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ABSTRACT OF THE DISSERTATION 

Light Scatter based Label-free Assessment of Mitochondrial Morphology and 

Dynamics 

 by  

 Mohammad Naser 

 

Dissertation Director 

Dr. Nada N. Boustany 

Live-cell imaging has become increasingly important to the scientific community as 

researchers aim to understand the morphology and dynamics of the subcellular structures. 

Specifically, mitochondrial morphology under healthy and pathologic conditions is an 

emerging area of interest, with applications in neuroprotective drug discovery amongst 

many. Fluorescent dyes act as the current biological gold standard for visualizing 

organelles in  live-cell imaging, yet they have been shown to cause adverse effects on 

subcellular functions, prompting the development of alternate, “label-free”, methods of 

imaging. By employing Optical Scatter Imaging (OSI), which is based on optical Fourier 

filtering where scattered light is filtered by the hardware using size and orientation 

sensitive Gabor filters, images can be acquired label-free and processed to extract 

morphometric data. As groundwork for developing a label-free method for probing 

mitochondria, we first demonstrated that optical scatter imaging with principal 

component analysis (PCA) can classify apoptosis-competent Bax/Bak-expressing, and 

apoptosis resistant Bax/Bak-null immortalized baby mouse kidney (iBMK) cells without 

the use of fluorescent labels. Furthermore, in Bovine Aortic Endothelial Cells (BAEC), a 

different cell type, we revealed that label-free Optical Scatter Imaging (OSI) can be 

combined with digital segmentation to create dynamic subcellular masks. These masks 
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can be used to extract the “orientedness” of organelles, which corresponds to an 

organelle’s degree of orientation, allowing the quantification of organelle morphology 

during cell injury induced by calcium overload. In order to optimize this label free 

imaging and processing method for neuronal mitochondria, we applied a size-encoding 

parameter, “Smax”. All in all, we have developed different approaches to detect and 

quantify morphological changes associated with mitochondria and other organelles in 

three different cell-types and we have compared the results with a fluorescent data. This 

ultimately implies that our label-free imaging technique can be modified for use in many 

cell types, enabling numerous possible research applications in organelle visualization. 
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CHAPTER 1 

1 INTRODUCTION AND REVIEW OF RELATED WORK 

1.1 Live-cell Imaging: current gold-standard 

Traditionally, organelles in live cells are visualized either by staining with dyes or by 

expressing organelle-targeted fluorescent proteins. However, such approaches can have 

adverse effects on organelle function. In particular, fluorescent labels have adverse 

effects on mitochondrial metabolism
1 

and dynamics
2
, which can ultimately hinder reliable 

drug screening. For example, MitoTracker dyes reduce cell motility in primary neuronal 

culture as well as alter their morphology
2
. Besides, some dyes are not photo-stable if used 

in low concentration to avoid quenching effects, whereas fluorophores tend to aggregate 

and stain other organelles if used in high concentration
3
. On the other hand, mitochondria 

targeted fluorescent proteins such as mito-GFP do not affect function or morphology; 

however, long-duration time-lapse imaging is not possible due to photo-toxicity
1
. 

Moreover, low transfection efficiency hinders High Throughput Screening (HTS) for 

drug discovery
4
. Hence a label-free imaging technique would be ideal for noninvasive 

quantification of organelle dynamics over a long period.  

1.2 Live-cell Imaging with Optical Methods 

There is a wide range of label-free modalities which have been extensively used and 

popularized for live-cell imaging. However, we should note that each of these approaches 

has its own merit which makes it appropriate for a specific application. For example, 

some techniques report the optical properties such as refractive index and absorption, 

whereas others reveal information regarding metabolic response, stiffness or morphology 
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of the whole cell and subcellular organelles. Here we present a brief discussion of these 

label-free imaging techniques as an impetus to cast the advantages of our optical Fourier 

filtering based scatter imaging in a few specific applications. 

1.2.1 Imaging Based on Elastic Scattering 

Imaging based on elastic scattering of light has enabled label-free detection and 

quantification of subcellular structural properties and dynamics pertaining to a biological 

process without the use of any exogenous marker
5
. Unlike fluorescence imaging, 

scattering does not involve photon absorption and is several orders of magnitude greater 

than fluorescence. The magnitude, phase and the angular or wavelength dependence of 

the scattered far-field can be exploited to provide useful information regarding the 

scattering object. These attributes of the scattered signal can be obtained either by 

spectroscopic means or through imaging. While spectroscopy provides overall statistical 

properties of the whole population of scatterers, light scattering based imaging enables 

registration of the scattering signal spatially with the scattering sources, thus localizing 

any change in the scattering profile in a biological sample. Of particular interest to this 

work is the imaging aspect of light scattering, hence discussion will be limited to the 

modalities that report scattering data as image. Light scattering has been used to 

differentiate among human colon cancer cell types with different mutations by measuring 

the spatial fluctuations in macromolecular density in the cell
6
.  The probed fluctuations 

are reported to be in nanoscale and hence genetic mutations could be identified even 

though there was no indication of such in the cytological images. Other examples of 

imaging modalities based on light scattering include Optical Coherence Tomography 
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(OCT), Quantitative Phase Imaging (QPI) and Second Harmonic generation (SHG). 

which are discussed below. 

1.2.1.1 Optical Coherence Tomography (OCT) 

OCT uses back-scattered light to perform cross-sectional and 3D imaging of the internal 

microstructure in tissue samples. The heart of the technique is a Michelson interferometer 

that combines the back-scattered light from the sample with the reflection from a 

reference mirror. Based on the interference pattern and the low coherence length of the 

light source, the longitudinal location of the back-scattering can be obtained from this 

interferometric signal. Thus a depth-profile of the sample structure can be constructed
7
. 

More recently, a high-resolution version of OCT called micro OCT (µOCT) has been 

developed
8
 that is capable of resolving 1-2 µm, enabling visualization of individual cells 

and subcellular features in vivo. Although OCT is widely used to generate histology-like 

images of tissue structure, studies have also been conducted on thinner samples such as 

cell monolayer
9
. There, real-time detection of cell death is performed using the 

backscattering coefficient (i.e. amount of light scattered back) integrated over the 

numerical aperture which reported a significant change in scattering upon the induction 

of apoptosis. This change is shown to be related to the changes in mitochondria almost 

directly after the onset of apoptosis, indicating the efficacy of OCT for detection of 

scattering linked to the alterations in mitochondrial morphology. In addition, OCT has 

also been applied to assess cell activities in three-dimensional cell-based tissue models 

providing insights of the 3D organization of cells and their chemotaxis migration, 

proliferation, de-adhesion, and cell-material interactions
10

.   
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1.2.1.2 Quantitative Phase Imaging (QPI) 

QPI measures the phase shift in the incident light produced by a specimen, providing 

useful information about local thickness and refractive index of the imaged structure
11

. A 

large number of experimental setups for QPI have been developed in a wide range of 

applications such as cell imaging for morphology, monitoring cell-growth
12

, mapping dry 

mass
13

, membrane fluctuations
14

, blood screening
11

 and cancer diagnosis
15

. Specifically, 

QPI based Spatial Light Interference Microscopy (SLIM) can be used to report optical 

path-length fluctuations along neurites, revealing inhomogeneity associated with synaptic 

structures in neurons
16

. In addition, QPI techniques can be augmented with mathematical 

operators to produce enhanced phase images. One such example is Laplace Phase 

Microscopy (LPM) where the final image is computed via Laplace operator on the 

images collected by SLIM. This technique has been applied to study organelle transport 

in the processes of the live hippocampal neurons
17

.   

1.2.2 Second Harmonic generation (SHG) 

SHG takes advantage of the non-linear polarization in the specimen induced by an 

intense incident light. In effect, this process produces a coherent wave at exactly twice 

the incident frequency, i.e. harmonic
18

. However, only the biological materials that are 

highly ordered and birefringent such as type I and II collagen
19

 and myosin within acto-

myosin complexes
20

 can generate second harmonics. SHG has been applied to measure 

the membrane potential dynamics in cultured mouse hippocampal neurons
21

 and to 

characterize microtubules in brain slices from Alzheimer’s disease transgenic mouse 

models
22

.  



5 
 

 
 

1.2.3 Two Photon Excitation Fluorescence (TPEF) 

TPEF and SHG are somewhat similar techniques, however, while the second harmonic is 

generated by the scattering of photons, in TPEF the photons are absorbed by the target to 

produce a single photon at a higher energy (Perry 2012). For label-free TPEF, 

endogenous fluorescent molecules such as mitochondrial matrix proteins reduced 

nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), and flavin adenine 

dinucleotide (FAD)
23, 24

 are excited and monitored that are indicative of the underlying 

biochemical processes and metabolism. Using these intrinsic fluorophores, differential 

metabolic changes in different brain cell types in response to neurotoxins is reported by 

TPEF
25

. In addition, multiple sources of this intrinsic emission is identified and 

characterized in the brain slices of Alzheimer’s disease mouse models
22

. 

1.2.4 Brillouin Microscopy 

On the other hand, Brillouin microscopy can be used to measure the biomechanical 

properties of cells. As the name suggests, this technique takes the advantage of the 

Brillouin light scattering. It measures the frequency shift in the incident light upon 

interaction with acoustic phonons from which the longitudinal modulus can be 

determined
26

. This technique is used to assess mechanical properties such as the modulus 

of cytoskeletal components, network cross-linking of cellular microenvironment in 

unstained cells. Recently, this technique has been used to assess the viscoelastic 

properties of amyloid plaques in β-amyloid overexpressing transgenic mouse brain, 

providing a novel contrast mechanism and tool for the diagnosis of Alzheimer’s 

disease
27

. 
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1.2.5 Super-resolution Microscopy 

In attempting to overcome the diffraction barrier of classical optical microscopy, 

scientists have developed super-resolution microscopy which can resolve features below 

the wavelength of light
28

. Through elegant optical tricks, this emerging class of imaging 

techniques has enabled visualization of subcellular structures and processes with 

unprecedented details. However, these techniques were originally designed for 

fluorescent samples and hence predominantly limited to resolve features tagged with 

exogenous markers. Unfortunately, fluorophore based super-resolution techniques may 

still suffer from photo-bleaching, photo-toxicity. In addition, some setups have specific 

requirements for sample preparation and high acquisition time
28

. In other words, 

fluorescence based fast, high contrast super-resolution technique still does not exist
29

. To 

circumvent these issues, several label-free super-resolutions techniques have been 

proposed
29-32

. Some of these techniques fall in the category of Structured Illumination 

Microscopy (SIM), a variation of super-resolution microscopy where the intensity of the 

illumination beam is modulated spatially, and thus the object spectra is aliased and 

shifted beyond the cut-off imposed by the objective’s aperture. Upon repetition over 

different spatial directions, a frequency spectrum twice as big of the original aperture can 

be obtained, thus enhancing the resolution by two-fold
28

. It has been shown numerically 

that four- and six-fold improvement in the resolution can be achieved from nonlinear 

SIM where the phase of the illumination is modulated instead of intensity and subsequent 

second and third harmonics are exploited
30

. Another strategy is to use oblique 

illumination using a rotating coherent source in totally internal reflected (TIR) and dark-

field setup
29

. Oblique illumination generates phase delay in the fields emitted by two 
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adjacent scatters, resulting in destructive interference which helps to enhance the contrast 

of the specimen. To the best of our knowledge, however, none of these label-free 

techniques have been applied to image neurons or mitochondria.   

1.2.6 Fourier Ptychography 

Fourier ptychography microscopy (FPM) is a computational imaging approach which can 

provide high-resolution images of a sample by bypassing the physical limit of the 

imaging system. This is achieved by combining phase retrieval and aperture synthesis 

technique
36

. The image acquisition involves illuminating the sample from different angles 

with a LED matrix and collecting low-resolution intensity images through a low NA 

objective. By the computational techniques mentioned above, the raw images are 

processed to generate a complex image which contains both the intensity and phase. FPM 

has been used to study the phenotypic behavior of microglial cells in primary neuronal 

co-cultures through the addition of cyclosporine A
37

. 

1.3 Previous Work  

As mentioned before, light scattering by subcellular organelles and interfaces such as 

membranes can be utilized for quantitative measurement of cellular and tissue states
5
. 

Structural information of the subcellular organelles can be inferred from scattering by 

analyzing the diffraction pattern at a conjugate Fourier plane of the imaging system. Via 

implementation of Gabor filters on the Fourier plane, we can selectively allow only 

certain angles of scattering to pass. These scatter angles are directly related to the spatial 

frequencies of the scattering source. So in effect, the Gabor filters can probe objects of 

certain size/shape and orientation. The filters are characterized by 3 parameters: period, 

orientation and standard deviation. The standard deviation is scaled with the period of the 
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filter.  Filter response is the maximum when width of the scattering source is 

approximately half of the filter period and/or if the source is oriented at perpendicular to 

the filter’s orientation. Due to the linear relationship between filter period and the width 

of the scattering source, resultant images inherently encode specimen’s structural size 

information in terms of filter periods
33, 34

. Likewise, an object’s orientation can also be 

encoded in the filtered images. Based on this property, a morphometric parameter called 

Orientedness was proposed to indirectly probe the geometric aspect ratio of subcellular 

organelles. It was demonstrated that Orientedness is sensitive to the morphological 

changes related to mitochondrial fission during apoptosis in Bovine Aortic Endothelial 

Cells (BAEC)
35

. 

