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ABSTRACT OF THE DISSERTATION

Improving and Complementing Virtual Memory Using

Hardware Techniques

by GUILHERME MOTA CAVALCANTI DE ALBUQUERQUE COX

Dissertation Director: Abhishek Bhattacharjee

Virtual memory is a classic computer science abstraction and is ubiquitous in all scales

of computing today. However, despite years of research, virtual memory faces critical

performance and security challenges. This thesis aims to address these challenges.

The first challenge we address is the growing performance overheads faced by virtual

memory as workloads continue demanding ever-increasing amounts of memory. The

key culprit of these overheads is address translation, the mechanism by which virtual

memory translates a program’s virtual addresses to physical addresses. Performing

fast address translation requires the design of fast and efficient hardware translation

lookaside buffer (TLB) caches. Unfortunately, TLBs struggle to perform efficiently

for “big data” workloads. This thesis proposes a range of hardware mechanisms to

improve TLB performance. The second challenge we address pertains to the security

mechanisms offered by the virtual memory abstraction through memory protection and

process isolation. Despite their utility, protection/isolation are insufficient to avoid

important classes of remote attacks. Attackers can corrupt the operating system and

thereby gain control of the entire machine. Therefore, there is a need for security

mechanisms complementary to those provided by virtual memory. We propose low-

overhead mechanisms achieve this. Our approach is to build hardware that can snapshot

ii



physical memory in an efficient manner, so that we can enable faster/better memory

forensics to enhance system security.

Both sets of studies highlight some important themes in this thesis. One unifying

theme of our work is to build hardware mechanisms that are transparent to application

developers and systems programmers. Another unifying theme is ease of implementa-

tion – we deliberately use hardware mechanisms that require modest hardware modifi-

cations. In situations when the modifications are more substantial, we formally verify

the correctness of our approach. Finally, we quantify the benefits of our approaches

using not only software performance models (like most architecture studies), but also

go beyond by quantifying real-system performance when possible.
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Chapter 1

Introduction

Virtual memory is a classic computer science abstraction that has been vital to the

success of computing over several decades. It used ubiquitously today in systems as di-

verse in scale as mobile devices, wearable devices, desktops/laptops, and even large-scale

data centers. Virtual memory’s success can be attributed to benefits for programmers:

programmability and security. The mechanisms used to provide these benefits are

address translation and memory protection, which are both implemented by all modern

page-based virtual memory systems. Even though it is possible to implement these

features without page-based virtual memory, all modern systems pack them as a whole.

This thesis shows the pitfalls, however, facing the traditional virtual memory abstrac-

tion. We show that both address translation and memory protection have become

inefficient and incomplete in terms of providing the needs that modern systems have.

Virtual Memory
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via Address Translation via Memory Protection
Trend Problem Solution Problem Solution
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Figure 1.1: Thesis overview

Figure 1.1 illustrates the overall structure of this thesis, the problems that focus on,

and our approaches to solving these problems. Specifically, we focus on:
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Programmability:

• Virtual memory improves programmability by enabling programmers to view

memory as a flat and linear array of bytes, thereby hiding the complexity of

the physical memory which is made up of a complex assortment of memory and

storage devices [77, 76, 36, 98]. This means, however, that program virtual ad-

dresses must be translated to physical addresses on all memory references - an

operation known as address translation. The problem with address translation is

that the structures that are used to accelerate it, such as Translation Lookaside

Buffers (TLB), Memory Management Unit (MMU) caches, and Page Table Walk-

ers (PTW), were built at a time when CPUs running single-threaded workloads

were the de facto standard. Our world is very different today and these hardware

structures have now suffer from performance problems [29, 66, 34]. Specifically,

the advent of big data workloads means that CPUs as well has hardware accel-

erators (e.g., GPUs, etc.) require infeasibly large TLBs for efficient translation.

This is why, for example on CPUs, we find execution time overheads of up to 50%

due to address translation [29, 66].

• While ensuring that the programmability benefits of virtual memory continue to

be realized efficiently on CPUs is already challenging, these problems are even

more pronounced when one considers hardware accelerators. Consider, for ex-

ample, the GPU, which has become a key accelerator in the server, datacenter,

cloud, and high-performance computing domains. GPUs also benefit from virtual

memory when processing an ever-increasing set of general-purpose applications

[13, 134]. However, implementing GPU virtual memory support is challenging

because TLBs must be enormous to cope with the GPU’s high levels of concur-

rency [175, 172, 195, 216, 24]. Consequently, GPU virtual memory overheads

can slow down application runtime by as much as 3.7-4.0× [210, 195]. Such prob-

lems posed by heterogeneity are not restricted to GPUs alone – for example, large

TLBs are particularly ill-sutied for area-constrained fixed function units and other

accelerators.
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The first problem this thesis addresses is the design of more efficient address

translation hardware for CPUs and hardware accelerators like GPUs.

Security:

• One of the underpinnings of modern computer security is the memory protection

facility provided by virtual memory [111, 77, 76, 36]. Nevertheless, while memory

protection is crucial to security, is not sufficient in and of itself [51, 191]. One

important class of security vulnerabilities – and a focus of our thesis – that cannot

be obviated by protection alone is that of remote rootkit attacks compromising

systems software in data-center and cloud environments. The core reason that

virtual memory is insufficient for these types of attacks is that it was conceived

at a time predating modern security attacks. But today, the simple time-sharing

mainframes that virtual memory was design on have given way to data-center

environments with complex rack-scale systems with disaggregated or distributed

shared memory running many layers of sophisticated software. Therefore, we now

rely on mechanisms beyond memory protection to give us the security guarantees

modern systems need. Our goal in this thesis is to show how we can built hardware

complementary to virtual memory to enable techniques like memory forensics

[51, 191] in this dramatically different computing landscape.

• Unfortunately, modern memory forensics techniques suffer from performance prob-

lems posed by increasing amounts of memory used by workloads. In particular,

memory forensics need to take a snapshot – a scan of a workload’s entire virtual

address space and/or the system physical address space. As memory grows, so

does the time taken to snapshot memory. Therefore our goal is to use hardware

techniques to acquire snapshots quicker than the time it takes today (e.g., min-

utes in a typical server to snapshot its memory), during which the entire machine

and its services are stalled.
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The second problem this thesis addresses is the question of complementing

traditional virtual memory security mechanisms with hardware for faster

snapshots and better memory forensics techniques.

1.1 My Research Contributions

To detail solutions to the problems described above, I now provide a conceptual overview

of the problems facing address translation and security.

Address Translation: The first topic in this thesis is faster address translation.

We discuss two trends that make this challenging to achieve. The first trend is the

advent of heterogeneity, or the integration of hardware accelerators. With heterogeneity,

computer systems add accelerators on a chip. Writing code to exploit the benefits of

these accelerators is complex [13, 134]. Additionally, accelerators have size, power,

and performance constraints. To simplify the programming model with CPUs and

accelerators, a single unified address space visible to all processing elements is desirable.

The benefits of a unified address space are well established by recent studies [175, 172].

The benefits range from a pointer is a pointer semantics, i.e., the idea that programmers

can use the same data structure in any of the processing elements. Additionally, unified

address spaces spare programmers from having to carefully managing data copies and

data marshaling between processing elements. Providing a unified address space is one

crucial step at the realization of a genuinely heterogeneous programming model. To

achieve this, however, we need to implement efficient address translation hardware in

all of our accelerators. This is problematic because many accelerators have tight area,

energy, and power constraints. We explore the question of how to design efficient TLB

for all of our accelerators, specifically in the context of programmable GPUs.

A related question that affects address translation is that of physical memory ca-

pacity. Along with increasing heterogeneity in processing, vendors are also adopting

heterogeneity in memory. Ultimately, this means that the physical address space is
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growing fast to keep pace with the needs of big data workloads. This is the second

trend motivating our work – “big data”. Unfortunately, big-data workloads necessitate

larger TLBs to enable access to data efficiently. The questions that arise are: How

can we scale our TLBs? How can we particularly scale our TLBs for area-constrained

accelerators? These are the problems our work addresses in Chapters 2, 3, and 4.

Security: We use the same two trends to address the second problem of this thesis,

which is to improve security on modern systems. We have already established that

the VM memory protection is not sufficient to fully secure a modern computer system.

The challenge is on how to enhance security for the type of heterogeneous systems that

we discussed above, which may potentially run a range of operating systems, be con-

nected to a vast variety of peripherals, etc. To take a step towards holistic security, we

complement memory protection with memory forensics. Memory forensics is a branch

of computer forensics that focuses on acquiring and analyzing all the data in memory.

After these analyses, the system is deemed to be corrupted or secure. What is still

an open problem is how to acquire the entire physical memory of a computer system

in a secure, complete, consistent, and efficient manner. We explore this problem in

this thesis, showing that our mechanism to snapshot the memory achieves all of these

properties. All prior techniques can be categorized into two groups: non-consistent but

fast snapshots, or consistent but slow snapshots. Non-consistent and fast snapshots do

not halt the machine while acquiring the data. However, their non-consistency means

that memory analysis tools may not be able to detect all manners of attacks. On the

other hand, consistent snapshots overcome this problem, but with a pernicious perfor-

mance penalty. This performance penalty is worsening because of “big data” trends.

Our solution provides a highly efficient, secure and consistent memory snapshot; this is

addressed in Chapter 5 of this thesis. We now detail our specific research contributions.

1.1.1 Efficient Address Translation for Multiple Page Sizes

In almost all modern systems today, processors and operating systems (OSes) support

multiple memory page sizes. These systems have a base page size (or small page size),
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typically 4KBs, and page sizes that are multiples of the base page size. For exam-

ple, x86-64 has support to 2MB and 1GB page sizes. A page that is larger than a

base page size is called a superpage. Superpages increase Translation Lookaside Buffer

(TLB) hits, while small pages provide fine-grained memory protection. Ideally, TLBs

should perform well for any distribution of page sizes. In reality, set-associative TLBs -

used frequently for their energy efficiency compared to fully-associative TLBs - cannot

(easily) support multiple page sizes concurrently. Instead, commercial systems typ-

ically implement separate set-associative TLBs for different page sizes. This means

that when superpages are allocated aggressively, TLB misses may, counter-intuitively,

increase even if entries for small pages remain unused (and vice-versa). This happens

because TLBs have fixed size that the operating systems are not aware of.

We propose MIX TLBs, energy-frugal set-associative structures that concurrently

support all page sizes by exploiting superpage allocation patterns. MIX TLBs boost

the performance (often by 10-30%) of big-memory applications on native CPUs, virtu-

alized CPUs, and GPUs. MIX TLBs are simple and require no software changes.

1.1.2 Scalable Distributed Shared Last-Level TLBs

Modern computer systems implement per-core multi-level TLBs. Recent studies have,

however, shown the potential of replacing private per-core L2 TLBs with a last-level

TLBs shared by multiple cores. A key stumbling block hindering their effectiveness

however is their high access time.

We present a design methodology to reduce these high access times so as to realize

high-performance and highly scalable shared L2 TLBs. As a first step, we study the

benefits of replacing monolithic shared TLBs with a distributed set of small TLB slices.

While this approach does reduce TLB lookup latency, it increases interconnect delays in

accessing remote slices, jeopardizing overall performance. Therefore, as a second step,

we devise a lightweight single-cycle interconnect among the TLB slices by tailoring

wires and switches to the unique communication characteristics of memory translation

requests and responses. Our approach combines the high hit rates of shared TLBs with

low access times of private L2 TLBs, enabling significant system performance benefits.
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1.1.3 Scheduling Page Table Walks for Irregular GPU Applications

Throughput-oriented accelerators, such as GPUs, pose pressure on TLBs and page

table walkers. “Big data” applications with memory accesses with poor locality can

halt a GPU completely due to outstanding address translation requests. Recent studies

[210] on commercial hardware demonstrated that irregular “big data” GPU applications

can bottleneck on virtual-to-physical address translations. We explore ways to reduce

address translation overheads for such applications.

We discover that the order of servicing a GPU’s address translation requests (specif-

ically, page table walks) plays a key role in determining the amount of translation over-

head experienced by an application. We find that different SIMD instructions executed

by an application require vastly different amounts of work to service their address trans-

lation needs, primarily depending upon the number of distinct pages they access. We

show that better forward progress is achieved by prioritizing translation requests from

the instructions that require less work to service their address translation needs.

Further, in the GPU’s Single-Instruction-Multiple-Thread (SIMT) execution paradigm,

all threads that execute in lockstep (wavefront) need to finish operating on their re-

spective data elements (and thus, finish their address translations) before the execution

moves ahead. Thus, batching walk requests originating from the same SIMD instruc-

tion could reduce unnecessary stalls. We demonstrate that the reordering of translation

requests based on the above principles improves the performance of several irregular

GPU applications by 30% on average.

1.1.4 Secure, Consistent, and Fast Memory Snapshotting

Many security and forensic analyses rely on the ability to fetch memory snapshots from

a target machine. With that, we can complement the security mechanisms offered by

VM memory protection. To date, the security community has relied on virtualization,

external hardware or trusted hardware to obtain such snapshots. These techniques

either sacrifice snapshot consistency or degrade the performance of applications execut-

ing atop the target. We present SnipSnap, a new snapshot acquisition system based
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on on-package DRAM technologies that offers snapshot consistency without excessively

hurting the performance of the target’s applications. We realize SnipSnap and evaluate

its benefits using careful hardware emulation and software simulation.

1.2 Thesis Organization

Having described the problems this thesis addresses, Figure 1.1 also shows the various

chapters of this thesis and how we address these problems. In more detail:

Chapter 2 describes MIX TLBs [66] (published in ASPLOS ’17), which is used to

achieve efficient address translation on CPUs and GPUs, in bare-metal and virtualized

environments.

Chapter 3 describes Nocstar [31] (published in MICRO ’18), which is used to achieve

efficient address translation on CPUs with big-memory systems in bare-metal and vir-

tualized environments.

Chapter 4 describes a novel GPU TLB miss scheduling [195] (published in ISCA ’18),

a mechanism to efficiently reorder page table walks of irregular GPU applications.

Chapter 5 describes SnipSnap [67] (published in CODASPY ’18), a mechanism to

efficiently and securily acquire memory snapshots by complementing the virtual memory

abstraction.

Chapter 6 discusses conclusions and future directions.
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Chapter 2

Efficient Address Translation for Multi-
ple Page Sizes

2.1 Introduction

The operating system’s (OS’) choice of page sizes for an application’s memory needs

critically impacts system performance. Modern processors and OSes maintain multiple

page sizes. Superpages (or large pages) increase Translation Lookaside Buffer (TLB) hit

rates [158, 201, 202]. Small pages provide fine-grained page protection and permissions

[158, 202, 170]. This work’s objective is to design a TLB that leverages any distribution

of page sizes, with the following properties:

1 Good performance: TLB hardware should not be underutilized and conflict misses

should be avoided.

2 Energy efficiency: TLBs can consume a significant amount – as much as 13-15%

[80, 124, 120, 121, 196] – of processor energy. Our design should be energy-efficient.

3 Simple implementation: TLBs reside in the timing-critical L1 datapath of pipelines,

and must be simple to meet timing constraints. This means that TLB lookup, miss

handling, and fill must not be complex.

Meeting all three objectives, while handling multiple page sizes, is challenging.

Meeting 2 means that we use set-associative rather than fully-associative TLBs. How-

ever, set-associative TLBs cannot (easily) support multiple page sizes. This is because,

on lookup, they need the lower-order bits of the virtual page number to select a TLB

set. But identifying the virtual page number requires the page size, so that the page

offset bits can be masked off. This presents a chicken-and-egg problem, where the page
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size is needed for TLB lookup, but lookup is needed to determine page size. In general,

industry and academia have responded in two ways, which compromise 1 and/or 3 .

Split TLBs: Most processor vendors use split (or partitioned) TLBs, one for each

page size [109, 110, 161]. This side-steps the need for page size on lookup. A virtual

address can look up all TLBs in parallel. Separate index bits are used for each TLB,

based on the page size it supports; e.g., the set indices for split 16-set TLBs for 4KB,

2MB, and 1GB pages (assuming an x86 architecture) are bits 15-12, 24-21, and 33-30

respectively. Two scenarios are possible. In the first, there is either hit in one of the

split TLBs, implicitly indicating the translation’s page size. In the second, all TLBs

miss [161].

Unfortunately, while split TLBs achieve 3 , and arguably 2 , they often underutilize

TLBs and compromise 1 . The problem is that if the OS allocates mostly small pages,

superpage TLBs remain wasted. On the other hand, when OSes allocate mostly su-

perpages, performance is (counterintuitively) worsened because superpage TLBs thrash

while small page TLBs lie unused [84, 48]. Figure 2.1 quantifies the extent of the prob-

lem, showing the percentage of runtime that mcf, graph500, and memcached devote to

address translation. Results are collected using performance counters on Intel Haswell

systems with 84GB of memory, running Linux with the methodology of Section 2.6. We

assume that the OS allocates only a fixed page size (i.e., 4KB, 2MB, 1GB) or mixed
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pages. One would expect that using large pages consistently improves performance.

In reality, performance remains poor even with, for example, 1GB pages (green bars).

Further, we compare these numbers to a hypothetical ideal set-associative TLB which

can support all page sizes (blue); the gap with the green bars indicates the performance

potential lost due to poor utilization of split TLBs.

Multi-indexing approaches: In response to this problem, past work has augmented

set-associative TLBs to concurrently support multiple page sizes [161, 193]. Unfortu-

nately, while this does improve 1 , it does so at the cost of 2 and 3 . The central

problems, described in Section 2.5.1, are variable access latencies, increased access en-

ergy, and complex implementation. Even in the rare cases when they are implemented

commercially, they don’t support all page sizes (e.g., Intel’s Haswell, Broadwell, and

Skylake L2 TLBs cache 4KB and 2MB pages together but not 1GB pages, which require

separate TLBs [109, 110]).

Our contributions: This work proposes (MIX) TLBs, fast 1 , energy-efficient 2 ,

and readily-implementable 3 structures that concurrently support all page sizes. MIX

TLBs use a single set-indexing scheme – the one for small pages (e.g., 4KB pages on x86)

– for translations of all page sizes. While this simplifies the design, it also presents a

problem. We use bits within the superpage page offset to select a TLB set. This means

that a superpage is mapped to multiple (potentially all) TLB sets, an operation we refer

to as mirroring (see Section 2.3). We overcome this problem, however, by observing

that OSes frequently (though they don’t have to) allocate superpages (not just their

constituent small pages) in adjacent or contiguous virtual and physical addresses. We

detect these adjacent superpages, and coalesce them into the same TLB entry (see

Section 2.3). If we coalesce as many, or close to as many, superpages as the number

of mirror copies – which we usually can in real-world systems – we counteract the

redundancy of mirrors, achieving energy-efficient performance.

This work showcases MIX TLBs, their ease of implementation, and performance im-

provements of 10-30%. Using real-system characterization and careful simulation, we

compare MIX TLBs to traditional set-associative designs, and previously proposed TLBs
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for concurrent page sizes [161, 193]. We also characterize superpage allocation patterns.

Our results focus on Linux, but we’ve also studied FreeBSD and Solaris. One might

initially expect that highly loaded sytems with long uptimes would be hard-pressed to

defragment memory sufficiently to allocate superpages adjacently. Indeed, we observe

that if system memory is sufficiently fragmented, OSes rarely generate superpages at all.

However, we also observe that if OSes can generate even a few superpages, they have

usually defragmented memory sufficiently to generate other adjacent and contiguous

superpages too. MIX TLBs outperform their counterparts in both cases. When super-

pages are scarce, MIX TLBs use all TLB resources for small pages. When superpages

are present, MIX TLBs seamlessly leverage any distribution of page sizes.

2.2 Scope of This Work

Systems are embracing workloads with increasing memory needs and poorer access

locality (e.g., massive key-value stores, graph processing, data analytics, deep learning

frameworks, etc.). These workloads stress hardware TLB performance; as a result,

address translation overheads often consume 15-30% of runtime today [169, 168, 29, 33,

35].

MIX TLBs also aid virtualized systems, where address translation is even more perni-

cious. Virtualized systems require two dimensions of address translation - guest virtual

pages are converted to guest physical pages, which are then translated to system phys-

ical pages [170, 84, 32]. Two-dimensional page table walks are expensive, requiring

24 sequential memory accesses in x86 systems, instead of the customary 4 accesses for

non-virtualized systems. Virtualization vendors like VMware identify TLB misses as

a major culprit in the performance difference between non-virtualized and virtualized

systems [170, 84, 48].

Finally, vendors have begun embracing shared virtual memory abstractions for het-

erogeneous systems made up of CPUs and GPUs [172, 173, 175, 17, 18, 134, 210, 216],

accessing a single virtual address space. This allows “a pointer is a pointer everywhere”

simplications of the programming model [134, 210]. However, now GPUs must also
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perform address translation, just like CPUs. GPU TLBs are critical to performance

as they must service the demands of hundreds to thousands of concurrent threads

[172, 173, 210]. Unfortunately, we find that CPU-GPU systems also suffer from TLB

utilization issues when using multiple page sizes.

2.3 High-Level Approach

We compare MIX TLBs to traditional split TLBs, using the address space of Figure 2.2.

We show virtual and physical address spaces, with translations for small pages (A),

and superpages (B-C). Without loss of generality, we assume an x86-64 architecture

with 4KB and 2MB pages (1GB are handled similarly). Note that while we assume

64-bit systems, our examples show 32-bit addresses to save space. These addresses are

shown in 4KB frame numbers (full addresses can be constructed by appending 0x000).

Therefore, superpage B is located at virtual address 0x00400000 and physical address

0x00000000. Superpages B and C have 512 constituent 4KB frames, indicated by B0-511

and C0-511.

Figure 2.3 illustrates the lookup and fill operation of MIX TLBs and contrasts it to

split TLBs. In step 1 , B is looked up. However, since B is absent (both split and MIX

TLBs maintain only A), the hardware page table walker is invoked 2 . The page table

walker reads the page table in units of caches lines; since a typical cache line is 64 bytes,

and translations are 8 bytes, 8 translations (including B and C) are read in the cache

line. Split TLBs then fill B into the superpage TLB 3 . Unfortunately, there remains
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Figure 2.3: Superpage B lookup and fill for split versus MIX TLBs.

no room for C despite 3 unused small page TLB entries.

MIX TLBs, on the other hand, cache all page sizes. After a miss 1 and a page table

walk 2 , we must fill B in the correct set. This presents a challenge; since MIX TLBs use

the index bits for small pages (in our 2-set TLB example, bit 12) on all translations,

the index bits are picked from the superpage’s page offset. Thus, superpages do not

uniquely map to either set. Instead, we mirror B in both TLB sets.

Mirroring presents a problem. Whereas split TLBs maintain one copy of a superpage

translation, MIX TLBs maintain several mirror copies, reducing effective TLB capacity.

However, MIX TLBs counteract this problem with the following observation – OSes

frequently (though they don’t have to) allocate superpages adjacently in virtual and

physical addresses. For example, Figure 2.2 shows that B and C are contiguous, not

just in terms of their constituent 4KB frames (e.g., B0-511 and C0-511) but also in

terms of the full superpages themselves. MIX TLBs exploit this contiguity; when page

table walkers read a cache line of translations 2 , adjacent translations in the cache

line are scanned to detect contiguous superpages. We propose, similar to past work

[169, 168], simple combinational coalescing logic for this 3 . In our example, B and C

are contiguous and are hence coalesced and mirrored. Coalescing counteracts mirroring.

If there are as many contiguous superpages as there are mirror copies (or close to as
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Figure 2.4: Though superpages B and C are maintained by multiple sets but on
lookup, we only probe the set corresponding to the 4KB region within the superpage
that the request is to.

many), MIX TLBs coalesce them to achieve a net capacity corresponding to the capacity

of superpages, despite mirroring.

Crucially, Figure 2.4 shows that MIX TLB lookup remains simple. While coalesced

mirrors of superpages reside in multiple sets, lookups only probe one TLB set. In other

words, virtual address bit 12 in our example determines whether we are accessing the

even- or odd-numbered 4KB regions within a superpage; therefore accesses to B0, B2,

etc., and C0, C2, etc., are routed to set 0.

Naturally, this overview presents several important questions. We briefly address

them below:

Why do MIX TLBs use the index bits corresponding to the small pages? Specif-

ically, one may instead consider using the index bits corresponding to the superpage

and apply that on small pages too. In our example, this would be like using virtual

address bit 21 as the index (assuming we base the index on 2MB superpages). The

advantage of this approach is that each superpage maps uniquely to a set, eliminating

the need for mirrors (e.g., B maps to set 0, and C maps to set 1).

Unfortunately, this causes a different problem. Now, spatially adjacent small pages

map to the same set. For example, if we use the index bits corresponding to a 2MB

superpage (i.e., in our 2-set TLB example, bit 21), groups of 512 adjacent 4KB virtual

pages map to the same set. Since real-world programs exhibit spatial locality, this

elevates TLB conflicts (unless associativity exceeds 512, which is far higher the 4-8 way

associativity used today [109, 110]). One could envision coalescing these small pages if

the OS does allocate them contiguously in virtual and physical addresses; however past
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work shows that while small pages can be contiguous, they usually are not contiguous

beyond more than tens of pages [169, 168]. We have evaluated using superpage index

bits and have found that they increase TLB misses by 4-8× on average, compared to

using small page index bits.

Why do MIX TLBs perform well? MIX TLBs are well utilized for any distribution

of page sizes. When the system is highly fragmented and superpages are scarce, all

TLB resources can be used for small pages. When the OS can generate superpages, it

usually sufficiently defragments physical memory to allocate superpages adjacently too.

MIX TLBs utilize all hardware resources to coalesce these superpages.

How many mirrors can a superpage produce and how much contiguity is

needed? Assume that the superpage has N 4KB regions, and that our MIX TLB has M

sets. N is 512 and 262144 for 2MB and 1GB superpages. Practical commercial L1 and

L2 TLBs tend to have 16-128 sets [161, 109, 110]. Therefore, today’s systems have N

> M, meaning that a superpage has a mirror per set (or N mirrors). However, if future

systems see N < M, there would be M mirrors.

Ultimately, good MIX TLB utilization relies on superpage contiguity. If the number

of contiguous superpages is equal (or sufficiently near) the mirror count, performance is

good. On modern 16-128 set TLBs, we desire (close to) 16-128 contiguous superpages.

Section 2.7.1 shows that real systems do frequently see this much superpage contiguity.

Section 2.4 shows how we can coalesce these many contiguous superpages, despite only

scanning for contiguity within a single cache line, which maintain 8 translations, on a

TLB miss.

2.4 Hardware Details

We now detail MIX TLB hardware, implementing them differently for the L1 and L2

levels. L1 MIX TLBs must be simple and fast; we sacrifice some coalescing opportunity

to meet these requirements. L2 MIX TLBs can tolerate higher access latencies (e.g., Intel

and AMD L2 TLBs usually have 5-7 cycle access times [161]). Therefore, L2 MIX TLBs

support more coalescing with (slightly) more complex hardware. MIX TLBs require no
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Traditional L1/L2 TLB entry

Tag (34 b) = 0x00000 | Data (36 b) = 0x00400 

4KB Translation A

Size (2b) = 00 | Tag (34 b) = 0x00000 | Data (36 b) = 0x00400 

MIX TLB L1/L2 TLB entry

Figure 2.5: Traditional TLB and MIX TLB entries for the translation corresponding
to 4KB page A. We show the TLB entries at the L1 and L2 level, assuming both
have 4 sets. MIX TLBs require just an additional 2 bits to record the page size.

OS or application changes.

2.4.1 MIX TLB Entries

MIX TLB entries are similar to traditional set-associative entries. We detail the modest

differences between the two. Although actual x86-64 architectures can use up to 52-bit

physical addresses, use assume 48-bit physical addresses in our example for simplicity.

Extending this approach to 52-bits parallels our example.

Small pages: Figure 2.5 contrasts traditional TLB and MIX TLB entries for 4KB pages.

We use translation A from Figure 2.2, and assume 4-set L1 and L2 TLBs. Therefore,

the two least significant bits of the virtual page need not be stored in the tag. MIX

TLBs only require a 2-bit page size field to distinguish among the 3 page sizes. Though

they are not shown, the entries also maintain page permission bits.

Superpages: Figure 2.6 compares traditional to MIX TLB entries for superpages, as-

suming 2-set TLBs. Aside from the page size, MIX TLBs must maintain information

about coalesced superpages. L1 entries use a bitmap for this. 2-set MIX TLBs maintain

a 2-bit bitmap to record coalescing information of up to two superpages. Furthermore,

since this entry caches superpage information, it uses 9 fewer tag bits for this versus

small page entries. In fact, we can even drop a 10th bit because 2-bit bitmaps implicitly

store information about 2×2MB (4MB) memory regions. These bits can be repurposed
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Traditional L1/L2 TLB entry for B

Tag (26 b) = 0x00002 | Data (27 b) = 0x00000 

2MB Translations B & C

Size (2b) = 01 | Tag (25 b) = 0x00001 | Bitmap (2 b)= 0b11 | Data (27 b) = 0x00000

MIX TLB L1 TLB entry for B and C

Traditional L1/L2 TLB entry for C

Tag (26 b) = 0x00003 | Data (27 b) = 0x00001 

Size (2b) = 01 | Tag (25 b) = 0x00001 | Length (2 b) = 0b10 | Data (27 b) = 0x00000 

MIX TLB L2 TLB entry for B and C

Figure 2.6: Traditional TLB and MIX TLB entries for the translation corresponding
to 2MB pages B-C. L1 MIX TLB and L2 MIX TLB entries use a bitmap and a length
field to record contiguous superpages, respectively. We assume 2-set TLBs.

for the bitmap. Figure 2.6 records 0b11 to indicate information about contiguous su-

perpages B and C.

