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Previous work in interactive information retrieval (IIR) has explored the relationships

between individuals’ search behavior, the characteristics of their search tasks, and their

perceptions of their tasks, such as perceived topic familiarity and task difficulty. This

work ultimately serves goals like personalization and search satisfaction. It is believed

that predictions of task characteristics or searcher characteristics from observed behav-

ior can help tailor search experiences to support task completion and search satisfaction.

Often, research examines changes in behaviors when one or two characteristics change

at a time. It applies methods such as t-tests, ANOVAs, and multivariate regression.

This dissertation shows the limitations of this empirical framework. The contribution

of this dissertation is in demonstrating that task characteristics, user characteristics,

and behaviors should be empirically studied as a network of dependencies. It expands

empirical work using graphical modeling, which can uniquely capture phenomena such

as mediation and conditional independence. Research questions regarding mediation

and conditional independence can hence now be answered with this different frame-

work. This dissertation empirically shows when knowledge about behavior and certain

task characteristics can be used to learn about other aspects of the task. It shows how

task and user characteristics simultaneously affect behavior while potentially affecting
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each other. Specifically applying path analysis and Bayesian structure learning, results

are shown to agree well with past literature and to also extend our understanding of

the information seeking process. This dissertation discusses and shows the benefits and

challenges of this modeling approach.
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Chapter 1

Introduction

Google and Google-like search engines have helped define what it means to be a modern

search engine. Google and its competitors have pushed paradigms like “top 10 blue

links” and “knowledge graphs” into the common language and style of search engine

result presentation. The top 10 results or “blue links” proceeding a user’s input query

are a common staple of modern search engine result pages (SERPs), and “knowledge

graphs” are summarized in cards that are interleaved into results [14]. Changes to search

interfaces and algorithms are optimized to provide better results for specific queries as

soon as possible. Decades of extensive research have further improved this style of

search result presentation and optimization [41, 33, 145]. Google and its competitors

have become the champions of answering individual queries, such as “atlanta flights”,

“leonardo dicaprio’s age”, “usa current news”, and “wikipedia”.

Recent experience as of 2018 shows that engines offer varying levels of support for

queries. A query like “What is the distance in kilometers from the Earth to the moon?”

can yield an immediate answer at the top of the results page. Even broad but succinct

information about some specific person or thing - such as “Leonardo DiCaprio” - is

often provided in a brief summary displaying age, birthplace, family relations, related

movies, and recent news.

As searches become more complex, the caliber of support begins to break down. As

of the time this dissertation was written, a search for “trip to japan” may yield top cities

to visit and initial flight offers, as well as some information on the country. It offers

only an initial starting point for what will presumably be a final trip consisting of a

flight plan, a list of hotels, and a list of tourist destinations in Japan. If a searcher must

determine “whether it is worth getting a PhD in Business”, an engine eventually resort
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to only supplying the top 10 links. In addition, a person more experienced in planning

trips to Japan may start with more specific queries, such as “shinkansen tickets japan”.

At a glance, perhaps engines are good at answering, provided that we know what to

ask. Sometimes users issue poor queries, but thankfully, efforts in query recommen-

dation assist users with such struggles [78, 129]. But there is an extent to which the

intrinsic search need may be difficult to operationalize. Determining whether a PhD

in Business is worthwhile cannot be satisfied in one query. Concepts may need to be

clarified, for instance whether the PhD is a Doctorate in Business Administration or

a Business PhD. A searcher may be looking for very specific items, such as the key

events leading to America’s involvement in World War II, or may have less well-defined

goals, as in planning a leisurely non-business trip. Moreover, a searcher may not just

want to locate facts. Modern search engines can accommodate fact-finding. However,

people may also look to produce new insights, as with a cost-benefit analysis. Such

goals extend beyond what documents commonly provide explicitly but are related to

the type of content that can be retrieved.

One way to view these cases is that users bring tasks to a search engine that vary

in structure. Search engines optimize users’ queries, but users’ tasks - and not their

queries - ultimately drive their behavior. Search engines do not directly assist in ac-

complishing the larger (possibly more complex) goal. Researchers of IR increasingly

recognize that searching behavior is often influenced by task context. In addition, there

is acknowledgment that other user-specific contexts also influence behavior. Some are

related to the task, such as topic familiarity, and others only pertain to the user, such

as general search expertise. The field of Interactive Information Retrieval (IIR) studies

the relationship between search activity and context such as task.

From the above, we see that:

• Modern search engines optimize search results, given a query.

• Querying requires input and implicitly requires that a user knows what to search

for. Current search engines require input (e.g., queries) to work best and to

optimize results.
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• Search engines rarely consider the type of task a person is working on when

optimizing results or suggesting what actions a person should take [48].

• Tasks vary in their characterizations. One example trait is the degree to which

information is known by the user. At one extreme are the most complex types of

search tasks [21] or exploratory search tasks [132]

• Users also vary in their characterizations. They vary generally, such as whether

they are more or less expert with using search engines generally. They also vary

with respect to a task, for instance regarding their familiarity to a topic.

• These contexts are known by IIR researchers to influence behavior.

In addition, knowledge of context such as task can not only be leveraged to provide

whole-task support but can also be used to improve traditional retrieval. [82] Hence,

not only is research in search tasks and user characteristics worthwhile for academic

purposes, but also for practical purposes in assisting searchers.

1.1 Task and Interactive Information Retrieval

It is hence at a premium to determine the structure of a user’s task, and we know this

can vary. How well-defined is the searcher’s goal? Is the user simply looking to find a

fact or set of facts, or is she synthesizing new insights? Perhaps users can be prompted

about their task characteristics, but can the structure be inferred from their behaviors?

Task research in IIR has largely examined relationships between behaviors and task

characteristics. This has been done by determining whether single behaviors (or groups

of behaviors) can distinguish different types of tasks. Similar methodology has been

used to relate behaviors to other personal contextual characteristics.

• Knowledge of task complexity can help inform which information to provide to a

user, or this knowledge can be used for ranking [82].

• Knowledge of general task type can also influence implicit feedback [135]. Even

when controlling for topic, task type can influence relevance judgments, hence

influence traditional ranking [61].
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• Task behavior has been shown to be valuable in modeling search satisfaction [46].

• Task knowledge can lend itself to subtask recommendation interfaces [48].

Vakkari mentioned that among several limitations in task-related search, “the in-

teraction of domain and systems knowledge as mediating factors between task and

searching is neglected” [118]. Personal and contextual factors - while sometimes hard

to control - should also be considered in how they affect behavior in addition to task’s

concurrent effect. For instance, both a task’s complexity and interestingness could af-

fect total time spent on a task. Interesting but simple tasks may consume as much time

as uninteresting but complex tasks. Similarly, the number of pages viewed per search

engine result page (SERP) is affected by whether the person is under time pressure.

Similarly, topic familiarity - which is affected by topic - can in turn affect behaviors

such as querying strategies.

1.2 Problem Definition and Contribution

Previous methodological approaches that compare task and behavior do not allow for

this line of questioning. Studies have considered interaction effects between pairs of in-

dependent variables (e.g. task type and task difficulty) and their joint effect on behavior.

Task research does not take a more holistic modeling approach, yet as this dissertation

will show (and as Vakkari hinted [118]), such holistic modeling is implicit in informa-

tion seeking theory. The main contribution of this dissertation is to bridge information

seeking theory with empirical practice, showing how modeling complex relationships

between variables is useful and essential in task-based research. This dissertation will

bring graphical modeling (in particular, path analysis and Bayesian structure learn-

ing) to task research. It will also explain - both informally and mathematically - how

adopting this modeling paradigm opens up new types of research questions in task

research.

This dissertation demonstrates that task characteristics, user characteristics, and

behaviors should be empirically studied as a network of dependencies, in particular with

a method that conveys relationships such as mediation and conditional independence.
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The dissertation empirically shows when knowledge about behavior and certain task

characteristics can be used to learn about other aspects of the task. It shows how

task and user characteristics simultaneously affect behavior while potentially affecting

each other. The dissertation experimentally shows how this framework both confirms

previous findings and gives insight to new ones.

The work presented here has several implications. The first is a framework for mod-

eling the simultaneous interactions between task characteristics, user characteristics and

behavior. The methodology and experiments presented here are first informed by past

literature and theory, but they will also hopefully inform future studies, emphasizing

the importance of considering several contextual features in IIR research. Hence, an-

other implication is explicating the type of data required to model relationships between

users and tasks, such as the importance of knowing about the time pressure felt by the

user. The third implication lies in the results - both positive and negative. By com-

paring the results here to past literature, we can confirm or deny various claims about

relationships between task and behavior. A fourth implication also lies in the results;

the modeling used here suggests implications about the limitations of data collection.

It is generally assumed that collecting more data is better for predicting contextual

characteristics is better, but are there limits to what the data can tell? As a prediction

algorithm learns more task or user characteristics, will the number of bookmarks or

time spent on context pages still help predict unknown task characteristics, or do these

things become independent?

Generally researching the relationship between task and behavior has several prac-

tical implications, particularly in a predictive context. Suppose a system can detect

the type of task a person is working on. Knowledge of the task has been shown to

improve performance of traditional information retrieval algorithms, such as implicit

relevance feedback for boosting query performance [134, 82]. Dwell time, for instance,

can be used to indicate the usefulness of pages, deciding usefulness based on dwell time

should be tailored according to a searcher’s task type [84]. When using decision rules

to determine the usefulness of pages, the weight and importance of different behavioral
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features can vary depending on the task [82]. Additionally, a searcher’s task can poten-

tially influence the usefulness of various components of the traditional search interface,

having real implications on the search options that should be offered to searchers. In

government, library, and commercial domains, whether the user is engaging in a fact-

finding/known-item task, information-seeking task to accomplish some other goal, or a

learning task can affect the usefulness of information such as document date of creation

and geographic location mentioned in the document [68]. Awadallah et al. previously

suggested that in commercial search, there is potential for subtask recommendation,

and they additionally acknowledged that current search systems do not provide ad-

equate support for discovering aspects of a task that are worth exploring, and that

further support for complex tasks is necessary [48].

1.3 Limitations

It is acknowledged that a particularly salient application is that of prediction. What

aspects of the task can be predicted? Given data about some search sessions, can

characteristics of future sessions be accurately inferred? Furthermore, can these char-

acteristics be inferred mid-session, so as to assist the user? This is indeed an important

and active line of research. Some work discussed in the Background of this dissertation

has shown this to be a challenging and unsolved problem. The work in this dissertation

will not directly address that problem and leaves it to future work. This dissertation

focuses on the importance of contextual features in predicting task.

It should also be noted that this work largely relies on behavioral data collected in

laboratory settings. Searchers were required to find information pertaining to carefully

constructed tasks provided by researchers. Such studies have the benefit of being able

to control task dimensions and collect rich data (e.g. surveys and eye tracking), but

critics claim laboratory settings are not realistic. Log analysis, on the other side of

the spectrum, involves realistic and large data, but several data cleaning steps and

strong assumptions must be made to group users’ behaviors into tasks [50]. Even then,

rich information about task properties (such as task complexity whether the task is an

exploratory task) is not possible to collect. There is no perfect study design, but this
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work relies on the laboratory study framework.

1.4 Methods

This dissertation will limit the scope of the task characteristics that are analyzed. Li

and Belkin [79] have suggested that there are many facets along which to categorize

a task, such as user knowledge, task complexity, the type of goal, and the number of

sub-tasks. There are too many to discuss in a single dissertation and certainly too

many to model in a single study or a small set of studies. We will focus on a subset

of task characteristics (specifically task goal and task product). This dissertation will

also only focus on a few of many types of user characteristics, such as task difficulty,

time pressure, and topic familiarity. While this dissertation limits these variables, the

graphical framework presented here broadens the types of questions that can be asked

in IIR studies. It is also a framework that is generally applicable regardless of what

aspects of task interest the reader. The reader may be interested in task complexity,

task product, task goal, task open-endedness, and other variables not discussed here.

Specific results may differ from the ones presented, but that in itself is a worthy subject

of study.

1.5 Research Questions

The necessity and utility of graphical modeling in empirical IIR research will be justified

by answering the following research questions:

1. RQ1 - What is the nature of the influence between user background, user expe-

rience, task, and search behavior?

2. RQ2 - To what extent do factors (including task) directly affect behavior versus

indirectly through their effect on other session characteristics?

3. RQ3 - To what extent does a more generalized modeling framework confirm or

deny previous findings in task-based literature?
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4. RQ4 - What is the structure and size of data required for such an experimental

framework?

1.6 Structure of the Dissertation

Chapter 2 of this dissertation contains the background. “Task” is an overloaded term,

so it is necessary to discuss the many definitions of task in the literature. This section

will also choose and justify the dissertation’s operating definition of task - in particular,

the definition of Li and Belkin [79] that has been used in many IIR studies. The

dissertation will discuss the aforementioned empirical work linking browsing behavior

to task, either by statistical significance or prediction. This section will lastly cover

empirical work elucidating the link between user characteristics and task/behavior,

initiating the motivation for better models.

Chapter 3 will propose graphical modeling as a framework to bridge the short-

comings mentioned previously. It will open by discussing the common mathematical

framework between the current empirical work and generalized linear models showing

how the more complex models are a simple generalization of the current work. It will

discuss the usefulness of graphical frameworks such as Bayesian modeling and structural

equation modeling. It will specifically show how new questions about the mediation,

independence, and separability of variables can be asked and answered with such a

framework. The section will then discuss the methodology of designing such models,

including data size requirements, how to determine relationships between variables, and

data assumptions.

Chapter 4 will discuss the design of each experiment. There are 3 experiments in

total. The first two complement each other and each answer RQ1, RQ2, and RQ3. The

third experiment answers RQ4. 3 similar datasets collected in laboratory settings are

used to facilitate replication, and each of these is discussed at the end of the section.

Chapter 5 discusses the results of each experiment, their implications, and how

they relate to the research questions set forth in the introduction.

Chapter 6 concludes the dissertation by summarizing the main contributions and
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findings of this dissertation. Some cautionary notes are also provided regarding the

interpretation of this work, as well as suggestions toward future work.
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Chapter 2

Background

This chapter provides a review of related research in task classification and task pre-

diction. First, we necessarily discuss the many definitions of task to acknowledge the

breadth of literature, first with non-IR research and then with IR research. Then, one

particular aspect of task will be selected for focus in this writing, namely a subset of Li

and Belkin [79] that has been extensively studied in past IIR work. This follows with a

review empirical work exploring the relationship between browsing behavior and task

characteristics. This has been explored through statistical significance, classification,

and prediction. This chapter will additionally describe other important user character-

istics shown to be related to behaviors, such as topic knowledge, search experience, and

time pressure. The chapter will describe the shortcomings of this literature. Namely,

these works compare isolated user/task characteristics against changes in behavior.

Such empirical work is theoretically incomplete in that it only captures a fraction of

the theoretical conceptions of users and their tasks. This chapter hence shows that

a more holistic modeling framework is not only necessary but desirable. The chapter

serves as an overview of the literature, with an account of more specific details relegated

to the Appendix.

2.1 Definitions of Task

2.1.1 Tasks in non-IR vs. IR settings

It is first worth acknowledging prior work on task outside of IR. “Task” is an overloaded

term, but different disciplines have studied how characteristics of people’s tasks affect

their behavior and task outcomes. Such research typically follows two guidelines. It
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typically defines different categories of tasks, either for all tasks or for tasks in a specific

context. It also examines how variations in task type influence behavior. Interested

readers may refer to the cited literature for a more thorough treatment of task in non-IR

contexts.

Early abstractions of task began in the 1950s, starting with work such as that of

Carter, Haythorn, and Howell. They constructed an activity-based classification of

tasks, including tasks such as Intellectual construction, Mechanical assembly, and Dis-

cussion [25]. Hackman focused more specifically on reasoning tasks: Discussion tasks,

Production tasks, and Problem-solving tasks. Hackman examined how these character-

istics and the task difficulty affected performance of works in groups [44]. Hackman’s

typology of reasoning tasks was used in other work; Aronson, for instance, examined

how these task types, environment, and group type affected people’s reactions, social

dynamics, and output quality [1]. Similarly, other researchers focused on very par-

ticular physical work environments, comparing behaviors across different task types.

Whitley and Frost examined a research laboratory, in particular segmenting tasks into

Responsibility, Extension, Development, and Research tasks. They examined “how

task types influenced the selection of information sources and information dissemina-

tion channels in a research laboratory” [138]. Tushman [128] explored a R&D setting

and in particular Basic research, Applied research, Development, and Technical service

tasks. Tushman claimed these work characteristics affected technical communication,

and communication and work characteristics in turn affect project effectiveness. Even

outside of IR, task research centrally compares similarities and differences in behaviors

across different types of tasks.

The above can be seen as work tasks that occur as part of employment or other real-

life scenarios. Some involve no information seeking, such as the mechanical assembly of

an item. When they involve some information seeking, they fall into the jurisdiction of

IIR research. Work tasks that involve searching, according to Byström and Hansen, are

comprised of information seeking tasks, for instance various information gathering tasks

conducted for the sake of completing a work project at the office. Each IST, in turn,

can be composed of several information retrieval/search tasks, with each information
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retrieval task comprising the satisfaction of some atomic information need (e.g., issuing

a query and collecting relevant results) [20]. IIR research typically focuses on the

information seeking task. Similarly to non-IR literature, tasks have undergone various

categorizations to see how changes in task characteristics relate to changes in behavior.

As in the previous task literature, information seeking tasks have been categorized

along several dimensions by researchers. Task characteristics are implicitly understood

as independent variables on which search outcomes depend [118].

2.1.2 A Holistic Taxonomy for Task

Several task characteristics have interested IIR researchers. Some examples include the

following:

• Fact-finding vs. Exploratory Tasks - Bates acknowledged that not all search-

ing consists of simple fact-finding [10]. Exploratory tasks are much more ill-

defined and open-ended. They require multiple searches and even the clarification

of goals and knowledge throughout the search process. Exploratory search has

spawned several threads of research and workshops, advocating for new measures

of evaluation and interfaces to support exploratory search [135, 137, 102, 26, 132,

115, 123].

• Complexity - The least complex search tasks can be highly automated, such

as simple lookup searches or simple computations. The most complex tasks may

require more deliberate unautomated decision making, and in these tasks, the

required information or even expected result may not be known in advance [21],

much like in exploratory search. Complexity may be categorized in terms of

goal uncertainty. It may also be characterized by the necessary search paths to

complete a task. Campbell characterized both the outcome and the multiplicity of

paths to task completion, finding that complexity also increases information load,

diversity, and information change [23]. The relationship between task complexity

and information seeking behavior has largely studied in laboratory settings [65,

15].
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• User knowledge - Searchers bear some personal characteristics relative to the

task, which are also important. Several studies have examined how domain

knowledge and general search expertise can affect a searcher’s search strate-

gies [100, 2, 122]. Other work has also examined how searchers’ cognitive style,

database search experience, and task type affect and Web search behavior and

search outcomes [71, 72].

• Other discovered characteristics of tasks include the frequency of the task (one-

shot or routine), the type of goal (explicit/concrete/specific or abstract/amorphous),

the product (decision-making, producing new insights, or locating facts/data),

and the source of motivation (internal/self-driven or external).

Li and Belkin observed that these various works on task - both IR-related and

non-IR work - can be combined into a common comprehensive understanding of task.

They performed a literature analysis and found that literature on task - both IR-

related and non-IR related - only focused on a few task attributes at a time. Moreover,

many works focused on common attributes, for instance, with several works focusing on

open-ended tasks versus closed tasks [100, 70]. Roughly speaking, task characteristics

can be organized into task characteristics such as this. Some are external to the user

(e.g., source of the task, task doer, frequency of the task, duration, stage of the task,

product/outcome of the task, the task process, and the type of goal), and some are

user-dependent (e.g., task salience, urgency, difficulty, task complexity, knowledge of

task topic, knowledge of task procedure). Each of these traits comprises of a set of

possible values. For instance, the goal of the task may be very concrete or ill-defined,

and a user can have varying degrees of topic knowledge. Li and Belkin’s literature

review provided a comprehensive classification of task encompassing all prior work on

task classification [79], which has been cited in subsequent empirical work, described

below. It is intended for use in classifying both information seeking tasks and work

tasks. The full “faceted classification” is provided in Tables 2.1- 2.4.
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2.2 Theory: Putting the User in Task

This characterization of task is more than a checklist. Several theoretical frameworks

have been constructed showing how the task, work context, user, and even the search

engine relate to each other. First, it is worth discussing “frameworks” generally in

information retrieval. These often take the form of conceptual models. Conceptual

models, according to Engelbart, require a specification of the following [37]:

• “Essential objects or components of the system to be studied.

• The relationships of the objects that are recognized.

• What kinds of changes in the objects or their relationships affect the functioning

of the system - and in what ways.

