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ABSTRACT OF THE DISSERTATION

ESSAYS ON THE EFFECT OF CLEARING PRACTICES

ON SWAP RATES

by FREDDY ARNALDO ROJAS CAMA

Dissertation Director: Bruce Mizrach

This dissertation contributes to understand the interplay between price of derivatives and

clearinghouses; the following chapters intend to overcome especific gaps in the literature

since the effect of clearing practices is still not well understood in literature.

In the first chapter I study the relationship between the price of derivatives and clearing

practices in a theoretical framework. Specifically, I setup this connection by measuring

the total exposure (the loss upon default of a contract) registered in a clearinghouse and

its respective amount of collateral requirement. I find that netting through novation has

significant gains in reducing exposures and therefore making a clearinghouse more compet-

itive in terms of prices and collateral requirements thus clearing turns out to be appealing

to more participants. Additionally, I also find above gains are large when comparing a fi-

nancial structure of one clearinghouse respect to other with two specialized clearinghouses.

In the case of interest rate swaps I find a relationship between netting and the Libor rate

that may potentially affect the difference in prices among clearinghouses; in other words, a

linear correlation calculated over time-series data and term structure seems to validate the

appearance of a widening basis -a price differential - between London Clearing House and

Chicago Mercantile Exchange.
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In the second chapter I show statistical evidence of a negative and significant impact

of clearing practices on price of derivatives. This empirical finding supports the theoretical

model discussed in Cama [26] which provides a method for swap valuation that hinges

on the size of the exposure in a clearing arrangement; the foregoing is particularly clear

when the clearing practices strengthen. In practice, hedging exposures and performing risk

management (through collateralization) introduce multilateral netting, compression and

other clearing procedures. These practices eventually would affect the price of contracts

making possible the observation of a significant wedge in the pricing of derivatives amid

markets. I consider the cases of interest rate and credit default swaps for the quantitative

assessment. I found that the basis (difference of swap rates between clearinghouses) has

a higher persistence and its variance may be large when market participation increases,

the former -as discussed in the chapter- is a sign of eventual deepening clearing practices.

The regression analysis supports previous findings and show that bias is not significant

larger when variables measuring additional characteristics of contracts are omitted due to

access-to-data issues.

In the third chapter I investigate the effects of collateralization and mutualization on

credit default swaps (CDS) premium in a context of high counterparty risk operating

through an opaque derivatives market. Literature mostly analyzes clearing in exchange

markets and assumes that terms of trade are invariant to policies. My approach certainly

makes clearing practices to affect the size of positions, recovery rate and premium. I study

the interplay between clearing practices and pricing of the asset in a theoretical framework

that allows excessive leverage of short positions. This environment not only has the ben-

efit of being realist to the light of causes and propagation of great recession but also to

assess clearing practices in a partial equilibrium. I closely follow contributions of Koeppl

and Monnet [71], Koeppl [68], Acharya and Bisin [1] and Stephens and Thompson [99]. I

show the premium is low when mutualization takes place as clearing policy; specially when

capital requirement ratio is substantially manageable. The allocation is characterized by

high recovery rate and non-defaulting contracts spread significantly relative to a bilateral
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agreement. On the other hand, as literature suggests collateral avoids detrimental out-

comes; premium is higher under collateralization practices since the value of the position

(or recovery rate) increases. Existent empirical literature finds mixed results after control-

ling for liquidity and dealer networking. This chapter provides answers to this oxymoron.

This research contributes to compress the asset pricing theory into a material that would

be critical as input in large macroeconomic models.
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1

Chapter 1

The Impact of Collateralization on Swap Rates Under

Clearing

1.1 Introduction

This chapter contributes to understand the interplay between price of derivatives and clear-

inghouses, relationship that is still not well understood in literature. In the light of the

recent financial crisis and its aftermath, clearing of derivatives has become central to the

modern financial system. In practice, netting of positions and other clearing procedures

question the standard practice of valuation usually affected by hedging and collateraliza-

tion. Particularly, I explain in a simple theoretical framework how much the swap rate is

affected by clearing practices. I thoroughly examine two type of swaps contracts: interest-

rate and credit default swaps.

The traditional approach for the valuation of swaps1 uses information about the current

market conditions such as liquidity, supply-demand factors, and spreads between short-

term repo rates. More important, latest literature includes the effect of the default risk

of multiple counter-parties on these contracts (see Leung and Kwok [77], Johannes and

Sundaresan [64] and Duffie and Zhou [50]); it is mostly accepted that credit worthiness of

counter-parties significantly affects the fair-market swap rates. Literature seems to deliver

a good understanding of the association between the swap rates and its most pertinent

underlying factors. However, other factors that are more related to the structure of the

financial market remain a pending subject in the literature of swap valuation; financial

regulation and their effects on asset pricing are hardly formalized in the literature. As a

1A swap -that is a class of derivative- is a contract between parties whose value is based on an underlying
financial asset, index, or security. Source: Investopedia.
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consequence, in the light of the recent financial crisis and its aftermath, dynamics of swaps

spreads have recently received particular attention not actually being observed since the

end of nineties2. The Dodd-Frank Act, a key piece of financial reform legislation passed by

Obama administration in 2010, opens up to the discussion regarding the effect of clearing

practices on price of trading derivatives; clearing is becoming an interesting proposal inside

the recent regulatory framework. However, the link between price and clearing practice is

still not well understood. This chapter intends to fill out this gap in the literature.

Interest rate and credit default swaps are contingent claims that are massively traded

in clearinghouses. An interest rate swap (IRS) is a derivative contract through which two

parties exchange fixed and floating rate coupon payments; usually literature presents the

structure of swaps as simply affected by not only credit worthiness but LIBOR rate and

spreads over repo (see He [56]). On the other hand, a credit default swap (CDS) is another

derivative contract whereby the buyer seeks protection from the loss arising from a credit

event. In exchange, the seller (typically a financial institution) absorbs the risk of arranging

the conditional payment once the credit event occurs. IRS and CDS have the lion’s share

of derivatives market. In the year 2016, according to Bank of International Settlement

(BIS), the market for interest rate swaps reached the notional3 value of 275 US trillion

dollars, while 10 US trillion dollars of credit default swaps were negotiated in the same

year (see figure 1.1a). Thus, these two assets comprise around 90% of the total market

value of derivatives. The most important clearinghouses are Chicago Mercantile Exchange

(CME) and London Clearing House (LCH); their trading-volumes shares in 2016 reached

to 10 and 82 percent respectively (see figure 1.1b). Recent analysis of empirical data from

clearinghouses show noticeable spikes or persistent unusual behavior of the trading swap

rate that raise questions regarding the dynamics of the price determinants of these financial

instruments. Specifically, the basis -that shows difference of swap rates traded at two

clearinghouses- should not theoretically show a significant wide size since the instrument

and its related characteristics as maturity and risk are the same.

2Around those years, noticeable volatility over these contingent claims contributed to the financial tur-
moil that led the US Federal Reserve to modify the path of interest rates (see He [56]).

3In swaps, interest payments are computed based on a notional amount, which acts as if it were the
principal amount of a bond, hence the term notional principal amount, abbreviated to notional.
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(a) Outstanding market value
(b) Clearing participation

Figure 1.1: Swaps Clearing Market

In the following lines I define the role of the clearinghouse. The clearinghouse does the

settlement of any contract when novation takes place. Novation is the inherent feature of the

clearing process: the clearinghouse is the seller for any buyer and the buyer for any seller.

Also, the clearinghouse establishes initial and variation margins or collateral on contracts

as well as collects default funds for mutualizing losses among market participants. The two

most common forms of collateral are cash and treasuries bonds since they are default-free,

they can easily be invested or loaned out4 (Johannes and Sundaresan [64]; ISDA [60]). Since

posting collateral is generally costly, these payments induce economic costs (benefits) to the

payer (receiver). More significantly, the clearinghouse offsets positions among participants

by performing compression and multilateral netting; precisely I study in this chapter the

effects on swap rates of performing netting among all positions hold by participants in the

clearinghouse. The result of offsetting positions is called exposure which needs to be hedged

by imposing collateral. Thus, the swap rate can be expressed as a function of the exposure

ultimately.

I explain in the next lines the relevance of studying the price determination of derivatives

in clearinghouses beyond the standard price discovery5. The Dodd-Frank Act is the current

4The most popular form of collateral is cash. In 2005 ISDA indicated that US dollars and euros cash
accounted for 73% of collateral assets.

5The pricing of the swap or price discovery is a method of determining the price for a specific commodity
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regulation framework for trading financial instruments and constitutes the most compre-

hensive set of mandatory limits, exceptions and rules made by US government since great

depression6. The magnitude of the last financial crisis made the previous administration to

react properly by proposing a regulation framework for the financial system. However, a

potentially mandatory regulation of derivatives poses a new mechanism to take into account

that would potentially affect price of derivatives; clearinghouses through novation is able

to see positions of participants and reduce significantly requirement of collateral by apply-

ing multilateral netting over class of assets. The impact on prices can be significant and

financially beneficial in comparison to other proposals that relies on rising higher capital

requirements as macro-prudential policies suggest nowadays7 or other that may inherently

be associated to spillovers such as agency problems (see Chami et al. [31]8). Change in swap

prices are generally associated to variations in the implicit risk as standard theory predicts,

but under an effective clearing practice i.e. netting, the determination of swap prices needs

a different and suitable framework to analyze.

The contribution of this chapter in policy terms is as follows. First, trading in a clear-

inghouse could make prices of derivatives competitive enough in comparison to bilateral

agreements or other specialized framework, for instance, the ones supporting more than

one clearinghouse. Moreover, other clearing practices as mutualization of losses among par-

ticipants may reduce further the costs of default. Second, price arbitrage -in a financial

structure that allows multiple clearinghouses- would produce shifts in the direction of the

demand for a particular class of assets among clearinghouses. Whether the price depends

of the effort of reducing the overall exposure, then a clearinghouse that treats risk properly

or security through basic supply and demand factors related to the market.
6The preliminary “Glass-Steagall Act” was passed by the United States Congress on February 27, 1932,

prior to the inclusion of more comprehensive measures in the Banking Act of 1933, which is now more
commonly known as the Glass-Steagall Act. Source: Wikipedia.

7See Tobias [102] for a quick refresh of macro-prudential policies and challenges. On the other hand,
Jihad Dagher and Tong [63] assess the benefits of bank capital in terms of resilience; authors found that a
high capital requirement around 15-23 percent of risk-weighted assets would have been sufficient to absorb
losses in the majority of past banking crises. The basel rules and further details of extension III can be
found in BIS [17], BIS [15] and BIS [16]. Other initiative is The U.S. House of Representatives passed the
Financial CHOICE Act (FCA), it was put forward in 2016 by the House Financial Services Committee,
and it comprises key elements of the original DFA, leaving certain other DFA elements out. According to
Chami et al. [31], a key argument is the introduction of a regulatory “off-ramp”, thus providing a relief in
demanding capital requirements for so-called “qualifying bank holding companies”.

8Even clearing -via mutualization of losses among participants- does not circumvent the usual problem
of commons associated to public goods, see Stephens and Thompson [99] and Cama [25] for a discussion.
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would be efficient. A clear evidence of the former is the behavior of the basis; two swap

contracts may have exactly the same features and they will probably be priced differently

due to different costs of funding in general. Finally, in this setup, price depends on the

regulatory policy; this relationship may affect the decisions of agents in participating in

clearinghouses.

The chapter is organized as follows. The following section presents the literature re-

lated to valuation of swaps and the progress made so far by including counter-party risk

in the valuation models. The third section in this chapter explain the steps for achieving

an analytical expression for the interest rate and credit default swap as a function of the

exposure under a clearing arrangement; I also make a comparison of this exposure with

bilateral agreements that currently are negotiated in over-the-counter markets. The fol-

lowing fourth section explains how to calculate the exposure using data, I further explain

the respective assumptions behind the formulas. The fifth section explains the quantitative

exercise in order to provide insights regarding what drives the difference of swap rates be-

tween clearinghouses. The calibration of parameters in the exercises is thoroughly explained

and discussed; the baseline values are mostly taken from recent literature. The last section

gathers the conclusion of this research and provide further questions to pursuing in a future

research.

1.2 Literature review

An extensive literature has developed that studies price determination for derivative con-

tracts. In the case of the credit default swaps, Leung and Kwok [77] and Jarrow and Yu

[62] analyze the effects of a change in the joint probability of default on spreads (prior to

maturity). Duffie and Singleton [45, 46] developed a methodology that derives reduced-

form models of the valuation of contingent claims subject to risk; more interesting, this

chapter introduces the effect of different recovery rates on swap valuation. In a differ-

ent approximation Acharya and Bisin [1] show -using a theoretical model- the effect of

releasing information on CDS premium; this analysis would be equivalent to the effect of

a explicit clearing method -or transparency of positions- on price of derivatives. On the
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same approach, Stephens and Thompson [99] study price competition with different type of

insurers and show that mutualization may increase counterparty risk as responsible insurers

leave the market. Other contribution for price determination is found in Koeppl [68]; in or-

der to extracting benefits the seller of contracts will rise prices under a clearing mechanism

that not involves fulfillment of promises.

Collateral requirement is the cornerstone in the lender-borrower literature. Johannes

and Sundaresan [64] study the use of marking-to-market (MTM) and collateralization on

swap rates as they modify the flow of cash in the contract whereas risk of default rises. Jo-

hannes and Sundaresan [64] derives an analytical expression where MTM and time-varying

net costly collateral alter the discount factor. The authors discusses limitations in eval-

uating the importance of collateral. Precisely, comparing market swap rates with a par

representation -constructed from LIBOR bond prices- would be misleading since the par

representation needs the market swap rates. Finally, Johannes and Sundaresan [64] setup

a zero-coupon structure made from eurodollar futures, a strategy that does not require as-

sumption regarding collateralization and counter-party credit risk. On other hand, Duffie

et al. [49] show, using pre-reform exposure data set, that demand of collateral is increased

significantly by the application of initial margin requirements even if CDS are cleared or

not. Most importantly, Duffie et al. [49] state that mandatory central clearing is shown

to lower collateral demand only when there is no significant proliferation of clearinghouses.

Duffie et al. [49]’s work is closely related to Heller and Vause [57], Sidanius and Zikes [97]

and Johannes and Sundaresan [64] that simulate exposure data. I extend their work es-

tablishing a measurable and theoretical relationship between exposure, collateral needs and

swap rates.

The clearinghouses can potentially reduce the size of the exposures through netting when

novation is performed. Specifically, Duffie and Zhu [47] and Cont and Kokholm [40] show the

tradeoff between multilateral and bilateral netting when a particular asset from individual

portfolio is moved to central clearing reducing the net exposure calculated among trading

partners and assets. Duffie and Zhu [47] assume normality and no particular correlation

between assets when clearing, the foregoing assumption is relaxed by Cont and Kokholm [40]
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as showing that number of optimal participants for reduction of the exposure is significant

low. Also Cont and Kokholm [40] shows that different methods do deliver different sizes of

the credit exposure; however take into account a particular distribution seem to be irrelevant

when comparing results against a gaussian distribution. Other important result in Cont

and Kokholm [40] shows the exposure shrinks significantly for cleared interest-rate swap

contracts.

The empirical treatment of identifying the determinants of swap spreads is mostly stan-

dard and relies on term structure models. For instance, He [56] uses a multi-factor term

structure framework assuming swaps are default-free and show that this structure is driven

by market expectations, risk premium and liquidity differentials. Johannes and Sundaresan

[64] model the short rate using a ad-hoc two-factor model from Collin-Dufresne and Sol-

nik [38]; previously this author used calibration of models9 to compute hypothetical swap

rates assuming swaps are priced as a portfolio of forwards or futures. Thus, any difference

between actual swaps would be attributed to collateral or margin strategies.

1.3 A model of swap determination under clearing

In this section I determine the swap rate for the exchange of flows between counter-parties

i.e. interest rate swap contract, and for the insurance contract signed among participants

in the credit default swap market. In each contract, by using novation, the clearinghouse

nets positions and calculates the size of collateral required to hedge them. The first two

subsections deal with the determination of the swap rate as a function of the size of the

exposure under clearing. The last section constructs the size of the exposure following the

method developed in Duffie and Zhu [47] and Cont and Kokholm [40].

The process of netting exposures in central clearing of OTC trades can lead to a decrease

in the sum of total bilateral exposures. For instance, as shown in Cont and Kokholm [40],

consider a market of four participants (A,B...) with bilateral exposures like shown in the

left panel of figure (1.2). In this market the swelling of bilateral exposures amounts to 350.

9Authors use some ad-hoc adjustments following the treatment in Vasicek [105] and John Cox and Ross
[65] as well as calibration procedures made in Hull and White [59].
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Introducing a clearinghouse (or CCP) enables netting of the exposures across all participants

which reduces the total net exposure to 180.

(a) Bilateral exposure (b) Centralization

Figure 1.2: How clearing works (Cont and Kokholm [40])

The arrows above represent the positive or negative (net bilateral) position of the con-

tract among participants; the direction of the arrow may be read as “... has an exposure

to...” and amount above them indicates the size of the exposure. The above representation

of a trading market highlights the benefits of multilateral netting through a clearinghouse;

positions are offset among participants since clearinghouse centralizes them in any direction.

However, there are also situations where central clearing of a single asset class may actually

increase overall net exposures. For instance, Duffie and Zhu [47] and Cont and Kokholm

[40] show that multilateral clearing may actually increase the size of exposure when number

of participants are fewer enough. Besides, given a fixed number of participants, the size of

exposure -according to Cont and Kokholm [40]- would be highly sensitive to the assump-

tions of correlation and distribution amid asset classes. In other words, performing novation

is not a guarantee of an effective reduction of the exposure.

1.3.1 Determination of the interest-rate swap rate

In this section I follow the theory behind the determination of the interest rate swap rate

as shown in McDonald [83] and Johannes and Sundaresan [64]. Specifically, I provide a
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swap valuation theory under marked-to-market10 and costly collateral and examine the

theory’s empirical implications. A interest rate swap (henceforth swap) is a contract calling

for an exchange of payments over time. Specifically, companies use swaps to modify their

interest rate exposures. Thus, the swap makes payments -under contract- as if there were

an exchange of payments between a fixed-rate and a floating-rate bond. For instance, a

fund manager might own floating-rate bonds and wish to have fixed-rate exposure while

continuing to own the bonds. Thus, investors may change the structure of payment flows

and hedge risk whether their balance sheet face uncertainty or just they engage into this

asset market due to just merely speculative reasons. A swap generally has less credit risk

than the bond in reference since only net swap payments are at risk whereas the principal

is not. Figure (1.3) illustrates the cash flows for a company that borrows at LIBOR and

swaps to fixed-rate. If one party defaults, it owes to the other party at most the present

value of net swap payments at current prices.

Figure 1.3: Cash flows for company swapping rates (McDonald [83])

Hedging counter-party risk makes the market value of the swap an important variable

under consideration. At inception of the swap the market value is zero, meaning that either

party could enter or exit the swap without having to pay anything to the other party. Once

the flows are effectively interchanged, however, its market value will generally no longer

be zero. McDonald [83] mentions at least two reasons for the foregoing: first, forward and

zero-coupon bonds rates change over time, and second, once the first payment is made there

10Mark to market is a measure of the fair value of accounts that can change over time, such as assets and
liabilities. This measure aims to provide a realistic appraisal of an institution current financial situation.
Source: investopedia.
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would be a difference of new swaps relative to the forward rate; hence, in order to exit the

swap this counter-party needs to be either compensated or affected by a convenient fee (see

McDonald [83] for details).

Swap rate with no collateralization

I thoroughly examine the calculation of the swap rate under regular conditions i.e. no

collateralization. I assume T swap settlements occurring on dates ti, i = 1, ..., T . The

floating interest rate from date ti−1 to date ti known at date 0 is r0(ti−1, ti) and the swap

rate is denoted by sw. The price of a zero-coupon bond maturing on date ti is P (0, ti).

Following McDonald [83], the requirement that the swap have a zero net present value (V0)

is:
T∑
i=1

P (0, ti)[s
w − r0(ti−1, ti)] = V0 ≡ 0

Above expression can be rewritten for an easy interpretation (see expression (1.1)); this

preliminary result will help later to construct a swap rate that incorporates collateralization

under clearing as a consequence of counter-party risk.

sw =
T∑
i=1

[
P (0, ti)∑n
j=1 P (0, tj)

]
r0(ti−1, ti) (1.1)

The only risk in this transaction is associated to the uncertainty of the floating rate; this

risk is hedged by entering into a forward rate agreement. This is a result of netting the

payment on forward and an unhedged net swap payment (see details in McDonald [83]).

The above expression in square brackets sum to one. Thus, for sake of understanding, the

meaning of this expression can be expressed differently; the (fixed) swap rate is a weighted

average of the implied forward rates where zero-coupon bond prices are used to determine

the weights. An alternative and popular expression can be derived using the fact that the

implicit forward rate can be calculated from bond prices, see McDonald [83] for details.
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Swap rate with collateralization

The trading of swaps or options in the over-the-counter (OTC) market can create counter-

party credit exposures; the party that was “in-the-money” would have to replace the deal

at current market prices. Thus, the positive MTM value is a credit exposure. One way to

reduce the credit risk is to use a break clause i.e. replacement of the whole contract and

a final payment must be made each period, and then the parties can enter a new contract

the following period. However, there exist the option of collateral management. Basically,

collateralization involves the delivery of the collateral from the party with the negative

MTM on the trade portfolio to the party with the positive MTM. As prices move and new

deals are added up, the change in the valuation of the trade portfolio ensues.11

First, I start with a motivation by using a discrete-time model based on Duffie and

Singleton [46] and Johannes and Sundaresan [64] and then I formally extend the model

to continuous-time including costly collateral. I defined the contract from the side of the

counter-party that holds the fixed-rate leg and I assume that counter-party who holds the

floating-rate leg is potentially subject to defaulting; in terms of van Egmond [104] the

marked-to-market value of a bilateral swap is negative to the agent who holds the fixed-rate

leg, therefore it has to post collateral.

Formally, I consider a defaultable contract that exchanges fixed and floating interest

rates. h is the conditional probability under a risk neutral probability measure Q of default

between periods; it is defined by a set of information given a state of nature of non-default

at each period i.e. I assume that this probability is constant for sake of simplicity12. The

amount of collateral posted is denoted as cϕ where ϕ denotes the exposure and c is the

fraction of the exposure that is collateralized. I assume the foregoing -for sake of tractability

of the solution- is equivalent to the fraction βs of the market value of the contract at time

s (Vs), see Duffie and Singleton [46]. Additionally, as in Johannes and Sundaresan [64] I

assume the amount of collateral is free of default13. The discount factor in the contract is

11The valuation is repeated at frequent intervals-typically daily. Thus, the collateral position is then
adjusted to reflect the new valuation.

12This is relaxed in the empirical chapter of Cama [27].
13They also introduce cost of collateral as a benefit/cost of holding it.
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the default-free short rate (rs). If the contract has not defaulted by time t its market value

Vt would be the present value of receiving cϕt+1 in the event of default between t and t+ 1

plus the present value of receiving Vt+1 in the event of no default, this is as follows,

Vt = he−rtEQt (cϕt+1) + (1− h)e−rtEQt (Vt+1) (1.2)

where EQt denotes expectations under a martingale measure conditional on information

available at period t. Above expression represents a joint distribution between ϕ and the

discount factor (r) over various horizons. According to Duffie and Singleton [46] the problem

simplifies when the expected collateral at time s is a fraction of the risk-neutral expected

survival-contingent market value at time s+ 1. Taking into account the foregoing, I define

the amount of collateral as follows;

Definition 1 (Market Value of Collateral - MVC) Under a risk-neutral probability mea-

sure Q the market value of collateral is defined as;

EQs (cϕs+1) = βsE
Q
s (Vs+1)

Thus, using the definition (1), the expression (1.2) can be expressed as follows;

Vt = βthe
−rtEQt (Vt+1) + (1− h)e−rtEQt (Vt+1)

≡ EQt

(
exp

−
∆−1∑
j=0

Rt+j

Xt+∆

)
(1.3)

where t is set before default time i.e. t < T d. The above expression is obtained by recursively

solving (1.2) forward over the life of the bond, see appendix (A) for details. Then, a period

before default, the promised payoff (Xt+∆) is default-free. ∆ is the number of periods

immediately ending before default time (t+ ∆) and finally R is obtained as follows;

e−Rt = (1− h)e−rt + βthe
−rt

As in Duffie and Singleton [46] for time periods of small length, the former can be seen as
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Rt ' rt+h(1−βt). So, the fraction of market value posted as collateral positively influences

the (adjusted) interest rate Rt. In other words, the swap spread, i.e. Rt − rt, is a function

of βt. As an informal corollary, if h = 0 i.e. there is no counter-party risk, then the swap

contract, that originally gathers multiple short-term contracts of swapping payments i.e.

Xt = rf,t − sw, will be as expressed as in (1.1) where rf,t is the floating rate calculated at

time t. In the calculation of sw I will refer to the floating rate as Libor with maturity T ; the

foregoing is denoted by L(T ). In the next lines I add the collateral requirements into the

model. The solution requires a continuous setup since the default time (τ) lies on the set

(0, T ). Since posting collateral is costly but adds more value to the contract then I calculate

the current value of keeping collateral up to τ . The solution also requires to evaluate Vt

under the probability de default over the maturity of the claim. Thus, the expected value

under a martingale measure Q includes the indices 1{τ>T} and 1{τ≤T}, those expressions

denote a dummy variable or binary result relying on default time (τ). Finally, all expected

streams of paymets up to maturity T are discounted at interest rate r.

Formally, in a continuous solution and following the setup in Johannes and Sundaresan

[64] that includes a costly collateral, the market value is

Vt = EQt

[
e−

∫ T
t rsdsΦT1{τ>T} + e−

∫ τ
t rsdscϕτ1{τ≤T}

]
+ EQt

[
1{τ>T}

∫ T

t
exp

{
−
∫ s

t
rudu

}
yscϕsds+ 1{τ≤T}

∫ τ

t
exp

{
−
∫ s

t
rudu

}
yscϕsds

]
where ys is the benefit of posting collateral at time period s that increases the value of the

contract Vt
14; ΦT is equal to the difference between the swap rate and the annualized Libor

applied to the contract up to maturity. The solution of the market value of the contract

when ϕs is equal to βVs is

Vt = EQt

[
exp

{
−
∫ T

t
(rs + h(1− βs)− ysβs)ds

}
(L(T )− sw)

]
(1.4)

L(T ) is the Libor for the contract under maturity T ; this floating rate will be effectively

14Johannes and Sundaresan [64] points out that net benefit stemming from the amount yscϕ accrues up
to end of maturity or default time and it must appropriately be discounted back.



14

swapped according to the contract15. Details of the derivation in the appendix. Since the

market value of the contract at the inception is equal to zero then the swap rate under

collateralization is defined in the following lemma (1). This result implicitly assumes non-

full recovery of the value of the contract after default which is a variation of Johannes and

Sundaresan [64]’s main result.

Lemma 1 (Swap rate under collateralization) . The swap rate including collateral-

ization and cost of posting collateral as in Johannes and Sundaresan [64] is

sw = EQt

[
exp
{
−
∫ T
t (rs + h(1− βs)− ysβs)ds

}
L(T )

p(0, T )

]

= EQ0 [L(T )] + covQ0

[
exp
{
−
∫ T
t (rs + h(1− βs)− ysβs)ds

}
, L(T )

]
p(0, T )

(1.5)

Being p(0, T ) the discount factor up to maturity date (T ).

Above lemma states that the swap rate depends on the expectation over the measureQ of the

Libor16 and the linear association between R and the Libor. More important, the variable

of interest is β is going to be critical under clearing practices; once novation facilitates

netting β shrinks and consequently the swap rate decreases since there is less requirement

of collateral. A positive correlation between libor and above adjusted interest rate is required

for having the foregoing statement true17. Formally, the definition of β is as follows.

Definition 2 (β) βs denotes the exposure (ϕs) in terms of units of the value of the contract

(Vs); i.e. βs = cϕs
Vs

.

The fraction β varies over time since the exposure can change due to clearing methods. The

exposure calculation is discussed in section (1.4).

15For instance, whether the contract previously requires swapping the rates after 6 months then the Libor
under consideration will be the expected rate to 6 months at the inception of the contract.

16This contract is not hedged; however the treatment with forwards will be the same as in section under
no collateralization.

17Johannes and Sundaresan [64] points out the covariance term in (1.5) is always negative, henceforth
swap rates are less than a future rate as libor. The former associated to the “convexity” correction.
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Difference in swap rates

The final objective of this chapter is to bring up discussion about the determinants behind

the difference between swap rates among clearinghouses; thus the expression in discussion

for analyzing is as follows being superscripts on β, sw and ys related to clearinghouses. I

formally specify the expression under interest for this chapter in the following corollary;

Corollary 1 (Basis) The difference in swap rates or basis among clearinghouses A and

B is as follows;

sw,A − sw,B = covQ0

[
exp
{∫ T

t −(rs + h(1− βAs )− yAs βAs )ds
}
, L(T )

]
p(0, T )

− covQ0

[
exp
{∫ T

t −(rs + h(1− βBs )− yBs βBs )ds
}
, L(T )

]
p(0, T )

(1.6)

In the next section I follow the same approach for determining an analytical expression that

relates clearing practices with the premium of credit default swaps.

1.3.2 Determination of the credit default swap premium

In this model of determination of the CDS premium there is an agent that is susceptible

to some loss of wealth. There is also other agent that sell insurance against that loss.

Finally, there is another agent that have access to some investment project but requires

some funding in order to effectively undertake the project. Summarizing and formalizing

the setup of the model: there are three agents, the buyer of the protection (henceforth

the buyer or B), the seller of the protection (henceforth the seller or S) and a third party

(henceforth the investor or I) that has access to some investment project. The investment

and protection have a maturity of two periods (t = {0, 1}); the contract is set at the first

period. I describe in the following lines the timing of the actions involved, states of nature

and availability of endowments with uncertainty.

At t = 0, the endowment for the buyer ωB is known with certainty; a quantity qm is
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transferred to the seller with the promise -subject to default- of receiving m if the event

happens (the loss of wealth); q is the price of the contract per unit of m. Once qm is

received by the seller then z is transferred to the third-party with the promise to return

z(1 + r
2). A different counter-party risk arises also from the foregoing contract since this

third party may default. The following restriction applies: ωB ≥ qm ≥ z. I assume that

the buyer engages in purchasing insurance; otherwise it will receive a penalty or cost L (see

Duffie and Zhou [50] for details of this setup18).

At t = 1, the endowment for the seller ωs is unveiled at no cost19; ex-ante the availability

of this endowment happens with some probability and this determines the default or not of

the original insurance contract. The third-party can seize both return r and notional amount

z of the project and declares default with some probability greater than zero. This action

may be verifiable but it is costly. The variable that remains indeterminate in the model is

z. I assume that contingent claim related to the amount z is exogenous given20. Since seller

has a short position in CDS, the seller must post collateral. Also, cross subsidization of

costs of collateralization among contingent claims is possible and realistic, I will give more

details in the section of payoffs by arrangement on the foregoing.

The basic structure under discussion is depicted in the figures (1.4) and (1.5). These

figures show participants, the size of the exposures among them and the type of arrange-

ment. The bilateral arrangement supposes netting amid class of assets for each partner

separately. Instead, the clearing (or multilateral) arrangement supposes netting of different

class of assets amid all participants. For sake of simplicity, the formalization of these ar-

rangements -i.e. the calculation of exposure- is left to section (1.4). Also in this structure

each pair seller-buyer and seller-investor only trade one asset; it is possible to have a more

complicated structure that allows trading of a different class of assets amid same pair of

participants. However, any arrangement would produce the same size of exposures due to

netting ultimately. Finally, relative to the bilateral arrangement, the clearing arrangement

18Duffie and Zhou [50] assumes that if banks experiences a loss of principal on a loan, it incurs an
additional deadweight cost. Moreover, if the bank does not purchase insurance, then it also incurs some
multiple of above deadweight cost.

19The quantity ωs is verifiable.
20Actually it could be related to a contract of interest-rate swaps in general terms for instance.
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produces a shrinkage of the exposure of the seller due to opposite positions among different

participants. The main result of this section is as follows. Even though the total exposures

in the multilateral arrangement increases, the seller reduces her exposure significantly thus

affecting the price of the contingent claim.

The price determination is standard as asset valuation suggests. The method needs

a discounted premium and protection legs. The former takes into account the premium

payments and possible accrue value if the credit event occurs. The protection leg calculates

the protection amount when credit event happens. Then, after setting the values of these

two legs, the premium is determined by equalizing these two terms to each other.

Figure 1.4: Bilateral arrangement

Figure 1.5: Clearing arrangement

The figure (1.6), that shows the timming of actions and resolution of the contracts,

summarizes above discussion.
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Figure 1.6: Timming of the model

Trading Frictions

In this section I describe the three frictions in the environment described by the model.

First, the event -the loss of wealth (L)- encourages buyers to get a CDS contract. I assume

that an agent made choices (of investment or production) before the realization of this

shock of size L. They could insure against the shock by demanding full payment, however

the former is costly. For instance, intermediate producers -that expect a demand shock

after production- would demand to pay the whole bill off at stage 0. Thus, the shock would

potentially halt the production process or discourage the demand for the intermediate good.

In order to avoid the foregoing result, the producers buy a CDS contract in which promises

a compensation if the event happens.