L2 MIX TLBs record longer contiguity, with marginally greater complexity. Instead

of a bitmap, we use a contiguity length field. Therefore, a 2-bit length field (though it

could use more bits) records contiguity of up to 4 superpages.

MIX TLBs are only marginally bigger than a standard set-associative entry since the

bitmap and length fields are repurposed with unused tag bits. Only a 2-bit page size

field is added, increasing per-entry size by less than 1%.

Alignment restrictions: To simplify MIX TLB hardware, we only coalesce superpages

that are suitably aligned. Specifically, to coalesce up to N superpages, only contiguous

superpages that begin at virtual address boundaries of N may be coalesced. Our MIX

TLB example in Figure 2.6, which coalesces up to 2 superpages, therefore only coalesces

superpages that begin at multiples of 2×2MB or 4MB. This does reduce coalescing

opportunity slightly, but as we show in Section 2.7.2, performance continues to be

good.

Bitmap versus length: For the same number of bits, length fields record more infor-

mation, allowing L2 MIX TLBs to coalesce longer runs of contiguous superpages. The
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Figure 2.7: L1 MIX TLB lookup and hit (assuming a 2-set TLB). The physical
address is found using bit shifting and concatenation.

slight downside is the slightly more complex TLB lookup this prompts (which we de-

tail later in this section). L1 bitmaps do have one more advantage – they can record

information about “holes” in contiguously allocated superpages.

2.4.2 MIX TLB Operation

In this section, we describe MIX TLB operation, including hits, misses, and fills.

L1 lookup: Figure 2.7 shows how L1 MIX TLBs are looked up. Since 4KB page lookups

remain unchanged, we focus on superpages. Index bits are selected from the virtual

address as per small page size – therefore, assuming a 2-set TLB and 4KB small pages,

we use bit 12 as the index. Consequently, there is a question as to what happens with

the remainder of the 2MB page offset, bits 20-13, and bits 11-0. We call bits 20-13 the

mirror ID, as they identify individual 4KB regions within a superpage (i.e., B0, B1,

B2, etc., in Figure 2.4). Bits 11-0 are the offset within these 4KB regions. Finally, the

remaining upper order bits of the virtual address are split into a tag and a page ID.

The page ID identifies the specific superpage within a contiguous bundle – since our

example assumes a 2-set TLB that can coalesce up to 2 entries, 1 page ID bit suffices
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to identify the desired superpage.

The index bits identify the MIX TLB set 1 . In our example, we cache A and B-C

in the set, so both entries are checked in parallel. The page size determines whether

the entry is a coalesced superpage bundle 2 . Then the tag is compared to the virtual

address tag 3 . If there is a match 4 , the L1 bitmap must be checked to determine

whether this superpage exists in the coalesced entry. This is accomplished by indexing

the bitmap using the page ID; in our example with B-C, this is set. Therefore, the

physical address can be constructed by concatenating the relevant fields of the lookup

virtual address with the data field in the MIX TLB entry 5 .

Note that this process essentially leaves lookup latency unchanged from the conven-

tional TLB because it relies purely on bit shifts and concatenations.

L2 lookup: For L2 MIX TLB lookups, instead of checking a bitmap, the length field is

checked against comparators to determine whether the desired virtual page falls within

in the range of coalesced translations. Range matches (and their implementation) are

well studied [169, 123]. On a range (and hence TLB) hit, the hardware computes the

offset of the lookup virtual page against the tag information stored. This offset is added

to the TLB entry’s data field, calculating the desired physical address, similar to recent

work [169, 123]. This does increase the L2 lookup latency; however we’ve modeled the

hardware (see Section 2.6) and found that there is only a slight (i.e., 3% increase) in

lookup time.

Miss and fill: Section 2.3 sketched how MIX TLB are filled. By scanning for contiguous

superpages and coalescing only on TLB misses, the coalescing logic is placed off the

critical path of lookup. Therefore, it has low overhead, can be designed with simple

combinational logic, and adds negligible latency or energy over a baseline set-associative

TLB.

Prefetching and capacity strategies: Superpages provide two benefits. First, they

record information about a far bigger portion of memory than small pages; hence,

they reduce TLB conflict misses. However, they also provide prefetching benefits. For

example, a TLB fill of a 2MB superpage obviates the need for 512 separate fills for 4KB
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pages.

This observation informs the way MIX TLBs coalesce. At first blush, one might

consider only filling superpage information into the set that was probed by the lookup

virtual address. For example, suppose that in Figure 2.4, there is a lookup for superpage

B, but to the B0 region specifically. On a TLB miss, one option might be to only fill

superpage information into set 0. To be sure, this does capture some of the prefetching

benefits of superpages (i.e., information for B2, B4, etc., are also filled), but it also

loses prefetching potential for some 4KB regions (i.e., B1, B3, etc.). For this reason,

we instead fill as many sets as necessary with superpage mirrors to capture information

about the full superpage.

In fact, our notion of prefetching goes beyond the prefetching benefits of superpages,

because coalescing actually prefetches contiguous superpages around the requested su-

perpage. To do this without complicating the page table walker, we prefetch (by co-

alescing) only contiguous superpages that sit in the same cache line as the page table

translation (up to 8 superpages, see Figure 2.3). Note, however, that commercial Sandy-

bridge/Haswell TLBs maintain 16-128 sets; this means that MIX TLBs should try to

coalesce 16-128 superpages to offset mirroring. One needs to scan additional cache lines

containing the page table to do this. Instead, we choose a simpler approach. We initially

coalesce up to 8 superpage entries. When future memory references touch superpages

adjacent to these coalesced entries, sitting in other cache lines, we detect this behavior

and coalesce them into the existing MIX TLB entry. This achieves good performance in

practice.

2.4.3 Interactions with Replacement Policies

One issue with MIX TLBs is that information for the same superpages are now dis-

tributed among multiple TLB sets. Figure 2.8 illustrates the challenges this brings up.

We show a 2-set, 4-entry MIX TLB, explicitly indicating each set’s LRU chain. Suppose

that initially 1 , it stores information about A and B-C. Now, requests for D and E,

small pages mapping to set 1, arrive and are filled into the TLB in steps 2 and 3 .

At this point, set 1’s mirror copy of B-C is evicted, while set 0’s copy remains. This
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Figure 2.8: Replacement decisions are made independently on mirror copies, which
can cause duplication issues.

presents a problem in 4 , when we have a request for superpage B but in 4KB region

B1, which maps to set 1. We see a TLB miss, and walk the page table; however, once

we locate B-C, an important question is whether to mirror B-C into the other sets. On

the one hand, the other sets may already have copies of B-C and blindly mirroring leads

to duplicate copies. On the other hand, a TLB maintains 64-128 sets; scanning all the

sets to check for duplicates is an energy-expensive and impractical approach. Therefore,

we adopt the first approach; 4 shows that this leads to a duplicate B-C copy in set 0,

evicting A. However, we can mitigate this problem when set 0 is probed in the future

5 . Since all the entries in the set are checked for a tag match, we identify duplicates

and eliminate copies.

2.4.4 OS Operations

Invalidations: The OS may change page table mappings through program execution

and corresponding TLB entries must be invalidated. For small pages, this is achieved

in the same way as conventional TLBs. For superpages, this is accomplished in L1 MIX

TLBs by resetting the bitmap bit of the superpage in question. This permits superpages

adjacent to the invalidated superpage to remain cached.

On L2 MIX TLBs however, this is slightly more complicated, because they maintain
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a length field. The simplest approach is to invalidate the entry corresponding to the

entire coalesced bundle. A more sophisticated approach might split the entry into two

separate entries around the invalidated translation. Since we find, in practice, relatively

few invalidations, we take the (slightly) lower performance but simpler approach of

invalidating the entire coalesced entry.

Permission bits: An important question is whether to coalesce adjacent superpages

that use different access permission bits. While this could be accomplished with more

storage in the MIX TLB to record differing permissions, we take the simpler (but high-

performance) approach of only coalescing superpages when they have the same permis-

sion bits.

Dirty and access bits: Translations in page tables maintain access and dirty bits to

aid the OS’ page replacement policy. In some (though not all) architectures, like x86

and ARM, these bits are set by hardware, and read by the OS.

The x86 architecture mandates that only translations with access bits set to 1 in the

corresponding page table entry may be filled into the TLB [111]. MIX TLBs therefore

coalesce only translations with access bits set to 1 on TLB fill. Naturally, this does not

preclude translations from being added to existing coalesced entries in the TLB once

they are demanded by the processor and have their access bits set.

Page table entries also maintain a dirty bit, recording whether the page has been

written to. Conventional TLBs maintain a dirty bit per entry; on a store instruction to

the translation in the entry, this bit is checked. If the bit is 0, the hardware page table

walker injects a micro-op instruction to write the software page table entry’s dirty bit

[111, 146, 181]. If the bit is 1, such updates are not needed.

On the one hand, MIX TLBs could maintain a dirty bit per superpage in a coalesced

bundle. However, MIX TLBs support 16-128 superpages per coalesced bundle; requiring

16-128 dirty bits per TLB entry requires infeasible storage. On the other hand, we could

require that only superpages with the same dirty bit value be coalesced; unfortunately,

we’ve found that this drastically reduces coalescing opportunity.

Instead, our approach sets the MIX TLB entry dirty bit only if all the superpages in a
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coalesced bundle are dirty. If a single one of them is not dirty, the TLB entry’s dirty bit

is cleared. In practice, this means that every time there is a TLB miss and page table

lookup, we check to see if the requested PTE’s dirty bit is set. If it is clear, and the MIX

TLB entry where this translation is to be coalesced has its dirty bit cleared (if it is not

already clear). If it is set, the dirty bit of the MIX TLB entry is left unchanged. That is,

if it was already dirty, it is left dirty again. Naturally, this approach adds cache traffic

versus a scenario where the TLB has a dirty bit per translation. In practice though,

we’ve found that performance remains good, and area overheads are modest.

2.4.5 Hardware and Energy Complexity

MIX TLBs are readily-implementable. As detailed, the size of each MIX TLB entry is

roughly 1% bigger than a standard set-associative TLB. We’ve modeled these overheads

using CACTI [154], and find that lookup latency and energy remains unchanged. MIX

TLB misses do invoke coalescing logic; however, like prior work [169, 168, 33], we find

that this requires only simple combinational logic. While it does impose (slight) delay

overheads on TLB fill, we have modeled these overheads in RTL and find that they do

not affect overall performance. Furthermore, while it is true that coalescing logic uses

some area, MIX TLBs eliminate the need for separate superpage TLBs. Therefore, we

ultimately save area.

Finally, we consider the energy costs of mirroring. Mirroring (coalesced) superpages

into multiple sets does consume more energy than conventional TLBs, which fill one

set. Modeling this using CACTI and RTL, however, we find that the much higher hit

rates offered from MIX TLBs greatly reduce memory and cache references (for page

table walks) and reduce runtime. Ultimately, the resulting energy benefits outweigh

the energy overheads of mirroring.

2.5 Comparison to Past Work

MIX TLBs present a counterpoint to split set-associative TLBs. However, prior work

has looked at alternate ways to provide mixed page support too. We now detail this
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past work, showing why MIX TLBs are superior.

2.5.1 Multi-Indexing Methods

Recent approaches to tackling the inadequacies of split set-associative TLBs can be

summarized into three categories:

Hash-rehashing: We initially perform a TLB lookup (hash) assuming a particular

page size (usually the baseline page size). On a miss, the TLB is again probed (rehash),

using another page size. This continues until all page sizes are exhausted [161]. There

are several drawbacks to this approach. TLB hits have variable latency, and can be

difficult to manage in the timing-critical L1 datapath of modern CPUs [30], while TLB

misses take longer. One could parallelize the lookups but this adds lookup energy, and

complicates port utilization. Consequently, hash-rehashing approaches are used in only

a few architectures, and that too, to support only a few page sizes (e.g., Intel Skylake

and Haswell architectures support 4KB and 2MB pages with this approach but not

1GB pages).

Skewing: Skewed TLBs are inspired by skewed associative caches [193, 192, 46]. A

virtual address is presented to multiple parallel hashing functions. The functions are

chosen so that if a group of translations conflict on one way, they conflict with a different

group on other ways. Translations of different page sizes reside in different sets [193].

For example, if our TLB supports 3 page sizes, each cacheable in 2 separate ways, we

need a 6-way skew-associative TLB.

Skew associative TLBs can be effective but also have problems. Lookups expend

high energy as they require parallel reads equal to the sum of the associativities of

all supported page sizes. Saving energy by reducing the associativity of page sizes

decreases performance. Further, even the simplest skewing functions are usually not

appropriate for latency-sensitive L1 TLBs [186, 185]. Finally, good TLB hit rates

require effective replacement policies; unfortunately, skewing breaks traditional notions

of set-associativity and requires complicated replacement decisions. In practice, skewed

TLBs use area- and energy-expensive timestamps for replacement [186, 185]. Because



26

of these problems, we know of no commercial skew-associative TLBs.

Prediction-based enhancements: Recent work [161] enhances hash-rehashing and

skewing by using a hardware predictor to accurately guess the page size of a requested

translation before TLB lookup. The hash-rehash or skew TLB is first looked up with

this predicted page size; only on misses are the other page sizes used. When prediction

is accurate, this approach lowers the average TLB hit latency and lookup energy, by

first looking up with the “correct” page size. Problems remain with this approach.

Predictors become complex as the number of page sizes increase. Further, predictors

increase access latency variability since we now also have different latencies for hits with

correct prediction, eventual hits after a wrong prediction, etc.

Overall, multi-indexing is complex, latency-variable, and can be energy-intensive. It

is generally unsuitable for L1 TLBs. Even when implemented, it can scale poorly as the

number of page sizes increase. In addition multi-indexing potentially complicates oper-

ations like TLB shootdowns, selective invalidations of global versus local translations,

managing locked translations, etc., because of their multi-step lookup [161]. Instead,

since MIX TLBs remain largely unchanged in implementation compared to standard

set-associative TLBs, they do not suffer from these issues.

2.5.2 Prior Work on Page Allocation Contiguity

The concept of exploiting OS page allocation for better TLB performance has received

recent attention [201, 169, 168, 29, 33, 30]. COLT [169] shows that small pages are often

allocated contiguously in virtual and physical memory. These contiguous small pages

are coalesced into 4KB TLBs for better performance. This builds on earlier work [201]

which exploited certain patterns of page allocation contiguity and alignment.

We make two observations about MIX TLBs and their relationship with COLT. First,

they solve a problem that COLT cannot – realizing a single set-associative TLB to

cache multiple page sizes. Second, COLT observes that there are cases when small

pages are allocated more frequently than superpages. In these cases, coalescing small

pages helps TLB performance. Our work also observes that there are situations where
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superpages are hard to allocate. We provide orthogonal benefits to COLT in these cases,

by utilizing TLB entries that would otherwise have been devoted only to superpages. In

addition, unlike COLT, we also help performance in the numerous cases when superpages

abound. Indeed, for these reasons, COLT can actually be combined with MIX TLBs (see

Section 2.7.2).

2.6 Methodology

We use a mix of real-system measurements, memory tracing, and detailed simulation.

We now describe these approaches.

2.6.1 Real-System CPU Measurements

To assess real-system split TLB performance and OS page allocation patterns, we use

a dual-socket Intel processor with 4-way set-associative split TLBs for 4KB pages (64

entries) and 2MB pages (32 entries). 1GB L1 TLBs are fully-associative and 4 entries.

We use a 512-entry L2 TLB for 4KB and 2MB pages, but not 1GB pages. Instead,

there is a separate 32-entry L2 TLB for 1GB pages. Further, this system is equipped

with a 24MB LLC and 80GB of memory.

We focus on Linux (kernel 4.4.0) but we’ve also run FreeBSD and Solaris and found

similar results. Furthermore, our virtualization studies focus on KVM; however, we

have also run VMware ESX and see similar results.

2.6.2 CPU Simulations and Analytical Models

To evaluate MIX TLBs, we need to go beyond existing hardware platforms. Unfortu-

nately, current cycle-accurate simulators cannot run fast enough to collect meaningful

data for all the long-running, big-data workloads (with multiple OSes, and hypervi-

sors) we require for our CPU studies. Therefore, like most recent work on TLBs

[84, 169, 29, 33, 123, 30, 37], we use a combination of tracing, performance counter

measurements, functional cache hierarchy and TLB simulations, and anaytical model-

ing to estimate overall impact on program execution time. We use Pin [145] to collect
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memory traces. We extend Pintools with Linux’ pagemap to include physical addresses

with the virtual addresses that Pin normally generates. We select a Pinpoint region of

10 billion instructions and correlate traces with performance counter measurements to

verfiy that the sampled region is representative of the workload.

These traces are passed to a functional simulator – used to assess TLB and cache

hit rates – that models multi-level TLBs, hardware page table walkers, and a cache hi-

erarchy. Our baseline is a split TLB hierarchy from Intel Haswell systems; further, we

model area-equivalent hash-rehash and skewed TLBs, with prediction-based enhance-

ments. Finally, we model an area-equivalent MIX TLB hierarchy.

We use the hit rates from our functional simulation to, like past work [84, 169, 29,

33, 123, 30, 37], feed into an analytical model that uses the performance counter data

to weight the performance impact of TLB hits, misses, and cache accesses.

2.6.3 GPU Simulation

Our GPU studies use cycle-level CPU-GPU simulation based on gem5-gpu, running

Linux, and modeling an x86 architecture. Like recent work [172, 173, 175], we model

128-entry, 4-way set-associative TLBs for 4KB pages per shader core. We also model

split TLBs for 2MB pages (32-entry, 4-way) and 1GB pages (4-entry, fully-associative).

2.6.4 Workloads

Our CPU studies use two sets of applications. The first consists of all workloads from

Spec and Parsec [40]. We scale the inputs of these workloads so that their total memory

footprint is roughly 80GB. The second set uses big-memory workloads (e.g., gups, graph

processing, memcached, workloads from Cloudsuite [82]), also tuned to 80GB.

Our GPU studies, like recent studies [172, 173, 175] use workloads from Rodinia [59].

Ideally, our GPU studies should use the same big-memory sizes as our CPU studies, but

this makes simulations infeasibly slow. We therefore scale our inputs to 24GB memory

footprints.
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2.7 Evaluation

We now present an evaluation of MIX TLB in two steps – first, a study of OS page

allocation patterns and second, quantification of the benefits of MIX TLBs.

2.7.1 OS Page Allocation Characterization

Several factors affect the OS’ page size distribution. For example, suppose we run

Linux with transparent hugepage support (THS) [22]. As the program makes memory

allocation requests (e.g., malloc(), or mmap()), the OS earmarks virtual pages, using

its virtual memory area data structure [64]. If these requests are to large amounts of

memory, several contiguous virtual pages are reserved. Virtual pages are lazily allocated

physical pages, as the program page faults through the virtual pages. The OS consults

its free pool of physical pages for this. THS tries to defragment memory sufficiently

to maintain swathes of contiguous free physical pages. If there is enough free physical

memory for superpages, THS can assign 2MB physical pages to 2MB regions of virtual

addresses, generating superpages. Further, if the program page faults through the

virtual pages in ascending order, they are handed contiguous physical pages.

Instead of THS, Linux can also use libhugetlbfs. This is a special library that admin-

istrators or programmers have to explicitly link to [123]. Users can specify a superpage

preference (e.g., 2MB or 1GB). At link time, programs reserve a pool of memory. Super-

pages are allocated from this pool; when this pool is used up, small pages are allocated

from other memory locations. Like THS, libhugetlbfs relies on lazy physical memory

allocation and OS degfragmentation of physical memory.

Page size distributions: Figure 2.9 quantifies the page distributions we see on our

real-system CPU and GPU experiments, both running Linux. The graphs show the

fraction of total memory footprint backed by superpages (both 2MB and 1GB). As

we have detailed, physical memory fragmentation impacts the frequency of superpage

allocation. Therefore, we vary the level of memory fragmentation by running the mi-

crobenchmark memhog [169, 168], which allocates memory randomly across a fraction
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Figure 2.9: Fraction of memory footprint occupied by superpages, as fragmentation
varies. Results shown for native CPUs and GPUs.

of system memory, in the background. For example, memhog (40%) on the x-axis indi-

cates that memhog is fragmenting 40% of the 80GB system memory in the background.

We show average numbers for classes of workloads (e.g., Parsec + Spec, big-memory

workloads) as per-workload numbers follow these trends. Figure 2.9 shows three regimes

of page distributions.

Superpages dominate: With moderate amounts of memory fragmentation, superpages

cover most of the application’s memory needs. For example, even with memhog frag-

menting 40% of physical memory, more than 80% of a CPU’s or GPU’s workload is

covered with superpages, on average.

Neither small pages nor superpages dominate: When memory fragmentation further in-

creases, the memory footprint is more equally divided among small pages and super-

pages. For example, memhog with 60% finds that 40-60% of CPU, and 55% of GPU

footprints are backed by superpages.

Mostly small pages: When fragmentation becomes severe, the bulk of the memory foot-

print is backed with small pages.

Figure 2.10 shows that similar trends hold for virtualized workloads. To create

memory fragmentation and system load, we first consolidate as many VMs on the same

machine as possible. Each consolidated VM is provided 10GB of memory; therefore,

8 of them use up all 80GB of available physical memory. In addition, we run memhog
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Figure 2.10: Fraction of memory footprint occupied by superpages, as a function
of the memory fragmentation and VM consolidation. Results are for virtualized
CPU workloads. N VM: M mh stands for N consolidated VMs, each with memhog
running at M%.

within each VM, fragmenting a percentage of each VM’s footprint. We expect that

higher VM consolidation and more aggressive memhog use will reduce the frequency of

superpages.

Figure 2.10 shows that OSes running in VMs can counter non-trivial amounts of

memory fragmentation, producing lots of superpages. For example, even 4VMs with

memhog of 40% each, see more than 70% of memory is allocated in superpages. Nat-

urally, as system load increases, small pages dominate. For example, like recent work

[170, 171, 94], we find that as more VMs are in the system and memory pressure in-

creases, optimizations like page sharing [94] and NUMA migrations [88] preclude heavy

use of superpages.

Overall, this data suggests many system factors influence page size distributions,

and therefore, systems experience a variety of such distributions. It is therefore vital

to implement efficient TLB support for mixed page sizes.

Contiguous superpages characterization: MIX TLBs rely on contiguity among

superpages when they are present. Figure 2.11 quantifies the amount of superpage con-

tiguity for the workloads and configurations from Figures 2.9 and 2.10 where at least

one superpage is present. Figure 2.11 quantifies average contiguity per workload (num-

bered in ascending order of superpage contiguity on the x-axis). Average contiguity

is measured as follows. We scan the entire page table and identify runs of contiguous



32

0

40

80

120

160

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42C
o

n
ti

gu
it

y 
fo

r 
2

M
B

 
Pa

ge
s

memhog (20%)

memhog (60%)

memhog (80%)

0

10

20

30

40

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42

C
o

n
ti

gu
it

y 
fo

r 
1

G
B

 
Pa

ge
s

Workload

memhog (20%)

memhog (60%)

Figure 2.11: Average superpage contiguity for native and virtualized CPU, and GPU
workloads. We show trends as memory fragmentation is increased with memhog,
separately for 2MB and 1GB superpages.

superpages. We divide this contiguity by the number of translations. For example,

suppose we have a page table with 4 entries, where the first 2 translations are sin-

gletons, but the last two are contiguous. We calculate that the average contiguity is

(1+1+2×2)/4. We separate results for 2MB superpages and 1GB superpages, varying

the amount of memory fragmentation using memhog.

Figure 2.11 shows that superpages themselves – and not just their constituent 4KB

page regions – are usually allocated contiguously in virtual and physical addresses. For

example, consider memhog fragmenting 20% of physical memory. Figure 2.11 shows that

most benchmarks have average 2MB page contiguity greater than 80. This means that

80+ 2MB superpages can potentially be coalesced in our TLBs. Since CPUs (e.g., see

Intel’s Sandybridge, Haswell, and Skylake TLBs) use 16-set L1 TLBs, this is sufficient

to entirely offset mirrors for L1 MIX TLBs. L2 TLBs usually have 64-128 sets; while

memhog at 20% and 60% see enough 2MB page contiguity to offset this consistently,

contiguity does drop with more fragmentation. Nevertheless, even in these cases, it is

enough (80+) that it can sufficiently (though not entirely) enable coalescing to counter

mirroring.
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Figure 2.11 also shows contiguity for 1GB pages. Since 1GB pages require much

larger defragmented physical memory regions than 2MB pages, they are harder to form.

As a result, the number of contiguous 1GB pages is usually lower than 2MB pages. Most

workloads see 20-30 contiguous 1GB pages, even with relatively high fragmentation

when memhog is 60%. Fortunately, since this covers 20-30GB of memory in an 80GB

memory system, this amount of contiguity is good enough for effective coalescing.

Figures 2.12 and 2.13 focus on superpage contiguity in terms of the cumulative

distribution functions (CDFs) for native CPU, virtualized CPU, and GPU workloads.

Once again, memory fragmentation is controlled using memhog, and virtualized results

also rely on VM consolidation to generate load. Applications with higher contiguity see

the largest increases in CDF values further along the x-axis. Figures 2.12 and 2.13 show
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that all these workloads see considerable contiguity, even when system fragmentation

is high.

2.7.2 Results

We begin by comparing the performance of MIX TLBs against commercially available

Intel Haswell TLB configurations. Note that while we refer to this as a split configura-

tion, it uses split L1 TLBs, but partly-split L2 TLBs (i.e., 4KB and 2MB translations

are hashed-rehashed in 1 TLB, while 1GB translations are cached in a separate TLB).

We then also compare MIX TLBs to simulated multi-indexing schemes (i.e., hash-rehash

and skew TLBs at both the L1 and L2 levels for all page sizes). Finally, we demonstrate

how MIX TLBs perform in tandem with past work on COLT.

Comparisons to split TLBs: Figure 2.14 shows performance improvements using

area-equivalent MIX TLBs versus a Haswell style TLB. To conserve space, we pick

representative benchmarks from Spec + PARSEC, the big-memory workloads, and the

GPU applications. We also show average results for the remaining workloads in each

category.

We separate results for several cases. For native CPU workloads, we first use lib-

hugetlbfs to try to use 4KB, 2MB, or 1GB pages exclusively. We then run native CPU

workloads on a system with transparent hugepage support or THS enabled, where Linux

attempts to allocate as many 2MB pages as possible, backing off to 4KB pages if this

is not feasible. We also show results for virtualized CPU workloads, with 1 VM, and

then a consolidated system with 4 VMs. The VMs are configured to support whatever

mix of 4KB, 2MB, and 1GB pages the guest OS and hypervisor think are appropriate.

Finally, we show GPU workloads on non-virtualized systems.

Figure 2.14 shows that MIX TLBs outperform commercial TLBs comprehensively,

frequently in excess of 10%. For setups where small pages are prevalent (e.g., 4KB bars),

we see more than 8% performance improvements on native and virtualized CPUs, as

well as GPUs. This is because split TLBs cannot use the 2MB/1GB L1 TLBs, and the

1GB L2 TLBs for 4KB pages, while MIX TLBs do not have this utilization problem.
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equivalent split TLBs.

0
10
20
30
40
50
60

0 30 60 90 120

Pe
rc

en
t 

Pe
rf

o
rm

an
ce

 
Im

p
ro

ve
m

en
t

Workload

CPU (mh 20%) CPU (mh 80%)

GPU (mh 20%) GPU (mh 60%)

0
10
20
30
40
50
60

0 25 50 75 100
Workload

Split TLBs MICSMIX
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TLBs, with memhog varying; (Right) Performance overheads of split TLBs and MIX
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Figure 2.14 also shows that MIX TLBs perform well when superpages become more

prevalent. For example, in the 2MB or THS cases, where 2MB pages become more

common, MIX TLBs achieve better performance than split because they can utilize all

hardware for 2MB pages, not just 2MB page TLBs. And these gains are even higher,

in excess of 12%, for 1GB pages, which can only use small 1GB page TLBs in the split.

Unsurprisingly, MIX TLBs are particularly useful when TLB misses become more

expensive. Therefore, for virtualized workloads, where TLB misses necessitate expen-

sive two-dimensional page table walks [170, 32, 85], 40%+ performance improvements

are seen. Similarly, GPUs, which experience heavy TLB miss traffic [172, 173, 175],

enjoy significant performance benefits for any distribution of page sizes.
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Figure 2.15 sheds further light on performance benefits, in the presence of mem-

ory fragmentation. The graph on the left shows MIX TLB performance improvements

over split TLBs, as memhog fragments 20% and 80% of CPU memory, and 20% and

60% GPU memory. We arrange the workloads (numbered on the x-axis) in ascending

order of performance benefits. As expected, increasing memory fragmentation does

reduce performance as it reduces the incidence of superpages; nevertheless, MIX TLBs

consistently outperform split TLBs by 20%+.