• Promising or fruitful goals and methods of research.” [55]

A plethora of information seeking models describe the information seeking process

and its evolution from start to finish. To name a few conceptual models, Ellis enumer-

ated different features of information seeking behavior, from the start of the process to

the end. For instance, people may engage in browsing behavior, filtering through infor-

mation sources, identifying relevant information, and even monitoring one’s own per-

formance. Other models have more broadly examined this as an iterative process [36].

Marcia Bates introduced the concept of berrypicking, where users’ individual search

queries are imagined as bushes and a searcher navigates between queries/bushes; this

emphasized that future navigation behavior dependent on the user’s state at any given

moment [10]. Much more recent work graphically and probabilistically represented an

iterative framework of the search process. For instance, Baskaya et al. modeled interac-

tions of users as they formulate queries, scan result snippets, click links, read documents,

judge relevance, and either stop the session or continue with another search [9]. An

example of their framework can be found in Figure 2.1. Work by Maxwell further ex-

plicated this framework, adding the importance of “state” at each step of the process,

including the importance of background knowledge, information need, and the user’s



15

subjective ideas of relevance at each step of issuing queries and evaluating results [103],

though this was later used for the purposes of creating user simulations.

Several other frameworks instead focus on the relationship between the user, task,

and other contexts. Ingwersen, for instance, developed a framework intending to em-

phasize the causal relationship between a user’s information need, the problem state,

the domain work task, and even task interest. While focusing largely on a cognitive

perspective of information retrieval, this work emphasized mutual influence between

the user’s work environment, the structure of the problem, the user’s information need,

and ultimately behaviors such as querying [54]. Järvelin and Ingwersen later extended

this model to discuss 9 different dimensions [58].

1. “The work task dimension covers the work task set by the organization, the social

organization of work, collaboration between actors and the physical and system

environment.

2. The search task dimension covers necessary seeking and retrieval practices, as

understood collectively in organizational practice.

3. The actor dimension covers the actor’s declarative knowledge and procedural

skills, and other personal traits, such as motivation and emotions.

4. The perceived work task dimension covers the actor’s perception of the work task:

forming the task that is carried out.

5. The perceived search task dimension covers the actor’s perception of the search

task including information need types regarding the task and its performance

process, and perceived information space.

6. The document dimension covers document contents and genres and collections in

various languages and media, which may contain information relevant to the task

as perceived by the actor.

7. The algorithmic search engine dimension covers the representation of documents

or information and information needs. It also covers tools and support for query

formulation and methods for matching document and query representations.
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Figure 2.1: Process framework presented in [9].

8. The algorithmic interface dimension covers tools for visualization and presentation

of information objects, collections and their organization.

9. The access and interaction dimension covers strategies of information access, in-

teraction between the actor and the interface (both in social and in system con-

texts).”

They claimed that each dimension is composed of multiple variables, and that a sub-

set should be explicated in any study depending on its aim. It moreover emphasized the

importance of the complex interaction. Users exist in the context of the search systems

they interact with and their socio-cultural context (e.g. their employment and the sub-

sequent work tasks/information seeking tasks). But moreover, the socio-organizational

context can influence the user, for instance through the user’s interpretation of the task

and understanding of the domain, which in turn influences behavior. This model is

shown in Figure 2.2. In particular, this work stresses the importance of not only mul-

tiple variables to capture various aspects about the user, the search engine, the task

context, and even the social/organizational context but also a complex relationship

between them.



17

Figure 2.2: Framework of actors in context, as in [56].

2.3 Characterizing Task from Behavior

Now that we have introduced frameworks in IIR, this chapter concludes with an overview

of empirical work. It discusses empirical work relating task type to behaviors, followed

by other work relating behavior to other characteristics like task complexity and user

affect. It overviews the definitions of the constructs like complexity and task and notes

the key accomplishments of this work. Details are left to the Appendix, but this sec-

tion will conclude by briefly discussing the shortcomings of empirical work, with a more

formal treatment in Chapter 3.

2.3.1 Task Type

Work examining the relationship between task type and behavior adopt different defi-

nitions of task for analysis. Much of the empirical work uses a subset of the taxonomy

defined in Li and Belkin [79], which was shown in Tables 2.1- 2.4. Researchers manipu-

late a controlled set of tasks by manipulating their attributes. For instance, researchers

have explicitly manipulated the goal - creating tasks with a well-defined goal, an ab-

stract goal, or a mixture of the two [94, 91, 29, 30, 109, 110]. Researchers have likewise

manipulated the task product - creating tasks about locating facts, about making a

decision, or about producing new insights from facts [94, 91, 30, 109, 110]. Goal and
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product are common attributes, and some research has defined “task type” as the com-

bination of goal and product, yielding 4-9 possible task types [94, 60, 30, 109, 110].

Other commonly manipulated attributes in the Li and Belkin taxonomy are the level of

evaluation of a document (users must evaluate the whole document or only document

segments) [94, 91, 29, 30] and the objective complexity of the task (many paths/high

complexity or single path/low complexity) [94, 91, 30, 29]. Another body of work distin-

guishes task types by distinguishing between fact-finding and exploratory tasks or a sim-

ilar distinction. Some work has presented users with tasks that are fact-finding/lookup

or exploratory [4, 75]; other work examined fact-finding, information gathering, brows-

ing, and transaction tasks [64, 119]. Another commonly manipulated task attribute

is whether the task requires simple searches, hierarchical search patterns, or parallel

search patterns on separate subtasks [83, 119]. Lastly, some work not only examined

task characteristics in isolation but also their interactions with other important vari-

ables. One way this has been done is by modeling interaction effects [18]. Other work

would determine whether a difference in behavior is significant under some condition

but not another (e.g., whether “topic familiarity” is distinguished by behavior, but only

within certain task types) [94].

Several behaviors were significantly different among manipulated task types. These

include: the number of content pages and queries [119, 60, 91, 4, 109], the time spent on

pages and queries [66, 60, 91, 4, 109], click and scroll depth [60, 4], query reformulation

behaviors [83], several eye tracking features [91, 60, 30], and task completion time [119,

60]. Some of this work compared users’ behaviors over their entire sessions [60, 91],

but other work compared their behaviors on the first query, to eventually aim for as-

soon-as-possible task prediction [4]. A recent body of work has used more complex

sequential features over the entire session. For instance, Cole et al. created a graphical

representation of the user’s changes in cognitive activity through the duration of the

search session; they distinguish tasks based on the properties of each task’s Markov

graph of cognitive states [30]. Kotzyba et al. modeled sequential behavior in a session

using Markov modeling and Hidden Markov modeling - where states were different

pages types - to attempt task prediction [75].
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One last recent development worth mentioning, then, is task prediction. Rather

than checking for significance, can task characteristics such as goal and product be

predicted from behaviors? Kotzyba et al.’s attempt demonstrated effective prediction

distinguishing a session with a single exploratory task versus a session with multiple

fact-finding tasks [75]. However, [109] used whole session browsing features similar to

those in the previous work ( [60, 91]), achieving statistically significant findings that

entailed only marginally improved prediction performance. Such work combines several

behaviors into a single predictive model, yet prediction results have been mixed.

The statistical tests used in the above works can be reduced to the following list:

t-test, Mann-Whitney U test, one-way ANOVA, Kruskal Wallis, one-factor repeated

measures ANOVA, and two-factor repeated measures ANOVA.

2.3.2 Complexity

Task complexity, while in part a subset of Li’s task classification, has a separate thread

of research that merits treatment. Complexity is an essential and important factor

in IIR research [19, 130], though it has several definitions. All of them emphasize

the objective aspect of a task’s complexity; complexity is determined independently of

the person doing the task. Campbell was one of the first to advocate for this model,

specifically proposing that complexity is a function of: the number of possible paths to

the outcome, the number of outcomes, interdependence among paths, and uncertainty

between paths and outcomes [23]. Byström et al., in turn, was among the first to

begin analyzing complexity at the level of individual tasks rather than larger projects

that encompass tasks [21]. Works by Byström considered complexity as a priori de-

terminability : how well information inputs, information search processes, and the task

output can be known/determined in advance. Following this framework, her tasks in

increasing order of complexity were: automatic information processing, normal infor-

mation processing, normal decisions, known tasks, and genuine decision task [19]. Much

more recent work by Capra et al. defined determinability in terms of whether certain

aspects were specified. Capra et al. created tasks where users were to compare items

along different dimensions; they manipulated whether a task description explicated the
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specific the items and/or dimensions [24]. Other work more specifically defines com-

plexity by the multiplicity and structure of the paths to the outcome. The faceted

classification above by Li lists highly complex tasks as involving many paths and low

complexity ones as involving a single path [79]. Other complexity work is specifically

outcome-focused, defining a simple search as a task satisfied by one piece of information,

a hierarchical task as requiring multiple concepts structured in a nested hierarchy, and

parallel task where the desired concepts are in the same level of the hierarchy rather

than nested [83, 90, 126]. One last noteworthy definition of complexity is the amount

of cognitive effort and learning required to complete a task; tasks in increasing order

of complexity are organized into remember, understand, analyze, evaluate, and create

tasks [15, 65].

Byström only performed qualitative analysis and found increases in determinability

associated with: increase in complexity of information needed, increase in needs for do-

main information and problem solving information, increase in share of general-purpose

sources, decrease in share of problem and fact-oriented sources, decrease in success of

information seeking, decrease in internality of channels, and increase in number of

sources [21]. Capra’s determinability work found that tasks with a specified dimension

had significantly greater queries, greater query length, fewer clicks per query, fewer

bookmarks per query, smaller query log likelihood, greater number of unique queries.

When both item and dimension are specified, there is greater time to first click and a

greater number of unique URLs [24]. Research on high/low objective complexity found

significant differences for time spent on a task, time spent per item selected, and total

number of items selected (i.e., Word documents, PDFs, web pages, full-text papers,

etc.) [80]. When comparing parallel vs. simple information needs, Liu et al. found that

for query reformulations, specialization was most frequent in simple tasks and word

substitution was more frequent in parallel tasks than simple ones [83]. Lastly, Brennan

et al. showed that for Remember, Analyze, and Create tasks, there are significant dif-

ferences in session length, total number of queries, query length, and total number of

SERP clicks [15].
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A couple works also examined interactions between complexity and other task char-

acteristics. Toms et al. computed interaction effects between task complexity and task

type on browsing behaviors, where task type was either decision making, fact finding,

or information gathering and complexity was either parallel search or hierarchical [126].

Liu et al. conditioned on the task complexity (dependent vs. parallel task) and exam-

ined whether significant differences in dwell time for task stage and document usefulness

varied according to the task complexity [90].

The statistical tests used in the above works can be reduced to the following list:

Mann-Whitney U test, Kruskal-Wallus H test, one-factor repeated measures ANOVA,

univariate ANOVA, multivariate ANOVA.

On a side note, complexity and difficulty may seem intertwined but can be distin-

guished. Complexity can be defined in terms of number of subtasks or steps, number of

subtopics or facets, number of query terms and operators required, number of sources

or items required, the indeterminate nature of the task, and the cognitive complexity

of addressing the information need. Task difficulty involves attributes such as searcher

performance, the match between terms in the task description and in the target page,

the number of relevant documents in the collection, and the searchers’ of experts’ per-

ceptions of difficulty. Complexity can be perceived in an objective sense independent

of the task doer which has several primary dimensions. Multiplicity of steps or sub-

tasks, multiplicity of facets where facets represent the concepts or types of concepts

represented in the task (e.g. dates or genre), and some degree of indeterminability or

uncertainty (i.e. for a complex task, the search process or outcomes cannot be deter-

mined in advance of completing the task) [139].

2.3.3 Task/Topic Familiarity and Expertise

There is less variability in the definitions of task familiarity, topic familiarity, and

expertise than with task type of complexity. An early, often-cited work by Marchionini

compared the search behaviors of 3rd/4th graders to 6th graders in a school setting,

assuming the different grade levels had different levels of expertise using search engines

(with 6th graders being more expert). The two groups used structurally different queries
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that suggested a different mental model for searching, and older searchers found required

information more successfully, in less time [100]. This can be seen as a form of search

expertise, and “expertise” often refers to expertise with search engines. Despite this

common definition and despite long interest to the IR community, expertise has been

difficult to measure. Bailey and Kelly, for instance, recently conducted an exploratory

study to determine what constitutes search expertise [6]. One past effort by White

and Morris defined expertise as a function of a searcher’s usage of advanced syntax

operators [136], but this still an open area of research.

“Topic knowledge” or “domain knowledge” has been more deeply explored. This

refers to someone’s general knowledge with respect to a broad topic domain or with

respect to the topic of the particular search task at hand. A common method for mea-

suring topic or domain knowledge is a self-assessment by the searcher before or after

conducting a search task [67, 52, 143, 95, 89, 39]. A less common approach is to include

a knowledge survey about the task topic before and/or after some training period, to

measure an objective state of knowledge and changes in knowledge [140]. Another ap-

proach that does not require self-assessment is to monitor page behaviors of searchers

over a period of time, assuming that domain or topic experts go to topically-specialized

sites more often than novices [133]. Other researchers may recruit research participants

according to field of general domain expertise, e.g., to compare psychologists and non-

psychologists [112]. Some work also examined the possibility of interactions between

familiarity and other task characteristics. Liu et al. compared whether the distinguish-

ing difficult and easy tasks from behavior depended on whether the users were experts

or novices [89]. Later work by Hienert et al. similarly found that whether there was a

significant relationship between behavioral variables and perceived difficulty, perceived

success, time pressure felt, and comprehension of the topic sometimes depended on the

topic, and the two topics tested differed significantly in familiarity [51].

Topic knowledge and domain knowledge have been distinguished by several types

of behaviors. The behaviors examined include content page and query browsing statis-

tics [67, 95, 94], query reformulation patterns [52], and some eye tracking features [28].

They also include the amount of relevant information found [143] or search efficiency [67,
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52], domain-specific word usage in queries [133], and the types of web domains that ex-

perts visited compared to non-experts [133]. These behaviors are often computed at

the level of the whole session. One work compared the middle and end of a session:

Liu et al. found that the mean first dwell time on a SERP for the middle and end of a

session were significantly related to self-reported familiarity [95].

The statistical tests used in the above works can be reduced to the following

list: t-test, Mann-Whitney U test, one-way ANOVA, Kruskal-Wallis H test, chi2 test,

Wilcoxon signed-rank test.

2.3.4 Task Difficulty

Task difficulty is to be distinguished from expertise and certainly to be differentiated

from complexity. The previous section extensively treated objective task complexity.

This section addresses the subjective difficulty experienced by searchers when search-

ing [70]. As suggested, this is a subjective measure predominantly measured through

a searcher’s self-assessment. A common method of measurement is to ask a searcher

about the difficulty experienced on a 5-point or 7-point likert scale. The scale is then

divided into 3 or 2 points: “easy”, “neutral”, and “difficult” while possibly excluding

the middle [43, 42, 87, 96, 85, 97]. Research in difficulty has also looked at “successful”

and “unsuccessful” search sessions instead [5]. Other work determines the threshold

between “easy” and “difficult” numerically, for instance by setting it as the mean in

the data rather than the midpoint on a 1-5 scale [3, 89].

The behavioral features used in this research are largely similar to those in the

previous sections. Some work examines behavioral features computed over the whole

session, while other work - as previously - only uses features obtainable within the

first query segment - including the pages and interactions before the second query.

Some work also examines features per query segment; if a difficulty prediction cannot

be made at the earliest step, perhaps it can be made in the middle. In whole session

analysis, significant differences were found among various content page and query count

statistics [43, 42, 97, 87, 3, 89, 5], query reformulation behaviors [83], mouse activity

and viewing activity [3], time spent on content and queries [85, 43, 5, 87, 96], total
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task duration [42, 97, 3], bookmark statistics [42, 3, 96], and even eye tracking features

on pages and queries [27]. Richer features worth mentioning include the linearity of

a user’s search path [43], the optimality of the search path [43], the richness of the

searcher’s query vocabulary [89], and the depth to which a user’s queries explore an

externally-controlled vocabulary [89]. First query segment features with significant

differences include various content page and query count statistics [85, 96], time spent

on content pages and query pages [85, 3, 96], mouse activities [3], viewing rank [3],

and bookmark activities [3, 96]. Important per-query segment and mid-session features

include: content page and query count statistics [97, 96], page and query dwell time

statistics [97, 96], and query length statistics [5], and bookmark statistics [96].

A few researchers examined interaction. One work computed the interaction effect

between difficulty and domain knowledge, finding significant differences for mean dwell

time on content and the percentage of time on content pages [87]. Otherwise, this

work conditions on the interacting variable and examines whether the significance of

behavioral differences changes. One Liu et al. work found that the relationship between

difficulty and behavior differed among different task types [92], and later work examined

the effects of the difficulty on experts and novices separately, finding differences in

query vocabulary richness, number of unique query terms, percent of terms from task

description, and search session recall and F-score [89].

The statistical tests used in the above works can be reduced to the following list:

Mann-Whitney U test, Kruskal-Wallis H test, logistic regression, 2nd order polynomial

regression.

2.3.5 Time Pressure and Other Affective and Intentional Factors

There are several other search session characteristics worth mentioning. Namely, several

affective components have been shown to affect user performance. Some of these are

associated with changes in behavior, but others are associated with changes in other

measures that in turn are known to affect behavior.

A recent one to consider is user engagement - the extent to which the user is en-

gaged and invested in the search session. User engagement can be measured through
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a general User Engagement Scale questionnaire [114]. Much of this work is recent, but

engagement has been associated with a few behavioral measures. Namely, it is associ-

ated with interest is associated with increase in SERP scrolling and time spent in query

intervals [35] as well as increased task duration [34]. It is also associated with increases

in prior knowledge [35], decreased perception of difficulty [35].

Recent work has also begun to explore user intentions, even though intentions in

IIR are by no means a new concept. Early work by Marchionini categorized searchers’

actions in a search session into types of tactics, moves, and strategies [101]. Xie later

furthered this work by claiming that a search task leads to “interactive search inten-

tions” and showed a relationship exists between strategies and high-level intentions such

as locate a specific link and “learn domain knowledge” [142]. Descriptive non-inferential

evidence from Mitsui et al. [111] suggested that these intentions are exhibited in differ-

ent proportions among task types and perhaps can distinguish types. Rha et al. [120]

showed that differences in reformulation strategies can be associated with differences

the aforementioned intentions of [142]. Later work by Mitsui et al. showed that these

intentions can be predicted at the query segment level, using machine learning meth-

ods with query browsing features as input. Mitsui et al. applied bookmark features,

content page dwell time features, SERP dwell time features, query reformulation types,

and query lengths, but the best approach was to generally use several browsing features

all at once [107].

One last but important aspect is the amount of time pressure experienced by a

user. This is often manipulated by the researcher in a laboratory setting. A researcher

may impose 1 of 2 conditions on a searcher: a search task with no imposed time

limit, or a search task with a very strict time limit. One such strict time limit in the

literature is 5 minutes. Crescenzi et al. showed that imposing strict time constraints

can increase feelings in time pressure as well as decrease task time, increase query rate,

and facilitate shallower viewing in pages and documents per query, and less time is

spent on each document and SERP [31]. Liu et al. found significant differences in

whole session measures resulting in overall shallower behavior, such as a significant

decrease in: number of content pages per query, number of unique content pages per
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query, number of SERPs per query, number of unique SERPs per query, total dwell

time on content pages per query, total dwell time on SERPs per query, ratio of dwell

time on content pages per query, average query interval time, average session time, and

number of queries per session [88]. Time constraints can actually result in increased

time spent on the first SERP [88].

The statistical tests used in the above works can be reduced to the following list:

Mann-Whitney U test for engagement, machine learning techniques like regression and

SVM for intentions, and mixed ANOVA and Mann-Whitney U test for time pressure.

2.4 Excursion: Log Task Extraction

There is another common body of IIR literature concerning task: namely, work on

extracting coherent tasks from large-scale logs. It is only marginally related to the

work here, but since it has been extensively studied, this work is worth mention and

should also be acknowledged to make this review complete.

In some respects, the types of search queries and patterns found in the large scale

logs and laboratory settings are similar. Just as various querying strategies have been

found and studied in laboratory settings, searchers in large scale logs have been seen to

conduct navigational, informational, and transactional searches [16]. Complex search

tasks have also been identified in both laboratory and large-scale log settings, including

exploratory search [102] and multi-step search [47].

Yet fundamental differences lie in the size and complexity of log data. Large-scale

search logs provide important data that often dwarfs the size of laboratory study brows-

ing behavior data. Yet log data is not just larger lab data. People may also be engaged

in multiple tasks that are interleaved. Jones and Klinkner discovered that 17% of web

search engine tasks were interleaved [62], and Lucchese et al. discovered that 75%

of queries may involve multi-tasking activity [98]. Hagen et al. further distinguished

three types of search episodes: physical search sessions (queries charcterized by time

gaps), logical search sessions (consequtive queries for the same information need in a

search sessions), and search missions (potentially disjoint logical sessions surrounding
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the same information need) [45]. A laboratory setting often provides a task and assumes

that the searcher only works on that task, but research on log data explored methods

of grouping queries into tasks in such noisy settings.

