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ABSTRACT OF THE DISSERTATION

OPOS: Object-Parallel Optimization Software

By GYÖRGY MÁTYÁSFALVI

Dissertation Director:

Dr. Jonathan Eckstein

This dissertation describes OPOS, a C++ software library and framework for developing

massively parallel continuous optimization software. We show that classical iterative

optimization algorithms such as gradient projection and augmented Lagrangian meth-

ods can be parallelized to run efficiently on distributed memory machines using OPOS.

In Chapter 1 we provide some background on general optimization software and

algorithms, as well as parallel software for LASSO and stochastic programming prob-

lems.

Chapter 2 introduces OPOS’s software development methodology. We start out by

describing a set of optimization-domain-specific C++ classes and routines that embody

the building blocks of OPOS. The main goal of these classes and routines is to allow the

user to code efficient, reusable, maintainable, and readily parallelizable optimization

algorithms. OPOS enables the optimization software developer to build optimization

algorithm classes that are independent of the problem structure as well as the program’s

desired execution.

Details of a spectral projected gradient algorithm by Birgin and Mart́ınez and its

implementation, OPSPG, are discussed in Chapter 3. Initially, we review the optimization

algorithm and OPSPG’s code. Next we describe an application to the LASSO problem,
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and a novel data distribution technique which achieves an even load balance. Followed

by implementation details of objective function and gradient evaluations given our data

distribution. We close the chapter by presenting computational results.

Chapter 4 introduces the basic theory behind augmented Lagrangian algorithms and

a specific version called ALGENCAN, which was developed by Birgin and Mart́ınez. Then

we discuss the building blocks of our object-parallel augmented Lagrangian software

OPAL, which is based on ALGENCAN. OPAL is applied to solve linear stochastic program-

ming problems. We describe a scenario-based data distribution technique using PySP, a

python-based modeling software for stochastic programs. This is followed by implemen-

tation details of objective function, constraint and gradient evaluations given our data

distribution. At the end of the chapter, we demonstrate our computational results.

Chapter 5 summarizes findings of our work and discusses future research opportu-

nities for both LASSO and stochastic programming problems.
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throughout my time here at Rutgers. I am grateful to Péter Csányi and Petra Nagy
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Chapter 1

Introduction

In this chapter we will start out by briefly exploring the motivation and goals of OPOS.

This will be followed by a short introduction to optimization software and algorithms

for smooth problems. Then we will examine the approaches that have been tried so

far, to parallelize existing optimization algorithms, or design novel parallel methods, for

large-scale least absolute shrinkage and selection operator (LASSO) problems [71], and

stochastic programming (SP) problems [11], which are the test cases of OPOS. Finally,

we will introduce standard performance measures for parallel software, which we use to

evaluate our programs.

1.1 Motivation and Goals

High-Performance Computing (HPC) with massively parallel supercomputers address

some of the most challenging computational problems we face today. Existing work on

implementing classical optimization methods, with well established convergence prop-

erties, on such computer architectures has been somewhat limited. Software that can

exploit the computational power of massively parallel supercomputers employ imple-

mentation tools such as MPI [65], CUDA [53], or OpenMP [22]. These tools however, require

significant amounts of code “clutter” because they are linked to particular classes of

hardware, and are organized around relatively low-level operations. The same under-

lying algorithm may have to be re-implemented multiple times to adapt to different

hardware environments or applications, and the resulting code may be difficult to read.

There is at present no expressive, portable high-level language that allows implementers

to exploit most of the performance of the available hardware, something that would do
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for parallel computing what the FORTRAN and C languages accomplished for serial com-

puting in the 1960’s through 1980’s. In the absence of such a language breakthrough,

a natural route to more elegant and portable implementation of parallel algorithms is

to use established object-oriented programming concepts.

OPOS is an open source software library for solving general purpose continuous non-

linear optimization problems, both constrained or unconstrained, on massively parallel

supercomputers. Implemented in C++, OPOS makes heavy use of object-oriented pro-

gramming. It includes many classes that allow for a clear, concise, reusable and efficient

implementation of optimization methods. In particular, the algorithms are implemented

via abstract classes [20]. The result is clear, MATLAB-like yet efficient code that func-

tions as an algorithmic template, readily applicable to various hardware platforms and

data representations without the need for modification. For an optimization software to

be functional, it needs to have good interfacing capabilities to other scientific software

packages, such as modeling languages. OPOS’ object-oriented design facilitates such in-

terfacing, as well as application to various problem representations, without the need

to change the core source code of the optimization algorithm itself. Within OPOS, one

achieves concurrency by parallelizing optimization algorithms’ underlying linear algebra

operations. In this context, it is essential to employ algorithms that utilize only simple

linear algebra operations that are relatively easy to implement in parallel. Hence, the

goal of OPOS is to provide the scientific community with reusable, customizable, and

efficient implementations of classical optimization algorithms, that have well known

convergence properties, and scale well on HPC systems enabling the fast solution of

large-scale problems.

1.2 Optimization Software and Algorithms

Solving optimization problems with computers usually involves interaction between an

algebraic modeling language, or AML [42], processor and a solver. AMLs are high-level

computer languages that enable the user to formulate decision models using algebraic

notation. A solver is software that applies an optimization algorithm to a problem

instance. Most AML processors interact with optimization solvers by producing files
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that are read by the solver. The solver computes objective function, constraint and

gradient values based on the input file generated by the AML processor. One popular

such input format is the nl file format [29, 28], which was originally developed to

interface the AMPL [25, 24] AML with solvers. Nowadays, many AMLs are capable of

generating nl files and most solvers accept them as an input. The interface between nl

based solvers and AMLs is facilitated by the open-source AMPL solver library (ASL) [28].

ASL provides routines for objective function, constraint and gradient computations,

where the gradients are obtained via automatic differentiation [34]. This means that

the solver developer does not have to invest significant effort into coding objective

function and gradient routines but instead can focus on the implementation of the

optimization algorithm, which makes ASL a very powerful tool for solver development.

These techniques work well in a serial or even shared-memory parallel setting, however,

they do not carry over readily to distributed memory parallel environments. As a result,

presently there is no software library available for distributed memory parallel machines

that would have the same capabilities as ASL. Therefore, parallel optimization software

developers have to take a different approach when it comes to implementing solvers and

establishing the interface between them and AMLs.

1.2.1 Popular Optimization Algorithms for Smooth Problems

Most iterative optimization methods for unconstrained smooth problems choose a start-

ing point x0 then find a direction dk along which they improve the function value. The

main difference between them arises in how they compute dk. Some well established

methods are, gradient methods, which use the objective function’s gradient for dk,

Newton and Quasi-Newton methods that apply the inverse of the Hessian, or an ap-

proximation of it, to the gradient to obtain dk, and conjugate gradient methods, which

generate conjugate directions dk using the objective function’s gradient. These methods

play an important role in constrained optimization algorithms, the focus of this section,

as they often show up as subroutines in some shape or form. Consider the constrained
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optimization problem

min f(x)

s.t. x ∈ X,
(1.1)

where f : Rn → R is smooth and X ⊂ Rn is a nonempty closed convex set. The choice

of constrained optimization algorithm for solving (1.1) depends on the structure of X

and the problem dimension.

A popular approach to solving (1.1) if the projection operation onto X is simple,

for example X is a box, are gradient projection algorithms. Some state-of-the-art serial

software implementations of gradient projection algorithms are VE08 [72], PORT 3 [27],

LANCELOT [19], SPG [14] and GENCAN [13]. If projection onto X requires significant

computational effort gradient projection methods become computationally too expen-

sive. In that case the most commonly chosen algorithm to solve (1.1) are interior-point

(barrier) methods [43, 81, 2]. Some popular interior-point solvers are IPOPT [77], Kni-

tro [17], LOQO [75], and MOSEK [3]. Augmented Lagrangian methods [61] would also be

suitable to solve (1.1), however, early implementations of augmented Lagrangian solvers

have exhibited inferior convergence compared to interior-point based solvers. There-

fore, there was less interest in developing augmented Lagrangian solvers and as a result

there are fewer software packages available today. In terms of augmented Lagrangian

solvers a serial implementation that has been around the longest is the LANCELOT pack-

age [19], developed by Conn, Gould, and Toint in the early 1990s. However, in re-

cent years Birgin and Mart́ınez have released a highly sophisticated serial augmented

Lagrangian solver called ALGENCAN [12]. Nonetheless, superior convergence of interior-

point methods comes at a price, since they require the solution of a system of equations

at every iteration. Because efficient implementation of general matrix factorization

for distributed memory systems is very challenging, there have been few attempts at

developing interior-point solvers for distributed memory systems. More precisely, we

currently only know of the work that was done by Gondzio and Grothey [32, 33, 31],

and Zavala et al. [82], in this area. Depending on their implementation, augmented La-

grangian methods, however, do not necessarily require the direct solution of system of

equations, therefore, we believe that they provide a good balance between complexity of
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implementation and convergence speed, and as a result are a good choice for developing

solvers for distributed systems. Augmented Lagrangian methods are preferentially em-

ployed in projects like TAO [57] and ROL [74] for solving scientific applications modeled

by partial differential equations (PDEs), since optimization problems involving PDEs

are best handled by algorithms that do not require expensive computations.

1.3 Solving LASSO and SP Problems on Distributed Systems

Presently, no software libraries exist that could determine efficient task allocation, syn-

chronization and communication primitives for arbitrary function evaluations on dis-

tributed memory systems. Therefore, all distributed memory optimization software is

problem-specific. To test our object-parallel framework we have chosen two problems

of interest. The first is the LASSO problem [71], which frequently arises in the field

of machine learning. The second is the class of stochastic programming problems [11]

that appear in a variety of planning, logistics, and system control problems. Real-world

applications often produce problems, belonging to either of these two classes, that have

millions of variables or constraints. Therefore, fast solution of these problems requires

the computational resources that only distributed systems can offer today.

1.3.1 LASSO

Solving the LASSO problem reduces to the following optimization problem:

min
x∈Rn

1
2 ‖Ax− b‖

2
2 + ν ‖x‖1 , (1.2)

where A ∈ Rm×n, b ∈ Rm, and ν > 0 is a given parameter. The most popular approach

for solving these types of problems are distributed coordinate descent methods [8].

Some implementations are, for example, Hydra by Richtárik and Takác̆ [59], or Grock

by Peng et al. [56]. Coordinate descent methods are well suited for distributed mem-

ory computation because these algorithms do not require the computation of the full

gradient of the loss function 1
2‖Ax− b‖

2, which reduces the amount of communication

between the processors. However, scalability of these algorithms is data dependent



6

and they require extensive parameter tuning. This phenomenon may defeat the pur-

pose of parallel computation, which is to obtain solutions fast. While one can argue

that coordinate descent methods require less frequent, and less extensive communica-

tion (fewer processors communicate) than algorithms that compute the full gradient,

most massively parallel supercomputers today have interconnect networks that can ex-

ecute certain types of communication primitives very efficiently. This assumption does

not hold for cluster computing systems, where for example, reduction-type operations

may be very slow. In such environments, the coordinate descent approach may be the

best one. However, OPOS is intended to run on supercomputers, with the assumption

that reduction-type communication with relatively small amounts of data is fast and

efficient. Therefore, our approach to solving the LASSO problem is to use the non-

monotone spectral projected gradient algorithm by Birgin and Mart́ınez [14] on the

smooth equivalent of (3.8), i.e:

min
x+,x−∈Rn

1
2 ‖A(x+ − x−)− b‖22 + ν1>(x+ + x−)

s.t. x+, x− ≥ 0.

(1.3)

1.3.2 Stochastic Programming

Existing work on parallel solution of stochastic programming problems has concen-

trated on decomposition methods or barrier methods, which we briefly mentioned ear-

lier, in Section 1.2.1; see for example [32, 33, 31]. Most decomposition methods reduce

the original problem, by either removing constraints (nested Benders [52]) or variables

(Dantzig-Wolfe [30, 64]), from a restricted master problem (RMP) and at each itera-

tion the RMP is modified by adding constraints or variables generated by an oracle,

employing a dual solution of the RMP. A drawback of these approaches is that the

data partitioning and communication for these methods on distributed systems would

require significant effort, especially for multistage problems with more than two stages.

Another way of decomposing stochastic programming problems is by treating each sce-

nario as a subproblem that are solved separately. A popular algorithm for stochastic

programming problems that is based on scenario decomposition, called progressive hedg-

ing, was proposed by Rockafellar and Wets [60]. An efficient master-slave-type parallel
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implementation of progressive hedging for distributed memory systems is due to Wat-

son et al. [78]. Currently, we are not aware of distributed-memory implementations

of the augmented Lagrangian algorithm applied to multistage stochastic programming

problems. The assumption is that an object-parallel augmented Lagrangian implemen-

tation should be more scalable than competing methods, like barrier methods, because

it does not require parallelization of intricate linear algebra operations such as matrix

factorization; instead it is enough to parallelize a limited number of relatively simple op-

erations. In addition, one would expect that the resulting software will exhibit superior

tail convergence to decomposition methods.

1.4 Parallel Complexity, Speedup, Efficiency and Scaling

In this section, we will briefly discuss the performance measurements that we use to

evaluate our parallel software. Measuring the amount of resources that are required for

running a parallel algorithm is more complicated than for a serial algorithm. Parallel

computing literature differentiates between the following three measures:

1. Time complexity T (N,P ), the time it takes for the program to terminate on a

problem instance of size N given P processors.

2. Worst-case communication complexity, the number of messages transmitted dur-

ing the course of the algorithm.

3. P , the number of processors involved.

Besides complexity, speedup and efficiency are also important aspects of parallel

algorithms. For the analysis of OPOS, speedup is computed by the ratio

S(N,P ) =
T (N, 1)

T (N,P )
× 100%, (1.4)

where T (N,P ) is as defined above in Item 1, and analogously T (N, 1) stands for running

the same parallel algorithm on a single processor. One could also compute S(N,P ) by

replacing T (N, 1) with the time required to solve the problem by the best existing

serial algorithm, which would be more indicative of the absolute merit of the parallel

algorithm. However, our work is focused on providing a framework for parallelizing
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Figure 1.1: Example of a strong scaling graph.

existing optimization algorithms. Therefore, we are more interested in how well our

framework achieves the parallelization of these particular algorithms, which is better

reflected by the proposed ratio (1.4).

There are two scaling tests that we use to measure the fraction of time that a

processor spends on pure computation as opposed to communication or idling. The

first is a strong scaling test , where we run a fixed-size problem on a varying number

of processors to see how the timing of the computation scales with the number of

processors. Strong scaling graphs plot the running time of the program as the number

of processors are increased while keeping the problem instance constant. As shown in

the example in Figure 1.1, strong scaling graphs are essentially log-log plots, where the

number of processors appear on the horizontal axis and the program’s running time on

the vertical axis.

The second is a weak scaling test , where we fix the amount of work per processor

and compare the execution time over number of processors. Weak scaling graphs plot

the running time of the program as both the number of processors and the problem

sizes are increased to keep the amount of work per processor constant. Weak scaling is

usually depicted on a semi-log plot, where the horizontal axis (number of processors)

is the log axis and the vertical axis is linear. An example weak scaling graph is shown
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in Figure 1.2, where the horizontal line indicates linear scaling.

Linear or perfect scaling , shows the running time if the code maintained 100%

parallel efficiency, which could be attained if S(N,P ) = P . Most parallel codes never

attain perfect scaling, and start to shift away from the theoretical line as the number of

processors increase. For strong scaling graphs this typically occurs because, while the

amount of computation per processor decreases with increasing P , the communication

time tends to increase.

Another popular tool to measure parallel code performance is to run in-depth di-

agnostics at runtime. This can be done using code profilers, such as PARAVER [55] or

ARM DDT [40]. Profilers provide detailed information to the programmer about func-

tion calls, such as how much of the runtime was spent inside a particular function,

which in turn can be used to determine how much time was spent in functions that are

communication-related as opposed to functions that are computation-related.
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Chapter 2

Object-Parallel Optimization Software Development

Software developers aim to produce maintainable code for various reasons. For ex-

ample, maintainable code is easier to read, test and extend. This in turn improves

the accuracy of the software and reduces development costs drastically. The key to

produce maintainable source code is to reduce complexity. Especially, cyclomatic com-

plexity [21], which measures the number of independent paths through a program’s

source code, essentially the number of branches in the code. The industry standard

methodology for reducing complexity is through abstraction. Because abstraction also

increases extensibility, one can argue that the right kind of abstraction also allows de-

velopment of software that will be capable of solving more complicated problems in

the future. This thesis proposes an object-parallel paradigm for continuous optimiza-

tion software development, which introduces optimization-domain-specific primitives

allowing the programmer a high level of abstraction. These object-parallel abstrac-

tion techniques enable the readability, maintainability, reusability, extensibility, and

parallelizability of the optimization algorithm’s source code.

The main idea behind our approach is to think of optimization algorithms as a series

of simple vector manipulations such as vector additions, scalar multiplications, inner

products, and norms. In the context of BLAS (Basic Linear Algebra Subprograms) [47,

15] these operations are referred to as level 1 routines. For example, consider Algo-

rithm 1, a general gradient descent method for differentiable unconstrained optimization

problems of the form

min
x∈Rn

f(x). (2.1)
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Algorithm 1: Gradient descent

Input: ∇f, x0 ∈ Rn, εopt

Output: x′, approximate critical point of f

1 k = 0

2 while
∥∥∥∇f(xk)

∥∥∥ > εopt do

3 αk ← lineSearch()

4 xk+1 = xk − αk∇f(xk)

5 k = k + 1

6 x′ = xk

Appropriate step sizes αk for each iteration are provided by line search algorithms [54,

10]. Algorithm 1 generates a sequence of iterates
{
xk
}

converging to an approximate

critical point of f . At this point, for the sake of simplicity, we will assume that a line

search oracle provides us with the appropriate αks. Notice that by abstracting away the

gradient computation we have reduced our algorithm to a simple scalar vector multipli-

cation αk∇f(xk), a vector addition xk−αk∇f(xk), and a norm computation
∥∥∇f(xk)

∥∥.

In other words, given the right abstraction, optimization algorithms can be reduced to a

series of simple vector operations. This abstraction is necessary if we want to make the

optimization algorithm independent of f , since if we added the procedure for the gra-

dient computation to our gradient descent algorithm, we would have had to rewrite the

algorithm for every single function f to be minimized. Let us assume that we are only

interested in minimizing a few specific functions and we decide to include the gradient

computation in the code. Even this scenario would greatly reduce maintainability and

extensibility of our software. First of all it would increase the cyclomatic complexity of

the code by introducing a branch for every function. Secondly, it is not hard to imagine

that for some fs the gradient computation ∇f is a complicated procedure, which even

if implemented carefully will result in hundreds of lines of code. Hence, it would be

much harder to comprehend what the main steps of Algorithm 1 are.

Note that in Algorithm 1 we actually went one step further. We did not only

abstract away the gradient computation but also the implementation details of the

vector operations. If we did not do so then we would have to change Algorithm 1, for
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example, in the following way:

Algorithm 2: Gradient descent

Input: ∇f, x0 ∈ Rn, εopt, n

Output: x′, approximate critical point of f

1 k = 0

2 e = 0

3 for i = 0; i < n; + + i do

4 e + =
(
∇f(xk)i

)2
5 while e > εopt do

6 αk ← lineSearch()

7 for i = 0; i < n; + + i do

8 xk+1
i = xki − αk∇f(xk)i

9 e = 0

10 for i = 0; i < n; + + i do

11 e + =
(
∇f(xk+1)i

)2
12 e =

√
e

13 k = k + 1

14 x′ = xk

Hence, we can conclude that by abstracting away the details of vector operations

and optimization problem, our optimization algorithm’s code becomes relatively main-

tainable and extensible. Furthermore, this kind of abstraction can be used to achieve

SPMD (single program multiple data) parallelism [23] without the need to change the

optimization algorithm’s main code.

In the SPMD paradigm, each processor executes the same lines of code but the

underlying data are different. To see how our abstraction scheme allows one to maintain

the same code in the SPMD setting, consider for example that vector x has the following

coordinates:

x1 x2 x3 x4 x5 x6 x7 x8

][

Assume that x is distributed across two processors p0 and p1 in such a way that p0

owns the first four elements of x and p1 owns the last four elements, i.e.:
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x1 x2 x3 x4 x5 x6 x7 x8

][

p0 p1

This data distribution would change Algorithm 2 in the following way:

Algorithm 3: Parallel gradient descent

Input: ∇f, x0 ∈ Rn, εopt, nlocal, myId

Output: x′, local minimizer of f

1 k = 0

2 e = es = er = 0

3 for i = myId× nlocal; i < nlocal + myId× nlocal; + + i do

4 es + =
(
∇f(xk)i

)2
5 if myId = 0 then

6 send es → p1

7 receive er ← p1

8 else

9 send es → p0

10 receive er ← p0

11 e =
√
es + er

12 while e > εopt do

13 αk ← lineSearch()

14 for i = myId× nlocal; i < nlocal + myId× nlocal; + + i do

15 xk+1
i = xki − αk∇f(xk)i

16 e = es = er = 0

17 for i = myId× nlocal; i < nlocal + myId× nlocal; + + i do

18 es + =
(
∇f(xk+1)i

)2
19 if myId = 0 then

20 send es → p1

21 receive er ← p1

22 else

23 send es → p0

24 receive er ← p0

25 e =
√
es + er

26 k = k + 1

27 x′ = xk

Notice how the additional lines of code in the parallel version of the gradient descent
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algorithm are all related to the vector addition procedure or the norm computation,

which are both vector operations. But in a more abstract representation as in Al-

gorithm 1 the details of all vector operations are independent from the optimization

algorithm. Applying the same line of thinking to the gradient computation would also

yield that no additional lines of code need to be added to the parallel version of the

optimization algorithm’s code if the gradient computation is abstracted away from the

optimization algorithm. Therefore, we can conclude that Algorithm 1 would indeed

remain unchanged in an SPMD-type parallel setting.