 A common theme of this thesis is the assessment of mitochondrial morphology 

under normal and dysregulated conditions. In chapter 2, we demonstrate that our Gabor-

filtering based imaging system is able to detect morphological alterations in mitochondria 

due to genetic mutation in apoptosis-resistant cells. The merit of the proposed technique 

is that the detection does not require an individual mitochondrion to be optically resolved. 

On the contrary, in chapter 3, we demonstrate that the technique can also track changes in 

optically well-resolved mitochondrial length and shape in endothelial cells upon calcium-

injury.  In chapter 4, we applied the imaging technique to track organelle morphology and 

transport in neuronal processes. Using fluorescence images for validation, we track 

mitochondrial movement and dynamics in the processes. Finally, in chapter 5 we propose 

future directions for the techniques developed in this thesis.     
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CHAPTER 2 

2 LABEL-FREE CLASSIFICATION OF BAX/BAK EXPRESSING 

VS. DOUBLE-KNOCKOUT CELLS 

 

This chapter includes work published in Naser, Mohammad, et al. "Label-Free 

Classification of Bax/Bak Expressing vs. Double-Knockout Cells." Annals of biomedical 

engineering44.11 (2016): 3398-3407, used by permission from Springer Nature under 

license 4427730140299. 

Abstract 

We combine optical scatter imaging with principal component analysis (PCA) to classify 

apoptosis-competent Bax/Bak-expressing, and apoptosis resistant Bax/Bak-null 

immortalized baby mouse kidney (iBMK) cells. We apply PCA to 100 stacks each 

containing 236 dark-field cell images filtered with an optically implemented Gabor filter 

with period between 0.3µm and 2.9µm. Each stack yields an “eigencell" image 

corresponding to the first principal component obtained at one of the 100 Gabor filter 

periods used. At each filter period, each cell image is multiplied by (projected onto) the 

eigencell image. A Feature Matrix consisting of 236x100 scalar values is thus constructed 

with significantly reduced dimension compared to the initial dataset. Utilizing this 

Feature Matrix, we implement a supervised linear discriminant analysis and classify 

successfully the Bax/Bak-expressing and Bax/Bak-null cells with 94.7% accuracy and an 

area under the curve (AUC) of 0.993. Applying a feature selection algorithm further 

reveals that the Gabor filter periods resulting this classification accuracy correspond to 

both large (likely nuclear) features as well as small sized features (likely organelles 
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present in the cytoplasm). Our results suggest that cells with a genetic defect in their 

apoptosis pathway can be differentiated from their normal counterparts by label-free 

multi-parametric optical scatter data. 

2.1 Introduction 

Recent reports have suggested that light scattering (LS) spectroscopy of cells and tissues 

can differentiate between normal and diseased samples
1
. The clinical value of these LS 

approaches for minimally-invasive cancer diagnosis or cancer risk-assessment has been 

demonstrated by several investigators
2-7

 with potential high impact on patient outcomes.  

Cancer is a disease involving sequential mutations affecting critical molecular 

pathways regulating cell growth and the maintenance of tissue homeostasis 
8
, 

9
.  As 

demonstrated in colorectal cancer 
10

, mutations leading to cellular transformation 

correlate with tumor formation as well as the histopathological progression from hyper-

proliferative epithelium to adenoma to carcinoma as more oncogenic mutations are 

acquired.  Based on this and similar histopathological progression observed in other 

epithelial tumors, the morphological changes involving dysplasia and neoplasia have 

become an important target of LS technologies aimed at epithelial cancer diagnosis 
11-13

.  

Current LS technologies which are used for diagnosis of cancer have shown that light 

scattering can detect subtle and important morphological changes with high sensitivity 

and specificity in differentiating normal from diseased tissue 
13-16

.  More recently, 

“histopathologically unapparent” structural changes in cancer cells were detected by light 

scattering 
16-18

.  These results are remarkable in that they demonstrate that LS can detect 

the early transformation of cells and has the potential for early and minimally-invasive 

diagnosis.  
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 Transformed neoplastic cells such as those investigated previously
18

 possess 

several accumulated mutations which may give rise to alterations in light scattering 

properties.  In this paper, we investigate if a single mutation could lead to optical scatter 

changes.  For this, we use an immortalized baby mouse kidney (iBMK) cell model 
19

 and 

measure the angular scattering properties of apoptosis-competent Bax/Bak-expressing 

iBMK cells vs. Bax/Bak-double knockout apoptosis-resistant and tumor-forming cells. 

Except for the Bax/Bak mutation, the cells are isogenic, and indistinguishable by high 

magnification microscopic observation with phase contrast or differential interference 

contrast. We choose to investigate Bax/Bak mutation because the vast majority, if not all, 

of human tumors exhibit genetic alterations in the pathways controlling growth arrest and 

apoptosis through inhibition of p53 and Bax/Bak-mediated apoptosis 
20

. Bax/Bak-

mediated apoptosis is a well-known and ubiquitous tumor suppression mechanism which 

prevents cell survival and genomic instability, two fundamental properties required for 

tumor growth. As such, detecting Bax/Bak knockout cells with label-free light scattering 

could provide a basis for ultimately detecting cells which have acquired the apoptosis 

resistance “hallmark” 
8
. 

For our study, we utilize an Optical Scatter Imaging (OSI) technique which is 

sensitive to changes in organelle size and shape 
21-23

. The technique relies on optically-

implemented Gabor filters with varying periods and/or orientations to probe the scatter 

plane and collect multiple stacks of filtered dark-field images with different angular light 

scattering contributions. Here we combine this technique with principal component 

analysis (PCA) to reduce the dimension of the stacks of raw images into a single feature 
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matrix that can be used to classify the two variants of iBMK cells (Bax/Bak expressing 

and double knockout).   

2.2 Materials and Methods 

2.2.1 Cell preparation       

iBMK cells expressing Bax and Bak (W2), and Bax/Bak double-knockout iBMK cells 

(D3) were generously provided by the laboratory of Dr. E. White at the Rutgers Cancer 

Institute of New Jersey. iBMK cells were maintained in high glucose Dulbecco’s 

Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) 

(V:V), 100-units/ml penicillin, and 100-µg/ml streptomycin  in a humidified incubator at 

38°C and 5% CO2. The cells’ response to an apoptosis inducer was previously tested and 

demonstrated that the Bax/Bak expressing W2 cells are apoptosis-competent while the 

Bax/Bak-null D3 cells are apoptosis-resistant 
19, 24

.  

For microscopy, the cells were cultured on uncoated glass coverslips in the 

DMEM medium described above. During imaging, the coverslips with attached live cells 

were mounted on a steel plate. The DMEM was replaced with Leibovitz L15 medium 

(Invitrogen, Carlsbad, California) to maintain a physiological pH in a non-CO2-

equilibrated environment.  

2.2.2 Optical Scatter Imaging (OSI) 

The imaging setup was described previously 
23

. Here, laser light (λₒ=532nm) was passed 

through a spinning diffuser and coupled to the condenser port of an inverted microscope 

via a multimode optical fiber (Thorlabs) to illuminate the sample in central Kohler 

illumination. Light scattered by the sample was filtered by sequentially displaying a bank 
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of Gabor filters implemented on a reflective liquid crystal device (LCD, Holoeye 

Photonics, LC-R- 2500) placed in a conjugate Fourier plane. LCD pixels corresponding 

to the zeroth order of diffraction were always turned off. The sample was imaged with a 

63X oil-immersion objective with numerical aperture (NA) = 1.4. The filtered dark-field 

images were captured sequentially on the CCD (512 pixels x 512 pixels, Roper Scientific, 

Cascade 512B) with a magnification of 0.23μm/CCD pixel. Similar to Reference 26, a set 

of 100 Gabor filters were used with filter periods varying between S = 0.33μm and 

2.93μm at each of two filter orientations, φ = 0° and 90°.   Differential interference 

contrast (DIC) images of the cells were also collected in each experiment. Background 

images of culture medium without any cells were collected for every filter. All images 

were acquired using a custom made Java program that synchronized the LCD display 

with image acquisition and microscope settings.  

2.2.3 Image pre-processing 

The filtered dark-field images were processed in Matlab (The MathWorks, Natick, 

Massachusetts). Each cell was first segmented manually using the unfiltered dark-field 

image. The segmented cells in the dark-field images were compared side-by-side with 

their corresponding DIC images for validation at the cell boundaries. Since two separate 

cameras were used for dark-field and DIC, the two fields of views did not overlap 

exactly. Some cells which were clearly delineated in dark-field but not included within 

the DIC field of view were also segmented for further analysis. Segmentation from 10 

separate experiments resulted in a total of 236 cell segments of which 135 were D3 and 

101 were W2 cells. Seven pairs of cells were fused and were each treated as one large 

cell. When iBMK cells are in culture, some of them fuse and lose the cell membrane 
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boundary between them. As such one would see a large cell with two nuclei.  In this case, 

rather than segmenting them individually by drawing an arbitrary cell boundary between 

them, we used them as one unit. The individual cell segments were zero-padded to 

produce individual images with 256 x 256 pixels. Before further analysis, each image 

was thresholded by subtracting the corresponding background image. In addition, pixel 

values obtained at Gabor filter orientations of 0
o
 and 90

o
 were averaged, such that each 

cell was eventually associated with 100 filtered images, each consisting of the average 

between the 0
o
 and 90

o
 images collected at a given Gabor filter period. Each of these 

background-subtracted and averaged cell images was “stretched” by normalizing its 

histogram to the maximum image value.   

2.2.4 Principal Component Analysis (PCA) 

The steps of the PCA are shown in Figure 2-1. For each Gabor filter period, each two-

dimensional filtered image of a cell was reshaped into a one-dimensional 1x 65,536, 

vector.  When all 236 cell vectors are considered, a matrix M with dimensions 236 x 

65,526 results where each row-vector represents a cell. We termed the first dimension of 

M the cell-dimension (236) and the second pixel-dimension (65,536). We applied PCA 

over the pixel-dimension of the data matrix M at each Gabor filter period. PCA was 

implemented with a built-in Matlab routine. Since the Principal Components (PCs) are 

the eigenvectors of the covariance matrix of the data, the resulting matrix should be 

square in shape. Hence, applying PCA over the pixel-dimension resulted in PC vectors 

with 65,536 elements. However, the PC vectors with zero variance are discarded which 

resulted in a 65,536x 235 matrix. This process was repeated for each of the 100 Gabor 

filter periods used. Only the first PC, which on average accounted for 9.9% of the 
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variance, was considered in each case.  Since the PCA was performed over the pixel 

dimension after reshaping the original images into 1x 65,536 vectors, this first PC could 

be reshaped back into an image for visualization (Figure 2-1). As shown in Figure 2-1, 

for a given Gabor filter period, this reshaped image PC contains all the significant 

contributions from all the cells to the filtered images collected at that particular Gabor 

filter period.  We refer to these PC images as “eigencell images” and 100 such images 

were produced corresponding to each of the Gabor filter periods used in the experiment. 

Following the PCA, each initial cell vector was reconsidered and multiplied by the first 

PC vector obtained for each filter period resulting in a single scalar corresponding to each 

cell’s contribution to the eigencell image. When all 100 filter periods were considered, 

this process yielded 100 feature values for each of the 236 cells (See Feature Matrix in 

section 2.3.2.2 in Results).   
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Figure 2-1 Principal component analysis (PCA) of the dark-field image stack at each 

Gabor filter period. For each Gabor filter period, each cell image is reshaped into a 1x 

65,536 vector yielding a 236 x 65,536 matrix in which each row represents a cell vector. 

PCA applied along the pixel dimension yields principal component vectors which are 

65,536 x1. Each principal component may be reshaped into an image matrix representing 

an “eigencell” for the data set at the Gabor filter period analyzed (Filteri). Only the first 

principal component was kept, resulting in a total of 100 eigencell images corresponding 

to each Gabor filter period. 

2.2.5 Linear Discriminant Analysis Classifier  

To classify the Bax/Bak null (D3) and Bax/Bak expressing (W2) cells, a supervised 

learning technique implemented by linear discriminant analysis (LDA) was used. LDA 

finds the linear combination of the variables (i.e. a cell’s contribution to 100 filters in the 

Feature Matrix) that best defines the two class-labels, “D3” and “W2”, provided during 
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training. This linear combination of variables generates a hyperplane that works as a 

decision boundary between the two cell classes. This discriminatory model is then used to 

classify the unseen test-data.  The LDA model was first trained with 70% (D3: 94 and 

W2: 72 cells) of the data and tested with the rest. The classification step was repeated 10 

times, each time picking at random a new training and test set.   

2.2.6 Feature Selection Algorithm 

To identify the most influential subset of Gabor filter periods that represent the structural 

differences between D3 and W2 cells, a feature-selection step was performed.  The 

search was implemented in a wrapper fashion where filter subsets (columns in the 

Feature Matrix) were considered and evaluated. The subsets were created by sequentially 

adding filters based upon a criterion set by a classifier model. We used the same LDA 

algorithm described in section 2.2.5 above for the model here. LDA evaluates the 

performance of each subset in terms of misclassification error and decides whether to 

keep or discard the filter from the current subset.   We used the forward sequential 

approach for feature selection. For each new filter inclusion, a 10-fold cross-validation 

was performed to the training set and the misclassification error (MCE) is obtained.  

2.3 Results 

2.3.1 Representative DIC and dark field images  

Representative differential interference contrast (DIC) and dark-field images of Bax/Bak 

expressing (W2) and Bax/Bak-null (D3) cells are shown in Figure 2-2, Figure 2-3. These 

images suggest that the two cell variants, which have profound differences in their 

apoptosis function, are indistinguishable by conventional microscopic observations.  

