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This dissertation studies forecasting model specification, estimation, pre-

diction, and evaluation in big data environments. In an effort to contribute

to the discussions of macroeconomic forecasting, I examine the studies of

forecasting model specification and forecast accuracy testings and introduce

new methodologies in empirical frameworks. The whole set-up of forecasting

model specification and forecasting evaluation framework is a continuum of

decisions, which can lead to different forecasting results. In closely-connected

two papers, I attempt to empirically evaluate the implications of using dif-

ferent methodologies throughout all stages of macro forecasting and provide

insightful conclusions for future researches in the literature.

Chapter 2 revisits the question of predictive accuracy testing and model

selection, and asks the question: does the loss function really matter, and if so,

what can be gained when utilizing loss function-free model comparison and

selection tests? So far in forecasting literature, forecasting results have been

compared based on moment-based approaches which mostly concern about

only first and second moment of forecasting errors and require to choose a loss

function to begin with, which is an additional decisional problem. In Chapter

2, I compare forecasting results based on a distributional comparison approach

suggested by Jin et al. (2016), which is technically based on the stochastic dom-
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inance principles and loss-function robust. A series of empirical experiments

are carried out using macroeconomic time series data modeled using big data

methods, including a large number of dimension reduction, shrinkage, and

machine learning methods. Analysis and ranking of these methods is found

to depend crucially on whether loss function dependent evaluation of their

accuracy is carried out, or not.

Chapter 3 builds on my first chapter by focusing on the usefulness of so-

called “supervised” approaches to forecast model selection in big-data envi-

ronments. When constructing forecasting models using latent factor variables

that are designed to condense information from large datasets into a small set

of useful explanatory variables, standard approaches involve extracting infor-

mation relevant to the entire dataset, and not targeted to a particular variable

being forecasted. Supervised approaches to model specification do not do this,

but instead penalize model specifications according to metrics designed to fo-

cus on the particular target variable(s) of interest. In order to evaluate the

efficacy of supervised approaches, I carry out Monte Carlo simulations and

empirical exercises and empirical results suggest that supervised approaches

that are geared for the purpose of forecasting do serve its own purpose.
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Chapter 1

Introduction

My doctoral study has been focused on both theoretical and empirical stud-

ies of macroeconomic forecasting and my dissertations attempt to evaluate

state-of-the-art forecasting methodologies empirically and present further dis-

cussion questions and relevant policy implications. The two closely-related pa-

pers cover all stages of macroeconomic forecasting, from model specification,

estimation, and prediction, to evaluation and derive the empirical implications

of different choices made in each stage.

Specifically, the first chapter examines the topic of forecasting accuracy test-

ings. Forecast accuracy has long been measured by using loss function-specific

measures of predictive accuracy. However, it is well known that ordinal rank-

ings associated with such measures are affected under generic model misspec-

ification. Given that virtually all models used in forecasting are approxima-

tions, and hence misspecified to some degree, it is of interest to consider using

loss function robust measures when comparing alternative models. Thus, in-

stead of carrying out model selection solely based on moment-based criteria

and tests, such as those based on mean square forecast error (MSFE) and mean

absolute forecast error (MAFE) loss (e.g., Diebold and Mariano (2002) and

White (2000)), one might instead utilize robust stochastic dominance based

model selection, such as the predictive accuracy tests due to Jin, Corradi and

Swanson (Jin et al. (2016)). In my first chapter, the above tests are examined

in a series of empirical experiments carried out on macroeconomic time series

filtered using big data methods including dimension reduction, shrinkage and

machine learning (e.g., ridge regression, the elastic net, bagging, boosting, fac-

tor augmented autoregression, and least angle regression), and diffusion index

(factor) analysis (e.g. principal components).

Analysis and ranking of the models and methods analyzed in my experi-

ments is found to depend crucially on whether loss function dependent pre-
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dictive evaluation is carried out. Namely, model selection depends on whether

the “best model” is chosen using distributional comparison based on Jin et al.

(2016) tests or moment based comparison based on Diebold and Mariano

(2002) or White (2000)’s tests. This is not surprising, given the above dis-

cussion, but it is noteworthy, as the implications for forecast model building

are immediate. In addition, it is found that loss function specific test results

are sensitive to the specification of loss function, and in particular to whether

MSFE or MAFE loss is used. Again, while this is not surprising, it is a key

element to understanding the importance of whether or not to utilize loss

function robust predictive accuracy tests in forecasting contexts. With regard

to the actual prediction models and methods utilized in my experiments, for

a given variable, it is not possible to claim that a specific forecasting model

“uniformly” dominates, across different forecast horizons and specification

methods. However, it is noteworthy that hybrid models that combine shrink-

age estimation with diffusion indexes perform better than benchmark models

including linear models, purely factor-based models, and model averaging.

Thus, there appears to be useful information in “big data”, and the manner

in which this information is extracted matters. In conclusion, I find that loss

function-specific and loss function-robust tests are complementary, and that

much can be learned by utilizing both types of tests for empirical forecast

model selection.

My third chapter builds on my second chapter by focusing on the useful-

ness of so-called “supervised” approaches to forecast model selection in big-

data environments. When constructing forecasting models using latent factor

variables that are designed to condense information from large datasets into a

small set of useful explanatory variables, standard approaches involve extract-

ing information relevant to the entire dataset, and not targeted to a particular

variable being forecasted. Supervised approaches to model specification do

not do this, but instead penalize model specifications according to metrics de-
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signed to focus on the particular target variable(s) of interest. For example,

regardless of which variable is being forecasted (targeted), standard principal

component methods involve constructing diffusion indexes based on eigenvec-

tors corresponding to the r largest eigenvalues of the correlation matrix of the

dataset. However, this practice is questionable, in the sense that it is not clear

whether such latent factors (i.e., diffusion indexes) are effective in terms of

predicting a specific variable. Supervised methods tackle this issue by “train-

ing” involving simple approaches such as taking into account the correlations

between big data and the variable being predicted.

In order to analyze the efficacy of such approaches, I carry out a Monte-

Carlo simulation study in which I simulate different factor structures associ-

ated with a variety of data generating processes (with and without heterogene-

ity, for example), including cases where: (i) there are very few latent factors;

(ii) there are many (up to 50) underlying factors; (iii) there are very few fac-

tors, and only 1 or 2 are relevant for forecasting the target variable; and (iv) no

factors are relevant for forecasting. As might be expected, supervised methods

are least useful under (i) and (ii); and are most useful under case (iii) and (iv).

Empirical exercise results that horse-race compare 16 forecasting models also

indicate that supervised forecasting schemes outperform other un-supervised

forecasting models, proving the efficacy of supervision. Especially, the predic-

tive gains when using PLS (partial least squares) are quite substantial and I

observe that CFPC (combining forecast principal component) outperforms the

simple average model most of the time. Therefore, I conclude that supervised

approaches that are geared for the purpose of forecasting do serve its own

purpose.
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Chapter 2

Stochastic Dominance Based Evaluation of

Factor and Shrinkage Based Prediction Models

1 Introduction

In the study of economic time series, forecast accuracy has long been mea-

sured by using loss function specific measures of predictive accuracy, such as

the mean square forecast error (MSFE). However, it is well known that ordinal

rankings associated with such measures are affected by generic model mis-

specification. Given that virtually all models used in forecasting are approx-

imations, and hence misspecified to some degree, it is of interest to consider

the use of loss function robust measures when comparing alternative models.

The notion of a loss function is also closely related to the decision problem

associated with how one chooses to weight and summarize forecast errors. 1

Thus, another way of viewing the choice between using loss function depen-

dent evaluations and loss function free forecast evaluation involves assessing

whether the relevant decision problem involves directly addressing loss func-

tion dependence, or eschewing the use of loss functions altogether. In this

paper, I address this issue in a series of empirical forecasting experiments.

In these experiments, a large number of state of the art dimension reduction,

shrinkage, and machine learning methods are used to forecast various macroe-

conomic series, and both loss function specific and loss function free methods

are used to “select” among the different models and methods.

1Machina and Granger (2005) and Granger and Machina (2006) proved that a loss function
has a close, but not unique, relationship with an objection function and choice variable and
Tideman and Timmermann (2008) stated that “a decision theory provides a framework for
both the construction and evaluation of forecasts.”Detailed discussion on the linkage between
the two topics, decision theory and economic forecasting, will not be covered here.



5

When assessing forecast accuracy, the so-called Diebold-Mariano (DM) tests

due to Diebold and Mariano (2002) comes most frequently to mind, although

a whole host of alternative moment-based forecast evaluation tests has also

been developed. Suppose that e1,t is a sequence of forecast errors from a given

benchmark model, and ek,t are errors from an alternative model. Let g refers to

a chosen loss function. Under the null hypothesis of equal forecast accuracy,

the DM tests involve testing the following hypothesis: H0 : E(d1k,t) = 0, where

d1k,t = g(e1,t)− g(ek,t) for k = 2, . . . , l. White (2000) develops a related “data-

snooping” test of the null hypothesis: H0 : maxk=2,...,lE(g(e1,t)− g(ek,t)) ≤ 0,

where l denotes a fixed number of alternative models against which the bench-

mark model is being compared. 2

However, as discussed above, moment-based tests are potentially quite re-

strictive, and can be non-informative. For this reason, Jin et al. (2016) introduce

loss function free forecast superiority tests that are based on the application of

first- and second-order stochastic dominance principles, as discussed in Linton

et al. (2005). In particular, Jin et al. (2016) introduce two concepts: general loss

(GL) forecast superiority and convex loss (CL) forecast superiority. Simply put,

a forecast error sequence GL outperforms other sequences if an economic agent

with a GL loss function prefers the former to the latter. Similarly, a forecast er-

ror sequence CL outperforms other sequences if an economic agent with a CL

loss function prefers the former to the latter. These authors have established

links between tests for GL (CL) forecast superiority and tests for first-order

(second-order) stochastic dominance. This in turn allows for the introduction

of forecast evaluation procedures that are based on an out-of-sample general-

izations of the tests introduced by Linton et al. (2005). As the tests are based

on the empirical distributions of raw forecast errors, they are robust not only

to the choice of the loss function, but also to the possible presence of outliers.

2Corradi and Swanson (2006) extend the pointwise forecasting accuracy approaches im-
plicit in these two tests by considering evaluation of forecast intervals and densities. For
detailed discussion of recent developments in the forecasting evaluation methods, refer to
Corradi and Swanson (2013).
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The latter feature is shared by Corradi and Swanson (2013).

The main goal of this paper is to assess the trade-offs associated with using

the different loss function specific (DM and data snooping) and loss func-

tion free (GL and CL forecast superiority) predictive accuracy tests discussed

above. This is done by carrying out an extensive set of empirical experiments

using the factor augmented forecasting models discussed in Stock and Watson

(2002, 2012) and Bai and Liao (2016) as a starting point. In our models, un-

observed factors (diffusion indexes) estimated via implementation of principal

component analysis, are used to forecast a scalar target variable, Yt+h. How-

ever, rather than estimating the number of factors to use in prediction models

via a standard testing (e.g., Bai and Ng (2002)), and in order to add functional

flexibility, I implement prediction models in which factors are selected using

a variety of shrinkage methods. In this sense, I add to the recent work of Bai

and Ng (2002, 2008), Stock and Watson (2002), and Kim and Swanson (2014),

who survey several methods for shrinkage in the context of factor augmented

autoregression models.

The shrinkage methods considered in this paper follow those examined

in Kim and Swanson (2014), and include bagging, boosting, Bayesian model

averaging, simple model averaging, ridge regression, least angle regression,

elastic net (EN) and the non-negative garotte. In addition, I evaluate various

linear models and pure shrinkage models that do not incorporate unobserved

factor estimates. The variables that I predict in empirical experiments include

a variety of macroeconomic variables that are useful for evaluating the state

of the economy. Specifically, forecasts are constructed for 11 series, including:

the unemployment rate, personal income less transfer payments, the 10-year

Treasury-bond yield, the consumer price index, the producer price index, non-

farm payroll employment, housing starts, industrial production, M2, the S&P

500 index, and gross domestic product.

Analysis and ranking of the models and methods analyzed in our experi-
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ments is found to depend crucially on whether loss function dependent eval-

uation of their accuracy is carried out, or not. Namely, there tend to be differ-

ences between the best models chosen using distributional comparison based

on JCS tests, and the best models selected by using reality check (or DM) tests.

This is not surprising, given our above discussion, but is noteworthy, as the

implications for model building are immediate. In addition, it is found that

loss function specific test results are sensitive to the specification of loss func-

tion, and in particular to whether MSFE or MAFE loss is used. Again, this is

not surprising, but is a key element to understanding the importance of using

loss function robust tests. With regard to the actual prediction models and

methods utilized in our experiments, it is not possible to claim that a specific

forecasting model “uniformly” dominates, across different forecast horizons

and specification methods, for a given variable. However, it is noteworthy

that hybrid models that combine shrinkage estimation with diffusion indexes

perform better than benchmark models including linear models, purely factor-

based models, and model averaging. Thus, there appears to be useful infor-

mation in “big data”, and the manner in which this information is extracted

matters.

Broadly speaking, the best shrinkage and machine learning methods in our

experiments such as non-negative garotte, lasso, ridge, bagging and boost-

ing are most useful when coupled with diffusion indexes, for most of target

forecasting variables. Also, when carrying out loss function free model selec-

tion, the number of “wins” for hybrid models increases appreciably, relative

to when loss function dependent model selection is carried out. For example,

hybrid models and methods “win” around 50 % of the time when selection is

based on the JCS test, and only around 1/3 of the time based on the applica-

tion of DM tests. More specifically, based on model selection using first order

stochastic dominance comparisons, hybrid models and methods “win” for 11

variables, at 4 different forecast horizons most of the time; and fail to “win”
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only in cases where it is hard to rank models because empirical distributions of

forecast errors almost coincide. In conclusion, I find that loss function specific

and loss function robust tests are complementary, and much can be learned by

utilizing both types of tests for empirical forecast model selection.

This rest of the paper is organized as follows. In Section 2, GL and CL

forecast superiority tests are discussed. Section 3 briefly surveys diffusion

index construction in our setup. Section 4 outlines the robust dimension re-

duction, shrinkage and machine learning methods used in the construction of

our forecasting models. In Section 5, the results of our empirical experiments

are reported. Section 6 concludes.

2 Forecast Superiority Testing

Linton et al. (2005) proposed a consistent test that compares the empirical dis-

tributions of random variables for making a decision, rather than confining the

discussion into certain moments of random variables under general time series

settings. Jin et al. (2016) generalize Linton et al. (2005)’s stochastic dominance-

based testing into an out-of-sample forecasting framework.

In details, Jin et al. (2016) propose a proposition that maps stochastic dom-

inance principles into optimization problems, which is an application of Kle-

can et al. (1991) into an out-of-sample forecasting framework. (Propositions

2.2 & 2.3 under Assumption A.0); Klecan et al. (1991) establish the equiv-

alence between first-order stochastic maximality and a utility maximization

problem in which the set of utility functions considered are continuous and

increasing functions. 3 In an analogous way, the authors also connect second-

order stochastic maximality with utility maximization, but under a smaller

3Klecan et al. (1991) define stochastic dominance as when one of random variables in a set
χ = {X1, X2, ..., Xk}, stochastically dominates all the other random variables in the set, while
stochastic maximality refers to a situation in which some pair of random variables in the set
have that kind of relationship.
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subset of utility functions, continuous, increasing, and strictly concave ones.

Along the same line, Jin et al. (2016) apply this discussion to an out-of-sample

forecasting context, by linking the first order (FO) stochastic dominance with

General-Loss (GL) forecast superiority test, also second order (SO) stochastic

dominance principles with Convex-Loss (CL) forecast superiority test. While

Klecan et al. (1991) deals with a situation in which the problem is to maximize

expected utilities, since Jin et al. (2016)’s problem is to find the best forecast-

ing model that minimizes expected forecasting errors the most, the underlying

function spaces are different: the first-order stochastic dominance principle is

equivalent to an expected loss-minimization problem under weakly increasing

functions (general loss (GL or LG) function) and second-order stochastic dom-

inance pertains to a subset of GL functions that are weakly increasing and also

convex (convex loss (CL or LC) function).

An essential mathematical fact that holds in stochastic dominance analy-

sis is that lower order stochastic dominance implies higher order stochastic

dominance, while the converse is not necessarily true: based on the equiva-

lence proposition mentioned above, GL outperformance implies CL outperfor-

mance, but not necessarily the other way around. That’s because the (s + 1)th

order stochastic dominance compares the areas under the curve of DS(y) =∫ y
0 D(S−1)(z)dz =

∫ y
0 F(S−1)(z)dz where D1(y) = F(y) and D(S+1)(y) =

∫ y
0 DS(z)dz.

Hence, even when ordinal rankings are unclear at the sth order because the dis-

tributions of forecast errors almost coincide or cross over each other, one can

compare the areas under the curve of DS(y), hoping that the magnitudes of

the areas can order random variables more clearly in a (s + 1)th order stochas-

tic dominance sense. In particular, if the distribution comparison is conducted

in a multiple comparison context, there is expected to be a low possibility of

finding a clear stochastic dominance relationship—the case in which the whole

CDF of forecast error from a model k clearly lies over other CDFs over the joint

support. The problem becomes more serious if the performances of compared
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models are quite close to each other and, in that case, it is more likely that

many crossing points over the CDFs of forecasting errors are observed.

2.1 Loss function-free predictive accuracy test

Jin et al. (2016) called their study as “robust forecast comparison”, in the sense

that their test is robust to the choice of loss functions. JCS test is based on

the comparison of F̄(ek,t), empirical distributions of raw forecast errors, rather

than F̄(L(ek,t)), so they are robust not only to the choice of the loss function,

but also to the possible presence of outliers. Consequently, forecast evaluation

results are not be subject to a certain choice of a loss function even under the

presumption that all forecasting models are mere approximations of the true

underlying DGP. However, as mentioned above, this distributional compari-

son, by which raw forecast errors themselves are taken as random variables

not involving the choice of a loss function, can be translated into a forecast

superiority problem that holds under generic loss functions.

As forecasting deals with time series, Jin et al. (2016)’s framework is set to

work with a dependent data set, but the possibly dependent data has to be

stationary. Here, random variables to be compared are raw forecasting errors,

ek,t+h, which are defined as, for k = 1, ..., l forecasting model and h forecasting

horizon,

ek,t+h = Yt+h − gk(Zk,t+h, βk0)

= Yt+h − g̃k(Zt+h, β0),
(1)

and will be estimated as

êk,t+h = Ŷt+h − ĝk(Zk,t+h, β̂k,t) (2)
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where Θ = ∏l
k=1 Θk, gk : RPk ×Θk → R, g̃k : RP̄ ×Θ → R, and Zt is a P̄× 1

random vector.

The true underlying distribution of forecasting errors evaluated at the point,

x, is defined as

Fk(x, βk) = P(ek,t+h(βk) ≤ x) (3)

and its empirical sampling distribution as

F̄k,n(x, β̂k,R:T) = n−1
T

∑
t=R

1(êk,t+h(β̂k,t) ≤ x) (4)

where β̂
k,R:T

= (β̂′k,R, ..., β̂′k,T)
′ and n = T − R + 1. So in this paper, contrary to

their earlier version of this paper, Corradi and Swanson (2013), Jin et al. (2016)

takes into account parameter estimation errors whose impact will not vanish

even in the limit. For simplicity, Fk(x, βk) will be denoted as Fk(x) from now

on.

Now, define Gk(x), a functional of the differential between CDFs and Ck(x),

of the differential between integrated CDF(SDF)s,

Gk(x) = (Fk(x)− F1(x))sgn(x), (5)

Ck(x) =
∫ x

−∞
(F1(s)− Fk(s))ds1(x < 0) +

∫ ∞

x
(Fk(s)− F1(s))ds1(x ≥ 0) (6)

where sgn(x) function will have a value equal to 1 if x ≥ 0 and −1 otherwise

and TG+ and TC+ as,

TG+ = max
k=2,...,l

sup
x∈χ+

Gk(x), TG− = max
k=2,...,l

sup
x∈χ−

Gk(x) (7)

TC+ = max
k=2,...,l

sup
x∈χ+

Ck(x), TC− = max
k=2,...,l

sup
x∈χ−

Ck(x). (8)
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where χ+ = χ ∩ R+, χ− = χ ∩ R− and R+ ≡ {x ∈ R, x ≥ 0}, R− = R\R+.

Then, the corresponding hypothesis of testing GL/CL outperformance will be

specified as,

HTG
0 : TG+ ≤ 0 ∩ TG− ≤ 0 vs. HTG

A : TG+ > 0 ∪ TG− > 0 (9)

HTC
0 : TC+ ≤ 0 ∩ TC− ≤ 0 vs. HTC

A : TC+ > 0 ∪ TC− > 0. (10)

If one cannot reject the null, at a prespecified significance level, it means that

e1, a sequence of forecast errors from the benchmark model, say 1, GL/CL out-

performs, ek, sequence(s) of forecast errors from alternatives where k = 2, ..., l,

and e1 first-order/second-order stochastically dominates ek: if that’s the case,

one can discard all other alternative forecasting methods, k = 2, . . . , l. On the

contrary, rejecting the null implies e1 cannot GL/CL outperform ek: i.e. e1 is

first-order/second-order stochastically dominated. 4

The sample counterparts of (7) and (8), expressed as empirical distribu-

tions, are the JCS test statistics,

TG+
n = max

k=2,...,l
sup
x∈χ+

√
nGk,n(x), TG−n = max

k=2,...,l
sup
x∈χ−

√
nGk,n(x) (11)

TC+
n = max

k=2,...,l
sup
x∈χ+

√
nCk,n(x), TC−n = max

k=2,...,l
sup
x∈χ−

√
nCk,n(x) (12)

where

Gk,n(x) = (F̄k,n(x, β̂
k,R:T

)− F̄1,n(x, β̂
1,R:T

))sgn(x) (13)

4In chapter 3 and 4, Jin et al. (2016) establish the asymptotic null distribution of their test
statistics and its asymptotic power properties. And in chapter 6, they study the finite sample
properties, size and power, of the tests, by conducting Monte Carlo simulations under a variety
of DGP scenarios.



13

Ck,n(x) =
∫ x

−∞
(F̄1,n(s, β̂

1,R:T
)− F̄k,n(s, β̂

k,R:T
))ds1(x < 0)

+
∫ ∞

x
(F̄k,n(s, β̂

k,R:T
)− F̄1,n(s, β̂

1,R:T
)ds1(x ≥ 0).

(14)

Since the null is composed of composite hypotheses and underlying ran-

dom variables and data set have dependent structure, the asymptotic null dis-

tributions of the test statistics cannot be established in a conventional way.

Here, following Jin et al. (2016), I use stationary bootstrap (Politis and Ro-

mano (1994)) to derive the sampling distribution of test statistics and construct

critical values. Since this sampling method requires the underlying DGP of

data set to be stationary, I transform all variables as specified in Table 3.A.1 to

induce stationarity.

Specifically, the bootstrap statistics will be constructed as,

TG∗+n = max
k=2,...,l

sup
x∈χ+

√
n(G∗k,n(x)− Gk,n(x)) (15)

where

G∗k,n(x) = (F̄k,n(x, β̂
k,θ(R):θ(T)

)− F̄1,n(x, β̂
1,θ(R):θ(T)

))sgn(x) (16)

and

F̄k,n(x, β̂k,θ(R):θ(T)) = n−1
T

∑
t=R

1(ek,θ(t)+τ(βk,θ(t)) ≤ x). (17)

TG∗−n can be defined in an analogous way for the case where x ∈ χ−. Then,

one can compute bootstrap p-values as, pG+
B,n,Sn

= 1
B ∑B

s=1 1(TG∗+n ≥ TG+
n ),

pG−
B,n,Sn

= 1
B ∑B

s=1 1(TG∗−n ≥ TG−n ), pC+
B,n,Sn

= 1
B ∑B

s=1 1(TC∗+n ≥ TC+
n ), and pC−

B,n,Sn

= 1
B ∑B

s=1 1(TC∗−n

≥ TC−n ), and make a decision on the hypothesis testing based on these rules,

Reject HTG
0 at level α if min{pG+

B,n,Sn
, pG−

B,n,Sn
} ≤ α

2

Reject HTC
0 at level α if min{pC+

B,n,Sn
, pC−

B,n,Sn
} ≤ α

2 .
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Before proceeding the resampling, the mean block length, Wn = 1
Sn

, has

to be pre-specified, which works as a smoothing parameter. The choice of it

should be based on the dependent structure of time series: the more depen-

dent data is, the longer the mean block length, Wn, should be. In my empirical

application, I try a set of different mean block lengths, Wn = 1
Sn

= [2, 5, 7, 10],

and see whether the test results are sensitive to the different values of Wn.

As an extension, Jin et al. (2016) relax the initial stationarity requirement

and develop their discussion into heterogeneous environments, which can be

seen as a natural extension to deal with more general time series settings (sec-

tion 5). As for the resampling scheme, since the stationary requirement doesn’t

hold anymore under heterogeneous settings, Jin et al. (2016) use block boot-

strap instead of stationary bootstrapping and find it works well.