Jones and Klinkner, for instance, recognized that simple time-based cutoffs between

queries to separate tasks were näıve and inaccurate; they combined temporal differences

between queries, edit distances between queries, query co-occurrence features, and sim-

ilarity between queries’ search results to group queries into tasks and subtasks [62].

Other work created heterogeneous graph of topically related queries, topically related

web pages, and connections between pages and queries indicating clicks [59]. Other work

saw that users can perform similar tasks [99]. Future work took inspiration from Nat-

ural Language Processing. For instance, Li et al. combined topic modeling on queries

using Latent Dirichlet Allocation) and temporal grouping from Hawkes processes to

group temporally close queries on the same topic into tasks [77]. Verma and Yilmaz

extracted named entities from queries using DBPedia and clustered queries hierarchi-

cally using this entity information [131]. Current state of the art uses more advanced

NLP models, such as Mehrotra et al., which combined LDA, language models, and user-

topic-task tensors to create models of task structure and users’ task preferences [105].

Future work used word embeddings to determine tasks and sub-tasks [106, 104].

The goals and framework of this type of research tend to differ from those of a

laboratory setting. One goal of such work is to properly extract tasks in a web-scale

multi-tasking environment, with several of the previous works evaluating task and sub-

task extraction on manually annotated data sets [62, 45, 106]. Another is to predict

whether a task is likely to be continued in a future session [74]. Another is to predict and

recommend future queries. Awadallah et al. used their task extraction model to predict

future queries that would be useful to users engaged in a complex search task [48].

Mehrotra and Yilmaz used their framework to recommend queries from similar users,

where similarity was based on users’ task preferences [105]. Unlike the laboratory-based

research described in previous sections, this research does not analyze or extract the

search task characteristics. It is not known (or determined by an algorithm) whether

these tasks have a simple or complex goal or whether the searcher is attempting to
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produce some new findings or retrieve simple facts. Both lines of research address

complementary agendas. The web-scale work addresses the extraction of tasks and

task-based recommendation. The other work mentioned extensively in this chapter

creates and tests frameworks for understanding the nature of people’s tasks, ultimately

to understand the type of support that can be given in a search session, and it attempts

to predict this type of information from behavioral data.

2.5 Summary

The takeaways from the above sections can be stated as follows:

1. There has been extensive interest in research relating task characteristics to be-

haviors and outcomes.

2. Tasks can be categorized along different dimensions. To name a few: goal, prod-

uct, objective complexity, subjective difficulty, a user’s topic familiarity, and time

pressure

3. Each study focuses on a small set of these dimensions.

4. By varying these dimensions, the research often directly compares changes in

behavior to determine if behaviors can distinguish different types of tasks or

different user contexts.

The first thing that should be mentioned is the definition of task for this dissertation.

In the empirical work conducted in this dissertation, the definitions of goal and product

specified by Li and Belkin [79] will be used. It has already been shown above that these

have been extensively studied and are clearly of interest to IIR researchers. But this

work will also incorporate other task dimensions, such as subjective difficulty, topic

familiarity, and time pressure. These will be clear in the proceeding sections.

As we will see in the next chapter, this outline presents something problematic.

On one hand, the conceptual models researchers have developed for IIR are extremely

complex, involving a network of relationships between a worker and their context or
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between different steps of the information seeking process. While the empirical work

above has studied parts of the search context piece by piece, none has attempted to

combine them into a broad model and test it. Not only should data validate the the-

ory in conceptual models, but as data analysis techniques become more sophisticated,

experimental frameworks should adjust in kind to ultimately catch up to complex the-

oretical work. The empirical literature has often ignored the potentially simultaneous

effects on behavior, such as task expertise or time pressure can have on behavior. The

next chapter will discuss this dissertation’s contribution in this regard, proposing a

modeling framework to fill this gap.
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Table 2.1: Li’s faceted classification of task [79]
Facets Sub-facets Values Operational definition

Generic facet
of task

Source of task Internal gener-
ated

A task motivated by a task
doer. It is a self-motivated
task.

Collaboration A task motivated through dis-
cussion of a group of people

External assigned A task assigned by task set-
ters based on their individual
purpose

Task doer Individual A task conducted by one task
doer

Individual in a
group

A task assigned and com-
pleted by different group
members separately

Time Frequency Unique A task conducted at the first
time

Intermittent A task conducted more than
one time but assessed by task
doer as not frequently con-
ducted

Routine A task assessed by task doer
as frequently conducted

Length Short-term A task which could be finished
within a short time period
(e.g. less than one month)

Long-term A task which has to be fin-
ished within a long time pe-
riod (e.g. more than one
month)

Stage Beginning A task which just launched
Middle A task which has been run-

ning for a while and in the
middle way

Final A task which is almost done
or has been completed

Product Physical (for
WT)

A task which produces a phys-
ical product

Intellectual (for
WT and ST)

A task which produces new
ideas or findings

Decision/Solution
(for WT)

A task which involves decision
making or problem solving

Factual informa-
tion (for ST)

A task locating facts, data,
or other similar information
items in information systems

Image (for ST) A task locating images in in-
formation systems

Mixed product
(for ST)

A task locating different types
of information items in infor-
mation systems
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Table 2.2: Li’s faceted classification of task [79]
Facets Sub-facets Values Operational definition

Process One-time task A task accomplished
through one process with-
out repeated procedures

Multi-time task A task accomplished
through repeatedly engag-
ing in the same or similar
process

Goal Quality Specific goal A task with explicit or con-
crete goals

Amorphous goal A task with abstract goals
Mixed goal A task with both concrete

and abstract goals
Quantity Multi-goal A task with two or more

goals
Single-goal A task with only one goal

Common at-
tributes of
task

Task charac-
teristics

Objective task
complexity

High complexity A task which involves sig-
nificantly more paths dur-
ing engaging in the task

Moderate A task which may involve
a few paths but not signif-
icantly more during engag-
ing in the task

Low complexity A task which involves a sin-
gle path during engaging in
the task

Interdependence High interdepen-
dence

A task conducted through
collaboration of a group of
people (at least two peo-
ple)

Moderate A task conducted by one
task doer with suggestions
or help from other people
or group members

Low A task conducted by one
task doer without any help
from other people

User’s percep-
tion of the task

Salience of a
task

High salience A task assessed by the task
doer as highly important

Moderate A task assessed by a task
doer as moderate impor-
tance or the degree of
salience of the task de-
pends on specific situations

Low salience A task assessed by the task
doer as unimportant
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Table 2.3: Li’s faceted classification of task [79]
Facets Sub-facets Values Operational definition

Urgency Immediate (ur-
gent)

A task assessed by a task
doer as highly urgent

Moderate A task assessed by the task
doer as moderately urgent
or the degree of urgency of
the task depends on spe-
cific situations

Delayed (not ur-
gent)

A task assessed by the task
doer as no urgency

Difficulty High difficulty A task assessed by a task
doer as high difficulty

Moderate A task assessed by a task
doer as moderate difficulty
or the degree of difficulty
or the task depends on spe-
cific situations

Low difficulty A task assessed by a task
doer as no difficulty or easy
to complete

Subjective
task complex-
ity

High complexity A task assessed by a task
doer as highly complex

Moderate A task assessed by a task
doer as moderately com-
plex or the degree of com-
plexity of the task depends
on specific situations

Low complexity A task assessed by a task
doer as simple

Knowledge of
task topic

High knowledge A task assessed by a task
doer as highly knowledge-
able on the task-related
topic

Moderate A task assessed by a
task doer as moderately
knowledgeable on the task-
related topic or the degree
of knowledge on the task
topic depends on specific
situations

Low knowledge A task assessed by a task
doer as unknowledgeable
on the task-related topic
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Table 2.4: Li’s faceted classification of task [79]
Facets Sub-facets Values Operational definition

Knowledge of
task procedure

High knowledge A task assessed by a task
doer as highly knowledge-
able on the method of pro-
cedures for completing the
task

Moderate A task assessed by a task
doer as moderately knowl-
edgeable on the method of
procedures to completing
the task or the degree of
knowledge on the method
of procedures depends on
specific situations

Low knowledge A task assessed by the task
doer as not knowledgeable
on the method or proce-
dures for completing the
task
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Chapter 3

Framework

The previous chapter reviewed relationships shown between different types of tasks,

behaviors, and user characteristics. It briefly overviewed the statistical techniques used

in empirical work. This chapter will discuss these techniques in more detail. It will show

how a graphical framework is a more general framework that not only encompasses all

of the prior techniques but also can answer broader research questions. It will conclude

with a discussion of Bayesian networks - which have been used in a variety of settings

in information retrieval generally - and structural equation modeling - which has more

specifically begun seeing use in IIR settings. We will conclude with some mathematical

details about these frameworks, which will be used to answer the research questions

posed in this dissertation.

3.1 Overview of Prior Statistical Techniques

This section summarizes the mathematical approaches taken by the literature reviewed

in the last chapter. The analyses conducted can be summarized into the following

types: independent sample tests (univariate and multivariate), machine learning, and

dependent sample tests (univariate and multivariate). Each of these will be explained

in turn. This section will explain how seemingly disparate techniques can be reduced

to a few equations and graphical models. A more thorough argument for the graphical

framework is then presented in the next section. The findings here are based on insights

from Hutcherson, Graham, and Pearl [53, 40, 117].
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3.1.1 Independent sample tests: Usages

Independent sample tests are the most common tests in this line of work and most

straightforward. Changes in one independent variable (univariate) or multiple (multi-

variate) are compared against changes in a dependent variable. Independent univariate

tests are by far the most common tests in the work reviewed so far. Independent

sample tests comprise a family of tests; the specific one to use depends on: 1) The

data type of the independent variable (real valued, categorical, or ordinal), 2) whether

a categorical dependent variable takes more than 2 values, and 3) the distribution of

the dependent variables (e.g., whether they are normal). The reviewed work used the

t-test, the Mann-Whitney U test, one-way ANOVA, the Kruskal-Wallis H test, and the

less common χ2 test. These have been used specifically to detect significant behavioral

changes among multiple task types [91, 83, 119, 29, 64, 80], among two task facets (e.g.

factual/intellectual product) [91], among two levels of complexity [126] or multiple lev-

els [126, 15], among two levels of topic familiarity [94] or multiple levels [80], among

two levels of task difficulty or multiple [96, 85, 5, 43, 42, 89, 86, 96, 29, 83, 87], and

among two levels of time pressure [31, 88]. Some works looked at interaction to see

if the relationship between the variable and behavior changed under the conditions of

another (e.g. behavior on high/low familiarity conditioned on task type); they used the

Mann-Whitney test [94, 89].

Multivariate tests were less common but still practiced, with the used tests being

two-factor/multi-factor ANOVA and linear modeling. These were used to compare

behaviors when the independent variables are complexity and task type [126], task stage

and document usefulness [90], task complexity and task product [80], time pressure and

system delay on behavior [31].

3.1.2 Independent sample tests: Equation and Graphical Forms

In the univariate test, given the independent variable Y and dependent variable X, the

claim that a statistical relationship holds between the two can be written as Y ∼ X.

There is a relationship - nonparametric or otherwise - between a task characteristic X
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and a behavior Y. As an example, the t-test can be written using:

y = f(x) + ε,

y = βx+ ε

ε is the error associated with y. The t-statistic is commonly written as t = µ−µ0
SEµ

,

so it is instead written as t = β−β0
SEβ

. For statistics such as Mann-Whitney which make

no assumption about the distribution or assume alternate distributions, this equation

can be generalized with no assumptions about functional form (e.g., linearity between

x,y,ε):

y = fY (x, ε)

In the multivariate case with multiple dependent variables X1,X2,...Xn, the equiv-

alent equations are:

y = f(x1, x2, ...) + ε,

y =
∑

βixi + ε,

y = fY (x1, x2, ..., ε)

A graphical representation of this can be seen in Figure 3.1-3.2. In the t-test, each

directed edge represents a β coefficient, whereas this denotes the functional relationship

fY in the more general form.

3.1.3 Machine Learning: Usages and Forms

Machine learning techniques tend to flip the problem in reverse, predicting task charac-

teristics as dependent variables from a set of behaviors as independent variables. The
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Figure 3.1: A graphical equivalent of independent univariate statistics. x is the inde-
pendent variable, y is the dependent variable, and ε is the error term. β lies on the
edge between x and y but is not shown.

Figure 3.2: A graphical equivalent of independent multivariate statistics.

above notation would hence be converted to x = fX(y1, y2, ..., ε). Prior work performed

logistic regression to predict task difficulty [3], 2nd order polynomial regression to pre-

dict task success [5], and multiple machine learning models like SVM, multilayer percep-

tron, and to predict task type, goal, product, and query segment intentions [107, 109].

In these machine learning examples, the equations are identical, only flipping the

direction of the relationship. The nonparametric form of the equation hence becomes

x = fX(y1, y2, ..., ε). This applies to nonlinear models like logistic regression and poly-

nomial, which apply a logistic function after summing behavioral terms together. This

even applies to more complex nonlinear models like multilayer perceptron and SVMs.
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3.1.4 Dependent sample tests: Usages

In dependent sample tests, unlike independent sample tests, the key difference is that

data points have a paired relationship. For instance, one might compare search behavior

in one search session to behavior in a later session to detect a searcher’s learning.

Hence variants of the original tests like t-tests are used, where data points are paired.

The previous work used one-factor and two-factor repeated measures ANOVA. These

have been used to compare behaviors across multiple task types [81, 80], two task

products [81], multiple levels of task complexity [81, 80, 15], and multiple levels of

search task determinability [24].

3.1.5 Dependent sample tests: Equation and Graphical Forms

Univariate dependent data and multivariate dependent data are related as Y ∼ ∆ +X

and Y ∼ ∆ +X1 +X2 + ...Xn, respectively. ∆ indicates the difference between paired

points. The t-test in this instance is modified to t = µδ−µ0
SEδ

. A similar functional form

can be written as in the independent samples case, with data points being differences

instead of raw values. The graphical form of univariate dependent samples t-test is

somewhat modified and is shown in Figure 3.3. In this case, one can create independent

variables for xi1 and xi2, where 1 and 2 indicate the paired independent measurement

and y1 and y2, respectively, and the double arrow indicates a correlation between xi1

and xi2. Generalization is to be left to the reader.

3.2 A Case for Graphical Modeling

Anyone with passing knowledge in statistics can recognize that the generalizations

listed above lead to Generalized Linear Modeling (GLM). The disparate statistical

techniques have all been shown to be special cases of GLM, despite being developed

independently [40]. Anyone with passing knowledge in machine learning can also see

these models are not nearly as complex as the plethora of modern ones in machine

learning. But despite this simplification, placing disparate statistical techniques in a

larger framework is something that is often overlooked. More specifically, while the
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Figure 3.3: A graphical equivalent of dependent univariate statistics. The specific
example here is shown for the t-test, where paired data points are represented by x1,x2.

cited literature has done significant work to advance IIR and our understanding of the

user, little has been done to put the used techniques into a broader framework. This

framework is broader than linear modeling and is graphical, and the argument for this

shall now follow. Consider the following list of the types of questions that presently

used techniques can answer:

• Independent statistics - Can variations in one or more task characteristics be

distinguished by changes in behavior?

• Machine learning (in IIR research) - Can behaviors be used to accurately

classify the task characteristics of unseen sessions?

• Machine learning (in IIR research) - Can behaviors be used to accurately

classify the task characteristics of a known session as early as possible?

• Dependent statistics - Given a set of paired sessions, can variations in one or

more task characteristics be distinguished from differences in behavior?

• Interaction effects - Does whether task complexity affects task completion time

depend on the user’s domain expertise?

The following cannot be answered by these techniques:

• Conditional independence - If a user’s task familiarity is given, does learning

about the task type still help predict task completion time?
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• Mediation (1) - Does task in itself directly affect behavior? Or is this affect

only through task familiarity?

• Mediation (2) - Even if task has no effect on behavior, is this because no effect

exists? Or because this effect is being suppressed by some other factor?

• How does task affect behavior in the context of several other varying factors, such

as a user’s time pressure and general search expertise?

Not only can these not be answered with the currently used techniques, but a

framework that can answer these questions is necessary to bridge the gap between

conceptualization and practice.

3.2.1 Argument 1: Conditional Independence and Mediation

In statistics, there is a distinction between moderation and mediation, as pointed out

by Baron and Kenny [8]. Moderation is identical with interaction effect. In contrast,

Figure 3.4 shows an example of mediation. x1 has two effects on y: one that is directly

through x1, as indicated by the arrows (call this arrow β1) and one that is indirectly

through x2 (call these arrows β2 and β3, respectively). Baron and Kenny stated that “a

moderator is a qualitative...or quantitative...variable that affects the direction and/or

strength of the relation between an independent or predictor variable and a dependent or

criterion variable.” In contrast, “a given variable may be said to function as a mediator

to the extent that it accounts for the relation between the predictor and the criterion.”

If that does not clarify the distinction, a simple linear example shows they are not

identical. In an independent sample test with 2 independent variables, an equation

including an interaction term x1× x2 for moderation is represented as:

y = β1x1 + β2x2 + β3x1x2ε,

In contrast, the above mediation is represented by 2 equations:
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Figure 3.4: An example of mediation. x1’s effect on y is partially mediated through

x2 = β2x1 + ε2,

y = β1x1 + β3x2 + ε1,

= β1x1 + β3β2x1 + ε1

A mediating relationship suggests that any effect of x1 on y, if it exists, is entirely

through x1. Terminology for mediation includes: partial mediation, total mediation,

direct effect, indirect effect, and total effect. Partial mediation occurs when β1x1’s

effect is significant but the overall indirect effect of the path β3β2x1 is also significant.

In this case, the effect β1x1 is the direct effect, β1x1 + β3x2 represents the total effect.

If the effect β1x1 on y is insignificant while there is an indirect effect, the relationship

between x1 and y is totally mediated through x2. None of these relationships can be

represented by the aforementioned tests, but a graph with mediation can be extended

to include interaction effects by adding the variable x1 × x2.

More generally, the question of mediation highlights the importance of conditional

independence, thoroughly studied in graphical modeling frameworks such as Bayesian

modeling. Consider again Figure 3.4. In a case of total mediation, x1 is conditionally

independent of y, if x2 is given/known. In a case of only partial mediation, no claims

about conditional independence can be made. It might be of interest to IIR researchers,

for instance, to determine if task (x1) genuinely has an effect on behavior (y) (as in
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Figure 3.5: One possible graphical model depicting the relationship between objective
task characteristics, user characteristics, and behaviors.

work like [81]) or if it is only through topic familiarity (x2).

A formal definition of conditional independence is in order. We present the definition

from Pearl [116] but leave burden of proof on the reader:

• Definition (d-separation) - A set S of nodes is said to block a path p if either (1)

p contains at least one arrow-emitting node that is in S, or (2) p contains at least

one collision node that is outside S and has no descendant in S.

• Conditional independence - If S blocks all paths from set X to set Y , it is said

to “d-separate X and Y,” and then, it can be shown that variables X and Y are

independent given S, written X ⊥⊥ Y |S.

Consider Figures 3.1-3.3. In these, the only noteworthy conditional independence

relationship is in Figure 3.2: if y is known, each xi,xj are conditionally independent of

each other. This graphical framework is commonly used in Naive Bayes modeling. In

contrast, consider the tentative model in Figure 3.5. Suppose “Experience” includes

situational variables such as topic familiarity, task expertise, and time pressure. It

would be interesting to know whether there is a significant direct effect of task type

on behaviors. If not, then the arrow Task→Behaviors is omitted, and we can make

interesting claims such as, “If we know a user’s search intentions, task expertise, topic

familiarity, and feelings of time pressure, then we can perhaps predict a user’s behavior.

But task and other user background variables provide no additional information”.
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3.2.2 Argument 2: Bridging the Theoretical and Practical

By now is should be clear that mathematical shortcomings in previous empirical work

exist. Are these shortcomings of practical concern, and is expanding upon them worth-

while in IIR research? According to our prior literature review, this would seem to

be the case. First, researchers try to control confounding factors that could affect the

relationship between independent and dependent variables of interest, but some fac-

tors are hard to control. Researchers may attempt to control user factors by limiting

variation in the population, and they control task factors by constructing search tasks

to assign to research study participants. Yet some factors are still hard to control, for

instance time pressure or general search expertise. If they are important, any work not

taking them into account could lose valuable information. Second, recent work sug-

gests that researchers are actively interested in a lack of control. For instance, He and

Yilmaz gathered information on real-life Web search tasks in naturalistic settings [50].

Lastly, consider a model of information seeking behavior such as that by Ingwersen and

Järvelin in Figure 3.6 or the previously shown Figure 2.2. Not only do these suggest

highly nested relationships between user and task characteristics (and search engine

traits), but Ingwersen and Järvelin suggest conditional independence between charac-

teristics. For instance, the model suggests that interactions with the search engine are

purely a function of the user. Knowing about the user’s cognitive state is entirely suffi-

cient to predict behaviors, with external task characteristics such as goal and product

adding no value afterwards. It should hence be clear that expanding on the framework

of modeling user interactions is not only of mathematical interest but of theoretical and

practical interest to the IR community.

