2

∂θ1
· e3 = 0 (2.23)

With these identities, the derivatives of e1 and e2 with respect to their tangent directions

are obtained as follows

∂e1

∂θ2
· e2 =

(
1

A1

∂a1

∂θ2
+

1

A2
1

∂A1

∂θ2
a1

)
· e2 =

1

A1

∂a1

∂θ2
· e2 (2.24)

From Eq. (2.1), it is seen that ∂a1
∂θ2

= ∂a2
∂θ1

, which when substituted into Eq. (2.24) yields

∂e1

∂θ2
· e2 =

1

A1

∂a2

∂θ1
· e2 =

1

A1

(
∂A2

∂θ1
e2 +A2

∂e2

∂θ1

)
· e2 (2.25)

with Eq. (2.22) the final result is

∂e1

∂θ2
· e2 =

1

A1

∂A2

∂θ1
(2.26)

Combining Eqs. (2.20), (2.21), and (2.26) shows that ∂e1
∂θ2

only has a component in the e2

and hence, that

∂e1

∂θ2
=

1

A1

∂A2

∂θ1
e2 (2.27)
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Performing the operations indicated in Eqs. (2.24)-(2.27) with the indices 1 and 2 reversed

along with Eqs. (2.22) and (2.23) yields

∂e2

∂θ1
=

1

A2

∂A1

∂θ2
e1 (2.28)

To obtain the remaining derivatives, the identities e1 · e1 = 1, e1 · e2 = 0, and e1 · e3 = 0

are differentiated with respect to the coordinate θ1. Hence,

∂

∂θ1
(e1 · e1) =

∂e1

∂θ1
· e1 = 0 (2.29)

∂

∂θ1
(e1 · e2) =

∂e1

∂θ1
· e2 + e1 ·

∂e2

∂θ1
=
∂e1

∂θ1
· e2 +

1

A2

∂A1

∂θ2
= 0 (2.30)

∂

∂θ1
(e1 · e3) =

∂e1

∂θ1
· e3 + e1 ·

∂e3

∂θ1
=
∂e1

∂θ1
· e3 +

A1

R1
= 0 (2.31)

where Eq. (2.30) employs the relation of Eq. (2.18) and Eq. (2.31) employs the relation of

Eq. (2.28). The components of ∂e1
∂θ1

are taken from Eqs. (2.29)-(2.31), which results in

∂e1

∂θ1
= − 1

A2

∂A1

∂θ2
e2 −

A1

R1
e3 (2.32)

Similar operations with the indices reversed yields

∂e2

∂θ2
= − 1

A1

∂A2

∂θ1
e1 −

A2

R2
e3 (2.33)

Compiling the results of Eqs. (2.18)-(2.33) gives the derivatives of the unit vectors as

∂e1

∂θ1
= − 1

A2

∂A1

∂θ2
e2 −

A1

R1
e3 (2.34a)

∂e1

∂θ2
=

1

A1

∂A2

∂θ1
e2 (2.34b)

∂e2

∂θ1
=

1

A2

∂A1

∂θ2
e1 (2.34c)

∂e2

∂θ2
= − 1

A1

∂A2

∂θ1
e1 −

A2

R2
e3 (2.34d)

∂e3

∂θ1
=
A1

R1
e1 (2.34e)

∂e3

∂θ2
=
A2

R2
e2 (2.34f)

The geometry of the middle surface is now fully defined. Next, the derivation of the asso-

ciated kinematic relations is presented.
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2.2 Kinematic Relations

The displacement of a point on the middle surface which deforms from a reference position,

r, to the current position, r∗ is given by the displacement vector, u. The relation between

the reference position and the current position of that point follows as

r∗ (θ1, θ2) = r (θ1, θ2) + u (θ1, θ2) (2.35)

where the components of the displacement vector are defined as

u (θ1, θ2) = u1 (θ1, θ2) e1 + u2 (θ1, θ2) e2 − w (θ1, θ2) e3 (2.36)

In this form, the displacement normal to the middle surface, w, is positive when displacing

inward from the reference surface.

2.2.1 Strain

An element of the middle surface with length ds in the reference configuration and length

ds∗ in the deformed configuration is considered. As discussed following Eq. (2.7), the strain

is related to the first fundamental form, which is given in Eq. (2.5). The strain is a measure

of the relative elongation of a material line element of the middle surface and thus is taken

to be given by

ε =
1

2

(ds∗)2 − (ds)2

(ds)2 (2.37)

and hence, in tensor notation, εij , as

εij =
1

2

a∗ij − aij
AiAj

=
1

2

(aij + ∆aij)− aij
AiAj

=
1

2

∆aij
AiAj

(2.38)

where ∆ is an infinitesimal increment in the given variable. In this form, the change in

the coefficients of the first fundamental form of the surface will yield a symmetric strain

tensor. If the term a∗ij − aij in the numerator of Eq. (2.37) vanishes, then the length of the

surface element remains unchanged and there is no extension or compression of the middle

surface. Through substitution of Eqs. (2.1), (2.6), and (2.35), the numerator of Eq. (2.38)

is rewritten as

∆aij = a∗ij − aij =
∂ (r + u)

∂θi
· ∂ (r + u)

∂θj
− ∂r

∂θi
· ∂r
∂θj

∆aij =
∂r

∂θi
· ∂u
∂θj

+
∂u

∂θi
· ∂r
∂θj

+
∂u

∂θi
· ∂u
∂θj

(2.39)
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Substitution of Eq. (2.39) into Eq. (2.38) yields the nonlinear strain tensor as

εij =
1

2AiAj

(
∂r

∂θi
· ∂u
∂θj

+
∂u

∂θi
· ∂r
∂θj

+
∂u

∂θi
· ∂u
∂θj

)
εij =

1

2AiAj

(
∂u

∂θj
· ai +

∂u

∂θi
· aj +

∂u

∂θi
· ∂u
∂θj

) (2.40)

In linearizing the strain tensor, the last term in the second line of Eq. (2.40) is neglected

as it is nonlinear. This yields

εij =
1

2AiAj

(
∂u

∂θj
· ai +

∂u

∂θi
· aj
)

(2.41)

The components of the linear strain tensor of the middle surface are found in terms of the

displacement components through substitution of Eqs. (2.1) and (2.36), along with Eqs.

(2.18)-(2.34), into Eq. (2.41). Hence,

ε11 =
1

A1

∂u1

∂θ1
+

u2

A1A2

∂A1

∂θ2
− w

R1
(2.42a)

ε22 =
1

A2

∂u2

∂θ2
+

u1

A1A2

∂A2

∂θ1
− w

R2
(2.42b)

ε12 = ε21 =
1

2

[
A2

A1

∂

∂θ1

(
u2

A2

)
+
A1

A2

∂

∂θ2

(
u1

A1

)]
(2.42c)

A geometric representation of the change in length of the base vectors due to the straining

of the middle surface is shown in Figure 2.3. From that figure, it is clear the differential

Figure 2.3: Change in length of the curvilinear base vectors due to straining of the middle
surface.

change in length of the base vector due to straining, ∆a(ε), can be represented as

∆a
(ε)
i = Ai

2∑
j=1

εijej (2.43)
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Next, consideration is given to the additional deformation that occurs due to rotation of

the middle surface.

2.2.2 Rotation

The total change in the base vectors of the middle surface when deforming from the reference

configuration to the current configuration, ∆a, is given as

∆ai = a∗i − ai =
∂ (r + u)

∂θi
− ∂r

∂θi
=
∂u

∂θi
(2.44)

The increment in the base vectors can also be represented as

∆ai = ∆a
(ε)
i + ∆a

(β)
i (2.45)

where ∆a(β) is the increment in the base vector due to a rotation, β. Hence,

∆a
(β)
i = β × ai (2.46)

Since there is assumed to be no strain through the thickness of the shell, Eqs. (2.45) and

(2.46) yield

∆a3 = β × a3 (2.47)

Substitution of Eqs. (2.43), (2.44), and (2.46) into Eq. (2.45) yields

∂u

∂θi
− β × ai = Ai

2∑
j=1

εijej (2.48)

Taking the scalar product of Eq. (2.48) with aj and a3 results in(
∂u

∂θi
− β × ai

)
· aj = AiAjεij (2.49)

and (
∂u

∂θi
− β × ai

)
· a3 = 0 (2.50)

respectively.

With some manipulation, Eq. (2.50) is rewritten as

β · (e3 × ai) = −∂u
∂θi
· e3 (2.51)
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Figure 2.4: Orientation of the components of the rotation vector.

The rotation vector is defined as follows

β (θ1, θ2) = −β2 (θ1, θ2) e1 + β1 (θ1, θ2) e2 + β3 (θ1, θ2) e3 (2.52)

which is visually depicted in Figure 2.4. When defined in this sense, β1 is the normal

rotation about interior surfaces of the shell with unit normal in the θ1 direction and β2 is

the normal rotation about interior surfaces of the shell with unit normal in the θ2 direction.

Substitution of Eqs. (2.36) and (2.52) into Eq. (2.51), followed by expansion on the

indices i = 1 and i = 2 yields the in-plane components of the rotation vector for the middle

surface. Hence,

β1 =
1

A1

(
u1
A1

R1
+
∂w

∂θ1

)
(2.53a)

β2 =
1

A2

(
u2
A2

R2
+
∂w

∂θ2

)
(2.53b)

It remains to determine the component of the rotation vector about the e3 axis. Here,

expansion of Eq. (2.49) first on i = 1, j = 2 and then on i = 2, j = 1 yields(
∂u

∂θ1
− β × a1

)
· a2 = A1A2ε12 (2.54)

and (
∂u

∂θ2
− β × a2

)
· a1 = A2A1ε21 (2.55)

respectively. Since ε12 = ε21, Eqs. (2.54) and (2.55) are combined as follows(
∂u

∂θ1
− β × a1

)
· a2 =

(
∂u

∂θ2
− β × a2

)
· a1 (2.56)
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Carrying through the dot products given in Eq. (2.56) results in

∂u

∂θ1
· a2 −

∂u

∂θ2
· a1 = 2β · (a1 × a2) = 2A1A2 (β · e3) (2.57)

Substitution of Eqs. (2.36) and (2.52) into Eq. (2.51) yields the final form for β3 as

β3 =
1

2A1A2

[
∂(A2u2)

∂θ1
− ∂(A1u1)

∂θ2

]
(2.58)

Hence, the rotation vector given in Eq. (2.52) has components as defined in Eqs. (2.53)

and (2.58).

2.2.3 Bending

In Section 2.2.1, the strain of the middle surface was determined by finding the change in

length of an element of the surface that results from the change in the first fundamental

form of the surface. Similarly, the bending effects of the middle surface are determined

by the change in curvature of the middle surface through the change in the second funda-

mental form of the surface. The coefficients of the second fundamental form were given in

Eq. (2.13), and their changes when going from the reference configuration to the current

configuration follow as

∆bij = b∗ij − bij =
∂a∗3
∂θi
· ∂ (r + u)

∂θj
− ∂a3

∂θi
· ∂r
∂θj

∆bij =
∂a∗3
∂θi
· aj +

∂a∗3
∂θi
· ∂u
∂θj
− ∂a3

∂θi
· aj

∆bij =
∂

∂θi
(∆a3) · aj +

∂

∂θi
(a3 + ∆a3) ·∆aj

(2.59)

where Eq. (2.44) is used to obtain the last line of Eq. (2.59). When the last term of the last

line in Eq. (2.59) is expanded, the term ∂
∂θi

(∆a3) ·∆aj is obtained, which is small when

compared to the first term of the same line and must be neglected. Hence, the change in

the second fundamental form follows as

∆bij = b∗ij − bij =
∂

∂θi
(∆a3) · aj +

∂

∂θi
(a3) ·∆aj (2.60)

Substitution of Eqs. (2.44) and (2.47) into Eq. (2.60) results in

∆bij =
∂

∂θi
(β × a3) · aj +

∂

∂θi
(a3) · ∂u

∂θj
(2.61)
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From Eqs. (2.18) and (2.19), along with Eqs. (2.15) and (2.16), it is seen that

∂a3

∂θi
=

1

Ri
ai (2.62)

which, when substituted into Eq. (2.61) yields

∆bij =
∂β

∂θi
· (a3 × aj) +

1

Ri
ai ·

(
∂u

∂θj
− β × aj

)
(2.63)

The last term in Eq. (2.63) is of the same form as that of Eq. (2.49) which, when substituted

into Eq. (2.63) results in

∆bij =
∂β

∂θi
· (a3 × aj) +

AiAj
Ri

εij (2.64)

The bending measure of the middle surface is defined as

kij =
1

AiAj

∂β

∂θi
·
(
a3 × aj

)
(2.65)

which renders Eq. (2.64) to the form

∆bij = AiAj

(
kij +

1

Ri
εij

)
(2.66)

From Eq. (2.13), it is seen that the coefficients of the second fundamental form and

hence, ∆bij , are symmetric with respect to the indices i and j. The term kij introduced in

Eq. (2.65) is however, not symmetric in these indices, which is illustrated by first expanding

Eq. (2.66) with i = 1, j = 2, followed by expansion with i = 2, j = 1 to obtain

∆b12 = A1A2

(
k12 +

1

R1
ε12

)
∆b21 = A1A2

(
k21 +

1

R2
ε21

) (2.67)

respectively. Since ∆b12 = ∆b21 and ε12 = ε21, subtraction of the second line of Eq. (2.67)

from the first line yields

k12 − k21 =

(
1

R1
− 1

R2

)
ε12 (2.68)

Hence, kij is only symmetric when R1 = R2.

In order to characterize the bending of the middle surface by a symmetric tensor, an

alternative form for the change in the coefficients of the second fundamental form is con-

sidered. Hence, since bij = bji,

∆bij = 1
2 (∆bij + ∆bji) (2.69)
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It then follows from Eq. (2.66) that

∆bij = 1
2AiAj

(
kij +

1

Ri
εij + kji +

1

Rj
εji

)
∆bij = AiAj

[
1
2 (kij + kji) + 1

2

(
1

Ri
+

1

Rj

)
εij

] (2.70)

The bending measures of the middle surface, χij , are then defined as

χij = 1
2 (kij + kji) = χji (2.71)

which is symmetric in the indices i and j. Equation (2.71) is substituted into Eq. (2.70)

to obtain the final form of the change in the coefficients of the second fundamental form as

follows

∆bij = AiAj

[
χij + 1

2

(
1

Ri
+

1

Rj

)
εij

]
(2.72)

It is clear that the change in the coefficients of the second fundamental form is dependent

on both the bending and stretching of the middle surface.

The explicit form of the bending measures is found through substitution of Eq. (2.65)

into Eq. (2.71), which yields

χij =
1

2AiAj

[
∂β

∂θi
·
(
a3 × aj

)
+
∂β

∂θj
·
(
a3 × ai

)]
(2.73)

The components of the bending measure tensor of the middle surface are found through

expansion of Eq. (2.73) on the i and j indices, followed by the indicated operations. This

results in

χ11 =
1

A1

(
∂β1

∂θ1
+
β2

A2

∂A1

∂θ2

)
(2.74a)

χ22 =
1

A2

(
∂β2

∂θ2
+
β1

A1

∂A2

∂θ1

)
(2.74b)

χ12 = χ21 =
1

2

[
A1

A2

∂

∂θ2

(
β1

A1

)
+
A2

A1

∂

∂θ1

(
β2

A2

)
+

(
1

R2
− 1

R1

)
β3

]
(2.74c)

The bending measures depend solely on the rotations β1, β2, and β3 and not upon the

strains.

The six quantities εij and χij determine the changes in the first and second fundamental

forms of the middle surface. While not shown here, these quantities also satisfy the equations

of compatibility and vanish for rigid body rotations. In this sense, εij and χij completely

determine the deformed configuration of the middle surface of the shell.
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To conclude the characterization of the deformation of the middle surface, the changes of

curvature and torsion of the middle surface are now derived. The quantities χij , identified

above as the bending measures of the middle surface of the shell, are often referred to in

the literature as the changes of curvature of the middle surface but, this identification is

not accurate. The normal curvature of the middle surface shown in Figure 2.2 is again

considered. To maintain consistency with the definition of the rotation vector given in Eq.

(2.52), the components of the normal change in curvature are taken about the vector normal

to the component of interest. Hence,

K =
da3

dsi
· ej =

1

Ai

∂a3

∂θi
· 1

Aj
aj =

∂a3
∂θi
· aj

AiAj
=

bij
AiAj

(2.75)

The increment in the curvature in deforming from the reference configuration to the current

configuration of the middle surface follows as

∆

(
bij
AiAj

)
=

1

AiAj

[
∆bij − bij

(
∆Ai
Ai

+
∆Aj
Aj

)]
(2.76)

A relation for the terms in parenthesis above is found from Eq. (2.38), by considering only

the diagonal terms of the strain tensor.

εii =
1

2

∆aii
A2
i

=
∆Ai
Ai

(no sum over i) (2.77)

Substitution of Eqs. (2.77) and (2.72) into Eq. (2.76) results in

∆

(
bij
AiAj

)
= χij +

1

2

(
1

Ri
+

1

Rj

)
εij −

bij
AiAj

(εii + εjj) (2.78)

The coefficients of the second fundamental form are given explicitly through combination

of Eq. (2.13) with Eq. (2.62) as

b11 = A2
1/R1, b12 = b21 = 0, b22 = A2

2/R2 (2.79)

From Eq. (2.79), the coefficients can be rewritten in an alternative representation as follows

bij = 1
2AiAj

(
1

Ri
+

1

Rj

)
δij (2.80)

where

δij =

 1 for i = j

0 for i 6= j
(2.81)
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is the Kronecker delta.

The changes of curvature and torsion, κij , are obtained by substituting Eq. (2.80) into

Eq. (2.78). Hence,

κij = ∆

(
bij
AiAj

)
= χij +

1

2

(
1

Ri
+

1

Rj

)[
εij − 2εiiδij

]
(no sum over εii) (2.82)

Explicitly, the changes of curvature κ11 and κ22 and the changes of torsion κ12 = κ21 are

κ11 = ∆
(
b11/A

2
1

)
= χ11 −

1

R1
ε11 (2.83a)

κ22 = ∆
(
b22/A

2
2

)
= χ22 −

1

R2
ε22 (2.83b)

κ12 = κ21 = ∆ (b12/A1A2) = χ12 +
1

2

(
1

R1
+

1

R2

)
ε12 (2.83c)

The changes of curvature and torsion are dependent on both the bending measures, χij , and

stretching measures, εij , of the middle surface as a result of the initial curvature of the shell.

For a plate, which has zero initial curvature and infinite radii of curvature (R1 = R2 =∞),

it is seen from Eqs. (2.83) that the changes of curvature and the bending measures are

identical, κij = χij .

The distinction between the changes of curvature and the bending measures for shells is

important when considering contact between the strata of a layered shell, as well as when

formulating the bending energy. The kinematic relations necessary for characterizing the

deformation of the middle surface of a shell of a given geometry are now fully defined.

2.2.4 The Spherical Shell

The subsequent chapters of this dissertation are concerned with the application of the

general theory of shells to spherical geometries. When considering a spherical coordinate

system, the general shell coordinates are taken as θ1 = ϕ and θ2 = θ. The principal radii

of curvature in both directions are each equal to the radius of the sphere in its reference

configuration, R1 = R2 = R. Lastly, for a spherical shell, the Lamé parameters take the

form

A1 = R, A2 = R sinϕ (2.84)
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The components of the displacement vector, shown for general coordinates in Eq. (2.36),

are taken as

u (ϕ, θ) = u (ϕ, θ) e1 + v (ϕ, θ) e2 − w (ϕ, θ) e3 (2.85)

for the spherical shell with the transverse displacement positive toward the center of the

shell. (If the transverse displacement were taken as positive outward, then w would change

sign in Eq. (2.85) and all subsequent equations.)

The strain in the middle surface of the spherical shell is obtained through substitution

of Eqs. (2.84) and (2.85) into Eq. (2.42). Hence,

εϕϕ =
1

R

(
∂u

∂ϕ
− w

)
(2.86a)

εθθ =
1

R

(
u cotϕ+

1

sinϕ

∂v

∂θ
− w

)
(2.86b)

εϕθ = εθϕ =
1

2R

(
1

sinϕ

∂u

∂θ
+
∂v

∂ϕ
− v cotϕ

)
(2.86c)

The components of the rotation of the middle surface for the spherical shell follow from

Eqs. (2.53) and (2.58) as

βϕ =
1

R

(
u+

∂w

∂ϕ

)
(2.87a)

βθ =
1

R

(
v +

1

sinϕ

∂w

∂θ

)
(2.87b)

βρ =
1

2R

(
∂v

∂ϕ
+ v cotϕ− 1

sinϕ

∂u

∂θ

)
(2.87c)

where β3 = βρ is the component of the rotation vector about the e3 axis.

The bending measures of the middle surface, Eq. (2.74), are then given in terms of the

rotation components as

χϕϕ =
1

R

∂βϕ
∂ϕ

(2.88a)

χθθ =
1

R

(
1

sinϕ

∂βθ
∂θ

+ βϕ cotϕ

)
(2.88b)

χϕθ = χθϕ =
1

2R

(
1

sinϕ

∂βϕ
∂θ
− βθ cotϕ+

∂βθ
∂ϕ

)
(2.88c)

which can further be written in terms of the displacements through substitution of Eqs.



26

(2.87) into Eqs. (2.88). This results in

χϕϕ =
1

R2

(
∂u

∂ϕ
+
∂2w

∂ϕ2

)
(2.89a)

χθθ =
1

R2

[
1

sinϕ

∂v

∂θ
+

1

sin2 ϕ

∂2w

∂θ2
+ cotϕ

(
u+

∂w

∂ϕ

)]
(2.89b)

χϕθ = χθϕ =
1

2R2

[
1

sinϕ

(
∂u

∂θ
− 2 cotϕ

∂w

∂θ
+ 2

∂2w

∂ϕ∂θ

)
− v cotϕ+

∂v

∂ϕ

]
(2.89c)

Lastly, the changes of curvature and torsion for the spherical shell follow from Eq. (2.83)

as

κϕϕ =
1

R2

(
∂2w

∂ϕ2
+ w

)
(2.90a)

κθθ =
1

R2

(
1

sin2 ϕ

∂2w

∂θ2
+ cotϕ

∂w

∂θ
+ w

)
(2.90b)

κϕθ = κθϕ =
1

R2

[
1

sinϕ

(
∂2w

∂ϕ∂θ
− cotϕ

∂w

∂θ
+
∂u

∂θ

)
− v cotϕ+

∂v

∂ϕ

]
(2.90c)

where it is noted that both κϕϕ and κθθ are dependent solely on the transverse displacement

of the spherical shell.

To further illustrate the distinction between the bending measures and the changes of

curvature, consider the problem of uniform contraction/expansion of a complete spherical

shell. In this case, the displacement of the shell would be purely in the transverse direction

independent of the angular coordinates. The shell is not undergoing bending and, hence,

the bending measures of Eqs. (2.89) vanish identically. However, the curvature of the shell

is changing and the changes of curvature are identified through Eqs. (2.90) as κϕϕ = κθθ =

± w
R2 , where the sign is determined by whether the shell is contracting or expanding.