While the cells appear qualitatively indistinguishable in Figure 2-2 and Figure 2-3, 
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further quantitative analysis and classification of the of the optical scatter data by PCA 

(Section 2.3.2.2) will prove that in fact they can be distinguished.  Representative filtered 

images collected at specific Gabor filter periods and orientation (Bottom panels in  Figure 

2-2 and Figure 2-3) suggest that filters with high period values (low spatial frequencies) 

are sensitive to relatively large subcellular features, such as the nucleoli.  Gabor filters 

with low period values (high spatial frequencies) are relatively sensitive to organelles in 

the cytoplasm.    

2.3.2 Feature extraction and detection of genetic mutation  

2.3.2.1 Eigencell images 

The PC vectors resulting from the PCA at each Gabor filter (Figure 2-1) can be reshaped 

into eigencell images (Figure 2-4), which represent the contributions of all the cells to the 

spatial signal distribution at a given Gabor filter period. Eigencell images mirror the 

filtered dark-field images shown in Figure 2-2, Figure 2-3 to the extent that larger sub-

nuclear particles are prominent at low filter periods while smaller particles in the 

cytoplasm are prominent at high filter periods.  These results suggest that each eigencell 

image reports on the variance in the spatial distributions of subcellular features with sizes 

on the order of a given Gabor filter period.  
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Figure 2-2 Representative images of a Bax/Bak expressing (W2) cell A: Dark-field 

image showing the full field of view.  The white rectangle indicates the region of the field 

that was also imaged by differential interference contrast (DIC) (B). C: Filtered images of 

the cell outlined by the yellow dotted line in Panels A and B are shown for several Gabor 

filters with varying periods, S, and orientation, j, of either 0
o
 or 90

o
. 
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Figure 2-3 Representative images of a Bax/Bak double knockout (D3) cell. A: Dark-

field image showing the full field of view.  The white rectangle indicates the region of the 

field was also imaged by differential interference contrast (DIC) (B). C: Filtered images 

of the cell outlined by the yellow dotted line in Panels A and B are shown for several 

Gabor filters with varying periods, S, and orientation, j, of either 0
o
 or 90

o
. 
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Figure 2-4 Representative eigencell images obtained at 8 different Gabor filter 

periods. Images taken with Gabor filter orientations at 0
o
 and 90

o
 degrees were averaged 

together at each Gabor filter period before performing the PCA. The color scale 

corresponds to the normalized values of the PC vectors from which the eigencell images 

were formed.  

2.3.2.2 Feature calculation from PCA and classification of Bax/Bak expressing and 

Bax/Bak double knockout cells 

For each Gabor filter period, feature calculation was performed by multiplying each cell 

image (reshaped as 1x 65,536 vector) with the first 1x 65,536 PC (reshaped eigencell 

image) found by the PCA described in Figure 2-1.  This multiplication results in one 

scalar, defined as a Feature, for each cell at each filter period.  Each Feature represents 

the projection of a cell onto the PC obtained at a given period, and corresponds to the 

total contribution of that given cell to the PC at that filter period. When all cells and 

filters are considered, a Feature Matrix with 236 x 100 Features is created (Figure 2-5). 

The Feature Matrix achieves a reduction from the initial dataset dimension of 236 x 256 x 

256 x 100 (after averaging at each Gabor filter period the images collected at 0
o
 and 90

o
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orientation) to 236x100.  This dimensionally reduced data set may now be used for 

classification of the Bax/Bak expressing (W2) and Bax/Bak-null (D3) cell populations. 

We utilized the Feature Matrix to apply a supervised classification approach to 

differentiate between Bax/Bak null (D3) and Bax/Bak expressing (W2) cells. We applied 

a linear discriminant analysis (LDA) and classification algorithm and repeated the 

classification 10 times (Figure 2-6).  The results show an average accuracy of 94.7%, and 

an average area-under-the-curve (ROC) of 0.99. 

 

Figure 2-5 Generation of the Feature Matrix for cell classification. The reshaped 236x 

65,536 matrix which was used to perform the PCA at a given Gabor filter period (see also 

Figure 2-1) is reconsidered, and each row of the matrix (corresponding to each cell) is 

multiplied by the first principal component obtained from the PCA.  This yields a scalar 

corresponding to each cell.  A column of 236 scalars is therefore obtained at each Gabor 
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filter period.  When all 100 filter periods are considered, a Feature Matrix of scalars with 

dimensions 236x100 is formed (False color image).  The color scale corresponds to the 

Feature Matrix scalars normalized along each row by dividing the values in each row by 

the maximum value found for that same row. The data were normalized here for clarity of 

presentation.  However, the classification was done using the raw values of the scalars 

obtained after the initial multiplication. 

 

Figure 2-6 Receiver Operating Curves (ROC) obtained after classifying the Bax/Bak 

expressing cells (W2) and Bax/Bak double-knockout cells (D3). Using the Feature Matrix 

generated by the PCA, a supervised linear discriminant classifier was trained to 

differentiate the W2 from the D3 cells.  The cell data were segregated into two groups: 

70% of the cells were used for training, and 30% were used to test the classifier.  The 

procedure was repeated 10 times, each time choosing the training and test groups 

randomly.  The results show 10 overlapping ROC curves with an average area-under-the-

Accuracy (avg)= 94.7%

AUC (avg)= .993

Training 70% (D3: 94, W2: 72)

Test 30% (D3: 41, W2: 29)

Classification results
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curve (AUC) of 0.993.  The accuracy was taken as (TP+TN)/ (Total number of cells). TP: 

True positives, TN: True negatives.  

2.3.2.3  Identifying the most contributing structures (feature selection) 

The feature selection algorithm was performed on the data sets using an increasing 

number of Gabor filter periods and calculating the MCE each time as described in 

Section 2.2.6. These results (Figure 2-7) demonstrate that 20 filters may provide a 

sufficiently low MCE and could be used instead of the full set of 100 filters for 

classifying the two cell variants.  Hence, we performed this selection procedure 10 times 

(inset in Figure 2-7A) and the algorithm’s 20 filter outputs were tallied in a histogram 

depicting the frequency with which a given filter appeared in the outputs of the 10 runs 

(Figure 2-7B). For our final selection, we only picked the 19 filters (listed in Figure 2-7B 

and Table 2-1) that appeared more than three times in the histogram.  Utilizing only these 

19 filters, we proceeded to re-classify the W2 and D3 cells.  Figure 2-8 shows the 

classification results using the 19 filters selected in Figure 2-7B that yielded an average 

89.8% accuracy and an average AUC of 0.956. 
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Figure 2-7 Feature Selection. A feature selection algorithm was implemented to find 

the Gabor filter periods (columns of the Feature Matrix in Figure 2-5) which are most 

significant to differentiate between the Bax/Bak expressing cells (W2) and the Bax/Bak 

double knockout cells (D3).  A: The feature selection algorithm sequentially increased 

the number of Gabor filter periods included in the classification and calculates the 

misclassification error (MCE) as (FP+FN)/ (Total number of cells).  FP: False positives, 

FN: False negatives.  The error is significantly decreased after including 20 filters.  The 

feature selection algorithm was then run 10 times after setting the number of features to 

be used to 20 (inset in Panel A).  B: Frequency of filters obtained after running the 

feature selection algorithm 10 times and specifying the number of filters to be used to 20. 

19 filters appeared with a frequency of greater than 3 and were taken as representing the 

main structural feature sizes (see also Table 2-1) accounting for the differences between 

the classified W2 and D3 cells.  
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Table 2-1: Gabor filter periods associated with the 19 filters obtained from the feature 

selection step 

Filter No. 
1 3 4 5 6 10 11 15 16 18 

Filter 

Period (µm) 
2.93 2.53 2.37 2.23 2.10 1.72 1.64 1.39 1.34 1.25 

Filter No. 
22 23 24 26 57 81 85 89 99  

Filter 

Period (µm) 
1.11 1.07 1.04 .99 0.54 0.40 0.39 0.37 0.34  

 

Figure 2-8 Classification results with selected filters. With the same procedure as in 

Figure 2-6, the classifier was rerun utilizing only the 19 filters found after feature 

selection (Refer to Figure 2-7). The new average AUC was 0.956 and the accuracy was 

89.8%. 

2.4 Discussion 

In this work, we demonstrated how optical scatter imaging (OSI), a label-free method 

based on optical Fourier filtering of dark field images, can be combined with PCA and 

Classification results with 
19 selected filters

Accuracy (avg)= 89.8%

AUC (avg)= 0.956%
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discriminant analysis to differentiate, with greater than 95% accuracy, Bax/Bak double 

knockout iBMK cells from their Bax/Bak expressing counterparts. These results were 

obtained by finding principal components of the cell images (eigencell images) at each of 

the Gabor filter periods and constructing a Feature Matrix corresponding to the 

contribution that each cell makes to each of these eigencell Images.  To a human 

observer, the two iBMK cell variants look qualitatively indistinguishable by DIC 

microscopy. 

By utilizing a Feature Selection algorithm, we were able to identify the optical 

Gabor filter periods which contributed the most to the differences between the two cell 

variants. As shown previously 
23

, these Gabor filter periods scale linearly with the size of 

textural features within the sample.  In our results (Figure 2-7B and Table 2-1) we found 

that filters with both large and small periods were necessary for successful classification 

of the two iBMK cell variants.  This suggests that the genetic alteration in Bax and Bak 

can affect multiple subcellular components. In particular, the algorithm returned filter 

periods in the 2-3 µm, 1-1.5µm, and 0.3-0.5µm ranges, corresponding to features in the 

1-1.5µm, 0.5-0.75 µm and 0.15-0.25 µm ranges respectively 
23

.  Previously, we had 

tested a limited number of iBMK cells and found that Gabor filters sensitive to the degree 

of orientation resulted in “orientedness”-encoded images with different histograms for 

Bax/Bak expressing and double knockout cells 
21, 22

. Those previous results were 

attributed to the differences in mitochondria found in Bax/Bak double knockout cells in 

which mitochondria are known to be shorter and less connected 
25

. Our results here, 

which corroborate the differences in subcellular architecture induced by the deletion of 

Bax/Bak, further suggest that the changes may not be limited to subcellular organelles 
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with sizes on the order of mitochondria but perhaps may also include differences in both 

larger and smaller components. Further work beyond the present study would require a 

more extensive analysis of isolated subcellular components (e.g. nucleus, mitochondria) 

to localize the source of the structural differences probed by the Gabor filters. 

In contrast with our previous approaches in optical scatter imaging 
24, 26, 27

, the 

technique utilized here, creates eigencell images (Figure 2-4) that represent the spatial 

distribution of the principal cell features, and subsequently encodes the contribution of 

each cell to this eigencell image into a single scalar (by multiplying the cell vector by the 

eigencell vector, Figure 2-5). Rather than yielding a stack of false-color encoded images, 

which can be further processed, the technique presented here reduces the data set into a 

feature matrix akin to gene expression data. This procedure is also similar to the eigen-

decomposition in face recognition 
28, 29

. In this approach, PCA of face images results in 

eigenvectors, also called “eigenfaces”, in which the intensity of each pixel is considered a 

characteristic feature, and describes the most informative regions of the face such as hair, 

eyes, mouth, noise etc. Similarly, the “eigencells” shown in Figure 2-4 display the 

subcellular elements that contribute the most throughout the size-encoded images at each 

Gabor filter period. For instance, the elements just outside the nuclear envelope are 

prominent in the PCs which correspond to Gabor filter periods under 2 µm.  Statistical 

means such as Principal Component Analysis (PCA) for dimensionality reduction as well 

as feature extraction for further analysis have been employed abundantly in numerous 

fields including the life sciences; for example, to analyze thousands of gene expression 

data from hundreds of samples measured by DNA microarrays 
30, 31

 or for the 

reconstruction of 3D structure of a single particle from a large collection of noisy 2D 
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tomographic projections by cryo-electron microscopy 
32

. PCA is applied to compress the 

image representation as well as to reduce noise. Be it a set of 1D vectors of microarray 

data or a stack of 2D projection images, PCA reduces the dimensionality by calculating 

the eigenvectors of the covariance matrix of the data set and projecting each vector (or 

image) onto the linear subspace of the largest eigenvectors 
33

. These eigenvectors which 

are also called Principal Components (PCs) can be thought of as orthogonal directions 

along which the data has the highest variation. In this way, the PCs can be utilized to find 

discriminating features to classify specific cell types.  

Light scattering techniques have been extensively applied to characterize cells 

undergoing various biological processes
1
. Due to the noninvasive nature of these 

techniques, it is possible to monitor live cells in real-time. They also enable label-free 

detection and quantification of the structural dynamics specific to a biological process 

that can be used to infer important structure-function relationships at the cellular level.   

While fluorescence techniques could be superior at classifying cell types, the use of 

fluorescent labels may not always be feasible and label-free light scattering methods, 

such as OSI, may be desirable in these cases.   In general, one reason for someone to 

adopt OSI, or an approach based on light scattering instead of fluorescence, is any 

situation where fluorescence labeling is not possible or impractical. One example is the 

cited light scattering techniques being developed to diagnose tissues in-vivo
1
. In addition, 

compared with fluorescence, light scattering based methods do not require any sample 

preparation involving staining or transfection, and do not suffer from photobleaching. 

Other label-free methods such as evanescent wave microscopy technique to study 

membrane dynamics 
34

 or polarization diffraction flow cytometry to classify cell types 
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with similar morphology 
35

 may offer additional compelling approaches to study cellular 

function.  However, at this point, it is not yet clear how or whether those methods will 

work to distinguish between cells of the exact same cell type, that differ by a single 

mutation and that are isogenic otherwise. On the other hand, we found that detecting such 

a genetic change is possible with OSI, which is what we are reporting here. 