3.3 Graphical Modeling (and Structural Equation Models) in IR

What type of graphical modeling approach should be adopted, since “graphical model-

ing” refers to a large family of functions and relationships. Much recent work in IR has

adopted various graphical models. One example includes applying topic modeling to a

corpus of documents. Variants of Latent Dirichlet Allocation [12] - a Bayesian model



44

Figure 3.6: Nested contexts of information seeking and use, from [56].

with Dirichlet priors - are still used, for instance to model a corpus of tweets [38]. Deep

learning research is extensive in IR, such as for classic retrieval problems [7]. Deep

learning work is also graphical and shares properties such as d-separation. However,

it is worth noting that such models are typically applied to large scale settings with

mostly unstructured data. In several interactive IR settings - including the experiments

in this dissertation - the provided data is completely opposite: structured, small, and

only consisting of a few dozen sessions and several hundred queries.

Such a data setting lends itself to an older technique: namely structural equation

modeling. Although an old technique, structural equation models (SEMs) are making

a recent splash in the IR community. For instance, Ishita et al. [57] used a SEM to

demonstrate the relationship between information retrieval skills and efficacies such

as critical thinking, logical thinking, and formal internet training. Zhang et al. [144]

used a SEM to understand the relationship between document relevance, document

reliability, understandability, topicality, novelty, and scope. SEMs - like many other

models - contain explicit and latent variables. SEMs without latent variables are called

path models. Both path analysis and SEM were presented recently in a IR conference

tutorial [63] so have garnered interest in the IR community.

In its commonly understood, unmodified form, SEM makes strong assumptions
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about the relationships between variables - such as linear relationships between vari-

ables as in the above equations. This runs counter to other modern techniques like LDA

which use alternative distributions [12]. But Pearl indicated that this is an unnecessary

restriction and that SEMs can have a nonparametric representation that does not com-

mit to linear functions. In addition, he showed that SEMs share graphical properties

such as d-separation [117]. The work here will largely use the frameworks of SEMs, and

specifically path analysis.

3.3.1 Building Graphical Models - Path Models and Bayesian Net-

works

There are two commonly accepted methods of building graphical models. One approach

for SEMs builds the model using empirical or theoretical findings from literature review.

Other approaches in SEM and Bayesian literature are more data driven. Both types of

approaches will be discussed, as both are used in this dissertation’s experiments. Issues

of required sample size for such models are also discussed.

Model Specification through Literature Review

One approach to model specification starts with literature. Namely, given a data set

and research questions, the researcher must manually specify relationships between

variables. These are specified as one-directional influences (equations in the model) or

as bidirectional relationships (covariance between two variables). The researcher makes

model-building judgments through literature review, for instance literature suggesting

that smoking causes cancer or that home environment affects standardized score success

because it affects the amount of time a student spends studying. The researcher can

also fix if the size of the effect between some variables is known. [125] If a relationship

between a pair of variables has been found to be significant, this is one that should

be estimated. This model specification technique is confirmatory, since the researcher

is confirming previous findings. The researcher then assesses the model for how well

it fits the data. This approach to model building has been taken in human-computer

interaction work such as Khakurel et al [69].
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Data-Driven Model Specification

Two alternative techniques do not rely on literature but learn structure from a given

data set. First, for structural equation modeling, suppose that for a given data set: 1)

one has multiple indicator variables (e.g. survey questions), 2) one wants to combine

subsets of the variables into latent constructs, and 3) one would like to specify relation-

ships between those latent constructs. This can be explored through an exploratory

factor analysis (EFA) technique [49] and was done in Zhang et al. Specifically, they

applied techniques called standard maximum likelihood and principle axis factoring

to reduce a set of 15 questions into 5 latent variables. They verified whether they

could use this EFA technique with Kaiser-Mayer-Olkin Measure of Sampling Adequacy

and Bartlett’s test of Sphericity [144]. This approach will not be used here, as we do

not have the proper setting for constructing these latent constructs, but it should be

mentioned.

The second approach lies in structure learning, from the Bayesian literature. Two

types of algorithms are commonly applied in structure learning. Structure Learning

is a NP hard problem, so the algorithms are approximation algorithms. The types of

algorithms are known as constraint-based algorithms and score-based algorithms (and

some hybrid ones). One of each type was used in the experiments, and each will be

discussed in the next chapter. Yet generally speaking, one starts with a set of variables

V and a dataset D. The goal is to construct a directed acyclic graph G that meets the

requirements of the algorithm. In the score-based case, e.g., hill-climbing, the goal is

to maximize the following function:

Score(G : D) = LL(G : D)− φ(|D|)||G||

Here, LL(G : D) is the log-likelihood of D under G. The subtracting term penalizes

for model complexity. |D| is the size of the data ||G|| is the number of parameters in

the graph, and φ refers to a complexity measure function, such as the Akaike infor-

mation criterion (φ(|D|)=1) or the Bayesian Information Criterion (φ(|D|) = log(|D|)
2 ).
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A popular family of scoring functions is the Bayesian Dirichlet score. If P (ΘG) is the

prior probability of the parameters, the scoring function is provided as:

P (D|G) =

∫
P (D|G,ΘG)P (ΘG|G)dΘG

Lastly, it is worth noting that in graphical modeling there exists the notion of

“equivalent models”; multiple graphical models that are equivalent. Pearl and Lee and

Hershberger defined equivalence in terms of d-separation: two graphs that are equiv-

alent must be identical in terms of conditional independence, even if the specification

of equations is different [117, 76]. Sprites et al. further discussed the concept of co-

variance equivalence classes - a group of possible graphs over the same variables that

recreate the same covariance matrix over over their data. They moreover proved several

theorems, including: 1) If two graphs are directed acyclic graphs, they are covariance

equivalent if and only if they are d-separation equivalent 2) Two directed acyclic graphs

are d-separation equivalent if and only if they contain the same vertices, the same ad-

jacencies, and the same unshielded colliders. D-separation equivalaence and covariance

equivalence can hold for acyclic as well as cyclic graphs [124].

3.4 Determining Sample Size

For computing necessary sample size in structural equation models, some claim there

is no strict rule to determining the required size. Several informal rules of thumb

have been published, including: a minimum sample size of 100 or 200 [13, 73], 5 or 10

observations per estimated parameter/degree of freedom [11], and 10 cases per vari-

able [113]. Wolf et al. indicated that these rules can lead to either overestimated or

underestimated sample size requirements, increasing the changes of Type I and Type II

errors, respectively [141]. Wolf et al. explained 3 proposed solutions for this problem:

estimating power based on the amount of model misspecification [121], obtaining a con-

fidence interval for goodness of fit metrics [22], and Monte Carlo simulations (chosen

by Wolf) to show the power and bias for individual effects (i.e., single directed edges)
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in the model [141]. Our experiments will adopt the approach of MacCallum [22], who

proposed sampling to product a confidence interval for measures of fit. MacCallum

specifically used the confidence interval of RMSEA, which is an accuracy measure for

path analysis and structural equation modeling. Sampling the confidence interval of

RMSEA over different sample sizes can tell us how accuracy of a path model estimate

improves, worsens, and becomes more or less confident over time. Another evaluation

metric called the expected cross-validation index (ECVI) [17], when plotted over sample

sizes, can tell us how well our estimate of model parameters would generalize to some

external data set. Both will be used here to address RQ4 (regarding sample size), and

mathematical details of both will be discussed in the next chapter.
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Chapter 4

Experimental Design

Experiment 1 will use confirmatory analysis to explore how well relationships found

in the literature are validated using path analysis. The literature-based model building

approach mentioned previously will be used to first construct the path model. Namely,

if a significant relationship is found between two variables, this is included as an edge

in the graphical model, and its weight is to be estimated. Standard goodness-of-fit

metrics in path analysis will be used to determine how well this theoretical model fits

the data provided from one laboratory study. The model largely reflects the conceptual

one shown in Figure 3.5. Afterwards, the model will be iteratively tweaked to determine

the usefulness of certain sets of features. Specifically, it will systematically incorporate

and remove variables and relationships for users’ general search experience, background

knowledge, affectional variables, and search intentions. Not only will the confirmatory

fit be assessed, but it will be analyzed to determine whether new insights regarding

mediation and indirect effect can be discovered with this modeling technique; these

cannot be found using previous techniques. This experiment can be found in Mitsui

and Shah [110].

Experiment 2 will apply Bayesian structural learning to learn the optimal struc-

ture of a graphical model from data, using both a score-based and constraint-based

approach to structure learning. In contrast with the previous experiment where the re-

lationships between variables (edges in a graph) were hand-constructed from literature

review, several models will be built in this experiment using data-driven approaches.

Models will first first be built on a combined dataset, merging the datasets from 3

separate user studies; behavioral data and survey data common to all 3 studies will be

used. Then models will then be built on 3 datasets separately; in this case, models will
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be built from each data set using all the data available respective to that data set. A

bootstrapping and sampling framework will be used to construct more valid results in

both cases. The results will be combined to provide implications about replications and

genuinely significant effects.

Experiment 3 will explore the relationship between data size and accuracy. The

results from Experiments 1 and 2 will be used to construct graphs to analyze. This

experiment will explore how data size affects the goodness of fit, both with respect to

the accuracy of the fit and the confidence in the estimated model. As data collection is

at a premium in laboratory studies, it is useful to know how much data is required to

create a good model relating user characteristics, task characteristics, and behaviors -

or at least how accuracy may change over varying data set sizes. This analysis will be

performed once again on the 3 datasets on various sample sizes, randomly sampling to

produce means and confidence intervals of evaluation metrics.

4.1 Experiment 1: Confirmatory Analysis

4.1.1 Experimental Design

The purpose of this experiment was to confirm how well the relationships found in

literature were confirmed by analysis of path models. It was also meant to extract

relationships of mediation, which could not be extracted using previous analysis frame-

works. A confirmatory experiment using path analysis must start with a hand-built

path model. This was constructed through literature review. Significant relationships

between variables from literature indicate arrows/dependencies in the model. This set

of relationships is constructed into a set of equivalent equations (discussed in the pre-

vious chapter) in which the weights β are estimated. Listed below are all relationships

included in our model, along with the relevant literature. For a more thorough ex-

ploration of the literature, refer to the Background chapter or the Appendix. Unless

otherwise specified, relationships listed below are one-way directed arrows, specifying

equations rather than correlations.

Task → Behaviors - Task goal, product → all behaviors [91, 60, 4]. Every task
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and topic variable in this experiment has an arrow to every behavioral variable.

Task → Intentions → Behaviors - Task goal, product → intention groups [111];

intention groups→all behaviors [107]. Every task variable has an arrow directly to every

intention variable.

Task/Topic → Search Experience - Task product, goal→search difficulty [93];

topic → topic familiarity.

Background → Search Experience - Search years → search difficulty; search

frequency → search difficulty.

Background → Intentions - Search expertise → intentions [100, 120].

Experience → Behaviors - Topic familiarity → all behaviors [97, 51]; search

difficulty→ Behaviors [97, 3, 5]. These also have arrows going to every single behavior.

Within-category Correlations - Adequate time←→task difficulty [32]; assign-

ment experience ←→ search difficulty [93]; task goal ←→ task product (our data is not

perfectly balanced); topic familiarity → search difficulty.

Figure 3.5 once again can be referenced for a summary. Each node in the figure

indicates several variables. For instance, in this experiment the “Task” node indicates

3 binary variables: the task goal, the task product, and the task category. A path

indicates that there is some one-way arrow between nodes in one set and nodes in

another. Also note that henceforth we use “behaviors” and “signals” interchangeably.

To confirm whether claims in the literature lined up under this constructed model,

the following had to be asked: 1) How well does the data fit the model overall? 2) Are

certain features more useful than others in showing the relationship between task type,

behavior, and other user characteristics? Both of these questions can be answered in

the evaluation framework of path analysis, explained in the next subsection. The first

question could be answered by comparing the model constructed above to the “saturated

model”, where it is assumed that relationships between every pair of variables should

be estimated (as nonzero correlations). The saturated model has a perfect fit according

to evaluation metrics but is the most complex.

The second question requires a comparison of variations of the model, which need to
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Model Name βT,E βT,I βB,E βB,I βE,S βI,S βT,S
Full Model Y Y Y Y Y Y Y

IB N Y N Y N Y Y
IE Y Y N N Y Y Y
I N Y Y N N Y Y

BE Y N Y N Y N Y
E Y N N Y Y N Y

Task Only N N Y Y N N Y

Table 4.1: The different models tested, as well as whether the edges in each group are
unconstrained (Y=Yes,N=No). Variables are Task (T), Experience (E), Intentions (I),
Background (B), and Behavioral Signals (S).

be specified carefully. Suppose we group the features broadly: task characteristics, user

background characteristics, user experience characteristics, intentions, and behaviors.

Further suppose we want to know how useful each group of features is. We can construct

the following algorithm.

• Select groups of nodes G1, ..., Gn (e.g., search expertise variables, search difficulty

variables).

• Split the graph into two groups of variables: V ′ ∈ G1, ..., Gn and V = G− V ′

• Constrain edges between V and V ′ to 0.

Rather than removing variables, we constrain paths to be 0 so we can compare

evaluation metrics across variations of the graph. Path analysis evaluation metrics are

relative to the number of degrees of freedom and number of variables, as shown in the

next section. A table of the compared variations is shown in Table 4.1. Task and behav-

iors were kept in every variation; in addition to exploring the usefulness of variables, a

subgoal was to explore the usefulness of variables in mapping the relationship between

variables and task type.

In this experiment, we used dataset 1, explained in detail in the last sections of this

chapter. The is because dataset 1 (as explained later in this chapter) contains almost

all of the features each data set has, and additionally includes searchers’ intentions.

Searchers reported what their intentions were for each query segment. A side effect of
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this experiment was to see if intentions were useful and could be justifiably discarded

in future experiments when mapping the relationship between task type and behavior.

The data points in this experiment are the query segments of users. Each query seg-

ment is a vector of behavioral features, demographic characteristics (e.g., general search

expertise), session characteristics (e.g., task difficulty), and task type characteristics.

The specific features and their distributions are provided in Tables 4.3, 4.4, and 4.5.

The number of data points at least meets the requirements of informal rules for SEM

building (e.g., at least 200 points - there are over 600).

The SEM was constructed and evaluated using the SPSS AMOS Software, Version

251. A linear path model was used, with estimation of the β parameters done using

maximum likelihood estimation on 200 bootstrapped samples of the data.

4.1.2 Evaluation Methodology

Recall that a path model is a SEM without latent variables. A given path model

combined with the data can be used to produce a covariance matrix S between variables

Xi and Xj :

Sij = E[(Xi − µi)(Xj − µj)] (4.1)

This is an approximation of the true covariance matrix of the data, Σ. Evaluation

metrics for path models are largely based on goodness of fit of S to Σ. The saturated

model recreates Σ perfectly. A fundamental evaluation metric is χ2:

χ2 =
∑
ij

(Sij − Σij)
2

Σij
(4.2)

A similar metric is the goodness of fit index (GFI).

GFI = 1− Covresidual
Covtotal

(4.3)

Where Covtotal is the total covariance of Σ, and Covresidual is leftover covariance

from the error terms; higher scores are better.

1https://developer.ibm.com/predictiveanalytics/2017/09/07/whats-new-spss-amos-25/
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Feature Intentions Learning Expert

General Search Expertise X X
Years Spent Searching X X

Search Frequency X X
Professional Domain Expertise X

Topic Familiarity X X X
Assignment Experience X
(Post) Search Difficulty X X X

Adequate Time X X
Behaviors X X X

Table 4.2: Features present (X) and absent in the intentions dataset (Intentions), search-
ing as learning dataset (Learning), and expert opinion dataset (Expert).

Other scores adjust in favor of model simplicity. These penalize based on degrees

of freedom, number of parameters, or the number of data points. Two such are the

adjusted GFI (AGFI) and parsimonious GFI (PGFI). Another popular one, the root

mean squared error (RMSEA), is provided by:

RMSEA =

√
χ2 − df
df(N − 1)

(4.4)

Lastly, the Akaike information criterion (AIC) and Bayesian information criterion

(BIC) are shown below, similarly weighting with respect to the number of parameters

and degrees of freedom (a higher score is worse). Given N data points, k parameters,

and df degrees of freedom:

AIC = χ2 + k(k + 1) + 2df (4.5)

BIC = χ2 + ln(N)

(
k(k + 1)

2
− df

)
(4.6)

4.2 Experiment 2: Structure Learning

4.2.1 Experimental Design

The results of Experiment 1 will show that there is room for improvement in the model

constructed from literature review. The purpose of this experiment is to try to derive a

model from data. Rather than just learning the parameters of a pre-specified graph, the

structure of the graph will also be learned. To do this, structural learning algorithms
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will be applied to data to learn a graphical model from 3 comparable research study

data sets.

Each of the 3 comparable data sets is explained in detail in the last parts of this

chapter. The types of data collected are not completely identical but overlap. In

addition to having comparable browsing data, each of the respective studies asked

similar questions about users’ background and about their experiences with the search

tasks. Table 4.2 gives an account of the features available in each data set. There are

some questions that all datasets have in common, and each data set has at least some

one question belonging to every node in the conceptual Figure 3.5: behaviors, task,

background, and experience, but intentions are only provided in the first data set. In

Experiment 1, though, it was found that dropping intentions does not yield much loss

in performance in terms of path model metrics. Intentions can hence be dropped in

other analyses, specifically Experiment 2.

In this experiment, in an analysis combining datasets, only the common subset of

questions will be used. However, in an analysis of each data set separately, all of the

data sets’ respective questions will be used, to extract any possible relationships that

should be explored. The complete set of attributes collected for each data set are shown

in the dataset-specific subsections in this chapter. There are some caveats.

• In analysis of the Expert Opinion dataset exlusively, search expertise was calcu-

lated as an average over 4 expertise-related questions.

• With the Expert Opinion dataset, task product will not be incorporated into

building the model, as it is constant (Factual) for all 6 tasks.

• In analysis of the Searching as Learning dataset exclusively, task product is either

Intellectual or Mixed (Factual+Intellectual). It will still be used here, treating

Mixed as the lower of 2 levels, if analysis requires this.

• With the Searching as Learning dataset, task goal will not be incorporated, as it

is constant (Specific) for all 4 tasks.

The structure learning framework in this experiment proceeded in two phases. In
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the first phase, the 3 datasets were combined into one. The Intentions, Searching as

Learning, and Expert Opinion datasets contained 1274, 693, and 594 query segments,

respectively, yielding a combined total of 2561 data points. The purpose of this phase

was to determine possibly genuine relationships that are generalizable across data sets;

pooling data can increase data set size and also provides justification for replicability,

if strong relationships are found. However, the data sizes are skewed, so this phase of

the experiment involved downsampling the first 2 datasets to 594 points each. Several

model building trials were run with randomly sampled datasets of 594 = 1782 points.

The second phase performed model building on each of the datasets separately, this time

using all of the data collected in each study rather than only the overlapping features.

The models of the first and second phase could then be compared to each other. Even

if there are genuinely important relationships extracted from the first phase, can these

still be discovered in the second phase using more features? If not, what did the first

phase miss?

Bayesian structure learning is a NP-hard problem, so two approximation algorithms

were used to learn directed acyclic graph (DAG) structures. The first is a constraint-

based algorithm called the Incremental Association Markov blanket (IAMB) [127]. A

Markov blanket of a node is the set of nodes that keep it conditionally independent

from the other nodes not in the blanket. The algorithm begins by initializing a graph

with no edges. Then, an estimate of the Markov blanket B of a node is made. In a

forward phase, variables belonging to the blanket (and possibly false positives) enter

the blanket. Suppose that the mutual information of two nodes X and Y is given by

M(X;Y ) =
∑
x∈X

∑
y∈Y p(x, y) log( p(x,y)

p(x)p(y)). The forward step greedily adds edges to

the node Y , specifically adding edges that maximize the score M(X;Y |Blanket(Y )).

In the backward phase that follows, false positives are removed, pruning edges that

violate the constraint M(X;Y |Blanket(Y )) < τ for some τ .

The second is a score-based approach known as hill-climbing (HC), which starts

with an empty graph and incrementally adds, removes, and reverses edges until a (local)
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maximum score is reached. This greedy algorithm proceeds as follows2:

1. Start with an empty graph G, data D

2. While Score(G) increases:

(a) G’ = add, delete, or reverse an edge of G, provided that the operation gives

an acyclic graph G’

(b) Compute Score(G′) = BIC(G′;D) = LL(G′;D)− log(m)
2 dim(G′)

(c) G = G’

The scoring function used in these experiments is the Bayesian Information Criterion

score, where LL is the log likelihood of the graph given the data, m denotes the number

of samples and G denotes the number of parameters in G. The Hill-Climbing algorithm

constrains the final graph to be a directed acyclic graph (DAG), but the former does

not. The former creates undirected edges in the case that an edge orientation cannot

be decided. This not necessary for the current analysis under consideration but worth

noting.