Second, sellers may declare default. Thus buyers that trade with a specific seller in the

first period face a defaulting exposure. In other words, while being insured against the

related event, the buyer who writes a CDS contract now faces a default risk. Why not

get insurance against the default of the CDS seller? Buyers would need to trade another

CDS contract with other potential sellers; the new contract should hedge the counter party

risk at some particular state of nature, however the shock is aggregated in nature i.e. other

sellers also have ωs = 0. The only way to hedging is by getting collateral. This setup reveals

the incompleteness of the market.

Third, as Townsend [103] and Radner [93] suggest, output or result of projects may be

verifiable to some cost; in the model, the agent I is informed on the actual state of nature

of the project and in which this information may be transmitted to the rest of agents only
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at some costs. In this chapter, I assume that these costs are important and additionally

I invoke the conditions established in Ordonez [88] that allow to observing the borrowing

of the amount z and the report of some result of the project. Thus, there some states of

nature where the agent I only walks away from terms of contract.

Summarizing, the environment formalizes the fundamental frictions that will allow us

to endogenize the need for a CDS contract and setup a proper clearing arrangement. CDS

contract between a buyer and a seller can partially insure against the main event but

exposes the buyer to counter-party default. Collateral in form of pre-payment is available

from endowments but it is costly. This setup provides a rationale for clearing arrangements

that can provide cheaper and better insurance against default risk.

Bilateral arrangement: payoffs by state of nature

Figure (1.4) shows the financial structure for a bilateral arrangement; buyer (B) has an

exposure of m to seller and this same seller (S) has an exposure of z to third-party (I).

Requirement of collateral is exogenous given and denoted by c as a fraction of the exposure.

The nature of the exposure of the seller to the agent I may be related to the investment

of the whole or some fraction of the total premium21 (qm) into a technology that returns

1+r; seller and third-party share r equally. The availability of the (observable) endowment

ωs makes the seller to default or not default. I also take into account that costs per unit of

collateral i.e. µ − 1 can be split for calculation of benefits amid markets. In other words,

the seller would consider a fraction ω1 of these costs for calculation of benefits when sell

CDS; and 1 − ω1 is earmarked when benefits are calculated for other contingent claim.

This feature adds the fact that competition in prices make sellers to consider subsidization

among markets.

In the following table (1.1) I show the size of exposure for each participant in the basic

structure depicted in figures (1.4) and (1.5). As defined early, amount z is related to some

class of derivatives, for instance interest-rate swaps or loans; while m is related to CDS

asset specifically.

21It also may be related to the purchase of insurance - the seller buying insurance from others.
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Participant φb φcl

S z 0
B m m
I 0 0

Table 1.1: Exposure for the basic structure

The symbols φb and φcl denote exposures in a bilateral and clearing arrangement. In

the case of clearing practices, as shown in above table the exposure of the seller is equal to

zero since z−m < 0. The foregoing is a result of netting practices. This exposure must not

be confused with the exposure of the clearinghouse to the seller which is equal to m− z as

shown in figure (1.5). The following table (1.2) shows the cost of posting collateral.

Participant Bilateral clearing

S cm(µ− 1) c(m− z)(µ− 1)
B 0 0
I cz(µ− 1) cz(µ− 1)

Table 1.2: Cost of posting collateral

I calculate both the cost of posting collateral and the value of the collateral in each

arrangement, I introduce the symbol ϕ(m, z) that represents aforementioned costs per unit

of cµ. Notice that foregoing definition of exposure (ϕ) is different from the exposure given by

φ, the former incorporates the cost of posting and maintaining collateral. More important,

ϕ gauges the amount of collateral that seller and third-party need to put at front. The value

of the collateral is expressed in netting terms since the seller receives and posts collateral.

Participant Bilateral clearing

S −(m− z
µ) −(m− z)

B m
µ

m
µ

I −z −z

Table 1.3: Function −ϕ(m, z)
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In order to determine the premium of the CDS I explicitly state the payoffs of each

participant. Thus, I consider the following events;

• The (credit) event occurs 1; Otherwise 0.

• Seller defaults 1; Otherwise 0.

• Investor defaults 1; Otherwise 0.

For example the triplet (1; 0; 0) means: the event occurs and the seller and third

party keep the promise to pay back. I also consider a different notation for the costs of

posting collateral in the case either the seller or investor do not default. I denote this

as Ψx
s ≡ cϕx(m, z)(µ − 1), where x denotes the type of arrangement and s identifies the

participant. I early mentioned the possibility of cross-subsidizing costs of collateralization

between markets. I denoted as ω1 the fraction of collateral costs that enters into calculation

of profits.

• State 1: (1;1;1)

ΠB =ωB − qm− L+ cm

ΠS =qm− cϕb(m, z)µω1 − z

ΠI =z(1 + r)− czµ

• State 2: (1;0;1)

ΠB =ωB − qm− L+m

ΠS =qm−m− z(1− c) + ωs −Ψb
sω1

ΠI =z(1 + r)− czµ

• State 3: (1;0;0)

ΠB =ωB − qm− L+m

ΠS =qm−m+ z
r

2
+ ωs −Ψb

sω1

ΠI =ωI + z
r

2
−Ψb

I
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• State 4: (1;1;0)

ΠB =ωB − qm− L+ cm

ΠS =qm− cϕb(m, z)µω1 + cz + z
r

2

ΠI =ωI + z
r

2
−Ψb

I

• State 5: (0;1;1)

ΠB =ωB − qm

ΠS =qm− z(1− c)−Ψb
sω1

ΠI =z(1 + r)− czµ

• State 6: (0;0;1)

ΠB =ωB − qm

ΠS =qm− z(1− c) + ωs −Ψb
sω1

ΠI =z(1 + r)− czµ

• State 7: (0;0;0)

ΠB =ωB − qm

ΠS =qm+ z
r

2
+ ωs −Ψb

sω1

ΠI =ωI + z
r

2
−Ψb

I

• State 8: (0;1;0)

ΠB =ωB − qm

ΠS =qm+ z
r

2
−Ψb

sω1

ΠI =ωI + z
r

2
−Ψb

I

Clearing arrangement: Payoffs by state

Below the payoffs under a clearing arrangement.

• State 1: (1;1;1)
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ΠB =ωB − qm− L+ cm

ΠS =qm− cϕcl(m, z)µω1 − z

ΠI =z(1 + r)− czµ

• State 2: (1;0;1)

ΠB =ωB − qm− L+m

ΠS =qm−m− z(1− c) + ωs −Ψcl
s ω1

ΠI =z(1 + r)− czµ

• State 3: (1;0;0)

ΠB =ωB − qm− L+m

ΠS =qm−m+ z
r

2
+ ωs −Ψcl

s ω1

ΠI =ωI + z
r

2
−Ψcl

I

• State 4: (1;1;0)

ΠB =ωB − qm− L+ c(m− z) + z(1 +
r

2
)

ΠS =qm− cϕcl(m, z)µω1 − z

ΠI =ωI + z
r

2
−Ψb

I

• State 5: (0;1;1)

ΠB =ωB − qm

ΠS =qm− z(1− c)−Ψcl
s ω1

ΠI =z(1 + r)− czµ

• State 6: (0;0;1)

ΠB =ωB − qm

ΠS =qm− z(1− c) + ωs −Ψcl
s ω1

ΠI =z(1 + r)− czµ
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• State 7: (0;0;0)

ΠB =ωB − qm

ΠS =qm+ z
r

2
+ ωs −Ψcl

s ω1

ΠI =ωI + z
r

2
−Ψcl

I

• State 8: (0;1;0)

ΠB =ωB − qm

ΠS =qm+ z
r

2
−Ψcl

s ω1

ΠI =ωI + z
r

2
−Ψcl

I

Since I assume that there is a separated profit function for trading CDS. Thus, I put

aside any settlement related to z into the profit function Πz.

Πs = ΠCDS + Πz

In the following lines I calculate the payoffs by state when trading CDS. It is worth men-

tioning that function ΠCDS is always zero (assumption: insurance market is competitive).

Accepting trading CDS avoids the deadweight loss L thus it is optimal for sellers to issue

CDS.

• State 1: (1;1;1) qxm− cϕx(m, z)µω1

• State 2: (1;0;1) ws + qxm−m−Ψx
sω1

• State 3: (1;0;0) ws + qxm−m−Ψx
sω1

• State 4: (1;1;0) qxm− cϕx(m, z)µω1

• State 5: (0;1;1) qxm−Ψx
sω1

• State 6: (0;0;1) ws + qxm−Ψx
sω1

• State 7: (0;0;0) ws + qxm−Ψx
sω1
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• State 8: (0;1;0) qxm−Ψx
sω1

Premium determination. As before, premium is obtained under the assumption of zero

profits. So, I state the zero profit condition for the seller. As before, for sake of notation, I

pinpoint the probability of the event or state i as pi. Since some states deliver same payoff,

the probability for the foregoing payoff will have a proper notation that gather the sum of

respective probabilities.

qxm− p1,4cϕ
x(m, z)ωs − p2,3m+ p2,3,6,7ωs − p2,3,5,7,8Ψx

sω1 = 0

Thus the premium traded in clearinghouse or strategy x is;

qx = p2,3 + p1,4cϕ
x(m, z)

ω1

m
− p2,3,6,7

ωs
m

+ p2,3,5,7,8Ψx
s

ω1

m

Since Ψx
s = cϕx(m, z)(µ− 1), then above expression can be arranged as follows:

qx = p2,3 + cϕx(m, z)
ω1

m

[
µ− 1 + p

]
− p2,3,6,7

ωs
m

(1.7)

Where p = p1 + p4; in other words it is the marginal probability of seeing the seller

defaulting when the main event occurs.

Difference in premium

I compare the premium between a bilateral and clearing agreement (see expression (1.8)).

It is worth noticing that collateral requirements may be potentially different under each

arrangement; however, I assume that collateral fraction c under a clearing and bilateral

agreements are the same.

qb − qcl = c
[
µ− 1 + p

](
ϕb(m, z)− ϕcl(m, z)

)ω1

m
(1.8)

= c
[
µ− 1 + p

][
m− z

µ
+ z −m

]ω1

m

= c
[
µ− 1 + p

](µ− 1)

µ

z

m
ω1
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Below figure 1.7a shows the difference in premium between clearing and bilateral arrange-

ments under the following parameterization: c = 0.20; z
m = 0.8 and ω1 = 0.20.

(a) (b)

Figure 1.7: Difference in premium

I can use expression (1.7) in order to have a difference in premium as a function of differ-

ent policies affecting collateralization. Thus, I have the following expression that explains

the difference of premium between clearinghouses A and B with different collateralization

policies:

qA − qB = (cA − cB)
[
µ− 1 + p

](µ− 1)

µ

z

m
ω1

The closed-form expression derived above may be arranged to show the price difference

among two different clearinghouses with same fraction of collateralization c.

qA − qB = c
[
µ− 1 + p

](ϕA − ϕB
)

m
ω1

1.4 Calculation of the exposure in clearinghouses

In order to lay out a quantitative exercise, I closely follow Duffie and Zhu [47], Cont and

Kokholm [40] and D’errico et al. [42]’s method for calculating bilateral and clearing expo-

sures. I consider a finite N market participants which trade some derivatives. I allow for K

classes of derivatives. These classes could be defined by the underlying asset classes, such as



27

credit, interest rates, foreign exchange, commodities, or equities. Since multiples long- and

short-positions may exist in any possible direction then these flows can be offset or netted

across participants. Formally, netting as a measure of efficiency can be achieved through

either a bilateral or clearing process. The latter extracts additional benefits by the usage of

novation. For instance, if entities i and j have a CDS position by which i buys protection

from j, then both i and j can novate to a clearinghouse, who is then the seller of protection

to i and the buyer of protection from j.

Amid participants, let Xk
i,j be the amount that j will owe i in some derivatives class

k, before considering the benefits of netting across asset classes, collateral, and default

recovery. Similarly, the exposure of participant i to j is max(Xk
i,j , 0) because, by definition

Xk
i,j = −Xk

j,i.

The posting of collateral depends on the size of the exposure and therefore counter

parties incur in pay-up front payments. The unit cost of posting these collateral requirement

is µ − 1 where µ ≥ 1. The fraction of collateral per unit of exposure is denoted by c as

before.

Under bilateral netting, the exposure of participant i to any counter-party j, is netted

across all K derivative classes, but exposures to different counter-parties cannot be netted

(see Duffie and Zhu [47]). Formally, the total netting efficiency is:

φbi,N,K =
∑
j 6=i

[
max

{ K∑
k

Xk
i,j , 0

}]
(1.9)

I consider the implications of a clearinghouse for all class of derivatives, this measure of

efficiency has a broader definition in comparison to the one specified in Duffie and Zhu

[47]. In this case, all positions across assets among counter-parties are novated to the same

clearinghouse:

φcl,Ki,N,K = max
{∑
j 6=i

K∑
k

Xk
i,j , 0

}
(1.10)

In equation (1.9) netting is done across all asset classes for each counter-party; and the

total net exposure of dealer i is the sum of the individual exposure calculated with each
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counter-party j. When a CCP is introduced in the market, as in equation (1.10), the to-

tal net exposure is the exposure to the CCPs of party i which is calculated across assets

and counterparties. As Cont and Kokholm [40] states, whether the introduction of a clear-

inghouse increases or decreases net exposures depends on the particular market, e.g. the

notional sizes of the asset classes, riskyness of the asset classes, correlation between the asset

classes, the number of asset classes, the number of participants etc. In the next section, I

start deriving the size of the (variable) exposure (X) for each participant assuming that it

is proportional to the notional values. Then, I show the analytical expectations of the net

exposures specified in expressions (1.9) and (1.10).

The exposure φcl,k1 assumes that only asset class k1 is cleared through a central counter-

party;

φcl,k1

N,K =
∑
j 6=i

max
{∑

K

(1− wk)Xk
ij , 0

}
+ max

{∑
j 6=i

wk1X
k1
i,j , 0

}

The exposure φcl,k1,2 assumes that two asset classes k1 and k2 are separately cleared

through a central counter-party

φ
cl,k1,2

N,K =
∑
j 6=i

max
{∑

K

(1− wk)Xk
ij , 0

}
+ max

{∑
j 6=i

wk1X
k1
i,j , 0

}
+ max

{∑
j 6=i

wk2X
k2
i,j , 0

}

1.4.1 Assumptions of the joint distribution among assets

Let’s consider that for a specific class of asset k, I assume Xk
ij ∼ N (0, σ2

k) for all i 6= j

and allowed to be correlated across other assets. As in Duffie and Zhu [47] and Cont and

Kokholm [40], I assume that the standard deviation of Xk is proportional to the credit

exposure i.e. σk = αkX.

1.4.2 Assumption about heterogeneity

As in Cont and Kokholm [40], instead of credit exposures I use notional values to determine

the size of the Xk and assume that they are proportional to the notional values according
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to the following expression:

Xk
ij = θkZ

k
i

Zkj∑
h6=i Z

k
h

Y k
ij

Where Y k
ij is distributed as N (0, 1) and Zki is the notional size of dealer i in asset k. In

other words, the exposure of i to j for asset k is a fraction of the notional value of party i in

derivative class k. This fraction is the notional value of counterparty j in comparison to the

total amount of all other remaining notional values for h different of i. The parameter θk

is related to the risk of asset k. Putting the former differently, different assets may differ in

the valuation of the risk and therefore this will lead to different collateral requirements. As

in Cont and Kokholm [40], I assume that this parameter θ is equal to 3.9e− 3 and 9.8e− 3

for interest rate and credit default swaps respectively22.

1.4.3 Expectation of exposures

In the previous section the size of multilateral or total exposure is denoted by φ. In this

section I actually calculate the exposure of the rest of the market to the CDS seller since

collateral amounts are required. I denote the aforementioned exposure as ϕ23. Since Y k
ij

is distributed as a normal, then analytical expression for the expected (net) exposure is as

follows;

E(ϕbi) =
1√
2π

∑
j 6=i

√√√√∑
k=1

∑
m=1

ρkmθkZ
k
i

Zkj∑
h6=i Z

k
h

θmZmi
Zmj∑
h6=i Z

m
h

(1.11)

E(ϕcli ) =
1√
2π

√√√√∑
j 6=i

∑
k=1

∑
m=1

ρkmθkZ
k
i

Zkj∑
h6=i Z

k
h

θmZmi
Zmj∑
h6=i Z

m
h

(1.12)

Take notice that k,m ∈ {K} only for this section; later I will refer to m as a specific

asset. On the other hand, in the case of CDS, the relevant expression that determines the

swap difference between two clearinghouses in expression (1.8) is
E
(
ϕb−ϕcl

)
Zk

which can be

calculated from above expressions. In the case of interest rate swaps, the ratio β ≡ cϕi
Zkt

is

22Cont and Kokholm [40] states that for the CDS, θk is calculated as the mean of the standard deviation
of the daily profit-loss of 5-year credit default swaps on the names constituting the CDX NA IG HVOL series
12 in the period July 1st, 2007 to July 1st, 2009 (page 13). In the case of interest rates, this parameter is
calculated as the standard deviation of the historical daily profit-loss from holding a 5-year with notional of
1.

23In the case of the bilateral netting, this exposure is calculated as ϕbN,K =
∑
j 6=i

[
max

{∑K
k −Xk

i,j , 0
}]

.
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the expression that matter for the determination of the difference in swaps as expression

(1.6) suggests. Here, the foregoing fraction will affect the discount rate and would produce

a correlation with the forward rate; thus the swap rate is affected.

I also consider the calculation of exposures when a fraction wk of a contingent asset k is

cleared in a clearinghouse; this approach is the same as in Cont and Kokholm [40]. I intend

to replicate the results in Duffie and Zhu [47] and quantitatively show the size of exposure

between a bilateral and “full” clearing strategies. Also, I consider the size of the exposure

when there are at least two clearinghouses. The idea is to show how different variation of

market structure would impact in the size of the exposures and consequently on price of

assets.

The following expression gives the expected exposure when there is a fraction of one

contingent claim cleared in one clearinghouse.

E(ϕcl,Ki ) =
1√
2π

∑
j 6=i

√√√√∑
k=1

∑
m=1

(1− wk)(1− wm)ρkmθkZ
k
i

Zkj∑
h6=i Z

k
h

θmZmi
Zmj∑
h6=i Z

m
h

+
1√
2π
θKwkZ

K
i

√∑
j 6=i(Z

K
j )2∑

h6=i Z
K
h

(1.13)

Parameter wx = 0 unless x = {K} since the contingent claim K is the only one cleared

in the clearinghouse.The following expression gives the expected exposure when there is a

fraction of two contingent claim (denoted by K and K − 1) which are cleared in separated

clearinghouses.

E(ϕcl,K,K−1
i ) =

1√
2π

∑
j 6=i

√√√√∑
k=1

∑
m=1

(1− wk)(1− wm)ρkmθkZ
k
i

Zkj∑
h6=i Z

k
h

θmZmi
Zmj∑
h6=i Z

m
h

+
1√
2π
θKwkZ

K
i

√∑
j 6=i(Z

K
j )2∑

s h 6= iZKh

+
1√
2π
θK−1wk−1Z

K−1
i

√∑
j 6=i(Z

K−1
j )2∑

h6=i Z
K−1
h

(1.14)

Also above parameter wx = 0 unless x = {K,K − 1}.
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1.5 Analysis and discussion

In this section, I present discussion and implications of the analytical expressions (1.6)

and (1.8) those related to the swap-rate difference between clearinghouses. At the end of

this section I will succinctly discuss the data that could be used in order to find evidence

of the effect of clearing methods on swap valuation. The full empirical strategy for the

underlying model is pushed into the chapter III in my dissertation. In this section I will

describe assumptions and possible scenarios where the theoretical model may explain some

particular events in the range of data. This approach has certainly the advantage of freely

playing with assumptions over the set of parameters; thus, below discussion is clearly simple

and offers escenarios that support the results of the underlying theoretical model more likely.

1.5.1 The difference in CDS premiums

The expression in (1.8) shows that the sign of the swap rate is given by the difference

between sizes of exposures relative to the amount of CDS trading. In order to evaluate the

sign of this expression, I construct the ratio E(ϕi,A)
mi,A

for clearinghouse A and participant i,

m is the notional amount of CDS traded in that clearinghouse. The expected measure of

exposure (ϕ) is specified in section (1.4.3) and the exercise requires data of notional values;

I follow Cont and Kokholm [40] and use data of top 10 companies in USA from Office-of-the

Comptroller of the Currency (OCC) for calculation of exposures. The amounts and market

participation of 10 top companies are shown in table (1.4).

For sake of explanation and intuition I can start with a simple example; assuming the

following: i) there are only two participants in the clearinghouse, ii) two contingent claims

k and m (for instance m stands for CDS and k for an interest swap contract); iii) correlation

between assets (ρ) is zero, and (iv) same risk parameter (θ) amid assets, then expression

(1.12) is as follows:

ϕA(m, k) ≡ 1√
2π
θ
√

(Ski )2 + (Smi )2

Where Sk and Sm is the notional value of k and m. Thus, the expression for fraction ϕi

mi
in
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Holding Total derivatives Swaps Credit

CITIGROUP INC. 47092.6 25141.0 1761.9
JPMORGAN CHASE & CO. 46992.3 25670.8 2028.4
GOLDMAN SACHS GROUP, INC., THE 41227.9 20837.7 1424.3
BANK OF AMERICA CORPORATION 33132.6 19044.2 1264.9
MORGAN STANLEY 28569.6 15660.9 904.3
WELLS FARGO & COMPANY 7099.0 4496.8 30.9
HSBC NORTH AMERICA HOLDINGS INC. 6342.5 4012.4 125.0
MIZUHO AMERICAS LLC 4755.2 4364.7 4.1
STATE STREET CORPORATION 1445.8 12.1 0
CREDIT SUISSE HOLDINGS (USA), INC. 989.4 82.2 45.6

Table 1.4: Notional amounts of derivative contracts (in US billions)

terms of notionals is:

ϕA(m, k)

mi,A
≡ 1√

2π
θ

√
1 +

( Ski
Smi

)2

Thus, expression (1.13) for the above case is denoted as;

ϕB(m, k)

mi,B
≡ 1√

2π
θ

√
1− wm +

( Ski
Smi

)2
+

1√
2π
wm

where Ski + Smi = Si is the total notional of derivatives. Since there are two participants,

the clearinghouse which is not specialized is actually representing a bilateral arrangement;

thus the exercise resembles a comparison of price difference between a bilateral arrangement

(clearinghouse A) and a specialized clearing arrangement i.e only clearing CDS (clearing-

house B). The results discussed in the next lines are mostly driven by the number of

participants as Duffie and Zhou [50]’s findings suggest. Figure (1.8) shows the size of the

difference between rates under different sizes of the notional values for interest rate swaps

respect to the total value of derivatives market for agent i and also different fraction sizes

(ωm) of the value of CDS that are cleared. I provide a benchmark (red line) in figure (1.8)

that resembles a high market participation of LCH in credit derivatives. In the following

table 1.5 I show four more scenarios for the quantitative exercise.

Given the scenarios I can calculate the premium basis under different sizes of exposures

that hinge on the fraction of notional cleared and number of participants. For the scenarios



33

Scenario participants Risk parameters Correlation

0 2 θm = θk ρ = 0; Other sizes of ρ
1 10 θm = θk ρ ∈ (−0.8, 0.8)
2 10 0.5θm = θk ρ ∈ (−0.8, 0.8)
3 10 0.3θm = θk ρ ∈ (−0.8, 0.8)
4 10 0.1θm = θk ρ ∈ (−0.8, 0.8)

Table 1.5: Scenarios for CDS premium determination

1 to 4, I use expressions (1.12), (1.13) and (1.14) for calculation of exposures. I use (1.11)

as a comparative case.

(a) Different CDS Market-size under clearing (b) Different correlation amid assets

Figure 1.8: Difference in premium between clearinghouses

Figure (1.8) shows two participants that trade CDS and interest rate swaps. In the

panel (1.8a) the difference in premium declines as long the market share of interest rate

swaps (S
k

S ≡ 1− Sm

S ) increases. In other words, for any market share, the seller that clears

all assets in one clearinghouse offers a price (qA) lower than the seller that clears CDS in

a separate clearinghouse. As a higher percentage of the notional goes to the specialized

clearinghouse, i.e. a small ratio 1− Sm

S , the exposure and the premium are higher. In the

panel (1.8b) an increasing higher negative correlation amid these two assets increase the

difference in premium between these two sellers.

The following figure (1.9) shows the exposure ratio of an agents that choose to clear

some fraction of the assets in a clearinghouse respect to clear same assets separately. Each

symbol in that figure represents a holding as shown in table (1.4). The effect of netting is
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significant when the correlation between positions is negative; as long the correlation goes

to positive the gains are not significantly large for clearing in just one clearinghouse.

(a) wm = 0.3 (b) wm = 0.5

(c) wm = 0.7 (d) wm = 0.9

Figure 1.9: Exposure ratio between one versus two clearinghouses

Figure (1.10) shows the exposure ratio under different assumptions regarding the relative

size of the valuation of risk (θ) for the CDS and IR. The ratio of exposures decreases, i.e.

there are gains of having just one clearinghouse, when the asset risk (θm) increases for

CDS; that can be seen in the change of the aforementioned ratio through figures (1.10a) to

(1.10d).

1.5.2 The basis between LCH and CME

As described in expression (1.6) the differences in swap rates hinge on the covariance between

the default-risk adjustment (R) and the LIBOR. In order to sign the difference between sw,A

and sw,B I undertook a first-approximation to the exponential ex ≈ 1 + x this implies for
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(a) θk = θm (b) θk = 0.5θm

(c) θk = 0.3θm (d) θk = 0.1θm

Figure 1.10: Exposure ratio between one versus two clearinghouses

sw,A > sw,B the following;

covQ0

[
1−
∫ T

t
(rs+h(1−βAs )−ysβAs )ds, L(T )

]
> covQ0

[
1−
∫ T

t
(rs+h(1−βBs )−ysβBs )ds, L(T )

]

Assuming that benefits of collateral are constant i.e. ys = y, above expression is equivalent

to:

covQ0

[
1−

∫ T

t
(rs + h(1− βAs ))ds, L(T )

]
> covQ0

[
1−

∫ T

t
(rs + h(1− βBs ))ds, L(T )

]

Finally, if I assume that clearinghouse B keeps deepening any clearing “strategy” βBs across

time and term structure; then the swap rate in aforementioned clearinghouse is less than

other swap rate -traded in another clearinghouse. If I assume that βAs ≡ βBs = 1, yBs = 0 and

any yAs > 0 then the result in Johannes and Sundaresan [64] arises which states that swap

rates in the presence of costly collateral (whose contracts are traded in clearinghouse A) are



36

higher than those assuming costless collateral (whose ones are traded in clearinghouse B). I

formally define the concept of “strategy” as the one pursued by clearinghouse that reduces

the amount of collateralization required in the contract. I formally show these results and

the usage of concepts in the following proposition and a corollary,

Proposition 1 The basis between clearinghouses A and B, sw,A − sw,B, where only clear-

inghouse B keeps a strategy of netting across time and term structure, is non-strictly positive

under the following condition,

0 ≥ covQ0
[ ∫ T

t
hβBs ds, L(T )

]
(1.15)

Proof. The result is easily obtained from above discussion �.

Corollary 2 If βAs ≡ βBs = 1, yBs = 0 and any yAs > 0 then covQ0

[ ∫ T
t βAs (h+yAs )ds, L(T )

]
>

0; the swap rate in the presence of costly collateral is higher than that one which assumes

costless collateral i.e. sw,A > sw,B.

Proof. The result follows from discussion in Johannes and Sundaresan [64] �. The following

proposition shows the basis in terms of the change of parameter β;

Proposition 2 The basis between clearinghouses A and B, sw,A − sw,B, is calculated as

follows,

sw,A − sw,B = covQ0

[
rt + h(1− βAt )− yAt βAt , L(T )

]
( ˙βAt − 1)

− covQ0
[
rt + h(1− βBt )− yBt βBt , L(T )

]
( ˙βBt − 1)

Proof. It can be proved by using Stein’s lemma �. The following corollary follows the

proposition (2) above and shows the sign of the basis when there is an strategy of reducing

the collateral requirements i.e. netting across time keeping constant this requirement across

term structure.

Corollary 3 Considering a strategy βB(t, s) = a0 − a1t where t denotes time and it is not

affected by the term structure defined by s; if expression (1.15) holds then sw,A ≥ sw,B.
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Proof. Expression
∫ T
t=0 hβ

B
s ds is equivalent to hβBt T . Assuming that exposure (ϕt) shrinks

across time but term structure i.e. βB(t, s) = a0 − a1t, then the sign of the basis hinge on

correlation of these lessening exposure with Libor rate i.e. covQ0

[
hT (a0 − a1t), L(T )

]
�.

Above proposition concludes that the basis would depend of the linear association be-

tween the netting strategy of the clearinghouse and LIBOR. Is there empirical support for

aforementioned result? Let’s see the data. Figure (1.11) shows the behavior of six months

Libor and the LCH-CME basis from the end of 2015 to October 2017.

(a) Libor rate (b) Basis

Figure 1.11: Daily Libor and Basis

Above figure shows that Libor trend was reversed starting 2015; before this year the

Libor rate had a long-run persistent negative trend. The libor was completely flat starting

the financial crisis up to 2014. Since 2016 the libor rate shows a persistent positive trend.

Back at figure (1.2), it shows that LCH started gaining market participation in clearing

at a significant pace; whether assuming that this clearinghouse’s risk management strategy

were accompanied by reducing exposures through netting, then the covariance between βt

and libor would be more likely negative. As a consequence and according to proposition

(3) the basis would be positive then i.e. sw,CME − sw,LCH > 0.

Spikes in basis data are also puzzling. Panel figure (1.11b) shows that basis is wide

immediately before the end of 2015 and after July 2016 to the end of that year (this range

of data is shaded in above figure). The basis for claims with a long-term maturity is visibly

more affected in quantitative terms. This may be associated to significant increase of the
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libor rate under these ranges of data, see panel figure (1.11a). In those periods the covariance

between βt and libor more likely would be increasing and as a consequence widening the

basis. I do not discard either the effects of reducing exposures by the other clearinghouse

and collateralization across term structure in order to explain the wide of the basis over

this period in analysis; this for sure would be clarified in a proper empirical strategy.

1.6 Conclusions

I showed how the exposures are related to the swap rates in a theoretical framework. I

analyzed this relationship in a financial structure that allows clearing of positions. Clearing

is potentially a tool that reduces significantly exposures and thus lessen the amount of

collateral requirements. The impact on swap rates of these financial structure has not been

broadly discussed in the literature. The simple approach presented in this chapter is not

intended to capture every movement in swap rates, and more likely changes not captured by

the theoretical model are due to model misspecification, market segmentation, or temporary

miss-pricing as fairly suggested by Johannes and Sundaresan [64].

I showed in section (1.3) that swap rates have a closed functional from hinging on

the exposure size. Sellers of these contingent claims may choose to clear these ones in

clearinghouses and taking further advantage of netting through novation. In the case of

interest rate swaps, I adjusted the standard valuation expression by incorporating the effect

of collateral requirements in a clearing setup. In a full recovery assumption, interest rate

swaps can be seen as short contracts with terminal date at default. If only a fraction

of the value of the contract is recovered, then the swap would be increasing as collateral

requirements are higher. Practices as netting or compression that save collateral costs would

reduce the swap rate. In section (1.4) I discussed the calculation of the exposures and how

they are affected by clearing through assets and participants. I also consider the case where

participants can clear their claims in separated or specialized clearinghouses. The analytical

expression for swap rates needs of information about notional values, percentage of volume

that is cleared, risk of the claim and relative size of the market for each derivative.

I quantitatively showed in section (1.5) that relative size of the CDS market and the
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percentage of claim that is cleared affects the exposure and thus the CDS premium. I started

with a simple example of two participants and two assets with the purpose of showing the

benefits of netting. An increasing fraction of CDS earmarked to clearing as long as the CDS

market size shrinks would increase the exposure in the structure with a CCP that clear only

CDS claims; thus the premium determined in a CCP which clears CDS and additional claims

will be relatively cheaper. Additionally, a higher and positive linear association between

positions of different claims makes the premium competitive when participants choose to

clear both claims.

In a second exercise I use data from ten top holdings that handle derivatives in their

portfolio. I compare the premium between structures with one and two specialized CCP’s.

There is a significant difference in exposures between these structures when the fraction of

CDS earmarked to clearing is high and also when the correlation amid positions is highly

negative. Additionally, a lower risk of default for other claims rather than CDS would reduce

the size of the exposure in the structure with one CCP, this reduction will be important at

negative values of correlation amid positions.

In the case of interest rate swaps I could establish a relationship between netting strategy

through the time and the Libor rate that is connected with the basis. The negative linear

association between above variables shown in the years 2015 and 2016 seems to validate the

appearance of a widening basis between LCH and CME. The basis for claims with a long-

term maturity is visibly more affected and precisely are more likely associated to significant

increase of the Libor rate.

The results of this research has the following implications in terms of policy. First,

netting through novation has significant gains in reducing exposures, further benefits may

relies on correlation between asset positions as theory of portfolio predicts. I assess these

gains using data from OCC, these gains are large when comparing a financial structure of

one clearinghouse respect to other with two specialized clearinghouses. A financial structure

with a clearinghouse can be competitive in terms of prices and collateral requirements thus

turning out to be appealing to more participants. Second, a macro prudential policy such

as capital requirement is becoming a central feature in financial structures in the aftermath



40

of the recent financial crisis and more clearly after Dodd-Frank act. Clearing of a fraction

of portfolio of derivatives of banks could offer a feasible way to reduce pressure on these

requirements since counter-party risk can be reduced effectively inside clearinghouses. Fur-

thermore, other strategies as mutualization (sharing losses amid participants) and further

risk management strategies can potentially be part of the regulation in the next years.
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Chapter 2

The Impact of Collateralization on Swap Rates Under

Clearing: What Data Say?

