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ABSTRACT OF THE DISSERTATION

The Rectangular Maximum Agreement Problem:

Applications and Parallel Solution

By Ai Kagawa

Dissertation Director:

Professor Jonathan Eckstein

A NP-hard rectangular maximum agreement (RMA) problem finds a “box” that

best discriminates between two weighted datasets. We respectively describe a special-

ized parallel branch-and-bound method and a greedy heuristic to solve RMA exactly or

approximately. Our computational results show that a new parallel branch-and-bound

method can solve larger RMA problems exactly in less time than a previously imple-

mented parallel branch-and-bound procedure and Gurobi, a mixed integer programming

(MIP) solver.

We describe two applications of RMA: LPBoost-based two-class classification and

a rule-enhanced penalized regression. The first classification application constructs a

stronger classifier from a set of weighted voting classifiers by maximizing the margin

between the two observation classes and penalizing classification errors. The weighted

voting classifiers are multidimensional “box”-based rules. The second regression appli-

cation formulates a L1-penalized regression model using multidimensional “box”-based

rules as additional explanatory variables.

Due to exponentially large number of possible multidimensional rules, they are dy-

namically generated in both applications. In contrast to prior approaches to solve these
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problems, we draw heavily on standard (but non-polynomial-time) mathematical pro-

gramming techniques, enhanced by parallel computing. Our rule-adding procedure is

based on the classical column generation method for high-dimensional linear program-

ming. The pricing problem for our column generation procedure reduces to the RMA

problem, and it is solved exactly or approximately. This method resembles boosting

in machine learning. Furthermore, we propose a discretization method before solv-

ing RMA. It reduces the level of difficulty for RMA while still maintaining prediction

or classification accuracy in the applications. The prediction accuracy of our models

are tested by cross-validation. The resulting classification and regression methods are

computation-intensive, but our computational tests suggest that they outperform prior

methods at making accurate and stable predictions.
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Chapter 1

Introduction and Literature Review

1.1 Rectangular Maximum Agreement Problem

This thesis concerns the rectangular maximum agreement (RMA) problem and machine

learning. The goal of machine learning is understanding existing patterns in data and

predicting outcomes from given input values. We will apply RMA to two problems

in machine learning, classification and regression. The RMA problem is based on two

types of data samples, one marked positive and the other negative. For example, the

positive group might consist of people who bought a specific product online, and the

negative group is those who viewed the same product online but did not buy it. Each

sample observation contains the classification along with a possibly large number of nu-

merical attributes including categorical information (e.g. gender and ethnicity) and/or

numerical values (e.g. age and height). The goal is to use the samples to devise a

scheme that will classify new, previously-unseen data points as either positive or nega-

tive as accurately as possible. Using the example sample, the classification determines

the characteristic of people who bought the product and who did not.

RMA is a NP-hard problem which arises naturally as a subproblem of the ma-

chine learning applications studied here. Traditionally, such subproblems have been

approximately solved by heuristic methods. Building on earlier work by Eckstein and

Goldberg [12] for the maximum monomial agreement (MMA) problem, we have devel-

oped a specialized, exact branch-and-bound method for RMA. MMA is the special case

of RMA in which explanatory data are binary. MMA can be applied to both classifi-

cation and regression problems through a binarization procedure, with the drawback

the binarization process can be more time consuming than solving the problem itself.

Using a RMA solver allows one to directly process non-binary data.
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1.1.1 Branch-and-Bound

RMA is solved by a branch-and-bound (B&B) algorithm. B&B is one of the most pop-

ular methods to solve NP-hard combinatorial optimization problems [6]. B&B finds an

exact optimal solution by searching the entire feasible space using a search tree. The

root node of the search tree contains the entire search space, and B&B recursively parti-

tions the search space into smaller disjoint spaces or subproblems. As these partitioned

subproblems are created, they are stored in a live subproblem list. In each subproblem,

B&B tries to find an improved incumbent, the current best solution, and a subproblem

bound which is a lower or upper bound in the case of the minimization or maximiza-

tion, respectively. Any solution in the search space region specified by the subproblem

can be no better than this bound. Frequently, a feasible solution is discovered by a

heuristic before and during the B&B search, and it is stored as the incumbent. If a

bound of a subproblem is not better than the incumbent, then the subproblem should

be discarded or fathomed from the live subproblem list since any feasible solutions in

the subproblem cannot be better than the incumbent. Therefore, using better heuristic

incumbents and improved bounding functions speeds up the B&B search process by

fathoming more subproblems in the live subproblem list. The B&B algorithm termi-

nates and finds the optimal solution whenever there are no more subproblems in the

live subproblem list.

Eager and lazy bounding approaches to B&B have a different order of bounding

and separating processes. Eager bounding computes a bound as soon as each sub-

problem is created, and it is then stored in the live subproblem list to be split into

further subproblems later. On the other hand, lazy bounding first splits a subproblem

without calculating each child’s bound, and each child is stored in the live subproblem

list by setting its bound to the parent’s bound. If the bounding process is easier than

the separating process, then eager bounding is preferable; else the lazy bounding is

preferable since this choice may improve the run time by processing less time consum-

ing operations first. RMA prefers lazy bounding since its bound computation is time

consuming.
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Three common methods to select the next subproblem to explore are:

1. Best-First Search (BeFS) selects the subproblem with the optimal bound among

all live subproblems.

2. Depth-First Search (DFS) selects the most recently generated subproblem in the

deepest level of the search tree, thereby the live subproblem list as a last-in,

first-out stack.

3. Breath-First Search (BFS) selects subproblems in shallower levels of the search

tree before subproblems in the deeper levels, thereby the live subproblem list as

a first-in, first out queue.

Using BFS to select the next subproblem is generally much slower than the other two

methods since the size of tree grows exponentially with depth, and it is often necessary

to explore deeply into some parts of the tree in order to find an optimal solution or prove

its optimality. DFS has an advantage of requiring less memory storage space since it

only requires storing information about the current subproblem and its ancestors. BeFS

has the memory disadvantage of having to store more live subproblems than DFS.

However, using BeFS minimizes the number of subproblems that have to be explored.

Since the bounding computation is time consuming in the RMA solver, BeFS is often

the preferable method.

1.2 Statistical Learning

Statistical learning utilizes statistical methods to construct a regression function or a

classifier using given data. Suppose we have m observation vectors X1, . . . , Xm ∈ Rn,

with matching response values y1, . . . , ym ∈ Z for classification and y1, . . . , ym ∈ R

for regression. For a two-class classification problem, each observation is classified as

positive or negative, yi = +1 or yi = −1, respectively. The goal is to construct a

classifier f̂ : Rn → {−1,+1} which minimizes the number of misclassified instances for

unseen samples. For regression, each response yi is a possibly noisy evaluation of an

unknown true prediction function f : Rn → R at Xi, that is, yi = f(Xi) + εi, where
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εi ∈ R represents the noise or measurement error. The goal is to estimate f by some

f̂ : Rn → R for regression such that f̂(Xi) is a good fit for yi, that is, |f̂(Xi) − yi|

tends to be small. The estimate f̂ may then be used to predict the response value

y corresponding to a newly encountered observation x ∈ Rn through the prediction

ŷ = f̂(x).

A classical linear regression model is one simple example of the many possible tech-

niques one might employ for constructing f̂ . The classical regression approach to this

problem is to posit a particular functional form for f̂(Xi) (for example, an affine func-

tion of Xi) and then use an optimization procedure to estimate the parameters in this

functional form. The standard linear regression is:

yi = β0 +
n∑
j=0

βjxij + εi, i = 1, . . . ,m, (1.1)

where β0 ∈ R is a constant term, each βj ∈ R is a linear coefficient, and εi ∈ R is a

random residual for each observation.

1.2.1 Model Evaluation

The performance of classifier and predictor is generally evaluated by a loss function

L(f̂(X), y), and also called a fit measure for in the case of regression problem. For both

classification and regression, the goal is to minimize L(f̂(X), y).

The following loss function, called the hinge loss, is common for classification prob-

lems:

L(f(X), y) = max(0, 1− yf̂(X)) (1.2)

=
∣∣∣1− yf̂(X)

∣∣∣
+
. (1.3)

Here, yif̂(Xi) is 1 if Xi is correctly classified and −1 if it is incorrectly classified.

Hence, this loss function returns 0 for the correct classification or 2 for the incorrect
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classification. The square loss function for classification is:

L(f(X), y) = (1− yf̂(X))2. (1.4)

If it is correctly classified, then the loss function is 0; else the loss function is 4.

Two common loss functions in regression are the sum of squared errors of the pre-

diction function,

L(f̂(X), y) = (y − f̂(X))2, (1.5)

and the sum of absolute errors of the prediction function,

L(f̂(X), y) =
∣∣∣y − f̂(X)

∣∣∣ . (1.6)

Their averages are the mean square error (MSE) and the mean absolute error (MAE):

MSE =
1

m

m∑
i=1

(yi − f̂(Xi))
2 (1.7)

MAE =
1

m

m∑
i=1

∣∣∣yi − f̂(Xi)
∣∣∣ . (1.8)

They both measure how well the prediction function f̂ predicts the true response values

y from the explanatory variables X.

1.2.1.1 MSE Depomposition

Assume that the error term is an i.i.d. (independent and identically distributed) random

variable ε ∼ N(0, σ2
ε ) where σε is its standard deviation. The square prediction error

can be split into reducible and irreducible errors as:

E[(y − ŷ)2] = E[(f(X)− f̂(X))2]︸ ︷︷ ︸
Reducible

+ Var[ε],︸ ︷︷ ︸
Irreducible

(1.9)
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where E[(f(X)− f̂(X))2] is a reducible error, and Var[ε] is an irreducible error [23]. A

proof of the decomposition (1.9) is shown below.

Lemma 1.2.1. The squared prediction error can be divided into the reducible error and

irreducible error terms as shown in (1.9).

Proof.

E[(y − ŷ)2] (1.10)

= E[(f(X) + ε− f̂(X))2] (1.11)

= E[f(X)2 + ε2 + f̂(X)2 + 2εf(X)− 2f(X)f̂(X)− 2εf̂(X)] (1.12)

= E[f(X)2 − 2f(X)f̂(X) + f̂(X)2] + E[ε2] + 2E[ε]E[f(X)]− 2E[ε]E[f̂(X)] (1.13)

= E[(f(X)− f̂(X))2] + V ar[ε]. (1.14)

(1.11) is derived by substituting y = f(X) + ε and ŷ = f̂(X). By expanding the

square in (1.11), (1.12) is obtained. By the linearity of expectation, (1.13) is obtained.

(1.14) is obtained by substituting E[ε] = 0 and V ar(ε) = E(ε2) − E[ε]2 = E(ε2) since

ε ∼ N(0, σ2
ε ).

Since the irreducible error is the variance associated with the error term of the responses

y, we cannot minimize the irreducible error and can only minimize the reducible error.

The reducible error can be also split into the bias and variance of the predictor f̂(X).

Therefore, the square prediction error is:

E[(y − ŷ)2] = (f(X)− E[f̂(X)])2 + Var[f̂(X)] + Var[ε] (1.15)

= Bias[f̂(X)]2 + Var[f̂(X)] + Var[ε] (1.16)

where Var[f̂(X)] is the variance and Bias[f̂(X)] = f(X) − E[f̂(X)] is the bias of the

prediction function. The proof is shown in Lemma 1.2.2. The bias is the difference

between the value given by the unknown true prediction function f and the expected

value derived by the prediction function f̂ . The variance measures the sensitivity of our

model. A high variance model has a larger change in the response value with respect
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(a) MSE decomposition [15] (b) Prediction errors for training vs test samples
[29]

Figure 1.1: Bias-Variance Tradeoff

to a small change in the input values, vice versa.

Lemma 1.2.2. The reducible error can be split into the squared bias and variance of

f̂ , as shown in (1.16).

Proof.

E[(f(X)− f̂(X))2] = E[(f(X)2 − 2f(X)f̂(X) + f̂(X)2] (1.17)

= E[f(X)]2 − 2E[f(X)]E[f̂(X)] + E[f̂(X)2] (1.18)

= f(X)2 − 2f(X)E[f̂(X)] + E[f̂(X)]2 + V ar[f̂(X)] (1.19)

= (f(x)− E[f̂(X)])2︸ ︷︷ ︸
Bias(f̂)2

+V ar[f̂(X)]︸ ︷︷ ︸
V ar(f̂)

(1.20)

(1.17) is obtained by expanding the square. By the linearity of expectation, (1.18)

is obtained. Since f(X) is the true prediction function, E[f(X)] = f(X). Also,

E[f̂(X)2] = E[f̂(X)]2 + V ar[f̂(X)] since V ar[f̂(X)] = E[f̂(X)2] − E[f̂(X)]2. Hence,

(1.19) is derived, and it can be formulated as the squared bias and variance of the

prediction function f̂ , as shown in (1.20).

The goal is to find a prediction function f̂ that minimizes the sum of errors from the

variance and bias of f̂ . However, there is a tradeoff between the bias and variance of

the predictor, as shown in Figure 1.1(a). Model complexity indicates the difficulty or
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sensitivity of the model, and a model involving a relatively high-degree polynomial or

more explanatory terms is considered more complex. In Figure 1.1(a) and 1.1(b), the

horizontal axis indicates the level of model complexity, the model complexity increases

from left to right.

Suppose the original dataset is partitioned into testing and training datasets. A

prediction model f̂ is trained on the training dataset. A model that minimizes a given

loss function over the training dataset may in some cases be over-complex and can

be too specific for the given training dataset. Hence, the prediction function has poor

performance on the testing dataset even though it has good performance on the training

datasets. This phenomenon is called overfitting , and is a common problem in machine

learning. Overfitting is caused by high variance and low bias of f̂ . On the other hand,

underfitting is due to low variance and high bias of f̂ on a testing dataset, so the

model has poor performance on both the training and testing datasets. Underfitting

is the left side of the optimal model complexity M∗, and overfitting is its right side in

Figure 1.1(a) and 1.1(b). TotalError in Figure 1.1(a) indicates the prediction error on

the testing samples in Figure 1.1(b). It is minimum if we choose the optimal model

complexity at M∗. Therefore, we want to find the model with close to the optimal

model complexity to avoid overfitting and underfitting.

1.2.2 Model Selection: Regularization and Cross-Validation

Two standard techniques to prevent overfitting are regularization and cross-validation.

The regularization technique adds a regularization term R(f) to the loss function, and

the goal is to minimize the sum of the loss function and the regularization term, leading

to the model of the form:

min
f
L(f(x), y) + λR(f), (1.21)

where λ ≥ 0. If λ is too large, the coefficients β of the standard regression tends to

be small and the model prediction f̂ is not close to the true prediction function f even

though the model has smaller sensitivity to the explanatory variables. Therefore, the
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(a) Lasso penalty (b) Ridge regression penalty

Figure 1.2: Illustration of Penalties in 2D [23]

model has high bias and low variance. If λ is too small, some of the coefficients β can

be too large so the model is too sensitive to the explanatory variables even thought its

prediction function f̂ is close to the true prediction function f . Therefore, choosing λ

is important to minimize the prediction error on the testing dataset.

Three common regularization methods in regression are L1, L2, and a combination

of L1 and L2 regularized terms of the coefficient vector β. These regularizations make

β smaller or sparse. Assume that the loss function is the sum of squared prediction

errors, and these three regularized models are [31]:

1. Lasso (L1 penalty terms of the coefficients): R(β) =
∑n

j=1 |βj |

2. Ridge Regression or Tikhonov Regularization (L2 penalty terms of the coeffi-

cients): R(β) =
∑n

j=1 β
2
j

3. Elastic Net (a combination of Lasso and Ridge Regression):

R(β) = λ1
∑n

j=1 |βj |+ λ2
∑n

j=1 β
2
j where λ1, λ2 ≥ 0.

Figure 1.2 illustrates an example of the lasso and ridge regression penalties in 2

dimensions. Red ellipses indicate the different levels of the square loss function, and

the loss function is same for any β chosen on the same ellipse. A model with β̂ in the

center of the ellipses has the smallest square loss, and the loss increases by choosing β
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Figure 1.3: An example of 5-fold cross-validation [24]

on a ellipse far from the center. L1 and L2 regularizations constrain β to be on the in-

tersection of the L1 and L2 constraint (within the green region) and the ellipse centered

at β̂. The major difference between L1 and L2 regularizations is that L1 regularization

makes β sparse by setting some βj to 0. On the other hand, L2 regularization tends

to make β small but not exactly 0. Since they both construct less complex models,

both may prevent overfitting. Since L1 regularization tends to give a sparser β, the L1

regularization model is easier to interpret. Therefore, we use L1 regularization for our

regression application.

Cross-validation is another method to test for and prevent overfitting. First, the

original dataset is randomly partitioned into N nearly equal size subsets. Initially,

the last block of the partitions is a testing dataset and the rest of the partitions is a

training dataset. The model is trained using the training dataset and tested using the

testing dataset. Second, the (N − 1)st partition is the testing dataset and the rest of

the partitions form the training dataset. This process is repeated N times, and called

N -fold cross-validation. Figure 1.3 shows an example of 5-fold cross validation. The

best regularization parameter λ is often chosen using cross-validation.

Bootstrapping denotes randomly selecting testing and training datasets from the

original dataset, and repeating the N times. This procedure may often select the

same observations to be testing or training data unequal numbers of times, and some
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observations may never be selected to be testing samples. On the other hand, cross-

validation gives all observations equal frequency of being testing and training data.

Therefore, cross-validation is a more accurate testing procedure for overfitting since it

tests a given model using all samples.

1.2.3 Ensemble Learning

For our classification and regression applications, we are interested in cases in which a

concise candidate functional form for f̂ is not readily apparent, and we wish to estimate

f̂ by searching over a very high-dimensional space of parameters. We use boosting tech-

niques to build our models, and boosting is an ensemble learning technique. Ensemble

learning means combining multiple models to obtain a better prediction or classifica-

tion model. In particular, boosting is iteratively adding one or more “weak learner”

models, obtained by solving a subproblem formulated using the current classification or

regression errors, to the current model. Boosting is generally time consuming due to the

sequential iterative procedure, but it may construct a useful model. A weighted voting

classifier takes a weighted sum of the outputs of multiple constituent weak learner mod-

els, and then classifies an observation depending on whether the weighted sum exceeds

some threshold.

AdaBoost (Adoptive Boosting) [17] by Freund and Schapire is a boosting algorithm

to solve a classification problem. Adaboost iteratively finds a weak learner which min-

imizes the sum of misclassification errors, and constructs the combination of weighted

voting classifiers after adding the weak learner to the current ensemble. The most popu-

lar way to obtain each weak learner is using a decision tree, and each observation weight

is initially 1/m. In each iteration, the weights are updated based on an exponential

loss function, and then they are normalized.

LPBoost is another boosting algorithm for a classification problem. It maximizes a

margin of the separating boundary between the two observation classes while decreasing

the classification errors by a combination of weighted voting classifiers with the margin.

The weak classifiers are generally constructed by a decision tree. Since the number of

possible weak classifiers is exponentially large, LPBoost is generally solved via a column
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generation method [11]. Our first application of RMA is an extension of LPBoost using

the RMA B&B algorithm to solve each subproblem exactly, instead of using a decision

tree, to improve our LPBoost performance.

Bagging or bootstrap aggregating is creating K sets of m′ < m samples, where

the m′ samples are selected randomly with replacement. Using each set of samples,

it creates a classifier or prediction function. The final model takes the average of

K classifiers or prediction functions. Breiman [5] proposed the method of random

forests, which constructs f̂ by training regression trees on multiple random subsamples

of the data, and then averaging the resulting predictors. Bagging and random forests

can be applied for both classification and regression. Random forests is a modified

version of bagging, differing from bagging is that it randomly chooses n′ < n features

to build models when creating decision trees. A typical choice is n′ = n/3 for regression

and n′ =
√
n for classification. Bagging and random forests are bootstrapping, not

boosting. Since bootstrapping does not have any sequential iterative procedures, the

bootstrapping procedure can be parallelized. Therefore, bootstrapping has a potential

run time advantage over boosting.

Another boosting algorithm for regression is RuleFit by Friedman et al. [19], which

enhances L1-regularized regression by generating box-based rules to use as additional

explanatory variables. This work empirically demonstrated that the absolute error of

linear model is larger than that of rule-based model, and that combined linear and

rule-based model performed better than these two. Given a, b ∈ Rn with a ≤ b, the

rule function r(a,b) : Rn → {0, 1} is given by

r(a,b)(x) = I
(
∧j∈{1,...,n}(aj ≤ xj ≤ bj)

)
, (1.22)

that is r(a,b)(x) = 1 if a ≤ x ≤ b (componentwise) and r(a,b)(x) = 0 otherwise. An

example of such a rule (for a standard blood workup) might be “0.6 ≤ Creatinine ≤ 0.8

and Hematocrit ≤ 35”. RuleFit generates rules through a two-phase procedure: first,

it determines a regression tree ensemble, and then, in a second phase, it decomposes

these trees into rules and determines the regression model coefficients (including for the
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rules).

The approach of Dembczyski et al. [9] generates rules more directly (without having

to rely on an initial ensemble of decision trees) within gradient boosting [18] for non-

regularized regression. In this scheme, a greedy procedure generates the rules within

a gradient descent method that runs for a predetermined number of iterations. Aho

et al. [1] extended the RuleFit method to solve more general multi-target regression

problems. For the special case of single-target regression, however, their experiments

suggest that random forests and RuleFit outperform several other methods, including

their own extended implementation and the algorithm of [9]. Compared with Random

Forests and other popular learning approaches such as kernel-based methods and neural

networks, rule-based approaches have the advantage of generally being considered more

accessible and easier to interpret by domain experts. Rule-based methods also have a

considerable history in classification settings, as in for example [30], [7], and [10].