There is potentially a random component to the algorithm outcomes, and in the

case of hill-climbing there is a likely chance that given a dataset, it will greedily opti-

mize to a local optimum. Hence, several graphs were constructed several times using

bootstrapped samples of the data, rather than the original data. In the first phase of

this experiment where datasets were combined, a total of 2000 graphs built with 2000

bootstrapped samples – 1000 for IAMB and 1000 for HC. In the second phase where

data sets were separated, 5000 bootstrapped graphs were constructed for each data set

and for each algorithm, yielding 30000 total bootstrapped iterations. Experiments were

run using the bnlearn library3 of R. To meet with the requirements of the implemen-

tation, all variables were treated as real-numbered values (which can be justified even

for a binary variable such as specific/amorphous goal, which is arguably a scale).

2https://www.stats.ox.ac.uk/̃lienart/gml15 bayesianet.html

3http://www.bnlearn.com/
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4.2.2 Evaluation Methodology

As the purpose of this experiment is largely exploratory, the evaluation methodology

is exploratory as well. A standard metric of the quality of a graph is not used, partly

due to the random sampling nature of the algorithms but also due to a desire to also

qualitatively evaluate the results of the graphs. Since several sample graphs are created,

we can compute the probability that an edge will be included in a graph. High strength

in the probability of inclusion of an edge gives us confidence that any graph will likely

contain the edge. This analysis will be done on both the hill climbing results and

IAMB results, on all data sets. From this, a single graph can be constructed - one

which was actual output from the algorithm and contains a very high score on most

of its edges, according to both algorithms. In particular, in analysis, we will examine

one of the most commonly observed graphs constructed from phase one and examine

it qualitatively - how well does it compare with intuition? It can also be examined

quantitatively. How common are the proposed edges? Which edges from this proposed

graph are also commonly present in the second phase, where more features are used for

graph construction?

As a final step of evaluation, the anatomy of the proposed graph will be explored, in

particular conditional independence relationships. What conditional independence re-

lationships arise from the graph, and are these noteworthy? This entails the limitations

of what data can tell us. Although it is generally agreed upon that more context is

better for determining characteristics about a search session such as difficulty and task

type, little work has explicitly explored the limitations of the data. The exploratory

findings will be compared against literature but also post future directions for analysis.

Are there any other relationships that are noteworthy? This will justify the use of the

proposed graph in the final experiment.
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4.3 Experiment 3: Sample Size

4.3.1 Experimental Design

Working graphical models are found in Experiment 1 and Experiment 2. But as these

experiments deal are on laboratory study-sized data, a potential criticism is that the

lack of data makes it difficult to produce any insights. It is hence good to determine

how sample size can affect results. This experiment explores this question by exploring

changes in goodness-of-fit, as a function of sample size.

This experiment can also be split into two parts. The first explored the data from

Experiment 1. Taking the intentions data, it applies the data to the full model and

background and experience measures (BE) model put forth in Experiment 1, examining

changes in goodness-of-fit metrics across random samples of the dataset. The second

phase similarly applies the model in Experiment 2 to the 3 data sets separately on their

most common features. Occasionally, 1 variable needed to be omitted from analysis.

For the searching as learning data, the goal had to be omitted, since it was always

specific. For the expert opinion dataset, the product was omitted, as it was always

factual.

Several random samples of the data were constructed for sample sizes of 30%, 40%,

50%, in increments of 10 up to 100%. As in Experiment 1, SPSS AMOS is used to

approximate the parameters of a graphical model (in this case, a SEM) and deter-

mine goodness of fit. Maximum likelihood estimation was used once again, with 200

bootstrapped samples within each random sample.

4.3.2 Evaluation Methodology

As in Experiment 1, RMSEA is used be used to show how goodness of fit changes

with sample size. An additional measure called the Expected Cross-Validation Index

will also be used. ECVI assesses the discrepancy between the covariance matrix fitted

with the sample and the expected covariance matrix from a sample of equivalent size.

It performs cross-validation to examine the difference between the covariance matrix

produced by the data versus the covariance produced. Smaller is better in both cases.
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We are interested in how much the metrics improve over time as well as the confidence of

those metrics. In addition to reporting raw metrics, we also report the 95% confidence

interval for these metrics at each sample size. The equations for the metrics are given

below:

RMSEA =

√
χ2 − df
df(N − 1)

ECV I = E{F (Sv, St|St)}

F (Sv, Sc|Sc) is a discrepancy function (e.g. chi-square) between the correlation

matrix produced by a model on a training set St and the model produced on an external

validation set Sv. E{} is the expected value of the discrepancy function.

4.4 Dataset 1: Information Seeking Intentions

4.4.1 Data Collection Design

This dataset was collected in a laboratory setting. Undergraduate journalism students

were recruited from Rutgers University during school semester periods. Participants

were required to have completed at least one course in news writing. Each participant’s

study session consisted of 2 search tasks. Each task was preceded by a pre-task inter-

view, proceeded by a post-task interview, and subsequently followed with an “intention

annotation task”. Participation in the study began with a demographic questionnaire

and ended with a verbal exit interview. All activity except for the exit interview was

conducted at a desktop computer in a laboratory. Search activity was recorded in Fire-

fox by the Coagmento browser plugin4 [108], eye-fixation behavior by GazePoint5, and

annotatable video of the search by Morae6. In addition, Coagmento provided a book-

mark annotation tool that participants used while conducting provided search tasks.

Coagmento also recorded browsing activity and sent it to a remote server.

4http://coagmento.org

5http://www.gazept.com/

6https://www.techsmith.com/morae.html
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Participants began by answering the demographic questionnaire and watching a tu-

torial video on using Coagmento, before beginning the search task. Then, participants

read the task description and answered a short questionnaire on their familiarity with

the topic and task as well as the anticipated difficulty. Participants then had 20 min-

utes to complete the search task; this was shown to be a sufficient amount of time in

pilot tests, and the researchers needed to control for a constant time limit. They could

finish before 20 minutes if they felt they completed their task early. Afterwards, par-

ticipants answered a post questionnaire on the actual difficulty of the task. They were

then asked to annotate their intentions for each query segment, first watching a video

demonstrating how to conduct this “intention annotation task”. Users were also given

a handout of a short description of each intention. This was for further clarification and

to also reduce variability in the data from differing interpretations of the intentions.

They then completed the intention annotation task with no time limit. Participants

repeated the process with more questionnaires, another search task, and another inten-

tion annotation task before the exit interview. The experimental session lasted about

two hours.

For the intention annotation task, participants were asked to select which intentions

applied to each query segment (all activity that occurred from one query to the next) in

the search session. This was accomplished by playing the video of the search, segment

by segment. They could select, from a displayed list, any number of intentions for a

segment. For instance, if a participant knew nothing about coelacanths and issued the

query “coelacanths” as the first query in a session, that person might mark “identify

something to get started” and “learn domain knowledge”. The participant was then

asked to mark whether each of these checked intentions was satisfied. The participant

may mark “yes” for “identify something to get started” but “no” for “learn domain

knowledge”. If a participant marks “no”, she must then state why that intention was

not satisfied. For example, while she found some new keywords to search, she may not

have learned any knowledge that was required by the task description. If the participant

had some other intention in addition to the 20 listed, the participant may also check

“other”, give a short description of that additional intention, and also mark whether it
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Task Product Level Goal Named |T | |CO| |CL| |Q|
CPE Factual Segment Specific True 22 11 11 206
STP Factual Segment Amorphous False 18 9 9 108
REL Intellectual Document Amorphous True 18 9 9 155
INT Intellectual Document Amorphous False 22 11 11 224

Table 4.3: Task type and session characteristics for the Intentions data set. Task
product, task goal, and other controlled task characteristics are specified, as well as the
number of sessions in each task type (|T |), the number of coelacanth sessions (|CO|),
the number of methane clathrates sessions (|CL|), and the number of query segments
for each task type (Q).

was satisfied. They repeated this annotation process for each query segment separately.

For the entire process, participants were incentivized with additional reward for being

among the best performers. This provided incentive to issue good searches, instead of

meeting the minimum requirements. Participants were told that “good performance”

also included marking intentions well - i.e. marking all and only those that applied. In

total, the data collected was for 48 participants.

4.4.2 Assigned Tasks

There were 4 possible tasks and 2 topics per task. Two task types are a copy editing

task (CPE) and interview preparation task (INT), as specified in Cole et al [29]. The

other tasks - Relationships (REL) and Story Pitch (STP) task - were novel to this

study. One topic was “coelacanths”, and another was “methane clathrates and global

warming”. The chosen topics were familiar enough to generate participant interest

yet unfamiliar enough so participants would likely not know the requested information

before arrival. We further gave a faceted classification of each task in Table 4.3. Task

facets were assigned according to task goal, task product, level of document evaluation,

and whether the task was named [29, 79]. Each user completed 2 search tasks and

hence 2 annotation tasks. Task types were paired into 4 groups, based on differences

in facet values. Each participant searched for 2 tasks in one of these 4 groups, each

task on a different topic. Order of the 2 tasks and 2 topics in each group was flipped,

yielding a total possible 4× 2× 2 = 16 configurations. Descriptions of each task are as

follows:
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• Task = Copy Editing (CPE). Topic = Coelacanths. Product = Factual.

Goal = Specific.

Your Assignment: You are a copy editor at a newspaper and you have only 20

minutes to check the accuracy of the six italicized statements in the excerpt of a

piece of news story below.

Your Task: Please find and save an authoritative page that either confirms or

disconfirms each statement.

The coelacanth (“see-la-kanth”) is a ‘living fossil’ fish, thought to be long ex-

tinct before a specimen was discovered in 1938 at East London, South Africa.

Fourteen years later, the “discovery” of coelacanths was confirmed in the Comoro

Islands, off the coast of Madagascar. Forty six years after that, a new population

was identified from at least two specimens caught off of North Sulawesi, Indone-

sia. In 1987, a submersible crew finally managed to obtain film footage of live

coelacanths.

Coelacanths are the size of humans. They are slate-blue when alive, with white

flecks on the thick scales that cover their bodies. They live in the gloaming, around

200-400 meters below the surface, where light barely penetrates and few creatures

venture. They spend their days sheltering in rocky caves in small groups, coming

up to feed at night as the water above them cools. Unlike most fish, they give birth

to live young - small, perfectly formed baby coelacanths - and when disturbed they

lift themselves into headstands, apparently using an electro-sensory organ in their

snout to detect the presence of predators or prey.

The handful of people who have seen them in their natural habitat talk of their

glowing eyes and their gentle demeanor. They describe coelacanths moving with

surprising grace, deploying their fanned fins in a diagonal formation - right fin

in front, left trailing behind - that is similar to a lizard walking. Their blue and

silver color provides excellent camouflage in the underwater cave homes covered

in sponges and oysters that they prefer to eat.

• Task = Story Pitch (STP). Topic = Coelacanths. Product = Factual.
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Goal = Amorphous.

Your Assignment: You are planning to pitch a science story to your editor and

need to identify interesting facts about the coelacanth (“see-la-kanth”), a fish that

dates from the time of dinosaurs and was thought to be extinct.

Your Task: Find and save web pages that contain the six most interesting facts

about coelacanths and/or research about coelacanths and their preservation.

• Task = Relationships (REL). Topic = Coelacanths. Product = Intel-

lectual. Goal = Amorphous.

Your assignment: You are writing an article about coelacanths and conservation

efforts. You have found an interesting article about coelacanths but in order to

develop your article you need to be able to explain the relationship between key

facts you have learned.

Your Task: In the following there are five italicized passages, find an authoritative

web page that explains the relationship between two of the italicized facts.

“The coelacanth (“see-la-kanth”) is a lobe-finned fish related to lungfish and to

primitive tetrapods (animals with four limbs, like us). They have a long fossil

record from the Devonian to the Cretaceous - about 300 million years. But no

coelacanth fossils have been discovered in sediments younger than the Cretaceous,

about 70 million years ago. Yet a specimen was discovered in 1938 at East London,

South Africa and a number have been caught in shallow open waters of less than

100 meters since then. The ’home’ of the coelacanths is the Comoros Islands,

a young West Africa volcanic island chain only 6.5 million years old, but a few

have been caught elsewhere in West Africa and at least two in Indonesia. It is

estimated there are only a thousand or so coelacanths in the world.

Coelacanths are the size of humans, are believed to live for 100 years or more,

and are poor swimmers. They are slate-blue when alive, with white flecks on

the thick scales that cover their bodies. They live in the gloaming, around 200-

400 meters below the surface, where light barely penetrates and few creatures

venture. They spend their days sheltering in rocky caves in small groups. Unlike
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most fish, they give birth to live young - small, perfectly formed baby coelacanths

- and when disturbed they lift themselves into headstands, apparently using an

electro-sensory organ in their snout to detect the presence of predators or prey.

The handful of people who have seen them in their natural habitat talk of their

glowing eyes and their gentle demeanor. They describe coelacanths moving with

surprising grace, deploying their fanned fins in a diagonal formation - right fin

in front, left trailing behind - that is similar to a lizard walking. Their blue and

silver color provides excellent camouflage in the underwater cave homes.”

• Task = Interview Preparation (INT). Topic = Coelacanths. Product

= Intellectual. Goal = Amorphous.

Your Assignment: You are writing an article that profiles a scientist and their

research work. You are preparing to interview Mark Erdmann, a marine biologist,

about coelacanths and conservation programs.

Your Task: Identify and save authoritative web pages for the following:

Identify two (living) people who likely can provide some personal stories about

Dr. Erdmann and his work.

Find the three most interesting facts about Dr. Erdmann’s research.

Find an interesting potential impact of Dr. Erdmann’s work.

• Task = Copy Editing. Topic = Methane clathrates and global warming.

Product = Factual. Goal = Specific.

Your Assignment: You are a copy editor at a newspaper and you have only 20

minutes to check the accuracy of the six italicized statements in the excerpt of a

piece of news story below.

Your Task: Please find and save an authoritative page that either confirms or

disconfirms each statement.

Arctic methane ’time bomb’ could have huge economic costs

“Scientists say that the release of large amounts of methane from thawing per-

mafrost in the Arctic could have huge economic impacts for the world. The
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researchers estimate that the climate effects of the release of this gas could cost

$60 trillion, roughly the size of the global economy in 2012. The impacts are most

likely to be felt in developing countries they say.

Scientists have had concerns about the impact of rising temperatures on per-

mafrost for many years. Large amounts of methane are concentrated in the frozen

Arctic tundra but are also found as semi-solid gas hydrates under the sea. Pre-

vious work has shown that the diminishing ice cover in the East Siberian Sea is

allowing the waters to warm and the methane to leach out. Scientists have found

plumes of the gas up to a kilometer in diameter rising from these waters.

In this study, the researchers have attempted to put an economic price on the

climate damage that these emissions of methane could cause. Methane is a pow-

erful greenhouse gas, even though it lasts less than a decade in the atmosphere.

Using an economic model very similar to the one used by Lord Stern in his 2006

review of the economics of climate change, the researchers examined the impact

of the release of 50-gigatonnes of methane over a decade. They worked out that

this would increase climate impacts such as flooding, sea level rise, damage to

agriculture and human health to the tune of $60 trillion.

The researchers say their study is in marked contrast to other, more upbeat

assessments of the economic benefits of warming in the Arctic region. It is thought

that up to 30% of the world’s undiscovered gas and 13% of undiscovered oil lie in

the waters. Transport companies are looking to send increasing numbers of ships

through these fast melting seas. According to Lloyds of London, investment in

the Arctic could reach $100 billion within ten years.

But according to the new work, these benefits would be a fraction of the likely

costs of a large scale methane emission. The authors say a release of methane on

this scale could bring forward the date when global temperatures increase by 2C

by between 15 and 35 years. Some scientists have cautioned that not enough is

known about the likelihood of such a rapid release of methane. Even though it has

been detected for a number of years, it has as yet not been found in the atmosphere
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in large amounts. “We are seeing increasing methane in the atmosphere. When

you look at satellite imagery, for instance the MeToP satellite, that’s gone up

significantly in the last three years and the place where the increase is happening

most is over the Arctic,” Prof Wadhams said.”

• Task = Story Pitch. Topic = Methane clathrates and global warming.

Product = Factual. Goal = Amorphous.

Your Assignment: You are planning to pitch a science and economics story to

your editor and need to identify interesting facts about the economic impact of

global warming on the Arctic region.

Your Task: Find and save web pages that contain the six most interesting facts

about the world economic impact of global warming on the Arctic region.

• Task = Relationships. Topic = Methane clathrates and global warm-

ing. Product = Intellectual. Goal = Amorphous. Your Assignment: You

are writing an article about the Arctic and global warming. You have found an

interesting article about the potential for global warming to both increase eco-

nomic development of the Arctic but also to accelerate and magnify the world

economic impact of global warming. To develop your article you need to be able

to explain the relationship between key facts you have learned.

Your Task: In the following, there are five italicized passages. Please identify

a relationship between any two of the facts and find an authoritative page that

explains the relationship between the two italicized facts.

”There are economic benefits of warming in the Arctic region. It is thought that

up to 30% of the world’s undiscovered gas and 13% of undiscovered oil lie in the

waters. Transport companies are looking to send increasing numbers of ships

through these fast melting seas. According to Lloyds of London, investment in

the Arctic could reach $100 billion within ten years.

There are also economic costs. Scientists have had concerns about the impact of

rising temperatures on permafrost for many years. Large amounts of methane
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are concentrated in the frozen Arctic tundra. Previous work has shown that the

diminishing ice cover in the East Siberian Sea is allowing the waters to warm

and the methane to leach out. Scientists have found plumes of the gas up to a

kilometer in diameter rising from these waters.

Methane lasts less than a decade in the atmosphere. Some scientists have cau-

tioned that not enough is known about the likelihood of such a rapid release of

methane. Even though it has been detected for a number of years, it has as yet

not been found in the atmosphere in large amounts. The release of 50-gigatonnes

of methane over a decade would increase climate impacts such as flooding, sea

level rise, damage to agriculture and human health to the tune of $60 trillion.

“We are seeing increasing methane in the atmosphere. When you look at satellite

imagery, for instance the MeToP satellite, that’s gone up significantly in the last

three years and the place where the increase is happening most is over the Arctic,”

Prof Wadhams said.”

• Task = Interview Preparation. Topic = Methane clathrates and global

warming. Product = Intellectual. Goal = Amorphous.

Your Assignment: You are writing an article that profiles a scientist and their re-

search work. You are preparing to interview Igor Semiletov, an expert in chemical

oceanography, about Arctic greenhouse gases and global warming.

Your Task: Identify and save authoritative web pages for the following: Iden-

tify two (living) people who likely can provide some personal stories about Dr.

Semiletov and his work.

Find the three most interesting facts about Dr. Semiletov’s research.

Find an interesting potential impact of Dr. Semiletov’s work.

4.4.3 Survey Data

Variables regarding general search experience were captured in the demographic ques-

tionnaire at the start of the study. Participants were asked about their frequency of
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searching, the number of years they have been doing online searching, and their exper-

tise regarding searching and journalism. Task-related questionnaires were also provided

before and after participants worked on each task. These included a pre-task question

about topic familiarity and experience with the type of assignment, questions about

anticipated (pre-) difficulty and actual (post-) difficulty, and whether the participant

felt they had enough time. Unlike other datasets, this one uniquely collected survey

data about participants’ intentions for each query segments. For analyses, we treated

each intention as a binary variable (1 if present, 0 if absent) and summed categories

together (identify, learn, keep, evaluate), with 3 categories grouped together because

of their similarity (find/access/obtain). Several questions were asked in each question-

naire, but the subset of questions chosen for analyses - as well as summary statistics -

are provided in Table 4.4.

In addition to the demographic, pre-task, and post-task data, participants were

asked about their intentions for each query segment. After completing each task, par-

ticipants were provided a video of their prior search activity. For each query segment,

participants were asked to report what intentions they had when issuing the query and

examining subsequent information, including all activity up to and until the next query.

They could choose any number of the following options per query segment, which were

grouped into categories:

Identify: Identify something to get started - For instance, find good query

terms. Identify: Identify something more to search - Explore a topic more

broadly. Learn: Learn domain knowledge - Learn about the topic of a search.

Learn: Learn database content - Learn the type of information/resources available

at a particular website - e.g., a government database. Find: Find a known item -

Searching for an item that you were familiar with in advance. Find: Find specific

information - Finding a predetermined piece of information. Find: Find items

sharing a named characteristic - Finding items with something in common. Find:

Find items without predefined criteria - Finding items that will be useful for

a task, but which haven’t been specified in advance. Keep: Keep record of a

link - Saving a good item or an item to look at later Access: Access a specific
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Category Variable Description Values Summary

Background Search Ex-
pertise

Please indicate your level
of expertise with searching.

Likert: 1-Novice, 7-
Expert

µ = 4.875, σ = 1.00

Background Search
Years

How many years have you
been doing online search-
ing?

