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by Sugang Li

Dissertation Director: Yanyong Zhang and Dipankar Raychaudhuri

As the number of networked devices rapidly increases in the past few years, the era

of the Internet of Things (IoT) has arrived. IoT integrates a variety of existing tech-

nologies such as wireless sensor network, mobile sensing, and wearables, while new

challenges arise as a result of this integration. In this thesis, we aim at addressing

the following challenges. First, these technologies are isolated within insular manage-

ment and communication systems, where inter-system communication is either absent

or cumbersome. Current network protocols such as IP fail to support the scalability

requirement of IoT. Meanwhile, the growth of connected devices imposes a tremendous

amount of small packets with repeated or similar content, which leads to inefficient

network resource utilization. Finally, due to the deployment cost of IoT infrastructure,

IoT sensing service is missing in many suburban areas.

In the first part of this dissertation, we design and implement MF-IoT, a new IoT

architecture based upon future internet architecture MobilityFirst, to address the global

reachability and scalability challenge. We extend MobilityFirst to resource-constraint

devices by adopting shorter device/service identifiers, which we refer as the Local

Unique Identifier. At the same time, we maintain the transparency at the application

layer, i.e., communication between applications is still based on the full-length Global
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Unique Identifier that is used in MobilityFirst. Besides, MF-IoT provides cross-domain

rich communication patterns (unicast, multicast, etc.) as well as mobility. Through

detailed evaluation, we show that MF-IoT outperforms the existing solution, and also

provides the global reachability via id-based communication.

In the second part of this dissertation, we propose AggMEC, an IoT traffic aggre-

gation system that reduces total network traffic for any data collection traffic flow. By

introducing a novel cost function, we are able to adopt two clustering-based algorithms

to minimize the overall network traffic in any unspecific network topology. In addition,

we design our routing plane over MobilityFirst, which avoid obtrusive destination ad-

dress translation in the IP network. Through detailed evaluation, we show that our first

algorithm outperforms two other baseline schemes in both total network traffic as well

as end-to-end latency when the resource is specified by the application provider, while

the second can achieves better aggregation efficiency if the resource is unspecified.

In the third part of this dissertation, we propose Auto++, a mobile roadside context

sensing system to support pedestrian safety and traffic monitoring applications in low

population areas. Auto++ analyzes audio stream captured by microphones on smart-

phones to extract the features (maximum frequency on a particular energy & Time

Difference of Arrival) to detect the presence of cars and their arriving direction. Also,

Auto++ can also count the pass-by cars on the road in real-life. Through detailed ex-

periments, we show that Auto++ can detect a car’s presence 7 seconds before its arrival

with a very low false positive rate. We also demonstrate that Auto++ is tolerant to

various noisy environments in real-life.
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Chapter 1

Introduction

1.1 Overview

1.1.1 Challenges in The Future Internet of Things

In the era of the Internet of Things (IoT), many of the devices have been networked in

one form or another. According to [1], the number of connected devices will grow to 50

billion by 2020. Technologies such as wireless sensor network, wearable, mobile sensors

are being integrated as a part of IoT. This integration has introduced new opportu-

nities as well as posed new challenges. In the last two decades, research communities

and industry make remarkable efforts in developing new low power technologies(e.g.,

Zigbee, Bluetooth Low Energy (BLE), 6LoPAN, etc.) to connect resource-constrained

devices to the Internet. Nevertheless, each of the IoT architectures is a silo-system due

to the network protocol compatibility or the naming/addressing scheme fails short in

supporting global reachability. Meanwhile, a growing number of connected IoT devices

introduce a new data traffic pattern – the high data traffic volume of small packets with

repeated content, which introduce tremendous overhead to the network and the server.

In any packet-switch network, the overhead is determined by the number of packets

as every incoming packet requires a routing table lookup in routers and an interrupt

in the server which results in the same performance cost regardless of the packet size.

Moreover, a great amount of sensor reading data are repeated or similar due to the

short sensing interval and closed locations. This leads to the low utilization of the net-

work. In the perspective of sensing applications, although dedicated embedded devices

(e.g., thermostat, motion sensor, smoke detector)have been widely deployed in sensing

infrastructure, their functionality is too isolated and static to provide seamless sensing
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service for dynamic users. The use of mobile devices compensates this drawback, but

the sensing services are limited by the sensor types on such devices as they are designed

to serve specific tasks/applications.

As a result, we believe that there is still much room to improve in this area despite

the progress in the past decade. In particular, we look into the challenges in the

following aspects:

• Global Connectivity: Traditional computer network is designed with a host-to-

host communication paradigm. In the context of the Internet of Things, people pay

more attention to the services (eg. sensing service or actuating service) provided by

the devices instead of the devices themselves. Most of the state of art IoT systems

adopt centralized architecture, in which servers play roles in managing the devices

and providing the services. As the number of services is increasing exponentially, it

raises a scalability challenge to the storage and the network capacity that the current

architecture can support. One way to tackle down this problem is via realizing service-

to-service or device-to-device self-management. However, such decentralized manner

requires global reachability of the resource, as the services may be deployed in the

different domains. The state-of-art IP-based solutions [2,3] hinder this by the Network

Address Translation (NAT) service because the flat IP address space is not sufficient

to name all of services.

• Intelligent Computing: IoT traffic demonstrates different patterns compared to

user content dissemination due to the massive data traffic volume of smart packets

coming from the unprecedented amount of connected devices. Although data ag-

gregation has been widely studied in the area of Wireless Sensor Network (WSN)

to maximize the overall battery life, there are few works of literature discussing its

infrastructure support in the edge network or the core network. One of the reasons

is that current IP router is not aware of the content in the transiting packets due

to the cost of checking each packet. At the same time, in order to build an efficient

aggregation tree, additional routing control logic needs to be added to the network.

• Sensing in Real-time: Pervasive deployed IoT sensing devices benefit the artifi-

cial intelligence model with large data sets that are more readily than ever before.
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However, in term of timeliness, current cloud-based solutions fail in short due to

the inevitable latency between the computing services and the actuating services.

Moreover, their stationary setting cannot satisfy the requirements of dynamic mobile

users. While mobile devices are seamlessly supporting user-centric sensing with a

suite of sensors with real-time processing capability, it requires additional effort to

develop new algorithms to support sensing tasks other than those which the sensors

are designed for.

Our objective in this dissertation is to proposed the corresponding solutions to

address the challenges we mentioned above.

1.1.2 Proposed Solutions

Scalable and Global-Reachable IoT Network

At the core of the proposed IoT architecture is MobilityFirst [4], a next-generation net-

work that focuses on handling device and service mobility on the Internet. In Mobility-

First, each device or service has a 20-byte flat Global Unique Identifier that decouples

from its location or Network Address (NA). The translation from GUID to NA is pro-

vided by a logically centralized Global Name Resolution Service (GNRS). It enables

routers instead of end-hosts perform NA lookup on a delivery failure when an attached

end device moves. This process is transparent to the application layer, which means

application only needs to focus on the GUIDs rather than the NAs. Although Mo-

bilityFirst is well-suited for addressing the scalability and global-reachability challenge

for the IoT, MF-IoT extends MobilityFirst to adopt the following requirements in the

IoT network: 1) shorter IDs to accommodate the short Maximum Transmission Unit

provided by the popular low-rate layer-2 protocols like 802.15.4 [5]; 2) more efficient

routing that costs less transmission power and storage than the one adopted by Mobil-

ityFirst [6]; 3) feasible GNRS lookup protocol due to the limited connection between

IoT device and GNRS.
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Aggregating IoT traffic at the Internet Edge

The tremendous amount of IoT data impose a huge challenge to the capacities of

the network infrastructure as well as the cloud infrastructure. Furthermore, these

data contains considerable redundancy of data representation which poorly utilizes

the network resource and the storage resource. To address this problem, we propose a

generic data aggregation system over mobile edge clouds – AggMEC, for any application

that needs aggregation on unspecific network topology. By introducing the cost function

of the total network traffic, we unveil two clustering-based schemes to minimize this cost

function. Since current IP network cannot scale well for this problem as the network

layer is not aware of the content of the packets, we design and implement our system

over a clean-slate Future Internet Architecture (FIA) – MobilityFirst (MF) [4]. In MF,

every object/application/service/device is named with a persistent global unique ID,

which not only enables the network to aggregate the packets without decoding the

packets’ content, but also reduces the overhead of obtrusive address resolution in the

IP network.

Sensing the Pedestrian Ambient Context in Real-time

IoT sensing service coverage is restricted in density because of the high IoT infrastruc-

ture deployment cost, when the information(including pedestrian safety and traffic) in

the uncovered is still critical. However, mobile sensors such as microphones on smart-

phones are widespread and require zero-additional infrastructure support to provide

sensing service. As a result, we propose Auto++ – an unsupervised roadside context

sensing system using microphones on smartphones, which not only alarms the pedes-

trian for approaching vehicles and their coming direction, but also senses traffic flow

on the nearby road.

Unlike other object sensing technique such as DSRC [7] and LIDAR [8] that require

additional hardware and infrastructure support, Auto++ utilizes smartphone built-in

microphone to capture the sound from the vehicle and perform local computing to

detect the presence and the direction of a vehicle and count the pass-by vehicle in real
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time. Our experimental results illustrate that our system can detect a car seven seconds

in advance, and determine its direction in most instances.

1.2 Organization

The organization of this dissertation is organized as follows. In Chapter 2, we present

our IoT architecture MF-IoT which provide global-reachability of the IoT object/service

with persistent flat ID. Next,Chapter 3 proposed the data traffic aggregation system and

share our observation with realistic data trace. Thirdly, we introduce our unsupervised

roadside sensing system on mobile devices and demonstrate how well our system could

work in real life scenarios. Finally, Chapter 5 concludes the dissertation.
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Chapter 2

Service-centric Internet of Things Architecture over

Information-Centric Networking

2.1 Introduction

With the advent of new generation embedded devices, including wearables, robots and

drones, Internet of Things (IoT) has received a great deal of attention in the past few

years. The applications of IoT range from individual-level applications such as smart

health care and smart homes, to large-scale ones such as smart cities. According to [1],

the total number of connected “devices1” can reach 50 billion by the year of 2020.

Compared to traditional sensors, these new devices are able to cope with more complex

logic — sensors can carry out more local computation and actuators can be easily

controlled via the network. Additionally, many devices now have higher mobility than

before. These changes in the IoT devices have introduced new opportunities as well as

posed new challenges to the underlying network design.

In the last few years, several solutions have been proposed to design new IoT sys-

tems, which can be generally classified into two categories based on the underlying

network design. Solutions in the first category (e.g., those discussed in [5, 9]) try to

support the IoT system through traditional Internet Protocol (IP). However, IP has

its intrinsic problems in dealing with device mobility since it couples a node’s identity

with its location. Also, the wide deployment of Network Address Translation (NAT)

hinders global device reach-ability in scenarios such as sending invasion alarms to the

user’s mobile devices. To better cope with mobility and realize global reach-ability,

1In this chapter, we refer to these devices as embedded devices, sensor devices, or IoT devices
interchangeably.



7

Core network

Sensor domain 1

Sensor domain 2

Sensor domain 3

Figure 2.1: IoT Overview (green: air conditioner request data from temperature and
humidity sensors; blue: light sensor triggers drone in another domain to take a picture
and send it to the cell phone; red: cell phone controls cameras to take pictures at the

same time)

therefore, solutions in the second category (e.g., those discussed in [3,10]) try to allevi-

ate the above problem in the application layer. In these solutions, a variety of Wireless

Sensor Network (WSN) protocols are used inside the constrained part of the networks

(that mainly consist of resource constrained embedded devices), while the interactions

between infrastructure nodes and sensor devices are achieved by a server (or a proxy)

that runs application-layer logic. Hence, to allow embedded nodes to initiate commu-

nication with infrastructure nodes, these solutions either have to maintain long-lived

connections between the client and the proxy, which will likely result in scalability is-

sues, or rely on polling, which will likely cause traffic overhead and long latency. To

make matters worse, sensor nodes deployed by different organizations are usually not

compatible with each other, and therefore users will end up installing multiple servers

(or server applications) to support all the sensor nodes.

In this chapter, we argue that we should design a generic and efficient network

architecture to support sensor nodes and infrastructure nodes across domains and or-

ganizations. We present the IoT system we envision in Fig. 2.1. Much more than

a simple combination of WSN and core network, the proposed network architecture

should have the following critical features:

• global reach-ability for all the embedded and infrastructure nodes, in that they can
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be identified and located via persistent, globally accessible, identities,

• mobility support for seamless connection in the presence of node mobility,

• richer communication patterns including direct device-to-(multiple/any) device, device-

to-(multiple/any) infrastructure, infrastructure-to-(multiple/any) device communica-

tion without the necessity of going through the application layer (where the devices

may belong to different local IoT domains as shown in Fig. 2.1), and

• resource efficiency which supports a large number of embedded devices that are

severely constrained in energy, computation, storage, and/or network capacity.

To build an IoT system with these features, we believe the main challenge lies in the

network layer design, especially in the data plane. In this chapter, we focus on this

particular aspect, while adopting existing algorithms in neighbor/service discovery and

routing in the proposed system.

At the center of the proposed IoT network architecture is MobilityFirst [4], a next-

generation network that focuses on handling device mobility in the Internet. We choose

to build our architecture on MobilityFirst because it is designed to address the ineffi-

ciencies of IP when accomodating rapidly increasing mobile and sensor devices in the

Internet, which shares a common set of challenges as building a new IoT system out

of these devices. In MobilityFirst, each device (or application, or even a piece of con-

tent) has a 20-byte flat Globally Unique IDentifier (GUID). MobilityFirst decouples the

node identity (GUID) from its location (Network Address, NA in short). The transla-

tion from GUID to NA is performed by a logically centralized Global Name Resolution

Service (GNRS). Different from DNS, GNRS is a network component transparent to

the applications, which means the routers rather than the senders can perform late-

binding (GNRS re-lookup) on a delivery failure when an end host moves. This design

allows quick and local fail recovery to increase the delivery rate, and more importantly,

the applications focus only on the GUIDs rather than the changing NAs. MobilityFirst

is well-suited to support the aforementioned features of the IoT architecture.

However, we need to address several challenges before we can extend MobilityFirst

into the IoT networks:

1. Long GUIDs: the usage of 20-byte GUIDs in IoT is too heavy-weight, if at all
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possible, for layer 2 protocols like 802.15.4 [11] (which has a mere 127-byte MTU);

2. Costly GNRS lookup: MobilityFirst routers perform a GNRS lookup when the

destination NA is unknown or the client is no longer at the NA specified in the

packet (due to mobility). This operation is not feasible for storage-constrained

embedded nodes;

3. Link-state routing: MobilityFirst adopts link-state routing [6], similar to OSPF,

which poses high computation and storage burdens on embedded nodes.

To address these challenges, in this chapter, we propose MF-IoT, a generic net-

work architecture that extends MobilityFirst into the IoT world. We create a resource

efficient “dialect” of MobilityFirst to allow sensor nodes to communicate within a lo-

cal area, referred to as a local IoT/sensor domain (see Fig. 2.1). Gateways are used

to translate between MobilityFirst and the dialect but this process is transparent to

the applications. Unlike the application layer solutions, the dialect only exists in the

network layer. Unlike NAT either, each device in MF-IoT has a GUID, like in Mo-

bilityFirst, and this GUID can be used to realize global reach-ability. MF-IoT also

takes communication pattern diversity, GUID size, and computation awareness into

consideration to provide rich yet light-weight support to IoT applications.

The contributions of this chapter are as follows:

• We identify a list of requirements for a generic IoT architecture;

• We extend the GUID-based communication into the IoT domains to allow global

reach-ability and seamless mobility handling, while using Local Unique IDentifiers

(LUID) in local IoT domains for efficiency;

• We support a rich set of communication patterns, including unicast, multicast and

anycast between sensor nodes and infrastructure nodes and among sensor nodes (that

may or may not belong to the same domain);

• We adopt service-based GUID assignment which facilitates communication with a

specific service provided by a node instead of with the node itself, and easier support

for functions like caching, service mobility (anycast), etc;

• Through large scale simulations, we show that MF-IoT can signifcantly reduce the
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network traffic load and effectively avoid congestion in the network, leading to packet

delivery latencies that are orders of magnitude shorter. Indeed, MF-IoT can de-

liver packets within tens of milliseconds, while IP-based solutions encounter severe

congestion and the resulting latencies are more than a few seconds.

The remainder of the chapter is organized as follows: §2.2 summarizes the envisioned

requirements of a generic IoT network architecture and describes our main design ra-

tionales. The design detail is presented in §2.3 and the architecture is evaluated in §2.4.

§2.6 discusses existing IoT network architectures, and §2.7 concludes the chapter.

2.2 Design Rationale

In this section, we first discuss the requirements we envision an IoT architecture should

satisfy to efficiently connect billions of devices online and enable diverse interactions

among them. We then give a brief description of MobilityFirst and explain why we

base our design on MobilityFirst. Finally, we present our design rationales one by one.

2.2.1 Requirements of a Generic IoT Architecture

As the number of embedded devices rapidly increases, they pose a set of new chal-

lenges/requirements on the underling network design.

Global reach-ability

One of the salient features offered by IP is its global reach-ability – applications can

reach each other by simply specifying the destination IP address in the packet header,

without worrying about details such as hardware type, or the application on the desti-

nation.

This feature is particularly important for scenarios like emergency notification. In

such scenarios, it is desirable that the sensors are able to notify the predefined clients

without the need of going through a server or proxy, requiring each client to be asso-

ciated with a unique and persistent identifier. Global reach-ability is also important

for remote actuation applications, where users may need to use their smartphones to



11

directly control devices such as air conditioners, rather than going through 3rd party

protocols [2].

Most of the existing IoT architectures [5, 10]) focus either on the communication

within a local sensor network or on the adaptation over the application layer, but we

take the viewpoint that an IoT architecture should also enable transparent interactions

between sensors and infrastructure nodes at little overhead.

Mobility support

With the rapid deployment of mobile sensors such as robots and drones, an IoT architec-

ture should provide seamless mobility support such that applications can communicate

with each other without worrying about the consequence of a node’s location change

or any network change (e.g., new identity, new route to the target). At the same time,

client devices tend to move frequently — the user’s smartphone may move to a differ-

ent network while in the middle of controlling a rice cooker, or listening to the security

alarm at home. An IoT architecture should be able to handle mobility of different parts

of the system.

Communication diversity

A significant departure from traditional WSNs whose main function is data collection,

the new IoT paradigm aims to facilitate a larger variety of use cases and a much richer

set of communication patterns.