Our second application of RMA is a rule-enhanced penalized linear regression pro-

cedure. We call this iterative optimization-based regression procedure REPR (Rule-

Enhanced Penalized Regression). Its output models resemble those of RuleFit, but our

methodology draws more heavily on exact optimization techniques from the field of

mathematical programming. While it is quite computationally intensive, its prediction

performance appears promising. As in RuleFit, we start with a linear regression model

(in this case, with L1-penalized coefficients to promote sparsity), and enhance it by syn-

thesizing rules of the form (1.22). We incrementally adjoin such rules to our (penalized)

linear regression model as if they were new observation variables. Unlike RuleFit, we

control the generation of new rules using the classical mathematical programming tech-

nique of column generation. Our employment of column generation roughly resembles

its use in the LPBoost ensemble classification method of [11].

Column generation dates back to [14, 20]; see for example Section 7.3 of [21] for

a recent textbook treatment. Column generation involves cyclical alternation between

optimization of a restricted master problem (in our case a linear or convex quadratic

program) and a pricing problem that finds the most promising new variables to adjoin

to the formulation. In our case, the pricing problem is equivalent to the RMA problem.
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Chapter 2

Rectangular Maximum Agreement

2.1 Problem Definition

Suppose there are m observations X1, . . . , Xm ∈ Rn, each having n attributes. Let

xij be the (i, j)th element of the resulting matrix X, that is, the value of attribute j

in observation i. Each observation i = 1, . . . ,m has a weight wi ∈ R. For any set

S ⊆ {1, . . . ,m}, let w(S) =
∑

i∈S wi. For the purpose of the RMA problem, zero-

weight observations may be discarded. Non-zero-weight observations are partitioned

into the “positive” and “negative” subsets, Ω+ ⊂
{
i ∈ {1, . . . ,m} | wi > 0

}
and

Ω− ⊂
{
i ∈ {1, . . . ,m} | wi < 0

}
.

Given two vectors a, b ∈ Rn, let B(a, b) be the “box” {x ∈ Rn | a ≤ x ≤ b}. Fig-

ure 2.1 shows a simple box in two dimension. Given input data as described previ-

ously, the “coverage” of B(a, b) consists of the indices of the observations falling within

B(a, b), that is CvrX(a, b) = {i ∈ {1, . . . ,m} | a ≤ xi ≤ b}. Figure 2.1 shows an ex-

ample in which observation 1 is covered but observation 2 is not covered by the box

b2

a2

a1 b1

X1

X2

Figure 2.1: A box in two dimensions: Observation 1 is covered by the box, but obser-
vation 2 is not covered by the box.
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Algorithm 1 Discretization algorithm

1: Input: X ∈ Rm×n, δ ≥ 0
2: Output: X ∈ Nm×n, ` ∈ Nn
3: ProcessData:

4: for j = 1 to n do
5: `j ← 0
6: Sort x1j , . . . , xmj and set (k1, . . . , km) such that xk1j ≤ xk2j ≤ · · · ≤ xkmj
7: x̄k1,j ← 0
8: for i = 1 to m− 1 do
9: if xki+1j − xkij > δ · CI95%(xj) then `j ← `j + 1

10: x̄ki+1j ← `j
11: end for
12: `j ← `j + 1
13: end for
14: return (X, `)

B(a, b). The rectangular maximum agreement (RMA) problem is then formulated as:

max
∣∣w(CvrX(a, b)

)∣∣
s.t. a, b ∈ Rn.

Essentially implicit in this formulation is the constraint that a ≤ b, since if a 6≤ b

then CvrX(a, b) = ∅ and the objective value is 0, the smallest possible. Moreover, the

Monomial Maximum Agreement (MMA) problem is the special case that X1, . . . , Xm ∈

{0, 1}n [12].

2.1.1 Preprocessing and Restriction to Natural Numbers

Any RMA problem instance may be converted to an equivalent instance in which all

the observation data are integer. Essentially, for each coordinate j = 1, . . . , n, one may

simply record the distinct values of xij and replace each xij with its ordinal position

among these values. Algorithm 1, with its parameter δ set to 0, performs exactly

this “discretization” procedure, outputing an equivalent data matrix X ∈ Nm×n and a

vector ` ∈ Nn whose jth element is `j =
∣∣⋃m

i=1{xij}
∣∣. Algorithm 1’s output values x̄ij

for attribute j vary between 0 and `j − 1.

The number of distinct values `j for each explanatory variable j strongly influences
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the difficulty of the RMA problem. To obtain easier problem instances at the cost

of implicitly searching a smaller set K of possible box rules in our column generation

application, one may set the parameters of Algorithm 1 to combine nearby values into

common “bins”. Essentially, if δ > 0, the algorithm bins together consecutive values xij

that are within relative tolerance δ, resulting in a smaller number of distinct values `j

for each explanatory variable j. The comparison between successive variable values on

line 9 of Algorithm 1 uses δ scaled by the 95% central confidence interval of xj , denoted

by CI95%(xj) and defined to be the difference between the 2.5% and 97.5% quantiles of

xj . This comparison procedure provides some problem-adaptive scaling but limits the

influence of extreme values of explanatory variables.

In cases where an attribute has a large number of closely-spaced values, Algorithm 1

can aggregate the input data into excessively large bins. To avoid this problem, we use

the following procedure: if the values in any bin span a range greater than ρCI95%(xj)

for some parameter ρ, the bin is broken into sub-bins by recursively applying Algo-

rithm 1 to just the data within the bin. This process is repeated recursively until

no sub-bin spans more than a fraction ρ of the 95% central confidence interval of its

containing bin. Our recommended value of ρ is ρ = 0.05.

2.2 RMA MIP Formulation

Figure 2.2 shows a mixed integer programming (MIP) formulation for the RMA prob-

lem. Constraints (2.2) and (2.3) ensure that the objective value is the maximum abso-

lute value of the sum of the covered observation weights. If s = 1, constraint (2.2) is in-

active; else if s = 0, constraint (2.3) is inactive since adding 2(
∑m

i=1 |wi|) to ±
∑m

i=1wiqi

provides a loose bound on the objective. If a value xij is not covered for attribute j,

then zj,xij = 0, and constraint (2.4) ensures qi = 0. If the observation i is covered in all

dimensions, the right-hand side of constraint (2.5) leads to qi = 1. For each attribute

j, constraints (2.6) and (2.7) require that there is exactly one distinct value for the re-

spective lower and upper bounds for each attribute. Constraints (2.8)-(2.13) implicitly

ensure that the lower bound of an attribute is less than equal to its upper bound. For

each attribute j, zjk = 1 if k ∈ {0, . . . , `j − 1} is a covered value of attribute j, else it
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max φ (2.1)

ST φ ≤
m∑
i=1

wiqi + 2s

(
m∑
i=1

|wi|

)
(2.2)

φ ≤ −
m∑
i=1

wiqi + 2(1− s)

(
m∑
i=1

|wi|

)
(2.3)

qi ≤ zj,xij ∀i, j (2.4)

qi ≥
n∑
j=1

zj,xij − (n− 1) ∀i (2.5)

`j−1∑
k=0

ljk = 1 ∀j (2.6)

`j−1∑
k=0

ujk = 1 ∀j (2.7)

zj,−1 = 0 ∀j (2.8)

zj,`j = 0 ∀j (2.9)

zjk ≤ zj,k−1 + ljk ∀j, k (2.10)

zjk ≤ zj,k+1 + ujk ∀j, k (2.11)

ljk ≤ zjk ∀j, k (2.12)

ujk ≤ zjk ∀j, k (2.13)

ljk ∈ {0, 1} ∀j, k (2.14)

ujk ∈ {0, 1} ∀j, k (2.15)

0 ≤ zjk ≤ 1 ∀j, k (2.16)

0 ≤ qi ≤ 1 ∀i (2.17)

where
φ objective value
s 1 for positive objective value and 0 for negative
qi 1 if observation i is covered, else 0
ujk 1 if k is the upper bound of attribute j, else 0
ljk 1 if k is the lower bound of attribute j, else 0
zjk 1 if k is a covered value of attribute j, else 0

Figure 2.2: A MIP formulation of the RMA problem
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k -1 0 1 2 3 4 5 6

zjk 0 0 1 1 1 1 0 0
ujk — 0 0 0 0 1 0 —
ljk — 0 1 0 0 0 0 —

Table 2.1: An example of MIP formulation, for `j = 6

is 0; zjk = 0 if k is 0 or `j . Table 2.2 shows an example of how constraints (2.8)-(2.13)

are satisfied.

The number of variables and constraints in the formulation are m+2n+3
∑n

j=1 `j+2

and mn + m + 4n + 4
∑n

j=1 `j + 2, respectively. Due to the large number of variables

and constraints for the MIP formulation, Gurobi [22] could not solve some larger RMA

instances we experimented with. Therefore, we developed a customized parallel parallel

branch-and-bound algorithm for the RMA problem class. Section 2.7.3 compares the

performance of Gurobi on the MIP formulation with the algorithms we now describe.

2.3 A Branch-and-Bound Algorithm for RMA

In the specialized branch-and-bound scheme, each subproblem is defined by upper and

lower bounds on the vectors a and b defining the box. Specifically, each subproblem P is

characterized by four vectors a(P ), a(P ), b(P ), b(P ) ∈ Nn, and represents the portion of

the search space of vector pairs (a, b) for which a(P ) ≤ a ≤ a(P ) and a(P ) ≤ b ≤ b(P ).

Figure 2.3(a) depicts the potential choices of aj and bj for a given a(P ), a(P ), b(P ), b(P ).

Henceforth, assume that the data X have already been preprocessed as described in

Section 2.1.1. A valid subproblem conforms to the conditions a(P ) ≤ a(P ), b(P ) ≤

b(P ), a(P ) ≤ b(P ), and a(P ) ≤ b(P ). However, a(P ) ≤ b(P ) is not necessary. The

root problem R of the branch-and-bound tree is given by aj(R) = bj(R) = 0 and

aj(R) = bj(R) = `j − 1, j = 1, . . . , n, where `j is the number of effectively distinct

values in attribute j, as output from the recursive discretization method of Section 2.1.1.

Figure 2.3(b) depicts the potential choices of aj and bj for the root problem. At the root

subproblem, aj and bj may be any natural number within [0, `j − 1], as long as aj ≤ bj .

Writing each subproblem as P = (a, a, b, b), the root subproblem may be expressed as

R = (0, `− 1,0, `− 1), where ` ∈ Zn is the vector consisting of the `j .
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Subproblem:
aj aj bj bj

aj︷ ︸︸ ︷ bj︷ ︸︸ ︷
(a) Potential choice of aj and bj

Root:
0 `j − 1

aj = bj aj = bj
(∀j)

aj≤bj︷ ︸︸ ︷
(b) Potential choice of aj and bj for the root problem

Figure 2.3: A graphical view of potential choice of aj and bj for a given subproblem
subproblem a, a, b, b

aj aj bj bj
xi1j xi2j

aj︷︸︸︷ bj︷︸︸︷
Figure 2.4: Graphical view of the inseparability region for attribute j when aj < bj

2.3.1 Inseparability and the Bounding Function

In branch-and-bound methods, the bounding function provides an upper bound (when

maximizing) on the best possible objective value in the region of the search space

corresponding to a subproblem. The method uses a bounding function based on an

extension of the inseparability notion developed for the MMA problem in [12]. Consider

any subproblem P = (a, a, b, b) and two observations i1 and i2. As shown in Figure 2.4,

if aj < bj , any values in [aj , bj ] are always covered by any permitted selection of aj

and bj . If xi1j = xi2j or aj ≤ xi1j , xi2j ≤ bj for each j = 1, . . . , n, then Xi1 , Xi2 ∈ Nn

are inseparable with respect to a, b ∈ Nn, in the sense that any box B(a, b) with a ≤ a

and b ≥ b must either cover both of Xi1 , Xi2 or neither of them. When a ≥ b, the

inseparability condition reduces to Xi1 = Xi2 .

Inseparability with respect to a, b is an equivalence relation; denote the equivalence

classes it induces among the observation indices 1, . . . ,m by E(a, b). That is, observation

indices i1 and i2 are in the same equivalence class of E(a, b) ifXi1 andXi2 are inseparable

with respect to a, b.
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Our bounding function for each subproblem P = (a, a, b, b) is

g(a, a, b, b) = max

{ ∑
C∈E(a,b)

[
w(C ∩ CvrX(a, b))

]
+
,
∑

C∈E(a,b)

[
w(C ∩ CvrX(a, b))

]
−

}
,

(2.18)

where [d]+ = max{d, 0} and [d]− = max{−d, 0} denote the positive and negative parts

of a number, respectively. The reasoning behind this bound is that each possible box

allowed by (a, a, b, b) must either cover or not cover the entirety of each C ∈ E(a, b).

The first argument to the “max” operation reflects the situation that every equivalence

class C with a positive net weight is covered, and no classes with negative net weight

are covered; this is the best possible situation if the box ends up covering a higher

weight of positive observations than of negative. The second “max” argument reflects

the opposite situation, the best possible case in which the box covers a greater weight

of negative observations than of positive ones.

2.3.1.1 Equivalence Class Computation

This section describes the algorithm to compute equivalence classes for a subproblem

P = (a, a, b, b). The algorithm starts with a set of indices M ⊆ {1, 2, . . . ,m} containing

all non-zero-weight observation indices, since zero-weight observations have no effect

on the objective function. For each attribute j = 1, 2, . . . , n, the algorithm performs a

stable bucket sort of M based on the column vector xj and discards observations with

xij < aj or bj < xij , since they are not covered by the current subproblem. Moreover,

xi1j , xi2j are treated as being equal if aj ≤ xi1j , xi2j ≤ bj , due to inseparability. Since

each bucket sort takes O(m) time and there are n attributes, the total run time is

O(mn). Then, by scanning the sorted vector M containing non-zero-weight observation

indices covered by the current subproblem, the equivalence classes E can be created.

Each equivalence class Ee stores a representative observation index “obsIdx” and a

total weight “wt”. The procedure to create equivalence classes is shown in Algorithm

2. The createEquivClass function in line 5 and 11 of Algorithm 2 initializes a new

equivalence class Ee with its observation index and weight.
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Observation
Attribute i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i10 i12

j3 0 0 0 0 0 0 1 1 1 1 1 1
j2 0 0 1 1 2 2 0 0 1 1 2 2
j1 0 1 0 1 0 1 0 1 0 1 0 1

(a) An example dataset

Attribute a a b b

j3 0 1 0 1
j2 0 2 0 2
j1 0 1 0 1

R

0

0

0

i1
e1

1

i2
e2

1

0

i3
e3

1

i4
e4

2

0

i5
e5

1

i6
e6

1

0

0

i7
e7

1

i8
e8

1

0

i9
e9

1

i10

e10

2

0

i11

e11

1

i12

e12

j3:

j2:

j1:

M :
E :

(b) An initial equivalence class tree for the root node of the search tree

Attribute a a b b

j3 0 1 0 1
j2 0 1 2 2
j1 0 1 0 1

R

0

0

0

i1
e1

1

i2
e2

1,2

0

{i3, i5}
e3

1

{i4, i6}
e4

1

0

0

i7
e5

1

i8
e6

1,2

0

{i9, i11}
e7

1

{i10, i12}
e8

j3:

j2:

j1:

M :
E :

(c) An equivalence class tree for a subproblem having aj < bj for some
attribute j (in this case, j2)

Figure 2.5: Equivalence class construction examples
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Algorithm 2 Creating an Initial Equivalence Class

1: Input: M (sorted, covered observation indices), X ∈ Rm×n (data),
w ∈ Rm (observation weights), P = (a, a, b, b) (subproblem)

2: Output: E (Equivalence Classes)
3: createInitEquivClasses:

4: e← 1 ; i1 ← dequeue(M); i2 ← dequeue(M)
5: Ee ← createEquivClass(i1, wi1)
6: loop
7: if isInseparable(Xi1 , Xi2 , P ) then
8: Ee.wt← Ee.wt + wi2
9: else

10: e← e+ 1; i1 ← i2
11: Ee ← createEquivClass(i1, wi1)
12: end if
13: if M = ∅ break
14: else i2 ←dequeue(M)
15: end loop
16: return E

A tree can be used to visualize the structure of the equivalence classes. For example,

suppose that the dataset has 12 observations and 3 attributes as shown in Figure 2.5(a).

Now, consider the root subproblem, with b ≤ a, as shown in Figure 2.5(b). After the se-

quence of the stable bucket sorts described above, we may envision createEquivClass

as constructing the equivalence-class tree and the vector M shown in Figure 2.5(b).

The isInseparable function in line 7 of Algorithm 2 checks whether two observations

are inseparable; if the two observations are inseparable, the function returns true, oth-

erwise false. Since observations in the same equivalence classes must be contiguous in

the sorted observation index vector M , it is sufficient to compare adjacent element of

M to construct the equivalence classes. The isInseparable function checks whether

or not the consecutive two observations in M are in the same equivalence class by

comparing attribute values in order from the leaf level of the tree to the root level.

As soon as it detects that two observations are not in the same equivalence class, the

algorithm no longer compares the rest of the attribute values. It is relatively efficient

to compare two consecutive observations’ attribute values in order from the leaf level to

the root level, since deeper-level attributes change more frequently than shallower-level

attributes. The resulting initial equivalence-class tree for the example data is shown
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in Figure 2.5(b). Let E be a vector of sorted and covered equivalence class indices.

Computing the bounding function only requires scanning E and adding each equiva-

lence class’s weight to one of two possible accumulators, depending on its sign. Even

though we use a tree to depict the equivalence classes, an actual tree structure does not

have to be stored. Instead, only the vectors M and E and the equivalence classes E

are stored. Now, suppose there is a subproblem with b � a as shown in Figure 2.5(c),

within [aj2 , bj2 ] = [1, 2]. If any observations which have the exact same values for all

attributes except values within [1, 2] in attribute j2 and values of attribute j2 are within

[1, 2], they are inseparable and in the same equivalence class, as shown in Figure 2.5(c).

After creating the sorted observation list M , the running time to create initial

equivalence classes is O(mn) per subproblem, but it is usually much less. For example,

in Figure 2.5(b), since all consecutive pair values at the leaf level of the equivalence-

class tree are different, it takes O(m) time to find the initial equivalence classes using

the sorted M .

2.3.2 Branching

This section describes branching procedures in each subproblem, P = (a, a, b, b), for the

algorithm. Branching a subproblem involves choosing a coordinate j ∈ {1, . . . , n} and

a cutvalue v ∈ {aj , . . . , bj − 1}. Let a cutpoint be such a pair (j, v). There are three

possible cases, one generating three children, and the others generating two children:

Case 1: If bj < aj and v ∈ {bj , . . . , aj − 1}, then P is split into three children as shown

in the table below:

Child aj aj bj bj Explanation

Down aj v v v aj ≤ v, bj = v The box falls below v.

Middle aj v v + 1 bj aj ≤ v, bj > v The box spans [v, v + 1].

Up v + 1 v + 1 v + 1 bj aj = v + 1, bj > v The box falls above v + 1.

For cases 2 and 3, v ∈
[
aj , bj

]
\
[

min{aj , bj},max{aj , bj}
]
.
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aj bj aj bj

v v+1
Parent:

aj aj=bj=bj
Down Child:

aj aj bj bj
Middle Child:

aj=aj=bj bj
Up Child:

(a) Case 1

aj aj bj bj

v v+1
Parent:

aj aj bj bjbj
Middle Child:

aj aj bj bj
Up Child:

(b) Case 2 if aj ≤ bj

aj bj aj bj

v v+1
Parent:

aj aj bj bj
Middle Child:

aj bj aj bj
Up Child:

(c) Case 2 if bj ≤ aj

aj aj bj bj

v v+1
Parent:

aj aj bj bj
Down Child:

aj aj bj bj
Middle Child:

(d) Case 3 if aj ≤ bj

aj bj aj bj

v v+1
Parent:

aj bj aj bj
Down Child:

aj aj bj bj
Middle Child:

(e) Case 3 if bj ≤ aj

Figure 2.6: Graphical View of Branching: cutpoints are selected from the green range
in each parent subproblem, and the red range is inseparable in each child problem.

Case 2: If v ∈
[
aj , . . . ,min{aj , bj} − 1

]
, then P is split into two children, as follows:

Child aj aj bj bj Explanation

Middle aj v bj bj aj ≤ v

Up v + 1 aj bj bj aj > v

Case 3: If v ∈
[

max{aj , bj}, . . . , bj − 1
]
, then P is split into two children as shown in

the table below:

Child aj aj bj bj Explanation

Down aj aj bj v bj ≤ v

Middle aj aj v + 1 bj bj > v
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(a) Computed bounds of chil-
dren for each cutpoint

(j, v) BD BM BU

(j1, v1) .2 .7 .55
(j2, v2) .6 .7 .3

(b) Set a bound −∞ if it is lower
than the incumbent

(j, v) BD BM BU

(j1, v1) −∞ .7 .55
(j2, v2) .6 .7 −∞

(c) Descending sort on bounds
of children for each cutpoint

(j, v) B1 B2 B3

(j1, v1) .7 .55 −∞
(j2, v2) .7 .6 −∞

Table 2.2: An example of the lexicographic comparison procedures to choose the optimal
cutpoint to branch when the incumbent is 0.5

If no v meeting any of these three cases exist for any attribute j, then the subproblem

represents a single possible box, that is, a = a and b = b. Such a subproblem is a

terminal node of the branch-and-bound tree, and in such a case the RMA objective

value computed for a = a = a and b = b = b is substituted for its bound. When more

than one possible cutpoint pair (j, v) exists, as is typically the case, the algorithm must

select one. This dissertation tests four branching methods: strong branching, cutpoint

caching, binary search, and hybrid search.

