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 Depressive disorders are heterogeneous and their diagnoses have poor reliability. 

There is a need to understand the biological mechanisms of depression to improve 

assessment, diagnosis, and treatment. The default mode network (DMN), central 

executive network (CEN), and salience network (SN) are large-scale neural networks that 

have been implicated in depression. The present study examined how resting-state 

functional connectivity within and between these three networks is associated with 

individual differences in depression severity as well as rumination and emotion 

dysregulation, two transdiagnostic features associated with depression. Data were 

collected via functional magnetic resonance imaging (fMRI) using a standard resting-

state paradigm. Resting-state data for n = 59 participants were analyzed using 

independent component analysis. Functional connectivity values between core nodes of 

the DMN, CEN, and SN were calculated using Pearson correlation, and these 

connectivity values were correlated to continuous measures of depression severity, 

rumination, and emotion dysregulation across the whole sample. Functional connectivity 

between the right dorsolateral prefrontal cortex (CEN) and paracingulate gyrus (CEN) 
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was positively correlated (p	< 0.05) to depression severity. Functional connectivity 

between the left dorsolateral prefrontal cortex (CEN) and left inferior parietal lobule 

(DMN) was negatively correlated (p	< 0.05) to depression severity. These associations 

were no longer significant after correction for multiple comparisons. Each pair of brain 

regions was additionally correlated to a distinct pattern of rumination and emotion 

dysregulation scores. If replicated, the present findings could add knowledge about how 

resting-state functional connectivity varies with individual differences in depression 

severity and related constructs. 
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Introduction 

 Depression is a debilitating mental health condition that affects approximately 

30% of U.S. individuals in their lifetime (Kessler, Petukhova, Sampson, Zalavsky, & 

Wittchen, 2012). Depression is marked by a prolonged period of negative emotionality, 

attenuated behavioral flexibility, and functional impairment. The economic burden of 

depression in the U.S. was estimated to be over $200 billion in 2010 and is growing each 

year (Greenberg et al., 2015). Depression is also associated with an increased risk for 

chronic health problems (Strine et al., 2008) and death by suicide (Lesage et al., 1994). 

Researchers have developed a number of evidence-based treatments for depression across 

various disciplines, including anti-depressant pharmacotherapy, electroconvulsive 

therapy, transcranial magnetic stimulation, and psychotherapy, such as cognitive-

behavioral therapy and behavioral activation (Barlow, 2014). However, up to one third of 

depressed individuals in treatment fail to achieve remission after multiple treatment 

attempts, and 10-20% of depressed patients are classified as treatment resistant 

(Holtzheimer & Mayberg, 2011; Rush et al., 2006). There is a clear need for more 

research on the factors that contribute to the etiology and maintenance of depression in 

order to improve assessment and locate new targets for treatment. 

 Accurate diagnosis is thought to be one prerequisite to successful mental health 

treatment. Diagnosis can prove to be difficult, however, for conditions such as depression 

that have a variety of clinical presentations and wide range of severity. The gold standard 

for mental health diagnosis in the U.S. is the Diagnostic and Statistical Manual of Mental 

Disorders, which is currently in its fifth edition (DSM-5; APA, 2013). The DSM-5 

defines each disorder by a set of symptom criteria, which are self-reported by the patient. 
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Thus, clinicians rely heavily on subjective data provided by their clients as well as their 

own clinical judgment to make diagnoses. It is well established, however, that actuarial 

prediction is superior to subjective clinical judgment (Dawes, Faust, and Meehl, 1989; 

Goldberg, 1970; Wiggins, 1973). Indeed, in a recent DSM-5 field trial, researchers found 

the interrater reliability of the major depressive disorder diagnosis to be “questionable” 

with a kappa of only .25 (Regier et al., 2013). Thus, most mental healthcare professionals 

do not agree on the presence or absence of major depressive disorder, which is arguably 

the clearest presentation of clinical depression. Other depressive disorders defined in the 

DSM-5 have been questioned for their validity as distinct diagnoses, including persistent 

depressive disorder (Rhebergen & Graham, 2013) and disruptive mood dysregulation 

disorder (Evans et al., 2017). The need for objective, evidence-based methods to inform 

diagnosis and treatment is clear. 

 To this end, much research in the last few decades has focused on identifying 

biological mechanisms of psychological disorders (Jones & Mendell, 1999; Sanislow et 

al., 2010; Singh & Rose, 2009). A biological mechanism can be defined as a 

physiological process that explains or contributes to a pattern of behavior, 

disease/disorder state, or other measureable outcome. In general, mechanisms can explain 

how and/or why psychological disorders develop and how and/or why interventions 

produce change (Kazdin, 2007). Findings from mechanisms research have the potential to 

tailor individual treatment, predict prognosis, and even improve treatment outcomes 

(Kazdin, 2007; Singh & Rose, 2009). For example, an understanding of underlying 

mechanisms could help clinicians distinguish between two presentations of depression, 
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plan the most effective course of depression treatment, or predict which individuals will 

respond to specific forms of antidepressant treatment. 

 The present study focused on functional connectivity in the brain, a mechanism 

proposed to be involved in depression (Schneider & Prvulovic, 2013), in young adults 

with a range of depression severity. The goal was to identify potential neural mechanisms 

associated with various clinical features of depression. To this end, we examined 

functional connectivity of three major neural networks and how functional connectivity 

relates to individual differences in depression severity, rumination, and emotion 

dysregulation.  

 The following sections describe the construct of depression, summarize two 

neural models of depression, define resting-state functional connectivity, and characterize 

three neural networks and their patterns of connectivity in depressed individuals. 

Heterogeneity of Depression 

 Depression is a polythetic construct. For example, it is possible for two 

individuals diagnosed with major depressive disorder to share no common symptoms as 

they are defined in the DSM-5. Of the nine diagnostic criteria listed in the DSM-5, no 

single criterion is necessary for diagnosis (APA, 2013). Individuals with major 

depression must endorse one of the first two criteria, depressed mood or markedly 

diminished pleasure, but neither symptom is necessary in its own right. Three additional 

criteria can be satisfied with one of two opposing symptoms, i.e. insomnia or 

hypersomnia, psychomotor agitation or retardation, and significant weight loss or weight 

gain. The remaining four criteria, i.e. feelings of worthlessness/excessive guilt, fatigue, 

diminished concentration, and suicidality, are not specific to major depression. Persistent 
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depressive disorder (i.e. dysthymia) is similarly polythetic, needing two out of six 

symptoms for diagnosis. Importantly, symptoms that define depressive disorders are not 

unique to this diagnostic class. Bipolar, anxiety, neurodevelopmental, and trauma-related 

disorders share symptoms with depression. This heterogeneity and non-specificity in 

subjective symptom presentation presents difficulties in assessment and treatment.  

 The depression literature emphasizes the importance of investigating additional 

constructs related to depression beyond its diagnostic criteria in order to explain 

individual differences in various presentations of depression (Beck & Haigh, 2014; 

Joormann & Gotlib, 2010; Nolen-Hoeksema, 2000). Rumination and emotion 

dysregulation are two such transdiagnostic constructs. Rumination is defined as the 

tendency to focus on symptoms of distress and their possible causes and consequences, 

typically in a pervasive and repetitive manner (Nolen-Hoeksema,Wisco, & Lyubomirsky, 

2008). Rumination is conceptualized as a response style to distress, highlighting its 

behavioral nature despite its cognitive content (Nolen-Hoeksema, 1991). Importantly, the 

act of rumination does not lead to adaptive behavior, such as problem solving. Rather, 

ruminators tend to focus on their own distress without taking steps to change their affect 

or environment. Rumination has been shown to exacerbate depressive symptoms and 

negative thinking and impair protective processes such as problem solving and social 

support (Nolen-Hoeksema et al., 2008). Rumination also has been shown to predict the 

onset of depressive episodes (Nolen-Hoeksema, 2000). 

Emotion regulation is defined as behavior aimed at monitoring, evaluating, and 

modifying the intensity or length of emotional experiences (Thompson, 1994). Thus, 

emotion regulation may serve to attenuate, maintain, or enhance emotional arousal 
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(Thompson, 1994). Emotion regulation is achieved through one or more behavioral 

strategies, which may be adaptive (e.g. self-disclosure and reappraisal) or maladaptive 

(e.g. suppression and catastrophizing; Joormann & Gotlib, 2010). Emotion dysregulation 

is a hallmark of depression, which is characterized by heightened negative affect and 

diminished positive affect (Joormann & Gotlib, 2010). Depressed individuals tend to 

employ maladaptive emotion regulation strategies over adaptive ones, thus maintaining 

or exacerbating their symptoms.  