Numeric µ = 10.65, σ = 3.01

Background Search Fre-
quency

How often do you search
using search engines or
other online search tools?

Likert: Never, 5-
11 times/year, 1-2
times/month, 1-
2 days/week, 3-5
days/week, Once a day,
several times a day

µ = 6.75, σ = 0.59

Background Journalism
Searching

How often have you con-
ducted online searching for
journalism-related tasks?

Likert: Never, Once or
twice, 3-5 times, More
often

µ = 3.35, σ = 0.92

Experience Topic Fa-
miliarity

How familiar are you with
the topic of this assign-
ment?

Likert: 1-Not at all, 4-
Somewhat, 7-Extremely

µ = 1.725, σ = 1.30

Experience Assignment
Experience

How much experience do
you have with this kind of
assignment?

Likert: 1-Not at all, 4-
Somewhat, 7-Extremely

µ = 3.05, σ = 1.83

Experience Task Diffi-
culty (Post)

How difficult was it to find
the information you need
for this assignment?

Likert: 1-Not at all, 4-
Somewhat, 7-Extremely

µ = 2.8, σ = 1.65

Experience Adequate
Time

Did you have enough time
to complete the assignment
successfully?

Likert: Far too lit-
tle, Too little, Barely
enough, Enough, More
than enough

µ = 4.1, σ = 1.03

Intentions Query-level
intentions

The searchers’ intentions
during a query segment
[142]

20 indicators: present
or absent, in 5 groups
(numeric count)

(µfrequency, σfrequency) =
(21.05%11.15%)

Table 4.4: Statistics on survey data in the Intentions data set. Questions are grouped
into broad categories. Full question text is provided, as well as the range of possible
values and summary statistics.
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Category Variable Description Values Summary

Behavior # Pages # Pages Count µ = 5.75, σ = 2.96
Behavior Total content dwell time Total time on pages Seconds µ = 76.01, σ = 95.47
Behavior Total SERP dwell time Total time on SERPs Seconds µ = 8.79, σ = 14.61
Behavior Query length Query length # words µ = 4.97, σ = 3.83

Table 4.5: Statistics on behavioral data used from the Intentions data set.

item - Go to some item that you already know about. Access: Access items with

common characteristics - Go to some set of items with common characteristics.

Access: Access a web site/home page or similar - Relocating or going to a

website. Evaluate: Evaluate correctness of an item - Determine whether an item

is factually correct. Evaluate: Evaluate usefulness of an item - Determine whether

an item is useful. Evaluate: Pick best item(s) from all the useful ones (EB) -

Determine the best item among a set of items. Evaluate: Evaluate specificity of an

item - Determine whether an item is specific or general enough. Evaluate: Evaluate

duplication of an item - Determine whether the information in one item is the same

as in another or others. Obtain: Obtain specific information - Finding specific

information to bookmark, highlight, or copy. Obtain: Obtain part of the item -

Finding part of an item to bookmark, highlight, or copy. Obtain: Obtain a whole

item(s) - Finding a whole item to bookmark, highlight, or copy.

4.4.4 Behavioral Features

Behavioral variables were collected passively through Coagmento and the GazePoint

eye tracker as participants conducted the study. Coagmento logged page browsing

activities, such as page visits, dwell time on pages, and queries issued to Google, Yahoo,

and Bing. Local timestamps were collected to calculate dwell times on pages and search

engine result pages (SERPs). GazePoint data was not used in these experiments, with

eye tracking left to future work. The subset of variables used in analyses is listed in

Table 4.5.
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4.5 Dataset 2: Searching as Learning

4.5.1 Data Collection Design

This dataset was also conducted as part of a study, but while the former dataset was

collected in a laboratory setting, this data was collected in a naturalistic setting. Partic-

ipants were allowed to conduct the study activities in any arbitrary setting, not under

the supervision of a study coordinator. The students recruited were general undergrad-

uate students from Rutgers University, who were required to be at least second year

undergraduates. They were also required to use Google Chrome to complete the study.

The study could be completed over the course of 3 consecutive days. Participants were

asked to complete 4 tasks without time limit. Each task was preceded by a pre-task

interview, proceeded by a post-task interview, and subsequently followed with an an-

notation task. Participation with the study began with a demographic questionnaire

and ended with a verbal exit interview. Participants were additionally asked to collect

relevant information they found for the task in an online text editor Etherpad7. In

the post-task questionnaires, participants were asked to informally comment on their

search activities. Coagmento8 [108] was installed on participants’ Chrome browsers,

which was used to direct people to the study’s website so they could conduct the study.

Coagmento also recorded browsing information and sent it to a remote server. For the

entire process, participants were incentivized with additional reward for being among

the best performers. This provided incentive to issue good searches, instead of meet-

ing the minimum requirements. In total, the data collected in this study was for 30

participants.

4.5.2 Assigned Tasks

There were 4 tasks, each under the topic “cyber bullying”, a topic that would likely

be interesting to the general undergrad population. The task descriptions were broad,

and the tasks were mostly intellectual (with one mixed factual+intellectual product),

7http://etherpad.org/

8http://coagmento.org
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Table 4.6: Task type and session characteristics for the Searching as Learning dataset.

Task Product Goal |T | |Q|
Similar (SIM) Mixed Specific 30 168

Clementi (TYC) Intellectual Specific 30 187
Causes (CAU) Intellectual Specific 30 110

Strategies (STR) Intellectual Specific 30 129

as the purpose of the study was to see if learning occurred through the duration of the

study (a concept not explored in this dissertation). A faceted classification of each task

is provided in Table 4.6. Each user completed all 4 tasks. No rotations in task order

were given, and tasks were completed in the order presented below:

• Product = Mixed (Factual+Intellectual). Goal = Specific. - What is

cyberbullying? How is it similar or different to other types of harassments (e.g.

cyberbullying vs. traditional bullying)? What are some long-term/short-term

risks faced with cyberbullying?

• Product = Intellectual. Goal = Specific. - In 2010, Rutgers University

has witnessed the tragic incident of Tyler Clementi, whose case raised concerns

about cyberbullying. Find out more about this case, and possibly some other

cases. What does this case(s) show you about some common characteristics of

cyberbullying?

• Product = Intellectual. Goal = Specific. - Having heard some of the

recent reports on cyberbullying, what seems to be the main cause of the bullying

behavior online? How much are technology and use of electronic communication

associated with cyberbullying? Why?

• Product = Intellectual. Goal = Specific. - How effective are some of the

currently available strategies to mitigate cyberbullying at schools and university

campuses? Why? Which strategy/method do you think is best and why?
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Category Variable Description Values Summary

Background Search
Years

How many years of online
search experience do you
have?

Numeric µ = 9.43, σ = 4.37

Background Search Fre-
quency

How often do you search
the Web per day?

Ordinal: 1-3 searches
per day, 4-6 searches per
day, 7-10 searches per
day, 10+ searches per
day

µ = 3.13, σ = 0.92

Background Search Ex-
pertise

How would you rate your
level of online searching
skills?

Likert: 1-Novice, 5-
Expert

µ = 4.16, σ = 0.68

Experience Topic Fa-
miliarity

How much do you think
your knowledge on this
topic will help you with the
task?

Likert: Not at all help-
ful, A little helpful,
Somewhat helpful, Suf-
ficiently helpful, I know
a lot helpful

µ = 2.78, σ = 1.09

Experience Task Diffi-
culty (Post)

Overall, how difficult was
this task?

Likert: 1-Not at all dif-
ficult, 2-A little diffi-
cult, 3-Somewhat diffi-
cult, 4-Much difficult, 5-
Extremely difficult

µ = 1.86, σ = 0.91

Table 4.7: Statistics on survey data in the Searching as Learning data set.

4.5.3 Survey Data Used

Variables regarding general search experience were captured in the demographic ques-

tionnaire at the start of the study. Participants were asked about their online searching

skills and general search experience. Task-related questionnaires were also provided

before and after participants worked on each task. These included a pre-task ques-

tion about topic familiarity and questions about anticipated (pre-) difficulty and actual

(post-) difficulty. The subset of questions chosen for analyses - as well as summary

statistics - are provided in Table 4.7.

4.5.4 Behavioral Features Used

Behavioral variables were collected passively through Coagmento as participants con-

ducted the study. Coagmento logged page browsing activities, such as page visits, dwell

time on pages, and queries issued to Google, Yahoo, and Bing. Local timestamps were

collected to calculate dwell times on pages and search engine result pages (SERPs).
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Category Variable Description Values Summary

Behavior # Pages # Pages Count µ = 2.25, σ = 3.31
Behavior Total con-

tent dwell
time

Total time on pages Seconds µ = 74.32, σ =
134.09

Behavior Total SERP
dwell time

Total time on SERPs Seconds µ = 13.80, σ = 26.69

Behavior Query
length

Query length # words µ = 4.41, σ = 4.79

Table 4.8: Statistics on behavioral data used from the Searching as Learning data set.

The subset of variables used in analyses is listed in Table 4.8.

4.6 Dataset 3: Expert Opinions

4.6.1 Data Collection Design

This dataset was collected in a mixed environment - in both a naturalistic and a labora-

tory setting. Rutgers undergraduate students were recruited from the general university

population rather than a specific demographic. Participants were only required to use

Google Chrome as their default browser. The study was split into 3 parts, with par-

ticipants required to conduct 2 tasks in each part. The first part was conducted in a

naturalistic environment, the second in a university laboratory, and the third in a nat-

uralistic environment. Each task was preceded by a pre-task interview and proceeded

by a post-task interview. Participation with the study began with a demographic ques-

tionnaire and ended with a verbal exit interview. Participants were asked to use the

Chrome browser at all stages of the study, and users installed a Coagmento Chrome

extension for their home activities.

Participants began by answering the demographic questionnaire. Then, in the nat-

uralistic portions of the study, participants were asked to conduct 2 search tasks that

were created by the researchers. For each task, participants read the task description

and answered a short questionnaire on their familiarity with the topic and task as well

as the anticipated difficulty. They then had 20 minutes to complete the search task.

Afterwards, participants answered a post questionnaire on the actual difficulty of the
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Table 4.9: Task type and session characteristics for the Expert Opinion dataset.

Task Product Goal |T | |Q|
Movie (MOV) Factual Specific 30 161

Retirement (IRA) Factual Amorphous 30 75
Book (BOK) Factual Specific 30 294

Beijing Airport (PEK Factual Amorphous 30 256
TV shoes (PIN) Factual Specific 30 249

PhD programs (PHD) Factual Amorphous 30 239

task. In the laboratory setting, participants were asked to answer one new question-

naire. Users reported about their feelings about their own personal search efficacies,

such as whether they have enough knowledge to help others search, whether they remain

calm when facing difficulties searching, whether they are confident they can deal with

complex search tasks, and whether they expect they can search like an expert in their

field. A laboratory session lasted about 70 minutes. The study then concluded with

2 more search tasks in a naturalsitic setting. For the entire process, participants were

incentivized with additional reward for being among the best performers. This pro-

vided incentive to issue good searches, instead of meeting the minimum requirements.

In total, the data collected in this study was for 30 participants.

4.6.2 Assigned Tasks

This experiment contained a total of 6 possible tasks, each with a distinct topic. All

contained a factual product, with the goal either being specific or amorphous. We give a

faceted classification of each task in Table 4.9, according to a subset of facets in Li [79].

For definitions of each facet, see [29, 79]. Each user completed all 6 tasks in the order

below: the first 2 in a naturalistic setting, the second 2 in a laboratory setting, then

the last 2 in a naturalistic setting.

• Product = Factual. Goal = Specific. - You saw a clip of a TV movie on a

bus and want to watch the full movie. You don’t know the name of the movie.

You only saw that the heroine is an amateur sleuth who owns a bakery. In the clip

you were watching, she was worried about her competitor stealing her business.

You really like the actor who plays the heroine’s friend, a dentist. Find out the
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name of that actor.

• Product = Factual. Goal = Amorphous. - Suppose you are an employee at a

US non-profit organization. You are trying to decide whether to contribute money

to your employer-offered 403(b) retirement plan or to a personal IRA (Individual

Retirement Account). Find resources that could help you decide which is best for

your needs. Please provide your decision, a brief description of your rationales,

and the links to the resources which you believe can support your decision making.

• Product = Factual. Goal = Specific. - You are looking for a book titled

“Suede to Rest” by Diane Vallere that is not owned by Rutgers University Library.

You want to find the library closest to Rutgers, New Brunswick that owns the

book and if it is currently available and how you can check it out.

• Product = Factual. Goal = Amorphous. - You plan to visit Beijing and

want to find information about Beijing Capital Airport (PEK); what shuttles and

public transportations connect the airport to downtown; what hotels are close

to the airport; what rental car services do they have; and where cheap parking

around the airport is. (Please note that you can only search in English and view

English websites.)

• Product = Factual. Goal = Specific. - Your friend really likes a pair of

shoes that he saw in the South Korean TV series Pinocchio, which was worn

by the hero. You want to buy these shoes as a birthday gift for him. But the

TV series did not specify the brand of the shoes (the pair in the middle [picture

interleaved with task description]). Find out the brand and style of the shoes.

(Please note that you can only search in English and view English websites.)

• Product = Factual. Goal = Amorphous. - You are applying for Ph.D.

programs in the area of Library and Information Science (LIS). You want to find

out what the best LIS programs in the U.S. are and which of them guarantee

at least four years of funding for Ph.D. students (tuition remission + monthly

stipend). You also want to consider their job placement within the last three



78

years. Did their graduates find tenure-track positions in academia? Taking these

factors into consideration, find five LIS programs that you want to apply, and

supply your reasons. Please note that the names of the departments may vary

(do not have to be LIS), but LIS has to be one of the research areas in your target

department.

4.6.3 Survey Data Used

Variables regarding general search experience were captured in the demographic ques-

tionnaire at the start of the study, though this demographic questionnaire did not

contain survey data about search experience (only about English language proficiency).

Task-related questionnaires were also provided before and after participants worked on

each task. These included a pre-task question about topic familiarity, questions about

anticipated (pre-) difficulty and actual (post-) difficulty, and whether the participant

felt they had enough time. In the lab study, participants were asked twice (once before

each task) about their general search efficacy. Some expertise variables here were of

interest, and for these we took the average of both responses, as they did not differ sig-

nificantly. The subset of questions chosen for analyses - as well as summary statistics

- are provided in Table 4.10.

4.6.4 Behavioral Features Used

Behavioral variables were likewise collected passively through Coagmento as partici-

pants conducted the study, in the same fashion. The subset of variables used in analyses

is listed in Table 4.11.
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Category Variable Description Values Summary

Background Search Ex-
pertise 1

I can solve most problems
involving searching for in-
formation if I invest the
necessary effort.

Likert: 1-Not at all
true,2-Hardly true,3-
Moderately true,4-Very
true,5-Exactly true

µ = 4.1, σ = 0.65

Background Search Ex-
pertise 2

I believe that I have good
amount of knowledge on
searching to support my
daily searching at home
for non-work events (e.g.,
travel plan, housing).

Likert: 1-Not at all
true,2-Hardly true,3-
Moderately true,4-Very
true,5-Exactly true

µ = 4.23, σ = 0.84

Background Search Ex-
pertise 3

I believe that I have good
amount of knowledge on
searching to support my
daily searching for com-
pleting work task at work-
place.

Likert: 1-Not at all
true,2-Hardly true,3-
Moderately true,4-Very
true,5-Exactly true

µ = 4.16, σ = 0.58

Background Search Ex-
pertise 4

I believe that I have good
amount of knowledge on
searching to help others
solve regular search-related
problems.

Likert: 1-Not at all
true,2-Hardly true,3-
Moderately true,4-Very
true,5-Exactly true

µ = 3.8, σ = 0.79

Background Averaged
Search
Expertise

(Average of the above) Likert: 1-Not at all
true,2-Hardly true,3-
Moderately true,4-Very
true,5-Exactly true

µ = 4.075, σ = 0.46

Experience Topic Fa-
miliarity

How knowledgeable are
you on this topic?

Likert: 1-Not at all, 4-
Somewhat, 7-Extremely

µ = 3.11, σ = 1.70

Experience Task Diffi-
culty (Post)

How difficult was it to find
the information you need
for this task?

Likert: 1-Not at all, 4-
Somewhat, 7-Extremely

µ = 3.83, σ = 1.83

Experience Adequate
Time

Did you have enough time
to complete the task suc-
cessfully?

Likert: Far too lit-
tle, Too little, Barely
enough, Enough, More
than enough

µ = 4.07, σ = 0.94

Table 4.10: Statistics on survey data in the Expert Opinion data set.
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Category Variable Description Values Summary

Behavior # Pages # Pages Count µ = 2.00, σ = 3.45
Behavior Total con-

tent dwell
time

Total time on pages Seconds µ = 53.73, σ = 90.83

Behavior Total SERP
dwell time

Total time on SERPs Seconds µ = 9.72, σ = 22.45

Behavior Query
length

Query length # words µ = 5.76, σ = 3.96

Table 4.11: Statistics on behavioral data used from the Expert Opinion data set.
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Chapter 5

Results and Discussion

5.1 Experiment 1: Confirmatory Analysis

Results for goodness-of-fit of the constructed SEM can be shown in Table 5.1. Ta-

bles 5.2-5.3 also explore the number of times pairs of variables contained significant

relationships, showing the most frequent relationships. Findings are as follows:

The best model for most metrics uses only background and experience

measures. - The BE model does not have the smallest χ2, which is an unadjusted fit

metric. But the model has the smallest χ2/df . It also ranks the best among all models

for AGFI, which adjusts GFI for parsimony, and obtains the lowest RMSEA score. It

has a relatively low χ2 and many degrees of freedom. This also helps to explain that

while our full model has the best AIC score, the BE model has the lowest BIC score

(150 degrees of freedom vs. 110).

The best-fitting model uses all features, but it is not the simplest - While

the full model performs best in χ2 and unadjusted measures, it is one of the poorest

performers for adjusted measures. It has the worst AGFI and PGFI, and χ2/df is on a

Model Name # Params df χ2 χ2/df RMR GFI AGFI PGFI RMSEA AIC BIC

Full 100 110 2241.363 20.376 16.714 .725 .475 .380 .167 2441.363 2895.466
IB 77 133 2719.991 20.451 20.710 .697 .522 .442 .168 2873.991 3223.650
IE 86 124 2412.235 19.454 16.666 .719 .524 .425 .163 2584.235 2974.763
I 71 139 2686.312 19.326 20.746 .696 .540 .460 .163 2828.312 3150.725

BE 60 150 2403.537 16.024 17.306 .711 .596 .508 .147 2523.537 2795.999
E 66 144 2458.304 17.072 17.312 .711 .579 .488 .152 2590.304 2890.012

TaskModel 51 159 2773.078 17.189 17.992 .688 .587 .521 .153 2835.078 3066.670
Saturated 210 0 0 NA 0 1 NA NA 0 420 1373.616

Independent 20 190 3857.457 20.302 17.453 .626 .587 .567 .167 3897.457 3988.278

Table 5.1: Experiment 1 - Goodness of fit measures for the path models. Best perfor-
mance (aside from Saturated and Independent models) are boldfaced.



82

Path From Path To # Direct Paths # Indirect # Significant Direct # Sig. Indirect # Sig. Total

Goal Content
dwell time

7 6 7 0 7

Goal Query
Length

7 6 7 1 6

Goal SERP dwell
time

7 6 1 0 5

Goal # pages 7 6 0 0 1

Goal Find / Ac-
cess / Ob-
tain

4 0 4 NA 4

Product Content
dwell time

7 6 4 0 4

Product Query
Length

7 6 4 0 3

Product SERP dwell
time

7 6 0 0 1

Product # pages 7 6 7 4 7

Product Difficulty 4 0 4 NA 4

Topic Query
Length

7 4 7 4 7

Topic Content
dwell time

7 4 0 0 2

Topic SERP dwell
time

7 4 2 3 1

Topic # pages 7 4 0 3 1

Topic Topic Fa-
miliarity

4 0 3 NA 3

Topic Difficulty 0 4 NA 1 1

Table 5.2: Experiment 1 - Significant pathways from task goal, product, topic to en-
dogenous variables. Includes total number of graphs with direct, indirect, and total
effects, as well as the number of graphs with significant such effects.
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Path From Path To # Direct Paths # Indirect # Significant Direct # Sig. Indirect # Sig. Total

Int - Evalu-
ate

# pages 4 0 3 NA 4

Int - Evalu-
ate

Content
dwell time

4 0 3 NA 4

Int - Find /
Access / Ob-
tain

# pages 4 0 4 NA 4

Int - Identify # pages 4 0 4 NA 4

Int - Identify SERP dwell
time

4 0 4 NA 4

Int - Identify Query length 4 0 2 NA 2

Int - Keep # pages 4 0 1 NA 2

Intent - Keep Content
dwell time

4 0 2 NA 2

Rushed Content
dwell time

4 4 4 0 4

Rushed Query length 4 4 0 0 4

Search Ex-
pertise

SERP dwell
time

0 3 NA 0 1

Search Ex-
pertise

Content
dwell time

0 3 NA 2 1

Search Ex-
pertise

Query length 0 3 NA 1 1

Journalism
Expertise

# pages 0 3 NA 0 1

Topic Famil-
iarity

# pages 4 4 4 0 4

Topic Famil-
iarity

SERP dwell
time

4 4 4 0 4

Topic Famil-
iarity

Query length 4 4 4 0 4

Table 5.3: Experiment 1 - Significant pathways from other survey variables to behaviors.
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par with the independent model assuming no relationships.