2.1 Introduction

This chapter makes a quantitative assessment of the impact of clearing practices on price

of derivatives. By using an empirical approach I found a negative and significant impact of

clearing practices on price of derivatives. This finding supports the theoretical model dis-

cussed in Cama [26]. In practice, netting and compression procedures inside clearinghouses

may significantly affect the size of exposure in contracts; thus, these clearing practices

enables to see a lower (competitive) price of these contracts in comparison to the ones ne-

gotiated in standard markets. I use data of interest-rate and credit-default swaps traded in

clearing and non-clearing markets.

The theoretical framework that explains the relationship between swaps and clearing

method lays out in the same mechanism that show the effects of risk management and

bilateral netting on contracts. In Cama [26], the autor explains in a simple theoretical

framework how much the swap rate is affected by clearing practices; interest rate swaps

decrease with strategies that encourage the reduction of exposures while keeping constant

counter-party risk. Also, Cama [26] found that sudden changes in the exposure amount

affects the covariance of zero-coupon adjusted rate and Libor and thus it potentially may

affect the differential of swaps (basis) traded in CME and LCH. The empirical strategy

closely follows Cama [26]; I show the empirical representation of Cama [26]’s theoretical

model in section (2.3) of this document. The empirical approach gathers econometric ex-

ercises that finds significant determinants for the interest rate and credit default swaps

differentials. These differentials are calculated between a cleared and non-cleared market
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(OTC).

This chapter contributes with identifying changes in swaps due to clearing practices

beyond other factors found in the standard price-discovery literature. Since clearing of

derivatives has recently became central to the modern financial system, it is necessary to

have an assessment of the effect of clearing practices on the mechanism of pricing. The

Dodd-Frank act is a comprehensive set of rule for regulation of financial markets that will

be a key player in the future of economic growth and it ultimately represents the institu-

tional driver dodging local shocks and guiding financial markets on the path of stability

and resilience; this intended rhetoric does really make sense, now more than ever when

literature on economic growth realizes an increasing cost of crises (see Cerra and Saxena

[30]). Furthermore, austere estimations from IMF suggest that had capital requirements

been set 15% of weight assets the 2008-09 financial crisis would have been avoided. The

aforementioned assessment demands a too high requirement that could undermine banking

sector broadly. Clearing practices arise as an alternative whereby lower requirements of col-

lateral can be offered with a competitive price whereas keeping constant the risk of default.

In that sense, this chapter empirically shows a connection between clearing practices and

changes in prices; the relevance of my discussion arises for example when low prices are

observed in data and literature explain these levels can be embroiled to price competition.

The chapter is organized as follows. The following section presents the literature related

to empirical findings for the case of interest-rate and credit default swaps. The third section

examines the data and sample. The fourth section setups the methodology for the empirical

assessment; I revisit the theoretical formulation and I further explain the respective assump-

tions behind the formulas. The fifth section leads to the quantitative exercise in order to

provide insights regarding what drives the difference of swap rates between clearinghouses.

The last section gathers the conclusion of this research and provide further questions to

pursuing in a future work.



43

2.2 Literature review

In literature, clearing has been associated to reduction of positions, less requirements of

collateral and dissemination of information. In theoretical terms, recent literature has

shown how price of swaps is relate to clearing. For instance, in a broader sense for any asset,

Koeppl [68] studies the effects of demand of assets and collateralization on asset pricing.

In an original modelistic setup, Acharya and Bisin [1] studies the impact of informational

features on CDS premium; however, this result can easily be extrapolated to the impact of

other clearing strategies as mutualization and proper collateralization. On the foregoing,

Cama [25] analyzes the equivalence of different levels of collateralization and mutualization

in terms of a higher premium. On the other hand, Stephens and Thompson [99] analyze

price competition on premium; that paper explains lower premiums with higher levels of

counter-party risk. Cama [25] also shows lower premium but with no price competition

assumption, however this feature hinges on a moderate counter-party risk. In summary, the

theoretical contribution hitherto is mainly built up on the framework developed by Koeppl

and Monnet [71], Koeppl [68], Acharya and Bisin [1], Cama [25, 26] and Stephens and

Thompson [99] for standardized derivatives transactions.

Clearing do not guarantee less exposure though. Literature mostly agrees that a reduc-

tion of counter party risk is due to multilateral netting. Initial and margin requirements also

help to prevent further the excessive stack-up of risk exposures. However, Duffie and Zhu

[47] show that size of exposures may actually rise with clearing; they explain that depends

on the number of cleared assets and number of market participants. Cont and Kokholm

[40] show that conditions for observing a decreasing exposure after clearing -stated in Duffie

and Zhu [47]- are highly important whether correlation amid different asset positions are

omitted. According to authors’ calculations, reduction of exposures can be observed as least

in a market with only 12 participants.

In the empirical side, literature has found mix results. For instance, Loon and Zhong

[79] examines the impact of clearing on the CDS premium using a comprehensive DTCC

sample of cleared single-name contracts. The authors found that CDS premium is higher

under clearing. The factors explaining this difference seems to arising from either demand



44

side or costs that inherently arose in a possible clearing framework (see Duffie and Zhu

[47]). The foregoing actually appeals to the ambiguous effect of the increased value of credit

protection as the driving mechanism to explain differences in premiums. This actually raises

the question whether a better term of the credit protection is a costly feature and easily to

be transferred to the buyers rather than being considered as a purely demand shock. On the

other hand, on the contrary to Loon and Zhong [79], Du et al. [43] found that premiums on

centrally cleared trades are significantly lower relative to spreads on uncleared transactions.

Finally, Du et al. [43] state that their findings are consistent with the view that counterparty

risk has minimal effect on pricing1.

2.3 The data and sample

In this section I comment over the data and sample for the empirical approach. One of the

variables of interest is the basis or price differential between LCH and CME. Specifically, the

basis is constructed as the difference between the fixed-rate payer at LCH and the fixed-rate

receiver at CME. In some periods, the basis for the same USD Swap Cleared at LCH or

CME has increased significantly exhibiting a term structure with values up to 2bps; much

larger than the typical bid-offer spread of 0.25 bps. According to Clarus2 a basis of 0.15bps

is to be seen as insignificant for the daily-range under analysis. The data source of the basis

is Bloomberg and the frequency is daily since November 9th 2015.

1That assertion is also tested by Du et al. [43], authors found statistically significant effects of counter-
party credit spreads on premiums but small.

2See cme-lch-basis-spreads.

https://www.clarusft.com/cme-lch-basis-spreads/
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Figure 2.1: Basis, different maturities. Shaded area for 5Y values greater than 1.5 bps.

In the case of CDS, the database is made of reports of credit derivatives available be-

tween December 30th, 2012 and February 28th, 2018 which are publicly disseminated by

Bloomberg using a truncated set of reports from Depository Trust & Clearing Corporation

(DTCC). The database has information of the four most actively traded index CDS; these

are CDX.NA.IG (Investment Grade) and CDX.NB.HY (High Yield) for North America

and itraxx.Europe and itraxx.Xover for the case of Europe. CDX indices are a family of

tradable CDS indices covering multiple sectors with classification as higher as investment

grade with high volatility3 or yield and also covering sectors with moderate diversification.

These indices are made up of some of the most liquid entities in the relevant single-name

CDS market. The indices roll on a semi-annual basis4, and the composition of each new

series (a new index) is established based on a transparent set of rules designed to enable

the current series to track the most relevant instruments in the credit market.

3CDX.NB.HY.HVOL (High volatility) series was dropped from our sample.
4For instance each CDX Index that has a roll date of September 20th shall be issued with the maturity

date of December 20th occurring 5 years and 10 years following the roll date.
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Transaction Number of Obs. Relative frequency

Amendment 14854 0.028671
Novation 13886 0.026802
Partial Termination 39368 0.075987
Trade 449983 0.86854

Table 2.1: Credit Default Swaps transactions

The data report has information of maturity, premium in basis points, notional value,

currency terms under the contract, usage of swap execution facility, identification of new

trades, and trading of cleared/non-cleared transactions. A report can have amendments

and cancellations those mainly refered to previous trades. According to Loon and Zhong

[80] the reporting entity files a cancellation report that pinpoints the original report. As

in Loon and Zhong [80] I also emove canceled reports by using a search of one or two days

around the cancellation report that match same characteristics of the transaction. This

is an alternative and quick procedure -in comparison to Loon and Zhong [80]’s protocol-

due to the missing information of identifiers in the retrieved data. Same procedure for the

amendments reports; in this case I keep only recent transactions. I remove transactions

labeled as novated5. In the case of CDS, the cleaning process reduces the sample from 519

426 to 518 091 reports of which 449 983 are new trades and the remaining ones are corrected

reports. Tables (2.1) and (2.2) describe the data. The sample covers 305 099 cleared reports

(59%).

Type of transactions Number of Obs. Relative frequency

Cleared 305099 0.587383
Uncleared 214322 0.412617

Table 2.2: Cleared and uncleared transactions for CDS

In the case of interest-rate swaps, originally Bloomberg provides around 3.7 millions ob-

servations (see table 2.3), mostly contracts with fixed-floating legs. The regression analysis

gathers only 1.4 millions of observations since I focus in transactions in USD currency. The

percentage of clearing transactions is around 66% in the sample (see table 2.4 for details).

5This type of transaction is related to the compression of some contracts.
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Transaction Number of Obs. Relative frequency

Amendment 229096 0.061583
Novation 126705 0.03406
Termination 338034 0.090867
Trade 3025293 0.81323

Table 2.3: Interest-rate swaps transactions

Type of transactions Number of Obs. Relative frequency

Cleared 2 447 945 0.6580
Uncleared 1 272 152 0.3419

Table 2.4: Cleared and uncleared transactions for IRS

I also present an additional specification for the interest-rate swaps model. I use a bi-

variate econometric model that jointly gathers the interaction between swaps rate and the

Chicago Board Options Exchange (CBOE) Index of Volatility, henceforth VIX. According

to Investopedia6, VIX shows the market’s forward-looking stance of 30-day volatility im-

plied by a wide range of S&P 500 index options. In short, VIX is a widely used measure of

market risk, often referred to as the “investor fear gauge”. As a caveat -see details in the

section of results- the theoretical model discussed in previous chapter assumes that market

risk is constant, thus any change in the swaps may clearly be explained by clearing practices

ultimately. The foregoing is enough motivation for undertaking additional econometric ex-

ercises taking into account the type-I error of presence of market volatility. I also juxtapose

bivariate results for models that allows changing variance across time range. A model that

allows a difference of levels of variance at some particular point in time may be another

feasible alternative in terms of modelistic; this will be fully explained at the end of the

following section.

2.4 The empirical model

In this section I derive the empirical model following Cama [26]. I will start with the

theoretical equation that relates the basis and the size of exposure; then the empirical

expression is obtained after introducing a clearinghouse and its practice over the maturity

6See more at VIX (CBOE Volatility Index).

https://www.investopedia.com/terms/v/vix.asp
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period of the derivative.

2.4.1 The interest-rate swap model

As in Cama [26] the swap rate is calculated as

sw = EQ0 [L(T )] + covQ0

[
rt + h(1− β(c, ϕ)t), L(T )

]
(hβ̇(c, ϕ)− 1) (2.1)

Whereby sw represents the swap rate, L(T ) the libor rate with maturity T , rt is the

free-risk bond and β(c, ϕ)t is the collateralization -or amount of collateral in terms of the

value of the contract- which depends on the size of exposure (ϕ) and collateral fraction (c).

The difference in swap rates or basis among clearinghouses A and B is as follows;

∆S ≡ sw,A − sw,B = covQ0

[
rt + h(1− βAt ), L(T )

]
(h ˙βA − 1)

− covQ0
[
rt + h(1− βBt ), L(T )

]
( ˙hβB − 1) (2.2)

Let’s assume that βA and βB both have a decreasing trend i.e. βA = gA(t) ≡ a +

bmin(t, t)t>t0 + εA,t and βB = gB(t) ≡ e + f min(t, t)t>t0 + εB,t where b < 0, f < 0; t

indexes time and t ∈ (t0, T ) and constants a and e are properly chosen to make βA ∈ (0, 1)

and βB ∈ (0, 1) respectively, errors (ε) are distributed standard normal. Thus, the above

expression (2.2) can be expressed as follows when including the terms of trend.

∆S = covQ0

[
rA,t, L(T )

]
(hb− 1)

− covQ0
[
rB,t, L(T )

]
(hf − 1) + ε (2.3)

Whereby rj,t ≡ rt + h(1 − βjt ) for j = A,B and ε ≡ εA(hb − 1) − εB(hf − 1) ∼

N (0, (hc− 1)2 + (hf − 1)2). When t = t then covQ0

[
rA,t, L(T )

]
= covQ0

[
rB,t, L(T )

]
. Thus,

expression (2.3) can be arranged as:

∆S = h covQ0

[
rt, L(T )

]
(b− f) + ε
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Thus, if f < b then ∆S > 0 which proves that close to the boundary t the basis is

still positive. In expression (2.3) covariances can be different since they are affected by the

change in t. Thus, the basis (∆S) can be expressed as a stochastic process with different

drifts through the life of the contract. It must notice that for t′ < t0 β
A and βB are constant

and therefore expression for the basis would be represented by a random process. Figure

(2.2a) shows β as a function of t; thus t ≡ t∗ and β = a+ bt.

In the case of a second-order polynomial for the size of the collateral i.e. βA ≡ max{a+

bt+ ct2, β}t>t0 and βB ≡ max{e+ ft+ dt2, β}t>t0 , figure (2.2b) juxtaposes the shape of β

for linear and quadratic assumptions. Hence, the basis can be expressed as;

∆S = covQ0

[
rA,t, L(T )

]
(h(b+ 2ct)− 1)

− covQ0
[
rB,t, L(T )

]
(h(f + 2dt)− 1) + εt

(a) Linear (b) Quadratic

Figure 2.2: Change in β

Where the residual term can be re-written as follows,

εt ≡ εA(h(b+ 2ct)− 1)− εB(h(f + 2dt)− 1) (2.4)
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Thus, the basis can be arranged as follows;

∆S = (γA − γB)t+ γ + εt

where γA ≡ 2covQ0

[
rA,t, L(T )

]
hc; γB ≡ 2covQ0

[
rB,t, L(T )

]
hd and γ ≡ covQ0

[
rA,t, L(T )

]
(hb−

1) + covQ0

[
rB,t, L(T )

]
(hf − 1). Taking into account that ex−1 = x when x is small enough,

I can express the basis as:

∆St = γ̃ + (1 + γA − γB)∆St−1 + g(εt, εt−1) (2.5)

γ̃ is equivalent to (γA − γB)(1 − γ) and g(εt, εt−1) ≡ εt − (1 + γA − γB)εt−1. Above

expression holds when 1 + γA − γB > 0. Thus, the basis can be represented as a AR(1)

process with correlated errors and changing parameters. For sake of comparison with data

from Bloomberg, I express (2.5) in terms of ∆Sdt ≡ −∆St,

∆Sdt = −γ̃ + (1 + γA − γB)∆Sdt−1 − g(εt, εt−1) (2.6)

The threshold model. Expression in (2.6) shows a specification with a changing dynamic

for the basis. The change in the size of parameter hinges on the parameter β which rep-

resents the relative size of the exposure level. Assuming for instance that clearinghouse

A’s reduction of exposures becomes more intense and thus this intensity reinforces the sign

of covariance between rt and L(T ) then the persistence would be increasing i.e. a higher

value for 1 + γA − γB. Also, the sign of the constant denoted by −γ̃ is ambiguous. In

order to pinpoint these changes I propose a threshold model using a proxy for detecting

the change of β in each clearinghouse. I mentioned a proxy for the key variable since data

of collateralization and exposures is either not accurate or limited for only some contracts.

The usual approach intended in literature lays on either calibration or estimation of expo-

sures from notional values (see Duffie et al. [49], Cama [26] and Cont and Kokholm [40]). I

consider a time measure that may be used as a proxy of β. This is the relative share market

participation in derivatives market among clearinghouses, LCH has the lion’s share and the
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changes of its market participation relative to the CME clearinghouse may lead a signal for

detecting a change in parameters. I reproduce the figure shown in Cama [26] here below,

Figure 2.3: Derivatives market participation by clearinghouse

2.4.2 The Credit-default swap model

Cama [26] shows the premium hinges on the size of the exposure. The reduction of this

exposure has effects on the collateral amount provided by the seller7; thus, keeping constant

the counter-party risk and assuming perfect competition, the premium will decrease accord-

ingly. In this section, I specify the empirical model based in the theoretical model shown

in Cama [26]. The setup shows that premium is determined by equalizing the protection

and premium leg for this asset; thus the premium and the exposure have a simple linear

relationship that may be easily identified by standard linear econometric methods.

The relationship of interest in this chapter is the one between exposure and premium.

Literature has emphasized in the effects of liquidity on the premium; this certainly gives

a point of discussion between number of contracts sold and premium. In terms of utils

for buyer, a contract with a low premium is related to a high exposure8. Similarly for the

seller, low premium is related to low exposure as Cama [26] shows; as discussed this can be

7The collateral amount is determined by the collateral fraction -given by any risk management- and the
amount of exposure.

8It can be related to additional costs when the exposure of her contract is significant high i.e. monitoring
and legal fees, additional hedging, counter-party risk and so on.
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a simple model constructed under the key assumption of perfect competition; however, the

size of the effect of having less exposure on premium is a empirical question.

Data in Swaps Data Repository (SDR) through commercial data platforms or termi-

nals still lacks of important information details9. The empirical model requires size of the

exposure in any contract; regrettably, a comprehensive detail in data of this class of deriva-

tives is clearly a limitation currently. However, the approach -I will present in next lines-

requires only the identification of contracts that are cleared and non-cleared in data. Thus,

the impact of collateralization under clearing is summarized in regressions that account for

difference in premiums due to contracts traded in OTC versus clearing markets. Formally,

data are stack taking into account year effects and the pooled-regression produce an esti-

mate of treatment effect i.e. difference between treatment and control groups. In Cama

[26] the difference of premium amid two clearinghouses is given by the following equivalent

linear expression:

qA − qB = α(ϕA − ϕB)

Where A and B stands for the market; q is the respective premium and ϕ is the collateralized

fraction of the exposure as size of the notional value. The parameter α is positive10. The

data discussed in section (2.3) can be separated in two groups: cleared and uncleared

transactions. Thus, a pooled-regression with time-effects is the strategy to follow. In the

terms of the aforementioned model, let’s be A the clearinghouse, and B any market that

do not offer market clearing services, thus keeping a constant relative collateral size equal

to ϕB ≡ ϕ;

qs = (ν + αϕ) + α(ϕA − ϕ)1s∈A

≡ ν̃ + α(ϕA − ϕ)1s∈A

≡ ν̃ + α̃1s∈A

9For example Bloomberg and CLARUS have a limited access to data.
10Actually α = c(µ − 1 + p)w > 0, where c is the fraction of the exposure being collateralized; µ is the

cost of posting collateral per unit of notional, p is the probability of counter-party default and 1 − w is the
subsidized-fraction received for paying out collateral costs. See Cama [26] for details.
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Thus if transaction s belongs to A then 1 = 1 and 0 otherwise. α̃ represents the impact of

clearing on the premium. Re-arranging above term and including an index for time series11,

the symbol (XB) for controls and η standing for error, finally the empirical model is,

qs,t = ν̃ + α̃1s,t +XBs,t + ηs,t

The econometric identification of the relationship between premium and exposure (or

collateral size ultimately) is standard. In order to identify the expression that determines

the premium by the seller I consider the method of two-stage-least-squares (2SLS); thus,

this procedure by construction would avoid to take into account demand factors effecting

the premium.

2.4.3 Additional issues

In this section I explore two caveats in the theoretical model explained in previous sections

that makes to undertake the addition of a new variable in the analysis and consequently a

new specification under analysis. In expression (2.1) the parameter h -the hazard rate for

default- is assumed constant. According to Duffie and Singleton [46] the term ht(1− βt) is

the risk-neutral mean-loss rate of the asset due to default. Thus, Duffie and Singleton [46]

states that discounting at the previous adjusted-short rate both the probability and timing

of default and effect of losses on default are took into account. In this matter, the empirical

approach includes the lineal parameterization of h by using the VIX series.

In section (2.4.1) I show the model behind data conceptually. However, time-series

literature advises about significant bias when data suggest a unit root in the process12. I

revise the high persistence of the basis serie in section (2.5) and I propose a estimation of

the serie I(1) i.e estimation using same serie but in difference. I use a flexible model to take

into account the heteroskedasticity property of the process according to expression (2.4).

It is worth mentioning that the constant has ex-ante unknown sign as intensity in clearing

practices increases; additionally, misspecification may bias the constant significantly. The

11Regarding this variable, the data provides information in hours and minutes.
12Literature revision about the unit-root bias is conclusive; in those terms the bias in the threshold

parameter can be extensive as well.
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former is not harmful in identification sense of course.

2.5 Results

In below section (2.5.1) I show the results from estimations using a simple threshold model

for the basis. In section (2.5.2) I examine bivariate threshold estimations in order to over-

come caveats to assumptions described in section (2.4.3). In section (2.5.3) I use a bayesian

bivariate model for the serie in differences; I take advantage of model flexibility to showing

a changing variance and circumventing some bias rising from unit-root processes. All these

alternative models were considered for the case of the basis. Finally, in section (2.5.4) I

run regressions to show that in average contracts are priced differently in clearinghouses in

comparison to OTC markets after controlling for notional value, maturity and other signif-

icant variables. I do not intend other time-series analysis since the constrained data do not

have information of reference entity or dealer. Although the former strategy is risky results

suggest that bias size is not significantly large.

2.5.1 The threshold model

In this section I show results from threshold auto-regressive (TAR) or regime-change spec-

ifications. The estimation is very simple; the objective is to minimize the mean square

error by using a grid-search on the domain of the variable that is candidate (or threshold)

to break away the linear relationship. Then, the difference between the non-linear’ and

linear model’s mean-squared error must be statistically different in order to conclude that

there is enough evidence against linearity. I use a LM test to perform the statistical test of

non-linearity and I also consider a bootstrap method of 20 000 repetitions for calculating

the probability of null-hypothesis rejection. As discussed before, the threshold variable is

the difference in derivatives market participation between LCH and CME, henceforth ∆w.

Furthermore, the methodology demands a trimming sample, this fraction is fixed to 18 %.
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Formally, the model is as follows,

Regime 1 : ∆Sdt = α1 + ρ1∆Sdt−1 + σνt if qtm−j < τ

Regime 2 : ∆Sdt = α2 + ρ2∆Sdt−1 + σνt if qtm−j ≥ τ

q is the threshold variable to look at to finding τ , τ is the value of the threshold and j is

the number of periods in the past where the methodology detects a current regime change.

In the estimation, I consider j = 0, 1, 2 that represent the current month (tm), one and two

previous months respectively.

Table (2.5) shows the methodology detects a difference in the mean-square error around

the value τ = 0.82; however the test of non-linearity does not found overwhelming evidence

in favor of non-linearity at conventional significance levels.

qmt = ∆ w; τ = 0.842

Regime 1 Regime 2
α .0454573 .0616278

[-.0229801 .1138947] [-.0002358 .1234914]
ρ .9683966 .9398102

[.9154133 1.02138] [.8831881 .9964323]

LM test for no threshold: 5.916. Boostrap pvalue: 0.18.

Table 2.5: Threshold estimation

In table (2.6) I show the results of a significance regime change for j = 1. The value of

τ is around 0.80. The regime 1 shows less persistence than regime 2, this finding supports

my specification shown in section 2.4.1. The LM test rejects linearity at 10 % only.

qtm−1 = ∆ w; h = .801

Regime 1 Regime 2
α .0768056 .0196317

[.0060039 .1476072] [-.0307401 .0700035]
ρ .9431885 .9794700

[.8881315 .9982455] [.9350661 1.023874]

LM test for no threshold: 7.826. Boostrap pvalue: 0.0657.

Table 2.6: Threshold estimation

More lags for the threshold variable do not significantly reduce the mean-square error in

statistical terms. Table (2.7) shows the methodology detects a difference in the mean-square
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error around the value τ = 0.75; however the test of non-linearity fails to report evidence

in favor of non-linearity at conventional significance levels. The addition of more lags have

a detrimental effect since the domain of the threshold variable is reduced. Furthermore,

each lagging throws away multiples of 30 observation days. This would eventually affects

the accuracy of estimations13.

qtm−2 = ∆ w; τ = 0.7494

Regime 1 Regime 2
α .088084 .038101

[-.0690012 .2451692] [-.000027 .0762289]
ρ .9117851 .9708091

[.7844919 1.039078] [.9387484 1.00287]

LM test for no threshold: 5.1158. Boostrap pvalue:
0.29825.

Table 2.7: Threshold estimation

The regimes which were previously pinpointed by the TAR method are shown for the

basis in figure (2.4a). The regime 2 appears for the first time in data from June 1st 2016 until

July 29th 2016; then this regime covers exactly each day of November 2016; afterwards,

the presence of regime 2 re-appears from February 1st 2017 to the end of the sample.

The appearance of regime 2 represents periods where LHC has a significant more market

participation in derivatives market. Figure (2.4b) shows the improvement of the goodness-

of-fit of the non-linear model. As previously shown, the methodology detects a higher

persistence of the series (see table 2.6); however this difference is not significant, actually

the method only show a rejection of linearity only at 10%.

13Furthermore, the trimming for performing the grid-search reduces sample further.
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(a) Regimes (b) Residuals

Figure 2.4: TAR model for the basis

In this following paragraph I assess the TAR model after statistical evidence shown

above. The evidence in favor of a TAR model is not overwhelming in statistical terms. This

univariate model and the lack of other covariates -that could be important for explaining the

changing of the basis- arises the discussion of estimating alternative models. For instance, in

expression (2.1) the symbol h -that denotes the probability of default of one of the counter-

parties- is assumed constant. In the next section, I incorporate the VIX as a measure of

risk perception by the market into the analysis. I specifically use a bivariate model in order

to find evidence of a non-linear relationship in the sample.

2.5.2 The Threshold-VAR model

In this section I show results for the bivariate model. Formally, the specification is as

follows;

Regime 1 : yt = Θ1,txt + εt if qtm−1 < τ

Regime 2 : yt = Θ2,txt + εt if qtm−1 ≥ τ

where the parameter Θ gathers the linear effects of the lags of the system on yt as in a

typical VAR method setup. In this bivariate specification I use the VIX and the basis as

endogenous variables. For the sake of ordering issues that arise in VAR models, I assume
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that VIX error has an exogenous impact on the basis but the opposite.

The estimation uses bayesian tools. The threshold coefficient is around 0.7661 with an

upper and lower values of 0.7792 and 0.7514 respectively. Table (2.8) shows the size and

significance of parameters in the two-regimes VAR system. The basis has a high persistence

in the regime where the market-rate participation is above the threshold. This finding is

equivalent to the result shown in the previous section for the univariate case. However,

the magnitude of this parameter can be debatable in statistical terms and the discussion

may end up with the acceptance of a linear model ultimately. The table (2.8) also shows

that coefficient associated to the lag of VIX in the basis equation is practically zero in

the statistical sense. Likewise, according to the method, there is not enough evidence that

previous values for the basis significantly impact on the VIX.

qtm−1 = ∆ w; τ = 0.7661

Regime 1 Regime 2
V IXt basist V IXt basist

V IXt−1 0.9268 -0.0008 0.8903 0.0025
[0.8591 0.9899 ] [-0.0052 0.0038] [0.8331 0.9426] [-0.0004 0.0052]

basist−1 1.4024 0.8804 0.2124 0.9655
[-0.1045 2.8726] [0.7849 0.9558] [-0.3207 0.8206] [0.9393 0.9878]

Repetitions in the MCMC chain: 4500.

Table 2.8: Threshold VAR estimation

Figure 2.5: TVAR coefficients
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Figure (2.5) shows the shape of the empirical distribution for each parameter in the

estimation; the bayesian approach relies on flexibility thus its usage has enormous advantage

when circumventing strong initial assumptions given by normality. Figure (2.6) shows the

regimes for the series in the VAR system. Regime 2 prevalence in data since June 2016 is

a result that contrast with the one shown in the univariate case. Theoretically, the method

should correlates non-stop drops of the basis with a low relative market participation such

as the one identified at the beginning of the sample14. However, there are not many episodes

that would strongly shape this conjecture in sample. Regime 2 can be pinpointed in data

showing sudden and short increases of the basis; this behavior can be conceptually assigned

to a unit-root series ultimately.

Figure 2.6: Regimes for a TVAR system

14The estimation sample starts after 30 periods since the threshold variable lag was fixed to be one month.
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2.5.3 Alternative specification

In this section I show results from a bayesian estimation. The bayesian VAR estimates are

mostly preferred because of they respect the likelihood principle and deal with misspecified

models, as well as they have a good small sample behaviour and asymptotic properties. As

previously discussed, I assume a unit-root for the basis serie and lay out the explanation of

sharp increases of the basis on the bayesian estimation. The main idea is to find the shape

of the variance depicted in expression (2.4).

The model to estimate is as follows;

yt = Θtxt + εt

where yt is a vector of observed endogenous variables, in terms of Cogley and Sargent

[36], xt is used to built matrix Xt thus it is equal to In⊗xt and xt includes all the regressors

(i.e, the lags of yt as well the constant). The bunch of parameters gathered in θ ≡ vec (Θ′t) ∼

N (0, Q) is governed by the nature of hyper-parameters. Since εt = A−1εt then variance of

εt is equal to Ht = ARtA
′ where A is a lower triangular matrix of correlations and Rt is

the variance of εt. In the setup I consider a differenced-serie for both the basis and VIX.

In the bayesian setup, the continuous stylized stochastic volatility model can be described

as
·
Sτ = λdτ + hτdWSτ , the discrete version is approximately as follows;

lnhεit = α+ δ lnhεit−1 + σivvit

The volatility of innovations vit are mutually independent. The variance of unconditional

process lnhεt hinges on the associated free parameter σv and δ which describe the variance

of the errors and the persistence of the process for hε respectively. The priors are set up as

in Cogley and Sargent [36]. In the cases whereby the density does not have standard form,

literature handles that with an accepted-rejected sampling procedure (Metropolis-Hasting

sampling). Details in the appendix section (C).
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Figure 2.7: BVAR coefficients

In figure (2.7) the coefficients of the BVAR estimation are shown. The analysis by

using (standard-size) confidence intervals reveals a time-series effects mostly for the VIX in

difference. The coefficient related to the persistence of the differenced-basis is practically

null in statistical terms15. Also the reader must take notice that there is no significance effect

arising from VIX on the dynamic of the basis. The coefficient related to the persistence of

the differenced-VIX shows a negative value. The effect of the differenced-basis is negative

for any confidence interval constructed at some loose significance levels. The above analysis

concludes that dynamic of basis does not rely significantly on the auto-regressive component

of the model. Hence, the variance -that evolves through time- of the error component may

explain mostly of the dynamics.

15The confidence interval under a bayesian estimation may be interpreted in other way though.
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Figure 2.8: Stochastic volatility (hε)

In figure (2.8) the variances (hε) of the innovations are shown for both differenced series.

In the case of the differenced-series of VIX, the methodology detects a higher variance

around July 2016. The size of this variance also has effects on the differenced-series of the

basis due to the ordering of variables previously assumed upon the VAR model setting.

The estimation suggests that errors between series are correlated positively; therefore any

shock on one (exogenous) variable affects to the other in the same direction. Moreover, the

sudden appearance and vanish of unusual values of shock realization enables to see changes

in the same direction of the series under analysis for a significant period of time. Thus,

differenced-series of the basis was affected by a shock with an unusual high variance around

April 2016, the series “climb up” from 1 to 1.5 points. This lingering effect is explained by

the presence of a unit-root with parameter of persistence greater than 1; the distribution

of aforementioned parameter in the upper-left panel of figure (2.7) suggests that may be

the case actually. Henceforth, the variance of the shock on the basis series would explain

why the basis was relatively high (above 1.25 bp.) through April to the end of June 2016.

The model also can explain other sudden change for the basis; as figure (2.8) suggests,

around July 2016, the estimation shows VIX series was affected by shocks with a variance

of significant size! These may explain the high and persistent change of the basis on its way
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to the mark close to 2 basis points at the end of year 2016. Also, starting 2017, the analysis

suggests that both series had experienced shocks with moderate variance. However, it is

worth mentioning that the method generalizes pervasive large positive shocks as evidence

of large variance. In other words, mostly of the above argument is explained by using

examples of large positive shocks but negative ones; particularly at low levels of the basis.

The presence of further low levels of basis may produce arbitrage with contracts of maturity

less than five years inside same clearinghouse, these gaps could be registered in data but

ephemeral enough. Finally, values greater than 1.5 bps. for the basis are recorded when

the market participation rate is high for LCH. In conclusion, significant changes in the

variance of both series have had impact on the variable of interest. Also, sequential changes

in the basis may potentially be produced by unit-root dynamics with a changing variance,

particularly in periods where the market participation rate of LCH is relatively high. It

is worth mentioning that methodology of estimation suggests a heteroskedasticity pattern

more complicated than the one given by expression (2.4); however, as the reader may know,

this is innocuous to the identification of parameters in the VAR system.