The heterogeneous nature of depressive symptoms and features suggests it may be 

more useful to examine depression dimensionally rather than categorically and highlights 

the need to understand the various biological mechanisms involved in this disorder 

(Brakowski et al., 2017). Such an approach mirrors the National Institutes of Health 

Research Domain Criteria (RDoC), which de-emphasize the utility of categorical 

diagnoses in favor of continuous measurement of psychiatric symptoms with the goal of 

discerning biological mechanisms of mental health conditions (Insel et al., 2010; 

Sanislow et al., 2010). The present study was guided by the RDoC framework to examine 

depressive symptoms, rumination, and emotion dysregulation as continuous measures in 

relation to resting-state brain function. This approach facilitates the direct investigation of 

individual variability in depression presentations and severity as they relate to neural 

functioning. 

Neural Models of Depression 

 Neural models suggest that a subjective, symptom-driven classification system is 

insufficient for accurate diagnosis of depressive disorders, which contributes to 

deleterious effects on treatment and prognosis (Holtzheimer & Mayberg, 2011). 
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Furthermore, by its very nature, a symptom-driven classification system leads to 

difficulty testing the factors that contribute to the etiology and maintenance of 

depression. In light of these problems, researchers have developed testable models of 

depression that are based on objective biological correlates rather than on subjective 

symptoms. Two such neural models that have had considerable impact on the depression 

literature are the limbic-cortical dysregulation model and the triple network model.  

The limbic-cortical dysregulation model of depression is a widely cited theory 

based on the collective findings of positron emission tomography (PET) research 

(Mayberg 1997; Mayberg, 2003). This theory was one of the first attempts to account for 

all depressive symptoms in a single neural model. Mayberg hypothesized that depression 

is due to a “functional lesion” of the brain, or a dysregulation of larger systems, rather 

than a failure of localized brain regions (Mayberg, 2003). Specifically, this three-

component model is comprised of limbic, cortical, and sub-cortical brain systems that 

may underlie the heterogeneous symptoms of depression. The cortical (dorsal) 

component includes the dorsomedial frontal cortex, prefrontal cortex, premotor cortex, 

parietal cortex, and the anterior and posterior cingulate cortices (Mayberg, 2003). This 

component was hypothesized to be involved in the cognitive elements of depression, 

including difficulties with attention, executive functioning, psycho-motor slowing, 

rumination, and sense of self (Mayberg, 1997). The limbic (ventral) component includes 

the medial orbitofrontal cortex, subgenual cingulate cortex, hypothalamus, hippocampus, 

insula, and amygdala (Mayberg, 2003). This component was hypothesized to relate to 

disturbances in reward, i.e. anhedonia, sleep, appetite, and sex (Mayberg, 1997). The 

subcortical (rostral) component includes the rostral anterior cingulate cortex, striatum, 
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thalamus, and brain stem (Mayberg, 2003). This component was theorized to be involved 

in the emotional salience of external stimuli and serve a regulatory “gating” role between 

the cortical and limbic components (Mayberg, 1997). The model as a whole posits that 

depression arises out of impaired control of the limbic component by the cortical 

component via dysregulation in the subcortical gating mechanism. 

The triple network model is a transdiagnostic theory that has had considerable 

influence on the understanding of psychopathology as a whole, including depression 

(Menon, 2011). It is based primarily on the findings of resting-state fMRI research. Like 

Mayberg, Menon argues psychopathology results from dysfunction of networks rather 

than of discrete anatomical regions. He proposes three brain networks are involved in 

psychopathology: the default mode network (DMN), the central executive network 

(CEN), and the salience network (SN). These networks, described in further detail in a 

later section, are involved in self-referential thought, executive functioning, and 

emotional processing, respectively. The model emphasizes the role of the SN, which 

determines the motivating importance (i.e. salience) of external stimuli that drive 

behavior (Menon & Uddin, 2010; Seeley et al., 2007). The SN also initiates switching 

between the opposing DMN and CEN (Goulden et al., 2014; Sridharan, Levitin, & 

Menon, 2008), mirroring the subcortical component of the limbic-cortical dysregulation 

model. Regarding depression specifically, Menon (2011) integrates literature 

demonstrating increased functional connectivity between the SN and DMN, which he 

theorizes leads to impaired allocation of cognitive resources. 

A number of independent research groups have supported the application of the 

triple network model to depression. In their recent review, Mulders et al. (2015) found 
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major depression is consistently associated with increased connectivity within the DMN 

as well as increased connectivity between the SN and DMN and decreased connectivity 

between the DMN and the CEN. Similarly, Wang and colleagues (2016) recently 

theorized that aberrant interactions between the DMN, CEN, and SN may contribute to 

the development of a cognitive vulnerability in those with major depression based on 

their review of the resting-state fMRI literature in this population. These findings, along 

with a growing body of empirical research (e.g. de Kwaasteniet et al., 2015; Manoliu et 

al., 2014; Zheng et al., 2015), support the conceptualization of aberrant connectivity 

within the triple network model as mechanisms involved in depression. The present study 

draws primarily on the triple network model, as the model is grounded specifically in the 

resting-state fMRI literature. It also draws upon aspects of Mayberg’s limbic-cortical 

dysregulation model based on to its contribution to the depression literature and 

development of the triple network model. 

Resting-State fMRI and Functional Connectivity 

 The present study examined blood-oxygen-level dependent (BOLD) data acquired 

via functional magnetic resonance imaging (fMRI) while participants were at “rest,” i.e. 

not engaged in any particular task. “Resting-state” fMRI is a methodology that arose as a 

way of evaluating “intrinsic” brain activity that is not time-locked to specific stimuli or 

tasks (Raichle & Gusnard, 2005). The goal of this method is to examine patterns in 

spontaneous low-frequency (< 0.1 Hz) fluctuations of the BOLD signal that are observed 

when the brain is at rest (Biswal, Yetkin, Haughton, & Hyde, 1995; Lee, Smyser, & 

Shimony, 2013). This method has advantages over task-based fMRI, such as exploring 

networks of brain activation in a stimulus-free manner (Wang, Hermens, Hickie, & 
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Lagopoulos, 2012; Margulies et al., 2010). Early proponents of this method referred to 

the resting state as a “baseline” of brain activity (Gusnard & Raichle, 2001), but this view 

has been controversial in the field (Morcom & Fletcher, 2007). Although the fundamental 

nature of the resting brain is still debated, resting-state fMRI is now widely accepted as a 

valid method of investigating networks of functional connectivity. As such, it is a 

promising tool to investigate neural mechanisms of depression and its correlates. 

 Functional connectivity is the primary dependent variable in resting-state fMRI. 

Functional connectivity is defined as “the temporal dependence of neuronal activity 

patterns of anatomically separated brain regions” (van den Heuvel & Hulshoff Pol, 2010). 

That is, brain regions are said to have functional connectivity if their pattern of activation 

is related in either the time (correlation) or the frequency (coherence) domain (Margulies 

et al., 2010). Groups of brain regions with functional connectivity represent networks of 

brain activation. These networks are thought to communicate and work together towards 

a common perceptual, behavioral, cognitive, or emotional function, which can be 

adaptive or maladaptive (van den Heuvel & Hulshoff Pol, 2010). Thus, it is conceivable 

that aberrant functional connectivity may underlie the cognitive biases and maladaptive 

behavioral patterns associated with depression. 

Biswal et al. (1995) were the first to demonstrate functional connectivity using 

resting-state fMRI. They measured correlations in spontaneous low frequency 

fluctuations between spatially distinct areas of the brain at rest that were known to couple 

during motor task activation. They subsequently demonstrated these significant 

correlations were not due solely to changes in blood flow, supporting the idea that 

functional connectivity is influenced by a neuronal mechanism (Biswal, Van Kylen, & 
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Hyde, 1997). These seminal findings gave rise to the study of functional connectivity in 

resting-state fMRI, which has grown immensely and is now considered a field in its own 

right. 

 There are a number of validated approaches to derive neural networks in resting-

state data. The most popular method is seed-based functional connectivity. Here, 

researchers select an a priori region-of-interest (ROI), or “seed,” and examine the 

temporal relationships between voxels within the ROI and all other voxels in the brain 

(Lee et al., 2013). This method is advantageous because it is hypothesis-driven and the 

analysis and interpretation of results is relatively straightforward (Margulies et al., 2010). 