In general, intentions reduce χ2 at the cost of goodness of fit - Keeping the

background and experience constant, toggling the intents toggles the degrees of freedom

by 20 to 40, with a small improvement in χ2 (2403.537-2241.363=162.174, 2458.304-

2412.235=46.069, 2773.078-2686.312=86.766). Also, each model with intentions per-

forms worse in several parsimony-based metrics with respect to its counterpart without

intentions. This happens universally for χ2/df , AGFI, PGFI, RMSEA, and BIC.

Experience variables account for much variance - All other things held

constant, removing the links to and from experience variables adds substantial χ2

(2719.991-2241.363=478.628, 2686.312-2412.235=274.077, 2773.078-2458.304=314.774).

GFI, AGFI, and PGFI improve when removing experience, but most other metrics

worsen.

None of the models is a particularly good fit - The saturated baseline can

indeed be achieved by connecting all pairs of variables, and it perfectly fits the data.

For good-fitting models, ideal fits for χ2/df , GFI, AGFI, PGFI, and RMSEA are 2-

5,0.9,0.9,0.9, and 0.08, respectively. That said, while our models do make improvements

over the saturated or independent models in most metrics, our models are far from the

ideal range, including the full model. This suggests that there are many connections not

covered in this full model that should be included. This suggests that either literature

was missed in the literature review (an oversight on a parameter to estimate) or perhaps

gaps in the literature exist.

Inasmuch as covered by this model, there are still direct paths from

task type (and other user characteristics) to browser signals - There are very

frequently total and direct effects from task goal, product, and topic to our browser

features. This may be a genuine direct effect or due to some unrecorded variable.

Similarly, consistent direct effects were found from time pressure to content dwell time

and query length and search expertise to content dwell time.

Topic familiarity also plays an important role - Each time topic familiarity

was included in our model, it had a significant effect on the browsing features. Moreover,

topic was only linked to topic familiarity and had significant indirect effects to certain
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browsing features 3-4 times, particularly query length, SERP dwell time, and number

of pages. Therefore, topic influences these not only directly but indirectly through a

user’s topic familiarity.

Product (not goal) directly and indirectly influences behavior - Specifically,

task product has an indirect effect on the # of pages viewed through the difficulty

experienced by the searcher, but it also has a significant direct effect on this behavior.

This contrasts with task goal, which does not have this indirect effect.

Intentions can influence searchers’ behavior, but influence from task type

to intention was not found - Several direct effects from intentions to behaviors can

be found in Table 5. However, only task goal influences find/access/obtain intentions,

even though it does so in every model. While intentions may influence their respective

search session, perhaps intentions of a single query segment do not neatly map to task

types. Perhaps intentions aggregated over an entire session map neatly to task type

but not within a single query segment (counter to [4]). In our data, this would make a

difference: even though there are 693 query segment and 693 corresponding intention

vectors, there are only 80 sessions on 2 task products, 2 task goals, and 2 topics.

There is some influence from a user’s background - occasionally, a user’s

search expertise and journalism expertise affects browsing behaviors, as in Table 5, but

are not affected by task.

What, are the final takeaways from these findings? First, the findings here give cre-

dence to this type of modeling. We first found several instances of mediation, which

is a phenomenon that could not be modeled with previous frameworks. The results

show that topic affects browsing behaviors directly but also intermediately through

a user’s familiarity. Additionally, while product and goal directly influence behavior,

only product indirectly influences the # of pages indirectly through the difficulty ex-

perienced by a searcher. Second, this new approach to modeling additionally confirms

several previous findings. Task still seems to have important direct effects on browsing

behavior. Factors aside from task still certainly influence behaviors. The simultaneous

effects of all these types of variables have rarely, if ever, been measured. Additionally,

this simultaneous is perhaps one of task prediction’s obstacles, as these simultaneous
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Data set Algorithm |V | |E| Total ≥ 75% ≥ 50% ≥ 25%

Intentions HC 15 210 209 17 31 55
Intentions IAMB 15 210 199 10 31 55
Learning HC 11 110 90 6 11 19
Learning IAMB 11 110 90 4 19 25
Expert HC 9 72 72 2 13 25
Expert IAMB 9 72 72 5 18 26
Merged HC 9 72 72 6 10 19
Merged IAMB 9 72 0 0 0 16

Table 5.4: Experiment 2 - Overview of the number of chosen edges by each algorithm.
Includes the number of variables (|V |), the total number of possible edges (|E|=(V
choose 2) × 2 for edge orientation), the total number of edges chosen with nonzero
probability, and the number over particular probability thresholds.

effects aren’t taken into account. Third, none of the models presented here are an

ideal fit with respect to the data, meaning that there is perhaps a gap in the litera-

ture. It means that according to this data, there are some important links that are not

drawn, because they have not been covered by our literature review (and perhaps the

literature generally). There is important unconsidered influence between some of these

variables. Lastly, the task model using just background and experience information

seems to provide the best fit overall, even though intentions data still has an affect on

browsing. This at least justifies the removal of intentions in future experiments and

allows analysis with the other data sets, allowing for the methodology of Experiment

2. Intentions could be removed from Experiment 2 analysis to allow multiple data sets

to be integrated. This provided an opportunity to address some of the gaps from the

first experiment. Namely, what model structure would be good if the structure here

was not necessarily sufficient?

5.2 Experiment 2: Structure Learning

The results for Experiment 2 are summarized in Tables 5.4-5.7. Table 5.4 gives a

rough overview of the experiments regarding the sizes of the graphs. It shows the total

number of possible edges that could have been included in the graph and the total edges

with a nonzero probability. It also shows how many edges were included with a high

probability. The scoring functions for HC and IAMB discount for parsimony, so not
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many edges were included in the graphs, and this table briefly illustrates that.

For phase one of the study – in which all 3 datasets were combined in a boot-

strapped process of graph construction – the common proposed graph can be found

in Figures 5.1-5.2. This example was found using hill climbing. Superimposed on the

edges of the figures are the probabilities that each edge was included by the respective

algorithm. In addition, the probabilities for these edges and several more edges can

be found in Table 5.5. The edges included in the proposed graph are boldfaced in this

table. Most of the edges are among the highest probability edges according to both al-

gorithms. All 13 edges are included in the top 20 for HC, with the top 10 being included

in the graph. 12 out of 13 are in the top 20 of IAMB, and all 13 are in the top 30 (the

last one with probability .117). Some of the top edges according to IAMB not included

in the graph include Search Expertise→ Topic Familiarity, Content T ime→ Goal,

and SERP Time→ Content T ime, and Topic Familiarity → Difficulty. It should

be noted, though, that in these cases the reverse edge is included instead, hence IAMB

makes different decisions about orientation but not necessarily about inclusion. Consid-

ering in addition that 3 separately collected datasets were used to create this graph this

graph, this will be taken as an acceptable graph explaining the relationship between

the variables. An interpretation of this graph will be given in the last remarks of this

experiment.

We next proceed to phase two. It is noted here that results differ. To compare

phase one to phase two, 9 out of the 13 edges were found among the top 20 in at least

one of the experiments in phase two. While not terribly strong evidence, this should

not be considered invalidation for the proposed structure in phase one. Rather, it

should be noted that the strongest relationships in phase two mostly include variables

that did not overlap between all 3 data sets. Such variables include general search

experience, experience in a field (e.g. journalism), frequency of searching, the amount

of years spent searching, and topic as a controlled variable. If anything, the results

tease out other possible relationships that should be considered in the future. One such

noteworthy one is the relationship between demographic characteristics (field expertise,

general search experience) and adequate time, as well as session characteristics (topic,
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IAMB Hill-Climbing

Search Expertise # Pages 0.479 Goal Product 0.992

Content time # Pages 0.477 Topic Familiarity Product 0.980

Goal Product 0.471 Search Expertise # Pages 0.954

Topic Familiarity Product 0.462 Difficulty Product 0.944

Search Expertise Topic Familiarity 0.453 Content time # Pages 0.920

Topic Familiarity Search Expertise 0.452 Topic Familiarity Search Expertise 0.875

Content time Goal 0.445 Goal Content time 0.746

Goal Content time 0.433 Difficulty Topic Familiarity 0.732

SERP time Content time 0.414 Difficulty # Pages 0.728

Topic Familiarity Difficulty 0.406 Content time SERP time 0.658

Difficulty Topic Familiarity 0.398 Goal Query Length 0.501

Difficulty Query Length 0.367 Difficulty Query Length 0.485

Content time SERP time 0.353 Product Query Length 0.445

Query Length Difficulty 0.324 Query Length Difficulty 0.334

Product Query Length 0.296 Search Expertise Goal 0.304

Product Difficulty 0.268 Product # Pages 0.297

# Pages Difficulty 0.243 Topic Familiarity # Pages 0.292

Difficulty Product 0.226 Topic Familiarity Difficulty 0.267

Query Length Goal 0.224 Topic Familiarity SERP time 0.259

Goal Query Length 0.214 Search Expertise SERP time 0.241
Table 5.5: Overview of the top 20 edges and their respective probabilities in the merged
data set, for the IAMB and Hill-climbing algorithm.

topic familiarity, difficulty) and adequate time. Multiple data sets show a relationship

between the two in some orientation. Namely: Difficulty → Adequate T ime, Topic→

Adequate T ime, Field Expertise → AdequateT ime, Difficulty → Adequate T ime,

Search Experience → Adequate T ime. Moreover, a more complex relationship was

shown between topic, product, and topic familiarity. A proposed construct that could

be drawn in addition could be Product ← Topic → Topic Familiarity → Behaviors

(viz., # pages and time spent on content and SERPS). For this, see the IAMB results

for the intentions study and both results for the expert opinion study.

Some cautionary notes should be mentioned. First, each of the datasets is one

third of the size of the datasets measured. Hence, the above results are tentative

and speculative, with perhaps more data being necessary to have more stable results.

Secondly, the orientation of the edges should be interpreted correctly. Statements of

causation are not being made, nor can they of course be made through statistics alone.

The relationships are interpreted only as statements of conditional independence.

With that, let us further explore the proposed graph in Figures 5.1-5.2. First,
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Figure 5.1: A common graphical model proposed by Hill-Climbing using the merged
data set. Weights indicate the Hill-Climbing probabilities in Table 5.5

several results exist that agree with past literature. For instance, several session or

task characteristics are directly related to behavior. For instance, product directly

affects query length, goal affects content time, search expertise affects the number of

pages and amount of time spent on SERPs, and difficulty affects query length. Content

time, number of pages, and SERP time have some effects on each other, but this

is understandably due to correlation (an issue which should be revisited in a future

experiment). Further, these are affected by task and user characteristics, and not

the other way around (as should be expected). Goal “affects” product, only due to

correlation through experimental design. Goal is at the very top of the DAG along

with difficulty, and behaviors are at the bottom, which is consistent with intuition. The

graph structure is also very similar to the structure proposed in Figure 3.5, with perhaps

some disagreement about the arrangement of difficulty, topic familiarity, and search

expertise. Difficulty, in this model, affects topic familiarity and search expertise and

product. While the former two can be seen as correlation between the variables, perhaps

there is a genuine relationship between whether the task is fact-finding, whether the
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Figure 5.2: A common graphical model proposed by Hill-Climbing using the merged
data set. Weights indicate the IAMB probabilities in Table 5.5

task is mixed, or whether it is intellectual, which would also agree with past literature.

Lastly, taking the graph at face value, some interesting relationships of independence

and conditional independence can be drawn. These entail the limitations learning about

task characteristics from data. X ⊥⊥ Y – independence – states that information of X

provides no information about Y (and vice versa). X ⊥⊥ Y |S states that when S is

known, information about X provides no information about Y (and vice versa). The

most interesting are as follows:

• Independence - Content T ime ⊥⊥ Search Expertise; Goal ⊥⊥ Difficulty;s

Goal ⊥⊥ Topic Familiarity; Product not independent of Difficulty; SERP Time

not independent of Search Expertise

• Conditional Independence - Query Length ⊥⊥ Goal|Product; #Pages ⊥⊥

Product|Goal; Content T ime ⊥⊥ Product|Goal; SERP Time ⊥⊥ Product|Goal,

Query Length ⊥⊥ Everything|Difficulty, Product; Content T ime ⊥⊥ Topic

Familiarity|Difficulty, Goal; Content T ime ⊥⊥ Search Expertise|Difficulty, Goal;

Goal not independent of Difficulty given Product
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Intentions Learning Expert

From To P() From To P() From To P()

Dif TimAd 0.981 Dif SeExp 0.8776 QuLen Dif 0.9026

FiExp SeExp 0.9474 SFreq SeExp 0.8736 Dif TimAd 0.8964

Years FiExp 0.8912 Prod TopFam 0.8676 SeExp SERP 0.8762

Dif TasExp 0.8632 Cont Page 0.8388 Cont Page 0.829

Dif SFreq 0.8522 Dif TopFam 0.7514 TopFam TimAd 0.7888

Topic TimAd 0.8118 SFreq SERP 0.6964 TopFam Cont 0.7398

TopFam Page 0.8022 Page Cont 0.6938 Prod SeExp 0.7384

QuLen Topic 0.7928 SeExp Dif 0.6926 SeExp TopFam 0.7318

Topic TopFam 0.7622 Years SFreq 0.6904 TopFam Page 0.7198

Cont Page 0.7544 Dif SFreq 0.6764 TopFam SeExp 0.6834

Goal Prod 0.7456 SFreq Years 0.6708 SeExp TimAd 0.6782

SFreq SeExp 0.7144 SeExp SFreq 0.663 SERP SeExp 0.6746

Years TopFam 0.7052 SFreq Dif 0.6424 TimAd Goal 0.6538

TopFam TasExp 0.6868 Years SERP 0.5822 TimAd Dif 0.634

Dif Prod 0.6704 Years QuLen 0.5662 Dif TopFam 0.6022

Topic Prod 0.6362 QuLen Years 0.5608 Goal TopFam 0.5896

Prod Dif 0.635 Years Dif 0.554 Dif QuLen 0.5574

Years SeExp 0.608 Dif Years 0.551 Cont Goal 0.5292

SeExp Years 0.5836 SERP SFreq 0.5004 SERP TopFam 0.4948

TasExp SeExp 0.5762 SERP Years 0.4862 TopFam Goal 0.4868

Table 5.6: Overview of the top 20 edges and their respective probabilities in each
dataset, for the IAMB algorithm.

For instance, if the task product and the difficulty the user is experiencing are

given or discovered, these wholly determine the query length. No other information is

needed nor useful, and conversely, query length can tell you nothing about additional

task and user attributes. Similarly, given the product and query length, the query

length can give no more additional information about the goal. The other behaviors

can likewise tell nothing about the product once the goal is known. Goal is independent

of difficulty, but interestingly product is not independent of difficulty. Time spent on

content – as difficulty and task goal become known – can provide no information about

the searcher’s topic familiarity and search expertise. As mentioned, these entail the

limitations of the data. As more information is discovered about the searcher’s task,

familiarity, and expertise, certain features become less and less useful. The nature of

features’ usefulness becomes explicit using this graphical modeling framework.
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Intentions Learning Expert

From To P() From To P() From To P()

Dif TimAd 1.000 Prod TopFam 0.9642 SeExp TopFam 0.9466

Topic TimAd 0.9996 SFreq SeExp 0.9524 Page Cont 0.762

FiExp TimAd 0.999 Years Dif 0.8876 SeExp SERP 0.7486

SeExp SFreq 0.9944 SFreq Dif 0.8644 SeExp TimAd 0.6902

Goal Prod 0.9934 Years SFreq 0.8004 QuLen Dif 0.6658

Years TimAd 0.9714 Page Cont 0.7936 Cont Goal 0.6386

Goal TopFam 0.9694 SeExp Dif 0.7384 Dif TimAd 0.6098

SeExp TasExp 0.9396 Dif TopFam 0.6442 TimAd Goal 0.5918

SeExp FiExp 0.9142 Years QuLen 0.626 TopFam Dif 0.546

Dif SFreq 0.8768 SFreq SERP 0.5546 Page TopFam 0.5398

SeExp Years 0.8706 Years SERP 0.4916 SeExp Dif 0.5394

Prod Dif 0.8546 Cont SERP 0.4152 TopFam SERP 0.5378

Topic QuLen 0.8442 TopFam QuLen 0.3958 Dif TopFam 0.454

TopFam TasExp 0.837 Prod SFreq 0.3856 SERP TopFam 0.4328

FiExp SFreq 0.829 TopFam Dif 0.3402 TopFam Page 0.4238

Page Cont 0.7954 SFreq QuLen 0.3284 Goal TopFam 0.412

Topic SFreq 0.7934 SeExp TopFam 0.2698 Goal TimAd 0.4082

Years TasExp 0.703 Dif SeExp 0.2606 TopFam Goal 0.4058

Years TopFam 0.6856 SERP SFreq 0.2568 TimAd Dif 0.3902

TopFam SFreq 0.6956 SeExp QuLen 0.2572 TopFam TimAd 0.3486

Table 5.7: Overview of the top 20 edges and their respective probabilities in each
dataset, for the Hill-Climbing algorithm.

5.3 Experiment 3: Sample Size

The results for Experiment 3 can be summarized in Figures 5.3 - 5.4. Averages are

shown as dots in the line plots, and bars on each dot are confidence intervals. Table 5.8

shows these results in tabular format. Comparing the 2 lines at the top (Experiment

1 data) to the 3 at the bottom (Experiment 2 data) should be done carefully. These

different variable sets and different degrees of freedom. But we can still draw some

general conclusions. First, regarding RMSEA, while there is some fluctuation in the

score, it flatlines overall and neither significantly improves nor worsens over increase

in data size. This suggests that even if we increase the amount of data, the extent to

which the original covariance of the data can be captured does not change. Regarding

ECVI, however, the story is different. Recall that ECVI shows how likely a model will

recreate similar covariance matrices between the training data and some externally held

data set. As data size increases, ECVI improves across the board. Smaller is better in
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this case, and the ECVI decreases significantly as the data size increases. This means

that as sample size increases, the strength of relationships captured are truly genuine.

The strength of the relationships between variables is externally validated on held-out

data.

Why do we have this seemingly paradoxical result, and what do these mean, taken

together? First, an increase in data suggests a more confident fit; more data can indeed

be useful in confidently estimating the strength of relationships between variables. Yet

this more confident fit does not always entail a better fit, as we see that the RMSEA

score does not significantly change over increasing data size. How can we see improve-

ments? While the answer does not seem to be in data size, perhaps it lies in the choice of

variables or the relationships to estimate. Some insights can perhaps be drawn from the

prior experiments. In Experiment 2, we saw that features excluded from the graph in

Figures 5.1-5.2 contained some very strong relationships. Including these variables and

their respective strong relationships can perhaps help improve goodness of fit. But as

we saw with Experiment 1, haphazardly adding all features and additional relationships

does not necessarily entail the best model. As seen in that case, a task-behavior model

excluding intentions provided the best RMSEA. Yet the RMSEA score even using this

graph (PA-be-int) does not improve RMSEA to the point where it matches the lower

3 lines. Adding the right variables would hopefully bring the RMSEA score of the top

2 lines closer to the bottom 3, yet this gap is due to adding either too many variables

estimating extra relationships unnecessarily (hence skewing the number of degrees of

freedom and number of parameters to estimate unnecessarily). In summary, variables

must be chosen wisely in experimentation.
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Figure 5.3: Experiment 3 - ECVI results. Means are shown in the line plot, and
confidence intervals are bars. Results are shown for the full graph on Experiment 1 with
intentions data (PA-all-int) and the graph omitting intentions (PA-be-int). Results are
also shown for the Experiment 2 graph on the 3 datasets separately (BN).