2.5.4 Regression analysis

In this section I show regression by index. Tables (D.3-D.10) report regressions of transaction-

level premium for the following indexes: CDX NA IG (IG), CDX NA HY (HY), iTraxx Asia

(AS), and CDX Emerging (EM). The dependent variable is transaction-level relative effec-

tive spread. The regressions employ a large amount of trading contracts executed between

December 31, 2012 and February 28th, 2018, publicly disseminated by DTCC Data Reposi-

tory (DDR), and for which the premium is reported. Explanatory variables are constructed

from DDR trade reports and capture the Dodd-Frank reform, and the effects of segments,

trading activity, and other product characteristics.

I consider the following regressors: vclear equals one if the trade is centrally cleared and

zero otherwise. vSEF equals one if the trade is executed on a swap execution facility or

designated contract market and zero otherwise. Sefdt equals one if the trade date occurs

on or after October 2, 2013, and zero otherwise as suggested in Loon and Zhong [80].
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vSEFSefdt is the interaction of vSEF and Sefdt. Blkszdt equals one on or after July 30,

2013 and zero otherwise. Regarding these dummies, Loon and Zhong [80] explains that

SEFs required to comply with Commodities Future Trading Comission (CFTC) rules on

registration and operation by October 2, 2013; while CFTC’s minimum block size definitions

became effective on July 30, 2013. Tenor5 equals one if the index tenor is 5 years, and equals

zero otherwise. lsize is natural log of notional size and lmonthNot is the notional amount

traded during the current month. difM is the time in years between index expiration day

and trade execution day. I control for eventual endogeneity using the method of two-stage

least squares (2SLS); the setup requires an auxiliary regression for the size of transactions

taking as exogenous variables possible determinants. In this case the total notional amount

of transactions during the current month was specified as the suitable variable that would

isolate endogeneity.

Regressions results are shown in appendix. In table (D.4) the regression analysis for

series CDS.NA.HY shows a significant and negative effect of clearing. However, after con-

trolling for the new reference entities that adjust the CDS index each semester, the wedge

between cleared and non-cleared prices are smaller; the parameter related to the variable

vclear-seriesHYn is positive statistically and produces an increase in the premium when the

contracts are cleared. The series take the value of an increase index; thus recent contracts

would offset the negative impact of clearing at some extent. Year-effects are significant and

the significance of the effect of tenor of five years on prices just verifies the compensation for

this class of assets in comparison to other short maturities. The trade in swaps execution

facilities has a positive impact on prices. The remaining distance to the date of maturity

is found to be small for specifications that do not include the VIX and 5-year tenor series.

The reforms that started in October 2nd and July 30th in year 2013 (indicated by Sefdt

and Blkszdt) have a positive impact overall. The interaction considering the placement of

reforms and trading taking place in SEF -measured by variable vSEFSefdt- indicates that

reforms had a negative impact on prices specially for trades happening in those SEF venues.

Returning to the discussion of the effect of clearing, it seems that the impact of clearing is

between -33 and -41% on prices; after controlling for external volatility and maturity, that
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effect falls to around -0.143 and -0.137%. For sake of comparison, Loon and Zhong [80]

found the impact around -10.3% (see table 8 in Loon and Zhong [80]).

In the case of the index iTraxx Asia (AS) and CDX Emerging (EM), clearing has a

negative effect on premium after controlling for same variables used in the previous analysis

for CDS.NA.HY. The time effects are important for all mostly specifications shown in tables

(D.8) and (D.10). The premium seems to be unaffected by the size of the notional value

for these both indexes. Also, at least a reform have significant effects on the premium of

AS. In the case of index EM, the late reform considered in regressions had a negative effect

on premium for clearing transactions. Additionally, early reform had an overall positive

impact on premiums. The VIX variable has a positive effect on the premium for the index

AS only. In the case of CDS.NA.IG, clearing has a puzzling positive effect on premium (see

table D.6); however, specifications taking into account reform effects show that new series

within CDS.NA.IG index have a lower premium than the old ones for clearing contracts.

Also, year effects are negligible in statistical terms and VIX variable has a positive effect

on premium. On the side of effects of reforms different specifications show modest positive

effects on premium. The variable tenor5 for this index has a negative effect; since 5-year

contracts are mostly traded in the derivatives market, this could be seen as evidence of

economies-of-scale for this particular index.

The restricted data issue arose earlier in section (2.4.3) is not quantitatively harmful be-

sides the right sign of the parameter that represents clearing effects; the additional variables

found in literature that are omitted in regression analysis accrue to five to seven percentage

for the total explanation-power of the model. Thus, my specification makes around the

half of the total goodness-of-fit of the regression model overall in comparison to empirical

findings in literature.

2.6 Conclusions

The theoretical model in Johannes and Sundaresan [64]-that explains the effect of collater-

alization on swap rates- is modified by Cama [26] in order to describe the existence of at

least two regimes with heteroskedastic errors. I carefully setup the empirical side looking
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for statistical evidence that supports the aforementioned structure. Since information of the

size of exposure and respective collateralization are limited, I circumvented this problem

by using a proxy for this variable. Thus, I propose the derivatives-market participation

as the variable closely connected to clearing practices that eventually reduce the size of

exposures. If this participation increases relatively for some clearinghouse, the exposure

and its collateralization would be compressed due to more participants and assets. Thus,

the derivative-market participation indirectly provides evidence of a significant difference of

swap rates that may be found either amid clearinghouses or bunch of markets that specially

compromise in clearing practices.

A TAR model is implemented to explain the dynamic of the basis; the evidence against

linearity is supported at conventional confidence levels. A TVAR was also implemented in

order to overcome the absence of risk and volatility effects in swap contracts arising from

external variables. The persistence of the basis was found to be significant large in both

univariate and bivariate models and the dynamic of a closely unit-root process may explain

sudden and sharp increases in the basis.

The aforementioned results suggests that basis does have two separated regimes for

the auto-regressive component in the statistical sense. Additionally, assuming series are

integrated of order one - as threshold methodology suggests after June 2016- and setting

up a flexible model that supports a time-changing variance, I detect unusual changes in

the variance of the bivariate error around April and July 2016. These dates are associated

to high market participation rates for LCH, this share is at least above 0.75 mark. The

former suggests that methodology shows a higher variance when market participation rate

is high but the size of these variances are not the same amid these aforementioned dates. In

conclusion, significant changes in the variance of both series have had impact on the basis.

Also, sequential changes in the basis may potentially be produced by unit-root dynamics

with a changing variance, particularly in periods where the market participation rate of

LCH against CME’s one is relatively high.

In the regression analysis for both interest-rate and credit-default swaps, there is statis-

tical evidence supporting that clearing has a negative and significant effect on swap rates.
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Literature has found the same result using a short period of analysis. A proper caveat

was addressed earlier due to limitations of data sources; literature on this topic suggests

additional variables than the ones presented in the final results. These variables measure

important liquidity and micro-structure effects. However, the omitted-variable bias is not

large according to my regression analysis; the sign of the parameter measuring the effect of

clearing on premium prevails. In quantitative terms, the impact of clearing in derivatives

contracts is between -33 and -41% on premiums; additionally after controlling for external

volatility and maturity that effect falls to around -0.143 and -0.137%.

Regarding future work. Since information about collateral amounts and exposures is

limited, my research implicitly calculates changes in collateralization of exposures by using

the changes in the derivatives-market participation; the direct estimation needs to inputs

as correlation size amid assets and collateral policy. As an alternative, structural models

can help to estimate the deep parameters associated to the implicit model. Also, it would

be interesting to incorporate in data characteristics of receivers and payers of derivatives

instruments and further market characteristics, this would help to increase the explanatory

power of the empirical model.
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Chapter 3

The Effect of Mutualization and Collateralization on Credit

Default Swaps Premium

3.1 Introduction

This chapter investigates how particular clearing procedures affect credit default swaps

premium and further implications concerning the minimization of counterparty risk. I

embedded a regulatory-agent or clearinghouse into a standard financial market that trades

credit default swaps (CDS). I setup the insurance market as one characterized by a lower

premium and higher exposure to counterparty risk in equilibrium as a result of opacity

of over-the-counter markets. In general, if a CDS seller defaults, premium is lower when

mutualization takes place as clearing policy and capital requirements are not too low. The

allocation is characterized by a higher recovery rate and also by a large number of non-

defaulting contracts relative to a bilateral agreement. Clearinghouses may offer incentive

contract when collateralization takes place as clearing policy. The premium is higher for

this practice relative to bilateral agreements. In equilibrium there is not default for this

particular contract. The premium increases since the value of the position (the recovery

rate) increases. This chapter has implications for the interaction of derivatives markets and

regulation.

The most predominant feature in the recent financial-crisis aftermath was the shortage

of liquidity and the worsening of the trading standstill over the asset market. It was also no-

torious that real sector and the rest of financial markets dreaded contagion after the collapse

of the shadow banking sector1 where finally the massive defaults on CDS were identified

1A collection of investment banks, hedge funds, insurers, and other non-bank financial institutions that
share some activities of regulated banks, but differently supervised.
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as one of major culprit in the financial crisis2 Comm. [39]. CDS is a financial derivative

contract whereby the buyer attempts to eliminate any possible loss arising from a default

event. The seller (typically a financial institution) seeks a compensation for absorbing the

future risk of having to make the conditional payment. Literature has pinpointed these CDS

as leaky boats or destabilizing-and-contagion triggers. Thus, since great recession, partici-

pants have requested market reform and regulation, particularly on derivatives instruments.

Dodd-Frank3 act in 2010 was an immediate response to last crisis and this initiative surely

continues to be in the spotlight of discussion4. Other recent initiatives -such as Volcker

rule, Lincoln Amendment and Basel III- intend to bring secure provisions and thus ending

the concept of “too big to fail” ultimately. In other areas, proposed regulation has made

some progress, but did not go far enough in others, specially in derivatives market5. Credit

derivatives have currently had a significant growth since great recession aftermath. Last

year, Financial Times6 informed that a record of US$15.7bn in gross notional outstanding

positions of single name CDS was cleared by investors in one of the largest credit derivative

clearinghouse (Inter Continental Exchange ICE). The activity of derivatives fell hardly in

2008 and since 2010 consequently asset managers and hedge funds are attempting to bol-

ster liquidity in clearinghouses even if the cost of clearing is higher than over-the-counter

markets. According to Depository Trust and Clearing Corporation, the current outstanding

gross notional for single CDS is around US$6.8tn compared with US$14.8tn at the end of

2008.

Dissecting price changes for CDS is the main subject of this chapter. I particularly

focus in asset pricing determination or price discovery after specific policies (regulation) on

2The run on repo is also cited as an important factor behind the collapse of the shadow banking; however,
Krishnamurthy et al. [73] suggests that run akin to the bank runs was confined to a small portion of the
repo market.

3The reform and its impact is tracked by federal independent financial regulatory agencies such as The
Fed, the Office of the Comptroller of the Currency (OCC), the Federal Deposit Insurance Corporation
(FDIC), the Commodity Future Trading Commission (CFTC), the Securities and Exchange Commission
(SEC), and the Consumer Financial Protection Bureau (CFPB). The treasury has an implicit role of super-
vision.

4The Basel III Leverage Ratio (Supplementary Leverage Ratio - SLR) is an important metric that intro-
duces a credible supplementary material to the risk-based capital requirements in a simple and transparent
understanding (see BIS [17]). According to CLARUS -a financial advisor company- this regulation will help
with implementation of public disclosure requirements; and thus allowing for calibration/comparison and a
smooth transition by banks prior to regulatory implementation in 2018/19.

5See Baily et al. [9] for a general assessment of the regulation-related steps still on progress.
6February 4, 2016 “Credit Default Swaps activity heats up?”
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financial markets take place7. The current paradigm describes how to do the pricing of the

CDS taking into consideration not only the risk of the event but also the risk of default

of seller and buyer. More important, the impact of regulation on premium has not been

studied yet from a theoretical perspective for a specific market. The interplay between

price discovery and regulation is not really new in a broader or aggregate framework and

the objective of my research resembles the ones in quantitative assessments, those typically

found in general equilibrium analysis. For instance, in a banking environment, by easing

credit conditions an ad-hoc regulation policy may impact on the real interest rate, even in

the absence of any direct change in the interest rate of reference. The ultimate objective

is to construct a framework of asset-pricing determination that may be embedded in a

general equilibrium model, this extension certainly will be useful in hot and popular topics

of regulation nowadays (e.g. macroprudential policies) and others not akin that require the

usage of insurance models with extensions to an endogenous-price setup8.

Price discovery is an important concept for surveillance of risks. For instance, monitoring

of rampant prices are important since supervisors and monetary policy makers may able

to interpret them according to fundamentals as liquidity changes, business cycle and credit

risk arises. For instance, in the euro zone (see Annaert et al. [5]) and during the recent

financial crisis, there was evidence that CDS spreads rose notoriously and mainly due to

increased credit risk with a particular role of both individual and market liquidity. Thus, it

is worth taking a dissection of price changes when regulation takes place over the market. In

fact, optimal regulatory policy in the presence of limited liability is scarce even when takes

to evaluate long-standing discussion of loss-sharing package program (see Keister [66] for a

discussion about bailouts). Thus, derivatives market may have a “too big to fail” feature

and a proper extrapolation of bailouts analysis will be certainly useful. Limited liability is

another factor to take into account in the pricing of CDS. This has a significant impact in

the pricing since not only matters to know the seller positions but also the size of those.

7Recent mainstream of discussion discourage the usage of large economic model; instead surveillance and
understanding of specific markets in partial equilibrium would provide useful insights; for example, Smith
[98] suggests that instead of focusing on consumption or other aggregates, economists might try thinking
more about long-term buildups of problems in financial markets.

8See Borensztein et al. [22] for details of the impact of natural disasters using a sovereign insurance
model. The setup keeps the premium constant.
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Therefore, I study the interplay of above variables and CDS premium in Acharya and Bisin

[1]’s model modified to analyze some of the functions that a clearinghouse performs.

The presence of clearinghouses seems to be critical for the structure of financial mar-

kets in the upcoming years910; clearinghouses hitherto arise as the device that would make

the market more transparent, secure, stable and free of contagion (Acharya and Bisin [1];

Pirrong [92]). Immediately after the recent financial crisis, literature started evaluating

the introduction of central counterparties. Central-clearing or clearinghouse practices is

ultimately a risk-sharing arrangement; by applying netting, collateralization and mutual-

ization, a clearinghouse prevents to build-up excessive risk and consequently ameliorates

allocation of resources. The concept is not really new and mostly applied to other markets

e.g. futures; thus, literature points out significant advantages from this arrangement (see

Pirrong [92, 90, 91]), however, some requirements in the structure are demanding at the

initial setup1112. This certainly behooves us to examine policy practices through the glass

of a microstructure model. Few approaches cope with collateral policies of clearinghouses

whereas their financial structures are limited in terms of market completeness (see Koeppl

and Monnet [71, 69])13.

In contrast to transactions taking place in Over-The-Counter (OTC) markets, the orig-

inal counterparties’ contracts are replaced having a central counterparty or clearinghouse

as a new partner. Thus, the clearinghouse becomes the buyer to the original seller and the

seller to the original buyer, this formally is called novation. A clearinghouse has the poten-

tial to reduce systemic risk through i) multilateral netting of exposures through novation, ii)

9First clearinghouses can be tracked to 18th century Japan (Schaede [95], Kroszner [74]), evolution
of operation range from controlling quality to delivery; thus reducing risk and improving the channel of
distribution.

10Since the crisis has subsided, a series of initiatives have been arisen to better contain and mitigate
systemic risks (see Fund [52]). These are: i) preventive measures using higher liquidity and capital buffers, ii)
containment measures such as better resolution frameworks under crises; and iii) improvements to financial
infrastructure that provide firewalls to help prevent the knock-on effects of an institution’s failure and a
better standing for absorbing shocks.

11On the other hand, research questions the nature of clearinghouses; this side of literature finds that
clearinghouses can hasty impose inefficient outcomes in trading volume, collateralization levels (Koeppl and
Monnet [71, 69, 70], and other matters arising even from asymmetric information (Pirrong [91]).

12Fund [52] includes that recommendations and contingency plans should also be coordinated to ensure
that the failure of a clearinghouse does not lead to systemic financial disruptions.

13Most microstructures are related to futures market (see Koeppl and Monnet [71]) showing the work of
incentives.
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enforcement of robust risk management standards, and iii) mutualization of losses resulting

from clearing member failures. The clearinghouse can adjust the frequency of settlement,

impose certain trading limits, or vary collateral requirements (Koeppl et al. [72]). Initial

margin should be in the form of cash, government securities, and possibly other high-quality

liquid securities (Fund [52])14.

Mutualization, netting and collateralization are standard risk-sharing practices. As for

mutualization, the clearinghouse earmarks funds from all participants and distribute them

among members which experience the loss or default. Hence, mutualization guarantees a

fixed payment to whoever long the asset; thus they could be perfectly insured against the

risk. Netting current liabilities with value of incoming assets reduces the exposure of con-

tracts at risk of default, offsetting different contracts may reduce the dollar amounts at risk

upon default significantly. Collateral reduces the amount of credit implicit in derivatives

trades. It is expected that clearing practices bring an efficient market structure for stan-

dardized financial contracts. It is clear that clearing practices do not make risk disappear:

they reallocate it from those who bear risk at a high cost to those that bear it at a lower

cost. Collateralization or margin calls paid by members only cover a portion of the risk and

do not take into consideration large swings of losses; calibrating margin parameters in or-

der to covering these changes would cost non-negligible additional margin to each clearing

member if implemented. Thus, mutualization may provide cheaper resources to hedging

actual market risks. Notwithstanding all these clearing practices have costs arising from in-

formation and incentive problems; moreover, the interplay between incentives and clearing

policies may affect other variables as liquidity, choice of dealer or price determination. This

chapter separately analyzes the effect of posting default funds and collateral on premium

since as in Du et al. [43] buyers may face either dealer or non-dealer transactions; this

properly requires to consider different strategies for hedging risk.

Trade opacity is a fundamental characteristic of the OTC structure; no trading party

14Fund [52] states that in order to satisfy the obligations of a defaulting credit members, clearinghouses
use the following layers of protection: i) participants’ margin; ii) margin posted by the defaulting clearing
member; iii) Defaulting clearing member’s contribution to the clearinghouse’s guarantee fund; iv) CCP’s first-
loss pool; v) non-defaulting clearing member contributions to the CCP guarantee fund; vi) clearinghouse’s
claims or capital calls on non-defaulting clearing members and vii) the own clearinghouse’s capital or equity
(tier 1 and 2).
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has full knowledge of short or long positions of others. A.I.G’s inadequate liquidity position

and other potentially unstable insurers as Citigroup and Merrill Lynch15 produced large

costs on the financial system; recent financial crisis showed that opacity was responsible

for allowing the stack-up of such large exposures and thus marked the beginning of the

consensus on reforms by the G20 in 2009. Since then, the reform led a mandate requiring

that standardized OTC contracts to be cleared at a central counterparty. Standardized CDS

contracts must trade on regulated exchange-like platforms called swap execution facilities

(SEFs). Also, all trade information on CDSs is required to be reported to a central data

repository and CDS market participants must hold cash in margin accounts as a buffer

against changes in CDS valuations. Due to these changes, a stream of recent literature

suggests the need to disclose information of all trades to agents in current opacity markets.

Acharya and Bisin [1] state that enabling transparency of positions and trades, by creating

a clearinghouse to all transactions, can ameliorate the quality of counterparty risk affected

by taking on excessive leverage. This has become critical in the agenda of reforms for

the financial sector immediately after the great recession. As pointed out by Acharya and

Bisin [1], for instance, Acharya et al. [3] assort reforms proposals into either requiring or

not the fully disclosure in a clearing framework; even some proposals consider full public

disclosure of prices and volumes. Interestingly, the research agenda on clearing trades in

opacity markets is still on its beginnings and in continuous progress.

Recent criticism about aggregate models and their predictions make researchers to turn

into specific markets16. My research compresses the asset price dynamics theory into a

material that would be critical as input in large and general macroeconomic models. A rich

model with exogenous shocks and the consequent feedback from asset markets would give

us better forecasting models and strong policy proposals; this has been a concern from the

deeply and worrisome dearth of ability to predict last recession. 17. The model developed

in next sections will be certainly helpful for appraising next stream of reforms; Trump’s

plan to reduce regulations has received a scathing debate and it still certainly provides a

15See Thompson [101].
16See Blanchard [19] and [18].
17Rajan [94] expressed concerns regarding CDS trading back to 2005; the author argues that changes in

the financial sector had altered incentives and risk consequently, with potential for distortions.
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spotlight for discuss and hold tightly the benefits of mutualization and collateralization in

opacity markets. How agents respond to policy is a research study that entails to review

mandates that are widespread and profound, and obviously source of important systemic

implications. Hence, policymakers should be acutely conscious of the potential for such

effects from clearing, and be prepared to respond actively or passively to change in asset

prices. Formally, this chapter uses a theoretical approach to test the following hypotheses

that are ubiquitously found in empirical research18: i) central clearing causes an increase

in premium through its impact on counterparty risk; ii) premium under central clearing

is higher than one in a bilateral agreement; and iii) lower premium is associated with low

mitigation of risk. These hypothesis will be tested conditionally to two clearing policies:

fully collateralization and mutualization of losses. I also indirectly test the hypothesis of

the presence of a lower premium when trading exclusively takes place in a price-competition

market; it seems that competition for itself has a role in explaining lower premiums, see

Stephens and Thompson [99] for details. I assess this hypothesis in my setup straight

forward assuming random matches among participants when trading.

The endogenous recovery rate and premium is a remarkable feature of the model that will

be shown in the section (3.3). This means that not only price is affected by clearinghouse

policies also the notional amount of insurance. In other words, the terms of transaction

in contracts are affected and it clearly marks a difference with trendy literature which is

ubiquitously focused more in exchanges assuming constant prices. Also, it is worth noticing

that the model delivers a partial equilibrium solution which has the potential to produce

endogenous results in a extended general framework; questions - in the same line as directed

by Yellen [107]19- arising from the interplay of macro-prudential policies and the financial

sector can be addressed with the usage of a model of insurance.

18See Loon and Zhong [79] and Du et al. [43].
19According to Yellen [107] the accommodation of liquidity being provided in response to financial crisis

might itself generate new financial risks. Risk-taking can go too far and excessive short position can be
generated under some unknown scenarios without cushions or buffers. It may be the case that low interest
rates may induce to investors to take on too much leverage and reach aggressively for yield. Early signs are
credit and mortgage growth as well as assets price bubbles. This requires the construction of a framework
that includes a financial sector with a determination of asset pricing.
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3.2 Literature Review

This chapter studies how a particular clearing procedures affect credit default swaps pre-

mium and further implications concerned with minimizing counterparty risk. Early con-

tribution by Koeppl and Monnet [71] shows that price for futures transactions might be

affected by mutualization; instead, my chapter jointly takes on endogenous default and

determination of prices. Earlier work has focused in additional earlier contributions have

considered what benefits central clearing offers, such as netting (see Duffie and Zhu [47]),

information dissemination (see Acharya and Bisin [1]) or the segregation of collateral as a

commitment device (see Monnet and Nellen [85]). My analysis here is mainly built on the

framework of Koeppl and Monnet [71]; Koeppl [68] and Acharya and Bisin [1] and Stephens

and Thompson [99] that exhibits effects of novation, information and mutualization of risk

for standardized derivatives transactions and an improved risk allocation for customized

derivatives.

Significant progress in the literature has emerged regarding insurance provision and

moral hazard since eighties (Stiglitz and Weiss [100] Duffie and Zhu [47], Acharya and

Johnson [2], Parlour and Rajan [89], Acharya and Bisin [1] and Leitner [76]). However,

mostly literature has still focused on moral hazard on part of the insured due to the existence

of imperfect information. Recently, important contributions have been made by Acharya

and Bisin [1], Stephens and Thompson [99], Thompson [101] and Koeppl [68] by studying

the effects of moral hazard on part of the insurer on contracts instead. Acharya and Bisin

[1] show that organization of trading via a centralized mechanism or clearing that provides

transparency of trade positions can ameliorate counterparty risk which reveals itself as a

sign of excessive leverage positions constructed by insurance sellers; the authors precisely

coined the term “counterparty risk externality” to the foregoing and emphasize that social

cost is not fully priced into CDS. Stephens and Thompson [99] study price competition

when type of insurers are unknown in a model of insurance provision with limited liability

in seller obligations. Clearing practices, specifically mutualization, is explored in Stephens

and Thompson [99] suggesting that a high increase in counterparty risk and a prevalence

of bad insurers would result in equilibrium. Other contribution for price determination is
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found in Koeppl [68] over a general exchange market; an allowance for extracting benefits

off the contracts will crowd out prices in current contracts under a clearing mechanism

that not involves fulfillment of promises. Although above cited works achieve explicitly a

price determination, they have different features that makes appealing to explore them in

a general and concise setup that could resemble some stylized facts immediately before the

recent financial crisis.

Literature mostly offers valuation or pricing of securities with exogenous hazard rates

of defaulting20. Important extensions were made studying pricing under a joint default of

both buyer and seller and specially when default occurs prior to the maturity i.e failure of

no-jump condition (see Collin-Dufresne et al. [37]; Duffie and Singleton [46]; Duffie et al.

[48]). For example, Leung and Kwok [77] and Jarrow and Yu [62] analyze the effects of a

change in the probability of CDS’s default on spreads jointly with other possible parties’

probability default. A structural model that incorporates effects of collateral on CDS pre-

mium into a financial model is scarce in the literature so far; however, the existing literature

is producing an important paradigm for determination of prices in a clearing framework.

For example, Acharya and Bisin [1] study how to restore an efficient level of insurance

by promoting transparent positions in insurers’ balance sheet; the price and recovery rate

are endogenous to the clearing policy. In a price equilibrium determined by competition,

Stephens and Thompson [99]’s setup makes limited liability a key in explaining lower levels

of CDS premium under clearing.

Certainly collateral is a fair demanding practice under clearing. Collateral requirement is

the cornerstone in the lender-borrower relationship literature. Since borrower may become

insolvent due to either exogenous (and intrinsic) factors or off-contract incentives that pon-

der on outcomes, collateral can be beneficial to avoid some detrimental outcomes to lenders

beyond merely offsetting losses. Thus, economic theory explains the existence of collateral

in contracts as appeal to either compensating for ex ante information gaps between agents

20Literature encompasses what is called structural and reduced-form models, the former explicitly define
firm’s value dynamics and some limited-commitment style compromise after default of reference entity or
bond. In contrast approaches using reduced-form models abstract from valuation of firm; thus the default
process is exogenous. According to Duffie and Lando [44] a fair equivalence among models may be established
when firm asset value is imperfectly observed, although the reduced form is mostly preferred due to its
tractability.
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or reducing ex post incentive problems21 22. Thus, collateral as signaling device arises to

inducing loan applicants to reveal their default risk23. As for incentive contracts, theory

points out that pledging collateral is optimal since potentially reduces effects coming from

moral hazard24. Precisely, Koeppl [68] studies the effect of agency problems on the role of

clearinghouse as a storage facility and a contract settlement agent that arises from nova-

tion. Koeppl [68] particularly analyzes an exchange market where asset pricing responds

to contracts underlying no incentives. The author suggests that clearing can produce con-

tracts that use collateral as an incentive mechanism that lowers counterparty risk; however,

when resources are scarce, a contract with partial insurance can be handed out to agents

as price of transactions arises due to clearing. The effect of collateralization, specially in

a derivative market, has not been studied deeply by construction. According to a recent

global survey by ISDA, 22 percent of OTC derivative transactions are uncollateralized25

Dealers and some other types of participants currently operating in OTC markets tend not

to adhere to the idea of putting up collateral in a clearing framework. Fund [52] points

out that without being mandatory there is some uncertainty whether enough multilateral

netting and endowments can be achieved for daily operations, this is clearly discouraging

beyond the collateral requirements. Fund [52] explicitly mentions that an approach that

uses incentives based on capital charges or a levy tied to dealers’s contribution to systemic

risk could be used to encourage the transition.

Effects of clearing on CDS premium also may be evaluated looking at partial correlations

between variables of interest. Literature delivers a fair amount of empirical evidence about

premium changes due to counterparty risk and other interesting variables such as dealer

21The former represents the presence of adverse selection and credit rationing (see Stiglitz and Weiss
[100] and Martin [81]).

22In addition, collateral also eases any limitation in contract enforceability (Cooley et al. [41]) and it
still remains in some cases a feasible alternative to monitoring project outcomes at sufficiently low cost
(Townsend [103]).

23See for details Bester [13, 14], Besanko and Thakor [11, 12], Chan and Thakor [32], Boot et al. [21],
Mas-Collel et al. [82].

24See Boot et al. [21], Boot and Thakor [20], Aghion and Bolton [4], and Holmstrom and Tirole [58].
25According to this report, 78 percent of transactions (by notional amount) that are collateralized, 16

percent are unilateral, where only one side of the transaction is obliged to post collateral. In addition,
where there is an agreement for bilateral collateral posting, such posting can be hindered by disputes
between parties about the valuation of the underlying positions and collateral that result from diverse
risk management systems and valuation models. Central clearing substantially reduces this problem, as it
standardizes valuation models and data sources.
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choice risk profile, liquidity and horizon of investment (Arora et al. [7], Arakelyan and

Serrano [6]). However, empirical evidence on how CDS interact with regulatory policies is

incipient. Loon and Zhong [79] examines the impact of clearing on the CDS market using a

sample of voluntarily cleared single-name contracts. As expected, authors find a significant

response of premiums to reduction of counter party risk from different factors; multilateral

netting, initial and margin requirements also help to prevent further the excessive stack-up

of risk exposures. Precisely, Loon and Zhong [79] found that CDS premium is higher under

clearing. Du et al. [43] investigate whether central clearing has had an impact on how

market price CDS contracts for different set of transactions involving dealers. Contrary

to Loon and Zhong [79], Du et al. [43] found that premiums on centrally cleared trades

are significantly lower relative to spreads on uncleared transactions. Loon and Zhong [79]

appeals to the increased value of credit protection when clearing to explain the increase

in the premium; instead, Du et al. [43] state that their findings are consistent with the

view that counterparty risk has minimal effect on pricing26. Actually, the former could

be not odd to find whether assuming collateralization and clearing practices fully eliminate

counterparty risk. An interesting approach by Shan et al. [96] found that banks that actively

use CDS had significantly low-risk ratings in comparison to CDS-inactive ones, this made

possible that some banks produced more leverage. It was clear that CDS were not aligned

by fundamentals and the hedge provided by CDS was not correctly priced.

Strategies under fully disclosure of positions such as netting and mutualization are a

perfect companion for mitigating even further counterparty risk; however, in a framework

that allows non-transparency markets, such strategies have not been fully studied at least in

a theoretical framework. Specifically, Acharya and Bisin [1] state that constrained Pareto

efficient allocation cannot be supported as equilibria in economies with non-transparent

markets and netting.

The analysis in models of a possible change of terms of trade due to clearing procedures

is still scarce in the literature; Augustin et al. [8] suggests that Dodd-Frank and Basel III

effects are under-researched so far and these will certainly affect other dimensions of CDS

26That assertion is also tested by Du et al. [43], authors found statistically significant effects of counter-
party credit spreads on premiums but small.
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trading channel. The change of the premium to clearing policy is potentially subject to the

structure of the financial market and informational asymmetries; a variety of contracts may

be offered and thus these may change the terms of trade ex-ante required by participants.

Most of existing work focuses in showing the mutualization as well as the higher welfare

achieved with a minimal cost of collateral (see Monnet and Nellen [85], Koeppl and Monnet;

2009; 2012) however prices are exogenously given. Koeppl [68] has an interesting approach

that precludes some transactions from not defaulting and possibly, susceptible to observing

higher trading prices in equilibrium. To the best of my knowledge, Stephens and Thompson

[99] is the only paper that analyzes price determination of CDS prices so far. Stephens

and Thompson [99] reckon that clearinghouses would produce some adverse affects and a

declining price as result of price competition. I incorporate some Stephens and Thompson

[99]’s features such as as limited commitment on the cost of insurance delivered to the

seller in the model described in section (3.5); thus, the clearinghouse can use it as funds for

mutualization.

Other features of the model are found in standard literature extensively. The model

presented in section (3.5) mostly is based on Acharya and Bisin [1]; whereas that paper

is concerned in the gains of disclosured information of positions in terms of allocation,

my research emphasizes the setup of mutualization and its effect on CDS premium. The

impact of clearing in opacity markets keep the spirit of Carapella and Mills [28]’s work

that backstop an equilibrium with no release of information. I use definitions of type of

contracts in Koeppl [68] that help to pinpointing contracts that make seller to do not

consider make a default call. The optimal size of collateral or margin and guarantee-default

also is quantitatively explored in Nahai-Williamson et al. [87]; however they do not consider

the existence of recovery and also assume exogenous default with risk-neutral investors. In

my model setup, participants have mean-variance utility preferences that potentially allows

to use or include different risk-aversion attitudes; these preferences also make possible to

compare default-fund and collateral sizes with optimal ones resulting from the application

of a standard Value-at-Risk (VaR) procedure; actually they are equivalent conceptually27.

VaR methodology has become a popular tool for risk management of financial institutions.