2.3 Constitutive Relations

With the kinematic relations for the middle surface of the shell established, it is necessary

to determine the dependency of the internal resultant forces and moments on the strains

and bending measures. Here, the Kirchhoff assumptions of plate theory are extended to

shells to obtain the distribution of the displacements and strains through the thickness of

the shell. From there, the stress distribution and the moment of the stress distribution are

integrated through the thickness to obtain the local resultant forces and moments acting

on an element of the shell.
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Kirchhoff’s assumptions state, that a normal to the undeformed middle surface of the

shell remains straight and normal to the deformed middle surface and that the thickness

of the shell remains constant during deformation. This is enforced through taking the

transverse normal and shear strains acting on the middle surface to vanish. Kirchhoff also

neglects the normal stress transverse to the middle surface as small compared to the other

normal stress components. The in-plane displacements are taken to vary linearly throughout

the thickness of the shell, while the transverse displacement does not very through the

thickness. Hence,

ũ1(θ1, θ2, ρ) = u1(θ1, θ2) + ρβ1 (2.91a)

ũ2(θ1, θ2, ρ) = u2(θ1, θ2) + ρβ2 (2.91b)

w̃(θ1, θ2, ρ) = w(θ1, θ2) (2.91c)

where ρ is the radial coordinate measured outward from the middle surface. In Eqs. (2.91),

u1(θ1, θ2) and u2(θ1, θ2) are the previously introduced in-plane displacements of the middle

surface and ũ1(θ1, θ2, ρ) and ũ2(θ1, θ2, ρ) are the in-plane distribution of the displacements

through the thickness. The variation of w̃(θ1, θ2, ρ) through the thickness is taken to be of

higher order.

The distribution of the strains through the thickness is found by posing the strains of

the middle surface, found in Eqs. (2.42), in terms of the distribution of the displacements

through the thickness given above. The normal strain distributions follow as

ε̃11(θ1, θ2, ρ) =
1

Ã1

∂ũ1

∂θ1
+

ũ2

Ã1Ã2

∂Ã1

∂θ2
− w̃

R̃1

(2.92a)

ε̃22(θ1, θ2, ρ) =
1

Ã2

∂ũ2

∂θ2
+

ũ1

Ã1Ã2

∂Ã2

∂θ1
− w̃

R̃2

(2.92b)

It was shown in Section 2.2.1 that εij is symmetric with respect to its indices, such that

ε12 = ε21. It is, however, possible to write the in-plane shear strains in an alternate form

in terms of the rotation about the e3 axis. The in-plane shear strain distributions through

the thickness of the shell then take the form,

ε̃12(θ1, θ2, ρ) =
1

Ã1

∂ũ2

∂θ1
− ũ1

Ã1Ã2

∂Ã1

∂θ2
− β3 (2.93a)

ε̃21(θ1, θ2, ρ) =
1

Ã2

∂ũ1

∂θ2
− ũ2

Ã1Ã2

∂Ã2

∂θ1
+ β3 (2.93b)



28

In Eqs. (2.92) and (2.93), the principal radii and the Lamé parameters at a distance ρ from

the middle surface are, respectively,

R̃1 = R1 (1 + ρ/R1) and R̃2 = R2 (1 + ρ/R2) (2.94a)

Ã1 = A1 (1 + ρ/R1) and Ã2 = A2 (1 + ρ/R2) (2.94b)

Substitution of Eqs. (2.91) into Eqs. (2.92) and (2.93) yields the distribution of the

strains through the thickness of the shell as

ε̃11 = ε11 + ρ

[
1

A1

∂β1

∂θ1
+

β2

A1A2

∂A1

∂θ2

]
(2.95a)

ε̃22 = ε22 + ρ

[
1

A2

∂β2

∂θ2
+

β1

A1A2

∂A2

∂θ1

]
(2.95b)

ε̃12 = ε12 + ρ

[
1

A1

∂β2

∂θ1
− β1

A1A2

∂A1

∂θ2
− β3

R1

]
(2.95c)

ε̃21 = ε12 + ρ

[
1

A2

∂β1

∂θ2
− β2

A1A2

∂A2

∂θ1
+
β3

R2

]
(2.95d)

where terms of order ρ/R are neglected as small when compared to unity.

The bracketed terms in Eqs. (2.95) are identified through further investigation of the

parameter kij in Eq. (2.65). Combining Eqs. (2.68) and (2.71) yields

kij = χij + 1
2

(
1

Ri
− 1

Rj

)
εij (2.96)

From Eq. (2.96), it is clear that k11 = χ11 and k22 = χ22. If Eq. (2.96) is expanded for

i 6= j, it is seen that the bracketed term in Eq. (2.95c) is identified as k12 and that the

bracketed term in Eq. (2.95d)is identified as k21. Hence, Eqs. (2.95) are rewritten as follows

ε̃11 = ε11 + ρk11 (2.97a)

ε̃22 = ε22 + ρk22 (2.97b)

ε̃12 = ε12 + ρk12 (2.97c)

ε̃21 = ε12 + ρk21 (2.97d)

It was shown in Section 2.2.3 that k12 6= k21, unless R1 = R2. This will be addressed when

considering the resultant twisting moments acting on a cross-section of the shell.
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The stress distribution through the thickness is related to the strain distribution by

Hooke’s Law. Hence,

σ11(θ1, θ2, ρ) =
E

1− ν2
(ε̃11 + νε̃22) (2.98a)

σ22(θ1, θ2, ρ) =
E

1− ν2
(ε̃22 + νε̃11) (2.98b)

σ12(θ1, θ2, ρ) =
E

1 + ν
ε̃12 (2.98c)

σ21(θ1, θ2, ρ) =
E

1 + ν
ε̃21 (2.98d)

where E is the Young’s modulus of the shell and ν is its Poisson’s ratio. The underlying

Kirchhoff assumptions take σ33 � σ11, σ22. The resultant internal forces and moments per

unit length are obtained by integrating the stress distributions through the thickness, h, of

the shell.

The integrals that identify the resultant membrane forces are of the following form

N11 =

∫ h/2

−h/2
σ11

(
1 +

ρ

R2

)
dρ (2.99a)

N22 =

∫ h/2

−h/2
σ22

(
1 +

ρ

R1

)
dρ (2.99b)

N12 =

∫ h/2

−h/2
σ12

(
1 +

ρ

R2

)
dρ (2.99c)

N21 =

∫ h/2

−h/2
σ21

(
1 +

ρ

R1

)
dρ (2.99d)

Terms of order ρ/R are again neglected as small when compared to unity. Carrying through

the integration yields

N11 = C (ε11 + νε22) (2.100a)

N22 = C (ε22 + νε11) (2.100b)

N12 = N21 = C (1− ν) ε12 (2.100c)

where

C =
Eh

1− ν2
(2.101)

is the membrane stiffness of the shell.
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Likewise, the bending and twisting moments per unit length are obtained by integrating

the moment of the stress distributions through the thickness of the shell. Hence,

M̃11 =

∫ h/2

−h/2
σ11ρ

(
1 +

ρ

R2

)
dρ (2.102a)

M̃22 =

∫ h/2

−h/2
σ22ρ

(
1 +

ρ

R1

)
dρ (2.102b)

M̃12 =

∫ h/2

−h/2
σ12ρ

(
1 +

ρ

R2

)
dρ (2.102c)

M̃21 =

∫ h/2

−h/2
σ21ρ

(
1 +

ρ

R1

)
dρ (2.102d)

After neglecting terms of order ρ/R as small when compared to unity, integration yields

the bending and twisting moments per unit length as

M̃11 = D (k11 + νk22) (2.103a)

M̃22 = D (k22 + νk11) (2.103b)

M̃12 = D (1− ν) k12 (2.103c)

M̃21 = D (1− ν) k21 (2.103d)

where

D =
Eh3

12(1− ν2)
(2.104)

is the bending stiffness of the shell.

The resultant in-plane shear forces, N12 and N21 in Eq. (2.100c), are equal since εij

was shown to be symmetric with respect to its indices in Section 2.2.1. Since kij is not, in

general, symmetric with respect to its indices, neither are the resultant moments appearing

in Eq. (2.103). As such the resultant bending moments in Eq. (2.103), M̃ij , have been

identified with a tilde to identify them as non-symmetric with respect to the indices.

The non-symmetric resultant bending moments, M̃ij , can be represented as the sum of

a symmetric component, Mij , and a skew-symmetric component, M skew
ij , as follows

M̃ij = Mij +M skew
ij (2.105)
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where the symmetric and skew-symmetric bending moment components are defined as

Mij = 1
2

(
M̃ij + M̃ji

)
= Mji (2.106a)

M skew
ij = 1

2

(
M̃ij − M̃ji

)
= −M skew

ji (2.106b)

Substitution of Eqs. (2.103) into Eq. (2.106a) yields the symmetric bending components

M11 = D (χ11 + νχ22) (2.107a)

M22 = D (χ22 + νχ11) (2.107b)

M12 = M21 = D (1− ν)χ12 (2.107c)

while, substitution of Eqs. (2.103) into Eq. (2.106b) yields the skew-symmetric bending

components

M skew
11 = M skew

22 = 0 (2.108a)

M skew
12 = 1

2D (1− ν) (k12 − k21) (2.108b)

M skew
21 = 1

2D (1− ν) (k21 − k12) (2.108c)

Equations (2.100), (2.103), (2.107), and (2.108) will be used to present the elastic strain

energy of the shell in terms of the six contact quantities N11, N22, N12, M11, M22, and M12.

2.4 Elastic Strain Energy

The elastic strain energy of the shell takes the form

U =
1

2

∫∫∫
θ1 θ2 ρ

(σ11ε̃11 + σ22ε̃22 + σ12ε̃12 + σ21ε̃21) Ã1Ã2dθ1dθ2dρ (2.109)

Integrating through the thickness, and incorporating Eqs. (2.97), (2.99), and (2.102), gives

U =
1

2

∫∫
θ1 θ2

(
N11ε11+N22ε22 +N12ε12 +N21ε21

+ M̃11k11 + M̃22k22 + M̃12k12 + M̃21k21

)
A1A2dθ1dθ2

(2.110)

where terms of order ρ/R have been neglected as small compared to unity.

As M̃ij is not symmetric with respect to its indices, Eq. (2.110) is shown in terms of

seven contact quantities rather than the common form of six contact quantities. In order
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to rectify this, Eq. (2.110) is rewritten as

U =
1

2

∫∫
θ1 θ2

2∑
i=1

2∑
j=1

(
Nijεij + M̃ijkij

)
A1A2dθ1dθ2 (2.111)

Substitution of Eqs. (2.96) and (2.105) into the summation in Eq. (2.111) yields

Nijεij + M̃ijkij = Nijεij +
(
Mij +M skew

ij

)[
χij +

1

2

(
1

Ri
− 1

Rj

)
εij

]
=

[
Nij +

1

2

(
1

Ri
− 1

Rj

)
M skew
ij

]
εij +Mijχij

(2.112)

where the property that the sum of the products of the components of a symmetric and

a skew-symmetric quantity vanish identically has been incorporated. Substitution of Eqs.

(2.106b), (2.103c), (2.103d), and (2.68), respectively, into Eq. (2.112) results in

Nijεij + M̃ijkij =

[
Nij +

1

4

(
1

Ri
− 1

Rj

)(
M̃ij − M̃ji

)]
εij +Mijχij

=

[
Nij +

1

4
D (1− ν)

(
1

Ri
− 1

Rj

)
(kij − kji)

]
εij +Mijχij

=

[
Nij +

1

4
D (1− ν)

(
1

Ri
− 1

Rj

)2

εij

]
εij +Mijχij

(2.113)

Finally, Eq. (2.100c) is substituted into the last line of Eq. (2.113) to obtain

Nijεij + M̃ijkij =

[
1 +

1

48
h2

(
1

Ri
− 1

Rj

)2
]
Nijεij +Mijχij (2.114)

As terms of order ρ/R have been neglected with respect to unity in the development of the

constitutive relations and the strain energy, terms of order (ρ/R)2 must also be neglected

with respect to unity for a consistent formulation. Hence, the second term within the

brackets of Eq. (2.114) must be neglected since the thickness, h, is of the same order as

the radial coordinate ρ. Equation (2.114) is then substituted back into Eq. (2.111), which

results in

U =
1

2

∫∫
θ1 θ2

2∑
i=1

2∑
j=1

(
Nijεij +Mijχij

)
A1A2dθ1dθ2 (2.115)

Expansion of the summation in Eq. (2.115) results in the standard form of the elastic strain

energy as

U =
1

2

∫∫
θ1 θ2

(
N11ε11 +N22ε22 +2N12ε12 +M11χ11 +M22χ22 +2M12χ12

)
A1A2dθ1dθ2 (2.116)

which is represented in standard form in terms of the six contact quantities identified in

Eqs. (2.100) and (2.107).
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2.5 Detachment Propagation in Layered Shells

The kinematic and constitutive equations presented in Sections 2.2 and 2.3, respectively,

along with the elastic strain energy presented in the previous Section, are now applied to

model the evolution of a detaching layered composite elastic shell. Shells with a compliant

inner layer separating from a rigid outer layer are considered and the delamination boundary

between layers is allowed to take on an arbitrary shape.

2.5.1 Geometry of a Delaminating Composite Shell

The shell is divided into three regions; Region R1: the ‘lift zone’, Region R2: the ‘contact

zone’ where the shell layers maintain sliding contact with each other, and Region R3: the

‘intact region’ where the shell layers remain perfectly bonded, all as shown in Figure 2.5.

Figure 2.5: Cross section of the delaminating shell, depicting the ‘lift zone’ R1, ‘contact
zone’ R2, and ‘intact region’ R3, which are separated by surfaces Sb and Sa, respectively.

The ‘lift zone’ is the area where the two shell layers have separated and are no longer

in contact with each other. It is defined from the origin of the shell at θ1 = θ2 = 0 up to

a lift zone boundary surface identified as Sb. Alternatively, if a hole identified as boundary

Surface Sc, which encloses the origin, is present, the lift zone is defined as the region between

Surfaces Sc and Sb.

In the ‘contact zone’, the bond between the shell layers has been broken, but the shell

layers remain in sliding contact with one another (Bottega [8], [9], [10], and [11]). The
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transverse deflection, w, of each layer must remain identical for the two layers to remain in

contact, though the in-plane displacements, u1 and u2 need not be the same. The contact

zone is identified as the region extending from Surface Sb to the contact zone boundary

surface identified as Sa

The ‘intact region’ describes the region of the structure where the two shells remain

perfectly adhered to one another and cannot move independently of each other. As the

outer layer is assumed rigid for the current case, the inner layer will conform to the shape

of the the outer in the intact region. The intact region is defined in the area from Surface

Sa to the pole opposite of θ1 = θ2 = 0.

2.5.2 Energy Formulation

The problem is approached as a propagating boundary value problem in the calculus of

variations, where the location of the boundary surfaces between the lift zone and contact

zone and between the contact zone and intact region are allowed to vary arbitrarily, as well

as the elastic deflections of the detaching inner shell layer.

The potential energy functional, Π, for the composite shell structure is comprised of the

elastic strain energy of the inner layer, U , and the work done by the applied loads acting

on the inner layer, W. In addition, we include a constraint functional, Λ, to ensure the

appropriate continuity of the displacements with the rigid outer layer in the contact zone

and in the intact region. Lastly, the energy of detachment, Γ, is the energy released as

detachment propagates and the bond between the shell layers is broken.

The potential energy functional follows as

Π =
3∑
j=1

(Uj −Wj)− Λ + Γ (2.117)

where Uj is the elastic strain energy of Eq. (2.116) for Region Rj (j = 1− 3). Hence,

Uj =
1

2

∫
Rj

(
N

(j)
11 ε

(j)
11 +N

(j)
22 ε

(j)
22 + 2N

(j)
12 ε

(j)
12

+M
(j)
11 χ

(j)
11 +M

(j)
22 χ

(j)
22 + 2M

(j)
12 χ

(j)
12

)
A1A2dθ1dθ2

(2.118)
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The work, Wj , done by general distributed loads, q(j) (θ1, θ2), in deforming the shell struc-

ture in Region Rj is

Wj =

∫
Rj

(
q

(j)
1 u

(j)
1 + q

(j)
2 u

(j)
2 + q

(j)
3 wj

)
A1A2dθ1dθ2 (2.119)

The constraint functional is given as

Λ =

∫
R2

σ̂2w2A1A2dθ1dθ2 +

∫
R3

(
τ̂

(3)
1 u

(3)
1 + τ̂

(3)
2 u

(3)
2 + σ̂3w3

)
A1A2dθ1dθ2 (2.120)

where σ̂2, σ̂3, τ̂
(3)
1 , and τ̂

(3)
2 are Lagrange multipliers that ensure continuity of the transverse

and meridian displacements of the shell layers in the intact region and continuity of the

transverse displacement in the contact zone. Physically, the Lagrange multipliers correspond

to the interfacial radial normal stress between the shell layers in the contact zone and the

interfacial radial normal stress and meridian shear stresses in the intact region, respectively.

The energy of detachment is given as

Γ =

∫
R1+R2

2γA1A2dθ1dθ2 −
∫

R10+R20

2γA1A2dθ1dθ2 (2.121)

where γ is the energy required to produce a unit area of detachment between the shell layers

and is a material property of that particular interface. Regions R10 and R20 comprise the

initial configuration of the delaminated shell prior to the propagation of detachment.

Applying the Principle of Stationary Potential Energy to Eq. (2.117), while allowing

the displacements u
(j)
1 , u

(j)
2 , and wj , along with the boundary Surfaces Sa and Sb to vary,

yields the self-consistent governing equations, boundary conditions, and transversality con-

ditions of the evolving shell structure. The Principle of Stationary Potential Energy is

mathematically represented as

δΠ = 0 (2.122)
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2.5.3 Governing Equations

Substitution of Eq. (2.117) into Eq. (2.122) and performing the indicated variations gives

the equations of equilibrium for the inner shell layer in Region Rj (for j = 1, 2, 3) as

∂

∂θ1

(
A2N

(j)
11

)
+

∂

∂θ2

(
A1N

(j)
12

)
− ∂A2

∂θ1
N

(j)
22 +

∂A1

∂θ2
N

(j)
12

+
A1A2

R1
Q

(j)
1 +

A1

2

(
1

R1
− 1

R2

)
∂M

(j)
12

∂θ2
= −A1A2

(
q1 + τ̂

(j)
1

) (2.123a)

∂

∂θ1

(
A2N

(j)
12

)
+

∂

∂θ2

(
A1N

(j)
22

)
+
∂A2

∂θ1
N

(j)
12 −

∂A1

∂θ2
N

(j)
11

+
A1A2

R2
Q

(j)
2 +

A2

2

(
1

R2
− 1

R1

)
∂M

(j)
12

∂θ1
= −A1A2

(
q2 + τ̂

(j)
2

) (2.123b)

∂

∂θ1

(
A2Q

(j)
1

)
+

∂

∂θ2

(
A1Q

(j)
2

)
−A1A2

(
N

(j)
11

R1
+
N

(j)
22

R2

)
= A1A2 (q3 + σ̂j) (2.123c)

where

Q
(j)
1 =

1

A1A2

[
∂

∂θ1

(
A2M

(j)
11

)
+

∂

∂θ2

(
A1M

(j)
12

)
− ∂A2

∂θ1
M

(j)
22 +

∂A1

∂θ2
M

(j)
12

]
(2.124a)

Q
(j)
2 =

1

A1A2

[
∂

∂θ1

(
A2M

(j)
12

)
+

∂

∂θ2

(
A1M

(j)
22

)
+
∂A2

∂θ1
M

(j)
12 −

∂A1

∂θ2
M

(j)
11

]
(2.124b)

represent the transverse shear forces in Region Rj .

On the right hand side of Eqs. (2.123)

σ̂1 = τ̂
(1)
1 = τ̂

(2)
1 = τ̂

(1)
2 = τ̂

(2)
2 = 0 (2.125)

while σ̂2, σ̂3, τ̂
(3)
1 , and τ̂

(3)
2 are the Lagrange multipliers identified in the previous Section.

Additionally, from the constraint functional,

u
(3)
1 = 0 (2.126a)

u
(3)
2 = 0 (2.126b)

w2 = w3 = 0 (2.126c)

since the outer shell layer is taken to be rigid.

2.5.4 Boundary Conditions

The boundary conditions for the detaching shell layer are also found from the variational

formulation. The boundary conditions acting on a hole defined by Surface Sc are found to
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be

N (1)
nn

∣∣∣∣∣
Sc

= 0, M (1)
nn

∣∣∣∣∣
Sc

= 0, V (1)
n

∣∣∣∣∣
Sc

= 0, V
(1)
t

∣∣∣∣∣
Sc

= 0 (2.127)

where the effective resultant transverse shear force, V
(j)
n and the effective resultant in-plane

shear force, V
(j)
s , that act on the boundary surface are, respectively,

V (j)
n = Q(j)

n +
1

At

∂M
(j)
nt

∂θt
(2.128a)

V
(j)
t = N

(j)
nt +

1

2

(
3

Rt
− 1

Rn

)
M

(j)
nt (2.128b)

In Eqs. (2.127) the subscript n represents the direction normal to the boundary and the

subscript t represents the direction tangential to the boundary. An orthogonal coordinate

transformation relates the θ1, θ2 coordinates to the n, t coordinates as shown in Figure 2.6.

The transformation in terms of the rotation angle, α, about the e3 axis is given as

B =

 cosα sinα

− sinα cosα

 (2.129)

Figure 2.6: Coordinate transformation from θ1, θ2 coordinates to normal, n, and tangential,
t, coordinates.

Moreover, the in-plane displacements transform as un

ut

 = B

 u1

u2

 (2.130)

Finally, the resultant membrane forces and bending moments in n, t coordinates are, re-

spectively,  Nnn Nnt

Nnt Ntt

 = B

 N11 N12

N21 N22

BT (2.131a)
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 Mnn Mnt

Mnt Mtt

 = B

 M11 M12

M21 M22

BT (2.131b)

while the strains and bending measures transform similarly as εnn εnt

εnt εtt

 = B

 ε11 ε12

ε21 ε22

BT (2.132a)

 χnn χnt

χnt χtt

 = B

 χ11 χ12

χ21 χ22

BT (2.132b)

Through these relations, the relevant parameters in n, t coordinates can be written in terms

of θ1, θ2 coordinates,

The remaining boundary conditions depend on the existence or absence of the contact

zone, Region R2. Although the model allows for a contact zone, one may not be physically

realizable for a given detachment size and load condition. The transversality conditions,

which are discussed in Section 2.5.5, determine the size and existence of the contact zone.