Figure 5.4: Experiment 3 - RMSEA results. Means are shown in the line plot, and
confidence intervals are bars. See the previous figure for a key explanation.
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RMSEA ECVI

PA - Intentions BN - Learning PA - Intentions BN - Learning

% Mean CI Mean CI Mean CI Mean CI

30 0.167 0.178 0.086 0.122 4.598 4.196 0.503 0.447

40 0.169 0.179 0.104 0.092 4.297 3.946 0.407 0.342

50 0.162 0.171 0.087 0.113 3.829 3.528 0.370 0.306

60 0.166 0.174 0.087 0.110 3.798 3.518 0.328 0.270

70 0.168 0.176 0.079 0.101 3.797 3.534 0.278 0.229

80 0.166 0.173 0.084 0.104 3.641 3.398 0.271 0.223

90 0.166 0.172 0.084 0.103 3.568 3.339 0.255 0.209

100 0.167 0.173 0.084 0.102 3.525 3.308 0.239 0.196

Table 5.8: Experiment 3 - Tabular form of some RMSEA and ECVI results, without
loss of generality. Results are on the path analysis model constructed from Experiment
1 on the Intentions data, as well as on the Bayesian structure learned from Experiment
2 on the Searching as Learning data.
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Chapter 6

Conclusion

The contribution of this dissertation is ultimately a statement: a statement that future

interactive IR research should be conducted under a more general framework than

presently done. This work makes a contribution towards bridging information seeking

theory with interactive IR research practice. It explains how disparate statistical tests

common to interactive IR can be combined into a single framework that more closely

aligns with the vision of information seeking theory. It also introduces experimental

methods for taking commonly collected laboratory study data and applying this new

framework confirm old insights and extract new ones that could not previously be

discovered. The final result of this work is not only a new conceptual framework but

possible experimental methods to apply in the future.

6.1 Contributions

The contribution of this dissertation is in demonstrating that task characteristics, user

characteristics, and behaviors should be empirically studied as a network of dependen-

cies. It expands empirical work using graphical modeling, which can uniquely capture

phenomena such as mediation and conditional independence. Research questions re-

garding mediation and conditional independence can hence now be answered with this

different framework. This dissertation empirically shows when knowledge about behav-

ior and certain task characteristics can be used to learn about other aspects of the task.

It shows how task and user characteristics simultaneously affect behavior while poten-

tially affecting each other. Specifically applying path analysis and Bayesian structure

learning, results are shown to agree well with past literature and to also extend our

understanding of the information seeking process.
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The contribution of this dissertation is spread throughout the chapters. Even be-

ginning with the literature review in Chapter 2, this dissertation helped set up the

need for a common framework. Various literature has empirically shown that changes

in tasks can affect user behavior. Other work has shown that changes in user charac-

teristics such as time pressure or task difficulty can also be detected through changes

in behavior. These insights are all pieces to the broader puzzle of how task charac-

teristics affect users and how all other parts of the information seeking process affect

each other while searching, and how these can be manifested through behavior. Some

work attempted to address the limitations of only examining pairwise relationships in

experiments, by examining interactions between behavior and two types of task traits

and/or user characteristics. This was a necessary but incremental improvement.

Chapter 3 followed this by further explaining why we are not only in need of in-

cremental improvements but in need of a paradigm shift. The chapter presented some

theoretical considerations; information seeking researchers have always been conceptu-

ally interested in the whole picture of the information seeking process. Claims can be

found in the literature regarding the directionality and type of influence each compo-

nent has on the other in one grand picture. Some works even explicate which parts

affect each other and which do not. But concepts like independence cannot even be

tested in the current framework. Let alone testing the validity of the whole picture has

only been pursued incrementally at best. Chapter 3 complemented this discussion by

showing the practical and mathematical necessity of a shift. The current framework

impedes itself in the types of questions it can ask. For instance, questions of conditional

independence can be very interesting to researchers - such as whether query length can

provide additional information once certain task or user characteristics become known.

Yet it is shown that independence cannot even be addressed with the current frame-

work, something that graphical models support. The chapter slowly builds to graphical

modeling. It explains how this shift is not necessarily a clash of ideas against a former

way of doing things. If anything, it is a generalization and of ideas that have been

actively pursued (albeit in fractions) by the previous work.

Yet there does not exist an experimental framework to construct and test graphical



98

models in interactive IR. Chapter 4 and 5 sought to explicate such a framework. It

sought to address whether IIR experimental data could be used to make a graphical

model mapping the relationships between variables. This included a combination of

confirmatory analysis, goodness of fit tests, and matching findings with theory. These

chapters applied several graphical techniques - including path analysis and Bayesian

structural learning - to tease out insights that address the research questions originally

posed. We may now come full circle and answer the research questions:

RQ1 - What is the nature of the influence between user background,

user experience, task and search behavior? - Experiments 1 and 2 showed us

that direct effects between task/user characteristics and behavior are not the only

important relationships in an information seeking episode. They showed that things

such as indirect effects, mediation, and conditional independence indeed occur.

RQ2 - To what extent do factors (including task) directly affect behavior

versus indirectly through their effect on other session characteristics? - All

have some degree of importance, inasmuch as they each affect behavior, as shown in

Experiment 1. In cases where data gathering is a luxury, perhaps all of these should

be collected together. But in cases where data gathering is at a premium, plenty of

information can still be afforded by simple background questionnaires and pre- and

post-task questionnaires. This result was validated by both Experiments 1 and 2. As

shown in Experiment 1, there are some interesting indirect effects, such as topic solely

affecting behaviors through topic familiarity in Experiment 1. But there are some

direct effects as well, such as goal and product directly affecting behaviors. Experiment

2 shows several independence and conditional independence relationships. Many of

these agree with past literature but also extend it.

RQ3 - To what extent does a more generalized modeling framework con-

firm or deny previous findings in task-based literature? We saw in Experiment

2 that a generalized model can confirm findings very well. An automatically learned

model not only produced some consistent findings in itself but consistent findings that

fit the purely proof-of-concept built from literature in Figure 3.5. In addition, the
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model could be used to answer some interesting questions about conditional indepen-

dence that could not be explored previously, such as the possibility that only difficulty

and product alone are sufficient to predict some behaviors such as query length.

RQ4 - What is the structure and size of data required for such an experi-

mental framework? An increase in data size can significantly improve how confident

we are in our estimation of parameters in a model. However, it cannot improve how

well the model can recreate/fit the data. This can only be improved by tweaks to the

structure of the model.

6.2 Important Open Questions

At least four open questions remain to be left to future work. While we have shown

the usefulness and necessity of complex graphical modeling with respect to relating

task type, user characteristics, and behaviors, the modeling of the information seeking

process was not very complex, in a sequential or multidimensional sense. Recent work

such as that by Maxwell and colleagues [103] created a conceptual and mathematical

model of searchers issuing queries, scanning through pages, and saving results. This

sequential, interactive, iterative process is absent from the work here - as each individual

query segment is treated as an independent data point - due to practical constraints.

Lab studies interested in designing and controlling replicable tasks tend to have small

datasets. Incorporating interactive, sequential behavior would require too much data.

Yet the work discussed [103] creates simulations rather than using large scale data on

controlled task types - a current issue in IIR research today. Nevertheless, modeling of

the sequential activities of users should should be pursued in the future. Perhaps this

can lead directly to a model like Figure 3.6 that completely separates from the task

and behavior and moves entirely into a cognitive domain.

It is also worth noting the obvious omission of latent variable modeling in this

work. Latent variables were used by work such as Zhang et al [144]. In practice,

latent variables are used to combine the signals from multiple measures into a common

construct. For instance, multiple survey questions about education can be combined
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into a latent score regarding one’s education level, or multiple survey questions about

document usefulness can be combined into a latent usefulness score. As our study

designs do not provide the data for latent constructs, they are not used here. Latent

variable modeling is perhaps of interest here - as it is implicit in modern techniques

like deep learning - but theory needs to be developed to justify the inclusion of latent

variables in modeling the information seeking process.

While this dissertation has shown that graphical modeling is a worthy pursuit and

that a graphical model can be estimated on laboratory study data using query segments

as data points, there may still be value in using different features that require larger

amounts of data. For instance, there may be value in using whole-session features

instead of query segment features. Yet not enough data was used for this, and such a

scale of data is difficult (and extremely rare) in laboratory settings where rich data is

often collected. Future work would need to balance large scale data collection with the

rich survey data collection of laboratory studies. Inspiration can be found in work such

as He and Yilmaz [50], which additionally collects such data about naturalistic search

tasks rather than imposed search tasks.

Lastly, on a related note, the claims here are only as good as the data collection, the

experiments, and the theory. In particular, a direct relationship may have been observed

between task and behaviors, which is consistent with the literature. But consider for

a moment an experiment that gathers quality metrics on a child’s home environment,

the amount of time a child spends studying, and the child’s scores on a standardized

test. With a path model, the study finds significant direct effects between the quality

of life metrics and the score, but it moreover finds a significant indirect effect through

the child’s study duration. If information about the child’s study duration were never

measured, a significant effect between quality of life metrics and standardized scores

could still be measured. That said, direct effects can only be taken on assumption that

the model is correct. It is our burden to not only derive accurate models but ensure

that we’ve considered all possible variables before drawing conclusions.
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6.3 Concluding Remarks

As a closing to this work, it is the hope of the author that this line of work is more

actively pursued, both theoretically and in practice. It is hoped either that this frame-

work will be used to frame standard experiments or that it will lead into novel data

collection methods to get us closer to the vision of prior conceptual work in interactive

IR. This work has aimed to provide the justification and building blocks of a graphical

framework in interactive IR research.
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Chapter 7

Appendix

7.1 Overview of Empirical Analyses

The following tables provide a more organized format of literature that has drawn

significant relationships between behaviors and task or user characteristics. The tables

contain the independent variables, the changes in behavior, and the relevant literature.

These also show the statistical techniques applied in the cited work.
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IV Method Results Citation

Task Type (Product +
Level + Complexity +
Goal)

One-way
ANOVA,
Kruskal-Wallis

Task completion time, # pages, # sources,
# queries, # search sources, decision time,
read/scan ratio, saccade distance

[91]

Task Type (Product +
Complexity)

One-factor re-
peated measures
ANOVA

# IR systems, # result pages # items
viewed, # items selected, # search engines
consulted, # web results, # search por-
tals visited, # web items viewed, # web
items selected, # library resources con-
sulted, # library result pages viewed, #
library items viewed, # queries, # unique
queries, mean query length, unique non-
stop query terms.

[81]

Task Type (Complexity
+ Goal + Level)

Kruskal-Wallis total SERP text acquired (pixels) over
session, text acquired (pixels) on content
pages per query, read-scan transitions

[29]

Task Type (Goal +
Product)

(Not specified.) total task time, # queries # unique clicks,
% time viewing SERP, # SERP views
per query, # unique clicks per query. #
unique fixations, probability of moving up
for SERP scanning, probability of sequen-
tial scanning, # unique fixations on a
SERP, SERP view interval, average exam-
ined rank, max examined rank, # unique
clicks per SERP view, % SERP views
without clicks, probability of a click given
that the result was examined, % clicks
relevant, % clicks visited, average click
rank, deepest click rank, first query vs.
whole session: # SERP views for query, #
unique fixations per query, # unique clicks
per query, probability of click given exam-
ination, average examined rank, deepest
examined rank, time of SERP viewing

[60]

Task Type (Fact-
finding, Information
Gathering, Browsing,
Transactions

one-way ANOVA,
Kruskal-Wallis

# windows opened during task, # pages
loaded, proportions in navigation tools
used (auto-complete, back button, book-
marks, google toolbar, hyperlinks, select
URL, typed-in URL), time of day of the
task, use of browser functions

[64]

Task Type (Condi-
tioned on User)

one-way ANOVA mean display time [66]

Task Type (Fact-
Finding/Information
Gathering/Decision
Making)

uni/multi-variate
ANOVA

query length, amount overlap between
query terms and terms in assigned task
statements, # pages, # unique pages, #
bookbag items, # tools used per query

[126]

Table 7.1: Review of empirical analyses. Provided are independent variables (IV),
method used for analysis, significant results on dependent variables (-/+ for in-
crease/decrease where applicable), and relevant literature citations.
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IV Method Results Citation

Task Type (Lo-Mid-Hi
Complexity + Intellec-
tual/Decision)

one-way ANOVA,
one-factor re-
peated mea-
sures ANOVA,
two-factor re-
peated measures
ANOVA

time spent on task, time spent per item
selected, number of items selected

[80]

Task Goal (Specific /
Amorphous / Mixed)

Kruskal-Wallis # sources, decision time, read/scan ratio,
saccade distance

[91]

Task Level (Docu-
ment / Segment),
Objective Complexity
(Low/High)

Mann-Whitney Task completion time, # pages, # sources,
# queries, # search sources, decision time
(Level), read/scan ratio (Level), saccade
distance (Complexity)

[91]

Task Product (Factual
/ Mixed)

Mann-Whitney Task completion time, # pages, # sources [91]

Task Product (Intellec-
tual / Decision)

One-factor re-
peated measures
ANOVA

# IR systems consulted, # result pages
viewed, # search engines consulted, #
web result pages viewed, # library re-
sources consutled, # library result pages
viewed, mean query length

[81]

Task Complexity (Low
/ Med / Hi)

one-way ANOVA,
one-factor re-
peated mea-
sures ANOVA,
two-factor re-
peated measures
ANOVA

#IR systems consulted, # result pages
viewed, # items viewed, # search engines
consulted, # portals visited, # web result
pages viewed, # web items viewed, # li-
brary resources consulted, # library result
pages viewed, # library items viewed, #
library items selected, # unique queries
issued, # unique query terms issued, #
unique non-stop query terms issued, time
spent, # items selected (docx, pdf, full-
text papers, etc.)

[81, 80]

Task Complexity (Sim-
ple / Hierarchical / Par-
allel)

Mann-Whitney,
Kruskal-Wallis

Specialization query reformulation, word
substitution, mean completion time, and
mean number of queries

[83, 119]

Task Complexity (Par-
allel / Hierarchical)

uni/multi-variate
ANOVA

time spent on queries, query length, #
bookbag items, # tools used per query

[126]

Table 7.2: Continuation of the overview of empirical analyses.
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IV Method Results Citation

Task Complexity (Re-
member / Analyze /
Create)

mixed factor
ANOVA

session length, # queries, query length, #
SERP clicks

[15]

Task Complexity (P /
H) x Task Type (FF /
IG / DM) Interaction

uni/multi-variate
ANOVA

time on queries [126]

Task Determinability
(unspecified / specified
items, unspecified /
specified dimensions)

one-way re-
peated measures
ANOVA

# queries, query length, clicks per query,
bookmarks per query, query log likeli-
hood, # unique queries, # unique URLs,
time to first click

[15]

Stage, Usefulness, Stage
x Usefulness (Condi-
tioned on Task Com-
plexity)

General Linear
Model

decision time (stage x usefulness, com-
bined tasks and parallel)

[90]

Search Engine Exper-
tise

Cohen’s d # queries (-), # queries per day (+),
query length (+), click depth (+), click
probability (-), # repeated queries (+), #
page revisits (-), time on search trails (-),
time on documents (-)

[136]

Domain Expertise Cohen’s d, t-test query length (+), # domain specific
query terms (+), session length (+), #
page views per session, # queries per
session (+), probability of visiting non-
commercial domains (e.g., gov and edu,
+)

[133]

Table 7.3: Continuation of the overview of empirical analyses.
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IV Method Results Citation

Topic Familiarity χ2, Wilcoxon
signed-rank

#bookmarks per page view (+), # query
reformulation (-)

[67, 52]

Topic Familiarity Mann-Whitney ratio of content to SERP dwell time (+),
average dwell time on unique SERPs (-),
lower first dwell time on SERPs

[94]

Topic Familiarity (Con-
ditioned on Amorphous
Goal)

Mann-Whitney average dwell time unique SERPs, mean
first dwell time on SERPs

[94]

Topic Familiarity (Con-
ditioned on Level)

Mann-Whitney ratio of document time to all, ratio of
SERP time to all

[94]

Topic Familiarity (Con-
ditioned on Factual
Product)

Mann-Whitney task completion time, total time spent on
SERPs, number of unique SERPs, number
of viewed documents per query, number of
saved documents per query, average dwell
time of unique SERPs, mean first dwell
time on all SERPs

[94]

Topic Familiarity (Con-
ditioned on Low Com-
plexity)

Mann-Whitney average dwell time of unique SERPs, mean
first dwell time on all SERPs

[94]

Table 7.4: Continuation of the overview of empirical analyses.
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IV Method Results Citation

Task Difficulty (Con-
ditioned on Domain
Knowledge)

Mann-Whitney query vocabulary richness [89]

Task Difficulty (Easy -
Difficult scale) - whole
session behavior

Mann Whitney,
Kruskal Wallis

(+): # unique web pages, total # web
pages, time per click, search linearity, to-
tal task duration, # SERP views on the
first result page, # views on subsequent
SERP result pages, # queries, # unique
SERPs, # queries not leading to book-
marks, the ratio of queries not leading to
bookmarks, lexical fixation duration ex-
cess (fixation time beyond minimum for
lexical acquisition), mean LFDE, longest
fixation duration LFDE, Generalization
query reformulations
(-): search optimality, # bookmarks, the
ratio of queries leading to bookmarks, the
ratio of document reading time to all, av-
erage query interval time, average time
spent on documents, average dwell time
on unique documents, # viewed docu-
ments per query, # unique viewed doc-
uments per query, the precision recall and
F, reading speed (pixels/ms), inverse cor-
relation with reading length of longest
reading sequence (pixels)
Repeat reformulations more frequently in
medium difficulty tasks

[43, 42,
89, 86, 96,
29, 83]

Table 7.5: Continuation of the overview of empirical analyses.
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IV Method Results Citation

Task Difficulty (Easy
/ Difficult binary cate-
gories) - whole session
behavior

logistic regression
, Mann-Whitney

(+): total # web pages, total task du-
ration, # query terms, # unique query
terms, the ratio of token words to type
words in queries, # clicks, the average
click rank, the average viewrank, # page
click, # and % of searches without clicks,
the average bookmark rank, # queries
with bookmarks, # of queries without
bookmarks, % of queries without book-
marks, # clicks without bookmarks, %
clicks without bookmark, # of views with-
out bookmarks, % views without book-
mark, total # mouseovers in a session,
the average # mouseovers per query, the
max mouseover rank per query, the aver-
age max mouseover rank per query, the
total scroll distance in a session, the aver-
age number of scroll distance per query,
the max scroll distance rank per query,
the average max scroll distance rank per
query, and the depth in the controlled vo-
cabulary, % of queries with bookmarks, #
queries
(-): average dwell time on a landing page,
query vocabulary richness, # query terms
from the task description, # query terms
from a controlled vocabulary

[3, 89]

Task Difficulty (Suc-
cessful / Unsuccessful
binary categories) -
whole session behavior

t-test, 2nd or-
der polynomial
regression

(+): time spent on SERPs, the frequency
of advanced query operators, proportion
of time spent on SERPs, # question
queries

[5]

Table 7.6: Continuation of the overview of empirical analyses.
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IV Method Results Citation

Task Difficulty - first
query segment

Mann-Whitney,
logistic regression

(+): the dwell time on the first SERP, the
average click rank, the average page view
rank, # page clicks, the average bookmark
rank, # clicks without bookmarks, the
percent views without bookmarks, the to-
tal mouseovers, the max mouseovers, and
the total scroll distance, the max scroll po-
sition
(-): # viewed pages, the total dwell
time, the average dwell time, the dura-
tion, # bookmarks, the average query in-
terval time, the mean dwell time of all
documents, the average total dwell time
of unique pages, # viewed documents, #
unique viewed documents

[96, 3, 85]

Task Difficulty - per
query segment

Mann-Whitney,t-
test, 2nd order
polynomial re-
gression

(+): number of content pages per query,
first dwell time, average dwell time. Re-
garding mid-session features, an increase
difficulty has been associated with an in-
crease in: mean dwell time of all SERPs,
increase in average ist dwell time on
SERPs, average query interval time, and
with the longest query more likely to be
earlier in the session
(-): average rank of saved documents,
# documents per query, # unique doc-
uments per query, # saved documents
per query, # SERPs per query, # unique
SERPs per query, average query interval

[96, 85, 5]

Task Difficulty (relative
to task type)

Mann-Whitney total dwell time on unique content pages,
# content pages, and # unique content
pages, # content pages per query, #
unique content pages per query, first dwell
time on unique content pages, first dwell
time on unique SERPs, and mean dwell
time on all SERPs

[92]

Difficulty x domain
knowledge interaction
effect

ANOVA ,
MANOVA

mean dwell time on content, % time on
content pages

[87]

Table 7.7: Continuation of the overview of empirical analyses.
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IV Method Results Citation

Time pressure (Con-
trolled strict time limit)

mixed ANOVA,
Mann-Whitney

(+): time spent on the first SERP
(-): time on content pages, time on
SERPs, # content pages per query,#
unique content pages per query, # SERPs
per query, # unique SERPs per query, to-
tal dwell time on content pages per query,
total dwell time on SERPs per query, ratio
of dwell time on content pages per query,
average query interval time, average ses-
sion time, and # queries per session

[31, 88]

User Engagement
(User Engagement
Scale [114])

two-way re-
peated measures
ANOVA

(+): SERP scrolling, time spent in query
intervals, task duration, prior knowledge
(-): perception of difficulty

[34, 35]

Intentions logistic regres-
sion, multilayer
perceptron, SVM

differences in reformulation strategies.
prediction: bookmark features, content
page dwell time features, SERP dwell time
features, query reformulation types, and
query lengths (best approach used all at
once)

[107, 120]

Table 7.8: Continuation of the overview of empirical analyses.
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