2.3.2.1 Branching Rules

Generally, RMA (our algorithm to solve the RMA problems) selects the cutpoint that

minimizes the maximum bound of the resulting two or three children. Since multiple

cutpoints may be tied in this comparison, RMA ranks (or “scores”) multiple candidate

cutpoints in a lexicographic manner as follows: when a cutpoint does not have an up

or down child, then the bound of the missing child is set to negative infinity. Next,

any bound lower than the incumbent is set to negative infinity. Now, three bounds are

sorted from the highest to lowest for each cutpoint. Then, RMA compares the largest

bound of cutpoints and selects one with the minimum value. If multiple cutpoints are

tied after comparing their highest bounds, then RMA chooses one with the smallest

value among their second highest bounds. If there are still ties among some cutpoints,

RMA similarly chooses one with the smallest value among their smallest (third highest)

bounds.

Table 2.2 shows an example of the lexicographic comparison on given two cutpoints

when the current incumbent is 0.5. BD, BM , and BU respectively denote a bound value

of down, middle, and up child. First, all bounds for potential children created by these
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two cupoints were computed as shown in Table 2.2(a). Second, RMA sets the bounds

less than the incumbent to negative infinity as shown in Table 2.2(b). Third, the bounds

of 3 children for each cutpoint are sorted in descending order and denoted by B1, B2,

and B3, as shown in Table 2.2(c). Finally, in this example, the cutpoint (j1, v1) is chosen

since its second highest bound is smaller than the cutpoint (j2, v2) even though their

highest bounds are the same. In some cases, more than one cutpoint may be tied in

lexicographic comparison. Let such cutpoints be called “optimal tied cutpoints”. RMA

has three methods to select one cutpoint to branch among optimal tied cutpoints. The

first and second methods are choosing the first and the last optimal cutpoint discovered,

respectively. The third (default) method is randomly selecting one of the optimal tied

cutpoints. The first and second methods are straightforward to implement. An efficient

implementation of the third method is as follows: while computing bounds of potential

children for each cutpoint sequentially, the optimal cupoint is updated by lexicographic

comparison. If a new optimal tied cutpoint is found, it replaces the current cutpoint

with probability 1/I, where I is the number of the optimal tied cutpoints found so

far. Algorithm 3 shows pseudocode for this random cutpoint selection method. Let

B contains 3 sorted bound values (B1, B2, B3) for children potentially created by

a cutpoint (j, v). The “<” symbol on line 10 of Algorithm 3 denotes lexicographic

comparison. This method does not need to store a list of optimal tied cutpoints.

Lemma 2.3.1. Under Algorithm 3, each optimal tied cutpoint has equal probability of

being chosen.

Proof. We proceed by induction on k, the number of optimal tied cutpoints. The result

is true here for k = 1. Now, assume that k optimal tied cutpoints have been found,

and the probability of each was chosen is
1

k
. Next, we show that when a (k + 1)th

tied cutpoint is found, the probability of each tied cutpoint to be chosen is
1

k + 1
. If

the random number in line 6 is less than equal to
1

k + 1
, the (k + 1)th tied cutpoint is

chosen. Hence, the probability that the (k + 1)th tied cutpoint is not chosen is
k

k + 1
.

Furthermore, the probability that each of the previous k tied cutpoints is chosen is

k

k + 1
· 1

k
=

1

k + 1
.
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Algorithm 3 Selecting the best cutpoint randomly among the optimal tied cutpoint
by the lexicographical comparison

1: Input:
(B, j, v) (current cutpoint to inspect and its bounds),
(B∗, I, j∗, v∗) (current optimal cutpoint, its bounds and # of tied cutpoints)

2: Output: (B∗, I∗, j∗, v∗) (the best cutpoint to branch)
3: RandomBestCutointSelection:

4: if B = B∗ then
5: I ← I + 1;
6: Generate r (a uniform random number between 0 and 1)

7: if r ≤ 1

I
then

8: (B∗, j∗, v∗)← (B, j, v)
9: end if

10: else if B < B∗ then
11: (B∗, I∗, j∗, v∗)← (B, 1, j, v)
12: end if
13: return (B∗, I∗, j∗, v∗)

2.3.2.2 Strong Branching

In strong branching, all applicable cutpoints (j, v) in each subproblem are tested, and

the algorithm selects one by the lexicographic comparison, and tiebreaking procedures

described in the previous section. Strong branching is a standard technique in branch-

and-bound algorithms: it involves evaluating the bounds of all the potential children of

the current search node and is the strategy used in [12] for the related MMA problem.

The strong branching process may be improved by using the equivalence class represen-

tation in Section 2.3.1.1 and analyzing the branching possibilities in a particular order

dictated by that representation; see Section 2.3.2.6 below.

2.3.2.3 Cutpoint Caching

Strong branching can be much more time consuming for the RMA problem than for

MMA, because the number of potential cutpoints is often much larger. Therefore, sev-

eral alternative branching procedures are considered. Our experiments showed that

randomly sampling cutpoints greatly inflated the search tree. Eventually, an effective

heuristic of “cutpoint caching” was discovered. It is based on the tendency of strong

branching to select the same cutpoints at many different points in the search tree.
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Essentially, every time strong branching is performed, the selected cutpoint is stored

in a cache. For each new subproblem, the heuristic checks what fraction of all possi-

ble cutpoints for the subproblem are already in the cache. If this fraction is above a

threshold parameter τ , only the cached cutpoints are checked, compared using the same

method as for strong branching; otherwise, the algorithm performs strong branching

and potentially adds another cutpoint to the cache. This method significantly acceler-

ated the branch-and-bound search: the branching selection is considerably faster than

strong branching on average, but the search tree did not inflate significantly. As the

cutpoint threshold τ decreases, the run time improved for most datasets, as shown

in Section 2.7.3. In practice, it appeared advantageous to consider only the cached

cutpoints if there is at least one applicable cached cutpoint.

2.3.2.4 Binary Cutpoint Search

For attributes j with a large number of distinct values (that is, large `j), binary cutpoint

search is a second alternative to strong branching. This method begins by choosing a

cutpoint v which is close as possible to (aj + bj)/2, subject to the restriction that it

cannot lie within [aj , bj). The next step is to generate the next candidate in a list of

possible cutpoints by “diving” to either the left or right of v. Let g− and g+ be the

bounds of down and up child obtained by branching at v, respectively. For a cutpoint

without a down or up child, the missing child bound is replaced by that of the middle

child. If g− ≤ g+, then the next cutpoint to be evaluated is the midpoint of aj and v,

rounded to an integer; conversely, if g− > g+, then the next cutpoint to be evaluated is

the midpoint of v and bj , rounded to an integer. A graphical depiction of this process

is shown in Figure 2.7.

This diving process is repeated recursively until no more than three possible cut-

points remain. Of these remaining cutpoints and all those encountered earlier in the

diving process, the lexicographically best of these choices is selected using the same

ranking and selection procedures already described. Across all attributes j, the lexico-

graphically best of these choices is selected, using the same tiebreaking procedures.

When each attribute has a large number of potential cutpoints `j , this binary search
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aj bj

g− ≤ g+

v1

v1a1 v2

g− > g+

v2 v1v3

g− ≤ g+

1st cutpoint:

2nd cutpoint:

3rd cutpoint:

⇓

⇓

...

Figure 2.7: An example of binary cutpoint search method: cutpoints in red region
are the potential cutpoints to branch, and the cutpoints in blue region are no longer
considered to branch in the current subproblem.

method tends to decrease running time, even though it tends to increase the size of the

branch-and-bound tree.

2.3.2.5 Hybrid Branching

A method combining both cutpoint caching and binary cutpoint search may be imple-

mented by setting a threshold parameter η and proceeded as follow: let `′j the total

number of applicable cutpoints for attribute j. For attributes with `′j ≥ η, RMA per-

forms binary cutpoint search. During binary cutpoint search, the cutpoint selected in

each subproblem is always stored in the cache. For attributes j having `′j < η, RMA

implements cutpoint caching, which may in turn “fall back” on strong branching when

a sufficient number of applicable cutpoints are not found in the cache.

2.3.2.6 Rotation Algorithm

Strong branching requires computation of the equivalence classes for each potential

child. Brute-force computation of the equivalence classes for all potential children

requires creation of equivalence classes for each child, taking O(mn) time per child.

There are at most O(L̂n) ⊆ O(mn) children, where L̂ = maxi
{
bj−aj+max{0, bj−aj}

}
.

The overall run time to compute the bounds of all potential children by brute force is



30

Case Child ( aj , aj , bj , bj ) Drop or Merge Procedure

1 Down ( aj , v, v, v ) Drop some equivalence classes

Middle ( aj , v, v + 1, bj ) Merge some equivalence classes

Up ( v + 1, v + 1, v + 1, bj ) Drop some equivalence classes

2 Down ( aj , aj , bj , v ) Drop some equivalence classes

Middle ( aj , aj , v + 1, bj ) Merge some equivalence classes

3 Middle ( aj , v, bj , bj ) Merge some equivalence classes

Up ( v + 1, aj , bj , bj ) Drop some equivalence classes

Table 2.3: A summary of the procedures to construct equivalence classes for each
possible child of a parent subproblem P = (a, a, b, b)

therefore O(m2n2) per subproblem.

A “rotation” algorithm reduces the effort required to recompute equivalence classes.

For each subproblem P = (a, a, b, b), equivalence classes are created as explained in

Section 2.3.1.1. To obtain equivalence classes for each child produced by each cutpoint,

it is sufficient to drop or merge equivalence classes from the parent subproblem. If

a child’s aj or bj changes and aj < bj , some equivalence classes are required to be

merged; else if a child’s aj or bj changes, it is sufficient to drop some equivalence classes

no longer covered by the child. Table 2.3 describes the drop or merge procedure required

for each potential child for each case described in Section 2.3.2. When both up and

down children are available for a cutpoint, as in Case 1 of Table 2.3, the parent bound

is equal to the sum of bounds of the up and down children. Thus, it is sufficient to

calculate the bound of only one of these children.

For each possible cutpoint (j, v), the above procedures are repeated to evaluate the

bounds of the 2 or 3 possible children. As explained above, E contains the sorted

equivalence-class indices for the parent subproblem. When dropping or merging equiv-

alence classes, it is necessary to create a new equivalence-class index list Ê for each child

since the original E must be kept for subsequent calculations. The dropping procedure

eliminates equivalence-class indices no longer covered by a down or up child. The com-

putations for dropping equivalence classes take O(`j |E|) time per attribute, since they

require constant pass through the sorted equivalence-class list E for at most `j −1 can-

didate cutvalues. To merge equivalence classes when the number of cutvalues for each

attribute is greater than 1, it is efficient to create a vector I, of the same length as E,
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Dropping classes: O(`j |E|) ⊆ O(m2)
Merging classes: O(n |E|+ `j |E|) ⊆ O(mn+m2)
Bounds of all children: O(`j |E|) ⊆ O(m2)

Overall: O(n |E|+ `j |E|) ⊆ O(mn+m2)

Table 2.4: Time to compute bounds of children for each attribute

that indicates whether or not each leaf node has the same parent node as the next leaf in

the equivalence-class list. If there is only one applicable cutvalue for an attribute, it is

not necessary to store I. Creating I takes O(n |E|) time, since the algorithm compares

attribute values from the leaf level of the equivalence-class tree to the top level. It is

efficient to stop comparing attribute values as soon as the algorithm detects that con-

secutive leaf nodes have a different parent nodes. For each middle child, the algorithm

must scan the vectors E and I to detect whether or not consecutive equivalence class

indices in E have to be merged. If consecutive equivalence classes values in attribute

j are both within the child’s [aj , bj ] and I indicates that the leaf nodes of these two

equivalence classes have the same parent node in the equivalence-class tree, the two

equivalence classes should be merged. After constructing I, the merging process takes

O(|E|) per cutvalue for each attribute. Since there are at most `j potential cutvalues

for each attribute, this process takes O(`j |E|) time per attribute. Thus, the overall run

time to merge equivalence classes for each attribute is O(n |E|+ `j |E|) ⊆ O(nm+m2).

After merging or dropping equivalence classes, computing bounds for all children takes

O(`j |E|) per attribute, since it involves just adding the weight of each equivalence class

in E for at most `j potential cutvalues.

A summary of the computations for each attribute is shown in Table 2.4. Its esti-

mates are generally pessimistic since the number of equivalence classes and the number

of potential cutvalues become smaller as the search proceeds deeper level of the branch-

and-bound tree.

Suppose that the bound computations are processed for attribute j1, . . . , jn in order.

After computing all bounds for each child corresponding to attribute j1, all cutpoints

in attribute j2 are evaluated next. To evaluate them, the algorithm performs a stable

bucket or counting sort of E on the value of attribute j1, Section 8.2 and 8.4 of the
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textbook [8] respectively explain counting and bucket sorts. considering the insepa-

rability induced by the parent’s aj1 and bj1 values. We call this process “rotating”

the equivalence-class tree. After the equivalence classes are sorted by attribute j1, the

values of attributes j1 are represented in the shallowest level of the tree, immediately

below the root node, and the values of attributes other than j1 are “shifted down”,

that is, shown one level lower, so that the leaf nodes of the tree correspond to values

of attribute j2. If attribute j2 has no available cutvalues, then this sorting process is

skipped. Next, the algorithm considers the cutvalues for attributes j3. The rotation

procedures repeats until attribute jn−1, to evaluate cutvalues in attribute jn. Each

bucket or counting sort takes O(|E|) time and it is repeated for jn−1 attributes. Thus,

the total time to for rotating the tree is O(n |E|) per subproblem. Since the computa-

tions in Table 2.4 are repeated for n attributes, the overall running time of the bound

computations is O
(
n · (mn + m2)

)
= O(mn2 + m2n) per subproblem. Even though

this bound is very pessimistic, it is still better than the O(m2n2) bound for brute-force

strong branching.

Considering the example shown in Figure 2.8(a), which is the same example shown

in Section 2.3.1.1, let the current cutpoint be (j, v) = (j1, 0). Then, its down child is

(aj1 , aj1 , bj1 , bj1) = (0, 0, 0, 0). Equivalence classes which are not covered by the down

child are dropped from E as shown in Figure 2.8(b). For the same cutpoint, the

up child is (aj1 , aj1 , bj1 , bj1) = (1, 1, 1, 1), so the algorithm drops different uncovered

equivalence class from E as shown in Figure 2.8(c). As explained above, the up and

down children’s bounds sum to the parent’s, so only one of the them is computed. The

middle child for this cutpoint is (aj1 , aj1 , bj1 , bj1) = (0, 0, 1, 1). To compute the bound

of this child, some equivalence classes must be merged, and these indices are adjacent

in E when j = j1. The merged equivalence class list Ê is shown in Figure 2.8(d). After

computing bounds for all potential children created by the cutpoints for attribute j1,

the next step is to compute bounds for children in attribute j2. After the stable bucket

or counting sort on attribute j1, all equivalence classes that might need to be merged

to equivalence classes that might need to be merged to equivalence based on branching

on attribute j2 are adjacent in E. This transaction is illustrated in Figure 2.3.2.6. This
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ê1

1,2

0,1

{i3, i4, i5, i6}
ê4
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Figure 2.8: Graphical representation of dropping and merging equivalence classes
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Figure 2.9: Rotating equivalence-class tree

procedure then repeats for attributes j3, j4, · · · , jn in order.

2.4 Incumbent computation for each subproblem

Throughout the branch-and-bound procedure, the incumbent, or current maximum

objective value, has to be maintained. For each subproblem P = (a, a, b, b), the initial

incumbent value is the objective value given by setting (a, b) = (a, b). Then, we employ a

heuristic that attempts to improve on this value by introducing an additional restriction

(aj , bj) = (âj , b̂j) for one attribute j, where aj ≤ âj ≤ aj and bj ≤ b̂j ≤ bj .

To efficiently find a range in each dimension which might improve the incumbent, our

heuristic uses the minimization and maximization versions of the linear-time Kadane’s

continuous subarray sum algorithm, once for each attribute, and then selects the range

constraint which improves the incumbent the most. Algorithm 4 shows the maximiza-

tion version of Kadane’s algorithm. The minimization version follows a similar proce-

dure. For each attribute j, the algorithm tests the ˆ̀
j = bj − aj + 1 + max{0, bj − aj}
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Algorithm 4 Kadane’s Largest Sum Continuous Subarray

1: Input: xj ∈ Rm, (aj , aj , bj , bj), E
E (currently covered equivalence-class indices sorted by attribute j)

2: Output: ẑ ∈ R, l, u ∈ Z,
3: MaxKadaneAlgo:

4: ẑ ← −∞; z̄ ← 0; s← aj
5: for v ∈ {{aj , . . . , bj} \ {aj + 1, . . . , bj}} do
6: z ← getObjectiveValue(v, xj , E, E)
7: z̄ ← z̄ + z
8: if z̄ > ẑ then ẑ ← z̄, (l, u)← (s, v)
9: if z̄ < 0 then z̄ ← 0, s← v + 1

10: end for
11: return ẑ, l, u

distinct values that are not inseparable.

The getObjectiveValue function in line 6 of Algorithm 4 computes the objec-

tive value where (a, b) = (a, b) with an additional restriction of aj = bj = v where

v ∈
{
{aj , . . . , bj} \ {aj + 1, . . . , bj}

}
. In each subproblem, a vector M , contains non-

zero weight observation indices which are covered by (a, b). Computing the getO-

bjectiveValue function takes O(|M |) ⊆ O(m) time, since it only needs to scan M

once to compute the objective value. However, its complexity can be improved to

O(|E|) ⊆ O(|M |) ⊆ O(m) if Kadane’s algorithm is properly embedded within the ro-

tation algorithm. Since the total weight of each equivalence class is calculated for the

bound computation and the equivalence classes are sorted by attribute j considering the

inseparability of (aj , bj) in each rotation step, as shown in Section 2.3.2.6, the getO-

bjectiveValue function is computed by scanning the sorted equivalence class indices

E once for each attribute. After running the minimum and maximum Kadane’s algo-

rithms, the incumbent is updated if the absolute value of the minimum or maximum

objective value is better than the current incumbent. Therefore, the overall running

time of Algorithm 4 improved to O(|E|) from a brute force computation of O(mL̂),

where L̂ = maxj ˆ̀
j , if Kadanes’s algorithm is implemented within in the rotation algo-

rithm. Since Kadane’s algorithm is applied to n attributes, the total running time to

compute a potential incumbent in each subproblem is O(n |E|) ⊆ O(mn).
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Algorithm 5 Procedure to Compute Bounds and Incumbent with the rotation

1: M ← {i ∈ {1, 2, . . .m} | wi 6= 0}
2: for j = 1, . . . , n do M ← bucketSortObs(aj , aj , bj , bj ,M, xj)

3: (E, E)← createInitEquivClass(a, a, b, b,M,X)
4: (incumbent, an, bn) ← checkIncumbent(n,E, E , xj , w, incumbent)
5: for j = 1, . . . , n do
6: bound ← boundComputation(j, aj , aj , bj , bj , E, E , X)
7: if j = n then break
8: if aj = aj and bj = bj then continue

9: E ← bucketSortE(aj , aj , bj , bj , E, E , xj)
10: (incumbent, aj , bj) ← checkIncumbent(j, E, E , xj , w, incumbent)
11: end for

Algorithm 5 summarizes the procedures to compute bounds for all potential chil-

dren and an incumbent using the rotation algorithm. The function checkIncumbent

in lines 4 and 10 is the incumbent computation using the minimum and maximum

Kadane’s algorithms. It is implemented when the the equivalence class indices, E, is

sorted on attribute j. Leveraging the sorted equivalence class indices, E, the incumbent

computation for each attribute reduces to O(|E|). Therefore, the total time to compute

bounds for all children and search an incumbent per each subproblem is bounded by

the time to compute bounds for all children, so it is O(mn2 +m2n).

2.5 Greedy RMA Heuristic

For several reasons, we supplemented our exact branch-and-bound method for the RMA

problem by developing a heuristic solution procedure we call “greedy range search”.

Such a heuristic has several uses: first, it can be used to obtain a good starting value of

the incumbent in the branch-and-bound search, pruning the search tree and thus saving

memory, as well as obviating possible non-essential work in parallel implementations.

We run our heuristic once to attempt to find a box with maximum (positive) covered

weight, and then run it again to try to find a box with minimum (negative) covered

weight. In each case, the heuristic starts with the box B = (a, b) = (0, `− 1), covering

the entire (preprocessed) dataset. Each iteration of the heuristic then greedily selects

an attribute j to constrain, modifying the box lower bound aj and upper bound bj . To

select j, aj , and bj at each iteration of our greedy heuristic, we make use of Kadane’s
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algorithm, as given in Algorithm 4.

Consider the case in which we are attempting to maximize the covered weight of

the box. We evaluate each possible attribute j = 1, . . . , n and use Kadane’s algorithm

on an array of length `j to identify the choice of aj and bj maximizing w(B). We select

the attribute j∗ that maximizes the resulting covered weight and modify aj∗ and bj∗

accordingly.

We then iteratively repeat this procedure, considering at each iteration every at-

tribute j except the j∗ just selected in the prior iteration (changing the bounds on

this attribute cannot improve the objective function unless we first change some other

attribute bounds). At each iteration, we consider only narrowing the bounds on the

attributes (that is, increasing aj and/or decreasing bj). We continue in this manner

until the covered weight of the box cannot be increased by narrowing the bounds of

any individual attribute j.

The case of attempting to find the most negative covered box weight is similar,

substituting minimization for maximization at each step.