The graph on the right of Figure 2.15 compares how well MIX TLBs do versus a

hypothetical ideal TLB which never misses and cannot hence be realized. We plot

curves for the performance overheads experienced by split TLBs and MIX TLBs versus

this ideal TLB. The lower the y-axis values, the better. While almost a third of the

split Haswell TLBs experience a 10%+ performance deviation from the ideal scenario,

MIX TLBs always achieve under 10%.

Comparisons to multi-indexing methods: We now compare performance and en-

ergy benefits of MIX TLBs versus area-equivalent skew-associative and hash-rehash (en-

hanced with the best prediction strategies [161]) approaches. Figure 2.16 shows these

approaches for native and virtualized CPUs, as well as GPUs. We plot each workload

along two dimensions. On the x-axis, we plot percent performance improvement versus

the split TLB design. On the y-axis, we plot the percent address translation energy

saved, also versus split TLBs. Therefore, we desire points at the top right quadrant of

this space. The graph on the left shows skew-associative TLBs (blue) and hash-rehash

TLBs (green), while the graph on the right shows MIX TLBs.

Figure 2.16 shows that MIX TLBs have better performance and energy than state-

of-art multi-indexing schemes. Even the presence of operations like mirroring, which do

increase energy by filling into multiple TLBs sets, are dwarfed by the big energy savings

from decreasing TLB misses and hence cache/memory references. Another big source

of energy savings comes from the relative simplicity of MIX TLB implementations; for
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Figure 2.17: Percentage of address translation dynamic energy devoted to various
TLB maintenance operations.

example, we find that skew-associative TLBs suffer area overheads from requiring time-

stamp counters for good replacement policies [186]. Therefore, area-equivalent skew-

associative TLBs have fewer entries than MIX TLBs. Hash-rehashing is indeed more

energy efficient than skew-associativity but still needs to access a predictor structure,

hurting its energy compared to MIX TLBs.

Note also that multi-indexing schemes can degrade performance and energy. This

occurs when TLB hits are frequent but have to go through more complex multi-step

lookups when the page size predictor makes mistakes. MIX TLBs do not suffer from

these problems.

Dynamic energy breakdown: MIX TLBs achieve energy efficiency from their shorter

runtime, which reduces leakage energy. It is more challenging, however, to identify the

sources of savings in dynamic energy because MIX TLBs do have some more sophisti-

cated operations (e.g., mirroring). Figure 2.17 therefore quantifies the contribution of
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TLB energy devoted to lookups, page table walks, TLB fills after the miss, and other

operations like TLB invalidations. We focus on GPU TLB results but the trends re-

main the same in other applications too. The y-axis is normalized to the total energy

expended on Haswell split TLBs.

Figure 2.17 shows that most energy is used for lookups and misses. This is because

all loads and stores result in lookups, while misses are expensive, invoking multiple

memory references through the memory hierarchy. In contrast, the energy on TLB fill

is much lower. Therefore, mirroring, which occurs only on fills, does not affect overall

energy substantially. Note also that unlike multi-indexing approaches, which increase

lookup energy due to complex accesses with predictors, MIX TLBs leave lookup energy

largely unchanged.

Scaling TLBs: We now focus on studying how TLB scaling, specifically with the

number of sets, impacts MIX TLBs. Naturally, with more sets, we need more superpage

contiguity to coalesce sufficiently to offset mirroring. Therefore, beyond the 64-128 set

count maintained by Sandybridge and Haswell systems, we have also studied hypo-

thetical TLBs with 512 sets. In general, we find that even though many workloads do

not exhibit sufficient superpage contiguity to completely offset 512 mirrors, they still

achieve 80+ pages of contiguity. This is usually enough for good performance. We have

found that 512-set TLBs achieve within 13% of the performance of ideal TLBs which

never miss.

Complementing COLT: Finally, MIX TLBs are orthogonal to past work on coa-

lesced TLBs or COLT [169]. The original COLT work proposed coalescing contiguous

small page translations into single TLB entries. However, an extension, which we call

COLT++, may also coalesce contiguous superpages in split TLBs. Each of the split

TLBs independently performs coalescing on their respective page size translations. We

quantify the benefits of these approaches in Figure 2.18, comparing them to two other

data points. The first is an area-equivalent MIX TLB. The second combines COLT with

MIX TLBs. In this approach, we design a single set-associative TLB that can support

multiple concurrent page sizes; however, there we can also coalesce contiguous small
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Figure 2.18: Compared to split TLBs, performance improvements from MIX TLBs
and their combination with COLT.

pages. To compare fairly against past work [169], we assume that we can coalesce up

to 4 contiguous small pages.

Figure 2.18 shows the average performance improvements of these various approaches

versus Haswell-style split TLBs. We compare native and virtualized workloads, varying

fragmentation with memhog. COLT can be helpful, but mostly when small pages dom-

inate. In the presence of superpages, they cannot provide benefits. This explains the

relatively low performance benefits when fragmentation is low (memhog 20%). COLT++

helps when superpages are frequent. On average, there are 8-10% performance differ-

ences versus COLT. However, MIX TLBs outperform even these cases because they can

utilize all the TLB hardware for any distribution of page sizes. Further, combining MIX

TLBs with COLT provide the highest performance, exceeding 20% benefits in all cases.

2.8 Conclusion

This work was motivated by the fact that modern TLB hardware is rigid in capacity

allocation, despite the elasticity of the OS which can allocate many page size distribu-

tions. Many system factors affect these distributions, such as workload characteristics,

system fragmentation and uptime, etc. There is a glaring gap between the richness of

memory allocation at the software level, and modern TLB hardware.

We show one way of correcting this problem, with MIX TLBs, an energy-efficient
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TLB that uses all its resources to seamlessly adapt to any distribution of page sizes. We

show its benefits for native CPUs, virtualized CPUs, and CPU-GPU systems. Further,

we believe that its simple implementation makes MIX TLBs ready for quick adoption.
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Chapter 3

Scalable Distributed Shared Last-Level
TLBs

3.1 Introduction

The advent of “big data” workloads with ever-increasing memory needs continues to

pose performance challenges for modern computer systems. One important challenge is

the question of how to achieve efficient virtual-to-physical address translation. Efficient

Translation Lookaside Buffers (TLBs) are central to achieving high-performance address

translation as they help avoid expensive multi-level page table walks.

TLB performance depends on three attributes – access time, hit rate, and miss

penalty. Recent studies improve TLB hit rates using hardware-only or hardware-

software co-design techniques like sub-blocking [201], coalescing [66, 169, 163], clus-

tering [168], part-of-memory optimizations [147, 184], superpages [170, 202, 158, 133],

direct segments [29, 84], and range translations [123, 86]. Others have used prefetch-

ing and speculative techniques to support the illusion of higher effective TLB capacity

[38, 39, 189, 122, 170, 35, 28]. Similarly, synergistic TLBs, which evict translations

between per-core TLBs, can improve hit rates [197]. Shared last-level TLBs have also

been proposed [37] to improve the overall hit rate by avoiding replication of shared

translations that occur in multi-threaded programs or multi-programmed workloads

using shared libraries and OS structures. Finally, some studies have reduced TLB miss

penalties by optimizing MMU caches, which are used to accelerate TLB misses [33, 27].

Unfortunately, many of these approaches have side-stepped the attribute of TLB

access time. Consider, for example, shared TLB organizations. Processor vendors

implement two-level TLBs private to each core today. However, recent academic work
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has shown that replacing them with an equivalently-sized shared (among cores) L2 TLB

eliminates as much as 70-90% of the page table walks on modern systems [37]. However,

sharing also results in larger structures that are physically further from cores, resulting

in longer access latency. Recall that address translation latency is on the critical path

of every L1 cache access. Consequently, a TLB sub-system with more TLB hits may

not be attractive if each hit actually becomes slower. As the virtual memory demand

from applications continues to increase, scaling TLB size but keeping them fast is a key

research challenge.

Our goal is to translate the hit rate benefits of shared TLBs to overall speedup.

This requires a conceptual re-think of how we architect a scalable shared TLB hierarchy.

The challenge with a multi-banked monolithic shared L2 TLB structure is that it suffers

from high latency. A natural alternative is a distributed shared L2 TLB, akin to NUCA

LLCs. Each distributed shared TLB slice can be made small to keep access latency low.

Unfortunately, this makes TLB access non-uniform, depending on the location of the

slice where the translation is cached. Our studies on a 32-core Haswell system show that

a distributed shared L2 TLB consequently degrades performance by 7%, despite having

70% fewer misses on average than private L2 TLBs. This is because TLB accesses are

more latency critical than data cache accesses.

We propose Nocstar (NOCs for scalable TLB architectures), a design method-

ology to architect scalable low-latency shared last-level (SLL) TLBs. Nocstar relies

on the latency characteristics of on-chip wires and the bandwidth characteristics of ad-

dress translation requests to realize a lightweight specialized interconnect that provides

near single-cycle access to remote shared TLB slices, however far they may be on-chip.

Consequently, Nocstar provides the hit rate benefits of shared TLBs at the access

latency of private TLBs via the following features:

1 High capacity: Nocstar offers higher hit rates than private L2 TLBs by eliminating

replication and improving utilization.

2 Low lookup latency: Nocstar achieves low lookup latency by replacing a monolithic

shared L2 TLB structure with smaller TLB slices distributed across cores.

3 Low network latency: Nocstar employs a light-weight interconnect to connect cores
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to the distributed TLB slices. This interconnect provides near single-cycle latencies

from any source to any remote TLB, reducing network traversal latency.

The confluence of these features enables Nocstar to offer almost all (i.e., within

95%) of the performance of an ideal, zero-interconnect-latency shared TLB. With an

area-equivalent configuration (that conservatively reduces TLB sizes to account for

our interconnect area), Nocstar outperforms private L2 TLBs on 16-64 core Haswell

systems by an average of 1.13× and up to 1.25× across a suite of real-world workloads.

3.2 Background and Motivation

We first study conventional private L2 TLBs, and compare to shared L2 TLB alterna-

tives proposed in prior work [37]. As we scale the size of the shared TLB, a practical

design would involve banking this monolithic structure. We evaluate this design and

ultimately find that distributing the TLB slices across cores with a fast NOC is a better

choice.

While Nocstar is applicable to both instruction and data TLBs, we focus on the

latter. Our focus is driven in part by the fact that the data-side TLB pressure is growing

with the prevalence of big-data workloads [29, 84, 86, 35, 66, 133].

Throughout this chapter, we use the term TLB access latency to refer to TLB’s

SRAM lookup latency + interconnect latency.

3.2.1 Limitations of Private TLBs and Promise of Shared TLBs

Private two-level TLBs are a staple in modern server-class chips like Intel’s Skylake

or AMD’s Ryzen processors. For example, Intel’s Skylake chip uses 64-entry L1 TLBs

backed by 1536-entry, 12-way set associative L2 TLBs per core. Unfortunately, private

L2 TLBs suffer from the classic pitfalls of private caching structures – i.e., replication

and poor utilization [37]. Consider the problem of replication. Multi-threaded applica-

tions running on a multi-core naturally lead to replication of virtual-to-physical transla-

tions across private L2 TLBs as they are part of the same virtual address space. Perhaps

more surprisingly, even multiprogrammed combinations of single-threaded programs

exhibit replication as different processes can share libraries and OS structures [37].
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Figure 3.1: Percentage of private L2 TLB misses eliminated by replacing with a shared
TLB. Results shown for 16-64-core systems.

Private L2 TLBs also suffer from poor utilization because chip-wide TLB resources

are partitioned statically (usually equally) at design time. But this means that there

are situations where, at runtime, a private L2 TLB on one core may thrash while its

counterpart on another core may experience far less traffic [37].

Recent work has evaluated the potential of shared last-level TLBs (which we call

shared L2 TLBs) [37]. Shared L2 TLBs eliminate the redundancy of private L2 TLBs

and also seamlessly divide TLB resources to cores based on their runtime demands,

overcoming the problem of poor utilization. Shared TLBs also offer implicit prefetch-

ing benefits; i.e., a thread on one core can demand (and hence prefetch) translations

eventually required by threads on other cores. The original paper finds that shared

TLBs eliminate as much as 70-90% of the misses suffered when using private L2 TLBs

[37].

3.2.2 Shared L2 TLB Hit Rates

Figure 3.1 quantifies the benefits of shared L2 TLBs. Our system using Intel Haswell

systems is described in Section 3.4. Figure 3.1 shows that shared L2 TLBs eliminate

the majority of L2 TLB misses suffered by private TLBs. Note that for every one of our

workloads, the entire private L2 TLB is used to store entries – that is, no translations

are wasted. Furthermore, like prior work [66, 37], we found that absolute private L2

TLB miss rates range from 5-18% for our workloads. Naturally, the main reason these
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Figure 3.2: Access latency of SRAM TLB compared to number of entries in a TLB.
Post-synthesis in 28nm TSMC PDK.

miss rates are harmful is the fact that each TLB miss is a particularly long-latency

event.

Generally, the higher the core count, the more effectively the shared L2 TLB elimi-

nates private L2 TLB misses. Consider, for example, a situation with 4 cores, and one

with 16 cores. If private TLBs are N entries, the 4-core case can replace the private L2

TLBs with a shared L2 TLB with 4×N entries for the TLB resources. A 16-core case

can realize a 16×N-entry L2 TLB instead. Naturally, we are therefore able to eliminate

the replication and utilization problems of private TLBs even more effectively at higher

core counts. Workloads with notably poor locality of access (e.g., canneal, gups, and

xsbench) are particularly aided by shared TLBs at higher core counts.

3.2.3 Shared TLB Access Time

One might expect the hit rate improvements of Figure 3.1 to improve performance

overall. However, TLB performance is influenced not just by hit rates, but also the

following:

1 SRAM array lookup times: L2 TLBs are typically implemented as SRAM arrays.

Unfortunately, scaling SRAM arrays while ensuring fast access is challenging. We model

SRAMs in TSMC 28nm technology node using memory compilers. Figure 3.2 quantifies

access latency scaling as a function of the number of entries in the array (all numbers

are post-synthesis). A 1536-entry L2 TLB (the size of private L2 TLBs in Intel Skylake)

takes 9 cycles, while a 32×1536-entry design takes close to 15 cycles to access. Replacing
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Figure 3.3: Speedups using shared multi-banked TLBs over private L2 TLBs. Shared
TLB access latencies varies from 25 to 9 cycles.

private TLBs with an equivalently-sized shared TLB means that the shared structure

grows from a 12K-entry structure for 8 cores (8×1536 entries) to a 96K-entry structure

for 64 cores (64×1536 entries), increasing lookup times by factors of 2-4× Ultimately,

this high access latency – which worsens as we need larger shared TLBs for higher core

counts – counteracts the benefits of higher hit rates.

2 Interconnect traversal times: The original paper on shared TLBs focused on

monolithic designs where the entire structure was placed at one end of the chip [37].

Naturally, this design exacerbated access times further, due to additional interconnect

delays to access the shared TLB location. This was observed to counteract the benefits

in some cases even for a 4-core system [37]. Higher core counts further worsen this

delay. For instance, for a 64-core system, the tiles at the top of the chip would require

8 hops in each direction to access the TLB. 3 Bandwidth: A key problem with the

original shared TLB proposal is that accesses from multiple cores suffer from contention

at the shared structure’s access ports. This differs from the private L2 TLB scenario,

where each core can access its private TLB without interference from other cores.

3.2.4 Shared TLB Performance

Figure 3.3 quantifies how attributes 1 - 3 counteract higher hit rates in determining

the overall performance of shared monolithic L2 TLBs. We profile performance on

a 32-core Haswell system using monolithic shared L2 TLBs versus private L2 TLBs.

Based on our SRAM array memory compiler studies with 28nm TSMC, we determine

that the private L2 TLBs have 9-cycle lookup times. These are consistent with other
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references that measure Haswell TLB lookup times and Intel’s product manuals, which

measure lookup latencies of 7-10 cycles for private L2 TLBs [111, 109]. For our shared

L2 TLB, we vary the total access latency from 9 cycles (an unrealizable ideal case

where the 32× larger SRAM array has access times that match the private L2 TLBs

and the interconnect is zero-latency) to 25 cycles (a more reasonable estimate of the

larger SRAM array plus interconnect latency). We bank the shared L2 TLB; we study

designs with 16, 32, 64, and 128 banks. We plot results from the highest-performing

banking configuration for each workload. Section 3.4 describes the rest of the system

configuration. Note that all our experiments assume Linux 4.14 is running on the

system, with support for transparent hugepages [169, 66]. In practice, we find that

over half of the memory footprint of the workloads are implemented as superpages (see

Section 3.5 for more details).

Figure 3.3 shows that despite better hit rates, the monolithic shared TLB can per-

form poorly. For example, at 25-cycle access latency, we see a 10-15% performance dip

versus private L2 TLBs. Even worse, consider an unrealizable ideal network with zero

interconnect latency (i.e., the only latency arises from port contention and SRAM array

latency), which corresponds to the scenario where the shared L2 TLB access takes 16

cycles. Even here, the shared TLB shows little to no speedup over the private L2 TLB

case.

3.2.5 Understanding Shared L2 TLB Access Patterns

We now study key aspects of shared TLB access patterns that can help us overcome

access latency problems.

Shared L2 TLB contention across applications. Figure 3.4 captures information

about contention at the shared L2 TLB. For every shared L2 TLB access, we plot the

number of other cores with outstanding shared L2 TLB accesses. Figure 3.4 shows

that more than 40% of the L2 TLB accesses occur in isolation; i.e., there is no other

outstanding TLB access. Roughly another 20-30% of the L2 TLB accesses occur when

there are only 2-4 outstanding shared L2 TLB lookups.
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Figure 3.4: Fraction of L2 TLB accesses that occur concurrently with 1 other access,
2-4 other accesses, etc., on a 32-core Haswell system.
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L2 TLB, where the number of TLB slices is equal to the number of cores.
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Shared L2 TLB contention with varying L1 TLB size. The larger the L1 TLB,

the fewer the shared L2 TLB accesses. Figure 3.5 (left) shows the impact of the L1

TLB size on shared L2 TLB contention. The baseline bar matches the average access

distribution from Figure 3.4, while the 0.5×L1 and 1.5× bars represent distributions

as the private L1 TLBs per core are halved or increased by 50%. As one might expect,

smaller L1 TLBs lead to more shared L2 TLB lookups. Consequently, the 2-4 access

and 5-8 access portions of the bars increase significantly, implying greater contention.

More interesting however are the trends towards bigger L1 TLBs as this reflects the

direction processor vendors are going in. When we increase the L1 TLB sizes by 50%,

we see contention dropping, with the 1 access case dominating and taking up roughly

50% of the shared L2 TLB accesses.

Shared L2 TLB contention with varying core counts. Finally, Figure 3.5 also

shows the impact of core count on shared TLB contention. The baseline represents

32-core Haswell; 0.5×L1 and 1.5× are for 32-core Haswell with half and 1.5 times the

baseline L1 TLB size. The 64-512 core results assume 64- to 512-core Haswell sys-

tems and we expect shared L2 TLB contention to increase with a higher number of core

counts. However, not only does contention not increase at 64 cores, it only marginally

increases at 128 cores (i.e., the 5-8 accesses and 9-12 accesses contributions in-

crease by roughly 10% and 5% respectively). Only when we begin to approach 256

cores and beyond does contention visibly increase. However, we have also performed

experiments where we have replaced the monolithic (banked) shared L2 TLB with a

distributed shared L2 TLB, where the number of L2 TLB slices equals the core count.

The graph on the right in Figure 3.5 showcases our results, this time quantifying the

contention on average per TLB slice. As shown, even with high core counts (256-512

cores), roughly 60% of accesses to a single L2 TLB slice suffer no contention with

concurrent accesses.

Takeways. The key takeaway from the three experiments above is the following – L2

TLBs must be accessed fast for performance but concurrent accesses are rare. This is

true not just for system configurations today, but would continue to remain true and in

fact drop further in future systems with larger L1s or more cores. Later in Section 3.5,
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we also validate this observation for a TLB miss ”storm” microbenchmark (where we

deliberately create high L1 TLB miss situations). This conceptual underpinning moti-

vates our work - we design a specialized interconnect optimized for low latency rather

than high bandwidth (required for concurrent accesses) to accelerate shared L2 TLB

access.

3.2.6 Low-Latency Interconnects

On-chip wire delay. As technology scales, transistors become faster, but wires do

not [100], making wires slower every generation relative to logic. This fact prompted

research into NUCA caches [96, 126]. However, since clock scaling has also plateaued,

wire delay in cycles remains fairly constant across generations. Long on-chip wires have

repeaters at regular intervals, and take about 75-100 ps/mm [100, 60, 61]. Thus it is

possible to perform a 1-cycle traversal across the chip in modern technology

nodes, as recent chips have demonstrated [60, 61].

NOC traversal delay. The network latency (T) of a message in modern NoCs is

denoted as [115]:

T = H × (tr + tw ) +
H∑

h=1

tc(h) + Ts

H is the number of hops required to reach the destination, tr is the router delay, tw is

the wire delay, tc(h) captures the contention at each router, and Ts is the serialization

delay incurred when sending a wide packet over narrow links. The latency is directly

directly proportional to H .

Challenges with designing low-latency NOCs. It is usually hard to build NOCs

optimized for latency, bandwidth, area and power (see Table 3.1). Buses do not scale

and each traversal is a broadcast. Meshes are the most popular due to their simplicity

and scalability, as they rely on a grid of short links with simple routers (with low tr ) at

cross-points. However, the average hop count H (and therefore latency) is much higher.

High-radix NOC topologies (such as FBFly [127]) add long-distance links between dis-

tant routers, reducing H However, these naturally add more links (i.e., bandwidth),

leading to extremely high area and power penalties due to multi-ported routers and

crossbars. If we use a narrower datapath (i.e., reduced bandwidth), we can reduce area
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Table 3.1: TLB interconnect design choices.

NOC Latency Bandwidth Area Power

Bus 3 7 3 7

Mesh 7 3 7 7

FBFly-wide [127] 3 33 77 77

FBFly-narrow 7 3 7 7

SMART [132] 3 3 7 7

Nocstar 3 3 3 3

and power to that of a mesh, but serialization delay Ts leads to higher latencies. Opti-

mizations such as SMART [132] fall in between these extremes by enabling packets to

dynamically construct bypass paths over a mesh, reducing the effective H . However,

the paths are not guaranteed, and require expensive control circuitry to setup and arbi-

trate for, leading to false positives and negatives [132]. Moreover, buffers at routers in

a Mesh, FBFly and SMART add high area and power overheads. Nocstar proposes

an interconnect with tr = 0, H =1, and tw = 1, as we describe in the next section.

3.3 NOCSTAR Design

Our approach, Nocstar, organizes the SLL TLB as a distributed array of TLB slices

(to reduce lookup latency) connected by a configurable single-cycle network fabric (to

reduce interconnect latency).

3.3.1 TLB Organization: Distributed TLB slices

The overall organization of Nocstar is a logically shared last level TLB distributed

across the tiles of a many-core system. It mirrors the design of NUCA LLCs [96].

Each slice is the same size or smaller than the size of current private L2 TLBs, thereby

meeting the same area and power budgets.

• TLB Entries: Each entry in a slice includes a valid bit, the translation and a

context ID associated with the translation.

• Indexing: Although optimized indexing mechanisms can be adopted for better

performance, we use a simple indexing mechanism using bits from virtual address.
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3.3.2 TLB Interconnect

We develop a dedicated side band NOC for communicating between the L1 TLBs and

L2 TLB slices. As discussed in Section 3.2.6 and Table 3.1, directly adopting NOCs

used between data caches today may not be the optimal design choice for a TLB

interconnect. Instead, we develop a latchless, circuit-switched interconnect that can

provide single-cycle connectivity between arbitrary source-destination pairs.

Datapath: Latchless Switches

The datapath in Nocstar leverages the fact that wires are able to transmit signals

over 10+ mm within a GHz (Section 3.2.6). To enable single cycle traversal of packets

in Nocstar we add a simple latchless switch next to each L2 TLB slice as shown

in Figure 3.6(a). The switch is simply a collection of muxes as Figure 3.6(c) shows.

The muxes are pre-set before a message arrives, as we will describe in Section 3.3.2.

Figure 3.6(b) shows a request arriving from the West direction traversing the switch

and directly getting routed out of the South direction, as selected by the multiplexers,

without getting latched. A message gets latched only at the destination switch where

it needs to be ejected out to the target L1 TLB or L2 TLB slice. For example, an L1

TLB at the top left corner can send a request within one cycle to the L2 TLB slice at

the bottom right, as Figure 3.6(b) highlights. Each mux acts a like a repeater, and the

entire traversal is similar to that of a conventional repeated wire [60, 61].
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Bandwidth: This datapath is naturally lower bandwidth than a Mesh or FBFly

as it does not have any buffers internally within the NOC. Moreover, unlike a FBFly

which has more links, it cannot support multiple simultaneous transmissions unless

they are using completely separate set of links. However, as we demonstrated earlier in

Section 3.2.5, L1 TLB misses are infrequent – there is only one access 60% of the time,

and 1-4 accesses 80% of the time, making this low-bandwidth NOC sufficient for our

purpose.

Scalability: Each traversal over this network takes a single-cycle. For large chips

running at very high frequencies, this might be multiple cycles by adding pipeline latches

as we discuss in Section 3.3.2.

Control Path: Fine-Grained Circuit-Switching

We now describe the various steps involved in sending the messages.

Path Setup: For each traversal through the interconnect, all data links in the

path have to be acquired before sending any kind of message. To ensure that the

packet reaches the destination in a single cycle, all links in the path must be acquired

in the same cycle. This is done using separate control wires. Each data link has an

associated arbiter which can allocate the link to one of the requesting cores. Figure 3.7

shows an example of a core sending requests to all link arbiters in its path and receiving

grants from each link arbiter before traversing the path. If any requester fails to acquire

all the links in the desired path, because of any contention, it will wait and try again

in the next cycle. This ensures that there are no packets traversing partial paths and

thus avoids complexity. Once a path is acquired, the message can traverse through the

datapath as shown in Figure 3.6(b).

Fanout from Switch: Each core has must have a way to setup a path to any of

the slice present in the system. The width of the control wires for each arbiter depends

on the routing policy adopted by the TLB system at design time. Consider an XY

based policy in a system as shown in Figure 3.6(d). Each core is connected to the

arbiter associated with a link through which the core can send a request. Thus, the

number of wires going out of each core is (num cores each row − 1) + ((num rows −
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1)× (num columns)).

Link Arbiters: Each network link has an associated arbiter residing near the

switch. The arbiter gets requests from any core which can send a TLB request/response

packet through the link. This arbiter then selects one of the requesting cores and grants

the link to it for the next cycle by setting the output mux to receive from the appropriate

input port, and sending a 1-bit grant back to the requester, as shown in Figure 3.7.

Fanin at Link Arbiters: Depending on its physical location on-chip and the

routing policy, different arbiters will have different number of requests coming in. For

example, suppose we only allow XY routing. Figure 3.6(d) shows that the green Arbiter

A for an X link can only have one requester, while the red Arbiter B for a Y link has

six possible requesters.

Arbitration Priority: As the arbitration for each link is decentralized, there could

be a possibility of livelock if two or more requests only acquire a partial set of links

during each arbitration. To avoid this, the arbiters follow a static priority order among

the requesters, to allot the links. In other words, a requester with higher priority will be

guaranteed to get all its requested links. Further to avoid starvation, the static priority

changes in a round-robin fashion every 1000 cycles.

Implementation

We implemented the Nocstar interconnect in TSMC 28nm with a 2GHz clock. Fig-

ure 3.8 shows the place-and-routed design. We observe the following.
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Figure 3.8: Place-and-routed Nocstar tile in 28nm TSMC with the L2 TLB SRAM,
switch and link arbiters highlighted and power/area of a switch and link arbiters for
each slice in comparison to a SRAM based TLB slice. Target Clock Period = 0.5ns.

Critical Path. There are two sets of critical paths in the interconnect. On the datap-

ath, a multi-hop traversal through all the intermediate switches needs to be performed

within one clock cycle. Recall that the TLB interconnect is created at design-time. If

timing is not met at the desired clock frequency, pipelined latches can be added at the

maximum hops per cycle (HPCmax ) [132] boundaries. This will increase the network

traversal delay, but does not affect the operation of the design. Moreover, as core counts

increase and tiles become smaller, the maximum hops per cycle will actually go up. On

the control path, the critical path consists of the path setup request to the furthest

link arbiter, link arbitration, and the grant traversal back to the core (Figure 3.7). We

observed that the place-and-route tool placed all the arbiters close to the center of the

design to reduce the average wire lengths to meet timing.