 In our implementation, the OSI method consists of Fourier filtering by placing 

filters in a conjugate Fourier plane of an optical system. The filtering is automated and is 

not more tedious than acquiring a set of image frames while observing a sample. The 

PCA analysis is done offline after the acquisition. It is a standard signal processing 

technique with no significant added level of complexity compared to other biomedical 

image processing methods.  In our current system which is software automated, we 

collect images at 5 fps and acquisition of 200 images takes approximately 40s. The PCA 

takes on average ~45s per stack. The time required to process one stack is approximately 

45s using Matlab 2015(a) running on a workstation equipped with two Intel(R) Xeon(R) 

CPU, 2.67GHz processors but without utilizing GPU processing.  The total time for 

PCA-based analysis of the whole data-set can be reduced in the future through parallel-

processing in Matlab with the help of multicore processors (e.g. Matlab, Parallel 

Computing Toolbox™ (2016), The MathWorks, Inc). The information provided by OSI 

relies on filtering of angular scatter signal which can be collected in many different ways, 

including reflectance regimes which are typically used for in-vivo data acquisition. For 

example, back-reflectance signal can be filtered and analyzed in a similar way. Thus, 

while our current OSI setup would need to be modified for in vivo imaging, this 

modification is possible via any other optical set up design in which the angular scatter 
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signal can be measured and filtered. Moreover, the current OSI design may be readily 

usable for in vitro cell analysis of cells retrieved from patients.  Single cell segmentation 

is not required unless single cell analysis is the end goal of the clinical technique. Cells 

could potentially be segmented automatically by employing commonly used image 

processing algorithms 
36

. In future, there is thus a scope for optimization of the current 

code which may include automatic segmentation and parallel-processing.  

In the context of cancer, scatter techniques were capable of sensing nanoscale 

alterations due to genetic mutations in cells that appear morphologically normal 
16-18

. The 

morphological sources responsible for these changes are beginning to be elucidated. For 

example, some investigators have identified cellular structures such as the cytoskeleton 

37
, nuclear size and crowding within a tissue 

4
, chromatin condensation 

38
, or fractal 

organization of intracellular scatterers 
39

, as sources that could give rise to the light 

scattering differences observed in precancerous vs. normal cells. In our work, we had 

identified changes in mitochondrial morphology in apoptosis-resistant cells 

overexpressing Bcl-xL
24

. Still, a deeper understanding is required to tie the extensive 

available genetic and biochemical data on cancer biology to the structural physical 

phenotypes which can be measured by light scattering. In particular, while we know that 

fundamental molecular pathways are affected in cancer cells, we do not fully understand 

which of these molecular changes can lead to detectable structural changes. The present 

work contributes to this by demonstrating how a specific mutation in the apoptosis 

pathway (Bax/Bak deletion) can yield structural differences detectable by light scatter.   
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CHAPTER 3 

3 LABEL-FREE DYNAMIC SEGMENTATION AND 

MORPHOLOGICAL ANALYSIS OF SUBCELLULAR OPTICAL 

SCATTERERS 

 

This chapter includes work published in Mohammad Naser, Rene S. Schloss, Pauline 

Berjaud, Nada N. Boustany, “Label-Free Dynamic Segmentation and Morphological 

Analysis of Subcellular Optical Scatterers”, Journal of Biomedical Optics (In Press), with 

permission. 

Abstract 

Imaging without fluorescent protein labels or dyes presents significant advantages for 

studying living cells without confounding staining artifacts, and with minimal sample 

preparation. Here, we combine label-free Optical Scatter Imaging (OSI) with digital 

segmentation and processing to create dynamic subcellular masks, which highlight 

significantly scattering objects within the cells’ cytoplasms. The technique is tested by 

quantifying organelle morphology and redistribution during cell injury induced by 

calcium overload. Objects within the subcellular mask are first analyzed individually. We 

show that the objects’ aspect ratio and degree of orientation (“Orientedness”) decrease in 

response to calcium overload, while they remain unchanged in untreated control cells. 

These changes are concurrent with mitochondrial fission and rounding observed by 

fluorescence, and are consistent with our previously published data demonstrating 

scattering changes associated with mitochondrial rounding during calcium injury. In 

addition, we show that the magnitude of the textural features associated with the spatial 
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distribution of the masked objects’ orientedness values, changes by more than 30% in the 

calcium-treated cells compared with no change or changes of less than 10% in untreated 

controls, reflecting dynamic changes in the overall spatial distribution and arrangement of 

subcellular scatterers in response to injury. Taken together, our results suggest that our 

method successfully provides label-free morphological signatures associated with cellular 

injury. Thus, we propose that dynamically segmenting and analyzing the morphology and 

organizational patterns of subcelullar scatterers as a function of time, can be utilized to 

quantify changes in a given cellular condition or state. 

 

3.1 Introduction 

Live cell imaging is crucial to understand the biological functions of a cell and its 

organelles. Fluorescent imaging has been a gold standard in this regard. While 

fluorescent stains provide good specificity and contrast, they also present some 

shortcomings including photo-bleaching and photo-toxicity
1
. In addition, cell transfection 

with fluorescent protein constructs, and sample staining, may complicate sample 

preparation or interfere with cell function and confound the results
2
. To circumvent these 

shortcomings of imaging with fluorescent markers, label-free techniques, which do not 

require any stains or markers are currently being developed
3-5

.  

Here, we ultilize an optical scatter imaging (OSI) method based on dark-field 

microscopy and angular light scattering that is capable of tracking the distribution and 

morphology of subcellular structures, such as organelles, as a function of time.  Imaging 

based on light scattering has previously enabled label-free detection and quantification of 

subcellular structural properties and dynamics pertaining to a biological process without 
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the use of any exogenous marker
6
. For example, wavelength and angularly-resolved 

scattering was used to extract nuclear size information
7,8

. Wilson et al. used angularly-

resolved light-scattering measurements to detect mitochondrial swelling upon 

photodynamically induced oxidative stress
9
. Light-scattering by various mitochondrial 

distributions has been studied with a finite-difference time-domain (FDTD) simulation, 

which was applied to differentiate between cancerous cells with randomly distributed 

mitochondria and healthy cells with aggregated mitochondria around the nucleus
10

. In 

addition, we have previously utilized the ratio of wide-to-narrow angle scatter 

measurements to track calcium-induced mitochondrial injury
11

 and apoptosis
12

. This 

previously reported OSI method employs optical Fourier-filtering at a conjugate Fourier 

plane of the imaging system. More recently, via implementation of Gabor filters on the 

Fourier plane, we were able to probe objects of different size/shape and orientation
13,14

. 

Based on this method, one morphometric parameter, termed Orientedness, which probes 

the geometric aspect ratio of subcellular organelles was shown to be sensitive to the 

morphological changes related to mitochondrial fission during apoptosis in Bovine Aortic 

Endothelial Cells (BAEC)
14

.  

In this paper, we build upon our previous results by applying edge detection
15

 and 

segmentation
16

 methods to our filtered dark-field image data. Together, these methods 

allow us to amplify the signal from highly scattering subcellular structures relative to 

background, as well as segment these highly scattering microscopic regions within the 

cell cytoplasm. Combining these steps together, we develop an approach that can track 

subcellular dynamics non-invasively, in unstained cells over time. As a test of this 

method, we apply this approach to quantify morphological changes governed by 



42 
 

 
 

mitochondrial fragmentation and remodeling induced by calcium overload. We 

demonstrate that the morphological signatures generated from unstained cells can clearly 

differentiate between injured and untreated cells.  

3.2 Methods 

3.2.1 Cell culture  

Bovine Aortic Endothelial Cells (BAEC) were cultured on glass coverslips as previously 

described
14

. To compare the dark-field data with fluorescence imaging, For fluorescence 

labeling, cells were incubated in Hepes Buffered balanced Salt Solution (HBBSS)
11

 

supplemented with 100nM Mitotracker Green (Invitrogen) for 45min following the 

manufacturer’s protocol. The cover-slips containing the cells were mounted on a metal-

slide for imaging as described in Ref. 14.  

3.2.2 Calcium treatment  

To induce subcellular morphological change, the cells were overloaded with calcium via 

treatment with ionomycin (Sigma-Aldrich), a calcium ionophore. Pre-treatment imaging 

was conducted in a salt-solution
11

 containing 1.5mM CaCl2. The treatment solution was 

prepared by adding 20µM ionomycin to the same saline medium. To induce the calcium 

overload, the chamber containing the cells was flushed three times with this treatment 

solution. Taking this point as t=0, time-lapse post-treatment images were collected every 

45s for a maximum of 10min. For control, a 1.5mM CaCl2 with no ionomycin was 

flushed three times instead of the treatment solution. 
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3.2.3 Optical setup and image acquisition 

Details of the optical setup are described in Ref. 13 and shown in Figure 3-1. Briefly, an 

inverted microscope fitted with a 63X, N.A. = 1.4 oil immersion objective is used to 

image the sample illuminated with a laser at λ=532nm. The incident laser light is passed 

through a spinning diffuser to average speckle. Scattered light from the sample is filtered 

by displaying images of Gabor filters on a Liquid Crystal Display (LCD) placed in a 

conjugate Fourier plane (F2). The resulting filtered images are captured by a CCD camera 

placed in a conjugate imaging plane (I2).  

 

Figure 3-1 Optical setup. The OSI technique involves the acquisition of dark-field, 

filtered images on the charge-coupled device (CCD) camera. Two-dimensional (2D) 

Gabor filters are displayed on a Liquid Crystal Device (LCD) in the Fourier plane. L1 and 

L2: relay lenses, PBS: polarizing beam splitter, LP= linear polarizer, F1 and F2: 

conjugate Fourier planes, I1 and I2: conjugate imaging planes. 
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3.2.4 Gabor filter design 

The Gabor filter images displayed on the LCD are created in Matlab (The Mathworks, 

Natick, MA).  In the object or image space, the filters are characterized by three 

parameters: period (𝑆), orientation (𝜑) and standard deviation (𝜎𝑠𝑝𝑎𝑐𝑒). While deviation 

determines the size of the object area probed by the Gabor filter, the period and standard 

deviation are typically chosen to not be independent
16

 so that the region probed by the 

filter scales with the filter’s period. For this work we choose 𝜎𝑠𝑝𝑎𝑐𝑒 =
𝑆

2
 , and we choose 

6 periods,  𝑆 (𝑖𝑛 𝜇𝑚)= 2.0, 1.43, 1.11, 0.91, 0.77, 0.66, and 4 orientations 90° ≤ 𝜑 <

225° with 45°increment. To implement the filters in a conjugate Fourier plane, we 

convert these parameters to their frequency domain equivalents within the actual optical 

setup. The period transforms to the spatial frequency, 𝐹 =
1

𝑆
  and 𝜎𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =

1

2𝜋𝜎𝑠𝑝𝑎𝑐𝑒
 
17

. 

The filters are created in Matlab by defining a Gaussian function as shown below. 

Derivation of the equation is shown in Table 3-1 (see Appendix).  

𝐻(𝑢, 𝑣) = 𝐴 ∗  𝑒
− 

𝜋2

2∗(𝑈2+𝑉2)
[(𝑢−𝑈)2+(𝑣−𝑉)2]

 

 

𝐴 is set to 255, and (𝑈, 𝑉) are the coordinates in Fourier space and are calculated by: 

𝑈 = 𝐹 ∗ 𝑐𝑜𝑠𝜑 and  𝑉 = 𝐹 ∗ 𝑠𝑖𝑛𝜑 

 

To calibrate for spatial frequency, a diffraction pattern with known spatial frequency 

spacing is used as described in Ref. 13. The calibration factor for the current setup is 

0.0075 cycles/µm/LCD-pixel and the distance, F, of the Gaussian-peaks from the center 

of the LCD can be calculated using this factor. We also correct for the LCD’s reflectance 

by correcting the Gaussian’s gray scale values using the LCD’s measured look-up-table 

(LUT) which gives the LCD reflectance as a function of gray scale input. As such, the 
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gray scale values inputted into the LCD will result in the expected Gaussian-shaped 

reflectance. Since, the Fourier transform of a Gabor function is a center-shifted Gaussian; 

the filters are realized by placing the peaks of the Gaussians at a distance 𝐹 from the 

center of the LCD. The coordinates of these pixels correspond to the spatial frequencies 

whose inverse correspond to the pre-chosen periods.  

Once the filtered-images are captured in the CCD, they are further processed as 

shown in Figure 3-2. To generate the Orientedness images, local energy is calculated at 

each pixel first. Orientedness images are then masked using the dynamic masks generated 

using the maximum moment of phase-congruency images. Finally, features are extracted 

from both the binary masks, and the masked-Orientedness images. Calculation of local 

energy, Orientedness, and phase-congruency are described in the following sections.  

 

 

Figure 3-2 Flow-chart of the algorithm utilized for image analysis. 
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3.2.5 Generating local energy and phase congruency (maximum moment) images 

In one dimension, phase-congruency is defined as 𝑃𝐶(𝑥) =
|𝐸(𝑥)|

∑ 𝐴𝑛(𝑥)𝑛
  where 𝐴𝑛(𝑥) are the 

amplitudes of 𝑛 Fourier components at a location (𝑥), and local energy 𝐸(𝑥) is the vector 

summation of all components
15

. Phase-congruency acts as a highly localized operator to 

detect edges and corners in an image that is invariant to illumination and magnification. 