3 Factor model structure

A factor model provides a feasible and effective framework to handle with

a high-dimensional data set and its empirical performances have been quite

competitive against those of other theoretical models. So, this diffusion in-

dex approach has been widely used especially when there is no specific prior

knowledge on the underlying structure of the state of the economy and enables

to incorporate a high-dimensional information set. Depending on whether the

covariance matrix of error terms is diagonal or not, a factor model can be clas-

sified as strict or approximate factor model. If it has dynamic structures, that

is, lagged terms, such as yt−h or f̂t−h, are allowed to enter, then it is called a

dynamic factor model, otherwise a static factor model. The basic factor model

framework can be represented as follows,

xit = ftλ
′
i + eit (18)
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where xit represents observable datum for t = 1, .., T and i = 1, ..., N, but both,

ft, a 1× r common factor, and λi, a 1× r factor loading, are unobservable and

have to be estimated.

A conventional way to estimate factors and factor loadings is to employ

an ordinary principal component (OPC) estimator. The OPC estimation is

based on the optimization problem that minimizes the sum of squared resid-

uals (SSR) as,

V(r) = min
∧,F

(NT)−1
N

∑
i=1

T

∑
t=1

(Xit − λ′iFt)
2

under the normalization constraints, either ∧
′∧
N = Ir when T > N, or F′F

T = Ir

when T < N. Under the identification restrictions, the pair of factors and fac-

tor loadings is defined as a function of eigenvectors of r largest eigenvalues

of XX′, which is expected to span the covariation of the data set. Thus, it can

be said that the PC estimator is a consistent estimator for the factor “space”

subject to the restrictions, not for the underlying true factors themselves. As

an estimator of the number of factors, r, I will use one variant of SIC(BIC),

following Kim and Swanson (2014). 5

The underlying assumption of the OPC estimator (OPCE) requires the co-

variance matrix to be diagonal, which is quite an unrealistic assumption in a

time series setting. However, when there is more prior information on the un-

derlying DGP, it is possible to achieve more efficient estimation results exploit-

ing the information at hand, which can also possibly lead to better forecasting

performances. Recently, Bai and Liao (2016) develop an efficient estimator us-

ing a penalized maximum likelihood (ML) approach that takes cross-sectional

and serial correlation into account. Their simulation results with a data set in

which the errors terms are both serially and cross-sectionally correlated show

5The choice for the estimator of the number of factors is one of the important issues in
a factor model specification. In my another paper, I use Bai and Ng (2002)’s IC estimator,
Ahn and Horenstein (2013)’s ER/GR estimator, and Onatski (2010)’s estimator to observe how
different choices of estimator can affect factor estimation and forecasting performances.
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that, when N is small, maximum likelihood estimation (MLE) outperforms

other principal component-based methods, but, when N is large, it is difficult

to distinctively rank the performances of those different approaches.

Meanwhile, Choi (2012) introduces the generalized principal component

estimator (GPCE), (F̂G, Λ̂G),

(F̂G, Λ̂G) = argminF,Λ(NT)−1
N

∑
i=1

T

∑
t=1

(Xit − λ
′
iFt)
′Σ−1

u0 (Xit − λ
′
iFt). (19)

Thus, F̂G and Λ̂G are a function of the eigenvalues of XΣu0X′, rather than

of XX′ like in the usual PC estimation. This method taking the dependence

structure of the error matrix into account turns out to be more efficient than

the ordinary PC estimator in the same way GLS works.

4 Robust shrinkage estimation

I’ll employ robust estimation techniques that can be largely categorized into

three main types: learning algorithms (bagging and boosting), penalized re-

gression methods (ridge, least absolute shrinkage selection operator (lasso),

least angle regression (LAR), EN (EN), non-negative garotte (NNG)), and Bayesian

model averaging (BMA) with two different priors.

Alternatively, these approaches also can be classified as hard-thresholding

and soft thresholding approaches (Bai and Ng (2008)). The first one, hard

thresholding, orders regressors based on the marginal predictability power of

each single regressor, regardless of what other predictors are included in the

regression: by checking whether the t-statistic of each regressor surpasses a

given critical value, the data matrix will be composed of a compact set of these

filtered regressors. The critical drawback of this approach is that regressors

that might contain overlapping information could end up being chosen, since

the approach concerns only the marginal predictability of each variable.
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On the other hand, soft-thresholding takes into account what other regres-

sors are included in the set, which is based on estimating the matrix, Γ,

Yt+h = αWt + ΓXt + εt+h (20)

where εt+h ∼ N(0, σ2). Through a specified loss function, a shrinkage mech-

anism is imposed by putting a smaller weight or zeroing the coefficients of

regressors that have weak explanatory powers, which can be thought of as a

model specification as well. Ridge, lasso, EN, and LARS belong to this cate-

gory.

4.1 Learning algorithm

4.1.1 Bagging (bootstrap aggregation)

Bootstrap aggregation (Bagging, Breiman (1996)) is a learning algorithm in

which bootstrap samples {X∗, Y∗}B
b=1 are drawn from the original training

sample {X, Y} and a shrinkage mechanism is imposed on the bootstrapped

samples repeatedly. At the final stage, the bagging values Ŷ∗b = β̂∗bX∗b for

b = 1, ..., B, are averaged as

ŶBagging =
1
B

B

∑
b=1

Ŷ∗b (X∗b ),

which alleviate prediction variation. Following Stock and Watson (2002), bag-

ging estimation is based on this shrinkage equation,

ŶBagging
t+h = Wt β̂w +

r

∑
j=1

ϕ(gj)β̂FJ F̂t,j (21)

where

ϕ(g) = 1−Φ(g + c) + Φ(g− c) + g−1[φ(g− c)− φ(g + c)]
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φ stands for the standard normal PDF, Φ for the standard normal CDF, g =
√

T
β̂Fj
se

, and c is a critical value (here we set as c = 1.96). The estimation

proceeds by regressing Yt on Wt first and then regressing the residual term,

Yt+h −Wt β̂w, on the estimated factors F̂t,j.

4.1.2 Boosting

Boosting is another forward stage-wise learning algorithm introduced by Fre-

und and Schapire (1995). By setting the sample average as an initial value,

boosting sequentially updates and aggregates estimates obtained up to the cur-

rent steps with a weight. The first variant of Boosting algorithm,“AdaBoost”,

was proposed by Freund and Schapire (1995). Then, “Real AdaBoost”, which

involves an exponential loss function, was suggested by Friedman et al. (2000),

after which “L2 Boosting,” using a quadratic loss function, was proposed by

Friedman (2001).

Next, Bai and Ng (2009) proposed two boosting algorithms applicable to an

out-of-sample forecasting framework, component-wise L2 boosting and block-

wise L2 boosting. First, Component-wise L2 boosting considers each vari-

able as a separate potential regressor and attempts to minimize SSR(i) that

is left after regressing with the ith regressor. By combining principal compo-

nent analysis with this Boosting method (component + boosting), the draw-

back that comes from using the pure principal component approach solely

can be avoided. Next, block-wise L2 boosting is an algorithm that treats

a block of lagged terms as a regressor. Their simulation results show that

component-wise L2 boosting is consistent and results in a relatively parsimo-

nious model, while block-wise L2 boosting is more efficient. In this paper, I

use the component-wise L2 Boosting method as one of the shrinkage estima-

tion methods. For more detailed information on the procedure, refer to Bai

and Ng (2009).
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4.2 Penalized regression methodology

A penalized regression refers to a regression method bounded by a certain

penalty term, G(β). A generic penalized regression can be represented as

min
β

RSS + λG(β).

where RSS is the sum of squared residuals and λ is a shrinkage parameter

(0 ≤ λ ≤ ∞). When λ = 0, it just reduces to the ordinary least squares (OLS)

estimation. Therefore, one can interpret a penalization regression as a con-

strained OLS regression problem. Here, the penalty term, G(β), is devised

to punish the act of adding too many variables, implying that the virtue of

parsimony is valued. By shrinking or zeroing the coefficients of uninforma-

tive variables, this penalized regression specifies a model. Traditional variable

selection approaches, such as AIC, BIC, and HQIC, are computationally infea-

sible when N and/or T grow(s) overwhelmingly large. In this subsection, as

alternatives to these IC approaches, I consider ridge, lasso, NNG, LARS, and

the EN.

If G(β) = ∑J |β J |γ , it becomes a bridge regression, a generalized version

of ridge and lasso,

min
β

RSS + λ ∑
J
|β J |γ

where γ is a tuning parameter (γ ≥ 0). When γ = 1 it becomes lasso, and ridge

when γ = 2. Alternatively, the bridge estimator, β̂Bridge, can be expressed as,

β̂Bridge = argmin
β

RSS subject to ∑
J
|β J |γ ≤ c

where c adjusts the degree of shrinkage. 6

6Fu (1998) pointed out that bridge regression can have a Bayesian interpretation: the whole
Bridge regression problem can be interpreted as minimizing a posterior distribution, with the
bridge penalty part, ∑J |β J |γ, as a prior. By plugging in different values for parameters, λ and
γ, a prior distribution can be adjusted, which reflects different preferences and can lead to
different conclusions on a model specification problem in the end.



20

4.2.1 Ridge and least absolute shrinkage operator

A ridge estimator is a bridge estimator with a L2 penalty,

β̂Ridge = argmin
β

RSS + λ ∑
J

β2
j

where λ (> 0) is a penalty parameter that controls the degree of shrinkage

(Hoerl and Kennard (1970)). The ridge problem also can be represented in

matrix,

min (Y− Xβ)′(Y− Xβ) + λβ′β.

and the ridge estimator as,

β̂Ridge = (X′X + λI)−1X′Y

where λ is a shrinkage parameter. After obtaining the ridge estimates, the

forecast value is computed as,

Ŷt+h = Wt β̂w + f̂t β̂
Ridge
f .

However, it has been pointed out that, owing to the property of L2 penalty,

ridge ends up retaining most of regressors in the original data matrix, which

detracts from its support as it lacks the virtue of parsimony. Then, Tibshirani

(1996) introduced a lasso estimator that replaces L2with L1 penalty,

β̂lasso = argmin
β

RSS + λ ∑
J
|β j|.

Contrary to ridge, lasso enables uninformative regressors to be dropped. That

is why it is considered to be a stabilized version of Ridge. Although it has not

been clearly confirmed that lasso dominates ridge and bridge uniformly, lasso

has been widely used because of its parsimony.
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However, as Zou and Hastie (2005) pointed out, it is found that, lasso works

poorly when N >> T, while it is dominated by Ridge when T >> N. In

addition, lasso is lack of the ‘grouping effect’. 7 In my empirical application, I

will implement ridge, a bridge regression with L2 penalty term.

4.2.2 Non-negative Garrote (NNG)

Breiman (1995) proposed Non-negative Garrote (NNG), an alternative way

of selecting a subset of regressors. According to Breiman (1995)’s simula-

tion and empirical results, NNG is somewhere between an unstable ordi-

nary subset selection method and a stable ridge method, and leads to better

than or at least comparable forecasting accuracies to those two approaches.

Specifically, Breiman (1995)’s idea is to estimate a shrinkage factor, s(λ) =

(s1(λ), . . . , sp(λ)), based on the optimiaztion problem,

s(λ) = argmin
s

1
2
‖ Y− Bs ‖2 + Tλ

N

∑
j=1

sj, s.t. sj > 0 f or all j

where λ (> 0) is a tuning parameter, B = (B1, ..., BN)
′, each Bj = Xj β̂

LS
j , and

β̂LS
j is the usual OLS estimator. Under the restriction that XX = I, sj(λ) is

determined as,

sj(λ) = (1− λ

(β̂LS
j )2

) (22)

and then, the NNG estimator is derived as,

β̂NNG
j (λ) = sj(λ)β̂LS

j . (23)

Thus, β̂NNG
j is essentially dependent on β̂LS

j , which implies that its computa-

tion burden is only as much as that of OLS. At the final stage, the predicted

7A regression is said to have the grouping effect if the coefficients of highly correlated
variables in a group result in being equal. For more rigorous mathematical discussion on this
issue, refer to Zou and Hastie (2005)’s Lemma 2.
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value of Y is computed as,

ŶNNG = Xβ̂NNG(λ). (24)

As the magnitude of β̂LS
j value gets larger, sj(λ) moves closer to 1 (equation

(22)). Then, it is less likely that β̂NNG
j becomes insignificant so that the corre-

sponding jth variable is less likely to be dropped out. On the other hand, if

β̂LS
j moves closer to 0, then β̂NNG

j will also converge to 0 for a given λ and a

model without the jth variable will be chosen.

Yuan and Lin (2007) showed that NNG has the path consistency property

as long as the initial estimate is consistent, which cannot be guaranteed all the

time when it comes to LARS, lasso, and the EN. 8 In addition, Yuan and Lin

(2007) proposed an efficient algorithm for the complete NNG solution path

that uses the OLS estimate as an initial value. In this paper, I follow Yuan and

Lin (2007)’s algorithm. For the detailed procedure, it is recommend to refer to

Yuan and Lin (2007).

4.2.3 Least angle regression

Efron et al. (2004) proposed Least Angle Regression (LARS), a stylized algo-

rithm of a forward-stagewise regression. Its algorithm starts to find x1 that is

most correlated with a response variable and then sequentially adds one more

covariate to find the most correlated one with the residual left at that time.

Thus, LARS first remains with x1 until it is claimed that another covariate

has more correlated information with the current residual. Once one finds x2,

one moves in the direction of equiangular degree between x1 and x2 until one

finds another x3. Then, one keeps moving along the “least angle” direction

until one finds the next highly-contributing predictor. For the detailed algo-

rithm, see Efron et al. (2004).

8A solution path is called to be “path consistent” if the path produces “desirable” estimates,
resulting in consistent estimation and variable selection.(Yuan and Lin (2007))
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Gelper and Croux (2008) modified this methodology so that it can be ap-

plied to a time series setting, times-series least angle regression (TS-LARS).

TS LARS allows for the inclusion of lagged terms so that no information that

may be contained therein would be lost. To preserve the original dependent

structure of times series, the authors used blocks of regressors, not just a sin-

gle regressor at a time. For the detailed computational procedure of TS LARS,

refer to Gelper and Croux (2008).

4.2.4 The elastic net

To overcome the limitations of ridge and lasso that are mentioned above, Zou

and Hastie (2005) proposed naive EN, a variant of the EN approach, which is

basically a convex combination of ridge and lasso,

β̂EN = argmin
β

RSS + λ1 ∑
j
|β j|+ λ2 ∑

j
β2

j (25)

where each λ1 and λ2 are positive fixed values. When λ1 = 0 it just reduces to

ridge and, and it becomes lasso when λ2 = 0.

Defining an augmented data set, {X∗, Y∗}, as

X∗(T+N)×N = (1 + λ2)
(−1/2)

 X
√

λ2 IN

 and Y∗(T+N)×1 =

 Y

0N

 ,

β̂naiveEN can be expressed as

β̂naiveEN =
1√

1 + λ2
β̂∗, (26)

where

β̂∗ = argmin
β∗

|Y∗ − X∗β∗|2 + λ1√
1 + λ2

|β∗|. (27)

Here, with the augmented data set, one is not confined to choose predictors

only up to T, but freely up to N even when N >> T. Secondly, not only
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does the naive EN enjoy the computational easiness of lasso, but it also has the

grouping effect that lasso doesn’t have, since the naive EN is strictly convex.

One noteworthy point is that, unless it is close enough to either ridge or

lasso, it performs poorly, which is the very reason why it is called “naive”.

In addition, since the naive EN can be interpreted as a Ridge regression with

lasso-type shrinkage, it suffers from a double amount of shrinkage. To deal

with the double-shrinkage problem, Zou and Hastie (2005) propose the EN as

an alternative to the naive EN. β̂EN can be defined as,

β̂EN =
√

1 + λ2β̂∗, (28)

so the EN can be thought of as a re-scaled version of the naive EN,

β̂EN = (1 + λ2)β̂naiveEN. (29)

It holds good properties of the naive approach while solving the bias prob-

lem coming from the double-shrinkage. In addition, Zou and Hastie (2005)

showed that the EN can be viewed as a stabilized version of lasso (see The-

orem 2). Lastly, Zou and Hastie (2005) proposed LARS-EN, a more efficient

version of the algorithm. In this paper, I will implement Bai and Ng (2008)’s

version of LARS-EN, which applied LARS-EN to a time-series context.

4.3 Model Averaging Approach

The average of forecasting values computed from a set of alternative models

delivers an aggregated insight for the unknown true DGP that cannot be ob-

tained if just a single chosen model is used. First, even if a chosen model is the

best based on a certain criterion or evaluation method within a set of candidate

models, there could be still valuable information left out that could have been
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gathered from dropped alternative models. 9 Secondly, the usual PC approach

associates factors with the eigenvectors corresponding to the r largest eigen-

values of X′X, with its whole focus on summarizing the information contained

in the big data set. Since this dimension reduction approach does not take into

account which variable is set to forecast, it is not guaranteed that those factors

will have the highest predictive power for a particular forecasting variable. In

this paper, I use simple mean average model that assigns a uniform weight,

w = 1
l , to each forecasting model, k = 1, . . . , l, and BMA (Bayesian model av-

eraging) with two different prior settings. These model averaging approaches

can be thought of as an alternative method that could prevent the model mis-

specification problem that arises from choosing a single approximation model.

4.3.1 Bayesian Model Averaging (BMA)

BMA derives the expected value of YT+h as,

E(YT+h | Data) =
l

∑
k=1

p(Mk | Data)E(YT+h | Data, Mk). (30)

where p(Mk | Data) is the posterior model probability of model k, Mk, and it

is defined as

p(Mk | Data) =
p(Data | Mk)p(Mk)

∑k p(Data | Mk)p(Mk)
(31)

and the likelihood of Mr as,

p(Data | Mr) =
∫

p(Data|θr, Mr)p(θr|Mr)dθr. (32)

9The phenomenon that the model averaging approach outperforms a single model chosen
based on an evaluation criterion is called the forecast combination puzzle.
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10 It requires to specify p(Mr), model space priors, and p(θr|Mr), parameter

priors. Rather than fixing a single forecasting model as the best one, here each

model Mr itself is considered as a random variable and the notion of model

uncertainty is incorporated via prior model probabilities. BMA averages over

the set of models, r = 1, . . . , R, with its posterior model probability as a weight

(30) and, by increasing r to infinity, it is expected that the averaged value will

converge to the true expected value of Yt in the limit.

To deal with the linear effects of Wt in (20), I will redefine the data set as

Y∗t+h = [It −Wt(W ′tWt)W ′t ]Yt+h and F∗t = [It −Wt(W ′tWt)WT]Ft and forecasting

framework will be based on,

Y∗t+h = β∗F∗t + e∗t . (33)

where et ∼ N(0, σ2).

First, the model space prior is set as,

p(Mp) = p(Γ) =
l

∏
k=1

θ
Γk
k (1− θk)

Γk .

The marginal probability that whether a specific series enters or not, is spec-

ified as θk = p(Γk = 1) = 1− p(Γk = 0) and, depending on whether β∗ is

ignorable or significant, Γk is assigned as 0 or 1. This Bayesian variable selec-

tion serves a role as a ’model identifier’. Among many ways to set the prior,

fixing θk as 1
2 , a non-informative prior, is the easiest and safest way. Alter-

natively, the prior probability can be related to the eigenvalues of data set by

setting

θi =
λi

λ1

10Bayesian model comparison is based on p(M1|Data)
p(M2|Data) , the posterior odds, which is equivalent

to p(Data|M1)
p(Data|M2)

× p(M1)
p(M2)

, the product of Bayes factor and the prior odds. Here, model priors
represent an initial representation of model uncertainty and data updates the prior odds via
the Bayes factor.
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where λ1 is the smallest eigenvalue and λl is the largest.

Next, as for the priors for the parameters, β∗Γ and σ−2, I will set a natural

conjugate prior as,

β∗Γ | σ2, Γ ∼ N(β∗
Γ
, σ2VΓ) (34)

σ−2 | Γ ∼ IG(s−2, v).

which features analytical tractability. To proceed, one has to specify hyperpa-

rameters, β∗
Γ
, VΓ, s−2, and v and, given that specific information nor subjective

point of view is not available, I will construct non-informative priors for those

to ’minimize prior influence’(Chipman et al. (2001)). First, I will use a non-

informative prior for σ−2 by setting v = 0 such that the prior information

doesn’t influence the posterior probabilities at all (Koop and Potter (2004)).

β∗
Γ

is set as 0. However, when it comes to V, I do not use non-informative

priors, that’s because otherwise its posterior distribution would end up either

degenerating or being dependent on arbitrary normalizing factors. Following

Fernandez et al. (2001), I will adopt a g-prior for V (Zellner (1986) and Fernan-

dez et al. (2001)). Thus, the matrix, V, is fixed by the specification of g through

this relationship,

V = (g(F∗)′F∗)−1,

which means that the level of prior precision is to be synced with sample

variance-covariance matrix information divided by the g-prior chosen. In this

study, I use two g priors suggested by Koop and Potter (2004),

g =
1
T

g =
1
l2

where T is the size of a time series vector and l (k = 1, ..., l) is the number of

forecasting models considered. Then, Ŷ∗t+h = β̂FF∗t , finally, Ŷt+h is computed

as [It −Wt(W ′tWt)W ′t ]
−1Ŷ∗t+h.
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Theoretically, BMA is considered to be the optimal approach by selecting

a correct model in the limit, which can be done by assigning a higher weight

to the correct model via posterior probability. However, this holds under the

assumption that the correct set of models and proper prior information is spec-

ified, which is hard to be satisfied in reality. 11

5 Empirical Application

14 different shrinkage and machine learning algorithms will process total 144

macroeconomic and financial variables to predict 11 major macroeconomic

variables. Forecasting results will be evaluated using Jin et al. (2016)’ forecast

superiority tests that are based on the application of first and second order

stochastic dominance principles, as discussed in Linton et al. (2005). Also as

an attempt to empirically assess the trade-offs associated with using the differ-

ent loss function specific (DM and data snooping) and loss function free (GL

and CL forecast superiority) predictive accuracy tests in big data environment,

Jin et al. (2016)’s general loss (GL) forecast superiority and convex loss (CL)

forecast superiority test results will be compared to the case when loss func-

tion specific approaches are used.

5.1 Data Description

The data set to be used in this empirical application is Kim and Swanson

(2014)’s updated and expanded dataset of Stock and Watson (2002, 2012)’s.

144 US macroeconomics time series that spans from January 1960 to May 2009

(monthly) will be our data set, Xt, whose full list is available in Kim and Swan-

11In practice, BMA acts more like model selection rather than model averaging by assigning
non-uniform weights through posterior probabilities and it is found that this model searching
does not make BMA immune from the overfitting issue because of the likelihood’s sensitivity
to random variations (Domingos (2000)).
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son (2013). Using this big dimensional data set, I forecast 11 macro variables,

Yt+h, which are the core economic variables that the Federal Reserve Bank

pays close attention into for formulating monetary policies: unemployment

rate(UR), personal income less transfer payments (PILT), 10 year Treasury-

bond yield (TB10Y), consumer price index (CPI), producer price index (PPI),

non-farm payroll employment (NPE), housing starts (HS), industrial produc-

tion (IPX), M2, S&P 500 index (SNP), and gross domestic product (GDP). Be-

fore proceeding with the empirical analysis, all forecasting variables, Yt+h, are

transformed to make each time series stationary: basically all level variables

are log-differenced and other variables already in log form are just taken as

the first difference between t and t− 1. For detailed descriptions on how each

variable is transformed, refer to Table 3.A.1.

5.2 Forecasting methods and models

In total, I attempted four different specifications. First, the baseline is Specifica-

tion Type 1 (SP1), comprising 14 different forecasting and shrinkage methods

(Table 3.A.3) that are horse-race compared, including benchmark models (AR,

ARX, and CADL), purely factor-based approaches (PCR and FAAR), some hy-

brid methods combining shrinkage methods and factor analysis, and model-

averaging approaches (simple mean averaging and Bayesian averaging). Spec-

ification Type 1L (SP1L) is basically the same as SP1, except that yt−h or f̂t−h

are allowed to enter as regressors. Specification Type 2 (SP2) filters the high-

dimensional data set based on the equation (20) rather than using the original

data set, Xt. Lastly, Specification Type 3 (SP3) conducts only shrinkage meth-

ods, not using the factor approach in any stage. For SP1 and SP1L, I horse-race

compare the whole set of 14 forecasting methodologies listed in Table 3.A.3,

while, as for SP2 and SP3, PCR and FAAR are dropped. 12

12SP2 uses shrinkage methods to screen regressors at the first stage and PCR and FAAR is
for when using the original data set. SP3 does not involve factor analysis at any stage.
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As for forecasting evaluation methods, I will order the forecasting per-

formances of 14 different forecasting methods using both Jin et al. (2016)’s

stochastic dominance approach and White (2000)’s moment-based approach.