Area and Power. Figure 3.8 shows the post-synthesis power and area consumed by

the Nocstar switch and arbiter. We contrast it with the cost of the L2 TLB SRAM

present in the same tile. The area consumed by switch and arbiter is less than 1% of

the tile’s L2 TLB SRAM. The link arbiters, due to high fanin and tight timing, are

the most power hungry component and key overhead. We can reduce this overhead by

restricting the routing algorithm (and correspondingly the fanin), as discussed earlier

in Section 3.3.2.

3.3.3 Timeline of L2 TLB Access in Nocstar

Figure 3.9 presents a timeline of address translation when there is an L1 TLB miss.

L1 TLB Miss. The L1 TLB miss triggers a circuit-switched path setup. The path

setup can be performed speculatively during the L1 TLB access as well.
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Figure 3.9: Timeline of a virtual address translation in case of an L1 TLB miss and
remote L2 TLB access in Nocstar.

Request Path Setup. The remote TLB slice to which the translation is mapped

is identified by the indexing. A path setup request is then sent to the arbiters of the

links in the path. The grants from all the requests are ANDed to determine if the full

path was granted or not. If not, the path setup is retried. If the full path is granted,

the request is sent out.

Request Traversal. The TLB request is forwarded to the switch connected to the

TLB slice (Figure 3.6(a)). No header or routing information needs to be appended, since

the path is already setup. The request takes a single-cycle through all the intermediate

switches, and is latched at the remote TLB slice and enqueued into its request queue.

L2 TLB Slice Access. The remote TLB slice receives the request and services the

request. The translation may either exist or not. If it is a TLB hit, a response should

be sent. The response contains the physical page associated with the virtual address in

the request. A TLB miss would lead to a page walk which is discussed in Section 3.3.6.

Response Path Setup. A circuit-switched path for the response is requested.

The response path can be setup speculatively, during the L2 TLB lookup, as a response

will be sent to the requester regardless of access result.

Response Traversal. The response traverses the TLB interconnect within a single-

cycle.

L1 TLB Insert. The requested translation is inserted into the requesting L1 TLB

if it was a hit.
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3.3.4 L2 TLB Access Latency and Energy

We quantify the benefits in latency and energy that Nocstar provides over a monolithic

and distributed shared TLB.

Figure 3.10(a) shows the latency of a message when traversing different number of

hops through the TLB interconnect in the different shared last-level TLB designs. We

consider two cases.

Case 1: The requested translation is indexed in the slice of the requesting core: The

virtual address is used to index into the SLL slice in the local node and the translation

is returned to L1 TLB. The total latency incurred is equal to lookup latency of the TLB

slice for both Distributed and Nocstar designs. This is identical to private last-level

TLB latency.

Case 2: The requested translation indexes to a remote slice: The required translation

request is sent to the remote node containing the slice through a dedicated network.

Once it reaches the destination node, the virtual address is used to index into the

SLL slice and the translation is then sent back to the requesting slice. Upon receiving

the translation response, the requesting core can then forward the translation to the

L1 TLB. The total latency in this case is lookup latency + network latency . Here,

Nocstar provides a latency advantage over both Monolithic and Distributed. Even

when the maximum hops per cycle HPCmax in Nocstar goes down, it is still much

faster than the distributed case.

Figure 3.10(b) shows the energy consumed by a message when traversing different

number of hops through the TLB interconnect to understand trade-off spaces among

the shared TLB designs. Most of the energy savings for the distributed design and

Nocstar come from accessing a smaller SRAM structure than a monolithic(M) SLL

TLB. Further, on the datapath, because of circuit switching, the energy consumed by

an intermediate switch in Nocstar (N) is less compared to a switch in a traditional

distributed network (D) with multi-cycle hops. However, Nocstar has a more expen-

sive control path because of multiple request and grant wires spanning to all the link

arbiters for simultaneous arbitration (Figure 3.7). For instance, to traverse 14 hops
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within a cycle, Nocstar will require 14 links to be arbitrated for simultaneously. This

shows up as a slightly higher control cost than Distributed. However, the latency gains

from this approach leads to an overall energy savings, as we discuss in Section 3.5.

3.3.5 Insertion/Replacement Policy

Like recent studies on TLB architecture, we assume that L1 and L2 TLBs use the lower-

order bits of the virtual page number to choose the desired set using modulo-indexing,

and use LRU replacement [169, 168, 170, 162, 35, 33, 39, 66]. Furthermore, like all

recent work on two-level TLBs [66, 37, 169, 170, 168], we assume that the L1 and L2

TLBs are mostly-inclusive. Like multi-level caches, mostly-inclusive multi-level TLBs

do not require back-invalidation messages [112].

3.3.6 Handling Page Table Walks

Suppose that a core suffers an L1 TLB miss and must look up the shared last-level

L2 TLB. Suppose further that it determines that the TLB slice housing the desired

translation lies on a remote node. If lookup of the remote node’s TLB slice ultimately

results in a miss, there are two options for performing the resulting page table walk. In

the first option, the remote slice can send a miss message back to the requestor node,

which must now perform the page table walk. In the second option, the remote node

can itself perform the page table walk. Both approaches have pros and cons. Handling

page table walks at the remote node is attractive in that it eliminates the need for a

miss message to be relayed between the remote and requestor nodes. However, handling
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page table walks on the remote node also increases the potential for page table walker

congestion; i.e., if multiple core’s send requests to a particular remote slice and all of

them miss, page table walks can be queued up.

3.3.7 TLB Shootdowns

A key design consideration involves how Nocstar responds to virtual memory op-

erations performed by the OS. In particular, consider a situation where a page table

entry is modified by the OS on a particular core. When this happens, the OS kernel

usually launches inter-processor interrupts (IPIs) that pause other cores and run an

interrupt handler that ”shoots down” or invalidates the stale translation in the TLB.

This operation requires care in NOCstar – specifically, it is now possible that multiple

cores simultaneously relay a translation invalidation signals to a single TLB slice that

houses the stale translation. This can quickly congest the system by cascading TLB

invalidation lookups of a single TLB slice.

We sidestep this by designating some node(s) as the invalidation leader(s). In other

words, even though any core can receive IPIs, and each core invalidates its private

L1 TLB, only specific cores are permitted to then relay invalidation signals to the

shared TLB. For example, if core 0 is considered the invalidation leader, any core that

receives an IPI has to relay a message to core 0. Core 0 in turn relays a message

to the relevant shared TLB slice to invalidate the stale translation. The actual TLB

invalidation process for Nocstar from here on out mirrors that of a private L2 TLB.

That is, during a private L2 TLB invalidation event, accesses to other translations in

the private L2 TLB can be made; similarly, during the invalidation of a shared L2

translation, accesses to other translations (within the same slice or to other slices) are

permitted. In Section 3.5, we study our approach. The ideal scenario is a middle ground

where the number of leaders is far fewer than the core count, but where it is not so

small that the messages become congested at any particular leader core.
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3.4 Methodology

Simulation framework: We evaluate the benefits of Nocstar using an in-house

cycle-accurate simulator based on Simics [16]. We model Intel Haswell systems [109]

running Ubuntu Linux 4.14 with transparent superpages (which is the standard config-

uration). We model Intel Haswell cores with 32KB 8-way L1 instruction/data caches

with 4 cycle access times, 256KB 8-way L2 caches with 12 cycle access times, and an

LLC with 8MB per core and 50 cycle access times. These parameters are chosen based

on Haswell specification parameters from the Intel manual [109, 111]. System memory

is 2TB, with the workload inputs scaled so that each workload actually makes use of

the full memory capacity.

Our cores maintain private L1 TLBs for different page sizes; i.e., 64-entry 4-way

associative L1 TLBs for 4KB pages, 32-entry 4-way L1 TLBs for 2MB pages, and

4-entry TLBs for 1GB pages. As per Haswell specifications [111], our L1 TLBs are

single-cycle and are accessed in parallel with the L1 caches using the standard virtually-

indexed physically-tagged configuration [162]. All L1 TLBs have two read ports and

a write port. Misses in the L1 TLB are followed by an L2 TLB lookup. Our baseline

assumes the Intel Haswell configuration of private 1024-entry, 8-way associative L2

TLBs that can concurrently support 4KB and 2MB pages. In our studies, this baseline

is 9 cycles based on post-synthesis SRAM numbers we generate, which also matches

data from Intel manuals [111]. Our studies focus on varying this L2 TLB organization

and latency; furthermore, we assume 2/1 read/write ports for each private L2 TLB

and per shared L2 TLB slice. Finally, our simulator models the L2 TLBs accesses

as being pipelined, so one request can be serviced every cycle. Finally, we combine

our simulation framework with McPAT for our energy studies [140]. We model energy

numbers for the cores, caches, etc.

Target Configurations: Table 3.2 details the shared L2 TLB configurations that we

evaluate. The first approach we evaluate is the standard monolithic approach posed

in the original shared L2 TLB study [37]. We have evaluated several banking con-

figurations for monolithic and settle on 4 banks for 16- and 32-core configurations,



61

Table 3.2: Major configurations of TLB that were simulated.
L2 TLB Entries

(8-way associative)
Physical

Org
Interconnect

Private 1024
1 TLB

Per Core
-

Monolithic
(Shared)

1024×NumCores Monolithic
Mesh (Multi-Hop),

SMART

Distributed
(Shared)

1024×NumCores
1 slice

Per Core
Mesh (Multi-Hop)

Nocstar 920×NumCores
1 slice

Per Core
Nocstar

and 8 banks for 64 cores. We evaluate this with a regular mesh, and a single-cycle

SMART NOC [132]. The second approach we study is a distributed approach where

the shared L2 TLB is made up of an array of TLB slices placed near each core and

connected by a NOC. We consider two different types of NOCs for shared distributed

L2 TLBs: (a) Mesh (Multi-hop): This involves a traditional 1-cycle router coupled

with 1-cycle link latency. To compete against a single-cycle-traversal-based Nocstar,

we place enough buffers and links in the system to prevent link contention. Including

any network contention may further degrade performance of workloads for traditional

mesh networks. (b) Nocstar: A single cycle traversal if there is no contention; oth-

erwise waits for another cycle as explained in Section 3.3.2; routing is XY-based. Our

Nocstar evaluations assume that each core maintains a 920-entry (rather than a 1024-

entry) shared TLB slice. This is a conservative area-normalized analysis, even though

our interconnect consumes less than 1% area of each TLB slice.

Benchmarks: We use benchmarks from Parsec [40] and CloudSuite [82] for our studies.

Furthermore, we study the performance of multi-programmed workloads by creating

combinations of 4 applications. Each application in a multi-programmed workload has

8 threads executing and scaled up to use 2TB of memory.

3.5 Experimental Evaluations

Performance: Figure 3.11 shows performance results for a 16-core Haswell configu-

ration, assuming only 4KB pages. We plot speedups versus a baseline with private

L2 TLBs; i.e., higher numbers are better (note that the y-axis begins at 0.8). Our
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Figure 3.11: Speedups for monolithic, distributed, and Nocstar compared to ideal case
with zero interconnect latency to the shared L2 TLB. Results assume 16-core Haswell
systems using only 4KB pages.
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Figure 3.12: Complementary results to Figure 3.11 but when Linux uses transparent
superpages for a mix of 4KB and 2MB pages.

monolithic data corresponds to a monolithic banked shared L2 TLB with access la-

tencies determined from our circuit-level studies (see Section 3.4). We also show a

distributed configuration as well an ideal case, where all shared TLB accesses have

zero interconnect latency. Note that the ideal case does not imply an infinite TLB.

Figure 3.11 shows that Nocstar achieves an average of 1.13× and a max of 1.25×

the performance of private L2 TLBs. Importantly, this is better than any other con-

figuration. In fact, monolithic degrades performance versus private L2 TLBs because
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Figure 3.13: (Left) Speedups for varying core counts for Linux with transparent 2MB
superpage support; and (right) percent of address translation energy saved versus pri-
vate L2 TLBs.

of the perniciously high access latency. While distributed partly helps, Nocstar

achieves over 8% additional performance and comes within 2% of ideal.

Figure 3.12 shows performance with Linux’s native support for transparent 2MB

superpages. We found that Linux was able to allocate 50-80% of each workload’s

memory footprint with superpages. One might expect superpages to reduce L1 TLB

misses, reducing the gains from Nocstar. We find, however, even better performance

with Nocstar in the presence of superpages. This is because the workloads are so

memory-intensive (i.e., 2TB) that even with superpages, L1 TLB misses/shared L2

accesses are frequent. However, superpages do a good job of reducing shared L2 TLB

misses, meaning that L2 TLB access times become a bigger contributor to overall

performance. This explains why workloads such as xsbench and gups achieve large

speedups of 1.2×+. Nocstar also outperforms monolithic and distributed with

even larger margins than when simply using 4KB pages.

Scalability: The graph on the left in Figure 3.13 quantifies speedups for varying

core counts, when Linux supports transparent 2MB superpages along with 4KB pages.

We show average, minimum, and maximum speedup numbers. In the monolithic

case, high hit rates are overshadowed by high access times, particularly worsening

performance at higher core counts. Employing a distributed approach helps, but

Nocstar consistently outperforms other approaches.
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Energy: Recent work shows that address translation can constitute as much as 10-

15% of overall processor power and that the energy spent accessing hardware caches for

page table walks is orders of magnitude more expensive than the energy spent on TLB

accesses [124]. Using a shared TLB saves address translation energy by eliminating a

large fraction of page table walks. Figure 3.13 shows this, by plotting the percent of

energy saved versus a baseline with private L2 TLBs. Even the monolithic approach

eliminates roughly a third of address translation energy. However, Nocstar eliminates

even more energy (as much as 60% on 64 cores). We have identified several reasons

for these energy savings. One source is that Nocstar dramatically reduces runtime,

thereby reducing static energy contributions of our system. Another important source of

energy savings is that Nocstar reduces TLB misses and the ensuing page table walks.

This means that cache lookups and memory references for the page table lookup are

eliminated. In practice, like prior work [27, 28], we have found that most page table walk

memory references are serviced from the LLC. In our experiments on a baseline without

Nocstar 70-87% of the page table walks in the workloads we evaluate prompt LLC

and main memory lookups for the desired page table entry. Using Nocstar eliminates

the bulk – over 85% on average – of the LLC/memory references, thereby saving lookup

energy. These energy savings far outweigh the the energy overheads of the dedicated

Nocstar network.

Interconnect: We now tease apart the performance contributions of distributing TLB

slices versus a faster interconnect with Figure 3.14. All bars represent speedups versus

private L2 TLBs in a 32-core Haswell configuration. We show two versions of the banked

monolithic approach, one with traditional multi-hop mesh, and one where we implement

SMART with the monolithic approach. On average, both approaches suffer performance

degradation; that is, even with a better interconnect (i.e., SMART), the monolithic

approach experiences SRAM array latencies that are harmfully high. Instead, when we

distribute the L2 TLB into slices per core (i.e., distributed), we achieve an average

of 5% performance improvements. However, Nocstar performs even better.

Ideally, messages in Nocstar should take only 1 cycle to traverse the NOC. How-

ever, this number may increase because of contention for the path taken by the message.
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Figure 3.14: Speedup over baseline configuration with private L2 TLBs. We show
two monolithic approaches (with traditional multi-hop mesh and SMART, as well as an
ideal Nocstar, where we have no contention on the interconnect. We compare this
to an ideal case where the TLB slices have zero interconnect latency.

We find that on average, latencies are 1-3 cycles, with only two workloads – xsbench

and gups – suffering latencies that can go beyond 3 cycles. Overall, this means that

Nocstar achieves performance close to an idealized case, where the interconnect faces

zero contention (represented by Nocstar (ideal) in Figure 3.14. Finally, Figure 3.14

also shows the achievable performance with an ideal scenario where the interconnect

has zero latency. We see that Nocstar achieves within 95% of the performance of this

idealized case.

To test the interconnect mechanism adopted in Nocstar, we injected random syn-

thetic traffic to a 64 core system. Figure 3.10(c) shows the average network latency

faced by messages. Ideally messages in Nocstar would experience 1 cycle in path

setup and another cycle to traverse the network. We see that even with an injection

rate of 0.1 (1 message every 10 cycles per core, which is high for TLB traffic), the

average latency of messages in the Nocstar interconnect remains within 3 cycles. Fur-

ther, Figure 3.10(c) also shows the percentage of messages which experience no delay

in acquiring a path.

Path setup options: We study two modes of link reservation: (a) Round trip acquire:

links are acquired for the total period of accessing a remote slice. In this mode, link
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Figure 3.15: (Left) Speedups with varying core counts versus private L2 TLBs for round-
trip acquire (1×two-way) and one-way acquire (2×one-way); and (right) speedups of
TLB invalidation policies.

selection has to be performed only once for sending a request and response. (b) One-way

acquire: Links are acquired only for sending a one-way message. Each message in the

system selects links before traversal. The graph on the left in Figure 3.15 shows that

acquiring links separately for each message delivers better performance than acquiring

links for round trips.

TLB invalidation: We investigated the effect of sending an invalidate request to

a TLB slice because of a shootdown or flush from any core. We considered various

ways in which an invalidate message can be sent across a the TLB interconnect. The

straightforward way is to send an invalidate from each core to the TLB slice. This policy

is simple but may lead to congestion in the interconnect if all the cores are trying to

invalidate from the same slice. The other way is to send the invalidate message to

a central location which can then manage invalidations to all the slices. This can be

further split up by having a manager for a set of n slices. The graph on the right in

Figure 3.15 shows the speedup of workloads with different ways of sending an invalidate

message compared to each core sending its own invalidate message.

Page table walk policies: We considered two policies for performing page table

walks:
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Figure 3.16: Page walks at requesting and remote core.

Page table walk at the remote core: The core which has the L2 slice for the virtual

address performs the page walk and then sends the new translation as a response to

the requesting core after inserting it in the L2 slice.

Page table walk at the request core: On an L2 TLB slice miss, a miss message is

sent to the requesting core. The requesting core then performs the page table walk and

sends an insert message to the remote slice.

Figure 3.16 shows speedups using policies. While performing the page table at the

remote node involves sending fewer messages on the interconnect, it pollutes the local

cache of the remote core (degrading performance). We see that performing the page

table walk at requesting core delivers slightly better results compared to page table

walk at remote core.

Sensitivity studies: We have quantified the Nocstar with other configurations (see

Table 3.3). The first row quantifies the average and min/max speedups for our work-

loads for a 32-core Haswell. We compare this to scenarios with prefetching (Pref.

column label), with hyperthreading (SMT column), and with varying page table walk

latency (PTW Lat. column).

We first compare these numbers to a scenario where TLB prefetching is enabled.

The original shared TLB paper studied the impact of prefetching translations ±1, 2,

and 3 virtual pages adjacent to virtual pages prompting a TLB miss [37]. We run these
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Pref. SMT PTW Lat. Min Avg Max
Monolithic 0.89 0.92 0.99

None 1 Variable Distributed 1.02 1.07 1.09
Nocstar 1.11 1.16 1.26
Monolithic 0.85 0.94 1.01

1 1 Variable Distributed 0.99 1.1 1.12
Nocstar 1.08 1.2 1.29
Monolithic 0.89 0.96 1.01

1, 2 1 Variable Distributed 1.01 1.13 1.15
Nocstar 1.1 1.25 1.32
Monolithic 0.87 0.89 0.99

1, 2, 3 1 Variable Distributed 0.99 1.08 1.11
Nocstar 1.12 1.18 1.28

Monolithic 0.92 0.94 1.01
None 2 Variable Distributed 1.04 1.1 1.12

Nocstar 1.14 1.21 1.31
Monolithic 0.93 0.95 1.03

None 4 Variable Distributed 1.01 1.13 1.15
Nocstar 1.16 1.27 1.33

Monolithic 0.84 0.88 0.93
None 1 Fixed-10 Distributed 0.94 0.95 0.99

Nocstar 1.01 1.04 1.08
Monolithic 0.89 0.92 0.99

None 1 Fixed-20 Distributed 1.02 1.07 1.09
Nocstar 1.08 1.14 1.24
Monolithic 0.93 0.97 1.03

None 1 Fixed-40 Distributed 1.05 1.09 1.13
Nocstar 1.11 1.18 1.27
Monolithic 1.05 1.08 1.12

None 1 Fixed-80 Distributed 1.08 1.13 1.17
Nocstar 1.18 1.26 1.33

Table 3.3: Speedups for a 32-core Haswell system. We study the impact of prefetching,
hyperthreading, and page table walk latencies on the speedups achieved by Nocstar
and other shared L2 TLB configurations versus private L2 TLBs. Speedup averages
across workloads, as well as minima/maxima are shown.
.

experiments with our monolithic, distributed, and Nocstar configurations in rows 2-

4. We find that Nocstar’s benefits are consistently enjoyed even in the presence of

prefetching. Like the original shared TLB paper, we find that prefetching translations

for up to ±2 virtual pages away is most effective, with more aggressive prefetching

polluting the TLB. However, in every one of these scenarios, the shared L2 TLB’s

bigger size implies that there is less pollution versus private L2 TLBs. Additionally,

Nocstar’s reduced access latency versus the monolithic and distributed approaches

means that accurate prefetching can yield better performance.
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Table 3.3 quantifies the impact of running multiple hyperthreads. The more the

number of hyperthreads run per core, the higher the TLB pressure. As expected,

this means that shared L2 TLBs offer hit rate benefits over private L2 TLBs; when

combined with Nocstar’s superior access latency, the performance exceeds distributed

and monolithic results.

Finally, Table 3.3 quantifies Nocstar’s performance as a function of the page table

walk latency. We classify page table walk latency as variable (corresponding to a

realistic simulation environment where the page table walk latency depends upon where

in the cache the desired translations reside) or fixed-N (where we fix the page table walk

latency to N cycles). As expected, when the page table walk latency is unrealistically

low (i.e., 10 cycles), the monolithic and distributed TLBs severely harm performance.

This is because these configurations suffer higher access latencies, while their higher

hit rates are not useful because the impact of a TLB miss is minor. Nevertheless, even

in this situation, Nocstar outpeforms private L2 TLBs. In more realistic scenarios

where the page table walk latency is 20-40 cycles (which is what we typically find them

to be on real systems [66, 37, 35, 33]), Nocstar’s performance notably exceeds other

options. And in scenarios where page table walks are very high (i.e., 80 cycles), these

benefits become pronounced, with Nocstar outperforming distributed L2 TLBs by

13% on average.

Multiprogrammed combinations of sequential workloads: Our target platform

is the 32-core Haswell system. Our workloads consist of combinations of four workloads,

leading to 330 combinations overall. Each workload executes 8 threads to utilize all

32 cores. Figure 3.17 sorts our results by overall IPC improvement. Nocstar is

particularly effective for multiprogramming because it offers the utilization benefits of

shared TLBs without penalizing applications with high access latency. So, it always

improves aggregate IPC compared to the other approaches; in contrast, monolithic

degrades performance for about half the workloads because of access latency issues

while distributed degrades 10% of the workloads.

The bottom graph in Figure 3.17 shows the speedup of the worst-performing ap-

plication. As shown, monolithic and distributed see many cases (almost half the
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Figure 3.17: (Left) Overall throughput on 32 cores with 330 combinations of 4 work-
loads; and (Right) Speedup of the worst-performing sequential application over private
L2 TLBs.

combinations) where at least one application suffers performance loss due to high ac-

cess latency. Sometimes, degradation is severe; e.g., 40%. In contrast, only in 7% of

the workloads does Nocstar degrade performance. Not only is this relatively rare,

the extent of the performance loss is relatively benign, with worst cases of 2-3% versus

private L2 TLBs. This problem is reminiscent of interference issues in LLCs and can

likely be alleviated with LLC QoS/fairness mechanisms [187, 65]. We leave these for

future work.

Pathological workloads: Our studies thus far suggest that most real-world workloads

do not tend to generate significant congestion. For this reason, to stress-test Nocstar,

we have devised two classes of microbenchmarks.

1 TLB storm microbenchmark: The first microbenchmark triggers frequent context

switches and page remappings. This forces ”storms” of L2 TLB invalidations/accesses

that congest the network. We take the workloads that we have profiled so far and

we concurrently execute a custom-microbenchmark. We modify the Linux scheduler

to context switch between our workloads and the microbenchmark; normally, Linux

permits context switching at 10ms granularity, but we study unrealistically aggressive

context switches from 0.5ms onwards for the purposes of stressing Nocstar. The

custom microbenchmark is then designed to allocate 4KB pages, promote them to 2MB

superpages, and then break then into 4KB pages again. The confluence of our modified

Linux scheduler and our microbenchmark is a massive number of TLB misses and

invalidations. Every context switch on our x86 Haswell systems forces all shared TLB

contents to be flushed, followed by a storm of L2 TLB lookups for data. Furthermore,
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Figure 3.18: Average speedups for workloads versus private L2 TLB configuration, for
varying core counts. Bars for alone represent results from when the workloads run
alone (i.e., matching already-presented data). Bars for w/ub represent data for when
the workloads were concurrently run with the TLB storm microbenchmark.

every time our microbenchmark promotes 4KB pages to a 2MB superpage, it invalidates

512 distinct L2 TLB entries.

Figure 3.18 quantifies the slowdown of our workload with this TLB activity. Results

are averaged across all workloads and we vary core counts. We focus on the case

which generates the maximum network congestion by context switching at 0.5ms; our

microbenchmark generates as many as 200-300 L2 TLB accesses per kilo-instruction,

which is more than the TLB stressmarks in prior work [169, 33].

Figure 3.18 shows that even the TLB pressure imposed by our microbenchmark

naturally degrades performance versus the scenario where the benchmark is standalone

(i.e., alone). As we can see, the w/ub results representing the microbenchmark suf-

fer from as much as 10-20% performance degradation. However, in ever single case,

Nocstar vastly outperforms the other approaches. For example, the monolithic

banked L2 TLBs degrade performance by as much as 20-30% versus private L2 TLBs

in the presence of this level of contention. On the other hand, Nocstar continues

to achieve 7-11% performance improvements on average. While this is certainly lower

than the 18%+ performance improvements achievable without congestion, these results

are promising. Furthermore, the improvements achieved by Nocstar improve when

we change our context switching granularity from an unreasonably aggressive 0.5ms to

1-10ms.
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2 TLB slice microbenchmark: We have also crafted a second microbenchmark to test

what happens when there is immense congestion on one TLB slice. In this microbench-

mark, we run N-1 threads on our N-core machine. All these threads are designed to

continuously access the L2 TLB slice assigned to the Nth core. Naturally, this approach

degrades performance most severely. However, we find that in every single case, Noc-

star continues to do better (by 3-5%) over private L2 TLBs. Furthermore, Nocstar

is, in the most conservative scenario, 7% better than any other shared L2 TLB approach

(i.e., either the monolithic banked, or distributed approaches). Consequently, Nocstar

continues to be a better alternative than any other shared L2 TLB configuration.

3.6 Conclusions

The higher hit rate delivered by an SLL TLB is overshadowed by the high latency

offered by the TLB structure and the network involved in traversing to it. Moreover,

a traditional distributed architecture does not deliver the potential performance gains

because of network latency. By co-designing distributed TLBs with a SMART inter-

connect, Nocstar multi-threaded and multi-programmed workload performance.
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Chapter 4

Scheduling Page Table Walks for Irregu-
lar GPU Applications

4.1 Introduction

GPUs have emerged as a first-class computing platform. The massive data parallelism

of GPUs had first been leveraged by highly-structured parallel tasks such as matrix

multiplications. However, GPUs have more recently found use across a broader range

of application such as graph analytics, deep learning, weather modeling, data analytics,

computer-aided-design, oil and gas exploration, medical imaging, and computational

finance [159]. Memory accesses from many of these emerging applications demonstrate a

larger degree of irregularity – accesses are less structured and are often data dependent.

Consequently, they show low spatial locality [55, 49, 151].

Irregular memory accesses can be particularly harmful to the GPU’s Single-Instruc-

tion-Multi-Threaded (SIMT) execution paradigm where typically 32 to 64 threads (also

called workitems) execute in a lockstep fashion (referred to as wavefronts or warps) [151,

210, 188, 180, 203, 211, 213]. When a wavefront issues a SIMD memory instruction

(e.g., load/store), the instruction cannot complete until data for all workitems in the

wavefront are available. This is not a problem for well-structured parallel programs with

regular memory access patterns where workitems in a wavefront typically access cache

lines from only one or a few unique pages. The GPU hardware exploits this to gain

efficiency by coalescing multiple accesses into a single access. For irregular applications,

however, memory accesses of workitems within a wavefront executing the same SIMD

memory instruction can access different cache lines from different pages. This leaves

little scope for coalescing and leads to memory access divergence – i.e., execution of
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a single SIMD instruction could require multiple cache accesses (when accesses fall

on distinct cache lines) [180, 203, 211, 213] and multiple virtual-to-physical address

translations (when accesses fall on distinct pages) [210, 172].

A recent study on real hardware demonstrated that such divergent memory accesses

can slow down an irregular GPU application by up to 3.7-4× due to address translation

overheads alone [210]. The study found that the negative impact of divergence could

be greater on address translation than on the caches. Compared to one memory access

on a cache miss, a miss in the TLB triggers a page table walk that could take up to four

sequential memory accesses in the prevalent x86-64 or ARM architectures. Further,

cache accesses cannot start until the corresponding address translation completes as

modern GPUs tend to employ physical caches.