27See Berstein and Chumacero [10] for equivalences and construction of VaR measures.
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Consequently, whether these preferences are used in a centralized or decentralized problem

the result is optimal in financial terms since the resulting allocation is required for mitigating

market risk by construction.

This remaining of the chapter is structured as follows. Section (3.3) describes a simple

model of clearing that applies a mutualization arrangement in order to show the determi-

nation of CDS premium influenced only by limited liability; consequently, in this particular

case, the policy i.e. mutualization does produce an unambiguous change in the CDS pre-

mium. Section (3.5) formally presents the agents and functions to maximize. Also, this

section shows the equilibrium of the credit default swap market as well as the main charac-

teristics and consequences of the trading in opacity markets. That section finishes discussing

the collateral requirement under a bilateral clearing or arrangement. Section (3.6) discusses

the determination of CDS premium due to collateralization and mutualization. Section

(3.7) shows the results of the numerical exercise. Finally, section (3.8) presents conclusions

and further research agenda. Appendix (E) contains proofs.

3.3 A Simple Model

In this section I setup a model that shows a basic structure of hedge with a constant premium

for CDS. For the sake of connection to the rest of the chapter, I present this model as a

preamble to discussing the change in the premium after clearing procedures. In next section

(3.5) I relax the structure of this basic model and thus showing the determination of an

endogenous premium after clearing. Particularly when the default is exogenous, I show

in this section how the default structure between protection seller and the reference bond

affect the valuation of CDS28. In other words, I introduce for this model an interdependence

or correlation on default rates; this assumption allows to estimate the change of hedge as

well as effects on marginal and default funds due to an increase in the premium.

28Literature is extensive on credit default swap valuation; see Leung and Kwok [77], Jarrow and Yu [62],
Yarrow and Yildirim [106], Kim and Kim [67] and Collin-Dufresne et al. [37].
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3.3.1 Default and Insurance

I assume a party goes long on a corporate bond and faces risk arising from default of the

bond issuer. In order to get protection, this party or buyer enters a CDS contract in which

he agrees to pay a premium payment to a CDS seller (S). In exchange this seller promises

to compensate to the buyer for some amount of loss (L) in the event of default of the bond.

Thus, the contract involves the CDS buyer, CDS seller and the reference party (R) or the

issuer of the reference bond. The inter-dependent default risk structure between the CDS

seller and the issuer of the bond may be characterized by the following correlated default

intensities for a result on a rage of period split by threshold s∗.

λSt = b0 − b11τC≥s∗

λCt = c0

τC defines the time when the reference entity defaults. I assume that default intensity

λSt reacts to default of the bond; a shrink in the default intensity pushes out a higher

probability of default after threshold s∗. The parameters b0, b2 and c0 are assumed to be

constant. This structure closely follows the one in Leung and Kwok [77] for continuous time

but I simplified to the case of two periods whose split is defined by threshold s∗. In order

to find the joint probabilities I adopt the change of measure introduced by Collin-Dufresne

et al. [37] in the valuation procedure of the premium (see appendix E for details). Thus,

the following probabilities are defined;

P (τC ≥ s∗, τS ≥ s∗) = e−s
∗(b0+c0−b1) ≡ pCpS

P (τC < s∗, τS ≥ s∗) = e−s
∗b0(1− es∗c0)

pS stands for the probability of observing the seller defaulting and pC is the probability of

occurrence of the credit event. The utility function of the CDS seller is given by the sum of

three components: a protection and premium leg and other called ”limited commitment”
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leg. These terms are defined as follows (see Morgan [86]);

ΠS = pC(1− pS)[−D(t0, τ)m+D(t0, t0)q +D(t0, τ)(τ − t1)qm]

}
protection leg

(1− pC)[(D(t0, t1) +D(t0, t0))qm]

}
premium leg

pCpS [−D(t0, τ)ν +D(t0, t0)qm+D(t0, τ)(τ − t1)qm]

}
lim. comm. leg

(3.1)

D(t0, t1) is the continuous discount rate at period t1 in terms of prices at t0; D(t0, τ)(τ− t1)

is the accrued premium for the fraction of period between τ and the last payment date. The

protection and premium leg are specified in the contract; however. the limited commitment

leg represents the payment when both bond’s issuer and CDS seller default; under this

scenario a recovery amount R is less than the coverage m under contract. For sake of

simplicity we assume values for parameters in the model: discount rates are equal to unity;

any default is only realizable at last period i.e τ ≡ t1 and m = 1. The zero-profit condition

on expression (3.1) gives the price or premium for the CDS;

q = pC(1− pS) + pCpS
R

m
(3.2)

Lemma 2 (Effect of limited commitment on premium). The premium unambiguously de-

creases due to a rise of CDS default probability or reduction of recovery amount (R). For-

mally,
∂q

∂b1
= −e−s∗(b0+c0−b1)s∗(1−R) < 0

∂2q

∂b1∂R
=

∂q

∂R
= e−s

∗(b0+c0−b1)s∗ > 0

Proof. See appendix for details �. Above lemma emphasizes the decrease of premium

as a result of limited commitment. If either R shrinks or the CDS default probability

increases with no penalty then premium decreases. On this section, the setup allows for

correlation between probability of default of both assets: bond and CDS. This may be

understood as a liquidity shock or any aggregate risk in nature. An exogenous shock on

CDS default probability has the same effect on premium. In the next section, I closely
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follow the determination of the ratio R
q as a measure of counterparty risk. In the following

corollary I show the change of the ratio to an increase in the probability of CDS default.

Corollary 4 Since R is exogenous, then ∂(R/q)
∂b1

> 0 and ∂(R/q)
∂R > 0

The problem of the party is defined in the following expression as the one to choose the

amount of insurance m:

L = max
m

(1− pC)U(w − qm) + pC(1− pS)U(w − qm− L+m) + pCpSU(w − qm− L+R)

subject to: q = pC(1− pS) + pCpS
R

m

L ≥ R+m

(3.3)

Then, solution to above problem results different from a fair pricing i.e. L = m. The

following lemma summarizes the solution.

Lemma 3 (Provision of insurance). Given pB > 0 and the result due to limited commit-

ment in Lemma 2 then there is a rationing provision of insurance i.e −L+m+R < 0.

3.3.2 Central Counterparty Clearing

In this section a clearinghouse steps on the insurance market and perform mutualization

and novation29. Figure (3.1) shows the process of novation when clearinghouse participates

in the market.

29Since I assume that CDS seller only has one operation to reporting then netting is not an issue or
procedure to claim.
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(a) Bilateral Exposures (b) Clearing

Figure 3.1: Novation

The clearinghouse has a fixed number of participants that are homogenous, thus all

insurance and premiums are identical across agents. In this particular example the pre-

mium is affected by mutualization but insurance30, then the clearinghouse needs to choose

default-funds from buyers (Φdf ), default-funds from sellers (Φdf,s) and marginal funds from

”surviving” buyers (Φmrg) in order to maximizing the utility of the CDS buyer as follows;

L = max
Φdf ,Φmrg

(1− pC)U(c1) + pC(1− pS)U(c2) + pCpSU(c3) (3.4)

The clearinghouse has to satisfy the following constraints. First, the allocation has to be

feasible,

(1− pC)c1 + pC(1− pS)c2 + pCpSc3 ≤ (1− pC)(w − qm− Φdf )+

pC(1− pS)(w − qm− L+m− Φdf − Φmrg) + pCpS(w − qm− L− Φdf − Φmrg))

+(1− pC)ηΦdf + pC(1− pS)η(Φdf + Φmrg) + pCpSη(Φdf + Φmrg) + ηΦdf,s

(3.5)

the feasibility constraint shows that at starting period the clearinghouse receives collat-

eral Φdf from agents in a “safe” group; this is they either do not experience default from

the reference entity or they were able to collect the payment from CDS seller. Also, the

clearinghouse receives funds Φmrg from a measure of agents facing the risk of bond default.

30Literature regarding clearing procedures emphasizes in keeping constant the terms of trade; see for a
detail Monnet and Nellen [85], Koeppl [68].
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The average value of the collateral posted by these agents is pC(1 − pS)η since collateral

is costly (i.e η < 1). Hence, the RHS of the feasibility constraint in (3.5) represents the

resources available to the clearinghouse. The LHS mirrors the clearinghouse’s expenditure

as a function of the possible realization of premium q and insurance m. The clearinghouse

has to finance the consumption of a measure of agents in the safe group and a measure of

agents in the risky group.

Second, the clearinghouse has to satisfy interim participation constraints for agents in

the safe group as well as for agents in the risky group. These constraints define a limit for

the marginal fund, they are as follows;

U(c1) ≥ U(w − qm− Φdf )

U(c2) + U(c3) ≥ U(w − qm− L− Φdf ) + U(w − q − L)

(3.6)

Third, the clearinghouse has incentive compatibility constraints for each agent in the risky

group:

c2 ≥ w − qm− L+m− Φdf − Φmrg

c3 ≥ w − qm− L
(3.7)

These constraints make sure that agents prefer the clearinghouse’s allocation. Finally,

a feasibility constraint on default and marginal call is formally required. However since

L > m the high state precisely is when the bond defaults but CDS seller, thus Φmrg < 0.

Φdf ≥ 0

Φmrg ≤ 0

Φdf,s ≥ 0

(3.8)

Thus, the program to solve requires to maximize expression (3.4) subject to (3.5), (3.6),

(3.7) and (3.8). The premium is given by (3.2); m and R are chosen from result in lemma (2),

and a logarithm function for U finally determines the size of L. The first order conditions
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are as follows;

c1 : (1− PC)U ′(c1) + ϕ1U ′(c1)− ϕ0(1− pR) = 0

c2 : pC(1− pS))U ′(c2) + ϕ2)U ′(c2) + ϕ3 − ϕ0p
C(1− pS) = 0

c3 : pCpSU ′(c3) + ϕ2U ′(c3) + ϕ4 − ϕ0p
CpS = 0

Φdf : ϕ0(η − 1) + ϕ1U ′(w − qm− Φdf ) + ϕ3 + ϕ5

+ϕ2U ′(w − qm− L− ϕdf ) = 0

Φmrg : ϕ0p
C(η − 1) + ϕ3 − ϕ6 = 0

where ϕ0 − ϕ6 are Lagrange multipliers associated to above constraints; non-binding con-

straints in (3.8) implies interior solution.

The following proposition shows the solution to the problem.

Proposition 3 (Solution). There are some Φ∗df > 0, Φ∗df,s > 0 and Φ∗mrg < 0, the unique

solution is given by

c∗1 = w − qm− Φ∗df

c∗2 = w − qm− L+m− Φ∗df − Φ∗mrg

c∗3 = w − qm− L+
Φ∗df (η − pCpS)

pCpS
+

Φ∗mrg(η − pS)

pS
+

Φ∗df,sη

pCpS

U ′(c∗1) = U ′(c∗3)η

U ′(c∗2) =
1− pSη−1

(1− pS)η−1
U ′(c∗3)

Proof. See annex for details �. I compute the consumption equivalent σ of moving the

allocation of resources to a clearing result Monnet and Nellen [85]. The value σ solves the

following expression:

U(c∗1) +
pC(1− pS)

(1− pC)
U(c∗2) +

pCpS

(1− pC)
U(c∗3) = U((w − qm)σ) +

pC(1− pS)

(1− pC)
U((w − qm− L+m)σ)

+
pCpS

(1− pC)
U((w − qm− L+R)σ)

The consumption equivalent shows the fraction σ− 1 of agent consumption pulled off from



87

moving to an economy with clearing. Under a specific parameterization, figure (3.2) shows σ

(y-axis) as a function of the resources remaining after applying collateral costs for different

levels of insurance amount m.

Figure 3.2: Parameterization: R = 0.1; L = 2; w = 2.5; pC = 0.6; pS = 0.6

Above figure suggests that mutualization practice improves social welfare by definition.

However, the effectiveness of the former critically lies on the availability of funds that

clearinghouse is able to collect from agents previously. The potential collectable dried up

either the collateral costs increases (a higher η−1) or available insurance (m) decreases; this

definitely have significant impact in the new social welfare. Under extreme conditions of

illiquidity, mutualization may worse initial welfare i.e σ < 1, figure (3.2) clearly shows the

former.

I showed in this section benefits of mutualization and the impact of limited commitment

on premium; premium always increases to clearing policy. Should it react differently to

mutualization or any collateral policy that prevents default? The usage of a simple model

as shown in this section will produce a trivial increase in the premium.
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3.4 Current Regulation

3.4.1 Actual calculation of mutual-guarantee default fund and collateral-

ization

In this section I make a short detail of how clearinghouses establish the size of collateraliza-

tion and size of the mutual-gurantee default fund actually. This is important for calibration

in the last section.

In the case of LCH, the first contribution to the mutual guarantee fund was April, 2002

for the securities and derivatives market and in March, 2013 for the bonds and repo market.

CLH establishes same underpinning in the calculation of the default fund for both markets.

Specifically, the fund needs to be sufficient to cover the potential failure of LCH’s largest

clearing member which is defined as the member whose risk exposure after deduction of

collateral is the highest. The size of each member’s contribution is based on the relative

weight of each member’s specific uncovered risk compared to the total sum of the uncovered

risk of all the member’s.

3.4.2 Basel III

As noticed by Augustin et al. [8], during the November 2010 Seoul Summit, leaders of the

G-20 countries endorsed Basel III (the new bank capital and liquidity regulations). The

foregoing as a response to a significant movements in banks’ balance sheets which could

not reflect a proper portfolio risk when operating CDS. In general, dealers are now subject

to demanding capital requirements for derivatives trading; Basel rules requires top-quality

capital equal to 6-7% of their risk weighted assets. These requirement is demanded in order

to ensure that these institutions do not take on excess leverage and consequenty become

insolvent. However, use of CDS can still create systematic risk because banks -usually major

buyers and sellers of CDS- are a key piece in the financial network.
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3.5 The Model

I closely follow model’s setup in Acharya and Bisin [1] concerning the moral hazard on in-

surer side; this feature has recently received attention in literature (Stephens and Thompson

[99], Thompson [101], Leitner [76]).

3.5.1 The Agents

In this section, I embed the provision of insurance in the model of two periods where a

seller provides insurance to risk-averse buyers. The seller of insurance will provide insurance

depending of the realization of the event of default of a third party; this can be generalized to

the occurrence of a bond default. Thus, the probability of occurrence of this event is denoted

by λ. The seller’ endowment is denoted as ωs, an additional subscript denotes the period.

The insurance contract must be paid at starting period 0 and the price per unit of requested

insurance is q, this known as the CDS price, henceforth premium. The promised payoff is

Rm, where m is the amount or notional of insurance; CDS seller, henceforth seller, may go

back on her word and only return Rm being R < 1. The seller maximizes a expected mean-

variance function defined as in Acharya and Bisin [1], i.e E[u(x)] ≡ E(x− f(x)) + f(E(x)).

Being f(x) = γ
2x

2 and γ defines the degree of risk-aversion attitude of the seller Formally,

sellers maximize the following function:

ΠS = max
m

ωs,0 +mq + λ(ωs,1 −Rm)− γ

2
λ(1− λ)

[
ω1 −Rm

]2
The CDS buyers, henceforth buyers, have a short position that needs to cover by purchasing

insurance. Specifically, each buyer previously engaged in lending the amount ωb to a third

party; with probability 1−λ the third party would be successful and it will deliver the return

r ≥ 1 on the loan, with probability λ the buyer gets nothing from the third party. The total

size of these buyers is 1
1−λ , same size for sellers. The matching when trading insurance is

completely random; in last section I relax this assumption and I define an equilibrium with

competition. Only sellers can default and this assumption is made by construction since the
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amount qm is payable up front31. In the case of defaulting, sellers undergo a non-pecuniary

penalty or deadweight loss as a function of the short positions defaulted upon. Formally, I

setup the timing and actions of participants in the insurance market as follows;

(T=0) Each buyer is randomly matched with a seller. They sign a contract specifying

amount of insurance, premium, recovery rate and collateral if any. The premium is

pay up front.

(T=1) Seller gets endowment ωs and return θ from long-run portfolio. With probability λ

the reference entity or bond defaults; seller makes a choice from set ι = {ND,D}.

Settlement and payoffs to each participants are made. Otherwise, with probability

1− λ no transfers are made.

3.5.2 Equilibrium in the Credit Default Swaps Market

In this section I setup the CDS market into the remaining sections of the model. I closely

follow the Acharya and Bisin [1]‘s model for this insurance market; this one is particularly

characterized by the excess of leverage recorded in balance sheets, this due to dearth of

transparency in short positions. This opacity was a key feature during the financial crisis

for this type of derivatives contract32. In the dawn of financial crisis, investors realized

that protection was quite lessening on CDS contracts. As a consequence of trading in non-

transparent markets, Acharya and Bisin [1] pointed out that exposures on these derivative

instruments flourished significantly and recklessly. Thus, clearing rises as a device that

brings transparency in order to reduce the counter-party risk and achieve ultimately the

efficient risk-sharing outcome. The need of protection against default risk makes a party

to enter a contract of derivatives. The seller of this derivative (the short-position’s holder)

promises to compensate or pay out in the occurrence of an specific event that produce a

loss to the buyer. This buyer (long-position’s holder) agrees to make periodical payments

to the seller of the protection, the price per quantity of purchased insurance is known as

31See Leung and Kwok [77] for the CDS pricing when buyers default with a exogenous hazard-rate
environment.

32It follows discussion regarding AIG.
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swap premium. Thus, the elements or parties involved in the CDS contract are: protection

buyer, protection seller, swap premium and the reference liability which is triggered when

the event materializes. The compensation payment is made at the end of some period

known as settlement period. Formally, the contract for this derivative is as follows:

Definition 3 (CDS contract). The CDS contract is formally denoted as C(R, q,m, κ, t)

where R is the payoff, q is the price per unit of insurance, m is the amount of insurance,

κ is the collateral size. t is the settlement period and it is equal to the last period. The

amount (q − κ)m must be payed at period 0.

The sellers promise buyers the amount Rm if the event occurs (the default of a third party);

otherwise, buyers do receive nothing from sellers; whatever state of nature happens buyers

pay out the total (swap) premium denoted as qm. The settlement period is the last one,

therefore CDs contract may be written shortly as C(R, q,m, κ).

3.5.3 The Trading in Opacity Markets

Sellers trade the CDS in non-transparent markets. As in Acharya and Bisin [1]‘s setup,

the determination of price’s assumption is because buyers do not observe the size of trades.

However, buyers anticipate correctly the likelihood of default and the size of the insurance

payout relatively to the promised payoff (R < 1). Thus, the equilibrium is characterized by

the terms of the contract C, this is by the payoff of the insurance, the cost of insurance or

premium, the trading position and the posting of collateral. In order to determine the terms

of this contract, the equilibrium must include the following: (i) buyers maximize an specific

expected utility by choosing the amount of insurance (m), (ii) The market of insurance

must clear, and (iii) In the case of default, seller honors his promise paying the recovery

rate established in the contract. In a latter section I relax this incorporating the restriction

that seller prorates her endowment (ωs) amongst long positions holders. i.e R = ωs
m if buyer

defaults.

Seller may default (D) or non-default (ND) in her set of decision, i.e. S = {D,ND}. The

collateral size (κ), as I will explain in the next section, has implications on the allocation
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achieved by the planner. On the other hand, buyers maximize their problem choosing m.

In the next section I formally present the buyers’ function to maximize.

3.5.4 The Strategic Default

In this section I show that in Acharya and Bisin [1]’s model, seller has incentives to default

if the event occurs. In the case seller default, there is a linear penalty whose value depends

upon short defaulted positions, this penalty per unit of amount of insurance is denoted as

ε. Precisely, the deadweight cost level plays a role in sellers’ decision when maximizing

her utility function. In order to formally clarify the payments, I explicitly show the profit

(ΠS
ND) when seller do not default,

ΠS
ND = θ + qm+ λ(ωs −m)− γ

2
λ(1− λ)

[
ω2 −m

]2
(3.9)

I replaced the initial endowment with a portfolio of size 1 that returns θ ∈ (−θ, θ) at the end

of last period; this modification only shows the benefits of novation and netting in order to

achieve the highest benefits of collateralization and mutualization. The payoff when seller

default (ΠS
D) is

ΠS
D = θ + qm− λ(ε+ κ)m− γ

2
λ(1− λ)

[
(ε+ κ

]2
As in Acharya and Bisin [1], above function shows that CDS sellers suffer a linear non-

pecuniary penalty as a function of the positions defaulted upon, not only given by the term

εm, but also by the size of collateral κ. As in Acharya and Bisin [1], I define the “risk

premium” as q =
[
∆λ+ λ

]
(R+ κ). The buyer has the following function to maximize:

ΠB = ω0 − qm+ (1− λ)ωb + λ(R+ κ)m− γ

2
λ(1− λ)

[
ωb − (R+ κ)m

]2
I assume r = 1 for above function. I below formally define the equilibrium,

Definition 4 (Equilibrium). The equilibrium in the insurance market is given by

(a) Each seller is randomly matched to a buyer and both agree to the terms in the contract
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C(R, q,m, κ).

(b) Each agent maximizes expected utility by choosing the trade position m and κ;

(c) Insurance market clears;

(d) In the case of default, seller fulfill her promise and pay out the recovery rate times the

amount of insurance. Thus, the function R is defined as follows,

R =


< 1− κ if default

1− κ Otherwise

Thus, each agent chooses the amount of insurance (m) respectively; formally, the demand

(b) and supply (s) of insurance are given by:

mb =
1

R+ κ

[
ωb −

q − λ(R+ κ)

γλ(1− λ)(R+ κ)

]

ms
ND = ωs +

q − λ
γλ(1− λ)

ms
D =

q − λ(ε+ κ)

γλ(1− λ)(ε+ κ)
(3.10)

Where premium q is as follows

q = (∆λ+ λ)R (3.11)

According to above problem to maximize, if ε is too low, then default shall prevail (see

Acharya and Bisin [1]). Below I define the shape of risk premium and size of counterparty

risk.

Proposition 4 (Risk premium). The risk premium is constant and equal to ∆λ = γ
2+N λ(1−

λ)
[∑N

i=0 ω
i
s − ωb

]
.

Proof. Above proposition is a result of market clearing condition for a non-defaulting choice

made by seller. N is the number of extra buyers per each buyer in the contract, at this

stage N = 0 �.
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Proposition 5 (Counterparty risk) When proposition (4) is evaluated at N > 0 and ωis ≡ ω

for all i = 0, ..., N then R0
q0
≥ RN

qN
. Being R0

q0
calculated when seller trades with just one

buyer; and RN
qN

calculated when seller trades with N extra buyers.

Proof. See appendix for details �. Above proposition verifies Acharya and Bisin [1]’s claim

of the existence of counterparty-risk externality. Given the definition of equilibrium (4),

the market clear condition when a defaulting choice is made by seller produces a positive

relation between the recovery rate and the deadweight loss. I formally define the recovery

rate in the following lemma;

Lemma 4 (The recovery rate determination). Since market clearing condition is part of

definition (4), the recovery rate is;

R ≡ R(∆λ, ε, κ) = β(∆λ)(ε+ κ)

being β(∆λ) ≡ λ±
√
λ+4(ωsγλ(1−λ)+∆λ)[∆λ+λ]

2(∆λ+λ)

Proof. See appendix for details �.

3.5.5 Inefficiency of Opacity Markets

The inefficiency of equilibrium follows Acharya and Bisin [1]’s discussion. This rises from

deadweight costs of insurer’s bankruptcy; any strategy to increase these costs would re-

cover the efficiency, for instance collateral. Since buyers are better off with some collateral

size, planner can improve upon the non-transparent markets when deadweight costs are not

negligible. Thus, as a result, the counter-party risk produces still too much demand for

insurance in equilibrium, this gives incentives to default ex-post. Figure (3.3a) shows the

quantity of insurance in equilibrium, buyers and seller utilities with a standard parametriza-

tion. Also, the realized payoff (R) and its price (q) are shown, all as a function of ε, the

deadweight loss.
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(a) Notional (b) Premium

(c) Recovery Rate (d) Ratio R/q

(e) Tier 1 ratio (f) Tier 1 common ratio

Figure 3.3: Acharya and Bisin (2014) main results

It is surprising that Tier ratios do not show a sharp increase of risk as additional buyers

take part of CDS trading (see figures 3.3e and 3.3f). In an empirical work, Chiaramonte
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and Casu [33] found that balance-sheet ratios as leverage and Tier 1 ratio were not among

the determinants of bank CDS spreads during the recent financial crisis even including its

aftermath. Authors mentioned that international banks -including US banks- that ran into

difficulty almost always had a tier 1 acceptable to regulatory standards. Thus, Chiaramonte

and Casu [33] cast doubts in relation to the reliability of the capital index Tier 1 as a

regulatory tool.

In the previous section I gave details of the solution with collateral bargaining; the

collateral reduces the amount of trading insurance and it may reach a non-default solution

(a default solution may exist when the deadweight loss is enough small). However, the

solution provides an amount of insurance that is still far from an efficient one. The former

is characterized by a low amount of insurance in equilibrium and non-default i.e R = 1.

In the next section I include the clearinghouse that contributes with mutualization and

novation upon trading of insurance.

3.5.6 Collateral requirements

In a bilateral arrangement, each buyer and seller sets the collateral requirements in the

contract. Since collateral needs to be posted up front, seller needs to liquidate some fraction

of its long-term portfolio. However, there is cost of η−1 units per each amount earmarked

to fulfill collateral requirements. Below formally

Definition 5 Collateral feasible set for seller. The set of feasible levels of collateral for the

seller in a bilateral arrangement is given by the following,

Kb =
{
κ | θη ≥ κm

}

Since the buyer solves its problem choosing the notional amount of insurance and knowing

rationally the recovery rate, then the function to maximize is flat respect to the collateral

requirement. I formally state the former in the following lemma,

Lemma 5 In the range κ ∈ [0, 1] then i) ∂Πb

∂κ = 0, ii) ∂ΠD
∂κ = −η−1 − λ − γλ(1 − λ) < 0

and iii) ∂ΠND
∂κ = −η−1 < 0. The corner solution is κ = 0.
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Thus, the collateral size under a bilateral agreement is equal to κ = 0.

3.5.7 A digression: heterogeneous agents

Given that a particular deadweight loss ε < ε∗ makes seller to default, then the conditional

fraction of defaulters is 100%. In other words, once the event occurs (default of the entity

reference) all CDS sellers - who promise to cover the loss - default. The model still can

generate a lower size of defaulters when it does include different deadweight losses across

sellers. I formally show this in the following corollary;

Corollary 5 (Heterogeneous agents). Let’s assume that there is a fraction z of CDS sellers

with ε ≥ ε∗ and 1−z with ε < ε∗ and the probability of default (λ) is the same in both groups.

Thus the conditional probability of default (given the default of the reference entity) is less

than one, i.e. (1− z) < 1. The number of defaulters is λ(1−z)
1−λ .

3.6 The Clearinghouse

The clearinghouse due to novation can observe the total size of trading; then, it can set a

collateral policy affecting the amount of insurance. The clearinghouse can therefore require

that seller posts collateral fraction κ and default fund φ in order to setup collateralization

and mutualization respectively. The difference is that φm will be distributed among all

buyers whose contract default; instead each κm is seized by the buyer in case the contract

is under default. In the following section, I state the benchmark or first best for allocation;

3.6.1 The efficient allocation

I start characterizing a benchmark allocation that represents an efficient one amid par-

ticipants in this fictional financial economy. I show this allocation involves a policy of

transparency of trade positions. Benchmark. Acharya and Bisin [1] states that if the total

amount of insurance and endowments were observable, a planner could impose a pricing

rule on q(m,ω1,∆λ) to be (i) [∆λ + λ] whenever there is no default, and (ii) [∆λ + λ]ωbm

when there is default. When substituting the price rule into CDS seller’s maximization, the
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incentives to default vanishes. Buyers continue to purchase insurance in a competitive way

taking the price as given. The result will be no supply of insurance in equilibrium beyond

the non-default insurance level.

Proposition 6 (Efficient allocation). Under the following price rule (i) q = [∆λ + λ]

whenever there is no default, and (ii) q = [∆λ + λ]ωbm when there is default, the efficient

allocation is achieved.

Proof. An examination of first conditions on expression including the price rule shows the

efficient level that resembles the insurance amount when there is no default. � However,

this allocation would require information about the risk premium and possibly endowments.

Therefore, any allocation under limited information represents a constrained Pareto opti-

mum. Clearinghouse due to novation observes the size of trading and it will collect any

funds for mutualization of losses. Since the insurance market is characterized by strategic

default, the clearinghouse needs to collect any funds to protect buyers from default; there-

fore let κ∗ denote a minimal fraction of trading (collateral) which guarantees that seller has

no incentive to default when holding the amount of insurance m∗.

Also, seller’s decision on defaulting is based on the collateral size that buyer chose; the

observation is that the payoff R and price q is affected by size of collateral; buyer knows

that imposing a collateral may prompt seller to behave properly into terms of the contract.

However, they do not internalize the effect of collateral on q; thus, buyers will end up

requesting a higher size of collateral in equilibrium. This would not be harmful at first

sight since collateral plays the same role as the deadweight cost ε (see Acharya and Bisin

[1]); however, if seller faces a low endowment, the provision of insurance will be affected

and therefore ultimately affecting the payoffs. I will explore this possibility at the end of

the next section.

Each CDS seller compromises in a two-period investment that pays θ which is uniformly

distributed with mean equal to θ. I assume that clearinghouse implements marginal calls

(φ) on each individual i when seller defaults. Thus, the participation constraint for each
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individual (i) is as follows:

αq(R)m(R) + θ(i)− λφ(i) ≥ c

By aggregating over all individuals and then subtracting previous restriction, I have the

following result φ(i) = θ(i)−θ
λ . Finally, the participation constraint is:

αq(R)m(R) + θ ≥ c (3.12)

In the next two sections I present two clearing procedures: i) collateral storage and ii)

mutualization. The first one shows the primitive role of clearinghouses as storage facility of

collateral; mutualization involves loss-sharing among all participants in the clearinghouse.

The latter entails to ask for default funds in order to financing expected losses due to

defaulting.

3.6.2 Collateral Storage Facility

In this section I describe the collateral policy and market equilibrium when the clearing-

house’s main role is to provide a facility for collateral storage33. The amount of collateral,

as a percentage of the notional value, is collected from each seller and posted as a credit to

each respective buyer; in the event of default of the reference asset the collateral is retained

by buyer and rest of settlement is enforced. As shown in a previous section, a bilateral

arrangement sets collateral level equal to zero due to rising costs of collateral postings, and

thus the equilibrium is characterized by a low recovery rate in equilibrium. In a clearing

setup, since there is a limited commitment on seller side, clearinghouses have to pledge col-

lateral to prevent strategic default. Therefore, the clearinghouse is able to collect collateral

offering two contracts to buyers and sellers; one contract making possible a discourage to

default but other setting an insurance when default. I follow closely Koeppl [68]’s char-

acterization for these two contracts. Both contracts in the clearing setup deliver a weakly

33In the literature, as a storage facility. clearinghouse behaves as a third party that has a technology that
prevents a defaulter from keeping the collateral while, at the same time, allowing the non-defaulter to keep
the defaulting agent’s collateral (see Monnet and Nellen [85]).
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Pareto-improving equilibrium. Along this section I state some propositions that character-

ize the equilibrium under clearing; more significantly I show the effect of the implementation

of the storage-facility framework on CDS premium.

The program (P1) is modified in order to show that collateralized fraction (κ) of the

notional amount would be lost if seller defaults. Therefore, the seller defaults if the recovery

rate and the fraction of the notional which is collateralized is less than 1, i.e. R + κ < 1.

The recovery rate must be properly adjusted to reflect the transfer of collateral if there is

a default; the expression that defines the premium is also adjusted accordingly. The risk

premium (∆λ) is determined as before with no change. The participation constraint for

each seller (3.12) now includes the value of the collateral. The program is as follows,

L = max
κ

{(
max
ms

(ΠS
ND , ΠS

D)
)

max
mb

(ΠB)
}

subject to m ≡ ms = mb

αqm+ θ − κm ≥ c

1 ≥ R+ κ

q = (∆λ+ λ)(R+ κ)

1 ≥ κ ≥ 0

(P1)

It must be noticed that clearinghouses choose collateral in relation to the size of notional,

also they cannot control agents’ actions to maximize their benefits. Both seller and buyer

maximize their profit or utility functions choosing the level of insurance for trading; the

equilibrium in definition 1 requires the market clearing condition. Functions ΠB, ΠS
D and

ΠS
ND are as follows;

ΠS
D = θ +mq − λ(ε+ κ)m− γ

2
λ(1− λ)

[
(ε+ κ)m

]2 − c
ΠS
ND = θ +mq + λ(ωs −m)− γ

2
λ(1− λ)

[
ωs −m

]2 − c
ΠB = θ0 −mq + (1− λ)ωb + λ(R+ κ)m− γ

2
λ(1− λ)

[
ωb − (R+ κ)m

]2
Below I define two contracts when clearinghouse’s main role is to offer a storage facility of
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collateral.

Definition 6 (The Incentive contract). The clearinghouse sets a collateral policy where

R+ κ = 1 and θ − c+ (αq − κ)m ≥ 0 for some buyer and seller.

Koeppl [68] defines an incentive contract aiming to reduce the probability of default in an

exchange transaction; instead, the probability of default is equal to zero on above setup.