An important communication pattern in IoT is device-to-device communication;

a sensor should be able to directly communicate with an actuator rather than being

connected by a server. This communication pattern can cut down response time, traffic

volume and potential failures caused by the server, all of which are critical to real-time

IoT systems. Additionally, direct communication between a device and multiple devices

should also be supported.

Another communication pattern needed by IoT is direct communication between

a device and infrastructure nodes. In fact, the observe mode described in [12] follows

this communication pattern — a client registers a certain event, and when that event
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is detected by a device, it would send notifications to the client directly.

Finally, anycast should be supported, delivering messages to any node from a group.

Resource constraints and heterogeneity

Even though today’s IoT devices are becoming increasingly more powerful, their re-

source constraints remain a big issue. Many of the embedded devices still have very

limited computation, memory, and communication capability. Moreover, embedded de-

vices vary greatly in their capability. As a result, an IoT architecture should take into

consideration these factors.

2.2.2 Background on MobilityFirst

MobilityFirst [4] is proposed as a future Internet architecture with mobility and global

accessibility as core design concerns. To achieve these features, MobilityFirst introduced

several components into the network:

Globally Unique IDentifier (GUID)

MobilityFirst utilizes persistent GUID to name every network object. The separation

between the identifier (GUID) and the locator (network address, NA) provides support

for mobility and global accessibility. Meanwhile, GUID can be a public key derived from

the properties of the object or a human-readable name, hence it allows the objects to

be self-certifiable.

Global Name Resolution Service (GNRS)

GNRS is a logically centralized service that maintains the mapping from the GUID of an

object to its current NA(s). MobilityFirst routers can perform late binding — querying

the GNRS whenever a destination NA could not be resolved in the local scope. This

is a network-layer solution which is different from DNS, and it provides better support

for mobility since the network has the potential to recover a delivery failure locally.

Works in [13, 14] proposed distributed solutions for GNRS implementation which can
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have scalability and acceptable lookup performance in the core network.

Routing

MobilityFirst routes packets based on the NA(s). Work in [6] proposed a basic routing

solution in MobilityFirst similar to Open Shortest Path First (OSPF). In this solu-

tion, each router maintains the global topology and calculates the shortest path to the

destination in a distributed manner.

Service ID

To support multiple network services such as unicast, multicast, and in-network com-

puting, service ID is included in the packet header so that each router is capable of

making decision based on its policy.

Based on the aforementioned components, MobilityFirst has the potential to be

a network architecture for IoT. However, some challenges remain for the deployment

in IoT systems in which many resource-constraint devices might exist. First of all,

MobilityFirst uses a 20-byte flat GUID. If the network operator tries to run the low-

rate network (e.g., IEEE 802.15.4), it will be inefficient in data transmission. Secondly,

GNRS operations remains unrealistic for the low-end devices since they may not have

direct link to the GNRS server, nor does it have enough storage to support store and

forward in late binding. Routing scheme also needs to be optimized to preserve energy

consumption if we want to use MobilityFirst in IoT. Therefore, in this work, we propose

MF-IoT, a generic network architecture that extends MobilityFirst into the IoT world,

providing rich (yet light-weight) support for different applications and communication

patterns.

2.2.3 MF-IoT Design Rationales

Based on the requirements, we propose MF-IoT, an architecture that extends Mobility-

First to allow seamless communication among IoT nodes and between IoT and infras-

tructure nodes. We build our architecture over MobilityFirst because of its inherent

support for reach-ability (via 20-byte persistent GUID) and mobility (via late-binding
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in the network layer [4]). Accordingly, we create a much lighter-weight protocol em-

bedded devices can use within a local IoT domain to meet their resource constraints.

In order to achieve global reach-ability, we use network-layer translators (gateways) to

provide transparent translation between the light-weight protocol and MobilityFirst.

GUID vs. LUID

The 20-byte GUID is a key feature in MobilityFirst to provide mobility support. Each

device would have a persistent and unique GUID no matter when and where it moves.

It is also important for MF-IoT to keep this feature in achieving global reach-ability

and mobility handling.

However, always carrying the 20-byte GUIDs (40 bytes for a source-destination pair)

in the packet header may not be always feasible over a low-rate layer-2 protocol such

as 802.15.4. To solve this issue, we first introduce a lighter-weight packet header (total

length of 10 bytes, see §2.3.2)) and a 2-byte locally unique ID (LUID in short). In this

way, we map a device’s 20-byte GUID to its 2-byte LUID when we reach the local area

IoT domain. To cope with collisions that may occur in this mapping process, we let

each domain have its own GUID to LUID mapping which is managed by a gateway

deployed at the edge of the domain.

Different from NAT and other existing domain-based solutions, MF-IoT does not

change the identity the application uses. The applications, either on constrained IoT

devices or on the infrastructure nodes, still use the 20-byte GUID to identify each other,

while the network performs translation which is transparent to these applications (see

§2.3.3 for detailed explanation). An IoT node carries its GUID no matter where it

moves, even when it is relocated to another local IoT domain and is assigned with a

new LUID. This ensures the global reach-ability and mobility handling yet still considers

resource constraints of embedded devices.

Service-based GUID

In MobilityFirst, a GUID can be used to identify a network node, an application, or

even a piece of content. In MF-IoT, we associate a GUID with a specific service,
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hence service-based GUIDs. Here, service has a finer granularity than a network node

since in IoT, a node often carries multiple services — e.g. a robot might carry a light

sensor, a temperature sensor and several actuators, each of which provides a service. Its

granularity is similar to that of a “port” in the TCP/UDP definition – each application

can have its GUID(s) that are exposed to the network and other applications. In MF-

IoT, we name each individual service instead of the node GUID + port approach like

in TCP/UDP.

With service-based GUIDs, applications on an IoT node can simply listen to one

or more GUIDs for different services, e.g. sensor data reporting, actuation, caching,

etc. With this approach, we can easily support transparent and energy efficient service

migration, without affecting the functionality of the services (see §2.3.4 for detail).

MF-IoT also treats message forwarding and gateway as services, allowing simpler

topology management and logic separation in IoT especially when multiple services

co-locate on a single IoT node (see §2.3.5).

GUID-centric communication diversity

MF-IoT is well suited to support direct device-to-device communication, no matter if

these two devices are in the same domain or not. The applications on the devices can

identify each other with corresponding service GUIDs while the underlying network

takes care of the translation between GUID and LUID. IoT applications can also reach

infrastructure nodes easily, through their GUIDs.

MF-IoT does not distinguish unicast and multicast services. Whenever there are

multiple services listening for the same GUID, the network would forward a message to

all of these services. However, MF-IoT distinguishes to-all services from to-any services

(anycast). This is achieved by a “Service ID” (SID) field in the packet header similar

to MobilityFirst.



16

Sensor Domain 1

MobilityFirst

Sensor Domain 2

GW2

GNRS

n1

GW1n3

n2

Forwarding Services

Services

Gateway Service

Figure 2.2: MF-IoT architecture overview

2.3 MF-IoT Architecture Design

In this section, we describe the detailed design of MF-IoT. We first present the compo-

nents in MF-IoT, the data packet format, and then explain how the components work

together to provide the features discussed in §2.2.1.

2.3.1 Components in MF-IoT

MF-IoT consists of the following components (Fig. 2.2):

IoT/Sensor domain

We refer to a local area IoT/sensor network as an IoT/sensor domain. A large portion

of the nodes in the IoT domain are resource-constrained, where energy-efficient link

and physical protocols such as 802.15.4 or Bluetooth Low Energy (BLE) are primarily

used.

MobilityFirst domain

MobilityFirst domain refers to the infrastructure network consisting of MobilityFirst

routers.
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Gateway

A gateway (e.g., GW1 and GW2 in Fig. 2.2) serves as the bridge between local IoT

domains and the MobilityFirst domain, translating between MF-IoT packets and Mo-

bilityFirst packets for each local domain. In order to be compatible with both ends,

multiple physical interfaces should be adopted by a gateway node.

Network nodes

In our MF-IoT architecture, network nodes can be categorized in three classes: con-

strained nodes within an IoT domain, resource-rich nodes within an IoT domain, and

infrastructure nodes. Note that a resource-rich node within an IoT domain usually

has rich computing and storage resources (e.g., camera), but the network interface is

compatible with that of a resource-constrained node.

Service

We treat any resource that might be of interest to users (such as a sensor or an actuator)

as a service which is the unit of GUID assignment.

To provide basic network functions while separating them from the application logic,

we treat forwarding and gateway also as services (namely, forwarding service and gate-

way service). They provide functions like neighbor discovery, routing, packet forwarding

and translation between MF-IoT and MobilityFirst packets.

Application services refer to IoT resources such as sensing and actuating. While

multiple such services can be provided by a single IoT node (or even within a single ap-

plication for embedded devices), a single service can also be supported among multiple

sensor nodes (details in §2.3.4).

2.3.2 Packet Format

In MF-IoT, we use fixed-length headers instead of Type-Length-Value (TLV), so that

less space and computing is needed. As shown in Table 2.1, we define the following

fields:
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Table 2.1: MF-IoT packet format (4 octets per row)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

VER PKT TYP SVC TYP PROT TTL PKT LENGTH

SRC LUID DST LUID

NONCE

PAYLOAD

• Version (VER): the version number of MF-IoT packets;

• Packet Type (PKT TYP): whether a packet is a control packet or data packet;

• Service Type (SVC TYP): the network service type, such as multicast and any-

cast;

• Protocol (PROT): the upper layer (e.g., transport layer or application layer) pro-

tocols, which helps map the upper layer to the corresponding logic;

• Time-To-Live (TTL): used to prevent routing loops;

• Packet Length (PKT LENGTH): length of a packet, can allow packet size up to

4kB (212 bytes);

• SRC LUID and DST LUID: the source and destination LUID;

• Nonce: a random number generated by the sender. In MF-IoT multicast, the link

layer of the branching node broadcasts the packet instead of unicasting to every next

hop. The previous hop will receive the same packet, and drop it if packet with same

nonce is seen before.

2.3.3 Transparent GUID/LUID Translation

To enable global reach-ability, MF-IoT uses gateways as the bridge between the MF-IoT

and MobilityFirst domains. It maintains the mapping between GUID and LUID via

a translation table. The translation table contains 3 columns (as shown in Table 2.2)

— the GUID, its LUID in the local domain and the mapping type. The mapping type

can be Local, meaning the GUID is in this local domain, Remote, meaning the GUID

is outside of the local domain, or Local+Remote, which is usually a multicast GUID

and means that there receivers are both inside and outside the domain (see §2.3.6).

The LUID in the local domain can be recycled based on Least Recent Used (LRU) or

Time To Live (TTL) policies. This ensures the uniqueness of LUID in a local domain
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1: procedure Send(G, d)
parameters:
G: destination GUID
d: data to be sent

2: tmp← ti[G] . Lookup local translation cache
3: if tmp = ∅ then . Initiating communication
4: L← Request(G, ∅)
5: else if tmp.State = Stale then . After move
6: L← Request(GL, tmp.LUID)
7: else . Continue communication
8: L← tmp.LUID
9: end if

. Forward MF-IoT packet based on routing
10: Forward(Li, L, d)
11: end procedure

during a period of time even with a 2-byte length (which allows 65,536 concurrent GUID

mappings).

When an embedded device joins a domain, it registers its GUIDs (each service has

a GUID) at the gateway. The gateway would give each GUID a LUID and mark them

as Local.

When an application tries to send a message to a certain GUID (G), it would call

the send function provided by the host node’s forwarding service (see Algorithm 0).

Note that in this process, the LUID is transparent to the application. The forwarding

service requests G’s LUID from the gateway (lines 3–4), and the gateway looks up G

in its translation table. If there is already a mapping, the gateway simply replies with

the LUID; otherwise it creates an entry {GUID=G, LUID =L, Type=Remote} in the

translation table, where L is randomly generated (different algorithms could be adopted

here, which is orthogonal to this study). Note that in this stage, the gateway does not

have to perform a GNRS lookup and it can respond to the request immediately. After

getting G’s LUID, L, the forwarding service checks its own routing and neighbor table

to forward the packet using L as the destination LUID.

The forwarding service can also have a local translation cache (ti in Algorithm 0) for

frequently communicated parties. Before requesting G’s LUID from the gateway, the

forwarding service can first check its own cache (lines 2 and 8). The cache could have
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Figure 2.3: Example for global reach-ability (blue lines: MobilityFirst traffic, green
lines: MF-IoT traffic)

stale information when a node moves to a new domain, but we try to keep the original

LUID information to reduce changes in the routing tables. Therefore, when requesting

the LUID of a stale entry in the cache, the forwarding service would carry the original

LUID as its preference (lines 5–6). If there is no collision, the gateway would register

this original LUID in its translation table.

Upon arrival of a MF-IoT packet, a gateway looks up its translation table and obtain

the GUIDs for both source and destination forward the packet using MobilityFirst logic.

At this point, it might need to look up GNRS for the destination node’s NA if it is

unknown. On the other hand, when the gateway receives a MobilityFirst packet whose

destination GUID (Gd) is in its domain (the translation table has a matching entry

whose type is Local), the gateway would create an LUID (Ls) for the source GUID

(Gs) and mark the type as Remote if the source is not in the translation table, and

then send a MF-IoT packet consisting of Ls and Ld. This entry is created such that

the destination device can send a message to the sender.

In MF-IoT, the gateway does not differentiate if a MobilityFirst packet is coming

from an infrastructure node or an embedded node in another domain. This feature

enables global reach-ability and seamless mobility handling. Below we explain how

these two objectives are achieved.
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Table 2.2: Translation table on GW1 in Fig. 2.3

GUID LUID Type

—=—=—=— Gn1 Ln1 Local

Gn2 Ln2 Local

Gn3 Ln3 Remote

Gn4 Ln4 Remote

. . . . . . . . .

Global reach-ability

Fig. 2.3 depicts three scenarios where an embedded node n1 wants to send a message

to a node in the same domain (n2), an infrastructure node (n3), and an embedded

node in another domain (n4), respectively. To simplify the description, we assume that

each node has only one forwarding service and one application service, represented by a

box. In Fig. 2.3, MF-IoT traffic is represented by green lines and MobilityFirst traffic is

represented by blue lines. Note that we use dotted lines here to denote that the traffic

is not direct traffic between the two nodes, but there might be relay nodes between

them. We next describe the protocol exchange according to the figure.

1. To initiate the communication with n2, n3, and n4, n1’s forwarding service needs

to get their LUID from the gateway. For n2, GW1 can respond directly since it

has a Local entry in the translation table. For the other two, GW1 creates new

entries and mark them as Remote. Here, GW1’s translation table is shown in

Table 2.2.

2. The routing algorithm in the local IoT domain forwards the packet based on the

destination LUID. Since n2 is in the same domain, the local routing algorithm

would forward the packet to n2 eventually.

3. If the destination LUID (Ln3 or Ln4) is not in the same domain, the local routing

algorithm forwards the packet to GW1, which translates the packet to Mobility-

First packets {Gn1 → Gn3} or {Gn1 → Gn4}.

4. Now GW1 sends the packets with traditional MobilityFirst logic. In MobilityFirst,

the first step is a GNRS lookup for the NA of the destination. If the destination
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is an embedded node in another domain (n4), GNRS would reply with the NA of

the corresponding gateway (GW2). For an infrastructure node (n3), GNRS would

respond directly with its NA (not shown in the figure).

5. After getting the NA, the packet will be forwarded in the MobilityFirst network

and eventually reach n3 or GW2. Note that thanks to late-binding technique

in MobilityFirst, the packet would reach the destination even if n3 or GW2 has

moved and has a new NA. This provides seamless mobility support when an

infrastructure node or an entire local IoT domain moves.

6. When GW2 receives the packet destined to Gn4, it checks the translation table

and finds that n4 belongs to the local domain. It then creates a LUID mapping for

Gn1 (L′n1) and forwards an MF-IoT packet {L′n1 → Ln4}. Note that the LUID of

Gn1 in this domain does not have to be the same as Ln1 given by GW1. However,

this new LUID does not affect the communication between n1 and n4 since they

are communicating with the GUID while LUID is kept transparent from them.

Handling node mobility

Next, we show how MF-IoT handles the situation when embedded nodes move from one

domain to another. There are two cases we need to consider, the first involving one of

the communication parties moving to a different domain (e.g., n2 moves to GW2), and

the second involving one of the communication parties moving into the same domain

(n4 moves to GW1). In both cases, the node that does not move (n1) will not observe

any change in the communication.

In the first case, let us consider the following situation: when n1 sends a message

to n2, n2 has moved from GW1 to GW2. We assume that n1 already initiated the

communication before n2 moved, and therefore it already has Gn2toLn2 mapping in its

local cache. When the packet ({Ln1 → Ln2}) reaches GW1, either via proactive routing

(which detects the node departure and updates the routing) or reactive routing (which

cannot find n2 during message forwarding and then redirects the packet to GW1), GW1

contains a Remote entry for n2 and it will forward the packet similar to the steps (4,
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5) in the previous example. Note that during this process, n2’s LUID has changed, but

the application uses only its GUID and is unaware of this change. If GW1’s translation

table has not been updated when n1’s packet arrives, GW1 can store the message and

forward it later when n2 reconnects from the new domain.

In the second case, let us consider the following situation: when n1 sends a message

to n4, n4 has moved from a different domain to GW1 and has registered with GW1. In

this case, GW1 has assigned a LUID to n4, Ln4. When n1 sends a packet {Ln1 → Ln4},

it would reach n4 without going to GW1, without n1’s active involvement.

Having considered infrastructure node mobility, IoT domain (as a whole) mobility

(described in the previous example), and embedded node mobility, we believe that

MF-IoT can provide seamless mobility support for an IoT system.

2.3.4 Service-based GUID

With the wide deployment of IoT devices where each device can have more than one

sensor services (e.g., a robot may have a temperature sensor, a humidity sensor, and

several actuators), there is a need to communicate with a specific sensor service rather

than lumping all the sensor services together. Thus, MF-IoT gives each of these services

a GUID, which enables seamless service migration and service caching. Such features

would be particularly useful in extreme cases like disaster management. Below, we will

discuss 2 typical use cases to illustrate the benefits of service-based GUIDs compared

to the traditional ID (IP) + port solution.

Service migration

In this case, we have an embedded node n1 which has a temperature sensor (T ) and a

smoke sensor (S), and a backup node n2 with a temperature sensor that is not in use

in the beginning of the example (see Fig. 2.4). In this example, an infrastructure node

n3 queries T from time to time to get the current temperature. When the temperature

sensor on n1 fails, n2 will serve the same functionality. In the traditional IP + port

solution, the new T would have n2’s IP address with a specific port and accordingly,

GW and/or n3 would need to know the change. Note here that it is often not feasible
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Figure 2.4: Service migration — seamlessly migrate to a backup temperature sensor
on a sensor failure

to migrate the whole node and let the new node (n2) use the original node’s (n1’s)

IP address because n2 only provides a subset of services that n1 supports. Thus, the

traditional solution is inconvenient for users and application designers.