When a contact zone is present, the boundary conditions on Surface Sb are

u(1)
n

∣∣∣∣∣
Sb

= u(2)
n

∣∣∣∣∣
Sb

, u
(1)
t

∣∣∣∣∣
Sb

= u
(2)
t

∣∣∣∣∣
Sb

, w1

∣∣∣∣∣
Sb

= 0, β(1)
n

∣∣∣∣∣
Sb

= β(2)
n

∣∣∣∣∣
Sb

N (1)
nn

∣∣∣∣∣
Sb

= N (2)
nn

∣∣∣∣∣
Sb

, V
(1)
t

∣∣∣∣∣
Sb

= V
(2)
t

∣∣∣∣∣
Sb

(2.133)

while the boundary conditions on Surface Sa are

u(2)
n

∣∣∣∣∣
Sa

= 0, u
(2)
t

∣∣∣∣∣
Sa

= 0 (2.134)

When a contact zone is absent, Region R2 does not exist and we take Surface Sb and Sa

to coincide as the boundary surface between the lift zone, R1, and the intact region, R3. In

this case, the conditions stated in Eqs. (2.133) and (2.134) are negated and the boundary

conditions on Sa are

u(1)
n

∣∣∣∣∣
Sa

= 0, u
(1)
t

∣∣∣∣∣
Sa

= 0, w1

∣∣∣∣∣
Sa

= 0, β(1)
n

∣∣∣∣∣
Sa

= 0 (2.135)

For arbitrarily shaped boundary surfaces, the boundary conditions in Eqs. (2.127) and

(2.133)-(2.135) must be satisfied point-wise along the specified boundary surface.
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Surfaces Sb and Sa are not fixed. Rather, they are found as part of the solution to the

mathematical problem. Allowing the location of these surfaces to vary arbitrarily when

performing the variations yields the transversality conditions that establish the location of

the propagating boundaries that correspond to equilibrium configurations of the detaching

shell structure.

2.5.5 Transversality Conditions

Two possibilities are considered: (i) a contact zone is present and (ii) a contact zone is

absent.

(i) When a contact zone is present, the condition that establishes the location of the

propagating contact zone boundary surface, Sb, is found to be

[
H(1)
n −F (1)

n

]
Sb

=
[
H(2)
n −F (2)

n

]
Sb

(2.136)

where

F (j)
n =

1

2

[
N (j)
nn ε

(j)
nn +N

(j)
tt ε

(j)
tt + 2N

(j)
nt ε

(j)
nt +M (j)

nnχ
(j)
nn +M

(j)
tt χ

(j)
tt + 2M

(j)
nt χ

(j)
nt

]
(2.137)

and

H(j)
n =

1

An

[
N (j)
nn

∂u
(j)
n

∂θn
+ V

(j)
t

∂u
(j)
t

∂θn
− V (j)

n

∂wj
∂θn

+M (j)
nn

∂β
(j)
n

∂θn

]
(2.138)

In addition, the condition that establishes the location of the propagating detachment

boundary surface, Sa, takes the form

G
∣∣∣
Sa

=
[
H(2)
n −F (2)

n

]
Sa

= 2γ (2.139)

In Eq. (2.139), the function G
∣∣∣
Sa

is identified as the energy release rate (energy released per

unit increase of the detachment boundary) of the detaching inner shell layer.

(ii) When a contact zone is absent, Eq. (2.136) becomes invalid. For this case, Sa and

Sb represent the same boundary surface and Eq. (2.139) is superfluous. The transversality

condition that establishes the detachment boundary surface, Sa, for this case is found to be

given by

G
∣∣∣
Sa

=
[
H(1)
n −F (1)

n

]
Sa

= 2γ (2.140)
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The multi-directional growth laws given in Eqs. (2.136), (2.139), and (2.140) are associated

with the following Griffith-type criterion [32]: if G
∣∣∣
S∗a
≥ 2γ for some initial value, S∗a , of

the detachment surface, Sa, propagation of that detachment surface will occur with Sa

increasing until the equality is satisfied. If G
∣∣∣
S∗a
< 2γ, propagation will not occur. Hence,

the growth laws for an arbitrarily shaped surface must be satisfied point-wise along the

boundary surface. The surface will propagate and evolve to a final equilibrium configuration

for which G
∣∣∣
Sa
< 2γ at all points along the boundary. When a contact zone is present, the

contact zone boundary will evolve until Eq. (2.136) is satisfied at all points along the contact

zone boundary. Equations (2.139) and (2.140) are analogous to the growth law for arbitrary

shaped delaminations in layered plates derived in Bottega [7], for which contact zones were

not considered.
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Chapter 3

The Mechanics of Retinal Detachment in Emmetropic Eyes

3.1 Introduction

The theory of thin elastic shells and the corresponding growth law for detachment propaga-

tion in layered shells developed in the previous Chapter is now applied to model the propa-

gation of retinal detachment in emmetropic eyes. The retina is modeled as a thin spherical

elastic shell while treating the much stiffer RPE-choroid-sclera composite structure as rigid.

Axisymmetric deformation and detachment is considered, and linear strain-displacement

relations are assumed for the retina. This mechanics based mathematical model for retinal

detachment, which incorporates an energy-based criterion for detachment propagation, was

originally developed in Bottega et al. [12]. The goal of that study was to provide a substan-

tial first step in elucidating the mechanics of the phenomenon since, to the knowledge of

the authors, no analytical studies directly pertaining to the mechanics of a detaching retina

had been reported in the literature to that date.

In Bottega et al. [12], the meridian displacements of the retina are treated as negligible

in order to simplify the coupled equations of equilibrium derived therein into a single dif-

ferential equation in terms of the radial displacements. When considering deformations of

a complete sphere under symmetric loading, the meridian displacements do in fact vanish

identically and the obtained solution remains exact. For the present case, however, the

uniform symmetry of the sphere is altered by the presence of the detached region and/or

the tear. As a result, while the meridian displacements will be small compared to the radial

displacements, their effects will not necessarily be negligible. In order to improve upon the

Portions of this Chapter previously appeared as: Lakawicz, J.M., Bottega, W.J., Prenner, J.L., and
Fine, H.F., 2015. An analysis of the mechanical behaviour of a detaching retina. Math. Med. Biol., 32(2),
137-161.



42

results of Bottega et al. [12], the meridian displacements are retained and a more accurate

analytical solution for the model for retinal detachment in emmetropic eyes is obtained.

This Chapter aims to improve upon the results of Bottega et al. [12] by retaining the

contribution of meridian displacements and, hence, providing a more accurate solution to

the mathematical model for retinal detachment propagation in emmetropic eyes either with

or without a central tear in the retina. In young healthy eyes, the vitreous body is composed

of a gel that fills the vitreous cavity and is randomly interspersed with collagen fibrils. As

the eye ages, the vitreous liquefies leading to the collapse of the matrix of collagen fibrils

which, in turn exerts traction on the vitreoretinal interface (Sebag [71]). Additionally, when

fluid accumulates in the subretinal space or enters the subretinal space through a hole/tear

in the retina, the pressure in the subretinal space may exceed the intraocular pressure (IOP)

which could induce retinal detachment. Hence, contraction of the vitreous and extension

of its fibrils, along with a pressure difference across the retina, are taken as the stimuli for

detachment propagation. In this regard, the model represents the three types of retinal

detachment, known as exudative, tractional, and rhegmatogenous retinal detachment, the

latter being the most common type of retinal detachment (see, for example, Gariano & Kim

[25]).

The problem is approached as a propagating boundary value problem in the calculus

of variations, where the interior boundary between the lift zone and the contact zone, ϕ1,

and the boundary between the contact zone and the intact region, ϕ2, are allowed to vary

arbitrarily (see Figure 3.1), as well as the deflections of the retina along and transverse

to the meridian. In addition to the equilibrium equations, boundary, and matching condi-

tions, the variational formulation yields the self-consistent energy release rate that governs

detachment, and formulae for critical stress and critical deflections that provide a rational

basis for measuring critical parameters. The equilibrium equations, boundary conditions,

and energy release rate, all follow from the theory presented in Chapter 2 when applied

specifically to spherical elastic shells with axisymmetric deflection profiles.

The formulation of the mathematical model for retinal detachment propagation in the

emmetropic eye is presented in Section 3.2, which follows. Exact solutions for the equilib-

rium equations derived in the formulation are presented in Section 3.3. Results based on
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Figure 3.1: Cross section of the eye with a detaching retina, depicting a tear in Region
R0; ‘lift zone’ R1, ‘contact zone’ R2, and ‘intact region’ R3. For the case of no tear in the
retina, Region R0 is not present.

those solutions are presented in Section 3.5. Pertinent results are then compared with those

of Bottega et al. [12], demonstrating the importance of retaining the meridian displacements

in such analyses.

3.2 Problem Formulation

In this section, the formulation of the problem of quasi-static retinal detachment in em-

metropic eyes due to stress acting on the retina from vitreous fibrils, as well as due to the

presence of a pressure difference across the retina is stated. In this idealized model the

retina, sclera, and choroid are treated as spherical structures and axisymmetric deforma-

tions and detachment are considered. In this context, the retina is modeled as a thin elastic

shell detaching from a ‘rigid’ RPE-choroid-sclera composite structure.

The retina is modeled as a spherical elastic shell of radius R, thickness h, Young’s

modulus E, and Poisson’s ratio ν. Spherical coordinates, (r, θ, ϕ), are used to describe

the evolving ocular structure, where r is the radial coordinate, θ is the polar angle, and

ϕ is the azimuth angle. Symmetry is assumed about the ϕ = 0 axis and over the domain

0 ≤ θ ≤ 2π, with the center of the detached region located at the coordinates r = R,

ϕ = 0. The transverse displacement of the center surface of the retina, w (ϕ), is taken as

positive inward, while the meridian displacement, u (ϕ), is taken as positive in the direction
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of increasing azimuth angle, ϕ. Due to the axisymmetry about ϕ = 0, the deformation will

be the same for all values of the polar angle, θ.

The domain of the retina is r ∈ [R− h/2, R+ h/2], ϕ ∈ [ϕ0, π], θ ∈ [0, 2π], where

ϕ0 is the meridian angle of the tear. The case of a retina without a tear (ϕ0 = 0) and

the case of a retina with a tear (ϕ0 > 0), as depicted in Figure 3.1, are considered. The

region of the retinal tear is designated as R0: ϕ ∈ [0, ϕ0], while the detached segment of

the retina is divided into two regions; Region R1: ϕ ∈ [ϕ0, ϕ1], the ‘lift zone’, and Region

R2: ϕ ∈ [ϕ1, ϕ2], the ‘contact zone’. The latter corresponds to a region of sliding contact

and borders on Region R3: ϕ ∈ [ϕ2, π], where the bond between the retina and the RPE

remains intact.

A pressure difference across the retina, p, which accounts for fluid entering the subretinal

pocket that develops as the retina detaches, and stress from the fibrils of the contracting

vitreous, σv, act as the loading parameters in the mathematical model. The stress from the

vitreous fibrils is a distributed stress that acts on the retina in the sense shown in Figure

3.2. It is assumed that the pressure in the subretinal space, p1, is greater in magnitude

Figure 3.2: Schematic of the detaching retina in the emmetropic eye.

than the IOP, p0, such that the pressure difference across the retina in the lift zone, p, acts

in the direction of p1 in Figure 3.2.

The problem is approached as a propagating boundary value problem in the calculus of

variations, where the location of the boundary angle between the lift zone and contact zone,
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ϕ1, and between the contact zone and intact region, ϕ2, are allowed to vary arbitrarily, as

well as the elastic deflections of the detaching retina, wj (ϕ) and uj (ϕ). The potential energy

functional, Π, for the ocular system reduces directly from the potential energy functional

of the general shell in Eq. (2.117) of Chapter 2. For axisymmetric loading, the resultant

in-plane shear force and resultant twisting moment shown in the elastic strain energy, U ,

of the general shell in Eq. (2.118) both vanish.

The work, W, done by the ocular pressure difference across the retina and the applied

stress from the vitreous fibrils replaces the general distributed loads given in Eq. (2.119).

Hence, the work done on the retina takes the form,

W = 2πR2

∫
R1

(p1 − p0 + σv)w1 sinϕdϕ+ 2πR2
3∑
j=2

∫
Rj

(σv − p0)wj sinϕdϕ (3.1)

In the constraint functional, Λ, given in Eq. (2.120), τ̂
(3)
1 is redefined here as τ̂3 since τ̂

(3)
2

does not enter the formulation for axisymmetric loading and deformation. The formulation

presented herein is the same as that of Bottega et al. [12], but with the effects of the

vitreous modeled through an applied stress from the vitreous fibrils, rather than as an

elastic foundation.

The membrane forces and bending moments retain the form given in Eqs. (2.100) and

(2.107), respectively. Hence,

N (j)
ϕϕ (ϕ) = C

[
ε(j)
ϕϕ (ϕ) + νε

(j)
θθ (ϕ)

]
, N

(j)
θθ (ϕ) = C

[
ε

(j)
θθ (ϕ) + νε(j)

ϕϕ (ϕ)
]

(3.2)

M (j)
ϕϕ (ϕ) = D

[
χ(j)
ϕϕ (ϕ) + νχ

(j)
θθ (ϕ)

]
, M

(j)
θθ (ϕ) = D

[
χ

(j)
θθ (ϕ) + νχ(j)

ϕϕ (ϕ)
]

(3.3)

where C = Eh/
(
1− ν2

)
is the membrane stiffness of the retina and D = Ch2/12 is the

corresponding bending stiffness of the retina. For thin spherical shells that are axisymmetric

about ϕ = 0, Eqs. (2.86) and (2.88) for the strains and the bending measures in Region j

(j = 1− 3) reduce to

ε(j)
ϕϕ (ϕ) =

1

R

{
u′j (ϕ)− wj (ϕ)

}
, ε

(j)
θθ (ϕ) =

1

R
{uj (ϕ) cotϕ− wj (ϕ)} (3.4)

χ(j)
ϕϕ (ϕ) =

1

R2

{
u′j (ϕ) + w′′j (ϕ)

}
=

1

R
β(j)′

ϕ (ϕ) ,

χ
(j)
θθ (ϕ) =

1

R2
cotϕ

{
uj (ϕ) + w′j (ϕ)

}
=

1

R
cotϕβ(j)

ϕ (ϕ)

(3.5)
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where all derivatives are with respect to the coordinate ϕ. In Eqs. (3.5), βϕ is the component

of the rotation vector with cross-section whose normal is tangent to the meridian direction

of the retina. It is given directly by Eq. (2.87a) as

β(j)
ϕ (ϕ) =

1

R

{
uj (ϕ) + w′j (ϕ)

}
(3.6)

For the axisymmetric deformation considered herein, the other components of the rotation

vector in Eqs. (2.87b) and (2.87c), βθ and βρ, vanish identically.

3.2.1 Equilibrium Equations

With Eqs. (2.117)-(2.121) reduced and interpreted with the parameters described above,

the equations of equilibrium derived in Chapter 2, Eqs. (2.123) and (2.124), reduce to the

following form for the emmetropic retina:

(
Q(j)
ϕ sinϕ

)′
−
(
N (j)
ϕϕ +N

(j)
θθ

)
sinϕ = σjR sinϕ (3.7)

Q(j)
ϕ sinϕ+

(
N (j)
ϕϕ sinϕ

)′
−N (j)

θθ cosϕ = −τjR sinϕ (3.8)(
M (j)
ϕϕ sinϕ

)′
−M (j)

θθ cosϕ = RQ(j)
ϕ sinϕ (3.9)

where the quantity Q
(j)
ϕ (ϕ) is the resultant transverse shear force per unit length in region

Rj . In addition,

w2 (ϕ) = 0, u3 (ϕ) = w3 (ϕ) = 0 (3.10)

In Eqs. (3.7)-(3.9), the parameters σj (ϕ) and τj (ϕ) correspond to the radial normal stress

and meridian shear stress, respectively, acting on the retina in Region Rj . They are given

in terms of the applied pressures, the stress from the vitreous fibrils, and the interfacial

stresses (Lagrange multipliers) as

σj = σ̂j − p0 + σv (3.11)

where σ̂1 = p1 and

τ1 = τ2 = 0, τ3 = τ̂3 (3.12)

The parameters σ̂2 (ϕ), σ̂3 (ϕ), and τ̂3 (ϕ) are the Lagrange multipliers included in the

formulation to insure continuity of displacements in the intact region and the contact zone.
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These parameters can be evaluated as a function of the applied loading by substitution

of the analytical solutions for the displacements into the pertinent equilibrium equation.

The result correpsonds to the interfacial stresses acting between the retina and RPE in the

contact zone and the intact region.

Substituting Eqs. (3.2)-(3.5) into the equations of equilibrium, Eqs. (3.7)-(3.9), yields a

system of three equations with three unknowns: wj , uj , and Q
(j)
ϕ . In comparing Eqs. (3.7)-

(3.9) to the equations of equilibrium of the general shell found in Section 2.5.2, it is clear

that Eq. (3.7) is the simplified form of Eq. (2.123c). Similarly, Eq. (3.8) represents the

simplified form of Eq. (2.123a) and Eq. (3.9) represents the simplified form of Eq. (2.124a).

3.2.2 Boundary Conditions

For shells with axisymmetric deformations, the boundary surfaces separating the lift zone,

contact zone, and intact region are of a uniform value of ϕ for any given value of the

coordinate θ. As such, the normal direction appearing in the boundary conditions of Section

2.5.4 is the ϕ direction and all boundary conditions applied in the tangential (θ) direction

are satisfied identically by the axisymmetric nature of the deformation.

When no retinal tear/hole exists (ϕ0 = 0), the conditions at ϕ = 0 are found to be

u1 (0) = 0, β(1)
ϕ (0) = 0, Q(1)

ϕ (0) =

[(
M (1)
ϕϕ sinϕ

)′
−M (1)

θθ cosϕ

]
ϕ=0

= 0 (3.13)

Alternatively, when a (symmetric) retinal tear/hole is present (ϕ0 > 0), the boundary

conditions at ϕ = ϕ0 are

N (1)
ϕϕ (ϕ0) = 0, M (1)

ϕϕ (ϕ0) = 0, Q(1)
ϕ (ϕ0) = 0 (3.14)

The remaining boundary conditions depend on the presence or absence of a contact zone

(Region R2). While the model allows for a region of sliding contact, such a configuration of

the structure is not necessarily physically realizable for a given detachment size and level of

the applied loading. The transversality conditions, discussed below, establish the location

of the boundary between the lifted region and the contact zone, and the location of the

boundary of the detached region itself, that correspond to equilibrium configurations of the

evolving ocular system. It follows that a contact zone will not be present if the transversality
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condition for the contact zone boundary does not admit a physically realizable location of

the contact zone boundary, for the given detachment size and load level.

When a contact zone is present, the boundary conditions at ϕ = ϕ1 and ϕ = ϕ2 are

u1 (ϕ1) = u2 (ϕ1) , w1 (ϕ1) = 0, β(1)
ϕ (ϕ1) = 0,

N (1)
ϕϕ (ϕ1) = N (2)

ϕϕ (ϕ1) , u2 (ϕ2) = 0

(3.15)

When a contact zone is absent (ϕ1 = ϕ2), Region R2 does not exist and Region R1 con-

stitutes the entire detached area. For this case, the boundary conditions of Eq. (3.15) are

superfluous and, hence, the boundary conditions at ϕ = ϕ2 are

u1 (ϕ2) = 0, w1 (ϕ2) = 0, β(1)
ϕ (ϕ2) = 0 (3.16)

3.2.3 Transversality Conditions

The boundaries of the detached area and of the contact zone are not fixed. Rather, they are

found as part of the solution to the problem. Allowing these parameters to vary arbitrarily

when performing the variations yields the transversality conditions that establish the loca-

tion of the propagating boundaries ϕ2 and ϕ1 that correspond to equilibrium configurations

of the evolving ocular system. Two possibilities are considered: (i) a contact zone is present

and (ii) a contact zone is absent.

(i) When a contact zone is present, and when considering axisymmetic deformation and

detachment of the spherical retina, the transversality conditions for the general shell in

Eqs. (2.136)-(2.138) reduce to the following form:[
H(1)
ϕ −F (1)

ϕ

]
ϕ=ϕ1

=
[
H(2)
ϕ −F (2)

ϕ

]
ϕ=ϕ1

(3.17)

where

F (j)
ϕ =

1

2

[
N (j)
ϕϕε

(j)
ϕϕ +N

(j)
θθ ε

(j)
θθ +M (j)

ϕϕχ
(j)
ϕϕ +M

(j)
θθ χ

(j)
θθ

]
(3.18)

and

H(j)
ϕ =

1

R

[
N (j)
ϕϕ

∂uj
∂ϕ
−Q(j)

ϕ

∂wj
∂ϕ

+M (j)
ϕϕ

∂β
(j)
ϕ

∂ϕ

]
(3.19)

Upon incorporation of Eq. (3.10)1 and the pertinent boundary conditions, Eq. (3.17) which

establishes the contact zone boundary, ϕ = ϕ1, further reduces to

w′′1 (ϕ1) = 0 (3.20)
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to which the following qualification applies

w′′1
(
ϕ−1
)
> 0 (3.21)

to rule out penetration1.

In addition, Eq. (2.139) which establishes the location of the propagating detachment

boundary, ϕ2, takes the form

G {ϕ2} =
[
H(2)
ϕ −F (2)

ϕ

]
ϕ=ϕ2

= 2γ (3.22)

which upon incorporation of Eq. (3.10)1 and the pertinent boundary conditions, reduces to

G {ϕ2} =
1

2R2

[(
D

R2
+ C

)
u′22

]
ϕ=ϕ2

= 2γ (3.23)

where the function G {ϕ2} is identified as the energy release rate (energy released per unit

increase of detachment angle) of the detaching ocular system and γ is the energy required

to produce a unit area of detachment (a property of the particular interface and retinal

materials).

(ii) If, for a given detachment angle and level of the applied loading, Eq. (3.20) fails

to yield a physically realizable value for the contact zone boundary, then a contact zone is

absent (ϕ1 = ϕ2). In this case, Eq. (3.23) is superfluous and the transversality condition

that establishes the detachment boundary, ϕ = ϕ2, is given by

G {ϕ2} =
1

2R2

[
D

R2

(
u′1 + w′′1

)2
+ Cu′21

]
ϕ=ϕ2

= 2γ (3.24)

Equations (3.23) and (3.24) suggest the following Griffith-type criterion for detachment

propagation (Griffith [32]); If G {ϕ∗} ≥ 2γ for some initial value, ϕ∗, of the detachment

angle, ϕ2, propagation of the detachment will occur with the detachment boundary angle,

ϕ2, increasing until the equality is satisfied. If G {ϕ∗} < 2γ, propagation will not occur.

Equation (3.24) corresponds to Eq. (2.140) for the transversality condition governing the

propagating detachment boundary of the general shell with no contact zone.