The main role of collateral is a device that clearinghouses can use in order to reduce (at

some extent in some cases) the probability of default. In the bilateral case, the seller would

like to commit to not defaulting but cannot find an arrangement to do it since deadweight

losses are badly low and counterparty risk externality is pervasive. Furthermore, collateral

requirement is costly since it needs to be posted up-front, thus, κ = 0 as set forth by

Lemma 5. The buyer may ask for collateral given its participation constraint, however the

recovery rate is rationally anticipated in equilibrium (see Lemma 5) and therefore there is

no incentive to push for a collateral level beyond κ > 0.

Definition 7 (The Insurance contract). The clearinghouse sets a collateral policy where

R+ κ < 1 and θ − c+ (αq − κ)m ≥ 0 for some buyer and seller.

Also Koeppl [68] defines an insurance contract that extracts surplus from seller who de-

faults in an exchange market; instead, in this setup the ratio R
q is constant and therefore,

buyer cannot extract any surplus from seller. In conclusion, insurance contract results in a

collateral level κ = 0

Corollary 6 The risk premium is constant and given by expression in (Proposition 4)

under a storage facility policy.

Proof. Since risk premium is a consequence of the risk that is aggregate in nature and cannot

be fully diversified away then the risk premium is constant, see Acharya and Bisin [1] and

appendix for details �. In the proposition below I define the existence of two contracts in

the range of deadweight losses values (ε) per notional amount of insurance.

Proposition 7 (Existence of the Incentive contract). There are two contracts: Non-defaulting
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(henceforth Incentive) and defaulting contracts for ε ∈ [ε, ε∗]. Being ε∗ the level of coun-

terparty risk that makes CDS seller to do not default ex-ante. The collateral fraction (κ)

is chosen from set K = {κ := min{k1, k2}} for all ε in the range, where k1 = ςε and

k2 = 1 − R(ε). There is an range [ε0, ε∗] where both contracts exist. For deadweight losses

less than ε0, and low enough (θ − c) only an insurance contract exist.

Proof. A positive correlation between deadweight loss and collateral (ς > 0), when the

participation constraint is binding, ensures the existence of an incentive contract; In figure

(3.4b) there is an range [ε0, ε∗] where both contracts exist. The shaded areas in 3.4a and 3.4b

represent insurance contracts that are constrained to reach a non-default result due to the

participation constraint (see propositions 8 and 7). When ε ∈ [ε, ε0] an incentive contract

does not exist for low values of (θ − c) (see figure 3.4d). See details in the appendix. �.

Collateralization in this model has the same effect as an increase in the deadweight loss

size. An increase of this parameter produces an increase in the premium and recovery rate.

As I show in the bilateral case, unless collateral size does make the seller to not default then

social utility does not increase. Thus, the clearinghouse should achieve a size of deadweight

loss i.e. ε + κ that makes seller to not default; in other words the level of collateral must

lay on the line R+ κ = 1 and clearing budget must be slack as part of the solution. In the

following lines I study cases when collateral is not enough to keep the seller off defaulting.

There is a condition that guarantee a corner solution for incentive contracts over the

range for ε < ε0; figures (3.4c) and (3.4d) depict the condition ε ≤ ς−1 and the existence

of incentive contracts. The clearing budget line (red) and the frontier R + κ = 1 (black)

which implicitly sets the range for collateral i.e. κ ∈ (0, 1). The gray area shows the

set for collateralization in an insurance contract. The following proposition shows the

determination of the collateral size under these two contracts.
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(a) ς < 0 (b) ς > 0

(c) ς < 0; ε = ς−1 (d) ς < 0; ε > ς−1

Figure 3.4: Incentive and Insurance clearinghouse contracts

Corollary 7 (Collateral level for insurance contract. For any ε that fulfills condition

k1(ε) < k2(ε) the collateral fraction for an insurance contract is in set K1(ε) =
{
κ ∈

[0, κ̃) | κ̃ = ςε & k1(ε) < k2(ε)
}

The collateral in this contract is bounded by the clearing budget constraint when is binding.

Given result in lemma (5), any collateral size do not change utility function under this

contract; this could be understood as a range of collateral that gives same solution for the

problem. However, particularly for this model, I assume κ = 0 as a unique solution for sake

of simplicity. On the other hand, collateral size would be different from zero in a default
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region under an incentive contract.

Corollary 8 (Collateral level for incentive contract). For any ε that fulfills condition

k1(ε) ≥ k2(ε) , the collateral fraction for an incentive contract is equal to the singleton

K2 =
{
κ = k2 | k1(ε) ≥ k2(ε)

}
.

The collateral in this contract fulfills the condition R + κ = 1. In other words, there are

enough resources in the clearing budget constraint for implementing an incentive contract.

Proposition 8 (Level of collateral in an incentive contract). The incentive contract may

give different levels of collateral depending of the level of deadweight loss ε when ε ≤ ς−1; if

ς > 0 the level of collateral shall be low, otherwise the level of collateral shall be large.

Proof. Condition ε ≤ ς−1; if ς > 0 is sufficient to show that there is an incentive contract.

Since ς < 0↔ ε < ε0 incentive to not default needs high collateralization. When ς > 0 the

recovery rate reaches the highest value through range of deadweight losses, this allows to

have a lower level of collateralization (see details in the appendix) �.

Corollary 9 (Unobservable type of contract). If the deadweight loss level of CDS seller is

unobservable, an outside observer cannot necessarily infer the type of the contract from the

collateral level alone when ε ∈ [ε0, ε∗]. However, if ε ∈ [ε, ε0) low and high levels of collateral

are related to insurance and incentive contracts respectively.

Insurance and incentive contracts give different levels of collateral; small enough deadweight

losses allows to associate incentive contracts with higher levels of collateral. For a low level

(θ−c) and small ε, collateral levels are low and related to insurance contracts. On the other

hand, low level of (θ − c) and higher ε < ε∗ are related to more insurance than incentives

contracts. The following corollary shows equilibrium for a corner solution κ = 1; below

conditions excludes the case for κ = 0 since by definition an incentive contract must be

offered with κ ∈ (0, 1].

Corollary 10 (Corner equilibrium for incentive contracts). If ς < 0 and ε = ς−1 there is
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an incentive contract with collateral level κ = 1. If ς < 0 and ε > ς−1 there is no incentive

contract.

By definition, a incentive contract delivers the condition R + κ = 1. The binding clearing

budget constraint for a corner solution is 1 = ςε. Thus, as explained in proof of proposition

(8) the lowest possible level of deadweight loss in order to guarantee an incentive contract

is ε = ς−1 .

Below figure (3.5) shows the recovery rate and CDS premium affected by the collateral

policy implemented by the clearinghouse. The incentive contract shows that for a not small

level of deadweight loss, there is some collateral level κ∗ that makes the seller to not default.

The existence of κ∗ is a possibility since the clearing budget constraint must be fulfilled.

Depending of the level of deadweight loss, there would be different collateral requirements

implemented by an incentive contract. Here two points to remark: i) collateral requirement

makes recovery rate (R) and premium (q) increase; and ii) Ratio (R + κ)/q is constant,

this is a consequence of a constant risk premium (∆λ). Although risk is constant, there are

more contracts under non-defaulting situation since collateral size works in the same way

as an increase of deadweight losses.

Figure 3.5: Recovery rate and CDS premium non-defaulting levels when ε1 < ε2 < ε3 ≈ ε∗

Also, figure (3.5) shows that collateral size is correlated to recovery rate levels; lower



106

deadweight losses i.e. lower R requires higher amount of collateral for incentive contracts

even for all values of deadweight losses. However, if type of contracts are pooled and even

not observable yet, as corollary (9) claims, then collateral size is not informative about the

amount of recovery rate.

Figure (3.6) shows that CDS notional is affected by the clearinghouse’s collateral policy.

Since R and q increases due to collateralization then notional amount of insurance decreases.

Collateral requirements negatively affects the demand of insurance (mb) through term R+

k ≡ β(ε + κ); this term in particular offsets the effect of insurance shortage by seller and

optimally isolate a detrimental in utils terms caused by the effect of the variance in the

utility function. On the other hand, as I early noticed, collateral requirement for seller

affects insurance supply in the same way as an increase in deadweight losses do.

Figure 3.6: Notional and Non-defaulting ex-post utils when ε1 < ε2 < ε3 ≈ ε∗

Also, above figure shows the seller’s ex-post utility as a function of collateral level. This

function assess the ex-post decision of choosing non-defaulting and ex-ante determination

of recovery rate (R). As long recovery rate is equal to 1 − κ then amount of insurance

reaches the first best. Higher deadweight losses means higher recovery rates and therefore

clearinghouse will require less collateral for delivering a non-defaulting choice.

Koeppl [68] states that insurance contract allows to extracts surplus from (a exchange)
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trade transaction and thus, in a moral hazard environment, seller can seize benefits from

other activities that make the probability of default on the main event higher. The buyer

can charge a higher price with a minimum collateral requirement even though allowing the

counterparty risk to increase. In above setup, in a credit default swap market, a measure

of surplus extraction is the ratio R
q ; a seller can have a good deal if this ratio is higher after

implementation of policies. However, in above setup the ratio is constant. I formalice this

in the following proposition.

Proposition 9 (Surplus extraction). In the credit-default-swap market allocation defined

by equilibrium (4), the ratio R
q is constant and equal to Rstge+κ

qstge ; being Rstge and qstge the

recovery rate and CDS premium when clearinghouse is acting as a collateral storage facility

respectively.

Proof. Since fraction R
q ≡

1
δλ+λ then by proposition (4) ∆λ is constant�. Above proposition

clearly states that there is no gain in requesting collateral, this is not surprising due to lemma

5. However, there are less contracts that result in default. In Koeppl [68]’s terms: there are

more significant gains in incentive than in insurance contracts. The new allocation proves

to be weakly-Pareto improved. In the following lines, I closely study the effects of binding

participation constraints on all variables, particularly on notional and CDS premium. This

analysis is motivated by Acharya and Bisin [1] which makes an awareness of low levels of

insurance even beyond the first best.

Proposition 10 Solution There is unicity in the solution for the program (P1) when R(κ)+

κ = 1 if βε ≤ 1 and (β − 1) > 0 where β ≡ λ+
√
λ2+4w(B)γλ(1−λ)[∆λ+λ]

2[∆λ+λ]

Proof. Since non-default choice is defined by definition (2) and ΠS
ND > ΠS

D then the fixed

point R(κ) + κ = 1 is the solution. �

3.6.3 Mutualization

In this section, I setup the clearinghouse’s problem. The clearinghouse needs to call for

a default fund (φs) to sellers and a marginal fund (φb) to buyers34. In other words, each

34I assume for sake of simplicity that clearinghouse contribution is zero; thus the marginal is applied
according to the waterfall tranche ordering and rules (see Fund [52], Exchange [51], LCHCLEARNET [75]).
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participant must now contribute to a fund that is proportional to the total value of the

liability. Thus, the amount of resources collected from sellers is 1
1−λφ

s; instead, resources

collected from buyers are equivalent to φb since the normalized unit of agents that do not

see the event to occur is 1. Before stating the problem to maximize I define the equilibrium

when the clearinghouse sets a mutualization policy.

Definition 8 (Equilibrium). The equilibrium in the insurance market is given by

(a) Each seller is randomly matched to a buyer and both agree to the terms in the contract

C(R, q,m, κ) as in 4

(b) Each agent maximizes expected utility by choosing the trade position m and κ;

(c) Insurance market clears;

(d) In the case of default, seller fulfill her promise and pay out the recovery rate times the

amount of insurance. Thus, the function R is defined as follows,

R =


< 1− κ if default

1− κ Otherwise

(e) In the case of full coverage, buyer receives the total amount of the notional. Thus,

buyers receive the following per one unit of insurance,

Φ(ϕ) =


R+ κ+ ϕ = 1 full coverage

R+ κ+ ϕ < 1 Otherwise

Here some points to discuss after definition of equilibrium. Seller always makes a default

choice ex-ante comparing her utility to the case when R+κ = 1. When clearinghouse applies

any mutualization policy for fully coverage, the seller responds providing m = ωs
R+κ . Seller

can realize a fully coverage scenario when clearinghouse is fully funded by either guarantee

default funds or a visible own clearinghouse’s equity. Whether resources are not enough

for a fully coverage, then sellers provide md(ε) as defined before. In any case or scenario
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of clearinghouse’s response to R+ κ < 1, seller always will get ΠD as utility and insurance

provided will be equal to m(R + κ) = ωs. The visible difference with the scenario without

mutualization is that premium through risk premium (∆λ) will be affected by resources

coming from clearinghouse.

Formally, I setup the following clearinghouse’s problem;

L = max
φs,φb

{(
max
ms

(ΠS
ND , ΠS

D)
)

max
mb

(ΠB)
}

subject to
1

1− λ
φs + φb =

λ

1− λ
ϕ

m ≡ ms = md

αqm+ θ − φsm ≥ c

1 ≥ R+ ϕ

q = (∆λ+ λ)R

1 ≥ φs ≥ 0

1 ≥ φb ≥ 0

(P2)

Where functions ΠB and ΠS
D are as follows;

ΠS
D = θ +mq − λεm− γ

2
λ(1− λ)

[
εm
]2 − φsm− c

ΠB = θ0 −mq + (1− λ)(ωb − φbm) + λ(R+ ϕ)m− γ

2
λ(1− λ)

[
ωb − (φb +R+ ϕ)m

]2
Expression ΠS

ND is the same as in (3.9). The first restriction in the program (P2) refers

to the re-distribution of resources to buyers who see the CDS contract in default; φsm is the

default fund posted by the seller, whereas φb comes from buyers who do not experienced the

trigger of the event. The following restriction is the market clearing condition. The third

restriction is the constraint of resources that are placed into the clearinghouse, as usual in

clearing all calls must be collected in cash at period 0. The following constraints are related

to non-negative and bounding conditions for any kind of corner solution. In order to solve

the program (P2), the solution involves to fix values for φs, φb and ϕ and then finding the

level of insurance m that maximizes the embedded function that appears on the objective
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function for the program (P2). Consequently, the optimal insurance level for buyers is as

follows;

mb =
1

φb +R+ ϕ

[
ωb −

q + (1− λ)φb − λ(R+ ϕ)

γλ(1− λ)(φb +R+ ϕ)

]

the optimal insurance level for sellers when default (ms,d) and not default (ms,nd) respec-

tively are as follows,

ms,d =
q − λε− φs + %(αq − φs)

γλ(1− λ)ε2

ms,nd =

[
q − λR− φs + %(αq − φs)

γλ(1− λ)R
+ ωs

]
1

R

Being % the lagrange multiplier associated to the participation constraint.

∂R

∂φs
=

Ω0(ε)− 2(φb +R+ ϕ)
[
(∆λ+ λ)R(1 + %α)− λε− φs(1 + %)

]
λ−1 + (φb +R+ ϕ)2(1 + %)

Ω1(ε) + 2(φb +R+ ϕ)
[
(∆λ+ λ)R(1 + %α)− λε− φs(1 + %)

]
+ (φb +R+ ϕ)2(∆λ+ λ)(1 + %α)

Where Ω0(ε) = (1 + ωbγ(1 − λ))ε2 and Ω1(ε) = (∆λ − ωbγλ(1 − λ))ε2. Since the premium

depends on R I state a relation between R and φs in the clearing condition. I analyze this

when both Ω0,1(ε) −−→
ε→0

0. I will show in next lines a corner solution is part of the solution

for the program (P2).

Proposition 11 (Corner solution). Solution of program (P2) delivers the optimal result

φb = 0 when clearing budget constraint is slack.

Proof. See appendix for details �.

In order to show that recovery rate is higher in a mutualization policy than in a bilateral

agreement; first at all, I show the condition that marginal change of recovery rate may be

positive or negative. Then, I will show that response of default-fund has the same sign as

the marginal change. This will prove that recovery rate is increasing in ε. Finally, it is

sufficient to show that slope (β(∆λ)) is increasing after ε > ε0.

Claim 1 (Marginal Change of Recovery Rate). The marginal change to 1 unit of variation
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in default-fund call φs on the recovery rate R is positive when

Ω0(ε)

βε+ φs

λ

+ βε+
φs

λ
− 2[(∆λ+ λ)βε− λε− φs]λ̃ > 0

being λ̃ ≡ 1−2λ
λ(1−λ) .

Notice the following result, Claim 1 shows that impact of default fund calls on recovery rate

depends on the risk premium. In the following lemma I describe the determination of this

variable:

Lemma 6 (Risk Premium under clearinghouse policy). The risk premium is determined

by the following expression

∆λ =
λ(R̃2 − R̃3) + ((N + 1)ωsR̃− ωb)γλ(1− λ)R̃+ (1 + %)φs∗

R̃3 + R̃(1 + %α)

Where R ≥ R̃ ≡ 1− ϕ∗

Proof. See appendix for details �.

The following lemma shows the sign of ∂R
∂φs

Claim 2 (Sign of ∂R
∂φs ). Since ∂R

∂ε > 0 then sign
(
∂φs

∂ε

)
= sign

(
∂R
∂φs

)
In the following proposition I show that recovery rate is higher in mutualization.

Proposition 12 (Recovery rate under mutualization). Given immediate above result and

continuity of the function, then the recovery rate is higher in mutualization than in bilateral

agreements under the sufficient condition:

∂β

∂∆λ
< 0

Proof. Above condition is hold for each ε > ε∗; see appendix for details �.
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Figure 3.7: CDS premium and Recovery Rate

Figure (3.7) shows the effect of mutualization on recovery rate and premium. Low values

of ε implies high levels of notional; this feature makes the clearing budget constraint to be

tight. As notional values decreases, more resources are collected for mutualizing losses.

These resources stem from all CDS sellers and equal to (1− λ)−1φsm. Notice that default-

fund calls decrease for any case when R+ϕ = 1, an indication that full insurance is possible.

Precisely, figure (3.8) shows that variable R/q increases in the range when R+ ϕ < 1; this

means that risk premium (∆λ) decreases through that range. Since there are more resources

coming from mutualization, the gap between available and demanded funds shrinks. This

feature under a mutualization policy makes the premium decreases. Figure (3.7) shows that

premium under mutualization is lower in comparison to the pricing in bilateral case; even

the gap between them is larger when R + ϕ → 1. Full insurance allows to dispense with

resources since recovery rate increases. This have an immediate effect on risk premium and

consequently on our variable of interest: the premium. Figure (3.7) also shows that under

fully coverage the premium is not significantly lower than in a bilateral case. Literature

agrees that clearing practices incentive agents to fulfill and improve to some extend the

terms of contracts whenever default happens. This effect is measured by the increase of the

recovery rate in the model. However, there is an effect that decreases the price and it is

measured by the existence of resources collected by all participants from the market.
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Figure 3.8: Default fund and ratio R
q

Figure (3.9) shows that notional amount of insurance drops when mutualization takes

place as clearing policy. This effect is similar to the one with a collateralization policy.

Mutualization improves the ex-ante social welfare. Once there are no need to collect more

resources since fully coverage is achieved, welfare decreases. However, the welfare level is

higher under mutualization than in a bilateral case.

Figure 3.9: Notional and Social Welfare
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Figure (3.10) shows that effective insurance, measured by (R + ϕ)m, increases in com-

parison to the bilateral case. Also, this amount of insurance gets smaller when full coverage

is achieved.

Figure 3.10: Effective insurance

3.7 Numerical exercise

Two illustrative exercises are performed in this section in order to show the effects of clearing

policies. Figure (3.11) shows the financial structure for this exercise. The parameter N

refers to extra buyers, this controls the leverage position of each seller. After the great

recession, these positions are believed to be suitable due to regulation; thus N = 0. In the

model there is I sellers; taking account the foregoing assumptions, there are equal number

of sellers and buyers. As exposed before, a fraction λ of sellers default given a particular

deadweight-loss parameter.

The first exercise shows the distribution of the premium produced by the effect of dif-

ferent endowments for sellers across clearinghouses. Size of endowments in the theoretical

model reflects degree of limited liability since portfolio is kept with no variation. A quan-

titative measure of limited liabilities between sellers trading in different clearinghouses for
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the same instrument will open a gap in premiums. The exercise considers optimal collateral

and mutualization policies.

Figure 3.11: Clearing with N × I Buyers and I Sellers

The second exercise shows the size of default fund and collateral as fraction of notional

when the probability of defaults increases. The third and four exercises shows the con-

ditions for the existence of an interior solution when waterfall rules are applied or not.

The fifth exercise focuses in matching the empirical difference of premiums between two

clearinghouses (LCH versus CME) using default-fund calls. The last exercise analyzes the

impact on premium when the total amount of guarantee-default fund increases significantly;

a likely event that clearinghouses will take in the medium-run.

3.7.1 Clearing contracts with different endowments

In this section I use the model developed in past sections to simulate the impact of clearing-

house policy (collateralization and mutualization) on the premium. Table (3.1) shows the

value of the parameters. The probability of occurrence of the event (λ) is fixed to 0.3. The

risk aversion parameter (γ) is conservative and equal to one. The parameter α represents
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the fraction of the premium seized by clearinghouse; it is fixed to 0.2. The possible loss

and endowment (ωb) in the last period for the buyer is equal to 15. The average return of

portfolio (θ) is equal to 0.88 whereas fixed costs of participation in clearing (c) is equal to

1. The endowment received in last period for seller (ωs) is stochastic with average value

equal to 10.

Parameters Value Definition

λ 0.3 Probability of the event
γ 1.0 Risk aversion parameter
ωs 10 CDS seller’s endowment average
σ2
s 0.50 Variance of ωs
ωb 15 CDS buyer’s loss
α 0.2 Limited liability parameter

θ 0.88 CDS seller’s Portfolio
c 1.00 Participation costs
N 0.00 Extra buyers

Table 3.1: Parameterization

The only random variable in the model is the CDS seller’s endowment ωs; Thus, i.i.d

ωs ∼ N (ωs, σ
2
s). I show the distribution of CDS premium (q) for clearing policies in com-

parison to bilateral ones for a given fixed value of deadweight loss (ε). Specifically, I analyze

the CDS premium when seller has the incentive of defaulting; this choice is governed by

the size of deadweight losses. Thus, the analysis is based on the range ε ∈ (ε0, ε∗). Under

the parameterization shows in table (3.1) the level of ε∗ is 0.52. Figure (3.12a) shows that

if deadweight loss is small there is no incentive contract and only an insurance contract

which optimal collateral level (κ∗) is equal to zero. Figure (3.12b) shows a combination

of insurance and incentive contracts; a higher CDS premium reveals an incentive contract

that makes seller to not default. There is still a fraction of contracts that are constrained

by funds and only an insurance contract is offered. Figures (3.12c) and (3.12d) show the

prevalence of incentive contracts; all prices are higher than before and those levels represent

the first best allocation.
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(a) ε = 0.20 (b) ε = 0.30

(c) ε = 0.35 (d) ε = 0.42

Figure 3.12: CDS premium distribution when clearinghouse performs as collateral storage
facility

In the following figure I show the distribution of the CDS premium when mutualization

is the policy implemented by clearinghouse when ε = 0.42. As discussed in section (2), the

CDS premium is lower under mutualization.
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(a) ε = 0.20 (b) ε = 0.30

(c) ε = 0.35 (d) ε = 0.42

Figure 3.13: CDS premium distribution when clearinghouse performs mutualization

Thus, economies implementing collateralization are characterized by higher premium if

the deadweight losses are high enough; the threshold (ε̃), which indicates that a incentive

contract is received, will be determined by the size of resources in the clearing budget. In

contrast, economies implementing mutualization experience a lower premium over all range

of deadweight losses.

3.7.2 Size of seller’s default fund and collateral

Figure (3.14) depicts the effect of varying members’ probability of default λ while main-

taining other parameters constant on mutualization. The amount of resources is given

relative to the notional amount i.e fractions κ and φs. As the figure suggests, as the risk
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of defaulting increases, collateral size increases in more basic points in comparison to the

default fund. Figure (3.14b) shows the impact in the premium whether collateralization

and mutualization practices are applied.

(a) Size of default fund (b) Change in premium

Figure 3.14: Size of default fund and collateral

In quantitatively terms, figure (3.14b) shows that collateralization increases the pre-

mium; whereas mutualization decreases it. Given the parameterization shown in table (3.1)

mutualization has a larger effect in absolute terms.

3.7.3 Optimal default-fund and marginal call

In this section I show the optimal default-fund and marginal call when the clearing budget is

slack. Due to the characteristics of the problem I perform a grid search in order to find the

solution to program (P2). According to waterfall rules, the resources coming form seller’s

guarantee default-fund must be the first shelter; once resources are not enough buyer’s

guarantee default funds (φs) and any marginal call (φb) should be used. However I analyze

the change in the premium when rules do not exist. If the clearing budget or restriction is

slack then a corner solution is achieved (see figure 3.15). A slack restriction is constructed

appropriately increasing the portfolio size (θs).
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Figure 3.15: Welfare; clearing budget slack

Figure 3.16: Welfare; clearing budget binds

Figure 3.17: Welfare; clearing budget binds when λ = 0.3 and ωb = 15

If the clearing budget is almost tight still exists a corner solution (see figure 3.16);

however, when the probability of default increases to λ = 0.3 and buyer endowment also
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increases to ωb = 15 an interior solution is achieved. Thus, more cases of default and

resources to hedge demand more resources to collect from market participants. The table

(3.2) shows the change in premium obtained between a mutualization policy (qm) and a

bilateral agreement (qb) for cases depicted in figure (3.15), (3.16) and (3.17) respectively.

Clearing budget Parameterization Solution qm − qb

Slack λ = 0.2 ωb = 14 corner -0.041
Almost binding λ = 0.2 ωb = 14 corner -0.006
Almost binding λ = 0.3 ωb = 15 interior -0.061

Table 3.2: Change in premium

The higher difference is 6 bsp. for the case when the clearing budget is almost binding,

the probability of default is higher and the loss to hedge is large.

3.7.4 Waterfall Rules

Fund [52] states that clearinghouses must follows an ordering in the usage of resources when

participants default (a.k.a. a waterfall rule). In this section, I consider that clearinghouse

equity is zero and collateralization is not implemented; therefore, clearinghouse first layer of

protection is the guarantee-default fund of sellers and the second is a marginal call to buyers

for whom the event did not occur. Usually, there would be marginal calls to non-defaulting

sellers, however, for sake of simplicity, I keep this call equal to zero. The waterfall rule

says that when resources are exhausted after first-step collection on sellers the next layer is

implemented, this layer is precisely the marginal call on buyers which is net-term defined.

In other words, the guarantee-default fund is entirely offset for buyers who see their seller

defaulting. These buyers will be covered with funds from sellers and remaining “survivors”

buyers through clearinghouse.
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Figure 3.18: Welfare when clearing budget is binding

Figure 3.18 shows that when clearing budget is totally binding an interior solution is

achieved.

3.7.5 Matching Data

I estimate the model in section (3.5) using a Method of Simulated Moments (MSM). The

procedure requires a numerical simulation for shaping a theoretical premium distribution

that will be then compared to its empirical one. The method is not cumbersome since only

two endowments need to be simulated from a known distribution. The ad-hoc feature of

the model then makes tractable the usage of this method35. I explained the procedure in

the following lines.

The parameters of the model are denote by ψ ∈ Ψ ⊂ Rs; the endowments are gathered

in the vector χ ∈ R2. The model described in section (3.5) produces a level of premium;

this price is the result of the trading between sellers and buyers and clearinghouse policies

35See Gourinchas and Parker [54] for comparison with cases where the method faces enormous computa-
tional challenges.
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given a set of parameters ψ. Thus, the unconditional expectation of log-premium is;

ln q(ψ) ≡ E
[

ln q(χ;ψ|ψ)
]

=

∫
ln q(χ, ψ)dF (χ;ψ)

I approximate the theoretical unconditional expectation using a monte-carlo procedure;

endowments are generated from a sequence of random variables {χ̂}l=Ll=1 that are identically

independently distributed. Then the unconditional expectation from the model ln q(ψ) is

then simulated by

ln q̂(ψ) ≡ 1

L

L∑
l=1

ln q̂(χl, ψ)

where convergence occurs as L→∞. Thus, for any parameter vector ψ ∈ Ψ, the theoretical

expectation can be replaced with its simulated part. Since I am interested in explain

differences in premium across clearinghouses the following expression needs to be close to

zero enough;

g
(

ln
q1(ψ̂1)

q2(ψ2)

)
= ln

q1

q2
− ln

q̂1(ψ̂1)

q̂2(ψ2)

Finally, the MSM requires to minimize the following expression over ψ

G = g
(

ln
q1(ψ̂1)

q2(ψ2)

)′
Wgg

(
ln
q1(ψ̂1)

q2(ψ2)

)

Since our simple approach requires to match only one moment (mean) and consequently the

weighting matrix is equal to W = 1; the estimation procedure is equivalent to minimizing

the sum of squared residuals;

G =

(
ln
q1

q2
− ln

q̂1(ψ̂1)

q̂2(ψ2)

)2

(3.13)

The optimum is found by minimizing G iterating over ψ; then the gradient of the moment

vector is evaluated numerically and the variance-covariance matrix is respectively estimated.

The empirical counterpart is the mid price for a particular CDS index traded in a specific

clearinghouse.

Since above procedure setups only one moment, I partition ψ into two subvectors ψ1
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and ψ2. The first set ψ1 gathers fixed parameters in a compact set; for instance, the risk

aversion measure γ. Also, the subvector ψ1 contains the size of collateralization (κ) in each

clearinghouse. For this ad-hoc parameterization, I consider the work of Duffie et al. [49]

that estimate the collateral demand of clearing practices. The subvector ψ2 contains the

default-fund parameter (φs).

The following table shows the choice of parameters for both clearinghouses.

Parameters Value Definition

κ 0.20 Collateral
ε 0.30 Deadweight loss
λ 0.30 Probability of default in clearinghouse
γ 1.00 Risk aversion parameter
α 0.20 Limited liability parameter

θ 3.00 CDS seller’s Portfolio
c 1.00 Participation costs
N 0.00 Extra buyers

Table 3.3: Subvector ψ1

The following table shows the variables to simulate and benchmark for each clearing-

house

Variable CCP1 CCP2

ωb
ωs

0.81 ∼ U(0.72,0.92)

ωs 12 ∼ N (12,0.23)
φs 0.04061 arg min (3.13)

1 Optimal value

Table 3.4: Variables in χ and ψ2

A CDS whether cleared at LCH or CME is the same instrument and therefore there

would be an insignificant difference in the price of these swaps (henceforth basis). Since

regulation does not mandate clearing for CDS yet, changes of basis would be influenced by

few observations for these instruments. However, basis for interest rate swaps, a deep trading

market, is a good approximation for our exercise. Besides, interest rate swap resembles CDS

closely. As discussed before, typically basis fluctuates small enough (0.15bps bid/offer) to



125

be inconsequential to the market between clearinghouses. However, there are some dates

where the basis increased 5 or 6 times this amount. Specifically, in May 2015, CME-LCH

basis for USD IRS rose significantly exhibiting values up to 2bps; the following table shows

the structure and basis of this instrument across clearinghouse.

Term LCH mid CME mid Basis (bps)

1Y 0.45802 0.45952 +0.15
2Y 0.82319 0.82669 +0.35
5Y 1.65642 1.66842 +1.20

Table 3.5: LCH-CME basis

For sake of numerical analysis I take the basis for interest rate swaps with maturity of

two years. The following table shows the SMM estimation for this case.

Parameter Point estimate Upper bound Lower bound

φ̂2
s 0.03128 0.03147 0.03109

Table 3.6: SMM estimation

Thus, the clearinghouse 2 collects funds on average equal to the fraction φ̂2
s = 3.1%; this

percentage is lower than the default fund fraction in the clearinghouse 1 (4.1%).

3.7.6 Reaching optimal guarantee-default levels

Last exercise shows the effect of increasing the total amount of the guarantee fund on

premium. For this, I consider an amount that is feasible to observe in the financial market

through the clearing. According to Depository Trust & Clearing Corp. a backstop on the

repo market (a short-term lending) has risen to $73.8 billion. This represents a significant

increase in the fund comparing to roughly 50 billion two years ago. The total reflects an

amount DTCC will seek in commitments from member firms to cover the cost of the credit

facility. That facility can be invoked if any member defaults and the clearinghouse’s other

resources become exhausted; thus -according to DTCC-forcing its Fixed Income Clearing
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Corp. subsidiary to step into the shoes of the defaulting firm and assume its obligations.

I consider for the exercise the following parameterization: low leverage (N=0), collateral

around 20%, and same parameters as shown in table (3.1). I fixed the new amount as optimal

and I calculate the difference in premium. According to the model, the premium should be

decrease around 5.8%.

3.8 Conclusions

The credit derivative obligation has become a cornerstone after and before recent finan-

cial crisis. CDS helped protecting investor portfolios against default offering a transfer

risk. Recent empirical literature shows that clearing practices have an ambiguous effect on

premium; I offer a theoretical model that explains these findings. Also, size of premium

arbitrage arises as a debate subject as multiple clearinghouses are operating across markets.

I setup six quantitative exercises in order to show the effects of mutualization and collat-

eralization on premium; two of them intend to match differences in real prices and relate

them to changes in guarantee-default funds.

The model of CDS market taken from Acharya and Bisin [1] and Stephens and Thompson

[99] is characterized by greater quantity of insurance sold and default. I modified the original

model to include a clearinghouse that observes the size of trading and collect either defaul-

funds or collateral from participants in the insurance market. If deadweight losses are high,

an incentive contract can be offered by clearinghouse when collateralization takes place as

clearing policy. The premium is higher for this practice relative to bilateral agreements.