JCS test will be testing the null when one of 14 forecasting methods is set

as a benchmark model, 1, against the rest of 13 alternatives each time. The

interpretation of the hypothesis testing will be like this, failing to reject the

null means e1, a sequence of forecast errors from benchmark, 1, CL outper-

forms ek, a sequence of forecast errors from alternatives, for k = 2, . . . l, while

rejecting the null means that e1 does not CL outperform, ek. For practical im-

plementation, I replace the supreme in TGn and TCn with the maximum, by

computing the statistics over densely partitioned points of the joint support,

χn = {x1, ..., xn}, with an evenly spaced grid of size, 1.5 ∗ p0.6. Plus, I use 98 %

empirical distribution of forecasting errors pooled from all forecasting models

by dropping 1% outliers on each side. For a fixed Yt and h, if there are several

p-value results failing to reject the null, that means those are comparably per-

forming well. However, to choose a single best model in that case, I compare

the magnitudes of p-values and choose a model with a higher p-value as done

in Jin et al. (2016)’s empirical application. 13

White’s Reality Check tests,

H0 : Sp = max
k=2,...,l

Sp(1, k) ≤ 0 (35)

where

Sp(1, k) =
1
√

p

T−1

∑
t=R

(g(û1,t+1))− g(ûi,t+1)), k = 2, ..., l (36)

with a chosen loss function, g. Here, to see the implications of the choice of a

loss function, I will run a data snooping testing by setting g as MAFE (Mean

Absolute Forecast Error) and MSFE both. Critical values will be constructed

13Having larger p-value means the evidence against the null is weaker in a probabilistic
sense (Stock and Watson (2007)). In the meanwhile, Having p-value closer to 0 means it is
very unlikely the sample test statistic would have been drawn if the null is true, which implies
it makes sense to conclude that the null is not true.
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via Politis and Romano (1994)(PS)’s stationary bootstrap. 14 White test is also

a multiple forecast comparison testing the outperformance of a fixed bench-

mark against the rest of 13 alternatives. Failing to reject the null means the

outperformance of a benchmark, while rejecting the null implies there is at

least one alternative that outperform the benchmark.

Lastly, for comparison, I also report MSFE results and DM test results,

which are the basis on which Kim and Swanson (2014) made conclusions.

MSFE is defined as

MSFEk,h =
T−h+1

∑
t=R−h+2

(Yt+h − Ŷk,t+h)
2
. (37)

for k = 1, . . . , l. DM test is a pairwise comparison between a benchmark, here

AR, and an alternative, specifically setting the null as, H0 : E[g(e1,t)− g(ek,t)] =

0 for k = 2, . . . , l. The test statistic is defined as DM1,k = 1
P ∑T

t=R+1
dt
σ̂ where

dt = g(ê1,t)− g(êk,t) for k = 2, . . . , l and σ̂ is a heteroskadasticity and autocor-

relation consistent estimator of the standard error of d̄, the mean of dt. A loss

function, g, is fixed as MSFE.

5.3 Empirical Results

The total 144 macroeconomic variables are employed as explanatory variables

to predict 11 forecasting target variables and it ranges from 1960 Jan to 2009

May. Four different forecasting horizons (h = 1, 3, 6, 12), four different mean

block lengths (Wn = 1
Sn

= {2, 5, 7, 10}), two different estimation strategies (re-

cursive or rolling), and four different specifications (SP1/SP1L/SP2/SP3) will

be attempted.

14In Jin et al. (2016)’s simulations, they used PS’s stationary bootstrap for stationary DGPs
and block bootstrapping for heterogeneous DGPs. In this paper, since the data sets are trans-
formed as specified in Table 3.A.1 to induce stationarity, I will employ PS’s stationary boot-
strap for constructing critical values with four different mean block length, {2, 5, 7, 10}. Since
the results turn out to be robust to the four different block length tried, I just report test results
when the mean block length is set as 5.
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Forecast evaluation results are ordered in this way: first, Table (3.A.5) to

Table (3.A.9) summarize best performance forecasting methods of different

evaluation methods: from Jin et al. (2016)’s GL/CL forecasting superiority

test results, to White’s Reality Check test results (when a loss function is set

as MSFE and MAFE both), lastly to MSFE results. Table (3.A.10) to (2.A.13)

report detailed JCS’s and White’s test results all throughout different specifi-

cations but just for h = 1 case, for the sake of brevity. 15 Table (2.A.14) covers

MSFE results and also contains DM test results, a forecast equality test between

AR, a fixed benchmark here, and an alternative, with ∗(∗∗) denoting the re-

jection of the null of the benchmark’s superiority at the 10(5)% significance

level. Therefore, largely, the forecasting results can be categorized into two

ways, distributional comparison vs. moment-based comparison and multiple

comparison (JCS’s GL/CL test and White’s Reality Check test) vs. pairwise

comparison (Diebold and Mariano (2002)’s test).

As a tool of interpreting the distributional comparison results, I also pro-

vide two types of plots as a eyeball test, a plot of CDFs/SDFs comparison and

plot of GL/CL test results, along with tabulated GL/CL test results (Figure

3.A.1 and 2.A.4). Throughout different configurations, there are many cross-

ings observed in both types of plots as expectedly, which is reasonable since 14

different forecasting methods are being compared simultaneously. Secondly,

depending on different configurations, the results tend to fluctuate. It is quite

understandable that the total number of possible permutations in this setting

is 11 (different forecasting variables) ∗ 2 (different estimation window types,

recursive or rolling) ∗ 14 (different forecasting methods) ∗ 4 (different values

of bandwidth size) ∗ 3 (different data split points) ∗ 4 (different specifications,

SP1/SP1L/SP2/SP3 ) is 14, 784. However, within a fixed setting, (whether

RE/RO, p = 200/300/400, SP1/SP1L/SP2/SP3), if (a) forecasting model(s)

is/are obviously performing better than other(s), then it seems to be that JCS

15The detailed results for other settings are available upon request.
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test results are robust over different values of mean block length, Wn. 16 This

implies that, in practice, given a forecasting problem, fixed Yt, h, and P (where

P = R + T), if one is sure about which method is more appropriate, recursive

or rolling and SP1 or SP1L or SP2 or SP3, mostly, one can sort out best/worst

(group of) forecasting method(s) in a GL/CL outperformance sense.

The big pictures that I can get from these results as a whole can be summa-

rized like these: first, when it comes to GL outperformance test results, there

are some cases I cannot point out which exact model wins since, for a given Yt

and h, all test results when one of 14 models fixed as a benchmark at a time

result in rejecting the null. However, when moving to a higher order stochastic

dominance comparison (CL outperformance test), there are some cases where

I can judge (a) clearer stochastic dominance relationship(s) (Table 3.A.10 and

2.A.14). The underlying theoretical reasoning is that, as pointed out in section

2, at a higher order stochastic dominance, the magnitude of the difference of

the areas under CDFs is more amplified by the power multiplication of F(x)

itself, which can be interpreted as a weight. 17 Jin et al. (2016)’s simulation

results also show that the probability of correctly rejecting the null in a CL

outperformance sense is higher than the probability of rejecting the null when

the null is not true in a GL sense. It is also related to the theory that first order

stochastic dominance implies second order stochastic dominance.

Secondly, even though the exact hybrid method that wins differs across

16When it comes to the choice of different estimation windows, a rolling scheme, a lim-
ited memory estimator, will be more appropriate if using information set limited to relatively
recent time periods is more pertaining to explaining the variable of interest, rather than re-
cursive scheme, an expansionary memory estimator, that includes even all distant past data
that may not have informative power for forecasting Yt+h anymore. When it comes to rolling
window, the parameter estimation errors doesn’t vanish even in the limit, since the coefficient
estimates don’t converge to fixed population parameter values, remaining as strong mixing
random variables (Giacomini and White (2006)) and Corradi and Swanson (2013)).

17The (s + 1)th order stochastic dominance compares the areas under the curve of DS(y) =∫ y
0 D(S−1)(z)dz =

∫ y
0 F(S−1)(z)dz. It can also be viewed in the way that stochastic dominance

of higher order reflects the depth of distributions, compared to the first order stochastic dom-
inance which just counts the number of realizations of random variables up to a certain value
in the support.
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different forecasting variables and forecasting horizons, the forecasting results

from loss function-robust JCS test and loss function-dependent moment based

tests both indicate that hybrid methodologies, combining shrinkage and fac-

tor approach, perform better than benchmark models (AR & ARX & CADL),

purely factor-based models (FAAR & PCR), and model averaging methods

(simple mean averaging & Bayesian averaging). For example, hybrid models

and methods “win” around 50 % when selection is based on the JCS test, and

only around 1/2 of the time based on the application of DM tests.

Specifically, when it comes to first order distributional comparison, hybrid

methods predominate for SP1L case and Shrinkage methods for SP3, across

the 11 different forecasting variables and the 3 different forecasting horizons.

As for the SP1 case, the hybrid methods and FAAR seem to be outstanding.

When moving to second-order distributional comparison, one can observe that

hybrid methods dominates across the SP1, SP1L, and SP2 cases, and shrinkage

methods and Mean are performing well for SP3. In addition, I observe that,

compared to the first-order stochastic dominance test results, the second-order

stochastic dominance results report that the simple averaging method wins

more often. White’s test results describe a similar picture. The overall results

indicate that, as for the SP1/SP1L/SP2, hybrid methods are doing well, while,

as for the SP3, benchmark models and shrinkage methods show good perfor-

mances. In addition, especially as for the SP2 case, the simple mean average

method seems to be quite competitive.

Here the caveat is that, although the two evaluation approaches, distribu-

tional comparison and moment-based comparison, describe the similar pic-

tures in overall favoring hybrid methods (and shrinkage when it comes to the

SP2 case), there are differences in details among the results of the different

evaluation methods. And, it should be remembered that the power perfor-

mances of these two different evaluation methods, JCS and White’s cannot be

formally compared, since their statistics are different asymptotically in the null
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(Jin et al. (2016)). Therefore, I recommend that it is better to consider both ap-

proaches as complementary, since the distributional comparison has its own

merits as emphasized in this paper but the moment-based tests can have better

finite sample performances as shown in Jin et al. (2016)’s simulations. 18

Thirdly, it is interesting to find that first, SP1L, a specification that allows

the inclusion of lagged terms, does not necessarily result in better results all

the time. Although, one cannot flatly state that it is not being helpful at all

for improving forecasting performances, but, neither can one state that it ef-

fectively improves results, in terms of MSFEs (Table 2.A.14). Thus, given that

adding the lagged terms does not change the underlying forecasting struc-

ture fundamentally, what matters to forecasting performances seems to be a

specific shrinkage method that effectively weights and selects relevant infor-

mation. In addition, when it comes to the SP1L specification, it seems to be

more difficult to compare forecasting performances in a GL outperformance

sense, with p-values as 0 in most of cases. This phenomenon stems from the

fact that the forecasting performances are so close to the extent that the em-

pirical CDFs of forecasting errors almost coincide, which makes it harder to

rank the results in a GL outperformance sense. However, the CL outperfor-

mance results, comparing integrated CDFs, SDFs, provides a better picture to

enable the discernment of better/worse methodologies. In addition, the SP3

case, which does not involve a factor approach in any stage, does not neces-

sarily lead to worse results in an MSFE sense. FOSD (first-order stochastic

dominance) (first-order stochastic dominance) results says shrinkage method-

ologies replace the role of hybrid methodologies, while SOSD (second-order

stochastic dominance) results side more with Mean and White’s results with

benchmark models and shrinkage methodologies.

Fourth, it turns out that the two White’s Reality test results from the MAFE

18Even though Jin et al. (2016)’s simulation results have pointed out the moment-based tests
have better powers in small sample sizes given a loss function, it implies that one surely knows
which loss function is appropriate to use, which is an additional decision problem.
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loss function case and the MSFE loss function case do not necessarily result

in the same conclusions all the time, which implies that the choice of a loss

function matters. The most noticeable difference is that, when NNG is set as

a benchmark, White’s reality check test with MAFE always rejects the null for

all specifications and for variables, while White’s reality check test with MSFE

tells that NNG performs well, especially for SP2 and SP3, or even picks NNG

as the best one. This finding once again highlights the loss function-robust

characteristic of the JCS approach.

Lastly, throughout different estimation schemes, specifications, and fore-

casting horizons, it is more difficult to forecast TB (10-year treasury bond) and

HS (Housing starts) variables accurately than the other variables, as evidenced

from the MSFE results. In addition, I can observe that the magnitudes of MSFE

generally increase as h increases for both recursive and rolling schemes and all

specifications, which is an expected result in the forecasting literature since

uncertainties for a more distant future time period are higher.

Now, for the sake of brevity, I will focus on interpreting the results for

Yt = UR and h = 1 case using plots, specifically the plots of the empirical

CDFs/SDFs comparison and the plots of the p-values of GL and CL forecast

superiority test (Figure (3.A.1) to 2.A.4). Tabulated results are be found in Ta-

bles 3.A.10 to 2.A.14 as well.

First, as an eyeball test, I present the plots of (1) the probability difference

between empirical CDFs of an alternative and a benchmark against over the

joint support of forecasting errors and the integrated probability difference

between the empirical CDFs (i.e. probability difference between the empir-

ical SDFs) and (2) p-values for GL/CL forecasting superiority test over the

different values of bandwidth. First, as for the plots of the comparison over

empirical CDFs(SDFs), I set an AR (autoregressive) model as the benchmark

model, whereby the values on the y-axis indicate the (integrated) probability
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difference of empirical CDFs (SDFs) between an alternative model and AR.

On the other hand, the plots of p-values for GL and CL forecast superiority

test are when one particular method is set as a benchmark against all different

alternative forecasting methods. Thus, the legend for the lines in the empirical

CDFs/SDF difference plot indicates a particular alternative method compared

with the autoregressive model and the plot describes a glimpse of pairwise

comparison between the benchmark, 1, and the specific alternative, k, over the

joint support. On the other hand, the legend in the p-value plot for GL and

CL indicates the benchmark model fixed on and it plots the formal JCS results,

p-values, over different bandwidth values tried.

As for the interpretations of the plots of GL/CL test results, since I com-

pare 13 alternative methods against a benchmark model, it is quite less likely

to have perfectly non-overlapping plots among the 14 forecasting methods: if

that is the case, it is likely more difficult to pick up a model that is clearly

dominant or dominated. And, as expected, I can observe this kind of phe-

nomenon throughout most of all different variables, forecasting horizons, and

block windows. However, when moving to a higher order stochastic domi-

nance, there are some cases in which I can judge (a) clearer stochastic domi-

nance relationship(s). In addition, even though there are some crossings ob-

served, if one(some) of methods obviously dominate(s) other(s), it is possible

to observe the stochastic dominance relationship is robust to different choice of

bandwidth values, enabling the sorting out of better and/or poor forecasting

methodologies in a given forecasting framework.

As a way of dealing with overlapping graphs, one may attempt restricted

stochastic dominance approach (Davidson (2009)) whereby the forecasting com-

parison is conducted over a restricted set of the original domain. That is, if

the distribution functions are too close to discern each other, one can restrict

the domain of forecast errors and compare empirical CDFs/SDFs over the re-

stricted range. Or, for instance, if people are more concerned about having
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more big forecasting errors, then comparing the forecast results over a bigger

magnitude range of forecast errors could provide a clearer picture.

Now, I deal with the detailed interpretation of Yt = UR and h = 1 case.

From this specific case, foremost, I can confirm the pattern that hybrid meth-

ods perform relatively better than do benchmark models (AR and ARX and

CADL) and purely factor-based approaches (PCR and FAAR), from this spe-

cific case as well. Even though specific forecasting models that outperform

are moderately different across different forecasting variables and forecasting

horizons, the forecasting results seems to indicate that, to deal with big data,

shrinkage methodologies in general outperform relatively simple econometric

models that do not involve weighting and shrinking information given.

Figure (3.A.1) plots the probability difference between empirical CDFs of

an alternative and a benchmark, AR here, and integrated probability differ-

ence between them (i.e., probability difference between SDFs). This provides

a general overview of pairwise comparison between an alternative and AR

over the joint support. Since no line clearly lies over 0 or below 0 for all x

but all of them pass across the zero line, one cannot declare GL or CL outper-

formance of a model based on this visual representation. Figure (2.A.2) plots

the p-values of the GL and CL outperformance test over the values of band-

width attempted, Wn = {2, 5, 7, 10}. It can be observed that, even though there

are some crossings since in total 14 forecasting methodologies are compared,

better forecasting methodologies dominate worse forecasting methodologies,

whose results are robust to different values of Wn. Figure (2.A.3) shows the

results of the GL test for other specifications, SP1L, SP2, and SP3 and Figure

(2.A.4) contains the results of CL tests for those specifications.

If one is to make inferences based on the CL outperformance test, when

it comes to the SP1 case, PCR, Bagging, Boosting, BMA2, Ridge, LAR, and,

Mean seem to outperform. As for the SP1L case, Ridge, LAR, Boost, and PCR

seem to be outstanding, while for the SP2 case, AR, BMA 1 & 2, Ridge, LAR,
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EN, NNG, Mean are superior to others. Next, when it comes to the SP3 case,

it is difficult to single out the best method(s), since all p-values of the GL test

results are equal to 0 and the CL test results are quite indistinguishable. Thus,

one can say that, when it comes to SP3, there are no forecasting methods that

can explicitly dominate over the alternatives in the GL outperformance sense.

However, second-order stochastic dominance results, which compare the inte-

grated probability difference between CDFs, provides a slightly better picture

that can differentiate the performances (Figure 2.A.4).

6 Conclusion

The notion of a loss function is also closely related to the decision problem as-

sociated with how one chooses to weight and summarize forecast errors. Thus,

the choice between using loss function dependent evaluation and loss function

free forecast evaluation involves assessing whether the relevant decision prob-

lem involves directly addressing loss function dependence, or eschewing the

use of loss functions altogether. In this paper, I will empirically assess the

trade-offs associated with using the different loss function specific (DM and

data snooping) and loss function free (GL and CL forecast superiority) pre-

dictive accuracy tests. This will be done by carrying out an extensive set of

empirical experiments using the factor augmented forecasting models and a

variety of shrinkage and machine learning algorithms.

Analysis and ranking of the models and methods analyzed in our experi-

ments is found to depend crucially on whether loss function dependent eval-

uation of their accuracy is carried out, or not. Namely, there tend to be differ-

ences between the best models chosen using distributional comparison based

on JCS tests, and the best models selected by using reality check (or DM) tests.

In addition, it is found that loss function specific test results are sensitive to
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the specification of loss function, and in particular to whether MSFE or MAFE

loss is used. With regard to the actual prediction models and methods utilized

in our experiments, it is not possible to claim that a specific forecasting model

“uniformly” dominates, across different forecast horizons and specification

methods, for a given variable. However, it is noteworthy that hybrid mod-

els that combine shrinkage estimation with diffusion indexes perform better

than benchmark models including linear models, purely factor-based models,

and model averaging. Thus, there appears to be useful information in “big

data”, and the manner in which this information is extracted matters. Also,

when carrying out loss function free model selection, the number of “wins” for

hybrid models increases appreciably, relative to when loss function dependent

model selection is carried out. In conclusion, we find that loss function specific

and loss function robust tests are complementary, and much can be learned by

utilizing both types of tests for empirical forecast model selection.
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7 Appendix

Table 2.A.1: Target forecasting variables
Series Name Abbreviation Transformed Yt+h

Unemployment rate UR Yt+1 −Yt
Personal income less transfer payments PI ln(Yt+1/Yt)

10-year treasury bond TB Yt+1 −Yt
Consumer price index CPI ln(Yt+1/Yt)
Producer price index PPI ln(Yt+1/Yt)

Nonfarm payroll employment NPE ln(Yt+1/Yt)
Housing starts HS ln(Yt)

Industrial production IPX ln(Yt+1/Yt)
M2 M2 ln(Yt+1/Yt)

S&P 500 index SNP ln(Yt+1/Yt)
Gross domestic product GNP ln(Yt+1/Yt)

Table 2.A.2: Specifications
Specification Description

SP1 (baseline) horse-race comparison of 14 forecasting methods specified in Table 3
SP1l lagged terms, yt−h or f̂t−h, allowed to enter
SP2 prescreening regressors before estimation and forecasting
SP3 not involving factor analysis at any stage
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Table 2.A.3: 14 forecasting models and shrinkage methods employed
Names in abbreviation Description

AR(SIC) Autoregressive model with lags selected by SIC
ARX Autoregressive model with exogenous regressors

CADL Combined AR distributed lag model
FAAR Factor augmented AR model
PCR Principal components regression

Bagging Bagging with shrinkage, c = 1.96
Boosting Component Boosting, M = 50

BMA1 Bayesian model averaging with g-prior= 1
T

BMA2 Bayesian model averaging with g-prior=( 1
P )

2

Ridge Ridge regression
LAR Least angle regression
EN Elastic net

NNG Non-negative garotte
Mean Arithmetic mean

Table 2.A.4: Abbreviation

1 AR(SIC)
B (Benchmark)2 ARX

3 CADL
4 FAAR F (Factor)5 PCR
6 Bagging

H (Hybrid) (SP1/1L/2) S (Shrinkage) (SP3)

7 Boosting
8 BMA1
9 BMA2
10 Ridge
11 LAR
12 EN
13 NNG
14 Mean M (Mean)
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Table 2.A.5: Best FOSD models
SP1

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 AR BMA2 Boost FAAR AR Bagging BMA1 Mean FAAR BMA2/Ridge BMA2
h=3 NNG Ridge Bag FAAR Boost BMA1 BMA1 FAAR NNG FAAR Boost
h=12 AR PCR Bag FAAR ARX Boost BMA1 PCR Mean NNG Mean
SP1L

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 EN N\A N\A N\A N\A FAAR FAAR N\A FAAR N\A N\A
h=3 Bag N\A N\A N\A N\A FAAR N\A N\A FAAR N\A N\A
h=12 CADL N\A N\A N\A N\A FAAR N\A N\A FAAR N\A N\A
SP2 N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 EN Mean EN Ridge NNG Boost BMA2 EN BMA1 LAR Ridge
h=3 AR Boost NNG AR NNG LAR BMA2 LAR AR BMA1 Bag
h=12 AR LAR, EN 1,5,10,11 Boost Ridge BMA2 BMA2 BMA1 LAR BMA1 NNG
SP3

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 N\A Bag Ridge AR, NNG BMA2 N\A ARX Mean N\A Ridge Ridge
h=3 Mean Bag N\A N\A Bag N\A BMA2 N\A Boost N\A Ridge
h=12 N\A Ridge BMA1 AR BMA2 Ridge BMA1 BMA1, Ridge BMA1 Bag Ridge

Notes: The null of GL outperformance test is when e1, a sequence of forecast errors from benchmark, 1, GL
outperforms ek , a sequence of forecast errors from alternatives, for k = 2, . . . l, while rejecting the null means that e1

does not GL outperform, ek .
† N\A refers to the situation where the p-values of the null are all close to zero when one of 14 forecasting methods
is set as a benchmark model, 1, against the rest of 13 alternatives each time, so that one cannot pick up a forecasting

method that can claim GL outperformance over the alternatives within a fixed h and Yt.

SP1
Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP

h=1 B H H F B H H Mean F H H
h=3 H H H F H H H F H F H
h=12 B F H F B H H F Mean H Mean
SP1L

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 H N\A N\A N\A N\A F F N\A F N\A N\A
h=3 H N\A N\A N\A N\A F N\A N\A F N\A N\A
h=12 B N\A N\A N\A N\A F N\A N\A F N\A N\A
SP2

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 H Mean H H H H H H H H H
h=3 B H H B H H H H B H H
h=12 B H B, H H H H H H H H H
SP3

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 N\A S S B, S S N\A B Mean N\A S S
h=3 Mean S N\A N\A S N\A S N\A S N\A S
h=12 N\A S S B S S S S S S S

Notes: Notations as specified in Table 4.
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Table 2.A.6: Best SOSD models
SP1

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 BMA2 AR Mean N\A ARX 1,7 Boost ARX N\A EN NNG
h=3 Ridge Bag Mean N\A BMA1 AR PCR AR N\A Bag Bag
h=12 EN Bag 1,2,4,5,7,8,9,10,12,14 N\A NNG Bag Boost NNG N\A LAR N\A
SP1L

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 Ridge 2,4,8,9,11 N\A FAAR FAAR BMA2 Ridge ARX BMA2 ARX N\A
h=3 EN N\A N\A FAAR AR PCR PCR BMA1 N\A PCR BMA1
h=12 LAR N\A N\A FAAR FAAR FAAR LAR ARX BMA1 Ridge N\A
SP2

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 AR N\A LAR N\A Mean ARX AR BMA2 N\A Mean N\A
h=3 Ridge Mean Bag N\A Mean N\A Mean Bag N\A Boost N\A
h=12 N\A Mean Bag N\A Bag AR Boost EN N\A Mean N\A
SP3

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 LAR, Mean BMA2 Mean Mean Ridge Mean CADL LAR N\A Mean Mean
h=3 Mean Mean Mean BMA2 N\A Mean LAR BMA2 BMA1 N\A Boost
h=12 BMA1 Mean Mean N\A CADL Boost LAR 3,14 Mean CADL Mean

Notes: The null of CL outperformance test is when e1, a sequence of forecast errors from benchmark, 1, CL
outperforms ek , a sequence of forecast errors from alternatives, for k = 2, . . . l, while rejecting the null means that e1

does not CL outperform, ek .
† N\A refers to the situation where the p-values of the null are all close to zero when one of 14 forecasting methods
is set as a benchmark model, 1, against the rest of 13 alternatives each time, so that one cannot pick up a forecasting

method that can claim GL outperformance over the alternatives within a fixed h and Yt.