This technique takes advantage of the fact that Fourier components of the edge- or 

corner-points in an image are maximally in phase. This can be explained by a simple 

example of a square pulse. If all of the Fourier components of the square pulse are 

superimposed on each other, it can be shown that all of them will be in phase at the edges 

of the pulse. Thus for the edge, the summation of the component-amplitudes is equal to 

the vector summation of all components, producing a PC value of 1. A minimum value of 

0 may be obtained if all of the components are out of phase. Kovesi proposed to extract 

the frequency information via wavelet transform instead of taking the Fourier 

transform
15

. The wavelet transform is realized by even and odd symmetric Log-Gabor 

filters of varying scale and orientation. Using the phase-congruency information, the 

edge-like features in the subcellular domain are then enhanced by taking the maximum 

moment of the phase-congruency covariance matrix. In this work, we have used an 

optimized code-version developed by Kovesi
18

 to generate the maximum moment and 

local energy images from each of the Gabor filtered images acquired in the set up. Thus, 

for each sample, 24 maximum moment images and 24 local energy images are calculated 

from the 24 optically filtered images acquired by the setup. These images are obtained 

from the ‘M’ and ‘pcSum’ variables found in the abovementioned code. 



47 
 

 
 

In addition, the user may set several input parameters pertaining to the calculation of 

phase congruency. In particular, the local frequency information is obtained via digital 

Log-Gabor wavelets of different scales and orientations. In this work, we set the number 

of scales (‘nscale’ in the code) to 4 and number of orientations (‘norient’) to 4.  We set 

the minimum wavelength of the wavelet (‘minWaveLength’) to 2 pixels and the scaling 

between successive wavelengths (‘mult’) to 2.1 Hence for 4 scales we obtain wavelets 

with wavelengths 2, 4.2, 8.82 and 18.5 pixels. To detect spatial properties at different 

orientations, 4 angles from 0° to 135° spaced 45° apart are used. The width of the filter 

function is controlled by the angular standard deviation 𝜎𝐺 of the function that is 

dependent on the filter center frequency, 𝑓𝑜 as 𝑅 =
𝜎𝐺

𝑓𝑜
. We set 𝑅 = 0.65 for this work (R 

corresponds to ‘sigmaOnf’ in the code). Such combination of the scaling factor and 𝑅 

ensures an even coverage of the spectrum. Finally, we set ‘k’ = 1, ‘cutoff’ = 0.5 and 

‘gamma’ (gain) = 5. As described in Ref. 15, the code utilizes a weighting function that 

penalizes any phase-congruency value that is not spread beyond a certain frequency. This 

is because phase-congruency is significant only when it occurs over a wide range of 

frequencies. This function is of sigmoid form and can be controlled by two parameters: 

cutoff fraction which dictates the amount of frequencies considered for the phase- 

congruency to be significant, and gain (gamma) which controls the steepness of the 

sigmoid function. In addition, ‘k’ corresponds to the number of standard deviations of the 

noise energy beyond the mean at which the noise threshold is set. Only signal energies 

beyond this threshold will be considered. For noisy images, the value of ‘k’ can be set up 

to 20. However this will increase the threshold and result in loss of useful data. In our 
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case, we set the value as low as 1 to avoid any such loss while discarding a minimum 

level of noise. 

3.2.6 Generating Orientedness images 

Orientedness is a scattering-based parameter we had previously defined as the maximum 

signal over the average signal collected as a function of orientation, 

=  
max (𝑆𝑖𝑔𝑛𝑎𝑙, 𝜑𝑖)

<𝑆𝑖𝑔𝑛𝑎𝑙, 𝜑𝑖>
|
𝑆=0.9𝜇

 , and taken for data filtered with a Gabor period of 0.9µm
11

.  𝜑𝑖 

is the orientation of the Gabor filters used in the experimental setup.  For a round object, 

there will be an equal amount of scattering in all 𝜑, resulting a minimum Orientedness 

value of 1; whereas for an elongated object, the scatter profile will be oriented in a certain 

direction, producing an Orientedness value greater than 1. As shown previously
11

, 

Orientedness decreases as long mitochondria fragment and round upon injury. In this 

work, we calculated Orientedness using the local energy images, defined in the previous 

section, instead of the raw intensity values {signal, φi}. Here, 90° ≤ 𝜑𝑖 < 225°  , and the 

optically filtered images with a Gabor filter period of 2µm were used in this calculation. 

Hence, the modified equation is given by 𝑂𝑟𝑖𝑒𝑛𝑡𝑒𝑑𝑛𝑒𝑠𝑠 =  
max (𝑙𝑜𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦, 𝜑𝑖)

<𝑙𝑜𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦, 𝜑𝑖>
|
𝑆=2𝜇

.    

3.2.7 Image segmentation 

First, the nucleus regions as well as the background outside the cells (no-cell region) are 

segmented out manually from the cell images so as to only analyze the scatters within the 

cytoplasm. Then, following the main frame-work proposed by Jain et al
16

, each Gabor-

filtered image is pre-processed and fed to a clustering algorithm. However, we applied 

phase-congruency as a pre-processing step instead of the “blob-detection” approach 

applied in Ref. 16. Thus, pixels in the maximum moment images obtained above are 
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subjected to a k-means clustering algorithm which groups them into 4 clusters according 

to their intensities in the 24 optically filtered images. We found 4 to be the highest 

number of clusters to be used for these images as the algorithm does not converge for a 

greater number of clusters. Pixels categorized in each cluster are color-labeled with one 

of the 4 colors: blue, turquoise, yellow and red.  In this analysis, all the experimental 

timepoints for a given cell were analyzed at once, yielding 4 classes evolving as a 

function of time.  

3.3 Results 

3.3.1 Cell images produced by the algorithm 

Images obtained at different steps are shown in Figure 3-3. The Gabor-filtered image is 

obtained with S=2.0µm, φ=225̊ and the corresponding phase-congruency (maximum 

moment), local-energy, and Orientedness images are shown. The dark-field image is also 

shown. The dark-field image contains all spatial-frequency components; hence it contains 

the scattering information from objects of all sizes and orientations. On the other hand, it 

is mostly the objects oriented at 225° that are highlighted in the Gabor-filtered image. 

Enhanced edges of these objects can be seen in the maximum moment image. The 

Orientedness image maps the Orientedness values of the subcellular objects in the 

cytoplasm. As indicated by the colorscale, objects with a hue toward the blue have low 

Orientedness and hence are round compared to the objects shown in red. 
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Figure 3-3 Dark-field (A), Gabor-filtered (S=2.0, φ=225̊) (B), phase-congruency 

(maximum moment) (C) Local Energy (D), and Orientedness (E) images of a 

representative cell. Note, edges are enhanced in the phase-congruency (maximum 

moment) image. 

3.3.2 Tracking subcellular organelles with dynamic masking 

To segment the subcellular objects in the cytoplasm, we applied a K-means algorithm to 

classify the pixels in the maximum moment images. Before classification, the data is 

standardized by subtracting the mean and dividing by the standard deviation to obtain 

zero mean and unit variance. Figure 3-4 shows the 4 colored pixel clusters resulting from 

the K-means algorithm for a representative cell. To verify whether the clusters contain 

pixels with significant morphological information as well as to discard clusters that 

contain pixels from the background, we analyze the 4 centers, or centroids, of the 4 

clusters (Figure 3-5A). Each centroid has 24 centroid components, representative of the 

24 filtered intensities of pixels within the cluster associated with that centroid. The 24 

centroid values are arranged as a function of optical filter period, S, and orientation φ. As 

can be seen in the polar-plots (Figure 3-5A), the centroid values of the turquoise (Cluster 

2) and red labels (Cluster 4) vary as a function of period and orientation. On the other 

hand, there no or little change in the centroid values for blue (Cluster 1) and yellow labels 
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(Cluster 3). The blue and yellow clusters also have lower values. This indicates that the 

pixels from these two clusters are either from the background outside the cell or the 

nuclei which were manually segmented out (Blue in Figure 3-4), or subcellular regions 

with significantly less intensity than the red and turquoise regions (Yellow in Figure 3-4). 

We quantified the variation in cluster values by taking the magnitude (mag) of each 

cluster, where 𝑚𝑎𝑔 =  √∑ 𝑐2
𝑆,𝜑  and 𝑐 is the centroid-value corresponding to a filter 

(𝑆, 𝜑). The bigger the magnitude, the greater the variation over period and orientation. 

We then pick two clusters with the highest magnitudes and add them to create a single 

binary mask for the pre-treatment condition (Figure 3-5B). Keeping the selected clusters 

the same, we repeat the combining process for each time point of data acquisition to 

generate masks that change over the period of time. We then create “masked 

orientednedness” images by multiplying the Orientedness images with the binary masks 

at each time point (Figure 3-6).  

As can be seen in Fig. 6, dynamic masks created by the proposed algorithm change 

shape over time as the cell shrinks upon severe chemical insult (Figure 3-7). Most of the 

long objects in the masks become fragmented or round along with the cell-shrinkage, and 

exhibit a decrease in their orientedness value. Concurrently, mitochondria become shorter 

and rounder upon calcium-overloading, observed in the MitoTracker labeled fluorescent 

images (Figure 3-8). 
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Figure 3-4 Four pixel clusters labeled in blue, turquoise, yellow and red. Top panels: 

pre-treatment, and bottom panels: post-treatment. Each of these clusters contains objects 

with different scattering profiles and intensities. Note also how the shape of the labeled 

objects changes with treatment; particularly elongated objects in the turquoise-cluster 

become smaller and rounder.  

 

Figure 3-5 Color-coded centroid values are arranged in a 4x6 polar plot 

corresponding to 4 orientations and 6 periods for each label shown in Figure 3-4. In both 

pre- and post-treatment cases, the centroid components of the turquoise and red clusters’ 

demonstrate variation over orientations (φ) as well as periods (S), while those of the blue 

Cluster 1 Cluster 2 Cluster 3 Cluster 4All clusters

A B



53 
 

 
 

and yellow clusters have low signal with little or no variation. B: The turquoise and red 

clusters are added together to produce a combined final binary mask.  

 
 

Figure 3-6 Masked Orientedness image of a representative cell. Gradual change in the 

subcellular scatterers and shape of the dynamic mask can be observed upon injury at t=0. 

 

 
 

Figure 3-7 Differential interference contrast (DIC) image of a cell undergoing 

calcium-overloading. Long objects (arrow) observed in the pre-treatment image (left) 

fragment and become round due to excessive calcium (right). The cell also shrinks which 
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is indicated by trace-marks of the cell membrane (arrow-head). When compared with 

MitoTracker labeled fluorescent images, the fragmented and rounded long objects in the 

DIC images correspond to mitochondria (Figure 3-8).   

 

 
 

Figure 3-8  MitoTracker labeled fluorescent images show mitochondrial 

fragmentation and remodeling upon calcium-overloading.  

3.3.3 Effect of Jain’s multi-channel filtering approach  

Jain’s framework is based on a multi-channel filtering approach, originally proposed in 

Ref. 19, which dictates that the human visual system decomposes retinal information into 

a number of filtered images. The ‘multi-channels’ are realized by the Gabor filters. To 

understand the effect of Gabor-filters on the final segmented image with classified pixels, 

we applied phase-congruency and clustering of the pixels on the unfiltered dark-field 

image. Segmented images obtained using the single-channel (DF only) and Multi-channel 

(Gabor) contain almost the same information in the cellular region, except the former has 

noise (Figure 3-9). The multi-channel approach decomposes the same information of the 

dark-field into multiple channels and allows selecting the channels less corrupted by 

noise. Hence we can discard the channels manually (i.e. Gabor filters of particular period 

and orientation) that are corrupted by noise. This enabled us to generate a cleaner image 
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compared to that obtained by using dark-field only. Similarly, other “single-channel” 

label-free images such as the DIC image can be used to generate the Segmented image, 

but like dark-field image they also might contain redundant information. 

 

 

Figure 3-9 Classified images generated using the multi-channel Gabor-filtered images 

(left) and the single unfiltered dark-field image (right).  

3.3.4 Aspect-ratio and Orientedness decrease upon injury 

To quantify the subcellular morphological changes, we analyzed the subcellular objects 

segmented by the image masks obtained above (Figure 3-5). Objects are defined as 

clusters of pixels with connectivity with 4 pixels
20

. We measured the aspect-ratio of the 

objects over time to quantify the subcellular morphological changes (Figure 3-10A). We 

also calculated the median Orientedness from the pixels contained in each object. Figure 

3-10B shows that the object’s median orientedness decreases upon cell injury. Analysis 

of the aspect ratio of the mito-tracker labeled objects also shows a simultaneous decrease 

with treatment (Figure 3-10C).  
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Figure 3-10 Segmented subcellular objects become rounder after calcium overload, as 

indicated by the aspect-ratio (A) and Orientedness (B). The decrease in the aspect ratio of 

objects within the fluorescence images (C) suggests that the change in the aspect ratio of 

mitochondria partially accounts for the decrease in the masked subcellular objects’ aspect 

ratio. The data show mean and standard error for n=6 cells for the first 6 timepoints 

(treated) and the first 7 timepoints (control). Additional timepoints were tested for one 

control cell and 4 of the treated cells. 

3.3.5 Texture-features can detect subcellular morphological dynamics induced by 

injury 

Calcium-injury perturbs the spatial arrangement of the subcellular organelles. Such 

rearrangement is a result of changes in organelle morphology, as well as cell-shrinkage. 