C++ [69], an object-oriented programming language, has the capability to implement

abstraction schemes without sacrificing too much performance. In C++, abstraction is

achieved through the use of abstract classes. These classes allow the programmer to

create objects that hide implementation details of various computations and therefore,

can be used to abstract away computations related to the optimization problem and

vector operations. In the next section, we will introduce some basics of C++ classes,

following that we will describe how we use C++ techniques to create an abstraction

scheme that allows the programmer to code optimization algorithms in a similar manner

to Algorithm 1.

2.1 C++ Classes

A C++ class is a user-defined data type. By specifying such a data type we instruct the

compiler how to allocate a particular piece of storage, and also how to manipulate that

storage. In our case, problem classes will determine how an optimization problem’s

data are stored and how to compute various quantities related to the problem, such as

objective function values, gradients, or constraint values. Similarly, vector classes will

specify the storage of vectors and various vector operations that are used in optimization

algorithms. Objects in C++ are variables whose type is a class. The next section will

provide some examples of C++ classes and objects.
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#ifndef SIMPLESERIALVECTOR_H_

#define SIMPLESERIALVECTOR_H_

#include "SimpleAbstractVector.h"

class SimpleSerialVector : public SimpleAbstractVector {

int dim;

double* data;

public:

double norm2sq () const {

double e = 0.0;

for (int i=0; i<dim; ++i)

e += data[i] * data[i];

return e;

}

};

#endif /* SIMPLESERIALVECTOR_H_ */

Figure 2.1: Class definition of SimpleSerialVector.

2.1.1 Examples of C++ Classes and Objects

In this section we will introduce simple C++ classes that are similar in nature to the ones

that are used in OPOS, but abbreviated for reasons of space and clarity. These classes

are not part of OPOS, and they only serve the purpose to establish the basic design ideas

behind OPOS and various concepts related to C++ classes. Throughout this illustration we

will use UML diagrams [26], which are the industry standard notation used to concisely

describe C++ classes and their relationships. Note that in our examples we will omit

specifying constructors and destructors. Take the class named SimpleSerialVector

shown in Figure 2.1. This SimpleSerialVector class has three members, dim, the

dimension of the vector, data, a pointer to the storage that holds the vector values,

and a method norm2sq(), which returns the square of the euclidean norm. The UML

class diagram for SimpleSerialVector has the following form:

SimpleSerialVector

- dim : int

- data : double*

+ const norm2sq() : double
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#ifndef SIMPLEPARALLELVECTOR_H_

#define SIMPLEPARALLELVECTOR_H_

#include "SimpleAbstractVector.h"

#include "mpi.h"

class SimpleParallelVector : public SimpleAbstractVector {

int dim;

double* data;

MPI_Comm* comm;

public:

double norm2sq () const {

double local = 0.0, e = 0.0;

for (int i=0; i<dim; ++i)

local += data[i] * data[i];

MPI_Allreduce (&local , &e, 1, MPI_DOUBLE , MPI_SUM , *comm

↪→ );

return e;

}

};

#endif /* SIMPLEPARALLELVECTOR_H_ */

Figure 2.2: Class definition of SimpleParallelVector

The minus sign − in front of dim and data identify them as private members, meaning

that only class member functions and friend methods have access to them. The plus

sign + in front of norm2sq() specifies that it is a public member , which means that

any method in the code has access to it. Next, let us define another class named

SimpleParallelVector (Figure 2.2). The UML class diagram is as follows:

SimpleParallelVector

- dim : int

- data : double*

- comm : MPI Comm*

+ const norm2sq() : double

Notice that both SimpleParallelVector and SimpleSerialVector are derived classes

of SimpleAbstractVector. We know this from the following lines at the beginning of

the class definition:

class SimpleSerialVector : public SimpleAbstractVector
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#ifndef SIMPLEABSTRACTVECTOR_H_

#define SIMPLEABSTRACTVECTOR_H_

class SimpleAbstractVector {

public:

virtual double norm2sq () const = 0;

};

#endif /* SIMPLEABSTRACTVECTOR_H_ */

Figure 2.3: Class definition of SimpleAbstractVector

class SimpleParallelVector : public SimpleAbstractVector

This means that both SimpleParallelVector and SimpleSerialVector inherit the

public members of SimpleAbstractVector class and have access to its protected mem-

bers. Protected members are members that are accessible only by member functions of

the class, its derived classes, and friend methods, we will see an example of protected

members in Section 2.2.2. SimpleAbstractVector is defined in Figure 2.3. Here, Sim-

pleAbstractVector only has one member norm2sq(), which is a pure virtual method.

If any method of a class is pure virtual then that class becomes an abstract class. Ab-

stract classes in C++ are used to implement a unified interface for all of their derived

classes. A unified interface is a necessary condition for our abstraction scheme, since

we do not want to have different function calls, for example, for ‖x‖, depending on how

we implement the norm computation. Abstract classes in C++ guarantee that every

non-abstract-derived class will have an implementation of all pure virtual methods. In

the UML diagram we indicate that a class is an abstract class, or that a function is

pure virtual by setting its font to italics.

The diagram in Figure 2.4 illustrates a package called Simple Vector Classes, which

contains all the vector classes we have mentioned so far. It also shows that SimplePar-

allelVector and SimpleSerialVector are derived classes of SimpleAbstractVector.

This relationship between the classes is depicted by the arrows connecting them. The

arrow always points to the class from which the data elements and member functions are
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Simple Vector Classes

SimpleAbstractVector

+ const norm2sq() : double

SimpleSerialVector

- dim : int

- data : double*

+ const norm2sq() : double

SimpleParallelVector

- dim : int

- data : double*

- comm : MPI Comm*

+ const norm2sq() : double

Figure 2.4: Simple Vector Classes, an example package.

inherited. In our case, this is SimpleAbstractVector. Finally, we note that UML dia-

gram does not necessarily have to include details about the members of each individual

class, in which case our diagram would take the form depicted in Figure 2.5.

2.1.2 Summary of UML Notation

In this section we provide a summary of the UML notation that we use throughout this

thesis.

Abstract class: Class Name in italics

Public member: +

Protected member: #

Private member: −

Pure virtual function: italics

An association: Object A is aware of object B. For example, A contains a pointer or

reference to B.
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Simple Vector Classes

SimpleAbstractVector

SimpleSerialVector SimpleParallelVector

Figure 2.5: Simplified UML diagram of Simple Vector Classes.

A B

A dependency: A depends on B if B is a parameter variable or local variable of a

method of A. Also includes friend relationships.

A B

�friend�A B

An aggregation: A is a container of object(s) of B or pointer(s) to B. However, objects

of B do not have a strong life cycle dependency on A. In other words A can be

destroyed without destroying B.

A B

A composition: A is a container of object(s) of B or pointer(s) to B. A and object(s)

of B have a strong life cycle dependency. In other words destroying A will also

destroy B(s).

A B

An inheritance: Class A is derived from class B. Class A is of type B.

A B
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2.2 OPOS Classes

In OPOS we create a unified interface to the optimization problem and vector operations

through the abstract classes AbstractProblem and AbstractVector. Optimization

algorithms in OPOS are implemented using these classes. The AbstractVector and

AbstractProblem classes define a set of necessary optimization-specific primitives that

will allow us to achieve the desired level of abstraction for optimization algorithms.

For example, we can use the same function calls for ∇f independent of what type of

function we aim to minimize, or for ‖x‖ independent of how we implement the norm

computation. In the following sections we will go over the implementation details of the

AbstractVector and AbstractProblem classes and various other classes that are the

fundamental building blocks of OPOS. In order to keep the description of the structure

of OPOS understandable, we will not list all the details of the classes, and will omit

mentioning most of the public members. Omission will be denoted by . . . . For example,

if we decide to omit the public member norm2sq() from SimpleParallelVector the

class table will look as follows:

SimpleParallelVector

- dim : int

- data : double*

- comm : MPI Comm*

. . .

UML diagrams describing relationships between the classes of OPOS will be kept con-

cise by only including the minimal number of classes necessary to capture the general

structure of our software.

2.2.1 Vector Classes of OPOS

AbstractVector is an abstract class that through its pure virtual methods creates a

general interface that abstracts both the representation of vectors and the methods used

to perform simple mathematical manipulations of vectors such as addition, scaling, or

inner product. Methods of AbstractVector can be categorized as follows:



21

Clone methods: create a copy of the vector-object calling the clone method. Depend-

ing on which cloning method is called the individual coefficients of the vector can

be copied from the original object, set to all zeros, or all ones.

Vector operations: include inner products, norm computations, min/max of coeffi-

cients of a vector, componentwise min/max of two vectors, and componentwise

product of two vectors.

Operators: include overloaded operators,

[ ] returns a coefficient of a vector,

+ adds two vectors,

− subtracts two vectors,

× scales a vector by a scalar,

= sets the left hand side equal to the right hand side,

+ = adds the right hand side to the left hand side, and

− = subtracts the right hand side from the left hand side.

Our object-parallel framework requires that all vector classes have the ability to

create copies of themselves. In particular, each class is required to have the following

clone methods:

clone(): Creates a copy of the vector.

zeroClone(): Creates a copy of the vector, except that all coefficients are set to zero.

oneClone(): Creates a copy of the vector, except that all coefficients are set to one

Similarly, we also require that all vector classes are capable of performing a series

of vector operations, and that standard algebraic operators are applicable to them. We

have developed various implementations of vector classes, which are all derived from

AbstractVector, these include:

SerialVector: a serial implementation using C++ STL containers [18, 68]; all methods

are custom coded.

BareSerialVector: a serial implementation using C++ double arrays; all methods are

custom coded.

BlasVector: a serial implementation using C++ double arrays; when applicable, meth-

ods call BLAS routines for numerical operations.
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Vector Classes

Serial

Parallel

AbstractVector

BlasVector

DistributedBlasVector

Figure 2.6: Inheritance graph of some of OPOS’ vector classes.

DistributedBlasVector: a parallel version of BlasVector, that allows for variables

to be replicated across various processors.

EpetraVector: encapsulates vectors represented by the Epetra [39] parallel linear alge-

bra system. Vectors may be distributed among multiple processors, and Epetra’s

BLAS is used for numerical operations.

Other classes may be derived from AbstractVector or from its derived classes. For

example, one could derive a class from EpetraVector to represent vectors with special-

ized kinds of parallel data layouts. Our tests indicate that using BlasVector for serial

runs and DistributedBlasVector for parallel runs are the most efficient. Therefore,

in further discussions we will only include BlasVector and DistributedBlasVector

classes. Their inheritance graph is depicted in Figure 2.6.
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Replication of Variables

Take for example, matrix M with 7 columns and 8 rows, where non-zero entries are

indicated by ∗ :

M =

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗




(2.2)

Let us assume that our optimization algorithm has to apply the linear map M to

the decision variables x at every iteration.

Mx =

x1 x2 x3 x4 x5 x6 x7

][
×

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗




(2.3)

This computation is fairly straightforward in a serial setting. However, in a dis-

tributed memory parallel setting the programmer may be required to partition matrix

M across all processors. If our distributed memory system has two processing units

(p0, p1), we need to partition M into two parts. Given M as in (2.2), we could partition

it by assigning the first four rows to processor p0 and the last four rows to p1 as shown

in Figure 2.7. For the proposed partition, Figure 2.8 illustrates the local matrix-vector

multiplies that each processor needs to compute. In order for these local matrix-vector

multiplies to produce a result equivalent to Mx, our software has to ensure that we

store a copy of the coefficient x4 in both processors p0 and p1. This means that given

our data partitioning scheme for matrix M we have to adjust the representation of

vector x by replicating coefficient x4. Figure 2.9 depicts the representation of x in this

distributed memory setting.
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∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗





p0

p1

Figure 2.7: Partition of matrix M across two processors.

x1 x2 x3 x4

][
×

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗




x4 x5 x6 x7

][
×

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗




p0 p1

Figure 2.8: Local matrix-vector multiplies Mx.

x1 x2 x3 x4 x4 x5 x6 x7

][
p0 p1

Figure 2.9: Representation of x in a distributed memory setting.
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x1 x2 x3 x4 x4 x5 x6 x7

][
p0 p1

Figure 2.10: Contribution of coefficients to distributed norm computation.

v1 v2 v3 v4 v5 v6 v7

][
first segment second segment

Figure 2.11: Segments of v contributing to distributed norm computation.

This replication does not have an effect on most vector operations in an SPMD-

type parallel setting. However, inner products and some norm computations need to

be modified in order to produce the correct results. We will address this difficulty

by allowing the user to specify which local segments of each processor’s vector should

contribute to inner products and norms. For the vector x (Figure 2.10), we could say

that processor p0 will only contribute the segment with coefficients 1 − 3 to the norm

computation, and p1 the segment with coefficients 4 − 7. We can describe arbitrary

segment patterns with the following information:

numSegs: Indicating the number of segments.

segDim: An array containing the length of each segment.

segStart: An array containing the position of the first element of each segment.

Therefore, all our parallel vector classes will have members numSegs, segDim, and

segStart that will determine which segments ought to contribute to inner products

and norm computations. For example, if we would like two segments of vector v to

contribute to an inner product, where the first segment starts at position 1 and has

length 3, and the second starts at position 6 and has length 2 (Figure 2.11). We would

have the following numSegs, segDim, and segStart values: numSegs= 2, segDim= [3, 2],

and segStart= [1, 6].
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DistributedBlasVector

For brevity, we will only illustrate one of our vector classes, DistributedBlasVector,

in more detail. DistributedBlasVector is derived from AbstractVector, as all of our

vector classes, and has the following private members:

DistributedBlasVector

- owned: bool

- dim : int

- data : double*

- comm : MPI Comm*

- numSegs : int

- segDim : int*

- segStart : int*

- incx : int

- incy : int

. . .

Member dim determines the length of the vector and data points to the storage

holding the coefficients. If a vector upon destruction is not responsible for releasing

the data array owned is set to false otherwise to true. As we have seen earlier

numSegs, segDim, and segStart determine, which coefficients will be included in the

inner product and norm computations. The object comm is specific to MPI, it determines

which processes are involved in the communication, and incx and incy are specific to

BLAS. We omit listing all the public members of DistributedBlasVector for the sake of

brevity. Nonetheless, we will illustrate the workings of segments by showing the source

code implementing the euclidean norm square computation in DistributedBlasVector

in Figure 2.12.

Enhancing Code Readability through the VectorObject Class

To avoid cluttering algebraic expression code with excessive pointer dereferencing, we

defined a class, called VectorObject, which essentially encapsulates a pointer to an Ab-

stractVector. VectorObject has two private members, an AbstractVector* pointer

vp, and an enumerated type mode. The enumeration VectorConstructorMode consists
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double norm2sq () const {

double localProd = 0.0, prod = 0.0;

for(int i=0; i<numSegs; ++i) {

localProd += cblas_ddot(segDim[i], data+segStart[i],

↪→ incx , data+segStart[i], incy);

}

MPI_Allreduce (&localProd , &prod , 1, MPI_DOUBLE , MPI_SUM ,

↪→ *comm);

return prod;

}

Figure 2.12: DistributedBlasVector’s norm2sq() method.

of named constants that are used by VectorObject’s constructors and the destructor.

VectorObject

- vp: AbstractVector*

- mode : VectorConstructorMode

. . .

The enumerated type mode specifies whether, upon destruction of the VectorObject,

its destructor should also destroy the vector vp points to. This is useful because it

allows multiple VectorObjects to point to the same vector, and we can specify which

one will be responsible for deleting it. This setup permits us to optimize memory

usage, which is especially important if a program is dealing with large vectors. The

AbstractVector class contains abstract methods for common operations such as inner

products and assignment, and VectorObject contains corresponding “pass-through”

methods to access them. For example, if x and y are VectorObjects encapsulating

pointers to the same AbstractVector-derived class, one may write the C++ expression

x.inner(y) to denote 〈x, y〉. As shown below, evaluating this simple expression invokes

the inner method of the underlying AbstractVector-derived class:

double inner(const VectorObject& y) const {

return vp->inner(y.getAv ());

}
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Vector Classes

Serial

Parallel
vp *

vp

*

�clone�vp *

AbstractVector

VectorObject

BlasVector

DistributedBlasVector

Figure 2.13: Relationships between the VectorObject class and other vector classes.

Cloning routines are also typically accessed through the VectorObject wrappers, and

allow an algorithm to properly allocate all the vector storage it needs cloning by single

“template” vector object passed to it. Because this construct allows us to write more

easily maintainable and parallelizable code, it too is a fundamental building block of

our object-parallel framework. The relationship between VectorObject class and other

vector classes is illustrated in the UML chart in Figure 2.13, which only includes the

AbstractVector-derived classes BlasVector and DistributedBlasVector in order to

keep the chart simple.

Symbolic Temporaries: Efficient Operator Overloading through Delayed

Evaluation

One of the key goals of our abstraction scheme is also to be able to write a limited range

of vector-related expressions with the same simplicity as a prototyping environment like

MATLAB, and yet still retain most of the performance and control available through

C++. For example, suppose an algorithm contains the calculation z = w + αx − βy,

where w, x, y, and z are vectors and α and β are scalars. For simplicity and clarity, we

would like to be able to translate this assignment into the C++ statement
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z = w + alpha * x - beta * y︸ ︷︷ ︸ ︸ ︷︷ ︸
z = w + tempax - tempby︸ ︷︷ ︸
z = w + tempab︸ ︷︷ ︸
z = tempabw

Figure 2.14: Creation of temporaries for z = w + αx− βy.

z = w + alpha*x - beta*y,

where w, x, y, and z are all VectorObjects encapsulating pointers to the same Ab-

stractVector-derived type and alpha and beta are of type double. If we were to

define overloaded operators in the conventional C++ manner, however, the resulting

compiler temporary objects would cause excessive memory allocations and access oper-

ations. In the case of the expression above, for example, the standard C++ approach to

operator overloading would result in the following operations, as shown in Figure 2.14:

1. An operator*(double&,VectorObject&) method would allocate new memory

for a similar VectorObject and fill it with the values of x, scaled by alpha,

tempax in the figure.

2. A similar operation would create a temporary object containing beta*y, tempby

in the figure.

3. An operator-(VectorObject&,VectorObject&) method would be invoked to

calculate alpha*x - beta*y from the preceding two temporary objects and place

the results in a third temporary VectorObject, tempab in the figure.

4. An operator+(VectorObject&,VectorObject&) method would be invoked to

calculate the sum of w and the third temporary object, creating a fourth tempo-

rary VectorObject, tempabw in the figure.

5. Finally, an operator=(VectorObject&,VectorObject&) method would be in-

voked to copy the contents of the last temporary into z.

For relatively compact objects — for example, a representation of a complex num-

ber consisting of two doubles — the overhead resulting from such operations might
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not be significant or could be reduced or perhaps eliminated by “downstream” code

optimization steps within the C++ compiler. In situations in which each vector consists

of many megabytes of data, possibly spread over different processor memory spaces,

there will be a significant speed and memory penalty for executing the calculation in

this manner. Specifically, it will allocate four unnecessary temporary objects, each of

which will be written and read one time. If we were implementing this assignment

calculation using BLAS routines, it could be coded with just two DAXPY calls and

no temporary objects, although at the cost of some opaqueness in the code. In mod-

ern computer architectures, memory access operations and cache misses can be much

more time-consuming than arithmetic calculations, so it is imperative to economize on

memory operations if one is attempting to optimize performance. Furthermore, if the

vectors w, x, y, and z are extremely large, allocating temporary objects of the same

size might strain or exceed available system memory. For these reasons, the standard

approach to operator overloading is not a viable option.

Instead, we have developed an alternative, “delayed evaluation” approach to opera-

tor overloading, involving two auxiliary classes called cvPair and LinearExpression.

The cvPair class encapsulates a pointer to an AbstractVector and a double.

cvPair

- vp: const AbstractVector*

- coef : double

. . .

Our LinearExpression class is essentially an STL vector of cvPairs of the form (αi, pi),

where αi is the double and pi is the pointer to the AbstractVector.

LinearExpression

- term: std::vector〈cvPair〉

. . .

LinearExpression’s methods include a variety of simple numerical operators. For

example, the addition operator operator+(const VectorObject& right) adds a Vec-

torObject to a LinearExpression by appending an entry to the cvPair vector term.
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Vector Classes

term1..

�vector�

LinearExpression

cvPair

Figure 2.15: Relationship between LinearExpression and cvPair.

The relationship between the classes cvPair and LinearExpression is shown in Fig-

ure 2.15.

In this approach, all the overloaded operators involving VectorObjects, except

those performing assignment, create LinearExpression objects. The result of evalu-

ating the entire right-hand side of an assignment is a LinearExpression of the form(
(α1, p1), . . . , (α`, p`)

)
. Then, an overloaded assignment operator, most commonly of

the form operator=(const LinearExpression& right) has the job of calculating the

vector
∑`

i=1 αi(∗pi) (here, the “∗” denotes pointer dereferencing). Consider the same

assignment expression z = w + alpha*x - beta*y discussed above: with our over-

loaded VectorObject and LinearExpression methods, the actual evaluation of this

expression is as follows:

1. The operator*(const double left, const VectorObject& right) method

creates a temporary object of type LinearExpression, containing (alpha,&x)

(that is, the value of alpha and the address of x).