In MF-IoT, we can have the temperature sensor on n2 take over the service T by

inheriting T ’s GUID GT and LUID LT . In this way, the routing algorithm would find

T ’s new location without any extra overhead from n3 and GW .

Service caching

There are also cases that the more powerful devices can help lower-end devices cache

the sensor readings, or low-end devices collaborate and cache for each other to save

energy, which we refer to as service caching in MF-IoT. The caching node will listen

for the specific service GUID and the source sensor can update the caching node with

the same GUID.

Fig. 2.5 shows a local IoT domain containing 3 services (a humidity sensor service H

from node n1, a temperature sensor service T from node n2, and a light sensor service

L from node n3). During normal operations (Fig. 2.5(a)), each of three nodes has its

own power source and can serve data requests from other parts of the system (e.g.,

an infrastructure node n4). When power outage happens (Fig. 2.5(b)), to extend the

lifetime of the entire domain, they can elect a representative (n1 in the example) and

cache the latest readings from all three sensor services on n1. n2 and n3 can then go

to the sleep mode and wake up periodically to get the sensor reading and update the

cache. In Fig. 2.5(b), n2 is updating the cache and n3 is in the sleep mode. Since
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Figure 2.5: Service caching during power outage:(a)Before power outage (each device
is serving its own sensor service) (b)During power outage (n2 and n3 can be turned off

and update the caching service on n1 periodically)
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n1’s cache is listening for the LUID for T and L, the corresponding requests would be

forwarded to n1 and the caching service can respond with the cached value. When the

battery on n1 drops lower than a threshold, n1 may also offload the caching service to

other nodes (e.g., n3) and go to the sleep mode. Of course, the caching service can also

be placed on the gateway (GW ).

2.3.5 Forwarding Service and Gateway Service

MF-IoT treats the basic network functionalities within a local IoT domain, such as

forwarding and gateway, as services. This leads to easier topology management and

better separation between application functions and network functions.

Fig. 2.6 illustrates a local IoT domain with 4 nodes (n1 − n4), each of which has

some or no services, and a gateway (GW ). Unlike the traditional solutions in which the

services have to take care of neighbor discovery and routing, in MF-IoT, each node’s

forwarding service collectively performs these tasks. To send a packet, an application

simply sends the data to its forwarding service and the network functions reside only

in forwarding services. This clear separation would help developers focus on a specific

part of the system.

When the embedded nodes move, this design can also help simplify topology man-

agement. For example, when n4 moves away from n1 and they cannot reach each other,

this solution only has one link change (between forwarding service of n1 and n4) while

the tradition solution would have 3 link changes.

On the gateway, we also separate the forwarding service (that relays packets for

IoT nodes) from the gateway service (that translates between MF-IoT packets and

MobilityFirst packets). Therefore, only the packet that will be forwarded out will go

through the gateway service. This reduces the response time and energy consumption

on the gateway and leads to simpler modification of routing algorithms on a gateway

node.

Similar to popular WSN designs, MF-IoT separates neighbor discovery from routing.

The forwarding service on the embedded nodes maintains two basic data structures —

a neighbor table (see Table 2.3) and a FIB (see Table 2.4). We denote the forwarding
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Figure 2.6: Virtual topology with forwarding as a service (virtual topology marked in
blue)

Table 2.3: Neighbor table on n4F

Neighbor Identity

—=—=— Ln1F MAC(n1)

Ln2F MAC(n2)

Ln3F MAC(n3)

Ln4S1 PID(n4S1)

Table 2.4: FIB on n4F

Destination Next Hop

—=—=—=— Ln3S2 Ln3F

Ln4S1 Ln4S1

LMF1 Ln1F

. . . . . .

service on node ni as niF and the application service on node ni as niSj in the tables.

The neighbor table maintains the direct neighbors in the virtual topology. In the

example, the forwarding service on n4 has 3 neighbor forwarding services with LUID

Ln1F −Ln3F (the first 3 rows in the table). Since the application service on n4 (Ln4S1)

is also a neighbor to the forwarding service, we require the neighbor table on n4 to

maintain an extra entry that maps Ln4S1 to the Process/Thread ID (PID) of the service

(the last row). The FIB maintains the next hop(s) for each active LUID.

To forward a message, the forwarding service would first get the next hop(s) for the

destination LUID according to the FIB, and then forward the packet either through

wireless media or through Inter-Process Communication (IPC) according to the neigh-

bor table. According to Tables 2.3 and 2.4, if the destination of the packet is a service

on n3 (Ln3S2) the forwarding service on n4 would forward it to the forwarding service

on n3 (1st row in FIB) through layer 2 with MAC(n3) (3rd row in neighbor table).

If the destination is the service on its own device, the forwarding service would know

n4S1 is a direct neighbor (2nd row in FIB) and forward it though IPC (4th row in

neighbor table). If the destination is a node not in the domain (e.g., MF1), the FIB
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would have an entry pointing towards the gateway (to n1F , 3rd row in FIB) and it will

be forwarded to the MAC address of n1 (first row in neighbor table).

Here, the forwarding service takes care of neighbor discovery and forwarding, and

the update of the FIB is performed by the routing module (see §2.3.7). An extra TTL

field can be added to the table to allow soft-state neighbor and routing management,

With the forwarding and application services separated, one can better focus on

either component without interfering with the other.

2.3.6 Additional Communication Patterns

As described in §2.3.3, MF-IoT can support direct device to device communication (both

intra- and inter-domain) and the communication between devices and infrastructure

nodes. In this subsection, we describe additional communication patterns that are

supported in MF-IoT.

Multicast

Since we use service-based GUIDs which are independent of any specific node, everyone

in the same local IoT domain can listen to the same service GUID. Therefore, multicast

can be supported naturally in MF-IoT and we further lump unicast and multicast

together and refer to them as a to-all service. The forwarding service on the branching

point would have more than one entry in the FIB for a GUID if there are more than

one receiver. It then replicates the packet and sends a copy to each next hop (either it

is on another node or an application in the same node). MF-IoT also takes advantage

of the broadcast media all the wireless nodes are using. When the number of next hop

nodes is larger than a threshold, a node can broadcast the packet instead of replicating

and sending the packet multiple times. The next hop nodes will look up their FIB and

discard the packet if no matching entry is found.

Anycast

In addition to unicast and multicast, MF-IoT also supports anycast. The listeners in

anycast work in the same way as in multicast — they would listen to the same GUID
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Figure 2.7: Intra-domain simulation setup. (a)Groups receiver distribution (b)Groups
vs. grid size (c)Receives vs. grid size

and a tree would be formed by the routing protocol either proactively (e.g., OSPF-like)

or reactively (e.g., AODV-like). When sending an anycast packet, the sender would

place a different SVC TYP value in the packet header and the intermediate nodes would

only forward it to one of the next hop nodes based on its policy (e.g., shortest path, to

a node with highest energy level, etc.).

“Observe” mode

According to [12], the observe mode is important for WSN and IoT applications. In

this mode, the observer registers a specific event at a sensor and when the event is

detected, the sensor notifies the observer. Usually one registration in the observe mode

can get multiple notifications from a single sensor.

The observe mode can also be supported in MF-IoT, and furthermore, we can pro-

vide additional mobility handling and multicast support. The observers (either in the

same local IoT domain, in the core network or even in different local IoT domains)

can listen to the same specific GUID. When an event is triggered, the subject can send

the notification to all the receivers through multicast. With the mobility support and

an inherent push model, we allow the notifications to be sent in a timely and efficient

manner.

2.3.7 Routing

MF-IoT does not restrict the routing in the network. The application designers can

feel free to use any existing routing mechanism or design their own according to the
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communication pattern they envision. Here, we suggest several mechanisms that we

have in mind:

RPL [15] is widely used in the existing IoT systems for home and building automa-

tion [16]. The solution builds a tree among the nodes and usually the gateway is seen

as the root. It can provide easier management with lower memory and energy con-

sumption thanks to the tree topology. For applications which mostly depend on sensor

to gateway and sensor to infrastructure communication, the solution has its benefits

since all the traffic has to go through the gateway. MF-IoT can also adopt such kind

of routing — RPL algorithm can run as a separate module and modify the FIB of on

the forwarding engines. The data plane does not need to be modified.

AODV [17] is used by Zigbee [18] as the default routing. It provides on-demand

distance vector routing to accelerate the direct sensor-to-sensor communication (they

do not need to go to the root of the tree as RPL). However, to find a path on demand,

a request has to be flooded in the whole network which made the solution less efficient

when the network is large. AODV also can be used in MF-IoT in small domains for

direct communication.

With the advent of Software Defined Networking (SDN), the concept of a central

controller eases the traffic engineering and policy enforcement in the network. At the

same time, it allows the forwarding engines to be simpler and more efficient. This

concept can also be used in IoT world since the gateway usually has more resources, no

power constraints and possibly larger radio coverage. The sensors can report the link

changes to the gateway and after calculation, the gateway will send the forwarding rules

back to the sensor nodes either proactively or on demand. This solution can reduce

the amount of flooding in AODV, and support efficient sensor-to-sensor communication

compared to RPL. It also has the flexibility to support communication based on policies

and resource constraints on the sensors. At the same time, the sensors do not have to

calculate the routing and it can save energy in resource constraint nodes. We will use

this kind of routing as the default routing for MF-IoT in the evaluation.
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2.4 Evaluation

To evaluate the performance of MF-IoT, we modified our event-driven simulator that

was used in [19, 20], to represent typical IoT usecases. In the evaluation, we compare

MF-IoT with IP and another state-of-the-art IoT architecture that is based upon a

clean-slate Named Data Network (NDN) future Internet architecture. We will show

that compared to IP and NDN, MobilityFirst provides a better support for IoT.

Specifically, We consider three scenarios in the evaluation: intra-IoT domain com-

munication, IoT device mobility, and communication between embedded devices and

infrastructure nodes.

2.4.1 Intra-IoT Domain Device-to-Device Communication

Simulation setup

We first report the performance of MF-IoT within a local IoT domain. We simulate

a domain that has 400 sensor nodes, forming a 20×20 grid, and a gateway (or proxy

in the IP case). Each sensor node can communicate with 8 direct neighbors through

802.15.4, with bandwidth of 250kbps. To perform stress tests, we first generate 30,000

communication groups each containing a sender and 1–50 receivers (therefore the traffic

containing both unicast and multicast traffic). The number of receivers per group

follows a Zipf distribution with α=0.35. As a result, each node in the network belongs

to 117–198 such kind of groups (see Fig. 2.7(a)). We also generate a set of messages for

each group. The number of messages per group also follows a Zipf distribution but with

α=0.81 [21]. The trace then has 138,662 messages and 1,208,203 receive events. The

size of the messages varies between 1 and 100 bytes, and follows a normal distribution

with E=50. The arrival of the messages follows a poison distribution with a mean

inter-arrival time of 1/160 seconds.

We compare the following three networking solutions:

IP : We use UDP over 6Lowpan [5] to represent the state of the art IP-based IoT

solutions. According to [22], we use RPL [15] as the routing mechanism. To send a

message to multiple receivers, the sender would send multiple unicast messages. If a
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message cannot fit into a 802.15.4 MTU (127 bytes), it needs to be segmented and

re-assembled later.

NDN : NDN [23] uses a query/response model and therefore the receivers of a group

have to poll the sender for updates in the group. We choose a polling period of 2

seconds to get a 1-second average latency, which might be acceptable for many event

notification cases but still large for emergent real-time cases. To reduce the average

latency, NDN has to poll more frequently and the network traffic would increase rapidly.

This is an inevitable trade off in NDN. Unlike IP, it can form a temporal multicast tree

if the requests have temporal locality. We place a 10kB Content Store on each sensor

node. NDN packet uses TLV format as described in [24] and we do not place signature

and signed info in the Data packet to make them feasible to be transmitted in 802.15.4.

Similar to IP, if an NDN packet cannot fit into a MAC packet, segmentation and

reassembling would happen on the end hosts.

MF-IoT : We consider two variations of MF-IoT in the evaluation — MF-IoT w/o

multicast (MF-IoT-U) and full fledged MF-IoT. In MF-IoT-U case, we only use unicast

feature in the network and to send a message to multiple receivers, the sender has to

send multiple unicasts. We use centralized routing described in §2.3.7 in both variations.

We use the end-to-end latency as well as the aggregate network traffic transmitted

by all the nodes as the performance metrics of our evaluation.

Simulation Results

To show each solution’s performance trend, we use different grid sizes ranging from

2×2 to 20×20, and plot the number of groups and receive events for each grid size in

Fig. 2.7(b) and Fig. 2.7(c). The performance results are reported in Fig. 2.8.

From Fig. 2.8(a), we observe that with larger grids, the average latency for each

solution becomes larger since the sender-receiver pairs are farther apart. Among the

four solutions, MF-IoT outperforms the other three. Specifically, MF-IoT-U caused

minor congestion in the 20×20 grid and the average latency grows by around 15ms.

However, the average latency in the IP solution grows even faster since the traffic has

to go through the proxy. When the grid size reaches 13×13, the traffic load reaches the



33

capacity limit on the gateway, causing congestion. The average latency goes up to 18.32

seconds eventually. Here, we assume the proxy has an infinite queue so that IP would

not drop packets. NDN does not cause serious congestion in the network thanks to its

intrinsic flow balance design. However, due to the polling frequency, the average latency

remains around 1 second, and when the network grows larger, the average latency goes

up by around 100ms partially caused by some minor congestion.

Fig. 2.8(b) shows the aggregate network traffic generated by each solution. We

observe that MF-IoT and MF-IoT-U generate much less traffic compared to IP and

and the difference becomes more pronounced when the network size becomes larger.

Finally, NDN causes a lot of wasteful traffic due to the polling mechanism.

To summarize, MF-IoT has achieved lower traffic overhead and average latency

compared to other solutions. As a result, we believe that IoT systems that adopt

MF-IoT will accomadate higher traffic load and larger network size than the other

start-of-the-art solutions.

2.4.2 Communication between IoT and Infrastructure Domains

Next, we demonstrate that MF-IoT supports efficient communication between an em-

bedded device and infrastructure, even when the infrastructure node is mobile. We

consider the use case that involves a sensor node n trying to send data to an infrastruc-

ture node I once every 100ms. We report the latencies observed at I at different times

in Fig. 2.9.

In the start phase of the simulation run, marked as “Initialization”, n first requests

I’s LUID from the gateway, and sends the packet to the gateway. The gateway then

conducts a remote GNRS lookup to find the network address for I. The overall latency

for this initialization phase is around 550ms.

To deal with node mobility, each GNRS entry cached on the MobilityFirst router

would expire after some time. Here, we set the expiration time as 5 seconds. We

thus observe the reciever-side latency has spikes each time the cached GUID-to-NA

mapping expires and the gateway has to perform remote GNRS lookups (marked as

“GNRS lookups”).
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Figure 2.10: Sensor to sensor communication, receiver (n2) moved at 7s, 15s

In the simulation setup, I moves to a different network at 12.2 second and the

gateway is not aware of this. Therefore, the gateway would send the packet to the first-

hop router towards I’s original NA (denoted as R) where R performs late-binding. We

assume that the movement happens instantly and R can obtain I’s new NA through

another GNRS lookup. With this additional remote GNRS lookup, the average latency

at these times (marked as “Late binding”) also increases.

Finally, we note that this entire process is transparent to the sensor node n.

2.4.3 Inter-IoT Domain Device-to-Device Communication

Finally, we demonstrate that MF-IoT can efficiently support communication between

two embedded devices, even when one of them moves to a different domain. Specifically,

we consider two embedded nodes n1 and n2, and n1 sends a packet to n2 every 100

ms. The receiver node n2 is within the same local IoT domain as n1, and it moves

to another IoT domain at 7s, and to a third IoT domain at 15s. We plot the latency
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observed at n2 at different times in Fig. 2.10.

In the beginning of the simulation (marked as “Initialization”), n1 requests n2’s

LUID from the gateway, and its latency is rather low since they are in the same domain.

n2 moves to another domain at time 7. Here, n1 still sends the MF-IoT packet

with n2’s original LUID, but the packet will be forwarded to the gateway as n2 has

left the domain. The gateway then performs a remote GNRS lookup for the NA of

n2’s new gateway (marked as “Gateway binding”). From this point on, the gateway

has to perform a GNRS lookup every 5 seconds as cached GNRS entries expire every 5

seconds. As a result, the latency increases around here.

When n2 moves to a third domain at time 15, the gateway in the second domain

would perform a late binding (like in the case of the infrastructure node movement),

and the first gateway obtains the NA for n2’s latest gateway at time 17 (with a spike

in the latency numbers).

This process is entirely transparent to both nodes. Finally, we note that in the

two mobility usecases we have considered, it is the receiver that has moved during

the communication. MobilityFirst-IoT also works seamlessly if the sender moves to a

different domain, wherein the sender simply needs to register the reciever with its new

gateway (see §2.3.3).

2.5 System Implementation

We have implemented MF-IoT over a realistic system to show its feasibility of real world

deployment. In order to demonstrate a end-to-end system that runs actual application,

we have also included MobilityFirst core network components. Our system implemen-

tation contains different modules including IoT network, IoT applications, gateway,

MobilityFirst network, camera applications and client applications. In Fig. 2.11, we

show both the logical relationship among GUIDs (application layer) and how the pack-

ets are routed in the physical network (network layer). Next, we will decribes our

system implementation by following the application message flow.

We have implemented the MF-IoT protocol on Atmel SAM R21 XPro with RIOT
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Figure 2.11: Communication diagram in different views

OS (shown in Figure 2.12(a)). Each board is used as a micro-controller and network

adapter for a PIR sensor, or as a relay. The MF-IoT is implemented as a network layer

module in RIOT similar to 6LowPAN. The module listens to the normal MobilityFirst

send packets from the application layer, performs GUID to LUID mapping and send

MF-IoT packets over 802.15.4. On receiving MF-IoT packets, the module would lookup

the local routing table and forward it to neighbor(s). The module would also map the

LUID to GUID and forward a MobilityFirst packet to the applications listening to the

GUID.

The gateway is implemented as an IoT board connected to a PC via USB. The

gateway application on the board reads packets from MF-IoT module and prints the

binaries to the debug console. The PC reads the debug output via the USB and recon-

structs MobilityFirst packets accordingly. The MobilityFirst packets would be sent to

the core network and reach the destination(s) listening to the dst GUID. The gateway

also manages the GUID-LUID mapping in the domain.