1In Eq. (3.21), the quantity ϕ−1 indicates a value of ϕ infinitesimally close to, but less than, ϕ1.
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3.2.4 Non-dimensionalization

Thus far, all of the parameters presented have been given in dimensional form. In obtaining

solutions to the governing equations and in presenting results, all of these parameters will

be given in non-dimensional form. Non-dimensional parameters are henceforth signified by

an overbar. Length scales are non-dimensionalized with respect to the nominal value of the

radius of the emmetropic retina, R0, as follows;

R̄ = R/R0, w̄ = w/R0, ū = u/R0, h̄ = h/R0 (3.25)

Biological materials present a large variability in the measurement of their mechanical

properties. Hence, the remaining parameters are non-dimensionalized with respect to the

bending stiffness of the retina at a reference value, D0, which is given in terms of the

Young’s modulus of the retina at a nominal reference value, E0. The nominal values for

the reference radius R0 and the reference Young’s modulus E0 are discussed in Section 3.4.

The non-dimensional stiffnesses then take the following forms

D̄ = D
/
D0 = E

/
E0 and C̄ = CR2

0

/
D0 = 12D̄

/
h̄2 (3.26)

respectively. In this manner, the effects of variability in the measurement of the Young’s

modulus of the retina on the results of the detachment model can be investigated by varying

the parameter D̄. Similarly, the effects of the radius of the retina on the detachment behavior

can be investigated by varying R̄. Other non-dimensional parameters include

σ̄ = σR3
0

/
D0, τ̄ = τR3

0

/
D0, γ̄ = γR2

0

/
D0, Q̄ϕ = QϕR

2
0

/
D0,

N̄ϕϕ = NϕϕR
2
0

/
D0, N̄θθ = NθθR

2
0

/
D0, M̄ϕϕ = MϕϕR0

/
D0, M̄θθ = MθθR0

/
D0

(3.27)

whose interpretations follow accordingly. The general solution for the mathematical model

of retinal detachment in emmetropic eyes is presented in the next section.

3.3 Solution

In Bottega et al. [12], the meridian displacements were neglected in the solution to the

equations of equilibrium derived therein in order to simplify the equations and obtain a
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closed form solution for the transverse deflection. In this section, the meridian displacements

are retained in Eqs. (3.7)-(3.9) and an exact analytical solution for an emmetropic detaching

retina is presented. Solutions are obtained for the case when a retinal tear is present as well

as for the case when it is absent.

The equations of equilibrium, Eqs. (3.7)-(3.9), are written in non-dimensional form to

facilitate the solution procedure. The following equations are applicable to Region R1 since

it is the only region that has both radial and meridian displacements and, hence, will be

the focus of the solution procedure.

(
Q̄(1)
ϕ sinϕ

)′
−
(
N̄ (1)
ϕϕ + N̄

(1)
θθ

)
sinϕ = σ̄1R̄ sinϕ (3.28)

Q̄(1)
ϕ sinϕ+

(
N̄ (1)
ϕϕ sinϕ

)′
− N̄ (1)

θθ cosϕ = 0 (3.29)(
M̄ (1)
ϕϕ sinϕ

)′
− M̄ (1)

θθ cosϕ = R̄Q̄(1)
ϕ sinϕ (3.30)

In order to solve the system of coupled differential equations given by Eqs. (3.28)-(3.30),

a change of variables is introduced that will allow for a reduction of the fourth order coupled

equations of equilibrium to two second order differential equations of a single variable. This

method is motivated by similar procedures found in Timoshenko & Woinowsky-Krieger [76]

and Flügge [21] for shells having the form of a surface of revolution and loaded symmetrically

with respect to their axis. The non-dimensional form of the transverse shear force, Q̄
(1)
ϕ

as defined in Eq. (3.30), is retained as one of the independent variables and the angle of

rotation of a tangent to the meridian of the retina, β
(1)
ϕ as defined in Eq. (3.6), is introduced

as the other independent variable. When non-dimensionalized, the angle of rotation takes

the form

β(1)
ϕ =

1

R̄

{
ū1 + w̄′1

}
(3.31)

First, the straightforward step of expressing Eq. (3.30) in terms of these variables through

substitution of Eqs. (3.3) and (3.5) results in

D̄

R̄2

[
β(1)′′

ϕ + cotϕβ(1)′

ϕ −
(
ν + cot2 ϕ

)
β(1)
ϕ

]
= Q̄(1)

ϕ (3.32)

In order to combine the equations of equilibrium given by Eqs. (3.28) and (3.29), it is

necessary to rewrite the constitutive equations, Eqs. (3.2), in the following non-dimensional
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forms:

ū′1 − w̄1 =
R̄

C̄ (1− ν2)

(
N̄ (1)
ϕϕ − νN̄

(1)
θθ

)
(3.33)

and

ū1 cotϕ− w̄1 =
R̄

C̄ (1− ν2)

(
N̄

(1)
θθ − νN̄

(1)
ϕϕ

)
(3.34)

Subtracting Eq. (3.34) from Eq. (3.33) will eliminate w̄1 and yield

ū′1 − ū1 cotϕ =
R̄

C̄ (1− ν)

(
N̄ (1)
ϕϕ − N̄

(1)
θθ

)
(3.35)

Now, subtracting the derivative of Eq. (3.34) from the product of Eq. (3.35) and cotϕ leads

to

R̄

C̄ (1− ν2)

[
(1 + ν)

(
N̄ (1)
ϕϕ − N̄

(1)
θθ

)
cotϕ−

(
N̄

(1)
θθ − νN̄

(1)
ϕϕ

)′]
= ū1 + w̄′1 (3.36)

Finally, substituting Eq. (3.29) into Eq. (3.36), followed by the substitution of the derivative

of Eq. (3.28) into the resulting expression, leads to

Q̄(1)′′

ϕ + cotϕQ̄(1)′

ϕ +
(
ν − cot2 ϕ

)
Q̄(1)
ϕ = −C̄

(
1− ν2

)
β(1)
ϕ (3.37)

At this point the equations of equilibrium have been reduced from three equations in

three variables to two equations in two variables. Now, recognizing the similar form of

Eqs. (3.32) and (3.37), it is useful to define the mathematical operator

L(·) = (·)′′ + cotϕ(·)′ − cot2(·) (3.38)

Thus, Eqs. (3.32) and (3.37) are rewritten in the following form:

L
(
β(1)
ϕ

)
− νβ(1)

ϕ =
D̄

R̄2
Q̄(1)
ϕ (3.39)

L
(
Q̄(1)
ϕ

)
+ νQ̄(1)

ϕ = −C̄
(
1− ν2

)
β(1)
ϕ (3.40)

The operator L(·) is now applied to Eqs. (3.39) and (3.40), which gives

LL
(
β(1)
ϕ

)
− νL

(
β(1)
ϕ

)
=

D̄

R̄2
L
(
Q̄(1)
ϕ

)
(3.41)

LL
(
Q̄(1)
ϕ

)
+ νL

(
Q̄(1)
ϕ

)
= −C̄

(
1− ν2

)
L
(
β(1)
ϕ

)
(3.42)

The relations given in Eqs. (3.39) and (3.40) are next used to decouple Eqs. (3.41) and (3.42)

into a single differential equation in β
(1)
ϕ and another in Q̄

(1)
ϕ . The resulting equations take

the forms

LL
(
Q̄(1)
ϕ

)
+

[
R̄2C̄

D̄

(
1− ν2

)
− ν2

]
Q̄(1)
ϕ = 0 (3.43)
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and

LL
(
β(1)
ϕ

)
+

[
R̄2C̄

D̄

(
1− ν2

)
− ν2

]
β(1)
ϕ = 0 (3.44)

It is clear that Eqs. (3.43) and (3.44) are of identical form. As a result, it is only necessary

to solve Eq. (3.43) to obtain a solution for the general form of the expression for Q̄
(1)
ϕ . The

expression for β
(1)
ϕ is then readily found from Eq. (3.40). Upon closer examination, it is

seen that Eq. (3.43) can be rewritten in either of the two following forms:

L
[
L
(
Q̄(1)
ϕ

)
+ i1

4ZQ̄
(1)
ϕ

]
− i1

4Z
[
L
(
Q̄(1)
ϕ

)
+ i1

4ZQ̄
(1)
ϕ

]
= 0 (3.45)

or

L
[
L
(
Q̄(1)
ϕ

)
− i1

4ZQ̄
(1)
ϕ

]
+ i1

4Z
[
L
(
Q̄(1)
ϕ

)
− i1

4ZQ̄
(1)
ϕ

]
= 0 (3.46)

where i is the imaginary unit
(√
−1
)

and

Z = 4

√
R̄2C̄

D̄
(1− ν2)− ν2 (3.47)

Finally, Eqs. (3.45) and (3.46) are written as

L
(
Q̄(1)
ϕ

)
± i1

4ZQ̄
(1)
ϕ = 0 (3.48)

The linear combination of the solutions to the two second-order differential equations rep-

resented by Eq. (3.48) will satisfy the fourth-order differential equation given in Eq. (3.43).

This linear combination will also form the final solution for the general form of Q̄
(1)
ϕ , which

is given as

Q̄(1)
ϕ (ϕ) = A1 sinϕ 2F 1

(
ψa, ψb; 2; sin2 ϕ

)
+A2 sinϕ 2F 1

(
ψ̂a, ψ̂b; 2; sin2 ϕ

)
+A3 sinϕG2,0

2,2

(
sin2 ϕ

∣∣∣∣∣ ψa − 1
2 , ψb −

1
2

−1, 0

)
+A4 sinϕG2,0

2,2

(
sin2 ϕ

∣∣∣∣∣ ψ̂a − 1
2 , ψ̂b −

1
2

−1, 0

)
(3.49)

where

ψa =
3 +
√

5 + iZ

4
, ψb =

3−
√

5 + iZ

4
, ψ̂a =

3 +
√

5− iZ

4
, ψ̂b =

3−
√

5− iZ

4

(3.50)

In addition, 2F 1(·) represents a Hypergeometric function, G2,0
2,2(·) represents a Meijer G

function, and A1-A4 are constants of integration. In order to apply the boundary conditions

given in Eqs. (3.13)-(3.16) to solve for the constants of integration in Eq. (3.49), the functions
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w̄1 and ū1 must be expressed in terms of the function Q̄
(1)
ϕ . This procedure begins with

consideration of Eq. (3.28), which follows as

N̄ (1)
ϕϕ + N̄

(1)
θθ = Q̄(1)′

ϕ + Q̄(1)
ϕ cotϕ− R̄σ̄1 (3.51)

This is followed by the combination of Eq. (3.29) and Eq. (3.51), which results in

2N̄ (1)
ϕϕ + N̄ (1)′

ϕϕ tanϕ = Q̄(1)′

ϕ + Q̄(1)
ϕ (cotϕ− tanϕ)− R̄σ̄1 (3.52)

This is integrated to obtain the expression for N̄
(1)
ϕϕ in terms of Q̄

(1)
ϕ . Subsequently, substi-

tuting that expression into Eq. (3.51) yields the expression for N̄
(1)
θθ in terms of Q̄

(1)
ϕ . The

expressions for the membrane forces in Region R1 are then

N̄ (1)
ϕϕ = Q̄(1)

ϕ cotϕ+ 1
2R̄σ̄1 cot2 ϕ+A5 csc2 ϕ (3.53)

N̄
(1)
θθ = Q̄(1)′

ϕ − 1
2R̄σ̄1

(
csc2 ϕ+ 1

)
−A5 csc2 ϕ (3.54)

where A5 is a constant of integration.

In order to obtain an expression for the meridian displacement, Eqs. (3.53) and (3.54)

are first substituted into Eq. (3.35). The resulting equation is then integrated to obtain

ū1 (ϕ) = A6 sinϕ− R̄

C̄ (1− ν)

[
Q̄(1)
ϕ +

(
1

2
R̄σ̄1 +A5

)(
cotϕ+ sinϕ ln

{
cot

ϕ

2

})]
(3.55)

where A6 is a constant of integration.

To obtain an expression for the radial displacement, Eqs. (3.53)-(3.55) are substituted

into Eq. (3.34) to obtain

w̄1 (ϕ) = A6 cosϕ+A5
R̄

C̄ (1− ν)

[
1− cosϕ ln

{
cot

ϕ

2

}]
− R̄

C̄ (1− ν2)

[
Q̄(1)′

ϕ + Q̄(1)
ϕ cotϕ

]
+

R̄2σ̄1

C̄ (1− ν2)

[
1− 1

2
(1 + ν) cosϕ ln

{
cot

ϕ

2

}] (3.56)

With the expressions for the meridian and radial displacements established, Eqs. (3.55) and

(3.56), respectively, it is now possible to solve for the constants of integration.

First, consideration is given to the case of a retina with no tear and then consideration

is given to the case of a retina with a central tear/hole present. At this point, the boundary

conditions in Eq. (3.15) or those of Eq. (3.16) are applied, depending upon the existence,

or absence, of a contact zone, Region R2. In the ensuing analysis, both the situation of a
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tear and that of no tear is considered. However, when applying Eq. (3.15) for an existing

contact zone, it is found that the transversality condition given in Eq. (3.20) is not satisfied

for any values of the boundary angles ϕ1 and ϕ2 for either case. This is done by plotting

w̄′′1 (ϕ) over the range of angle ϕ1 for various values of angle ϕ2. Upon doing this, it is

observed that w̄′′1 (ϕ1) does not vanish for any combination of these boundary angles. The

corresponding plots are omitted for brevity. Therefore, it is concluded that a contact zone

will not exist for either the case of a tear or that of no tear, for the range of detachment

sizes considered. As a result, Eq. (3.16) is used in the remainder of the solution procedure.

3.3.1 Case 1: No Retinal Tear

For the case when there is no retinal tear, the domain of definition of the detached segment

of the retina is ϕ ∈ [0, ϕ2]. The Meijer G function, as well as the cotangent function and

natural logarithm, are singular at the origin, but it is required on physical grounds that the

deflections be finite at the origin and throughout the domain of definition. The condition

of finite deflection at the origin is then the ‘boundary condition’ at ϕ = 0, and replaces

the three conditions of Eq. (3.13). As a result, the integration constants in Eqs. (3.55) and

(3.56) are found to be

A3 = 0, A4 = 0, A5 = −1

2
R̄σ̄1 (3.57)

Imposing the other pertinent boundary conditions, as specified in Eq. (3.16), gives the

remaining integration constants, A1, A2, and A6, as
A1

A2

A6

 = [λ1]−1


1
2R̄σ̄1 (1− ν)

0

0

 (3.58)

where

[λ1] =


cosϕ2X1 (ψa, ψb, ϕ2) cosϕ2X1

(
ψ̂a, ψ̂b, ϕ2

)
− C̄
R̄

cosϕ2

(
1− ν2

)
X2 (ψa, ψb, ϕ2) X2

(
ψ̂a, ψ̂b, ϕ2

)
− C̄
R̄

(
1− ν2

)
2F 1

(
ψa, ψb; 2; sin2 ϕ2

)
2F 1

(
ψ̂a, ψ̂b; 2; sin2 ϕ2

)
− C̄
R̄

(1− ν)

 (3.59)

X1 (ψa, ψb, ϕ) = 2 2F 1

(
ψa, ψb; 2; sin2 ϕ

)
+ ψaψb sin2 ϕ 2F 1

(
ψa + 1, ψb + 1; 3; sin2 ϕ

)
(3.60)
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X2 (ψa, ψb, ϕ) = 2 2F 1

(
ψa, ψb; 2; sin2 ϕ

)
+
(
1− 5 cos2 ϕ

)
ψaψb 2F 1

(
ψa + 1, ψb + 1; 3; sin2 ϕ

)
− 2

3 sin2 ϕ cos2 ϕψaψb (ψa + 1) (ψb + 1) 2F 1

(
ψa + 2, ψb + 2; 4; sin2 ϕ

)
(3.61)

3.3.2 Case 2: Retinal Tear/Hole Present

Next, the case where a retinal tear/hole of meridian angle ϕ0 exists at the center of the

detached region is considered. In this case, the domain of definition of the detached segment

of the retina is ϕ ∈ [ϕ0, ϕ2]. Imposing the pertinent boundary conditions, Eqs. (3.14) and

(3.16), yields the integration constants A1-A6 as

A1

A2

A3

A4

A5

A6



= [λ2]−1



R̄σ̄1

[
secϕ2 − 1

2 (1 + ν) g (ϕ2)
]

−1
2R̄σ̄1 (1 + ν) ĝ (ϕ2)

−1
2R̄σ̄1ĝ (ϕ2)

0

−1
2R̄σ̄1 cotϕ0 cscϕ0

0



(3.62)

where

[λ2] =



X1 (ψa, ψb, ϕ2) X1

(
ψ̂a, ψ̂b, ϕ2

)
Y1 (ψa, ψb, ϕ2) Y1

(
ψ̂a, ψ̂b, ϕ2

)
−g̃ (ϕ2) − C̄

R̄

(
1− ν2

)
X2 (ψa, ψb, ϕ2) X2

(
ψ̂a, ψ̂b, ϕ2

)
Y2 (ψa, ψb, ϕ2) Y2

(
ψ̂a, ψ̂b, ϕ2

)
(1 + ν) ĝ (ϕ2) − C̄

R̄

(
1− ν2

)
F (ψa, ψb, ϕ2) F

(
ψ̂a, ψ̂b, ϕ2

)
G (ψa, ψb, ϕ2) G

(
ψ̂a, ψ̂b, ϕ2

)
ĝ (ϕ2) − C̄

R̄
(1− ν)

F (ψa, ψb, ϕ0) F
(
ψ̂a, ψ̂b, ϕ0

)
G (ψa, ψb, ϕ0) G

(
ψ̂a, ψ̂b, ϕ0

)
0 0

F (ψa, ψb, ϕ0) F
(
ψ̂a, ψ̂b, ϕ0

)
G (ψa, ψb, ϕ0) G

(
ψ̂a, ψ̂b, ϕ0

)
secϕ0 csc2 ϕ0 0

X3 (ψa, ψb, ϕ0) X3

(
ψ̂a, ψ̂b, ϕ0

)
Y3 (ψa, ψb, ϕ0) Y3

(
ψ̂a, ψ̂b, ϕ0

)
0 0


(3.63)

F (ψa, ψb, ϕ) = 2F 1

(
ψa, ψb; 2; sin2 ϕ

)
(3.64)

G (ψa, ψb, ϕ) = G2,0
2,2

sin2 ϕ

∣∣∣∣∣ ψa −
1
2 , ψb −

1
2

−1, 0

 (3.65)

Y1 (ψa, ψb, ϕ) = 2G (ψa, ψb, ϕ) + tanϕG′ (ψa, ψb, ϕ) (3.66)

Y2 (ψa, ψb, ϕ) = 2G (ψa, ψb, ϕ)− 3 cotϕG′ (ψa, ψb, ϕ)−G′′ (ψa, ψb, ϕ) (3.67)
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X3 (ψa, ψb, ϕ) =
(
1− ν2

)
2F 1

(
ψa, ψb; 2; sin2 ϕ

)
+
(
16 sin2 ϕ− 4ν cos2 ϕ− 4

)
ψaψb 2F 1

(
ψa + 1, ψb + 1; 3; sin2 ϕ

)
− 2

3 sin2 ϕ
[
(10 + ν) cos2 ϕ− 3

]
ψaψb (ψa + 1) (ψb + 1) 2F 1

(
ψa + 2, ψb + 2; 4; sin2 ϕ

)
− 1

3 sin4 ϕ cos2 ϕψaψb (ψa + 1) (ψb + 1) (ψa + 2) (ψb + 2) 2F 1

(
ψa + 3, ψb + 3; 5; sin2 ϕ

)
(3.68)

Y3 (ψa, ψb, ϕ) =
(
1− ν2

)
G (ψa, ψb, ϕ) + [(4− ν) tanϕ− 3ν cotϕ]G′ (ψa, ψb, ϕ)

− (4 + ν)G′′ (ψa, ψb, ϕ)− tanϕG′′′ (ψa, ψb, ϕ)

(3.69)

g (ϕ) = ln
{

cot
ϕ

2

}
, ĝ (ϕ) = cotϕ cscϕ+g (ϕ) , g̃ (ϕ) = (1 + ν) [secϕ− g (ϕ)] (3.70)

The solutions obtained in this section are used to perform simulations of the evolution of

retinal detachment in the emmetropic eye, the results of which are presented in Section 3.5.

3.4 Material Properties

The radius of the emmetropic retina in a human eye with average dimensions is given as

R0 = 11 mm in Wilkinson & Rice [84]. Wilkinson & Rice also give measurements for

the thickness of the retina, which varies based on the location within the eye. At the

periphery the thickness is given as h = 0.1 mm, while at the midperiphery the thickness is

h = 0.14 mm and at the posterior of the eye the thickness is h = 0.23 mm.

The ora serrata and the optic nervehead are regions of strong retinal attachment from

which the retina cannot detach and the location of each is also given in Wilkinson and Rice

[84]. The retina ends anteriorly at the ora serrata which is located approximately 4.8 mm

anterior to the center of the eye. The edge of the optic nervehead is approximately 3.4 mm

nasal to the posterior pole and aligned horizontally with the posterior pole.

The Young’s modulus employed in the present study is taken from data in Wollensak

et al. [85], in which in vitro tensile tests were performed on retinal strips taken from post-

mortem human eyes. From the data provided in Wollensak et al. [85], the Young’s modulus

of the human retina is calculated here to be E0 = (4.65± 0.93)·104 Pa based on the reported

force-elongation measurements and the given sample dimensions.

Chen et al. [15] took in vitro measurements of the (tangent) elastic modulus and thick-

ness of the retina, choroid, and sclera from human eyes in 37◦C saline. The ratio of the
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corresponding membrane stiffness of the retina, C, to that of the choroid, Cchor, is found to

be C/Cchor ∼ O(10−2), while the ratio of the retina to that of the sclera, Cscl, is found to be

10−4 < C/Cscl < 10−3. The ratios of the bending stiffness of the retina, D, to the bending

stiffness of the choroid, Dchor, and that of the retina to that of the sclera, Dscl, are found

to be D/Dchor ∼ O(10−2) and 10−5 < D/Dscl < 10−4, respectively. Hence, modeling the

retina as a thin elastic shell detaching from a rigid RPE-choroid-sclera composite structure

is justified. Similar justification was provided in Bottega et al. [12] based upon the material

properties of porcine ocular tissues provided in Chen et al. [14].

3.5 Results

In this section, the results of simulations based on the analytical solutions presented in

Section 3.3 are presented for the case of a pre-existing retinal tear as well as for the case

when no tear is present. The results of this study are compared to the corresponding results

found by Bottega et al. [12] in order to assess the influence of the meridian displacements

on the detachment process.