2. Another application of operator*(const double left, const VectorObject&

right) creates another temporary LinearExpression, containing (beta,&y).

3. The method operator-(const LinearExpression& left, const LinearEx-

pression& right) combines these two linear expressions and creates a third

temporary LinearExpression, containing
(
(alpha,&x) (-beta,&y)

)
.
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4. The method operator+(const VectorObject& left, const LinearExpres-

sion& right) appends an additional pair to this LinearExpression, producing

a LinearExpression of the form

(
(1,&w),(alpha,&x),(-beta,&y)

)
.

5. The VectorObject method operator=(LinearExpression& right) computes

the value of this last LinearExpression and places it in the memory dedicated

to z. This task is accomplished by calling wrapper methods within the VectorOb-

ject z, which in turn call virtual methods of the AbstractVector class. Thus,

how the assignment calculation is implemented will depend on exactly what kind

of AbstractVector-derived representations the VectorObjects are encapsulat-

ing. If they are of type BlasVector, for example, the evaluation would indeed

reduce to two DAXPY operations.

Our procedure generates exactly the same number of temporary objects as the

conventional approach, but they are extremely compact objects, basically small arrays

of pairs each consisting of 16 bytes (assuming a system with 64-bit addresses). We

call these objects symbolic temporaries because each symbolically encodes the linear

combinations of vectors that needs to be calculated. These objects are so small that

they are likely to fit in the fastest level of processor cache, and the overhead involved

in manipulating them is therefore likely to be negligible for large-scale applications.

We may also call the technique delayed evaluation because it only performs arithmetic

when it processes the assignment operation. At this point, the entire expression to be

calculated is known and its evaluation can be optimized.

In addition to the = operator, we also overload C++’s += and -= operators in simi-

lar ways, allowing them to be used efficiently on expressions involving VectorObjects.

We also provide versions of the inner method for all four possible combinations of

VectorObject and LinearExpression arguments. For example, a mathematical ex-

pression of the form 〈x, y + αz〉 would be rendered using our VectorObject class as

x.inner(y + alpha*z). At run time, this expression would end up invoking an inner-

product evaluation method in the AbstractVector-derived class encapsulated by x on

a LinearExpression containing
(
(1,&y),(alpha,&z)

)
. Depending on how the encap-

sulated AbstractVector-derived class is implemented, this calculation might be done
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very efficiently, without allocating significant temporary memory. Such inner-product

calculations are the only circumstances in which we might evaluate the result of a

LinearExpression before encountering an assignment operator.

It is certainly possible to extend our symbolic-temporary techniques to more com-

plicated expressions than simple linear combinations of vectors. This effort might be

worthwhile, although it could conceivably add significant complexity. The basic func-

tionality we have implemented at this point is sufficient to create readable yet efficient

code for the kind of optimization algorithms we have worked with so far.

Sufficiently powerful parallel-environment-targeted compilers could in principle pro-

duce more efficient code than our techniques, because the analysis of arithmetic expres-

sions could be performed completely and optimized just once at compile time, rather

than having some aspects of expression analysis extensively repeated at run time, as can

effectively happen with our approach. However, such compilers do not presently exist,

nor even does an active, accepted language standard such compilers could implement.

The HPF standard [45] appears to be the closest the high-performance computing com-

munity has come to such a standard, but HPF compilers are not commonly available,

and the language has some limitations due to its FORTRAN heritage. Because our

run-time temporary objects are so small, the time required to manipulate them is likely

to be negligible in the kind of large-scale applications that realistically require large-

scale parallel computing. Finally, while the effort required to develop our symbolic

temporary classes was considerable, it was minuscule compared to the effort required

to develop a parallel language and compiler. The UML diagram in Figure 2.16 illus-

trates our BLAS-based vector class package, which includes all the helper classes we have

discussed so far.

2.2.2 Problem Classes of OPOS

The AbstractProblem class constitutes a unified interface through which our opti-

mization algorithms interact with problem instances. One defines a class of problems

by deriving a class from AbstractProblem (although perhaps indirectly). Abstract-

Problem-derived classes hold problem instance data and contain methods related to
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Figure 2.16: OPOS’ BLAS-based vector class package.
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them, such as objective function, constraint, and respective gradient evaluations. The

problem class also stores problem data and related information, such as the number

of variables, VectorObjects that represents the solution algorithm’s starting point,

and upper and lower bounds on variables, when present. In parallel settings, it is the

AbstractProblem-derived class that determines how decision variables and problem

instance data are distributed and possibly replicated among processors.

Simple Example Problem Classes

Because OPOS’ problem classes include dozens of member variables and close to one

hundred public methods it is impossible to give a clear overview of the workings of these

problem classes by using them as examples. In addition, Chapter 3 and Chapter 4 each

will deal extensively with specific problem classes of OPOS. Therefore, in this section

we will illustrate the basic idea behind these problem classes by examples that are

not actually part of OPOS, but follow the same design principles that we use in OPOS.

We develop two SimpleAbstractProblem-derived class called SimpleSerialProblem

and SimpleParallelProblem, which will serve as problem classes for the following

optimization problem

min
n∑
i=1

(
x2
i − xi + 1

)
s.t. xi ∈ R, i = 1 . . . n.

(2.4)

These classes are responsible for storing the problem’s data, and for providing imple-

mentations to function and gradient evaluations. In a serial setting this can be achieved

by either hard coding problem-specific methods in SimpleSerialProblem or using a

library such as ASL [28] that provide an interface to an nl capable AML [42], in which

case SimpleSerialProblem would become a problem-independent class. Because there

are no such libraries for the parallel case, we have chosen to “hard code” all the methods

for this example. Note that in these examples for the sake of brevity we will omit de-

scribing the destructors. The relationships between our example classes are illustrated

in Figure 2.17.

The abstract problem class’ private members are an integer numVar and a Vec-

torObject initialPrimal. SimpleAbstractProblem’s constructor takes an integer as
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Simple Problem Classes

SimpleAbstractProblem

- numVar : int

+ SimpleAbstractProblem(numVar : int)

+ objVal(VectorObject& x) : double

+ objGrad(VectorObject& x, VectorObject& grad) : void

+ getInitialPrimal() : VectorObject&

SimpleSerialProblem

+ SimpleSerialProblem(numVar : int)

+ objVal(VectorObject& x) : double

+ objGrad(VectorObject& x, VectorObject& grad) : void

SimpleParallelProblem

- comm : MPI Comm*

- numSegs : int

- segDim : int*

- segStart : int*

+ SimpleParallelProblem(numVar : int, comm : MPI Comm)

+ objVal(VectorObject& x) : double

+ objGrad(VectorObject& x, VectorObject& grad) : void

Figure 2.17: Inheritance structure of SimpleAbstractProblem derived classes.
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#ifndef SIMPLEABSTRACTPROBLEM_H_

#define SIMPLEABSTRACTPROBLEM_H_

#include "VectorObject.h"

#include "LinearExpression.h"

class SimpleAbstractProblem {

int numVar;

VectorObject initialPrimal;

public:

SimpleAbstractProblem(int numVar_):

numVar(numVar_),

inititialPrimal () { };

virtual double objVal(VectorObject& x) = 0;

virtual void objGrad(VectorObject& x, VectorObject& grad)

↪→ = 0;

virtual const VectorObject& getInitialPrimal () const {

return initialPrimal;

}

};

#endif /* SIMPLEABSTRACTPROBLEM_H_ */

Figure 2.18: Class definition of SimpleAbstractProblem.

an argument, which it uses to initialize numVar. Because the constructor does not have

any information about the underlying vector class it calls the default constructor for

the VectorObject initialPrimal, which sets its AbstractVector pointer to NULL.

SimpleAbstractProblem’s pure virtual methods are objVal() and objGrad(), which

enforces that all derived classes will have an implementation of these routines. Our ab-

stract problem class also includes a method called getInitialPrimal() that returns

the initialPrimal vector. The complete class definition of SimpleAbstractProblem

is shown in Figure 2.18.

Both SimpleSerialProblem (Figure 2.19) and SimpleParallelProblem (Figure 2.20)

are template classes that accept a vector class as the template argument. SimpleSe-

rialProblem constructor receives numVar, which is the equivalent of n from (2.4).

The constructor then calls SimpleAbstractProblem class’ constructor and by doing so

initializes numVar and initialPrimal. We then use VectorObject’s setAvpMode()

method, which initializes initialPrimal’s AbstractVector pointer to the address
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#ifndef SIMPLESERIALPROBLEM_H_

#define SIMPLESERIALPROBLEM_H_

#include "SimpleAbstractProblem.h"

template <class T>

class SimpleSerialProblem :

public SimpleAbstractProblem {

public:

SimpleSerialProblem(int numVar_):

SimpleAbstractProblem(numVar_) {

initialPrimal.setAvpMode(new T(numVar_), zero);

};

double objVal(VectorObject& x) {

double value = 0.0;

for(int i=0; i<numVar; ++i) {

value += x[i]*x[i] - x[i] + 1.0;

}

return value;

}

void objGrad(VectorObject& x, VectorObject& grad) {

for(int i=0; i<numVar; ++i) {

grad[i] = 2.0*x[i] - 1.0;

}

}

};

#endif /* SIMPLESERIALPROBLEM_H_ */

Figure 2.19: Class definition of SimpleSerialProblem.

returned by new T(numVar ) and sets the VectorConstructorMode to zero, which

means that upon creation the vector was initialized to all zeros and initialPrimal’s

destructor is responsible for cleaning up the object. SimpleSerialProblem’s template

argument accepts any AbstractVector-derived serial vector class, such as BlasVector

for example. Methods objVal() and objGrad() compute the objective function and

gradient values for (2.4).

In SimpleParallelProblem the comm object specifies the number of processors, P ,

that the program is using, the individual process ids, and various other variables that

are important in a distributed memory environment. Problem data partitioning in this

case is fairly straightforward, numVar is equal to either
⌈ n
P

⌉
or
⌊ n
P

⌋
, which determines
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how many coefficients of the decision vector x we assign to each processor. Given

problem (2.4), our data distribution scheme does not require replication of variables,

therefore, members numSegs, segDim, and segStart assume the trivial values 1, num-

Var, and 0. The procedure for initializing initialPrimal follows the same logic as in

SimpleSerialProblem, except that in this case the template argument T needs to be a

distributed vector class, such as DistributedBlasVector for example. Note, that for

problem (2.4), in this parallel setup, objVal() needs to communicate between all the

processors to return the correct function value. However, the objGrad() computations

are parallelizable without the need for communication.

2.2.3 OPOS Algorithm Classes

Algorithm classes are not abstract classes. However, all of their vector operations are

accessed through VectorObjects and they interact with problem instances by calling

AbstractProblem virtual methods, which means that they are independent of the vec-

tor or problem classes we decide to use. Ignoring the class destructor, Figure 2.21

shows a possible implementation of an algorithm class for Algorithm 1, which is our

gradient descent algorithm from the beginning of this chapter, using VectorObject and

SimpleAbstractProblem classes. For now, let us treat the lineSearch() method as a

“black box” and ignore that GradientDescent is a derived class of LineSearchBased-

Method. We will discuss these issues in detail below.

The algorithm class’ constructor takes an abstract problem class pointer, which it

then uses to initialize all of its members. Through the VectorObject initialPri-

mal, obtained from the problem class via getInitialPrimal(), the GradientDescent

constructor determines the vector class that it will use to execute the linear algebra

operations. VectorObject members are initialized by calling the VectorObject con-

structor in the member initializer list, which under the hood executes a cloning method

on initialPrimal.

If we decided to solve problem (2.4) using Algorithm 1 in parallel, we would pass

SimpleParallelProblem to GradientDescent’s constructor. Then when Gradient-

Descent’s minimize() routine is called the SimpleAbstractProblem virtual method
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#ifndef SIMPLEPARALLELPROBLEM_H_

#define SIMPLEPARALLELPROBLEM_H_

#include "SimpleAbstractProblem.h"

#include "mpi.h"

template <class T>

class SimpleParallelProblem :

public SimpleAbstractProblem {

MPI_Comm comm;

int numSegs;

int* segDim;

int* segStart;

public:

SimpleParallelProblem(int numVar_ , MPI_Comm comm_ =

↪→ MPI_COMM_WORLD):

SimpleAbstractProblem(numVar_),

comm(comm_),

numSegs (1) {

segDim = new int [1];

segDim [0] = numVar;

segStart = new int [1];

segStart [0] = 0;

initialPrimal.setAvpMode(new T(numVar_ , numSegs , segDim

↪→ , segStart , &comm_), zero);

};

double objVal(VectorObject& x) {

double local = 0.0, value = 0.0;

for(int i=0; i<numVar; ++i) {

local += x[i]*x[i] - x[i] + 1.0;

}

MPI_Allreduce (&local , &value , 1, MPI_DOUBLE , MPI_SUM , *

↪→ comm);

return value;

}

void objGrad(VectorObject& x, VectorObject& grad) {

for(int i=0; i<numVar; ++i) {

grad[i] = 2.0*x[i] - 1.0;

}

}

};

#endif /* SIMPLESERIALPROBLEM_H_ */

Figure 2.20: Class definition of SimpleParallelProblem.
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#ifndef GRADIENTDESCENT_H_

#define GRADIENTDESCENT_H_

#include "SimpleAbstractProblem.h"

#include "LineSearchBasedMethod.h"

class GradientDescent :

public LineSearchBasedMethod {

SimpleAbstractProblem* pr; // problem

VectorObject x; // point

VectorObject g; // gradient

double stepSize; // line search step size

public:

// Constructor

GradientDescent(SimpleAbstractProblem* pr_):

pr(pr_),

x(pr ->getInitialPrimal (), copyData),

g(pr ->getInitialPrimal (), zero),

stepSize (0.0) { };

// Minimization method

VectorObject& minimize(double epsilon) {

x = pr ->getInitialPrimal ();

pr ->objGrad(x,g);

while(g.norm2 () > epsilon) {

stepSize = lineSearch ();

x = x - stepSize * g;

pr->objGrad(x,g);

}

return x;

}

};

#endif /* GRADIENTDESCENT_H_ */

Figure 2.21: Object-parallel gradient descent algorithm class.
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Simple Problem

Parallel

pr

*
SimpleAbstractProblem

SimpleParallelProblem

GradientDescent

Figure 2.22: Parallel gradient descent algorithm on problem (2.4)

objGrad() would invoke the implementation in SimpleParallelProblem. The rela-

tionship between these classes is illustrated in Figure 2.22.

Line Search Support: Transparent Function and Gradient Caching

Like our gradient descent method (Algorithm 1) many optimization algorithms em-

ploy line search procedures to find suitable stepsizes αk at each iteration. Essentially,

after determining a step direction dk, line search procedures perform some kind of pro-

cedure to determine the stepsize αk in the step calculation xk+1 = xk + αkdk. To

promote efficient implementation of such procedures, our framework provides a base

class called LineSearchBasedMethod from which all optimization algorithms employ-

ing line searches are derived. This class stores built-in members that are scalar and

vector quantities typically maintained by line search algorithms, including the objective

values, gradients, and the search direction at the current iterate. Storing these values

can help speed up the line search computations significantly. LineSearchBasedMethod

implements storage and retrieval of these values through the PointMemory class.
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PointMemory(const AbstractProblem* pr_):

pr(pr_),

savePoint(pr->getInitialPrimal (), zero),

saveGrad(pr->getInitialPrimal (), zero),

savePhi(std:: numeric_limits <double >:: quiet_NaN ()),

saveGradPhi(std:: numeric_limits <double >:: quiet_NaN ()),

saveStep ( -1.0),

computePhi(true),

computeGrad(true) { };

Figure 2.23: PointMemory constructor.

PointMemory

# pr: const AbstractProblem*

# savePoint : VectorObject

# saveGrad : VectorObject

# savePhi : double

# saveGradPhi : double

# saveStep : double

+ PointMemory(pr : const AbstractProblem*)

+ operator new(std::size t, location : void*) : void*

The constructor of PointMemory initializes its members in a similar way to algo-

rithm classes. As shown in Figure 2.23, VectorObjects are initialized based of of

the problem class’ initialPrimal vector. The overloaded new operator, or so-called

placement new operator, allows us to create a contiguous array of PointMemory ob-

jects using consecutive calls to new. LineSearchBasedMethod holds a PointMemory*

pointer. OPOS’ AbstractProblem class contains a generatePtMem() method, which

is called from LineSearchBasedMethod to create a contiguous PointMemory array of

length mem. Implementation of generatePtMem() is shown in Figure 2.24. The ability

to create a contiguous PointMemory array makes storage and retrieval of line search and

application-specific data more efficient. Due to the generatePtMem() method, both Ab-

stractProblem and its derived classes are dependent on PointMemory. Furthermore,

PointMemory is associated with AbstractProblem because of its AbstractProblem*
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virtual PointMemory* generatePtMem(int mem) {

ptMem = (PointMemory *) malloc(mem * sizeof(PointMemory));

for(int i=0; i<mem; ++i)

new(ptMem+i) PointMemory(this);

return ptMem;

};

Figure 2.24: AbstractProblem’s generatePtMem() method.

Problem Classes

pr *

AbstractProblem

ArbitraryProblem

PointMemory

Figure 2.25: Problem class and PointMemory relationships.

pointer. These relationships are depicted in Figure 2.25, where we call the Abstract-

Problem-derived class ArbitraryProblem, which only serves illustrative purposes.

Furthermore, LineSearchBasedMethod provides methods phi() and gradPhi() for

computing the value and gradient of the line search function φk(α) = f(xk+αdk), where

f is the problem objective function. In some line search procedures, φk(α) or ∇φk(α)

may be evaluated more than once at the same value of α; for example, this phenomenon

can occur in the conjugate gradient algorithm of [37]. Another possible situation is that

the line search algorithm may compute φk(α) and subsequently compute ∇φk(α) for the

same value of α. For many problem classes, these two calculations may share significant

common underlying computations, whose results it may be more efficient to cache than

to recompute. The caching mechanism built into the phi() and gradPhi() methods

prevents time-consuming recomputation of the function value or gradient in such cases,

while keeping the solution algorithm code free of clutter from caching-related details.
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Termination Classes

The termination condition of our object-parallel gradient descent algorithm in Fig-

ure 2.21 is to check whether the norm of the gradient is below epsilon, which is an

argument of the minimize() routine. Let us assume that we would like to change our

termination condition to something more complicated. For example, we would also like

to terminate if we do not make enough progress, i.e.
∥∥xk − xk+1

∥∥ ≤ δ. Now, if we want

to add this additional condition, we would have to modify the gradient descent code.

Many numerical implementations of optimization algorithms have even more compli-

cated termination conditions, sometimes checking more than a dozen conditions at each

iteration. In addition, solver developers often need to experiment with various termi-

nation conditions to empirically improve their code. It is easy to see how this could

become cumbersome as the termination condition becomes more complicated, clutter-

ing our algorithm’s source code and reducing its maintainability. Our solution to this

problem is to abstract away the termination checks from the optimization algorithm,

just like we have done with vector operations and problem dependent computations.

OPOS achieves this abstraction through its AbstractTermination class.

AbstractTermination

# lsBase: LineSearchBasedMethod*

# tol : double

# iter : int

# maxIter : int

# flag : int

+ AbstractTermination(lsBase : LineSearchBasedMethod*, tol : double)

+ check() : bool

AbstractTermination’s pure virtual method is check(), which returns a bool.

Using this class our object-parallel gradient descent algorithm’s minimization routine

could be modified as shown in Figure 2.26. This modification allows us to pass any

AbstractTermination-derived class to the minimize() method, each with its own

implementation of the check() routine.
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VectorObject& minimize(AbstractTermination& termination) {

x = pr->getInitialPrimal ();

pr->objGrad(x,g);

while(termination.check ()) {

stepSize = lineSearch ();

x = x - stepSize * g;

pr ->objGrad(x,g);

}

return x;

}

Figure 2.26: Using AbstractTermination in gradient descent algorithm.



47

Chapter 3

Object-Parallel Spectral Projected Gradient Algorithm

Applied to LASSO Problems

In this chapter we briefly discuss some theoretical background relating to gradient pro-

jection algorithms. This is followed by introducing the nonmonotone spectral projected

gradient (SPG) method by Birgin and Mart́ınez and a detailed description of the object-

parallel algorithm class implementing it, which is referred to as OPSPG. We have used

OPSPG to solve a series of LASSO problems both in serial and parallel. A detailed ex-

amination of the problem classes implementing LASSO problems is provided as well.

Finally, we will present computational results obtained from distributed memory par-

allel runs of OPSPG on LASSO test problems.

3.1 Gradient Projection Algorithms

Gradient projection algorithms [6, 10, 8] are iterative descent algorithms, where the

generated sequence {xk} remains feasible at each iteration k. These methods are often

used to solve problems of the type

min f(x)

s.t. x ∈ X,
(3.1)

where f is a continuously differentiable convex function and X ⊂ Rn is a nonempty

closed convex set such that projection onto X does not require significant computational

effort. The iterates are generated by

xk+1 = PX (xk − αk∇f(xk)) , (3.2)

where αk > 0 is a stepsize and PX(·) denotes projection onto X, which is well defined

given that X is closed and convex. Using Theorem 3.1.1 below, we can prove the descent
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property f(xk+1) < f(xk) for appropriate αk.