While the treatment produces objects with a decreased aspect ratio and orientedness 

(Figure 3-10), relative distances among organelles also change and reduce as the cell 

shrinks. To quantify these two-dimensional, cell-wide, structural changes associated with 

the injury, we analyzed the texture of the masked Orientedness images as a function of 

time. To this end, we extracted 8 texture-features
21-23

 using the code available
24

 to 

analyze the spatial variation in the Orientedness values. As proposed in Ref. 23, we 

grouped the features into three categories; features that describe the smoothness 
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(Contrast, Dissimilarity and Inverse Difference Moment (IDM) or Homogeneity), 

uniformity (Entropy, Maximum Probability and Energy) and correlation 

(Autocorrelation, correlation) of the texture. 

 

 

Figure 3-11 Changes in the texture-features of the masked orientedness images shown 

as heat-maps. Each row is a feature while each column is a time-point. Cells were 

monitored for different time periods, but for at least 180 seconds, after ionomycin 

treatment (t=0, Treated), or the same saline solution but with no ionomycin (t=0, 

Control). Texture-features are sensitive to the change in the spatial arrangement of the 

morphometric parameter Orientedness. The colorscale represents the magnitude of each 

parameter. 

We found that multiple texture-features are sensitive to the morphological changes 

encoded by the orientedness images. We plotted these texture-features as a heat-map 

(Figure 3-11) for each cell, and observed the change in color over time, which indicates 

the features’ ability to detect the underlying structural changes. Several features changed 

by more than 30% in the treated cells.  Autocorrelation, Contrast, Dissimilarity and 
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Entropy increased in the treated cells, while they decreased slightly, or remained within 

10% of the starting value in the control cells. Energy and Maximum Probability 

decreased in the treated cells, but remained within 10% of the staring value in the control 

cells. Cell-to-cell variations are also observed in both the control and treated cells.  We 

also observed individual feature-responses for the whole dataset (Figure 3-12). 

Autocorrelation, correlation, Contrast, Dissimilarity and Entropy increase while Energy, 

Maximum Probability and IDM decrease over time in the treated cells compared with the 

control. We select Autocorrelation, Contrast, Entropy as the representative features from 

each group with positive trends (i.e. increase) and Energy and IDM as negative trends 

(i.e. decrease). We then calculate the composite feature by subtracting the decreasing 

features from the increasing ones.  The square root of the Energy feature is taken to 

match the unit with that of other features. The composite feature in Figure 3-13 also 

shows a shift from the baseline after injury.  

 

 
 

Figure 3-12 Average responses of the individual texture features over time. The 

smoothness of the texture decreases as the Contrast and Dissimilarity increase and IDM 

(also known as homogeneity) decreases in the treated cells compared with controls. The 
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uniformity of the texture decreases as the Entropy increases whereas the Energy and 

Max. Probability decrease. Correlation between pixels increases. The data show mean +/- 

standard error for timepoints at which more than one cell was tested. 

 

 
Figure 3-13 Composite feature calculated from representative features: 

Autocorrelation, Contrast, Entropy, Energy and IDM. The data show mean +/- standard 

error for timepoints at which more than one cell was tested. 

3.4 Discussion 

Cells and their subcellular organelles undergo morphological changes constantly. These 

changes occur either naturally or upon treatment. To quantify such morphological 

changes in an unstained cell, we utilized OSI to detect the scatterers present within the 

cell. However, tracking these scatterers and quantifying their morphology over time is a 

challenge since they are constantly shifting in space and changing shape. To address this 

problem, we present an algorithm to process angular-scatter- encoded images to detect as 

well as to track structural changes in the subcellular domain. With this algorithm, we 

generate a set of masks which are used to segment individual subcellular scatterers, and 

dynamically change shape in response to the morphological changes in the scatterers over 

time (Figure 3-5, Figure 3-6). These masks further allow us to extract morphometric 
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parameters, such as the aspect ratio of the segmented objects (Figure 3-10), or analyze the 

textural features of the mask-images (Figure 3-11, Figure 3-13). 

To test this algorithm, we induced morphological changes by overloading endothelial 

cells with calcium. Excess calcium leads to the opening of the mitochondrial permeability 

transition (mPT) pores. Subsequent redistribution of small molecules and water causes 

swelling in the mitochondria
25

. Due to calcium overload, a long mitochondrion may 

either remodel or undergo fission. Mitochondria undergoing remodeling become round 

whereas fission produces smaller fragments
26

. With a sufficiently high calcium dose as 

used here, cells will also shrink and undergo cell death. As a result of this treatment, the 

organelles’ morphology changes, as well as their subcellular structural arrangement, as 

the cell starts to shrink and subsequently die. This calcium treatment is similar to the one 

published in Ref .11. Thus, one significant aspect of this treatment is that it results in 

mitochondrial fragmentation and rounding. As we had previously observed, mitochondria 

in this study also attain a smaller and rounder shape post-injury as opposed to the 

elongated shape pre-treatment (Figure 3-8). Given the two-fold transformation in the 

morphology and arrangement of subcellular organelles upon treatment, we apply our 

algorithm and dynamic masks to track the scatterers over time and quantify their 

morphological changes. Our results show that the aspect-ratio and orientedness of the 

segmented objects in the masks decreases (Figure 3-10A and Figure 3-10B). This 

suggests that these masks are sensitive to the rounding of the organelles. This change was 

concurrent with a decrease in the aspect ratio of MitoTracker-labeled mitochondria 

(Figure 3-10C) suggesting that the decrease in the scattering objects’ aspect ratio may be 
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at least partially accounted for by the rounding of the mitochondria becoming shorter and 

rounder upon calcium overloading. 

We had used the “Orientedness” parameter previously to measure mitochondrial 

fission
14

. In that work, average Orientedness values were calculated for each cell, based 

on raw optical filtered intensities. The Orientedness parameter takes advantage of the fact 

that objects of different geometries (e.g. non-circular vs circular) have different 

directional light-scattering profiles. For example, light scattered from an elongated object 

is confined in a smaller azimuth angle, φ in the scatter-plane as compared to that of a 

round object
11

. Orientedness measures this anisotropy of scattered light by taking the 

ratio of light-scatter signal at the direction of maximum scatter to the mean signal 

collected at all available directions
14

. This ratio is measured at each pixel, resulting in a 

cell-wide orientation mapping. However, since Orientedness is a normalized ratio of two 

intensity values, it is independent of signal strength at a given pixel, and pixels in the 

background may show orientation which doesn’t have any biological relevance. Hence, 

to amplify signal from the subcellular organelles as well as to suppress signal from 

background we present a modification of the Orientedness parameter that uses local 

energy information, instead of only raw intensity values. Local energy emphasizes 

regions of abrupt change in intensity such as edges in an image. We take this property of 

local energy to enhance the edges of the organelles as well as to suppress signal from 

monotonically varying intensity such as the background. By multiplying the Orientedness 

images with the masks we further extract signal from the major scattering sources, 

allowing us to analyze individual subcellular scatterers over time, as opposed to taking 

the average Orientedness across the whole cell. When tracked over time, we observe a 
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decrease in the Orientedness of the objects of the masks. While the aspect-ratio measures 

an object’s shape directly by taking the ratio of the height and weight, Orientedness 

provides an indirect means to obtain similar information from the scattering profile of the 

object in question. As expected, when tracked over time, both of these parameters show a 

similar decreasing trend with time (Figure 3-6A and Figure 3-6B), indicating 

concordance between two approaches. Correlation between the fluorescent data (Figure 

3-6C), and data obtained from the label-free approach, suggests that the morphological 

change probed by our optical scatter technique is pertinent to mitochondria. These results 

corroborate our previous data showing detection of mitochondrial rounding and fission 

with optical scattering
11,14

. However, the present data improves on our previous 

parameters. Here, we generate a dynamic mask that can change shape over time to extract 

Orientedness values only from the scatterers within the cell and discard background 

pixels. Thus, our current data are less sensitive to background and can enable tracking of 

individual scatterers. 

To generate our subcellular organelle masks, we apply a segmentation technique 

originally proposed for digital Gabor-filtered images
16

, and multiply the resulting 

segmentation mask with the Orientedness image. The masked-Orientedness images 

therefore contain orientation information from significant scatterers in the cell.  As the 

organelles change shape, the transformation of their Orientedness values will impact the 

spatial relationship between two pixels. In addition, the spatial arrangement of the 

organelles will also be affected by the shrinkage of the cell upon injury. While the change 

in the individual masked objects reflects changes in individual structures, the spatial 

distribution and arrangement of these structures may be quantified using various image-
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based texture-features. Our texture analysis shows that Autocorrelation, correlation, 

Contrast, Dissimilarity and Entropy increase while Energy, Maximum Probability and 

IDM decrease over time (Figure 3-12). However, as suggested by Haralick, even though 

these features show sensitivity towards change in texture, it is difficult to identify which 

textural characteristic is signified by each of them
21

. Hence it will be hard to draw any 

biological relevance of the extracted features. Thus, one way to represent the underlying 

biological events is to combine these features and observe their ensemble behavior in one 

composite textural parameter (Figure 3-13). Taken together, our data allow for single-

scatterer analysis via the analysis of the individual masked objects, and whole-cell 

analysis via the textural features. The textural features are indicative of an overall cellular 

dynamic morphological state that changes in response to treatment.  

There are several other studies which have recently demonstrated the potential of 

label-free methods used in conjunction with computational image processing, for cellular 

analysis and classification. For example, Blasi et al. proposed a label-free approach to 

detect DNA content and quantify mitotic cell cycle phases by combining conventional 

flow cytometry and single-cell imaging
3
. The phases were classified using morphological 

features extracted from bright-field and dark-field images. In this paper, we use similar 

features such as aspect-ratio and Haralick textures. However, one major difference here, 

is the use of the Orientedness parameter which is based on light-scattering. Since light-

scattering is directly related to the size and shape of the probed objects, the Orientedness 

parameter contains valuable information regarding morphological changes in the 

subcellular organelles.  
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One of the limitations of the technique presented here is its dependency on image-

processing parameters that generate local energy and phase-congruency images. 

However, once these parameters are tuned empirically for a specific cell type, they are 

constant for any number of samples. This procedure will be automated in the future. The 

proposed features can also be used in conjunction with other dynamic parameters such as 

velocity and displacement of the organelles in biologically relevant cases such as 

mitochondrial mobility, fission/fusion rate etc. The combined approach can then be used 

to provide a better label-free quantification of subcellular dynamics.   

In conclusion, we have developed a label-free approach to detect and track 

subcellular morphological changes dynamically. This technique does not use any 

exogenous marker and hence can be used to avoid the adverse effects of label-based 

assays and potentially provide a method for rapid drug-screening.  In the future, we hope 

to apply this technique to different mammalian cell types such as neurons, to quantify 

subcellular dynamics upon chemically and mechanically induced injuries.    
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Appendix 
 

Table 3-1 Expression for Gabor filters in frequency domain 

 

General expression of a Gaussian function: 𝐻(𝑢, 𝑣) = 𝐴 ∗ 𝑒
[−

(𝑢−𝑈)2+(𝑣−𝑉)2

2𝜎𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
2 ]

 ;  𝜎𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
1

2𝜋𝜎𝑠𝑝𝑎𝑐𝑒
; with  

𝜎𝑠𝑝𝑎𝑐𝑒 =
𝑆

2
.   

Hence, 𝜎𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
1

𝜋𝑆
 

 

Replacing 𝜎𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦  in the general expression, we obtain: 

𝐻(𝑢, 𝑣) = 𝐴 ∗ 𝑒
[−

(𝑢−𝑈)2+(𝑣−𝑉)2

2
𝜋2𝑆2⁄

]

, Where, Period, 𝑆 =
1

𝐹
=

1

√𝑈2+𝑉2
 

 

𝐻(𝑢, 𝑣) = 𝐴 ∗  𝑒
− 

𝜋2

2∗(𝑈2+𝑉2)
[(𝑢−𝑈)2+(𝑣−𝑉)2]
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CHAPTER 4 

4 LIGHT SCATTER BASED LABEL-FREE ASSESSMENT OF 

GLUTAMATE INDUCED EXCITOTOXICITY ON 

MITOCHONDRIAL DYNAMICS 

 

Abstract 

Abnormal mitochondrial morphology and dysfunction have been associated with diseases 

such as Alzheimer’s, Parkinson’s, Amyotrophic lateral sclerosis (ALS) as well as 

Traumatic Brain Injury (TBI)
1-3

 . Such discoveries have motivated researchers toward the 

development of mitochondria-targeted therapy
4
. This in turn necessitates an accurate 

assessment of mitochondrial dynamics. Traditional mitochondria targeted dyes or 

mitochondria-targeted fluorescent proteins affect mitochondrial metabolism
5
 and 

dynamics
6
 adversely. In this chapter, we investigate how we can quantify mitochondrial 

dynamics in neurons without the use of fluorescent dyes. For this purpose we applied a 

modified version of our previously reported label-free parameter Smax
20

. We found that 

Smax is more appropriate for neurons than the Orientedness parameter used for BAEC cell 

in the previous chapter. We will use glutamate to induce injury of dissociated neurons 

and investigate mitochondrial dysfunction.  This chemical injury mimics the cellular 

events that take place in neurons during traumatic brain injury (TBI) Administering lethal 

doses of Glutamate induces TBI-like mitochondrial dysfunction via calcium-overload
7-9

. 