In order to compare the results of this study to those of Bottega et al. [12], the loading

parameter that represents the contraction of the vitreous in the separate studies must be

reconciled. Here, the stress from the vitreous fibrils is identified by the parameter σv, which

appears in the transverse loading acting on the retina given in Eq. (3.11). In Bottega

et al. [12], the vitreous and its fibrils are modeled as a pre-tensioned elastic foundation of

stiffness k per unit area that is initially extended a radial distance, w0, due to the contraction

of the vitreous. Later, Bottega et al. [12] makes the assumption that the parameter the

authors called η, a scaled ratio of the fibril stiffness to the membrane stiffness, is very small

when compared with one. This assumption was applied in their study when performing

numerical simulations of the results in all cases, with the exception of a parameter study on

η. Physically this assumption considers the vitreous fibrils to be much more compliant in

the radial direction than the retina is along the meridian direction. In this study, modeling

the stress from the vitreous fibrils as

σv = kw0 (3.71)
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is equivalent to the elastic foundation modeled by Bottega et al. [12] with the parameter

η � 1. Physically this corresponds to modeling the stress from the vitreous fibrils as an

elastic foundation, while neglecting the reduction in magnitude of the spring force as the

retina detaches and the extended vitreous fibrils relax.

Based on the linear nature of the governing equations, it is evident that the normalized

displacement fields given by Eqs. (3.55) and (3.56) will be proportional to σ̄1. Hence, these

displacements fields can be written in the general form

ū1 (ϕ) = σ̄1Ū1 (ϕ) , w̄1 (ϕ) = σ̄1W̄1 (ϕ) (3.72)

where Ū1 (ϕ) and W̄1 (ϕ) are the non-dimensional ‘deflection profiles’. Results will be dis-

played in terms of these deflection profiles, as well as the critical effective applied stress and

the critical ‘crown-point’ deflection as a function of the detachment angle, ϕ2, which are

obtained from the transversality condition, Eq. (3.24), governing detachment propagation.

When non-dimensionalized, Eq. (3.24) takes the form

Ḡ {ϕ2} =
1

2R̄2

[
D̄

R̄2

(
ū′1 + w̄′′1

)2
+ C̄ū′21

]
ϕ=ϕ2

= 2γ̄ (3.73)

Substituting the relations found in Eq. (3.72) into Eq. (3.73) gives the critical effective

applied stress in the form

σ̄cr =

√
4R̄4γ̄

D̄
[
Ū ′1 (ϕ2) + W̄ ′′1 (ϕ2)

]2
+ C̄R̄2Ū ′21 (ϕ2)

(3.74)

Now, the critical ‘crown-point’ deflection follows as

∆̄cr ≡ w̄1 (0)
∣∣∣
σ̄1=σ̄cr

= σ̄crW̄1 (0) (3.75)

Results are presented in the form of the rescaled stress and rescaled ‘crown-point’ deflection,

σ̃cr =
σ̄cr√
2γ̄
, ∆̃cr =

∆̄cr√
2γ̄

(3.76)

respectively. The critical stresses and deflections in Eq. (3.76) are presented in the form

of threshold paths, where each point on such a path corresponds to an equilibrium con-

figuration of the detaching retina at the threshold level. In interpreting the results of the

threshold paths, it is of interest to determine whether the detachment process will propagate
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in a stable or unstable manner. If the path is monotonically increasing, then an incremental

increase in stress is required to produce an increment in detachment size, so detachment

propagation is stable. If the path is in the form of a U-shape, initially decreasing with

detachment angle and then increasing, then, when the stress achieves a critical value for a

given detachment angle on the descending portion of the path, detachment will occur in an

unstable manner at a constant stress level. In this case, detachment will progress dynam-

ically, represented by a horizontal jump to the corresponding equilibrium configuration on

the increasing segment of the path. Subsequent propagation along the increasing segment

will be stable, as an increment in stress is required to produce an increment in detachment

angle. If the threshold path is monotonically decreasing, then once the critical stress level is

achieved for a given detachment angle, it is achieved for all subsequent angles at that stress

level. As a result, detachment will propagate in an unstable and catastrophic manner.

3.5.1 Case 1: No Retinal Tear

Results for a detaching retina without a retinal tear are presented in Figures 3.3-3.10.

The deflection profiles per unit applied stress, Ū1 (ϕ) and W̄1 (ϕ), for various values of

detachment angle, ϕ2, are presented in Figures 3.3 and 3.4, respectively. The representative

normalized thickness h̄ = 0.009, reflects a thickness of h = 0.1 mm and a reference radius

of R0 = 11 mm. These values correspond to the retina at the periphery of the eye as

discussed in Section 3.4. The Poisson’s ratio is chosen as ν = 0.49 as biological tissues are

considered to be nearly incompressible. A comparison between the radial deflection profile

given in Section 3.3 and that of the radial deflection profile obtained by Bottega et al. [12],

where meridian displacements were neglected, is also presented in Figure 3.4 for the same

representative values for h̄ and ν.

For the radial deflection profile, it is seen that qualitative behavior remains similar to

that assuming vanishing meridian displacement. As for the previous study, it is found that

‘dimpling’ in the retina will occur for larger detachment angles (ϕ ≥ 0.3). It is seen that,

quantitatively, there is a substantial percentage increase in the value of the radial deflection

profile when the meridian displacement is included. The meridian deflection profile in Figure

3.3 is seen to be an order of magnitude smaller than that of the radial deflection profile.
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This result was assumed and acted as the original motivation for neglecting the meridian

displacement in Bottega et al. [12]. However, it is found that neglecting this effect places

an artificial constraint on the structure, and hence an artificial stiffness that has significant

effects on the results for the other detachment characteristics of the retina.
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Figure 3.3: Comparison of the meridian deflection profiles (per unit effective applied stress)
for various detachment angles, for a retina with no tear, h̄ = 0.009, ν = 0.49, R̄ = 1, and
D̄ = 1.
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Figure 3.4: Comparison of the radial deflection profiles (per unit effective applied stress)
from Eq. (3.56) to the radial deflection profile (per unit effective applied stress) obtained
when neglecting the meridian displacement, for a retina with no tear, h̄ = 0.009, ν = 0.49,
R̄ = 1, and D̄ = 1.

The critical stress for detachment propagation, σ̃cr, is presented in Figure 3.5 along

with the resulting critical stress with the meridian deflections neglected. It is seen that

both models predict that once detachment ensues it does so in an unstable manner and
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is extensive in scope, which is in agreement with clinical observation. (See, for example,

Wilkinson & Rice [84].) However, it is seen that including the meridian displacement lowers

the critical stress, as the retina now represents a more compliant structure. This result

is important since detachment propagation as predicted by the more accurate model will

occur at lower stress levels for the same detachment angle. For the current study, the emer-

gence of a very shallow unstable ‘well’ in the threshold path is noted for a detachment of

approximately ϕ2 = 0.19. At such a location, stable growth of the detachment boundary is

possible. For values slightly less than ϕ2 = 0.19, unstable but bounded growth is possible.

The critical ‘crown-point deflection’, ∆̃cr, appears in Figure 3.6 along with the result ob-
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Figure 3.5: Critical stress threshold path comparison for a retina with no tear, h̄ = 0.009,
ν = 0.49, R̄ = 1, and D̄ = 1. Current analysis appears as a solid line; analysis with meridian
displacement neglected appears as a dashed line.

tained when neglecting the meridian deflections. Both curves take the same general shape

with the current results having a much larger numerical value. This is expected, as the

retina with the meridian displacements included represents a more compliant structure, as

described previously.

A parameter study on the influence that the radius of the retina has on the critical

stress for retinal detachment propagation in emmetropic eyes appears in Figure 3.7. It is

seen that for emmetropic eyes of larger radius, detachment propagates at a lower value of

the critical stress when the thickness of the retina is held constant. A similar parameter

study on the Young’s modulus of the retina and its influence on the critical stress appears

in Figure 3.8. The elasticity of biological tissue is extremely difficult to measure accurately,
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Figure 3.6: Critical crown-point deflection threshold path comparison for a retina with no
tear, h̄ = 0.009, ν = 0.49, R̄ = 1, and D̄ = 1. Current analysis appears as a solid line;
analysis with meridian displacement neglected appears as a dashed line.

as the mechanical properties break down quickly upon death of the tissue. This leads to

large variation in the measured elastic properties of the retina. The critical stress is shown

in Figure 3.8 for a Young’s modulus of both an order of magnitude less and an order of

magnitude greater than the nominal value employed in this study. As the Young’s modulus

increases, the critical stress required for detachment propagation also increases since the

structure is less compliant to loading.

It is also of interest to examine the influence of Poisson’s ratio and of the thickness ratio

of the retina on detachment propagation. Here, it is noted that the non-dimensional stress

defined by Eq. (3.27)1 is scaled by both ν and h. Hence, the normalized stress in that form

is inappropriate for the intended comparison. Therefore, a set of alternative measures are

introduced to perform the desired parameter study. Toward this end, the deflections can

be expressed in the forms

ū1 (ϕ) = σ∗1Û1 (ϕ) , w̄1 (ϕ) = σ∗1Ŵ1 (ϕ) (3.77)

where

σ∗1 =
σ1

E0
, Û1 (ϕ) =

12
(
1− ν2

)
h̄3

Ū1 (ϕ) , Ŵ1 (ϕ) =
12
(
1− ν2

)
h̄3

W̄1 (ϕ) (3.78)

Substituting Eq. (3.77) into the transversality condition, Eq. (3.24), leads to an alternative
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Figure 3.7: Critical stress threshold path comparison for a retina with no tear, h̄ = 0.009,
ν = 0.49, and D̄ = 1, for various values of R̄ with R0 held constant at 11 mm.
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Figure 3.8: Critical stress threshold path comparison for a retina with no tear, h̄ = 0.009,
ν = 0.49, and R̄ = 1, for various values of D̄.

form for the critical effective applied stress. Hence,

σ∗cr =

√√√√ R̄4h̄3γ̂

3 (1− ν2)
{
D̄
[
Ū ′1 (ϕ2) + W̄ ′′1 (ϕ2)

]2
+ C̄R̄2Ū ′21 (ϕ2)

} (3.79)

where

γ̂ =
γ

E0R0
(3.80)

Results are presented in terms of the rescaled stress given by

σ̃∗cr =
σ∗cr√
2γ̂

(3.81)

The threshold curve in Figure 3.9 illustrates the influence of the thickness ratio on
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the critical behavior of the detaching retina. As the thickness ratio increases, the critical

stress for detachment propagation decreases since the thicker, less flexible, retina produces

the same energy release rate at a smaller deflection and lower load. In accordance with

Section 3.4, h̄ = 0.009 corresponds to the thickness of the retina at the periphery, h̄ = 0.013

corresponds to the midperiphery, and h̄ = 0.021 corresponds to the posterior of the eye.

At the posterior, at ϕ2 ≈ 0.27 the axisymmetry of the model would be affected by the

presence of the optic nervehead, which is a strong point of retinal adhesion. Similarly at

the periphery, the presence of the ora serrata at ϕ2 ≈ 0.45 would affect the axisymmetric

idealization of the model.
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Figure 3.9: Dependence of the critical stress threshold path on the retinal thickness to
radius ratio for a retina with no tear, ν = 0.49, R̄ = 1, and D̄ = 1.

The threshold curve in Figure 3.10 illustrates the influence of Poisson’s ratio on the

critical behavior of the detaching retina. It is seen that as the Poisson’s ratio decreases,

the energy release rate is decreased, which results in the critical stress decreasing with

decreasing Poisson’s ratio. As the value of Poisson’s ratio decreases, the shallow unstable

‘well’ in the growth path is no longer present. As with the Young’s modulus, the value

of Poisson’s ratio for a given eye is difficult to mearure accurately, but biological tissue is

generally assumed to be nearly incompressible with ν ≈ 0.49.
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Figure 3.10: Dependence of the critical stress threshold path on Poisson’s ratio for a retina
with no tear, h̄ = 0.009, R̄ = 1, and D̄ = 1.

3.5.2 Case 2: Retinal Tear/Hole Present

Results are presented in Figures 3.11-3.18 for the situation where a retinal tear of angle ϕ0 is

present at the center of the detached region. The deflection profiles per unit applied stress,

Ū1 (ϕ) and W̄1 (ϕ), for various values of detachment angle, ϕ2, are presented in Figures

3.11 and 3.12, respectively, for a retina with a tear of angle ϕ0 = 0.05 radians and the

representative normalized thickness h̄ = 0.009 and Poisson’s ratio ν = 0.49. A comparison

between the radial deflection profile given in Section 3.3 and that of the radial deflection

profile obtained when the meridian displacements are neglected (Bottega et al. [12]), is also

presented in Figure 3.12 for the same representative values of h̄ and ν. The results are

similar to that seen for a retina without a tear. The dimpling effect remains for larger

detachment angles and the inclusion of the meridian displacements results in a substantial

percentage increase in the radial deflection profile.

The critical stress and critical ‘crown-point’ deflection threshold paths for a retina with

a tear of angle ϕ0 = 0.05 are presented in Figures 3.13 and 3.14, respectively, along with

the comparative results obtained when neglecting the meridian deflections. In this case,

including the meridian displacements is seen to lower the critical stress threshold path in

a manner similar to that of the case without a tear. Here, however, the unstable, ‘well’ in

the critical stress path of Figure 3.13 has grown deeper when compared with the threshold

path of Figure 3.5 for no tear in the retina. For the small range of detachment angles within
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Figure 3.11: Comparison of the meridian deflection profiles (per unit effective applied stress)
for various detachment angles, for a torn retina with ϕ0 = 0.05, h̄ = 0.009, ν = 0.49, R̄ = 1,
and D̄ = 1.

the ‘well’, unstable but bounded growth of the detached area is possible for a limited range

of the effective applied stress. For detachment angles outside but less than those that fall

within the well, the presence of the tear is seen to raise the critical stress for propagation

over that for a retina without a tear (Figure 3.15). For detachment angles outside but

greater than those within the well, the stress threshold paths with or without a tear are

seen to tend to a common asymptote. Hence, a retinal tear seems to have a stabilizing

effect with regard to detachment propagation.

The results displayed in Figures 3.16-3.18 show the influence of the size of the retinal

tear on detachment propagation. Deflection profiles with a detachment angle of ϕ2 = 0.3

radians are shown for various tear sizes in Figure 3.16. The dependence of the critical stress

on the size of a tear is shown in Figure 3.17. It is seen that the critical stress increases as

the tear size increases for smaller detachment angles. It is also seen that as the tear size

increases the unstable ‘well’ that was evident in Figure 3.13 increases in depth and breadth

and shifts to the right. This reaffirms the deduction that, while a tear in the retina may

have many negative effects, it seems to have a stabilizing effect with regard to detachment

propagation. The dependence of the critical ‘crown-point’ deflection on the size of the

retinal tear is shown in Figure 3.18.
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Figure 3.12: Comparison of the radial deflection profiles (per unit effective applied stress)
from Eq. (3.56) to the radial deflection profile (per unit effective applied stress) obtained
when neglecting the meridian displacement, for a torn retina with ϕ0 = 0.05, h̄ = 0.009,
ν = 0.49, R̄ = 1, and D̄ = 1.

3.5.3 Bond Energy of the Retina to RPE Interface

A value for the bond energy, γ, of the retina to RPE interface is determined by applying

the results of this study to experimental data published in the literature. Kain [36] studied

retinal adhesion by injecting saline solution into the retina-RPE interface of in vitro rabbit

eyes. The author found that retinal detachments formed in circular blisters and hence

concluded that the adhesion of the retina to the RPE and the elasticity of the retina were

uniform in all directions. The author also found that normal adhesion was found up to ten

minutes after enucleation of the rabbit eyes, and that adhesion was subsequently reduced

with further elapsed time post enucleation.

Kita et al. [38] studied retinal adhesion by injecting salt solution into the retina-RPE

interface of in vivo rabbit eyes. The authors measured the IOP, the pressure within the

dome-shaped retinal detachment, and the size of the detachment as the solution was injected

into the subretinal space. Hence the authors were able to measure the critical pressure

difference across the retina for which detachment would begin to propagate for various

detachment sizes. Kita and Marmor [37] conducted the same in vivo experiment on cat and

monkey eyes in addition to rabbit eyes and found that the adhesive force of the retina to

RPE interface in monkey eyes is 140% greater than that in rabbit eyes.

In both Kita et al. [38] and Kita and Marmor [37] the authors used their data to
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Figure 3.13: Critical stress threshold path comparison for a torn retina with ϕ0 = 0.05,
h̄ = 0.009, ν = 0.49, R̄ = 1, and D̄ = 1. Current analysis appears as a solid line; analysis
with meridian displacement neglected appears as a dashed line.

determine the adhesive force per unit length of the retina to RPE interface. However,

for an energy based detachment criterion, as employed in this study, it is necessary to

determine the energy required to produce a unit area of detachment, γ, of the retina-RPE

interface. In doing so, we assume that the adhesion of a human retina will more closely

match that of a primate than that of a rabbit and, hence, that adhesion in humans will

be 140% greater than that in rabbit eyes, in accordance with Kita and Marmor [37] for

monkey retinas. As a result, we increase the raw data for the critical pressure presented in

Kita et al. [38] for rabbit retinas by 140% while holding the detachment size constant when

calculating a value for the energy of detachment in the human retina. The modified critical

pressure data is then taken as the critical stress found in Eq. (3.74). The corresponding

detachment size is also taken from the experimental data, from which the deflection profiles

are determined. In this calculation, the retinal radius of R0 = 11 mm and the Young’s

modulus of E0 = 4.65 · 104 Pa along with a Poisson’s ratio of ν = 0.49 and the average

of the midperiphery and posterior retinal thicknesses, h = 0.185 mm, are substituted into

Eq. (3.74). The energy of detachment per unit area is thus found to be γ = 0.0384 N/m.
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Figure 3.14: Critical crown-point deflection threshold path comparison for a torn retina
with ϕ0 = 0.05, h̄ = 0.009, ν = 0.49, R̄ = 1, and D̄ = 1. Current analysis appears as a solid
line; analysis with meridian displacement neglected appears as a dashed line.

3.6 Conclusions

The mechanical behavior of retinal detachment propagation in emmetropic eyes has been

studied. The formulation of a mechanics based mathematical model for retinal detachment

that considers axisymmetric deformation and detachment of the retina was presented. The

stress resulting from the contraction of the vitreous and the extension of its fibrils, along with

interfacial pressure, were taken as the impetus for detachment propagation. The simplifying

assumption of negligible meridian deflection used in the solution procedure of the model

presented in Bottega et al. [12] was removed in order to obtain an improved solution that

more accurately models the behavior of a detaching retina. Exact, analytical solutions

for the radial displacements, and the corresponding meridian displacements, were obtained

for detaching retinas with a central tear as well as for retinas without a tear. Although

the formulation allows for a region of sliding contact adjacent to the intact region, results

indicate that a contact zone does not physically occur for the range of detachment sizes

considered. Simulations based on the analytical solutions were performed, revealing critical

characteristic behavior of detachment propagation. The results are summarized below,

beginning with retinas without a central tear.

Case 1: No retinal tear

It was seen that including the meridian displacements results in a substantial percentage
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Figure 3.15: Critical stress threshold path comparison between a torn retina with ϕ0 = 0.05
and a retina without a tear with h̄ = 0.009, ν = 0.49, R̄ = 1, and D̄ = 1.

increase in the magnitude of the radial deflection profile. However, the qualitative behav-

ior of the radial deflection profile remains similar, with ‘dimpling’ in the retina occurring

for larger detachment angles. The meridian deflection profile was seen to be an order of

magnitude smaller than that of the radial deflection profile, but its inclusion is seen to have

significant effects on the critical condition for detachment propagation. The threshold path

for the applied effective stress shows that detachment propagation is catastrophic in nature,

which is in agreement with the results of Bottega et al. [12], as well as with clinical obser-

vations. However, the inclusion of the meridian displacements resulted in a lower critical

stress than that found by Bottega et al. [12]. This, of course, has important ramifications.

Parameter studies were performed in order to determine the influence of Poisson’s ratio,

the thickness to radius ratio of the retina, the radius of the retina, and the Young’s modulus

of the retina on characteristic behavior of detachment propagation. Results indicated that

as the radius increased, the critical stress required for detachment propagation decreased.

Results also indicated that as the Young’s modulus, Poisson’s ratio, or thickness ratio

increased, the critical stress tended to decrease.

Case 2: Retinal Tear Present

It was seen that including the meridian displacements with a tear present had similar

effects on the radial deflection profile as for when no tear was present. The radial deflection

profile displayed a substantial percentage increase in magnitude while ‘dimpling’ was present
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Figure 3.16: Comparison of the deflection profiles (per unit effective applied stress) for torn
retinas with selected tear angles, h̄ = 0.009, ν = 0.49, R̄ = 1, and D̄ = 1: (a) the meridian
deflection profile and (b) the radial deflection profile.

for ‘larger’ detachment sizes. The inclusion of the meridian displacement was seen to lower

the critical stress, as for retinas without a tear, as well as to facilitate the development of

unstable ‘wells’ in the threshold paths. When compared to the results of Bottega et al. [12],

the unstable ‘wells’ are seen to develop at smaller tear sizes and are larger in depth and

breadth for a given tear size. When compared to retinas without a tear, it was seen that,

for detachment angles outside but less than those that fall within the ‘well’, the presence

of the tear raises the critical stress. Hence, it appears that the tear has a stabilizing effect

with regard to detachment propagation in this sense, and that this stabilizing effect is more

pronounced with the inclusion of the meridian displacements.
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Figure 3.17: Critical stress threshold paths for torn retinas with selected tear angles with
h̄ = 0.009, ν = 0.49, R̄ = 1, and D̄ = 1.
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Figure 3.18: Critical crown-point deflection threshold paths for torn retinas with selected
tear angles with h̄ = 0.009, ν = 0.49, R̄ = 1, and D̄ = 1.
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Chapter 4

The Mechanics of Myopia and Its Influence on Retinal

Detachment

4.1 Introduction

In a review of epidemiology studies concerning rhegmatogenous retinal detachment detach-

ment (RRD) dating from 1970 to 2009, Mitry et al. [52] found that the largest annual

incidence of RRD occurred in the 60-70 year age group with a secondary peak in young

myopic patients. The model for the emmetropic eye presented in Chapter 3 investigated

the mechanical factors that contribute to retinal detachment that are associated with aging

and would largely effect the 60-70 year age group. In this Chapter, the mechanical factors

contributing to the increased prevalence of retinal detachment in individuals with myopic

eyes, when compared to individuals with emmetropic or hyperopic eyes, are investigated.

The theory of thin elastic shells developed in Chapter 2 is again applied to model the

propagation of retinal detachment in the myopic eye. The corresponding growth law for

detachment propagation in the myopic eye cannot, however, be obtained from the growth

law for the general shell presented in Chapter 2. As the outer layers of the myopic eye do

not remain in a spherical configuration, the derived growth law for the myopic eye is similar

in form to that of a shell with a compliant outer layer.