Figure 2.10 shows an example of this greedy range search method. For each attribute

j in each iteration, the shaded portion of each rectangle shows the attribute values

having the greatest weight (assuming maximization). In the first iteration, we initially

have all m1 = m non-zero-weight observations. We apply Kadane’s algorithm to each

attribute j = 1, . . . , n, obtaining a set of candidate objective values z1
1 , . . . , z

1
n. In the

example, we suppose that the largest of these values (in the case of maximization) is

z∗max = z1
2 ; we then modify (a2, b2), with the result that the box covers some smaller

number of observations m2 < m1 = m, and repeat the procedure. In the second

iteration, we consider further constraining each box dimension except for j = 2, which

we just modified. Supposing for the case of the example that the next attribute we

constrain is j = 1 (resulting in m3 < m2 covered observations), the third iteration

considers every attribute except j = 1; it is once again possible to consider constraining

attribute 2.

Algorithm 6 summarizes, with some simplifications, the maximization instance of
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...
...

...

. . .

Attribute 1:

Attribute 2:

Attribute 3:
...

Attribute n:

z11

z12=z
∗
max

z13

z1n

z21=z
∗
max

z23

z2n

z32

z33

z3n=z∗max

⇒ ⇒

a11 b11

a12 b12

a13 b13

a1n b1n

a21 b21

a23 b23

a2n b2n

a32 b32

a33 b33

a3n b3n

Iteration 1 Iteration 2 Iteration 3
m1 observations m2 observations m3 observations

Figure 2.10: An example of the operation of our greedy heuristic.

our greedy range search procedure, assuming that the data have already been dis-

cretized as described in Section 2.1.1. The initial objective value is the sum of weights

of all training observations,
∑m

i=1wi. The function call to MaxKadane on line 10

applies Kadane’s algorithm to the portion of the working array W between elements aj

and bj , returning the maximum contiguous subarray sum in z and extent (l, u) of the

corresponding subarray, where aj ≤ l ≤ u ≤ bj . The subroutine dropObsNotCov-

ered invoked on line 15 removes from the list of indices M any observations that are

excluded if the bounds of the box B are narrowed to (l∗, u∗) in attribute j∗. The actual

implementation is somewhat more complicated because it effectively compresses the

working array W to represent only values of each attribute j that remain represented

in the set of observations M .

Examining the complexity of Algorithm 6, the highest-complexity steps in the body

of the main for loop on lines 6-12 are lines 8-10; lines 8 and 10 has complexity O(bj−aj)⊆

O(`j) ⊆ O(m), and line 9 has complexity O(|M |) ⊆ O(m). It follows that each iteration

of the main for loop requires O(m) time. This for loop iterates over {1, . . . , n} \ j∗, so

each execution of the loop requires O(mn) time. Finally, each iteration of the while

loop except the last must remove at least one observation from the covered set M ,

since otherwise there could no objective improvement and the break condition would

trigger to terminate the loop. The call to dropObsNotCovered on line 15 can be

implemented in O
(
|M |

)
⊆ O(m) time, so it follows that the while loop will execute
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Algorithm 6 Maximum greedy range search

1: Input: n ∈ R, ` ∈ Nn (the number of distinct values in each attribute),
X ∈ Rm×n (data), w ∈ Rm (observation weights)

2: Output: z∗max ∈ R, a, b ∈ Nn
3: MaxGreedyRange(n, `, w,X):

4: z∗max ←
∑m

i=1wi; j
∗ ← −1; (a, b) ← (0, ` − 1);M = {1, . . . ,m}; allocate W ∈

Rmax{`1,...,`n}

5: while true do
6: for j ∈ {1, . . . , n} \ j∗ do
7: zmax ← z∗max

8: for v = aj , . . . , bj do W [v] = 0
9: for i ∈M do W [xij ]←W [xij ] + wi

10: (z, l, u)←MaxKadane(W,aj , bj)
11: if z > zmax then (j∗, zmax, l

∗, u∗)← (j, z, l, u)
12: end for
13: if z∗max ≥ zmax then break
14: aj∗ ← l∗; bj∗ ← u∗; z∗max ← zmax

15: M ← dropObsNotCovered(j∗, l∗, u∗,M, xj∗)
16: end while
17: return (z∗max, a, b)

at most m times and that the overall run time is O(m2n), although this is a very loose

bound. This polynomial complexity contrasts with the potentially exponential run time

of the branch-and-bound procedure.

2.6 Implementing the branch-and-bound algorithm

We implemented our branch-and-bound algorithm using PEBBL [13], an open-source

C++ framework for branch and bound. PEBBL makes it relatively straightforward to

move from a serial to a parallel implementation. Appendix A is a user guide for the

RMA code.

2.6.1 Parallel RMA

In the initial phase of a parallel search, when the number of cutpoints exceeds the

number of active search nodes of the branch-and-bound tree (the number of subproblems

in the pool used by PEBBL) and the number of active search nodes is less than the
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Algorithm 7 Selecting one cutpoint randomly among the optimal tied cutpoints in
parallel Allreduce operation

1: Input: (Bp, Ip, jp, vp), (Bq, Iq, jq, vq)
2: Output: (Bq, Iq, jq, vq)
3: ParallelRandomBestCutointSelection:

4: if Bp < Bq then
5: (Bq, Iq, jq, vq)← (Bp, Ip, jp, vp)
6: else if Bp = Bq then
7: Generate r (a uniform random number between 0 and 1)

8: if r <
Ip

Ip + Iq
then

9: (Bq, Iq, jq, vq)← (Bp, Ip + Iq, jp, vp)
10: else
11: Iq ← Ip + Iq
12: end if
13: end if
14: return (Bq, Iq, jq, vq)

number of processors, we take advantage of PEBBL’s ability to support special ramp-

up search procedures. At the beginning of the search, PEBBL can exploit parallelism

within each subproblem, rather than across the tree: all the processors synchronously

search an identical sequence of search nodes. As our implementation explores each

subproblem, it distributes a nearly equal number of cutpoints to each processor as

shown Figure 2.11. The cutpoints are sorted by attribute, so the rotation algorithm can

compute bounds efficiently. This tactic efficiently parallelizes the branching selection

procedure, the most time-consuming aspect of branch-and-bound algorithm.

In the ramp-up procedure, if the random branching option is selected, the best

cutpoint to branch is chosen randomly among ones with optimal tied bounds for the

subproblem. This choice requires implementing the random tiebreaking procedure of

Section 2.3.2.1 in a distributed manner. To this end, each processor first randomly

chooses one cutpoint among the optimal tied ones encountered using the algorithm

in Section 2.3.2.1. For each processor p, suppose Bp contains selected optimal bound

values for 2 or 3 children created by a cutpoint (jp, vp) in processor p. Let Ip be

the number of the optimal tied cutpoints Bp found in processor p. We combine the

tuples (Bp, Ip, jp, vp) from each processor within an MPI Allreduce operation using the
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Initial B&B Tree

Root

↑ For each subproblem

(j1, v1) (j2, v2) (j3, v3) (j4, v4) (j5, v5) (j6, v6). . . . . . . . . . . .︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸
⇓ ⇓ ⇓

Processor 1 Processor 2 Processor P

Cutpoint:

Processor:

Figure 2.11: Ramp-up Search process

customized random operation described in Algorithm 3. The “<” symbol on line 4 of

algorithm 7 denotes the lexicographic comparison of the vectors Bp and Bq, as explained

in Section 2.3.2.1. If Bp = Bq, the probability such that the cutpoint from processor p

is chosen is
Ip

Ip + Iq
. The MPI Allreduce operation within Algorithm 7 takes O(log P )

time, where P is the number of procedures.

We trigger PEBBL’s “crossover” to its standard asynchronous search mode when

the number of nodes in active subroblem pool becomes comparable to the number

of processors or exceeds the number of possible cutpoints. After crossover, PEBBL

asynchronously searches multiple nodes of the search tree in parallel, with individual

bounding and branching operations being handled by a single processor. To implement

cutpoint caching in asynchronously search phase, we developed a method to broad-

cast newly discovered cutpoints to other processors with relatively little redundancy.

It utilizes a hashing procedure to assign an “owning” processor to each cutpoint pair

(j, v). Whenever a processor finds an apparently new cutpoint, it sends it to the owning

processor. If the owning processor has not encountered the pair before, it broadcasts

it to all processors. In our current implementation with the cutpoint caching option,

cutpoints already chosen for branching are stored in cache during the ramp-up process.

However, only strong branching is implemented until the asynchronous search mode

begins. If cutpoint caching were to be used during ramp-up, the number of available

processors might be far greater than the number of applicable cutpoints in cache, and
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(a) Binary datasets

Datasets m n

hungheart 294 72
cleveland 297 35
diabetes 768 33
cmc bin 1,473 57
spam bin 4,601 40
spam75 bin 4,601 73

(b) Integer datasets

Datasets m n c

parkinson 195 22 1,028
climate 540 18 802
indian 583 10 628
breast 683 9 80
cmc int 1,473 9 56
car 1,728 6 15
chess 3,196 36 37
EEG 14,980 14 203
credit card 30,000 23 1,931
skin 245,057 3 765
poker 1,000,000 10 85

Table 2.5: Summary of datasets

Method Description

RMA RMA with the rotation method and strong branching
RMA CC RMA with the rotation method and cutpoint caching
RMA BS RMA with the rotation method binary cutpoint search
RMA HB RMA with the rotation method and hybrid branching
RMA BF RMA with a brute force algorithm to create equivalence classes

and strong branching
MMA Maximum Monomial Agreement solver by Goldberg [12]
MIP The MIP formulation solved by Gurobi

Table 2.6: Method descriptions

many processors would be idle. A possible improvement to the current approach might

be that when the number of applicable cutpoints is greater than the number of pro-

cessors, cutpoint caching could be adopted during ramp-up. Moreover, binary search

cutpoint is only applied during asynchronous search.

2.7 Computational results for RMA

2.7.1 Datasets and Methods

Table 2.5 summarizes both binarized and integerized datasets derived from the UCI

data repository [?]. Table 2.5(a) shows binarized datasets from [12], and Boros et al.

[4] explains the binarization process. Table 2.5(b) shows discretized datasets using the

algorithm in Section 2.1.1. For the integerized datasets, the last column of this table
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shows c, the total number of cutpoints. For the binarized datasets, c = n.

Table 2.6 summarizes the methods to solve MMA and RMA problems.

2.7.2 Serial run time improvement from cutpoint caching

Tables 2.7 and 2.8 and figures 2.12 and 2.13 show the running time and the number

of bounded subproblems for the RMA algorithm with the different cutpoint caching

threshold levels and with the strong branching method. If the cutpoint caching thresh-

old τ is 100%, the algorithm is same as the strong branching method. In tables 2.7 and

2.8, SB, CC, and SP respectively denote the number of bounded subproblems using the

strong branching method, the number of bounded subproblems using cutpoints from

the cache, and the total number of bounded subproblems, respectively, so SP = SB

+ CC. “%CC” indicates the percentage of the bounded subproblems using cutpoints

from the cache, so %CC = CC / SP. Generally, the running time of the algorithm

decreases for both binarized and integerized datasets as the cutpoint caching threshold

decreases. Therefore, it is effective to compute bounds only for applicable cutpoints

from the cache if there is at least one cached cutpoint applicable to the subproblem.

Figures 2.12 and 2.13 show the number of subproblems using strong branching in blue

and the number of subproblems using cutpoints from the cache in pink. The total num-

ber of the bounded subproblems is not sensitive to the cutpoint caching threshold level,

except for the indian and skin datasets. For indian and skin, the running time and

the total bounded subproblems significantly decrease as the cutpoint caching threshold

level decreases. A partial explanation for this behavior may be that the global bound

of the branch-and-bound algorithm may improve differently based on the choice of the

cutpoint selected among the optimal tied cutpoints, and choosing from the applicable

cached cutpoints may improve the global bound faster. Since the running time and

the total bounded subproblems fluctuate remarkably for some datasets when randomly

choosing the best cutpoint among the optimal tied ones, the results in this section are

given using the tactic of selecting the first optimal cutpoint discovered as the best one

to branch for more stable results.
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(a) cleveland

τ(%) Time SB CC SP %CC
100 0.5 165 0 165 0.0%
30 0.5 79 81 160 50.6%
20 0.5 47 104 151 68.9%
10 0.5 34 128 162 79.0%
5 0.5 28 136 164 82.9%
1 0.5 30 166 196 84.7%

(b) diabetes

τ(%) Time SB CC SP %CC
100 1.1 175 0 175 0.0%
30 1.1 84 93 177 52.5%
20 1.1 55 128 183 69.9%
10 1.0 40 127 167 76.0%
5 1.0 37 156 193 80.8%
1 1.0 27 175 202 86.6%

(c) hungheart

τ(%) Time SB CC SP %CC
100 3.5 446 0 446 0.0%
30 3.3 278 164 442 37.1%
20 2.7 184 205 389 52.7%
10 2.5 89 313 402 77.9%
5 2.1 64 302 366 82.5%
1 2.0 54 305 359 85.0%

(d) cmc bin

τ(%) Time SB CC SP %CC
100 6.2 339 0 339 0.0%
30 6.1 330 9 339 2.7%
20 5.8 293 46 339 13.6%
10 4.9 152 187 339 55.2%
5 4.4 76 266 342 77.8%
1 4.1 28 313 341 91.8%

(e) spam

τ(%) Time SB CC SP %CC
100 5.8 177 0 177 0.0%
30 5.7 148 29 177 16.4%
20 5.4 92 84 176 47.7%
10 4.8 42 127 169 75.1%
5 4.6 31 134 165 81.2%
1 5.2 27 172 199 86.4%

(f) spam75

τ(%) Time SB CC SP %CC
100 154.8 2,763 0 2,763 0.0%
30 145.6 2,052 711 2,763 25.7%
20 138.8 1,504 1,259 2,763 45.6%
10 135.5 612 2,103 2,715 77.5%
5 129.8 182 2,515 2,697 93.3%
1 130.2 55 2,777 2,832 98.1%

Table 2.7: Serial run time improvement using the cutpoint caching method for binary
datasets
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(a) breast

τ(%) Time SB CC SP %CC
100 0.6 185 0 185 0.0%
30 0.6 177 8 185 4.3%
20 0.6 141 47 188 25.0%
10 0.5 90 97 187 51.9%
5 0.5 62 126 188 67.0%
1 0.4 42 137 179 76.5%

(b) chess

τ(%) Time SB CC SP %CC
100 1.8 51 0 51 0.0%
30 1.7 47 4 51 7.8%
20 1.6 39 12 51 23.5%
10 1.5 35 18 53 34.0%
5 1.3 29 19 48 39.6%
1 1.3 25 30 55 54.5%

(c) cmc int

τ(%) Time SB CC SP %CC
100 1.0 203 0 203 0.0%
30 1.0 201 2 203 1.0%
20 1.0 195 8 203 3.9%
10 0.8 122 73 195 37.4%
5 0.7 73 130 203 64.0%
1 0.7 20 189 209 90.4%

(d) parkinson

τ(%) Time SB CC SP %CC
100 71.0 3,124 0 3,124 0.0%
20 66.6 2,582 573 3,155 18.2%
10 50.7 1,510 1,300 2,810 46.3%
5 43.5 1,179 1,443 2,622 55.0%
1 41.5 1,027 1,569 2,596 60.4%

0.1 40.4 948 1,603 2,551 62.8%

(e) indian

τ(%) Time SB CC SP %CC
100 1,826.1 72,072 0 72,072 0.0%
20 1,946.5 59,911 12,244 72,155 17.0%
10 1,243.6 30,082 42,114 72,196 58.3%
5 671.0 8,527 63,698 72,225 88.2%
1 240.9 527 61,355 61,882 99.1%

0.1 135.3 224 40,152 40,376 99.4%

(f) skin

τ(%) Time SB CC SP %CC
100 1,946.1 992 0 992 0.0%
10 1,602.4 831 137 968 14.2%
5 1,172.9 664 244 908 26.9%
1 393.5 264 451 715 63.1%

0.5 133.4 108 226 334 67.7%
0.1 66.6 27 248 275 90.2%

Table 2.8: Serial run time improvement using the cutpoint caching method for integer
datasets
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Figure 2.12: Run time and the number of the bounded subproblems using different

cutpoint caching thresholds, for the binarized datasets.
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Strong branching
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Figure 2.13: Run time and the number of the bounded subproblemsusing different

cutpoint caching thresholds, for the integerized datasets.
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Datasets
Method P cleveland diabetes hungheart cmc bin spam spam75
RMA 1 0.5 1.1 3.5 6.2 5.9 154.8
RMA CC 1 0.5 1.0 2.0 4.1 5.2 130.2
RMA BF 1 11.2 70.5 310.0 1,104.8 2,053.9 —
MMA 1 20.5 43.6 147.3 909.6 554.4 18,966.0
MIP 1 8.5 14.8 11.5 199.8 276.6 829.4
RMA 16 0.1 0.3 0.6 1.0 2.0 13.6
RMA CC 16 0.1 0.2 0.6 0.8 1.2 11.6
RMA BF 16 1.7 6.9 23.1 146.7 220.4 —
MMA 16 2.7 5.0 14.2 86.4 56.2 1,533.0
MIP 16 4.7 14.3 10.0 86.5 218.5 584.4

Table 2.9: Run time in seconds for binary datasets

Datasets
Method P cleveland diabetes hungheart cmc bin spam spam75
RMA 1 165 175 446 339 177 2,763
RMA CC 1 196 202 359 341 199 2,832
RMA BF 1 165 175 446 339 177 —
MMA 1 218 141 404 292 143 2,450
MIP 1 446 83 418 943 151 221
RMA 16 203 185 421 371 177 2,809
RMA CC 16 266 180 588 444 188 3,004
RMA BF 16 198 182 400 378 177 —
MMA 16 263 142 417 305 143 2,493
MIP 16 573 151 525 985 253 219

Table 2.10: The number of bounded subproblems for binary datasets

2.7.3 Comparing algorithms to solve MMA problem

Tables 2.9 and 2.10 respectively show the running time in seconds and the total bounded

subproblems for branch-and-bound methods to solve MMA problems, in which the

explanatory variables are all binary. The P column shows the number of processors.

The results of all variations of parallel RMA and MMA are the average of 5 runs. Due

to the lack of significant runtime differences between the different choices of the best

cutpoint to branch among the optimal tied ones for the binary datasets, tables 2.9

and 2.10 show the results selecting the first optimal cutpoint discovered. The MIP

formulation was shown in Section 2.2. The Gurobi MIP solver with AMPL [16], an

algebraic modeling language, was used to solve the MIP formulation. The results were

obtained using a system with 2.10GHz Intel Xeon E5-2683 v4 CPUs. The running time

of the serial RMA with the rotation algorithm is much faster, more than 100 times

faster for some datasets, than serial MMA. Moreover, adopting the rotation algorithm
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for the RMA algorithm greatly improved the running time comparing to the RMA

algorithm with brute-force construction of equivalence classes for each cutpoint in each

subproblem. RMA CC, that is RMA with the rotation algorithm and cutpoint caching,

further improved the running time. The results for all the methods to solve the MMA

problems using 16 cores for the binary datasets are also shown in tables 2.9 and 2.10.

MMA and all variations of RMA are implemented using the PEBBL’s built-in parallel

search capabilities. For all binary datasets, RMA is always faster than Gurobi both in

serial and parallel. The speedup of Gurobi utilizing multiple processors is far from the

linear.

2.7.4 Comparing algorithms to solve RMA problem

Tables 2.11 and 2.12 show the running time and the total bounded subproblems to solve

the RMA problems by Gurobi and all variations of RMA. Here, P denotes the number of

processors. In tables 2.11 and 2.12, “ R”, “ F”, and “ L” extensions after each method

indicate choosing the cutpoint randomly, selecting the first cutpoint, and choosing the

last cutpoint among the optimal tied ones, respectively. The default setting is random

choice, so if the procedure is not indicated, the results are for that method. For four out

of seven datasets, Gurobi has a significantly smaller number of bounded subproblems

than RMA due to its use of cutting plane methods. However, the speedup of Gurobi in

parallel is not close to linear. Even though Gurobi can solve the problems faster than

RMA for some datasets in serial, RMA utilizing 16 processors is faster than Gurobi

using the same number of processors, for all datasets except parkinson. Adopting the

cutpoint caching method speeds up the running time of RMA for the majority of the

datasets. The results show that the cutpoint caching method does not always work

well in parallel, and the binary search cutpoint method sometimes slows down the

run time since it expands the branch-and-bound tree. The hybrid search branching

method only worked well for the climate dataset when η = 30. For the indian dataset,

the running time and the number of bounded subproblems are significantly different

depending on the best cutpoint selection among the optimal tied ones, and the result

varies with the randomization method. Gurobi was not able to solve skin instance,
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Datasets
Method P car breast cmc int climate indian parkinson skin
RMA F 1 0.0 0.7 1.0 38.6 1,826.1 71.0 1,978.8
RMA R 1 0.0 0.8 1.1 24.4 541.5 68.0 2,028.7
RMA L 1 0.0 0.8 1.1 38.0 136.9 68.0 1,967.4
RMA CC F 1 0.0 0.4 0.7 34.5 120.9 40.4 65.9
RMA CC R 1 0.0 0.4 0.7 22.4 38.7 32.1 59.6
RMA CC L 1 0.0 0.4 0.7 34.8 20.8 33.8 59.6
RMA BS 1 — — — 17.3 — 247.0 305.1
RMA HB 1 — — — 12.8 — — —
MIP 1 12.9 0.5 63.5 5.9 16.4 5.9 —
RMA 16 0.0 0.2 0.2 4.1 35.8 8.1 221.4
RMA CC 16 0.0 0.1 0.2 35.4 3.6 22.2 26.7
RMA BS 16 — — — 4.2 213.7 8.9 36.0
MIP 16 4.5 0.3 12.1 16.0 15.5 6.3 —

Table 2.11: Run time in seconds for integer datasets

Datasets
Method P car breast cmc int climate indian parkinson skin
RMA F 1 4 185 203 943 72,072 3,124 992
RMA R 1 4 243 205 605 19,903 3,273 992
RMA L 1 4 215 203 883 4,385 2,869 991
RMA CC F 1 4 182 209 980 40,376 2,551 275
RMA CC R 1 4 179 212 652 14,427 3,165 278
RMA CC L 1 4 169 203 883 6,830 5,715 292
RMA BS 1 — — — 743 — 12,961 1,379
RMA HB 1 — — — 1,152 — — —
MIP 1 15 1 363 1 453 5 —
RMA 16 5 246 304 728 16,062 3,485 1,896
RMA CC 16 5 276 330 1,107 10,504 8,103 398
RMA BS 16 — — — 885 396,775 4,173 1,324
MIP 16 15 1 702 1 348 4 —

Table 2.12: The number of subproblems for integer datasets

possibly because of the large size of the corresponding MIP model, but all versions

of RMA using tree rotation were able to solve it. Using cutpoint caching and binary

search cutpoint methods significantly improved the running time for skin.