Seed-selection introduces bias (Wang et al., 2012), however, and analysis is limited to 

specific areas of the brain, which may preclude serendipitous findings. 

An alternative approach is independent component analysis (ICA). ICA is a 

mathematical technique that decomposes BOLD signals throughout the brain into 

spatially or temporally distinct, statistically independent networks (Beckmann, DeLuca, 

Devlin, & Smith, 2005; Lee et al., 2013). Some advantages of ICA over other methods 

are that it does not require a priori assumptions about the location of networks and that 

networks can be widely distributed without a single predetermined focal point. ICA can 

identify independent noise components, such as motion and physiological artifacts 

(Margulies et al., 2010), which is critical to valid network assessment. In addition, ICA 

requires minimal preprocessing (Margulies et al., 2010). 

Drawbacks of the ICA method include needing a priori selection of the number of 

components to be derived and a posteriori distinction between valid and noise 

components, both of which can be subjective and can influence results (Margulies et al., 
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2010). Despite these limitations, ICA remains one of the most widely used methods of 

deriving resting-state neural networks due to its data-driven, exploratory nature. It is a 

highly reliable method that has provided valuable information to the field of functional 

connectivity (Smith et al., 2009) as well as to a better understanding of neural 

mechanisms in psychopathology research (Du et al., 2015; Fox & Greicius, 2010). 

Furthermore, depression studies utilizing ICA have produced more consistent findings 

than studies utilizing seed-based methods (Mulders et al., 2015). For these reasons, the 

present study will employ ICA to derive neural networks and study functional 

connectivity. 

Functional Networks Implicated in Depression 

 The triple network model of psychopathology (Menon, 2011) implicates the 

default mode network (DMN), the central executive network (CEN), and the salience 

network (SN) in the etiology and maintenance of psychological disorders. The model 

posits that psychopathology arises out of aberrant connectivity within and between these 

three neural networks. This model has been applied successfully to the study of various 

forms of psychopathology, including substance use disorders (Sutherland, McHugh, 

Pariyadath, & Stein, 2012), attention deficit hyperactivity disorder (Castellanos & Proal, 

2012), schizophrenia (Manoliu et al., 2013), and depression (Mulders et al., 2015; Wang 

et al., 2012). The function and anatomy of each network is described below as well as 

each network’s hypothesized role in the etiology and maintenance of depression. 

 The DMN is the most widely studied network in the resting-state literature. This 

network is involved in several cognitive processes, including self-referential thought, 

theory of mind, memory, and emotion regulation (Andrews-Hanna, Smallwood, & 
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Spreng, 2014; Buckner, Andrew-Hanna, & Schacter, 2008). The DMN is characterized 

by a number of regions throughout the brain, including the medial prefrontal cortex, 

lateral frontal cortex, medial parietal cortex, medial temporal lobe, lateral parietal cortex, 

lateral temporal cortex, cerebellum, and striatum (Andrews-Hanna et al., 2014; Buckner 

et al., 2008; Raichle et al., 2001). The medial prefrontal cortex (MPFC), posterior 

cingulate cortex (PCC), and the inferior parietal lobule (IPL) are considered to be the 

core nodes of the DMN, as these areas are most commonly identified across imaging 

modalities (Buckner et al., 2008; Menon, 2011; Mulders et al., 2015). The DMN is 

described as a task-negative network due to its increased activation during rest and 

decreased activation during task initiation and maintenance (Fox et al., 2005). Sub-

networks within the DMN appear to possess distinct functions (Andrews-Hanna, Reidler, 

& Sepulcre, 2010; Andrews-Hanna et al., 2014). The midline core regions (MPFC and 

PCC) are involved in self-referential emotion processing, and a medial temporal lobe 

sub-network is involved in episodic memory retrieval and future-oriented self-referential 

thought (Andrews-Hanna et al., 2010).  

Similarly to the larger resting-state literature, resting-state studies of depression 

have focused largely on the DMN. A growing number of studies have found increased 

connectivity in anterior regions of the DMN in patients compared to controls (Brakowski 

et al., 2017; Mulders et al., 2015); this aberration is considered to be a potential 

mechanism of depression (Schneider & Prvulovic, 2013). Increased connectivity in the 

anterior DMN may also play a role in rumination (Zhu et al., 2012). Studies have found 

aberrant connectivity in posterior regions of the DMN as well (Mulders et al., 2015), but 

these findings are less consistent than those of the anterior DMN. Interestingly, studies of 
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mild or remitted depression (e.g. Pannekoek et al., 2014; Sexton et al., 2012; Veer et al., 

2010; Zhu et al., 2012) have been less likely than those of moderate to severe depression 

(e.g. Greicius et al., 2007; Guo et al., 2014; Li et al., 2013; Manoliu et al., 2014) to 

demonstrate significant differences in DMN connectivity between patients and controls. 

Collectively, the literature suggests depression is associated with increased connectivity 

in the DMN (particularly the anterior DMN) and depression severity may moderate this 

relationship. 

 The CEN is implicated in executive functions, such as attention, working 

memory, problem-solving, decision making, and conflict resolution (Rogers et al., 2004; 

Sheline, Price, Yan, & Mintun, 2010). It is comprised of the dorsolateral prefrontal cortex 

(dlPFC), dorsomedial prefrontal cortex (dmPFC), orbitofrontal cortex (OFC), and parietal 

cortices (Habas et al., 2009; Seeley et al., 2007). These core nodes of the CEN also are 

coupled with the caudate nucleus and thalamus, but they lack connectivity with limbic 

structures (Seeley, 2007). Contrary to the DMN, the CEN is considered a task-positive 

network because CEN activity increases during goal-directed behavior and decreases at 

rest (Fox et al., 2005). The DMN and CEN are often conceptualized as opposing 

networks (Hamilton et al., 2011; Seeley et al., 2007).  

The SN is involved in filtering relevant information from the environment and 

determining the motivating value of external stimuli. The SN also is thought to drive 

behavior regarding these salient stimuli (Menon, 2011; Seeley et al., 2007). The SN has 

been implicated in “switching” between DMN and CEN activation (Goulden et al., 2014; 

Menon & Uddin, 2010; Sridharan, Levitin, & Menon, 2008). The SN is comprised of 

core nodes in the dorsal anterior cingulate cortex (dACC) and the anterior insula (Seeley 
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et al., 2007). It also is coupled with subcortical regions, such as the amygdala, ventral 

pallidum, thalamus, hypothalamus, periaqueductal gray, and ventral tegmental area, 

which are involved in emotion and reward processing. 

To our knowledge, only three previous studies have employed ICA to examine 

networks resembling the CEN or SN in depression. Manoliu et al. (2014) found 

individuals with major depression, compared to controls, showed decreased connectivity 

of the anterior insula within the SN, decreased connectivity between the DMN and CEN, 

and increased connectivity between the SN and DMN. Decreased connectivity of the 

anterior insula correlated with depression severity as measured by both the Beck 

Depression Inventory (BDI) and the Hamilton Depression Rating Scale (HAM-D). The 

depressed group also exhibited aberrant connectivity in the posterior CEN, which 

included both increased and decreased connectivity compared to controls, but these 

results did not survive correction for multiple comparisons. Veer et al. (2010) found 

reduced connectivity of the left frontal pole in a task-positive network, but this network 

differed from the typical CEN. No group differences in SN connectivity were observed. 

Sexton et al. (2012) examined functional connectivity within and between the DMN, an 

“executive control network,” and an “affective network.” The latter two networks 

overlapped with the CEN and SN, respectively, but did not encompass all regions 

typically associated with the CEN and SN. Again, no group differences in connectivity 

were observed. In general, the CEN and SN have not been adequately studied in 

depression. These networks may, however, be especially important in further 

understanding depression given support for their involvement in cognitive and emotional 

processes (Menon, 2015; Rogers et al., 2004; Seeley et al., 2007; Sheline et al., 2010). 
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Overall, the most consistent finding in the depression literature is increased 

connectivity within anterior DMN regions in individuals with depression compared to 

healthy controls. A growing body of research suggests this neural aberration is associated 

with depression diagnosis (Schneider & Prvulovic, 2013), pharmacological treatment 

response (Li et al., 2013), and ruminative response styles (Zhu et al., 2012). Although the 

precise relationship between DMN connectivity and behavioral outcomes is still 

unknown, it has been speculated that increased connectivity in the anterior DMN is 

related to maladaptive internal attention in depression (Guo et al., 2014). Furthermore, 

depression severity may moderate the relationship between abnormal DMN connectivity 

and depression diagnosis. Findings on CEN and SN connectivity in depression are 

limited thus far. The importance of continuing to examine how these networks contribute 

to the etiology and maintenance of depression is suggested by their roles in cognitive and 

emotional processes. 