In equilibrium there is not default. The premium increases since the value of the position

(the recovery rate) increases. If deadweight losses are not too high, an insurance contract is

offered by clearinghouse when collateralization takes place as clearing policy. The premium

is the same as before when parties set the contract bilaterally. In equilibrium there is

default. In general, collateralization delivers a second best characterized as a weakly Pareto

allocation relative to bilateral allocation. The first best is characterized as a constrained

Pareto optimum. The ratio R/q, as measure of counterparty risk, is constant for all agents

but in equilibrium CDS sellers do not go back on promises.
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For a range of deadweight losses ε ∈ (ε0, ε∗), premium is lower when mutualization takes

place as clearing policy and capital requirement is high (low leverage). The allocation is

characterized by a higher recovery rate. If deadweight losses are high, there is no default

under this policy. The ratio R/q increases for defaulting contracts after mutualizing losses.

According to the numerical exercise the size of default funds in comparison to collateral is

small and also there is a corner solution (φs > 0 and φb = 0) when there is a marginal and

default fund applied to buyers under a loose seller’s clearing budget. If foregoing restriction

binds then there is an interior solution (φs > 0 and φb > 0) that maximizes the social utility.

This makes optimal the presence of waterfall rules.

Empirical literature found that clearing decreases premium controlling for related vari-

ables of liquidity and networking. Some others found that the effect of clearing on premium

is not significant. The risk premium (∆λ) decreases as long as there are more resources

under the clearinghouse management. This would force the premium to decrease. Thus,

the extend of this fall in the premium is attributed to the size of resources collected by

clearinghouse. In order to capture this regularities, empirical work must include a set of

explanatory variables related to the size of resources managed by the clearinghouse and also

to pinpoint quantitatively clearing practices

Contrary to Stephens and Thompson [99], I show that price competition is not only the

factor behind a lower premium under a mutualization policy; with no competition (random

matches) the effect of the collectable fund on premium offsets the increase in the value of

the position.

Regarding mandatory clearing. Earlier, I show that the success of clearing operations

are based on the resources that clearinghouses may collect from participants. Thus, it is

imperative to have more participants or contracts under a clearing framework.

Regarding future research. In this chapter, collectable resources are not longer needed

when R + ϕ = 1 i.e. fully coverage. In a dynamic scenario, more resources would be

necessary for trading in illiquid scenarios. If there are more resources at current period,

premium maybe would decrease more.
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Appendix A

Details of derivations in chapter 1

Derivation of expression (1.3). Derivation of final expression starts with the following

expression:

Vt = (1− h)e−rtEQt (Vt+1) + he−rtEQt (cϕt+1)

≡ (1− h)e−rtEQt (Vt+1) + he−rtEQt (βVt+1)

≡ EQt
[
Vt+1

(
(1− h)e−rt + hβe−rt

)] (A.1)

Considering the change in notation for expression (1 − h)e−rt + hβe−rt as e−Rt and

considering a recursive solution for expression (A.1) up to period t+∆, I have the following

expression,

Vt ≡ EQt
[
Vt+∆e

−
∑∆−1
j Rt+j

]
Evaluating the right hand expression a period before the default then I have the expression

in (1.3) i.e. Vt+∆ ≡ Xt+∆.

Derivation of expression (1.4). First, I start with the case of full collateralization

i.e. β = 1 which resembles the case specified in Johannes and Sundaresan [64]. Thus,

Cs ≡ cϕs ≡ Vs. Furthermore, since the probability of default is constant i.e. it does not

depend on time of default (τ), then the value of the contract can be equivalently expressed

as follows,

Vt = EQt

[
e−

∫ T
t rsdsΦT (1− h) + e−

∫ τ
t rsdsCτh

]
+ (1− h)Pt

Above expression is slightly different to Johannes and Sundaresan [64]. I included an

adjustment that let the post of posting and maintaining collateral (Pt) be a fraction of the
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total value of the contract1. The expression EQt

[
e−

∫ τ
t rsdsVτ

]
under the martingale Q may

be assumed as Vt in current terms. Thus,

Vt = EQt

[
e−

∫ T
t rsdsΦT ] + Pt (A.2)

Expression Pt is the cost of posting and maintaining collateral in current prices; this is

equal to the following expression,

Pt = EQt

[
(1− h)

∫ T

t
exp

{
−
∫ s

t
rudu

}
ysVsds+ h

∫ τ

t
exp

{
−
∫ s

t
rudu

}
ysVsds

]

Since τ is random under default (τ < T ), a simplification is useful by using the property

of the Q measure. The term EQt

[ ∫ τ
t exp

{
−
∫ s
t rudu

}
ysVsds

]
must be equal to the current

cost Pt regardless the probability function of τ under default. The martingale makes the

foregoing feasible since the best predictor for the collateral cost relies on the available

information at time t. Thus, the solution for Pt is shown in the following lines;

Pt = EQt

[
(1− h)

∫ T

t
exp

{
−
∫ s

t
rudu

}
ysVsds

]
+ hPt

≡ EQt
[ ∫ T

t
exp

{
−
∫ s

t
rudu

}
ysVsds

] (A.3)

Taking into account expressions (A.2) and (A.3) then,

Vt = EQt

[
e−

∫ T
t rsdsΦT ] + EQt

[ ∫ T

t
exp

{
−
∫ s

t
rudu

}
ysVsds

]

Re-arranging above expression and taking into account that EQt

[
e−

∫ s
t rsduVs

]
≡ Vt for

1The cost of posting and maintaining collateral can potentially be treated as a significant part of the value
of the contract; however, parties can agree to include at least the aforementioned cost only for non-defaulted
contracts. This would justify the fraction (1-h).
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any s then,

Vt

(
1− EQt

[ ∫ T

t
ysds

])
= EQt

[
e−

∫ T
t rsdsΦT

]
VtE

Q
t

(
1−

∫ T

t
ysds

)
= EQt

[
e−

∫ T
t rsdsΦT

]
VtE

Q
t

(
e−

∫ T
t ysds

)
= EQt

[
e−

∫ T
t rsdsΦT

]
Vt = EQt

[
e−

∫ T
t (rs−ys)dsΦT

]
Now, I assume that cϕs ≡ βsVs. The value of the contract must be adjusted properly;

Vt = EQt

[
(1− h)e−

∫ T
t rsdsΦT + h

∫ T

t
e−

∫ τ
t ruduβsVτds

]
+
(

1− h
∫ T

t
βsds

)
Pt

I assume that collateral is taken to maturity under default. The foregoing explains the

boundary T instead of τ over the integral in the above modified-contract value. Using

aforementioned assumptions for the value of the contract under default and considering a

new arrangement, then;

Vt

(
1− h

∫ T

t
βsds

)
= EQt

[
(1− h)e−

∫ T
t rsdsΦT

]
+
(

1− h
∫ T

t
βsds

)
Pt

Vt

(
e−h

∫ T
t βsds

)
= EQt

[
e−he−

∫ T
t rsdsΦT

]
+
(

1− h
∫ T

t
βsds

)
Pt

Vt = EQt

[
e−

∫ T
t (rs+h(1−βs))dsΦT

]
+ Pt

The cost of posting and maintaining collateral can be adjusted as follows;

Pt = EQt

[
(1− h)

∫ T

t
exp

{
−
∫ s

t
rudu

}
ysβsVsds

]
+ hPt

≡ EQt
[ ∫ T

t
exp

{
−
∫ s

t
rudu

}
ysβsVsds

]
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Gathering up terms;

Vt = EQt

[
e−

∫ T
t (rs+h(1−βs))dsΦT

]
+ EQt

[ ∫ T

t
exp

{
−
∫ s

t
rudu

}
ysβsVsds

]
Vt(1−

∫ T

t
ysβsds) = EQt

[
e−

∫ T
t (rs+h(1−βs))dsΦT

]
Vte
−

∫ T
t ysβsds = EQt

[
e−

∫ T
t (rs+h(1−βs))dsΦT

]
Vt = EQt

[
e−

∫ T
t (rs+h(1−βs)−ysβs)dsΦT

]
�

Alternatively to above derivation, Borovykh [23], by using the Feynman-Kac formula,

tediously derives the mathematical expression for the value of the contract; the author

pinpoints the value of the contract when the investor is either shorting or longing the asset.

The author starts with the change in continuous time of the value of the contract (by Ito’s

lemma),

dVt =
∂V

∂t
dt+

∂V

∂S
dSt +

1

2

∂2V

∂S2
t

(
dS2

T

)2

≡

(
∂V

∂t
+

1

2

∂2V

∂S2
t

σ2
S,tS

2
t

)
dt+

∂V

∂S
st

Last above expression includes the usage of the Black-Scholes formula. Since the value

of the contract must resembles an alternative opportunity cost, Borovykh [23] states that

arbitrage applies by inducing the replication of a portfolio of underlying stocks (∆t). Thus,

Vt = ∆tSt + γt where last term is the cash which depend on four different interest rates

γt =
(
rc,tCt + rf,t(Vt − Ct)− rr,t∆tSt + rd,t∆tSt

)
dt

rc,t, rf,t, rr,t and rd,t are the risk-free, floating, repo and dividend interest rate respec-

tively. The portfolio is affected by the former interest rates. By removing uncertainty i.e.

∆t = ∂V
∂S , using Feynman-Kac formula and identifying drift terms (see Borovykh [23] for

details), the value of the contract is as follows,

Vt = Et

[
e−

∫ T
t rc,sVT

]
− Et

[ ∫ T

t
e−

∫ µ
t rc,µdµ(rf,s − rc,s)(Vs − Cs)ds

]

In order to make the equivalence to my final expression in (1.4) when ys = 0 then
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rf,s − rc,s = h ≡ (T − t)−1 and Cs = βsVs are assumed. Doing some final arrangement to

above expression and taking into consideration the measure Q

Vt = Et

[
e−

∫ T
t rc,sVT

]
− Et

[ ∫ T

t
e−

∫ µ
t rc,µdµh(1− βs)Vsds

]
= Et

[
e−

∫ T
t rc,sVT

]
− Et

[ ∫ T

t
h(1− βs)Vtds

]
= Et

[
e−

∫ T
t rc,s+h(1−βs)VT

]
Finally, rc ≡ r is the risk-free interest rate for lending. The value of the contract is

VT = L(T )− sw which means that the investor is holding the collateral. This completes the

proof.

Derivation of expresson in proposition (2). In general terms, there are two vari-

ables: z which is stochastic and µ is a trend. The expression into discussion is E{f ′(z+νµ)}

since Stein’s lemma delivers cov(f(z + νµ), y) ≡ cov(z + νµ, y)E{f ′(z + νµ)}, ν is a scalar.

In that matter, I have the following

E{f ′(z + νµ)} =

∫ µ

0

∫ ∞
0

f ′(z + νµ)φ(z)dzdu

Since φ(z) is σ-finite and µ is a real number, Fubini and Tornelli’s theorema applies, thus it

allows the order of integration to be changed in iterated integrals. Additionally, f(x) = ex

which makes terms separable. Thus, above expression can be arranged as follows,

E{f ′(z + hµ)} =

∫ µ

0

∫ ∞
0

[
f ′(z)f(νµ) + f(z)f ′(νµ)

]
φ(z)dzdu

≡
∫ µ

0

[ ∫ ∞
0

f ′(z)f(νµ)φ(z)dz
]
du+

∫ µ

0
ν
[ ∫ ∞

0
f(z)f ′(νµ)φ(z)dz

]
du

≡
∫ µ

0
f(νµ)

[ ∫ ∞
0

f ′(z)φ(z)dz
]
du+

∫ µ

0
νf ′(νµ)

[ ∫ ∞
0

f(z)φ(z)dz
]
du

≡ E
[
f ′(z)

]
E
[
f(νµ)

]
+ νE

[
f(z)

]
E
[
f ′(νµ)

]
≡ (1 + ν)E

[
f(z)

]
E
[
f(νµ)

]
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Appendix B

Details of derivations in chapter 2

Derivation of expression (2.6). I have the following steps in order to get an analytical

expression for the basis ∆St;

∆St − εt − γ = (γA − γB)t

∆S̃t ≡ (γA − γB)t

≡ ln(1 + γA − γB)t

e∆S̃t ≡ eln(1+γA−γB)t

e∆S̃t ≡ (1 + γA − γB)t

∆S̃t + 1 ≡ (1 + γA − γB)t

∆S̃t + 1 ≡ (1 + γA − γB)× (1 + γA − γB)t−1

∆S̃t + 1 ≡ (1 + γA − γB)× (∆S̃t−1 + 1)

∆St + 1− γ − εt ≡ (1 + γA − γB)× (∆St−1 − γ − εt−1 + 1)

∆St − εt ≡ (γA − γB)× (1− γ) + (1 + γA − γB)× (∆St−1 − εt−1)

Finally,

∆St = (γA − γB)× (1− γ) + (1 + γA − γB)×∆St−1 + εt − (1 + γA − γB)× εt−1
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Appendix C

The Metropolis-Hasting routine

I use a Markov-Chain Monte Carlo (MCMC) method. The basic idea behind MCMC is

to specify a Markov chain whose transition kernel has a limiting distribution equal to the

target posterior. The key to constructing an appropriate Markov chain is to break the

joint posterior into various conditional distributions or submodels from which it is easy to

sample. If implementable sampling procedures can be devised for the full set of submodels,

then one can construct a Markov chain by cycling through simulations of each of them.

The process of alternating between draws from conditional distributions is a special case of

MCMC known as the ‘Gibbs sampler’ (Gelfand and Smith [53], Casella and George [29]).

Remarkably, under mild and verifiable regularity conditions, the stationary distribution of

the Gibbs sampler is the joint distribution of interest. Thus it is possible to sample from

the joint posterior without knowledge of its form.

The Gibbs sampler is a suitable method when integration on posteriori are extremely

dificult to perform either analitically and numerically. Rather than compute a specified

function for example f(x) directly the Gibbs sampler allows us effectively to generate a

sample X1, ..., Xm ∼ f(x) without requiring f(x). By simulating a large enough sample,

the mean, variance or whatever moment can be calculated to a degree of accuracy. Gibbs

sampling turns out that under reasonably general conditions, the distribution of X
′

K con-

verges to f(x) as k → ∞.On the other way, we must to sure the sufficient conditions for

convergence of irreducibility and aperiodicity (law of large numbers), for this we need to

implement a transient period or ”burn-it”.

We compose a Gibbs sampler for the unrestricted Bayesian VAR with a Metropolis-

Hasting within Gibbs in the step to get volatilities. The Markov chain cycles through 5
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steps:

(a) sampling θT from f
(
θT |Y T , HT , Q, σ, a

)
using Filter Kalman with forward and back-

ing recursion

(b) sampling Q from f
(
Q|Y T , θT , HT , σ, a

)
using a prior distribution for the covariance

matrix Q, in this case we use an inverse-Wishart.

(c) sampling a from f
(
a|Y T , θT , HT , Q, σ

)
using regressions on normalized BVAR resid-

uals -gotten in step (a)-.

(d) sampling σ from f
(
σ|Y T , θT , HT , Q, a

)
using an inverse gamma distribution as pos-

teriori.

(e) Samplin hi from f
(
hit|h−it, Y T , θT , HT , Q, a

)
where h−it denotes the rest of the hi

vector dates other than t. We use date-by-date blocking scheme of Jacquier et al. [61]

but using instead a metropolis-hasting algorithm.

This sampling algorithm, where each step supdated in turn, is sometimes referred to

as the systematic sweep Gibbs sampler. However, as Brooks [24] pointed out, the Gibbs

transition kernels need not to be used in this systematic manner, and many other imple-

mentations are possible, such as the random sweep Gibbs sampler1, which randomly permut

a component to update at each iteration, and thus uses a mixture (rather a cycle) of Gibbs

updates. We implement this procedure and thus we get gains in inducing reversibility of

the chain.

In some cases, Bayes’ theorem delivers a convenient expression for a conditional ker-

nel but not the conditional density. For example, sometimes the normalizing constant is

too costly to compute Gibbs sampling is infeasible in such cases, because it requires the

full set of conditional densities. But one can resort to hybrid MCMC method known as

‘Metropolis-within-Gibbs’ that involves replacing some of the Gibbs steps with Metropolis

accept/reject steps. The latter typically involve the conditional kernel instead of the con-

ditional density, but the target posterior is still the stationary distribution of the chain.

1Liu and Rubin [78].
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To design a Metropolis-Hastings2 step, one chooses a proposal density which is cheap to

simulate and which closely mimics the shape of target and accepts or rejects with a certain

probability, designed to make the proposal sample conform to a sample from the target.

The log normal form of the volatility equation and the normal form for the conditional

sampling density imply results in:

p (ht|ht+1, ht−1, εt, σ) ∝ h−3/2
it exp{− ε2

t

2hit
− (lnhit − µit)2

2σ2
i

} (C.1)

µit =
lnhit−1 + lnhit+1

2

At the beginning and end of the sample, the formula (C.1) has to be modified because

only one of the adjacent values for hit is available, and also there is no observed value of

εt.Direct sampling from (C.1) is difficult due to the nonstandard functional form. In fact,

the right side of (C.1) is a conditional kernel y not a density, the constant is expensive in

computational procedure as well as it is a function of argument conditional and varies as

the sampler progresses. Jacquier et al. [61] points out that if we get a procedure with a

low computational cost, we still may deal with a valid accept-reject density that would be

efficient; a code with a high percentage of accepting draws could be difficult to implement.

α (x, y) = min

[
π (y) q (y, x)

π (x) q (x, y)

]
if π (x) q (x, y) > 0

= 1 otherwise

As pointed out by Chib and Greenberg [35, 34] an efficient solution -when available- is to

exploit the known form of π (·) . the metropolis algorithm that we use here uses a proposal

density q which is cheap to simulate and which closely mimics the shape of π (·). We choose

q to be the log-normal density implied by the volatility equation:

q (hit) ∝ h
−1
it exp{−(lnhit − µit)

2σ2
i

}

2See Metropolis et al. [84] and Hastings [55].



137

The acceptance of probability for the mth- draw can be computed as

αm =
π
(
εt, h

′
it

)
q
(
h
′
it

)
π (εt, hit) q

(
h
′
it

)
π (·) can be written as π (·) ∝ ψ (εt|hit)φ (hit) where φ (hit) is a density that can be sampled

and ψ (εt|hit) is uniformly bunded, in our case q (hit) = φ (hit) . In this case, the probability

of moving requires only the computation of the ψ term (not π (·)) and is given by:

αm =

(
hjit

)−1/2
exp{− ε2t

2hjit
}(

hj−1
it

)−1/2
exp{− ε2t

2hj−1
it

}

the draws are regarded as a sample from the target density π (·) only after the chain has

passed the transient stage and the effect of the fixed starting value has become so small

that it can be ignored.
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Appendix D

Regressions
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Table D.1: Regressions for Interest Rate Swaps

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0
)

(1
1
)

(1
2
)

(1
3
)

(1
4
)

(1
5
)

(1
6)

V
A

R
IA

B
L

E
S

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

vc
le

a
r

-0
.0

4
63

**
*

-0
.0

4
14

**
*

-0
.1

13
**

*
-0

.1
13

**
*

-0
.1

13
**

*
-0

.1
20

*
**

-0
.1

17
*
**

-0
.1

17
**

*
-0

.1
17

**
*

-0
.1

1
8
**

*
-0

.1
2
0*

*
*

-0
.1

20
*
*
*

-0
.1

2
7
*
*
*

-0
.1

2
6
*
*
*

-0
.1

2
6
*
**

-0
.1

22
*
*
*

(0
.0

0
18

0)
(0

.0
0
18

7)
(0

.0
01

76
)

(0
.0

0
17

6)
(0

.0
01

76
)

(0
.0

01
75

)
(0

.0
01

78
)

(0
.0

01
78

)
(0

.0
0
17

8)
(0

.0
0
1
7
6)

(0
.0

0
1
75

)
(0

.0
0
17

5
)

(0
.0

01
7
4
)

(0
.0

0
17

8
)

(0
.0

01
7
8
)

(0
.0

0
17

8
)

ls
iz

e
-0

.0
9
07

**
*

-0
.0

9
07

**
*

-0
.0

45
4*

**
-0

.0
45

0*
**

-0
.0

4
50

**
*

-0
.0

4
48

**
*

-0
.0

45
6
**

*
-0

.0
45

7
**

*
-0

.0
45

0
**

*
-0

.0
4
62

*
*
*

-0
.0

4
63

*
*
*

-0
.0

46
3
*
*
*

-0
.0

46
1
*
*
*

-0
.0

46
4
*
*
*

-0
.0

46
5
*
*
*

-0
.0

4
6
5*

*
*

(0
.0

00
35

2)
(0

.0
0
03

52
)

(0
.0

00
35

3)
(0

.0
00

3
53

)
(0

.0
00

35
3)

(0
.0

0
03

52
)

(0
.0

00
34

7
)

(0
.0

00
34

7)
(0

.0
00

3
45

)
(0

.0
0
0
3
4
8)

(0
.0

0
0
3
47

)
(0

.0
0
0
34

7
)

(0
.0

0
0
34

7
)

(0
.0

0
0
34

2
)

(0
.0

0
03

4
2
)

(0
.0

0
0
3
41

)
v
S
E

F
-0

.0
08

79
**

*
-0

.0
25

5*
**

-0
.0

46
7*

**
-0

.0
39

0*
*

-0
.1

4
0*

**
-0

.1
54

**
*

-0
.1

54
*
**

-0
.1

46
**

*
-0

.0
5
0
1
**

*
-0

.0
5
8
0*

*
*

-0
.0

3
7
0
*
*

-0
.1

3
8
*
**

-0
.1

4
3
*
**

-0
.1

4
3
**

*
-0

.1
4
5
*
*
*

(0
.0

0
07

83
)

(0
.0

00
6
84

)
(0

.0
00

74
8)

(0
.0

17
9)

(0
.0

1
85

)
(0

.0
18

6)
(0

.0
18

6)
(0

.0
1
85

)
(0

.0
00

7
1
5
)

(0
.0

00
7
3
0
)

(0
.0

1
7
8
)

(0
.0

1
8
4)

(0
.0

1
8
4)

(0
.0

1
84

)
(0

.0
1
8
5
)

d
if

M
6
.9

3e
-0

5*
**

6.
96

e-
05

**
*

6.
9
6e

-0
5*

**
6.

98
e-

05
**

*
6.

97
e-

05
**

*
7.

11
e-

05
**

*
7.

13
e-

05
**

*
7.

0
3e

-0
5
*
*
*

7
.0

5
e-

0
5*

*
*

7
.0

5
e-

0
5
**

*
7
.0

7
e-

0
5
*
**

7
.0

7e
-0

5
*
*
*

7
.1

9
e-

0
5*

*
*

7.
20

e-
0
5
*
*
*

(1
.2

9e
-0

7
)

(1
.3

0e
-0

7)
(1

.3
0e

-0
7)

(1
.3

0e
-0

7)
(1

.2
9e

-0
7
)

(1
.3

9e
-0

7)
(1

.3
9e

-0
7)

(1
.2

8e
-0

7
)

(1
.2

7
e-

0
7
)

(1
.2

7
e-

0
7
)

(1
.2

7
e-

07
)

(1
.2

6
e-

0
7
)

(1
.3

7e
-0

7
)

(1
.3

7
e-

0
7
)

se
fd

t
0.

11
5*

**
0.

1
15

**
*

-0
.1

10
**

*
-0

.1
51

**
*

-0
.1

4
8*

**
-0

.1
6
4*

**
0
.1

59
*
*
*

0
.1

5
9
**

*
-0

.0
6
6
4
*
**

-0
.0

78
0
*
*
*

-0
.0

77
1
*
*
*

-0
.0

8
85

*
*
*

(0
.0

02
02

)
(0

.0
02

03
)

(0
.0

03
2
3)

(0
.0

03
64

)
(0

.0
0
36

4)
(0

.0
03

77
)

(0
.0

03
2
2
)

(0
.0

03
2
3
)

(0
.0

0
4
0
9
)

(0
.0

0
4
3
0
)

(0
.0

0
4
2
9)

(0
.0

0
4
3
8
)

v
S
E

F
se

fd
t

-0
.0

07
68

0.
09

5
2*

**
0.

10
9
**

*
0.

10
6*

**
0.

09
13

*
**

-0
.0

2
1
1

0
.0

8
19

*
*
*

0
.0

87
0
*
*
*

0
.0

8
4
8*

*
*

0
.0

8
6
9
**

*
(0

.0
17

9)
(0

.0
18

5)
(0

.0
18

6
)

(0
.0

18
6)

(0
.0

18
5
)

(0
.0

1
7
9
)

(0
.0

1
8
4)

(0
.0

1
8
5)

(0
.0

1
85

)
(0

.0
1
8
5
)

B
lk

sz
d
t

0.
29

5*
**

0.
2
85

**
*

0.
28

5*
*
*

0
.2

80
*
**

0
.2

9
5*

*
*

0.
29

2
*
*
*

0
.2

9
2
**

*
0
.2

8
7*

*
*

(0
.0

03
85

)
(0

.0
0
38

7
)

(0
.0

03
8
7)

(0
.0

03
85

)
(0

.0
03

8
5
)

(0
.0

03
8
6
)

(0
.0

03
8
6
)

(0
.0

0
38

5
)

lm
on

th
N

o
t

0.
05

07
**

*
0
.0

50
8
**

*
0.

07
35

*
**

0.
01

7
9
*
**

0
.0

1
8
0*

*
*

0
.0

3
5
6*

*
*

(0
.0

01
99

)
(0

.0
01

99
)

(0
.0

0
23

3)
(0

.0
02

0
4
)

(0
.0

0
2
0
4
)

(0
.0

02
4
8
)

te
n
or

5
0.

03
65

**
*

0.
0
36

2*
*
*

0.
03

3
5
*
**

0.
03

3
5
*
**

(0
.0

00
95

7)
(0

.0
0
09

43
)

(0
.0

0
0
9
27

)
(0

.0
00

9
2
3
)

V
IX

C
lo

se
-0

.0
12

6*
*
*

-0
.0

0
23

9
*
*
*

(9
.2

6e
-0

5)
(0

.0
00

1
1
7
)

2
01

3.
ye

ar
0
.3

74
*
*
*

0
.3

2
8
**

*
0
.3

28
*
*
*

0
.2

6
1
**

*
0
.2

35
*
*
*

0
.2

2
9
*
**

0
.1

9
4
**

*
(0

.0
2
6
7
)

(0
.0

2
6
7
)

(0
.0

2
6
7)

(0
.0

2
67

)
(0

.0
2
69

)
(0

.0
26

9
)

(0
.0

2
71

)
20

14
.y

ea
r

0.
5
03

*
*
*

0
.3

4
9
**

*
0
.3

49
*
*
*

0
.2

8
1
**

*
0
.2

51
*
*
*

0
.2

4
6
*
**

0
.2

0
8
**

*
(0

.0
2
6
6
)

(0
.0

2
6
8)

(0
.0

2
68

)
(0

.0
26

8
)

(0
.0

27
1
)

(0
.0

2
7
0
)

(0
.0

27
3
)

20
1
5.

ye
a
r

0.
43

2
*
*
*

0
.2

7
9*

*
*

0.
27

9
*
*
*

0
.2

1
1*

*
*

0.
18

3
*
*
*

0
.1

7
9
**

*
0
.1

4
9*

*
*

(0
.0

2
6
6
)

(0
.0

2
6
8)

(0
.0

2
68

)
(0

.0
26

8
)

(0
.0

27
1
)

(0
.0

2
7
0
)

(0
.0

27
3
)

20
1
6
.y

ea
r

0.
25

4
*
*
*

0
.1

0
0*

*
*

0.
10

0
*
*
*

0
.0

32
1

0
.0

0
48

7
0
.0

0
0
58

3
-0

.0
3
1
0

(0
.0

2
6
6)

(0
.0

2
68

)
(0

.0
26

8
)

(0
.0

2
6
8
)

(0
.0

2
7
1
)

(0
.0

2
7
0
)

(0
.0

2
7
3
)

2
01

7
.y

ea
r

0.
5
5
9
*
**

0
.4

07
*
*
*

0
.4

0
7
*
**

0
.3

39
*
*
*

0
.3

0
7
*
**

0
.3

0
3*

*
*

0
.2

55
*
*
*

(0
.0

2
6
6)

(0
.0

2
68

)
(0

.0
26

8
)

(0
.0

2
6
8
)

(0
.0

2
7
1
)

(0
.0

2
7
1
)

(0
.0

2
7
4
)

C
on

st
an

t
2
.2

83
**

*
2.

28
2*

**
1.

31
1
**

*
1.

20
9*

**
1.

20
9
**

*
1.

14
0*

**
-0

.0
87

5*
-0

.1
0
1*

*
-0

.4
90

**
*

0.
9
04

*
*
*

0
.9

0
6
*
**

0
.9

06
*
*
*

0
.9

0
4
**

*
0
.4

9
6*

*
*

0
.4

8
9
*
**

0
.1

2
4
*

(0
.0

06
36

)
(0

.0
0
63

6
)

(0
.0

0
66

9)
(0

.0
06

99
)

(0
.0

06
99

)
(0

.0
07

0
6)

(0
.0

50
3)

(0
.0

50
3)

(0
.0

58
8
)

(0
.0

2
73

)
(0

.0
27

3
)

(0
.0

2
7
3
)

(0
.0

2
7
3
)

(0
.0

5
4
9
)

(0
.0

5
4
8)

(0
.0

6
3
5
)

O
b
se

rv
a
ti

o
n
s

1,
48

1
,5

51
1,

48
1,

55
1

1,
48

1,
55

1
1
,4

81
,5

51
1,

4
81

,5
5
1

1,
48

1,
5
51

1,
48

1,
55

1
1,

48
1,

55
1

1
,4

77
,0

71
1,

4
8
1,

55
1

1
,4

81
,5

5
1

1,
48

1
,5

5
1

1,
48

1
,5

5
1

1,
48

1
,5

5
1

1
,4

8
1
,5

5
1

1,
47

7
,0

7
1

R
-s

q
u
ar

ed
0
.0

71
0.

07
1

0.
2
16

0.
22

0
0.

22
0

0.
2
25

0
.2

28
0.

22
8

0
.2

39
0
.2

59
0
.2

6
2

0
.2

6
2

0.
26

7
0
.2

6
7

0
.2

6
8

0
.2

7
0

R
ob

u
st

st
an

d
ar

d
er

ro
rs

in
p
a
re

n
th

es
es

**
*

p
<

0.
0
1,

*
*

p
<

0.
0
5,

*
p
<

0.
1



140

T
ab

le
D

.2
:

2S
L

S
R

eg
re

ss
io

n
s

fo
r

In
te

re
st

R
at

e
S

w
ap

s

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0
)

(1
1)

(1
2
)

(1
3
)

(1
4
)

V
A

R
IA

B
L

E
S

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

ls
iz

e
0
.5

96
*
**

0
.6

54
*
**

0.
86

8*
**

0.
41

7*
**

0.
41

7*
**

0.
38

1*
**

0.
38

2*
**

0
.5

25
*
**

0.
2
19

**
*

0.
12

0
*
*
*

0
.1

2
0*

*
*

0
.0

8
9
5*

*
*

0.
09

0
2
*
**

0.
20

0
*
*
*

(0
.0

2
3
0)

(0
.0

25
4)

(0
.0

31
9)

(0
.0

18
6)

(0
.0

18
6)

(0
.0

18
1)

(0
.0

18
1)

(0
.0

20
6
)

(0
.0

15
7
)

(0
.0

1
5
7
)

(0
.0

1
5
7
)

(0
.0

1
5
5)

(0
.0

1
55

)
(0

.0
17

4
)

vc
le

ar
-0

.6
8
3
**

*
-0

.7
1
0*

*
*

-0
.9

9
4*

*
*

-0
.5

5
8*

**
-0

.5
58

**
*

-0
.5

31
**

*
-0

.5
31

*
**

-0
.6

72
**

*
-0

.3
76

**
*

-0
.2

8
2
**

*
-0

.2
8
2*

*
*

-0
.2

59
*
*
*

-0
.2

6
0
*
*
*

-0
.3

6
5
*
*
*

(0
.0

2
1
2)

(0
.0

22
7)

(0
.0

30
6)

(0
.0

17
7)

(0
.0

17
7)

(0
.0

17
3)

(0
.0

17
2)

(0
.0

19
9
)

(0
.0

15
0
)

(0
.0

1
4
9
)

(0
.0

1
4
9
)

(0
.0

1
4
8)

(0
.0

1
47

)
(0

.0
16

7
)

v
S
E

F
-0

.0
4
8
4*

**
-0

.1
02

*
**

-0
.0

91
9*

**
-0

.1
33

**
*

-0
.2

40
**

*
-0

.2
40

**
*

-0
.2

55
**

*
-0

.0
84

7*
**

-0
.0

7
9
2*

*
*

-0
.0

7
0
4*

*
*

-0
.1

6
9
*
*
*

-0
.1

7
0
*
**

-0
.1

9
2
*
**

(0
.0

0
24

8)
(0

.0
03

59
)

(0
.0

02
29

)
(0

.0
26

2)
(0

.0
27

4)
(0

.0
27

4
)

(0
.0

31
3)

(0
.0

0
22

6)
(0

.0
0
21

7
)

(0
.0

1
9
7)

(0
.0

2
05

)
(0

.0
20

5
)

(0
.0

2
2
7
)

d
if

M
0.