Our goal is to assess the severity of the chemical insult on mitochondrial morphology and 

function using the label-free light-scatter based technique. This technique doesn’t use any 

exogenous marker and hence can be used to develop alternatives to the label-based assays 
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and potentially provide a method for rapid drug-screening. Techniques developed in this 

project can ultimately help to develop and test mitochondria-targeted neuroprotective 

therapies. 

4.1 Introduction 

 

Mitochondrial structure determines function. It has been reported that alterations in 

mitochondrial morphology is an early event in several neurodegenerative diseases. 

There’s a growing interest toward identifying alterations in mitochondrial structure in 

pathological conditions. Perkins et al. provided a catalogue of mitochondrial structural 

alterations from various neurodegenerative diseases
10

. These changes mainly involve 

membrane rupture, cristae disorganization, matrix swelling, vacuolation, alteration in 

overall shape and size etc. Another way to look at morphology-change is to assess 

mitochondrial dynamics such as fission and fusion processes. In healthy state, 

mitochondrial morphology is regulated by the balance between these two processes; 

however, there is substantial evidence that the balance is compromised in 

neurodegenerative diseases
11

. Altogether, any abnormality in mitochondrial structure 

affects its normal functions which ultimately lead to pathological conditions.  

In traumatic brain injury (TBI), similar ultra-structural alterations as well as 

imbalance in fission-fusion activities are reported. Primary force in TBI causes excessive 

release of excitatory neurotransmitter such as glutamate. In the secondary stage, this leads 

to a high level of intracellular and mitochondrial Ca
2+ 

accumulation. Overloading of Ca
2+

 

causes alterations in mitochondrial morphology
9
 and imbalance between fusion and 

fission rate
12

. It also affects organelle trafficking
7
. These events lead to overproduction of 

catabolic free radicals that activates cell-death signaling pathways
13

. The structural 
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changes observed in TBI include swollen mitochondria, disruption of the cristae and 

rupture of outer membrane
14

. Detailed molecular mechanism of mitochondria-mediated 

cell death is described by Walker et al
15

. 

4.1.1 Role of glutamate  

Increased glutamate initiates the process of intracellular calcium overload
15

.Ionotropic 

glutamate-receptors such as N-methyl-D-aspartate receptor (NMDAR), 2-amino-3-(3-

hydroxy-5-methylisox-azol-4-yl) proprionate receptor (AMPAR) and kainate receptor 

subtypes are activated upon the binding of glutamate. Normal activation of these 

receptors allows Na
+,

 K
+
 and Ca

2+
 to permeate through corresponding receptor-operated 

channels (ROCs). However, overactivation of these receptors causes excitotoxicity in 

TBI which leads to cell-death
15

.   

4.1.2 Role of calcium  

The “Calcium hypothesis” for TBI postulates that the excessive presence of Ca
2+

 is the 

cause of excitotoxicity in neurons
16

. Elevated Ca
2+

 activates Ca
2+

-dependent enzymes and 

overloads the mitochondria
17

 initiating a cascade of events which leads to either rapid 

necrotic or delayed cell-death (apoptosis). It is shown that calcium overload causes 

opening of mitochondrial permeability transition (mPT) pores
9
 which is identified as the 

onset of structural alterations using electron micrographs
14

. Osmotic swelling due to mPT 

causes loss of cristae organization and rupture of the outer membranes.  
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4.1.3 Assessment of mitochondrial dynamics via imaging techniques 

For this project, we intend to develop an optical technique that can assess mitochondrial 

morphology and/or dynamics in normal and injured neurons. Next, we will compare the 

non-invasive label-free approach with the traditional approaches mentioned below. 

4.1.3.1 Traditional approach 

Fluorescent dyes or mitochondria targeted fluorescent proteins have been used to track 

mitochondrial dynamics. Fluorescent labeling provides localization, specificity, and 

better contrast; however, it has some adverse effects. MitoTracker dyes reduce cell 

motility in primary neuronal culture as well as alter their morphology
6
. Besides, some 

dyes are not photo-stable if used in low concentration to avoid quenching effect, whereas 

fluorophores tend to aggregate and stain other organelles if used in high concentration
18

. 

On the other hand, mitochondria targeted fluorescent proteins such as mito-GFP do not 

affect function or morphology; however, long-duration time-lapse imaging is not possible 

due to photo-toxicity
5
. Moreover, low transfection efficiency hinders High Throughput 

Screening (HTS) for drug discovery
19

. Hence a label-free imaging technique would be 

ideal for fast and noninvasive quantification of the mitochondrial dynamics over a long 

period. 

4.1.3.2 Label-free Optical Scatter Imaging 

To quantify mitochondrial morphology we had used Orientedness for BAEC cells in 

Chapter 3, however since the edges of the neuronal processes are already oriented in a 

given direction, the Orientedness value is higher on the processes in comparison to the 

internal organelles (Figure 4-1). Hence, even though the organelles inside the processes 

undergo morphological changes, it is not truly reported by the Orientedness parameter. 
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Therefore, we resort to a parameter called Smax, developed previously by our laboratory
20

. 

Smax is the value of the Gabor filter-period which responds maximally to a probed object. 

For each pixel in an image, the Smax value is generated. Thus a spatial mapping of the size 

of the objects probed by the Gabor-filters can be obtained. For this work, we have added 

the filter-responses from all 8 orientations first and then the filter-period producing the 

maximum response was identified. In addition, the Smax image is masked by applying 

the image segmentation method described in Chapter 3 to discard data from no-cell 

region.  

 

Figure 4-1 Evolution of orientedness in neuronal processes. (top) mCherry 

transfected mitochondria located in neuronal processes in DIC image (bottom) 

Orientedness image of the ROI with yellow border. Note the highly oriented edges of the 

0min 11min 20min

Time
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processes compared to the intracellular mitochondria. Colorbar indicates Orientedness 

values (a.u.). The sample is treated with 120µM glutamate.     

4.2 Methods 

4.2.1 Cell culture and Transfection 

Hippocampal neurons were collected from rat embryos on day 18 embryonic (E18) as 

previously described
21

. Cells were plated on poly-D-lysine (PDL) coated coverslips 

(Fisher Scientific) placed in 12-well plates (Sigma). Coverslips were coated with 

10µg/mL PDL (Sigma) overnight at 4°C covered in foil. Wells containing coverslips 

were then washed with sterile water and dried for 1 hour before plating. Cells were plated 

at a density of ~50,000 cells per well. Cultures were maintained in neuro-basal media 

supplemented with 2% B27, 1% GlutaMAX in a 37°C incubator with 5% CO2. Neurons 

were transfected with mCherry-Mito-7 (Addgene plasmid # 55102) on DIV6. For the 12 

well plate, the transfection media was prepared by mixing 18µg DNA and 18µL PLUS 

reagent in 2.4mL Opti-MEM (reduced serum media) first. Then 24µL of Lipofectamine 

(ThermoFisher) was added as the transfection reagent. The transfection mix was added 

dropwise in each well after the conditioned medium in which the neurons were being 

cultured was saved and replaced by new neuro-basal media where the ratio of 

transfection mix and neuro-basal media was 1:4. The cells were then incubated for 60min 

in 37°C. Afterwards, the incubation media was replaced by the conditioned media and 

left in 37°C until imaging on DIV12-16. For fluorescence labeling with Mitotracker, cells 

were incubated in Hepes Buffered balanced Salt Solution (HBBSS) medium 

supplemented with 100nM Mitotracker Green for 45min. Hepes Buffered balanced Salt 

Solution can be prepared with 1.802mM CaCl2, 0.8119mM MgCl2, 0.9058mM 
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NaH2PO4.H2O, 51.3347mM NaCl, 5.3654mM KCl, 24.97mM D-glucose, 26.188mM 

NaHCO3, and 10.9105mM HEPES. 

4.2.2 Glutamate treatment  

Cells were treated with 120µM Glutamate, dissolved in Hepes Buffered Balanced Salt 

Solution (HBBSS) and 10µM Glycine. The coverslip was mounted on a steel plate and 

the fluid was flushed inside the chamber between the coverslip and plate, as described in 

the previous chapter.  

4.2.3  Image acquisition 

Gabor-filtered images were acquired using the same gabor filters described in chapter 3.  

4.2.4 Image processing 

Acquired Gabor-filtered data is pre-processed first by background subtraction and 

standardization. Background subtraction is performed by morphological opening 

operation. The data from all filter images is standardized by subtracting the mean and 

dividing by the standard deviation to obtain zero mean and unit variance. The processed 

data is then fed to a k-means classifier for segmentation. The classifier assigns all pixels 

to 4 different classes based on the scattering intensity and each pixel-location is assigned 

a class- number. The output of the classifier is reshaped into a 2D image where pixels 

belonging to a class are pseudo-colored in same color, thus generating a segmented image 

similar to Figure 3-4. However, note that no phase-congruency is used in the pre-

processing step before classification to generate this image. We call this pseudo-colored 

image a Segmented image. Each of the colors indicates a class of pixels that contain 

objects scattering with similar intensity. Specifically, the no-cell region has the minimal 

intensity and can be discarded. For this work, we consider the pixels that correspond to 
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the neuronal processes, subcellular organelles etc. By keeping the corresponding classes, 

we create a binary image which will be used to extract information from size-encoded 

“Smax” image described below. We refer to this binary image as Mask image. 

To generate the Smax image, first, filter-responses from all orientations for a specific 

period (S) are added. This results in 6 images for 6 periods. Then the filter-period with 

the maximum intensity at each pixel is found. Each pixel is then assigned the period 

value and pseudo-colored to obtain a Smax image. The Smax image is then multiplied by 

the Segmented image to extract size information only from the neuronal processes and 

subcellular organelles. 

4.3 Results 

4.3.1 Reporting change in organelle-size 

Mitochondria and other organelles which are dynamic, constantly change their shape. 

This change in shape and size is visible in the pseudo-colored Smax image (Figure 4-2). 

Each pixel in the Smax image represents the size of the object located in that pixel. The 

Smax images are masked using the Segmented images. However, all clusters except the 

background are added together to create the mask for neurons. The dark-field and 

corresponding Smax images in Figure 4-2 show five different representative time-points of 

an organelle changing its shape. The change in morphology is quantified using the 

histogram of the Smax values where the distribution of sizes varies with the change in 

shape. To observe an overall change in size, the mode or the most occurring Smax value 

in the region of interest (ROI) is taken and plotted over time (Figure 4-3). A ‘big’ 

organelle probed by 2µm filter-period is labeled in dark-blue at time 0min whereas 

‘smaller’ fragments of that organelle probed by 1.43µm filter-period are labeled in lighter 
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blue at the next time-point (Figure 4-2). The ‘jumps’ at 1.20min and 17min compared to 

the previous time-points in the Smax and histograms (Figure 4-3) are also noticeable in 

the mode plot. 

 

Figure 4-2 Tracking change in organelle-shape in an un-transfected neuronal processe 

(yellow ROI). (A) mCherry transfected mitochondria located in neuronal processes in 

DIC image (B-top) Dark-field images showing time-lapse images of an organelle 
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changing its shape.(B-middle) corresponding Smax images indicating difference in size 

and (B-bottom) histogram showing the distribution of sizes, i.e. Smax values. The sample 

was treated with 120µM glutamate. 

 

Figure 4-3 Most frequent Smax value in the ROI over time may be used to track the 

morphological changes in the images object. 

4.3.2 Tracking organelle movement 

The movement of the organelles can also be tracked from the Segmented image using a 

kymograph. The Kymograph plugin available for ImageJ (Fiji) is used to track the spatial 

movement of organelles over time. Also, to demonstrate that the proposed label-free 

technique can track organelles irrespective of labeling, we compare two cases where the 

organelle is not labeled in one (Figure 4-4) and labeled with mitochondria specific 

MitoTracker dye (Figure 4-5) in the other. Different time points are annotated on the 

Kymographs for comparison with the organelle-location in the Segmented image. While 

in Figure 4-4 it cannot be ascertained that the organelle in the ROI is mitochondria, in 
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Figure 4-5 the presence of mitochondria is indicated by the fluorescence. A kymograph 

obtained using the time-lapse fluorescent images are also shown along the label-free 

kymograph in Figure 4-5 for the mitochondria. Note in the time-lapse Segmented images  

 

 

Figure 4-4 Kymograph showing organelle spatial movement over time (same ROI of 

Figure 4-2 A). (top) Time-lapse Segmented images; black line indicates the probe for 

kymograph, (bottom) Kymograph along the black lines on the labeled images over time. 

Organelle fission at 1.20min can be noticed along with displacement over time. The 

sample was treated with 120µM glutamate. 

and corresponding kymograph that after the mitochondrial fission at 2.48min the bottom 

mitochondrion moves down while the top part remains immobile. Interestingly, the top 

part is missing in the fluorescent images, even though it is visible in the Segmented and 
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the dark-field images. We cannot say for sure why the top mitochondrion stopped 

fluorescing, but the label-free Segmented image and the kymograph can still track it till 

the end of the observation period. In addition, the label-free kymograph is impervious to 

photo-bleaching when compared with the fluorescent kymograph. As can be seen in the 

fluorescent time-lapse images, the mitochondrion in the last time-point is vaguely visible, 

but the label-free kymograph can still track the mitochondrion. 