SP1
Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP

h=1 H B M N\A B B,H H B N\A H H
h=3 H H M N\A H B N\A B N\A H H
h=12 H H B, H, M N\A H H H H N\A H N\A
SP1L

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 H B,F,H N\A F F H H B H B N\A
h=3 H N\A N\A F B F F H N\A F H
h=12 H N\A N\A F F H H B H H N\A
SP2

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 B N\A H N\A M B B H N\A M N\A
h=3 H M H N\A M N\A M H N\A H N\A
h=12 N\A M H N\A H B H H N\A M N\A
SP3

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 S, M S M M S M B S N\A M M
h=3 M M M S N\A M S S S N\A S
h=12 S M M N\A S S S B, M M B M

Notations as specified in Table 4.
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Table 2.A.7: Best White’s Reality Check models (g = MSFE)
SP1

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 AR AR LAR ARX Mean EN NNG ARX NNG Bag ARX
h=3 NNG ARX CADL Mean ARX EN ARX ARX FAAR Boost EN
h=12 Mean ARX BMA1 Mean CADL Bag ARX CADL Bag Ridge Bag
SP1L

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 LAR FAAR PCR Boost PCR,EN Bag FAAR AR EN BMA2 AR,EN
h=3 Ridge EN ARX EN Ridge AR AR AR BMA2 LAR ARX
h=12 PCR EN BMA1 Bag Bag EN FAAR EN LAR BMA1 EN
SP2

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 AR Mean ARX Mean Boost Ridge BMA2 Mean Mean ARX Bag
h=3 NNG AR ARX Mean ARX BMA2 AR Ridge Mean Mean AR
h=12 CADL,Bag BMA1 CADL Mean Bag AR AR Bag AR Mean Ridge
SP3

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 CADL ARX AR ARX,BMA1 Boost,Mean CADL AR ARX AR 3,12,13 ARX
h=3 EN Boost ARX,NNG BMA2 ARX CADL Boost CADL Mean AR ARX
h=12 Boost ARX EN Mean ARX CADL Boost NNG Boost Boost ARX

SP1
Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP

h=1 B B H B M H H B H H B
h=3 H B B M B H B B F H H
h=12 M B H M B H B B H H H
SP1L

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 H F F H F,H H F B H H B,H
h=3 H H B H H B B B H H B
h=12 F H H H H H F H H H H
SP2

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 B M B M H H H M M B H
h=3 H B B M B H B H M M B
h=12 B, H H B M H B B H B M H
SP3

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 B B B B,S S,M B B B B B, S B
h=3 S S B, S S B B S B M B B
h=12 S B S M B B S S S S B

Notations as specified in Table 4.
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Table 2.A.8: Best White’s Reality Check models (g = MAFE)
SP1

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 AR Mean FAAR,LAR EN FAAR EN EN ARX,BMA2 FAAR Bag ARX,Mean
h=3 EN Mean LAR FAAR Ridge EN ARX Mean FAAR FAAR ARX

h=12 Mean EN Mean CADL Bag Bag Mean Bag PCR BMA2 BMA2
SP1L

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 LAR FAAR PCR Boost PCR,EN Bag FAAR AR EN BMA2 AR,EN
h=3 Ridge EN ARX EN Ridge AR AR AR BMA2 BMA1 ARX

h=12 PCR EN Bag Bag Bag EN FAAR EN LAR BMA1 EN
SP2

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 AR Mean ARX,CADL Bag Mean AR Boost LAR EN ARX Mean
h=3 LAR Boost ARX Mean Mean EN AR,EN Mean Mean LAR Mean

h=12 CADL Mean CADL Mean Mean Mean Mean Mean Mean EN AR,Boost
SP3

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 CADL Mean Boost Mean EN CADL CADL Boost Mean AR BMA2
h=3 EN Boost CADL BMA2 Mean CADL AR CADL BMA1 ARX LAR

h=12 CADL ARX CADL Mean Boost CADL LAR EN BMA1 ARX AR

SP1
Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP

h=1 B M F,H H F H H B,H F H B,M
h=3 H M H F H H B M F F B
h=12 M H M B H H M H F H H
SP1L

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 H F F H F,H H F B H H B, H
h=3 H H B H H B B B H H B
h=12 F H H H H H F H H H H
SP2

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 B M B H M B H H H B M
h=3 H H B M M H B, H M M H M
h=12 B M B M M M M M M H B, H
SP3

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 B M S M S B B S M B S
h=3 S S B S M B B B S B S
h=12 B B B M S B S S S B B

Notations as specified in Table 4.
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Table 2.A.9: Best MSFE models
SP1

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 FAAR PCR Mean PCR PCR CADL Mean Ridge FAAR AR ARX
h=3 PCR ARX Bag Mean PCR CADL Bag Mean Mean Bag NNG

h=12 PCR AR PCR Mean Mean CADL Bag CADL ARX Mean Mean
SP1L

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 LAR Mean CADL ARX Mean CADL CADL ARX ARX AR Mean
h=3 CADL ARX Mean Mean Mean CADL CADL CADL Mean AR AR

h=12 Boost Mean CADL Mean Mean CADL ARX CADL ARX AR Mean
SP2

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 LAR EN CADL ARX Bag Mean CADL ARX Mean AR ARX
h=3 BMA2 Mean Mean NNG EN CADL CADL Mean AR AR ARX

h=12 Mean Mean CADL ARX AR CADL Mean LAR Mean BMA1 Mean
SP3

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 CADL ARX Boost Mean Mean CADL CADL Boost LAR LAR Boost
h=3 CADL Boost CADL ARX ARX CADL Boost EN Mean EN EN

h=12 Boost Boost CADL Mean EN CADL Mean CADL ARX EN NNG

SP1
Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP

h=1 F F M F F B M H F B B
h=3 F B H M F B H M M H H

h=12 F B F M M B H B B M M
SP1L

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 H M B B M B B B B B M
h=3 B B M M M B B B M B B

h=12 H M B M M B B B B B M
SP2

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 H H B B H M B B M B B
h=3 H M M H H B B M B B B

h=12 M M B B B B M H M H M
SP3

Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
h=1 B B S M M B B S S S S
h=3 B S B B B B S S M S S

h=12 S S B M S B M B B S S

Notations as specified in Table 4.
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Table 2.A.10: SP1 Results
Benchmark UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
FOSD, Recursive, h=1
AR 0.9458 0.3883 0.9725 0.0008 0.6025 0.0292 0.0767 0.1642 0.0008 0.9550 0.2067
ARX(SIC) 0.9108 0.3067 0.0892 0.0000 0.0467 0.4300 0.1408 0.0483 0.0017 0.9817 0.8033
CADL 0.6542 0.0000 0.6717 0.0000 0.0000 0.0000 0.0192 0.0000 0.0000 0.0142 0.0000
FAAR 0.9008 0.4883 0.9675 0.0133 0.4508 0.0317 0.0083 0.0400 0.0075 0.8633 0.8083
PCR 0.3675 0.3658 0.4158 0.0067 0.1158 0.9508 0.0200 0.0692 0.0008 0.9592 0.5817
Bagging 0.2867 0.3308 0.3750 0.0067 0.4542 0.9558 0.0275 0.0675 0.0000 0.9650 0.4367
Boosting 0.2283 0.3417 0.9742 0.0008 0.5875 0.2717 0.1258 0.3300 0.0000 0.9617 0.4942
BMA1 0.0075 0.5900 0.9150 0.0000 0.0167 0.3500 0.2633 0.0025 0.0017 0.9767 0.7967
BMA2 0.2400 0.6592 0.9083 0.0000 0.0867 0.5875 0.1508 0.2325 0.0000 0.9850 0.8575
Rridge 0.5333 0.5408 0.9092 0.0000 0.1383 0.3658 0.1417 0.2858 0.0008 0.9850 0.8017
LAR 0.1075 0.4650 0.3025 0.0000 0.0150 0.8650 0.0542 0.0075 0.0008 0.9825 0.7083
EN 0.7825 0.1767 0.3917 0.0117 0.2942 0.3308 0.0158 0.1433 0.0000 0.9150 0.3225
NNG 0.7358 0.1892 0.9192 0.0050 0.1542 0.2608 0.0075 0.1758 0.0000 0.9767 0.3067
Mean 0.6200 0.3117 0.5367 0.0000 0.0675 0.3250 0.0383 0.3558 0.0008 0.9833 0.3158
SOSD, Recursive, h=1
AR 0.2600 0.0008 0.2042 0.0000 0.0067 0.0017 0.8667 0.0325 0.0000 0.2192 0.0000
ARX(SIC) 0.1617 0.0000 0.4575 0.0000 0.2308 0.0008 0.7158 0.0467 0.0000 0.0633 0.0000
CADL 0.2150 0.0000 0.4675 0.0000 0.0042 0.0000 0.1650 0.0100 0.0000 0.1425 0.0000
FAAR 0.3967 0.0000 0.4217 0.0000 0.0000 0.0000 0.0242 0.0000 0.0000 0.1825 0.0000
PCR 0.8400 0.0000 0.6133 0.0000 0.0242 0.0000 0.9192 0.0008 0.0000 0.2208 0.0000
Bagging 0.8158 0.0000 0.5975 0.0000 0.0067 0.0008 0.9217 0.0042 0.0000 0.2142 0.0000
Boosting 0.9067 0.0008 0.2233 0.0000 0.0150 0.0017 0.9500 0.0067 0.0000 0.2275 0.0000
BMA1 0.2450 0.0000 0.3817 0.0000 0.0958 0.0000 0.6283 0.0000 0.0000 0.2075 0.0000
BMA2 0.9117 0.0000 0.4292 0.0000 0.0625 0.0000 0.8808 0.0025 0.0000 0.1683 0.0000
Rridge 0.8258 0.0000 0.5183 0.0000 0.0542 0.0000 0.9292 0.0050 0.0000 0.1983 0.0000
LAR 0.6333 0.0000 0.6583 0.0000 0.0608 0.0000 0.9125 0.0000 0.0000 0.1725 0.0000
EN 0.1225 0.0000 0.7233 0.0000 0.0200 0.0008 0.7642 0.0117 0.0000 0.2925 0.0000
NNG 0.1525 0.0000 0.1833 0.0000 0.0300 0.0000 0.7325 0.0083 0.0000 0.1225 0.0017
Mean 0.7717 0.0000 0.7950 0.0000 0.0467 0.0000 0.8717 0.0075 0.0000 0.2058 0.0000
Reality Check, g = MSFE, Recursive, h=1
AR 0.9667 0.9667 0.3833 0.4733 0.7867 0.8867 0.8433 0.9300 0.8967 0.7333 0.4433
ARX(SIC) 0.8500 0.9133 0.8767 0.9867 0.9333 0.5267 0.9567 0.9800 0.6400 0.6900 0.9600
CADL 0.5900 0.8400 0.9700 0.6033 0.9367 0.0933 0.1433 0.7533 0.1133 0.8767 0.6633
FAAR 0.8267 0.7433 0.9567 0.9700 0.9300 0.9300 0.9700 0.7500 0.9433 0.9333 0.6533
PCR 0.4067 0.8933 0.7567 0.4933 0.7900 0.0133 0.0167 0.4600 0.2667 0.7800 0.9000
Bagging 0.8333 0.7133 0.9800 0.9633 0.9167 0.9400 0.9867 0.7700 0.8833 0.9567 0.7100
Boosting 0.9233 0.9600 0.3567 0.5033 0.8000 0.8833 0.8400 0.8967 0.9133 0.6933 0.3933
BMA1 0.6700 0.9433 0.3567 0.4767 0.7967 0.6533 0.8000 0.7900 0.9267 0.7167 0.3367
BMA2 0.9033 0.9567 0.3967 0.5200 0.7533 0.8133 0.8200 0.8733 0.8567 0.7633 0.4333
Rridge 0.8900 0.9367 0.3633 0.5300 0.8200 0.8533 0.8167 0.8967 0.8600 0.7433 0.4167
LAR 0.7867 0.7333 0.9833 0.9633 0.9267 0.9000 0.9800 0.7000 0.8967 0.9133 0.6200
EN 0.8900 0.8000 0.9767 0.9400 0.9067 0.9867 0.9833 0.7933 0.9133 0.9267 0.6767
NNG 0.8900 0.7800 0.1733 0.9500 0.9300 0.9833 0.9900 0.7567 0.9300 0.9533 0.6400
Mean 0.9433 0.9267 0.9533 0.9267 0.9600 0.8667 0.8133 0.9133 0.9867 0.8900 0.8433
Reality Check, g = MAFE, Recursive, h=1
AR 0.5267 0.5133 0.3967 0.1900 0.4067 0.3300 0.1233 0.5133 0.1933 0.2533 0.2600
ARX(SIC) 0.4700 0.5400 0.4733 0.4833 0.4067 0.0067 0.3733 0.5400 0.4033 0.4433 0.5167
CADL 0.4500 0.2933 0.4933 0.0100 0.4400 0.0000 0.0000 0.3167 0.0000 0.4700 0.2367
FAAR 0.5100 0.5267 0.5133 0.5167 0.5067 0.2667 0.4033 0.4400 0.4767 0.4467 0.4700
PCR 0.2867 0.3667 0.4767 0.1067 0.3800 0.0067 0.0000 0.2600 0.0033 0.4067 0.5000
Bagging 0.4533 0.4967 0.5067 0.4900 0.5000 0.2733 0.4200 0.5333 0.4567 0.5267 0.4833
Boosting 0.4733 0.5400 0.4200 0.2100 0.3500 0.3067 0.1400 0.5133 0.1767 0.3067 0.2700
BMA1 0.4200 0.4800 0.4067 0.1933 0.2833 0.0867 0.0833 0.4433 0.2000 0.2800 0.1400
BMA2 0.4733 0.5267 0.4200 0.2300 0.3700 0.2700 0.1333 0.5400 0.1800 0.2700 0.2200
Rridge 0.4900 0.5367 0.3967 0.2467 0.3300 0.2733 0.1433 0.5167 0.1900 0.2967 0.2167
LAR 0.4233 0.4700 0.5133 0.4667 0.4767 0.2200 0.4200 0.4633 0.4633 0.4867 0.4167
EN 0.5233 0.5067 0.4767 0.5900 0.4567 0.5200 0.5100 0.5367 0.4667 0.4333 0.4800
NNG 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 0.4967 0.5533 0.4967 0.4967 0.4767 0.3167 0.1900 0.5167 0.4500 0.4267 0.5167

Notes: Best models, within a fixed h, Yt and estimation window scheme, are marked in bold. Entries are p-values of
forecasting superiority test. The null of GL\CL outperformance test is when e1, a sequence of forecast errors from

benchmark, 1, GL/CL outperforms ek , a sequence of forecast errors from alternatives, for k = 2, . . . l, while rejecting
the null means that e1 does not GL/CL outperform, ek . † White’s Reality Check test compares g(e1) against g(ek) for

k = 2, . . . l and here two different loss functions, MSFE and MAFE, are set as g. The interpretations of the results
can be done in an analogous way, if one fails to reject the null, that means, given a loss function, a benchmark

outperforms all alternatives, but if not, it refers to the situation where there is at least one model that outperforms
the benchmark.
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Table 2.A.11: SP1L Results
Benchmark UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
FOSD, Recursive, h=1
AR 0.7750 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ARX(SIC) 0.0175 0.0000 0.0000 0.0000 0.0000 0.0242 0.0000 0.0000 0.0000 0.0000 0.0000
CADL 0.4600 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
FAAR 0.3750 0.0000 0.0000 0.0000 0.0000 0.0625 0.0008 0.0000 0.3383 0.0000 0.0000
PCR 0.0900 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Bagging 0.6967 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Boosting 0.2133 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BMA1 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BMA2 0.0017 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008 0.0000 0.0000
Rridge 0.1458 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008 0.0000 0.0000
LAR 0.2758 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EN 0.7850 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
NNG 0.6358 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 0.5475 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SOSD, Recursive, h=1
AR 0.1650 0.0000 0.0000 0.1417 0.1408 0.1150 0.0275 0.0175 0.2133 0.0017 0.0000
ARX(SIC) 0.0200 0.0008 0.0000 0.1700 0.1075 0.0167 0.0867 0.0250 0.1558 0.0050 0.0000
CADL 0.0208 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
FAAR 0.1750 0.0008 0.0000 0.2642 0.1983 0.0958 0.0175 0.0400 0.1433 0.0025 0.0000
PCR 0.5208 0.0000 0.0000 0.1500 0.1133 0.2517 0.0467 0.0392 0.1967 0.0033 0.0000
Bagging 0.0358 0.0000 0.0000 0.1425 0.1550 0.0950 0.0367 0.0033 0.2292 0.0008 0.0000
Boosting 0.4942 0.0000 0.0000 0.1383 0.1375 0.1517 0.0408 0.0308 0.2117 0.0017 0.0000
BMA1 0.0808 0.0008 0.0000 0.1342 0.0958 0.4042 0.0858 0.0517 0.2142 0.0017 0.0000
BMA2 0.0858 0.0008 0.0000 0.1325 0.0942 0.4192 0.0700 0.0567 0.2267 0.0025 0.0000
Rridge 0.5950 0.0000 0.0000 0.1308 0.0983 0.1983 0.0508 0.0300 0.2200 0.0017 0.0000
LAR 0.5767 0.0008 0.0000 0.1367 0.1225 0.1217 0.0400 0.0242 0.2058 0.0025 0.0000
EN 0.1750 0.0000 0.0000 0.1342 0.1275 0.1067 0.0367 0.0167 0.2267 0.0025 0.0000
NNG 0.2592 0.0000 0.0000 0.1367 0.1208 0.1467 0.0433 0.0167 0.2033 0.0033 0.0000
Mean 0.1775 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Reality Check, g = MSFE, Recursive, h=1
AR 0.5067 0.4800 0.4433 0.4667 0.5133 0.5067 0.4700 0.5500 0.5033 0.4467 0.5167
ARX(SIC) 0.0033 0.0000 0.0033 0.0333 0.0233 0.0000 0.0067 0.0033 0.1733 0.0033 0.0000
CADL 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
FAAR 0.2833 0.5300 0.4333 0.4400 0.4600 0.4133 0.5267 0.4300 0.4667 0.4600 0.4133
PCR 0.2933 0.3800 0.5067 0.2733 0.5200 0.0133 0.0000 0.2833 0.1233 0.4900 0.2600
Bagging 0.4867 0.4733 0.3233 0.4900 0.4933 0.5333 0.5167 0.5100 0.4333 0.4767 0.4267
Boosting 0.4267 0.5233 0.4867 0.5000 0.4867 0.4733 0.4833 0.4167 0.5133 0.4533 0.4900
BMA1 0.2733 0.3900 0.4900 0.4967 0.4433 0.2933 0.4700 0.2400 0.5000 0.4567 0.2533
BMA2 0.2800 0.4100 0.4800 0.4633 0.4567 0.3033 0.4700 0.2200 0.4867 0.5100 0.2700
Rridge 0.4567 0.4700 0.4900 0.4700 0.4767 0.4367 0.4567 0.4800 0.5067 0.4967 0.5067
LAR 0.5167 0.4800 0.4400 0.4833 0.5000 0.4867 0.5000 0.5100 0.5200 0.4500 0.4633
EN 0.4933 0.4867 0.4967 0.4500 0.5200 0.4600 0.4767 0.5100 0.5233 0.4467 0.5167
NNG 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Reality Check, g = MAFE, Recursive, h=1
AR 0.5067 0.4800 0.4433 0.4667 0.5133 0.5067 0.4700 0.5500 0.5033 0.4467 0.5167
ARX(SIC) 0.0033 0.0000 0.0033 0.0333 0.0233 0.0000 0.0067 0.0033 0.1733 0.0033 0.0000
CADL 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
FAAR 0.2833 0.5300 0.4333 0.4400 0.4600 0.4133 0.5267 0.4300 0.4667 0.4600 0.4133
PCR 0.2933 0.3800 0.5067 0.2733 0.5200 0.0133 0.0000 0.2833 0.1233 0.4900 0.2600
Bagging 0.4867 0.4733 0.3233 0.4900 0.4933 0.5333 0.5167 0.5100 0.4333 0.4767 0.4267
Boosting 0.4267 0.5233 0.4867 0.5000 0.4867 0.4733 0.4833 0.4167 0.5133 0.4533 0.4900
BMA1 0.2733 0.3900 0.4900 0.4967 0.4433 0.2933 0.4700 0.2400 0.5000 0.4567 0.2533
BMA2 0.2800 0.4100 0.4800 0.4633 0.4567 0.3033 0.4700 0.2200 0.4867 0.5100 0.2700
Rridge 0.4567 0.4700 0.4900 0.4700 0.4767 0.4367 0.4567 0.4800 0.5067 0.4967 0.5067
LAR 0.5167 0.4800 0.4400 0.4833 0.5000 0.4867 0.5000 0.5100 0.5200 0.4500 0.4633
EN 0.4933 0.4867 0.4967 0.4500 0.5200 0.4600 0.4767 0.5100 0.5233 0.4467 0.5167
NNG 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Refer to notes to Table 10.
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Table 2.A.12: SP2 Results
Benchmark UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
FOSD, Recursive, h=1
AR 0.9067 0.4333 0.2500 0.2517 0.2525 0.6133 0.3700 0.7467 0.3525 0.9533 0.6033
ARX(SIC) 0.6625 0.0000 0.0817 0.0000 0.0000 0.0000 0.0100 0.0000 0.0000 0.0042 0.0000
CADL 0.6358 0.0000 0.0900 0.0000 0.0000 0.0000 0.0042 0.0000 0.0000 0.0033 0.0000
Bagging 0.0200 0.4817 0.0000 0.1133 0.2858 0.1375 0.0817 0.5200 0.2358 0.0017 0.0642
Boosting 0.4100 0.1542 0.0025 0.1142 0.0342 0.9967 0.7742 0.0225 0.1792 0.7667 0.3775
BMA1 0.5933 0.3242 0.0000 0.0617 0.0258 0.2025 0.9750 0.0925 0.4717 0.9325 0.6175
BMA2 0.8692 0.3883 0.0008 0.1692 0.1533 0.2167 0.9825 0.1292 0.4233 0.9783 0.5208
Rridge 0.9075 0.0042 0.0533 0.3742 0.1550 0.6633 0.4050 0.6442 0.0292 0.7942 0.8575
LAR 0.5117 0.5525 0.0225 0.2775 0.0783 0.6000 0.9300 0.5550 0.2842 0.9842 0.7183
EN 0.9625 0.4725 0.3483 0.3458 0.2392 0.5850 0.3667 0.7608 0.2500 0.9583 0.6892
NNG 0.9500 0.4275 0.2767 0.2958 0.3817 0.6492 0.4242 0.7125 0.3025 0.8058 0.8192
Mean 0.7933 0.5892 0.0600 0.0042 0.0433 0.0100 0.4217 0.1983 0.0000 0.7575 0.1817
SOSD, Recursive, h=1
AR 1.0000 0.0000 0.1792 0.0000 0.0000 0.0000 0.7417 0.0025 0.0000 0.1142 0.0000
ARX(SIC) 0.6992 0.0000 0.2283 0.0000 0.0025 0.0008 0.1525 0.0242 0.0000 0.1150 0.0000
CADL 0.7008 0.0000 0.2375 0.0000 0.0000 0.0000 0.1742 0.0308 0.0000 0.1067 0.0000
Bagging 0.4292 0.0000 0.0000 0.0000 0.0042 0.0000 0.5183 0.0050 0.0000 0.0642 0.0000
Boosting 0.9567 0.0000 0.2275 0.0000 0.0000 0.0000 0.5292 0.0000 0.0000 0.1483 0.0000
BMA1 0.9992 0.0000 0.1400 0.0000 0.0100 0.0000 0.2792 0.0825 0.0000 0.0250 0.0000
BMA2 0.9983 0.0000 0.1267 0.0000 0.0075 0.0000 0.3242 0.0925 0.0000 0.0642 0.0000
Rridge 0.9908 0.0000 0.2417 0.0000 0.0000 0.0000 0.7350 0.0067 0.0000 0.0333 0.0000
LAR 0.9983 0.0000 0.4083 0.0000 0.0000 0.0000 0.4867 0.0292 0.0000 0.0742 0.0000
EN 0.9983 0.0000 0.1642 0.0000 0.0000 0.0000 0.7217 0.0050 0.0000 0.1042 0.0000
NNG 0.9917 0.0000 0.1683 0.0000 0.0008 0.0000 0.7250 0.0058 0.0000 0.1833 0.0000
Mean 0.9992 0.0000 0.3650 0.0000 0.0200 0.0000 0.7333 0.0392 0.0000 0.2183 0.0000
Reality Check, g = MSFE, Recursive, h=1
AR 0.9667 0.8900 0.6367 0.7900 0.7233 0.9500 0.9333 0.9133 0.9000 0.9033 0.7000
ARX(SIC) 0.5367 0.7067 0.9900 0.2233 0.8733 0.0000 0.0367 0.5567 0.0000 0.9667 0.7967
CADL 0.5533 0.7033 0.9533 0.2133 0.8767 0.0000 0.0333 0.5367 0.0000 0.9500 0.8333
Bagging 0.5100 0.6300 0.5867 0.2833 0.8767 0.0000 0.0000 0.5367 0.0000 0.6067 0.7567
Boosting 0.5500 0.6833 0.9433 0.2733 0.8933 0.0000 0.0000 0.5267 0.0000 0.9167 0.7033
BMA1 0.0000 0.7867 0.0000 0.8000 0.8033 0.2367 0.7133 0.6367 0.3933 0.0067 0.4800
BMA2 0.1533 0.8533 0.5767 0.7633 0.7467 0.9400 0.9767 0.3567 0.9267 0.9067 0.2333
Rridge 0.8400 0.7900 0.6767 0.7733 0.8167 0.9600 0.8967 0.4300 0.8333 0.8100 0.5300
LAR 0.8933 0.8267 0.5067 0.7867 0.8233 0.9133 0.8733 0.5833 0.8700 0.8800 0.5967
EN 0.9000 0.6433 0.6000 0.7867 0.6533 0.5867 0.9733 0.7667 0.5167 0.7633 0.6433
NNG 0.9300 0.9067 0.7967 0.7467 0.7767 0.9467 0.9333 0.9233 0.9200 0.9233 0.6133
Mean 0.9533 0.9133 0.6800 0.8467 0.8233 0.8900 0.8633 0.9467 0.9300 0.9000 0.7667
Reality Check, g = MAFE, Recursive, h=1
AR 0.5000 0.5333 0.1200 0.3500 0.4233 0.5133 0.4000 0.4833 0.4900 0.4233 0.5567
ARX(SIC) 0.3467 0.1233 0.4833 0.0000 0.3900 0.0000 0.0000 0.0800 0.0000 0.5033 0.3300
CADL 0.3233 0.0933 0.4833 0.0000 0.4100 0.0000 0.0000 0.0767 0.0000 0.4733 0.3300
Bagging 0.0033 0.4167 0.0000 0.5167 0.4267 0.0033 0.0833 0.1400 0.0900 0.0067 0.2900
Boosting 0.0100 0.5500 0.1267 0.3367 0.3233 0.1900 0.5467 0.0367 0.4867 0.4733 0.1467
BMA1 0.3867 0.4400 0.1433 0.3867 0.5200 0.5000 0.1800 0.0300 0.3967 0.2367 0.3500
BMA2 0.2700 0.4767 0.0600 0.4100 0.4933 0.2433 0.2100 0.0533 0.3333 0.2833 0.3633
Rridge 0.3900 0.1533 0.0867 0.4167 0.3233 0.0567 0.4200 0.2033 0.1133 0.2700 0.4633
LAR 0.4833 0.5000 0.2367 0.3900 0.4033 0.3700 0.3067 0.5100 0.4833 0.4133 0.3733
EN 0.4300 0.5000 0.0900 0.3533 0.4300 0.3733 0.4000 0.4767 0.4933 0.4000 0.5333
NNG 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 0.4767 1.0000 0.3500 0.4833 1.0000 0.0433 0.0033 0.3600 0.4600 0.4067 1.0000