Theorem 3.1.1 (Descent properties of gradient projection [8, p. 304]). Let f : Rn → R
be a continuously differentiable function, let X be a closed convex set. Then for all

xk ∈ X and α > 0:

1. If xk(α) 6= xk, then xk(α)−xk is a feasible descent direction at xk. In particular,

we have

〈∇f(xk), (xk(α)− xk)〉 ≤ −
1

α
‖xk(α)− xk‖2, ∀ α > 0. (3.3)

2. If xk(α) = xk for some α > 0, then xk satisfies the necessary condition for

minimizing f over X,

〈∇f(xk), (x− xk)〉 ≥ 0, ∀ x ∈ X. (3.4)

Where for given xk ∈ X, xk(α) = PX(xk − α∇f(xk)), α > 0 is the projection arc.

3.2 Nonmonotone Spectral Projected Gradient (SPG) algorithm

Gradient projection methods are considered to be slow unless the line search algorithm

employed to compute αks is designed carefully. For this reason, Birgin and Mart́ınez

in [14] incorporated a combination of two line search strategies, developed for uncon-

strained minimization, into SPG. These strategies comprise a nonmontone line search

technique originally developed for Newton’s method [35] and a stepsize selection proce-

dure resembling the Barzilai-Borwein [5] method. Algorithm 4 provides a description

of SPG, where the termination condition is defined in terms of continuous projected

gradient.

Definition 3.2.1 (Continuous projected gradient). Take a continuously differentiable

function f : Rn → R over the closed convex set X ⊂ Rn. We denote by

∇P f(x) = PX(x−∇f(x))− x (3.5)

its continuous projected gradient, where PX denotes the projection onto X.
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Algorithm 4: SPG

Input: f , ∇f , X, x0 ∈ Rn, λmax, λmin, εopt > 0

Output: x′, local minimizer of f

1 k = 0

2 xk = PX(xk)

3 fvals ← f(xk)

4 βk =
∥∥∇P f(xk)

∥∥
∞

5 if βk 6= 0 then

6 λk = min

{
λmax,max

{
λmin,

1

βk

}}
7 while

∥∥∇P f(xk)
∥∥ > εopt do

8 dk = PX(xk − λk∇f(xk))− xk
9 αk ← lineSearch()

10 xk+1 = xk + αkdk

11 sk = xk+1 − xk
12 yk = ∇f(xk+1)−∇f(xk)

13 βk = 〈sk, yk〉
14 if βk ≤ 0 then

15 λk+1 = λmax

16 else

17 λk+1 = min

{
λmax,max

{
λmin,

〈sk, sk〉
βk

}}
18 fvals ← f(xk+1)

19 k = k + 1

20 x′ = xk

SPG, essentially, employs two line search techniques. The first one is the spectral

step in Line 6 and Line 17, where λk is the safeguarded “inverse Rayleigh quotient”

corresponding to the average Hessian matrix

∫ 1

0
∇2f(xk + tsk)dt, namely

‖xk+1 − xk‖2

〈xk+1 − xk, gk+1 − gk〉
. (3.6)

The safeguarding procedure in Lines 14 to 17 with parameters λmin and λmax protect

against unstable step sizes resulting from unreliable curvature estimates. The second
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line search with a nonmonotone Armijo condition from Line 9 is detailed in Algo-

rithm 5.

Algorithm 5: SPG lineSearch()

Input: f , ∇f , fvals [], M , dk, 0 < αmin < αmax, 0 < σlow < σup < 1, γ ∈ (0, 1)

Output: αk, satisfying the nonmonotone Armijo condition

1 fmax = max
i=1...M

{
f ivals

}
2 δ = 〈∇f(xk), dk〉
3 α = 1

4 x+ = xk + αdk

5 while f(x+) > fmax + αγδ do

6 if α ≤ 0.1 then

7 α =
α

2
8 else

9 αtemp =
−δα2

2 (f(x+)− f(xk)− αδ)
10 if αtemp < σlow or σup < αtemp then

11 αtemp =
α

2

12 α = αtemp

13 x+ = xk + αdk

14 αk = α

SPG keeps track of the last M objective function values in fvals, and the nonmono-

tone line search modifies the Armijo condition

f(xk + αdk) ≤ f(xk) + αγ 〈∇f(xk), dk〉 , (3.7)

where γ ∈ (0, 1) (as in Algorithm 5) by replacing f(xk) with the largest recent value.

3.3 OPSPG: Object-Parallel Implementation of SPG

SPG is an algorithm class that is derived from ProjLineSearchBasedMethod, which in

turn is a derived class of LineSearchBasedMethod. ProjLineSearchBasedMethod has

additional routines related to projected gradient methods such as, norm computations

of the projected gradient (pg), or projPhi() and projGradPhi(), which ensure that the

line search procedures maintain feasibility. OPSPG’s algorithm class SPG, like all of OPOS’

optimization algorithms, is implemented using VectorObject, AbstractProblem and
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OPSPG

pr

*

lsBase *

LineSearchBasedMethod

ProjLineSearchBasedMethod

SPG

AbstractProblem

AbstractTermination

VectorObject

Figure 3.1: Relationships of the OPSPG package.

AbstractTermination classes. The complete inheritance graph of the OPSPG software

package is illustrated in Figure 3.1. Figures 3.2 to 3.4 show OPOS’ source code for Al-

gorithms 4 and 5. The initialization of the minimization routine (Figure 3.2) uses Ab-

stractProblem routines localProjectOnBounds() and objValGrad(). The function

call localProjectOnBounds(x) projects vector x onto X, and objValGrad(x,g) com-

putes the gradient at x, which is stored in g, and at the same time returns the objective

function value at x. The main algorithm (Figure 3.3) and the line search (Figure 3.4) use

objGrad(), which is an AbstractProblem routine, check() an AbstractTermination

routine, and phi() and reset(), which are both LineSearchBasedMethod routines.

The reset() routine adjusts LineSearchBasedMethod’s members for the new point

xk+1.
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iter = 0;

pr ->localProjectOnBounds(x); /* AbstractProblem routine */

xBest = x;

double objValStart = objVal = pr ->objValGrad(x, g); /*

↪→ AbstractProblem routine */

objValBest = objVal;

objValMax = objVal;

xk = x - g;

pr ->localProjectOnBounds(xk); /* AbstractProblem routine

↪→ */

pg = xk - x; /* projected gradient */

objValArray [0] = objVal;

for(int i=1; i<M; i++) {

objValArray[i] = -1.0 * std:: numeric_limits <double >:: max

↪→ ();

}

double pgNormInf = pg.normInf ();

if(pgNormInf != 0.0) {

stepSize = std::min(stepSizeMax , std::max(stepSizeMin ,

↪→ 1.0/ pgNormInf));

}

Figure 3.2: Initialization of minimize() routine in SPG.
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VectorObject& SPG:: minimize(AbstractTermination&

↪→ termination) {

/* Initialization here */

while(termination.check () && iter < maxIter) {

/* AbstractTermination routine */

iter ++;

xk = x - stepSize*g;

pr ->localProjectOnBounds(xk);

/* AbstractProblem routine */

d = xk - x;

/* Perform line serach here */

xk = x + alpha*d;

pr ->objGrad(xk , gk); /* AbstractProblem routine */

xd = xk -x;

double xdNorm2sq = xd.norm2sq ();

gd = gk - g;

double xdtgd = xd.inner(gd);

if(xdtgd <= 0) {

stepSize = stepSizeMax;

}

else {

stepSize = std::max(stepSizeMin , std::min(stepSizeMax

↪→ , xdNorm2sq/xdtgd));

}

x = xk;

g = gk;

objVal = phia;

objValArray[iter%M] = objVal;

xk = x - g;

pr ->localProjectOnBounds(xk);

/* AbstractProblem routine */

pg = xk - x;

if(objVal < objValBest) {

objValBest = objVal;

xBest = x;

}

reset (); /* LineSearchBasedMethod routine */

}

return xBest;

}

Figure 3.3: SPG’s minimize() routine.
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double gtd = g.inner(d);

objValMax = *(std:: max_element(objValArray , objValArray + M

↪→ ));

alpha = 1.0;

phia = phi(alpha); /* LineSearchBasedMethod routine */

lineIter = 0;

while(phia > objValMax + gamma*alpha*gtd && lineIter <

↪→ maxLineIter) {

lineIter ++;

if(alpha <= 0.1) {

alpha /= 2.0;

}

else {

alphaTemp = (-gtd*alpha*alpha )/(2.0*( phia - objVal -

↪→ alpha*gtd ));

if(alphaTemp < sigmaOne || alphaTemp > sigmaTwo*alpha)

alpha = alpha /2.0;

}

phia = phi(alpha); /* LineSearchBasedMethod routine */

}

Figure 3.4: SPG’s lineSearch() routine.

3.4 Solving LASSO Problems with OPSPG

LASSO and its generalizations have gained great popularity due to large-scale data-

analysis tools in recent years. In its original form, the LASSO problem may be written

min
x∈Rn

1
2 ‖Ax− b‖

2 + ν ‖x‖1 , (3.8)

where A is an m× n real matrix, b ∈ Rm, and ν > 0 is a given parameter. Essentially,

the problem is a form of linear regression augmented with an `1 penalty for moving

the regression coefficients x away from zero. Often we have n � m, that is, A is

a “wide” matrix with many more columns than rows. Our interest here will be in

problem instance in which A is an extremely large matrix, either sparse or dense.

In its original form (3.8), the LASSO problem is an unconstrained convex mini-

mization problem, but nonsmooth due the presence of the term ν ‖x‖1. However, it is

easily converted to a bound-constrained smooth optimization problem as follows: we

let x = x+ − x−, where x+ and x− are two vectors in Rn, both constrained to be
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nonnegative. Letting 1 denote the vector of all 1’s in Rn, we may then write the term

ν ‖x‖1 as ν1>(x+ + x−). Therefore, the problem (3.8) may be re-expressed as

min
x+,x−∈Rn

1
2 ‖A(x+ − x−)− b‖2 + ν1>(x+ + x−)

ST x+, x− ≥ 0.

(3.9)

The problem is thus converted to minimization of a positive semidefinite quadratic

(and hence smooth) function of (x+, x−) subject to the constraint that (x+, x−) must

lie in the nonnegative orthant. Note that vectors (x+, x−) in the feasible region of

this problem may possess an index i for which x+
i > 0 and x−i > 0, but this situation

cannot occur in an optimal solution because setting x+
i ← max{x+

i − x
−
i , 0} and x−i ←

max{x−i − x
+
i , 0} immediately yields a lower value of the objective function without

violating the constraints. The problem formulation (3.9) is well-suited to solution by

the SPG method. Therefore, we use this problem class to demonstrate how SPG, when

implemented in our object-parallel framework, can be used as an efficient, scalable

parallel algorithm, despite its MATLAB-like simplicity. We focus on the fairly common

case that n � m, meaning that x, x+, and x− are very high-dimensional vectors in

comparison with b.

Given the description of the SPG algorithm in Section 3.2, we know that it needs the

objective function value at the initialization stage (objValGrad()) and during the line

search procedure (phi()), the objective gradient at the initialization and inside the main

while loop (objValGrad(), objGrad()), and needs to be able to perform projections

both during initialization and within the main loop (localProjectOnBounds()). Let

h(x+, x−) denote the objective function of (3.9)

h(x+, x−) =
1

2

∥∥A(x+ − x−)− b
∥∥2

+ ν1>(x+ + x−) (3.10)

then the gradient becomes

∇h(x+, x−) =

 A>
(
A(x+ − x−)− b

)
+ ν1

−A>
(
A(x+ − x−)− b

)
+ ν1

 , (3.11)

and projecting onto the nonnegative orthant translates to

x+
i = max

{
0, x+

i

}
x−i = max

{
0, x−i

}
.

(3.12)



56

The problem classes implementing LASSO need to provide implementations of these

routines, with special focus on the efficiency of the matrix multiplication A(x+ − x−),

needed by both the function and gradient calculations, and the subsequent multiplica-

tion by A> needed to calculate the gradient, since these dominant the numerical work

in SPG.

3.4.1 Solving LASSO in Serial

In serial, the most straightforward approach to solving LASSO, from an implementation

perspective, would be to build a LASSO model in an AML environment, like AMPL or

PYOMO, generate an nl file and use the generic AslProblem class within OPOS to provide

the necessary problem class routines needed by SPG. This means that we do not have

to implement a custom LASSO problem class. However, we have found that we can

improve the runtime of SPG by using a dedicated LASSO problem class, where we have

control over optimizing the objective function and gradient evaluations.

The ASL-based solver in Figure 3.5 takes as an argument that is the name of the nl

file, which is stored in problemName. This is then used as an argument in the AslProb-

lem object constructor, which finds the nl file and uses it to store all problem related

data in memory. Next the driver creates a VectorObject x, which encapsulates a

BlasVector, the algorithm object SPG spg, and termination object ProjGradNormTer-

mination termination. ProjGradNormTermination class checks whether the norm of

the projected gradient is less than the given tolerance, in this case 10−6. We solve the

problem by calling spg’s minimize() routine. Finally, the driver writes the solution to

a sol file, which could be read back by the AML to interpret the results.

Given that both the data representation and the computations in LASSO are fairly

simple, we can easily create a more efficient problem class LassoProblem, which di-

rectly reads in matrix A and vector b from a file, and has custom objective function

and gradient implementations. For example, Figure 3.6 shows LassoProblem’s custom

objVal() implementation that uses BLAS for matrix-vector multiplies. The Lasso-

Problem::objVal() routine maps the input vector v as two vectors x and y to mimic
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#include "SPG.h"

#include "BlasVector.h"

#include "GradNormTermination.h"

#include "AslProblem.h"

int main(int argc , char* argv []) {

int index = 0;

for(int i=1; i<argc; ++i) {

if(strcmp(argv[i], "-s") == 0)

index = i+1;

}

const std:: string problemName(argv[index ]);

AslProblem <BlasVector > asl(problemName);

VectorObject x;

x.setAvpMode(new BlasVector(asl.getNumVar ()),zero);

SPG spg(asl);

ProjGradNormTermination termination(spg , 1.0e-6);

x = spg.minimize(termination);

char* msg = const_cast <char*>("Solution Found!");

asl.writeSolution(msg , x.getData ());

return 0;

}

Figure 3.5: Serial ASL solver with BlasVector.

double LassoProblem :: objVal(VectorObject& v) {

numObjEval ++;

VectorObject x(v, 0, numCols -1, notOwnedSub);

VectorObject y(v, numCols , 2*numCols -1, notOwnedSub);

zPlus = x + y;

zMinus = x - y;

cblas_dgemv(CblasRowMajor , CblasNoTrans , m, n, 1.0, A.

↪→ getData (), lda , zMinus.getData (), incx , 0.0, Az.

↪→ getData (), incy);

Az = Az - b;

double objVal = 0.5*Az.norm2sq () + nu.inner(zPlus);

delete x.getAvp ();

delete y.getAvp ();

return objVal;

}

Figure 3.6: Serial LassoProblem’s objVal() routine.
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the converted formulation of the LASSO, where x = x+ − x−. This can be efficiently

accomplished by using VectorObject constructors that do not create actual copies of

v in memory, just pointers that point to a segment of v, where the first element is

the second argument of the constructor, and the last the third. The rest of the obj-

Val() routine follows from the mathematical formulation of the LASSO problem. This

approach avoids the overhead that is associated with using AslProblem routines and

provides a more efficient implementation of both the objective function and the gradient

than the ASL library.

3.4.2 Solving LASSO in Parallel

As mentioned in Section 1.2, there are no software libraries that can do in a distributed

memory parallel setting what ASL can in serial. Therefore, building custom LASSO

problem classes is inevitable in the parallel case. These problem classes determine

the data partitioning and the communication primitives that are related to problem-

specific routines such as objective function evaluation. In order to attain good parallel

efficiency for these routines it is fundamental that the data partitioning procedure

assigns an even work load to each processor. We differentiate between two cases, the

first case is where the underlying matrix A is dense, the second case is where matrix A

is sparse. Each case has its own problem class, DistributedDenseLassoProblem and

DistributedSparseLassoProblem.

There are various popular data formats for regression type problems such as svm [48]

or matrix market mm [49]. LASSO problem classes can either directly handle some of

these data formats or we have included converters in OPOS, which convert a specific

format into one that can be handled by a LASSO problem class. However, in this

section we will focus on what we have found to be the most efficient way of storing A

and b. In the dense case we will represent the data in two binary files, one for the matrix

A and the other for the labels b. The matrix file holds the coefficients in column major

order, which means that the first m coefficients belong to the first column, etc. [50].

When the data are sparse, we store the matrix in four separate binary files: values,

row numbers, position of column starts, and ends, which follows Intel MKL’s BLAS CSC
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matrix storage format [66].

Depending on whether matrix A is dense or sparse, we use different data partition-

ing. For the dense case, we adopt the straightforward approach of simply partitioning

responsibility for the elements of x+ and x−, along with the corresponding columns of

A, among the available processor cores. When A is sparse we use a novel data parti-

tioning technique that distributes the nonzeros of A evenly between processors. This

technique achieves perfect load balance and is not influenced by the sparsity pattern of

A. Therefore, for sparse matrices, instead of distributing individual columns between

processors, which can lead to an uneven load balance, we use the nonzero partitioning

technique. Let us note briefly, that this nonzero partitioning can result in one column

of A being owned by multiple processors.

Before we start discussing the details of the dense and the sparse approach let

us introduce some notation involving our analysis. Suppose we have P processors

numbered 1, . . . , P , and let {J1, . . . , JP } be a collection of subsets of {1, . . . , n}, with

Ji denoting the set of indices assigned to processor i. In the dense case, {J1, . . . , JP }

is a partition of {1, . . . , n}. In the sparse case, {J1, . . . , JP } is a cover, since an index

j ∈ {1, . . . , n} could be assigned to multiple Ji-s. We momentarily defer discussing

how we determine the partition {J1, . . . , JP }. Here, x+
(i) and x−(i) denote the respective

subvectors of x+ and x− consisting of the coefficients with indices assigned to processor

i, that is, x+
(i) denotes the vector consisting of x+

j for j ∈ Ji, and similarly for x−(i).

Likewise, A(i) denotes the matrix consisting of the columns of Aj of A for which j ∈

Ji. We replicate vector b in the memory of all processors, since b is a much shorter

vector than x, the memory usage impact of this replication is limited. Throughout this

discussion, we treat each processor as having its own memory; as discussed earlier, this

does not prevent the method from being implemented on a system in which physical

memory is shared.

Distributed Dense LASSO Problem

When the matrix A is dense we determine the partition members Ji by simply dividing

the indices {1, . . . , n} into P contiguous groups whose size varies by at most one element:



60

A1 A2 A3 A4 A5 A6 A7 A8

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗




Figure 3.7: Dense matrix, nonzero entries indicated by *.

formally, we may take the first n mod P groups to have size
⌈
n
P

⌉
and the remaining

groups to have size
⌊
n
P

⌋
. For example, take the dense matrix in Figure 3.7, with 8

columns and 8 rows, if P = 8, then each column is assigned to a different processor as

shown in Figure 3.8.

Given the column distribution scheme, we may calculate A(x+ − x−) as follows:

1. Each processor i locally calculates d(i) = x+
(i) − x

−
(i)

2. Each processor i locally calculates q(i) = A(i)d(i) = A(x+
(i) − x

−
(i))

3. We sum the vectors q(i) ∈ Rm over all processors,
(∑P

i=1 q(i)

)
, using MPI Allreduce

operation. Every processor thus receives the vector q = A(x+ − x−) =
∑P

i=1 q(i).

The additional steps needed to calculate the objective function h(x+, x−) are now

as follows:

1. Each processor i locally computes ωi =
∑

j∈Ji(x
+
j + x−j )

2. We compute the sum ω =
∑P

i=1 ωi = 1>(x++x−) by an MPI Allreduce operation.

For efficiency on systems with high per-message communication overhead, this

operation could conceivably be combined with the reduction operation needed to

compute q (step 3 immediately above).
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A1 A2 A3 A4 A5 A6 A7 A8

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗




p1 p2 p3 p4 p5 p6 p7 p8

Figure 3.8: Column partition of dense matrix, where P = 8.

3. Each processor locally computes r = q−b = A(x+−x−)−b and then h(x+, x−) =
1
2‖r‖

2 + νω.

At points (x+, x−) where the gradient (y+, y−) = ∇h(x+, x−) is also required, we

proceed as follows:

1. Each processor locally computes u(i) = A>(i)r = A>(i)
(
A(x+ − x−)− b

)
2. Each processor locally computes y+

(i) = u(i) + ν1 and y−(i) = −u(i) + ν1, where 1

is an appropriate sized vector of all ones.

This procedure leaves the system with a representation of the gradient vector (y+, y−)

that is distributed across processors in exactly the same manner as the decision vari-

able vector (x+, x−). This is precisely what is needed for our parallel implementation

of the SPG method (or any other first-order algorithm implementation). In summary,

the function value and gradient may be calculated using one or two global reduction

operations, local vector operations, and two local matrix multiplications (or just one

if only the function value is needed). Because n � m, the local multiplications A(i)
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Figure 3.9: Column partition q = A(x+ − x−)

and A>(i) roughly involve the same amount of numerical work. The column partition-

ing scheme also balances the vector addition and scaling operations because it assigns

between
⌊
n
P

⌋
and

⌈
n
P

⌉
indices j to each processor. When the matrix A is dense, these

goals are compatible and attained by column partitioning. Figures 3.9 and 3.10 visually

illustrate the above-described steps for the matrix shown in figure 3.7.