Present Study Hypotheses 

 There is a solid scientific premise for neural mechanism research in depression 

based on differences in functional connectivity between patients and controls, a 

relationship between functional connectivity and depression severity, and the results of 

treatment response studies. The present study added to this literature by addressing the 

following research question: How is functional connectivity in the resting brain 

associated to depression severity and/or transdiagnostic features of depression in young 

adults? We addressed this question by examining three resting-state neural networks, the 

DMN, the CEN, and the SN, in a sample of young adults with a range of depressive 

severity, rumination, and emotion dysregulation. 
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The approach involved a combination of hypothesis testing and exploratory 

analyses. Two a priori hypotheses were proposed. Hypothesis 1: Depression severity will 

exhibit significant positive correlation to functional connectivity within the DMN. This 

hypothesis was based on studies showing increased DMN connectivity in depressed 

individuals (e.g. Greicius et al., 2007; Guo et al., 2014; Li et al., 2013; Manoliu et al., 

2014) and an association between aberrant DMN connectivity and depression severity 

(Mulders et al., 2015). Hypothesis 2: ROI pairs within the DMN that demonstrate 

significant correlation to depression severity also will correlate to self-reported 

rumination. This hypothesis was based on previous studies supporting this relationship 

(Hamilton et al., 2011; Zhu et al., 2012). 

Because few studies thus far have employed ICA to examine the CEN and SN in 

depression, exploratory analyses of these networks and their relationship to the DMN is 

warranted. In addition, the relationship between resting-state functional connectivity and 

emotion regulation strategies in depression has not been examined to our knowledge. 

Thus, we proposed no a priori hypotheses regarding the association between functional 

connectivity and self-reported difficulties with emotion regulation. 

Method 

Parent Studies 

 The present study is part of a larger investigation being conducted at the Rutgers 

University Exercise Physiology Lab. The overall study aims to examine the effectiveness 

of an eight-week aerobic exercise intervention at improving physiological and 

psychological outcomes in depressed individuals. As part of the larger study, participants 

engaged in an extensive pre-intervention assessment battery over two sessions, including 
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baseline measures of cognitive, psychosocial, and physiological functioning. 

Methodologies employed at the baseline assessment sessions included self-report, 

behavioral tasks, cue reactivity, electroencephalogram (EEG), electrocardiogram (ECG), 

impedance cardiography (ICG), and calorimetry. Those who agreed and were eligible 

also participated in an add-on study to conduct simultaneous functional magnetic 

resonance imaging (fMRI) and physiology (ECG, blood pressure, respiration) assessment 

sessions pre- and post- the aerobic exercise intervention. This study was conducted at the 

Rutgers University Brain Imaging Center (RUBIC). The present study focuses on self-

report and resting-state fMRI data from the baseline, pre-treatment test sessions. 

Participants 

Participants in the larger parent study were men and women between the ages of 

18 and 35 years recruited on Rutgers campus via fliers and recruitment tables advertising 

eight weeks of “low to moderate intensity aerobic exercise.” Individuals were recruited 

from the general university population as well as the university Psychological Services 

Clinic in order to reach a greater number of depressed individuals. Exclusion criteria for 

the larger study included history of one or more of the following: bipolar or psychotic 

disorders, self-injurious or suicidal behavior, neurological disorders, and head injuries 

resulting in a loss of consciousness. Additional exclusion criteria for the fMRI study 

included left-handedness and standard MRI contraindications (i.e. permanent metal in the 

body, pregnancy, and claustrophobia). These were assessed via self-report with the 

exception of pregnancy, which was assessed via urine dipstick. Psychotropic medication, 

such as antidepressant medication, was not exclusionary in this study. 
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A total of 238 participants have completed at least one baseline session in the 

larger study as of September 1, 2017. Because the fMRI component began approximately 

two years after the original study start date, only 152 of these participants had the 

opportunity to enroll in the present study, if eligible. Of these, 74 consented to and 

completed the baseline fMRI session.  

Self-Report Measures 

 Participants completed a battery of self-report questionnaires during baseline 

assessment of the larger study. These included measures of basic demographic data, 

exercise habits, medication, alcohol use, depression and anxiety severity, rumination, 

distress tolerance, emotion regulation, mindfulness, grit, and mood state. The present 

study examined data from the following three questionnaires.  

The Beck Depression Inventory-II (BDI-II) is a widely used and empirically 

validated measure of depression severity (Beck, Steer, & Brown, 1996). Participants 

responded to 21 items corresponding to symptoms of depression, earning 0 – 3 points per 

item based on the symptom severity. A score from 0 – 13 indicates minimal depression, 

14 – 19 indicates mild depression, 20 – 28 indicates moderate depression, and 29 – 63 

indicates severe depression. 

The Ruminative Response Scale (RRS) is a 22-item subscale of the empirically 

validated Response Styles Questionnaire (Nolen-Hoeksema & Davis, 1999). The RRS 

measures rumination: the tendency to focus cognitively on symptoms of distress and their 

possible causes and consequences (Nolen-Hoeksema et al., 2008). Participants indicated 

on a scale of 1 (almost never) to 4 (almost always) how often they engage in ruminative 

behaviors when feeling down, sad, or depressed. The RRS yields a total score as well as 
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three subscales: Depression, Brooding, and Reflection (Gonzalez, Nolen-Hoeksema, & 

Treynor, 2003). Larger RRS scores indicate more frequent rumination. 

The Difficulties in Emotion Regulation Scale (DERS) is an empirically validated 

measure of emotion dysregulation comprised of 36 statements (Gratz & Roemer, 2004). 

Participants rated how often each statement applies them on a Likert scale ranging from 1 

(almost never) to 5 (almost always). The DERS yields a total score as well as six 

subscales. Subscales measure Non-Acceptance of Emotional Responses, Difficulties 

Engaging in Goal-Directed Behavior, Difficulties with Impulse Control, Lack of 

Emotional Awareness, Limited Access to Emotion Regulation Strategies, and Lack of 

Emotional Clarity. Larger values on the total score and all subscales indicate greater 

difficulty with emotion regulation.  

Procedures 

 The baseline fMRI session included approximately one and a half hours of pre-

scan assessment, task training, and preparation. Immediately following informed consent, 

participants completed additional self-report questionnaires related to perceived stress, 

alcohol use, and illicit substance use as part of the larger study. Height, weight, 

temperature, and blood pressure were assessed. Females were screened for pregnancy 

using a standard urine dipstick. Next, a number of sensors were attached to participants’ 

bodies for physiological data collection during the scan as part of the larger study. These 

included three ECG electrodes and leads, an abdominal respiration belt, and a continuous 

blood pressure cuff. Then, a research assistant trained participants on the behavioral tasks 

they would perform during the scan. Participants then lay on the scanner bed and their 
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heads were positioned beneath the coil using foam cushions to minimize head movement 

during scanning. 

 The scan itself lasted approximately 45 minutes, which included a standard 

localizer, scout, high-resolution anatomical scan, and field map, as well as seven 

functional runs. Each functional run corresponded to a behavioral task. First, participants 

were asked to “visually focus” on a white fixation cross overlaid on a black background 

in a six-minute resting-state task, the data from which are the focus of this study. Second, 

they performed a breath-holding task to measure inherent hemodynamic response 

functions. Next, they performed three increasingly difficult levels of a cognitive task 

lasting five minutes each. Then, they performed a paced breathing task for five minutes. 

Last, they perform a second six-minute resting-state task identical to the first.  

Neuroimaging Parameters and Data Preprocessing 

Imaging data were collected using a 3T Siemens Trio scanner and a Siemens 12-

channel head coil. High-resolution anatomical images were acquired using a T1-weighted 

MPRAGE protocol with the following scan parameters: repetition time (TR) = 1900 ms, 

echo time (TE) = 2.51 ms, matrix = 256 × 256 voxels, field-of-view (FOV) = 256 mm, 

voxel size = 1 × 1 × 1 mm. One hundred seventy-six 1-mm sagittal slices (.5 mm gap) 

were obtained. Functional blood-oxygen-level dependent (BOLD) data were acquired 

using a single-shot gradient echo-planar imaging (EPI) sequence with the following scan 

parameters: TR = 2000 ms, TE = 25 ms, flip angle = 90°, matrix = 64 × 64 voxels, FOV 

= 192 mm, voxel size = 3 × 3 × 3 mm. Thirty-five contiguous 3-mm sagittal slices (1 mm 

gap) were acquired. 
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Resting-state data were preprocessed using FMRIB Software Library (FSL) 

version 5.0.5 (Jenkinson, Beckmann, Behrens, Woolrich & Smith, 2012; Smith et al., 

2004) and Analysis of Functional Neuroimages (AFNI) version 16.02.07 (Cox, 1996). 