Refer to notes to Table 10.
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Table 2.A.13: SP3 Results
Benchmark UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
FOSD, Recursive, h=1
AR 0.0000 0.0000 0.0125 1.0000 0.8217 0.0000 0.0117 0.0017 0.0000 0.0000 0.0008
ARX(SIC) 0.0000 0.0008 0.0050 0.6158 0.2417 0.0000 0.6067 0.0000 0.0000 0.0000 0.0000
CADL 0.0000 0.0000 0.0108 0.2117 0.2483 0.0000 0.0108 0.0000 0.0000 0.0000 0.0000
Bagging 0.0000 0.0133 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0025
Boosting 0.0000 0.0000 0.0042 0.9883 0.7992 0.0000 0.0142 0.0000 0.0000 0.0000 0.0000
BMA1 0.0000 0.0000 0.0133 0.9033 0.9892 0.0000 0.3408 0.0000 0.0000 0.0000 0.0000
BMA2 0.0000 0.0000 0.0133 0.9733 0.9925 0.0000 0.5608 0.0000 0.0000 0.0000 0.0000
Rridge 0.0000 0.0000 0.9542 0.0000 0.0025 0.0000 0.0867 0.0000 0.0000 0.0717 0.1733
LAR 0.0000 0.0008 0.0108 0.9992 0.7758 0.0000 0.0200 0.0042 0.0000 0.0000 0.0000
EN 0.0000 0.0008 0.0083 0.9992 0.8208 0.0000 0.0117 0.0025 0.0000 0.0000 0.0000
NNG 0.0000 0.0000 0.0125 1.0000 0.8367 0.0000 0.0150 0.0025 0.0000 0.0000 0.0000
Mean 0.0000 0.0000 0.0142 0.3100 0.2733 0.0000 0.0142 0.0200 0.0000 0.0000 0.0000
SOSD, Recursive, h=1
AR 0.0225 0.0533 0.0008 0.0017 0.0000 0.0025 0.2425 0.2925 0.0000 0.0142 0.2483
ARX(SIC) 0.0258 0.0358 0.0017 0.0075 0.0050 0.0025 0.0500 0.1933 0.0000 0.0092 0.1825
CADL 0.0225 0.0125 0.0017 0.0150 0.0042 0.0017 0.3025 0.0392 0.0000 0.0275 0.0925
Bagging 0.0000 0.0775 0.0000 0.0042 0.0008 0.0000 0.0450 0.0017 0.0000 0.0008 0.0042
Boosting 0.0175 0.0675 0.0017 0.0033 0.0000 0.0017 0.1700 0.1417 0.0000 0.0175 0.1942
BMA1 0.0200 0.1500 0.0000 0.0092 0.0000 0.0000 0.0583 0.0467 0.0000 0.0175 0.3608
BMA2 0.0267 0.1725 0.0008 0.0033 0.0000 0.0000 0.0392 0.1150 0.0000 0.0183 0.4625
Rridge 0.0000 0.0000 0.0000 0.0125 0.0092 0.0000 0.2525 0.0000 0.0000 0.0000 0.0250
LAR 0.0275 0.0458 0.0017 0.0000 0.0000 0.0017 0.2258 0.3058 0.0000 0.0117 0.2033
EN 0.0267 0.0417 0.0017 0.0017 0.0000 0.0017 0.2583 0.2742 0.0000 0.0158 0.2450
NNG 0.0258 0.0475 0.0017 0.0008 0.0000 0.0017 0.2458 0.2900 0.0000 0.0158 0.2442
Mean 0.0225 0.1033 0.0042 0.0158 0.0067 0.0075 0.2875 0.2642 0.0000 0.0283 0.4833
Reality Check, g = MSFE, Recursive, h=1
AR 0.9600 0.8200 0.9800 0.8933 0.8767 0.9533 0.9800 0.8833 0.9733 0.9633 0.8233
ARX(SIC) 0.9567 0.9600 0.8533 0.9867 0.9200 0.7900 0.8933 0.9767 0.7500 0.8833 0.9700
CADL 0.9800 0.7333 0.9700 0.8933 0.8800 0.9833 0.9700 0.9300 0.9100 0.9767 0.6533
Bagging 0.0000 0.8400 0.0000 0.0767 0.0267 0.0000 0.0067 0.0967 0.0000 0.0000 0.0000
Boosting 0.9167 0.8733 0.9533 0.9533 0.9533 0.8667 0.9567 0.9567 0.8767 0.9667 0.9567
BMA1 0.9000 0.8200 0.8767 0.9867 0.8567 0.6933 0.6233 0.9533 0.8067 0.8967 0.9600
BMA2 0.9700 0.8833 0.9267 0.9267 0.8900 0.7933 0.7100 0.9533 0.9233 0.9000 0.9667
Rridge 0.0067 0.0100 0.5067 0.3633 0.0033 0.2733 0.4000 0.0033 0.0000 0.0567 0.0067
LAR 0.9600 0.8433 0.9700 0.9333 0.9033 0.9700 0.9700 0.9000 0.9600 0.9667 0.8500
EN 0.9567 0.8533 0.9600 0.9167 0.9133 0.9467 0.9667 0.9100 0.9633 0.9767 0.8267
NNG 0.9467 0.8667 0.9533 0.9267 0.9100 0.9500 0.9700 0.9067 0.9533 0.9767 0.8167
Mean 0.9233 0.9067 0.6167 0.9733 0.9533 0.7267 0.9167 0.9533 0.9333 0.9367 0.8967
Reality Check, g = MAFE, Recursive, h=1
AR 0.4200 0.4433 0.4767 0.3867 0.5200 0.3100 0.4800 0.2633 0.4567 0.5567 0.3033
ARX(SIC) 0.4800 0.4867 0.3333 0.4467 0.4133 0.0033 0.3300 0.5000 0.3967 0.4533 0.4067
CADL 0.5067 0.3333 0.4567 0.4000 0.4367 0.5233 0.5267 0.2767 0.4433 0.4400 0.1500
Bagging 0.0000 0.2333 0.0000 0.0067 0.0000 0.0000 0.0000 0.0367 0.0000 0.0000 0.0000
Boosting 0.4333 0.4533 0.4967 0.4333 0.5133 0.0500 0.5233 0.5333 0.4533 0.4600 0.4733
BMA1 0.2067 0.3967 0.2533 0.4367 0.2833 0.0000 0.0500 0.4033 0.3967 0.3433 0.4733
BMA2 0.4867 0.4600 0.3667 0.3900 0.4667 0.0000 0.0533 0.4867 0.4333 0.4000 0.5267
Rridge 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LAR 0.4700 0.4867 0.4800 0.4267 0.4933 0.3433 0.4500 0.2633 0.4500 0.5000 0.2967
EN 0.3933 0.4567 0.4900 0.4133 0.5400 0.2933 0.4267 0.2667 0.4667 0.5133 0.2767
NNG 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 0.3867 1.0000 0.0967 1.0000 0.4533 0.0000 0.5000 0.3333 1.0000 0.3633 0.3300

Refer to notes to Table 10.
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Table 2.A.14: MSFE results
Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
SP1, Recursive, h=1
AR 6.257 0.007 18.650 0.002 0.010 0.000 1.316 0.010 0.003 0.400 0.006
ARX(SIC) 1.011 0.941 1.136 0.966 0.992 1.347** 1.088 0.913 1.181 1.135 0.836
CADL 0.976** 1.031 0.991 1.026 1.102 0.920 0.988 0.975 1.060 1.009 1.075
FAAR 0.889 0.907 1.029 0.897 0.941 1.014 1.054 0.865* 0.953 1.046 0.964
PCR 0.935 0.856 1.046 0.858 0.906 1.276** 2.084** 0.864 1.472** 1.046 0.875
Bagging 0.917 1.039 0.962 1.129 1.039 1.373** 1.147 1.126 0.963 1.010 1.001
Boosting 0.972 0.994 0.929 0.961 0.990 0.965 1.003 0.882** 0.997 1.008 1.032
BMA1 0.974 0.984 0.941 0.961 0.994 0.974 1.019 0.875** 1.014 1.027 1.047
BMA2 0.980 0.990 0.952 0,955 0.991 1.002 1.012 0.870** 1.009 1.028 1.040
Rridge 0.984 0.990 0.959 0.969 0.988 1.052 1.000 0.864** 1.030 1.035 1.013
LAR 0.963* 0.984 0.957** 0.991 0.991 0.970** 1.003 0.950** 0.987 1.005 1.021
EN 0.963* 0.984 0.957** 0.991 0.991 0.970** 1.003 0.950** 0.987 1.005 1.021
NNG 0.987* 0.992 0.995 0.991 0.993 0.978** 0.999 0.986** 0.995 1.003 1.005
Mean 0.924** 0.952* 0.924 0.927 0.953 0.939 0.974 0.884** 0.969 1.006 0.939**
SP1L, Recursive, h=1
AR 6.257 0.007 18.650 0.002 0.010 0.000 1.316 0.010 0.003 0.400 0.006
ARX(SIC) 1.011 0.941 1.136 0.966 0.992 1.347** 1.088 0.913 1.181 1.135 0.836
CADL 0.976** 1.031 0.991 1.026 1.018 0.920 0.988 0.975 1.060 1.009 1.075
FAAR 1.069 0.882 1.851** 1.392 1.121 1.985** 3.631** 1.209 1.454 1.390** 0.799
PCR 1.013 0.881 1.676** 1.359 1.120 1.837** 4.869** 1.163 1.700** 1.371 0.889
Bagging 1.310** 0.984 1.762** 1.477** 1.120 3.494** 3.905** 1.225 1.229 1.131 0.804
Boosting 1.038 0.897 1.456** 1.310 1.101 1.758** 3.714** 1.104 1.419 1.224** 0.795
BMA1 1.042 0.890 1.544** 1.328 1.090 1.758** 3.711** 1.124 1.446 1.253** 0.802
BMA2 1.028 0.888 1.538** 1.344 1.103 1.762** 3.720** 1.111 1.430 1.242** 0.805
Rridge 1.033 0.891 1.636** 1.272 1.060 1.735** 3.664** 1.125 1.478** 1.270** 0.784
LAR 1.068 0.901 1.395** 1.276 1.094 1.782** 3.823** 1.072 1.360 1.210** 0.791
EN 1.069 0.902 1.396** 1.275 1.094 1.777** 3.825** 1.073 1.360 1.210** 0.788
NNG 1.070 0.907 1.408** 1.275 1.097 1.779** 3.844** 1.072 1.362 1.207** 0.784
Mean 0.966 0.876 1.259** 1.046 0.973 1.441** 2.681** 0.986 1.143 1.150** 0.745**
SP2, Recursive, h=1
AR 6.257 0.007 18.650 0.002 0.010 0.000 1.316 0.010 0.003 0.400 0.006
ARX(SIC) 1.011 0.941 1.136 0.966 0.992 1.347** 1.088 0.913 1.181 1.135 0.836
CADL 0.976** 1.031 0.991 1.026 1.018 0.920 0.988 0.975 1.060 1.009 1.075
Bagging 1.492** 1.194 1.282** 1.266 0.952 1.823** 9.795** 1.316** 1.655 1.081 1.089
Boosting 1.465** 0.940 1.545** 1.606 1.206 1.196 1.282 1.287 1.157 1.119 1.257
BMA1 1.544** 1.012 1.595** 1.707 1.057 2.558** 1.337** 1.529** 1.246 1.049 1.793**
BMA2 1.021 0.934 1.603** 1.416 0.444 1.219 1.229 1.570** 1.237 1.638 1.093
Rridge 1.089 0.996 1.654** 1.447 1.477 1.329** 1.206 1.363** 1.157 1.734 1.077
LAR 0.891** 0.890 1.388** 1.402** 1.119 1.173** 1.368** 0.961 1.108 1.083 1.332**
EN 0.893** 0.885 1.441** 1.402** 1.100 1.172** 1.367** 0.961 1.115 1.123 1.289**
NNG 0.959 0.925 1.394** 1.404** 1.118 1.114** 1.383** 0.943 1.142 1.976 1.083
Mean 0.965 0.917 1.131 1.142 0.973 0.864** 1.229 1.008 0.996 1.021 1.000
SP3, Recursive, h=1
AR 6.257 0.007 18.650 0.002 0.010 0.000 1.316 0.010 0.003 0.400 0.006
ARX(SIC) 1.011 0.941 1.136 0.966 0.992 1.347** 1.088 0.913 1.181 1.135 0.836
CADL 0.976** 1.031 0.991 1.026 1.018 0.920 0.988 0.975 1.060 1.009 1.075
Bagging 6.843** 1.142 5.235** 5.337 2.120 13.78** 10.14** 3.521** 4.217 11.140 3.637
Boosting 1.010** 0.985 0.991** 0.947 0.983 1.143 1.011 0.893 1.118 1.024 0.826
BMA1 1.137** 1.010 1.062** 0.989 1.069 2.150** 1.409** 0.966** 1.080 1.162 0.842**
BMA2 0.980 0.998 1.081** 0.996 1.027 1.440 1.301 0.905** 1.115 1.121 0.834
Rridge 1.564 1.274 1.354** 1.051 1.186 2.258** 1.231 1.322** 1.334 1.417 1.079
LAR 0.990** 0.998 1.000** 1.017** 1.004 0.981** 1.003** 1.000 0.992 0.998 0.847**
EN 0.990** 0.996 1.000** 1.016** 1.004 0.982** 1.001** 1.000 0.993 0.998 0.850**
NNG 0.996 0.998 0.998** 0.999** 1.000 0.989** 1.003** 0.995 1.001 1.001 1.000
Mean 1.012 0.954 1.365 0.928 0.937 1.822** 1.013 0.928 1.001 1.102 0.865

Notes: Only AR results are expressed in MSFE, and the results of other methods are expressed in RMSFE against the
AR’s MSFE. So, when the ratio is less than 1, it refers to the situation where the alternative performs better than AR,

and vice versa. Best MSFE models are in bold and the DM test results testing equal forecast accuracy between a
benchmark, here AR, and an alternative are expresseed with * denoting the rejection of the null at the 10%

significance level and ** at the 5 % significance level.
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Figure 2.A.1: Plots of Gn and Cn statistics (SP1)
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Figure 2.A.2: Plots of p-values of GL and CL test (SP1)
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Figure 2.A.3: Plots of p-values of GL test (SP1L/SP2/SP3)
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Figure 2.A.4: Plots of p-values of CL test (SP1L/SP2/SP3)



57

Chapter 3

Predictive Gains Associated with Using

Supervised Model Specification Method in Big Data Environments

1 Introduction

This paper examines alternative approaches to how to construct a data set,

select factors, and specify a forecasting model in big data environments. Since

these choices can affect the efficiency and robustness of factor estimation and

forecasting performance, it is crucial to choose a proper estimator and shrink-

age method so that one can construct a feasible framework with a set of useful

regressors “targeted” for the forecasting purpose.

Specifically, this paper assesses the efficacy of “supervised” approaches by

carrying out Monte-Carlo simulations under different factor structures associ-

ated with a variety of data generating processes and empirical exercises. Tra-

ditional variable selection methods, factor estimators and forecasting models

are “naive” in the sense that they extract a handful of factors that summarize

the variability of the high-dimensional data set, without any consideration to

which variable is being forecasted. On the other hand, supervised methods

“train” the data set for a foresting variable, specifically by taking into account

the correlations between data set and the variable being predicted. This paper

brings the notion of supervision throughout all three stages of a model build-

ing process, the choice of regressors, the choice of the number of factors, and

the specification of forecasting models. (Figure 3.A.1)

First, regarding the construction of the data set, Bai and Ng (2008) empiri-

cal results showed that pre-screening predictors rather than using the original
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high-dimensional data set leads to more efficient factor estimation and bet-

ter forecasting results and they proposed two ways to select ‘targeted predic-

tors’ on the basis of the predictability for yt, the hard and soft thresholding.

Next, Jacobs et al. (2012) introduced a new information-based measure, In f R
n+1,

which enables to order the series in the data set, Xt, and decide whether to add

xt,n+1, a t× 1 vector, into Xt, a T × N data matrix or not. Their empirical re-

sults that used Stock and Watson (2005)’s data set also found that employing

a moderate number of series such as around 40 to 50 out of 144 series results

in better performances in terms of all three measures, (1) In f R
n+1; (2) the con-

ventional information-based measures, such as AIC; and (3) the commonality

ratio that measures the variation of the common component over the whole

variation of the data set. In this paper, I empirically assess how pre-screening

predictors affects forecasting performances (supervised principal component).

Second, as an exercise to see the implication of correct factor estimation,

I compare three kinds of factor estimators, first, Bai and Ng (2002)’s IC esti-

mator as IC-based approach, next, eigenvalue-based estimators such as, Ahn

and Horenstein (2013)’s eigenvalue ratio (ER) and growth ratio (GR) estima-

tors, Onatski (2010)’s ED (Edge Distribution) estimator, and lastly, supervised

version of estimators, such as generalized cross-validation (GCV) and Mal-

lows’ CL ((Li, 1986, 1987)). The comparison will be focused on the consistency

and robustness of factor estimation and forecasting performances and will be

tested under different factor structures. 1

When constructing forecasting models using latent factor variables that are

designed to condense information from large datasets into a small set of use-

ful explanatory variables, standard approaches involve extracting information

relevant to the entire dataset, and not targeted to a particular variable be-

1Boivin and Ng (2006)’s simulation results showed that, when the number of factors is
underestimated, r̂ < r, factors are less precisely estimated and forecasting results are also
worse compared to the case in which the correct number of factors is specified. On the other
hand, when it comes to the overestimated case, r̂ > r, the efficiency of factor estimation
improves compared to the underestimated case but the forecasting results are still worse than
the correctly specified case.
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ing forecasted. Supervised approaches to model specification do not do this,

but instead penalize model specifications according to metrics designed to fo-

cus on the particular target variable(s) of interest. For example, regardless of

which variable is being forecasted, standard principal component methods in-

volve constructing diffusion indexes based on eigenvectors corresponding to

the r largest eigenvalues of the correlation matrix of a data set. However, this

practice is questionable, in the sense that it is not clear whether such latent

factors (i.e., diffusion indexes) are effective in terms of predicting a specific

variable. Supervised methods tackle this issue by “training” involving simple

approaches such as taking into account the correlations between big data and

the variable being predicted.

Thirdly, as for a forecasting model specification, the conventional principal

component analysis relates common components with the marginal distribu-

tion of Xt. That is, the usual factor approach deals with f (y, X) = f (y|X) f (X)

and factors are distilled from f (X). However, as pointed by Cox (1968), there

is no reason why principal components as regressors should not be connected

with the variable to be predicted and carry the information of it. Here, I in-

troduce the supervised regression that hinges on f (y, X) = f (X|y) f (y), which

achieves the task of dimension reduction by utilizing the information con-

tained in the dependent variable, f (X|y). Specifically, while the usual PC

(principal component) regression imposes a factor structure on the relationship

between Xt and Ft, extracting a handful of factors as the summary information

of a big data set, the supervised forecasting models internalize the correlation

between the forecasting variable and the data set inside its forecasting scheme.

In this study, three supervised forecasting models will be considered, such

as a boosting, PLS (Partial Least Squares) regression, and CFPC (combining

forecast-principal component).

In order to analyze the efficacy of such approaches, I carry out a Monte-

Carlo simulation study in which I simulate different factor structures associ-
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ated with a variety of data generating processes (with and without heterogene-

ity, for example), including cases where: (i) there are very few latent factors;

(ii) there are many (up to 50) underlying factors; (iii) there are very few factors,

and only 1 or 2 are relevant for forecasting the target variable; and (iv) no fac-

tors are relevant for forecasting. I compare factor estimation and forecasting

results when supervised approaches are used. The simulation results indicate

that, while IC-based estimator and eigenvalue-based approaches can consis-

tently estimate r, supervised estimators can produce more robust forecasting

results throughout all different types of DGPs. In addition, I found that the

predictive gains when switching from PCR to PLS are quite substantial than

the improvement from using supervised factor estimators, implying that what

makes significant differences is a regression type, rather than configuration of

regressors. Empirical exercise results that horse-race compare 16 forecasting

models also indicate that supervised forecasting schemes outperform other

un-supervised forecasting models, proving the efficacy of supervision. Espe-

cially, the predictive gains when using PLS are quite substantial and I observe

that CFPC outperforms the simple average model most of time. Therefore, I

conclude that supervised approaches that are geared for the purpose of fore-

casting do serve its own purpose.

This rest of the paper is organized as follows. In Section 2, I cover conven-

tional approaches to variable selection and factor estimation in more details,

and, in section 3, alternatively, I introduce supervised approaches. In Section

4, I simulate 8 different types of stationary environments and evaluate the per-

formances of 6 different factor estimators including 2 supervised estimators.

In Section 5, I conduct empirical exercises to see the efficacy of supervised ap-

proaches. Section 6 concludes.
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2 Factor Model Specification

2.1 Do more data necessarily lead to better factor analysis ?

The question whether more data necessarily lead to better factor analysis is

related to the task of finding the optimal number of regressors, N. Boivin and

Ng (2006) concluded that, after trying different combinations of N & T, the

data configuration matters and employing a moderate number of data series

as few as 47 works better than using all available 147 series. Caggiano et al.