The application running on motion detector node listens to the motion sensor via

UART. During the period that motion is detected, the applications send MobilityFirst

messages periodically to a GUID representing Motion Service (step 1 “Notify Motion”).

The MF-IoT module performs the GUID to LUID translation and forwards the packets

based on the routing. The packets will be relayed on the intermediate nodes and

reach the gateway eventually. They will be translated back to MobilityFirst packets on
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Figure 2.12: (a) SAM R21 Xpro (b) Demo overview (c) Realistic setup

the gateway and be forwarded to the application(s) listening on this service (cameras).

With the motion service GUID, the cameras do not need to change their reconfigurations

when a new motion detector is added to the system.

On receiving the notification from the motion detectors, the cameras would start

recording the video until no notification is received for a timeout period. The cam-

eras would combine a certain number of frames into a chunk and get a content GUID

from Name Certification Service (NCS) for each chunk. After saving the chunk, the

camera would notify GNRS that it is serving the chunk GUID (step 2 ”Serve content”

in Fig. 2.11). The camera would then send a notification to the GUID of the camera

service. The content GUID is placed in the payload of the notification. Whoever is

interested in (or has the right to receive) the camera data would listen to the cam-

era service GUID and get the corresponding notifications (step 3 ”Notify content” in

Fig. 2.11). Note that we allow different cameras to create different services to enforce

the policy and/or satisfy user interests. In the figure, Client 1 is interested in both

cameras while Client 2 is only allowed to see Camera 2. Therefore, Client 1 listens to

GUIDs of both cameras and Client 2 only listens to GUID of Camera 2.

When a client receives the notifications from the camera service(s), he would look

into the payload and get the GUID of the content. He can then query the MobilityFirst

network with the content GUID whenever he wants to watch the captured video (step 4

“Retrieve content” in Fig. 2.11). Similar to other Information-Centric Networks (ICNs),

MobilityFirst would route the request to the nearest content provider or even get the

content from the cache in the network.
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2.5.1 Demo Setup

We would use the normal surveillance camera function to show the feasibility and effi-

ciency of the design. During the demo, we would also dynamically adjust the network to

demonstrate the flexibility of using service-oriented communication. We have deployed

our demo in a network that constructed by 4 SAM-R21 Xpro sensor nodes and 5 linux

machines(shown in Figure 2.12(a) & (b)).

Scenario 1 Normal Surveillance Camera Function: We use 3 motion detectors and

several relays to form IoT domain (Fig. 2.11). Due to the space limit in the demo site, we

pre-configured a virtual topology so that the IoT nodes would only accept the packets

from neighbors. The core MobilityFirst network comprises 2 MobilityFirst routers and

several end-hosts (cameras and clients). We showed that when any of the motion sensors

detect the motion, messages would be sent (via relays) to the gateway using MF-IoT

over 802.15.4. A sniffer node would be placed to show how the packets and sent among

the IoT devices. On the gateway, we would capture both the MobilityFirst and MF-IoT

packets to explain how the translation is performed. The cameras gets the messages

via MobilityFirst multicast and generate contents with the images they capture. Via

the log on the cameras, we showed the messages the cameras receive, the new content

GUIDs they create and the requests form for the contents. On the client side, we

allowed the clients see the video immediately when the video is generated (real-time

mode). The clients can also choose to play the video recorded earlier (playback mode).

Scenario 2 Dynamic Configuration Adjustment: In the demo, we use motion service

and camera service GUIDs. When we add a new motion detector or use another camera

to replace the existing one, no configuration would be needed. We demonstrated how

the network enables the automatic adjustment.

2.6 Related Work

In this section, we discuss related work in state-of-the-art IoT system and architecture

design.
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2.6.1 State of the Art IoT Architectures

Existing work on IoT systems can be broadly classified into two categories: network

adaptation for constrained devices and application-layer approaches for resource acces-

sibility and manageability. Network adaptation solutions like 6LoWPAN [5] and ZigBee

IP [9] compress the packet header to allow IPv6 (with MTU ≥ 1280 bytes) to operate on

resource-limited networks like IEEE 802.15.4 (with only 127-byte MTU). However, the

tight coupling between identifier and locator in IP makes it difficult for these solutions

to provide efficient mobility support.

To deal with resource mobility, studies in the second category seek solution in the

application layer. Constrained Application Protocol (CoAP) [10] proposes a specialized

web transfer protocol to cope with constrained nodes and networks. It provides a

query/response interaction model between endpoints, where resources could be accessed

via URIs. State of the art IoT platforms such as IoTivity [3] usually involve generic

interfaces to accommodate different lower layer protocols and a centralized server to

facilitate efficient resource retrieval. The downside of these overlay approaches is that

they usually rely on a server, which is an additional deployment overhead. Also, they

are not well suited to support event notification or pushing type of communication

pattern.

As a result, we believe that in order to support next-generation IoT systems, we need

to consider a network architecture that can naturally support IoT’s inherent demands,

one that is fundamentally different from IP.

2.6.2 Information-Centric Networking and Its Use in IoT

Information-Centric Networking (ICN) is a clean-slate Internet architecture, which is

proposed to evolve the network from host-centric to content-centric model where data

are identified and accessed by names. Named Data Networking (NDN) [23] (or Content-

Centric Network (CCN) [25]) is one of the popular ICN proposals. It uses human-

readable, hierarchically-structured Content Names as the identity in the network. NDN

provides a query/response communication pattern by using two types of packets in the
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network: Interest (query) and Data (response). It also introduced a new forwarding

engine model having three data structures — Forwarding Information Base (FIB) which

maintains the outgoing (inter)faces for each name prefix; Pending Interest Table (PIT)

which keeps the unsatisfied Interests and there incoming (inter)faces; and Content Store

working as an in-network cache. Data consumers issue Interests with Content Names.

The intermediate forwarding engines forward the Interest towards Data provider by

according to FIB. Bread crumbs are left on the path via PIT. On receiving an Interest,

a node that provides the requested Data (either an intermediate caching router or a

Data provider) can reply the Interest. The Data packet travels through the reverse

path according to PIT and it consumes the entries in the PITs.

Work by Zhang et al. [26] defines several architectural requirement for the IoT in-

cluding global accessible name and mobility, which indicates ICN has the potential to

be used as the underlying network for IoT since it integrates named-based routing, com-

pute, and caching/storage as part of the network. To adapt to the resource-constraint

devices, CCNLite [24] is proposed as a lightweight implementation of NDN which sim-

plifies the original code base and data structure. In order to support multi-source data

retrieval, work in [27] proposes a framework that multiple data producer can answer

to the same Interest packet. However, the similar to NDN, these solutions only focus

on data retrieval, and it is difficult for them to achieve functions like event notification

and multicast in IoT. Moreover, NDN requires the Data packet to be transmitted on

the reverse path as the Interest, it causes difficulties in IoT where links might be asym-

metric. The need for PIT and Content Store also puts burden on storage-constraint

devices.

Work in [28] proposes a generic IoT middleware architecture based on NDN and Mo-

bilityFirst to support basic IoT function such as service discovery and naming service.

These functions can also be used in MF-IoT in the application layer and is orthogonal

to the design in this paper.
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2.7 Conclusion

In this chapter, we propose MF-IoT, a generic network architecture that satisfies the

requirements placed by the emerging IoT systems, namely, global reach-ability, mobility,

communication diversity, and resource efficiency. We achieve this goal by creating a

network-layer dialect (Local Unique IDentifier, LUID) in a local IoT domain and adopt

a gateway to efficently translate between GUID’s that are used in the core network and

the corresponding LUID’s. The translation is transparent to the applications so that

MF-IoT can have efficient global reach-ability and mobility support. With service-based

GUID assignment, we further enable seameless service migration, service caching and

the separation between application logic and network functions. Our simulation results

show that MF-IoT can greatly improve the performance of IP-based and NDN-based

solutions.
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Chapter 3

Aggregating IoT Traffic in The Edge Network

3.1 Introduction

The rapid growth of the Internet of Things (IoT) will inevitably lead to a large volume

of IoT data, which will in turn dramatically increase the number of packets that are

injected to the Internet. For example, a city scale IoT system – such as an environ-

mental monitoring system or intelligent transportation system – may involve millions

of embedded/mobile devices. These devices frequently collect data and transmit them

to the distant cloud for processing and storage. According to [29, 30], 75 % of IoT

sessions transfer less than 1 KB data, while the number of connected devices will reach

70 billion by 2025. The large volume of small traffic generated by these IoT systems

thus poses a great burden to the network as well as the cloud.

The IoT traffic exhibits unique features that are quite different from traditional

network traffic. Firstly, IoT packets are usually small in size. Work by Sivanathan et.

al [29] indicates most of the IoT packets in smarthome and enterprise applications are

less than 500 bytes. Secondly, since the data is generated by the sensors that are often

geographically co-located, there is tremendous redundancy within the data. Improperly

handled, the IoT packets can potentially lead to very poor utilization of the network

bandwidth as well as the storage resources. In this chapter, we propose to address

these new challenges – i.e., large volume, poor utilization, etc., – by aggregating the

IoT packets along their transportation paths through in-network aggregation.

In-network aggregation targets at combining multiple data packets from various

sources (that usually share the same destination) and generating summary data for

these packets [31–33]. It can enhance the network utilization and efficiency by reducing

the total number of packets. Usually, specific aggregation functions are determined by
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the application providers, based on the unique properties of the data that are collected

by the application. As a result, we do not focus on the actual design of the aggregation

function in this chapter. Instead, we set out to investigate where in the network we

should deploy the aggregation service, with the objective of minimizing the overall IoT

traffic. Given a certain capacity of the total aggregation services, a good placement

strategy must be able to balance the traffic reduction due to aggregation and the traffic

inflation due to the extra routing needed to reach the aggregation service. Furthermore,

this problem becomes much more challenging when we consider the fact that an IoT

system main consist of a large number of (i.e., thousands or more) sources.

The problem of optimizing network traffic has been largely overlooked by earlier

studies on in-network aggregation. Existing studies mainly focus on optimizing energy

efficiency in the Wireless Sensor Network (WSN) domain and achieving state synchro-

nization in complex distributed systems. For example, aggregation solutions in [34,35]

create clusters to aggregate data via a time division based Media Access Control (MAC)

protocol to achieve optimal energy consumption, without considering the network traf-

fic efficiency. As another example, studies in [36, 37] propose state synchronization

solutions by aggregating the information that is shared by all nodes in the system.

Meanwhile, Mobile Edge Clouds (MECs) loom on the surface and aim to provide

computing services at the proximity of mobile users to facilitate low-latency context-

aware IoT applications. Through MECs, computation and network traffic are offloaded

from the application provider’s central clouds [38] to the Internet edge. Leveraging this

nature, we envision that MECs can help aggregate the IoT packets. In addition, we can

offer the abstraction of IoT data with different granularity levels, to satisfy both local

subscribers and remote subscribers. For example, the finer-grained data generated by

roadside traffic sensors can be used to feed the local traffic management systems, while

much coarser-grained data may be needed by a remote traffic analytic application.

In this work, we propose a generic data aggregation system over mobile edge clouds

– AggMEC for any application that needs aggregation on unspecific network topology.

By introducing the cost function of a aggregation network, we unveil a clustering-based

strategy of aggregation nodes placement and data sources assignment, which lead to
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minimizing the total network traffic. In order to support such aggregation scheme, we

design and implement our routing layer over a clean-slate Future Internet Architecture

(FIA) – MobilityFirst (MF) [39], which can reduce the overhead of obtrusive address

resolution in the current IP network.

The contributions of AggMEC are as follows:

• We proposed an architecture for leveraging MECs to support efficient data aggrega-

tion across the distributed network environment.

• We conducted detailed analytic studies that unveil the aggregated IoT traffic model.

• We introduced two heuristic machine learning based assignment and placement algo-

rithm using the cost function as distance metric, that can approximate the minimum

cost of the total network traffic.

• We proposed an application-specific routing protocol that directs data flows to their

desired destinations with low control overhead.

The chapter is structured as follows: Section 3.2 details the system components

overview and the application-specific routing protocol over MobilityFirst. Section 3.3

studies the analytic model of the aggregated IoT traffic. We introduces the place-

ment schemes in Section 3.4. Section 3.6 provides related works on data aggregation

and mobile edge clouds. Finally, we evaluate the proposed algorithms efficiency and

effectiveness for various network setting in Section 3.5.

3.2 System Overview

In this section, we first introduce AggMEC’s system design overview. Next, we de-

fine a generic network traffic cost function for our aggregation network, and unveil

an placement and assignment algorithm to approximate the minimum network traffic

with given computing resource. Finally, we propose a clean-slate network architecture

MobilityFirst which can support our system efficiently.
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3.2.1 System Overview

Figure 3.1(a) demonstrates an overview of the proposed system. We envision AggMEC

can reside on any MEC architecture, where virtual machines or containers are one/two

hops away from the data sources. Here, a data source could be a NB-IoT sensor, a

smartphone, or a WSN gateway, which has direct connection to edge networks. Ag-

gMEC involves two key components: computing node and application specific routing

(ASR) controller. The former aims at providing in-network computing service on the

fly, while the later computes and control the data flows base upon application criteria.

Computing Node: Any available MEC can be a computing node. It is capable

of performing both routing operation and in-network computing operation. When it

routes a packet, this packet will be forwarded to the computing layer if a service ID flag

is turned on. Each application/service/data flow could have it own data handler indexed

by a persistent ID or URL. Such data handler can be initiated by application/service

controller. Specifically, for an aggregation service, we envision a data handler need to

have four modules: 1. a decoder to interpret network packets into specific data format;

2. a data queue to store aggregated data for a certain period of time; 3. a computing

function to generate data summary over the data queue; 4. an encoder to convert the

data summary back into network packets. Once a computing node is selected as a

aggregation node, we call it AggNode.

Application Specific Routing Controller: The main objective of ASR controller

is to control the data flow routing based on application requirements. Here, we explain

the procedure of the aggregation service in the ASR controller. As we will show latter

in Section 3.3, the cost between data sources and their first AggNodes depends on the

data rate and their hop counts, hence the very first step is to sample the data rate at

the data sources. Secondly, ASR perform our algorithm with the knowledge of available

AggNodes, network topology, and the data rates to find the optimal computing routers

to run our aggregation service. Next, it generates the routes between the data sources

and the server. Finally, the control message is disseminated to the network to set up

the paths.
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Figure 3.1: (a) Computing router overview. (b) An example procedure within ASR
controller.

3.2.2 System Implementation

To implement a such aggregation network in the current IP network, data sources may

use persistent service URL to push packets towards ANodes through HTTP protocol

instead of using IP address. By introducing service URL, we can decouple with any

physical device locator, which grands the flexibility for the data sources as the IP ad-

dresses of the ANodes may change from time to time. It also enables data flows being

aggregated for multiple times without alternating the destination address. However, it

requires http session establishment as well as high Domain Name Service (DNS) lookup
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overhead, which is not scalable in a high-dense network. As a result, we decide to imple-

ment our aggregation network over a clean-slate network architecture-MobilityFirst [39],

which naturally integrates with the similar idea of persistent service URL.

MobilityFirst is proposed as future internet architecture with mobility and global

accessibility. To achieve these features, MobilityFirst introduces several components

into the network.

Globale Unique Identifier (GUID): MobilityFirst utilizes persistent Global

Unique Identifier (GUID) to name services/devices/applications in the network. The

separation between the identifier (GUID) and locator (NA) provide support for mobil-

ity and global accessibility. Furthermore, GUID can be a publice key derived from the

properties or the name of a object, which allows the objects to be self-certified.

Global Name Resolution Service: MobilityFirst uses logical centralized Global

Name Resolution Service (GNRS) to provide resolution from names (GUID) to routable

Network Address (NA). MobilityFirst can perform late binding, i.e., querying the

GNRS whenever the destination NA is not available in the local scope. GNRS is pro-

posed as a network layer service and is transparent to application layer. Work in [13,14]

introduce distributed solution with acceptable scalability and lookup performance in

the core network.

Routing: MobilityFirst routes packets based on NA(s). Work in [6] proposes a

storage-aware intra-domain routing scheme which is similar to Open Shortest Path First

(OSPF) routing. Work in [40] proposes an edge-aware inter-domain routing. Both of

them have shown that MobilityFirst can provide scalable and efficient routing for the

next generation mobile network.

Service ID (SID): MobilityFirst network utilizes service ID to support multiple

network services such as multicast, unicast, anycast, and in-network computing. It

is worthy to mention that SID is different from service GUID. It is in a flag field

in MobilityFirst packet header to indicates the router to perform the corresponding

operation, while service GUID is in the destination field .
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3.2.3 Aggregation Routing Protocol

With the help of the features we list above, we design a application-specific routing

protocol for the proposed aggregation network over MobilityFirst. We use a virtual

aggregation service GUID (GAS) to represent this service. We also assign GUIDs to

application clients that need this service, ANodes, and destination servers. ASR con-

troller adopts the algorithm we propose in Section 3.3 to compute and assign the first

ANode for each group of the data source. Although we have shown that the major

gain of aggregation comes from the first ANode, we aim at designing a routing proto-

col that allow a data flow to encounter more than one ANode. Since a single service

GUID ((GAS)) may associate with multiple network entities (ANodes or servers), we

use the hash of self-GUID and service-GUID as the key to ensure only one dedicated

next destination for each query. For each segment of the route, ASR controller creates

a key-value pair < Hash(Self −GUID, Service−GUID), Next−GUID > and pop-

ulate it into GNRS. During the packet routing phase, each ANode lookups the value of

the key: Hash(Self − GUID, Serice − GUID) in GNRS if there is no cache locally.

We next depicts an example procedure according to Figure 3.2.

1. Client GC1 sends a data packet to aggregation service (GAS) and set the source

GUID as GC1 .

2. C1’s first hop router use the hash of (GC1 , GAS) to lookup the next ANode/destination

in GNRS. GNRS returns GAg1 as a result.

3. Its first hop router send to GAg1 by using Open Shortest Path First (OSPF)

routing.

4. When ANode Ag1 receives the packet, it appends the packet content into the data

structure indexed by GAS . When it reaches the preset time window, it performs

the computing function over this data structure and generates a corresponding

meta data.

5. Ag1 sends this packet to GAS and repeat step 2, 3, and 4 until it reaches the

server GS1
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Figure 3.2: Routing example.

Similarly, C2 and C3 can follow the same rule to send their data flow through the

ANodes computed by ASR controller.

3.3 Model Analysis

We envision a many-to-one data collection scenario with single data destination node

DN, multiple intermediate computing nodes CN and multiple data sender nodes (SN).