In this work, we explore ways to reduce address translation overheads of irregular

GPU applications. While previous studies in this domain primarily focused on the

design of TLBs, page table walkers, and page walk caches [175, 24, 172], we show that

the order in which page table walk requests are serviced is also critical. We demonstrate

that better scheduling of page table walks can speed up applications by 30% over a

baseline first-come-first-serve (FCFS) approach. In contrast, naive random scheduling

can slow applications down by 26%, underscoring the need of a good schedule for page

table walks.

We observe that page walk scheduling is particularly important for a GPU’s SIMT

execution. An irregular application with divergent memory accesses can generate mul-

tiple uncoalesced address translation requests while executing a single SIMD memory

instruction. For a typical 32-64 wide wavefront, execution of a single SIMD memory

instruction by a wavefront can generate between 1 to 32 or 64 address translation re-

quests. Due to the lack of sufficient spatial locality in such irregular applications, these

requests often miss in TLBs, each generating a page table walk request. Furthermore,

servicing a page table walk requires anything between one to four sequential memory

accesses. Consequently, servicing address translation needs of a single SIMD memory

instruction can require between 0 to 256 memory accesses. In the presence of such a

wide variance in the amount of work (quantified by the number of memory accesses)
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required to complete address translation for an instruction, we propose a SIMT-aware

page walk scheduler that prioritizes walk requests from instructions that would require

less work. This aids forward progress by allowing wavefronts with less address transla-

tion traffic to complete faster.

Further, page walk requests generated by a single SIMD instruction often get inter-

leaved with requests from other concurrently executing instructions. Interleaving occurs

as multiple independent streams of requests percolate through a shared TLB hierarchy.

However, in a GPU’s SIMT execution model, it does not help a SIMD instruction to

make progress if only a subset of its page walk requests is serviced. Therefore, ser-

vicing page walk requests in a simple first-come-first-serve (FCFS) order can impede

the progress of wavefronts. Our proposed scheduler thus also batches requests from the

same SIMD instruction for them to be serviced temporally together. The SIMT-aware

scheduler speeds up a set of irregular GPU applications by 30%, on average, over FCFS.

To summarize, we make two key contributions:

• We demonstrate that the order of servicing page table walks significantly impacts

the address translation overhead experienced by irregular GPU applications.

• We then propose a SIMT-aware page table walk scheduler that speeds up appli-

cations by up to 41%.

4.2 Background and the Baseline

This work builds upon two aspects of a GPU’s execution: the GPU’s Single-Instruction-

Multiple-Thread (SIMT) execution hierarchy, and the GPU’s virtual-to-physical ad-

dress translation mechanism.

4.2.1 Execution Hierarchy in a GPU

GPUs are designed for massive data-parallel processing that concurrently operates on

hundreds to thousands of data elements. To keep this massive parallelism tractable, a

GPU’s hardware resources are organized in a hierarchy. The top of Figure 4.1 depicts

the architecture of a typical GPU.
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Figure 4.1: Baseline system architecture.

Compute Units (CUs) are the basic computational blocks of a GPU, and typically

there are 8 to 64 CUs in a GPU. Each CU includes multiple Single-Instruction-Multiple-

Data (SIMD) units, each of which has multiple lanes of execution (e.g., 16). A SIMD

unit executes a single instruction across all its lanes in parallel, but each lane operates

on a different data item. A GPU’s memory resources are also arranged in a hierarchy.

Each CU has a private L1 data cache and a scratchpad that are shared across the SIMD

units only within the CU. When several data elements accessed by a SIMD instruction

reside in the same cache line, a hardware coalescer combines these requests into single

cache access to gain efficiency. Finally, L1 caches are followed by an L2 cache that is

shared across all CUs in a GPU.

GPGPU programming languages, such as OpenCL [92] and CUDA [1], expose to the

programmer a hierarchy of execution groups that follows the hierarchy in the hardware

resources. A workitem is akin to a CPU thread and is the smallest execution entity that

runs on a single lane of a SIMD unit. A group of workitems, typically 32 to 64, forms
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a wavefront and is the smallest hardware-scheduled unit of work. All workitems in a

wavefront execute the same SIMD instruction in a lockstep fashion but can operate on

different data elements. An instruction completes execution only when all workitems

in that wavefront finish processing their respective data elements. The next level in the

hierarchy is the programmer-visible workgroup that typically comprises tens of wave-

fronts. Finally, work on a GPU is dispatched at the granularity of a kernel, comprised

of several workgroups.

4.2.2 Virtual Address Translation in GPUs

As GPUs outgrow their traditional “co-processor” model to become first-class compute

citizens, several key programmability features are making their way into mainstream

GPUs. One such key feature is shared virtual memory (SVM) across the CPU and the

GPU [13, 134]. For example, compliance with industry-promoted standards like the

Heterogeneous System Architecture (HSA) requires SVM [134].

The bottom part of Figure 4.1 depicts the key hardware components of a typical

SVM implementation in an HSA-enabled GPU. Conceptually, the key enabler for SVM

in such a design is the GPU’s ability to walk the same four-level x86-64 page table as the

CPU. A page table is an OS-maintained data structure that maps virtual addresses to

physical addresses at a page granularity (typically, 4KB). The IO Memory Management

Unit (IOMMU) is the key component that enables a GPU to walk x86-64 page tables.

While we focus this study on the SVM implementation mentioned above, our proposal

is likely to be more broadly applicable to any GPU designs with virtual memory, not

only to those supporting SVM. Next, we detail how an HSA-enabled GPU performs

address translation.

GPU TLB Hierarchy: Just like in a CPU, the GPU’s TLBs cache recently-

used address translation entries to avoid accessing in-memory page tables on every

memory access. Each CU has a private L1 TLB shared across the SIMD units. When

multiple data elements accessed by a SIMD instruction reside on the same page, only a

single virtual-to-physical address translation is needed. This is exploited by a hardware

coalescer to lookup the TLB only once for such same page accesses. The GPU’s L1
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TLBs are typically backed by a larger L2 TLB that is shared across all the CUs in the

GPU (bottom portion of Figure 4.1) [175, 172]. A translation request that misses in

the GPU’s TLB hierarchy is sent to the IOMMU [210]

IOMMU and Page Table Walkers: The IOMMU is the hardware component

in the CPU complex that services address translation requests for accesses to the main

memory (DRAM) by any device or accelerator, including that of the GPU [6, 7, 210].

The IOMMU itself has two levels of TLBs, but they are relatively small and designed

to primarily serve devices that do not have their own TLBs (e.g., NIC). The IOMMU’s

page table walkers, however, play an essential role in servicing the GPU’s address

translation requests. Upon a TLB miss, a page table walker walks an in-memory x86-

64 page table to locate the desired virtual-to-physical address mapping.

An IOMMU typically supports multiple independent page table walkers (e.g., 8-16)

to concurrently service multiple page table walk requests (TLB misses) [210]. Multi-

ple walkers are important for good performance because GPUs demand high memory

bandwidth and consequently, often send many walk requests to the IOMMU.

The translation requests that miss in the TLB hierarchy queue up in the IOMMU’s

page walk request buffer (in short, IOMMU buffer). When a page table walker becomes

free (e.g., after it finishes servicing a page walk), it could start servicing a new request

from the IOMMU buffer in the order it arrived. Later in this work, we will demonstrate

that such an FCFS policy for selecting page table walk requests is not well-aligned with

a GPU’s SIMT execution model.

Another important optimization that the IOMMU borrows from the CPU’s MMU

design is the page table walk caches [210, 33, 27]. Nominally, a page table walk requires

four memory accesses to walk an x86-64 page table, structured as a four-level radix tree.

To reduce this, the IOMMU employs small caches for the first three levels of the page

tables. These specialized caches are collectively called page walk caches (PWCs). Hits

in PWCs can reduce the number of memory accesses needed for a walk to anything from

one to three, depending upon which intermediate level produces the hit. For example,

a hit for the entire top three levels will need one memory request to complete the walk

by accessing only the leaf level. In contrast, a hit for only the root level requires three
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memory accesses. A complete miss in PWCs however, requires four accesses.

Putting it together: Life of a GPU Address Translation Request: 1 An

address translation request is generated when executing a SIMD memory instruction

(load/store). 2 A coalescer merges multiple requests to the same page (e.g., 4KB)

generated by the same SIMD instruction. 3 The coalesced translation request looks

up the GPU’s L1 TLB and then the GPU’s shared L2 (if L1 misses). 4 On a miss in

the GPU’s L2 TLB, the request is sent to the IOMMU. 5 Upon arrival at the IOMMU,

the request looks up the IOMMU’s TLBs. 6 On a miss, the request queues up as a

page walk request in the IOMMU buffer. 7 When an IOMMU’s page table walker

becomes free, it typically selects a pending request from the IOMMU buffer in FCFS

order. 8 The page table walker first performs a PWC lookup and then completes the

walk of the page table, generating one to four memory accesses. 9 On finishing a walk,

the desired translation is returned to the TLBs and ultimately to the SIMD unit that

requested it.

4.3 The Need for Smarter Scheduling of Page Table Walks

Irregular GPU applications often make data-dependent memory accesses with little

spatial locality [55, 49]. This causes memory access divergence in the GPU’s SIMT

execution model where different workitems within a wavefront access data on distinct

pages. The hardware coalescer is ineffective in such cases as several different address

translation requests are generated by the execution of a single SIMD memory instruc-

tion. These requests then look up TLBs but often miss there owing to less locality

in irregular applications. Eventually, many of these requests queue up in the IOMMU

buffer to be serviced by a page table walker.

A recent study on commercial GPU hardware demonstrated that such divergent

access can slowdown irregular GPU applications by up to 3.7-4× due to address trans-

lation overheads [210]. In this work, we aim to reduce address translation overheads

for such irregular GPU applications.

We discover that the order in which page table walks are serviced can significantly
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Figure 4.2: Performance impact of page walk scheduling.

impact the address translation overheads experienced by an irregular GPU application.

While better page table walk scheduling (ordering) can potentially improve perfor-

mance, poor scheduling (e.g., random scheduling) can be similarly detrimental. Fig-

ure 4.2 shows the extent by which scheduling of page table walks can impact per-

formance on a set of representative irregular applications (methodology is detailed in

Section 4.5.1). The figure shows speedups of each application while employing naive

random scheduler1, the baseline FCFS, and the proposed SIMT-aware page walk sched-

uler. Each bar in the cluster shows the speedup of an application with a given sched-

uler, normalized to that with random scheduler. While we will detail our SIMT-aware

scheduling over the next two sections, the key message conveyed by the figure is that

the performance of an application can differ by more than 2.1× due to the difference

in the schedule of page table walks. This underscores the importance of exploring the

scheduling of a GPU’s page walk requests.

A keen reader will notice the parallel between the scheduling of page table walks and

the scheduling of memory (DRAM) accesses at the memory controller [177, 128, 23, 138].

The existence of a rich body of research on memory controller scheduling suggests that

there exist opportunities for follow-on work to explore different flavors of page walk

scheduling for both performance and QoS.

1As its name suggests, the random policy randomly picks a pending page walk request to service
from the IOMMU buffer.



81

In the rest of this section, we discuss why page table walk scheduling affects perfor-

mance and then provide empirical analysis to motivate better scheduling of GPU page

walks.

4.3.1 Shortest-job-first Scheduling of Page Table Walks

We observe that instructions issued by a wavefront require different amounts of work

to service their address translation needs. There are two primary reasons for this.

First, the number of page table walks generated due to the execution of a single SIMD

memory instruction can vary widely based on how many distinct pages the instruction

accesses and the TLB hits/misses it generates. In the best case, all workitems in a

wavefront access data on the same page and the perfectly coalesced translation request

hits in the TLB. No page walks are necessary in that case. At the other extreme, a

completely divergent SIMD instruction can generate page table walk requests equal to

the number of workitems in the wavefront (here, 64). Second, each page walk may itself

need anywhere between one to four memory requests to complete. This happens due

to hits/misses in page walk caches (PWCs) that store recently-used upper-level entries

of four-level page tables (detailed in Section 4.2).

Figure 4.3 shows the distribution of the number of memory accesses required to

service address translation needs of SIMD instructions for a few representative appli-

cations. The x-axis shows buckets for the number of memory accesses needed by a

SIMD memory instruction to service its address translation needs. The y-axis shows

the fraction of instructions issued by the application that fall into the corresponding

x-axis buckets. We excluded instructions that did not request any page table walks.

We find that often between 27-61% of the instructions needed one to sixteen memory

accesses to complete all the page table walks it generated. On the other hand, more

than 33-70% of the instructions required forty-nine or more memory accesses. One

of the applications (GEV) had close to 31% of instructions requiring sixty-five or more

memory accesses. In summary, we observe that the amount of work (quantified by the

number of memory accesses) required to service the address translation needs of an

instruction varies significantly.
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dress translation needs of SIMD instructions.

It is well studied in scheduling policies across various fields that in the presence

of “jobs” of different lengths, if a longer job can delay a shorter job, then it impedes

overall progress. This leads to the widely employed “shortest-job-first” (SJF) policy

that prioritizes shorter jobs over longer ones [10]. By analogy, we posit that servicing

all page table walks generated due to the execution of a single instruction should be

treated as a single “job” because the instruction cannot complete until all those walks

are serviced. Figure 4.3 demonstrates that the “length” of such jobs, as quantified by

the number of memory accesses, vary significantly.

Key idea 1 : Following the wisdom of time-tested SJF policies, we propose to

prioritize the servicing of page table walk requests from instructions requiring fewer

memory requests to complete their address translation needs over those requiring larger

number of memory accesses.

4.3.2 Batch-scheduling of Page Table Walk Requests

Owing to the GPU’s SIMT execution model, all page table walks generated by a single

SIMD instruction must complete before the instruction can finish execution. The per-

formance is thus determined by when the last of those walk requests is serviced. Even

servicing all but one walk request does not aid progress.
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Figure 4.4(a) illustrates how the progress of two SIMD instructions, load A and

load B, issued by two wavefronts are impaired if their page table walk requests are

interleaved. Both load A and load B generate multiple walk requests and both experi-

ence stalls due to the latency to service walk requests generated by the other. Evidently,

if interleaved page walk requests are serviced in the FCFS order, then it delays com-

pletion of both load A and load B since both need all their walk requests to finish

before the instruction can progress. This inefficiency exacerbates if walk requests from

a larger number of distinct instructions interleave since the progress of every instruction

involved in the interleaving suffer.

Unfortunately, such interleaving among page walk requests from different SIMD
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instructions happens fairly regularly. Figure 4.5 quantifies how often such interleav-

ing happens for representative irregular GPU workloads (methodology detailed in Sec-

tion 4.5.1). The y-axis shows the fraction of executed memory instructions whose page

walk requests interleave with requests from at least another instruction. We exclude

any instructions that do not generate at least two page table walks as interleaving

is impossible for them. We observe that 45-77% of such instructions have their walk

requests interleaved.

We traced the source of this interleaving to the GPU’s shared L2 TLB. The shared

L2 TLB receives multiple independent streams of address translation requests generated

by L1 TLB misses from concurrently executing wavefronts across different CUs. These

requests can then miss in the L2 TLB and travel to the IOMMU. The IOMMU thus

receives a multiplexed stream of walk requests from different wavefronts.

A reasonable question to ask is how much does this interleaving potentially impact

the performance? Figure 4.6 shows the potential performance cost of interleaving. The

figure shows the average latencies experienced by the first- and the last-completed page

walk requests from the same SIMD memory instruction. The latencies are normalized

to the average latency experienced by the first completed walk request. We exclude

instructions that do not generate at least two page walk requests as they cannot in-

terleave. Larger the latency gap, the more time an instruction potentially stalls for all

of its page walk requests to complete. We observe that often the latency of the last
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completed walk is more than 2-3× that of the first completed page walk. This suggests

that the interleaving of page walks can significantly impede forward progress.

Ideally, page walk requests should be scheduled to minimize such latency gaps. A

smarter scheduler thus should strive to achieve a schedule as shown in Figure 4.4(b)

by batching page walk requests from the same instruction. We see from the figure

that load A can potentially complete much earlier without further delaying load B in

Figure 4.4(a).

Key idea 2 : A smart scheduler should batch page walk requests from the same

instruction to minimize interleaving due to walk requests from other instructions.

4.4 Design and Implementation

Driven by the above analyses, we propose a SIMT-aware page table walk scheduler in

the IOMMU. Figure 4.7 shows some of the key components and actions in the IOMMU

to realize such a scheduler. When an IOMMU’s page table walker becomes available to

accept a new request, the scheduler selects which pending page walk request is serviced

next. While we introduce a specific scheduler design, there could be several other
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potential designs that build upon our observations about the importance of page table

walk scheduling.

Our proposed SIMT-aware scheduler follows the two key ideas mentioned in the

previous section. At a high level, the scheduler first attempts to schedule a pending

page walk request (in the IOMMU buffer) issued by the same SIMD instruction as the

most recently scheduled page walk. If none exists, it schedules a request issued by an

instruction that is expected to require the least number of memory requests (i.e., work)

to service all its walk requests. For this purpose, we assign a score to each page walk

request. This score estimates the number of memory requests that would be required to

complete all page walk requests of the issuing instructions. The score is thus the same

for all pending page walk requests generated by a given SIMD instruction. A lower

value indicates fewer memory requests to service an instruction’s page walk requests.

We make a few simple hardware modifications to realize the above design concept.

First, each page walk request from the GPU is attached with an instruction ID (20

bits in our implementation). Correspondingly, the buffer holding the pending page

walk requests at the IOMMU is extended with this ID. As shown in Figure 4.7, we

then modify how the IOMMU behaves when 1 a new page walk request arrives at

the IOMMU, and when 2 a hardware page walker becomes available to accept a new

request. Below we detail actions taken during these two events.

1 Arrival of a new page walk request: If there is an idle hardware page walker

when a new request arrives then it starts walking immediately. Otherwise, we assign

an integer score (between 1 to 256, where 256 corresponds to the maximum possible

number of memory accesses required if all 64 workitems need four memory accesses

each to perform their respective translation) to the newly-arrived request. The score

estimates the number of memory accesses needed to complete all page walk requests of

the corresponding instruction. This is done in two steps. First, the new request looks

up the PWCs to estimate the number of memory requests that this request alone may

need to get serviced (action 1-a in Figure 4.7). This number can be between one (on

a hit in all upper-levels in the PWC and thus, requiring only single memory access to

the leaf-level of the page table) to four (on a complete miss in the PWC requiring the
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full walk of the four-level page table). Since the PWC contents could change by the

time the scheduler selects the request, this number is an estimate of the actual number

of memory accesses required to service the walk.

Second, we then scan all the pending page walk requests in the IOMMU buffer

to find any matching page walk requests issued by the same instruction as the newly

arrived one (1-b). All requests from the same SIMD instruction have the same score.

A new score is computed by adding the PWC-based score of the newly-arrived request

to the previous score of an existing request in the IOMMU buffer that is issued by the

same instruction. This updated score now represents the total estimated number of

memory accesses required to service all the translation requests from the issuing SIMD

instruction. All entries in the IOMMU that match the SIMD instruction of the newly-

arrived request (including the newly-arrived request) are then updated with this new

score.

2 A hardware page walker becomes ready: When a page walk finishes, the

corresponding page table walker becomes available to start servicing a new request.

The scheduler decides which of the pending page walk requests (if any) it should service

next. First, the scheduler scans the buffer of pending page walks to find any request

that matches the instruction ID of the most recently issued page walk request (2-a). If

such a request exists, it is chosen to ensure temporal batching of page walks issued by

the same SIMD instruction. If no such matching request is found, then the scheduler

selects a request with the lowest score. This follows the second key idea – schedule

requests from the instruction that is expected to require the fewest memory accesses.

Both actions are performed during the scanning of pending page walk requests (1-a).

Finally, the selected page walk request is serviced as usual by first looking up the PWC

for partial hits and then completing the walk of the page table (2-b).

Putting it all together: To summarize, an address translation from the GPU

flows as follows. The coalescing and lookups in the GPU TLBs happen as before (refer

to Section 4.2.2 for steps). The only modification for our scheduler is that each request

now carries the ID of the instruction that generated it. As in the baseline, a translation

request that misses in the GPU TLBs is sent to the IOMMU where it performs a lookup
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in the IOMMU’s TLBs. If the request misses in all the TLBs, then it is inserted into

the IOMMU buffer. If any of the page table walkers (8 in the baseline) are available,

then one of them starts the page walk process. Otherwise, our scheduler calculates a

score for the newly-arrived request and re-scores any of the already-pending requests

from the same instruction as detailed above (actions 1-a and 1-b). The request then

waits in the buffer until it is selected by the scheduler.

When a page table walker finishes a walk, the scheduler selects which request it

should service next. The scheduler scans pending requests in the IOMMU buffer (action

2-a) to find if there are any requests issued by the same instruction as the last-scheduled

request. If so, the oldest among such requests is chosen. If not, the scheduler selects

the request with the lowest score (oldest first in the case of a tie). Once a request is

scheduled, the page table walker proceeds walking as usual – it looks up the PWC for

partial hits before making memory accesses to the page table (2-b).

Design Subtleties: We now discuss a few intricacies of this design. First, note

that the scanning of the pending page walk requests upon arrival of a new request is not

in the critical path. The newly arrived request anyway queues up in the IOMMU buffer

for the scheduler to select it. If a free page table walker is immediately available, the

scheduler plays no role and no scanning is involved. However, it adds an extra latency

in the critical path of servicing a new page walk request when the scheduler scans the

pending request (2-a). Every such request in the IOMMU buffer has already suffered a

long latency miss through the entire TLB hierarchy, and a walk itself requires hundreds

of cycles. Therefore, the latency of scanning pending requests adds little additional

delay.

As with any scheduler, the above design is susceptible to starvation. We implement

an aging scheme whereby we prioritize pending walk requests that have been passed

by a large number of younger requests (in our experiments, we found that setting this

threshold to two million requests worked well to avoid any potential starvation).

As briefly mentioned earlier, another subtlety is that the PWC contents may change

between the time a request arrives at the IOMMU and the time the scheduler selects

that request. This could lead to inaccuracies in estimating the number of memory
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accesses needed to service a page walk since the score is calculated when the request

arrives. Unfortunately, it is infeasible for the scheduler to re-calculate scores of every

pending request at the time of request selection. This would have added significant

latency in the critical path. Instead, we reduce this potential inaccuracy by adding

2-bit saturating counters to the entries of the PWC. Whenever a lookup for a newly-

arrived request hits in the page walk cache (1-a in Figure 4.7), the counters of the

corresponding entries are incremented. The counters are decremented when a selected

page walk request hits in the PWC (2-b). Thus, a value greater than zero indicates that

there exists at least one pending page walk request in the IOMMU buffer that would

later hit in the page walk cache when that request is scheduled. The replacement policy

in the page walk cache is then modified to avoid replacing an entry with a counter value

greater than zero. If all entries in a set have value greater than zero, then a conventional

pseudo-LRU policy selects a victim as usual.

4.5 Evaluation

We now describe our evaluation methodology and then analyze the results in detail.

4.5.1 Methodology

We used the execution-driven gem5 simulator that models a heterogeneous system

with a CPU and an integrated GPU [4]. We heavily extended the gem5 simulator

to incorporate a detailed address translation model for a GPU including coalescers, the

GPU’s TLB hierarchy, and the IOMMU. Inside the newly-added IOMMU module, we

model a two-level TLB hierarchy, multiple independent page table walkers, and page

walk caches to closely mirror the real hardware. We implemented different scheduling

policies for page table walks, including our novel SIMT-aware page walk scheduler inside

the IOMMU module.

The simulator runs unmodified applications written in OpenCL [92] or in HCC [53].

Table 4.1 lists the relevant parameters for the GPU, the memory system, and the address

translation mechanism of the baseline system. Section 4.5.2 also presents sensitivity
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Table 4.1: The baseline system configuration.
GPU 2GHz, 8 CUs, 4 SIMD per CU

16 SIMD width, 64 threads per wavefront
L1 Data Cache 32KB, 16-way, 64B block
L2 Data Cache 4MB, 16-way, 64B block
L1 TLB 32 entries, Fully-associative
L2 TLB 512 entries, 16-way set associative

256 buffer entries, 8 page table walkers
IOMMU 32/256 entries for IOMMU L1/L2 TLB,

FCFS scheduling of page walks
DRAM DDR3-1600 (800MHz), 2 channel

16 banks per rank, 2 ranks per channel

Table 4.2: GPU benchmarks for our study.
Benchmark
(Abbrev.)

Description Memory
Footprint

Ir
re

gu
la

r
ap

p
li

ca
ti

on
s

XSbench
(XSB)

Monte Carlo neutronics applica-
tion

212.25MB

MVT (MVT) Matrix vector product and
transpose

128.14MB

ATAX (ATX) Matrix transpose and vector
multiplication

64.06MB

NW (NW) Optimization algorithm for
DNA sequence alignments

531.82MB

BICG (BCG) Sub kernel of BiCGStab linear
solver

128.11MB

GESUMMV
(GEV)

Scalar, vector and matrix multi-
plication

128.06MB

R
eg

u
la

r
a
p

p
li

ca
ti

on

SSSP (SSP) Shortest path search algorithm 104.32MB
MIS (MIS) Maximal subset search algo-

rithm
72.38MB

Color (CLR) Graph coloring algorithm 26.68MB
Back Prop.
(BCK)

Machine learning algorithm 108.03MB

K-Means
(KMN)

Clustering algorithm 4.33MB

Hotspot
(HOT)

Processor thermal simulation al-
gorithm

12.02MB

studies varying key parameters.

Table 4.2 lists the applications used in our study with descriptions of each workload

and their respective memory footprints. We draw applications from various bench-

mark suites including Polybench [174] (MVT, ATAX, BICG, and GESUMMV), Rodinia [58]
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Figure 4.8: Speedup with SIMT-aware page walk scheduler.

(NW, Back propagation, K-Means, and Hotspot), and Pannotia [57] (SSSP, MIS,

and Color). In addition, we used a proxy-application released by the US Department

of Energy (XSBench [205]).

In this work, we focus on emerging GPU applications with irregular memory access

patterns. These applications demonstrate memory access divergence [55, 49] that can

bottleneck a GPU’s address translation mechanism [210]. However, not every applica-

tion we studied demonstrates irregularity nor suffers from significant address translation

overheads. We find that six workloads (XSB, MVT, ATX, NW, BCG, and GEV) demon-

strate irregular memory access behavior while the remaining workloads (SSP, MIS,

CLR, BCK, KMN, and HOT) have fairly regular memory accesses. Applications with reg-

ular memory accesses show little translation overhead to start with and thus, offer little

scope for improvement. Our evaluation thus focuses on applications in the first category,

but we include results for the regular applications to demonstrate that our proposed

techniques do not harm workloads that are insensitive to translation overheads.

4.5.2 Results and Analysis

We evaluate the impact of page table walk scheduling and our SIMT-aware scheduler

by asking the following questions: 1 How much does the SIMT-aware page table

walk scheduler speed up applications over the baseline FCFS scheduler? 2 What are

the sources of speedups (if any)? 3 How sensitive are the results to configuration

parameters like the TLB size and the number of page table walkers?
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Figure 4.9: GPU stall cycles in execution stage.

Figure 4.8 shows the speedups of GPU applications with our SIMT-aware page

walk scheduler over FCFS. The left half of the figure (dark bars) shows the speedups

for irregular applications while the right half (thatched bars) shows the speedups for

applications with regular memory accesses. We observe that our scheduler speeds up

irregular GPU applications by up to 41%, and by 30% on average (geometric mean).

On the other hand, there is little change in the performance of regular applications.

This is expected; regular applications experience little address translation overhead,

and thus page table walk scheduling has almost no influence on their performance. The

data, however, assure that the SIMT-aware scheduling does not hurt regular workloads.

Previously in Figure 4.2 in Section 4.3, we also demonstrated how naive random

scheduling can significantly hurt performance. Together, these observations show that

1 different scheduling of page walks can have severe performance implications, and

2 the SIMT-aware scheduler can significantly speed up irregular GPU applications

without hurting others.

Analyzing Sources of Speedup

It is important to understand the reasons behind the observed speedups. Toward this,

we first present how schedulers impact GPU stall cycles, which are the cycles during

which a CU cannot execute any instructions because none are ready. Figure 4.9 shows

the normalized stall cycles for each application with our SIMT-aware page table walk

scheduler. The height of each bar is normalized to the stall cycles with the FCFS
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Figure 4.10: Latency gap between the first and the last-completed page walk request
per instruction.

scheduler. A lower number indicates better forward progress since CUs are stalled

for less time on average. As before, the left half shows the results for irregular ap-

plications and the right half shows those for regular applications. We observe that

the SIMT-aware scheduler reduces the stall cycles by 23% on average (up to 29%) for

irregular applications. This shows how the scheduler enables instructions, and conse-

quently, corresponding wavefronts, to make better forward progress. This ultimately

leads to faster execution. As expected, the stall cycles for regular applications remain

mostly unchanged. Because these applications neither alter performance nor provide

any new insights, the remaining evaluations in this Chapter focus entirely on irregular

applications.

In Figure 4.6 (Section 4.3), we showed that there can be a significant gap between

the latency of the first- and the last-completed page walk for a given SIMD instruction.