First, non-brain tissue was removed from all anatomical (T1) and functional (BOLD) 

images using FSL’s Brain Extraction Tool (BET; Smith, 2002) by estimating each 

image’s center-of-gravity and manually adjusting BET parameters as necessary until an 

optimal result was obtained. The first five volumes were discarded to ensure steady-state 

magnetization throughout the time series. Two participants were excluded at this stage 

due to an incomplete structural image and wrap-around artifact in the functional image.  

Remaining data (n = 72) were motion-corrected using FSL’s MCFLIRT 

(Jenkinson, Bannister, Brady, & Smith, 2002), and the output was reviewed to identify 

participants with excessive motion during the resting-state scan. Excessive motion was 

defined conservatively as maximum displacement greater than 1.5 mm or any pattern in 

the motion parameters time series that could conceivably affect registration, e.g. steep 

drift or sudden spikes. Thirteen participants were excluded for excessive motion during 

the resting-state functional run and were not included in further preprocessing and 

analyses. 

Remaining data (n = 59) were registered to standard space with a two-step process 

using FMRIB's Non-Linear Image Registration Tool (FNIRT; Jenkinson & Smith, 2001). 

The data were registered to the T1-weighted anatomical image using 6 degrees of 

freedom and then registered to MNI-152 standard space using 12 degrees of freedom. All 

data were visually inspected for gross errors in registration. Next, registered images were 

segmented into gray matter, white matter (WM), and cerebral spinal fluid (CSF) using 
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FSL’s FAST (Zhang, Brady, & Smith, 2001). Probability maps of CSF and WM were 

derived and time-series data for these signals were extracted from each participant. Then, 

24 motion parameters were calculated for each participant using AFNI commands based 

on output from MCFLIRT. These 26 nuisance parameters (WM, CSF, 24 motion) were 

used as covariates in linear regression models in FSL’s FEAT to decrease the effects of 

signals-of-no-interest. Finally, data were smoothed with a 6 mm full-width at half-

maximum Gaussian kernel, and temporal filtering between .01 and .1 Hz was performed. 

Independent Component Analysis and Functional Connectivity Calculation 

 Resting-state neural networks were derived using the Multivariate Exploratory 

Linear Decomposition into Independent Components (MELODIC) software tool 

implemented in FSL (Beckmann & Smith, 2004). Group-level (n = 59) probabilistic 

independent component analysis (ICA) decomposed voxel-level BOLD signals into 

spatially distinct, statistically independent components, or “networks.” The model-order 

was set to 40 components. MELODIC output data, (i.e. average network maps) were 

visually inspected to identify the DMN, CEN, and SN based on established 

neuroanatomical maps (e.g. Menon, 2011; Mulders et al., 2015). 

Next, the ‘cluster’ command in FSL was used to segment each network map into 

anatomical clusters and extract coordinates for local maxima. Clusters were thresholded 

at t = 3 (CEN) or t = 4 (DMN and SN). The Harvard-Oxford cortical and sub-cortical 

atlases implemented in FSL were used to confirm cluster anatomy. ROI’s from each 

network were selected based on established “core” anatomy of the DMN, CEN, and SN 

(Buckner et al., 2008; Habas et al., 2009; Menon, 2011; Raichle et al., 2001; Seeley et al., 

2007). In order to reduce multiple comparisons, ROI’s that are not cited as core regions 
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of each network (e.g. cerebellum) were not included in connectivity analyses. A series of 

‘fslmaths’ commands were used to generate ROI masks by creating a 6 mm binarised 

sphere around the voxel with maximum intensity within each cluster. These masks were 

then used with the ‘fslmeants’ command to extract mean BOLD time series data from 

each participant for each ROI. 

In order to examine within- and between-network connectivity, Pearson 

correlations between all possible ROI pairs were calculated in MATLAB. This process 

resulted in (n2 - n)/2 functional connectivity outcome variables, where n is the number of 

ROI’s. Pearson correlation coefficients underwent Fisher Z-score transformation to 

satisfy assumptions of parametric statistical analyses. Last, the absolute values of the 

Fisher Z-scores were calculated, as the goal of the current study was to examine 

connectivity per se rather than to differentiate between positive correlations and negative 

correlations, termed “anticorrelations” in the resting-state literature, among brain regions. 

Thus, throughout the remainder of this manuscript the term “functional connectivity 

value” refers to the absolute value of the Fisher Z-transformed Pearson correlation 

between the time series of a pair of ROI’s. 

Statistical Analyses 

 Fifty-nine participants were included in statistical analyses. First, functional 

connectivity values between all ROI pairs were correlated to BDI-II scores. P-values 

were adjusted using false discovery rate in MATLAB to control for multiple 

comparisons. Then, BDI-II was regressed on the functional connectivity values of the 

ROI pairs that exhibited significant correlations to BDI-II in a single general linear 

model. Next, separate models controlling for gender, age, and antidepressant medication 
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status were analyzed. In order to reduce multiple comparisons, only ROI pairs that were 

significantly correlated to BDI-II scores were additionally correlated to RRS and DERS 

total scores and subscales. All statistical analyses were conducted in SAS 9.4 using 

PROC CORR and PROC GLM procedures. Results were considered statistically 

significant at p < 0.05. 

Results 

Demographic Characteristics 

 Participants’ ages ranged from 18 – 28 years. The mean age of the sample was 

20.66 (± 2.04) years. Participants were approximately 75% (n = 44) female and 25% (n = 

15) male. Approximately 40.5% (n = 24) of participants identified as Asian, 34% (n = 20) 

identified as White, 13.5% (n = 8) identified as Black/African American, and 12% (n = 7) 

identified as either of mixed or Hispanic/Latino racial background. Hispanic/Latino 

ethnicity was assessed independently of race. About 17% (n = 10) of participants 

identified as Hispanic/Latino and 83% (n = 49) of participants did not identify as 

Hispanic/Latino. The racial and ethnic characteristics of the sample are representative of 

the university and greater New Brunswick populations. These results are summarized in 

Table 1 (Appendix A).   

Medication 

 Nineteen participants (32.2%) endorsed current medication use. Eleven 

participants (18.6%) endorsed taking a single medication, 7 participants (11.9%) 

endorsed taking two medications, and one participant (1.7%) endorsed taking three 

medications. Surprisingly, only 6 participants (10.2%) reported current antidepressant 

therapy. These included Lexapro (n = 3), Zoloft (n = 2), Wellbutrin (n = 2), and 
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mirtazapine (n = 1). Other psychotropic medications included Adderall (n = 1), Ativan (n 

= 1), Lamictal (n = 1), and Strattera (n = 1). Non-psychotropic medications endorsed 

included Albuterol (n = 1), Allegra (n = 1), Claritin (n = 1), minocycline (n = 1), 

pantoprazole (n = 1), Percocet (n = 1), Zyrtec (n = 1), and various forms of contraceptives 

(n = 9). 

Self-Report Measures: Depression, Rumination, and Emotion Dysregulation 

 Univariate statistics for all self-report measures are summarized in Table 2 

(Appendix B). BDI-II scores ranged from 0 to 59 across the sample. The sample range 

covered over 93% of the total possible range of BDI-II scores (0 – 63). Approximately 

25.5% (n = 15) of participants fell in the “minimal” depression range, 24% (n = 14) fell 

in the “mild” range, 37% (n = 22) fell in the “moderate” range, and 13.5% (n = 8) fell in 

the “severe” range, according to the BDI-II manual (Beck et al., 1996). The mean BDI-II 

score was 20.49 (±10.67) and the scores were normally distributed. 

 RRS total scores ranged from 27 to 80, spanning over 80% of the total possible 

range (22 – 88). The mean RRS total score was 53.15 (±13.01). Depression subscale 

(RRS_D) scores ranged from 14 – 46 (possible range is 12 – 48) and the mean score was 

30.15 (±8.02). Brooding subscale (RRS_B) scores ranged from 6 – 18 (possible range is 

5 – 20) and the mean score was 12.06 (±3.12) Reflection subscale scores spanned the 

total possible range from 5 – 20 and the mean score was 10.94 (±3.81). The total score 

and subscales were all normally distributed across the sample. 