We can set each computing node either as an AggNode or a router node(RN). Each

data flow may pass more than one AggNode. Each AggNode can aggregate multiple

flows at a time. In order to host multiple data collection service concurrently, we

identify each data collection service with a persistent ID, hence multiple data collection

services can co-exist at the same CN(s).

First we introduce some auxiliary notations used to describe the network. Let S

be the set of all nodes of network N , SS be the set of all SNs, SC be the set of all

CNs, SA be the set of AggNodes and SR the set of all RNs. Thus, S = SS ∪ SC and

SC = SA ∪ SR. Let KC = |SC |, KR = |SR| and KA = |SA|, where |Ξ| is number of

elements of set Ξ. Thus, KR +KA = KC .

The data traffic is routed by the CNs such way that the data sent by any SN can



51

Table 3.1: Abbreviations and notations

symbol and abbreviations denotion
AggNode, CN, RN and SN aggregation node, computing node, router node and sender node

DN or s0 destination node
N network
S set of all nodes of network N

SA, SC , SS and SR set of all AggNodes, CNs, SNs and RNs correspondingly
T time window
|Ξ| number of elements of set Ξ

KA, KC and KR |SA|, |SC | and |SR| correspondingly
SC = {sKC

, . . . , s1} set of CNs for network with bus and star topology
SA = {saKA

, . . . , sa1} set of AggNodes for network with bus and star topology

d(s, s̃) number of hops employed in the network to
get node s̃ by data forwarded from node s

x(s) rate of sending data by SN s
X(s) rate of total output traffic traffic re-forwarded by RN s

CN(s) the first of CNs such that data sent by SN s to DN passes through
SC(s) = {sKC(s), . . . , s1} subset of SC consisting only of such CNs, that data

traffic, forwarded by SN s to DN, passes through

SA(s) =
{
saKA(s)

, . . . , sa1

}
subset of all AggNodes of set SC(s)

KA(s) and KC(s) |SA(s)| and |SS(s)| correspondingly
AN(s) such AggNode from SA(s) where data

sent by SN s is aggregated the first time

SA subset of AggNodes such that each of them does not get in
input data traffic any data aggregated by other AggNodes

N (S) minimal sub-network of network N containing set of nodes S and DN
D(S) the total number of hops in subnetwork S

σR(s), σA(s) and σS(s) sets of all RNs, AggNodes and SNs forwarding data flow to
node s which does not pass through other RNs or AggNodes

C(SA) total traffic in network if set of aggregation nodes is SA
C(s,SA) individual end-to-end traffic generated by SN

s toward DN if set of aggregation nodes is SA

reach to the DN without any loop passing a sequence of CNs. Also, SN cannot sent

data directly to DN without assistance at least one CN. We tell that node s and node

s̃ are connected if data forwarded by node s to DN passes through node s̃. Denote by

d(s, s̃) the number of hops employed in the network to get node s̃ by data forwarded

from node s. If these nodes are not connected then let d(s, s̃) =∞. We tell that a CN

s ∈ S has index i = idx(s) if a data flow, to get to the DN, has to pass through i− 1

other CNs. Thus, CN with index one forwards data directly to DN without passing

other CNs. For SN s, denote by CN(s) the first of CNs data sent by SN s to DN

passes through. We assume that SN s sends data with rate x(s). Such rate generates

individual traffic x(s)d (s,CN(s)) of SN s between node s and CN(s)
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Figure 3.3: Bus line and star network topology

3.3.1 Bus line and star topology

To define cost function associated with installation of aggregation nodes in the network.

let us first to consider an example of network N with a particular topology, namely, bus

line and star topology (Fig. 3.3). A linear bus component of this topology consists of

a main cable where CNs are sequentially attached to forward data in direction to the

DN, while DN is attached as the root node of this line. Meanwhile, each CN serves as

a root note for the nearby SNs to form a star topology. Let SC = {sKC
, . . . , s1} with

idx(sn) = n for n = 1, . . . ,KC . Let SA = {saKA
, saKA−1 , . . . , sa1} with KC ≥ aKA

>

aKA−1 > . . . > a1 ≥ 1.

Total network traffic

Each AggNode aggregates all the received data for every time window T , and sends 1

data out to the next CN in the direction to the DN. This results into an output traffic

generated by the AggNode with rate 1
T . Therefore, the total network data traffic

consists of two parts: traffic of aggregated data and traffic of non-aggregated data. Let

us consider each of these parts separately.

Traffic of aggregated data starts at AggNode saKA
, passes sequentially through

all the other AggNodes saKA−1 , . . . , sa1 and ends at DN. Thus, the total traffic of

aggregated data is given as follows:

Tagg =
1

T
d(saKA

, s0), (3.1)

where

s0 = DN.
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Traffic of non-aggregated data combines all sub-traffics starting at a SN and ending

either at such AggNodes where forwarded data are aggregated for the first time, or

at DN. Thus, the total traffic of all non-aggregated data is given as follows:

Tnon agg =
∑

s∈SS :idx(s)>aKA

x(s)d(s, sKA
)

+
∑

s∈SS :ai>idx(s)≥ai−1,1≤i≤KA

x(s)d(s, sai−1), (3.2)

where a0 = 0.

Summing up (3.1) and (3.2) implies that the total data traffic is given as follows:

C(SA) =
1

T
d(saKA

, s0)

+
∑

s∈SS :idx(s)>aKA

x(s)d(s, sKA
) (3.3)

+
∑

s∈SS :ai>idx(s)≥ai−1,1≤i≤KA

x(s)d(s, sai−1).

This total network data traffic C(SA) can be considered as the cost function of such

network topology with set of aggregation nodes SA. In particular, for two boundary

cases this cost function (3.3) can be simplified. Namely,

(a) if there is no aggregation nodes installed, i.e., SA = ∅, then

C(∅) =
∑
s∈SS

x(s)d(s,DN), (3.4)

(b) if each computing node is aggregation node, i.e., SA = SC , then

C(SC) =
1

T
d(sKC

, s0) +
∑

s∈SS :idx(s)=i,1≤i≤KC

x(s)d(s, si). (3.5)

Individual traffic generated by a sender node

We can also specify individual traffic generated by a sender node, namely, individual

contribution of a sender node into the total data traffic. Note that before first data

aggregation such contribution of a SN is defined by rate of data forwarded by the SN,

while after aggregation contribution of the SN is given by its portion in output data
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traffic generated by the AggNode with rate 1/T. That is why, to derive individual

traffic of SN s we have to consider separately two cases: (1) idx(s) ≥ aKA
and (2)

idx(s) < aKA
:

Case (1): Let SN s be such that idx(s) ≥ aKA
. Then, traffic generated by SN s

between s and AggNode aKA
is

x(s)d
(
s, saKA

)
. (3.6)

The rate of total input data traffic at AggNode saKA
is
∑

idx(s̃)≥aKA
x(s̃). The Ag-

gNode aggregates all the input data and generates an output data traffic with rate

1
T to forward it to the next CN. Thus, the contribution of the SN s into such output

data traffic of AggNode saKA
is

x(s)

T
∑

idx(s̃)≥aKA

x(s̃)
, (3.7)

and traffic of SN s from AggNode aKA
to AggNode aKA−1 is

x(s)

T
∑

idx(s̃)≥aKA

x(s̃)
d
(
saKA

, saKA−1

)
. (3.8)

The total input data rate in AggNode aKA−1 is 1
T +

∑
aKA

>idx(s̃)≥aKA−1
x(s̃) while

output data traffic after aggregation has rate 1
T . Therefore, by (3.7), the contribution

of the SN s into this output traffic is

1

T

x(s)

T
∑

idx(s̃)≥aKA

x(s̃)

1

T
+

∑
aKA

>idx(s̃)≥aKA−1

x(s̃)
(3.9)

and the traffic of SN s from AggNode aKA−1 to AggNode aKA−2 is

1

T

x(s)

T
∑

idx(s̃)≥aKA

x(s̃)

1

T
+

∑
aKA

>idx(s̃)≥aKA−1

x(s̃)
d
(
saKA−1 , saKA−2

)
(3.10)
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and so on. Thus, individual traffic generated end-to-end to DN by SN s such that

idx(s) ≥ aKC
is

C(s,SA) = x(s)d
(
s, saKA

)
+

x(s)

T
∑

idx(s̃)≥aKA

x(s̃)

×
KA−1∑
j=0

d
(
saKA−j , saKA−j−1

)
T j

j∏
r=1

( 1
T +

∑
aKA−r+1>idx(s̃)≥aKA−r

x(s̃))

. (3.11)

Case (2): Let SN s be such that idx(s) < aKa . Then, there is k such that ak+1 >

idx(s) ≥ ak. In this case, the input flow at each AggNode saj for each j ≤ k is

1
T +

∑
aj+1>idx(s̃)≥aj x(s̃). Then, following case (1) we can prove that individual end-

to-end traffic generated by SN s toward DN, where ak+1 > idx(s) ≥ ak, is given as

follows:

C(s,SA) = x(s)d
(
s, saak

)
+ x(s)

k∑
j=1

d
(
sak−j+1

, sak−j

)
T j

j∏
r=1

( 1
T +

∑
ak+2−r>idx(s̃)≥ak+1−r

x(s̃))

. (3.12)

3.3.2 General network

In this section, we extend our discussion of cost functions for general networks. First

let us introduce some axillary notations.

SC(s) denotes the subset of SC consisting of all the CNs on the paths from all the

SNs to the DN. SA(s) denotes the subset of all AggNodes in the set SC(s), while

AN(s) denotes an AggNode from SA(s) where data sent by any SN s is aggregated

the first time. Let KA(s) = |SA(s)| and KC(s) = |SC(s)|. SA denotes the sub set

of AggNodes whose incoming traffic is not coming from other AggNodes. For a fixed

subset S of SC N (S) denotes the minimal sub-network of network N containing nodes
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S and DN. D(S) denotes the total number of hops of network S. Again, we first discuss

the total traffic of the entire network, then study the contribution of individual SNs.

Total network traffic

The total traffic generated by all the nodes is given by

C(SA) =
1

T
D(N (SA) (3.13)

+
∑

s∈SS :SA(s)6=∅

x(s)d(s,AN(s)) (3.14)

+
∑

s∈SS :SA(s)=∅

x(s)d(s,DN). (3.15)

In particular, we can simplify the cost function for two boundary cases, namely:

(i) if there is no aggregation nodes, i.e., the set SA is empty, then C(∅) is given by

(3.4).

(ii) if each computing node is aggregation node, i.e., SA = SC , then

C(SC) =
1

T
D(N (SC)) +

∑
s∈SS

x(s)d(s,CN(s)). (3.16)

Individual traffic generated by a sender node

To derive the individual traffic of a SN, we introduce the following auxiliary notations.

For a s ∈ SC , denote by σR(s), σA(s) and σS(s) the sets of all RNs, AggNodes and

SNs sending data to CN s without passing through other RNs or AggNodes Note

that some of these sets can be empty. Denote by X(s) the output data traffic of a RN

s. Due to RN just re-forwards all input data traffic to the next CN in direction to

DN, output traffic from RN s is given as the sum of input traffic, i.e.,

X(s) =
∑

s̃∈σS(s)

x(s̃) +
∑

s̃∈σR(s)

X(s̃) +
∑

s̃∈σA(s)

1

T
. (3.17)

Then, if data sent by SN s to DN is not aggregated, i.e., SA(s) is empty, then

individual data traffic generated by such SN s is given as follows:

C(s,SA) = x(s)d (s,DN) . (3.18)
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While, if the data sent by SN s is aggregated at least once, i.e., SA(s) is not empty,

then the traffic generated by such SN s is given as follows:

C(s,SA) = x(s)d
(
s, saKA(s)

)
(3.19)

+

KA(s)∑
j=1

1

T j

x(s)d
(
saKA(s)−j+1

, saKA(s)−j

)
KA(s)∏

r=KA(s)−j+1

X(sar)

, (3.20)

where SC(s) = {sKC(s), . . . , s1} and SA(s) =
{
saKA(s)

, . . . , sa1

}
.

3.3.3 Optimization Objective

Our objective is to minimize the Eq. 3.14, i.e., the total cost from the sources to

their first AggNodes, as the cost of Eq. 3.13 and Eq. 3.15 are negligible for when the

aggregation time window T is large and the number of SN that has direct connection

to the DN is small. Assume that we have a limited number of such AggNodes to place,

we can also represent it as follow:

∑
s∈SS :|SA(s)|=K

x(s)d(s,AN(s)) (3.21)

Where K denotes the total number of AggNode we can deploy in the edge network.

Theorem 1. The problem of finding K AggNodes in a network to minimize sum of

square cost is NP-Hard.

Proof. In the minimum sum-of-squares clustering (MSSC) problem, we try to find

K means/medians to form the clusters so that the intra-cluster sum of square Eu-

clidean distance is minimized. Formally speaking, we try to minimize the following

cost function:
K∑
k=1

∑
i∈Ck

[d(ai, bk)]
2 (3.22)

The MSSC problem in general dimension for k > 2 is referred as an NP-Hard prob-

lem [41]. We map this problem from euclidean space onto a graph G = (V,E), where
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Figure 3.4: (a) K-AggNodes’s results when K = 1 (b) K-AggNodes’s result when
K = 4

V is a set of vertexes and E is a set of edges. In this graph, any pair of v ∈ V have an

edge e ∈ E.

Next, we will show that our problem is a special case of MSSC. Given a network, we

have Vn ⊆ V and En ⊆ E, where Vn is the set of nodes and En is the set of links. For

each data source node ai ∈ Vn, there is one and only one corresponding data rate xi.

As a result, finding K AggNodes in Vn in order to minimize Eq. 3.21 can be reduced

from MSSC in polynomian time. We can conclude that our problem is NP-Hard.

3.4 Heuristic Aggregation Service Placement Algorithms

The AggNodes placement problems we introduced in the previous section are NP-Hard.

As a result, there is a clear need to formulate heuristics that can efficiently find a close to

optimal solution for the placement problems. Here, we propose two heuristic algorithms

to partition the senders into a number of groups, and select the ”centered” nodes as the

AggNodes to minimize the total cost. Starting from the practical setting in realistic

networks, the aggregation service provider has to face two constrains of resource, i.e.,

the limitation on available number of AggNodes and the capacity of each AggNode.

Our heuristics aim at fitting these constrains one at a time.



59

3.4.1 Provider-defined Placement

Our first algorithm tackles the placement problem when the number of AggNode is fixed.

Here, we assume the number of AggNode is determined by the application provider,

and try to minimize the total network traffic under a given number. In order to solve

this problem, we borrow the idea from K-Means/K-Medoids clustering algorithm. In

K-Means [42] or K-Medoids algorithm [43], the objective is to find the centroid points

to form clusters so that their intra-cluster sum of square distance to each of the data

point in their cluster are minimum. Similarly, we search the K AggNodes to decrease

the cost function Eq. 3.21 until the cost remains the same value after a certain number

of consecutive iterations. Formally speaking, we aim at updating the AggNodes by

using the following formula:

annew = argmin
an

∑
sn∈SNk

d(sn, an)xi, an ∈ {an|CN − CNk}, (3.23)

where annew denotes the updated AggNode of the group, SNk denotes the assigned

source nodes set of the original AggNode indexed by k. Specifically, we use traffic

((#ofpackets) × (#ofhops)) between nodes as the edges in such graphs. Given that

we have K aggregation nodes to be placed in a network with N nodes, the algorithm

can be represented as Alg. 1.

This algorithm aims at minimizing the intra-cluster sum of cost function for each

group, resulting in a minimized total cost. The algorithm starts with initial estimates

for the k AggNodes, which can be randomly selected from the candidate nodes. It

then iterates between two steps: Source Assignment and AggNodes Update. In Source

Assignment step, each data source is assigned to its AggNode with the lowest cost to

form k clusters. In AggNodes Update step, the AggNodes are updated by recalculating

the cost of its attached sources to its neighbor nodes. The current AggNodes are

swapped with candidate nodes if the costs are lower.

Figure 3.4 (a) and (b) demonstrate the example results AggNodes when K = 1 and

K = 4. In a grid network with uniform traffic distribution(i.e., each computing node

attaches the same number of source nodes and each source node generates the traffic

at the same rate), the selected AggNode (s) should reside at the center of the network
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Algorithm 1 K-AggNodes Placement

procedure Initialize(K, CN , SN)
RandomSelectFrom(K, CN)
AssignSenderNodes(CNk, SN)
for sn in SN do

Assign sn to the neareast cn in CNk

end for
end procedure
procedure FindOptimals

while C(CNk) is not stable do
AssignSenderNodes(CNk, SN)
for cn in CNk do

for cnt in CN − CNk do
if C(cnt)) < C(cn) then

Update(cnt, cn)
end if

end for
end for

end while
end procedure

or the sub-network. Our results indicate that K-AggNodes algorithm is capable of

identifying the optimal AggNodes in the ideal settings.

Key Parameter: Homogeneity score is a common metric to evaluate the choice of K

in the classical K-Means or K-Medoids clustering, however, it is not meaningful in the

AggNode placement problem. This is due to our objective is solely minimizing the total

sum of square cost and increasing K will always decrease this total sum.

3.4.2 Network-defined Placement

The second algorithm is design to allocate AggNodes to the network traffic density

center in order to achieve the optimal aggregation efficiency. Here, the number of

AggNode is not determined by the application provider, instead, it merely depends

on the network traffic distribution. By locating the network traffic density centers, we

could determine both the location and the number of AggNodes, and assign data sources

to the corresponding AggNodes. While K-AggNodes starts from initializing randomly

selected K AggNodes, this algorithm follows a bottom-up approach by initializing all

computing router nodes as candidate AggNodes. Figure. 3.5(a) depicts the process
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Figure 3.5: (a) An example process of AggNodeShift (b) A merging Graph (c)
AggNodeShift’s result when there is one network traffic density center (d)
AggNodeShift’s result when there are two network traffic density centers

of the algorithm. Each AggNode covers a set of data source nodes within a range.

By recalculating the centroid nodes in the circles, we shift AggNodes towards these

centroid nodes and merge two clusters if their new AggNodes point to the same node.

As a result, we call this placement algorithm AggNode-shift. The idea of such mode

seeking approach has been widely adopted in numerous clustering algorithm such as

MeanShift [44] and CAMShift [45]. We depict the detailed procedure in Algorithm 2.

In the initialization step, we set all candidate nodes as AggNodes and attach the data

source node within a radius R to these candidates, where R is a tun-able parameter.