There are several reasons that directly solving RMA problem instances may be more

efficient than binarizing datasets and the solving them as MMA instances. First, al-

though the running time of binarization and integerization processes are not discussed

here, the process of integerizing raw data is much faster than binarizing. Second, it

appears to be significantly faster to solve integerized MMA instances than the binarized

MMA instances obtained from the same data, in part possibly because the representa-

tion of data is much smaller with integerization than with binarization. For example,
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the binarized cmc dataset has 57 attributes but the integerized cmc dataset has only

9 attributes. While both RMA and MMA algorithms obtain the exact same objective

value, the RMA algorithm is much faster for the integerized dataset than the binarized

dataset.

2.7.5 Result for Parallel RMA

Tables 2.13-2.15 and figures 2.14 and 2.15 show the running time and the total bounded

subproblems for RMA and RMA CC. The abbreviation “SU” in tables 2.13-2.15 indi-

cates the speedup calculated as TP̄ P̄ /TP , where P̄ is the smallest number of processors

on which the problem instance could be solved. When P̄ 6= 1, it is shown in parenthe-

ses in the “SU” column. In Figure 2.14, the left-side data are from an older version

of the RMA algorithm storing all observations in each equivalence class, and with a

minor difference in the bound computation process. The right-side data are for the

RMA algorithm storing only one observation in each equivalence class. The second

method improved running times, but its parallel speedup is degraded. Moreover, the

number of bounded subproblems for RMA CC fluctuates markedly as one varies the

number of processors. One possible reason for this behavior is that the number of sub-

problems using strong branching during ramp-up varies with the number of processors,

causing the cutpoint cache to be initialized differently. As shown in tables 2.13-2.15,

the percentage of subproblems using only cutpoints from the cache decreases as the

number of processors increases. Another possible reason is the variability of communi-

cation delay when distributing cutpoints between processors. Figure 2.15 shows that

datasets with larger numbers of cutpoints and bounded subproblems have better par-

allel speedup. The reason that the number of bounded subproblems increases when

using greater number of processors for the poker dataset is currently unknown and may

require future investigation.
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(a) climate (previous version of
RMA F)

Strong Branching

P Time SU SB

20 = 1 91.5 — 943
21 = 2 47.4 1.9 940
22 = 4 24.6 3.7 907
23 = 8 13.1 7.0 837
24 = 16 6.4 14.3 725

(b) climate (RMA F)

Strong Branching

P Time SU SB

20 = 1 33.8 — 943
21 = 2 19.1 1.8 941
22 = 4 10.8 3.1 915
23 = 8 6.3 5.4 840
24 = 16 3.8 8.9 728

(c) climate (RMA R)

Strong Branching Cutpoint Caching

P Time SU SP Time SU SP CC SB %CC

20 = 1 22.2 — 635 19.3 — 678 387 292 43.0%
21 = 2 14.8 1.5 745 18.4 1.0 651 411 240 36.8%
22 = 4 12.1 1.8 1,191 17.0 1.1 833 444 389 46.7%
23 = 8 12.1 1.8 2,149 19.0 1.0 1,078 527 551 51.1%
24 = 16 17.9 1.2 4,041 20.5 0.9 816 548 267 32.8%
25 = 32 14.6 1.5 4,115 19.0 1.0 804 555 249 31.0%

(d) parkinson (previous version of
RMA F)

Strong Branching

P Time SU SB

20 = 1 174.0 — 4,311
21 = 2 75.2 2.3 4,100
22 = 4 40.1 4.3 4,360
23 = 8 25.2 6.9 4,743
24 = 16 18.4 9.4 6,401

(e) parkinson (RMA F)

Strong Branching

P Time SU SB

20 = 1 62.4 — 3,124
21 = 2 33.8 1.8 3,034
22 = 4 24.2 2.6 4,306
23 = 8 12.0 5.2 3,887
24 = 16 9.5 6.6 3,629

(f) parkinson (RMA R)

Strong Branching Cutpoint Caching

P Time SU SP Time SU SP CC SB %CC

20 = 1 62.2 — 3,392 30.7 — 4,154 665 3,489 84.0%
21 = 2 38.2 1.6 3,715 18.0 1.7 2,901 767 2,134 73.6%
22 = 4 22.8 2.7 4,112 14.8 2.1 3,823 887 2,936 76.8%
23 = 8 19.0 3.3 5,435 14.0 2.2 4,133 939 3,194 77.3%
24 = 16 19.8 3.1 8,720 15.0 2.0 4,896 1,171 3,725 76.1%
25 = 32 16.4 3.8 10,910 5.8 5.3 22,468 2,969 19,499 86.8%

Table 2.13: Parallel speedup results for the climate and parkinson datasets
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(a) indian (previous version of RMA F)

Strong Branching Cutpoint Caching

P Time SU SP Time SU SP

20 = 1 3,980.5 — 72,251 395.0 — 61,882
22 = 4 1,004.8 4.0 72,072 128.6 3.1 42,909
23 = 8 535.9 7.4 68,938 62.7 6.3 38,822
24 = 16 272.0 14.6 62,463 40.1 9.9 46,944
25 = 32 113.8 35.0 53,146 24.5 16.1 44,952
26 = 64 56.8 70.1 52,737 10.6 37.1 31,742
27 = 128 29.7 134.2 51,863 7.3 54.1 31,598
28 = 256 16.1 247.2 51,301 — — —
29 = 512 11.2 355.4 51,016 — — —

(b) indian (RMA F)

Strong Branching Cutpoint Caching

P Time SU SP Time SU SP

20 = 1 1,826.1 — 72,072 121.1 — 40,376
21 = 2 939.3 1.9 72,195 42.1 2.9 34,683
22 = 4 464.4 3.9 72,167 18.6 6.5 28,805
23 = 8 247.8 7.4 69,148 14.2 8.5 40,475
24 = 16 140.1 13.0 62,532 8.4 14.4 35,474
25 = 32 57.3 31.8 52,575 5.1 23.7 46,096
26 = 64 28.9 63.2 52,201 3.1 38.8 42,342
27 = 128 15.3 119.2 52,030 2.5 49.2 42,277
28 = 256 8.7 210.9 51,588 — — —
29 = 512 5.4 335.7 51,233 — — —

(c) indian (RMA R)

Strong Branching Cutpoint Caching

P Time SU SP Time SU SP CC SB %CC

20 = 1 561.4 — 23,638 31.7 — 12,598 95 12,503 99.3%
21 = 2 453.2 1.2 36,690 14.1 2.3 9,645 154 9,491 98.4%
22 = 4 185.2 3.0 30,256 11.7 2.7 18,121 223 17,898 98.8%
23 = 8 70.5 8.0 21,532 4.9 6.4 10,738 349 10,390 96.8%
24 = 16 78.8 7.1 38,425 4.7 6.7 18,106 663 17,443 96.3%
25 = 32 47.1 11.9 47,373 3.1 10.2 19,730 1,129 18,601 94.3%

Table 2.14: Parallel speedup results for the indian dataset
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(a) skin (RMA F)

Strong Branching Cutpoint Caching

P Time SU SP Time SU SP

20 = 1 1822.7 — 992 59.9 — 275
21 = 2 949.8 1.9 992 47.9 1.3 267
22 = 4 471.1 3.9 992 35.5 1.7 316
23 = 8 283.1 6.4 992 22.4 2.7 330
24 = 16 223.9 8.1 992 26.2 2.3 512.2
25 = 32 197.0 9.3 992 25.4 2.4 514

(b) credit card (RMA F)

Strong Branching Cutpoint Caching

P Time SU SP Time SU SP

20 = 1 — — — 29,948.2 — 182,471
21 = 2 — — — 13,456.1 2.2 138,601
22 = 4 — — — 8,906.6 3.4 203,202
23 = 8 — — — 3,971.9 7.5 141,577
24 = 16 — — — 2,563.9 11.7 141,748
25 = 32 — — — 1,634.3 18.3 129,646
26 = 64 17,753.0 — 261,511 926.9 32.3 157,871
27 = 128 8,972.6 1.9 (2) 262,671 770.0 38.9 135,546
28 = 256 4,561.0 3.9 (4) 265,378 616.0 48.6 118,910
29 = 512 2,456.8 7.2 (8) 268,482 568.0 52.7 113,618
210 = 1024 1,420.3 12.5 (16) 267,087 519.9 57.6 123,369

(c) poker (RMA F)

Strong Branching Cutpoint Caching

P Time SU SP Time SU SP

26 = 64 8,573.5 — 128,401 4,103.4 — 102,263
27 = 128 4,488.8 1.9 (2) 137,117 2,244.9 1.8 (2) 113,019
28 = 256 2,470.4 3.5 (4) 154,031 1,254.8 3.3 (4) 124,203
29 = 512 1,524.5 5.6 (8) 185,892 681.4 6.0 (8) 122,007
210 = 1024 1,058.3 8.1 (16) 226,746 493.7 8.3 (16) 150,401
211 = 2048 838.1 10.2 (32) 276,704 416.3 9.9 (32) 200,054

(d) EEG (RMA R)

Strong Branching Cutpoint Caching

P Time SU SP Time SU SP CC SB %CC

28 = 256 9,527.8 — 13,262,648 1,555.5 — 7,741,421 7,730,211 11,210 99.9%
29 = 512 4,728.9 2.0 (2) 13,263,009 802.4 1.9 (2) 8,251,723 8,230,976 20,747 99.8%
210 = 1,024 2,349.8 4.1 (4) 13,264,989 439.6 3.5 (4) 9,110,574 9,073,190 37,384 99.6%
211 = 2,048 1,191.2 8.0 (8) 13,269,823 242.1 6.4 (8) 9,947,526 9,879,150 68,376 99.3%

Table 2.15: Parallel speedup results for larger datasets
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(c) parkinson (previous version of RMA F)
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(d) parkinson (RMA F)

20 22 23 24 25 26 27 28 29100

101

102

103

104

C
PU

 ru
n 

tim
e

20 22 23 24 25 26 27 28 29

# of Processors

20000

30000

40000

50000

60000

70000

80000

# 
of

 B
ou

nd
ed

 S
ub

pr
ob

le
m

s

(e) indian (previous version of RMA F)
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(f) indian (RMA F)

Figure 2.14: Parallel speedup results for smaller datasets
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Figure 2.15: Parallel speedup results for smaller datasets
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Chapter 3

Classification Application

3.1 LPBoost Classification Model

The first application of the RMA problem constructs a classifier for a two-class clas-

sification problem from a linear combination of multidimensional “box”-based rules.

As with the RMA problem, this classification problem assumes a set of training data

having m observations, each with n attributes. Let X ∈ Rm×n denote the explana-

tory matrix, and xij denote the (i, j)-th element of this matrix. The observations

X1, . . . , Xm ∈ Rn are partitioned into “positive” and “negative” classes by two index

sets Ω+,Ω− ⊂ {1, . . . ,m}. For each i = 1, . . . ,m, let yi = +1 if i ∈ Ω+ and yi = −1 if

i ∈ Ω−. We will construct a classifier by a combination of base classifiers, identified by

boxed-based rules. Suppose a rule function r(a,b) : Rn → {0, 1} is given by

r(a,b)(Xi) =


1, if aj ≤ xij ≤ bj ∀ j = 1, . . . , n

0, otherwise.

(3.1)

Let a set K contain all possible pairs (a, b) ∈ Rn × Rn with a ≤ b, constituting a

catalog of all the possible rules of the form (3.1) that we wish to be available to our

classification model:

f(Xi) = γ0 +
∑
k∈K

γkrk(Xi), (3.2)

where γ0 is a constant term, γk ∈ R, k ∈ K, can be positive or negative, so γk > 0

indicates that a observation covered by the box-based rule k votes to classify it as

positive, and vice versa. The classifier operates by predicting a new point Xi ∈ Rn to

be in the positive class if f(Xi) > 0, and in the negative class if f(Xi) < 0. When
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f(Xi) = 0, if the training data contain more positive class samples, then the classifier

predicts positive; otherwise, negative. The objective is to construct a strong classifier,

sign(f) : Rn → {−1, 0,+1}, that accurately classifies unseen observations (Xi′ , yi′).

The set K will typically be extremely large: restricting each aj and bj to values that

appear as xij for some i, which is sufficient to describe all possible distinct behaviors of

rules of the form (3.1) on the dataset X, there are still
∏n
j=1 `j(`j + 1)/2 ≥ 3n possible

choices for (a, b), where `j =
∣∣⋃m

i=1{xij}
∣∣ is the number of distinct values for xij in

attribute j, as proved below.

Lemma 3.1.1. The total number of possible combinations (a, b) ∈ Rn×Rn with values

drawn from the dataset X with a ≤ b is
∏n
j=1 `j(`j + 1)/2 ≥ 3n where `j =

∣∣⋃m
i=1{xij}

∣∣
is the number of distinct values for xij in attribute j.

Proof. We show that there are
`j(`j + 1)

2
distinct choices of (aj , bj) such that aj ≤ bj on

the dataset X. There are `j combinations of (a, b) such that a = b, and
(`j

2

)
=
`j(`j − 1)

2

combinations of (a, b) such that a < b. Therefore, the total number of such combinations

for each attribute is `j +
`j(`j − 1)

2
=

2`j + `j(`j − 1)

2
=
`2j + `j

2
=
`j(`j + 1)

2
. Since

there are n attributes, K =
∏n
j=1

`j(`j + 1)

2
.

Due to the potentially huge number of possible rules, we will dynamically generate

a set of rules to construct a strong classifier. LPBoost [11] is a column-generation

procedure for constructing a weighted voting classifier. Similarly to Support Vector

Machines (SVM) [3, 2], the objective of LPBoost is maximizing a margin between

positive and negative classifier boundaries with minimizing the sum of misclassification

errors by the margin classifier. Two common two-class classification models are soft

margin and hard margin classifiers. The soft margin classifier tolerates misclassification

by the soft margin, and minimizes the sum of the misclassification errors. The hard

margin classifier enforces that all observations are correctly classified. The soft margin

classification model is generally more practical than the hard margin classification model

since the soft margin can tolerate outliers. As shown in Figure 3.1(a), two hard margin

separators S1 and S2 classify all observations correctly. However, S1 is generally a

better separator since S1 has greater hard margin, the distance between boundaries S+
1
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S1

S+
1

S−1

S2

ρ

ρ

(a) S1 separator is better than S2 separator
since S1 has the hard margin separators S+

1

and S−1 with maximum margin length ρ, while
S2 has zero hard margin.

εi

εj

S

S+

S−

ρ

ρ

(b) S is a separator with soft margin separa-
tors S+ and S−, separating boundaries with
the soft margin length ρ. This formulation vi-
olations εi > 0 of the soft margin.

Figure 3.1: Illustration of LPBoost: dots and x’s represent positive and negative train-
ing observations, respectively.

and S−1 . Figure 3.1(b) shows a soft margin classifier, with some observations allowed

to be misclassified by the soft margin classifier, and εi being the classification error by

the soft margin, called soft margin violation. The LP-Boost separator is a hyperplane

in the space containing the r+
k and r−k features created by column generation. In the

space of the original observations, it usually cannot be depicted as a hyperplane. The

decision rule of the margin classifier is: for any ρ ∈ R, if f(Xi) ≥ ρ, the observation is

classified positive; else if f(Xi) ≤ ρ, the observation is classified negative.

We split rk(Xi) into r+
k (Xi) and r−k (Xi), respectively called a positive and negative

box. Hence, r+
k (Xi) = rk(Xi) and r−k (Xi) = −rk(Xi) with the respective coefficients

γ+
k ∈ R+ and γ−k ∈ R+. The classifier (3.2) reduces to:

f(Xi) = γ0 +
∑
k∈K

(
γ+
k r

+
k (Xi) + γ−k r

−
k (Xi)

)
. (3.3)

The linear programming model solved by LPBoost is:
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min
γ,ε,ρ

− ρ+D
m∑
i=1

εpi (3.4a)

s.t. yi

(
γ0 +

∑
k∈K

(
γ+
k r

+
k (Xi) + γ−k r

−
k (Xi)

))
+ εi ≥ ρ, i = 1 . . .m (3.4b)

∑
k∈K

(γ+
k + γ−k ) = 1 (3.4c)

εi ≥ 0, i = 1, . . . ,m (3.4d)

γ+
k , γ

−
k ≥ 0, k ∈ K. (3.4e)

The variables γ+
k and γ−k are non-negative voting classifier weights, ρ is a soft margin

between the two class boundaries, and the variables εi represent soft margin violation.

p is either 1 or 2. A non-negative parameter D represents the tradeoff between the

sum of misclassification errors and margin maximization. This model has 2 +m+ 2 |K|

variables and 1 +m constraints except for nonegativity.

The LPBoost column generation procedure starts by including only a small subset

of the possible weak classifiers variables γ+
j and/or γ−j in (3.4), resulting in a “restricted

primal problem”. LPBoost then uses an auxilliary optimization procedure to find new

variables γ+
j and/or γ−j that “price out” properly to enter the basis, adjoins these

variables to the restricted primal, and re-solves it. It repeats this procedure until no

more columns price out properly to enter the basis or the smallest reduced cost is very

close to 0. We initially choose K ′ = ∅, so there are no rules to construct the initial

classifier (3.3). Hence, the column generation procedure starts by solving the pricing

problem with each observation having weight yi/m. After solving the first pricing prob-

lem, an initial restricted master problem is formulated. Solving the restricted master

problem yields optimal Lagrange multipliers µ ∈ Rm+ and α ∈ R for constrants (3.4b)

and (3.4c) respectively. From the structure of the (3.4), the reduced costs of γ+
k and

γ−k are respectively:
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rc[γ+
k ] = −α−

m∑
i=1

r+
k (Xi)yiµi (3.5a)

rc[γ−k ] = −α−
m∑
i=1

r−k (Xi)yiµi, (3.5b)

and hence, for each k ∈ K, that

min
k∈K

{
rc[γ+

k ], rc[γ−k ]
}

= min
k∈K

{
−

m∑
i=1

r+
k (Xi)yiµi,−

m∑
i=1

r−k (Xi)yiµi

}
− α

= −max
k∈K

{
m∑
i=1

r+
k (Xi)yiµi,

m∑
i=1

r−k (Xi)yiµi

}
− α

Therefore, the column with the most negative reduced cost may be found by solving

z∗ = max
k∈K

{
m∑
i=1

r+
k (Xi)yiµi,

m∑
i=1

r−k (Xi)yiµi

}
, (3.6)

and the natural stopping condition for column generation is z∗ ≤ −α. Since yi = −1

or +1 respectively represents a training sample marked as negative or positive, let the

observation weight

wi = yiµi =


µi if i ∈ Ω+

−µi if i ∈ Ω−
i = 1, . . . ,m.

By substituting yiµi for wi, the pricing problem (3.6) becomes:

z∗ = max
k∈K

{
m∑
i=1

r+
k (Xi)wi,

m∑
i=1

r−k (Xi)wi

}
, (3.7)

The master problem constraints (3.4b) reduce to the decision rule of the soft margin

classifier with soft margin violation εi: yif(Xi) + εi ≥ ρ. If the soft margin classifier

misclassifies the observation i, then this constraint (3.4b) is active with εi > 0 and µi >

0; otherwise, εi = 0 and µi = 0 . Hence, µi indicates the soft margin misclassification

weight for observation i. Maximizing the first and second terms are summarized below.
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1. Maximizing the first term of (3.7) is finding the positive box r+
k such that the

sum of the misclassification weights for covered positive observations most greatly

exceeds the sum of the misclassification weights for covered negative observations.

2. Maximizing the second term of (3.7) is finding the negative box r−k such that the

sum of the misclassification weights for covered negative observations most greatly

exceeds the sum of the misclassification weights for covered positive observations.

Problem (3.7) finds either the optimal positive or negative box to enter the restricted

master problem, and it reduces to the RMA problem derived by a positive or negative

box, as explained below. The following problem is the RMA problem:

max
k∈K

∣∣∣∣∣
m∑
i

wirk(Xi)

∣∣∣∣∣ = max
k∈K

{
m∑
i

wirk(Xi),−
m∑
i

wirk(Xi)

}
. (3.8)

Maximizing the first term of the right hand side of (3.8) is the same as maximizing the

first term of (3.7), and maximizing second term of he right hand side of (3.8) is the

same as maximizing the second term of (3.7). Therefore, if the RMA solution arises

from the first term, the algorithm selects the positive box r+
k ; else if the RMA solution

arises from the second term, it selects the negative box r−k to add to the restricted

master problem.