In terms of communication complexity, our most expensive operation is the reduc-

tion performed on the q(i)s as described in Item 3. Most massively parallel supercom-

puters these days have interconnect networks that can perform reductions in O(logP )

time. Hence, the overall communication complexity is O(m logP ), where m is the size

of the vectors q(i).
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u(0) u(5)

Figure 3.10: Column partition u(i) = rTA(i).

Distributed Sparse LASSO Problem

Before we get into the details of nonzero partitioning for sparse As, let us first discuss,

why, in some sparse cases, column partitioning may not work well from a load balancing

perspective. As mentioned earlier, the primary goal is to approximately balance the

number of nonzero entries in the matrices A(i), as these nonzero counts essentially de-

termine the amount of work required for the local matrix multiplications, the dominant

portion of the workload. Matrices derived from real-world datasets, however, may have

a small fraction of relatively dense columns containing a significant fraction of the total

nonzeros. This can occur, for example, in text classification problems where certain

letter combinations, such as “the”, come up in virtually all documents, whereas others

like “aaa” in only a few. Thus, simply dividing the indices {1 . . . , n} into P contiguous

groups can result in a poor workload balance. Alternatively, one would have to solve

the following problem: Given a list of integers a1, . . . , an, partition indices {1, . . . , n}

into P sets J1, . . . , JP so as to minimize maxi=1,...,P {
∑

j∈Ji aj}, where aj stand for the

number of nonzeros per column j, and P the number of processors. However, this

problem is equivalent to the NP-hard minimum makespan scheduling problem; see for

example [76]. Though simple greedy approximation algorithms (factor 2) exist for this
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problem, they would either require serial data read in, or very expensive communica-

tion. Therefore, rather than solving or approximating this problem at run time for each

possible value of P , we will partition the nonzeros evenly between processors.

For the nonzero partitioning scheme we determine the partition members Ji by

dividing the number of nonzeros, Z, into P contiguous groups, whose size varies by at

most one element: formally, we may take the first Z mod P groups to have size
⌈
Z
P

⌉
and

the remaining groups to have size
⌊
Z
P

⌋
. This approach is shown in Figures 3.11 and 3.12,

depicting the partition of 21 nonzeros of an 8 column matrix across 7 processors, where

each processor ends up with exactly 3 nonzeros i.e., a prefect load balance. As figure 3.12

suggests the nonzero partitioning can assign parts of the same column to different

processors. All local matrices A(i) are represented as sparse matrices in the processors

pi, if A(i) has a partial column then the missing nonzeros are simply treated as zeros.

For example, take the local matrices A(1) and A(2) from 3.12, A(1) stored in p0 is

represented as a sparse matrix with 2 columns, which has 2 nonzeros in the first, and 1

nonzero in the second column, A(2) stored in p1 is represented as a sparse matrix with 1

column, which has 3 nonzeros. This means that the global column A2 appears in both

processor p0 and p1, however, the nonzeros of A2 are split between p0 and p1. This

will affect how we divide coefficients of x+ and x− among the processors, since multiple

A(i)s can contain the same global column Aj . Whenever two or more processors are

responsible for one column, we will call that column an overlap zone. For overlap zones

we need to replicate coefficients of x+ and x− in as many processor as many own parts

of that overlap zone. Given the example in Figure 3.12 for a vector x ∈ R8 we end up

with the replication pattern shown in Figure 3.13, where x2 is replicated twice, and x4

three times.

Because we partition the nonzeros instead of the columns, we need to modify some

of our linear algebra computations from the dense case. Nonzero partitioning and

replication of coefficients of x+ and x− does not effect the matrix-vector multiplies

q = A(x+−x−), because the missing local data will be completed during the reduction

operation performed at the end of the matrix-vector multiply
(
q =

∑P
i=1 q(i)

)
. But

when it comes to vector-transpose-matrix multiplies u = r>A, which is communication
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A1 A2 A3 A4 A5 A6 A7 A8

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗




Figure 3.11: Sparse Matrix, nonzeros indicated by *.

A1 A2 A3 A4 A5 A6 A7 A8

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗




p0

p1

p2

p3

p4

p5 p6

Figure 3.12: Even partition of nonzeros between processors.
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x1 x2 x2 x3 x4 x4 x4 x5 x6 x7 x8

][
p0 p1 p2 p3 p4 p5 p6

Figure 3.13: Representation of x given the nonzero partition in Figure 3.12.

free in its original form, the local computations u(i) = r>A(i) =
(
A(x+ − x−)− b

)>
A(i)

need to be followed by a scalar sum-reduction and broadcast within each overlap zone

to complete the missing data. This requires the DistributedSparseLassoProblem to

set up a communicator for each overlap zone. These communicators only need to be

set up once during runtime. The reduction on them will take O(log π) steps, where

π ≤ P is the maximum number of processors in an overlap zone. Setting up the

communicators can be achieved with the help of parallel scans [65] in O(logP ) time,

therefore, these operations do not worsen the communication complexity relative to the

column partitioning approach.

The modified gradient ∇h(x+, x−) computation is as follows:

1. Each processor locally computes u(i) = r>A(i) =
(
A(x+ − x−)− b

)>
A(i)

2. Processors in an overlap zone perform an MPI Allreduce on a single coordinate

uj to adjust for the missing values, where the MPI communicator for the reduction

operation consists of the processors in the overlap zone.

Notice that the distributed vector class will also need to adjust the segment infor-

mation to a make sure that the inner product and norm computations only include

replicated variables once. For example, 1>(x+ + x−) also changes as follows:

1. Each processor i locally calculates ωi = 1>(i)(x
+
(i) + x−(i)), where each coefficient xj

is included only once.

2. We sum ωi ∈ R with an MPI Allreduce operation to get ω =
∑P

i=1 ωi across all

processors.

These details are all illustrated in Figures 3.14 and 3.15.
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Figure 3.14: Nonzero partition q = A(x+ − x−).
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r

*

*

*

× r

*

*

× *

= =

0 1

0 1

= =

u(0) u(1)

Figure 3.15: Nonzero partition u(i) = rTA(i), processor 0 and 1 are in one group
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Parallel I/O

Before we continue to present computational results, we will briefly mention how we

perform I/O operations in parallel. In our implementation, we used the Lustre file

system to “stripe” our test input data, storing it across multiple disks. We then used

MPI’s parallel I/O functions [65], such as MPI File seek and MPI File read, to read

in the binary data files. In a binary file, each processor seeks to the position where

its data starts, and then reads in an appropriate portion of the data. This approach

prevents data read-in from being a bottleneck operation detrimental to scalability.

3.4.3 Computational Results

We now present four strong scaling results for OPSPG on various LASSO problems, two

of which are derived from real-world datasets, and two of which we randomly generated.

We ran the tests on the TACC Stampede supercomputer. Each node of this system

consists of two 2.7 GHz 8-core Xeon processors with 32GB of RAM, and the nodes are

connected by an InfiniBand network with a fat-tree-class topology. This system also

has “Xeon Phi” accelerator cards, but for portability reasons we did not attempt to use

them.

Text Classification

This sparse data set [44, 51] is a two-class variant of the UCI “Twenty Newsgroups”

data set. The problem involves classifying messages as positive or negative in tone.

The dataset is sparse, with A having about 1.35 million columns and 20,000 rows. As

shown in Figure 3.16, our algorithm exhibits nearly linear scaling behavior through 256

processor cores, after which little further speedup is obtained, however, at that point,

the total computation time is about 1 second.

Classification With Traffic Data

“PEMS-SF” is a dense data set from the UCI Machine Learning Repository [4], con-

sisting of 15 months’ worth of daily data describing the occupancy rate, across time,
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Figure 3.16: SPG speedup performance on text classification.

of various travel lanes in the San Francisco area freeway system. It has 267 rows and

about 139,000 columns. The associated task proposed in the repository is to classify

each observed day as the correct day of the week, from Monday to Sunday. To produce

reasonable related LASSO instances, we first transformed this seven-class classification

problem into a two-class variant by simply attempting to classify each observed day as

either a weekend day or a weekday. As shown in Figure 3.17, our SPG obtains good

speedups through 256 processors on this instance, but little or no additional speedup

for higher processor counts.

Randomly Generated Instances

In this subsection, we give performance results for two large-scale instances that we ran-

domly generated, one sparse and one dense, both having 10, 000 rows and 2.5 million

columns. The sparse dataset has a density of 1%, with nonzeroes located randomly. In
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Figure 3.17: SPG speedup performance on traffic dataset.

both cases, the nonzero matrix coefficients were generated from a unit normal distri-

bution. These examples serve to illustrate that when the processor/data ratio is suffi-

ciently large, good scaling can be achieved for large numbers of processors. The dense

data set consumes 200GB in binary format whereas the sparse dataset requires only

2GB. Results are shown in Figures 3.18 and 3.19. We solve the 200GB dense instance

in 28.5 seconds on 4096 processors, with the algorithm performing 2448 matrix-vector

multiplications. Speedups still appear to be nearly linear at this number of processors.

Note that, due to its size, we did not attempt to solve this instance below 128 processor

cores. The sparse dataset can be solved on a single processor, and speedups appear to

be near-linear through 1024 processors.
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Figure 3.18: SPG speedup performance on random sparse data.
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Figure 3.19: SPG speedup performance on random dense data.
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Chapter 4

Object-Parallel Augmented Lagrangian Algorithm

Applied to Stochastic Programs

We start the discussion of this chapter by first introducing proximal point algorithms [8],

followed by the derivation of the augmented Lagrangian algorithm also known as the

method of multipliers [7, 10, 8]. The next section gives a brief description of ALGEN-

CAN [12], a serial implementation of the augmented Lagrangian algorithm developed by

Birgin and Mart́ınez [12], that works well for problems of the form

min f(x)

s.t. h(x) = 0

g(x) ≤ 0

x ∈ X,

(4.1)

where f : Rn → R is convex, h : Rn → Rm is affine, and g(x) = (g1(x), . . . , gl(x)), where

g1, . . . , gl : Rn → R are convex, f and g are continuously differentiable and X ⊂ Rn is a

box X = {x ∈ Rn | l ≤ x ≤ u}, where l and u are vectors respectively specifying lower

and upper bounds. This is followed by a description of OPAL, which is an object-parallel

implementation of the augmented Lagrangian method based on ALGENCAN. Finally, we

close the chapter by discussing the solution of linear stochastic programming problems

using OPAL and PySP, an algebraic modeling language for stochastic programs.

4.1 Proximal Minimization Algorithm

Proximal minimization algorithms are a class of iterative approximation methods used

to minimize a convex function f : Rn → R over a convex set X, and more general

problems. Iterative algorithms for minimizing f ideally generate a sequence {xk} that

converges to an optimal solution. The sequence {xk}may not be feasible and is obtained
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by solving at each iteration k an approximation to the original optimization problem.

In other words, instead of minimizing f over X we approximately solve a series of

problems of the form

xk+1 ∈ arg min
x∈Xk

Fk(x), (4.2)

where Fk is a function that approximates f and Xk is a set that approximates X. The

goal is that minimization of Fk over Xk should be easier than minimization of f over

X. The optimal solution xk+1 to the approximating problem is used to improve the

next approximation Fk+1 and Xk+1.

In particular, we consider the following algorithm

xk+1 ∈ arg min
x∈X

{
f(x) +

1

2ρk
‖x− xk‖2

}
, (4.3)

where x0 is an arbitrary starting point and ρk > 0 is a scalar parameter. This is the

proximal minimization algorithm [61]. For a closed proper convex function f : Rn →

(−∞,+∞] the quadratic term in (4.3) makes the minimand strictly convex so it has

a unique minimum [9, p. 117]. In other words, the proximal minimization algorithm

“regularizes” the minimization of f . It is worthwhile to note that the sequence {f(xk)}

generated by the {xk}s from the proximal minimization algorithm is monotonically

nonincreasing. This can be seen by the following inequality:

f(xk+1) +
1

2ρk
‖xk+1 − xk‖2 ≤ f(xk) +

1

2ρk
‖xk − xk‖2 = f(xk) (4.4)

As ρk → ∞ the quadratic regularization term becomes small and the proximal mini-

mization (4.3) approximates the minimization of f more closely. Thus, the connection

with the approximation approach.

Theorem 4.1.1 (Basic convergence result for proximal minimization algorithms [8,

p. 237]). Let f ′ denote the optimal value f ′ = inf
x∈Rn

f(x), (possibly −∞) and by X ′

denote set of minima of f (possibly empty), X ′ = Arg min
x∈Rn

f(x). Let {xk} be a sequence

generated by the proximal minimization algorithm (4.3). Then, if

∞∑
k=0

ρk =∞, we have

f(xk) ↓ f ′, (4.5)

and if X ′ is nonempty, {xk} converges to some point in X ′.
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4.2 An Augmented Lagrangian Algorithm

In short, the augmented Lagrangian algorithm is a proximal minimization algorithm

applied to the dual of an optimization problem. Consider the primal problem from (4.1),

repeated here for convenience,

min f(x)

s.t. h(x) = 0

g(x) ≤ 0

x ∈ X,

(4.6)

and its dual function

q(λ, µ) = inf
(t,u)∈Rm×Rl

{〈λ, t〉+ 〈µ, u〉+ p(t, u)} , (4.7)

where p(t, u) = inf
x∈Rn

{F (x, t, u)} is the parametric value function and F (x, t, u) is the

parameterized primal function

F (x, t, u) =

f(x) if x ∈ Ct,u

+∞ otherwise ,
(4.8)

where Ct,u is the perturbed constraint set

Ct,u = {x ∈ X | h(x) = t, g(x) ≤ u} . (4.9)

Let us apply the proximal minimization algorithm to the dual problem

max q(λ, µ)

s.t. (λ, µ) ∈ Rm × Rl.
(4.10)

We get the following sequence of iterates

(λk+1, µk+1) ∈ arg max
(λ,µ)∈Rm×Rl

{
− 1

2ρk

(
‖λ− λk‖2 + ‖µ− µk‖2

)
+ q(λ, µ)

}
, (4.11)

or equivalently

(λk+1, µk+1) ∈ arg min
(λ,µ)∈Rm×Rl

{
1

2ρk

(
‖λ− λk‖2 + ‖µ− µk‖2

)
− q(λ, µ)

}
. (4.12)

The relationship between conjugacy and duality [9, p. 137-138] tells us that −q(λ, µ) =

p∗(−λ,−µ), so substituting q by −p∗ we get

(λk+1, µk+1) ∈ arg min
(λ,µ)∈Rm×Rl

{
1

2ρk

(
‖λ− λk‖2 + ‖µ− µk‖2

)
+ p∗(−λ,−µ)

}
. (4.13)
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Claim 4.2.1 (Regularization term is a conjugate function). The regularization term

R∗(λ, µ) =
1

2ρk

(
‖λ− λk‖2 + ‖µ− µk‖2

)
(4.14)

is the convex conjugate of the function

R(t, u) = 〈λk, t〉+
ρk
2
‖t‖2 + 〈µk, u〉+

ρk
2
‖u‖2. (4.15)

Proof of Claim 4.2.1.

R∗(λ, µ) = sup
(t,u)∈Rm×Rl

{〈λ, t〉+ 〈µ, u〉 −R(t, u)}

= sup
(t,u)∈Rm×Rl

{
〈λ, t〉+ 〈µ, u〉 −

(
〈λk, t〉+

ρk
2
‖t‖2 + 〈µk, u〉+

ρk
2
‖u‖2

)}
This maximization problem above can be solved by setting the derivative equal to zero

since the function is convex and differentiable. We get the following solution

t = 1
ρk

(λ− λk)

u = 1
ρk

(µ− µk) .

Substituting for t and u the expressions above proves the claim by yielding

R∗(λ, µ) =
1

2ρk

(
‖λ− λk‖2 + ‖µ− µk‖2

)
. (4.16)

Therefore, the proximal minimization algorithm applied to the dual can be refor-

mulated as

(λk+1, µk+1) ∈ arg min
(λ,µ)∈Rm×Rl

{R∗(λ, µ) + p∗(−λ,−µ)} . (4.17)

We know that R is closed and convex. If ∃ (t̃, ũ) ∈ Rm × Rl and γ̃ ∈ R such that the

set {
x | F (x, t̃, ũ) ≤ γ̃

}
is nonempty and compact then according to the partial minimization theorem [9, p. 124]

p is closed and convex. Let us take

(tk+1, uk+1) ∈ arg min
(t,u)∈Rm×Rl

{R(t, u) + p(t, u)} , (4.18)
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which in turn may be written as

(tk+1, uk+1) ∈ arg min
(t,u)∈Rm×Rl

{
〈λk, t〉+

ρk
2
‖t‖2 + 〈µk, u〉+

ρk
2
‖u‖2 + p(t, u)

}
(4.19)

then, according to the Fenchel duality theorem [9, p. 179] the following is true

(λk+1, µk+1) ∈ ∂R(tk+1, uk+1),

yielding

λk+1 = λk + ρktk+1

µk+1 = µk + ρkuk+1.
(4.20)

Expression (4.19) is the augmented Lagrangian function, where (λk, µk) are the multi-

pliers and ρk > 0 the penalty parameter. To get the standard form of the augmented

Lagrangian algorithm we have to expand the minimization problem in (4.19)

inf
(t,u)∈Rm×Rl

{
〈λk, t〉+

ρk
2
‖t‖2 + 〈µk, u〉+

ρk
2
‖u‖2 + p(t, u)

}
=

inf
(t,u)∈Rm×Rl

{
〈λk, t〉+

ρk
2
‖t‖2 + 〈µk, u〉+

ρk
2
‖u‖2 + inf

x∈Rn
{F (x, t, u)}

}
=

inf
x∈Ct,u,(t,u)∈Rm×Rl

{
f(x) + 〈λk, t〉+

ρk
2
‖t‖2 + 〈µk, u〉+

ρk
2
‖u‖2

}
.

(4.21)

If x ∈ Ct,u then we know that h(x) = t, and that g(x) ≤ u. Thus we can write the last

line of (4.21) as

inf
x∈X

{
f(x) + 〈λk, h(x)〉+

ρk
2
‖h(x)‖2 + inf

{u∈Rl|g(x)≤u}

{
〈µk, u〉+

ρk
2
‖u‖2

}}
. (4.22)

The inner problem inf
{u∈Rl|g(x)≤u}

{
〈µk, u〉+

ρk
2
‖u‖2

}
separates into l one-dimensional

problems of the form

min µki ui + ρk
2 u

2
i

s.t. gi(x) ≤ ui
(4.23)

This is a quadratic minimization problem. If the solution u′i is below gi(x) we project

back to the feasible set by setting u′i equal to gi(x). To minimize the quadratic, we set

its derivative to zero

(µki ui +
ρk
2
u2
i )
′ = µki + ρkui = 0, (4.24)

which gives us

u′i = −µ
k
i

ρk
(4.25)
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for the optimal solution unless −µki
ρk
< gi(x) or equivalently µki + ρkgi(x) > 0, in which

case u′i = gi(x). Therefore, we differentiate between the following two cases:

1. µki + ρkgi(x) ≤ 0, where u′i = −µ
k
i

ρk
and the optimal solution value becomes the

constant − 1

2ρk
(µki )

2.

2. µki + ρkgi(x) > 0, where u′i = gi(x) and yielding the optimal value
1

2ρk

(
µki + ρkgi(x)

)
− 1

2ρk
(µki )

2.

This gives us the following closed formula

inf
{u∈Rl|g(x)≤u}

{
〈µk, u〉+

ρk
2
‖u‖2

}
= ‖max {0, µk + ρkg(x)}‖2 − 1

2ρk
‖µk‖2, (4.26)

where the “max” operator is applied componentwise. The µ multiplier update formula

from (4.20) changes in the following manner

µk+1 = µk + ρk

(
− 1

ρk
µk

)
= 0, if µk + ρkg(x) ≤ 0

µk+1 = µk + ρk (g(x)) , if µk + ρkg(x) > 0.

(4.27)

Consolidating the above, we get the single formula

µk+1 = max {0, µk + ρkg(x)} . (4.28)

Combining everything, we obtain the standard augmented Lagrangian algorithm,

xk+1 ∈ arg min
x∈X

{
f(x) + 〈λk, h(x)〉+

ρk
2
‖h(x)‖2+

‖max {0, µk + ρkg(x)}‖2 − 1
2ρk
‖µk‖2

}
λk+1 = λk + ρkh(xk+1)

µk+1 = max {0, µk + ρkg(xk+1)} ,

(4.29)

where {ρk} is a sequence of scalars with inf
k
{ρk} > 0. The minimization above can be

simplified by removing the constant term − 1
2ρk
‖µk‖2, giving us

xk+1 ∈ arg min
x∈X

{
f(x) + 〈λk, h(x)〉+

ρk
2
‖h(x)‖2 +

∥∥[µk + ρkg(x)]+
∥∥2
}

λk+1 = λk + ρkh(xk+1)

µk+1 = [µk + ρkg(xk+1)]+ ,

(4.30)
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where we use [ · ]+ to denote the componentwise max {0, ·} operation. We refer to

the function minimized at every iteration as the augmented Lagrangian function

Lρk(x, λk, µk) = f(x) + 〈λk, h(x)〉+
ρk
2
‖h(x)‖2 +

∥∥[µk + ρkg(x)]+
∥∥2
. (4.31)

We can say the following about the convergence properties of the augmented Lagrangian

method:

Claim 4.2.2 (Convergence properties of the augmented Lagrangian algorithm [8,

p. 262-263]). Given a sequence {(xk, λk, µk)} generated by the augmented Lagrangian

algorithm applied to the primal problem in (4.1) such that inf
k
{ρk} > 0, then {(λk, µk )}

converges to an optimal dual solution and every limit point of {xk} is an optimal solu-

tion of the primal problem, provided that the dual problem sup
(λ,µ)∈Rm×Rl

{q(λ, µ)}, has at

least one optimal solution.