A larger gap indicates that instructions are waiting for a large number of translation

requests to be completed, or a few requests to be completed but that are delayed due

to the servicing requests from other instructions, or a combination of both effects. Our

SIMT-aware scheduler batches the servicing of page table walk requests from the same

instruction to reduce this gap. Figure 4.10 shows the degree of effectiveness of our

scheduler in reducing the gap. Each bar represents the latency gap between the first-

and the last-completed page walk requests from an instruction with our scheduler. The

height of each bar is normalized to the latency gap with the baseline FCFS scheduler.

As before, we exclude instructions that generate less than two page table walks as they
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Figure 4.11: Number of page walk requests with SIMT-ware scheduler normalized over
FCFS.

cannot interleave. We observe that the SIMT-aware scheduler reduces the latency gap

by 37% over FCFS, on average. This shows the efficacy of batching page walks.

Another interesting performance impact of our scheduler is that it also reduced the

total number of page table walk requests. Figure 4.11 shows the number of page walk

requests (i.e., number of TLB misses) with our SIMT-aware scheduler, normalized to

the baseline FCFS scheduler.

We observed 21% reduction (up to 30%) in the number of page table walk requests,

on average. We traced the reason for this improvement to the better exploitation of

intra-wavefront locality in TLBs. Our scheduler favors SIMD instructions with lower

address translation needs, which in turn aids forward progress. At the same time, our

scheduler also tends to delay page walk requests from instructions that generate a large

amount of address translation traffic. These high-overhead instructions are anyway

likely to take a long time to complete. While the translation-heavy instructions are

stalled, they are kept away from polluting (thrashing) the GPU’s TLBs. Consequently,

the low-overhead instructions experience higher TLB hit rates as the useful TLB entries

are not evicted by the high-overhead instructions. This results in a reduction in the

number of TLB misses and thus, reduce the number of page walk requests.

We further validated the above conjecture by counting the number of distinct wave-

fronts that access the GPU’s L2 TLB over fixed-sized epochs (we used an epoch length

of 1024 GPU L2 TLB accesses). Figure 4.12 presents this metric (normalized to FCFS),

averaged over all epochs for the SIMT-aware scheduler. We observed a 42% reduction
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Figure 4.12: Number of active wavefronts accessing the GPU’s L2 TLB with SIMT-
aware scheduler (normalized over FCFS).
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(a) 1024 L2 TLB and 8 walkers.
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(b) 512 L2 TLB and 16 walkers.
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(c) 1024 L2 TLB and 16 walkers.

Figure 4.13: Speedups with varying GPU L2 TLB size and page table walker counts.

in the number of distinct wavefronts accessing the GPU’s L2 TLB in an epoch. This

shows the role of page walk scheduling in lowering the contention in the GPU’s L2 TLB.

Consequently, the number of page table walks decreases due to less potential thrashing

in the TLB. This behavior has similarities to phenomena observed by others in the

context of the GPU’s caches [139].

Sensitivity Analysis

We measured sensitivity of the scheduler to the GPU’s L2 TLB size, the number of

concurrent page table walkers, and the size of IOMMU buffer holding the pending page

walk requests.

Figure 4.13 shows the speedup achieved by our SIMT-aware scheduler with varying

amounts of critical address translation resources: L2 TLB capacity and the number of

page table walkers. Figure 4.13(a) shows the speedup with 1024 entries in L2 TLB and

eight page table walkers. The average speedup achieved by the SIMT-aware scheduler

over the FCFS scheduler is significant (on average, 25%) even with larger TLB. It is,
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(a) 128 IOMMU buffer entries.
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(b) 512 IOMMU buffer entries.

Figure 4.14: Speedups with varying IOMMU buffer size.

however, slightly less than 30% speedup achieved with 512-entry L2 TLB. The larger

TLB reduces the number of page walk requests and thus, the scope for improving

performance by scheduling page walks diminishes.

On the other hand, Figure 4.13(b) shows the speedups with 16 page table walkers.

Increasing the number of page table walkers reduces the number of pending page table

walks as the effective address translation bandwidth increases. This also reduces head-

room for the performance improvement achievable through better page walk scheduling.

We observe that SIMT-aware page walk still speeds up applications by about 8.4% over

the FCFS policy. Finally, Figure 4.13(c) shows the combined impact of both the big-

ger TLB size and the increased page table walker count. In this configuration, both

the increased TLB resources and the increased number of page table walkers further

moderate scope for the improvement with smarter scheduling of walks. SIMT-aware

scheduling speeds up applications by 5.3% in this configuration.

Overall, our SIMT-aware scheduler consistently performs better than the baseline

FCFS scheduler across different configurations and different workloads, thereby demon-

strating the robustness of our technique, although the amount of benefit depends on

the severity of address translation bottleneck.

We then investigate the effect of IOMMU buffer size on our scheduler. The IOMMU

buffer size determines the size of the lookahead for the scheduler, i.e., the maximum

number of page walk requests from which it can select a request. Larger the buffer

size, the larger is the lookahead potential. Figures 4.14(a) and 4.14(b) show speedups

with SIMT-aware scheduler over the FCFS scheduler with 128-entry and 512-entry
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IOMMU buffers, respectively. All other parameters remain the same as in the baseline

configuration. A smaller IOMMU buffer size reduces the opportunity for a scheduler to

make smart reordering decisions, and thus, the speedups due to SIMT-aware scheduling

are reduced to 13% (Figure 4.14(a)) with a 128-entry buffer. On the other hand, if

the size of the buffer is increased to 512 entries, the average speedup jumps to 50%

(Figure 4.14(b)). In short, the magnitude of the performance benefit from SIMT-aware

scheduling varies across configurations but remains substantial across all cases.

4.6 Discussion

Why not large pages? Large pages map larger ranges of contiguous virtual ad-

dresses (e.g., 2MB) to contiguous physical addresses. They can reduce the number

of TLB misses by mapping more of memory with the same number of TLB entries.

However, large pages are far from a panacea as decades of deployment and studies in

the CPU world have demonstrated [29, 84, 123]. As memory footprints of applications

continue to grow, today’s large page effectively becomes tomorrow’s small page. Thus,

techniques that help improve performance with small (base) pages remain useful for

future workloads with larger memory footprints, even with larger page sizes. Even

workloads with memory footprints of a few hundred MBs (Table 4.2) can benefit signif-

icantly from our SIMT-aware page walk scheduler, and workloads with more realistic

footprints will continue to benefit from more efficient page walk scheduling, even with

large pages. Unfortunately, exorbitant simulation time prevents us from evaluating

such large memory footprint.

More importantly, irregular GPU applications tend to exhibit low spatial local-

ity [55, 49] where large pages tend to have limited benefits. These applications see

less benefit from large pages because the approach fundamentally relies on locality to

enhance the reach of TLBs [29]. Previous works further demonstrated that large pages

can even hurt performance in some cases due to the relatively lower number of entries

in large page TLBs [66, 29]. Recent works on GPUs have also demonstrated that large

pages can significantly increase the overhead of demand paging for GPUs [216, 24].
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Interactions with Other Schedulers: In a GPU, wavefront (warp) schedulers

play an important role in leveraging parallelism and impact cache behavior [179, 180].

Previous work has also shown the importance of TLB-aware wavefront scheduling [172].

Apart from the wavefront scheduler, memory controllers sport sophisticated scheduling

algorithms to improve performance and fairness [55, 156]. A reasonable question to ask

is how these schedulers interact with the page walk scheduler.

Page walk schedulers play an important role in reducing address translation over-

heads, which none of these other schedulers aim to do. Thus, even in the presence

of sophisticated wavefront and memory controller schedulers, we expect that improve-

ments to page walk scheduling will still be useful. The page walk scheduler is unlikely

to have significant interactions with the memory schedulers as the maximum amount

of memory traffic from the page walk schedulers would still only consume a relatively

small fraction of a GPU’s total memory bandwidth. That said, there still could be

opportunities for better coordination among the different schedulers, but we leave such

explorations for future work.

4.7 Related Work

Three research domains are related to this work: TLB management, scheduling in

memory controllers, and work scheduling in GPUs.

4.7.1 TLB Management

The emergence of shared virtual memory (SVM) between the CPU and the GPU as a

key programmability feature in a heterogeneous system has made an efficient virtual-to-

physical address translation for GPUs a necessity. Lowe-Power et al. [175] and Pichai et

al. [172] were among the first to explore designs GPU MMU. Lowe-Power et al. demon-

strated that coalescer, shared L2 TLB and multiple independent page walkers are es-

sential components of an efficient GPU MMU design. Their design is similar to our

baseline configuration. On the other hand, Pichai et al. showed the importance of

making wavefront (warp) scheduler to be TLB-aware.
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More recently, Vesely et al. demonstrated on real hardware, that a GPU’s translation

latencies can be much longer than that of a CPU’s and GPU applications with memory

access divergence may bottleneck due to address translation overheads [210]. Cong

et al. proposed TLB hierarchy similar to our baseline but additionally proposed to

use a CPU’s page table walkers for GPUs [95]. However, accessing CPU page table

walkers from a GPU could be infeasible in a real hardware due to longer latencies. Lee

et al. proposed a software managed virtual memory to provide an illusion of a large

memory by partitioning GPU programs to fit into the physical memory space [137].

Ausavarungnirun et al. showed that address translation overhead could be even larger

in the presence of multiple concurrent applications on a GPU [24]. They selectively

bypassed TLBs to avoid thrashing and prioritizing address translation over data access

to reduce overheads. Yoon et al. demonstrated the significance of address translation

overheads in the performance of GPU applications and proposed to employ virtual

caches for GPUs to defer address translation only after a cache miss [215].

Different from these works, we demonstrate the importance of (re-)ordering page

table walk requests and designed a SIMT-aware page table walk scheduler. Most of these

works are either already part of our baseline (e.g., [175]) and/or are largely orthogonal

to ours (e.g., [24]).

Address translation overheads are well studied in CPUs. To exploit page localities

among threads, Bhattacharjee et al. proposed inter-core cooperative TLB prefetch-

ers [39]. Pham et al. proposed to exploit naturally occurring contiguity to extend

effective reach of TLB [169]. Bhattacharjee later proposed shared PWCs and efficient

page table designs to increase PWCs hits [33]. Cox et al. have proposed MIX TLBs that

support different page sizes in a single structure [66]. Barr et al. proposed SpecTLB

that speculatively predicts address translations to avoid the TLB miss latency. Several

others proposed to leverage segments to selectively bypass TLB and the cost of TLB

misses [29, 84, 123]. While some of these techniques can be extended to GPUs, page

table walk scheduling is orthogonal to them. Basu et al. and Karakostas et al. also

proposed ways to reduce energy dissipation in a CPU’s TLB hierarchy [30, 124].
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4.7.2 Scheduling in Memory Controllers

Memory bandwidth has become a potential performance limiter with the emergence

of large multi-cores and GPUs [178]. Rixner et al. introduced early memory schedul-

ing policies to exploit memory parallelism for better performance [177]. Chatterjee et

al. proposed staged reads that parallelize read and write requests through two staged

read operations and scheduling of writes to take advantage of them [54]. Yoongu et

al. introduced ATLAS that prioritizes threads with least serviced at the memory con-

troller during an epoch [128].

A GPU’s SIMT execution exacerbates memory bandwidth bottleneck [45]. Ausavarung-

nirun et al. proposed staged memory scheduling to exploit locality by batching row

buffer hit requests [23]. Chatterjee et al. proposed a memory scheduler batching re-

quests from the same wavefronts to solve memory access divergence [55]. Our SIMT-

aware scheduler bears similarity with this work as we also batch requests but in the

context of page walks. Further, Li et al. proposed to prioritize memory accesses with

higher inter-core locality [138].

The fairness of resource sharing is also important in presence of multiple contenders.

Mutlu et al. proposed STFM that estimates the slowdown of threads due to sharing the

DRAM and prioritizes requests from the slowest thread [155]. PAR-BS provides QoS

by batching and scheduling requests from the same thread [156]. Yoongu et al. pro-

posed TCM that groups threads with similar memory access patterns and apply different

scheduling policies for different groups [129]. Jog et al. proposed to allocate fair mem-

ory bandwidth among concurrently executing kernels on different CUs in a GPU [118].

Jeong et al. proposed a QoS-aware scheduling that prioritizes CPUs with low latency

while guaranteeing QoS of GPUs [114]. Usui et al. proposed DASH that considers the

deadline for accelerators instead of always prioritizing CPU workloads [206].

These works focus solely on memory (DRAM), and not on page table walks. How-

ever, the existence of such a rich body of work shows the potential of significant follow-on

research in exploring various policies for page table walk scheduling for both perfor-

mance and QoS.
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4.7.3 Work Scheduling in GPUs

Smart scheduling of work in the GPU’s compute units has been widely investigated,

too. Rogers et al. proposed CCWS that limits the number of active wavefronts on com-

puter units if it detects thrashing on L1 cache [179]. The authors then extended it

considering L1 cache usage in wavefront scheduling to reduce the impact of memory

access divergence [180]. Li et al. extended CCWS to also allow bypassing the L1 cache

for selected wavefronts when shared resources have additional headroom after limiting

wavefronts [139]. Kayrian et al. dynamically throttled parallelism in CUs based on

application characteristics and contention in the memory subsystem [125]. Unlike these

works, we focus on page table walk scheduling. However, an interesting future study

could explore interactions between page walk scheduling and scheduling at CUs.

4.8 Conclusion

We demonstrate the importance of reordering page table walk requests for GPUs. The

impact of this reordering is particularly severe for irregular GPU applications that suffer

from significant address translation overheads. We observed that different SIMD mem-

ory instructions executed by a GPU application could require vastly different numbers

of memory accesses (work) to service their page table walk requests. Our SIMT-aware

page table walk scheduler prioritizes page table walks from instructions that require less

work to service and further batches page walk requests from the same SIMD instruction

to reduce GPU-level stalls. These lead to 30% performance improvement for irregular

GPU applications through improved forward progress. While we here proposed a spe-

cific SIMT-aware scheduler to demonstrate how better page table walk scheduling is

valuable, we believe there exists scope for significant follow-on research on page walk

scheduling akin to the rich body of work in memory controller scheduling.
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Chapter 5

Secure, Consistent, and High-Performance
Memory Snapshotting

5.1 Introduction

The notion of acquiring memory snapshots is one of ubiquitous importance to computer

systems. Memory snapshots have been used for tasks such as virtual machine migration

and backups [148, 217, 83, 79, 68, 164, 103, 91, 52, 62, 14] as well as forensics [51, 191],

which is the subject of this work. In particular, memory snapshot analysis is the method

of choice used by forensic analyses that determine whether a target machine’s operating

system (OS) code and data are infected by malicious rootkits [26, 101, 165, 166, 167,

50, 70, 190, 69]. Such forensic methods have seen wide deployment. For example,

Komoku [166, 165] (now owned by Microsoft) uses analysis of memory snapshots in its

forensic analysis, and runs on over 500 million hosts [21]. Similarly, Google’s open source

framework, Rekall Forensics [9], is used to monitor its datacenters [153]. Fundamentally,

all these techniques depend on secure and fast memory snapshot acquisition. Ideally, a

memory snapshot acquisition mechanism should satisfy three properties:

1 Tamper resistance. The target’s OS may be compromised with malware that

actively evades detection. The snapshot acquisition mechanism must resist malicious

attempts by an infected target OS to tamper with its operation.

2 Snapshot consistency. A consistent snapshot is one that faithfully mirrors the

memory state of the target machine at a given instant in time. Consistency is important

for forensic tools that analyze the snapshot. Without consistency, different portions of

the snapshot may represent different points in time during the execution of the target,

making it difficult to assign semantics to the snapshot.
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3 Performance isolation. Snapshot acquisition must only minimally impact the

performance of other applications that may be executing on the target machine.

The security community has converged on three broad classes of techniques for

memory snapshot acquisition, namely virtualization-based, trusted hardware-based and

external hardware-based techniques. Unfortunately, none of these solutions achieve all

three properties (see Figure 5.1).

With virtualization-based techniques (pioneered by Garfinkel and Rosenblum [87]),

the target is a virtual machine (VM) running atop a trusted hypervisor. The hypervisor

has the privileges to inspect the memory and CPU state of VMs, and can therefore

obtain a snapshot of the target. This approach has the benefit of isolating the target VM

from the snapshot acquisition mechanism, which is implemented within the hypervisor.

However, virtualization-based techniques:

• impose a tradeoff between consistency and performance-isolation. To obtain a consis-

tent snapshot, the hypervisor can pause the target VM, thereby preventing the target

from modifying the VM’s CPU and memory state during snapshot acquisition. But

this consistency comes at the cost of preventing applications within the target from

executing during snapshot acquisition, which is disruptive if snapshots are frequently

required, e.g., when a cloud provider wants to monitor the health of the cloud platform

in a continuous manner. The hypervisor could instead allow the target VM to execute

concurrently with memory acquisition, but this compromises snapshot consistency.

• require a substantial software trusted computing base (TCB). The entire hypervisor

is part of the TCB. Production-quality hypervisors have more than 100K lines of code

and a history of bugs [71, 72, 73, 74, 75, 131, 183] that can jeopardize isolation.

• are not applicable to container-based cloud platforms. Virtualization-based techniques

are applicable only in settings where the target is a VM. This restricts the scope of

memory acquisition only to environments where the target satisfies this assumption,

i.e., server-class systems and cloud platforms that use virtualization. An increasing

number of cloud providers are beginning to deploy lightweight client isolation mecha-

nisms, such as those based on containers (e.g., Docker [2]). Containers provide isolation
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Property→ 1 Tamper 2 Snapshot 3 Performance

Method↓ resistance consistency isolation

Virtualization 3? Tradeoff: 2 3 ⇔ 3 7

Trusted hardware 3 Tradeoff: 2 3 ⇔ 3 7

External hardware 73?? 7 3

SnipSnap 3 3 3

Figure 5.1: Design tradeoffs in snapshot acquisition. (?) Virtualized systems provide
tamper-resistance assuming that the hypervisor is trusted; however, attacks on hypervi-
sors violate this assumption [71, 72, 73, 74, 75, 131]. (??) While external hardware-
based techniques were originally thought to be tamper-resistant, a number of attacks have
allowed malicious OSes to evade detection by hiding state from the external hardware
mechanism [182, 113, 130].

by enhancing the OS. On container-based systems, obtaining a full-system snapshot

would require trusting the OS, and therefore placing it in the TCB. However, doing so

defeats the purpose of snapshot acquisition if the goal is to monitor the OS itself for

rootkit infection.

Hardware-based techniques reduce the software TCB and are applicable to any

target system that has the necessary hardware support. Methods that use trusted

hardware rely on the hardware architecture’s ability to isolate the snapshot acquisition

system from the rest of the target. For example, ARM TrustZone [15, 199, 25, 89]

partitions the processor’s execution mode so that the target runs in a deprivileged

world (“Normal world”), without access to the snapshot acquisition system, which runs

in a privileged world (“Secure world”) with full access to the target. However, because

the processor can only be in one world at any given time, this system offers the same

snapshot consistency versus performance isolation tradeoff as virtualized solutions. The

situation is more complicated on a multi-processor TrustZone-based system, because

the ARM specification allows individual processor cores to independently transition

between the privileged and deprivileged worlds [15, §3.3.5]. Thus, from the perspective

of snapshot consistency, care has to be taken to ensure that when snapshot acquisition

is in progress on one processor core, all the other cores are paused and do not make

concurrent updates to memory. This task is impossible to accomplish without some

support from the OS to pause other cores. Trusting the OS to accomplish this task

defeats the purpose of snapshot acquisition if the goal is to monitor the OS itself.
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External hardware-based techniques use a physically isolated hardware module, such

as a PCI-based co-processor (e.g., as used by Komoku [21]), on the target system and

perform snapshot acquisition using remote DMA (e.g., [108, 150, 26, 165, 47, 166, 141,

136, 152]). These techniques offer performance-isolation by design—the co-processor

executes in parallel with the CPU of the target system and therefore fetches snapshots

without pausing the target. However, this very feature also compromises consistency

because memory pages in a single snapshot may represent the state of the system at

different points in time. Further, a malicious target OS can easily subvert snapshot

acquisition despite physical isolation of the co-processor [182]. Co-processors rely on

the target OS to set up DMA. On modern chipsets with IOMMUs, a malicious target OS

can simply program the IOMMU to reroute DMA requests away from physical memory

regions that it wants to hide from the co-processor (e.g., pages that store malicious code

and data). Researchers have also discussed address-translation attacks that leverage

the inability of co-processors to view the CPU’s page-table base register (PTBR) [113,

130]. These attacks enable malicious virtual-to-physical address translations, which

effectively hide memory contents in the snapshot from forensic analysis tools.

Contributions. We propose and realize Secure and Nimble In-Package Snap-

shotting or SnipSnap, a hardware-based memory snapshot acquisition mechanism

that achieves all three properties. SnipSnap frees snapshotting from the shackles

of the consistency-performance tradeoff by leveraging two related hardware trends—

the emergence of high-bandwidth DRAM placed on the same package as the CPU

[44, 142, 143, 97], and the resurgence of near-memory processing [102, 20, 19]. Specifi-

cally, processor vendors have embraced technologies like embedded on-package DRAM

in products including IBM’s Power 7 processor, Intel’s Haswell, Broadwell, and Skylake

processors, and even in mobile platforms like Apple’s iPhone [3]. More recently, higher

bandwidth on-package DRAM has been implemented on Intel’s Knight’s Landing chip,

while emerging 3D and 2.5D die-stacked DRAM is expected to be widely adopted [142].

On-package DRAM has in turn prompted flurry of research on near-memory processing
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techniques that place logic close to these DRAM technologies. Consequently, near-

memory processing logic for machine learning, graph processing, and general-purpose

processing has been proposed [102, 20, 19] for better system performance and energy.

SnipSnap leverages these hardware trends to realize fast and effective memory snap-

shotting. SnipSnap leverages on-package DRAM by realizing a fully hardware-based

TCB. With modest hardware modifications that increase chip area by under 1%, Snip-

Snap captures and digitally signs pages in the on-package DRAM. The resulting snap-

shot captures the memory and CPU state of the machine faithfully, and any attempts

by a malicious target OS to corrupt the state of the snapshot can be detected during

snapshot analysis. Because SnipSnap’s TCB consists only of the hardware, it can be

used on target machines running a variety of software stacks, e.g., traditional systems

(OS atop bare-metal), virtualized systems, and container-based systems. We identify

consistency as an important property of memory snapshots and present SnipSnap’s

memory controller that offers both consistency and performance isolation. We imple-

ment SnipSnap using real-system hardware emulation and detailed software simulation

atop state-of-the-art implementations of on-package die-stacked DRAM (e.g., UNISON

cache [116]). We vary on-package die-stacked DRAM from 512MB to 8GB capacities.

We find that SnipSnap offers 4-25× performance improvements while also ensuring

consistency. Finally, we verify SnipSnap’s consistency guarantees using TLA+ [135].

In summary, SnipSnap securely obtains consistent snapshots while offering performance-

isolation using non-exotic hardware that is already being implemented by chip vendors.

This makes SnipSnap a powerful and general approach for snapshot acquisition, with

applications to memory forensics and beyond.

5.2 Overview and Threat Model

SnipSnap allows a forensic analyst to acquire a complete snapshot of a target machine’s

off-chip DRAM memory. SnipSnap’s mechanisms are implemented in a hardware TCB

and an untrusted snapshot driver in the target’s OS. The hardware TCB consists of on-

package DRAM, simple near-memory processing logic, and requires modest modification

of the on-chip memory controller and CPU register file. In concert, these components
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Figure 5.2: Architecture of SnipSnap. Only the on-chip hardware components are in
the TCB.

operate as described below.

A forensic analyst initiates snapshot acquisition by triggering the hardware to enter

snapshot mode. Subsequently, the memory controller iteratively brings each physical

page frame from off-chip DRAM to the on-package DRAM. SnipSnap’s on-chip near-

memory processing logic creates a copy of the page and computes a cryptographic digest

of the page. The untrusted snapshot driver in the target OS then commits the snapshot

entry to an external medium, such as persistent storage, the network, or a diagnostic

serial port. The hardware exits snapshot mode after the near-memory processing logic

has iterated over all page frames of the target’s off-chip DRAM. A well-formed memory

snapshot from SnipSnap contains one snapshot entry per page frame and one entry

with CPU register state and a cryptographic digest. Figure 5.2 shows the components

of SnipSnap:

1 The trigger device is an external mechanism that initiates snapshot acquisition.

When activated, the trigger device toggles the hardware into snapshot mode. It also

informs the target’s OS that the hardware has entered snapshot mode.

2 The memory controller brings pages from off-chip DRAM into on-package DRAM

to be copied into the snapshot when the hardware is in snapshot mode (as discussed
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above). The memory controller maintains internal hardware state to sequentially iterate

over all off-chip DRAM page frames. The main novelty in SnipSnap’s memory controller

is a copy-on-write feature that allows snapshot acquisition to proceed without pausing

the target.

3 The near-memory processing logic implements cryptographic functionality for hash

and digital-signature computation in on-package DRAM [56]. As we show, such near-

memory processing is readily implemented atop, for example, die-stacked memory [142].

As such, we assume that the hardware is endowed with a public/private key pair (as

are TPMs—trusted platform modules). Digital signatures protect the integrity of the

snapshot even from an adversary with complete control of the target’s software stack.

4 The snapshot driver, SnipSnap’s only software component, is implemented within

the target’s OS. Its sole responsibility is to copy snapshot entries created by the hard-

ware to a suitable external medium.

5 The hardware/software interface facilitates communication between the snapshot

driver and the hardware components. This interface consists of three special-purpose

registers and adds minimal overhead to the existing register file of modern processors,

which typically consists of several tens of architecturally-visible and hundreds of physical

registers.

Threat Model. Our threat model is that of an attacker who controls the target’s

software stack and tries to subvert snapshot acquisition. The attacker may try to

corrupt the snapshot, return stale snapshot entries, or suppress parts of the snapshot.

A snapshot produced by SnipSnap must therefore contain sufficient information to allow

a forensic analyst to verify integrity, freshness, and completeness of the snapshot. We

assume that the on-chip hardware components described above are trusted and are part

of the TCB. We exclude physical attacks on off-chip hardware components, e.g., those

that modify contents of pages either in off-chip DRAM via electromagnetic methods,

or as they transit the memory bus.

SnipSnap’s snapshot driver executes within the target OS, which may be controlled

by the attacker. We will show that despite this, a corrupt snapshot driver cannot
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compromise snapshot integrity, freshness, or completeness. At worst, the attacker can

misuse his control of the snapshot driver to prevent snapshot entries (or the entire

snapshot) from being written out to the external medium. However, the forensic analyst

can readily detect such denial of service attacks because the resulting snapshot will be

incomplete. Once the forensic analyst obtains a snapshot, he can analyze it using

methods described in prior work (e.g., [167, 26, 50, 70, 101, 166, 69, 81]) to determine

if the target is infected with malware.

SnipSnap’s main goal is secure, consistent, and fast memory snapshot acquisition.

Forensic analysts can perform offline analyses on these snapshots, e.g., to check the

integrity of the OS kernel or to detect traces of malware activity. While analysts can

use SnipSnap to request snapshots for offline analysis as often as they desire, it is

not a tool to perform continuous, event-based monitoring of the target machine. To

our knowledge, state of the art forensic tools to detect advanced persistent threats

(e.g., [26, 101, 165, 166, 167, 50, 70, 190, 69, 21]) rely on offline analysis of memory

snapshots.

5.3 Design of SnipSnap

We now present SnipSnap’s design, beginning with a discussion of snapshot consistency.

5.3.1 Snapshot Consistency

A snapshot of a target machine is consistent if it reflects the state of the target ma-

chine’s off-chip DRAM memory pages and CPU registers at a given instant in time.

Consistency is an important property for forensic applications that analyze snapshots.

Without consistency, different memory pages in the snapshot represent the state of the

target at different points in time, causing the forensic analysis to be imprecise. For

example, consider a forensic analysis that detects rootkits by checking whether kernel

data structures satisfy certain invariants, e.g., that function pointers only point to valid

function targets [167]. Such forensic analysis operates on the snapshot by identifying

pointers in kernel data structures, recursively traversing these pointers to identify more

data structures in the snapshot, and checking invariants when it finds function pointers
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Figure 5.3: Example showing need for snapshot consistency. Depicted above is the
memory state of a target machine at two points in time, T and T+δ. At T, a pointer
in F1 points to an object in F2. At T+δ, the object has been freed and the pointer set
to null. Without consistency, the snapshot could contain a copy of F1 at time T and
F2 at time T+δ (or vice-versa), causing problems for forensic analysis.

in the data structures. If a page F1 of memory contains a pointer to an object allocated

on a page F2, and the snapshot acquisition system captures F1 and F2 in different states

of the target, then the forensic analysis can encounter a number of illogical situations

(Figure 5.3). Such inconsistencies can also be used to hide malicious code and data

modifications in memory [113]. Prior work [167, 26] encountered such situations in the

analysis of inconsistent snapshots, and had to resort to unsound heuristics to remedy

the problem. A consistent snapshot will capture the state of the target’s memory pages

at either T or at T+δ, thereby allowing the forensic analysis to traverse data structures

in memory without the above problems.