 DERS total scores ranged from 53 to 146, spanning approximately 65% of the 

total possible range (36 – 180). The mean total score was 89.88 (±23.76). Scores for 5 out 

of the 6 subscales covered over 80% of the total possible range of scores. The Non-



 

	

26	

Acceptance of Emotional Responses subscale (DERS_N) scores ranged from 6 – 26 

(possible range is 6 – 30), and the mean score was 14.55 (±5.88). The Difficulties 

Engaging in Goal Directed Behavior subscale (DERS_G) scores ranged from 5 – 24 

(possible range is 5 – 25), and the mean score was 15.13 (±4.29). The Impulse Control 

Difficulties subscale  (DERS_I) scores ranged from 6 – 29 (possible range is 6 – 30), and 

the mean DERS_I score was 12.41 (±5.61). Scores of the Lack of Emotional Awareness 

subscale (DERS_A) ranged from 7 – 30 (possible range is 6 – 30). The mean DERS_A 

score was 15.89 (±5.56). The Lack of Emotional Clarity subscale (DERS_C) scores 

ranged from 6 – 24 (possible range is 5 – 25), and the mean score was 12.25 (±4.42). The 

Limited Access to Emotion Regulation Strategies subscale (DERS_S) scores covered 

only 38% of the total possible range (8 – 40) with a minimum score of 8 and a maximum 

score of 24. The mean DERS_S score was 19.64 (±7.09). The total score and all 

subscales were normally distributed across the sample. 

Neural Networks and ROI’s 

 Independent component analysis successfully identified the DMN, CEN, and SN. 

Each network was represented in a single component. The DMN was comprised of four 

core ROI’s: medial prefrontal cortex, posterior cingulate cortex, and bilateral (i.e. right 

and left) inferior parietal lobule. The CEN and SN were each comprised of five core 

ROI’s. The CEN included bilateral dorsolateral prefrontal cortex, paracingulate gyrus, 

and bilateral posterior parietal cortex. The SN included anterior cingulate gyrus, bilateral 

insula, and bilateral middle frontal gyrus. These 14 ROI’s resulted in 91 possible ROI 

pairs that were included in functional connectivity analyses. Network and ROI data are 

displayed in Figure 1 (Appendix D) and are summarized in Table 3 (Appendix C). 
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Functional Connectivity and Depression Severity 

 BDI-II was significantly correlated (p < 0.05) to functional connectivity between 

two ROI pairs: right dorsolateral prefrontal cortex to paracingulate gyrus and left 

dorsolateral prefrontal cortex to left inferior parietal lobule. 

 The right dorsolateral prefrontal cortex (RDLPFC) and paracingulate gyrus (PCG) 

are core nodes within the CEN. The average connectivity between these regions was Z = 

0.37. There was a significant positive correlation between RDLPFC-PCG connectivity 

values and BDI-II scores (r = 0.31, p < 0.05). Higher depression severity was associated 

with greater connectivity between the RDLPFC and PCG (see Figure 2 in Appendix E).  

 The left dorsolateral prefrontal cortex (LDLPFC) is a core node of the CEN and 

the left inferior parietal lobule (LIPL) is a core node of the DMN. The average 

connectivity between these regions was Z = 0.28. There was a significant negative 

correlation between LDLPFC-PCG connectivity and BDI-II scores (r = -0.26, p < 0.05). 

Thus, higher depression severity was associated with less connectivity between the 

LDLPFC and LIPL (see Figure 3 in Appendix F) 

 The significant correlations between RDLPFC-PCG connectivity and LDLPFC-

PCG connectivity with BDI-II were no longer significant after controlling for multiple 

comparisons using false discovery rate. The variables were carried forward in additional 

exploratory analyses given the limited amount of research on the role of CEN 

connectivity in the depression literature. 

 RDLPFC-PCG and LDLPFC-LIPL connectivity values were not significantly 

correlated with each other (r = -0.22, p > 0.05). Therefore, we included both variables as 

predictors of BDI-II in a single general linear model. The omnibus test was significant 
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(F(2, 56) = 4.33,  p < .05), but of the two predictors only RDLPFC-PCG was significant 

(t(56) = 2.06,  p < .05). The model accounted for 13.4% of the variance in BDI-II scores 

(R2 = 0.134). This pattern of results remained consistent when controlling for age, sex, 

and antidepressant medication status in separate models.  

Functional Connectivity, Rumination, and Emotion Dysregulation 

 To reduce multiple comparisons, only the RDLPFC-PCG and LDLPFC-LIPL 

pairs were additionally correlated to RRS and DERS total scores and subscales. 

RDLPFC-PCG connectivity values were positively correlated to the RRS Reflection 

subscale (r = 0.31, p < 0.05), the DERS Non-Acceptance of Emotional Response 

subscale (r = 0.29, p < 0.05), and the DERS Impulse Control Difficulties subscale (r = 

0.28, p < 0.05). RDLPFC-PCG connectivity values were negatively correlated to the 

DERS Difficulty Engaging in Goal Directed Behavior subscale (r = -0.28, p < 0.05).  

Discussion 

DMN, Depression, and Rumination 

 Two a priori hypotheses were proposed: first, that depression severity would 

exhibit significant positive correlation to functional connectivity within the DMN, and 

second, that ROI pairs within the DMN that demonstrate significant correlation to 

depression severity also would correlate to self-reported rumination. These hypotheses 

were based on previous ICA studies that found increased DMN connectivity is associated 

with depression diagnosis (e.g. Greicius et al., 2007; Guo et al., 2014; Li et al., 2013; 

Manoliu et al., 2014) and rumination (Hamilton et al., 2011; Zhu et al., 2012). No 

significant correlations between within-network DMN functional connectivity values and 
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BDI-II or RRS scores were observed in the present study. Thus, the a priori hypotheses 

were not supported. 

 Several factors may have accounted for the inability of the present study to 

replicate previous findings implicating the DMN in depression and rumination. First, the 

present study examined depression as a continuous measure whereas the majority of 

previous studies have compared individuals diagnosed with major depression to non-

depressed controls (Brakowski et al., 2017; Mulders et al., 2015). Of the ICA studies that 

have tested the relationship between depression severity and resting-state connectivity 

(e.g. Coutinho et al., 2016; Guo et al., 2014; Li et al., 2013; Maoliu et al., 2014, Sexton et 

al., 2012; Veer et al., 2010), most tested this relationship only in participants who meet 

diagnostic criteria for a depressive disorder (Brakowski et al., 2017). Interestingly, 

although many studies have demonstrated differences in DMN connectivity between 

individuals diagnosed with depression and controls (Mulders et al., 2015) as well as 

associations between resting-state connectivity and depression severity (Brakowski et al., 

2017), only one study has demonstrated a significant correlation between DMN 

connectivity and depression severity (Coutinho et al., 2016). It is possible that aberrant 

DMN connectivity may differentiate individuals with moderate to severe depression from 

non-depressed controls, yet not vary with depression severity on a granular level across 

the spectrum of severity.  

 Second, the present study operationalized functional connectivity using a different 

method from those of previous studies in this area. We employed a ROI-based approach 

to test connectivity between core nodes of the DMN, CEN, and SN both within and 

between the three networks. Functional connectivity was operationalized as the temporal 
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correlation between the average activation time series of two brain regions. Many 

previous studies in this area have utilized a network-based approach in which 

connectivity is operationalized as z-scores that represent the relative connectivity of each 

voxel within a network to the average connectivity of the whole network (e.g. Greicius et 

al., 2007; Manoliu et al., 2014). These two methods, both of which are valid approaches, 

each yield distinct outcomes and possible interpretations. The ROI method yields 

information about the connectivity between distinct brain regions both within and 

between networks, and the network method yields information about the connectivity of 

voxels within a specific network relative to the connectivity of the network as a whole. 

For example, Zhu et al. (2012) found a positive correlation between anterior DMN 

connectivity and rumination, but this analysis was precluded in the present study; 

connectivity was tested between pairs of ROI’s and the DMN includes only one anterior 

ROI (i.e. medial prefrontal cortex). 