With the respective Lagrange multipliers µ ∈ Rm+ and α ∈ R of the master problem

constraints of (3.4b) and (3.4c), the Lagrangian function of the LPBoost formulation 3.4

is:

g(µ, α)µ≥0,α

= min
ε,γ+,γ−≥0,γ0,ρ

− ρ+D

m∑
i=1

εi + α

(
1−

∑
k∈K

(
γ+
k + γ−k

))

+
m∑
i=1

(
ρ− yi

(
γ0 +

∑
k∈K

(
γ+
k r

+
k (Xi)− γ−k r

−
k (Xi)

))
− εi

)
µi.

By rearranging the variables,
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g(µ, α)µ≥0,α = α+ min
ρ

(
−ρ+

m∑
i=1

ρµi

)
+ min

ε≥0

(
D

m∑
i=1

εi −
m∑
i=1

εiµi

)
−min

γ0

m∑
i=1

yiµiγ0

+ min
γ+≥0

(
−

m∑
i=1

yiµi
∑
k∈K

γk + r+
k (Xi)− α

∑
k∈K

γ+
k

)

+ min
γ−≥0

(
−

m∑
i=1

yiµi
∑
k∈K

γk − r−k (Xi)− α
∑
k∈K

γ−k

)
.

Factoring by each primal variable, ρ ∈ R, εi, γ+
k , γ

−
k ∈ R+,

g(µ, α)µ≥0,α = α+ min
ρ

(−1 +
m∑
i=1

µi)ρ+
m∑
i=1

min
εi≥0

(D − µi) εi −min
γ0

m∑
i=1

yiµiγ0

+
∑
k∈K

min
γ+k ≥0

(
−

m∑
i=1

yiµir
+
k (Xi)− α

)
γ+
k

+
∑
k∈K

min
γ−k ≥0

(
−

m∑
i=1

yiµir
−
k (Xi)− α

)
γ−k .

Since the Lagrangian function g(µ, α) must be less than equal to z∗, the objective

value of the primal LPBoost problem, max g(µ, α) ≤ z∗. Since each ρ, γ0 ∈ R is

unrestricted, their coefficients must be 0. Since each εi, γ
+
k , γ

−
k ∈ R+ are non-negative,

their coefficients have to be non-negative. Therefore, the dual of (3.4) when p = 1 is:

max
µ≥0,α

α (3.12a)

ST −
m∑
i=1

µiyir
+
k (Xi) ≥ α, k ∈ K (3.12b)

−
m∑
i=1

µiyir
−
k (Xi) ≥ α, k ∈ K (3.12c)

m∑
i=1

yiµi = 0 (3.12d)

m∑
i=1

µi = 1 (3.12e)

0 ≤ µi ≤ D, i = 1, . . . ,m. (3.12f)

The dual formulation has 1 + m variables and 2 + m + 2 |K| constraints except the
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non-negative constraints.

3.1.1 Translating discretized box-based rules back to the original scale

We discretize the data X using the process described in Section 2.1.1 for some (small)

parameter value δ, and solve the RMA problem. It is necessary to translate the resulting

boxes back to the original, pre-integerized coordinate system to process unseen datasets.

We perform this translation by expanding box boundaries to lie halfway between the

boundaries of the clusters of points created by the discretization procedure, except when

the lower boundary of the box has the lowest possible value or the upper boundary has

the largest possible value. In these cases, we expand the box boundaries to −∞ or +∞,

respectively. More precisely, for each observation variable j and v ∈ {0, . . . , `j − 1}, let

xmin
j,v be the smallest value of xij assigned to the integer value v by Algorithm 1, and xmax

j,v

be the largest. If â, b̂ ∈ Nn, â ≤ b̂ describes a discretized box arising from the solution of

the preprocessed RMA problem, we choose the corresponding box boundaries a, b ∈ Rn

in the original coordinate system to be given by, for j = 1, . . . , n,

aj =


−∞, if âj = 0

1
2(xmax

j,âj−1 + xmin
j,âj

), otherwise

bj =


+∞, if b̂j = `j − 1

1
2(xmax

j,b̂j
+ xmin

j,b̂j+1
), otherwise.

Overall, our procedure is equivalent to solving the pricing problem (3.7) over some

set of boxes K = Kδ(X). For δ = 0, the resulting set of boxes K0(X) is such that

the corresponding set of rules {rk | k ∈ K0(X)} comprises every box-based rule dis-

tinguishable on the dataset X. For small positive values of δ, the set of boxes Kδ(X)

excludes those corresponding to rules that “cut” between closely spaced observations.

3.2 Full Algorithm Implementation

Algorithm 8 details the exact LPBoost procedure using RMA, called LPBR. In each

column generation iteration, it can find t different RMA solutions and enter them into

the restricted dual problem. To this end, it uses PEBBL’s ability to enumerate multiple

near-optimal solutions.



65

Algorithm 8 LPBR algorithm

1: Input: data X ∈ Rm×n, y ∈ {−1,+1}m, penalty parameter D ≥ 0, column gen-
eration tolerance θ ≥ 0, integer t ≥ 1, aggregation tolerance δ ≥ 0, and iteration
limit S

2: Output: K ′ ⊂ Kδ(X), γ ∈ R|K′|
3: LPBoost:

4: Assign weights: wi = yi
m , i = 1, . . . ,m

5: α← −∞
6: K ′ ← ∅
7: for s = 1, . . . , S do
8: Use the RMA branch-and-bound algorithm, with preprocessing as in Sec-

tion 2.1.1, to identify a set of the t best possible positive or negative box solutions
of k1, . . . , kt to

max
k∈Kδ(X)

∣∣∣∣∣
m∑
i=1

wirk(xi)

∣∣∣∣∣ , (3.13)

where wi = yiµi, with objective values z1 ≥ z2 ≥ · · · ≥ zt
9: if z1 ≤ −α+ θ break

10: for each l ∈ {1, . . . , t} with zl > −α+ θ do
11: K ′ ← K ′ ∪ {kl} where the box kl is translated back to the original scale as in

Section 3.1.1
12: end for
13: Solve the restricted master problem to obtain optimal primal variables (γ+−γ−)

and dual variables (µ, α)
14: end for
15: return (K ′, γ := γ+ − γ−)

Gurobi [22], a commercial linear programming solver, was used to solve the re-

stricted master problem in each iteration. The weight of each observation i in the

RMA subproblem is the value of dual variable in yi times the restricted primal LP

problem.

The choice of the parameter D is essential for LPBoost. If D is relatively large,

then the model penalizes the sum of soft margin violation
∑m

i=1 εi more, and the soft

margin ρ tends to be small; else if D is relatively small, then the model attempts to

increase the soft margin ρ and tolerates larger sum of soft margin violation
∑m

i=1 εi.

The general guideline to choose the parameter D is shown below.

Lemma 3.2.1. For the master problem in Algorithm 8 to have a solution that has a

finite value and can change with the iteration count s, the parameter D ∈ R+ in (3.4)
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Outer Partition:

Inner Partition:

. . .

. . .

douttest[1] douttest[2] douttest[qout]

dintest[1] dintest[2] dintest[qin]

dout
train[1]︷ ︸︸ ︷dout

test[1]︷ ︸︸ ︷

︸ ︷︷ ︸
din
train[1]

︸ ︷︷ ︸
din
test[1]

⇓

Figure 3.2: Training and testing datasets in the bilevel cross-validation procedure, in
the case i = 1, j = 1

should be D =
1

νm
where m is the number of training samples and 0 < ν < 1 [11, 26].

Proof. Consider the following cases.

Case 1: D <
1

m
(ν > 1): Constraints (3.12e) and (3.12f) cannot be satisfied. Therefore

the dual 3.12 of the master problem is infeasible, so the master problem will be either

unbounded or infeasible.

Case 2: D =
1

m
(ν = 1): Constraints (3.12e) and (3.12f) enforce that µi =

1

m
for

i = 1, . . . ,m. Thus, the pricing problem of each column generation iteration is always

same as the initial pricing problem, with each observation having weight wi = yi
m .

Hence, the result of the subproblem in step 8 will be identical in every iteration and

the classifier cannot improve after the first iteration.

Case 3:
1

m
< D (0 < ν < 1): Constraints (3.12e) and (3.12f) can be satisfied.

Therefore, Case 3 should be satisfied.

The cross-validation-based experimental results below indicate that the optimal choice

of D =
1

νm
is generally discovered in the range 0.1 ≤ ν ≤ 0.5.

3.3 Computational Testing

3.3.1 Setting a Parameter by Cross-Validation

To evaluate the performance of our LPBR classification algorithm, we need to set its

parameters, in particular the tradeoff parameter between misclassification error and

margin maximization. As is standard in the machine learning community, we use a



67

Algorithm 9 Bilevel cross validation procedure to evaluate LPBR and set its param-
eters

1: Input: qout, qin ∈ N, d = (X, y) ∈ (Rm×n,Rm),Λ ⊂ RT (parameter combinations
to test)

2: Output: ε̄our, ε̄other

3: BilevelCrossValidation:

4: (dout
test[1], . . . , d

out
test[p])← RandomPartition(d, qout)

5: for i = 1, . . . , qout do
6: ε∗ =∞
7: dout

train[i] ← d \ dout
test[i]

8: (din
test[1], . . . , d

in
test[q])← RandomPartition(dout

train[i], q∈)
9: for each λ ∈ Λ do

10: for j = 1, . . . , qin do
11: din

train[j] ← dout
train[i] \ d

in
test[j]

12: Mour ← TrainOurModel(din
train[j], λ)

13: εour[j]← EvaluteModel(Mour, d
in
test[j])

14: end for
15: ε̄our = avg(εour)
16: if ε̄our < ε∗ then λ∗ ← λ; ε∗ ← ε̄our

17: end for
18: Mour ← TrainOurModel(dout

train[i], λ
∗)

19: εour[i]← EvaluteModel(Mour, d
out
test[i])

20: Mother ← TrainOtherModel(dout
train[i])

21: εother[i]← EvaluateModel(Mother, d
out
test[i])

22: end for
23: ε̄our = avg(εour)
24: ε̄other = avg(εother)
25: return (ε̄our, ε̄other)

cross-validation procedure to determine suitable parameters for each dataset. In our

computational tests, we embed this procedure within another cross-validation procedure

whose main purpose is to evaluate the performance of our classification method.

Algorithm 9 outlines our full bilevel cross-validation procedure, with qout folds of

outer cross validation and qin folds of inner cross validation. The set Λ holds the

various parameter combinations to be tested. The subroutine RandomPartition(d, q)

randomly partitions an input dataset d = (X, y) into q smaller datasets of nearly equal

size. The first call to RandomPartition produces a qout-way partition that we use

to evaluate the overall performance of the algorithm and its competitors. We evaluate

each algorithm by its performance averaged over the qout folds of this partition, using
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one element of the partition as the testing set and combining the remaining elements

into the training set. Within each of these qout folds, we use a qin-way partition of the

resulting training set to decide on the best choice of algorithm parameters λ from the

set of candidates Λ.

Figure 3.2 depicts the situation when the outer loop index i is 1 (we are testing the

first of the qout outer folds) and the inner loop index j is also 1 (we are testing the first

of the qin inner folds). The outer testing set is dout
test[1], the first element returned from

the initial call to RandomPartition, and the outer training set is the remainder of

the input dataset. To choose the best parameters λ ∈ Λ, we partition this training set

into q parts. In the first iteration of the inner loop (over j) the inner testing set is the

first element of this inner partition, with the remaining elements making up the inner

testing set. We select the parameter setting λ∗ that has the best performance averaged

over the folds of the inner partition.

The end of Algorithm 9 invokes the subroutines TrainOtherModel and Evalu-

ateModel to evaluate the performance of a competing model.

3.3.2 Numerical Results for Small Datasets

We tested the LPBR procedure on some small datasets from the UCI data reposi-

tory [25], as described in Table 2.5. We compared its performance to random forests

and AdaBoost.

We used our bilevel cross-validation procedure twice with qout = 5 outer folds and

qin = 3 inner folds. This procedure gave us a performance sample of size 10 for each

dataset, but each with an 80-20 data split between training and testing data. We

selected the LPBR’s parameters as follows:

• After some initial experimentation, we used δ = 0.005 and p = 2.

• We used our inner cross-validation procedure to select the parameters D. We

experimented D =
1

νm
, selecting the possible values from

ν = {0.0001, 0.001, 0.005, 0.01}.

• The inner iteration limit was S = 20.
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Dataset

Method parkinson hungheart cleveland breast cmc car chess
LPBR 10.00% 18.72% 17.52% 3.07% 30.69% 1.07% 0.53%
AdaBoost 7.69% 22.46% 17.84% 3.59% 33.13% 1.27% 0.48%
Random Forests 9.49% 19.05% 18.53% 3.07% 30.96% 1.88% 1.49%

Table 3.1: Average testing classification error rate over the small datasets. The smallest
value in each column is bolded.

Dataset

Method parkinson hungheart cleveland breast cmc car chess
LPBR 0.00% 0.00% 0.00% 0.00% 17.40% 0.48% 0.01%
AdaBoost 0.00% 0.00% 0.00% 0.00% 3.00% 0.46% 0.02%
Random Forests 0.00% 0.09% 0.08% 0.00% 8.40% 0.59% 0.35%

Table 3.2: Average training classification error rate over the small datasets. The small-
est value in each column is bolded.

• The iteration limit for the outer cross-validation was S = 50 for datasets with

less than 500 observations, and S = 100 otherwise.

• We set t = 1, so we only added one box rule per iteration of column generation.

We initially create one-dimensional greedy box rules for all attributes, and then

solve the initial restricted master problem. To improve the running time to choose the

parameter D, we only used our greedy RMA heuristic to solve the subproblems in the

inner cross-validation. The subproblem in the outer cross-validation was initially solved

by greedy RMA. Once the greedy RMA objective satisfies the stopping condition or the

current greedy RMA solution is same as the previous RMA solution, the subproblem

is solved exactly using our parallel branch-and-bound algorithm.

The classification error of each rate run was calculated by the number of observations

misclassified by the final decision rule, divided by the number of training or testing

observations. Tables 3.1 and 3.2 respectively show the average testing and training

classification error rates. LPBR has the lowest testing classification error rates for 5

out of 7 datasets shown in Table 3.1 and Figure 3.3. However, all three methods of

LPBR, AdaBoost, and random forests are very competitive. Figure 3.4 shows that the

average testing classification error rate generally decreases and ρ increases as the number

of box-based rules of the classification model increases in each iteration. Even though

the training error is 0, the testing error can be improved as the margin ρ increases.
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Figure 3.3: Testing classification error rates of three different classification methods.
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Figure 3.4: Testing and training classification error rates and ρ as a function of iteration
count for the datasets.
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Chapter 4

Regression Application

4.1 A Penalized Regression Model with Rules

The second application of the RMA problem concerns generalized regression construct-

ing a prediction function from a linear combination of the standard linear regression

variables and box-based rules. To make our notation below more concise, we let X

denote the matrix whose rows are X>1 , . . . , X
>
m, and also let y = (y1, . . . , ym) ∈ Rm.

We may then express a problem instance by the pair (X, y). We also let xij denote the

(i, j)th element of this matrix, that is, the value of attribute j in observation i.

Let K be some set of pairs (a, b) ∈ Rn×Rn with a ≤ b, constituting a catalog of all

the possible rules of the form (1.22) that we wish to be available to our regression model.

The set K will typically be extremely large: restricting each aj and bj to values that

appear as xij for some i, which is sufficient to describe all possible distinct behaviors of

rules of the form (1.22) on the dataset X, there are still
∏n
j=1 `j(`j +1)/2 ≥ 3n possible

choices for (a, b), where `j =
∣∣⋃m

i=1{xij}
∣∣ is the number of distinct values for xij .

The predictors f̂ that our method constructs are of the form

f̂(x) = β0 +
n∑
j=1

βjxj +
∑
k∈K

γkrk(x) (4.1)

for some β0, β1, . . . , βm, (γk)k∈K ∈ R. Finding an f̂ of this form is a matter of linear

regression, but with the regression coefficients in a space with the potentially very high

dimension of 1+n+|K|. As is now customary in regression models in which the number

of explanatory variables potentially outnumbers the number of observations, we employ

a LASSO-class model in which all explanatory variables except the constant term have

L1 penalties. Letting β = (β1, . . . , βn) ∈ Rn and γ ∈ R|K|, let fβ0,β,γ( · ) denote the
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predictor function in (4.1). We then propose to estimate β0, β, γ by (approximately)

solving

min
β0,β,γ

{
m∑
i=1

|fβ0,β,γ(Xi)− yi|p + C ‖β‖1 + E ‖γ‖1

}
, (4.2)

where p ∈ {1, 2} and C,E ≥ 0 are scalar parameters. For p = 2, this model is essentially

the classic LASSO as originally proposed by [28]. The decision variables are ε ∈ Rm,

β0 ∈ R, β+, β− ∈ Rn, and γ+, γ− ∈ R|K|. To put (4.2) into a form more suitable for

column generation, we split the regression coefficient vectors into positive and negative

parts, so that β = β+ − β− and γ = γ+ − γ−, with β+, β− ∈ Rn+ and γ+, γ− ∈ R|K|+ .

Introducing one more vector of variables ε ∈ Rm+ , we obtain the equivalent problem

formulation

min
β0∈R, β+,β−≥0
γ+,γ−≥0, ε≥0

m∑
i=1

εpi + C
n∑
j=1

(β+
j + β−j ) + E

∑
k∈K

(γ+
k + γ−k ) (4.3a)

ST β0 +X>i (β+ − β−) +
∑
k∈K

rk(Xi)(γ
+
k − γ

−
k )− εi≤ yi, i = 1, . . . ,m

(4.3b)

−β0 −X>i (β+ − β−)−
∑
k∈K

rk(Xi)(γ
+
k − γ

−
k )− εi≤−yi, i = 1, . . . ,m

(4.3c)

This model is constructed so that in any optimal solution, εi = |fβ0,β,γ(Xi)− yi| for

i = 1, . . . ,m. For each i = 1, . . . ,m, constraints (4.3b) and (4.3c) respectively tie εi to

the overestimation or underestimation of yi since they respectively reduce to

fβ0,β+,β−,γ+,γ−(Xi)− εi ≤ yi ⇔ fβ0,β+,β−,γ+,γ−(Xi)− yi ≤ εi, (4.4a)

−fβ0,β+,β−,γ+,γ−(Xi)− εi ≤ −yi ⇔ fβ0,β+,β−,γ+,γ−(Xi)− yi ≥ −εi. (4.4b)

If p = 1, problem (4.3) is a linear program, and if p = 2 it is a convex, linearly

constrained quadratic program. In either case, there are 2m constraints (other than

nonnegativity), but the number of variables is 1 + m + 2n + 2 |K|. Because of this

potentially unwieldy number of variables, we propose to solve (4.3) by using the classical

technique of column generation. As usual, our column generation algorithm cycles
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between solving two optimization problems, the restricted master problem and the

pricing problem. In our case, the restricted master problem is the same as (4.3), but

with K replaced by some (presumably far smaller) K ′ ⊆ K; we initially choose K ′ = ∅.

Solving the restricted master problem yields optimal Lagrange multipliers µ ∈ Rm+ and

ν ∈ Rm+ for constrants (4.3b) and (4.3c), respectively. From the structure of the (4.3),

the reduced costs of γ+
k and γ−k are respectively

rc[γ+
k ] = E −

m∑
i=1

rk(xi)νi +
m∑
i=1

rk(xi)µi (4.5a)

rc[γ−k ] = E +
m∑
i=1

rk(xi)νi −
m∑
i=1

rk(xi)µi, (4.5b)

and hence, for each k ∈ K, we have that

min
{

rc[γ+
k ], rc[γ−k ]

}
= min

{
E −

∣∣∣∣∣
m∑
i=1

rk(xi)(νi − µi)

∣∣∣∣∣
}

= E −max

∣∣∣∣∣
m∑
i=1

rk(xi)(νi − µi)

∣∣∣∣∣
Therefore, the column with the most negative reduced cost may be found by solving

z∗ = max
k∈K

∣∣∣∣∣
m∑
i=1

rk(xi)(νi − µi)

∣∣∣∣∣ (4.6)

and the natural stopping condition for column generation is z∗ ≤ E. Problem (4.6) is

an instance of the RMA problem, as shown in Section 2.1.

If the optimal solution of (4.6) corresponds to a positive value of
∑m

i=1 rk(xi)(νi−µi),

then the corresponding entering variable is γ+
k , whereas a negative value means that

the entering variable is γ−k . In a slight departure from classical column generation, we

add both of the variables γ+
k and γ−k to the restricted master problem whenever either

one of them is selected to enter the basis by the pricing problem (4.6); this is equivalent

to adjoining the value k to the set K ′.

In terms of the respective Lagrange multipliers µ, ν ∈ Rm+ of the master problem
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constraints (4.3b) and (4.3c), the Lagrangian function of (4.3) is:

q(µ, ν)µ,ν≥0 = (4.7a)

min
β0∈R, β+,β−≥0
γ+,γ−≥0, ε≥0

m∑
i=1

εpi + C

n∑
j=1

(β+
j + β−j ) + E

∑
k∈K

(γ+
k + γ−k ) (4.7b)

+

m∑
i=1

µi

[
β0 +Xi

T (β+ − β−) +
∑
k∈K

rj(Xi)(γ
+
j − γ

−
j )− εi − yi

]
(4.7c)

+
m∑
i=1

νi

[
−β0 −Xi

T (β+ − β−)−
∑
k∈K

rj(Xi)(γ
+
j − γ

−
j )− εi + yi

]
.