As discussed in Section 5.1, prior systems have achieved snapshot consistency at

the cost of performance isolation, or vice versa. SnipSnap acquires consistent memory

snapshots without pausing the target machine in the common case. Snapshot acquisi-

tion proceeds in parallel with user applications and kernel execution that can actively

modify memory. SnipSnap’s hardware design ensures that the acquired memory snap-

shot reflects the state of the target machine at the instant when the hardware entered

snapshot mode.

Consistency versus Quiescence. While SnipSnap ensures that an acquired snapshot

faithfully mirrors the state of the machine at a given time instant, we do not specify

what that time instant should be. Specifically, while snapshot consistency is a necessary

property for client forensic analysis tools, it is not sufficient, i.e., not every consistent

snapshot is ideal from the perspective of client forensic analyses. For example, consider
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a consistent snapshot acquired when the kernel is in the midst of creating a new process.

The kernel may have created a structure to represent the new process but may not have

finished adding it to the process list, resulting in a snapshot where the process list is

not well-formed.

In response, prior work suggests collecting snapshots when the target machine is

in quiescence [101], i.e., a state of the machine when kernel data structures are likely

to be well-formed. Quiescence is a domain-specific property that depends on which

data structures are relevant for the forensic analysis and what it means for them to be

well-formed. SnipSnap only guarantees consistency, and relies on the forensic analyst

to trigger snapshot acquisition at an instant when the system is quiescent. Because

SnipSnap guarantees consistency, even if the target enters a non-quiescent state after

snapshot acquisition has been triggered, e.g., due to concurrent kernel activity initiated

by user applications, the snapshot will reflect state of the target at the beginning of

the snapshot acquisition. Triggering snapshot acquisition when the system is in non-

quiescent state may require a forensic analyst to retake the snapshot.

5.3.2 Triggering Snapshot Acquisition

An analyst requests a snapshot using SnipSnap’s trigger device. This device accom-

plishes three tasks: 1 it toggles the hardware TCB into snapshot mode; 2 it informs

the target’s OS that the hardware is in snapshot mode; and 3 it allows the analyst to

pass a random nonce that is incorporated into the cryptographic digest of the snapshot.

Task 1 requires direct hardware-to-hardware communication between the trigger

device and the hardware TCB that is transparent to, and therefore cannot be compro-

mised by, the target OS. Commodity systems offer many options to implement such

communication, and SnipSnap can adapt any of them. For example, we could con-

nect a physical device to the programmable interrupt controller, and have it deliver

a non-maskable interrupt to the processor when it is activated. Upon receipt of this

interrupt, the hardware TCB examines the IRQ to determine its origin, and switches

to snapshot mode. Since this triggering mechanism piggybacks on the standard pin-to-

bus interface, we find that implementing it requires less than 1% additional area on the
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hardware TCB.

Another possibility, which allows a forensic analyst to remotely trigger snapshot

acquisition, is to use Wakeup-on-LAN (WoL) mechanisms available on modern network

interface controllers (NICs). WoL is an Ethernet standard that allows a computer to be

turned on by a specially-crafted network message, known as a magic packet (e.g., [78]).

The idea is to turn on sleeping processors solely with hardware support, without OS

involvement. To adapt WoL to SnipSnap, we add a hardware finite state machine

(FSM) in the NIC, similar to that required by WoL, to recognize a specially-crafted

snapshot-trigger packet. When the FSM detects the packet, it signals the ACPI control

on the motherboard. Current systems already maintain hardware via the ACPI to

transition the cores and memory system from an off (or S5 power) state. SnipSnap

can piggyback on these same channels and buses to toggle the hardware into snapshot

acquisition mode. We have evaluated the hardware cost of this scheme. Our snapshot-

trigger packet FSM hardware requires under a 5% area increase in the NIC logic. The

motherboard is left largely unaffected while the extra channels and bus messages used to

transition the memory controller require less than a 0.5% area increase in the hardware

TCB.

Task 2 is to inform the OS, so that it can start executing the snapshot driver.

Depending on the implementation of task 1 , this task can be accomplished by raising

an interrupt or an ACPI event. The target OS invokes the snapshot driver from the

interrupt handler or ACPI event handler.

To accomplish task 3 , we assume that the trigger device is equipped with de-

vice memory that is readable from the target OS. The analyst writes the nonce to

device memory, and the OS reads it from there, e.g., after mounting the device as

/dev/trigger device.

For example, if the trigger device is implemented using a WoL-like mechanism in the

NIC, the analyst could send the nonce in a second packet following the snapshot-trigger

packet. The NIC could write the nonce into its device memory after recognizing the

snapshot-trigger packet, and the OS could read it from the NIC.
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5.3.3 DRAM and Memory Controller Design

SnipSnap relies on on-package DRAM for secure and consistent snapshots. Today, re-

search groups are actively studying how best to organize on-package DRAM. Research

questions focus on whether on-package DRAM should be organized as a hardware cache

of the off-chip DRAM i.e., the physical address space is equal to the off-chip DRAM

capacity [144, 176, 116], or should extend the physical address space instead, i.e., the

physical address space is the sum of the off-chip DRAM and on-chip memory capaci-

ties [63, 214]. While SnipSnap can be implemented on any of these designs, we focus

on die-stacked DRAM caches as they have been widely studied and are expected to

represent initial commercial implementations [144, 176, 116, 117].

DRAM caches can be designed in several ways. They can be used to cache data in

units of cache lines like conventional L1-LLCs [144, 176, 116]. Unfortunately, the fine

granularity of cache lines results in large volumes of tag metadata stored in either SRAM

or DRAM caches themselves [144, 176, 116, 117]. Thus, architects generally prefer to

organize DRAM caches at page-level granularity. While SnipSnap can be built using

any DRAM cache data granularity, we focus on such page-level data caching approaches.

Overall, as a hardware-managed cache, the DRAM cache is not directly addressable

from user- or kernel-mode. Further, all DRAM references are mediated by an on-chip

memory controller, which is responsible for relaying the access to on-package or off-chip

DRAM. That is, CPU memory references are first directed to per-core MMUs before

being routed to the memory controller, while device memory references (e.g., using

DMA) are directed to the IOMMU before being routed to the memory controller.

Regular Operation. When snapshot acquisition is not in progress, SnipSnap’s on-

package memory acts as a hardware DRAM cache, before off-chip DRAM (see Fig-

ure 5.4(a)). The DRAM cache stores data in the unit of pages, and maintains tags,

as is standard, to identify the frame number of the page cached and additional bits to

denote usage information, like valid and replacement policy bits. When a new page

must be brought into an already-full cache, the memory controller evicts a victim using

standard replacement policies.
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Figure 5.4(a) During regular operation, on-chip memory is a cache of off-chip
DRAM pages. 1 Accesses by the CPU to a DRAM page brings the page to the on-
chip memory, where it is tagged using its frame number (F). 2 Pages are evicted from
on-chip memory region when it reaches its capacity.

Figure 5.4(b) In snapshot mode, on-chip memory is split in two. 1 The DRAM
cache works as in Figure 5.4(a). 2 If there is a write to a page that has not yet been
snapshot (i.e., F ≥ R), it is copied into the CoW area. 3 The page may be evicted if
the DRAM cache reaches capacity. 4 The CoW area copy of the page remains until it
has been included in the snapshot (i.e., F < R), after which it is overwritten with other
pages that enter the CoW area. In snapshot mode H and R are initialized to 0.

Figure 5.4: Layout of on-chip memory.

Snapshot Mode. When the trigger device signals the hardware to enter snapshot

mode, several hardware operations occur. First, the hardware captures the CPU regis-

ter state of the machine (across all cores). Second, all CPUs are paused, their pipelines

are drained, their cache contents flushed (if CPUs use write-back caches), and their load-

store queues and write-back buffers drained. These steps ensure that all dirty cache
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line contents are updated in main memory before snapshot acquisition begins. Third,

SnipSnap’s memory controller reconfigures the organization of on-package DRAM to

ensure that a consistent snapshot of memory is captured. It must track any modifica-

tions to memory pages that are not yet included in the snapshot and keep a copy of

the original page till it has been copied to the snapshot.

To achieve this goal, the memory controller splits the on-package DRAM into two

portions (Figure 5.4(b)). The first portion continues to serve as a cache of off-chip

DRAM memory. Since only this portion of on-package DRAM is available for caching

in snapshot mode, the memory controller tries to fit in it all the pages that were

previously cached during regular operation into the available space. If all pages cannot

be cached, the memory controller selects and evicts victims to off-chip DRAM. The

second portion of die-stacked memory serves as a copy-on-write (CoW) area. The

CoW area allows user applications and the kernel to modify memory concurrently with

snapshot acquisition, while saving pages that have not yet been included in the snapshot.

We study several ways to partition on-package DRAM into the CoW and DRAM cache

areas in Section 5.6.

Recall that a snapshot contains a copy of all pages in off-chip DRAM memory.

However, the hardware creates a snapshot entry one page of memory at a time. It

works in tandem with the snapshot driver to write this snapshot entry to an external

medium and then iterates to the next page of memory until all pages are written out

to the snapshot. As this iteration proceeds, other applications and the kernel may

concurrently modify memory pages that have not yet been included in the snapshot.

If SnipSnap’s memory controller sees a write to a memory page that the hardware has

not yet copied, the memory controller creates a copy of the original page in the CoW

area, and lets the write operation proceed in the DRAM cache area. A page frame is

copied at most once into the CoW area, and this happens only if the page has to be

modified by other applications before it has been copied into the snapshot.

The memory controller maintains internal hardware state in the form of an index

that stores the frame number (R in Figure 5.4(b)) of the page that is currently being

processed for inclusion in the snapshot. The hardware initializes the index to 0 when



116

it enters snapshot mode. The memory controller uses the index as follows. It copies a

frame F from the DRAM cache to the CoW area when it has to write to that frame

and F ≥ R, indicating that the hardware has not yet iterated to frame F to create a

snapshot entry for it. If F < R, then it means that the frame has already been included

in the snapshot, and can be modified without copying it to the CoW area. SnipSnap

requires that page frames be copied into the snapshot sequentially in ascending order

by frame number.

To create a new snapshot entry for a page frame, the memory controller first checks

whether this page frame is in the CoW area. If it exists, the hardware proceeds to

create a snapshot entry using that copy of the page. The memory controller can then

reuse the space occupied by this page in the CoW area. If the page frame is not in

the CoW area, the memory controller checks to see if it already exists in the DRAM

cache. If not, it brings the page from off-chip DRAM into the DRAM cache, from where

the hardware creates a snapshot entry for that page. It places the newly-created entry

in a physical page frame referenced by the snapshot entry register (snapentry reg in

Figure 5.4), and informs the snapshot driver using the semaphore register (semaphore

reg in Figure 5.4). The driver then writes out the entry to a suitable external medium

and informs the hardware, which increments the index and iterates to the next page

frame.

The hardware exits snapshot mode when the index has iterated over all the frames

of off-chip DRAM. At this point, the hardware creates a snapshot entry containing the

CPU register state (captured on entry into snapshot mode), and appends it as the last

entry of the snapshot. We leverage die-stacked logic to capture and record register state.

SnipSnap’s approach is inspired by prior work on introspective die-stacked logic [157],

where hardware analysis logic built on die-stacked layers uses probes or “stubs” on

the CPUs to introspect on dynamic type analysis, data flight recorders, etc. Similarly,

we design hardware support to capture register state, using: 1 stubs that allow the

contents of the register file to be latched into the logic on the die-stack; and 2 logic

on the die-stack that copies the contents of register files into the last snapshot entry.

The memory controller’s use of CoW ensures that concurrent applications can make
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Figure 5.5: Pseudocode of the snapshot driver and the corresponding hardware/software
interaction.

progress, while still maintaining the original copies of memory pages for a consistent

snapshot. The hardware pauses a user application during snapshot acquisition only

when the CoW area fills to capacity and when that application attempts to write to a

page that the hardware has not yet included in the snapshot. In this case, the hardware

can resume these applications when space is available in the CoW area, i.e., when a

page from there is copied to the snapshot.

Our implementation of SnipSnap has important design implications on recently-

proposed DRAM caches. Research has shown that DRAM caches generally perform

most efficiently when they use page-sized allocation units to reduce tag array size re-

quirements [117, 116]. However, they also employ memory usage predictors (e.g., foot-

print predictors [117, 116]) to fetch only the relevant 64B blocks from a page, thereby

efficiently using scarce off-chip bandwidth by not fetching blocks that will not be used.

This means the following for SnipSnap. During regular operation, SnipSnap continues

to employ page-based DRAM caches with standard footprint prediction. However, to

simplify our design, SnipSnap does not use footprint prediction during snapshot mode

and moves entire pages of data with their constituent cache lines in both the CoW

and DRAM cache partitions. Naturally, this does degrade performance of applications

running simultaneously with snapshotting; however, our results (see Section 5.6) show

that performance improvements versus current snapshotting techniques remain high.
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5.3.4 Near-Memory Processing Logic

Near-memory processing logic implements cryptographic functionality to create the

snapshot. On a target machine with N frames of off-chip DRAM memory, the snapshot

itself contains N+1 entries. The first N entries store, in order, the contents of page

frames 0 to N-1 of memory (thus, an individual snapshot entry is 4KB). The last entry

of the snapshot stores the CPU register state and a cryptographic digest that allows a

forensic analyst to determine the integrity, freshness and completeness of the snapshot.

The near-memory processing logic maintains an internal hash accumulator that

is initialized to zero when the hardware enters snapshot mode. It updates the hash

accumulator as the memory controller iterates over memory pages, recording them

in the snapshot. Suppose that we denote the value of the hash accumulator using

Hidx, where idx denotes the current value of the memory controller’s index (thus, H0

= 0). When the memory controller creates a snapshot entry for page frame numbered

idx, the near-memory processing logic updates the value of the hash accumulator to

Hidx+1=Hash(idx ‖ r ‖ Hidx ‖ Cidx).

Here:

1 The value idx is the hardware’s index. It records the frame number of the page that

included in the snapshot;

2 The value r denotes a random nonce supplied by the forensic analyst using the

trigger device and stored in the on-chip nonce register (nonce reg in Figure 5.4(b)).

The use of the nonce ensures freshness of the snapshot;

3 Hidx denotes the current value of the hash accumulator;

4 Cidx denotes the actual contents of page frame idx.

All these values are readily available on-chip.

When the memory controller finishes iterating over all N memory page frames, the

value HN in the hash accumulator in effect denotes the value of a hash chain computed

cumulatively over all off-chip DRAM memory pages. The final snapshot entry enlists the

values of CPU registers as recorded by the hardware when it entered snapshot mode—

let us denote the CPU register state using Creg. The near-memory logic updates the
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hash accumulator one final time to create HN+1=Hash(N ‖ r ‖ HN ‖ Creg). It digitally

signs HN+1 using the hardware’s private key, and records the digital signature in the last

entry of the snapshot. This digital signature assists with the verification of snapshot

integrity (Section 5.4). We use SHA-256 as our hash function, which outputs a 32-byte

hash value. The size of the digital signature depends on the key length used by the

hardware. For instance, a 1024-bit RSA key would produce a 86-byte signature for a

32-byte hash value with OAEP padding.

5.3.5 Snapshot Driver and HW/SW Interface

The hardware relies on the target’s OS to externalize the snapshot entries that it creates.

We rely on software support for this task because it simplifies hardware design, and

also provides the forensic analyst with considerable flexibility in choosing the external

medium to which the snapshot must be committed. Although we rely on the target OS

for this critical task, we do not need to trust the OS and even a malicious OS cannot

corrupt the snapshot created by the hardware.

The hardware and the software interact via an interface consisting of three regis-

ters (nonce, snapshot entry and semaphore registers), which were referenced earlier.

Figure 5.5 shows the software component of SnipSnap and the hardware/software in-

teraction. SnipSnap’s software component consists of initialization code that executes

at kernel startup (lines A–C) and a snapshot driver that is invoked when the hardware

enters snapshot mode (lines 1–13). The implementation of the snapshot driver in the

target OS depends on the trigger device and executes as a kernel thread. For exam-

ple, if the trigger device raises an interrupt to notify the target OS that the hardware

has switched to snapshot mode, the snapshot driver can be implemented within the

corresponding interrupt handler. If the trigger device instead uses ACPI events for

notification, the snapshot driver can be implemented as an ACPI event handler.

In the initialization code, SnipSnap allocates a buffer (the plocal buffer) that is

the size of one snapshot entry. This buffer serves as the temporary storage area in

which the hardware stores entries of the snapshot before they are committed to an

external medium. It then obtains and stores the physical address translation of plocal
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in snapentry reg, The hardware uses this physical address to store computed snapshot

entries into the plocal buffer and the snapshot driver writes it out. Pages allocated

using kmalloc cannot be moved, ensuring that the buffer is in the same location for

the duration of the snapshot driver’s execution. If the page moves, e.g., because of a

malicious implementation of kmalloc, or if virt to phys returns an incorrect virtual to

physical translation, the snapshot will appear corrupted to the forensic analyst.

When hardware enters snapshot mode, it initializes its internal index and hash

accumulator, captures CPU register state, and invokes SnipSnap’s snapshot driver.

The goal of the snapshot driver is to work in tandem with the hardware to create

and externalize one snapshot entry at a time. The snapshot driver and the hardware

coordinate using the semaphore register, which the driver first initializes to a non-zero

value on line 3. It then reads the nonce value that the forensic analyst supplies via the

trigger device. Writing this non-zero value into nonce reg on line 4 activates the near-

memory processing logic, which creates a snapshot entry for the page frame referenced

by the hardware’s internal index.

In the loop on lines 6–10, the snapshot driver iterates over all page frames in tandem

with the hardware. Each iteration of the loop body processes one page frame. The

hardware begins processing the first page of DRAM as soon as line 4 sets nonce reg,

and stores the snapshot entry for this page in the plocal buffer. On line 7, the driver

waits for the hardware to complete this operation. The hardware informs the driver

that the plocal buffer is ready with data by setting semaphore reg to 0. The driver then

commits the contents of this buffer to an external medium, denoted using write out on

line 8. The driver then sets semaphore reg to a non-zero value on line 9, indicating to

the hardware that it can increment its index and iterate to the next page for snapshot

entry creation. Note that the time taken to execute this loop depends on the number

of page frames in off-chip DRAM and the speed of the external storage medium.

When the loop completes execution, the hardware would have iterated through all

DRAM page frames and exited snapshot mode. When it exits, it writes out the CPU

register state captured during snapshot mode-entry and the digitally-signed value of

the hash accumulator to the plocal buffer, which the snapshot driver can then output
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on line 12.

5.3.6 Formal Verification

We used TLA+ [135] to formally verify that SnipSnap produces consistent snapshots.

To do so, we created a system model that mimics SnipSnap’s memory controller in snap-

shot mode and during regular operation. Our TLA+ system model can be instantiated

for various configurations, such as memory sizes, cache sizes, and cache associativities.

The model consists of main memory connected to a set of processors. Processors issue

read and write requests to the memory hierarchy, each processor can have one out-

standing request at a time. Each request is first looked up in the cache, which mimics

on-package memory. When it is found in the cache, the request is serviced and the

processor is notified to enable it to make more requests. Otherwise, when the request

misses the cache, it is sent to memory (mimicing off-chip DRAM) and the cache is

populated with the new entry.

When the model switches to snapshot mode, the way in which memory requests are

serviced changes. The cache is now split into two with one servicing as the CoW area

and the other serving as a reduced-sized cache. A read request operates in the same

fashion as during regular operation. A write request requires more care. The address

of the request is first looked up in the CoW area. If it is not found there, the model

creates a copy of the data (prior to the write) and stores it in the CoW area. The write

operation then progresses as before. If the address is found in the CoW area, it means

that a prior request to that address has already been made and the data is available in

the CoW for the snapshot routine to use it. This enables the write operation to go to

the cache.

The switch from regular operation to snapshot mode happens in two steps in our

TLA+ model. The model is triggered to switch at any time, and as expected there are

many in-flight memory requests being serviced. New requests are stalled, caches are

flushed and all queues are emptied before the system switches to snapshot mode and

processors resume making memory requests. Once in snapshot mode, all the memory

is copied into the snapshot.
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We encoded consistency as a safety property by checking that the state of the

on-package memory and off-chip DRAM at the instant when the system switches to

snapshot mode will be recorded in the snapshot at the end of acquisition. We verified

that our system model satisfies this property using the TLA+ model checker. Our

TLA+ model of SnipSnap is open source, listed in Appendix A.

5.4 Security Analysis

When a forensic analyst receives a snapshot acquired by SnipSnap, he establishes its

integrity, freshness, and completeness. In this section, we describe how these properties

can be established, and show how SnipSnap is robust to attempts by a malicious target

OS to subvert them.

1 Integrity. An infected target OS may attempt to corrupt snapshot entries to hide

traces of malicious activity from the forensic analyst. To ensure that the integrity of

the snapshot has not been corrupted, an analyst can check the digital signature of the

hash accumulator stored in the last snapshot entry. The analyst performs this check by

essentially mimicking the operation of SnipSnap’s memory controller and near-memory

processing logic, i.e., iterating over the snapshot entries in order to recreate the value

of the hash accumulator, and verify its digital signature using the hardware’s public

key. Since the hash accumulator is stored and updated by the hardware TCB, which

also computes its digital signature, a malicious target cannot change snapshot entries

after they have been computed by the hardware.

2 Freshness. The forensic analyst supplies a random nonce via the trigger device

when he requests a snapshot. SnipSnap’s hardware TCB incorporates this nonce into

the hash accumulator computation for each memory page frame, thereby ensuring fresh-

ness. Note that SnipSnap uses the untrusted snapshot driver to transfer the nonce from

trigger device memory into the hardware’s nonce register (line 4 of Figure 5.5). A ma-

licious target OS cannot cheat in this step, because the nonce is incorporated into the

hardware TCB’s computation of the hash accumulator.

3 Completeness. The snapshot should contain one entry for each page frame in
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off-chip DRAM and one additional entry storing CPU register state. This criterion

ensures that a malicious target OS cannot suppress memory pages from being included

in the snapshot. Each snapshot entry is created by the hardware, by directly reading

the frame number and page contents from die-stacked memory, thereby ensuring that

these entities are correctly recorded in the entry.

Our attack analysis focuses on how a malicious target OS can subvert snapshot

acquisition. A forensic analyst uses the trigger device to initiate snapshot acquisition

by toggling the hardware TCB into snapshot mode. The trigger device communicates

directly with SnipSnap’s hardware TCB using hardware-to-hardware communication,

transparent to the target’s OS, and therefore cannot be subverted by a malicious OS.

The hardware then notifies the OS that it is in snapshot mode, expecting the snapshot

driver to be invoked.

A malicious target OS may attempt to “clean up” traces of infection before it jumps

to the snapshot driver’s code so that the resulting snapshot appears clean during foren-

sic analysis. However, once the hardware is in snapshot mode, SnipSnap’s memory

controller, which mediates all writes to DRAM, uses the CoW area to track modifica-

tions to memory pages. Even if the target’s OS attempts to overwrite the contents of

a malicious page, the original contents of the page are saved in the CoW area to be

included in the snapshot. Thus, any attempts by the target OS to hide its malicious

activities after the hardware enters snapshot mode are futile. Of course, the target OS

could refuse to execute the snapshot driver, which will prevent the snapshot from being

written out to an external medium. Such a denial of service attack is therefore readily

detectable.

A malicious OS may try to interfere with the execution of the initialization code

in lines A–C of Figure 5.5. The initialization code relies on the correct operation of

kmalloc and virt to phys. However, we do not have to trust these functions. If kmalloc

fails to allocate a page, snapshots cannot be obtained from the target, resulting in a de-

tectable denial of service attack. If the pages allocated by kmalloc are remapped during

execution or virt to phys does not provide the correct virtual to physical mapping for

the allocated space, the write out operation on line 8 will write out incorrect entries
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that fail the Integrity check.

Once the snapshot driver starts execution, a malicious target OS can attempt to

interfere with its execution. If it copies a stale or incorrect value of the nonce into nonce

reg from trigger device memory on line 4, the snapshot will violate the Freshness

criterion. It could attempt to bypass or short-circuit the execution of the loop on

lines 5–10. The purpose of the loop is to synchronize the operation of the snapshot

driver with the internal index maintained by SnipSnap’s memory controller. If the OS

short-circuits the loop or elides the write out on line 8 for certain pages, the resulting

snapshot will be missing entries, thereby violating Completeness. Attempts by the

target OS to modify the virtual address of plocal or the value of snapshot reg during

the execution of the snapshot driver will trigger a violation of Integrity for the same

reasons that attacks on the initialization code triggers an Integrity violation.

Finally, a malicious target could try to hide traces of infection by creating a synthetic

snapshot that glues together individual entries (with benign content in their memory

pages) from snapshots collected at different times. However, such a synthetic snapshot

will fail the Integrity check since the hash chain computed over such entries will not

match the digitally-signed value in the last snapshot entry.

The last entry records the values of all CPU registers at the instant when the hard-

ware entered snapshot mode. For forensic analysis, the most useful value in this record

is that of the page-table base register (PTBR). As previously discussed, forensic analysis

of the snapshot often involves recursive traversal of pointer values that appear in mem-

ory pages [167, 26, 50, 70, 166, 165, 190]. These pointers are virtual addresses but the

snapshot contains physical page frames. Thus, the forensic analysis translates pointers

into physical addresses by consulting the page table, which it locates in the snapshot

using the PTBR. External hardware-based systems [26, 165, 47, 166, 141, 136, 152] can-

not view the processor’s CPU registers. Therefore, they depend on the untrusted target

OS to report the value of the PTBR. Unfortunately, this results in address-translation

redirection attacks [113, 130]. The target OS can create a synthetic page table that

contains fraudulent virtual-to-physical mappings and return a PTBR referencing this

page table. The synthetic page table exists for the sole purpose of defeating forensic
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analysis by making malicious content unreachable via page-table translations—it is not

used by the target OS during execution. SnipSnap can observe and record CPU regis-

ter state accurately when the hardware enters snapshot mode and is not vulnerable to

such attacks. It captures the PTBR pointing to the page table that is in use when the

hardware enters snapshot mode.

5.5 Experimental Methodology

5.5.1 Evaluation Infrastructure

We use a two-step approach to quantify SnipSnap’s benefits. In the first step, we per-

form evaluations on long-running applications with full-system and OS effects. Since

this is infeasible with software simulation, we develop hardware emulation infrastruc-

ture similar to recent work [160] to achieve this. This infrastructure takes an existing

hardware platform, and through memory contention, creates two different speeds of

DRAM. Specifically, we use a two-socket Xeon E5-2450 processor, with a total of 32GB

of memory, running Debian-sid with Linux kernel 4.4.0. There are 8 cores per socket,

each two-way hyperthreaded, for a total of 16 logical cores per socket. Each socket has

two DDR3 DRAM memory channels. To emulate our DRAM cache, we dedicate the

first socket for execution of our user applications, our kernel-level snapshot driver, and

our user-level snapshot process. This first socket hosts our “fast” or on-package mem-

ory. The second socket hosts our “slow” or off-chip DRAM. The cores on the second

socket are used to create memory contention (using the memory contention bench-

mark memhog, like prior work [169, 170]) such that the emulated die-stacked memory or

DRAM cache is 4.5× faster compared to the emulated off-chip DRAM. This provides

a similar memory bandwidth performance ratio of a 51.2GBps off-chip memory system

compared to a 256GBps of die-stacked memory, consistent with the expected perfor-

mance ratios of real-world die-stacking [160, 144]. We modify Linux kernel to page

between the emulated fast and slow memory, using the libnuma patches. We model the

timing aspects of paging to faithfully reproduce the performance that SnipSnap’s mem-

ory controller would sustain. Since our setup models CPUs with write-back caches, we
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1 Canneal Simulated annealing from PARSEC [40]
2 Dedup Storage deduplication from PARSEC [40]
3 Memcached In-memory key-value store [8]
4 Graph500 Graph-processing benchmark [5]
5 Mcf Memory-intensive benchmark/SPEC 2006 [11]
6 Cifar10 Image recognition from TensorFlow [12]
7 Mnist Computer vision from TensorFlow [12]

Figure 5.6: Description of benchmark user applications.

include the latencies necessary for cache, load-store queue, and write buffer flushes on

snapshot acquisition. Finally, we emulate the overhead of marshaling to external me-

dia by introducing artificial delays. We vary delay based on several emulated external

media, from fast network connections to slower SSDs.

While our emulator includes full-system effects and full benchmark runs, it pre-

cludes us from modeling SnipSnap’s effectiveness atop recently-proposed (and hence

not available commercially) DRAM cache designs. Therefore, we also perform careful

software simulation of the state-of-art UNISON DRAM cache [116], building SnipSnap

atop it. Like the original UNISON cache paper, we assume a 4-way set-associative

DRAM cache with 4KB pages, a 144KB footprint history table, and an accurate way

predictor. Like recent work [214], we use an in-house simulator and drive it with 50 bil-

lion memory reference traces collected on a real system. We model a 16-core CMP and

with ARM A15-style out-of-order CPUs, 32KB private L1 caches, and 16MB shared

L2 cache. We study die-stacked DRAM with 4 channels, and 8 banks/rank with 16KB

row buffers, and 128-bit bus width, like prior work [117]. Further, we model 16-64GB

off-chip DRAM, with 8 banks/rank and 16KB row buffers. Finally, we use the same

DRAM timing parameters as as the original UNISON cache paper [116].