Given an x′, obtained via the augmented Lagrangian method, we say that it satisfies

the Karush-Kuhn-Tucker (KKT) necessary conditions of optimality with respect to the

minimization in (4.1) if x′ is feasible and there exists λ′ ∈ Rm and µ′ ∈ Rl+ such that

∇xL(x′, λ′, µ′) = 0 and µ′i = 0 whenever gi(x
′) < 0, ∀ i = 1 . . . l. (4.32)

In general, the termination condition for augmented Lagrangian algorithms involves

some form of the KKT conditions.

4.3 ALGENCAN: A Practical Augmented Lagrangian Method

The sequence of steps presented in (4.30) as the augmented Lagrangian algorithm is

referred to as the outer loop, whereas the minimization of Lρk(x, λk, µk) is referred to as

the inner loop. Different versions of the augmented Lagrangian algorithm arise based

on design decisions taken regarding the inner loop and the update procedure of the

penalty parameter ρ, which were not specified in the previous section. ALGENCAN uses

an active-set method called GENCAN to solve the subproblem

min Lρk(x, λk, µk)

s.t. x ∈ X.
(4.33)
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We begin by describing ALGENCAN using a top-down approach, starting with the outer

loop of the augmented Lagrangian method and then moving on to the inner loop.

Using KKT type termination conditions [12] an abstract description of the outer loop

is depicted in Algorithm 6 below:

Algorithm 6: Augmented Lagrangian Outer Loop

Input: f, h, g, X, x0 ∈ Rn, λ0 ∈ Rm, µ0 ∈ Rl, ρ0 > 0, εopt, εfeas

Output: x′ minimizer of f such that x′ ∈ X, h(x′) = 0, g(x′) ≤ 0

1 k = 0

2 xk+1 ∈ arg min
x∈X

{Lρk(x, λk, µk)}

3 while
∥∥∇Px Lρk(xk+1, λk, µk)

∥∥
∞ > εopt and Ψρk(xk+1, µk) > εfeas do

4 λk+1 = λk + ρkh(xk+1)

5 µk+1 = [µk + ρkg(xk+1)]+
6 ρk+1 ← updateRho()

7 k = k + 1

8 xk+1 ∈ arg min
x∈X

{Lρk(x, λk, µk)}

9 x′ = xk+1

Where x0 ∈ Rn, λ0 ∈ Rm, µ0 ∈ Rl+, ρ0 > 0 are arbitrary starting values, εopt and

εfeas are tolerance values, Ψρ : Rn×Rl+ → R+ is a function checking for complementary

slackness and feasibility violations, defined as

Ψρ(x, µ) = max

{
‖h(x)‖∞,

∥∥∥∥max

{
−1

ρ
µ, g(x)

}∥∥∥∥
∞

}
, (4.34)

and updateRho() is a “black box” method to update the penalty parameter ρ. The

augmented Lagrangian outer loop presented in Algorithm 6 achieves our desired level

of abstraction since the operations aside from various function calls all consists of BLAS

level 1 vector operations. The next step in the discussion of ALGENCAN is a description

of the subproblem solver GENCAN, which follows in the next section.

4.3.1 GENCAN: Solving the Subproblem via an Active-Set Method

Before we start to discuss the algorithm itself, we provide some definitions that are

used throughout this section. We say that at the kth iteration the ith box constraint

is active, if xki = li or xki = ui. We denote by A(x) the set of active indices, such that

A(x) = {i | if xi = li or xi = ui} . (4.35)
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We will denote by n̄ the number of free variables, i.e. n̄ = n− |A(x)|. Let us define for

all I ⊂ {1, 2, . . . , n, n+ 1, . . . , 2n}

FI = {x ∈ X | xi = li if i ∈ I, xi = ui if n+ i ∈ I, li < xi < ui otherwise} . (4.36)

Let VI be the smallest affine subspace that contains FI and SI the parallel linear sub-

space to VI . Let us denote by PSI the projection onto SI , which from a computational

perspective amounts to setting the coefficients i ∈ A(x) to zero. We will refer to this

operation as the mask operation symbolized by operator ·̂ . The mask operator applied

to the gradient of a function f at x corresponds to projecting the gradient at x onto

SI , i.e.

∇̂f(x) = PSI (∇f(x)) . (4.37)

The gradient of ∇̂f at x, which we refer to as the masked Hessian of f at x, is denoted

by ∇̂2f(x). We define the internal gradient of a function f at x as the projection of

the projected gradient onto the set SI , denoted by

∇̂P f(x) = PSI (PX(x−∇f(x))− x) , (4.38)

where X is a box as defined in (4.1). GENCAN does not explicitly use a mask operator.

However, OPAL does, and therefore we have decided to describe GENCAN using this nota-

tion. L(x) will denote Lρ(x, λ, µ) since for the inner loop ρ, λ and µ are given constants

fixed by the outer loop of the augmented Lagrangian algorithm.

Active-set methods for box constrained problems aim to identify a set of active box

constraints that tentatively belong to the optimal face of the feasible region and then

work towards finding the optimal solution in a reduced space Rn̄ by fixing the values of

all xi with i ∈ A(x). If a particular test indicates that the set of active constraints do not

belong to the optimal face, then the active constraints are abandoned and new ones are

generated. GENCAN follows a similar dynamic. It uses a monotone SPG step to identify

a new set of active box constraints and thus a new reduced space. Then, inside the

reduced space, it uses a line-search Newton-CG method, also known as the truncated

Newton method, to work towards the optimal solution. If
∥∥∥∇̂PL(xk)

∥∥∥ < η
∥∥∇PL(xk)

∥∥
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holds, GENCAN abandons the non-optimal face and adds new box constraints to the

active set by performing an SPG step in the full space Rn.

Algorithm 7: GENCAN

Input: L, X, x0 ∈ Rn, λ ∈ Rm, µ ∈ Rl, θ ∈ (0, 1), ρ > 0, η ∈ (0, 1), εopt

Output: x′ minimizer of L over X

1 k = 0

2 xk = PX(xk)

3 while
∥∥∇PL(xk)

∥∥
∞ > εopt do

4 if
∥∥∥∇̂PL(xk)

∥∥∥ < η
∥∥∇PL(xk)

∥∥ then

/* Spectral projected gradient step (in the full space Rn) */

5 σk ← spectralStep()

6 dk = PX (xk − σk∇L(xk))− xk
7 αk ← spgLineSearch()

8 xk+1 = xk + αkdk

9 k = k + 1

10 else

/* Truncated Newton step (in the reduced space Rn̄) */

11 ·̂ ← setMask()

12 Compute: d̂k, approximate minimizer of
{

1
2d
>∇̂2L(xk)d+ ∇̂L(xk)

>d
}

13 αk ← gencanLineSearch()

14 xk+1 = xk + αkd̂k

15 k = k + 1

16 Set: x′ = xk

The spectralStep() is computed as in (3.6), the line search procedures spgLi-

neSearch() and gencanLineSearch() are detailed in [13]. The setMask() operator

determines if i ∈ A(x) by checking if either of the following two inequalities is true

xki ≤ li + ε
2/3
m ×max {1, |li|}

xki ≥ ui − ε2/3m ×max {1, |ui|} ,

where εm stands for the machine epsilon, which is an upper bound on the relative

error due to rounding in floating point arithmetic. The reduced-space step xk+1 =

xk + αkd̂k in Line 14 is achieved by only updating coefficients of xk+1 that correspond

to free variables, that is, xi for i /∈ A(x), whereas Line 8 happens in the full space.

As described in [13], GENCAN uses a modified quadratic conjugate gradient method

(QCG) to approximately solve the unconstrained minimization in Line 12. We will use
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the following notation in the description of the QCG algorithm: Ĥk = ∇̂2L(xk), ĝk =

∇̂L(xk), κ(d) = 1
2d
>Ĥkd+ ĝ>k d, and

D = {d ∈ Rn | ‖d‖ ≤ ∆ and lκ = l − xk ≤ d ≤ u− xk = uκ} . (4.39)

Algorithm 8: QCG

Input: κ, Ĥk, ĝk, θ, D

Output: d′ such that 〈ĝk, d′〉 ≤ −θ‖ĝk‖‖d′‖
1 j = 0, dj = 0, rj = ĝk, pj = −rj
2 αj ← lineSearchInit()

3 dj+1 = dj + αjpj

4 rj+1 = rj + αjĤkpj

5 j = j + 1

6 while 〈ĝk, dj〉 ≤ −θ‖ĝk‖‖dj‖ do

7 βj =
‖rj‖2

‖rj−1‖2

8 pj = −rj + βjpj−1

9 if 〈pj , rj〉 > 0 then

10 pj = −rj

11 αj ← lineSearch()

12 dj+1 = dj + αjpj

13 rj+1 = rj + αjĤkpj

14 j = j + 1

15 d′ = dj

In Line 1 of Algorithm 8 dj = 0 stands for setting all the coefficients of dj equal

zero, rj is the residual, pj is the conjugate search direction and d′ is the search di-

rection from Algorithm 7. The line search in Line 2 is described immediately below
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in Algorithm 9 and the line search from Line 11 in Algorithm 10.

Algorithm 9: QCG lineSearchInit()

Input: Ĥk, ĝk, pj , dj , D

Output: αj

1 αmax = max {α ≥ 0 | dj + αpj ∈ D}
2 if p>j Ĥkpj > 0 then

3 αj = min

{
αmax,

‖ĝk‖2

p>j Ĥkpj

}
4 else

5 αj = αmax

Algorithm 10: QCG lineSearch()

Input: Ĥk, ĝk, pj , dj , D

Output: αj

1 αmax = max {α ≥ 0 | dj + αpj ∈ D}
2 if p>j Ĥkpj > 0 then

3 αj = min

{
αmax,

‖ĝk‖2

p>j Ĥkpj

}
4 else

5 return d′ = dj

4.4 OPAL: Object-Parallel Augmented Lagrangian Algorithm

As described in the previous section, the serial augmented Lagrangian implementa-

tion ALGENCAN can be sectioned into three layers. The algorithm classes in OPAL will

follow an abstraction approach that is based on these three layers. The first layer

is the augmented-Lagrangian outer loop (Algorithm 6), which is implemented in the

algorithm class AL, the second is the inner loop (Algorithm 7), also known as the sub-

problem solver, implemented in the GENCAN class, and the third layer is the search

direction computation of the subproblem solver (Algorithm 8), which is implemented

in the QuadCG algorithm class. We have chosen GENCAN as our subproblem solver be-

cause it has very good convergence properties, and the underlying computations do not

involve expensive linear algebra operations, such as matrix factorization, which would

make the distributed memory parallel implementation difficult. Nonetheless, other
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OPAL

pr

*

lsBase *

pr * * subSolver

LineSearchBasedMethod

QuadCG

ProjLineSearchBasedMethod

GENCAN

AbstractProblem

AbstractTermination

VectorObject

AL

Figure 4.1: Relationships of the OPAL package.

subproblem solvers could also be used, for example, OPSPG from Section 3.3. GENCAN

is derived from ProjLineSearchBasedMethod, and QCG from LineSearchBasedMethod.

OPAL’s algorithm classes AL, GENCAN, and QCG, like all of OPOS’ optimization algorithms,

are implemented using VectorObject, AbstractProblem and AbstractTermination

classes. The complete inheritance graph of the OPAL software package is illustrated

in Figure 4.1.

4.4.1 Algorithm Classes: AL, GENCAN, QCG

The three-layer abstraction scheme allows extensibility and concise representation of the

outer loop (AL), the subproblem solver (GENCAN), and the search direction computation
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of the subproblem solver (QCG). OPAL’s algorithm class designs need to avoid mem-

ber routines that are not automatically parallelized by switching the underlying vector

and problem class from serial to parallel. The most import routine is the minimize()

routine of each of the algorithm classes AL, GENCAN, and QCG. After the necessary initial-

izations, the main() function in OPAL’s driver program calls AL’s minimize() routine,

which returns the solution vector x: x = opal.minimize(termination). AL’s mini-

mize() routine, depicted in Figure 4.2, implements the augmented Lagrangian outer

loop from Algorithm 6. The subproblem solver’s minimize() routine, which minimizes

the augmented Lagrangian function L(x), is called at every iteration of the outer loop.

GENCAN’s minimize() routine is depicted in Figures 4.3 to 4.5. The third layer of

OPAL is the QCG algorithm, which is called during the reduced-space section of GENCAN

to compute the search direction d = quadSolver->minimize(cgTermination). Its ini-

tialization is illustrated in Figure 4.6, and its main loop in Figure 4.7. Note that the

notation used in the source code of QCG differs from the notation used in Algorithm 8.

In the source code, x refers to GENCAN’s search direction d, d refers to QCG’s search

direction p, and g refers to the residual r. This change in notation is motivated by the

modular approach of OPOS, since QCG could also be used as a stand alone unconstrained

optimization algorithm, in which case it makes more sense to follow the conventional

notation, in which x encapsulates the sequence of iterates, d the search direction and g

the gradient.

4.4.2 Reduced Space Quadratic Approximation Problem Class

Given a smooth box constrained optimization problem (min f(x) s. t. x ∈ X), GENCAN

computes the search direction d̂k of its reduced-space minimization phase by approx-

imately minimizing the quadratic function κ(d) = 1
2d
>Ĥkd + ĝ>k d, where ĝk and Ĥk

are the gradient and the Hessian of f at xk. This problem yields an approximation of

the basic Newton step dN
k = −

(
∇2f(xk)

)−1∇f(xk). However, κ is problem dependent

because the value of Ĥk and ĝk depends on the problem: min f(x) s. t. x ∈ X. This

means that the quadratic function κ has to be generated automatically within GEN-

CAN, since otherwise we would be required to implement it explicitly for every possible
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VectorObject& OPAL:: minimize(AbstractTermination&

↪→ alTermination) {

x = subSolver ->minimize(spTermination);

while (alTermination.check () && iter < maxAlIter) {

iter ++;

if(numInequ > 0 && numEqu > 0) {

pr->equConVal(x, hx);

hxNormInf = hx.normInf ();

lambda = lambda + (* penaltyParam) * hx;

pr->inequConVal(x, gx);

gxNormInf = gx.normInf ();

gxMaxElement = gx.maxElement ();

mu = mu + (* penaltyParam) * gx;

mu.localMax(zeroVec);

}

else if(numInequ > 0) {

pr->inequConVal(x, gx);

gxNormInf = gx.normInf ();

gxMaxElement = gx.maxElement ();

mu = mu + (* penaltyParam) * gx;

mu.localMax(zeroVec);

}

else if(numEqu > 0) {

pr->equConVal(x, hx);

hxNormInf = hx.normInf ();

lambda = lambda + (* penaltyParam) * hx;

}

*penaltyParam = updatePenalty ();

x = subSolver ->minimize(spTermination);

}

return x;

}

Figure 4.2: AL’s minimize() routine.
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VectorObject& GENCAN :: minimize(AbstractTermination&

↪→ termination) {

iter = maxCount = 0;

pr->localProjectOnBounds(x);

quadPr ->setMask(x);

xNormInf = x.normInf ();

xNorm2 = x.norm2();

quadPr ->setTrustRad(std::max (100.0 , 100.0 * xNormInf));

double objValStart = objVal = objValk = pr ->objValGrad(x,

↪→ g);

objValBest = std:: numeric_limits <double >::max();

xg = x - g;

pr->localProjectOnBounds(xg);

pg = xg - x;

pgNorm2 = pgkNorm2 = pg.norm2();

pgNormInf = pgkNormInf = pg.normInf ();

pgNorm2Best = std:: numeric_limits <double >:: max();

pgNormInfBest = std:: numeric_limits <double >::max();

cgTermination ->setSlopeIntercept ();

ig.elementProd(pg , mask);

igNorm2 = ig.norm2();

igNormInf = ig.normInf ();

if(pgNormInf != 0.0) {

auxStep = pr ->getRoot12MachineEps () * std::max(1.0,

↪→ xNormInf/pgNormInf);

}

else {

auxStep = 0.0;

}

xk = x + auxStep * pg;

pr->objGrad(xk, gk);

gd = gk - g;

xd = xk - x;

xdNormInf = xd.normInf ();

xdNorm2sq = xd.norm2sq ();

xdNorm2 = std::sqrt(xdNorm2sq);

while(termination.check () && iter < maxIter) {

iter ++;

if(leaveFace ()) {

/* Full space step here */

}

else {

/* Reduced space step here */

}

}

return x;

};

Figure 4.3: GENCAN’s minimize() routine.
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objVal = objValk;

pgNormInf = pgkNormInf;

pgNorm2 = pgkNorm2;

spectralStep = spectralSearch ();

xg = x - spectralStep * g;

pr ->localProjectOnBounds(xg);

d = xg - x;

stepSize = spgLineSearch ();

getxkgk(stepSize , xk , gk);

objValk = pr ->objVal(xk);

xkNormInf = xk.normInf ();

xkNorm2 = xk.norm2();

gd = gk - g;

xd = xk - x;

xdNormInf = xd.normInf ();

xdNorm2sq = xd.norm2sq ();

xdNorm2 = std::sqrt(xdNorm2sq);

quadPr ->setTrustRad(std::max(trustRadMin , 10.0 * xdNormInf)

↪→ );

x = xk;

g = gk;

xNormInf = xkNormInf;

xg = x - g;

pr ->localProjectOnBounds(xg);

pg = xg - x;

pgkNormInf = pg.normInf ();

pgkNorm2 = pg.norm2 ();

quadPr ->setMask(x);

ig.elementProd(pg, mask);

igNorm2 = ig.norm2();

igNormInf = ig.normInf ();

if(objVal < objValBest)

objValBest = objVal;

if(pgNormInf < pgNormInfBest)

pgNormInfBest = pgNormInf;

if(pgNorm2 < pgNorm2Best)

pgNorm2Best = pgNorm2;

reset();

Figure 4.4: GENCAN’s full space portion of minimize() routine.
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subTermination ->setSubspaceNoTerm(true);

objVal = objValk;

pgNormInf = pgkNormInf;

pgNorm2 = pgkNorm2;

quadPr ->setQuadApproxPoint(x,g,xNormInf);

cgTermination ->setParameters ();

d = quadSolver ->minimize(cgTermination);

stepSize = subspaceLineSearch ();

getxkgk(stepSize , xk , gk);

if(stepSize >= stepSizeMax) {

pr->localProjectOnBounds(xk);

}

objValk = pr ->objVal(xk);

xkNormInf = xk.normInf ();

xkNorm2 = xk.norm2();

gd = gk - g;

xd = xk - x;

xdNormInf = xd.normInf ();

xdNorm2sq = xd.norm2sq ();

xdNorm2 = std::sqrt(xdNorm2sq);

quadPr ->setTrustRad(std::max(trustRadMin , 10.0 * xdNormInf)

↪→ );

x = xk;

g = gk;

xNormInf = xkNormInf;

xg = x - g;

pr ->localProjectOnBounds(xg);

pg = xg - x;

pgkNormInf = pg.normInf ();

pgkNorm2 = pg.norm2 ();

quadPr ->setMask(x);

ig.elementProd(pg, mask);

igNorm2 = ig.norm2();

igNormInf = ig.normInf ();

if(objVal < objValBest)

objValBest = objVal;

if(pgNormInf < pgNormInfBest)

pgNormInfBest = pgNormInf;

if(pgNorm2 < pgNorm2Best)

pgNorm2Best = pgNorm2;

reset();

Figure 4.5: GENCAN’s reduced space portion of minimize() routine.



91

iter = 0;

maxIter = (int) mask.norm2sq ();

x.fill (0.0);

double objValStart = objVal = objValk = 0.0;

g = pr ->getQuadApproxFirstOrder ();

gNorm2sq = g.norm2sq ();

d = -1.0*g;

gtd = -1.0* gNorm2sq;

pr ->applyObjHessian(x, d, Hd);

dtHd = d.inner(Hd);

stepSizeMax = pr->trustMaxStepSize(x, d);

if(dtHd > 0.0) {

stepSize = std::min(stepSizeMax , gNorm2sq/dtHd);

}

else {

stepSize = stepSizeMax;

}

x = x + stepSize*d;

objValk = objVal + 0.5* stepSize*stepSize*dtHd + stepSize*

↪→ gtd;

g = g + stepSize*Hd;

gkNorm2sq = g.norm2sq ();

iter ++;

Figure 4.6: Initialization of QCG’s minimize() routine.
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VectorObject& QuadSubspaceCG :: minimize(AbstractTermination&

↪→ termination) {

/* Initialize here */

while( termination.check () && iter < maxIter) {

iter ++;

objVal = objValk;

beta = gkNorm2sq/gNorm2sq;

d = -1.0*g + beta * d;

if(d.inner(g) > 0) {

d = -1.0*g;

gtd = -1.0* gkNorm2sq;

}

else {

gtd = -1.0* gkNorm2sq + beta*(gtd + stepSize*dtHd);

}

stepSizeMax = pr->trustMaxStepSize(x, d);

pr ->applyObjHessian(x, d, Hd);

dtHd = d.inner(Hd);

if(dtHd > 0.0) {

stepSize = std::min(stepSizeMax , gkNorm2sq/dtHd);

}

else {

return x;

}

x = x + stepSize * d;

objValk = objVal + 0.5* stepSize*stepSize*dtHd +

↪→ stepSize*gtd;

g = g + stepSize*Hd;

gNorm2sq = gkNorm2sq;

gkNorm2sq = g.norm2sq ();

reset ();

}

return x;

}

Figure 4.7: QCG minimize() routine’s main loop.
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problem class. This automatic generation of the κ function is achieved through the

ReducedQuadAppproxProblem class. ReducedQuadAppproxProblem is an Abstract-

Problem-derived class, and its constructor takes a pointer to an AbstractProblem and

a bool, which determines whether to compute κ using the full Hessian or just an ap-

proximation of it. We will refer to the AbstractProblem-derived object that is used to

generate ReducedQuadAppproxProblem as the main problem. ReducedQuadAppprox-

Problem has members xk for xk, mfirstOrderTerm for ĝk, and a routine applyObjHes-

sian() to compute Hessian-vector multiplies Ĥkd. It also holds a mask vector, which

is responsible for determining the reduced space, meaning that coefficients that corre-

spond to indices i, such that i ∈ A(x) are 0, otherwise 1. Performing a componentwise

multiplication of a vector with mask is equivalent to projecting it onto the set SI , which

we defined in Section 4.3.1. Given a point xk, ReducedQuadAppproxProblem computes

κ(d) = 1
2d
>Ĥkd+ ĝ>k d and its gradient ∇κ(d) = Ĥkd+ ĝk based on information from the

main problem. For example, computing the function value of κ in the reduced space is

done by calling ReducedQuadAppproxProblem’s objVal() method, which executes the

following steps:

1. Project x onto SI .

2. If the user has specified to use the approximate Hessian, then Ĥkd is calculated

by a difference quotient formula, using main problem class routines and then

projected onto SI .