The myopic eye is known to be larger when compared to the emmetropic eye, partic-

ularly in antero-posterior axial length, which has led to much research on measuring the

shape of the retina and outer eye in myopic and emmetropic eyes (these shapes may differ

due to variations in the thickness of the choroid and sclera [79]). Atchison et al. [3] measured

Portions of this Chapter previously appeared as: Lakawicz, J.M., Bottega, W.J., Fine, H.F., and Prenner,
J.L., 2017. On the mechanics of myopia and its influence on retinal detachment. Revision in review.
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axial (anterior-posterior), vertical (superior-inferior), and horizontal (nasal-temporal) reti-

nal dimensions of emmetropic and myopic subjects using T1-weighted magnetic resonance

imaging (MRI). From a linear fit of their data, the authors found changes in dimension

per diopter of refractive error (D) increasing at a rate of 0.35 mm/D in axial length, 0.19

mm/D in height, and 0.10 mm/D in width as myopia increases. The same MRI measure-

ments were fit to three dimensional ellipsoids by Atchison et al. [4], in which the authors

found that emmetropic retinas tend to be oblate in shape (larger in height and width than

axial length). The authors also found that retinal oblateness decreases with increasing

myopia but that few myopic retinas reached a prolate shape. The subjects in Atchison et

al. [3],[4] ranged from 18 to 36 years in age and were 84% white. Similar observations were

found in Gilmartin et al. [29] using T2-weighted MRI of the retinas of adult subjects in the

United Kingdom with no mention of race. Ishii et al. [34] found the retinal shape to be

oblate near birth and trend toward a prolate shape during childhood eye development in

their MRI study of Japanese patients ranging in age from 1 month to 19 years old. Both the

data from Atchison et al. [3],[4] and the data from Ishii et al. [34] display large variability

in retinal shape for eyes possessing the same refractive error, which is evident for the entire

range of refractive errors measured in the data. A literature review of studies measuring

retinal shape and eye shape using both MRI and other techniques is found in Verkicharla

et al. [79], where the large variation in retinal shape for eyes displaying the same refractive

error is a common theme among the reviewed studies.

While it is known that the axial length of the eye increases in myopic patients, the exact

etiology of myopia and its progression in human patients is not yet known. Numerous studies

have been conducted in which myopia is experimentally induced in animal subjects through

form deprivation or disruption of the visual field (i.e. Young [87], Smith et al. [73], Wallman

et al. [81], [82], Miles & Wallman [51], and Schaeffel et al. [69]). All experiments required

young animals in order to produce myopia and the relation of these studies to normal eye

growth in humans is not known. Feldkaemper & Schaeffel [20] provide a literature review

on the effects of dopamine and other biochemical agents on the development of myopia.

Greene [31] studied the stress exerted on the posterior sclera from the extraocular muscles,

as well as the stress that would develop in the sclera from changes in intraocular pressure
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(IOP) during accommodation and convergence. A further literature review on the effects

of IOP on myopia is found in Pruett [59]. McBrien et al. [48] studied changes in the scleral

matrix of myopic eyes and found it to be weaker with reduced collagen content in myopic

mammalians. A potential theory for unifying many of these factors in the development of

myopia has been proposed by Hung et al. [33].

At birth, the retina has almost entirely all of the cells it will have throughout life, which

leads to thinning of the retina during normal development in order to maintain its coverage

of the inner surface of the choroid-scleral shell [66]. However, there is evidence of increased

retinal elongation and thinning in myopic eyes when compared to emmetropic eyes. Lin et

al. [45] found that the total area of the retinal pigment epithelium (RPE) was 11% greater

after one week and 21% greater after two weeks in chick eyes with form deprivation myopia

when compared to control eyes. The authors also indicate no evidence of cell division within

the RPE and that the increased size of the RPE resulted from enlargement of individual

RPE cells. Whether the enlarged size of the myopic RPE cells resulted from increased

biological growth or from mechanical stretching could not be determined. Gella et al. [28],

similarly, found increased thinning in the RPE in human myopic patients compared to

emmetropic patients using SD-OCT scans. The thickness of the other retinal layers was

not significantly different in comparing the two patient groups. The studies reviewed in the

present study suggest both the change in shape of the sclera with the development of myopia

and the corresponding changes in the retina result from a combination of mechanical and

biochemical factors.

In the present work, a mathematical model for retinal detachment due to the geometric

changes of the eye associated with myopia is introduced. The model for the deformation

of the retina includes a change of shape due to biological growth of the retinal tissue,

as well as elastic deformation imposed on the retina due to the change in shape of the

much stiffer choroid and sclera. In Skalak [72], Rodriguez et al. [65], and others, the

effects of growth and elastic deformation on biological tissues are modeled mathematically

through a decomposition of the deformation gradient tensor for a given tissue into a growth

deformation tensor and an elastic deformation tensor. Application of that decomposition

to the retina, corresponds to a mapping of the retinal tissue from an emmetropic state to
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a hyopothetical growth state, followed by a mapping of the hypothetical growth state to

the myopic state that the retina is constrained to by the choroid and sclera. For small

strains, such a decomposition is shown to be a linear summation of the strain induced on

the tissue by growth and the strain induced by elastic deformation (see, for example, Nelson

et al. [57]).

First, the mathematical model for myopia-induced retinal detachment is introduced in

Section 4.2. The model incorporates both the growth of the retinal tissue and its elastic

deformation due to the constraints imposed on it by the myopic shape of the choroid and

sclera. Then analytical solutions for the model are presented in Section 4.3, along with the

corresponding results based on those solutions in Section 4.4.

4.2 The Mathematical Model

The retina is modeled as a linearly elastic thin shell with thickness h, Young’s modulus

E0, Poisson’s ratio ν, and radius R0 when in the emmetropic spherical state. The model

considers axisymmetric deformation with the transverse displacement, w (ϕ), positive out-

ward1 and the meridian displacement, u (ϕ), positive in the direction of increasing azimuth

angle, ϕ, as defined in Figure 4.1. Due to the axisymmetry about ϕ = 0, the deformation

will be the same for all values of the polar angle, θ, and therefore the displacement in the

polar direction vanishes.

4.2.1 Growth of the Retina Due to Myopia

First, consideration is given to the evolution of the intact retina due to the changes in

geometry of the outer eye that accompany myopia. As stated in the Section 4.1, the

measurement data on the dimensions of the myopic retina display large variability in retinal

shape for eyes possessing the same refractive error. This is evident for the entire range of

refractive errors measured ([3], [4], [29], [34], and [79]). Atchison et al. [3] and [4] found

that, of their 66 myopic subjects who possessed a range of refractive errors from -0.75 D to

-12 D, most had oblate retinal shapes with only 8 subjects having prolate retinal shapes.

1In both Chapters 2 and 3, the transverse displacement is taken as positive inward.
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However, these 8 subjects had refractive errors of -1, -3.25, -3.25, -5.625, -6.25, -6.375, -

7.25, and −7.50 D, which spans most of the myopic range of the subjects in the study.

Ishii et al. [34] found that the retina trends toward a prolate shape during childhood eye

development in their MRI study of Japanese patients ranging in age from 1 month to 19

years old, which calls into question age and race influences on retinal shape. Hence, due

to the large variability in measured retinal shape, it is assumed that the emmetropic eye is

spherical in shape for mathematical simplicity. As the outer eye changes from emmetropic

to myopic, it is assumed that the retina will displace from a spherical state to an ellipsoidal

state in order to remain in bonded contact with the RPE.

Figure 4.1: Schematic of the evolution of the intact retina due to the onset of myopia in
the eye. (Image not drawn to scale.)

The mathematical model for the myopic retina is developed in accordance with the

model for stress-dependent growth in elastic tissues presented in Rodriguez et al. [65]. The

model includes an intermediate spherical state that defines the deformation of the retina

due to stress-free biochemical growth. This corresponds to the state that the retinal tissue

would occupy if it were to grow independently. That is, if not constrained by the outer

layers of the eye. The retina is then mapped from the spherical stress-free growth state to

the ellipsoidal myopic state by an elastic deformation resulting from the constrained shape

imposed upon the retina by the outer layers of the eye.
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Since the emmetropic retina is taken to be spherical, unconstrained growth of the retina

would result in a uniform expansion of the emmetropic sphere. It is, therefore, natural

to take the intermediate growth state as spherical as well. As the mapping from the em-

metropic state to the intermediate growth state is unconstrained, it is taken to be stress

free. The growth displacement field from the emmetropic coordinates (R0, ϕ0, θ0) to the

growth coordinates (R,ϕ, θ) is prescribed as

R = R0 + wb, ϕ = ϕ0, θ = θ0 (4.1)

where wb is the radial displacement of the growth state, as shown in Figure 4.1. With the

retina modeled as a thin shell, the transverse displacement is constant through the thickness

of the retina. Hence, the deformation gradient from the emmetropic spherical state to the

spherical stress-free growth state takes the form,

Fg =


1 0 0

0 1 + wb
R0

0

0 0 1 + wb
R0

 (4.2)

The retina is then mapped from the stress-free growth state to the final myopic state

with coordinates (Rm, ϕm, θm) by a displacement of the form,

Rm = R+ we (ϕ) , ϕm = ϕ+
1

R
ũe (ρ, ϕ) , θm = θ (4.3)

where we (ϕ) is the transverse elastic displacement, which is constant through the thickness

of the retina when modeled as a thin shell. The transverse elastic displacement is coupled

with the elastic meridian displacement, ũe (ρ, ϕ), which varies linearly through the thickness

of the retina as was shown for the general shell in Eq. (2.91a). Hence,

ũe (ρ, ϕ) = ue (ϕ) + ρβϕ (ϕ) (4.4)

where ue (ϕ) is the elastic meridian displacement at the center line of the retina and βϕ (ϕ)

is the component of the rotation vector whose normal is tangent to the meridian direction

of the retina. In this Chapter, R is taken as the radius of the stress-free growth state and

ρ is a coordinate measured positive outward from the center line of the retina.
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The resulting elastic deformation gradient from the stress-free growth state to the ellip-

soidal myopic states takes the form,

Fe =


1 1

R

(
∂we
∂ϕ − ue − ρβϕ

)
0

βϕ 1 + 1
R

(
we + ∂ue

∂ϕ + ρ
∂βϕ
∂ϕ

)
0

0 0 1 + 1
R {we + cotϕ (ue + ρβϕ)}

 (4.5)

The deformation gradient of the ellipsoidal myopic state follows from the formulation

for stress-dependent growth of elastic tissues in Rodriguez et al. [65] as

Feg = FeFg (4.6)

The strain tensor, ε, for the myopic retina is determined entirely by the elastic deformation

gradient as follows,

ε =
1

2

(
F T
e Fe − I

)
(4.7)

In this development, the corresponding results for the elastic displacements we (ϕ) and

ue (ϕ) are assumed to be small when compared to the radius of the growth state, R. (That

is, we/R � 1 and ue/R � 1.) However, no limitations are placed upon the magnitude

of the radial growth displacement, wb. Before proceeding, some additional concepts with

regard to the prescribed shapes of the intermediate growth state and of the final myopic

state are addressed.

The two dimensional cross-section of the myopic state of the intact retina is taken as an

elliptic shape, as shown in Figure 4.1. The cross-section is then rotated about the ϕ = 0

axis to form a three dimensional ellipsoid. The equation for an ellipse in polar coordinates

relative to its center is given as

Rm (ϕ) =
ab√

a2 sin2 ϕ+ b2 cos2 ϕ
(4.8)

where Rm (ϕ) is the distance from the center of the ellipse to its edge as given in Eq. (4.3),

and a and b are the major and minor axes of the ellipse as shown in Figure 4.1.

The size of the intermediate growth state is characterized by its relative surface area as

follows. First, the surface area of the final myopic ellipsoidal state of the retina is matched

to the surface area of an equivalent sphere. The radius of this equivalent sphere is readily
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shown to be given by the relation

RG =

√√√√1

2
b2

[
1 +

a

b
√

1− b2/a2
arcsin

(√
1− b2

a2

)]
(4.9)

where a and b are the major and minor axis, respectively, of a prolate ellipsoid, as shown in

Figure 4.1. Since biochemical growth is believed to play a small part in the deformation of

the retina during the evolution of myopia ([28], [45], [66]), the surface area of the interme-

diate growth state is taken to be a percentage of the surface area of the equivalent sphere

whose radius is given by Eq. (4.9). This percentage is defined as the growth parameter α,

which is given as

α =
R2 −R2

0

R2
G −R2

0

(4.10)

where R0 is the radius of the emmetropic retina and R is the radius of the intermediate

growth state. The form of Eq. (4.10) establishes that when α = 0 (R = R0), the entirety of

the myopic displacement of the retina is due to elastic deformation. When α = 1 (R = RG),

the growth of the retina independent from the constraint imposed upon it by the outer eye

has the same surface area as that of the myopic shape of the inner surface of the choroid2.

The growth parameter, α, is taken as a prescribed value between zero and one. Solving

Eq. (4.10) for R gives the radius of the intermediate growth state in terms of the growth

parameter. Hence,

R =
√
R2

0 + α
(
R2
G −R2

0

)
(4.11)

where RG is solely dependent on the major and minor axes of the final myopic state of the

retina as shown in Eq. (4.9). The final shape of the myopic state of the retina will enter

the model as a prescribed parameter using the measurements of the size of myopic retinas

available in Atchison et al. [3]. This will be discussed in Section 4.3.

4.2.2 Energy Formulation for Detachment

As the retina transforms from the stress-free growth state to the ellipsoidal myopic state,

strain energy is stored within the retina. This strain energy associated with the geometric

2Although the surface areas are of equal value, the final myopic state of the retina will not be stress free
when α = 1. This is due to the constrained shape that the outer eye imposes on the growth of the retina
([65],[72]).
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changes of the retina found in myopia, along with that due to pressure differences across

the retina and stress acting on the retina from vitreous fibrils, may cause the retina to

detach from the outer layers of the eye. In this section, the size and shape of the detached

area of the retina if it were to detach from the outer eye during its myopic evolution is

determined through an energy formulation similar to that presented for the emmetropic

retina in Chapter 3.

The retina is taken to be detaching from a ‘rigid’ RPE-choroid-sclera foundation as

justified in Section 3.4 for retinal detachment in emmetropic eyes. As in the previous

Chapter concerning emmetropic eyes, the retina is divided into three regions; Region R1:

the ‘lift zone’ for 0 ≤ ϕ ≤ ϕ1, Region R2: the ‘contact zone’ for ϕ1 ≤ ϕ ≤ ϕ2 where

the retina maintains sliding contact with the RPE, and Region R3: the ‘intact region’

for ϕ2 ≤ ϕ ≤ π/2 where the retina remains bonded to the RPE, all as shown in Figure

4.2. In Regions R1 −R3, the IOP, p0, acts outward against the retina while stress acting

Figure 4.2: Schematic of the detaching retina in the myopic eye. (Image not drawn to
scale.)

from the vitreous fibrils, σv, acts inward. In Region S1, a pressure p1 resulting from the

accumulation of subretinal fluid acts inward in the subretinal space formed by the lift zone

and will contribute to detachment when greater than the outward IOP.

The problem is approached as a propagating boundary value problem in the calculus
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of variations, where the location of the boundary angles between the lift zone and contact

zone, ϕ1, and between the contact zone and intact region, ϕ2, are allowed to vary arbitrarily,

as well as the elastic deflections of the detaching retina, wj (ϕ) and uj (ϕ). The elastic

deflections of the detaching retina are defined with reference to the stress-free growth state

in the same manner as were the elastic deflections of the intact retina, we (ϕ) and ue (ϕ), in

Eq. (4.3). The final shape of the detaching retina is determined by matching the solution

for the shape of the detaching retina to the shape of the intact retina at the detachment

boundaries.

The potential energy functional, Π, for the ocular system in the myopic eye does not

reduce directly from the formulation of the general shell in Chapter 2 due to the constraints

imposed on the retina by the outer layers of the myopic eye. The potential energy functional

is, however, still comprised of the elastic strain energy of the retina, U , and the work done

by the applied stresses acting on the retina, W as in Eq. (2.117). In addition, a constraint

functional, Λ, is included to insure the appropriate continuity of the displacements of the

retina with those of the outer eye in the contact zone and in the intact region. Lastly,

the energy of detachment, Γ, is the energy required to produce detachment propagation

between the retina and the RPE.

The elastic strain energy takes the form

U = 2πR2
3∑
j=1

∫
Rj

[
1
2N

(j)
ϕϕε

(j)
ϕϕ + 1

2N
(j)
θθ ε

(j)
θθ + 1

2M
(j)
ϕϕχ

(j)
ϕϕ + 1

2M
(j)
θθ χ

(j)
θθ

]
sinϕdϕ (4.12)

The strains and bending measures that appear in the elastic strain energy functional are

measured at the center line of the retina. The form of these parameters at the center line

is obtained from the strain tensor found in Eq. (4.7). For thin shells that are axisymmetric

about ϕ = 0, the strains and the bending measures in Region Rj (j = 1− 3) are related to

the corresponding displacements as

ε(j)
ϕϕ (ϕ) =

1

R

{
u′j (ϕ) + wj (ϕ)

}
, ε

(j)
θθ (ϕ) =

1

R
{uj (ϕ) cotϕ+ wj (ϕ)} (4.13)

χ(j)
ϕϕ (ϕ) =

1

R2

{
u′j (ϕ)− w′′j (ϕ)

}
=

1

R
β(j)′

ϕ (ϕ) ,

χ
(j)
θθ (ϕ) =

1

R2
cotϕ

{
uj (ϕ)− w′j (ϕ)

}
=

1

R
cotϕβ(j)

ϕ (ϕ)

(4.14)
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where all derivatives are with respect to the coordinate ϕ. In Eqs. (4.14), βϕ is the com-

ponent of the rotation vector with cross-section whose normal is tangent to the meridian

direction of the retina. Its form is also found from the strain tensor of Eq. (4.7), since the

transverse shear strains vanish for first order shell theories. Hence,

β(j)
ϕ (ϕ) =

1

R

{
uj (ϕ)− w′j (ϕ)

}
(4.15)

For the axisymmetric deformation considered herein, the component of the rotation vector

with cross-section whose normal is tangent to the polar direction, βθ, vanishes. The strains,

bending measures, and rotations given in Eqs. (4.13)-(4.15) are of the same form as in

Chapters 2 and 3, but with the sign of wj reversed, since in those Chapters the radial

displacement was positive inward.

The work done on the myopic retina by the ocular pressure difference across the retina

and the applied stress from the vitreous fibrils takes an alternate form when compared to

the work done on the general shell in Eq. (2.119). The work of the applied stresses now

acts through the deformation of the retina from the intermediate growth state to the final

myopic state. Hence,

W = 2πR2

∫
R1

(p1 − p0 + σv) (we − w1) sinϕdϕ+2πR2
3∑
j=2

∫
Rj

(σv − p0) (we − wj) sinϕdϕ

(4.16)

where the pressures p0 and p1 and the stress σv act in the directions indicated in Figure

4.2.

The constraint functional for the myopic retina is modified from that of general shell in

Eq. (2.120) in the same way as the work on the myopic retina was in Eq. (4.16). Hence,

Λ = 2πR2
3∑
j=2

∫
Rj

σ̂j (we − wj) sinϕdϕ+ 2πR2

∫
R3

τ̂3 (ue − u3) sinϕdϕ (4.17)

where σ̂2, σ̂3, and τ̂3 are Lagrange multipliers that ensure continuity of the transverse and

meridian displacements of the retina with the RPE in the intact region and continuity of

the transverse displacement in the contact zone.

The energy of detachment is given as

Γ = 2πR2

∫
R1+R2

2γ sinϕdϕ− 2πR2

∫
R10+R20

2γ sinϕdϕ (4.18)
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where γ remains the energy required to produce a unit area of detachment between the

retina and the RPE.

Applying the Principle of Stationary Potential Energy, while allowing the displacements

wj (ϕ) and uj (ϕ), along with the boundaries ϕ1 and ϕ2 to vary, yields the self consistent

governing equations, boundary conditions, and the transversality conditions that govern the

location of the propagating boundaries of the detaching retina for the mathematical model

for retinal detachment in myopic eyes presented herein.

4.2.3 Equilibrium Equations

The equations of equilibrium for the detaching retina are found from the variational formu-

lation as (
Q(j)
ϕ sinϕ

)′
−
(
N (j)
ϕϕ +N

(j)
θθ

)
sinϕ = σjR sinϕ (4.19)

Q(j)
ϕ sinϕ+

(
N (j)
ϕϕ sinϕ

)′
−N (j)

θθ cosϕ = τjR sinϕ (4.20)(
M (j)
ϕϕ sinϕ

)′
−M (j)

θθ cosϕ = RQ(j)
ϕ sinϕ (4.21)

where Q
(j)
ϕ is the resultant transverse shear force per unit length in Region Rj .

In addition, the constraint functional results in the transverse displacement in Region

R2 given as

w2 (ϕ) = we (ϕ) (4.22)

and the transverse and meridian displacements in Region R3 given as

w3 (ϕ) = we (ϕ) , u3 (ϕ) = ue (ϕ) (4.23)

where the displacements with subscript e correspond to the elastic deformation associated

with the myopic evolution of the intact retina.

In Eqs. (4.19)-(4.21), the parameters σj and τj correspond to the radial normal and

meridian shear stress, respectively, acting on the retina in Region Rj . They are given in

terms of the applied pressures, the stress from the vitreous fibrils, and the interfacial stresses

(Lagrange multipliers) as

σj = σ̂j − p0 + σv for j = 1− 3 (4.24)
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where σ̂1 = p1.

τ1 = τ2 = 0, τ3 = τ̂3 (4.25)

The interfacial stresses in Regions R2 and R3 can be evaluated through substitution of the

analytical solutions for the displacements into the pertinent equilibrium equation.

4.2.4 Boundary Conditions

The boundary conditions for the detaching retina are also found from the variational for-

mulation. The conditions at ϕ = 0 are found to be

u1 (0) = 0, β(1)
ϕ (0) = 0, Q(1)

ϕ (0) = 0 (4.26)

The remaining boundary conditions depend on the existence or absence of the contact

zone, Region R2. Although the model allows for a contact zone, one may not be physically

realizable for a given detachment size and load condition, as was the case in Chapter 3.

The transversality conditions, which are discussed in Section 4.2.5, determine the size and

existence of the contact zone.

When a contact zone is present, the boundary conditions at ϕ = ϕ1 and ϕ = ϕ2 are

u1 (ϕ1) = u2 (ϕ1) , w1 (ϕ1) = we (ϕ1) , β(1)
ϕ (ϕ1) = β(2)

ϕ (ϕ1) ,

N (1)
ϕϕ (ϕ1) = N (2)

ϕϕ (ϕ1) , u2 (ϕ2) = ue (ϕ2)

(4.27)

where the displacements with subscript e correspond to the elastic deformation associated

with the myopic evolution of the intact retina.

When a contact zone is absent, Region R2 does not exist and ϕ = ϕ2 is taken as the

boundary angle between the lift zone, R1, and the intact region, R3. In this case, the

conditions stated in Eq. (4.27) are negated and the boundary conditions at ϕ = ϕ2 are

u1 (ϕ2) = ue (ϕ2) , w1 (ϕ2) = we (ϕ2) , β(1)
ϕ (ϕ2) = β(e)

ϕ (ϕ2) (4.28)

where β
(e)
ϕ is given by substituting we and ue into Eq. (4.15).