4.4 Discussion 

In terms of morphology, neurons as cell are starkly different from the Bovine Aortic 

Endothelial Cells (BAEC) used in the previous chapter; for instance, neurons have 

processes which spread like a network in a given culture. Such morphology calls for a 

modification of the label-free parameter through which changes in morphology will be 

quantified. Since the edges of the processes give high Orientedness value (Figure 4-1), 

the Orientedness parameter might be misleading while assessing the change in orientation 

of the organelles inside the processes. Our previously reported label-free parameter Smax
20

 

can indirectly track the change in size. Smax maps the organelle size instead of its 

orientation. And since Smax is a spatial map of the cell, the shape of the organelles can be 

visually observed and possibly quantified. However, in this chapter we have focused only 

on the change in size and movement of the organelle. We have shown that the Smax is 

capable of reporting changes in organelle morphology in Figure 4-2 and Figure 4-3. The 

varying distribution of sizes in Figure 4-2 is indicative of the presence of objects of 

different sizes within the organelles or in the processes as the organelle are morphing into 

various shapes and moving through the processes.  
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Another aspect of mitochondrial assessment in neurons is their movement. It has been 

shown that Glutamate induced injury mimicking TBI slows mitochondrial motility
7
. 



80 
 

 
 

 

Figure 4-5 Comparing kymographs generated from label-free Segmented and 

MitoTracker labeled fluorescent images. (top) time-lapse Segmented image (mid) time-
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lapse MitoTracker (MT) fluorescent image and dark-field (DF) images (bottom) 

kymograph obtained from the Segmented images track both labeled  and unlabeled 

mitochondria whereas the fluorescent kymograph tracks organelle as long as it is 

fluorescing or not bleached. This is a control sample with no glutamate treatment. 

We have shown in Figure 4-4 and Figure 4-5 that organelle or mitochondrial 

movement can be tracked in the label-free Segmented images, even after the fluorescence 

bleaches out. Thus live-cell imaging can be possible for longer duration. Also several 

reports suggested fluorescent induced photo-toxicity
5
, which we plan to verify against our 

label-free technique in the future to demonstrate the compatibility of the approach for 

non-invasive imaging.    

It should be mentioned here that the mode plot shown in Figure 4-3, can be 

affected by the size of the ROI. Here we have restricted the window only to the spatial 

location where an organelle is undergoing morphological changes and hence very little of 

the surrounding processes is included. Also, the mode of the Smax histogram values would 

change if other processes are included in the ROI. A rule of thumb for ROI selection can 

be discarding the part of the processes that the organelle in not reaching or not 

undergoing any morphological change.   

The ROI shown in Figure 4-2 and Figure 4-4 are from the glutamate treated 

neurons and the ROI in Figure 4-5 is from the control group. These images are the proof-

of-concept images for label-free tracking of organelle morphology and movement 

respectively. Although we set out to probe morphological changes caused by glutamate 

treatment, further investigation is required to establish the proposed technique as a label-
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free approach to detect the underlying biology. One of the challenges involved is the 

dominance of bigger objects which overshadows the smaller objects located inside them. 

For example, signal from the organelle is dominated by that of the processes. As can be 

seen in Figure 4-6, the Smax values of the axonal region indicate the presence of bigger 

objects in blue color, as reported by the bigger periods. Here the signal from the axon is 

greater than that of mitochondria, and hence the corresponding pixels represent the axon 

instead of the mitochondria. However, this is only the case when the processes is bigger 

than the organelle inside of it. If, on the other hand, the organelle occupies most of the 

space inside of a processes and is bigger than the average width of processes, the signal 

from the organelle will dominate. In such cases, the morphological changes in the 

organelle can be reported better by the filters, as can be seen in Figure 4-2 and Figure 

4-4. The organelle shown in those images are from ROI 2 of the DIC image in Figure 

4-6. The processes that contains this organelle is thinner than the axon shown in ROI 1. 

Hence the signal from the organelle dominates which makes it visible in the Smax image 

in Figure 4-2. 
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Figure 4-6 Signal from broader processes dominate Smax image (A) DIC image 

showing a neuron with axon which is broader (arrow-head) than a thin processes (arrow)  

(B) mCherry transfected neuron shows location of mitochondria (C) dark-field image (D) 

Smax image showing the Smax values in two ROIs. The axon shown in the DIC image is 

probed by the biggest period and hence colored blue. The mitochondria, shown in red in 

the fluorescent image, are not visible in the Smax image.  

The applicability of this label-free approach to track morphology and movement 

of an organelle may make it useful for initial screening of any morphological change in a 

cell upon drug administration. Also, this technique can be used for repeated assessment 

of morphology once initial screening is conducted and the changes are related to the 

underlying biology. Thus time-consuming and difficult transfection procedures can be 

avoided.    
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In this chapter, we have presented a modified version of a previously reported label-

free parameter which encodes size and have demonstrated that it can be used to probe the 

morphological changes in neurons. We have also shown an alternative to the fluorescent 

based kymograph generally used to record mitochondrial movement. However, more 

analysis is required to establish a method for differentiating between mitochondria and 

other mobile organelles. And more work is needed to find reproducible differences 

between treated and untreated neurons. 
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CHAPTER 5 

5 CONCLUSION & FUTURE DIRECTION 

 

 

In this work, we have presented different approaches to detect and quantify 

morphological changes associated with mitochondria in three different cell-types and 

compared the results with a fluorescent probe.  Our technique is based on optical Fourier 

filtering where scattered light is filtered by the hardware using Gabor filters sensitive to 

size and orientation. The common theme throughout the work is the assessment of 

mitochondrial morphology under normal and dysregulated conditions.  

 In Chapter 2, we used Principal Component Analysis (PCA) to reduce 

dimensionality and Linear Discriminant Analysis (LDA) to distinguish between 

apoptosis-competent and apoptosis-resistant tumor forming cells. The mutated cells, 

which lack Bax and Bak, scatter differently compared with those expressing Bax/Bak. 

Since Bax and Bak are associated with the mitochondrial membrane, the differences we 

observed are likely due to alterations in mitochondrial morphology. In Chapter 3, we 

associated the aspect ratio of mitochondria with a label-free parameter called 

Orientedness. We have demonstrated that Orientedness is able to report on changes in 

subcellular morphology in Bovine Aortic Endothelial Cells (BAEC) in response to 

calcium overload which causes mitochondrial rounding and/or fission. There we 

introduced an image analysis method to mask highly scattering organelles to discard 

redundant information from non- or low-scattering cytoplasm and no-cell region, thus 

keeping the Orientedness data pertinent to the objects of interest. While in Chapter 3 we 

probed changes in subcellular organelle shape, in Chapter 4 we quantified the change in 
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organelle size. We used a parameter called Smax that encodes the size-information of the 

probed object. We applied Smax to quantify mitochondrial dynamics such a fission, fusion 

etc. over time and demonstrated that this label-free parameter is capable of reporting an 

object’s size-information even after the organelle is photo-bleached in the corresponding 

fluorescent channel. We also presented an alternative approach to fluorescence based 

kymograph to track mitochondrial dynamics and movement over time using a label-free 

Segmented image. Since the Segmented images do not bleach, the Kymograph generated 

from these images can be used to track mitochondria for longer periods of time. Another 

advantage of label-free kymograph is the stratified pixels that can report both organelles 

and processes by separate colors, which is not possible in fluorescence images. 

While the above mentioned experiments and examples indicate the applicability 

of the light-scatter based label-free technique for tracking mitochondrial size, shape and 

dynamics, there is still room for improvement. For example, Non-negative Matrix 

Factorization (NMF) can be used to reduce dimensionality instead of PCA in Chapter 2. 

Unlike PCA, the basis vectors of NMF group similar features together 
1
.  As can be seen 

in Figure 5-1, the physiological features contained in the W1 and W2 basis vectors of 

NMF represent the neuronal process shown in dark-field image better compared with the 

principal component PC1 obtained by PCA. This is because NMF takes the spatial 

relationship of the pixels in to account while clustering. Also NMF is mathematically 

more favorable than PCA due to the non-negative nature of the image data
2
.       
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Figure 5-1 Basis functions of PCA and NMF. (top panel) principal components (PCs) 

of PCA and (bottom panel) basis functions of NMF contain different physiological 

features of a section of a neuronal processes. Note, the basis vectors of NMF (W1 and 

W2) contain the physiological features of the neuronal processes better compared to the 

PCs (PC1). Color indicates intensity of the vectors. 

The edge-enhancement technique presented in Chapter 3 has limitations due to its 

requirement for fine-tuning input parameters based on the cell-type. Most of these 

parameters characterize the Log-Gabor filters used to filter the acquired images. Such 

dependence might be reduced by replacing the Gabor filters with Log-Gabor filters
4
 

during optical filtering. In other words, instead of filtering twice – one with Gabor filters 
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on the hardware and subsequently with Log-Gabor filters in the digital processing step; 

we could filter the scattered light with Log-Gabor in the hardware and then conduct 

minimal processing to calculate the phase-congruency from the filtered images. Even if 

phase-congruency is not included in the pre-processing step, as shown in Chapter 4 for 

neurons, Log-Gabor filters may improve the spectral information contained in the 

acquired filtered images. Scattered light filtered by Log-Gabor filters is influenced by the 

DC component very minimally as Log-Gabor filters extinguish the DC component 

completely by definition 
3
. This quality of the filtered images makes the image data 

invariant to the average intensity of the signal, which in turn makes it suitable for good 

feature generation in classification tasks 
4
. Also, the bandwidth of Gabor filters is limited 

to one octave as a wider bandwidth will introduce high DC component.  Log-Gabor 

filters, on the other hand, can afford to have higher bandwidth since they do not have any 

DC component. Thus fewer Log-Gabor filters will be required compared to Gabor filters 

to probe the frequency spectrum, which will greatly reduce acquisition time, hence 

improving time-resolution. Another improvement is achieved via the property of Log-

Gabor filters that enables them to encode natural images (as opposed to cartoon or 

synthetic images) better. Gabor filters emphasize the low frequencies more and thus may 

produce redundant information
5
. Log-Gabor filters have an extended tail in the higher 

frequencies which makes them more suitable to probe spectral information of the natural 

image (i.e. scattered-light in this case), since the transfer function of Log-Gabor filter 

matches the power spectrum of natural images. This criterion of Log-Gabor filters might 

be very useful for calculating the Smax parameter to avoid the incorrect dominance of the 

lower frequencies (i.e. bigger periods).   
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Mitochondria play a key role in neuronal cell-death and hence there’s a growing 

effort toward mito-protective drug discovery. To facilitate fast and reliable drug-

screening, a new paradigm for the neuronal cell culture has been proposed which is 

commonly referred to as “brain-on-a-chip” technique
6
. Here a micro-device 

accommodates organotypic tissue slices and is capable to provide realistic information of 

the underlying biological processes in TBI. In vitro models for TBI such as dissociated 

neurons are commonly used in the labs; however, they cannot preserve the architecture of 

the brain and hence do not provide information regarding functional local synaptic 

circuitries. Brain slice models alleviate this issue by offering intact tissue-architecture as 

well as uninterrupted synaptic connections. Thus organotypic models are a preferred drug 

screening tool for neurodegenerative diseases
7
. Another advantage over commonly used 

neuronal culture-plates is that this device will provide a way to examine the 

pathophysiology of traumatic brain injury (TBI) in the tissue-context in which synaptic 

circuitry is intact as well as preserving some of the brain architecture. To this end, our 

collaborators have proposed similar devices for drug screening
8
 (Figure 5-2). It is 

expected that this device will provide optical, metabolic and electro-physiological 

assessment upon pharmacological treatment of the cultured slices.  

 

Figure 5-2 Brain-on-a-chip device. Image Courtesy: JP Dolle. 

Image Courtesy: JP DolléStretch injury

Microelectrode

Organotypic slice
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As a proof of concept, we employed one such micro-channel device
9
 to culture 

cortical neurons and imaged on different days in-vitro (DIV). The advantage of this 

particular device is that multiple devices can be fabricated and imaged together, making it 

a possible candidate for high-throughput applications. Figure 5-3 shows the state of the 

culture at different DIVs under different imaging modalities. As can be seen in the phase-

contrast images (panel A & B), the processes have already started to grow through the 

channels by DIV 4. We have imaged again on DIV 11 and DIV 15 with fluorescence and 

dark-field respectively, which indicates that the device can be used to image neuronal 

processes over long period of time. However, the dark-filed image has more background 

compared to the ones acquired previously. This is because the chamber containing the 

cell-body, channel and processes here is a well of a 96-well plate. Unlike the metal 

chambers employed for imaging previously, these wells are taller and contain more 

media, which might have interfered more with the incident light. In the future, we intend 

to optimize the image acquisition and apply the proposed label-free imaging techniques 

for possible high-throughput drug-screening.  
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Figure 5-3 Neuronal culture in micro-device. (A, B) Phase-contrast images showing 

neurons in a reservoir and processes stretching through the channels (C) Fluorescent 

image showing mitochondrial location in the processes (D) Dark-field image showing 

part of two channels containing processes. 

Traditional fluorescence based imaging techniques provide good localization and 

contrast for visualizing subcellular organelles. However, photo-bleaching, low 

transfection efficiency and photo-toxicity limit their applicability. Label-free techniques 

such as the Fourier-filtering based Optical Scatter Imaging (OSI) presented here have the 

ability to avoid such issues. OSI have the potential to be used for routine assessment of 

cellular states once the underlying biology is confirmed with fluorescence images. 

Specifically, the PCA approach can be used to differentiate between two populations of 
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cells or between pre- and post-treatment cases with different morphological properties. 

OSI can be used to track mitochondria in the neuronal processes as well as to probe their 

fusion-fission dynamics. We have also shown that this technique can reveal more 

information about the biological sample when compared to the fluorescent images. These 

features of the label-free technique may help to develop high-through screening of 

neuroprotective drugs in future. 
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