(2011) also pointed out that, using 7 big European countries, extracting fac-

tors from the pre-selected predictors results in significantly better forecasting

performances, rather than imposing the factor structure on the original high

dimensional data. den Reijer (2013)’s empirical findings also emphasized the

necessity of constructing a compact data set by considering the relationship

between a forecasting variable and predictors.

As ways to shrink the original high-dimensional set, I implement a variety

of robust shrinkage methods that are used in Lee (2017), which includes ridge,

NNG, LARS, and the EN. In more details, refer to Lee (2017).

2.2 Estimator for the number of latent factors

Traditional variable selection approaches, such as AIC, BIC, and HQIC, are

computationally infeasible when N and/or T grow(s) overwhelmingly large.

As alternatives, first, Bai and Ng (2002) proposed PC and IC estimator that can

consistently estimate the true underlying number of factors, r, in approximate

factor models. 2 Although some papers still adopt this BN estimator, two crit-

ical weaknesses have been pointed out: one has to choose a threshold function

and also has to specify the upper bound for the number of factors, rmax, which

2The difference between those two estimators, PC and IC, is that, as for the IC estimator,
the first SSR term is log-transformed and Bai and Ng (2002)’s simulation results show its
performance is more robust to the different choices of rmax.
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makes the finite-sample properties of BN estimator unstable subject to the two

choices.

Alternatively, estimators that associate with eigenvalues of the correlation

matrix of Xt, were proposed. This approach is based on the idea that the first

kth eigenvalues explode when the cross-sectional dimension, N, goes to infin-

ity, while the rest of eigenvalues are bounded. Thus, when the Frobenius norm

of Xt is decomposed into,

{||X2
t ||} = tr(E(XtX′t)) =

r

∑
j=1

λj +
m

∑
j=r+1

λj, (38)

a factor analysis is to explain the variation of Xt by the eigenvectors corre-

sponding to the first r largest eigenvalues of the correlation matrix of the data

matrix, which will consist of the common component of the factor model.

Here, estimating the threshold value, λr+1, is the task (de Reijer et al. (2014)).

3

First, Onatski (2010) proposed an estimator that is a function of the differ-

ence between adjoining eigenvalues of the correlation matrix, specifically as,

r̂(δ) = max{i ≤ rn
max : λi − λi+1 ≥ δ}. (39)

Here, under the assumption that the upper bound that r can take grows as

n → ∞, it is denoted as rn
max. One distinctive feature of Onatski (2010)’s

estimator, compared to Bai and Ng (2002)’s, is that its threshold function is de-

terministic, not subject to an arbitrary scaling. As for the choice of δ, Onatski

(2010) suggested an iterative procedure in which a calibrated value of δ, δ̂, will

be continuously plugged into the recursive algorithm for r̂ until convergence.

On the other hand, de Reijer et al. (2014)’s estimator that is in the family of

Onatski (2010)’s estimator sets δ̂r+1 = n
r λ̂r+1. Thus, if rmax is chosen, δ̂ is

3Before embarking eigenvalue tests, one can visually check by drawing the Scree plot (Cat-
tell (1966)), which detects a point where the slope of the line changes abruptly and that point
will be the estimate of the number of latent factors, r. However, the decision can be subjective
and ambiguous sometimes, but it is obviously a good eyeball test to begin with.
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fixed as δ̂ = n
k λ̂rmax+1. de Reijer et al. (2014)’s simulation results showed that

their estimator performs better than Onatski (2010)’ estimator in small sam-

ple cases especially under the situation where there exists neither significant

cross-sectional nor serial correlation.

Next, Ahn and Horenstein (2013) proposed two eigenvalue-ratio estima-

tors, eigenvalue ratio (ER) and growth ratio (GR) estimators that are based on

the criterion functions,

ER(r) ≡ λ̃NT,r

λ̃NT,r+1
(40)

GR(r) ≡ ln[V(r− 1)/V(r)]
ln[V(r)/V(r + 1)]

=
ln(1 + λ̃∗NT,r)

ln(1 + λ̃∗NT,r+1)
(41)

where λ̃NT,r ≡ ψr[XX′/(NT)] = ψr[X′X/(NT)] and ψr(A) denotes the rth

largest eigenvalues of a positive semi-definite matrix A. Here, V(r) ≡ ∑m
j=r+1 λ̃NT,j

where λ̃∗NT,r ≡ λ̃NT,r/V(r) and V(r) also can be expressed as the sample mean

of the squared residuals left from a regression of the forecasting variable Y on

λ̃NT,1, λ̃NT,2, ...,

λ̃NT,r. Then, ER estimator, r̂ER, and GR estimator, r̂GR, are defined as

r̂ER = max
1≤r≤rmax

ER(r) and r̂GR = max
1≤r≤rmax

GR(r). (42)

4 Their simulation results showed that ER and GR estimators perform better

than Bai and Ng (2002)’s BN estimator and Onatski (2010)’s ED (Edge Distri-

bution) estimator under a general times series context when error terms are se-

rially or/and cross-sectionally correlated and also under the situations where

dominant/weak factors exist. In addition, the simulation results confirmed the

finite-sample outperformance of ER and GR estimators when different values

of rmax are tried. 5

4Ahn and Horenstein (2013)’s simulation results indicate that, GR estimator works better
than ER estimator especially when there are few dominating factors.

5Ahn and Horenstein (2013) suggested two ways to set a rmax. First, if one has a prior
information on rmax, they suggested to set rmax1 =2rmax. On the other hand, if it is not
the case, then they proposed to use rmax2 = min(rmax∗ , 0.1m), where m = min(N, T) and



64

3 Supervised approaches

3.1 Targeted variables

As evidenced from many simulation and empirical studies, the quality of data

is critical as much as the quantity of data. Especially in big data environments,

it is suggested that pre-screening regressors based on the predictability for Yt

(targeted) provides feasible forecasting framework and leads to better fore-

casting results as well. First, Bair et al. (2006) suggested to make a marginal

decision to include a particular, Xj, based on,

cj =
XT

j y

‖ Xj ‖
> θ,

given a fixed threshold number, θ, which takes into account the correlation

between yt and Xt.

Next, Bai and Ng (2008) suggested two screening mechanisms for select-

ing predictors, the hard and soft thresholding. The hard thresholding selects

predictors solely based on the marginal predictability power of each single

regressor, regardless of what other predictors are included in the regression:

by checking whether the t-statistic of each regressor surpasses a given crit-

ical value, the data matrix will be composed of a compact set of these fil-

tered regressors. The critical drawback of this approach is that regressors that

might contain overlapping information could end up being chosen, since the

approach concerns only the marginal predictability of each variable. On the

other hand, the soft-thresholding approach takes into account what other re-

gressors are included in the set and ridge, least absolute shrinkage operator

rmax∗ = #{r|µ̃NT,r ≥ V(0)/m, r ≥ 1}. Their simulation results show that, when the id-
iosyncratic component does not have any extreme dominant/weak factors and strong cross-
sectional correlation in the idiosyncratic component, rmax2 leads to good performances of ER
& GR estimators.
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(lasso), elastic net (EN), and least angle regression (LARS) belong to this cate-

gory. Specifically, when the unrestricted original factor analysis is specified as,

Yt+h = αWt + βFt + εt+h (43)

where the data matrix, Xt, and factors, Ft, are related linearly as,

Xt = ∧Ft + et. (44)

the factor analysis with targeted predictors,

Yt+h = αWt + Γ̄Ft + εt+h, (45)

is to estimate Γ̄ which determines the entry of each predictor by shrinking and

zeroing the coefficients of uninformative series.

3.2 Supervised estimators for the number of factors

As alternatives to IC-based and the eigenvalue-based estimators, I employ two

supervised factor estimators, which internalize the correlation between the

forecasting variable and the data set inside its optimization scheme. Specifi-

cally, following Carrasco and Rossi (2016), I try two cross-validation criteria,

such as generalized cross-validation (GCV) and Mallows’ CL ((Li, 1986, 1987)).

Suppose Φ is the matrix that consists of r eigenvectors associated with the

eigenvalues that are greater than say η and define α̂η and Mη
Ty as,

α̂η = (Φ̂′Φ̂′)−1Φ̂′y (46)

Mη
Ty = Φ̂α̂η. (47)
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Then, the two cross-validation criteria are devised as to minimize ‖ x′tα̂
η −

x′tα ‖ where yt = x′tα + et First, GCV estimates r based on,

r̂ = argmin
r∈RT

T−1 ‖ y−Mη
Ty ‖2

(1− T−1tr(Mη
T))

2)
(48)

and Mallows’ CL criterion that has σ̂2 in it is based on,

r̂ = argmin
r∈RT

T−1 ‖ y−Mη
Ty ‖2 +2σ̂2

ε T−1tr(Mη
T). (49)

where RT is the set which r can be chosen from and σ̂2 is a consistent estimator

of σ2, the variance of error term. Both approaches consider having no factors

at all, r = 0, as a possible scenario.

3.3 Supervised forecasting models

The conventional principal component analysis relates the components with

the marginal distribution of Xt. However, as pointed by Cox (1968), there is no

reason why principal components as regressors should not be connected with

the dependent variable to be predicted and carry the information of it.

As an alternative, Cook et al. (2008) suggested Principal Fitted Components

(PFC), which uses an “inverse regression X on Y to gain reductive informa-

tion for the forward regression of Y on X.” The usual factor approach deals

with f (y, X) = f (y|X) f (X) and factors are distilled from the marginal dis-

tribution of X, f (X). On the other hand, the inverse regression hinges on

f (y, X) = f (X|y) f (y), achieving the task of dimension reduction by utilizing

the information of the dependent variable, f (X|y). (Giovannelli and Proietti

(2015))

In the following subsection, I will brief four supervised forecasting models,

Boosting (Freund and Schapire (1995)), PLS (partial least squares) regression
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(De Jong (1993), Garthwaite (1994), and Groen and Kapetanios (2016)), PCovR

(Principal Covariate Regression, De Jong and Kiers (1992) and and Heij et al.

(2007)), and CFPC (Combining forecast PC, Huang and Lee (2010) and Chan

et al. (1999)).

3.3.1 Boosting

Boosting is a forward stage-wise learning algorithm introduced by Freund and

Schapire (1995). By setting the sample average as an initial value, boosting se-

quentially updates and aggregates estimates obtained up to the current steps

with a weight. The first variant of Boosting algorithm,“AdaBoost”, was devel-

oped by Freund and Schapire (1995). Then, “Real AdaBoost”, which involves

an exponential loss function, was developed by Friedman et al. (2000), after

which “L2 Boosting,” using a quadratic loss function, was proposed by Fried-

man (2001).

Next, Bai and Ng (2009) came up with two boosting algorithms applica-

ble to an out-of-sample forecasting framework, component-wise L2 boosting

and block-wise L2 boosting. First, Component-wise L2 boosting considers each

variable as a separate potential regressor and attempts to minimize SSR(i) that

are left after regressing with the ith regressor. By combining principal compo-

nent analysis with this Boosting method (component + boosting), the draw-

back that comes from using the pure principal component approach solely can

be avoided. Next, block-wise L2 boosting is an algorithm that treats a block

of lagged terms as a regressor. Their simulation results show that component-

wise L2 boosting is consistent and results in a parsimonious model relatively,

while block-wise L2 boosting turns out to be more efficient. In this paper, I use

the component-wise L2 Boosting method as one of the shrinkage estimation

methods. For more detailed information on the procedure, refer to Bai and Ng

(2009) and Kim and Swanson (2014).
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3.3.2 PLS (partial least squares) regression

PLS trains factors that are linear combinations of Xt, ΓXt, by maximizing the

correlation between Yt and ΓXt (Wold (1982)). The consistency of the ordi-

nary PC estimators is established under the assumption that common compo-

nents dominate the co-movement of the underlying data set, X′X, and Groen

and Kapetanios (2016)’s simulation and empirical results confirm that, when

it comes to weak factor models, PLS outperforms the ordinary PC estimator.

For practical implementations, I follow the algorithm introduced in Groen and

Kapetanios (2016) (Algorithm 1. in chapter 2.1.).

3.3.3 Principal Covariate Regression (PCovR)

A forecasting exercise using the usual PC can be viewed as the two-stage op-

timization problem: the first step is to estimate r factors, r̂, that minimizes

‖ XT − X̂T ‖ (50)

where XT = ΛFk + eT and X̂T = Λ̂F̂k + êT and, then the forecasting method

that minimize forecasting error, êT = yT − ŷT, the most will be selected based

on a particular evaluation method. On the other hand, Principal Covariate

Regression (PCovR) combines them into a one-stage optimization problem that

incorporates the notion of supervision by minimizing,

w1‖ XT − X̂T ‖
2
+ w2‖ yT − ŷT ‖2 (51)

for a fixed w1 and w2. When w1 = 0, the emphasize is fully imposed on fitting

yt, while when w2 = 0, it is just the usual PC approach. For the detailed pro-

cedure, I will follow Heij et al. (2007).



69

3.3.4 Combining forecast PC (CFPC)

Combining forecast PC (CFPC) motivates from the ideas that it can be better

to combine forecasts (CF) than combining information (CI) under certain situ-

ations and that, even if a specific CI model turns out to be the best in-sample,

it is not guaranteed it will be the best out-of-sample as well. That is, CF is

designed to incorporate the notion of supervision by combining m different ŷi

where i = 1, ..., m also, not only extracting information of data set, Xt, from

each model.

As ways to fix the weights, wi, Huang and Lee (2010) suggested (1) simple

average, wi = 1
m (CF-mean), (2) regression-based approach, and (3) CF-PC.

Let ŷt+h = (ŷ1
t+h, ŷ2

t+h, ..., ŷm
t+h), a vector of forecasts from m different models,

then based on the equation,

ŷt+h = ΛFt+h + vt+h (52)

factors, F̂ = (F̂1+h, F̂2+h, ..., F̂T+h)
′, are estimated as

F̂ = ŶΛ̂/N (53)

where Ŷ = (ŷ1+h, ŷ2+h, ..., ŷT+h)
′ and Λ̂ is set as the corresponding eigenvec-

tors of the r largest eigenvalues of Ŷ′Ŷ. Then, a CF-PC forecast, ŷCF−PC
t+h , is

computed based on the equation,

yt+h = γ0 +
r

∑
i=1

γi F̂
(i)
t+h + et+h (54)

where r, the number of factors, is estimated using one of estimators for the

number of factors. Thus, when it comes to CF-PC, factors are a function of

forecast values from m different forecasting models.

Huang and Lee (2010)’s empirical results indicate that, when N is relatively

small, CF-mean often outperforms CF-PC, since the consistency of factor es-
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timation requires N → ∞. In this paper, I also conduct arithmetic mean and

Bayesian model averaging (BMA) and compare the forecasting performances

of different model averaging approaches. For the detailed procedures on BMA,

refer to Lee (2017).

4 Monte-Carlo Simulation

4.1 Description of Data Generating Process

In order to assess the efficacy of supervised approaches, I carry out a Monte-

Carlo simulation study in which I simulate different factor structures associ-

ated with a variety of data generating processes (with and without heterogene-

ity, for example), including cases where: (i) there are very few latent factors;

(ii) there are many (up to 50) underlying factors; (iii) there are very few factors,

and only 1 is relevant for forecasting the target variable; and (iv) no factors are

relevant for forecasting (Carrasco and Rossi (2016)). And (v) to (viii) are the

extension of (i) to (v) to a heterogeneous setting. The underlying DGP assumes

a baseline factor structure as,

yt+h =
r

∑
j=1

β j f jt + εt+h (55)

xit =
r

∑
j=1

λij f jt +
√

θuit (56)

where

uit =

√
1− σ2

1 + 2Hγ2 eit (57)

(Ahn and Horenstein (2013)). Throughout DGP 1 to DGP 4, εt+h and uit are

assumed to be iid N(0, 1), and then the restriction is relaxed for DGP 5 to DGP

8, by allowing both serial correlation and cross-sectional correlation to be pos-
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sible (σ = 0.5, γ = 0.2, and H = max(10, N
20)). Here, the number of factors,

r, will be estimated using Bai and Ng (2002)’s IC approach, eigenvalue-based

approaches such as Onatski (2010), Ahn and Horenstein (2013), and the super-

vised version of estimators, such as generalized cross-validation (GCV) and

Mallows’ CL and will compare their factor estimation and forecasting perfor-

mance results under these 8 different circumstances.

In details, DGP 1 has a few factor structure where r = 4 and rmax = r + 10,

with β, a (r× 1) vector of ones under iid error assumptions. DGP 2 describes

the situation in which there are as many factors as r = 50 and rmax is set as

min(N, t
2). DGP 3 considers the case when not all of factors are relevant for

predicting yt+h with r = 5, rmax = min(r + 10, min(N, T
2 )), and β = (1, 01×4)

′.

Here, factors can be fractioned into two parts, f = [ f1, f ′2]
′, where f1 is a rel-

evant factor and f2 refers to a vector of four irrelevant factors. Specifically, f

will have a structure as, f ∼ N(01×5, Ω) where Ω =

( 1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5

)
. Thus, given

the structure of Ω, f1 is a weak factor and f2 is a group of dominant factors.

Lastly, DGP 4 refers to the case when all factors are unrelated to yt+h, with β

fixed as a vector of five (r) zeros and rmax = r + 10. Factors will have a similar

structure as that of DGP 3. DGP 5 is the application of DGP1 to a heterogene-

ity case (σ = 0.5, γ = 0.2, and H = max(10, N
20)): in the same way, DGP 6 is

a heterogeneous extension from DGP 2, DGP 7 from DGP 3, and DGP 8 from

DGP 4. I set R = 300, in-sample period, and, P = 300, out-of-sample period,

then T = R+ P = 600. The out-of-sample forecasting exercise is based on PCR

and PLS and I use the recursive estimation window.

4.2 Simulation Results

Table (3.A.5) reports the Monte-Carlo simulation results. The third column in-

dicates the true underlying number of factors, r, that I fixed when simulating

each DGP. For every DGP, I report the estimated number of latent factors, r̂,
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using 6 different factor estimators, including IC-based approach, 3 eigenvalue-

based approaches, and 2 supervised approaches (Table (3.A.3)), which is the

average of estimated number of factors computed over when the recursive

estimation window moves. I also report the standard errors involved in the

factor estimation. The out-of-sample forecasting results are evaluated in terms

of MSFE (mean squared forecast error). MSFE1 refers to when out-of-sample

forecasting is carried out using PCR, while MSFE2 is the results when using

PLS.

Throughout different DGPs, I observe that IC estimator and three eigenvalue-

based estimators can consistently estimate the number of factors most of the

time. Specifically, under i.i.d. settings from DGP 1 to DGP 4, the four es-

timators are able to estimate r consistently all the time. When it comes to

heterogeneity cases, ER & GR estimators can estimate the correct number of

factors always, while, as for BN & ED, they tend to overestimate sometimes.

However, the deviations of r̂ from r are always less than 1 and the forecasting

results are also quite comparable each other.

On the other hand, supervised estimators sometimes tend to underestimate

and overestimate r. Interestingly, under DGP 3, 4, 7, & 8, where not all of fac-

tors are relevant for yt, supervised estimators report estimates that are closer

to the number of relevant factors, r∗, rather than to the true underlying fac-

tor numbers, r, but their forecasting results are markedly better than the case

when the eigenvalue-based approaches and IC-based estimator are used. For

example, as for DGP 3 case in which r is set as 5 but the number of relevant

factors is 1, then all of the eigenvalue-based estimators report r̂ as 5, but GCV

gives 1.6067 and Mallow’s Cl 1.62. And the forecasting results are better when

using the supervised estimators. The same story goes for DGP 4 and 8 as well,

except DGP 7 in which the supervised estimators result in higher MSFEs than

un-supervised estimators.

Another noticeable finding is that when the underlying number of factors
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are as many as r = 50, (DGP 2 & 6) and forecasting regression is carried out

using PCR, the associated forecasting uncertainties are much higher compared

to other DGPs. For example, the MSFE1s of DGP 2 & 6 are above 60, while

the MSFE1s results for all other DGPs are less than 5. In addition, when the

number of relevant factors are as small as 1 or 0 (DGP 3, 4, 5, & 8), the MSFE1s

results are always less than 2. It indicate that estimation uncertainty largely

determines forecasting performances, regardless of whether it is i.i.d. or het-

erogeneous.

However, when PLS is used for out-of-sample forecasting, the forecasting

results, MSFE2, are always better and more robust to different DGPs than the

results when using PCR. The effects of using the supervised forecasting model

are more visible and robust than those of using the supervised factor estima-

tor. This may indicate that what makes significant differences is a regression

type, rather than configuration of regressors. Interestingly, the results make

hard to say there is double-supervision effect. That is, when both supervised

estimator and supervised forecasting scheme are used, the results are not way

better than when the supervised forecasting model solely is used, or some-

times they are worse.

In conclusion, the simulation results indicate that, first, the IC-based ap-

proach and eigenvalue-based approaches can consistently estimate the num-

ber of factors most of time and their performances are robust to different types

of DGPs, while supervised approaches occasionally over- and underestimate

r. Especially when the number of underlying factors and the number of rele-

vant factors for yt are different, the supervised approach estimates are closer

to the number of relevant factors, which results in better forecasting results.

However, I can observe more substantial improvements when switching from

PCR to PLS, indicating that supervised forecasting models can contribute to

forecasting accuracy more effectively than supervised factor estimators. Also,

the predictive gains are robust throughout different DGPs.
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5 Empirical Application

5.1 Description of Data and Forecasting methods

The data set to be used in this empirical application is Kim and Swanson

(2014)’s updated and expanded dataset of Stock and Watson (2002, 2012)’s.

144 US macroeconomics time series that spans from January 1960 to May 2009

(monthly) will be our data set, Xt, whose full list is available in Kim and Swan-

son (2013). Using this big dimensional data set, I forecast 11 macro variables,

Yt+h, which are the core economic variables that the Federal Reserve Bank

pays close attention into for formulating monetary policies: unemployment

rate(UR), personal income less transfer payments (PILT), 10 year Treasury-

bond yield (TB10Y), consumer price index (CPI), producer price index (PPI),

non-farm payroll employment (NPE), housing starts (HS), industrial produc-

tion (IPX), M2, S&P 500 index (SNP), and gross domestic product (GDP). Be-

fore proceeding with the empirical analysis, all forecasting variables, Yt+h, are

transformed to make each time series stationary: basically all level variables

are log-differenced and other variables already in log form are just taken as

the first difference between t and t− 1. For detailed descriptions on how each

variable is transformed, refer to Table 3.A.1.

I will horse-race compare the total 16 forecasting models that includes ba-

sic econometric models such as AR & CADL, factor models, shrinkage and

machine learning approaches, and 3 supervised forecasting models, boosting,

PLS, and CFPC. (Table 3.A.1) As for the estimator of the number of latent

factors, I compare 6 different estimators, such as BN estimator, ER and GR es-

timator, ON estimator, and supervised estimators, such as GCV criterion and

Mallows’ CL. (Table 3.A.3)
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5.2 Empirical Results

Table (3.A.6) to (3.A.11) report the MSFE results of 16 forecasting methods (Ta-

ble 3.A.1) combined with each different factor estimator (Table 3.A.3). First,

within this fixed data environment, I cannot conclude that the supervised

factors estimators uniformly outperform the un-supervised factor estimators

across different forecasting horizon and different forecasting variables nor can

I decide a specific estimator is dominant. These results are expected, since

unless under special circumstances where the true number of factors is not

the same with the number of relevant factors, the simulation results already

indicate that the 6 different estimators perform well, resulting in consistent

estimation and comparable forecasting performances most of the time. How-

ever, although the MSFE results do not show much difference among different

factor estimators, but they do differ over different forecasting models, which

can be confirmed from simulation results as well. That is, in this forecasting

exercise, what makes visible difference is a specific shrinkage or supervising

method that will determine a way to shrink and train the set.

The most notable result is PLS (partial least squares) “uniformly” and over-

whelmingly outperforms other forecasting models across different forecasting

variables, forecasting horizons, and 6 different factor estimators tried. Within

a fixed Yt and h, one can see that PLS “wins” all the time, proving the efficacy

of the supervised forecasting model. The performance of CFPC is also impres-

sive, resulting in better performances than the simple mean average model

most of time, but not enough to outperform other alternative models all the

time. It implies that the notion of model averaging seems to work better when

factors are trained for the forecasting values from the competing forecasting

models, compared to the case in which an uniform weight is assigned to each

forecasting model. However, when it comes to boosting, it is difficult to say its

performance is outstanding compared to un-supervised forecasting models.
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In addition, regardless of the discussion of the efficacy of supervised ap-

proaches, the MSFE results show that, in general, it is more difficult to forecast

UR (unemployment rate), TB (10-year treasury bond), and HS (Housing starts)

variables accurately than other variables. In addition, I can observe that the

magnitudes of MSFE generally increase as h increases, which is an expected

result in the forecasting literature since uncertainties for a more distant future

time period are higher. Plus, as confirmed from Lee (2017), across different

Yt and h, 6 different factor estimators, if one is to compare the forecasting

results of un-supervised forecasting models, then hybrid methods, shrinkage

approaches combined with diffusion index, outperform benchmark models

such as AR and CADL and purely factor-based approaches most of the time.