The propagation of retinal detachment when an axisymmetric tear in the retina is present

at ϕ = 0 with the boundary angle of the tear given at ϕ = ϕ0 is also considered for the
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myopic eye. In this case, the conditions stated in Eq. (4.26) at ϕ = 0 are negated and the

boundary conditions applied at the edge of the tear, ϕ = ϕ0, are

N (1)
ϕϕ (ϕ0) = 0, M (1)

ϕϕ (ϕ0) = 0, Q(1)
ϕ (ϕ0) = 0 (4.29)

4.2.5 Transversality Conditions

The boundaries at ϕ = ϕ1 and ϕ = ϕ2 are not fixed. Rather, they are found as part of the

solution to the mathematical problem. Allowing these parameters to vary arbitrarily when

performing the variations yields the transversality conditions that establish the location of

the propagating boundaries that correspond to equilibrium configurations of the detaching

ocular system. The resulting transversality conditions for the myopic retina will differ in

form when compared to those of the emmetropic retina in Chapter 3. Since the retina is

constrained by the non-spherical geometry of the rigid outer layers of the myopic eye, the

derived transversality conditions are similar in form to those of a shell with a compliant

outer layer. At the contact zone and detachment boundaries, the jump in the strain energy

that would cause detachment propagation is taken between the detaching retina and the

elastic energy of the constrained shape of the intact retina. Two possibilities are considered:

(i) a contact zone is present and (ii) a contact zone is absent.

(i) When a contact zone is present, the condition that establishes the location of the

propagating contact zone boundary, ϕ = ϕ1, is found to be

w′′1 (ϕ1) = w′′e (ϕ1) (4.30)

In addition, the condition that establishes the location of the propagating detachment

boundary, ϕ = ϕ2, takes the form

G {ϕ2} =
1

2R2

[(
D

R2
+ C

){(
u′2
)2 − (u′e)2}

+
2D

R2

{
u′′2 − u′′e +

(
u′2 − u′e

)
cotϕ

}
w′e

]
ϕ=ϕ2

= 2γ

(4.31)

where the function G {ϕ2} is identified as the energy release rate (energy released per unit

increase of the detachment angle) of the detaching retina.
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(ii) When a contact zone is absent, Eq. (4.30) becomes invalid. For this case, ϕ1 = ϕ2

and Eq. (4.31) is superfluous. The transversality condition that establishes the detachment

boundary, ϕ = ϕ2, for this case is found to be given by

G {ϕ2} =
1

2R2

[
D

{(
β(1)′

ϕ

)2
−
(
β(e)′

ϕ

)2
}

+ C

{(
u′1
)2 − (u′e)2}+ 2R

{
Q(1)
ϕ −Q(e)

ϕ

}
w′1

]
ϕ=ϕ2

= 2γ

(4.32)

Equations (4.31) and (4.32) are associated with the following Griffith-type criterion [32]: if

G {ϕ∗} ≥ 2γ for some initial value, ϕ∗, of the detachment angle, ϕ2, propagation of that

detachment angle will occur with ϕ2 increasing until the equality is satisfied. If G {ϕ∗} < 2γ,

propagation will not occur.

4.2.6 Non-dimensionalization

Thus far, all of the parameters presented in this Chapter have been given in dimensional

form. In obtaining solutions to the governing equations and in presenting results, all of these

parameters will be given in non-dimensional form. Non-dimensional parameters henceforth

are denoted with an overbar. Length scales are non-dimensionalized with respect to the

radius, R0, of the emmetropic retina as follows;

R̄ = R/R0, w̄ = w/R0, ū = u/R0, h̄ = h/R0, ā = a/R0, b̄ = b/R0 (4.33)

The remaining parameters are non-dimensionalized with respect to the bending stiffness

of the retina at a reference value, D0, which is given in terms of the Young’s modulus of

the retina at a reference value, E0. The non-dimensional stiffnesses then take the following

form

D̄ = D
/
D0 = E

/
E0 and C̄ = CR2

0

/
D0 = 12D̄

/
h̄2 (4.34)

Other non-dimensional parameters include

σ̄ = σR3
0

/
D0, τ̄ = τR3

0

/
D0, γ̄ = γR2

0

/
D0, Q̄ϕ = QϕR

2
0

/
D0,

N̄ϕϕ = NϕϕR
2
0

/
D0, N̄θθ = NθθR

2
0

/
D0, M̄ϕϕ = MϕϕR0

/
D0, M̄θθ = MθθR0

/
D0

(4.35)

whose interpretations follow accordingly. The general solution to the mathematical model

for retinal detachment in myopic eyes follows in the next Section.
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4.3 General Solution

The explicit form for the displacements of the intact retina due to the myopic changes of

the outer eye that were introduced in Section 4.2.1 is presented first.

4.3.1 Influence of Myopia on the Intact Retina

As the outer eye undergoes the geometric changes associated with myopia, the intact retina

will change from its emmetropic spherical shape to an ellipsoidal shape as governed by the

displacements introduced in Section 4.2.1. Substitution of Eq. (4.3)1 into Eq. (4.8) yields

Rm (ϕ) = R+ we (ϕ) =
ab√

a2 sin2 ϕ+ b2 cos2 ϕ
(4.36)

where a and b are the major and minor axes of the ellipse as shown in Figure 4.1. The axes

of the ellipse are further given in terms of the transverse elastic displacement of the intact

retina, we (ϕ), and the radius of the stress-free growth state, R, as

a = Rm (0) = R+ we (0) and b = Rm (π/2) = R+ we (π/2) (4.37)

Substitution of Eqs. (4.37) into Eq. (4.36) yields

R+ we (ϕ) =

[
R+ we (0)

][
R+ we (π/2)

]
√[

R+ we (0)
]2

sin2 ϕ+
[
R+ we (π/2)

]2
cos2 ϕ

(4.38)

Then, dividing through by R in Eq. (4.38) results in

1 +
we (ϕ)

R
=

[
1 + we(0)

R

] [
1 + we(π/2)

R

]
√[

1 + we(0)
R

]2
sin2 ϕ+

[
1 + we(π/2)

R

]2
cos2 ϕ

(4.39)

which, when expanded, takes the form

1 +
we (ϕ)

R
=

1 + we(0)
R + we(π/2)

R + we(0)we(π/2)
R2√[

1 + 2we(0)
R + we(0)2

R2

]
sin2 ϕ+

[
1 + 2we(π/2)

R + we(π/2)2

R2

]
cos2 ϕ

(4.40)

The denominator of Eq. (4.40) is then expanded as a binomial series, which yields

1 +
we (ϕ)

R
=

[
1 +

we (0)

R
+
we (π/2)

R
+
we (0)we (π/2)

R2

]
×[

1−

{
we (0)

R
+
we (0)2

2R2

}
sin2 ϕ−

{
we (π/2)

R
+
we (π/2)2

2R2

}
cos2 ϕ+ ...

]
(4.41)
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Next, terms of order w2
e/R

2 are neglected in Eq. (4.41). This approximation is required for

consistency with the linear thin structure theory employed for the elastic deflections of the

retina in Section 4.2.1. When expanded and reduced appropriately, Eq. (4.41) reduces to

the form

1 +
we (ϕ)

R
= 1 +

we (0)

R
+
we (π/2)

R
− we (0)

R
sin2 ϕ− we (π/2)

R
cos2 ϕ (4.42)

Regrouping terms and incorporating the relations given in Eqs. (4.37) leads to

we (ϕ) = a cos2 ϕ+ b sin2 ϕ−R (4.43)

Lastly, Eq. (4.43) is non-dimensionalized with respect to the emmetropic radius, R0, of the

retina as

w̄e (ϕ) = ā cos2 ϕ+ b̄ sin2 ϕ− R̄ (4.44)

where the non-dimensional parameters are given in Eq. (4.33).

With w̄e (ϕ) established, ūe (ϕ) is found through the governing equation for the intact

retina in the meridian direction, which is the same form as Eq. (4.20) for the detaching

retina, when taking τ̄e = 0. The governing equation for ūe (ϕ) given in terms of the known

displacement w̄e (ϕ) follows as

ū′′e +cotϕū′e−
(
cot2 ϕ+ ν

)
ūe =

D̄

C̄R̄+ D̄

[
w̄′′′e + cotϕw̄′′e −

(
cot2 ϕ+ ν +

C̄R̄ (1 + ν)

D̄

)
w̄′e

]
(4.45)

Upon substitution of Eq. (4.44), Eq. (4.45) reduces to the form

ū′′e + cotϕū′e −
(
cot2 ϕ+ ν

)
ūe = 4λ cosϕ sinϕ (4.46)

where

λ = 1
2

(
ā− b̄

) [ 4D̄

C̄R̄+ D̄
+ 1 + ν

]
(4.47)

Equation (4.46) is subject to the symmetric boundary conditions

ūe (0) = ūe (π/2) = 0 (4.48)

Upon solving the governing differential equation, Eq. (4.46), and applying the boundary
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conditions given in Eqs. (4.48), ūe (ϕ) is found as

ūe (ϕ) = −λ Γ̃ (2− ψ1) Γ̃ (2− ψ2)

Γ̃ (ψ1 + ψ2)

[
sinϕ cosϕ

]
×[

2
3 cos2 ϕ 2F 1

(
ψ1, ψ2; 2; sin2 ϕ

)
2F 1

(
1− ψ1, 1− ψ2; 5

2 ; cos2 ϕ
)

+ 1
2 sin2 ϕ 2F 1

(
ψ1, ψ2; 3; sin2 ϕ

)
2F 1

(
1− ψ1, 1− ψ2; 3

2 ; cos2 ϕ
) ]

(4.49)

where

ψ1 =
3−
√

5− 4ν

4
, ψ2 =

3 +
√

5− 4ν

4
(4.50)

In addition, Γ̃(·) represents the gamma function and 2F 1(·) represents the hypergeometric

function.

The final step in establishing the myopic shape of the intact retina is defining the length

of the axes of the ellipse, ā and b̄. As stated in the Section 4.1, Atchison et al. [3] measured

axial, vertical, and horizontal retinal dimensions of emmetropic and myopic eyes using

MRI and found changes in dimension of 0.35 mm/D in axial length, 0.19 mm/D in height,

and 0.10 mm/D in width as myopia increases. For the model presented herein, myopia

is also classified by the best sphere correction and the increase in the axial length of the

intact myopic retina is taken to be 0.35 mm/D as found in [3]. In order to maintain an

axisymmetric model, both the height and the width of the retina are taken to increase by

0.15 mm/D, the average of the height and width increases found in [3].

Representative values for the displacements used in Eqs. (4.37) are listed in Table 4.1,

where displacements have been non-dimensionalized by the radius of the retina in an em-

metropic human eye with average dimensions as given in Wilkinson and Rice [84] as R0 = 11

mm. Consideration is given to detachment of the retina occurring at the posterior pole of

the eye as well as at the superior pole. The schematic in Figures 4.1 and 4.2 show the cross-

section of the retina associated with detachment at the posterior pole. When considering

detachment at the superior pole (or any other location along the equator of the eye), the

displacements that are substituted into Eqs. (4.37) from Table 4.1 are interchanged.

For the myopic eye of -10 D, the displacement of major axis shown in Table 4.1 compared

with the emmetropic radius exceeds 15% of the reference radius of the emmetropic retina.

At this point if growth of the retina is not included (α = 0), the model has reached the
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Best sphere correction (D) -2 -4 -6 -8 -10

Posterior R̄m (0), Superior R̄m (π/2) 1.032 1.064 1.095 1.127 1.159
Posterior R̄m (π/2), Superior R̄m (0) 1.014 1.027 1.041 1.055 1.068

Table 4.1: The representative shape of the major and minor axes of the intact myopic retina
when non-dimensionalized with a radius of R0 = 11 mm.

limits of the maximum displacement allowable when employing a small deflection model.

Severe myopia is commonly considered to be greater than -6 D, so the model is applicable

for the range of myopia from minor to severe.

As described earlier, the model for the ellipsoidal shape of the intact myopic retina is

formed by rotating the two dimensional cross-section shown in Figures 4.1 and 4.2 about the

ϕ = 0 axis. For detachment at the posterior pole, ϕ = 0 corresponds to the major axis of

the two dimensional ellipse, which results in a prolate ellipsoidal shape of the intact retina

in which the height and the width of the retina are the same dimensions, as desired and

shown in Figure 4.3(a). This is not the case when considering detachment at the superior

pole, as shown in Figure 4.3(b), since ϕ = 0 now corresponds to the minor axis of the two

dimensional ellipse. This results in an oblate ellipsoid in which the width at the equator of

the intact retina is equal to the axial length, not the height. While this is not the same shape

of the myopic retina as that for detachment at the posterior pole, it cannot be avoided in the

current axisymmetric model. As the displacements are small and there is large variability

in the measurements of the dimensions of myopic retina, the oblate ellipsoidal shape can

still yield insight into detachment propagation at the superior pole.

4.3.2 Retinal Detachment

The method for obtaining the general solution to the governing differential equations given

in Eqs. (4.19)-(4.21) for the lift zone (Region R1) is adopted from Chapter 3. First, the

resultant transverse shear force in the lift zone is found to be

Q̄(1)
ϕ (ϕ) = A1 sinϕ 2F 1

(
ψ3, ψ4; 2; sin2 ϕ

)
+A2 sinϕ 2F 1

(
ψ̂3, ψ̂4; 2; sin2 ϕ

)
+A3 sinϕG2,0

2,2

(
sin2 ϕ

∣∣∣∣∣ ψ3 − 1
2 , ψ4 − 1

2

−1, 0

)
+A4 sinϕG2,0

2,2

(
sin2 ϕ

∣∣∣∣∣ ψ̂3 − 1
2 , ψ̂4 − 1

2

−1, 0

)
(4.51)
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(a) Posterior (prolate)

(b) Superior (oblate)

Figure 4.3: Difference in the shape of the intact myopic retina of -6 D between the models
for detachment in the posterior and superior regions: (a) the prolate shape when considering
detachment in the posterior region and (b) the oblate shape when considering detachment
in the superior region.

where

ψ3 =
3 +
√

5 + iZ

4
, ψ4 =

3−
√

5 + iZ

4
, ψ̂3 =

3 +
√

5− iZ

4
, ψ̂4 =

3−
√

5− iZ

4

(4.52)

with i being the imaginary unit
(√
−1
)

and Z given as

Z = 4

√
C̄R̄2

D̄
(1− ν2)− ν2 (4.53)

In Eq. (4.51), 2F 1(·) again represents the hypergeometric function, G2,0
2,2(·) represents the

Meijer G function, and A1-A4 are constants of integration.

The meridian and transverse displacements are then found in terms of the resultant

transverse shear force in Eq. (4.51) as

ū1 (ϕ) = A6 sinϕ− R̄

C̄ (1− ν)

[
Q̄(1)
ϕ +

(
1

2
R̄σ̄1 +A5

)(
cotϕ+ sinϕ ln

{
cot

ϕ

2

})]
(4.54)
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and

w̄1 (ϕ) =
R̄

C̄ (1− ν2)

[
Q̄(1)′

ϕ + Q̄(1)
ϕ cotϕ

]
−A5

R̄

C̄ (1− ν)

[
1− cosϕ ln

{
cot

ϕ

2

}]
−A6 cosϕ− R̄2σ̄1

C̄ (1− ν2)

[
1− 1

2
(1 + ν) cosϕ ln

{
cot

ϕ

2

}] (4.55)

where A5 and A6 are additional constants of integration.

The general solution for the contact zone (Region R2) is not presented here. When

applying the boundary conditions to the general solution for the case when a contact zone

is present (Eqs. (4.27)), with either no tear in the retina (Eqs. (4.26)) or a tear in the retina

at the origin (Eqs. (4.29)), it is found that the transversality condition given in Eq. (4.30)

is not satisfied for any values of the boundary angles ϕ1 and ϕ2 considered. Hence, even

though the model allows for a contact zone, a contact zone will not exist for the range

of detachment sizes considered. Therefore, in the analysis that follows a contact zone is

absent, so Region R2 does not exist and we take ϕ = ϕ2 as the boundary angle between

the lift zone and the intact region.

When considering detachment at the superior pole of the eye and using the values for

the position of the myopic retina found in Table 4.1, the radius of the intermediate growth

state, R̄, is larger than the position of the myopic configuration of the retina at the pole,

R̄0 + w̄G (0), for larger values of the growth parameter, α. As a result, in the absence of

applied stress to the retina, σ̄1 = 0, as the growth parameter approaches one, there will

reach a value of α for which the only physically realizable position of the detaching retina is

a full contact zone in which Region R1 is not present due to the linear strain-displacement

relations employed in this model. As biochemical growth is believed to play a small part in

the deformation of the retina during the evolution of myopia ([28], [45], [66]), larger values

of the growth parameter are not relevant. Hence, we only consider values of the growth

parameter at the superior pole for which Region R1, the lift zone, is present.

Case 1: No retinal tear present

In applying boundary conditions for Region R1, detachment of the retina at both the

posterior and superior poles of the eye is considerd when no tear in the retina is present. The

Meijer G function, along with the cotangent function and natural logarithm, are singular at

the origin but, on physical grounds, the deflections at the origin must be finite. Therefore,
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at both ocular locations, the boundary conditions of finite deflection at ϕ = 0 are applied

in place of Eqs. (4.26). This results in the values

A3 = 0, A4 = 0, A5 = −R̄σ̄1/2 (4.56)

Imposing the boundary conditions for the case of no contact zone given in Eqs. (4.28) allows

for solution of the remaining integration constants A1, A2, and A6, as
A1

A2

A6

 = [λ1]−1


C̄
R̄
w̄e (ϕ2)

(
1− ν2

)
+ 1

2R̄σ̄1 (1− ν)

− C̄
R̄
w̄′e (ϕ2)

(
1− ν2

)
cscϕ2

− C̄
R̄
ūe (ϕ2) (1− ν) cscϕ2

 (4.57)

where

[λ1] =


cosϕ2X1 (ψa, ψb, ϕ2) cosϕ2X1

(
ψ̂a, ψ̂b, ϕ2

)
− C̄
R̄

cosϕ2

(
1− ν2

)
X2 (ψa, ψb, ϕ2) X2

(
ψ̂a, ψ̂b, ϕ2

)
− C̄
R̄

(
1− ν2

)
2F 1

(
ψa, ψb; 2; sin2 ϕ2

)
2F 1

(
ψ̂a, ψ̂b; 2; sin2 ϕ2

)
− C̄
R̄

(1− ν)

 (4.58)

X1 (ψa, ψb, ϕ) = 2 2F 1

(
ψa, ψb; 2; sin2 ϕ

)
+ ψaψb sin2 ϕ 2F 1

(
ψa + 1, ψb + 1; 3; sin2 ϕ

)
(4.59)

X2 (ψa, ψb, ϕ) = 2 2F 1

(
ψa, ψb; 2; sin2 ϕ

)
+
(
1− 5 cos2 ϕ

)
ψaψb 2F 1

(
ψa + 1, ψb + 1; 3; sin2 ϕ

)
− 2

3 sin2 ϕ cos2 ϕψaψb (ψa + 1) (ψb + 1) 2F 1

(
ψa + 2, ψb + 2; 4; sin2 ϕ

)
(4.60)

Case 2: Retinal tear present

Retinal detachment at the superior pole of the eye is considered with a tear/hole in the

retina present at the origin. For this case, the pertinent boundary conditions are found in

Eqs. (4.28) and (4.29), which yields the integration constants A1-A6 as

A1

A2

A3

A4

A5

A6



= [λ2]−1



C̄
R̄
w̄e (ϕ2)

(
1− ν2

)
+ R̄σ̄1

[
secϕ2 − 1

2 (1 + ν) g (ϕ2)
]

− C̄
R̄
w̄′e (ϕ2)

(
1− ν2

)
cscϕ2 − 1

2R̄σ̄1 (1 + ν) ĝ (ϕ2)

− C̄
R̄
ūe (ϕ2) (1− ν) cscϕ2 − 1

2R̄σ̄1ĝ (ϕ2)

0

−1
2R̄σ̄1 cotϕ0 cscϕ0

0



(4.61)
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where

[λ2] =



X1 (ψa, ψb, ϕ2) X1

(
ψ̂a, ψ̂b, ϕ2

)
Y1 (ψa, ψb, ϕ2) Y1

(
ψ̂a, ψ̂b, ϕ2

)
−g̃ (ϕ2) − C̄

R̄

(
1− ν2

)
X2 (ψa, ψb, ϕ2) X2

(
ψ̂a, ψ̂b, ϕ2

)
Y2 (ψa, ψb, ϕ2) Y2

(
ψ̂a, ψ̂b, ϕ2

)
(1 + ν) ĝ (ϕ2) − C̄

R̄

(
1− ν2

)
F (ψa, ψb, ϕ2) F

(
ψ̂a, ψ̂b, ϕ2

)
G (ψa, ψb, ϕ2) G

(
ψ̂a, ψ̂b, ϕ2

)
ĝ (ϕ2) − C̄

R̄
(1− ν)

F (ψa, ψb, ϕ0) F
(
ψ̂a, ψ̂b, ϕ0

)
G (ψa, ψb, ϕ0) G

(
ψ̂a, ψ̂b, ϕ0

)
0 0

F (ψa, ψb, ϕ0) F
(
ψ̂a, ψ̂b, ϕ0

)
G (ψa, ψb, ϕ0) G

(
ψ̂a, ψ̂b, ϕ0

)
secϕ0 csc2 ϕ0 0

X3 (ψa, ψb, ϕ0) X3

(
ψ̂a, ψ̂b, ϕ0

)
Y3 (ψa, ψb, ϕ0) Y3

(
ψ̂a, ψ̂b, ϕ0

)
0 0


(4.62)

F (ψa, ψb, ϕ) = 2F 1

(
ψa, ψb; 2; sin2 ϕ

)
(4.63)

G (ψa, ψb, ϕ) = G2,0
2,2

sin2 ϕ

∣∣∣∣∣ ψa −
1
2 , ψb −

1
2

−1, 0

 (4.64)

Y1 (ψa, ψb, ϕ) = 2G (ψa, ψb, ϕ) + tanϕG′ (ψa, ψb, ϕ) (4.65)

Y2 (ψa, ψb, ϕ) = 2G (ψa, ψb, ϕ)− 3 cotϕG′ (ψa, ψb, ϕ)−G′′ (ψa, ψb, ϕ) (4.66)

X3 (ψa, ψb, ϕ) =
(
1− ν2

)
2F 1

(
ψa, ψb; 2; sin2 ϕ

)
+
(
16 sin2 ϕ− 4ν cos2 ϕ− 4

)
ψaψb 2F 1

(
ψa + 1, ψb + 1; 3; sin2 ϕ

)
− 2

3 sin2 ϕ
[
(10 + ν) cos2 ϕ− 3

]
ψaψb (ψa + 1) (ψb + 1) 2F 1

(
ψa + 2, ψb + 2; 4; sin2 ϕ

)
− 1

3 sin4 ϕ cos2 ϕψaψb (ψa + 1) (ψb + 1) (ψa + 2) (ψb + 2) 2F 1

(
ψa + 3, ψb + 3; 5; sin2 ϕ

)
(4.67)

Y3 (ψa, ψb, ϕ) =
(
1− ν2

)
G (ψa, ψb, ϕ) + [(4− ν) tanϕ− 3ν cotϕ]G′ (ψa, ψb, ϕ)

− (4 + ν)G′′ (ψa, ψb, ϕ)− tanϕG′′′ (ψa, ψb, ϕ)

(4.68)

g (ϕ) = ln
{

cot
ϕ

2

}
, ĝ (ϕ) = cotϕ cscϕ+g (ϕ) , g̃ (ϕ) = (1 + ν) [secϕ− g (ϕ)] (4.69)

The solutions obtained in this section are used to perform simulations of the evolution of

retinal detachment in the myopic eye, the results of which are presented in Section 4.4.