The distance metric we used here is d(sn, cn)x since we aim at minimizing the total
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Algorithm 2 AggNodeShift Placement

procedure Initialize(R, CN)
for cn in CN do

Set cn as AggNode
AssignSenders(R, cn)

end for
end procedure
procedure FindCenters

while AN are updated do
for cn in AN do

FindLeastCostNeighbor
AddtoMergedGraph(cn, cntarget)

end for
TopologicalSort
MergeGraph

end while
end procedure

sum of cost. It is worthy to mention that a data source node may be attached to more

than one AggNode during the iteration. By calculating the cost from source nodes to

a AggNode’s neighbor, we shift the AggNode to the neighbor with the lowest cost and

merge their attached data sources set. We repeat this process until the result AggNodes

set AN remains unchanged for a fixed number of interations.

Merging OrderBefore actually merging two AggNodes and their corresponding attached

data sources, we store their merging relationship, i.e., cn → cntarget in to a directed

acyclic graph (DAG) (shown as Figure 3.5(b)) and merge all the AggNodes by following

their topological order in the graph. This is due to if we merge every pair independently,

one pair merging may conflict with another pair merging. By applying topological

sorting to this DAG, we are capable of starting merging from the leave nodes in order

to avoid such conflicts.

Key Parameter: Radius R determines the range of data sources that each AggNode

should start with. An oversized radius could lead to network traffic density centers to

be merged, while an undersized radius could generate additional local network traffic

density centers. A reasonable value of R needs to be determined empirically. The

distance metric of this radius could vary depending on the application requirement. In

our implementation, we choose the number of hops as it is robust to different network
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(a) (b)

Figure 3.6: (a) Access Point locations at San Francisco.(b) Voronoi diagram for the
Access Points

traffic distribution.

Load Re-distributed: Seeking the network traffic density centers help us determine the

number of required AggNodes, but it may lead to another non-trivial problem – for a

center with extreme high incoming traffic load, an AggNode’s capacity is not sufficient

to handle all of them. In order to tackle this challenge, we propose two re-distribution

approaches in addition to AggNodeShift when a AggNode’s assgined load exceeds its

capacity. In the first algorithm, we re-distributed the work load of such AggNode with

its nearest available nodes in a Round-Robin manor. To find such available nodes, we

apply Breath-First Search that starts from the AggNode. This approach is motivated

by the fact that if an AggNode is the local optimal, its nearest available nodes should be

the sub-optimal. In the second approach, we apply K-AggNodes on the data source set

which is assigned to this AggNode as it seeks to minimize the cost. In both approaches,

the number of AggNode for one such AggNode after re-distritbution is calculated as

Na = L/CT , where L denotes the load before re-distribution, and CT denotes the

capacity threshold.

3.5 Evaluation

In this section, we study the performance of our proposed heuristic in a city-scale

taxi data collection scenario. In this scenario, thousands of taxis report their sensor
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Figure 3.7: (a)K-AggNodes achieves 20% traffic of On-path when
K = 4(b)K-AggNodes achieves the lowest end-to-end latency among three schemes (c)
Total network traffic is insensitive to the aggregation time window (d)The latencies of

K-AggNodes and FirstAssign change slower than that of Onpath when the time
window varies (e) K-AggNodes and FirstAssign delivers stable total network traffic in

a dense AggNode deployment when K = 64 (f)K-AggNodes outperforms the other
two schemes when the grid size is varied.

reading to a single application server via mobile edge network, where the application

provider can install AggNodes in the VMs at any edge routers. The objectives of such

experiments aim to understand: Firstly, given the number of AggNodes to be installed

is defined by the application provider, where are the optimal locations so that we can

achieve the minimum the total network traffic? Secondly, given a specific network traffic

distribution, how can we select the proper number of AggNodes in order to achieve the

maximum aggregation efficiency? Finally, how can we re-balance the work load of

AggNodes when their capability of processing data in a time unit is constraint.

3.5.1 Experiment Setup

In order to simulate a realistic IoT data collection scenario, we extracted the geograph-

ical information of the taxis from San Fransico Taxi mobile traces [46]. We took a

snapshot of the trace that contains all taxis at 3:00 PM every day for 10 days. Due
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to the limited number of taxi in the trace (less than 400), we performed spatial in-

terpolation on the snapshots to increase the number of taxis in order to simulate a

more realistic city-scale taxi data collection scenario(shown as Figure 3.6(a)). Next,

we generate a voronoi diagram [47] for the San Francisco Access Point data set [48]

by using access point locations as centroids. Within each voronoi cell, we attached the

taxis to the access point. We assumed all taxis send data with the same interval X,

which follow Poisson distribution with λ = 1. As a result, the data sending interval at

each access point is determined by its attached taxi number Y , which follows Poisson

distribution with λ = Y .

For the network topology, we used a N × N grid topology to deploy computing

routers. We divided the San Francisco map into N × N equal-size grid and attached

the access points to the corresponding grid node. Finally, we linkd the server node

to one of the corner node of the grid. We extended a Java-based even-driven netork

simulator1 that was used in [49] to adopt our requirement.

3.5.2 Provider-defined Placement

We first investigate the scenario where the number of AggNodes is defined by the

application provider. By varying the parameter of the network, we aims at understand

the performance of K-AggNodes algorithm in terms of reducing the total network traffic

with minimum end-to-end latency.

As comparisons, we also implement two other aggregation schemes as follow:

• On-path Aggregation: We place AggNodes on the merging nodes on the shortest

paths between the data sources and the server. However, the number of merging

nodes and their location are determined by the location of the data sources, the

location of the server, and the network topology, it could be inefficient if we place K

AggNodes closed to only part of the data sources. Instead, we place K AggNodes

around the server node so that most of the data flow can be aggregated at least once

before received by the server.

1Download link: https://github.com/sugangli/Simulator.git
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• First-Assignment Aggregation:We randomly select the locations for K AggN-

odes, and assign data sources to their nearest AggNode based on their cost function

(HopCount×DataRate).Once a data packet arrives at its assigned AggNode, it fol-

lows the shortest path to the server and will be aggregated if there is AggNode(s) on

the path.

Impact of AggNode Number: We first investigate the impact of available AggNode

number. We use end-to-end latency and network traffic collected by all nodes as the

performance metrics of our evaluation. We set the aggregation time window to 0.5

seconds and collect the received packets at each node for one minute. To show the

trend of each aggregation scheme, we vary the number of AggNodes from 4 to 64, and

report the result in Figure 3.7.

Figure 3.7(a) shows that total traffic can be reduced by placing more AggNodes.

Among three schemes, KAggNodes outperforms the other two. Specifially, KAggNodes

has only 62% and 20% total traffic of FirstAssign and On-path in the case of 4 Ag-

gNodes. This is due to KAggNodes is capable of approximating the best placement

locations of AggNode hence achieve large traffic reduction gain in a sparse scenario (4

AggNodes vs. 400 Computing Routers). On-path gives the worst performance since

aggregation only happens at the last few hops to the server.

Figure 3.7(b) to (d) shows the end-to-end latency increases as the AggNode number

increases. As shown in Figure 3.7 (b), On-path aggregation gives the highest average la-

tency among three schemes because the every data flow are aggregated iteratively at the

last few hops, and the latency is mainly contributed by the aggregation. Figure‘3.7(c)

and (d) depicts the CDF when the number of AggNode is 4 and 64, respectively. We

observe that, in the case of 4 AggNodes, KAggNodes scheme achieves similar average

latency with smaller variation compared to FirstAssign scheme. While in the case of 64

AggNodes, KAggNodes scheme results in lower average latency. This is due to KAg-

gNodes scheme is capable of searching the center nodes which have lowest cost sum to

all other nodes within the clusters.

Impact of Aggregation Time Window: Next, we study the performance impact of

aggregation time window. We vary the time window from 0.6 seconds to 1.5 seconds at
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all 64 AggNodes. Figure 3.7(c) depicts the total traffic of three schemes. KAggNodes

outperforms the other two schemes with less than 106 average total packets.

The latency, however, is sensitive to aggregation time window as shown in Fig-

ure 3.7(d). KAggNodes and FirstAssign increase slower than On-path as they have

lower chance to be aggregated iteratively. It indicates that we can choose smaller ag-

gregation time window for latency-sensitive applications without sacrificing noticeable

network traffic.

Impact of Network Size: We investigate the impact of network size. We place 64

AggNodes at networks with grid size of 10 × 10,12 × 12,14 × 14,16 × 16,18 × 18, and

20 × 20, respectively. We also keep the same number of data sources and the same

data rate at each data source. Figure 3.7(e) shows the total traffic of three schemes.

KAggNodes outperforms the others since it can approximate the locations with lowest

cost regardless the network size. The slopes of both KAggNodes and FirstAssign are

much smaller than On-path, because On-path wastes resources on iterative aggregation.

In On-path scheme where all AggNodes surround the server, the number of hops without

aggregation is increasing proportional to the increment of the grid size. In a dense-

deployed (64 out of 100 Computing Routers are AggNodes) network, the difference

between On-path and the other two schemes is marginal due to the improving space is

limited.

Figure 3.7(f) describes the latency of the same experiment. We observe that KAg-

gNodes can achieve the lowest latency in all the cases (grid size from 12 to 20), since

it allocates the AggNodes more sparsely than the other two algorithm which results in

reducing the times of a flow being aggregated.

3.5.3 Network-defined Placement

In this section, we study the performance of AggNodeShift, the algorithm to cluster

sender nodes based on the network traffic density estimation. Unlike the application-

provider-defined scheme we show above, the number of installed AggNodes is calculated

based on the number of network traffic density center. By identifying the network traffic

density centers, we can allocate the AggNodes with better efficiency. Here, we introduce
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Figure 3.8: (a)EPA when the grid size is 10× 10(b) EPA when the grid size is 20× 20
(c) Mean Error of load when the grid size is 10× 10 (d)Mean Error of load when the

grid size is 20× 20

a new evaluation metric Efficiency per AggNode (EPA), which is defined as follows:

EPA =
TNA − TA
TNA ×K

× 100%, (3.24)

where TNA denotes the total network traffic without any aggregation, TN denotes the

aggregated network traffic, and K denotes the number of AggNode.

As a comparison, we evaluate KAggNode algorithm with K = 4 and K = 8 on the

same data traces and the network topologies. We collected the received packets at each

node for one minute to calculate the total network traffic.Figure 3.8(a) depicts the EPA

over ten different traces when the grid size is 10 × 10. AggNodeShift outperforms the

other two setting over all traces. KAggNodes-4 achieves only slightly worse EPA due to

K = 4 is closed to the average number of AggNode estimated by AggNodeShift. When

the grid size is enlarge to 20 × 20 (shown in Figure 3.8 (b)), the result demonstrates

the similar pattern which indicates both algorithm is insensitive to the network size
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and robust at varied scale. Load Re-distribution:Here, we further evaluate the perfor-

mance of load re-distribution among AggNodes with SharewithNeighbors(SN) scheme

and KAggNodes (KA) scheme. Please note that both algorithms are triggered after

AggNodeShift is executed in order to re-balance the load for those AggNodes that re-

side in dense network nodes and reach the capacity threshold. In order to evaluate the

effectiveness of load re-balancing, we introduce Mean Error (E), which is defined as

follows:

E =
1

n

n∑
i=1

LR
CT

, (3.25)

where LR denote the load after re-balancing, CT denotes the capacity threshold and n

denotes the number of AggNodes.

Figure 3.8 (c) and (d)show the MeanError at different capacity threshold when

the grid size is 10× 10 and 20× 20, respectively. SN achieves smaller mean errors than

KA due to the nature of SN’s Round-Robin assginment,which equally assign the load

to each of the candidate node. In the larger network (20), KA output the similar set of

AggNodes and their assigned set compared to SN, which results in similar mean errors.

3.6 Related Works

WSN Data Aggregation: In the area of wireless sensor network, many works have

been proposed to aggregate sensor data in order to reduce the total number of trans-

missions which further save energy consumption. First type of the studies i mainly

focusing on protocol design of aggregation networks. TAG [50] approach introduce a

data-centric aggregation protocol. It constructs an aggregation tree and is specially

designed for monitoring applications.TAG adopts the idea of the selection and aggre-

gation functions of the database query language (SQL). As for most of the tree based

solutions, TAG falls to in short when dynamic topologies or link failures are considered.

Directed Diffusion [51, 52] is a pull-based network protocol. The routing of the data is

specifically for the scenarios where there are one or few sinks query some information

by flooding the network with the queries. Due to the query broadcast is mainly imple-

mented in MAC layer, the network is easy to be congested when the node’s density is
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increased. As a result, such solutions can only be applicable when the local traffic or

node’s density is kept at an acceptable low level in order to avoid collision or congestion.

PEGASIS [53] introduce a idea to organize the sensor nodes in a chain. Nodes take

turns to act as chain leader which is the only node allowed to transmit data directly to

the sink. In PEGASIS, each node receives data from its neighbor and aggregates with

it own sensor reading into one packet. Next, such aggregated packet is transmitted to

the next node until the packet arrives at the chain leader. However, the performance of

the system is sensitive to the link failures. Our approach overcome these disadvantages

by an logical centralized ASR controller. It can collect nodes’ states and configure the

routing without flooding the entire network, hence is robust against link failures and

topology dynamics.

Another type of studies pays attention to designing aggregation algorithm for mini-

mizing certain network metrics. Work by Lindsey et.al [34,54] studies a self-organizing

and adaptive clustering algorithm to aggregate data at the head of each cluster. It out-

performs traditional clustering algorithms by considering adaptive clusters and rotating

cluster heads depending on the signal strength. However, it fails to account the various

of data rates at data sources, hence the overall network traffic is not minimized. The

author of [35] introduce a clustering algorithm that similar to the previous solution.

In addition, it allows more than one hop between each node and its cluster head by

adopting the Ad Hoc On Demand Distance Vector (AODV) routing. Like most of the

clustering algorithm, it is also affected by the network dynamics and the unbalanced

network traffic. Our approach address these problems by periodically computing the

network traffic cost function and re-configure the network topology with low control

overhead.

Data Synchronization: In order to synchronize the data or the states efficiently,

aggregation is also studied in large-scale decentralized systems or networks which are

not as resource-constrained as WSN. DIAS [55] is an agent-based middleware which

combine the local availability of collective and the summary about the state of the whole

system to perform decision making. It addressed the communication and the storage

overhead by introducing aggregation memberships in bloom filters. Work by Lochert
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et.al [56] proposes a algorithm to identify the appropriate positions of static roadside

units in traffic information systems in vehicle network, in order to overcome the problem

of limited bandwidth and minimal initial deployment and eventually shorten the travel

time. Works in [37, 57] propose gossip-based protocols for computing aggregate values

over network components in a fully decentralized fashion. In order to reduce aggregation

time and archive high ranking accuracy with low memory cost, Zhou et.al [58] introduce

a Bloom-filter based reputation aggregation architecture in peer-to-peer systems. These

solutions fall short in efficiently collecting data for single data consumer as they require

data flooding across all computing nodes. Our application specific routing overcomes

this challenge by computing and populating data routes from a centralized controller

hence avoid flooding the entire network.

3.7 Conclusion

In this chapter, we have described AggMEC, a generic aggregation architecture for ef-

ficient data collection in large-scale MECs. To overcome the dilemma between limited

computing resource and high-volume network traffic, we define a cost function and pro-

pose a novel clustering-based algorithm to approximate the minimum cost. In addition,

we design a application-specific routing protocol over a clean slate network architecture

– MobilityFirst, which grands low control overhead and high scalability. Through de-

tailed evaluation, we show that AggMEC can reduce 80% of total network traffic from

the baseline scheme with low end-to-end latency.
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Chapter 4

Roadside Context Sensing Using Microphones on

Smartphones

4.1 Introduction

Using smartphones to sense users’ surroundings and learn about their contextual infor-

mation has received much attention in the past few years [59–63]. A large number of

such studies have been conducted for users when they are driving [64–66], while much

less effort has been devoted to users when they are walking. In this study, we focus on

sensing and learning an important context information for pedestrian users using their

smartphones – whether there is an approaching car nearby.

The ability to detect oncoming cars using smartphones can enable/enhance several

important ubiquitous applications. Firstly, with such information available, notifica-

tions could be sent out to alert distracted users (through sounds or vibrations) about

approaching cars when they are about to enter an intersection or wander into roads

(illustrated in Figure 4.1). Secondly, we could aggregate sensed cars in different ar-

eas to perform fine-grained traffic monitoring. Although navigation apps (e.g., Google

Map [67] and Apple Map [68]) have been widely adopted to collect vehicle traces and

provide real-time traffic information, some geographic areas (such as residential areas,

college campuses, etc) may not have sufficient data because drivers in those areas do

not turn on their navigation apps frequently enough. In such cases, pedestrian users

are able to sense cars in their vicinity and provide additional traffic data that was not

available earlier. With these additional data, we could better assess the traffic condition

in our neighborhood, such as outside of the post office or a grocery store. Thirdly, the

ability to detect incoming cars could also enhance emerging augmented reality (AR)

applications/games by enriching their virtual maps – e.g., marking a place as ‘walkable’
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or ‘accessible’ on a Pokemon Go map.

In fact, there has been investigation on detecting cars in other communities. For

example, solutions based on Dedicated Short-Range Communications (DSRC) have

been proposed and studied [7, 69], which utilize a special radio channel to establish

bidirectional communications between a car and people who are walking nearby. Such

solutions, however, require additional hardware modules to be included in both the

vehicle and smartphones, which may not offer an immediately available solution. Com-

puter vision based techniques have also been studied, such as those in [70, 71], which

detects vehicles via images captured by smartphone cameras. The disadvantage of such

solutions, however, stems from several factors, including the requirement of high CPU

overhead that is needed for real-time vehicle recognition, as well as the requirement of

inflexible camera facing direction, etc.

In this chapter, we propose a system, referred to as Auto++, that accurately detects

approaching vehicles by processing real-time audio stream directly captured by off-the-

shelf smartphone microphones without any prior training or additional infrastructure

support. Auto++does not have the shortcomings of a radio based or vision based

system; in addition it offers several clear advantages: (1) it is self-contained and does

not need any infrastructure support; (2) it applies completely unsupervised classification

techniques and no prior training is needed for the system to operate; (3) it is accurate

and has low false positive rate; and (4) it is robust as it works with different cars,

roads, and different environmental noise. The main challenge we face is due to the

characteristics of car sounds. Today’s engines are becoming increasingly quiet, and the

perceivable sounds are generated mainly by tire-road friction. This tire noise lacks both

distinguishable temporal and frequency structures. As a result, many popular acoustic

techniques such as Doppler Shift [72] or features such as MFCC [73] cannot be applied

in our system. In this study, we establish a new feature that can discriminate between

car sounds and other environmental sounds. The feature is the maximal frequency

component that crosses a power thread; when a car drives closer to the user, this

frequency continuously goes up. Through edge detection, we can robustly extract this

feature from the spectrogram of the audio signal.
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Figure 4.1: Auto++detects approaching cars using audio data recorded by
smartphones. This capability can enable applications such as alerting distracted users
(possibly through sounds or vibrations). Please note that the application logic such as

alerting users is not part of Auto++.