6 Conclusion

As a sequence of studies on forecasting model specification in big data envi-

ronments, this paper attempts to verify the efficacy of supervised approaches

by carrying out Monte-Carlo simulations and empirical exercises. Traditional

factor estimators and forecasting models are “naive” in the sense that the opti-

mization processes do not take into account the correlations between big data

and the variable being predicted. On the other hand, “supervised” methods

“train” the data set for a foresting variable so that it can be targeted for the

purpose of forecasting the variable.

The Monte-Carlo simulation results indicate that three different factor es-

timators, IC-based approach, eigenvalue-based approach, and supervised ap-

proach can consistently estimate the true number of latent factor, r, most of the

time except the case when the number of factors, r, and the number of relevant

factors for Yt, r∗, are different. In that case, I can observe that supervised factor

estimators outperform un-supervised estimators. Interestingly, I can observe
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more substantial improvements when switching from PCR to PLS, indicat-

ing that supervised forecasting models can contribute to forecasting accuracy

more effectively than supervised factor estimators do. Also, the predictive

gains are robust throughout different DGPs. Empirical exercise results that

horse-race compare 16 forecasting models also indicate that supervised fore-

casting schemes outperform other un-supervised forecasting models, proving

the efficacy of supervision. Especially, the predictive gains when using PLS

are quite substantial and I observe that CFPC outperforms the simple average

model most of time. Therefore, I conclude that supervised approaches that are

geared for the purpose of forecasting do serve its own purpose.
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7 Appendix

Figure 3.A.1: Factor model specification
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Table 3.A.1: 16 forecasting models and shrinkage methods employed
Names in abbreviation Description

AR(SIC) Autoregressive model with lags selected by SIC
ARX Autoregressive model with exogenous regressors

CADL Combined AR distributed lag model
FAAR Factor augmented AR model
PCR Principal components regression

Bagging Bagging with shrinkage, c = 1.96
BMA1 Bayesian model averaging with g-prior= 1

T
BMA2 Bayesian model averaging with g-prior=( 1

P )
2

Ridge Ridge regression
LAR Least angle regression
EN Elastic net

NNG Non-negative garotte
Mean Arithmetic mean

Boosting Component Boosting, M = 50
PLS Partial Least Squares

CFPC Combining forecast PC (CFPC)
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Table 3.A.2: Abbreviation

1 AR(SIC)
Benchmark2 ARX

3 CADL
4 FAAR Factor5 PCR
6 Bagging

Hybrid

7 BMA1
8 BMA2
9 Ridge

10 LAR
11 EN
12 NNG
13 Mean Mean
14 Boosting

Supervised15 PLS
16 CFPC

Table 3.A.3: Factor estimator
Bai and Ng (2002) IC IC-based approach

Ahn and Horenstein (2013) ER & GR eigenvalue-value based appraoch
Onatski (2010) ED

Li (1986, 1987) GCV Supervised
Mallow’s Cl
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Table 3.A.4: Target forecasting variables
Series Name Abbreviation Transformed Yt+h

Unemployment rate UR Yt+1 −Yt
Personal income less transfer payments PI ln(Yt+1/Yt)

10-year treasury bond TB Yt+1 −Yt
Consumer price index CPI ln(Yt+1/Yt)
Producer price index PPI ln(Yt+1/Yt)

Nonfarm payroll employment NPE ln(Yt+1/Yt)
Housing starts HS ln(Yt)

Industrial production IPX ln(Yt+1/Yt)
M2 M2 ln(Yt+1/Yt)

S&P 500 index SNP ln(Yt+1/Yt)
Gross domestic product GNP ln(Yt+1/Yt)
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Table 3.A.5: Monte carlo simulation results
r r∗ BN ER GR ED GCV CL

DGP1

rhat 4 4 4 4 4 4 5.6233 4.8667
(s.e.) 0 0 0 0 1.5651 0.9514

MSFE1 4.8811 4.8811 4.8811 4.8811 4.8937 4.8831
MSFE2 0.6956 0.6956 0.6956 0.6956 0.5523 0.5829

DGP2

rhat 50 50 50 50 50 50 50.7133 50.49
(s.e.) 0 0 0 0 1.8482 1.7185

MSFE1 61.823 61.823 61.823 61.823 61.8642 60.9972
MSFE2 0.3502 0.3502 0.3502 0.3502 0.3526 0.3528

DGP3

rhat 5 1 5 5 5 5 1.3667 2.54
(s.e.) 0 0 0 0 0.9462 2.0759

MSFE1 1.1593 1.1593 1.1593 1.1593 1.1339 1.1327
MSFE2 0.6838 0.6838 0.6838 0.6838 0.9695 0.9104

DGP4

rhat 5 0 5 5 5 5 3.21 3.3167
(s.e.) 0 0 0 0 0.56 0.5867

MSFE1 1.4294 1.4294 1.4294 1.4294 1.418 1.4203
MSFE2 0.7407 0.7407 0.7407 0.7407 1.0736 1.0672

DGP5

rhat 4 4 4.4867 4 4 4 4.6367 4
(s.e.) 0.7991 0 0 0 2.075 0

MSFE1 4.9155 4.9266 4.9266 4.9266 4.9085 4.9266
MSFE2 0.6508 0.7812 0.7812 0.7812 0.7593 0.7812

DGP6

rhat 50 50 50.6867 50 50 50 50.5133 52.3733
(s.e.) 1.2438 0 0 0 0.5007 2.8415

MSFE1 59.2928 59.1952 59.1952 59.1952 59.1465 59.2451
MSFE2 0.3524 0.353 0.353 0.353 0.3526 0.3485

DGP7

rhat 5 1 5.4633 5 5 5 1.3833 1.44
(s.e.) 0.8782 0 0 0 0.487 0.4972

MSFE1 1.3127 1.3141 1.3141 1.3141 1.2992 1.2997
MSFE2 0.7887 0.812 0.812 0.812 1.0358 1.0352

DGP8

rhat 5 0 5.3867 5 5 5 2.7967 3.97
(s.e.) 0.931 0 0 0 2.6906 3.8824

MSFE1 1.1294 1.1298 1.1298 1.1298 1.1333 1.1259
MSFE2 0.8857 0.9577 0.9577 0.9577 0.9545 0.8498

Note: All DGPs assume a factor structure with different numbers of factors, r, and different
numbers of relevant factors for Yt, r∗. The DGP 1 to 4 describe i.i.d. error cases and DGP 5 to
8 are for serially and cross sectionally-correlated errors. MSFE1 refers to when out-of-sample

forecasting is carried out using PCR, while MSFE2 is the results when using PLS.
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Table 3.A.6: MSFE results with BN estimator
Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
Recursive, h=1
AR 6.01647 0.00640 25.93355 0.00263 0.01100 0.00032 1.83508 0.00984 0.00351 0.46105 0.00664
ARX(SIC) 6.32510 0.00655 20.41634 0.00183 0.01005 0.00040 1.43406 0.00956 0.00382 0.45194 0.00517
CADL 6.81039 0.00718 19.09536 0.00254 0.00990 0.00070 10.22033 0.01125 0.00557 0.42074 0.00620
FAAR 7.25588 0.00647 20.09121 0.00230 0.01028 0.00082 6.19255 0.01179 0.00469 0.45181 0.00588
PCR 6.86619 0.00690 18.69430 0.00189 0.01000 0.00039 1.53261 0.01090 0.00314 0.42224 0.00608
Bagging 6.96982 0.00718 19.25276 0.00187 0.00981 0.00046 1.62188 0.01190 0.00308 0.40849 0.00603
BMA1 6.45073 0.00630 25.03210 0.00261 0.01102 0.00036 2.20504 0.00947 0.00331 0.46866 0.00689
BMA2 6.42131 0.00627 24.81385 0.00259 0.01103 0.00036 2.20447 0.00949 0.00331 0.46949 0.00682
Rridge 6.01268 0.00637 25.00934 0.00259 0.01099 0.00031 1.87685 0.00953 0.00347 0.46185 0.00669
LAR 6.32654 0.00707 18.07647 0.00190 0.01002 0.00030 1.34765 0.01064 0.00320 0.39898 0.00618
EN 6.26707 0.00703 18.57563 0.00191 0.01003 0.00029 1.32516 0.01067 0.00320 0.39951 0.00607
NNG 6.23623 0.00699 18.42869 0.00190 0.00999 0.00029 1.33771 0.01055 0.00315 0.40026 0.00610
Mean 9.72605 0.00651 28.21763 0.00195 0.00912 0.00045 1.38529 0.01590 0.00371 0.47392 0.00529
Boosting 6.09573 0.00631 25.06456 0.00261 0.01102 0.00032 1.88140 0.00943 0.00333 0.45721 0.00672
PLS 0.000032 0.000000 0.000139 0.000000 0.000000 0.000000 0.036116 0.000000 0.000000 0.000000 0.000000
CFPC 6.03212 0.00627 18.89379 0.00194 0.00960 0.00030 1.66259 0.00955 0.00278 0.41703 0.00553
Recursive, h=3
AR 6.32542 0.00650 21.73429 0.00239 0.01097 0.00042 3.31169 0.01076 0.00420 0.43161 0.00525
ARX(SIC) 6.84166 0.00604 21.60795 0.00254 0.01064 0.00046 2.55763 0.01074 0.00357 0.43824 0.00524
CADL 6.84350 0.00711 21.02610 0.00280 0.01046 0.00075 11.27095 0.01133 0.00607 0.44135 0.00615
FAAR 7.14151 0.00669 23.50582 0.00248 0.01044 0.00086 8.64967 0.01279 0.00488 0.46570 0.00579
PCR 6.87827 0.00673 23.74844 0.00250 0.01091 0.00049 3.24384 0.01248 0.00388 0.46742 0.00604
Bagging 6.73097 0.00740 24.07297 0.00240 0.01061 0.00071 3.37871 0.01350 0.00367 0.44101 0.00629
BMA1 7.15409 0.00669 21.96361 0.00245 0.01123 0.00046 5.15734 0.01218 0.00431 0.43942 0.00599
BMA2 7.11549 0.00662 21.65526 0.00245 0.01130 0.00046 5.14545 0.01212 0.00431 0.43990 0.00602
Rridge 6.30450 0.00647 21.20795 0.00234 0.01084 0.00040 3.51418 0.01072 0.00424 0.43185 0.00526
LAR 6.42233 0.00664 21.61359 0.00251 0.01111 0.00043 2.68708 0.01085 0.00365 0.43530 0.00540
EN 6.29079 0.00655 21.62100 0.00253 0.01117 0.00039 2.55939 0.01039 0.00358 0.43419 0.00526
NNG 6.31423 0.00650 21.78195 0.00255 0.01122 0.00039 2.57252 0.01033 0.00359 0.43382 0.00530
Mean 8.21350 0.00633 39.96991 0.00245 0.01040 0.00050 2.67249 0.01389 0.00400 0.50263 0.00527
Boosting 6.47873 0.00654 22.18960 0.00237 0.01105 0.00044 3.72695 0.01149 0.00421 0.43094 0.00553
PLS 0.000026 0.000000 0.000026 0.000000 0.000000 0.000000 0.020333 0.000000 0.000000 0.000000 0.000000
CFPC 6.16024 0.00628 21.30342 0.00226 0.01032 0.00040 3.30326 0.01040 0.00355 0.43309 0.00532
Recursive, h=12
AR 7.52761 0.00669 21.02375 0.00248 0.01102 0.00092 12.45944 0.01197 0.00406 0.43427 0.00530
ARX(SIC) 7.79336 0.00644 21.25878 0.00255 0.01079 0.00092 12.19288 0.01224 0.00409 0.43422 0.00531
CADL 7.31029 0.00721 20.92354 0.00283 0.01050 0.00096 16.04111 0.01213 0.00644 0.44127 0.00621
FAAR 7.81270 0.00681 22.26425 0.00263 0.01087 0.00105 15.84247 0.01282 0.00455 0.44546 0.00564
PCR 7.92898 0.00687 21.99345 0.00254 0.01094 0.00102 13.35102 0.01290 0.00417 0.44654 0.00570
Bagging 7.52654 0.00672 23.35133 0.00256 0.01098 0.00104 10.68486 0.01253 0.00383 0.43440 0.00527
BMA1 8.66192 0.00727 20.93315 0.00237 0.01101 0.00145 20.58426 0.01326 0.00404 0.43535 0.00524
BMA2 8.66014 0.00729 20.97945 0.00236 0.01097 0.00144 20.56385 0.01344 0.00404 0.43671 0.00525
Rridge 7.49785 0.00673 20.76322 0.00243 0.01091 0.00095 13.26538 0.01206 0.00396 0.43549 0.00537
LAR 7.66963 0.00667 21.08653 0.00253 0.01097 0.00102 12.47747 0.01245 0.00399 0.43448 0.00538
EN 7.50109 0.00665 21.06206 0.00256 0.01099 0.00094 12.29468 0.01229 0.00408 0.43432 0.00537
NNG 7.43319 0.00661 21.15658 0.00252 0.01091 0.00090 12.09557 0.01181 0.00405 0.43726 0.00529
Mean 11.86207 0.00694 43.57187 0.00272 0.01208 0.00100 11.30395 0.01637 0.00404 0.50859 0.00547
Boosting 7.43920 0.00678 21.03143 0.00238 0.01109 0.00096 12.69504 0.01209 0.00405 0.43523 0.00533
PLS 0.000002 0.000000 0.000022 0.000000 0.000000 0.000000 0.000218 0.000000 0.000000 0.000000 0.000000
CFPC 7.23853 0.00650 21.25086 0.00228 0.01053 0.00088 12.15803 0.01182 0.00374 0.43393 0.00523

Note: The data set spans from January 1960 to May 2009 (Monthly), with total 144
macroeconomic series as Xt to predict the 11 forecasting variables listed on the first row. I set
P, out-of-sample period, as 300 where T = R + P = 260 + 300 = 560. The first column lists 16
forecasting models that include benchmark, factor, hybrid, and supervised methods. The best

MSFE models, for a given Yt and h, are in bold.
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Table 3.A.7: MSFE results with ER estimator
Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
Recursive, h=1
AR 6.01647 0.00640 25.93355 0.00263 0.01100 0.00032 1.83508 0.00984 0.00351 0.46105 0.00664
ARX(SIC) 6.32510 0.00655 20.41634 0.00183 0.01005 0.00040 1.43406 0.00956 0.00382 0.45194 0.00517
CADL 6.81039 0.00718 19.09536 0.00254 0.00990 0.00070 10.22033 0.01125 0.00557 0.42074 0.00620
FAAR 7.42923 0.00683 21.18732 0.00252 0.01057 0.00102 19.23398 0.01200 0.00491 0.44850 0.00566
PCR 6.44224 0.00710 18.78987 0.00188 0.00997 0.00032 1.39578 0.01089 0.00322 0.41025 0.00609
Bagging 6.47147 0.00718 18.75646 0.00188 0.01005 0.00032 1.40781 0.01082 0.00320 0.41004 0.00605
BMA1 6.59677 0.00650 25.75852 0.00263 0.01107 0.00037 1.99765 0.01056 0.00351 0.46516 0.00712
BMA2 6.19257 0.00642 25.83739 0.00261 0.01101 0.00034 1.96996 0.01006 0.00351 0.46819 0.00690
Rridge 6.05004 0.00644 25.91318 0.00261 0.01097 0.00033 1.88514 0.00992 0.00351 0.46538 0.00676
LAR 6.46096 0.00716 18.72497 0.00190 0.01004 0.00032 1.37314 0.01096 0.00320 0.40510 0.00629
EN 6.26889 0.00704 18.73345 0.00191 0.01003 0.00029 1.32334 0.01066 0.00320 0.40036 0.00609
NNG 6.22577 0.00699 33.96986 0.00191 0.01001 0.00029 1.32728 0.01063 0.00321 0.40475 0.00611
Mean 6.28665 0.00664 23.36673 0.00190 0.00883 0.00055 5.25414 0.01412 0.00393 0.45773 0.00528
Boosting 6.07403 0.00642 25.80672 0.00263 0.01100 0.00033 1.86727 0.00993 0.00351 0.46105 0.00670
PLS 0.000016 0.000000 0.000231 0.000000 0.000000 0.000000 0.032064 0.000000 0.000000 0.000000 0.000000
CFPC 6.02043 0.00640 19.51682 0.00194 0.00964 0.00032 1.98508 0.00983 0.00287 0.41981 0.00557
Recursive, h=3
AR 6.32542 0.00650 21.73429 0.00239 0.01097 0.00042 3.31169 0.01076 0.00420 0.43161 0.00525
ARX(SIC) 6.84166 0.00604 21.60795 0.00254 0.01064 0.00046 2.55763 0.01074 0.00357 0.43824 0.00524
CADL 6.84350 0.00711 21.02610 0.00280 0.01046 0.00075 11.27095 0.01133 0.00607 0.44135 0.00615
FAAR 7.47966 0.00686 21.52738 0.00257 0.01048 0.00109 19.52803 0.01275 0.00454 0.44392 0.00536
PCR 6.61697 0.00675 21.90197 0.00245 0.01085 0.00045 2.93278 0.01134 0.00350 0.44595 0.00546
Bagging 6.41930 0.00646 22.12916 0.00247 0.01105 0.00044 2.91104 0.01057 0.00351 0.43465 0.00522
BMA1 7.04061 0.00697 21.77508 0.00236 0.01092 0.00059 4.28911 0.01292 0.00415 0.43494 0.00590
BMA2 6.68496 0.00674 21.71088 0.00235 0.01086 0.00050 4.01391 0.01180 0.00414 0.43640 0.00559
Rridge 6.41795 0.00659 21.65800 0.00236 0.01088 0.00046 3.52223 0.01113 0.00415 0.43638 0.00537
LAR 6.52504 0.00677 21.60384 0.00252 0.01110 0.00047 2.85730 0.01135 0.00350 0.43820 0.00549
EN 6.28073 0.00657 21.57041 0.00254 0.01116 0.00039 2.56143 0.01041 0.00357 0.43438 0.00524
NNG 6.33036 0.00658 21.52676 0.00267 0.01112 0.00039 2.58154 0.01045 0.00400 0.43630 0.00527
Mean 6.41029 0.00645 32.76804 0.00236 0.01000 0.00062 6.78013 0.01389 0.00412 0.49195 0.00525
Boosting 6.39164 0.00656 21.73429 0.00239 0.01098 0.00046 3.48502 0.01124 0.00420 0.43161 0.00533
PLS 0.000008 0.000000 0.000006 0.000000 0.000000 0.000000 0.017241 0.000000 0.000000 0.000000 0.000000
CFPC 6.26161 0.00633 21.52808 0.00226 0.01031 0.00044 3.66339 0.01040 0.00352 0.43539 0.00520
Recursive, h=12
AR 7.52761 0.00669 21.02375 0.00248 0.01102 0.00092 12.45944 0.01197 0.00406 0.43427 0.00530
ARX(SIC) 7.79336 0.00644 21.25878 0.00255 0.01079 0.00092 12.19288 0.01224 0.00409 0.43422 0.00531
CADL 7.31029 0.00721 20.92354 0.00283 0.01050 0.00096 16.04111 0.01213 0.00644 0.44127 0.00621
FAAR 7.50524 0.00666 21.60042 0.00266 0.01071 0.00110 18.25008 0.01222 0.00424 0.43539 0.00524
PCR 7.95423 0.00663 21.63112 0.00256 0.01076 0.00099 12.03773 0.01244 0.00385 0.43684 0.00530
Bagging 7.84308 0.00646 21.47633 0.00257 0.01087 0.00075 11.84091 0.01170 0.00386 0.43155 0.00522
BMA1 8.73941 0.00696 21.06157 0.00248 0.01097 0.00135 14.70127 0.01367 0.00390 0.43451 0.00531
BMA2 8.09715 0.00684 21.09583 0.00247 0.01093 0.00112 14.04921 0.01286 0.00394 0.43541 0.00532
Rridge 7.69084 0.00675 21.06892 0.00248 0.01095 0.00101 12.79921 0.01233 0.00394 0.43605 0.00533
LAR 8.00979 0.00673 21.28872 0.00258 0.01091 0.00112 12.65974 0.01268 0.00389 0.43628 0.00534
EN 7.59289 0.00662 21.33511 0.00256 0.01095 0.00092 12.21581 0.01209 0.00406 0.43487 0.00531
NNG 7.63267 0.00662 31.68031 0.02193 0.01261 0.00092 12.25493 0.01213 0.01527 0.51687 0.00539
Mean 7.93966 0.00676 34.18830 0.00263 0.01151 0.00105 15.48067 0.01645 0.00392 0.49202 0.00536
Boosting 7.77314 0.00674 21.02375 0.00249 0.01102 0.00105 12.75416 0.01231 0.00397 0.43427 0.00530
PLS 0.000000 0.000000 0.000062 0.000000 0.000000 0.000000 0.000088 0.000000 0.000000 0.000000 0.000000
CFPC 7.41374 0.00647 21.36235 0.00246 0.01059 0.00091 12.72923 0.01201 0.00377 0.43483 0.00520

Notes: See notes to Table 6.
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Table 3.A.8: MSFE results with GR estimator
Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
Recursive, h=1
AR 6.01647 0.00640 25.93355 0.00263 0.01100 0.00032 1.83508 0.00984 0.00351 0.46105 0.00664
ARX(SIC) 6.32510 0.00655 20.41634 0.00183 0.01005 0.00040 1.43406 0.00956 0.00382 0.45194 0.00517
CADL 6.81039 0.00718 19.09536 0.00254 0.00990 0.00070 10.22033 0.01125 0.00557 0.42074 0.00620
FAAR 6.81148 0.00636 21.45579 0.00252 0.01051 0.00084 11.98468 0.01113 0.00506 0.44231 0.00548
PCR 6.37288 0.00687 19.23184 0.00186 0.00986 0.00032 1.45983 0.01044 0.00317 0.40602 0.00601
Bagging 6.70147 0.00718 18.80973 0.00188 0.00997 0.00035 1.50719 0.01093 0.00313 0.40642 0.00611
BMA1 6.52786 0.00630 25.76117 0.00261 0.01094 0.00035 2.00052 0.01028 0.00351 0.46014 0.00700
BMA2 6.10816 0.00621 25.80104 0.00261 0.01086 0.00032 1.96164 0.00975 0.00351 0.46034 0.00676
Rridge 6.00552 0.00638 25.91223 0.00260 0.01096 0.00032 1.86136 0.00976 0.00350 0.46351 0.00671
LAR 6.46204 0.00716 18.72428 0.00190 0.01004 0.00032 1.37301 0.01097 0.00321 0.40509 0.00629
EN 6.26893 0.00704 18.73289 0.00191 0.01003 0.00029 1.32347 0.01066 0.00320 0.40037 0.00609
NNG 6.22467 0.00700 33.98330 0.00191 0.00996 0.00029 1.32844 0.01063 0.00319 0.40192 0.00608
Mean 13.06306 0.00654 28.87022 0.00188 0.00904 0.00042 1.33308 0.01610 0.00333 0.45710 0.00510
Boosting 6.07962 0.00625 25.88908 0.00264 0.01098 0.00032 1.86309 0.00985 0.00350 0.46013 0.00669
PLS 0.000021 0.000000 0.000303 0.000000 0.000000 0.000000 0.036434 0.000000 0.000000 0.000000 0.000000
CFPC 6.12917 0.00628 19.49962 0.00194 0.00961 0.00030 1.72299 0.00975 0.00285 0.41519 0.00552
Recursive, h=3
AR 6.32542 0.00650 21.73429 0.00239 0.01097 0.00042 3.31169 0.01076 0.00420 0.43161 0.00525
ARX(SIC) 6.84166 0.00604 21.60795 0.00254 0.01064 0.00046 2.55763 0.01074 0.00357 0.43824 0.00524
CADL 6.84350 0.00711 21.02610 0.00280 0.01046 0.00075 11.27095 0.01133 0.00607 0.44135 0.00615
FAAR 6.82003 0.00668 21.73459 0.00260 0.01045 0.00093 14.00064 0.01184 0.00469 0.44705 0.00523
PCR 6.37089 0.00661 22.07339 0.00249 0.01072 0.00044 3.00225 0.01104 0.00357 0.44936 0.00537
Bagging 6.61658 0.00667 22.41086 0.00246 0.01110 0.00051 3.09148 0.01161 0.00355 0.43681 0.00550
BMA1 6.84005 0.00681 21.80477 0.00238 0.01085 0.00053 4.24730 0.01225 0.00419 0.43229 0.00579
BMA2 6.54725 0.00658 21.77099 0.00239 0.01083 0.00044 3.97330 0.01115 0.00418 0.43189 0.00548
Rridge 6.30478 0.00654 21.63434 0.00236 0.01087 0.00044 3.43193 0.01084 0.00415 0.43508 0.00530
LAR 6.52502 0.00677 21.60170 0.00252 0.01111 0.00047 2.84525 0.01134 0.00350 0.43828 0.00548
EN 6.28141 0.00657 21.57032 0.00254 0.01116 0.00039 2.56226 0.01042 0.00357 0.43440 0.00524
NNG 6.27848 0.00653 21.52832 0.00268 0.01114 0.00039 2.57633 0.01032 0.00401 0.43366 0.00521
Mean 9.45296 0.00642 41.71967 0.00245 0.01052 0.00048 2.54505 0.01392 0.00364 0.52031 0.00517
Boosting 6.29448 0.00652 21.77854 0.00239 0.01091 0.00045 3.48778 0.01099 0.00422 0.43054 0.00528
PLS 0.000013 0.000000 0.000024 0.000000 0.000000 0.000000 0.020566 0.000000 0.000000 0.000000 0.000000
CFPC 6.08945 0.00626 21.40153 0.00227 0.01031 0.00041 3.33461 0.01019 0.00350 0.43256 0.00516
Recursive, h=12
AR 7.52761 0.00669 21.02375 0.00248 0.01102 0.00092 12.45944 0.01197 0.00406 0.43427 0.00530
ARX(SIC) 7.79336 0.00644 21.25878 0.00255 0.01079 0.00092 12.19288 0.01224 0.00409 0.43422 0.00531
CADL 7.31029 0.00721 20.92354 0.00283 0.01050 0.00096 16.04111 0.01213 0.00644 0.44127 0.00621
FAAR 7.17484 0.00656 21.74582 0.00251 0.01051 0.00092 14.47367 0.01134 0.00428 0.43644 0.00523
PCR 7.49932 0.00657 21.59088 0.00239 0.01046 0.00087 11.16717 0.01155 0.00385 0.43748 0.00530
Bagging 7.97716 0.00659 21.68526 0.00247 0.01060 0.00073 11.54274 0.01181 0.00387 0.43985 0.00524
BMA1 8.48049 0.00683 21.06880 0.00235 0.01092 0.00118 13.81293 0.01269 0.00391 0.43432 0.00524
BMA2 7.87365 0.00669 21.06309 0.00235 0.01095 0.00096 13.25233 0.01199 0.00393 0.43496 0.00525
Rridge 7.58278 0.00672 21.06773 0.00247 0.01092 0.00099 12.68884 0.01216 0.00394 0.43474 0.00533
LAR 7.96242 0.00673 21.28872 0.00258 0.01091 0.00111 12.65974 0.01268 0.00390 0.43628 0.00534
EN 7.59295 0.00662 21.33508 0.00256 0.01095 0.00092 12.21938 0.01209 0.00406 0.43487 0.00531
NNG 7.51066 0.00658 31.67042 0.02192 0.01265 0.00090 12.13772 0.01185 0.01526 0.51680 0.00535
Mean 13.23713 0.00690 45.50544 0.00264 0.01209 0.00096 10.89283 0.01662 0.00393 0.51411 0.00532
Boosting 7.44333 0.00668 21.02375 0.00236 0.01097 0.00093 11.24012 0.01146 0.00395 0.43427 0.00528
PLS 0.000002 0.000000 0.000079 0.000000 0.000000 0.000000 0.000176 0.000000 0.000000 0.000000 0.000000
CFPC 7.26267 0.00643 21.50420 0.00240 0.01053 0.00084 11.77505 0.01160 0.00375 0.43517 0.00518