2. If we would like to compute κ with the full Hessian then the main problem class’

applyObjHessian() routine is called to compute Ĥkd, which is then projected

onto SI .

3. Once Ĥkd is obtained the remaining quantities needed for κ(d) such as ĝk are

available from ReducedQuadAppproxProblem, then κ(d) can be computed.

Figure 4.8 illustrates the source code of ReducedQuadAppproxProblem’s objVal()

method.
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double QuadApproxProblem :: objVal(VectorObject& x) {

numObjEval ++;

mx.elementProd(x, mask);

if(approxHessian) {

double mxNormInf = mx.normInf ();

if(mxNormInf == 0.0) {

Hd = mx;

return 0.0;

}

double tau = root12MachineEps;

tau = root12MachineEps * std::max(xkNormInf/mxNormInf ,

↪→ 1.0);

xkp = xk + tau * x;

pr ->objGrad(xkp , mgradxkp);

mgradxkp.localElementProd(mask);

Hd = (1.0/ tau) * (mgradxkp - mfirstOrderTerm);

}

else {

pr ->applyObjHessian(xk , mx, Hd);

Hd.localElementProd(mask);

}

gradLinComb = 0.5 * Hd + mfirstOrderTerm;

return(mx.inner(gradLinComb));

}

Figure 4.8: ReducedQuadAppproxProblem’s objVal() routine.
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4.4.3 OPAL as a Serial General-Purpose Nonlinear Solver

With the help of the AMPL Solver Library [28] (ASL) it is possible to build a serial

problem class, which we will call AugLagAslProblem, that is capable of handling general

nonlinear objective functions, constraints and their gradients. AugLagAslProblem is a

derived class of AslProblem, which uses ASL and takes an nl file as input, and inher-

its most of its routines, except for the objective function and gradient computations,

since those need to be modified to accommodate the subproblem solver. For this pur-

pose we use routines from AslProblem to create methods that evaluate the augmented

Lagrangian function

Lρ(x, λ, µ) =
{
f(x) + 〈λ, h(x)〉+

ρ

2
‖h(x)‖2 +

∥∥[µ+ ρg(x)]+
∥∥2
}

and its gradient. The source code for the objective function value computation is

illustrated in Figure 4.9 with the following steps:

1. AslProblem’s objVal() routine returns f(x), which then is multiplied by objSign

which takes the value 1 or −1 depending on whether we minimize or maximize

the objective function, the result is saved in value.

2. If the problem has equality constraints we compute 〈λ, h(x)〉 + ρ
2‖h(x)‖2 using

AslProblem’s equConVal() method and add it to value.

3. If inequality constraints are present we compute
∥∥[µ+ ρg(x)]+

∥∥2
using AslProb-

lem’s inequConVal() method and add it to value.

4. Finally, returning value, which is the function value of Lρ(x, λ, µ).

4.5 Solving Large-Scale Linear Stochastic Programming Problems

A variety of planning, logistics, and system control problems may be formulated as

stochastic programming problems [63, 11, 58], resulting in very large models. Here,

we will present an approach to solving the special case of this problem class, in which

the objective function and the constraints are linear. Every such linear stochastic

programming problem can be formulated as follows
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double AugLagAslProblem :: objVal(VectorObject &x) {

numObjEval ++;

double value = objSign * AslProblem :: objVal(x);

if(numEquCon > 0) {

equConVal(x, hx);

value += lambda.inner(hx) + 0.5 * penaltyParam * hx.

↪→ norm2sq ();

}

if(numInequCon > 0) {

inequConVal(x, gx);

gx = mu + penaltyParam * gx;

gx.localMax(zeroVec);

value += (1.0/ penaltyParam) * 0.5 * gx.norm2sq ();

}

return value;

}

Figure 4.9: AugLagAslProblem class’ objVal() routine.

min (c1)>x1 + (c2)>x2 + . . . + (cT )>xT

s.t. A1x1 = b1

B2x1 + A2x2 = b2

. . .

BTxT−1 + ATxT = bT

x1 ≥ 0, x2 ≥ 0, . . . xT ≥ 0,

(4.40)

where the uncertain data are ξt := (ct, Bt, At, bt) and ξ1, . . . , ξT are revealed incre-

mentally over T periods, T is the total number of stages, and xt are decision vectors

corresponding to time periods (stages) [63]. A constraint corresponds to stage t, if it

does not contain any nonzero coefficients for variables xt̄ such that t̄ > t. For example,

the constraint B2x1 + A2x2 = b2 is a stage 2 constraint. We will refer to Bts as tech-

nology matrices [11, p. 104]. A technology matrix Bt determines the influence of the

decisions at stage t− 1 on stage t. More precisely, technology matrices are the nonzero

coefficients of stage t− 1 variables in a stage t constraint.
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One way to solve a stochastic programming problem with conventional optimiza-

tion algorithms, such as augmented Lagrangian methods, is to solve the deterministic

equivalent, also known as the extensive form. The extensive form of a linear stochastic

programming problem is, essentially, a large linear programming problem, where the

decision vectors xν are associated with specific realizations of ξt at each stage t. The

following example will illustrate how to obtain from a general linear stochastic program

its extensive form. Consider the three-stage stochastic program below:

min (c1)>x1 + (c2)>x2 + (c3)>x3

s.t. A1x1 = b1

B2x1 + A2x2 = b2

B3x2 + A3x3 = b3

x1 ≥ 0 x2 ≥ 0 x3 ≥ 0

(4.41)

Let us assume that ξ1 is known and, therefore, has only one realization, ξ2 has

two realizations each with respective probabilities π1 and π2 such that π1 + π2 = 1,

and ξ3 has four realizations with probabilities π1 + π2 + π3 + π4 = 1. This setup is

illustrated in Figure 4.10 with the help of a scenario tree, where each node stands for

the different realizations at a given stage. Thus, the root stands for the first stage (ξ1)

and the four leaves for the last stage (ξ3). Consequently, each node belongs to a unique

stage, whereas multiple nodes could be part of a given stage. We will call each root to

leaf path a scenario Sj , where j = 0, . . . , r − 1 and r is the total number of scenarios.

The total number of scenarios equals the total number of realizations at the last stage.

Given the scenario tree formulation, our decision vectors xν correspond to nodes ν of

the scenario tree. If we label each node of the tree in Figure 4.10 as 1, . . . , 7, then the

extensive form of (4.41) becomes
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Stage 1

Stage 2

Stage 3

S0

Stage 3

S1

Stage 2

Stage 3

S2

Stage 3

S3

Figure 4.10: 3-stage scenario tree with a total of 4 scenarios {S0, S1, S2, S3}

min (c1)>x1 + (c2)>x2 + (c4)>x4 + (c5)>x5 + (c3)>x3 + (c6)>x6 + (c7)>x7

s.t. A1x1 = b1

B2x1+ A2x2 = b2

B4x2+ A4x4 = b4

B5x2+ A5x5 = b5

B3x1+ A3x3 = b3

B6x3+ A6x6 = b6

B7x3+ A7x7 = b7

x1 ≥ 0 x2 ≥ 0 x4 ≥ 0 x5 ≥ 0 x3 ≥ 0 x6 ≥ 0 x7 ≥ 0,

(4.42)

where the cν are weighted with the respective node probabilities, and the labeled

scenario tree is shown in Figure 4.11. Similarly, all linear stochastic programs can be

formulated as simple linear programs of the following form

min 〈c, x〉

s.t. Mx− b = 0

x ∈ Rn+,

(4.43)
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Figure 4.11: Labeled scenario tree of (4.41)

which is a smooth convex optimization problem. Therefore, we can apply the aug-

mented Lagrangian algorithm. Given (4.43), the augmented Lagrangian function, its

gradient, and its Hessian are

Lρ(x, λ) = 〈c, x〉+ 〈λ,Mx− b〉+ ρ
2 ‖Mx− b‖2

∇xLρ(x, λ) = c> +M>λ+ ρ(M>(Mx− b))

∇xxLρ(x, λ) = ρM>M.

(4.44)

Thus, our problem class implementing the objective function, gradient and Hessian

computations needs to be able to perform matrix-vector multiplies Mx and vector-

transpose-matrix multiplies λ>M efficiently (inner products 〈c, x〉, vector additions, and

scalar multiplications are operations implemented in the vector class). Because GENCAN

only requires Hessian-vector products ∇xxLρ(x, λ)d we do not need to perform matrix-

matrix multiplies M>M explicitly, since Hessian-vector products can be computed with

a matrix-vector and a matrix-transpose-vector multiply M> (Md) or equivalently a

vector-transpose-matrix multiply (Md)>M .

4.5.1 Solving Linear Stochastic Programs in Serial

In serial, as mentioned in Section 4.4.3, we can use the AugLagAslProblem class to

solve any smooth convex optimization problem. Since AugLagAslProblem is an ASL

based problem class its input is an nl file. The most straightforward way of generating

an nl file describing a stochastic program’s extensive form (linear program) is to use

an AML interpreter with stochastic programming functionality. A popular open-source
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Python-based stochastic programming AML is PySP [79] an extension of Pyomo [38],

which we have used to generate the extensive form of our stochastic programs.

4.5.2 Solving Linear Stochastic Programs in Parallel

As mentioned in Section 1.2, there are no software libraries that can perform in a

distributed-memory parallel setting what ASL can in serial. Therefore, building a cus-

tom linear stochastic programming problem class is inevitable in the parallel case. Just

like for LASSO, the parallel problem class determines the data partitioning and the

communication primitives of problem-dependent methods such as objective, gradient

and Hessian evaluations. Unlike for LASSO, however, a simple column, row or nonzero

partitioning of M ∈ Rn×m would not be efficient, because the extensive form of stochas-

tic programs usually has very large numbers of both rows and columns, which means

that communicating an entire row or column vector would be too expensive. Instead of

a column-based or nonzero-based partition we use a scenario-based partitioning scheme,

which was originally developed by Watson et al. for a progressive-hedging-based solver

ph that is integrated with PySP [79].

Scenario-Based Partitioning

Scenario-based partitioning means that we create a separate problem instance for each

scenario in the scenario tree and generate an nl file corresponding to that problem

instance. Consider S0 with nodes {1, 2, 4} (Figure 4.12) of our 3 stage 4 scenario

problem from (4.42). As depicted below, we extract the data and decision variables

corresponding to nodes in S0 and use it to formulate the problem (4.45).
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Figure 4.12: Scenario S0 {1, 2, 4}

min (c1)>x1 + (c2)>x2 + (c4)>x4 + (c5)>x5 + (c3)>x3 + (c6)>x6 + (c7)>x7

s.t. A1x1 = b1

B2x1+ A2x2 = b2

B4x2+ A4x4 = b4

B5x2+ A5x5 = b5

B3x1+ A3x3 = b3

B6x3+ A6x6 = b6

B7x3+ A7x7 = b7

x1 ≥ 0 x2 ≥ 0 x4 ≥ 0 x5 ≥ 0 x3 ≥ 0 x6 ≥ 0 x7 ≥ 0

min (c1)>x1 + (c2)>x2 + (c4)>x4

s.t. A1x1 = b1

B2x1+ A2x2 = b2

B4x2+ A4x4 = b4

x1 ≥ 0 x2 ≥ 0 x4 ≥ 0

(4.45)

We do this for each scenario S0, . . . , Sr−1, giving us r separate problems. For

distributed-memory parallel solvers that employ a decomposition-based approach, like

progressive hedging, these problems are treated and solved as separate instances at cer-

tain points in the decomposition procedure. Iteratively using the solutions to perturbed

versions of these smaller problems, decomposition algorithms, with the help of special

coordination steps, construct a solution that is optimal for the extensive form of the

problem. However, our approach is different: we do not use a decomposition algorithm,

but simply use the “decomposition” approach to partition our data in such a way that
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Figure 4.13: Node data replication for (4.42) on 4 processors.

yields efficient linear algebra computations in distributed memory parallel settings.

Each scenario’s data is assigned to one processor, for example, scenario S0 is assigned

to processor p0, scenario S1 to processor p1, and so forth. Theoretically, it is also possible

to assign bundles of scenarios to individual processors, but for the sake of simplicity we

only discuss the case where each processor receives one scenario’s data. Thus, from now

on we will assume that the number of processors always equals the number of scenarios.

Because some tree nodes occur in multiple scenarios, for example, the root node (1)

is part of every scenario, our scenario partitioning method also means that to some

degree we replicate node data across processors. The replication pattern for (4.42) is

shown in Figure 4.13: node 1 data (yellow) is replicated in every processor, node 2 data

(violet) in processors p0 and p1, and node 3 data (orange) in processors p2 and p3. Note

that leaf node information is not replicated. The resulting constraint data distribution

of (4.42) across 4 processors is shown in Figure 4.14. Note, that this data partitioning

procedure assigns an even work load to each processor, which is important for parallel

efficiency.

Because our distributed M replicates non-leaf node data, we also have to replicate

the corresponding coefficients of x. As shown in Figure 4.15 x1 (yellow) that corresponds

to node 1 is replicated in every processor, x2 (violet) that corresponds to node 2 is

replicated in processors p0 and p1, and x3 (orange) that corresponds to node 3 is

replicated in processors p2 and p3. In terms of the dual variable λ, we adopt a similar

strategy, coefficients of λ that correspond to replicated constraints are also replicated

as shown in Figure 4.16.
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P0


A1

B2 A2

B4 A4

P1


A1

B2 A2

B5 A5

P2


A1

B3 A3

B6 A6

P3


A1

B3 A3

B7 A7

Figure 4.14: Data distribution of the constraint matrix M from (4.42) across 4 proces-

sors.

P0︷ ︸︸ ︷ P1︷ ︸︸ ︷ P2︷ ︸︸ ︷ P3︷ ︸︸ ︷
x1 x2 x4 x1 x2 x5 x1 x3 x6 x1 x3 x7

Figure 4.15: Partially replicate non-leaf node variables of x.

P0︷ ︸︸ ︷ P1︷ ︸︸ ︷ P2︷ ︸︸ ︷ P3︷ ︸︸ ︷
λ1 λ2 λ4 λ1 λ2 λ5 λ1 λ3 λ6 λ1 λ3 λ7

Figure 4.16: Partially replicate non-leaf node variables of λ.
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Given a general scenario tree and an arbitrary non-leaf node ν, the following pro-

cedure is used to determine which processors replicate ν’s data:

1. Label each leaf node of the scenario tree with a processor label (given that the

number of processors equals the number of scenarios, each leaf node will receive

a unique label).

2. Determine ν’s leaf-node descendants.

3. ν’s data is replicated in the processors that label its leaf-node descendants.

For OPAL we perform the labeling in a “left-to-right” manner. This means that we

label the leftmost leaf node with processor p0, the leftmost leaf node’s neighbor with

processor p1 and so forth. We will refer to this procedure as left-to-right labeling .

The DistributedLinStochProgAugLagAslProblem Class

Our DistributedLinStochProgAugLagAslProblem class implements all methods that

are required by OPAL for distributed linear stochastic programs with scenario-based

partitioning. Each processor’s DistributedLinStochProgAugLagAslProblem object

holds one scenario’s data, which is in accordance with the data distribution scheme in

the previous section and the SPMD paradigm of OPOS. The constructor for Distribut-

edLinStochProgAugLagAslProblem is responsible for reading in the scenario data from

the appropriate nl file. In order that our distributed linear algebra operations work

properly, it is important that neighboring scenarios’ data be assigned to neighboring

processors in a left-to-right manner, i.e. scenario S0 is assigned to processor p0, sce-

nario S1 to processor p1 and so forth. This means that, given (4.42), assigning S0 to

p0 and S1 to p2 would be an invalid assignment. We have developed a PySP scenario

data generation plugin that ensures the proper ordering of scenarios and labels the nl

files accordingly. OPAL’s driver makes sure that each processor reads in the appropriate

scenario data based on the nl file labeling. In addition to the scenario ordering, our

PySP plugin also has to ensure that the replicated decision vectors and constraints have

the same position in the scenario problem formulation in each processor. To elaborate,

consider S0 and S1 and the linear programs composed of their data:
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S0 problem S1 problem

min (c1)>x1 + (c2)>x2 + (c4)>x4

s.t. A1x1 = b1

B2x1+ A2x2 = b2

B4x2+ A4x4 = b4

x1 ≥ 0 x2 ≥ 0 x4 ≥ 0

min (c1)>x1 + (c2)>x2 + (c5)>x5

s.t. A1x1 = b1

B2x1+ A2x2 = b2

B5x2+ A5x5 = b5

x1 ≥ 0 x2 ≥ 0 x5 ≥ 0.

Notice that these two problems have identical data except for the decision vectors

x4, x5 and the node data (A4, B4, b4, c4) and (A5, B5, b5, c5). In order for our linear

algebra operations to work properly, our PySP plugin has to ensure that decision vec-

tors and constraints that are identical for different scenarios have the same ordering

in their respective nl files, meaning the first set of constraints in both S0’s and S1’s

nl file has to be A1x1 = b1 followed by B2x1 + A2x2 = b2, and the decision variables

have to occupy the same positions i.e.
[
x1, x2, . . .

]
. The nl file generator in PySP does

not enforce any particular ordering, and the position of constraints and variables in

an nl file depends on various factors, such as the specific problem instance and cur-

rent computer architecture. Therefore, DistributedLinStochProgAugLagAslProblem

class’s constructor has to first sort the scenario data to make sure that replicated data

are in the same order in each processor. To be able to sort the data, we had to assign

identifications to constraints and variables, which is done in our PySP plugin through

ASL suffixes that can convey auxiliary information on variables, constraints, objectives

and problems [28, 29].

Given the scenario based data partitioning, we next describe the design of our

distributed linear algebra operations Mx and λ>M , using (4.42) as an example. As

mentioned earlier our constraint matrix M is distributed as shown in Figure 4.14.

Computing the Matrix-Vector Product Mx

Let us consider the operation Mx = z as shown in Figure 4.17. Every processor has

the necessary data that is required to compute its portion of the product Mx. After
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P0︷ ︸︸ ︷ P1︷ ︸︸ ︷ P2︷ ︸︸ ︷ P3︷ ︸︸ ︷
x1 x2 x4 x1 x2 x5 x1 x3 x6 x1 x3 x7

×

P0


A1

=

z1
P0B2 A2 z2

B4 A4 z4

P1


A1 z1

P1B2 A2 z2

B5 A5 z5

P2


A1 z1

P2B3 A3 z3

B6 A6 z6

P3


A1 z1

P3B3 A3 z3

B7 A7 z7

Figure 4.17: Distributed matrix-vector multiply Mx = z.

each processor computes its local matrix-vector multiplies the result vector z has the

same values as it would have in the serial case, also, every processor’s z1 is identical,

p0 and p1 have identical z2-s etc., just as the replication pattern suggest. Hence, the

Mx operation is communication free.

Computing the Vector-Transpose-Matrix Product λ>M

Since the total number of scenarios r equals the total number of processors P , and each

scenario Si is assigned to processor pi, in this section, the index i will run from 0 to

P − 1. Let us consider the operation λ>M = y as shown in Figure 4.18. We will refer

to any row, or combination of rows, of a technology matrix Bν as technology matrix

data, and to Λν = (λν)>Bν as the technology matrix product. After computing the local

vector-transpose-matrix multiplies, y1 has the following values:

In processor p0: y1 = (λ1)>A1 + (λ2)>B2.

In processor p1: y1 = (λ1)>A1 + (λ2)>B2.

In processor p2: y1 = (λ1)>A1 + (λ3)>B3.

In processor p3: y1 = (λ1)>A1 + (λ3)>B3.
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P0


λ1

×
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P0λ2 B2 A2

λ4 B4 A4

P1


λ1 A1

P1λ2 B2 A2

λ5 B5 A5

P2


λ1 A1

P2λ3 B3 A3

λ6 B6 A6

P3


λ1 A1

P3λ3 B3 A3

λ7 B7 A7

q
y1 y2 y4 y1 y2 y5 y1 y3 y6 y1 y3 y7

︸ ︷︷ ︸
P0

︸ ︷︷ ︸
P1

︸ ︷︷ ︸
P2

︸ ︷︷ ︸
P3

Figure 4.18: Distributed vector-transpose-matrix multiply λ>M = y.