 Third, the present study examined young adults, the majority of whom were 

between the ages of 18 and 25 years. Most previous studies in this area examined adults 

who were on average at least 10 year older than our sample with greater variability in age 

across participants (e.g. Greicus et al., 2007; Li et al., 2013; Sexton et al., 2012; Manoliu 

et al., 2014; Veer et al., 2010). Because the brain and resting-state networks are still 

developing throughout young adulthood (Dosenbach et al., 2010), it is possible young 

adults may exhibit unique associations between depression severity and functional 

connectivity compared to older adults.  

Functional Connectivity, Depression Severity, Rumination, and Emotion 

Dysregulation 
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 The present study found connectivity of both the left and right DLPFC were 

related to depression severity. Although these findings did not survive correction for 

multiple comparisons, they are noteworthy given the extensive literature supporting the 

role of the DLPFC in depression (Chang et al., 2011; Grajny et al., 2016; Hamilton et al., 

2012; Koenigs & Grafman, 2009). Bilateral DLPFC are core nodes of the CEN, and their 

functions are similar to those of the larger network, including executive processes such as 

working memory (Brunoni & Vanderhasselt, 2014), attention control (Kane & Engle, 

2002), planning (Kaller, Rahm, Spreer,  Weiller, & Unterrainer, 2010), and problem 

solving/reasoning (Kroger et al., 2002). The latter two functions are affected by 

depression (Fossati, Ergis, & Allilaire, 2002), and executive function has been shown to 

improve with successful treatment/remission of depression (Biringer et al., 2005; Moser 

et al., 2002). Moreover, the DLPFC is an effective target of transcranial magnetic 

stimulation treatment for depression (Baeken et al., 2014; Fox, Buckner, White, Greicius, 

& Pascual-Leone, 2012; Lefaucheur et al., 2014) and DLPFC connectivity has been 

shown to predict electroconvulsive treatment response (Van Waarde et al., 2015). The 

present findings, if replicated, would add to this growing body of literature by supporting 

DLPFC connectivity as a potentially useful predictor of individual differences in 

depression severity. 

 We found a positive correlation between depression severity and functional 

connectivity between the right DLPFC and paracingulate gyrus (PCG). This ROI pair 

represents within-network connectivity of the anterior CEN. As described above, the 

DLPFC is involved in a number of executive functions. The PCG is less studied but has 

been shown to be involved in theory of mind, which is defined as the ability to explain or 
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predict others’ thoughts, feelings, or behavior based on the perception of their mental 

state (Gallagher & Frith, 2003). We speculate that hyperconnectivity between the right 

DLPFC and PCG may underlie deficits in executive functioning associated with social 

cognition that have been demonstrated in depression (Uekermann et al., 2008; 

Wolkenstein, Schönenberg, Schirm, & Hautzinger, 2011). Interestingly, RDLPFC-PCG 

connectivity was additionally positively correlated to reflective rumination, non-

acceptance of emotional responses, and impulse control difficulties. Each of these 

behavioral patterns can be conceptualized as either an over- or under-utilization of an 

executive function; reflective rumination and non-acceptance of emotion can be thought 

of as extreme forms of mentalization, and impulsivity can be thought of as a deficit in 

inhibition. Overall, results of the present study are tentatively suggestive of increased 

connectivity within the anterior CEN, specifically between the right DLPFC and PCG, as 

a mechanism of depression, reflective rumination, non-acceptance of emotion, and 

impulsivity. More research is needed to replicate and increase confidence in these 

relations. 

 The result potentially implicating functional connectivity within the anterior CEN 

in depression is novel in the ICA literature. The only previous ICA study that examined 

the role of the CEN in depression found individuals with major depressive disorder, 

compared to controls, exhibited a distinct pattern of increased and decreased connectivity 

in the posterior CEN (Manoliu et al., 2014). Seed-based connectivity studies have had 

mixed findings, with some showing increased (Sheline et al., 2010; Zhou et al., 2010) and 

others showing decreased (Liston et al., 2014; Alexopoulos et al., 2012) CEN 

connectivity is associated with depression diagnosis. These inconsistencies in findings 
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may be due to differing methodologies between studies (Brakowski et al., 2017). More 

research using multiple methods to probe connectivity is needed to clarify the potential 

role of the anterior and posterior CEN in depression. 

 The present study also found depression severity was negatively correlated to 

connectivity between the left dorsolateral prefrontal cortex (LDLPFC) and the left 

inferior parietal lobule (LIPL). LDLPFC-LIPL connectivity was also negatively 

correlated to difficulties engaging in goal directed behavior. This ROI pair represents 

connectivity between the CEN and DMN. LDLPFC-LIPL connectivity was a less robust 

predictor of depression compared to RDLPFC-PCG connectivity in the present study, as 

the former was not a significant predictor of depression severity when both variables 

were included in a single general linear model. Nevertheless, this finding is in accord 

with existing literature. At least two previous studies have reported that decreased CEN-

DMN connectivity is associated with depression (de Kwaasteniet et al., 2015; Manoliu et 

al., 2014). We note the present findings are most similar to those of de Kwaasteniet and 

colleagues (2015), who found individuals with treatment resistant depression, compared 

to both non-treatment resistant patients and healthy controls, had greatly reduced 

connectivity between the DLPFC and angular gyrus, which is a subcompnent of the IPL. 

It is possible DLPFC-IPL connectivity is a mechanism involved in treatment-resistant 

depression specifically, but the present study was not designed to differentiate between 

treatment responders and non-responders. This study adds to the literature by suggesting 

that reduced LDLPFC-LIPL connectivity may be a predictor of individual differences in 

depression severity as well as difficulties engaging in goal directed behavior.  

Alternative Mechanisms 
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 It is possible that alternative biological mechanisms may influence both 

depression as well as the observed differences in resting-state functional connectivity. For 

example, evidence suggests certain cardiovascular mechanisms, such as heart rate 

variability (HRV) and the baroreflex mechanism, may play a role in the link between 

depression and heart disease (Grippo & Johnson, 2002). Depressed individuals often 

exhibit decreased HRV compared to their non-depressed counter parts (Kemp et al., 

2010; Koenig, Kemp, Beauchaine, Thayer, & Kaess, 2016), and some evidence suggests 

depressed individuals may also have attenuated baroreflex sensitivity (Broadley, 

Frenneaux, Moskvina, Jones, & Korszun, 2005). HRV has also been shown to affect 

resting-state functional connectivity in the brain. In a novel study, Chang and colleagues 

(2013) employed simultaneous cardiac and fMRI assessment to demonstrate connectivity 

of the anterior cingulate cortex and amygdala to regions such as the DLPFC, brainstem, 

and thalamus is affected by HRV oscillations. Thus, HRV and/or other cardiovascular 

processes may mediate the observed relationships between depression and functional 

connectivity in the brain.  

Strengths and Limitations 

 The present study had several strengths. First, we examined resting-state 

functional connectivity as it relates to depression as a continuous construct. Although 

many studies have tested correlations between depression severity and functional 

connectivity, the vast majority have been limited in that they only tested this relationship 

in individuals who met DSM criteria for a depressive disorder. These studies have treated 

non-depressed “controls” as a categorically distinct group from individuals who meet 

criteria for a depressive disorder despite weak evidence for reliability of symptom-based 
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classification of depression (Regier et al., 2013). This study treated depression, 

rumination, and emotion dysregulation as continuous measures across the full sample of 

participants. The normal, unimodal distributions of depression severity, rumination, and 

emotion dysregulation in the present sample supported this approach, which allowed us 

to examine potential neural mechanisms associated with these constructs without a priori 

assumptions about the nature of the relationships. 

 To our knowledge, only two previous studies have examined the relationship 

between functional connectivity and depression severity as a continuous construct 

(Coutinho et al., 2016; Philippi, Motzkin, Pujana, & Koenigs et al., 2015). Both studies 

utilized distinct methods from each other and from the present study, precluding a direct 

comparison of results across studies. However, we note both previous studies examined 

depression severity only in the minimal to mild range. Thus, this is the first study to our 

knowledge to examine the association between functional connectivity and depression 

severity across the full range. 

 A second strength of the present study was the study of multiple behavioral 

constructs associated with depression in addition to depression severity. Rumination and 

emotion dysregulation are not diagnostic symptoms of depression, but these constructs 

are associated strongly to depression (Berking, Wirtz, Svaldi, & Hofmann, 2014; Nolen-

Hoeksema, 2000) and may be informative to the understanding of distinct presentations 

of depression. The present study found two potential neural mechanisms associated with 

depression are each additionally associated with distinct patterns of rumination and 

emotion dysregulation. Anterior connectivity within the CEN between the right 

dosrolateral prefrontal cortex and paracingulate gyrus was associated with reflective 
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rumination, non-acceptance of emotional responses, and impulse control difficulties. 