(4.7d)

The Lagrangian function (4.7) may be written as:

q(µ, ν)µ,ν≥0 =

m∑
i=1

νiyi −
m∑
i=1

µiyi (4.8a)

+ min
ε≥0

m∑
i=1

εpi −
m∑
i=1

µiεi −
m∑
i=1

νiεi (4.8b)

+ min
β0

β0

m∑
i=1

µi − β0

m∑
i=1

νi (4.8c)

+ min
β+≥0

C

n∑
j=1

β+
j +

m∑
i=1

µiXi
Tβ+ −

m∑
i=1

νiXi
Tβ+ (4.8d)

+ min
β−≥0

C

n∑
j=1

β−j +

m∑
i=1

νiXi
Tβ− −

m∑
i=1

µiXi
Tβ− (4.8e)

+ min
γ+≥0

E
∑
k∈K

γ+
k +

m∑
i=1

µi
∑
k∈K

rj(Xi)γ
+
k −

m∑
i=1

νi
∑
k∈K

rj(Xi)γ
+
k (4.8f)

+ min
γ−≥0

E
∑
k∈K

γ−k +
m∑
i=1

νi
∑
k∈K

rk(Xi)γ
−
k −

m∑
i=1

µi
∑
k∈K

rk(Xi)γ
−
k . (4.8g)
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Factoring by each response value yi ∈ R and by each primal variable, β0 ∈ R+,

β+
j , β

−
j , γ

+
k , γ

−
k ∈ R+ except εi ∈ R, we obtain

q(µ, ν)µ,ν≥0 =

m∑
i=1

yi(νi − µi) (4.9a)

+ min
ε≥0

m∑
i=1

εpi − (µi + νi)εi (4.9b)

+ min
β0

β0

m∑
i=1

(µi − νi) (4.9c)

+ min
β+≥0

n∑
j=1

β+
j

(
C +

m∑
i=1

νixij −
m∑
i=1

µixij

)
(4.9d)

+ min
β−≥0

n∑
j=1

β−j

(
C +

m∑
i=1

µixij −
m∑
i=1

νixij

)
(4.9e)

+ min
γ+≥0

∑
k∈K

γ+
k

(
E +

m∑
i=1

µirk(Xi)−
m∑
i=1

νirk(Xi)

)
(4.9f)

+ min
γ−≥0

∑
k∈K

γ−k

(
E +

m∑
i=1

νirk(Xi)−
m∑
i=1

µirk(Xi)

)
. (4.9g)

When p = 1, (4.9b) is: min
ε≥0

m∑
i=1

εi−(µi+νi)εi = min
ε≥0

m∑
i=1

εi(1−µi−νi). The Lagrangian

function q(µ, ν) must be less than equal to the optimal objective value of the primal

REPR problem. Since a primal variable β0 ∈ R is unrestricted, its coefficient has to

be 0. Since each primal variable εi, β
+
j , β

−
j , γ

+
k , γ

−
k ∈ R+ must be non-negative, its

coefficient has to be non-negative. Hence, the dual formulation of the REPR master

problem for p = 1 is:
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max
µ,ν≥0

m∑
i=1

yi(νi − µi) (4.10a)

ST
m∑
i=1

(µi − νi) = 0 (4.10b)

µi + νi = εi, i = 1, . . . ,m (4.10c)

C +

m∑
i=1

νixij −
m∑
i=1

µixij ≥ 0, j = 1, . . . n (4.10d)

C +

m∑
i=1

µixij −
m∑
i=1

νixij ≥ 0, j = 1, . . . n (4.10e)

E +

m∑
i=1

µirk(Xi)−
m∑
i=1

νirk(Xi) ≥ 0, k ∈ K (4.10f)

E +

m∑
i=1

νirk(Xi)−
m∑
i=1

µirk(Xi) ≥ 0, k ∈ K. (4.10g)

When p = 2, (4.9b) is: min
ε≥0

m∑
i=1

ε2i − (µi + νi)εi. Since ε2i − (µi + νi)εi is a convex

function, it attains its minimum value when (∂/∂εi)[ε
2
i −µiεi− νiεi] = 2εi−µi− νi = 0.

Solving this equation, εi =
µi + νi

2
. By substituting εi,

ε2i − (µi + νi)εi = (
µi + νi

2
)2 − (µi + νi)

µi + νi
2

=
(µi + νi)

2

4
− (µi + νi)

2

2

=
(µi + νi)

2 − 2(µi + νi)
2

4

= −(µi + νi)
2

4
.

Therefore, we can substitute for (4.9b) using:

min
ε≥0

m∑
i=1

ε2i − (µi + νi)εi = −
m∑
i=1

(µi + νi)
2

4
.
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Therefore, the dual formulation for p = 2 is:

max
µ,ν≥0

m∑
i=1

yi(νi − µi)−
1

4

m∑
i=1

(νi + µi)
2 (4.13a)

ST
m∑
i=1

(µi − νi) = 0 (4.13b)

C +
m∑
i=1

νixij −
m∑
i=1

µixij ≥ 0, j = 1, . . . n (4.13c)

C +
m∑
i=1

µixij −
m∑
i=1

νixij ≥ 0, j = 1, . . . n (4.13d)

E +
m∑
i=1

µirk(Xi)−
m∑
i=1

νirk(Xi) ≥ 0, k ∈ K (4.13e)

E +
m∑
i=1

νirk(Xi)−
m∑
i=1

µirk(Xi) ≥ 0, k ∈ K. (4.13f)

Constraints (4.10b) and (4.13b) correspond to the primal variable β0, dual con-

straints (4.10d), (4.10e), (4.13c), and (4.13d) correspond to the primal variables β+
j

and β−j , and the dual constraints (4.10f), (4.10g), (4.13e), and (4.13f) correspond to the

primal variables γ+
k and γ−i . The primal variable εi corresponds to constraint (4.10c)

in the p = 1 case and to the quadratic objective function term in the p = 2 case.

Since the every restricted master problem contains the variables β0 ∈ R and εi, β
+
j , β

−
j

∈ R+, the dual constraints other than (4.10f), (4.10g)/(4.13e), (4.13f) are satisfied at

every column generation iteration. However, the constraints (4.10f), (4.10g)/(4.13e),

(4.13f) are not necessarily satisfied because not all the possible variables γ+
k , γ

−
k are

present in the restricted master. As is customary in column generation, the pricing

problem may be viewed as finding the most violated dual constraint of the form (4.10f),

(4.10g)/(4.13e), (4.13f).

If we take K to be the set of all possible boxes on Rn, the pricing problem (4.6) may

be reduced to RMA by setting wi = µi − νi for each i = 1, . . . ,m, where µ, ν ∈ Rm+ are

the respective dual variables for constraints (4.3b) and (4.3c) of the restricted master

problem, as above.

The RMA subproblems generated by our column generation procedure have some

special structure: for any given i = 1, . . . ,m, only one of the constraints (4.3b) or (4.3c)
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can be binding, except in the situation that fβ0,β+,β−,γ+,γ−(Xi) = yi and εi = 0, that is,

the model exactly fits the response yi. Otherwise, either the current model overestimates

yi, in which case constraint (4.3c) is slack and νi = 0, or conversely yi is underestimated,

and constraint (4.3b) is slack and µi = 0.

Consider now the case p = 1. The dual constraints (4.10c) correspond to the primal

variables εi, so for any observation yi not being estimated exactly, complementary

slackness requires that constraint (4.10c) be binding. Thus we deduce that

wi = µi = 1 when observation i is overestimated

wi = −νi = −1 when observation i is underestimated.

Next consider the case p = 2. If (ε, β+, β−, γ+, γ−, β0) is an optimal primal solution

and (µ, ν) is an optimal dual solution, then for any i = 1, . . . ,m, we should have from

the optimality conditions of the minimization within (4.7) that (∂/∂εi)[ε
2
i −µiεi− νiεi],

which reduces to 2εi = µi + νi. We therefore conclude that

wi = µi = 2εi when observation i is overestimated

wi = −νi = −2εi when observation i is underestimated.

Combining all these observations and supposing that no observations are fitted exactly,

we conclude that in the p = 1 case the pricing problem is to locate a box in which

overestimated observations most outnumber underestimated ones or vice versa. If p = 2,

the objective of the pricing problem is instead to find a box in which the sum of

overestimation errors most greatly exceeds the sum of underestimation errors or vice

versa.

Within the context of our REPR regression method, we set the RMA weight vector

to w = µ− ν, discretize the data X using using the process described in Section 2.1.1,

and solve the RMA problem. For unseen datasets, the resulting boxes are translated

back to the original, pre-integerized coordinate system, as shown in Section 3.1.1.

4.2 Full Algorithm and Implementation
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Algorithm 10 REPR: Rule-enhanced penalized regression

1: Input: data X ∈ Rm×n, y ∈ Rm, penalty parameters C,E ≥ 0, column generation
tolerance θ ≥ 0, integer t ≥ 1, aggregation tolerance δ ≥ 0, and iteration limit S

2: Output: β0 ∈ R, β ∈ Rn,K ′ ⊂ Kδ(X), γ ∈ R|K′|
3: REPR:

4: K ′ ← ∅
5: for s = 1, . . . , S do
6: Solve the restricted master problem to obtain optimal primal variables

(β0, β
+, β−, γ+, γ−) and dual variables (ν, µ)

7: Use the RMA branch-and-bound algorithm, with preprocessing as in Sec-
tion 2.1.1,
to identify a set of t of the best possible solutions k1, . . . , kt to

max
k∈Kδ(X)

∣∣∣∣∣
m∑
i=1

rk(xi)(νi − µi)

∣∣∣∣∣ , (4.14)

with objective values z1 ≥ z2 ≥ · · · ≥ zt
8: if z1 ≤ E + θ break
9: for each l ∈ {1, . . . , t} with zl > E + θ do

10: K ′ ← K ′ ∪ {kl} where the box kl is translated back to the original scale as in
Section 3.1.1

11: end for
12: end for
13: return (β0, β := β+ − β−,K ′, γ := γ+ − γ−)

The pseudocode in Algorithm 10 describes our full REPR column generation pro-

cedure for solving (4.3), preprocessing the input data using the procedure described in

Section 2.1.1 and then solving the pricing problem using the branch-and-bound methods

described in Sections 2.3-2.5. Several points bear mentioning: first, the nonnegative

scalar parameter θ allows us to incorporate a tolerance into the column generation

stopping criterion, so that we terminate when all reduced costs exceed −θ instead of

when all reduced costs are nonnegative. This kind of tolerance is customary in col-

umn generation methods. The tolerance δ, on the other hand, controls the space of

columns searched over. Furthermore, using some features already available in PEBBL,

our implementation of the RMA branch-and-bound algorithm can identify any desired

number t ≥ 1 of the best possible RMA solutions, as opposed to just one value of k

attaining the maximum in (4.14). This t is also a parameter to our procedure, so at

each iteration of Algorithm 10 we may adjoin up to t new rules to K ′. Adding multiple
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columns per iteration is a common technique in column generation methods. Finally,

the algorithm has a parameter S specifying a limit on the number of column generation

iterations, meaning that at the output model will contain at most St rules.

In addition to implementing the RMA branch-and-bound algorithm using C++ and

PEBBL as mentioned above, we implemented the remainder of Algorithm 10 in C++,

using the Gurobi commercial optimizer [22] to solve the restricted master problems,

employing its LP or QP simplex method and “warm starting” from the optimal solution

basis of the previous restricted master problem for s > 1. If one is careful to “warm-

start” the solution of the restricted master problem in this way, solving the RMA

pricing problem tends to be the most time-consuming part of Algorithm 10, so we used

true parallel computing only in that portion of the algorithm. The remainder of the

algorithm, including solving the restricted master problems, was executed in serial and

redundantly on all processors.

4.3 Computational Testing

4.3.1 Setting Parameters by Cross Validation

To evaluate the performance REPR, we need to set its parameters, in particular the

L1 penalty coefficients C and E. Small values of C and E (along with a high iteration

limit S) can lead to overfitting — good apparent performance on training data but

relatively poor performance on testing data. Our computational test utilizes the bilevel

cross-validation method, as shown in Section 3.3.2.

The evaluated competing models include RuleFit, random forests, gradient boosting,

and simple linear regression. Some of these methods may perform their own internal

parameter optimizations.

4.3.2 Small Test Datasets and Data Standardization

We tested the REPR procedure on some small datasets from the UCI data reposi-

tory [25], as described in Table 4.1. The column of this table shows |K0(X)|, the total

number of boxes B(a, b) that have distinguishable coverage on each dataset.
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Dataset m n |K0(X)|
SERVO 167 10 9.8× 105

CONCRETE 103 9 2.7× 1029

MACHINE 209 6 2.5× 1015

YACHT 308 6 2.6× 1010

MPG 392 7 3.3× 1019

COOL 768 8 1.1× 1010

HEAT 768 8 1.1× 1010

AIRFOIL 1503 5 1.0× 1011

Table 4.1: Summary of the small experimental datasets.

Before applying REPR, we standardized the problem input data so that the response

vector y and all columns xj of X have mean zero and standard deviation 1, as follows:

given any non-standardized problem input instance (X̂, ŷ), we set

yi =
ŷi − µ(ŷ)

σ(ŷ)
∀ i = 1, . . . ,m xij =

x̂ij − µ(x̂j)

σ(x̂j)
∀ i = 1, . . . ,m ∀ j = 1, . . . , n,

where µ( · ) and σ( · ) respectively denote computing the mean and (sample) standard

deviation of a vector, and x̂j denotes the jth column of X̂. For input data containing

categorical attributes as well as numerical ones, we also converted each c-way categorical

attribute into c− 1 binary attributes.

4.3.3 Numerical Results for Small Datasets

We used our bilevel cross-validation procedure twice with qout = 5 outer folds and

qin = 3 inner folds. This procedure gave us a performance sample of size 10 for each

dataset, but each with an 80-20 data split between training and testing data.We selected

the REPR’s parameters as follows:

• We used our inner cross-validation procedure to select the parameters C and E.

We experimented only with cases in which C = E, selecting the possible values

from {0, 0.5, 1, 1.5, 2}.

• We did complete tests for both p = 1 (absolute deviation loss) and p = 2

(quadratic loss).

• After some initial experimentation, we used δ = 0.005.



83

• The iteration limit was S = 150.

• We set t = 1, so we only added one box rule per iteration of column generation.

In addition to testing the REPR procedure shown in Algorithm 10, we also tested

a variant we call GREPR, for “greedy REPR”. In this variant, we replace step 7 of

Algorithm 10 with a single invocation to the greedy method of Section 2.5. Thus,

GREPR does not attempt to solve the pricing problem exactly, substituting a greedy

heuristic instead. In this case, we are not able to use the termination test in line 8 of

Algorithm 10, because the greedy method solution may not necessarily correspond to

the column with the most negative reduced cost. Instead, we simply terminate GREPR

whenever the greedy method returns the same box rule on two successive calls (which

would otherwise cause the method to enter an infinite loop). So far, we have only

experimented with GREPR for p = 2.

We compared the performance of REPR and GREPR to RuleFit, random forests,

gradient boosting and classical linear regression. To implement RuleFit, random forests,

gradient boosting and classical linear regression, we used their publicly available R

packages with default parameter settings; the variant of gradient boosting implemented

is described in [27].

Table 4.2 summarizes the mean squared error (MSE) performance of the various

methods, averaged over the 10 runs in our two invocations of the cross-validation pro-

cedure and scaled by (1/m)
∑m

i=1 y
2
i . The smallest average MSE for each dataset is

shown in bold. Figure 4.1 displays the same information as a bar chart, normalized so

that the p = 1 REPR value has height 1 for each dataset. In each case, the smallest av-

erage MSE is attained by either the p = 1 or p = 2 case of REPR. GREPR’s prediction

accuracy is comparable to but slightly worse overall than the two REPR variants.

Table 4.3 summarizes the standard deviation of the sample of 10 calculated MSE

values, which we take as a measure of prediction stability. The values shown are scaled

by (1/m)
∑m

i=1 |yi|. Together, the p = 2 REPR and GREPR methods have the lowest

standard deviation for every dataset except CONCRETE and HEAT. For HEAT, the

p = 1 REPR variant is lowest, and linear regression has the lowest standard deviation for
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Dataset

Method SERVO CONCRETE MACHINE YACHT
REPR, p = 1 0.14377 0.00346 0.23200 0.00846
REPR, p = 2 0.11180 0.00436 0.27860 0.00282
GREPR (p = 2) 0.15030 0.00513 0.24725 0.01296
RuleFit 0.14275 0.00730 0.51282 0.00728
Random forests 0.27276 0.01303 0.27119 0.14695
Gradient boosting 0.31585 0.00896 0.60671 0.02152
Linear regression 0.68122 0.00562 0.48644 0.77343

Dataset

Method MPG COOL HEAT AIRFOIL
REPR, p = 1 0.01228 0.00038 0.00152 0.00020
REPR, p = 2 0.01531 0.00035 0.00086 0.00018
GREPR (p = 2) 0.01488 0.00066 0.00103 0.00021
RuleFit 0.01376 0.00049 0.00459 0.00026
Random forests 0.01438 0.00239 0.00569 0.00084
Gradient boosting 0.02085 0.00144 0.00503 0.00074
Linear regression 1.02085 0.01763 0.01722 0.00150

Table 4.2: Average MSE over the small datasets, scaled by (1/m)
∑m

i=1 y
2
i . The smallest

value in each column is bolded.
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Figure 4.1: Visual comparison of average MSE values, with the REPR value normalized
to 1.
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Dataset

Method SERVO CONCRETE MACHINE YACHT
REPR, p = 1 0.21450 0.10030 175.93689 0.02464
REPR, p = 2 0.15365 0.09101 162.27646 0.00786
GREPR (p = 2) 0.20063 0.08711 187.33358 0.00603
RuleFit 0.16335 0.09818 263.42395 0.00916
Random forests 0.19868 0.20743 296.92468 0.15463
Gradient boosting 0.20947 0.12787 283.52269 0.08391
Linear regression 0.35761 0.06793 156.81222 0.41702

Dataset

Method MPG COOL HEAT AIRFOIL
REPR, p = 1 0.05881 0.00373 0.00340 0.00432
REPR, p = 2 0.05670 0.00083 0.00474 0.00371
GREPR (p = 2) 0.04942 0.00040 0.00608 0.00429
RuleFit 0.07721 0.00108 0.01414 0.00865
Random forests 0.07998 0.00590 0.01255 0.01454
Gradient boosting 0.06378 0.00318 0.01258 0.00704
Linear regression 0.05371 0.04309 0.02703 0.00649

Table 4.3: Standard deviation of MSE over the small datasets, scaled by
(1/m)

∑m
i=1 |yi|. The smallest value in each column is bolded.

Dataset

Method SERVO CONCRETE MACHINE YACHT
REPR, p = 1 1.9 74.7 46.7 3.3
REPR, p = 2 1.6 115.7 41.7 5.6
GREPR (p = 2) 0.2 0.2 0.7 0.4

Dataset

Method MPG COOL HEAT AIRFOIL
REPR, p = 1 1261.1 9.5 9.8 42.9
REPR, p = 2 6921.9 14.3 16.9 87.1
GREPR (p = 2) 3.0 5.0 4.2 29.9

Table 4.4: Average REPR and GREPR run times in seconds over the small datasets.

CONCRETE; however the prediction performance of linear regression on CONCRETE

is poor, so stability of prediction is not of great benefit.

Table 4.4 summarizes the run time performance of REPR and GREPR, in average

seconds per run. Each run was performed on a single 2.1GHz Xeon E5-2695 v4 node

of one of our university computing resource clusters. The REPR tests ran their pricing

problems in parallel on the 36 processor cores available on each node, whereas GREPR is

fully serial. REPR is much slower than the competing methods we tested; the competing

methods typically ran in less than a second on the datasets in Table 4.1 and no case

took more than 2.3 seconds. However, REPR’s running time is not prohibitive for the

small datasets of Table 4.1, except for the REPR methods on the MPG dataset, for



86

which the RMA branch-and-bound trees averaged millions of search nodes. The MPG

runs could therefore be sped up by using more processor cores to accelerate the branch-

and-bound search. Another way to improve run times is to simply use GREPR, which

runs much faster for most models. Sometimes, however, as in the case of AIRFOIL,

the restricted master problems can take significant time to solve, in which case the run

time advantage of GREPR is less pronounced.

The charts in Figure 4.2 give more detailed information for the small datasets.

For the C and E parameter values selected by the inner cross validation step, these

charts show how the p = 2 REPR and GREPR prediction MSEs (in the original,

non-standardized coordinate system) evolve with each iteration, with each data point

averaged over the two 5-fold cross-validations; the horizontal lines indicate the average

MSE level for the competing procedures. MSE generally declines as REPR adds rules,

although some diminishing returns are evident for CONCRETE. The first iteration of

the REPR models is equivalent to a simple LASSO model, which has similar perfor-

mance to linear regression. We observed that GREPR tends to stop earlier than the

exact REPR algorithm. Interestingly, the charts show only limited evidence of overfit-

ting by REPR and GREPR, even when large numbers of rules are incorporated into

the model.
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Figure 4.2: MSE as a function of iteration count for the smaller datasets.



88

Dataset m n |K0(X)|
SML dining 4127 12 1.4× 1067

SML room 4127 12 1.4× 1067

parkinsons total 5875 20 2.0× 10117

parkinsons motor 5875 20 2.0× 10117

Table 4.5: Summary of larger datasets.