Notes: See notes to Table 6.
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Table 3.A.9: MSFE results with ED estimator
Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
Recursive, h=1
AR 6.01647 0.00640 25.93355 0.00263 0.01100 0.00032 1.83508 0.00984 0.00351 0.46105 0.00664
ARX(SIC) 6.32510 0.00655 20.41634 0.00183 0.01005 0.00040 1.43406 0.00956 0.00382 0.45194 0.00517
CADL 6.81039 0.00718 19.09536 0.00254 0.00990 0.00070 10.22033 0.01125 0.00557 0.42074 0.00620
FAAR 7.75134 0.00698 19.62084 0.00230 0.01009 0.00105 19.74857 0.01249 0.00506 0.44368 0.00582
PCR 6.64691 0.00717 18.00800 0.00186 0.00989 0.00033 1.45782 0.01099 0.00327 0.40613 0.00614
Bagging 6.52502 0.00717 19.01031 0.00186 0.00995 0.00033 1.45431 0.01077 0.00321 0.40832 0.00608
BMA1 6.58072 0.00655 24.71888 0.00261 0.01107 0.00038 2.14192 0.01034 0.00352 0.46195 0.00720
BMA2 6.41176 0.00657 24.93104 0.00260 0.01104 0.00037 2.12273 0.01018 0.00353 0.46710 0.00716
Rridge 6.09639 0.00647 25.08653 0.00258 0.01092 0.00033 1.89846 0.00985 0.00353 0.46085 0.00680
LAR 6.36523 0.00714 18.14595 0.00190 0.01005 0.00031 1.36452 0.01070 0.00323 0.40031 0.00624
EN 6.28206 0.00703 18.66203 0.00191 0.01003 0.00029 1.32553 0.01066 0.00320 0.40026 0.00608
NNG 6.23227 0.00705 25.16222 0.00190 0.01003 0.00029 1.32956 0.01062 0.00325 0.40032 0.00612
Mean 7.17828 0.00662 19.86525 0.00206 0.00926 0.00069 15.12445 0.01445 0.00409 0.45219 0.00528
Boosting 6.16230 0.00643 25.05047 0.00263 0.01102 0.00033 1.87446 0.00977 0.00351 0.45851 0.00668
PLS 0.000014 0.000000 0.000170 0.000000 0.000000 0.000000 0.028494 0.000000 0.000000 0.000000 0.000000
CFPC 6.12283 0.00644 18.90183 0.00195 0.00968 0.00033 2.29756 0.00982 0.00290 0.41670 0.00558
Recursive, h=3
AR 6.32542 0.00650 21.73429 0.00239 0.01097 0.00042 3.31169 0.01076 0.00420 0.43161 0.00525
ARX(SIC) 6.84166 0.00604 21.60795 0.00254 0.01064 0.00046 2.55763 0.01074 0.00357 0.43824 0.00524
CADL 6.84350 0.00711 21.02610 0.00280 0.01046 0.00075 11.27095 0.01133 0.00607 0.44135 0.00615
FAAR 7.56666 0.00701 21.38425 0.00236 0.01002 0.00111 20.15209 0.01316 0.00485 0.43842 0.00561
PCR 6.73796 0.00690 21.55360 0.00240 0.01065 0.00047 3.19792 0.01186 0.00369 0.44117 0.00577
Bagging 6.53165 0.00661 22.35081 0.00248 0.01082 0.00046 3.10555 0.01089 0.00357 0.43430 0.00540
BMA1 7.39455 0.00721 21.67579 0.00227 0.01085 0.00064 5.14542 0.01390 0.00432 0.43240 0.00623
BMA2 7.28723 0.00714 21.60532 0.00227 0.01079 0.00060 4.92663 0.01350 0.00432 0.43483 0.00620
Rridge 6.48921 0.00666 21.39602 0.00231 0.01076 0.00047 3.61115 0.01137 0.00422 0.43334 0.00546
LAR 6.45756 0.00669 21.64952 0.00250 0.01112 0.00044 2.78725 0.01108 0.00362 0.43629 0.00542
EN 6.27160 0.00655 21.61732 0.00253 0.01117 0.00039 2.57263 0.01038 0.00358 0.43433 0.00524
NNG 6.30439 0.00660 21.30513 0.00252 0.01110 0.00039 2.57022 0.01045 0.00407 0.43472 0.00528
Mean 7.00336 0.00631 23.90331 0.00217 0.00976 0.00073 15.67506 0.01398 0.00420 0.44931 0.00532
Boosting 6.46886 0.00661 21.73429 0.00235 0.01098 0.00046 3.69448 0.01138 0.00424 0.43161 0.00537
PLS 0.000007 0.000000 0.000008 0.000000 0.000000 0.000000 0.015501 0.000000 0.000000 0.000000 0.000000
CFPC 6.32547 0.00639 21.23703 0.00222 0.01026 0.00045 4.03873 0.01057 0.00358 0.43245 0.00526
Recursive, h=12
AR 7.52761 0.00669 21.02375 0.00248 0.01102 0.00092 12.45944 0.01197 0.00406 0.43427 0.00530
ARX(SIC) 7.79336 0.00644 21.25878 0.00255 0.01079 0.00092 12.19288 0.01224 0.00409 0.43422 0.00531
CADL 7.31029 0.00721 20.92354 0.00283 0.01050 0.00096 16.04111 0.01213 0.00644 0.44127 0.00621
FAAR 7.51748 0.00692 21.23799 0.00242 0.01037 0.00119 19.50051 0.01347 0.00416 0.44049 0.00538
PCR 7.86311 0.00690 21.18798 0.00253 0.01076 0.00110 13.01051 0.01358 0.00381 0.44192 0.00545
Bagging 7.63792 0.00668 22.16873 0.00267 0.01104 0.00082 12.52297 0.01269 0.00388 0.43414 0.00523
BMA1 9.16130 0.00757 20.89296 0.00243 0.01097 0.00182 20.13507 0.01620 0.00388 0.43628 0.00532
BMA2 9.14021 0.00759 20.86946 0.00240 0.01094 0.00177 19.87539 0.01624 0.00385 0.43724 0.00536
Rridge 7.64490 0.00686 20.70073 0.00242 0.01090 0.00108 13.33031 0.01279 0.00387 0.43623 0.00539
LAR 7.85385 0.00664 21.24638 0.00252 0.01093 0.00103 12.30767 0.01226 0.00399 0.43471 0.00533
EN 7.59065 0.00662 21.25774 0.00255 0.01095 0.00092 12.20328 0.01207 0.00409 0.43424 0.00531
NNG 7.60126 0.00664 26.29487 0.00253 0.01099 0.00094 12.18731 0.01224 0.00402 0.43687 0.00540
Mean 7.93966 0.00676 34.18830 0.00263 0.01151 0.00105 15.48067 0.01645 0.00392 0.49202 0.00536
Boosting 7.72542 0.00689 21.03054 0.00249 0.01102 0.00111 13.88304 0.01285 0.00397 0.43427 0.00530
PLS 0.000001 0.000000 0.000013 0.000000 0.000000 0.000000 0.000137 0.000000 0.000000 0.000000 0.000000
CFPC 7.32760 0.00653 21.20567 0.00233 0.01056 0.00093 12.86081 0.01231 0.00368 0.43492 0.00522

Notes: See notes to Table 6.
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Table 3.A.10: MSFE results with GCV estimator
Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
Recursive, h=1
AR 6.01647 0.00640 25.93355 0.00263 0.01100 0.00032 1.83508 0.00984 0.00351 0.46105 0.00664
ARX(SIC) 6.32510 0.00655 20.41634 0.00183 0.01005 0.00040 1.43406 0.00956 0.00382 0.45194 0.00517
CADL 6.81039 0.00718 19.09536 0.00254 0.00990 0.00070 10.22033 0.01125 0.00557 0.42074 0.00620
FAAR 7.25588 0.00647 20.09121 0.00230 0.01028 0.00082 6.19255 0.01179 0.00469 0.45181 0.00588
PCR 6.86619 0.00690 18.69430 0.00189 0.01000 0.00039 1.53261 0.01090 0.00314 0.42224 0.00608
Bagging 6.96982 0.00718 19.25276 0.00187 0.00981 0.00046 1.62188 0.01190 0.00308 0.40849 0.00603
BMA1 6.50125 0.00627 24.97246 0.00260 0.01100 0.00036 2.21106 0.00943 0.00331 0.46718 0.00686
BMA2 6.43462 0.00626 25.04126 0.00260 0.01099 0.00036 2.21076 0.00935 0.00330 0.46951 0.00682
Rridge 6.01268 0.00637 25.00934 0.00259 0.01099 0.00031 1.87685 0.00953 0.00347 0.46185 0.00669
LAR 6.32654 0.00707 18.07647 0.00190 0.01002 0.00030 1.34765 0.01064 0.00320 0.39898 0.00618
EN 6.26707 0.00703 18.57563 0.00191 0.01003 0.00029 1.32516 0.01067 0.00320 0.39951 0.00607
NNG 6.23623 0.00699 18.42869 0.00190 0.00999 0.00029 1.33771 0.01055 0.00315 0.40026 0.00610
Mean 9.72605 0.00651 28.21763 0.00195 0.00912 0.00045 1.38529 0.01590 0.00371 0.47392 0.00529
Boosting 6.09573 0.00631 25.06456 0.00261 0.01102 0.00032 1.88140 0.00943 0.00333 0.45721 0.00672
PLS 0.000032 0.000000 0.000138 0.000000 0.000000 0.000000 0.036096 0.000000 0.000000 0.000000 0.000000
CFPC 6.03658 0.00626 18.90306 0.00194 0.00959 0.00030 1.66329 0.00953 0.00278 0.41698 0.00553
Recursive, h=3
AR 6.32542 0.00650 21.73429 0.00239 0.01097 0.00042 3.31169 0.01076 0.00420 0.43161 0.00525
ARX(SIC) 6.84166 0.00604 21.60795 0.00254 0.01064 0.00046 2.55763 0.01074 0.00357 0.43824 0.00524
CADL 6.84350 0.00711 21.02610 0.00280 0.01046 0.00075 11.27095 0.01133 0.00607 0.44135 0.00615
FAAR 7.14151 0.00669 23.50582 0.00248 0.01044 0.00086 8.64967 0.01279 0.00488 0.46570 0.00579
PCR 6.87827 0.00673 23.74844 0.00250 0.01091 0.00049 3.24384 0.01248 0.00388 0.46742 0.00604
Bagging 6.73097 0.00740 24.07297 0.00240 0.01061 0.00071 3.37871 0.01350 0.00367 0.44101 0.00629
BMA1 7.09148 0.00668 21.58036 0.00244 0.01122 0.00046 5.16264 0.01200 0.00432 0.43914 0.00602
BMA2 7.17627 0.00662 21.99129 0.00245 0.01116 0.00046 5.15540 0.01205 0.00430 0.43960 0.00606
Rridge 6.30450 0.00647 21.20795 0.00234 0.01084 0.00040 3.51418 0.01072 0.00424 0.43185 0.00526
LAR 6.42233 0.00664 21.61359 0.00251 0.01111 0.00043 2.68708 0.01085 0.00365 0.43530 0.00540
EN 6.29079 0.00655 21.62100 0.00253 0.01117 0.00039 2.55939 0.01039 0.00358 0.43419 0.00526
NNG 6.31423 0.00650 21.78195 0.00255 0.01122 0.00039 2.57252 0.01033 0.00359 0.43382 0.00530
Mean 8.21350 0.00633 39.96991 0.00245 0.01040 0.00050 2.67249 0.01389 0.00400 0.50263 0.00527
Boosting 6.47873 0.00654 22.18960 0.00237 0.01105 0.00044 3.72695 0.01149 0.00421 0.43094 0.00553
PLS 0.000026 0.000000 0.000026 0.000000 0.000000 0.000000 0.020302 0.000000 0.000000 0.000000 0.000000
CFPC 6.15848 0.00628 21.29924 0.00226 0.01031 0.00040 3.30410 0.01039 0.00355 0.43306 0.00532
Recursive, h=12
AR 7.52761 0.00669 21.02375 0.00248 0.01102 0.00092 12.45944 0.01197 0.00406 0.43427 0.00530
ARX(SIC) 7.79336 0.00644 21.25878 0.00255 0.01079 0.00092 12.19288 0.01224 0.00409 0.43422 0.00531
CADL 7.31029 0.00721 20.92354 0.00283 0.01050 0.00096 16.04111 0.01213 0.00644 0.44127 0.00621
FAAR 7.81270 0.00681 22.26425 0.00263 0.01087 0.00105 15.84247 0.01282 0.00455 0.44546 0.00564
PCR 7.92898 0.00687 21.99345 0.00254 0.01094 0.00102 13.35102 0.01290 0.00417 0.44654 0.00570
Bagging 7.52654 0.00672 23.35133 0.00256 0.01098 0.00104 10.68486 0.01253 0.00383 0.43440 0.00527
BMA1 8.70257 0.00729 20.95637 0.00237 0.01100 0.00145 20.63582 0.01315 0.00406 0.43514 0.00525
BMA2 8.64804 0.00731 21.02016 0.00236 0.01099 0.00143 20.59054 0.01331 0.00404 0.43627 0.00526
Rridge 7.49785 0.00673 20.76322 0.00243 0.01091 0.00095 13.26538 0.01206 0.00396 0.43549 0.00537
LAR 7.66963 0.00667 21.08653 0.00253 0.01097 0.00102 12.47747 0.01245 0.00399 0.43448 0.00538
EN 7.50109 0.00665 21.06206 0.00256 0.01099 0.00094 12.29468 0.01229 0.00408 0.43432 0.00537
NNG 7.43319 0.00661 21.15658 0.00252 0.01091 0.00090 12.09557 0.01181 0.00405 0.43726 0.00529
Mean 11.86207 0.00694 43.57187 0.00272 0.01208 0.00100 11.30395 0.01637 0.00404 0.50859 0.00547
Boosting 7.43920 0.00678 21.03143 0.00238 0.01109 0.00096 12.69504 0.01209 0.00405 0.43523 0.00533
PLS 0.000002 0.000000 0.000022 0.000000 0.000000 0.000000 0.000218 0.000000 0.000000 0.000000 0.000000
CFPC 7.23823 0.00650 21.25485 0.00228 0.01053 0.00088 12.16092 0.01180 0.00374 0.43389 0.00523

Notes: See notes to Table 6.
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Table 3.A.11: MSFE results with CL estimator
Method UR PI TB CPI PPI NPE HS IPX M2 SNP GDP
Recursive, h=1
AR 6.01647 0.00640 25.93355 0.00263 0.01100 0.00032 1.83508 0.00984 0.00351 0.46105 0.00664
ARX(SIC) 6.32510 0.00655 20.41634 0.00183 0.01005 0.00040 1.43406 0.00956 0.00382 0.45194 0.00517
CADL 6.81039 0.00718 19.09536 0.00254 0.00990 0.00070 10.22033 0.01125 0.00557 0.42074 0.00620
FAAR 7.65883 0.00634 19.64651 0.00258 0.01080 0.00072 4.50174 0.01156 0.00436 0.47106 0.00584
PCR 7.21429 0.00677 18.83189 0.00198 0.01024 0.00040 1.65269 0.01082 0.00308 0.44324 0.00606
Bagging 7.06441 0.00703 19.42780 0.00190 0.00974 0.00044 1.88422 0.01280 0.00306 0.40977 0.00602
BMA1 6.46284 0.00624 24.66451 0.00261 0.01111 0.00037 2.19350 0.00956 0.00328 0.46832 0.00686
BMA2 6.49424 0.00627 25.13570 0.00262 0.01112 0.00037 2.21760 0.00950 0.00329 0.47106 0.00683
Rridge 6.01207 0.00638 24.96197 0.00259 0.01101 0.00031 1.85003 0.00950 0.00348 0.46230 0.00673
LAR 6.32654 0.00707 18.07647 0.00190 0.01002 0.00030 1.34765 0.01064 0.00320 0.39898 0.00618
EN 6.26355 0.00703 18.58874 0.00191 0.01003 0.00029 1.32476 0.01067 0.00320 0.39955 0.00607
NNG 6.25083 0.00699 18.43036 0.00191 0.01002 0.00029 1.34140 0.01053 0.00314 0.40066 0.00611
Mean 13.12719 0.00669 29.31811 0.00191 0.00913 0.00041 1.33319 0.01652 0.00323 0.50326 0.00520
Boosting 6.08626 0.00625 24.88826 0.00262 0.01109 0.00032 1.90426 0.00942 0.00331 0.45757 0.00671
PLS 0.000022 0.000000 0.000168 0.000000 0.000000 0.000000 0.036781 0.000000 0.000000 0.000000 0.000000
CFPC 6.19256 0.00622 18.72398 0.00194 0.00963 0.00030 1.63244 0.00957 0.00275 0.41307 0.00552
Recursive, h=3
AR 6.32542 0.00650 21.73429 0.00239 0.01097 0.00042 3.31169 0.01076 0.00420 0.43161 0.00525
ARX(SIC) 6.84166 0.00604 21.60795 0.00254 0.01064 0.00046 2.55763 0.01074 0.00357 0.43824 0.00524
CADL 6.84350 0.00711 21.02610 0.00280 0.01046 0.00075 11.27095 0.01133 0.00607 0.44135 0.00615
FAAR 7.31467 0.00674 23.87128 0.00277 0.01089 0.00074 6.84030 0.01309 0.00443 0.47926 0.00586
PCR 7.11771 0.00679 24.04249 0.00263 0.01112 0.00050 3.43636 0.01297 0.00367 0.48247 0.00615
Bagging 6.81990 0.00730 25.25260 0.00236 0.01103 0.00071 4.09277 0.01367 0.00366 0.44591 0.00623
BMA1 7.12599 0.00663 21.51404 0.00249 0.01150 0.00046 5.09558 0.01217 0.00413 0.44298 0.00595
BMA2 7.18842 0.00666 22.08970 0.00250 0.01152 0.00047 5.18187 0.01242 0.00415 0.43879 0.00611
Rridge 6.29623 0.00647 21.05696 0.00232 0.01082 0.00040 3.40512 0.01070 0.00421 0.43295 0.00530
LAR 6.42233 0.00664 21.61359 0.00251 0.01110 0.00043 2.68708 0.01085 0.00365 0.43529 0.00540
EN 6.28773 0.00655 21.62047 0.00253 0.01117 0.00039 2.55785 0.01039 0.00358 0.43429 0.00526
NNG 6.32980 0.00650 21.91931 0.00255 0.01128 0.00039 2.57605 0.01035 0.00356 0.43387 0.00532
Mean 9.46298 0.00670 41.40617 0.00242 0.01037 0.00045 2.38887 0.01427 0.00360 0.64995 0.00525
Boosting 6.52535 0.00656 22.34868 0.00241 0.01112 0.00044 3.81323 0.01149 0.00409 0.43643 0.00550
PLS 0.000014 0.000000 0.000031 0.000000 0.000000 0.000000 0.021243 0.000000 0.000000 0.000000 0.000000
CFPC 6.19835 0.00627 21.38016 0.00224 0.01036 0.00040 3.23454 0.01047 0.00344 0.43511 0.00530
Recursive, h=12
AR 7.52761 0.00669 21.02375 0.00248 0.01102 0.00092 12.45944 0.01197 0.00406 0.43427 0.00530
ARX(SIC) 7.79336 0.00644 21.25878 0.00255 0.01079 0.00092 12.19288 0.01224 0.00409 0.43422 0.00531
CADL 7.31029 0.00721 20.92354 0.00283 0.01050 0.00096 16.04111 0.01213 0.00644 0.44127 0.00621
FAAR 7.72813 0.00687 23.05951 0.00263 0.01081 0.00081 13.14432 0.01196 0.00437 0.44621 0.00591
PCR 7.79466 0.00697 22.84112 0.00246 0.01073 0.00081 12.20396 0.01201 0.00407 0.44785 0.00600
Bagging 7.55733 0.00665 23.30543 0.00252 0.01112 0.00088 11.09928 0.01273 0.00419 0.43643 0.00524
BMA1 8.61414 0.00734 20.86058 0.00235 0.01093 0.00149 19.17361 0.01404 0.00397 0.43388 0.00532
BMA2 8.59307 0.00728 20.88311 0.00233 0.01092 0.00151 19.17948 0.01401 0.00394 0.43418 0.00530
Rridge 7.50775 0.00678 20.69533 0.00246 0.01093 0.00103 13.36515 0.01269 0.00380 0.43675 0.00540
LAR 7.69714 0.00670 21.08400 0.00253 0.01089 0.00103 12.34471 0.01229 0.00398 0.43674 0.00536
EN 7.54091 0.00667 21.06237 0.00256 0.01091 0.00094 12.13013 0.01212 0.00407 0.43652 0.00534
NNG 7.40826 0.00661 21.13969 0.00254 0.01090 0.00090 12.07815 0.01182 0.00392 0.43787 0.00531
Mean 13.23893 0.00705 44.93888 0.00268 0.01195 0.00091 10.48048 0.01723 0.00385 0.59934 0.00542
Boosting 7.42609 0.00680 20.84673 0.00233 0.01096 0.00087 12.42225 0.01178 0.00385 0.43521 0.00535
PLS 0.000003 0.000000 0.000026 0.000000 0.000000 0.000000 0.000284 0.000000 0.000000 0.000000 0.000000
CFPC 7.18371 0.00650 21.11683 0.00223 0.01041 0.00082 11.72415 0.01168 0.00363 0.43472 0.00526

Notes: See notes to Table 6.
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