Connectivity between the left dorsolateral prefrontal cortex (anterior CEN) and left 

inferior parietal lobule (posterior DMN) was associated with difficulty engaging in goal 

directed behavior. These findings suggest that specific behavioral patterns associated 

with depression may have distinct underlying neural mechanisms. If replicated, these 

findings could support these mechanisms as treatment targets for specific clinical 

presentations of depression. 

 Despite the heuristic value of the present findings to a growing literature on 

mechanisms of individual differences in depression and related constructs for the reasons 

described above, the present study is not without limitations. First, the observed 

correlations between resting-state functional connectivity and depression severity did not 

survive multiple comparison correction, and thus it is possible the findings are spurious. 

Second, the sample size, although larger than many previous studies in this area, is 

relatively small in an absolute sense and may have lacked power to detect some 

associations. Third, we restricted our analyses to three a priori neural networks. Although 

there is strong scientific premise to hypothesize the DMN, CEN, and SN are implicated 

in depression (Kaiser et al., 2015; Mulders et al., 2015; Wang, Öngür, Auerbach, & Yao, 

2016) focusing on these networks precluded our ability to replicate findings implicating 

other neural networks in depression (e.g. Veer et al., 2010). Fourth, by taking the absolute 

values of connectivity scores, the present study was unable to differentiate between 

correlations and anticorrelations between brain areas. This distinction and its implication 

for the nature of neural mechanisms is complex and outside the scope of this study. 
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However, this is an important area of future research, and many functional connectivity 

studies in depression do not address it. 

Summary and Future Directions 

 The present study sought to examine resting-state functional connectivity within 

and between the default mode network, central executive network, and the salience 

network across individuals who had a wide range of depression severity with the goal of 

identifying neural mechanisms associated with depression severity and related constructs. 

Findings suggest connectivity between the right dorsolateral prefrontal cortex and 

paracingulate gyrus (CEN within-network connectivity) and connectivity between the left 

dorsolateral prefrontal cortex and left inferior parietal lobule (CEN-DMN between-

network connectivity) may be predictors of individual differences in depression severity. 

General linear modeling controlling for age, sex, and antidepressant status suggest the 

former predictor may be more robust. These results are generally supported by existing 

literature. These findings should be interpreted with caution, however, given that they did 

not pass FDR correction for multiple comparisons. Interestingly, each predictor was 

associated with a distinct pattern of transdiagnostic behavioral constructs. CEN within-

network connectivity was associated with reflective rumination, non-acceptance of 

emotional responses, and impulse control difficulties, and CEN-DMN between network 

connectivity was associated with difficulties engaging in goal directed behavior. If 

replicated, these results could add knowledge about how resting-state functional 

connectivity varies with depression severity and related transdiagnostic constructs and 

could inform new targets for treatment of specific presentations of depression. 
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 Future directions of this research will include analytic approaches that reduce the 

number of multiple comparisons. For example, network homogeneity analysis (Uddin et 

al., 2008) that yields a single functional connectivity score for each network of interest 

rather than for each voxel or ROI within the networks is an alternative approach that 

reduces multiple comparisons substantially. In addition, examining how the DMN, CEN, 

and SN interact at the network level could complement the ROI-level relations observed 

in the present study. If the present findings are replicated, additional research could 

examine if functional connectivity between the reported brain areas mediates the 

relationships between depression, rumination, and emotion dysregulation variables. 

Potential mediation by cardiovascular processes can also be explored, as this study 

employed simultaneous fMRI, electrocardiogram, blood pressure, and respiration 

assessment. Lastly, research is needed to explore potential differences between 

correlations and anticorrelations between brain areas as distinct mechanisms underlying 

depression and related constructs. 
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Appendix A 

Table 1 

Sample Demographics 

Characteristic n Percent 

Gender   

        Females 44 74.58% 

        Males 15 25.42% 

Race   

        Asian 24 40.68% 

        White 20 33.90% 

        Black 8 13.56% 

        Other 7 11.86% 

Ethnicity   

        Hispanic 10 16.95% 

        Non-Hispanic 49 83.05% 

 Range Mean (SD) 

Age (in years) 18 - 28  20.66 (2.04) 

Notes: Gender, race, ethnicity, and age 

characteristics of the sample after exclusions for 

excessive motion. Total n = 59. 
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Appendix B 
 
Table 2 

Self-Report Measures 

Scale Description n Range Mean (SD) 

BDI-II Depression Severity 59 0 – 59 20.49 (10.67) 

RRS Rumination Total 54 27 – 80 53.15 (13.01) 

RRS_D Depression 54 14 – 46 30.15 (8.02) 

RRS_B Brooding 54 6 – 18 12.06 (3.12) 

RRS_R Reflection 54 5 – 20 10.94 (3.81) 

DERS Difficulties in Emotional Regulation 

Total 

56 53 – 146 89.88 (23.76) 

DERS_N Non-Acceptance of Emotional 

Response 

56 6 – 26 14.55 (5.88) 

DERS_G Difficulties Engaging in Goal 

Directed Behavior 

56 5 – 24 15.13 (4.29) 

DERS_I Impulse Control Difficulties 56 6 – 29 12.41 (5.61) 

DERS_A Lack of Emotional Awareness 56 7 – 30 15.89 (5.56) 

DERS_S Limited Access to Emotion 

Regulation Strategies 

56 8 – 24 19.64 (7.09) 

DERS_C Lack of Emotional Clarity 56 6 – 24 12.25 (4.42) 

Notes: Univariate statistics of self-report measures. All variables were normally 

distributed. RRS data for n = 5 participants were missing, and DERS data for n = 3 

participants were missing. 
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Appendix C 
 

Table 3 

Resting-State Network Anatomy and Coordinates 

Network/ROI Cluster Size x y z 

Default Mode Network (DMN) 

        Medial Prefrontal Cortex 4690 0 44 -18 

        Posterior Cingulate Cortex 3037 2 -56 26 

        Left Inferior Parietal Lobule 925 -46 -68 30 

        Right Inferior Parietal Lobule 326 52 -64 32 

Central Executive Network (CEN) 

        Left Dorsolateral Prefrontal Cortex 7551 -46 26 16 

        Right Dorsolateral Prefrontal Cortex 6762 52 26 20 

        Paracingulate Gyrus 1531 4 24 46 

        Left Posterior Parietal Cortex 1097 -32 -58 40 

        Right Posterior Parietal Cortex 177 34 -72 34 

Salience Network (SN) 

        Anterior Cingulate Gyrus 8504 2 16 38 

        Right Insula 1208 38 16 2 

        Left Insula 676 -38 12 0 

        Right Middle Frontal Gyrus 539 32 44 18 

        Left Middle Frontal Gyrus 145 -30 50 16 

Notes: Cluster size is reported in number of voxels. Coordinates are reported 

in MNI standard space.  
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Appendix D 
 
Figure 1 

Resting-State Networks: The Triple Network Model 

 

Notes: Thresholded images of the DMN, CEN, and SN in sagittal, 

coronal, and axial views. Each network is shown at a distinct set of MNI 

coordinates reported by Menon (2011) to facilitate direct visual 

comparison of the networks between studies. A. DMN is pictured at x = 

42, y = -58, z = 36. Core regions include medial prefrontal cortex, 
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posterior cingulate cortex, and bilateral inferior parietal lobule; B. CEN 

is pictured at x = -2, y = 10, z = -6. Core regions include bilateral 

dorsolateral prefrontal cortex, paracingulate gyrus, and bilateral posterior 

parietal cortex; C. SN is pictured at x = -4, y = -12, z = 28. Core regions 

include anterior cingulate gyrus, bilateral insula, and bilateral middle 

frontal gyrus 
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Appendix E 

Figure 2 

Correlation Between Depression Severity and RDLPFC-PCG Connectivity Values 

 

Notes: Positive correlation between BDI-II scores and RDLPFC-PCG connectivity 

values (r = 0.31; p < 0.05). This relationship was no longer significant after false 

discovery rate correction for multiple comparisons. 
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Appendix F 

Figure 3 

Correlation Between Depression Severity and LDLPFC-LIPL Connectivity Values 

 

Notes: Negative correlation between BDI-II scores and LDLPFC-LIPL connectivity 

values (r = -0.26; p < 0.05). This relationship was no longer significant after false 

discovery rate correction for multiple comparisons. 
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