5.5.2 Workloads

We study the performance implications of SnipSnap by quantifying snapshot overheads

on several memory-intensive applications. We evaluate such workloads since these are

the likeliest to face performance degradation due to snapshot acquisition. Even in this

“worst-case,” we show SnipSnap does not excessively hurt performance.
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Figure 5.7: Performance impact of snapshot acquisition from hardware emulator stud-
ies. Slowdown caused by modern snapshot mechanisms that also assure consistency, and
compare against SnipSnap. We plot results for 1 and 10 snapshots separately (note the
different y axes), showing averages, minima, and maxima amongst benchmark runtimes.
X-axis shows the amount of on-package memory available on the emulated system. Snip-
Snap provides 1.2-22× performance improvements against current approaches.

Figure 5.6 shows our single- and multi-threaded workloads. All benchmarks are con-

figured to have memory footprints in the range of 12-14GB, which exceeds the maximum

size of die-stacked memory we emulate (8GB). To achieve large memory footprints, we

upgrade the inputs for some workloads with smaller defaults (e.g., Canneal, Dedup, and

Mcf), so that their memory usage increases. We set up memcached with a snapshot of

articles from the entire Wikipedia database, with over 10 million entries. Articles are

roughly 2.8KB on average, but also exhibit high object size variance.

5.6 Evaluation

We now evaluate the benefits of SnipSnap. We first quantify performance, and then

discuss its hardware overheads.

5.6.1 Performance Impact on Target Applications

A drawback of current snapshotting mechanisms is that they must pause the execution

of applications executing on the target to ensure consistency. SnipSnap does not suffer

from this drawback. Figures 5.7 and 5.8 quantify these benefits. We plot the slowdown

in runtime (lower is better) with benchmark averages, minima, and maxima, as we vary

on-package DRAM capacity. We separate performance based on how we externalize

snapshots: NICs with 100Gbps, 40Gbps, and 10Gbps throughput, and a solid-state

storage disk (SSD) with sequential write throughput of 900MBps. Larger on-package
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DRAM (and hence, larger CoW areas) offer more room to store pages that have not

yet been included in the snapshot. Faster methods to externalize snapshot entries allow

the CoW area to drain quicker. Some of the configuration points that we discuss are

not yet in wide commercial use. For example, the AMD Radeon R9, a high-end chipset

series supports only up to 4GB of on-package DRAM. Similarly, 40Gbps and 100Gbps

NICs are expensive and not yet in wide use.

Figure 5.7 shows results collected on our hardware emulator, assuming that 50%

of on-package DRAM is devoted to the CoW area during snapshot mode. We vary

the size on-package DRAM from 512MB to 8GB, and assume 16GB off-chip DRAM.

Further, our hardware emulator assumes that on-package DRAM is implemented as a

page-level fully-associative cache. We show the performance slowdown due to ideal-

ized current snapshotting mechanisms, as we take 1 and 10 snapshots. By idealized,

we mean approaches like virtualization-based or TrustZone-style snapshotting which

require pausing applications on the target to achieve consistency, but which assume

unrealizable zero-overhead transition times to TrustZone mode or zero-overhead vir-

tualization. Despite idealization, current approaches perform poorly. Even with only

one snapshot, runtime increaseas by 1.2-2.4× using SSDs. SnipSnap fares much bet-

ter, outperforming the idealized baseline by 1.2-2.2×, depending on the externalization

medium and on-package DRAM size. Snapshotting more frequently (i.e., 10 snapshots)

further improves performance by 10.5-22×. Naturally, the more frequent the snapshot-

ting, the more SnipSnap’s benefits, though our benefits are significant even with a single

snapshot.

Similarly, Figure 5.8 quantifies SnipSnap’s performance improvements versus cur-

rent snapshotting, assuming a baseline with state-of-the-art UNISON cache implemen-

tations of on-package DRAM [116], as UNISON cache sizes are varied from 512MB to

8GB. Some key differences between UNISON cache and our fully-associative hardware

emulated DRAM cache is that UNISON cache also predicts 64B blocks within pages

that should be moved on a DRAM cache miss, and also is implemented as 4-way set as-

sociative (as per the original paper). Nevertheless, Figure 5.8 (collected assuming SSDs

as the externalizing medium) shows that SnipSnap outperforms idealized versions of
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Figure 5.8: Performance impact of snapshot acquisition from simulator studies with
UNISON cache [116]. SnipSnap outperforms idealized versions of current snapshot-
ting approaches by as much as 22× (graphs show benchmark averages, maxima, and
minima).
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Figure 5.9: Average performance with varying off-chip DRAM size. Bigger off-chip
DRAM takes longer to snapshot, so SnipSnap becomes even more advantageous over
current idealized approaches. These results assume UNISON cache with 8GB, split
50:50 in CoW:non-CoW mode during snapshot acquisition and SSDs, taking just one
snapshot.

current snapshotting mechanisms by as much as 22×, and by as much as 3× when just

a single snapshot is taken.

SnipSnap’s performance also scales far better than idealized versions of current

snapshotting with increasing off-chip DRAM capacities. Figure 5.9 compares the per-

formance slowdown due to one snapshot, as off-chip DRAM varies from 16GB to 64GB.

These results are collected using UNISON cache (8GB in normal operation, 4GB in

snapshot mode, with 4GB CoW), and assuming SSDs. Consider idealized versions

of current snapshotting approaches – runtime increases from 3× with 16GB off-chip

DRAM to as high as 5.3× with 64GB of memory, when taking just a single snapshot.
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Figure 5.10: Performance impact of snapshot acquisition. This chart reports the ob-
served performance of user applications executing on the target during snapshot acqui-
sition, normalized against their observed performance during regular execution, i.e., no
snapshot acquisition. For each of the seven benchmarks, we report the performance for
various sizes of die-stacked memory (50% of which is the CoW area), and for different
methods via which the write out in Figure 5.5 writes out the snapshot.

More snapshots further exacerbate this slowdown. While SnipSnap also suffers slow-

down with larger off-chip DRAM, it still vastly outperforms current approaches by as

much as 5× at 64GB of off-chip DRAM.

So far, we have shown application slowdown comparisons of SnipSnap versus current

approaches. Figure 5.10 focuses, instead, on per-benchmark runtime slowdown using

SnipSnap, when varying the size of on-package DRAM and the externalizing medium.

Results show that most benchmarks, despite being data-intensive, remain unaffected

by SnipSnap’s snapshot acquisition. The primary exceptions to this are memcached,

cfar, and mnist, though their slowdowns vastly outperform current approaches (see

Figures 5.7 and 5.8).

5.6.2 CoW Analysis

As discussed in Section 5.3, benchmark runtime suffers during snapshot acquisition only

if the CoW area fills to capacity. When this happens, the benchmark stalls until some

pages from the CoW area are copied to the snapshot. Figure 5.11 illustrates this fact,

and explains the performance of memcached. Figure 5.11 shows the fraction of the

CoW area utilized over time during the execution of memcached. The fraction of time

for which the CoW area is at 100% directly corresponds to the observed performance

of memcached. When CoW utilization is below 100%, as is the case in Figure 5.11(b)

the performance of memcached is unaffected.

Next, Figure 5.12 quantifies the performance impact of varying the percentage of

die-stacked memory devoted to the CoW area. We vary the split from 50-50% to 25-

75% and 75-25% for CoW-nonCoW portions, for various externalization techniques. We
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Figure 5.11(a) 512MB of on-chip memory Figure 5.11(b) 1GB of die-stacked memory

Figure 5.11(c) 2GB of die-stacked memory Figure 5.11(d) 4GB of on-chip memory

Figure 5.11: CoW area utilization over time for memcached. Y-axis shows CoW
area percentage used to store page frames that have not yet been included in the
snapshot. X-axis denotes execution progress. We measured CoW utilization for ev-
ery 1024 snapshot entries recorded. The two charts show CoW utilization trends for
various sizes of die-stacked memory and for different methods to write out the snap-
shot: . Snapshot acquisition does not impact
memcached performance when CoW utilization is below 100%.

present the average results across all workloads for various total die-stacked memory

sizes (individual benchmarks follow these average trends). Figure 5.12 shows that per-

formance remains strong across all configurations, even when the percentage of DRAM

cache devoted to CoW is low, which potentially leads to more stalls in the system.

Furthermore, low CoW only degrades performance at smaller DRAM cache sizes of

512MB, which are smaller than DRAM cache sizes expected in upcoming systems.

Finally, note that the set-associativity of the DRAM cache devoted to the CoW

region influences SnipSnap’s performance. Specifically, consider designs like UNISON

cache [116] (and prior work like Footprint cache [117]), which use 4-way set-associative

(and 32-way set-associative) page-based DRAM caches. In these situations, if an entire

set of the DRAM cache becomes full (even if other sets are not), applications executing

on the target must pause until pages from that set are written to the external medium

(i.e., SSD, network, etc.). Even in the worst case (all the application’s data maps to a
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50-50 25-75 75-25 25-75 75-25 50-50 25-75 75-25
512M 8G
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Normalized Average Performance During Snapshot Acquisition
(Varying CoW-nonCoW split) net-100 net-40 net-10 ssd

50-50
2G

Figure 5.12: Performance impact of snapshot acquisition for different CoW-Cache par-
titions. Y-axis shows average performance impact of all benchmarks to take a snapshot,
varying CoW-nonCoW partition for different cache sizes. X-axis shows different total
sizes of die-stacked memory and various ways in which to partition die-stacked memory
for CoW (50%, 25% and 75% for CoW).
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Figure 5.13: Performance as size and set-associativty of UNISON cache changes. Lower
UNISON cache size and set-associativity increases the chances that a set in the CoW
region fills up and pauses execution of applications on the target. Results are shown
using SSDs, varying off-chip DRAM capacity from 16GB to 64GB, UNISON cache size
from 512MB to 8GB, and set-associativity from 2 to 4 way.

single set so the CoW region always stalls application execution and writing pages to the

external medium takes as long as the entire snapshot time) this is no worse that idealized

versions of current approaches. However, we find that this scenario does not occur in

practice. Figure 5.13 quantifies SnipSnap’s performance versus an ideal baseline for one

snapshot, as off-chip DRAM capacity is varied from 16GB to 64GB, on-chip DRAM

capacity is varied from 512MB to 8GB, and associativity is varied between 2-way and

4-way. Larger DRAM caches and higher associativity improve SnipSnap’s performance,

but even when we hamper UNISON cache to be 512MB and 2-way set-associative, it

outperforms idealized current approaches by ∼2×. More frequent snapshots further
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increase this number.

Beyond these studies, we also considered quantifying SnipSnap’s performance on

a direct-mapped UNISON cache. However, as pointed out by prior work, the conflict

misses induced by direct-mapping in baseline designs without snapshotting are so high,

that no practical page-based DRAM cache design is direct-mapped [116, 117]. There-

fore, we begin our analysis with 2-way set-associative DRAM caches, showing that

SnipSnap consistently outperforms alternatives.

5.7 Related Work

As Section 5.1 discusses, there is much prior work on remote memory acquisition based

on virtualization, trusted hardware and external hardware. Figure 5.1 characterizes

the difference between SnipSnap and this prior work. Aside from these, there are other

mechanisms to fetch memory snapshots for the purpose of debugging (e.g., [99, 200, 90,

198, 119]). Because their focus isn’t forensic analysis, these systems do not assume an

adversarial target OS.

Prior work has leveraged die-stacking to implement myriad security features such

as monitoring program execution, access control and cryptography [157, 208, 209, 149,

207, 104, 106, 105]. This work observes that die-stacking allows processor vendors to

decouple core CPU logic from “add-ons,” such as security, thereby improving their

chances of deployment. Our work also leverages additional circuitry on the die-stack to

implement the logic needed for memory acquisition. Unlike prior work, which focused

solely on additional processing logic integrated using die-stacking, our focus is also on

die-stacked memory, which is beginning to see deployment in commercial processors.

While SnipSnap also uses the die-stack to integrate additional cryptographic logic and

modify the memory controller, it does so to enable near-data processing on the contents

of die-stacked memory.

Prior work has also used die-stacked manufacturing technology to detect malicious

logic inserted into the processor. The threat model is that of an outsourced chip man-

ufacturer who can insert Trojan-horse logic into the hardware. This work suggests

various methods to combat this threat using die-stacked manufacturing. For example,
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one method is to divide the implementation of a circuit across multiple layers in the

stack, each manufactured by a separate agent, thereby obfuscating the functionality of

individual layers [107, 204]. Another method is to add logic into die-stacked layers to

monitor the execution of the processor for maliciously-inserted logic [43, 42, 41].

There is prior work on near-data processing to enable security applications [93] and

modifying memory controllers to implement a variety of security features [194, 212].

There is also work on using programmable DRAM [141] to monitor systems for OS and

hypervisor integrity violations. Unlike SnipSnap, which focuses on fetching a complete

snapshot of DRAM, and must hence consider snapshot consistency, this work only

focuses on analysis of specific memory pages, e.g., those that contain specific kernel

data structures. It also cannot access CPU register state, making it vulnerable to

address-translation attacks [113, 130].

5.8 Conclusion

Vendors are beginning to integrate memory and processing logic on-chip using on-

package DRAM manufacturing technology. We have presented SnipSnap, an applica-

tion of this technology to secure memory acquisition. SnipSnap has a hardware TCB,

and allows forensic analysts to collect consistent memory snapshots from a target ma-

chine while offering performance isolation for applications executing on the target. Our

experimental evaluation on a number of data intensive workloads shows the benefit of

our approach.
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Chapter 6

Summary

The primary motivation for the creation of virtual memory was to improve programma-

bility [76, 77, 36]. Security, process isolation, and memory protection were added nat-

urally to the basic abstraction. Overall, virtual memory’s ability to encompasses all

these features has made it vital to the success of computing.

This thesis looks at two major trends, heterogeneity and ”big data”, and their in-

terplay with the programmability and security of modern systems. Motivated by these

two trends, we show how to build efficient virtual memory and complement its security

with hardware techniques. We studied address translation bottlenecks and proposed

solutions for CPU, GPU, and accelerator TLBs. Our first approach was to increase

TLB utilization by enabling multiple page sizes to share the same (unique) TLB struc-

ture. Additionally, we enable TLB coalescing, which ultimately can compress many

TLB entries into one. We achieved a larger TLB coverage for the same hardware bud-

get, thus decreasing TLB misses. This TLB design is general and can be applied to

any processing element. We evaluated our approaches with ”big data” workloads for

CPUs, GPUs, and virtualized CPUs.

Our second approach to improve programmability in heterogeneous systems was

also motivated by the idea of higher utilization of TLBs. We observed that per-core

multi-level TLBs replicate entries across per-core TLBs. Inspired by the last-level cache

idea, a last-level TLB eliminates replication but suffers from higher access latency. To

overcome this problem, we co-designed distributed TLBs with a SMART interconnect,

which enables a low-latency TLB lookup with a shared last-level TLB design.

Our third and last approach to improve programmability applies to GPUs and

throughput oriented accelerators running in a system with unified address space. TLB
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pressure can stall them completely due to handling address translation requests. We

observed that by reordering some of the address translation requests, we could minimize

the stalling periods and therefore reduce the address translation costs.

Finally, we studied mechanisms to complement VM protection. We design a memory

snapshotting mechanism that provides a faithful, consistent and high-efficient copy

of the physical memory, thus enabling many forensic analyses tools to perform their

operations on the data and improve the security checks and guarantees we need.

All the approaches presented in this thesis help maintain the virtual memory, re-

ducing its performance overheads and improving its security mechanisms.
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Appendix A

SnipSnap TLA+ Model

module SnipSnap
extends Naturals, Integers, Sequences, FiniteSets, TLC

variables mem, memInt , ctl , buf , cache, cow , memQ , snapCtl , snapIdx , memt0,
memCopied

constant Proc, Adr , Val , QLen, CacheSets, CacheWays

assume (QLen ∈ Nat) ∧ (QLen > 0)
3D-Cache size must be even and greater than 1

assume (CacheSets ∈ Nat) ∧ (CacheSets ≥ 1)
assume (CacheWays ∈ Nat) ∧ (CacheWays ≥ 1) CacheWays has to be power(2)

Memory requests

MReq
∆
= [op : {“Rd”}, adr : Adr ]
∪ [op : {“Wr”}, adr : Adr , val : Val ]

NoVal
∆
= choose v : v /∈ Val

Init
∆
= ∧mem = choose m ∈ [Adr → Val ] : true
∧ ctl = [p ∈ Proc 7→ “rdy”]
∧ buf = [p ∈ Proc 7→ NoVal ]
∧ cache = [row ∈ (0 . . CacheSets − 1) 7→ [a ∈ Adr 7→ NoVal ]]
∧ cow = [row ∈ (0 . . CacheSets − 1) 7→ [a ∈ Adr 7→ NoVal ]]
∧memQ = 〈〉
∧memInt ∈ {〈choose p ∈ Proc : true, NoVal〉}
∧ snapCtl = − 1
∧ snapIdx = 0
∧memt0 = NoVal
∧memCopied = NoVal

TypeInvariant
∆
=

∧mem ∈ [Adr → Val ]
∧ ctl ∈ [Proc → {“rdy”, “busy”, “waiting”, “done”}]
∧ buf ∈ [Proc → MReq ∪Val ∪ {NoVal}]
∧ cache ∈ [(0 . . CacheSets − 1)→ [Adr → Val ∪ {NoVal}]]
∧ cow ∈ [(0 . . CacheSets − 1)→ [Adr → Val ∪ {NoVal}]]
∧memQ ∈ Seq(MReq)
∧ snapCtl ∈ { − 1, 0, 1}
∧ snapIdx ∈ Adr ∪ {NoVal}
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∧memt0 ∈ [Adr → Val ] ∪ {NoVal}
∧memCopied ∈ [Adr → Val ] ∪ {NoVal}

Total cache size

CacheSize
∆
= CacheSets ∗ CacheWays

Cache usage

CacheRowUsage(r)
∆
= Cardinality({a ∈ Adr : cache[r ][a] 6= NoVal})

RecCUsage[r ∈ Int ]
∆
= if r = − 1 then 0

else CacheRowUsage(r) + RecCUsage[r − 1]
CacheUsage

∆
= RecCUsage[CacheSets − 1]

CoW usage

CoWRowUsage(r)
∆
= Cardinality({a ∈ Adr : cow [r ][a] 6= NoVal})

RecCoWUsage[r ∈ Int ]
∆
= if r = − 1 then 0

else CoWRowUsage(r) + RecCoWUsage[r − 1]
CoWUsage

∆
= RecCoWUsage[CacheSets − 1]

Safety checks

Limit the number of valid entries in the cache & CoW area

CacheProp
∆
= ∧ CacheUsage + CoWUsage ≤ CacheSize
∧ ∀ r ∈ (0 . . CacheSets − 1) : ∧ CacheRowUsage(r) ≤ CacheWays

∧ CoWRowUsage(r) ≤ CacheWays

SnapshotConsistency
∆
=

(snapCtl = 1 ∧ snapIdx = NoVal ∧memt0 6= NoVal) =⇒ memt0 = memCopied

Processor ← → Memory system interface

Req(p)
∆
= ∧ ctl [p] = “rdy”

when snapCtl equals − 1, we are not in snapshot mode

when snapCtl equals 0, we are in transition to snapshot mode

when snalCtl equals 1, we are in snapshot mode

we can’t receive/process requests while transitioning from

regular mode to snapshot mode.

∧ snapCtl 6= 0
∧ ∃ req ∈ MReq :
∧memInt ′ = 〈p, req〉 Send request to the mem. interface

∧ buf ′ = [buf except ! [p] = req ]
∧ ctl ′ = [ctl except ! [p] = “busy”]

∧ unchanged 〈mem, memQ , cache, cow , snapCtl , snapIdx , memt0,
memCopied〉

Rsp(p)
∆
= ∧ ctl [p] = “done”
∧memInt ′ = 〈p, buf [p]〉 Request recv’ed

∧ ctl ′ = [ctl except ! [p] = “rdy”]
∧ unchanged 〈mem, memQ , cache, cow , buf , snapCtl , snapIdx , memt0,

memCopied〉
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Read miss − req not found in the cache, send to memory. We don’t

look at the CoW area after a Read req , it may contain stale data

RdMiss(p)
∆
=

let row
∆
= if buf [p] 6= NoVal then (buf [p].adr%CacheSets) else − 1

CSize is the cache size based on the current mode the system is

CSize
∆
= if snapCtl ≤ 0 then CacheSize else CacheSize ÷ 2

in ∧ (ctl [p] = “busy”) ∧ (buf [p].op = “Rd”)
∧ CacheUsage < CSize Any free CL in the cache?

∧ CacheRowUsage(row) < CacheWays Any free CL in the set?

∧ cache[row ][buf [p].adr ] = NoVal
∧ Len(memQ) < QLen
∧memQ ′ = Append(memQ , buf [p])
∧ ctl ′ = [ctl except ! [p] = “waiting”]
∧ unchanged 〈memInt , mem, cache, cow , buf , snapCtl , snapIdx , memt0,

memCopied〉

Write-allocate write miss - we actually perform a read operation here

Writing the address to memory is done in DoWr(p)

WrMissRdAlloc(p)
∆
=

let row
∆
= if buf [p] 6= NoVal then buf [p].adr%CacheSets else − 1

CSize is the cache size based on the current mode the system is

CSize
∆
= if snapCtl ≤ 0 then CacheSize else CacheSize ÷ 2

in ∧ (ctl [p] = “busy”) ∧ (buf [p].op = “Wr”)
∧ CacheUsage < CSize Any free CL in the cache?

∧ CacheRowUsage(row) < CacheWays Any free CL in the set?

∧ cache[row ][buf [p].adr ] = NoVal
∧ Len(memQ) < QLen
∧memQ ′ = Append(memQ , [op 7→ “Rd”, adr 7→ buf [p].adr ])
∧ ctl ′ = [ctl except ! [p] = “waiting”]
∧ unchanged 〈memInt , mem, cache, cow , buf , snapCtl , snapIdx , memt0,

memCopied〉

Evict(adr)
∆
=

let row
∆
= adr%CacheSets

in No outstanding request for address ’adr’

∧ ∀ pr ∈ Proc : (ctl [pr ] = “waiting”) =⇒ (buf [pr ].adr 6= adr)
∧ cache[row ][adr ] 6= NoVal
write back cache[row ][adr ] to the memory

∧ Len(memQ) < QLen
∧memQ ′ = Append(memQ , [op 7→ “Wr”, adr 7→ adr , val 7→ cache[row ][adr ]])
clear the entry

∧ cache ′ = [cache except ! [row ][adr ] = NoVal ]
∧ unchanged 〈memInt , mem, buf , ctl , cow , snapCtl , snapIdx , memt0,

memCopied〉

DoRd requests always get data from the cache

RdMiss will bring data from the memory to the cache

DoRd(p)
∆
=
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let row
∆
= buf [p].adr%CacheSets

adr
∆
= buf [p].adr

in ∧ ctl [p] ∈ {“busy”, “waiting”}
∧ buf [p].op = “Rd”
∧ cache[row ][adr ] 6= NoVal
∧ buf ′ = [buf except ! [p] = cache[row ][adr ]]
∧ ctl ′ = [ctl except ! [p] = “done”]
∧ unchanged 〈memInt , mem, memQ , cache, cow , snapCtl , snapIdx ,

memt0, memCopied〉

DoWr(p)
∆
=

let r
∆
= buf [p]

row
∆
= buf [p].adr%CacheSets

CSize is the cache size based on the current mode the system is

CSize
∆
= if snapCtl ≤ 0 then CacheSize else CacheSize ÷ 2

in ∧ ctl [p] ∈ {“busy”, “waiting”}
∧ CoWUsage < CSize We can’t write if CoW is full

∧ CoWRowUsage(row) < CacheWays We can’t write if CoW ’s set is full

∧ (r .op = “Wr”)
∧ cache[row ][r .adr ] 6= NoVal
∧ cow ′ = if ∧ snapCtl = 1

∧ snapIdx 6= NoVal
∧ r .adr ≥ snapIdx
∧ cow [row ][r .adr ] = NoVal
then [cow except ! [row ][r .adr ] = cache[row ][r .adr ]]
else cow

∧ cache ′ = if cache[row ][r .adr ] 6= NoVal
then [cache except ! [row ][r .adr ] = r .val ]
else cache

∧ buf ′ = [buf except ! [p] = NoVal ]
∧ ctl ′ = [ctl except ! [p] = “done”]
∧ unchanged 〈memInt , mem, memQ , snapCtl , snapIdx , memt0,

memCopied〉

Memory/cache operation

vmem is a helper function used in MemQRd

vmem
∆
=

let f [i ∈ 0 . . Len(memQ)]
∆
=

if i = 0 then mem
else if memQ [i ].op = “Rd”

then f [i − 1]
else [f [i − 1] except ! [memQ [i ].adr ] =

memQ [i ].val ]
in f [Len(memQ)]

MemQWr
∆
= let r

∆
= Head(memQ)

in ∧ (memQ 6= 〈〉) ∧ (r .op = “Wr”)
∧mem ′ = [mem except ! [r .adr ] = r .val ]
∧memQ ′ = Tail(memQ)
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∧ unchanged 〈memInt , buf , ctl , cache, cow , snapCtl , snapIdx ,
memt0, memCopied〉

MemQRd
∆
=

let r
∆
= Head(memQ)

row
∆
= r .adr%CacheSets

in ∧ (memQ 6= 〈〉) ∧ (r .op = “Rd”)
∧memQ ′ = Tail(memQ)
∧ cache ′ = [cache except ! [row ][r .adr ] = vmem[r .adr ]]
∧ unchanged 〈memInt , mem, buf , ctl , cow , snapCtl , snapIdx ,

memt0, memCopied〉

Request the snapshot

StartSnapReq
∆
= ∧ snapCtl = − 1
∧ snapCtl ′ = 0
∧ snapIdx ′ = 0
∧ unchanged 〈memInt , mem, memQ , buf , ctl , cache, cow ,

memt0, memCopied〉

Wait until all outstanding mem requests are finished

so we can flush the cache, and effectively start the snapshot

StartSnapAck
∆
=

∧ snapCtl = 0
No more outstanding memory requests

∧ ∀ p ∈ Proc : ctl [p] = “rdy”
All the cache entries have been written-back

∧ ∀ row ∈ (0 . . CacheSets − 1) : ∀ a ∈ Adr : cache[row ][a] = NoVal
Flush the cache and cow

∧ cache ′ = [row ∈ (0 . . CacheSets − 1) 7→ [a ∈ Adr 7→ NoVal ]]
∧ cow ′ = [row ∈ (0 . . CacheSets − 1) 7→ [a ∈ Adr 7→ NoVal ]]
Flush the memory queue

∧ Len(memQ) = 0
Switch to snapshot mode

∧ snapCtl ′ = snapCtl + 1
make a copy of the memory to verify if our snapshot method

∧memt0′ = mem
∧memCopied ′ = choose m ∈ [Adr → Val ] : true
∧ unchanged 〈memInt , mem, memQ , buf , ctl , snapIdx 〉

Taking the snapshot − increaments snapIdx as we perform the snapshot

We also evict entries in the CoW area that have already been copied

TakingSnap
∆
=

let row
∆
= snapIdx%CacheSets

in ∧ snapCtl > 0
∧ snapIdx 6= NoVal
∧ snapIdx < Cardinality(Adr) snapIdx is zero-based

∧memCopied ′ = case cow [row ][snapIdx ] 6= NoVal →
[memCopied except ! [snapIdx ] = cow [row ][snapIdx ]]2
∧ cache[row ][snapIdx ] 6= NoVal
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∧ cow [row ][snapIdx ] = NoVal →
[memCopied except ! [snapIdx ] = cache[row ][snapIdx ]]2

other →
[memCopied except ! [snapIdx ] = mem[snapIdx ]]

∧ snapIdx ′ = if snapIdx < Cardinality(Adr)− 1
then snapIdx + 1
else NoVal

∧ cow ′ = [cow except ! [row ][snapIdx ] = NoVal ]
∧ unchanged 〈memInt , mem, memQ , buf , ctl , cache, snapCtl , memt0〉

Next
∆
= ∨ ∃ p ∈ Proc : ∨ Req(p) ∨ Rsp(p)

∨ RdMiss(p) ∨WrMissRdAlloc(p)
∨DoRd(p) ∨DoWr(p)

∨ ∃ a ∈ Adr : Evict(a)
∨MemQWr ∨MemQRd
∨ StartSnapReq ∨ StartSnapAck ∨ TakingSnap

Spec
∆
=

Init ∧2[Next ]〈memInt ,mem,memQ , buf , ctl , cache, cow , snapIdx , snapCtl ,memt0,memCopied〉

theorem Spec =⇒ 2(TypeInvariant ∧ CacheProp ∧ SnapshotConsistency)
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