4.4 Results and Discussion

In this section, results are presented for retinal detachment at the posterior pole of the eye

without a tear present in the retina. Results for the posterior pole are calculated using

a non-dimensional retinal thickness of h̄ = 0.185/11 = 0.01682 as h = 0.185 mm is the

average of the midperiphery and posterior retinal thicknesses as discussed in Section 3.4.

Additional results are presented for detachment at the superior pole (or any position along
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the equator of the eye) with and without a tear in the retina present. Results for the superior

pole are calculated using a non-dimensional retinal thickness of h̄ = 0.1/11 = 0.00909 as

h = 0.1 mm is periphery retinal thicknesses as discussed in Section 3.4. All results, at both

locations, employ a Poisson’s ratio of ν = 0.49, as biological tissues are considered to be

nearly incompressible.

The displacement profiles for the detaching retina in the absence of applied stress (σ̄1 =

0) are considered in order to isolate the effects of the change in shape of the myopic retina on

detachment. The transverse position of the detaching retina at the posterior pole is shown

in the polar plot displayed in Figure 4.4(a), while the corresponding meridian displacement

profile appears in the cartesion plot in Figure 4.4(b). In Figure 4.4(a), the location of

the emmetropic retina and the location of the myopic RPE are shown for reference, while

in Figure 4.4(b) the elastic meridian displacement of the fully intact retina is shown. In

comparing the results for a detachment size of ϕ2 = 0.270, it is seen that the displacement is

smaller when a growth parameter of α = 0.5 is prescribed when compared to that of α = 0

since the retina stores less elastic strain energy during its myopic evolution for α = 0.5. At

the posterior, the largest detachment size shown is ϕ2 = 0.270, as the optic nerve, with its

location as discussed in Section 3.4, would break the axisymmetric nature of the detachment

for larger detachment sizes.

Displacement profiles for detachment at the superior pole of the eye without a tear in

the retina and with a tear in the retina are shown in Figures 4.5 and 4.6, respectively. Here,

the largest detachment size shown is ϕ2 = 0.45, as the ora serrata, with its location as

discussed in Section 3.4, would break the axisymmetric nature of the detachment for larger

detachment sizes. The qualitative behavior for the displacement profiles at the superior

pole is similar to that of profiles at the posterior pole in Figure 4.4. In Figures 4.5(a) and

4.6(a), we see ‘dimpling’ in the retina for larger detachment sizes as was observed when

studying retinal detachment in emmetropic eyes in Chapter 3. If the optic nerve were not

present, similar ‘dimpling’ would occur for larger detachment sizes at the posterior pole as

well. In Figures 4.4(b), 4.5(b), and 4.6(b), the meridian displacement of the intact retina

is the same for α = 0 and α = 0.5 due to the membrane stiffness C̄ in the denominator of

Eq. (4.47), which is large in magnitude, controlling the value of λ.
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Figure 4.4: The deflection profile for detachment of the retina at the posterior pole of the
myopic eye of -6 D with ν = 0.49, D̄ = 1, h̄ = 0.185/11 = 0.01682, and σ̄1 = 0: (a) the
transverse location of the retina compared to the myopic outer eye and the emmetropic eye
and (b) the meridian displacement profile.

The energy release rate (ERR) for the case where a contact zone is absent, Eq. (4.32),

is given in non-dimensional form as

Ḡ {ϕ2} =
1

2R̄2

[
D̄

{(
β(1)′

ϕ

)2
−
(
β(e)′

ϕ

)2
}

+ C̄

{(
ū′1
)2 − (ū′e)2}+ 2R̄

{
Q̄(1)
ϕ − Q̄(e)

ϕ

}
w̄′1

]
ϕ=ϕ2

= 2γ̄

(4.70)

Both Ḡ {ϕ2} and 2γ̄ are normalized with respect to D0, which is a parameter dependent on

the thickness of the retina. As the thickness of the retina varies between the posterior and

superior detachment locations, the ERR must be rescaled in order to directly compare the

results between the two detachment locations. Hence, results are displayed in terms of

G̃ {ϕ2} =

(
h

h0

)3

Ḡ {ϕ2} and γ̃ =

(
h

h0

)3

γ̄ (4.71)

where h remains the thickness of the retina at the location of interest and h0 = 0.1 is a

nominal reference value. In this sense, the normalized and the rescaled values are the same

at the superior of the eye and the values at the posterior are then directly comparable to

the values at the superior.

The rescaled ERR is presented in Figures 4.7-4.9 as a function of detachment size for

detachment at the posterior pole, detachment at the superior pole without a tear in the
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Figure 4.5: The deflection profile for detachment of the retina at the superior pole of the
myopic eye of -6 D with ν = 0.49, D̄ = 1, h̄ = 0.1/11 = 0.00909, and σ̄1 = 0: (a) the
transverse location of the retina compared to the myopic outer eye and the emmetropic eye
and (b) the meridian displacement profile.

retina, and detachment at the superior pole with a tear in the retina, respectively, all in the

absence of applied stress acting on the retina (σ̄1 = 0). This again allows for isolation of

the stored strain energy in the retina due solely to its change in shape during the evolution

of myopia and the corresponding release of that strain energy during retinal detachment

propagation. The ERR results from Eqs. (4.70) and (4.71) are shown in Figures (4.7)-(4.9)

along with a horizontal line that gives the magnitude of the ERR required to produce a unit

area of detachment (2γ̃). When G̃ {ϕ2} ≥ 2γ̃, the strain energy in the retina is sufficient to

produce retinal detachment propagation.

For detachment at the posterior pole, we see from Figure 4.7(a) that, even in the absence

of applied stress, the retina reaches a sufficient detachment energy for detachment propa-

gation at -6 D of myopia when there is no biochemical induced growth in the retina. Figure

4.7(b) shows that at -6 D, if biochemical induced growth is present, the ERR decreases

with an increasing growth parameter. The gray scale background in Figure 4.7 beginning

at ϕ2 = 0.27 represents the detachment size for which the presence of the optic nerve may

begin to break the axisymmetric nature of the detachment shape.

For detachment at the superior pole without a tear in the retina and without biochemical

growth, Figure 4.8(a), it is seen that a myopic eye of -8 D achieves sufficient energy release
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Figure 4.6: The deflection profile for detachment of the retina at the superior pole of the
myopic eye of -6 D with a tear/hole of ϕ0 = 0.1 and ν = 0.49, D̄ = 1, h̄ = 0.1/11 = 0.00909,
and σ̄1 = 0: (a) the transverse location of the retina compared to the myopic outer eye and
the emmetropic eye and (b) the meridian displacement profile.

for detachment propagation. This occurs at a much larger detachment size when compared

to the -6 D eye at the posterior pole in Figure 4.7(a). At all levels of myopia, the ERR

is larger at the posterior pole in Figure 4.7(a) when compared to that of the same degree

of myopia at the superior pole in Figure 4.8(a). The gray scale background in Figure

4.8 beginning at ϕ2 = 0.45 represents the point at which the presence of the ora serrata

may disrupt the axisymmetry of the detachment shape. Figure 4.8(b) again shows that

increasing the growth parameter will decrease the ERR. For the superior pole, the largest

growth parameter considered is α = 0.66 since the linear model predicts a full contact zone

solution at the superior pole as α approaches one. For the full contact zone solution, the

ERR would be governed by Eq. (4.31), which is identically zero for this model with a full

contact zone and no applied stress, and would not lead to detachment propagation.

When considering the influence of a tear in the retina on the ERR for detachment at

the superior pole, Figure 4.9, similar qualitative and quantitative behavior to the results

shown in Figure 4.8(a) are seen when sufficiently far from the tear. This is also shown to

be independent of the size of the tear. Hence, the presence of a tear has a very localized

effect on the ERR.

Finally, the effects of the applied stress on the retina, σ̄1, are combined with the effects of
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Figure 4.7: The energy release rate for propagation of retinal detachment at the posterior
pole of the eye with ν = 0.49, D̄ = 1, h̄ = 0.185/11 = 0.01682, γ̄ = 143.9, and σ̄1 = 0: (a)
α = 0 with various degrees of myopia (b) myopic eye of -6 D with various values of α.

the geometric changes associated with myopia to examine the critical stress for detachment

propagation. The critical stress, σ̄cr, is found by solving Eq. (4.70) for the stress at which

the ERR is equal to 2γ̄. This represents the critical threshold value of the applied stress for

which detachment would begin to propagate. The critical stress results are also presented

in rescaled form to facilitate comparison between the critical stress at the posterior and at

the superior of the eye. Hence,

σ̃cr =

(
h

h0

)3

σ̄cr (4.72)

where h and h0 are defined in the same manner as in Eq. (4.71). A study of the critical

stress for the myopic eye also allows for comparison to the critical stress for detachment
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Figure 4.8: The energy release rate for propagation of retinal detachment at the superior
pole of the eye with ν = 0.49, D̄ = 1, h̄ = 0.1/11 = 0.00909, γ̄ = 911.2, and σ̄1 = 0: (a)
α = 0 with various degrees of myopia (b) myopic eye of -6 D with various values of α.

propagation of the retina in the emmetropic eye, found in Chapter 3.

In studying the results of the critical stress threshold paths, it is of interest to determine

whether the detachment process will propagate in a stable or unstable manner ([12], [42]).

If the path is monotonically increasing, then an incremental increase in stress will produce

an increment in detachment size, so detachment propagation is stable. If the path is in the

form of a U-shape, initially decreasing with detachment angle and then increasing, when

the stress achieves a critical value for a given detachment angle on the descending portion

of the path, detachment will occur in an unstable manner at a constant stress level. In

this case, detachment will progress dynamically, represented by a horizontal jump to the
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Figure 4.9: The energy release rate for propagation of retinal detachment at the superior
pole of the eye with tears/holes of ϕ0 = 0.05, ϕ0 = 0.1, and ϕ0 = 0.15 with α = 0, ν = 0.49,
D̄ = 1, h̄ = 0.1/11 = 0.00909, γ̄ = 911.2, and σ̄1 = 0.

corresponding equilibrium configuration on the increasing segment of the path. Subsequent

propagation along the increasing segment will be stable as an increment in stress will pro-

duce an increment in detachment angle. If the threshold path is monotonically decreasing,

then once the critical stress level is achieved for a given detachment angle, it is achieved

for all subsequent angles at that stress level. As a result, detachment will propagate in an

unstable and catastrophic manner.

The critical stress for detachment at the posterior is shown for the case of no biochemical

induced growth of the retina in Figure 4.10(a). When compared to the emmetropic retina,

the degree of myopia significantly reduces the critical stress necessary for detachment prop-

agation. At -6 D, the critical stress is seen to be zero for a detachment size around ϕ2 ≈ 0.2,

since geometric changes alone are sufficient to produce detachment propagation at this re-

fractive error, as shown in Figure 4.7(a). The influence of myopia is also seen to transform

the catastrophic nature of the detachment of the emmetropic retina to unstable but non-

catastrophic propagation for a range of detachment sizes as myopia increases. However, the

right bound of the unstable well in the threshold path for -4 D and -6 D occurs beyond the

detachment size for which the optic nerve would affect the axisymmetric results. For the

-6 D myopic eye in Figure 4.10(b), as the growth parameter increases, the critical stress

also increases. When α = 1, the critical stress remains lower than that of the emmetropic

retina, but the threshold path now has a large well for unstable propagation rather than
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displaying entirely catastrophic propagation.
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Figure 4.10: The critical stress for propagation of retinal detachment at the posterior pole
of the eye with ν = 0.49, D̄ = 1, h̄ = 0.185/11 = 0.01682, and γ̄ = 143.9: (a) α = 0 with
various degrees of myopia (b) myopic eye of -6 D with various values of α.

The results for the critical stress at the superior pole without a tear in the retina are

shown in Figure 4.11. Figure 4.11(a) shows that as myopia increases the critical stress

decreases and remains catastrophic in nature when compared to the emmetropic retina. As

with the posterior pole, as the growth parameter increases so too does the critical stress in

Figure 4.11(b). For α = 1, the critical stress for the -6 D eye is higher than the emmetropic

case for smaller detachment sizes because the applied stress in this case must first overcome

the interfacial stress that would be associated with the full contact zone solution that

develops as α approaches one at the superior pole.

The critical stress at the superior pole for retinas with tears of various sizes is shown in

Figure 4.12. Tears in the myopic retina are seen to result in the formation of an unstable

well in the threshold path for which unstable but non-catastrophic propagation is possible.

This is consistent with the results of Chapter 3, in which unstable wells were found in the

threshold paths for the emmetropic retina possessing a tear. As with the other results of

this study concerning a tear in the retina, the size of the tear does not affect the behavior

of the critical stress for detachment sizes sufficiently larger than the size of the tear itself.

In comparing Figsures 4.10(a) and 4.11(a), the critical stress in the emmetropic eye
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Figure 4.11: The critical stress for propagation of retinal detachment at the superior pole
of the eye with ν = 0.49, D̄ = 1, h̄ = 0.1/11 = 0.00909, and γ̄ = 911.2: (a) α = 0 with
various degrees of myopia (b) myopic eye of -6 D with various values of α.

is larger at the posterior pole than at the superior pole, where the only parameter that

is different between these locations for the emmetropic eye is the thickness of the retina.

As myopia reaches -2 D, the critical stress is of similar value at the two locations. Then

as myopia continues to increase the critical stress for detachment propagation is lower

in magnitude at the posterior pole for the same degree of myopia. Hence, the geometric

changes associated with myopia that are occurring at the posterior pole affect the resistance

to detachment of the retina in a much more severe manner than the geometric changes at the

superior pole. However, the influence of myopia at the posterior pole shows some stabilizing

wells in the critical stress threshold path, while detachment at the superior pole remains

entirely catastrophic in nature.

4.5 Conclusions

A mechanics-based mathematical model of retinal detachment due to the geometric changes

of the eye associated with the evolution of myopia has been developed. The model includes

deformation of the retina due to biological growth of the retina, as well as elastic deformation

imposed on the retina by the myopic change in shape of the much stiffer choroid and sclera.

The problem was formulated as a propagating boundary value problem in the calculus
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Figure 4.12: The critical stress for propagation of retinal detachment at the superior pole
of the eye with tears/holes of ϕ0 = 0.05, ϕ0 = 0.1, and ϕ0 = 0.15 with α = 0, ν = 0.49,
D̄ = 1, h̄ = 0.1/11 = 0.00909, and γ̄ = 911.2.

of variations, which yields self-consistent governing equations, boundary conditions, and

transversality conditions that establish the location of the propagating boundaries that

correspond to equilibrium configurations of the detaching ocular system. Axisymmetric

conditions are considered, and exact, analytical solutions to the corresponding boundary

value problem were obtained for detaching retinas with and without a tear in the retina.

The results support the clinical finding of an increased prevalence of retinal detachment

in myopic eyes and provide insight into the potential causation for the increased prevalence.

From analysis of the energy release rate, it was seen that at severe levels of myopia, even

in the absence of applied stress acting on the retina, a sufficient energy release for detach-

ment propagation was achieved at both locations. Correspondingly, the critical stress for

detachment propagation was found to be lower for the myopic retina when compared to

that of the emmetropic retina at both locations. For the critical stress at the posterior pole,

the evolution of myopia led to the development of unstable wells in the threshold paths,

indicating that although detachment is more likely, it may not occur in as catastrophic a

manner for this case. The results suggest that, for the emmetropic eye detachment is more

resistant to propagation as one moves in a posterior direction from the equator but that due

to the geometric changes associated with myopia, the myopic retina is far less resistant to

detachment propagation moving posterior from the equator of the eye. As macular retinal
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detachment can lead to permanent vision loss, this has severe clinical consequences.
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Chapter 5

Concluding Remarks

A multi-directional growth law for layered shell structures was presented. Shells with a

compliant inner layer separating from a rigid outer layer were considered and the delami-

nation boundary between layers was allowed to take on an arbitrary shape. Subsequently,

a mechanics based mathematical model for retinal detachment in the emmetropic eye that

takes contraction of the vitreous and extension of its fibrils, along with a pressure differ-

ence across the retina, as the impetus for detachment propagation was presented. In the

model for the emmetropic eye, retinal detachment propagation is governed by the growth

law derived for layered shells. A second mechanics based mathematical model for retinal

detachment due to the geometric changes of the eye associated with the evolution of myopia

was developed. The model for retinal detachment in the myopic eye includes deformation

of the retina due to biological growth of the retina, as well as elastic deformation imposed

on the retina by the myopic change in shape of the much stiffer choroid and sclera. The

latter of which acts as an additional impetus for retinal detachment in the myopic eye.

The mathematical models for both the emmetropic eye and the myopic eye were formu-

lated as propagating boundary value problems in the calculus of variations, which yielded

the self-consistent governing equations, boundary conditions, and transversality conditions

that establish the location of the propagating boundaries that correspond to equilibrium

configurations of each of the detaching ocular systems. Axisymmetric conditions were con-

sidered and exact analytical solutions to the corresponding boundary value problems were

obtained for detaching retinas with and without a tear. Simulations based on the analyti-

cal solutions were performed, revealing the characteristic critical conditions for detachment

propagation. The effects of changes in material and geometric parameters, as well as the

influence of the presence and size of the retinal tear on detachment propagation was also
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studied.

For the emmetropic eye, exact, analytical solutions for the radial displacements, and the

corresponding meridian displacements, were obtained for detaching retinas with a central

tear, as well as for retinas without a tear. The resulting characteristic detachment behavior

was compared to the results of Bottega et al. [12], in which the meridian displacements were

treated as negligible and approximate solutions to the governing equations based on that

assumption were obtained. For both the case of a tear in the retina and no tear in the retina,

it was seen that including the meridian displacements resulted in a substantial percentage

increase in the magnitude of the radial deflection profile. However, the qualitative behavior

of the radial deflection profile remained similar, with ‘dimpling’ in the retina occurring

for larger detachment angles. The meridian deflection profile was seen to be an order of

magnitude smaller than that of the radial deflection profile, but its inclusion was seen to

have significant effects on the critical behavior of detachment propagation.

The threshold path for the applied effective stress showed that detachment propagation

is catastrophic in nature, which is in agreement with the results of Bottega et al. [12], as

well as with clinical observations. The inclusion of the meridian displacement was seen

to lower the critical stress as well as to facilitate the development of unstable ‘wells’ in

the threshold paths. When compared to the results of Bottega et al. [12], the unstable

‘wells’ were seen to develop at smaller tear sizes and were larger in depth and breadth for a

given tear size. When compared to retinas without a tear it was seen that, for detachment

angles outside but less than those that fall within the ‘well’, the presence of the tear raises

the critical stress. Hence, it appears that the tear has a stabilizing effect with regard to

detachment propagation in this sense, and that this stabilizing effect is more pronounced

with the inclusion of the meridian displacements.

The results for the myopic eye support the clinical finding of an increased prevalence of

retinal detachment in myopic eyes and provide insight into the potential causation for the

increased prevalence. From analysis of the energy release rate, it was seen that at severe

levels of myopia, even in the absence of applied stress acting on the retina, a sufficient energy

release for detachment propagation was achieved at both the posterior and the superior

regions of the retina. Correspondingly, the critical stress for detachment propagation was
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found to be lower for the myopic retina when compared to that of the emmetropic retina

at both locations. For the critical stress at the posterior pole, the evolution of myopia

led to the development of unstable wells in the threshold paths, indicating that although

detachment was more likely, it may not occur in as catastrophic a manner for this case. The

results suggest that, for the emmetropic eye, detachment is more resistant to propagation

in a posterior direction from the equator. However, the myopic retina is far less resistant to

detachment propagation posterior from the equator of the eye due to the geometric changes

associated with myopia. As macular retinal detachment can lead to permanent vision loss,

this has severe clinical consequences.

5.1 Future Considerations

The current axisymmetric mathematical models for both the emmetropic eye and the myopic

eye do not allow for consideration of several important phenomena with regards to retinal

detachment. First, it is important to consider the effects of gravity on retinal detachment.

Axisymmetric deformation does not allow for the non-symmetric nature of gravity acting

upon the eye as a person goes about their day. In order to better understand the mechanics

of detachment under gravity it is necessary to simulate the detachment behavior for the

various orientations of the eye when a person is standing, as well as when a person is lying

down, and any arbitrary line of action of gravity in between these two extremes.

It is also of importance to study horseshoe tears, which are common in clinical obser-

vations. Axisymmetric detachment only allows for circular tears in the retina. In order to

analyze the effects of gravity and the behavior of horseshoe tears, both centrally located

and off center, the full set of non-axisymmetric equilibrium equations derived in Chapter 2

are needed. These equations will be functions of both the polar angle, θ, and the azimuth

angle, ϕ. In the axisymmetric case, it was clear that detachment would propagate uniformly

outward from the center of the detached region. When considering non-axisymmetric de-

formation, detachment can propagate at different rates in different directions. This will

result in a transversality condition that employs a point wise criterion about the periphery

of the detached area to establish the detachment boundary (see, Chapter 2). It is proposed

that the detachment boundary will advance along the path of steepest decent that most
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efficiently releases energy.

The relevant relations for the strain, rotation, and bending measures for the spherical

geometries associated with the emmetropic eye under non-axisymmetric conditions were

given in Section 2.2.4. The corresponding equations of equilibrium for non-axisymmetric

deformations of a spherical shell are taken from Eqs. (2.123) and (2.124) as
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In Eqs. (5.1), qj are the components of the generalized loading parameter and σ̂j , τ̂
(j)
1 ,

and τ̂
(j)
2 are Lagrange multipliers that ensure continuity of the transverse and meridian

displacements of the shell layers in the intact region and in the contact zone.

The influence of gravity on retinal detachment propagation and the critical detachment

behavior of horseshoe tears in the retina can be investigated through Eqs. (5.1) and (5.2), in

conjunction with Eqs. (2.86)-(2.90). Continuing to quantify the contributions of the various

causes of retinal detachment through mathematical modeling, such as that found in this

study, can aid physicians in better understanding the phenomena and promote thought on

alternative treatment procedures.
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