The car sound’s property does not only present challenges for car detection, but it

also provides an opportunity for our detection algorithm to work cross different cars

and roads – tire noise from different cars is likely similar to each other. Once the

system detects a car, we can estimate its driving direction by applying cross-correlation

function over audio streams from two microphones (many of today’s smartphones have

dual microphones). We can also cluster detections that are within a short time period

to count the cars around the user.

We implement Auto++over Android platform and collect 330 minutes of audio

data from smartphone over the course of 14 months. Our evaluation involves seven

vehicles whose types cover a broad range of cars that are seen on US highways, including

SUVs, medium sedans, sports cars, compact cars, and electric cars. The audio is

recorded by Auto++in a range of different outdoor scenarios, from quiet parking lots, to

noisy outdoor shopping center during business hours. Our results show that Auto++is

robust across different cars and various types of environmental noise. Specifically, we

demonstrate that we can detect 91% of the cars even when they are more than four

seconds away from the user. On average, our system can detect cars when they are 6.8

seconds away (while a naive scheme could only detect cars that are 2.4 seconds away).

We note that Auto++can also detect electric cars with 100% when they are 7.8 seconds

away. Finally, we are able to estimate a car’s driving direction with an average success

rate of 84%.
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4.2 Motivation and Challenges

In this section, we first present the motivation and system assumptions. Then we

discuss several challenges that arise due to car sound signal properties and limitations

of the underlying hardware platform.

4.2.1 Motivation and System Assumptions

Auto++performs the following three tasks in real-time: (1) car detection – whether

there is a vehicle approaching the user, (2) car tracking – what is its direction, and (3)

car counting – how many cars are passing or have passed the user within a given time

window. It performs these tasks by analyzing the acoustic signal captured by built-in

microphones. The ability to answer these questions can enable several new applications.

For examples, we could alert the distracted pedestrian users (through sound, vibration,

etc); we could collect fined-grained traffic data from pedestrian smartphones; we could

further enhance augmented reality tools or games.

In our system, we assume that the user carries a mobile device that is equipped

with one or two microphones. Today, all smartphones and tablets have at least one

microphone, and some have two microphones, such as Google Nexus 6 and Nexus 6P.

Further, we assume that the microphones have a similar degree of sensitivity in all

directions. Also, we assume that the smartphone is held in hand by the user, or in

bag/pocket with connected headset. Finally, we assume that the smartphones have

the orientation service available so that Auto++can calculate the smartphone’s relative

direction with respect to the road.

4.2.2 Background on Acoustic Signal Processing

Sound Pressure Level (SPL) is the direct form of a sound signal measured by the

microphone and describes the local pressure deviation caused by the sound wave.

Time Difference of Arrival (TDoA) [74] provides a measurement of the location

of sound source. By calculating the Cross-correlation Function (CCF), Inter-channel

Phase Difference (IPD), or Maximum Likelihood Function [75–77] of the signal observed
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at difference microphones, the possible location of the sound source can be estimated.

With three microphones, the sound source’s exact position can be estimated via triangu-

lation. Due to the limitation of today’s smartphone, we could only use two microphones

to infer the sound direction.

Short-Time Discrete Fourier Transform (STDFT) is used to divide a long

signal into shorter segments of equal length and then compute the discrete Fourier

Transform on each of the segments. STDFT is widely used in audio analysis [75] as it

can reveal both temporal and spectral information of the signal at the same time. It is

particularly useful in detecting and tracking a moving car, because we can observe how

the frequency changes when a car is approaching. We provide details on how we could

potentially adopt these features in our system, or, why we can’t adopt them at all.

Finally, we also provide a brief discussion on commonly used acoustic signal processing

tools.

Mel-frequency cepstrum (MFCC):

Doppler Shift: Doppler shift is the frequency change of a wave at the receiver when

the source moves, which is often used in sound source localization [78, 79]. The use

of Doppler shift requires that the signal has one or more frequency ranges on which

energy concentrates. Car sound signal, however, does not exhibit such skewed energy

distribution, and thus we can not use Doppler shift to detect or track a moving car.

4.2.3 Challenges in Designing Auto++

In designing Auto++, we face several significant challenges. When a car runs at a

steady speed (without sudden acceleration), its sound consists mostly of tire noise

instead of engine noise, which has very different traits from many other sound signals

that have been studied. Furthermore, this problem is made even worse by the fact that

we are capturing and processing the audio data using off-the-shelf smartphones that

have hardware limitations.

Lack of Energy Concentration on Frequencies: Many sound signals have

distinctive energy concentration on certain frequencies, such as those studied in [75,80].

In such cases (illustrated in Figure 4.2(a)), we can focus on detecting energy on those
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Figure 4.2: (a) A typical speech signal has one or more frequency ranges on which
acoustic energy is concentrated. (b) Car sound signal does not have clear energy

concentration across different frequency ranges

frequencies to detect the presence of the sound source. To localize such sound sources,

the angle of arrival can be easily computed via the inter-channel phase difference [75],

or Doppler shift [72] can be applied to estimate the distance between the sound source

and the device. However, the sound of a vehicle, as shown in Figure 4.2, does not

contain obvious energy concentration on any specific frequencies and therefore calls for

different techniques.

Lack of Temporal Structure: Several studies rely on the sound signal’s temporal

features to localize the sound source, such as the sound pressure level (SPL) peaks [76,

81], sound emitting times [76], etc. However, we do not observe obvious temporal

features in our car sound signal due to its noise-like nature.

System Limitations: We run Auto++on mobile devices, and the system design

is thus limited by the available features on the hardware platform, e.g., how many

microphones a device has, how far apart are these microphones, how sensitive are these

microphones, what is the maximum sampling rate, etc.

In this study, we have carefully addressed these challenges, and our evaluation results

in Section 2.4 show that Auto++is accurate, timely, and robust.
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4.3 Car Event Notification and Updating

For a sensing system such as Auto++, it is quite natural to raise the concern of (1)

having inaccurate event detection, and (2) having excessive notifications or updates

even when the detection is accurate. While the main body of this paper is devoted to

addressing the former concern by improving the detection accuracy (results shown in

Section 2.4), here we would like to discuss how we can address the latter to improve

the system’s usability. Towards this purpose, we argue that Auto++should decouple

sensing and event notification/updating, and that the notification/updating module

should be made tunable based on the exact context the user is in.

The event notification/update frequency may need to vary, when we use different

applications in different situations –e.g., a user might prefer less frequent alerts about

incoming cars when walking in a crowded downtown area during peak hours, compared

to walking on a suburban street during off-peak time; games such as Pokemon Go might

need more frequent updating than health applications such as Fibit.

With this in mind, we design Auto++such that it dynamically adjusts the notifi-

cation/updating frequency as desired. First, by giving users the ability to configure

their preferred setting, we could trigger Auto++only in specified situations - e.g., when

the user is about to enter an intersection or walking on the sidewalk in a less crowded

area. Leveraging existing technologies such as geo-fencing [82], the system could de-

tect whether the user is in such a situation and then activate/deactivate car detection

accordingly.

In addition to user-specified settings, Auto++can also filter out unnecessary event

notification/updating through detailed context sensing. For example, the report will

only be sent out if an approaching car is detected while the user is walking towards/along

the same road. Such sensing can be achieved by using built-in inertial sensors, GPS,

etc.
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Figure 4.3: The Auto++system involves the following four components: (1) signal
pre-processing, (2) feature extraction, (3) presence detection, and (4) driving direction

estimation. Auto++does not require any prior training for any of these steps.

4.4 Auto++ Design

In this section, we present the detailed design of Auto++, which consists of four main

steps: pre-processing, feature extraction, car detection, and car direction estimation.

4.4.1 Overview of Auto++

Fig. 4.3 depicts the overview of Auto++, which consists of the following components:

1. Pre-processing: Before we can use the captured sound signal to detect, track,

or count the cars, we first need to perform several pre-processing tasks, including

segmenting the continuous stream of sound signal into smaller chunks, multiplying

each chunk with a suitable window function, and conducting required processing

on each chunk, such as discrete Fourier transform (DFT). These steps prepare

the data for subsequent signal processing.

2. Feature Extraction: Next, we extract features that can be used for car de-

tection. Unfortunately, we find that those features that are commonly used to

detect and localize sound sources are not suitable for our system (explained in

Section 4.2) as car sound is dominated by tire noise and lacks distinctive spectral
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Figure 4.4: (a) The STDFT result of the sound signal recorded when a 2007 Toyota
Camry drove from 100 meters away from the user until a few meters past the user.

(b) Two STDFT snapshots taken at different timestamps, in which we observe higher
TRF when the car gets closer. (c) The TRF trace extracted by the blurred edge

detection algorithm.

and temporal features. In this work, we have proposed new features that are

unique to car sound signals and that facilitate accurate, timely, and unsupervised

car detection.

3. Presence Detection: Our presence detection algorithm is unsupervised. It can

successfully discriminate between scenarios that involve an approaching car and

those that do not involve a car (but with a high ambient noise), as early as

possible.

4. Direction Estimation: Our direction detection algorithm is based on Time Dif-

ference of Arrival (TDoA) of the sound signal. By computing the cross-correlation
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function over signals from two channels, we can provide a coarse direction esti-

mation of the sound source.

4.4.2 Sound Signal Pre-Processing

Firstly, we segment the continuous stream of audio data into chunks of equal dura-

tion, each chunk referred to as a processing window. In our system, a typical window

length is .5 second, which means we run our car detection algorithm every .5 second.

Secondly, our detection algorithm involves the calculation of the short-time Discrete

Fourier Transform (STDFT) of the audio samples in a processing window. For this

purpose, we further divide a processing window into slots of equal length, and multiply

the hamming window function with each slot. We then perform the Fourier trans-

form over each slot to obtain the STDFT of the processing window. The slot duration

determines the temporal granularity of our STDFT calculation.

4.4.3 Auto++Feature Extraction

Next, we propose our car detection feature that addresses the unique challenges of car

sound signals, and our feature extraction method that facilitates accurate, timely, and

unsupervised car presence detection.

Top-Right Frequency (TRF): Maximum Frequency Whose Power Reaches

a Certain Threshold

We discover our feature after carefully examining the car sound signal’s STDFT results.

Fig. 4.4(a) plots the STDFT result of the sound signal from a 2007 Toyota Camry during

its drive of 100 meters. We started collecting audio samples when the car was 100 meters

away, and ended recording when it drove past the user. The recording was done using

a Nexus 6 smartphone. From the figure, we observe that when the car gets closer to

the receiver, the energy across all frequency components rapidly increases, forming a

mountain-like shape. The energy reaches the maximum when the car passes by the

user’s location.
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Let us look at two STDFT snapshots in Fig. 4.4(b). For each STDFT snapshot,

we observe that the signal power drops as we go from lower frequency components to

higher frequency components. This is because higher frequency components experience

higher path loss. Let us first choose a particular power threshold value, e.g., −58dB,

and then find the corresponding highest frequency component whose power level is at

or above this threshold. We refer to this frequency value as the Top-Right frequency,

or TRF in short, because if we draw a rectangle whose height is given by the power

threshold value (rectangle illustrated in red in Fig 4.4 (b)), the frequency of the top

right corner of this rectangle is the frequency we are looking for. When the car gets

closer to the user, the signal’s TRF value becomes higher. In general, TRF can be

calculated as:

TRF (n) = max

{
argmax

f
(S(n, f))

}
,

where S(n, f) is the power of the signal at frequency f and time window n. The term

S(n, f) is less than the power threshold T , and TRF(n) is the maximum f among all

the frequencies whose S(n, f) reaches the power level T . We calculate the TRF value

for each slot to form a TRF trace, and use the TRF trace as the feature for subsequent

car detection.

Blurred Edge Detection Based Feature Extraction

A straightforward way of generating a TRF trace is to adopt a fixed power threshold

across all slots. Implementing this method in practice, however, is very challenging

because it is hard to choose a suitable power threshold that works across cars and

road conditions. Furthermore, adopting a single power threshold is not robust in real

environments; in an outdoor environment, activities in the environment (e.g. bird

singing, footsteps, etc.) can easily lead to high frequencies whose power exceeds the

power threshold. As a result, the resulting TRF trace will not be smooth, sometimes

even discontinuous.

In order to address the challenges associated with the simple threshold-based TRF

trace extraction, we next develop an edge detection based method to extract TRF
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values from the STDFT result robustly and efficiently. As shown in Figure 4.4 (a), when

driving closer to the user, the car generates sound signal that exhibits a continuous,

blurred slope. The edge of this slope is the TRF trace of the car. We then adopt a

Blurred Edge Detector (BED) to extract this edge, which is more robust than the power

threshold based approach.

Our BED-based TRF extraction approach relies on both spectral and temporal

information to identify the intensity gradients of the spectrogram. These gradients

contain the desired TRF trace. Specifically, we adopt a Canny edge detector [83], a

widely used technique, in Auto++. It includes the following steps: (1) We suppress

those frequency components whose power is below a threshold by setting them to -

100 dB. (2) We apply a Gaussian filter to smooth out noisy dots and lines. (3) We

calculate the intensity gradient of the spectrogram to obtain the outline of the area

that has a consistent power increase. (4) We apply non-maximum suppression to thin

the area into edges. (5) We track the main edges by removing all the edges that are

weak and not connected to strong edges. After finding the edge (shown in Fig. 4.4(c)),

we fill the missing points on the edge with their previous neighbours’ values to form a

consecutive series. We call this series a TRF trace. We conduct such edge detection

at the granularity of a processing window. Each processing window consists of multiple

slots; we detect the edge within each window and uses the moving average over 200

slots to smooth the results.

4.4.4 Unsupervised Car Presence Detection and Counting

Next, we explain our car detection scheme, which is light-weight and unsupervised. Our

car presence detection scheme includes two steps– processing window classification and

event detection. In the window classification phase, we classify the current processing

window (that contains all the audio samples recorded in the last .5 second) as either

‘empty’ (meaning no car is detected within this window) or ‘car present’ (meaning at

least one car is detected within this window). Our window classification is based upon

whether the TRF values within the window consistently increase. If a large fraction of

TRF values are greater than or equal to their immediately preceding TRF value, then we
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Figure 4.5: (a) TRF values in a car-present window often exhibit different patterns
from those of an empty window that has short-term ambient noise. In the former
case, the TRF values often continuously increase while in the latter case, the TRF

values first increase and then decrease. (b) The TDoA values when the car gets closer
to the user. The red arrow marks the time when the car has been detected in K

consecutive windows, while the blue arrow marks the time when the car passes the
smartphone. (c) Example hyperbolas we have for direction estimation. The red solid

hyperbola on the left plane indicates that a car is driving from the left side.

label the window as a car-present window. This approach ensures only the continuously

increasing portion of a TRF trace is counted as a car presence event, eliminating the

peaks caused by ambient noise and other activities. For example, Fig. 4.5 (a) shows

the TRF values in a typical empty window with a high noise level, as well as the TRF

values in a window that contains an approaching car.

In some cases, it is important to find out how many cars are around a user. In order

to get the car count, we merge consecutive car-present windows within a short time

interval to avoid counting the same car multiple times.

Finally, we note that our detection scheme can work with other features. In our

evaluation (Section 2.4), we also used sound pressure level (SPL) in our detection

algorithm.

4.4.5 Unsupervised Car Direction Estimation

After detecting an approaching car, we estimate the car’s driving direction. We attempt

to do so by measuring the time difference of arrivals (TDoA) between sound signals cap-

tured by the microphones (if multiple are available on the mobile device). Traditionally,

TDoA has been used to provide precise location information for the sound source [72].

To calculate signal TDoA, we apply the cross-correlation function (CCF) on these two
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signals f(τ) and g(τ) to calculate the lag between them:

(f ? g)[τ ] =
∞∑

t=−∞
f∗[t]g[t+ τ ], (4.2)

where f∗ denotes the complex conjugate of f and τ is the delay. The corresponding t

value of the highest peak is the estimated delay between the two channels.

However, when applying the above method on smartphones in our problem, we face

the following constraints:

1) Unstable SPL measurements: TDoA calculation is based on the SPL values from

both channels. However, as SPL itself can be easily affected by ambient noise especially

when the sound source is far away from the receiver (as in our case), the cross-correlation

results of the two channel is usually not accurate enough.

2) Limited Number of Microphones: Precise angle calculation requires at least three

microphones – we can triangulate using the three sets of TDoA values. However, most

of the off-the-shelf smartphones are equipped with one or two microphones. With two

embedded microphones, we can only calculate one set of TDoA values.

3) Low Sampling Rate: The TDoA resolution is highly related to the sampling rate

of the recording device. The smartphone’s sampling rate is not higher than 44Khz,

which is not sufficient for high TDoA resolution.

4) Tiny Distance between Two Microphones: The distance d (as shown in Fig. 4.5

(c)) between two microphones determines the granularity of the distinguishable TDoA

as well as the effective detection distance. On smartphones, the distance between

microphones is usually too small to provide sufficient resolution.

In order to address the challenge of unstable SPL measurements, we propose to start

TDoA calculation only when we have detected the same car for K consecutive windows.

At this point, the SPL measurements are more stable, leading to more accurate TDoA

results and direction estimation.

Fig. 4.5 (b) shows how the TDoA value varies as the car approaches while the user

remains stationary on the sidewalk. As soon as a car has been detected in 4 consecutive

windows at the 17th second (marked by the red arrow), the TDoA value becomes much

more stable than before. It remains stable until the 21st second. In this example,
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Figure 4.6: Implementation of Auto++Computing Engine on Android platform

the car passes the user at the 22nd second (marked by the blue arrow). Even when

the TDoA value stabilizes, its absolute value may not be directly used to localize the

car, as it is limited by many geometric parameters such as the angle and the distance

between the smartphone and the road. Instead, we only consider the sign of the first

valid TDoA value and estimate from which direction the car is driving based on the

sign. Fig. 4.5 (c) illustrates several possible hyperbolas determined by the measured

TDoA values. When we have a negative TDoA value, it indicates the sound source is

located at a hyperbola on the left side (marked by red). That is, a car is coming from

the smartphone’s top side.

Finally, we note that, when applications require high TDoA resolution and direction

estimation, we could address the hardware-related challenges 2), 3) and 4) by connecting

external microphones with higher specs to smartphones.