Considering the extensive form in (4.42), y1 should have a value of y1 = (λ1)>A1 +

(λ2)>B2 + (λ3)>B3 in each processor. Therefore, to get the correct y1-s, in addition

to the local vector-transpose-matrix multiplies, our program also has to communicate

missing technology matrix products. More precisely, it needs to add Λ3 = (λ3)>B3 to

processor p0’s and p1’s y1 and Λ2 = (λ2)>B2 to processor p2’s and p3’s y1. Similarly to

y1, the local vector-transpose-matrix multiplies do not yield the correct values for y2

and y3:

In processor p0: y2 = (λ2)>A2 + (λ4)>B4.

In processor p1: y2 = (λ2)>A2 + (λ5)>B5.

In processor p2: y3 = (λ3)>A3 + (λ6)>B6.

In processor p3: y3 = (λ3)>A3 + (λ7)>B7.

The extensive form (4.42) tells us that processors p0 and p1 should have y2 =

(λ2)>A2 + (λ4)>B4 + (λ5)>B5 and processors p2 and p3 should have y3 = (λ3)>A3 +

(λ6)>B6+(λ7)>B7. In other words, processor p0’s y2 is missing Λ5 = (λ5)>B5, processor

p1’s y2 is missing Λ4 = (λ4)>B4, processor p2’s y3 is missing Λ7 = (λ7)>B7, and
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Figure 4.19: Missing data for λ>M multiply.

processor p3’s y3 is missing Λ6 = (λ6)>B6. The missing technology matrix data for the

distributed vector-transpose-matrix multiply in Figure 4.18 is illustrated in Figure 4.19.

Let us consider vector-transpose-matrix multiplies in general. For any node ν we

have

yν = (λν)>Aν + uν , (4.46)

where uν =
∑

γ∈Gν Λγ and Gν is the set of children of node ν. If Gν = ∅ then uν

equals the zero vector. To see why this is the case, consider the general stochastic

programming formulation in (4.40). Note, that technology matrix data in a stage-t

constraint, where t > 1, can only correspond to stage-t−1 variables (stage 1 constraints

do not contain any technology matrix data). Therefore, if node ν is at stage t − 1 in

the scenario tree (t > 1), then only stage-t constraints corresponding to its children

can contain technology matrix data related to node ν variables. In other words, the

block of columns in M that corresponds to yν can only contain technology matrices
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Bγ , where γ ∈ Gν . Our goal is to be able to compute uν for each non-leaf node in the

scenario tree.

A scenario Si and a stage t uniquely identify a node ν. For example, as shown

in Figure 4.12 S0’s stage-3 node is 4. Let us define for every scenario Si, Λti the

technology matrix product of Si’s stage-t node, and the vector vi

vi =

Λ2
i

...

ΛTi


 . (4.47)

We will show that each processor pi can compute uν-s necessary for their respective

yνi computations, with essentially, two parallel scans on slightly modified vi vectors.

At this point, for the sake of simplicity, we postpone specifying the nature of these

modifications.

Given P processors and their data v0, v1, v2, . . ., vP−1, a parallel scan, also known

as parallel prefix sum [46, 16] or just simply scan, of the sequence v0, v1, v2, . . ., vP−1,

is its sequence of partial “sums” u0, u1, u2, . . ., uP−1:

u0 = v0

u1 = v0 + v1

u2 = v0 + v1 + v2

...

uP−1 = uP−2 + vP−1.

(4.48)

A scan can be defined for any associative operator �: ui = ui−1 � vi. A segmented

scan is a scan that resets the accumulation when it crosses a user-defined “segment”

or boundary. An example of a segmented scan with two segments on 4 processors and

the sequence v0, v1, v2, v3 is

u0 = v0

u1 = u0 + v1

u2 = v2

u3 = u2 + v3,

(4.49)

where the segment boundary is at i = 1.



110

For the λ>M = y operation, DistributedLinStochProgAugLagAslProblem class

routines use segmented scans on vi-s to spread the missing data across processors. First,

let us note that each processor pi can compute its own vi vector locally, since it owns

all the data of scenario Si. Each vi is made up of blocks of vti , where vti are coefficients

of vi that belong to stage-t technology matrix products, where t = 2, . . . , T .

When “scanning” vti-s we determine the segments based on the parent nodes of Si’s

stage-t node. The segment boundaries between vti-s are at every such i, where the

parent of Si’s stage-t node is different from the parent of Si+1’s stage-t node. Given our

3 stage example, the boundary for v3
i -s, i = 0, . . . , 3, is at i = 1 because the parent node

of 5 (S1’s stage-3 node) is node 2, however, the parent of node 6 (S2’s stage-3 node)

is node 3. In general, we can say that the number of segments for vti-s depends on the

number of nodes at stage t− 1. For example, for v2
i -s, i = 0, . . . , 3, we define only one

segment because at stage 1 the scenario tree only has one node, which is the parent

of all nodes at stage 2, whereas for v3
i -s, i = 0, . . . , 3, we define 2 segments because

there are two nodes at stage 2. Figure 4.20 shows a segmented scan using the addition

operator, on vi-s, i = 0, . . . , 3, for the 3-stage example. If the binary operator of a scan

is the addition operator and the first element of the sequence is v0 owned by processor

p0, then we refer to it as forward scan. Given that vti = Λti (4.47) we conclude that

the forward scan only yields final results for u3
1 and u3

3, which are equivalent to u2 and

u3 respectively. The remainder of the uti-s are still not final meaning that they do not

yield uν-s. In order for all uti-s to yield uν-s we have to do two things:

1. Remove redundant v2
i -s from stage-2 blocks.

2. Perform a second scan with a different operator.

To remove redundant v2
i -s we will modify our vi vectors in the following manner;

vti = Λti if Si’s stage-t node is a leaf or if the leaf node of Si is the leftmost descendant

of Si-s stage-t node, otherwise vti = 0. Figure 4.21 shows the forward scan on our

modified vi-s, i = 0, . . . , 3, for the 3-stage example, which yields final results for u2
2,

u2
3, u3

1, and u3
3, because u2

2 = u1, u3
2 = u1, u3

1 = u2, and u3
3 = u3. Note, that at this

point we have computed all the necessary uν-s for our 3-stage example. Finally, using a
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Figure 4.20: Forward scan of vi-s, i = 0, . . . , 3.



112

v2
0

v3
0




0

v3
1




v2
2

v3
2




0

v3
3




add

add

add add

add

v2
0

v3
0




v2
0

v3
0 + v3

1




v2
0 + v2

2

v3
2




v2
0 + v2

2

v3
2 + v3

3




u2
0

u3
0




u2
1

u3
1




u2
2

u3
2




u2
3

u3
3




p0 p1 p2 p3

Figure 4.21: Forward scan on redefined vi-s, i = 0, . . . , 3.
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Figure 4.22: Backward scan on ui-s, i = 0, . . . , 3.

backward scan, where the first element of the sequence is uP−1, the result of the forward

scan owned by processor pP−1, and the binary operator is =. The backward scan on

ui-s, i = 0, . . . , 3 is illustrated in Figure 4.22. After the backward scan all processors pi

have the necessary technology matrix products (Λν) needed to compute their respective

yν-s.

Given P processors and a general scenario tree T with T stages and r scenarios such

that r = P , the steps below summarize how each processor pi receives the necessary

uν-s that are required to compute their respective yνi -s:

1. Each processor pi computes their modified vi vectors, where vti a stage-t block of

vi equals Λti, if scenario Si’s stage-t node is a leaf, or if the leaf node of Si is the

leftmost descendant of Si’s stage-t node.

2. Perform a forward scan on vi-s, where the segment boundaries between vti-s are

at every such i, where the parent of Si’s stage-t node is different from the parent

of Si+1’s stage-t node.
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3. Perform a backward scan on ui-s, the result of the forward scan, using the same

segments as defined above.

The necessary information that a processor needs to perform the forward and back-

ward scans is provided to DistributedLinStochProgAugLagAslProblem by our PySP

plugin, which adds related suffix information to the nl files. Based on this information,

each processor pi is aware of the necessary segment, node and stage information needed

to determine whether its scenario’s (Si) stage-t node is a leaf, or if the leaf node of Si

is the leftmost descendant of Si’s stage-t node.

The communication complexity of scan operations on P processors is O(v logP ),

where v is the local vector length [46]. Therefore, the overall complexity of computing

λ>M is

O

(
T−1∑
t=1

nt logP

)
, (4.50)

where nt is the length of vti , which is equivalent to (λν)>Bν for nodes ν at stage t.

Thus,

O

(
T−1∑
t=1

nt logP

)
⊂ O (n logP ) ,

where n is the total number of decision variables in one scenario. In practice, OPAL

performs a sparsity check on all Bν-s, which detects all columns of Bν that are zero.

If a column of Bν is all zeros OPAL does not need to communicate the coefficients of

vti associated with that column. Hence, OPAL adjusts the size of vti-s according to the

results of the sparsity check.

Vector Operations

Vector addition and scalar multiplication operations, such as xk+1 = xk + αdk, are

automatically parallel and communication free because of the data distribution and

the underlying parallel vector class. However, inner products for both primal (x) and

dual (λ) variables need to account for variable replication. DistributedLinStochPro-

gAugLagAslProblem’s constructor passes the appropriate replication information to the
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Figure 4.23: Global inner product 〈c, x〉 for (4.42).

parallel vector class’ constructor through the VectorObject method setAvpMode().

For example, the global 〈c, x〉 computation for (4.42) is illustrated in Figure 4.23.

4.5.3 Computational Results

We tested OPAL on the continuous relaxation of a multistage stochastic capacity ex-

pansion problem modeled by Ahmed et al. [1]. The deterministic model considers T

stages, which is the planning horizon, over which the capacity investment costs, and

demands are known. The goal is to determine, what levels of resources (I) to acquire

and at which stage, in order to satisfy the demand, while minimizing the total cost over

the entire planning horizon. Let us denote with xit the capacity expansion of resource

type i ∈ I at stage t and yit to denote the binary variable for the corresponding capacity

expansion decision. Thus, the deterministic problem takes the following form

min
T∑
t=1

∑
i∈I

(
cv
itxit + cf

ityit

)
(4.51)

s.t. 0 ≤ xit ≤Mityit t = 1, . . . , T ; i ∈ I (4.52)
t∑

τ=1

∑
i∈I

xiτ ≥ dt t = 1, . . . , T (4.53)

yit ∈ {0, 1} t = 1, . . . , T ; i ∈ I, (4.54)
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where cv
it is the variable investment cost, cf

it the fixed investment cost, dt the de-

mand parameter, and Mit the variable upper bounds on the capacity additions. Con-

straint (4.52) enforces that capacity acquisition levels are bounded, and constraint (4.53)

ensures that the production capacity is sufficiently large to satisfy the demands. For the

stochastic version, we assume that ξt =
(
cv
it, c

f
it, dt

)
evolve as discrete-time stochastic

processes with a finite probability space.

Because of yit this formulation is not continuous, therefore, we have relaxed the

integrality constraint (4.54) to yit ∈ [0, 1]. In addition, problem (4.51)- (4.54) is also

not in the form presented in (4.40), because of the inequality constraints and because

the demand constraints (4.53) corresponding to stage t include variables up to stage

1, whereas the formulation in (4.40) only allows for a stage t constraint to include

variables that belong to stage t or t− 1. OPAL is capable of directly handling inequality

constraints, so we do not have to add slack variables to convert them into equality

constraints. However, we need to add another set of equality constraints to remove the

dependency of stage t demand constraints on variables of stage t − 2 and earlier. The

relaxed reformulation thus has the following form

min
T∑
t=1

∑
i∈I

(
cv
itxit + cf

ityit

)
s.t.

∑
i∈I

xi1 − z1 = 0∑
i∈I

xit + zt−1 − zt = 0 t = 2, . . . , T

xit −Mityit ≤ 0 t = 1, . . . , T ; i ∈ I

zit ≥ 0, yit ∈ [0, 1] , zt ≥ dt t = 1, . . . , T ; i ∈ I,

(4.55)

which is in the form of (4.1), a general convex optimization problem with bound

constraints X.

We ran the test on the Caliburn supercomputer [62] at Rutgers Discovery Informat-

ics Institute (RDI2). Each node of this system consists of two 2.1 GHz 18-core Xeon

processors with 256GB of RAM, and the nodes are connected by Intel’s Omni-Path

interconnect network. Figure 4.24 illustrates a weak-scaling graph of the runtimes per
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Figure 4.24: Weak-scaling graph of OPAL on a multi-stage linear stochastic program.

QCG iteration. The graph was obtained by increasing the number of processors pro-

portionally to the number of scenarios, beginning with 9 and ending with 576, which

ensured that the test runs on multiple nodes used all the 36 cores available on a Cal-

iburn node. The linear programming problem corresponding to the 576-scenario case

has about 2 million variables and about 1 million constraints. Figure 4.24 shows that

OPAL exhibits exceptional weak-scaling efficiency in terms of the inner loop, where most

of the work is performed.

Testing OPAL for strong scaling efficiency is currently only possible in a limited form,

since strong scaling tests would require the development of a PySP plugin that is capable

of generating nl files that contain “bundled” scenarios. While writing such a plugin is

theoretically possible, it is currently outside the scope of this thesis. Instead, we have

compared OPAL with ALGENCAN on a 9-scenario capacity expansion problem that has

40, 010 variables and 20, 010 constraints. For the strong scaling test of OPAL we will use

the following speedup formula

S(N,P ) =
T (N, 1)

T (N,P )
× 100%, (4.56)
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Figure 4.25: Comparing ALGENCAN to OPAL.

where T (N, 1) is the running time of ALGENCAN. Before discussing the results, we would

like to mention that because of how PySP generates the extensive form of a stochastic

program, the problems given to OPAL and ALGENCAN are not identical. ALGENCAN’s prob-

lem formulation includes additional constraints and variables, which could be removed

from the problem, hence, the solution to the two problems is the same. Nonetheless,

ALGENCAN’s problem is bigger than OPAL’s. However, during the test runs we have

allowed ALGENCAN to use various procedures that would boost its performance such

as, objective and constraint scaling, fixed variable removal, dynamic adjusting of the

penalty parameter and a special acceleration process [12, p. 161]. ALGENCAN, which is a

serial solver, solves the problem instance in 24.3 seconds, whereas OPAL solves it in 4.6

seconds using 9 processors. OPAL’s strong scaling graph is shown Figure 4.25.

Figure 4.26 illustrates OPAL’s parallel efficiency, which is calculated by the following

formula

E(N,P ) =
T (N, 1)

P × T (N,P )
, (4.57)

where T (N, 1) is the running time of ALGENCAN. In Figure 4.26 we insrease the problem

size as we increase the number of scenarios to keep the work per processor constant.

For 2-, 8-, and 16-scenario problems OPAL and ALGENCAN perform a similar number of

outer and inner iterartions, however, since ALGENCAN actually solves a somewhat larger
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Figure 4.26: Parallel efficiency of OPAL on a log-linear graph.

problem the efficiency can go beyond 1.0. In the 4- and 32-scenario cases ALGENCAN

converges faster to the solution than OPAL and performs fewer outer and inner iterations

as a result the efficieny decreases substantially.

While OPAL’s performance is comparable to other well established nonlinear solvers

on smaller problem instances, when it comes to large-scale problems, where both the

number of variables and constraints are in the region of O(105) or more, we have noticed

that the overall performance of OPAL is slow compared to other commercial solvers. We

attribute this observation to the following:

1. OPAL does not implement any pre-solve procedures, which in many large-scale

instances removes a lot of the constraints and variables from the original problem.

2. QCG does not precondition the constraint matrix M , which could substantially

improve the total number of iterations it takes for GENCAN to find a good search

direction d̂k.

3. OPAL performs fewer subproblem termination checks than ALGENCAN, which in

some cases results in more work for the subproblem solver.
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Chapter 5

Conclusion

The work we have done so far suggests that the object-parallel framework is suitable

for the implementation of optimization algorithms efficiently and in a readable manner.

Since the resulting source code is clean from “clutter,” we assume that it will be much

easier to maintain and further improve OPOS’ code-base. The benefits of the operator

overloading techniques are that it makes the solver-level code easier to understand and

maintain, and that it facilitates relatively easy development of new solver algorithms.

The philosophy is that if the application developers can focus on efficiently performing

just a few operations, namely function and gradient evaluation, then our object-parallel

framework can use those low-level operations to construct an efficient parallel solver.

Given the strong scaling results of OPSPG in Chapter 3, classical first-order meth-

ods if implemented in OPOS, can be very effective in solving large-scale regression-type

problems. These problems are of central importance in the field of machine learning, so

it is our goal to extend OPOS’ capabilities in this area. In particular, we are interested

in implementing a novel proximal gradient method [41], which is similar to the SPG

algorithm, except that it employs a shrinkage operation instead of the classical projec-

tion operation used in SPG. This work would add to the number of robust first-order

methods available for large-scale regression-type problems that are less application-

dependent than coordinate descent methods. Another useful addition would be to

extend our existing parallel problem classes to be able to efficiently handle problems

where A ∈ Rm×n is tall, i.e. m� n or both m and n are large.

While OPAL’s inner loop scaling results are very promising, there is still work that

needs to be done in order for it to be competitive with existing parallel software for

stochastic programing problems. This work, however, is mostly of numerical nature:
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ensuring fast convergence of the outer loop of the augmented Lagrangian algorithm.

Our experience tells us that numerical algorithms for constrained optimization problems

require the adjustment of the algorithm’s parameters based on the problem’s data and

structure. Therefore, we plan to add an xml-based problem class that allows users to

efficiently manage optimization algorithm parameters. This class could also incorporate

routines that would examine the underlying data and make some of these adjustments

automatically.

As mentioned at the end of Section 4.5.3, adding a preconditioner would most

likely boost QCG’s performance and thus so the overall performance of OPAL. While

adding a parallel preconditioner for general constrained optimization problems requires

significant amount of work and research, developing one for linear stochastic programs

as presented in Equation (4.40) is a realistic goal and we hope to make this addition to

OPAL in the future.

Lastly, in this dissertation we have presented an implementation of the augmented

Lagrangian algorithm that is based on ALGENCAN; however, the augmented Lagrangian

algorithm has many variations depending on the subproblem solver that is used for the

inner loop. We would like to improve OPAL’s capabilities by increasing the number of

subproblem solvers that it can use. The first step we have taken in this direction is the

implementation of a nonlinear conjugate gradient algorithm by Hager and Zhang [36],

which can be used as a subproblem solver in OPAL if the original problem does not have

any variable bounds or the variable bounds are reformulated explicitly as constraints

in the problem.

The proposed future work on OPAL will be more straightforward to accomplish than

attempting similar work on other methods, like Newton barrier, because OPAL does not

require parallelization of intricate linear algebra operations such as matrix factorization;

instead, it is enough to parallelize a limited number of relatively simple operations. The

resulting software will exhibit better tail convergence than decomposition methods.
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Appendix A

Computational Tools

We have used a variety of computational tools to test, improve and run OPOS. This

appendix provides a summary of these tools.

A.1 OPSPG Tools

Results presented in Section 3.4.3 were obtained by running OPSPG on TACC’s Stam-

pede [67], which since has been decommissioned. Stampede’s system specifications can

be seen in Figure A.1. Figure A.2 lists build tools and libraries used to compile and

run OPSPG on Stampede.

A.2 OPAL Tools

Results presented in Section 4.5.3 were obtained by running OPAL on RDI2’s Cal-

iburn [62]. Caliburn’s system specifications can be seen in Figure A.3. Figure A.4

lists build tools and libraries used to compile and run OPAL on Caliburn.

As mentioned in Section 4.5.3 scaling results for OPAL are limited to weak-scaling

Stampede

Compute Nodes

Host processor Dual Xeon E5-2680 @ 2.7GHz (16 cores per node)

Coprocessor 1/61 Xeon Phi SE10P @ 1.1GHz (not used)

Interconnect

Network Mellanox FDR InfiniBand

File system

Parallel file system Lustre

Figure A.1: Stampede system specifications.
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OPSPG on Stampede

Compiler Intel icc

MPI MVAPICH2

Dense BLAS Intel MKL and Epetra

Sparse BLAS Intel MKL and Epetra

Figure A.2: Build tools and libraries used on Stampede.

Caliburn

Compute Nodes

Processor Dual Xeon E5-2695v4 @ 2.1GHz (36 cores per node)

Interconnect

Network Intel Omni-Path

Figure A.3: Caliburn system specifications.

OPAL on Caliburn

Compiler GNU gcc

MPI MVAPICH

Dense BLAS OpenBLAS

Sparse BLAS Custom

Figure A.4: Build tools and libraries used on Caliburn.
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Figure A.5: Communication profile of OPAL on a 9-scenario problem.

tests. Therefore, we have created a communication profile of OPAL on Caliburn using

PARAVER [55] to gain a better understanding of OPAL’s performance. The profile was

run on a 9-scenario instance with 9 processors; its results are depicted in Figure A.5.

Column Outside MPI (blue) shows for each processor the total amount of time it spends

outside of MPI calls, the remainder of the columns (green) show time spent in specific

MPI function calls. Figure A.5 shows that OPAL only spends 10% of its running time

communicating.
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