Dataset
Method SML dining SML room parkinsons total parkinsons motor

GREPR 1.763× 10−6 1.456× 10−3 6.937× 10−3 9.429× 10−3

RuleFit 6.741× 10−6 3.675× 10−3 6.509× 10−3 8.906× 10−3

Random forests 2.269× 10−6 1.501× 10−3 4.491× 10−3 5.425× 10−3

Gradient boosting 1.228× 10−5 4.720× 10−3 2.595× 10−2 2.592× 10−2

Linear regression 1.606× 10−5 6.933× 10−3 1.023× 10−1 1.151× 10−1

Table 4.6: Average MSE over the larger datasets. The smallest value in each column
is bolded

4.3.4 Preliminary Numerical Results with Larger Datasets

We also made some preliminary experiments with the p = 2 GREPR method and

the non-REPR competitors on four UCI datasets having similarly small numbers of

attributes n, but considerably larger numbers of observations m, as summarized in

Table 4.5. We used the same testing methodology as in the previous section, except

that we let GREPR run for up to S = 500 iterations and set δ = 0 in the discretization

procedure.

The average MSE levels produced by the various methods are presented in Table 4.6.

Here, the results appear less favorable to our class of methods. GREPR obtains the

lowest MSE values for the two “SML” datasets, but the random forest method obtains

the lowest MSE on the Parkinsons datasets. Table 4.7 presents the standard deviation

of MSE values obtained on the larger datasets. Again, GREPR obtains the smallest

values on the two SML datasets, but random forests obtain the lowest value for the

Parkinsons datasets. Finally, Figure 4.3 shows the evolution of the average MSE with

the number of GREPR iterations, similarly to Figure 4.2. Interestingly, there is no

evidence of overfitting through 500 iterations.



89

Dataset
Method SML dining SML room parkinsons total parkinsons motor

GREPR 3.586× 10−5 2.045× 10−4 3.671× 10−4 1.269× 10−3

RuleFit 3.925× 10−5 2.882× 10−4 7.370× 10−4 4.775× 10−4

Random forests 6.511× 10−5 2.528× 10−4 3.192× 10−4 3.375× 10−4

Gradient boosting 1.519× 10−4 3.389× 10−4 1.709× 10−3 7.396× 10−4

Linear regression 1.976× 10−4 7.375× 10−4 3.673× 10−3 2.829× 10−3

Table 4.7: Standard deviation of MSE over the larger datasets. The smallest value in
each column is bolded
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Figure 4.3: MSE as a function of iteration count for the larger datassets.
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Chapter 5

Conclusions and Possible Improvements

This dissertation described an efficient parallel branch-and-bound algorithm for the

NP-hard RMA problem, with non-strong branching. Using parallel computing further

improved the runtime and capacity to solve larger RMA problems exactly. The two-

class classification and regression applications of the RMA problem outperformed some

existing algorithms in prediction accuracy and stability.

The following list contains possible improvements and extensions the work in to this

dissertation. These could be explored in further research.

• Use of dimensional reduction techniques to reduces the level of difficulty, such

as removing some attributes highly related to the other attributes, for the RMA

problem with maintaining an optimal or near-optimal solution

• Removing infeasible regions by generating cutting planes before our parallel enu-

meration method using PEBBL

• An optimization-based bound to improve the bounding process in the branch-

and-bound algorithm

• An efficient parallel implementation to solve the LPBR and REPR restricted

master problems, instead of using a commercial MIP solver, Gurobi

• A mini-batch method to find multiple boxed-based rules in parallel in each column-

generation iteration

• An efficient choice of parameters for LPBR and REPR master problems
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Appendix A

RMA Code Descriptions

RMA is implemented using PEBBL, and [13] explains how to use PEBBL. This chapter

additionally explains specific parameters and some main procedures in the RMA solver.

An example command to run the RMA solver with a debugging option is:

./rma --delta=10 datafile.txt

A.1 Parameters

delta

Layer: Serial and Parallel

Datatype: double

Default value: -1.0

Constraints: [0, 1.0) or -1.0

This parameter is δ, a relative tolerance to aggregate close consecutive values, as

shown in Section 2.1.1. It is scaled by the 95% central confidence interval of the

original data distribution.

binSize

Layer: Serial and Parallel

Datatype: integer

Default value: -1

Constraints: a positive integer or -1

If this value is set to L > 0, the original data are discretized into partitions of L

equal intervals.
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limitInterval

Layer: Serial and Parallel

Datatype: double

Default value: 0.1

Constraints: (0, 1.0)

This parameter limits the maximum fraction of the entire data range in the

original non-discretized data values, that can have the same discretized value. It

is ρ in Section 2.1.1, and is scaled by the 95% central confidence interval of the

original data distribution. If an interval, generated by the current δ, violates this

limit, the violated range is recursively discretized by shrinking δ until this limit is

no longer violated.

shrinkDelta

Layer: Serial and Parallel

Datatype: double

Default value: 0.95

Constraints: (0, 1.0)

This parameter specifies the level of shrinking δ when limitInterval caught

violated.

limitDistVals

Layer: Serial and Parallel

Datatype: integer

Default value: -1

Constraints: a nonnegative integer or -1

If this value is less than the distinct value `j in attribute j after the recursive

discretization and delta > 0, then data in attribute j is furthermore discretized

by partitioning into L equal intervals.
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removeDuplicateObs

Layer: Serial and Parallel

Datatype: bool

Default value: true

If true, RMA removes duplicated observations based on the discretized

explanatory matrix X, and adds the weight of removed observation to the weight

of merging observation.

getInitialGuess

Layer: Serial and Parallel

Datatype: bool

Default value: true

If true, RMA implements the greedy heuristic in Section 2.5 to obtain an initial

incumbent before the branch-and-bound procedure.

perCachedCutPts

Layer: Serial and Parallel

Datatype: double

Default value: 0.000001

Constraints: (0.0, 1.0]

If this parameter value is less than 1.0, RMA implements cutpoint cashing. The

default value is 0.000001. Thus, RMA generally considers only the cached

cutpoints if there is at least one applicable cached cutpoint.

binarySearchCutVal

Layer: Serial and Parallel

Datatype: integer

Default value: -1

If this value is greater than 3 and less than the number of distinct values `j in an

attribute j, RMA implements binary cupoint search for attribute j.
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branchSelection

Layer: Serial

Datatype: integer

Default value: 0

Constraints: {0,1,2}

When there are optimal tied solutions, the RMA solver lets the option “0” to

randomly chooses one, option “1” to select the first one, and option “2” to select

the last one among them.

countingSort

Layer: Serial and Parallel

Datatype: bool

Default value: false

The default sorting algorithm is bucket sort. If true, it is replaced by counting

sort.

testWt

Layer: Serial and Parallel

Datatype: bool

Default value: false

RMA starts with that each observation has a weight, yi divided by the number of

training observations, in default setting. If this parameter is true, RMA can set

different weights by using a weight data file, i.e. “testWt.txt”, which contains

different weights for a current dataset. It is specified after the current dataset in

command line. The number of weights in the file has to be equal to the number of

observations in the current data file. An example command to use this feature is:

./rma --testWt=true datafile.txt testW.txt
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bruteForceEC

Layer: Serial and Parallel

Datatype: bool

Default value: false

If true, RMA constructs equivalence classes without using the rotation

algorithm. This option was created to demonstrate the benefits of using the

rotation algorithm.

bruteIncumbent

Layer: Serial and Parallel

Datatype: bool

Default value: false

If true, RMA computes an incumbent by a brute force algorithm. It still utilizes

Kadane’s algorithm to find an incumbent, but it scans all observations for each

distinct value of each attribute. This option is a validation method for the current

incumbent computation. If the bruteForceEC parameter is true, then this

parameter is automatically set to be true as well.

perLimitAttrib

Layer: Serial and Parallel

Datatype: double

Default value: 1.0

Constraints: (0.0, 1.0]

This parameter limits the percentage of all attributes that RMA inspects. If the

first x percentage of attributes are inspected already, RMA does not inspect the

other attributes anymore. Therefore, an optimal solution may not be obtained.
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setupProblem

setupDiscretizedData recursiveDiscretization intervalDiscretization

Remove

Duplicates?

for j = 1 to n: bucketSort(j)

removeDuplicates

delta= -1 and
binSize=-1

delta=-1 and
fixedInterval>0delta>0

`j>limitDistVals

Yes

Figure A.1: Procedures for reading a data file and preprocessing data

writeCutPts

Layer: Serial

Datatype: bool

Default value: false

If true, RMA writes each cutpoint (j, v) chosen in order into a solution file. This

information shows which cutpoints were chosen and in which order they are

chosen in each branch of the tree.

A.2 Serial RMA procedures

The user-defined branching and sub-branching classes, serRMA and serRMASub, are

created for the serial branch-and-bound procedures using PEBBL. They are respectively

derived from the branching and branchSub classes of PEBBL.

A.2.1 Methods in serRMA class

Figure A.1 shows procedures to read a dataset and to preprocess data in the serRMA

class.
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bool serRMA::setupProblem(int& argc, char**& argv)

This method reads a data file and stores the dataset information. If explanatory vari-

ables are not discretized yet, it can be discretized by the recursive discretization method

or the discretization method by fixed intervals.

bool serRMA::setupDiscretizedData()

If a dataset is already discretized, this method is invoked to setup the problem set.

bool serRMA::recursiveDiscretization()

If the delta parameter is greater than 0, this function recursively discretizes explana-

tory variables as shown in Section 2.1.1.

bool serRMA::intervalDiscretization()

If the binSize parameter is not -1, this function is invoked to discretize the original

data into partitions of L equal intervals.

solution* serRMA::initialGuess()

This method is invoked after preprocessing data and before the branch-and-bound pro-

cedure. If the getInitialGuess parameter is true (default), it computes an initial

greedy solution, as shown in Section 2.5.

A.2.2 Methods in serRMASub class

Figure A.2 graphically shows the order of methods invoked to compute the bounds and

incumbents in the serRMASub class.

void serRMASub::boundComputation()

The method computes bounds for given applicable cutpoints by the branching option

and selects the best one.

void serRMASub::createInitialEquivClass()

The method creates the initial equivalence classes based on given (a, a, b, b) in each

subproblem.

void serRMASub::computeIncumbent(const int& j)

This method computes an incumbent using maximization and minimization Kadane’s

algorithms for attribute j.
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void serRMASub::strongBranching()

If the parameters, perCachedCutpts = 1 and binarySearchCutVals = -1, RMA in-

vokes this method to perform strong branching.

void serRMASub::cachedBranching()

If the parameters, perCachedCutpts < 1 and binarySearchCutVals = -1, as in the

default settings, RMA invokes this method to implement cutpoint caching.

void serRMASub::binaryBranching()

If the parameters perCachedCutpts = 1 and binarySearchCutVals > 0, RMA invokes

this method to perform binary cutpoint search for the attribute if its applicable cutval-

ues greater than the binarySearchCutVals parameter; otherwise, strong branching.

void serRMASub::hybrindBranching()

If the parameters, perCachedCutpts < 1 and binarySearchCutVals > 0 , RMA in-

vokes this method to implement hybrid branching. RMA performs binary cutpoint

search for the attribute if its applicable cutvalues greater than the binarySearchCutVals

parameter; otherwise, cutpoint caching.

void serRMASub::splitSubproblem(const int& j, const int& v)

This method splits the current subproblem into two or three children by branching at

cutpoint (j, v).

void serRMASub::dropEquivClass()

For a up or down child, RMA invokes this method to drop equivalence classes no longer

covered.

void serRMASub::mergeEquivClass()

For a middle child, RMA invokes this method to merge some equivalence classes.

void serRMASub::computeBound()

This method computes the bounds of two or three children.

A.3 Parallel RMA procedures

The parRMA and parRMASub classes contains methods required for the parallel imple-

mentation using PEBBL.
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A.3.1 Methods in parRMASub class

void parRMA::pack() void parRMA::unpack()

These methods in the parRMA class pack or unpack, respectively, the problem instance

information such as the number of observation, the number of attributes, explanatory

variables, response values, weights, the number of distinct features in each attribute, the

number of total cutpoints, and applicable parameters for the parallel implementation.

A.3.2 Methods in parRMASub class

void parRMASub::pack() void parRMASub::unpack()

These methods in the parRMASub class pack or unpack, respectively, the four vectors

of (a, a, b, b) for each subproblem and the best local cutpoint (j∗, v∗) to share with the

other processors in asynchronous search.

void parRMASub::boundComputation()

This method in the parRMASub class only computes bounds for assigned cutpoints for

each processor in the ramp-up process. In this process, RMA selects the best cutpoint,

and broadcasts it to the other processor. Once the ramp-up process ends and PEBBL

enters its asynchrous phase, each processor is assigned one subproblem and computes

bounds using the boundComputation method in the serial class of RMASub.
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Branching Methods

boundComputation

createInitialEquivClass

computeIncumbent(n)

strongBranching cachedBranching binaryBranching hybridBranching

splitSubporblem(j,v)

dropEquivClass mergeEquivClass

computeBound

Rotation?

bucketSortEC(j) or countingSortEC(j)

computeIncumbent(j)

for down or up child for middle child

Yes

No

Figure A.2: Procedures to compute bounds for child subproblems induced by the current
subproblem: the selected branching method provides each cutpoint (j, v) from attribute
j = 1 to n in this order. Once RMA finishes checking cutpoints in attribute j, it rotates
the sorted observation list. Incumbent computations are embedded within the rotation
algorithm.
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Appendix B

LPBR and REPR Code Descriptions

This appendix explains the class structure, the parameters, and the methods for LPBR

and REPR. These two implementations follow similar procedures with minor differ-

ences. Example commands to run the LPBR and REPR solvers respectively with

user-selected penalty parameters are:

./boosting --lpboost=true --nu=0.5 datafile.txt

./boosting --c==0.5 --e=0.5 datafile.txt

B.1 Class Structures

For code portability, the class structure to implement our two boosting algorithms,

LPBR and REPR, is organized as shown in Figure B.1. The allParams and rmaParams

classes contain parameters for the boosting procedures and the RMA algorithm, respec-

tively. The Base class contains the methods to read a data file name and parameters

defined in command line. It is derived from the allParams and rmaParams classes for

easy access to the parameters. The Data class, inherited from the Base class, contains

data from an input data file, the methods related to preprocessing datasets, and the pre-

processed data. The CrossValidation class, derived from the Data class, implements

cross-validation procedures by containing the CompLPBR and LPBR classes for LPBR

and the CompREPR and REPR classes for REPR. The CompLPBR and CompREPR classes

respectively implement the competing models of LPBR and REPR. The CompLPBR and

CompREPR classes are inherited from the CompModels class that contains common meth-

ods and data for the CompLPBR and CompREPR classes. The LPBR and REPR classes

respectively implement the column generation procedures of LPBR and REPR. The

LPBR and REPR classes are inherited from the Boosting class that contains common
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allParams rmaParams

Base

Data

CrossValidation

Boosting

LPBR REPR

RMA

GreedyRMACompModels

CompLPBR CompREPR

Figure B.1: Inheritance and containment class structure for LPBR and REPR: each
class name is specified inside a box. Straight and dashed arrows respectively indicate
inheritance and containment.

methods and data for the LPBR and REPR classes. The RMA class implements our par-

allel branch-and-bound by containing the serRMA and parRMA classes for serial and

parallel layers, respectively, as described in Appendix A. The RMA class is derived from

the rmaParams class. The GreedyRMA class contains data and methods required for our

greedy heuristic.

B.2 Parameters

The allParams class stores parameters for our boosting algorithms. The parameters

for RMA, as shown in Appendix A, are still available for LPBR and REPR solvers,

and they are contained in the rmaParams class, except that the delta, limitInterval,

shrinkDelta, binSize, limitDistVals, and getInitialGuess parameters are stored

in the allParams class. The testWt parameter is no longer available for these boosting

implementations.

outerCV

Application: LPBR and REPR

Datatype: bool

Default value: false

If true, 5-fold cross-validation is implemented.
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innerCV

Application: LPBR and REPR

Datatype: bool

Default value: false

If true, 3-fold inner cross-validation is implemented after the outer partitions are

created.

shuffleObs

Application: LPBR and REPR

Datatype: bool

Default value: true

If true, observation indices are shuffled before creating outer partitions.

readShuffledObs

Application: LPBR and REPR

Datatype: bool

Default value: false

If true, a pre-shuffled observation-index list is obtained from a text file specified

after the current datafile, instead of creating a new shuffled observation index list.

This list is used before creating outer partitions. An example command to use

this feature is:

./boosting --readShuffledObs=true datafile.txt randObservation.txt

writeShuffledObs

Application: LPBR and REPR

Datatype: bool

Default value: true

If true, a shuffled observation-index list is saved in a text file.
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iterations

Application: LPBR and REPR

Datatype: integer

Default value: 1

Constraints: a positive integer

This parameter specifies an upper limit on the number of column generation

iterations.

d

Application: LPBR

Datatype: double

Default value: 2/m ( m is the number of training samples)

Constraints: a positive double

This parameter is the non-negative penalty parameter D for LPBR.

nu

Application: LPBR

Datatype: double

Default value: 0.5

Constraints: (0,1)

This parameter specifies ν such that D =
1

νm
where m is the number of training

samples. If the parameter d is specified, this parameter is ignored.

p

Application: REPR

Datatype: integer

Default value: 1

Constraints: 1 or 2

This parameter specifies p in the REPR formulation.
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c

Application: REPR

Datatype: double

Default value: 1

Constraints: a non-negative double

This parameter is the non-negative L1 penalty parameter C for REPR.

e

Application: REPR

Datatype: double

Default value: 1

Constraints: a non-negative double

This parameter is the non-negative L1 penalty parameter E for REPR.

lpboost

Application: LPBR and REPR

Datatype: bool

Default value: false

If true, the LPBR solver is invoked; else, the REPR solver is invoked.

exactRMA

Application: LPBR and REPR

Datatype: bool

Default value: true

If true, the subproblem, RMA, is solved exactly using PEBBEL; else, it is solved

by our greedy heuristic.

compareModels

Application: LPBR and REPR

Datatype: bool

Default value: false

If true, competing models are implemented to evaluate our boosting algorithms.
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evalEachIter

Application: LPBR and REPR

Datatype: bool

Default value: false

If true, our current boosting model is evaluated in each column generation

iteration.

evalFinalIter

Application: LPBR and REPR

Datatype: bool

Default value: false

If true, our boosting model is evaluated at the end of the column generation

process.

writeNodeTime

Application: LPBR and REPR

Datatype: bool

Default value: false

If true, the number of bounded subproblems and CPU run time to solve each

RMA problem in each column generation iteration are saved in a text file named

“BBNode CPUTime datafile name”.

B.3 Methods for LPBR and REPR

Figure B.2 shows methods called for the column generation procedures of LPBR or

REPR. Even though the details of each method differ between the LPBR and REPR

classes, they follow similar procedures except that the LPBR class does not have to call

the solveInitMasterProblem function.



109

Dataset::readData

CrossValidation::partitionData

CompareModels::compareModels

Boosting::trainData

Boosting::discretizeData

Boosting::setupInitMasterProblem

REPR::solveInitMasterProblem

Boosting::setDataWeight

Boosting::solveRMA

Stop?

Boosting::insertColumn

Boosting::solveMasterProblem

Boosting:evaluateEachIter Boosting:evaluateFinalModel

No

Yes

Figure B.2: Procedures for our boosting algorithms of LPBR and REPR

B.3.1 Data class

void Data::readData()

This method reads a data file and saves explanatory variables X ∈ Rm×n and a response

variable y ∈ Rn for REPR or y ∈ {0, 1}n or {−1, 1}n for LPBoost.
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void Data::readRandObs()

If the readShuffledObs parameter is true and a text file, containing randomized ob-

servations indices, is specified in a command line, this method uses the pre-randomized

observation-index list in the file for cross-validation or bootstrapping.

void Data::integerizeDataRecursively()

If the parameter delta > 0, this method is invoked to discretize a explanatory matrix

recursively.

void Data::integerizeDataByFixedBin()

If the parameter fixedBinSize > 0 and the parameter delta = -1, then explanatory

variables are discretized into ` equal size bins in each attribute.

void Data::setStandData()

This method is invoked to standardize a dataset (X, y) for REPR not LPBR.

B.3.2 CrossValidation class

void CrossValidation::setOuterPartition()

This method randomly partitions observations into 5 sets.

void CrossValidation::setInnerPartition()

This methods randomly partitions observations in a given outer training set into 3 sets.

B.3.3 CompareModels class

void CompareModels::runCompModels()

If compModels parameter is true, then this method is invoked and several competing

models of LPBR or REPR are implemented to compare with our boosting methods.

B.3.4 Boosting class

The Boosting class contains both non-virtual functions and pure virtual functions. The

non-virtual functions are methods exactly same for both LPBR and REPR procedures,

and the pure virtual functions are methods utilized by both LPBR and REPR classes but

their details are different.



111

void Boosting::setInitialMaster()

This method sets up an initial restricted master problem.

void Boosting::setDataWts()

This method updates a weight of each training observation after solving the restricted

master problem in each column generation iteration.

void Boosting::solveRMA()

This method solves the RMA problem after updating the training observation weights.

void Boosting::setIntegerBounds()

This method stores the box-based rule solutions discovered by solving the RMA prob-

lems.

void Boosting::setOriginalBounds()

This method translates the box-based rule solutions stored in the setIntegerBounds

function back to the original variable scaling (before discretization).

void Boosting::insertColumns()

This method inserts one ore more columns using one ore more solutions given by solving

the RMA problem.

void Boosting::solveMaster()

This method solves the restricted master problem after one or more new columns are

inserted.

void Boosting::evaluateEachIter()

If the evalEachIter parameter is true, this method is invoked to evaluate our current

classifier or predictor in each column generation iteration.

void Boosting::evaluateFinalModel()

If the evalEachIter parameter is false and the evalFinalIter parameter is true,

this method is invoked to evaluate our final classifier or predictor.

B.3.5 REPR class

void REPR::solveInitialMaster()

This method solves the initial restricted master problem.
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B.3.6 GreedyRMA class

void GreedyRMA::runGreedyRangeSearch()

This method implements the minimum and maximum Kadane’s algorithms to obtain

a greedy box-based rule.
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