4.5 Android Implementation of Auto++

We have implemented Auto++using the Java and OpenCV native library on Android

platform. The raw audio is recorded at a 44 KHz frequency, with a 16 bit pulse-

code modulation (PCM). To achieve real-time processing and event updating, we have

optimized the code base of Auto++and adopted concurrent threads to avoid stalling

either sensing/recording or signal processing. As shown in Fig 4.6, the Recording thread

handles data collection from microphones and populates the processing buffer, while
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the Computing thread processes the buffered data and sends the results (car detection

+ direction estimation) to a user interface or applications (through API).

Memory and CPU Usage Profiling: We have tested Auto++ on both Nexus 6

and Nexus 6P. The core processing engine of Auto++runs on-demand, i.e., it is only

triggered when specific contexts such as walking on streets are sensed through GPS and

inertial sensors (as discussed in Section 4.3). As a result, we consider the processing

engine is in one of the three stages: idle, presence detection, and direction estimation.

The processing engines stays idle most of the time, and enters the car detection

stage when the user-specified context is detected. In the presence detection stage, the

engine performs sound recording, STFT calculation, edge detection, presence detection.

When Auto++detects a car-present window, it enters the direction estimation stage.

In the direction estimation stage, the system needs to first detect the car’s presence in

K − 1 consecutive windows, and then perform TDoA calculation via cross-correlation

function.

Table 4.1 summarizes the memory and CPU usage profiling of Auto++on the two

phones. Memory allocation is dynamically done by Android OS when the app boots

up. During the execution of Auto++, its total memory consumption remains within

the pre-assigned range, which is 36.4 MB on Nexus 6 and 32.8 MB on Nexus 6P.

Direction estimation consumes the most CPU cycles than the other two stages, and

its CPU utilization is only 3.2% for Nexus 6 and 1.8% for Nexus 6P. As a result, we

believe our Auto++computing engine is lightweight enough to become one of the default

background services on mobile platforms.

Table 4.1: Auto++’s memory and CPU usage profiling. Among the three stages,
direction estimation consumes the most CPU cycles, but still very low, 3.2% on Nexus
6 and 1.8% on Nexus 6P. The memory consumption remains within the pre-assigned

memory range during the execution.

Nexus 6/6P
(Idling)

Nexus 6/6P
(Presence
Detection)

Nexus 6/6P
(Direction

Estimation)

Memory (MB) 36.4/32.8 36.4/32.8 36.4/32.8
CPU (%) 0/0 2/1.1 3.2 /1.8
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Figure 4.7: (a) CDF of the three algorithms’ detection intervals shows that BED-TRF
provides the earliest detection; (b) CDF of the electric car (Volt)’s detection intervals
show that Auto++can detect electric car as well as other cars (BED-TRF used here);

(c) Average detection interval becomes shorter when the user is walking, but an
average detection interval of 5.36 second is still very timely. When there are multiple

cars, the average detection interval is only degraded by 6%.

4.6 Evaluation

Our experiments are aimed at evaluating the two key functionality for Auto++: (1)

detecting the approaching car on a road when the user is walking towards the road or

on the sidewalk, and (2) estimating the direction from which the car is approaching.

We have conducted extensive data collection to evaluate Auto++’s performance in

these cases. Our results show that Auto++can reliably detect a vehicle’s presence 6.8

seconds in advance on a parking lot. On more crowded roads, Auto++can count the

approaching cars with an average error of .6 cars per minute, when the actual number

of passing cars is no more than 6 per minute. Auto++can estimate an approaching

car’s direction with 84.3% probability; its accuracy increases to 93.3% when multiple

cars are driving in the same direction.

4.6.1 Accurate and Early Car Detection

Setting I: Stationary User & Single Car: We first evaluated how well Auto++can

detect approaching cars on an outdoor parking lot, where the user stood still on the

sidewalk while the car drove closer. We conducted the following experiments to collect

audio data when a car was approaching the user. We started an experiment by having

the emulated user wave to the driver, who then began to drive the car from 150 meters

away towards the user’s direction. In this set of experiments, we used a Google Nexus 6,
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which was fixed on a tripod, to record the sound via both microphones. To reduce the

impact of wind, we mounted windscreens on the microphones. We ended an experiment

after the car drove 20 meters past the user. Throughout the entire experiment, we

controlled the driving speed to be constant and under the required speed limit. We

repeated this experiment to collect data over 7 vehicle models which covered a large

fraction of vehicles operated in North America, including electric cars, sedans, sports

cars, and sport utility vehicles.

In total, we collected 210 audio tracks that contain an approaching car using the

above method, each audio track 20 seconds long. We evaluated the two proposed de-

tection algorithms: TRF, which performs feature extraction based upon a fixed power

threshold, and BED-TRF, which performs feature extraction using blurred edge de-

tection. We compared their performance with a baseline sound pressure level (SPL)

based detection algorithm – classifying an audio track as ‘containing a car’ when its

SPL is above a threshold. Considering that SPL is highly sensitive to ambient noise,

we applied a high-pass filter with the cutoff frequency of 1000 Hz to reduce the impact

of noise.

In the evaluation, our objective is to report whether the detection algorithm can

accurately detect whether a car is present in an audio track, and how early can it

detect the car. The metric we use here is detection interval, the interval between the

time when a car is first detected and the time when the car is expected to pass the user’s

location. The larger the detection interval is, the earlier we could detect the car. We

present the detection interval breakdowns in Table 4.2. Among the three algorithms,

BED-TRF fares the best, while SPL the worst. Even when the car is 4 seconds way,

BED-TRF can detect its presence with 91% probability. When the car is 2 seconds

away, BED-TRF and TRF can detect car presence with the 100% and 97% probability,

respectively. With the data sets we have, we observe the false positive rates are 0 for

all algorithms. This shows that BED-TRF has a reliable detection performance.

Fig. 4.7(a) depicts the Cumulative Distribution Function (CDF) of the detection

intervals of all three algorithms. The average detection interval of SPL, TRF, and



90

BED-TRF is 2.4, 3.7 and 6.8 seconds, respectively, with BED-TRF significantly out-

performing the other two. BED-TRF has the best performance because its feature

extraction is the most robust. In the rest of the evaluation, we thus focus on BED-

TRF.

Finally, Fig. 4.7(b) shows even an electric car can be accurately and timely detected

by Auto++. We find that the mean detection interval for the electric car (Chevrolet

Volt) is 7.8 seconds, which is even better than the overall mean detection interval. This

result is very encouraging as there is a fear that electric cars are too quiet, and thus

dangerous to the pedestrian.

Setting II: Mobile User & Multiple Cars: Next, we evaluated how well Auto++can

detect approaching cars while the user is walking on the sidewalk of a parking lot

(smartphone in his hand), with one or more cars coming from the same direction.

When we had multiple cars, we made sure that they follow the preceding car after a

safe distance (more than 2 seconds away). In this setting, we collected 60 audio tracks

in total.

Compared to the first setting, we varied two parameters in this setting: user activity

(standing still vs. walking), and number of approaching cars (one vs. two). We report

the CDF of the detection intervals in Fig. 4.7(c). We observe that, user activity has

larger impact on the average detection interval – a walking user’s average detection

interval is 5.4 seconds while a standing user’s detection interval is 6.8 seconds, but we

are still able to detect the presence with 90% of probability when a car is 3 seconds

away. The number of cars has a much smaller impact. For a walking user, when the

number of approaching cars changes from 1 to 2, the average detection interval changes

Table 4.2: Detection interval distribution breakdown. BED-TRF can detect cars when
they are 4 seconds aways with 91% of probability

detection interval SPL TRF BED-TRF

>0.5s 0.96 0.97 1
>2s 0.71 0.97 1
>4s 0.03 0.3 0.91
>6s 0.02 0.07 0.46
>8s 0.02 0.25 0.2
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from 5.4 seconds to 5.1 seconds, and we can detect a car’s presence with 93.3% of

probability when a car is 3 seconds away.

Setting III: Noisy Environments: In the third set of experiments, we investigated

whether our presence detection algorithm is robust enough to detect cars in rather noisy

environments. Towards this goal, we recorded the ambient sound in several typical

environments frequented by pedestrians, including shopping centers, campus roads,

and residential areas during busy hours on a weekday. Typical sound sources of the

ambient noise in these scenarios include steps, talking, door open/close activities, car

sound from a far distance, etc. We recorded the sound in each environment for a total

length of 10 minutes, consisting of 30 20-second clips. We overlaid these noise clips over

those that contain an approaching car (which we collected in Setting I), emulating a

‘car-running-in-a-noisy-environment’ scenario.

Table 4.3 summarizes BED-TRF’s true positive rate and false positive rate in the

original quiet environment (parking lot in Setting I) as well as three noisy environments.

We observe that, in noisy environments, the detection performance does degrade, but

the results are still quite encouraging. For example, on campus roads with students

walking/chatting and cars/school buses running, we can detect approaching cars with

an average true positive rate of 97.2%, an average false positive rate of 3.3%, and

an average detection interval of 4.2 seconds for true positive events. As expected, the

results at the shopping center are worse than those on a campus road and in a residential

area, because there are many more activities there that generate ambient noise, such as

people going in/out of stores, cars running in the shopping center parking lot, etc. In

our future work, we will try to improve the detection performance at a shopping center

by learning and recognizing noise generated by these different activities.

Setting IV: Counting cars by Mobile User in Crowded Areas: Finally, we

investigate whether Auto++can detect and count approaching cars in areas with a

relatively high traffic volume, while the user walking around in the area (on sidewalks)

with the smartphone in hand. In this set of experiments, we collected data on a campus

main road, where cars were not driven by our participants, but by regular drivers. In
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total, we recorded 180 minutes of audio data, with each audio track 1 minute long. We

extracted the ground truth (car passing the user and the corresponding timestamps)

by locating the TRF peaks in each trace offline. We then compare the number of cars

detected by Auto++with the ground truth, and call the absolute difference of the two

as counting error. If two cars are very close to each other (less than 2 seconds away

from each other), we consider them as one car.

We report the counting error histogram with respect to different traffic volumes in

Fig. 4.8 (d). The results show that the average counting error is 0.58 car per minute

when the user is standing still, and 1.04 car per minute when the user is walking, when

the actual traffic volume is 5 or 6 cars per minute. When the actual car number per

minute is greater than 8, the counting error is 0.91 (standing) and 2.02 (walking) per

minute. This result indicates that Auto++can accurately detect and count approaching

cars when the traffic volume is moderate. As a result, we believe that Auto++offers

a viable approach for fine-grained traffic monitoring when existing traffic monitoring

tools are insufficient.

4.6.2 Driving Direction Estimation

Next, we evaluated the accuracy of our car direction estimation. In this use case, we

used the same audio tracks that we collected in Sec. 4.6.1 in the first three settings.

In our experimental setup, the user was walking on the sidewalk along the road, so

the car was approaching either from the back or the front. For each audio track, our

estimation can be correct or incorrect. We report the number of correct estimations or

the correct estimation rate (the ratio between the number of correct estimations over

Table 4.3: Auto++’s detection accuracy at campus roads and residential areas is only
slightly worse than the performance on quiet parking lots. We see more degradation
in detection accuracy when we use Auto++at a shopping center because there are a

multitude of activities that generate strong ambient noise.

Quiet Parking
Lot

Campus
Road

Residential
Area

Shopping
Center

Detection Interval (s) 6.8 4.2 3.6 3.2
TPR (%) 100 97.2 94.8 83.8
FPR (%) 0 3.3 13.3 13.3
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Figure 4.8: (a) The average counting error is 0 for standing users and 0.49 car per
minute for walking users, when the actual traffic ≤ 2 cars per minute. The average
counting error increases to 0.9 for standing users and 1.5 for walking users when the
ground truth is 5 or 6 cars per minute. (b) We correctly estimated the car driving

direction with probability of 84% (177 out of 210) for all single car test traces. (c) We
correctly estimated the driving direction of car flow and single with probability of 93%

(28 out of 30) and 67%(20 out of 30), when the user is walking. (d) We correctly
estimated the driving direction of cars with probability of 84.3%.

the total number of audio tracks) to evaluate the estimation accuracy.

Setting I: Stationary User & Single Car: We first demonstrate that Auto++can

estimate a car’s driving direction when the user is stationary. Fig. 4.8 (a) presents the

histograms of correct and incorrect direction estimations (out of 210 total audio tracks)

at different times. The results show that, Auto++can correctly estimate the driving

direction with 84.3% of the time when the car is 3.5 seconds away.

Setting II: Mobile User & Multiple Cars: Next, we evaluate Auto++’s direction

estimation accuracy when multiple cars approach a walking user in Fig. 4.8 (b). When

a user is walking, the SPL measures become less stable, and the correct estimation rate

goes down, i.e., 63.3% in our case. However, when multiple cars follow each other to
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approach the walking user, Auto++can estimate their direction with a much higher

correct estimation rate, 93.3%.

Setting III: Noisy Environments: Finally, we show that Auto++can even estima-

tion the driving direction with a reasonable accuracy in various noisy environments.

Fig. 4.8(c) shows that its estimation accuracy is similar across three scenarios, as well

as on a quiet parking lot, suggesting our direction detection algorithm is not sensitive

to environmental noise.

4.7 Related Work

Car-Centered Context Sensing: In the area of pedestrians safety study, many

works have been proposed to detect the presence of pedestrian proactively. Different

sensing technologies such as piezoelectric sensor, ultrasonic detector, microwave radar

can be deployed on the infrastructure or the cars [84]. Piezoelectric sensor requires

the contact of the cars or the users, which limits its effective area. Ultrasonic detector

and microwave radar are commonly used in the latest model of cars, but it remains a

challenge to adopt these sensors in the old ones.

Another category of study focuses on using computer vision to detect the pedestrian.

Work by Viola et al. [85] introduced a pedestrian detection platform, which could

differentiate a pedestrian from the environment based on the walking motion. Dollar et

al. [86] proposed a set of evaluation metrics to investigate pedestrian detection in most

of the challenging scenarios. Although pedestrian detection based on computer vision

are promising, their performance in the low light environment remains questionable.

Pedetrian-Centered Context Sensing: Besides car-centered methods, user-centered

sensing techniques try to extract roadside context from the other angle. Work by Riaz

et.al [87] proposed a hybrid system that utilizing wireless sensor network and GPS to

reduce the vehicle/pedestrian collisions. This approach requires a scaled deployment,

which is difficult to be generalized in realistic. Jain et.al [88] proposed a mobile system

that detects the event when a user steps in an intersection. However, it requires the

user to mount an additional sensor on the shoes, which adds extra cost and is unlikely
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to be ubiquitous.

In contrast, Auto++only relies on smartphone without requirement any infrastruc-

ture support. Also, it is more flexible and efficient, since microphone is capable of

collecting audio data from any angle and audio processing costs less computing re-

source.

Sound Source Localization: The topic for signal localization is well addressed in

the field of signal processing. Earlier work in this domain focused on using the signal

difference among multiple receivers and the geometric structure of multiple receivers

to locate the incoming signal. Schau et.al [89] propose a solution for source location

bu giving time-of-arrival difference measurements when the distance from the source

to any arbitrary reference is unknown. This technique was widely applied to military.

Damarla et al. [90] developed a special receiver array device to localize the location

of a sniper. Typical way to find the time-of-arrival (ToA) difference is to use cross

correlation function in time domain [76]. However, due to the hardware limitation and

insufficient temporal information in our system, we can not accurately locate the car

using these techniques. Another work [75] propose a method to find the ToA difference

by using internal phase difference (IPD). This approach requires a high signal to noise

rate, but the signal is heavily prone to the surrounding noise in our usage scenarios.

To detect a moving object with acoustic signal, Doppler shift is widely used in

many studies. Work by Cheng et.al [72] proposed a system a system to localize an

underwater moving object using acoustic sensor network. Chan et.al [91] proposed a

system to localize a moving object by sending and receiving RF signals to calculate

the Doppler shift. These method, however, require a pre-known distinctive frequency

component of the signal, which is difficult to find in our scenario.

4.8 Conclusions

We have presented Auto++, an unsupervised approach for detecting approaching cars.

Auto++depends on non-obvious observation of the sounds that car tires make, and

thus is applicable even to electric vehicles, which are otherwise quiet compared to gas
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powered cars. The novel feature Top-Right Frequency (TRF) extracted by blurred edge

detector (BED), was able to detect a car with 91% accuracy even four seconds away.

Further, our direction detection algorithm can detect the driving direction of approach-

ing cars in most of the instances. Finally, Auto++can provide car counting service

with only 0.9 counting error per minute when the actual count per minute is beyond 8.

We believe that the design, implementation and evaluation of our results present im-

portant practical contributions towards enabling and enriching more pedestrian-centric

applications.
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Chapter 5

Conclusion and Proposed Research

5.1 Summary

In conclusion, this dissertation investigates the challenges in future Internet of Things.

Specifically, we make the following contributions:

• MF-IoT: We propose a generic network architecture that satisfies the requirements

placed by the emerging IoT systems, namely, global reach-ability, mobility, commu-

nications diversity, and resource efficiency. We archive this objective by creating a

network-layer dialect (Local Unique IDentifier, LUID) in a local IoT domain and

adopt gateway to efficiently translate between GUID’s that are used in the core net-

work and the corresponding LUID’s.

• AggMEC: Next, to overcome the challenge raised by a tremendous amount of IoT

data, we introduce a clustering-based algorithm that utilizes our proposed cost func-

tion to minimize the total network traffic. In order to support efficient in-network

aggregation, we design and implement our system over MobilityFirst – a clean-slate

network architecture.

• Auto++: We leverage the pervasiveness of mobile devices to design and implement

an approaching car sensing system, which is based on non-obvious observation of the

sounds that car tires make. This new user context information enables a number of

applications such as safety alert, traffic monitoring, and AR application enhancement.

5.2 End Note

After a decade of development of the IoT, a large variety of communication technologies

has gradually emerged, yet there is a large diversity of application domains and network
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domains. Such heterogeneity and fragmentation of the IoT systems are one of the main

challenges in the next decade. In the era of 5G, with the availability of ubiquitous

and scalable connectivity technology, Internet of Things is powered to emerge globally

and seamlessly. The network architecture design should not only adopt the evolution

of cellular technology to remove the obstacles across different domains, but also inte-

grates with application logic to provide richer services for the users. For example, a

user should be able to subscribe and receive environmental sensing data via networks,

which is generated by agnostic sensors or services. Moreover, this data could be pre-

processed data, data summary, or even result generated by Artificial Intelligent (AI)

model. Ultimately, the future Internet of Things will connect objects beyond ”things”,

and deliver smarter representations of the physical environment that we live in.
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