0
00

20
5*

*
*

0.
00

0
13

8*
**

0.
00

01
38

**
*

0.
00

01
33

**
*

0.
00

01
34

**
*

0.
00

0
15

5*
*
*

0.
00

0
11

0*
*
*

9
.5

2
e-

0
5
**

*
9
.5

2
e-

0
5
*
**

9.
08

e-
0
5
*
*
*

9
.2

0e
-0

5
*
*
*

0
.0

0
0
10

8
*
*
*

(4
.7

7e
-0

6
)

(2
.7

9e
-0

6)
(2

.7
9e

-0
6)

(2
.7

2e
-0

6)
(2

.7
0e

-0
6)

(3
.0

7e
-0

6)
(2

.3
5e

-0
6
)

(2
.3

5
e-

0
6
)

(2
.3

5e
-0

6
)

(2
.3

2
e-

0
6
)

(2
.3

0
e-

0
6
)

(2
.5

9
e-

0
6
)

se
fd

t
0.

15
0*

**
0.

15
0*

**
-0

.1
06

**
*

-0
.1

04
*
**

-0
.1

00
**

*
0
.1

50
*
*
*

0
.1

5
0
**

*
-0

.0
8
2
5
*
**

-0
.0

8
1
8
*
**

-0
.0

9
4
9
*
**

(0
.0

03
10

)
(0

.0
03

10
)

(0
.0

04
65

)
(0

.0
04

66
)

(0
.0

05
4
5)

(0
.0

0
35

5
)

(0
.0

03
5
6
)

(0
.0

0
4
7
3
)

(0
.0

0
4
7
3
)

(0
.0

0
5
2
2
)

v
S
E

F
se

fd
t

0.
04

13
0.

15
3*

**
0.

15
2*

**
0.

14
3
**

*
-0

.0
0
8
85

0
.0

9
60

*
*
*

0
.0

9
4
1
**

*
0.

10
2
*
*
*

(0
.0

26
0)

(0
.0

27
3)

(0
.0

27
3)

(0
.0

3
11

)
(0

.0
1
9
5)

(0
.0

2
03

)
(0

.0
20

3
)

(0
.0

2
2
5
)

B
lk

sz
d
t

0.
33

2*
**

0.
33

2*
**

0.
34

5
**

*
0
.3

0
7
**

*
0.

30
7
*
*
*

0
.3

1
6
**

*
(0

.0
05

52
)

(0
.0

05
52

)
(0

.0
06

4
1)

(0
.0

0
4
3
0)

(0
.0

0
4
31

)
(0

.0
0
4
7
2)

te
n
or

5
0.

01
93

**
*

0.
01

2
9*

**
0
.0

28
9
*
*
*

0.
02

5
2
*
**

(0
.0

01
69

)
(0

.0
0
20

5)
(0

.0
0
1
0
8)

(0
.0

0
1
2
5)

V
IX

C
lo

se
-0

.0
17

3*
**

-0
.0

0
2
86

*
*
*

(0
.0

00
2
60

)
(0

.0
0
0
1
6
1)

2
01

3.
ye

ar
0.

28
2
**

*
0
.2

73
*
*
*

0
.2

7
3
*
**

0
.2

13
*
*
*

0
.2

0
8
**

*
0
.1

60
*
*
*

(0
.0

3
70

)
(0

.0
3
12

)
(0

.0
31

2
)

(0
.0

3
0
0
)

(0
.0

3
0
0
)

(0
.0

3
6
2
)

2
01

4.
ye

ar
0.

40
1
**

*
0
.2

93
*
*
*

0
.2

9
3
*
**

0
.2

32
*
*
*

0
.2

2
8
**

*
0
.1

79
*
*
*

(0
.0

3
70

)
(0

.0
3
14

)
(0

.0
31

4
)

(0
.0

3
0
1
)

(0
.0

3
0
1
)

(0
.0

3
6
3
)

2
01

5.
ye

ar
0.

35
9
**

*
0
.2

41
*
*
*

0
.2

4
1
*
**

0
.1

77
*
*
*

0
.1

7
4
**

*
0
.1

44
*
*
*

(0
.0

3
68

)
(0

.0
3
11

)
(0

.0
31

1
)

(0
.0

2
9
8
)

(0
.0

2
9
8
)

(0
.0

3
6
0
)

2
01

6.
ye

ar
0.

21
5
**

*
0
.0

8
4
0
**

*
0
.0

8
39

*
*
*

0.
01

6
1

0
.0

12
4

-0
.0

0
5
20

(0
.0

3
66

)
(0

.0
3
09

)
(0

.0
30

9
)

(0
.0

2
9
6
)

(0
.0

2
9
6
)

(0
.0

3
5
8
)

2
01

7.
ye

ar
0.

52
5
**

*
0
.3

93
*
*
*

0
.3

9
3
*
**

0
.3

25
*
*
*

0
.3

2
2
**

*
0
.2

93
*
*
*

(0
.0

3
66

)
(0

.0
3
09

)
(0

.0
30

9
)

(0
.0

2
9
6
)

(0
.0

2
9
6
)

(0
.0

3
5
8
)

C
o
n
st

an
t

-9
.1

5
0
**

*
-1

0.
11

**
*

-1
4.

3
1*

**
-6

.7
1
5*

**
-6

.7
18

**
*

-6
.1

79
**

*
-6

.1
95

**
*

-8
.4

01
**

*
-3

.5
56

**
*

-1
.8

9
5
**

*
-1

.8
9
5*

*
*

-1
.3

77
*
*
*

-1
.3

9
5
*
*
*

-3
.1

9
5
*
*
*

(0
.3

8
3
)

(0
.4

2
3)

(0
.5

4
6)

(0
.3

20
)

(0
.3

20
)

(0
.3

12
)

(0
.3

12
)

(0
.3

53
)

(0
.2

67
)

(0
.2

6
7)

(0
.2

67
)

(0
.2

6
3
)

(0
.2

6
3)

(0
.2

95
)

O
b
se

rv
a
ti

o
n
s

1,
48

1
,5

51
1
,4

81
,5

5
1

1,
4
81

,5
5
1

1,
4
81

,5
51

1,
48

1,
55

1
1,

48
1,

55
1

1,
48

1,
55

1
1,

4
77

,0
7
1

1,
4
81

,5
5
1

1,
48

1
,5

5
1

1
,4

8
1
,5

5
1

1
,4

8
1
,5

51
1
,4

8
1,

55
1

1
,4

7
7,

07
1

R
-s

q
u
a
re

d
0
.0

7
2

0
.0

7
2

0
.1

41
0
.1

4
0

R
ob

u
st

st
an

d
ar

d
er

ro
rs

in
p
a
re

n
th

es
es

**
*

p
<

0.
01

,
**

p
<

0.
05

,
*

p
<

0.
1



141

T
ab

le
D

.3
:

R
eg

re
ss

io
n
s

fo
r

C
D

X
.N

A
.H

Y

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0
)

(1
1
)

(1
2
)

(1
3
)

(1
4
)

(1
5
)

V
A

R
IA

B
L

E
S

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce

vc
le

ar
-0

.0
80

8*
**

-0
.0

01
3
3

-0
.0

17
0

-0
.0

17
0

0.
0
54

0*
*
*

0
.0

57
2
**

*
-0

.0
89

0*
**

-0
.0

8
18

**
*

-0
.0

82
5*

**
-0

.5
5
5
**

*
-0

.6
57

*
*
*

-0
.6

3
1
*
**

-0
.6

5
6
**

*
-0

.4
40

*
*
*

-0
.4

4
4
*
**

(0
.0

2
15

)
(0

.0
1
77

)
(0

.0
18

3)
(0

.0
18

3)
(0

.0
1
75

)
(0

.0
17

4)
(0

.0
22

1)
(0

.0
21

8
)

(0
.0

2
19

)
(0

.0
40

3
)

(0
.0

7
5
1)

(0
.0

74
8
)

(0
.0

7
5
2
)

(0
.0

73
8
)

(0
.0

7
4
4)

vc
le

ar
se

ri
es

H
Y

n
0.

01
14

**
*

0.
00

56
6*

**
0.

00
6
39

**
*

0.
00

63
9*

*
*

0
.0

02
6
4*

**
0.

00
23

1
**

*
0.

00
9
21

**
*

0.
0
08

67
*
**

0
.0

08
7
5*

**
0.

03
1
8
*
**

0
.0

36
3
*
*
*

0
.0

3
49

*
*
*

0
.0

3
6
1
**

*
0.

02
5
6
*
**

0
.0

25
9
*
*
*

(0
.0

0
07

79
)

(0
.0

00
53

8)
(0

.0
0
05

58
)

(0
.0

00
55

8
)

(0
.0

00
51

2)
(0

.0
00

5
04

)
(0

.0
0
07

73
)

(0
.0

00
75

4)
(0

.0
00

76
1
)

(0
.0

01
8
9
)

(0
.0

0
3
48

)
(0

.0
03

4
6
)

(0
.0

0
3
4
8
)

(0
.0

0
34

3
)

(0
.0

0
3
4
5
)

ls
iz

e
0
.0

08
86

**
*

0
.0

09
99

**
*

0.
0
09

27
*
**

0.
0
09

27
**

*
0.

00
90

8*
*
*

0.
00

9
67

**
*

0.
00

50
1*

*
0.

00
43

4
**

0.
00

42
6
**

0.
00

7
0
8
**

*
0
.0

0
63

9
*
*
*

0
.0

0
7
0
1*

*
*

0
.0

0
3
5
5
*

0
.0

0
3
31

0
.0

0
3
13

(0
.0

02
08

)
(0

.0
02

10
)

(0
.0

0
20

8)
(0

.0
02

08
)

(0
.0

02
0
8)

(0
.0

02
08

)
(0

.0
02

07
)

(0
.0

02
0
7)

(0
.0

02
07

)
(0

.0
0
1
7
2
)

(0
.0

0
20

6
)

(0
.0

0
2
0
6
)

(0
.0

0
2
0
7)

(0
.0

02
0
6
)

(0
.0

0
2
0
7)

v
S
E

F
0
.0

75
1*

**
0
.0

75
9
**

*
0
.0

75
9*

**
0.

16
6
**

*
0.

1
43

**
*

0
.1

39
**

*
0
.1

23
*
**

0
.1

23
*
**

0
.0

2
11

*
*
*

0
.1

8
2
*
**

0.
16

1
*
*
*

0
.1

5
4*

*
*

0
.1

3
4
**

*
0
.1

3
5
*
**

(0
.0

05
98

)
(0

.0
06

03
)

(0
.0

06
03

)
(0

.0
0
97

9)
(0

.0
09

39
)

(0
.0

09
29

)
(0

.0
0
88

6)
(0

.0
08

85
)

(0
.0

0
73

0
)

(0
.0

10
0
)

(0
.0

0
96

7
)

(0
.0

0
9
4
5
)

(0
.0

0
8
86

)
(0

.0
08

8
4
)

d
if

M
-4

.9
8e

-0
5
**

*
-4

.9
8e

-0
5*

**
6
.2

0e
-0

6
1.

4
3e

-0
5

-2
.9

3e
-0

5*
*

-0
.0

00
15

0*
**

-0
.0

00
1
54

**
*

-0
.0

0
0
11

8
*
*
*

-0
.0

0
01

2
1
*
**

-0
.0

00
1
0
9
**

*
-0

.0
0
0
1
2
8
**

*
-0

.0
0
0
1
9
9*

*
*

-0
.0

0
0
2
01

*
*
*

(1
.2

9e
-0

5
)

(1
.2

9e
-0

5)
(1

.3
2e

-0
5)

(1
.3

3e
-0

5)
(1

.4
0e

-0
5
)

(1
.7

2e
-0

5)
(1

.7
3e

-0
5)

(1
.2

6
e-

0
5)

(2
.0

2
e-

0
5
)

(2
.0

1
e-

0
5
)

(2
.0

5
e-

0
5
)

(2
.1

4
e-

0
5
)

(2
.1

5
e-

0
5
)

se
fd

t
0.

1
74

**
*

0.
0
55

7*
*
*

0
.0

63
8
**

*
0.

10
4*

*
*

0.
10

5
**

*
0
.2

4
3*

*
*

0
.1

3
3
**

*
0
.1

2
6
*
*
*

0
.1

29
*
*
*

0
.1

28
*
*
*

(0
.0

10
7
)

(0
.0

1
36

)
(0

.0
13

6
)

(0
.0

13
6)

(0
.0

13
6)

(0
.0

1
1
3
)

(0
.0

14
0
)

(0
.0

1
3
9
)

(0
.0

13
9
)

(0
.0

1
3
9)

v
S
E

F
se

fd
t

-0
.1

80
**

*
-0

.1
56

**
*

-0
.1

4
9*

**
-0

.1
28

**
*

-0
.1

27
*
**

-0
.2

2
0
*
*
*

-0
.1

9
6
**

*
-0

.1
8
7*

*
*

-0
.1

5
6
*
*
*

-0
.1

5
7
**

*
(0

.0
11

3
)

(0
.0

1
11

)
(0

.0
11

0
)

(0
.0

10
8)

(0
.0

10
8)

(0
.0

1
1
8
)

(0
.0

11
5
)

(0
.0

1
1
2
)

(0
.0

10
6
)

(0
.0

1
0
5)

B
lk

sz
d
t

0
.1

53
*
**

0.
17

1*
**

0.
13

5*
**

0.
13

6*
*
*

0
.1

4
2
*
**

0.
15

9
*
*
*

0
.1

2
8*

*
*

0
.1

3
0*

*
*

(0
.0

14
7)

(0
.0

15
1)

(0
.0

14
4
)

(0
.0

14
4
)

(0
.0

1
47

)
(0

.0
1
5
1
)

(0
.0

1
43

)
(0

.0
1
4
3
)

lm
o
n
th

N
ot

0
.0

67
1
**

*
0.

07
09

**
*

0.
07

40
**

*
0
.0

5
8
5*

*
*

0
.0

6
0
9
**

*
0.

06
7
4
*
**

(0
.0

04
10

)
(0

.0
04

22
)

(0
.0

0
42

3)
(0

.0
0
40

4
)

(0
.0

0
4
1
2)

(0
.0

0
42

4
)

te
n
o
r5

0.
11

8*
*
*

0.
11

8*
*
*

0
.1

1
1
**

*
0
.1

1
0
**

*
(0

.0
06

49
)

(0
.0

06
64

)
(0

.0
0
68

7
)

(0
.0

0
6
9
3
)

V
IX

C
lo

se
-0

.0
01

14
**

*
-0

.0
0
2
8
5
**

*
(0

.0
00

3
40

)
(0

.0
00

3
9
1
)

2
01

3.
ye

a
r

1
.6

94
*
*
*

1
.6

4
2
*
*

1
.6

12
*

1
.4

7
5*

1
.5

0
3*

1
.4

7
8*

(0
.1

6
3
)

(0
.8

26
)

(0
.8

2
6
)

(0
.8

26
)

(0
.8

2
8
)

(0
.8

2
8
)

20
1
4.

ye
ar

1
.7

61
*
*
*

1
.5

62
*

1
.5

33
*

1
.4

0
4*

1
.4

8
0*

1
.4

5
7*

(0
.1

6
3
)

(0
.8

26
)

(0
.8

2
6
)

(0
.8

26
)

(0
.8

2
8
)

(0
.8

2
8
)

20
1
5.

ye
ar

1
.7

00
*
*
*

1
.4

99
*

1
.4

72
*

1
.3

8
0*

1
.4

5
8*

1
.4

4
6*

(0
.1

6
3
)

(0
.8

26
)

(0
.8

2
6
)

(0
.8

26
)

(0
.8

2
7
)

(0
.8

2
7
)

20
1
6.

ye
ar

1
.5

95
*
*
*

1
.3

87
*

1
.3

63
*

1
.2

7
0

1
.3

72
*

1
.3

5
6

(0
.1

6
4
)

(0
.8

26
)

(0
.8

2
6
)

(0
.8

26
)

(0
.8

2
7
)

(0
.8

2
7
)

20
1
7.

ye
ar

1
.5

48
*
*
*

1
.3

3
1

1
.3

0
9

1
.2

2
2

1
.3

4
5

1
.3

1
5

(0
.1

6
4
)

(0
.8

26
)

(0
.8

2
6
)

(0
.8

26
)

(0
.8

2
7
)

(0
.8

2
7
)

20
1
8.

ye
ar

1
.5

56
*
*
*

1
.3

3
5

1
.3

1
6

1
.1

9
8

1.
39

8
*

1.
38

7
*

(0
.1

6
4
)

(0
.8

26
)

(0
.8

2
6
)

(0
.8

26
)

(0
.8

2
7
)

(0
.8

2
7
)

C
o
n
st

a
n
t

4.
30

5*
**

4
.2

84
**

*
4.

38
2*

**
4
.3

82
**

*
4
.2

21
*
**

4.
16

5*
**

2.
83

2*
**

2.
89

9*
*
*

2.
85

2
**

*
2
.8

5
3*

*
*

2
.8

7
2
**

*
2
.8

4
2
*
**

1
.7

6
8
**

1
.7

3
8
**

1
.6

6
8
*
*

(0
.0

3
52

)
(0

.0
35

4)
(0

.0
4
15

)
(0

.0
41

5)
(0

.0
4
26

)
(0

.0
43

0)
(0

.0
94

4
)

(0
.0

91
7
)

(0
.0

92
0
)

(0
.1

68
)

(0
.8

2
7
)

(0
.8

2
7
)

(0
.8

3
0
)

(0
.8

3
1
)

(0
.8

3
2)

O
b
se

rv
a
ti

o
n
s

12
1,

29
3

1
21

,2
9
3

12
1,

2
93

12
1,

29
3

12
1,

29
3

12
1,

2
93

1
21

,2
93

1
21

,2
9
3

1
20

,8
6
2

1
2
1,

29
3

1
2
1
,2

93
1
2
1
,2

9
3

1
2
1
,2

9
3

1
21

,2
9
3

1
2
0,

86
2

R
-s

q
u
ar

ed
0
.0

12
0.

01
3

0.
01

3
0.

01
3

0.
0
18

0.
0
20

0.
0
24

0.
02

8
0.

02
8

0
.0

1
7

0
.0

2
3

0
.0

2
5

0
.0

2
7

0
.0

3
0

0
.0

3
1

R
ob

u
st

st
an

d
ar

d
er

ro
rs

in
p
a
re

n
th

es
es

**
*

p
<

0.
0
1,

*
*

p
<

0.
0
5,

*
p
<

0.
1



142

T
ab

le
D

.4
:

2S
L

S
R

eg
re

ss
io

n
s

fo
r

C
D

X
.N

A
.H

Y

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0
)

(1
1
)

(1
2
)

(1
3
)

V
A

R
IA

B
L

E
S

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce

ls
iz

e
0
.2

17
**

*
0.

24
3*

**
0.

22
1
**

*
0.

22
1*

**
0.

26
5
**

*
0.

28
6*

*
*

0.
29

9*
**

0.
2
99

**
*

0.
2
23

**
*

0.
23

6
*
*
*

0
.2

61
*
*
*

0
.2

71
*
*
*

0
.2

7
7
*
*
*

(0
.0

1
81

)
(0

.0
19

5
)

(0
.0

17
0)

(0
.0

17
0
)

(0
.0

17
5)

(0
.0

18
3)

(0
.0

1
88

)
(0

.0
18

1)
(0

.0
17

6
)

(0
.0

17
8
)

(0
.0

1
8
9)

(0
.0

1
9
3
)

(0
.0

1
8
6
)

vc
le

a
r

-0
.2

2
5*

**
-0

.1
11

*
**

-0
.0

7
80

**
*

-0
.0

7
80

**
*

-0
.0

22
6

-0
.0

24
6

-0
.0

15
0

-0
.0

1
31

-0
.3

3
7*

*
*

-0
.4

1
7*

*
*

-0
.3

5
8
*
**

-0
.1

4
1
*

-0
.1

3
7
*

(0
.0

2
88

)
(0

.0
23

3
)

(0
.0

21
6)

(0
.0

21
6
)

(0
.0

21
6)

(0
.0

22
0)

(0
.0

2
19

)
(0

.0
22

1)
(0

.0
73

4
)

(0
.0

74
1
)

(0
.0

7
4
3)

(0
.0

7
5
9
)

(0
.0

7
6
9
)

vc
le

a
r

se
ri

es
H

Y
n

0
.0

17
6*

**
0.

00
89

6*
*
*

0.
0
07

61
*
**

0.
00

76
1*

*
*

0
.0

04
2
5*

**
0.

0
03

97
*
**

0.
0
03

24
*
**

0.
00

31
9*

*
*

0
.0

19
8
**

*
0
.0

2
3
1*

*
*

0
.0

1
9
9
**

*
0
.0

0
93

7
*
*
*

0
.0

0
9
21

*
*

(0
.0

01
16

)
(0

.0
00

76
9
)

(0
.0

00
68

5)
(0

.0
00

6
85

)
(0

.0
00

69
2
)

(0
.0

00
70

4)
(0

.0
00

70
5)

(0
.0

0
07

19
)

(0
.0

03
4
2
)

(0
.0

03
4
5
)

(0
.0

0
3
47

)
(0

.0
0
3
5
8
)

(0
.0

0
3
6
2
)

v
S
E

F
0.

12
3*

**
0.

11
7
**

*
0
.1

17
*
**

0.
21

9
**

*
0.

19
4*

*
*

0.
18

3*
**

0.
18

2
**

*
0.

07
2
9*

*
*

0
.2

2
2
*
**

0.
19

8
*
*
*

0.
18

1
*
*
*

0
.1

8
2
*
**

(0
.0

08
83

)
(0

.0
08

40
)

(0
.0

08
40

)
(0

.0
15

4)
(0

.0
1
54

)
(0

.0
15

4
)

(0
.0

15
3)

(0
.0

08
9
3
)

(0
.0

1
4
8
)

(0
.0

14
8
)

(0
.0

1
4
6)

(0
.0

1
4
6
)

d
if

M
6.

9
3e

-0
5*

**
6.

93
e-

05
**

*
0.

00
0
14

9*
*
*

0.
00

01
7
0*

**
7.

28
e-

05
**

*
6
.9

7e
-0

5*
**

4.
90

e-
05

*
*

5
.7

5
e-

0
5
**

9.
12

e-
0
5
*
*
*

3
.2

7
e-

0
5

3.
54

e-
05

(1
.4

6e
-0

5)
(1

.4
6e

-0
5)

(1
.6

0e
-0

5
)

(1
.6

6
e-

05
)

(1
.6

7e
-0

5)
(1

.6
7e

-0
5)

(2
.2

5e
-0

5
)

(2
.2

6
e-

0
5)

(2
.3

5
e-

0
5)

(2
.2

8
e-

0
5)

(2
.2

9
e-

05
)

2
0
13

.y
ea

r
1.

69
9
*
*

1
.6

5
2*

*
1
.6

1
4
**

1
.6

4
6
**

1
.6

44
*
*

(0
.8

1
4
)

(0
.8

1
2
)

(0
.8

1
1
)

(0
.8

1
2
)

(0
.8

1
2
)

2
0
14

.y
ea

r
1.

76
1
*
*

1
.5

7
8
*

1
.5

4
2
*

1
.6

20
*
*

1
.6

1
7
*
*

(0
.8

1
4
)

(0
.8

1
2
)

(0
.8

1
1
)

(0
.8

1
2
)

(0
.8

1
2
)

2
0
15

.y
ea

r
1.

74
0
*
*

1
.5

5
7
*

1
.5

2
9
*

1
.6

09
*
*

1
.6

0
9
*
*

(0
.8

1
4
)

(0
.8

1
2
)

(0
.8

1
1
)

(0
.8

1
2
)

(0
.8

1
1
)

2
0
16

.y
ea

r
1.

68
7
*
*

1
.5

0
0
*

1
.4

8
2
*

1
.5

8
6
*

1
.5

87
*

(0
.8

1
4
)

(0
.8

1
2
)

(0
.8

1
1
)

(0
.8

1
2
)

(0
.8

1
1
)

2
0
17

.y
ea

r
1.

64
8
*
*

1
.4

5
4
*

1
.4

3
9
*

1
.5

6
4
*

1
.5

62
*

(0
.8

1
4
)

(0
.8

1
2
)

(0
.8

1
1
)

(0
.8

1
2
)

(0
.8

1
1
)

2
0
18

.y
ea

r
1.

63
7
*
*

1
.4

3
8
*

1
.4

2
4
*

1
.6

23
*
*

1
.6

2
3
*
*

(0
.8

1
4
)

(0
.8

1
2
)

(0
.8

1
1
)

(0
.8

1
2
)

(0
.8

1
1
)

se
fd

t
0.

16
9
**

*
0.

0
21

2
0.

0
55

1*
*
*

0.
05

51
*
**

0
.2

2
5
*
**

0
.0

8
1
2*

*
*

0
.0

8
2
1*

*
*

0
.0

8
06

*
*
*

(0
.0

11
1)

(0
.0

15
1)

(0
.0

15
0)

(0
.0

15
0
)

(0
.0

11
5
)

(0
.0

1
5
3)

(0
.0

1
5
4
)

(0
.0

1
5
5
)

v
S
E

F
se

fd
t

-0
.1

80
**

*
-0

.1
4
9*

**
-0

.1
30

**
*

-0
.1

30
*
**

-0
.1

9
9
*
*
*

-0
.1

6
7
**

*
-0

.1
3
6
*
*
*

-0
.1

3
6
*
*
*

(0
.0

15
2)

(0
.0

15
5)

(0
.0

15
6)

(0
.0

15
6
)

(0
.0

14
4
)

(0
.0

1
4
7)

(0
.0

1
4
6
)

(0
.0

1
4
8
)

B
lk

sz
d
t

0.
19

2*
**

0
.1

61
*
**

0.
16

0*
*
*

0
.1

8
2
**

*
0
.1

5
3
**

*
0
.1

5
4*

*
*

(0
.0

16
6)

(0
.0

15
9)

(0
.0

1
59

)
(0

.0
1
6
5
)

(0
.0

1
58

)
(0

.0
1
5
8)

te
n
o
r5

0.
1
05

**
*

0.
10

6*
*
*

0.
10

5
*
*
*

0
.1

0
5
*
*
*

(0
.0

06
41

)
(0

.0
06

6
4)

(0
.0

07
0
9
)

(0
.0

07
2
3
)

V
IX

C
lo

se
0.

0
00

29
6

-0
.0

0
0
6
1
0

(0
.0

00
4
52

)
(0

.0
0
0
4
9
3)

C
o
n
st

a
n
t

0
.9

05
**

*
0.

48
9

0.
7
28

**
0.

72
8*

*
-0

.2
06

-0
.6

21
*

-0
.7

31
**

-0
.7

24
**

-0
.9

7
7

-1
.1

9
7

-1
.6

7
0*

-1
.8

31
*
*

-1
.9

31
*
*

(0
.2

97
)

(0
.3

21
)

(0
.2

90
)

(0
.2

90
)

(0
.3

01
)

(0
.3

1
8)

(0
.3

23
)

(0
.3

12
)

(0
.8

69
)

(0
.8

69
)

(0
.8

7
5)

(0
.8

7
8
)

(0
.8

7
4
)

O
b
se

rv
a
ti

o
n
s

1
21

,2
93

1
21

,2
9
3

12
1,

29
3

12
1
,2

93
12

1,
29

3
1
21

,2
9
3

12
1,

2
93

1
20

,8
6
2

12
1,

29
3

1
2
1
,2

93
1
2
1
,2

93
1
2
1
,2

93
1
20

,8
6
2

R
ob

u
st

st
an

d
ar

d
er

ro
rs

in
p
ar

en
th

es
es

**
*

p
<

0.
01

,
**

p
<

0.
05

,
*

p
<

0.
1



143

T
ab

le
D

.5
:

R
eg

re
ss

io
n
s

fo
r

C
D

X
.N

A
.I

G

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0
)

(1
1
)

(1
2
)

(1
3
)

(1
4)

(1
5)

V
A

R
IA

B
L

E
S

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce

vc
le

ar
0.

49
8*

**
0
.5

32
**

*
0
.7

38
*
**

0.
7
38

**
*

0.
78

1*
**

0
.7

84
*
**

0.
7
44

**
*

0.
72

9
**

*
0.

71
9*

*
*

0
.7

40
*
*
*

0
.7

2
7
**

*
0.

73
3
*
*
*

0
.7

2
0*

*
*

0.
59

8
*
*
*

0
.6

1
4*

*
*

(0
.0

18
8)

(0
.0

19
8
)

(0
.0

19
6)

(0
.0

1
96

)
(0

.0
19

2
)

(0
.0

19
2)

(0
.0

20
3
)

(0
.0

19
9
)

(0
.0

19
9)

(0
.0

3
0
5
)

(0
.0

3
2
0)

(0
.0

31
9
)

(0
.0

3
1
9
)

(0
.0

3
5
0)

(0
.0

34
9
)

vc
le

ar
se

ri
es

IG
n

0
.0

00
69

6
-0

.0
0
20

0*
**

-0
.0

1
25

**
*

-0
.0

12
5
**

*
-0

.0
1
52

**
*

-0
.0

15
3
**

*
-0

.0
1
33

**
*

-0
.0

12
5*

**
-0

.0
11

8*
**

-0
.0

1
2
8*

*
*

-0
.0

1
23

*
*
*

-0
.0

12
6
*
*
*

-0
.0

1
1
9
*
*
*

-0
.0

0
5
69

*
*
*

-0
.0

0
6
31

*
*
*

(0
.0

0
06

15
)

(0
.0

00
75

9)
(0

.0
00

75
8)

(0
.0

0
07

58
)

(0
.0

00
71

0)
(0

.0
00

70
8)

(0
.0

00
78

3)
(0

.0
00

76
9)

(0
.0

00
77

0)
(0

.0
0
14

8
)

(0
.0

01
3
9
)

(0
.0

0
1
3
9
)

(0
.0

0
1
3
9
)

(0
.0

0
1
5
8)

(0
.0

0
1
58

)
ls

iz
e

-0
.0

1
79

**
*

-0
.0

1
80

*
**

-0
.0

1
39

**
*

-0
.0

13
9
**

*
-0

.0
13

7*
*
*

-0
.0

13
8
**

*
-0

.0
15

1*
**

-0
.0

14
9*

**
-0

.0
15

3*
**

-0
.0

0
9
56

*
*
*

-0
.0

0
99

2
*
*
*

-0
.0

1
0
0*

*
*

-0
.0

1
26

*
*
*

-0
.0

1
21

*
*
*

-0
.0

12
3
*
*
*

(0
.0

02
01

)
(0

.0
0
20

1)
(0

.0
01

96
)

(0
.0

01
9
6)

(0
.0

01
97

)
(0

.0
01

97
)

(0
.0

01
98

)
(0

.0
01

98
)

(0
.0

01
98

)
(0

.0
02

0
4
)

(0
.0

0
1
9
6
)

(0
.0

0
1
9
6)

(0
.0

0
1
9
8)

(0
.0

0
1
98

)
(0

.0
0
19

8
)

v
S
E

F
0.

04
01

**
*

0.
07

4
8*

**
0.

07
48

**
*

-0
.0

82
2

-0
.0

95
6

-0
.0

98
5

-0
.0

95
3

-0
.1

10
*

0
.0

1
6
2
*

-0
.0

8
4
6

-0
.0

9
77

-0
.1

0
4
*

-0
.0

9
7
7

-0
.1

0
7*

(0
.0

0
59

4)
(0

.0
05

8
5)

(0
.0

05
85

)
(0

.0
60

7)
(0

.0
6
17

)
(0

.0
61

6)
(0

.0
6
19

)
(0

.0
61

7
)

(0
.0

0
8
7
1
)

(0
.0

6
0
7
)

(0
.0

6
1
7)

(0
.0

61
5
)

(0
.0

61
9
)

(0
.0

6
1
8
)

d
if

M
0.

00
03

8
8*

**
0.

00
03

88
**

*
0
.0

00
3
92

**
*

0
.0

00
3
92

**
*

0
.0

00
38

8*
**

0.
00

03
90

*
**

0.
00

03
88

*
**

0
.0

00
3
8
9
**

*
0
.0

0
0
3
87

*
*
*

0
.0

0
03

8
8
*
**

0.
00

0
3
8
3
**

*
0
.0

0
0
3
82

*
*
*

0
.0

0
03

8
1
*
**

(9
.3

4e
-0

6)
(9

.3
4e

-0
6)

(9
.3

8e
-0

6
)

(9
.3

8e
-0

6)
(9

.4
3e

-0
6)

(9
.4

7e
-0

6
)

(9
.4

6e
-0

6)
(7

.9
5
e-

0
6
)

(9
.8

8e
-0

6
)

(9
.8

8
e-

0
6)

(9
.8

9
e-

0
6
)

(9
.9

9
e-

0
6
)

(1
.0

0
e-

05
)

se
fd

t
0.

11
9*

*
*

0.
0
79

3*
*
*

0.
08

99
**

*
0.

0
76

8*
*
*

0.
06

9
2*

**
0.

12
9
*
*
*

0.
08

9
4
*
**

0
.0

9
47

*
*
*

0.
09

0
9
*
**

0
.0

9
20

*
*
*

(0
.0

0
99

5)
(0

.0
1
68

)
(0

.0
17

0)
(0

.0
1
71

)
(0

.0
17

1
)

(0
.0

1
25

)
(0

.0
1
8
4
)

(0
.0

1
8
4
)

(0
.0

1
84

)
(0

.0
1
8
4
)

v
S
E

F
se

fd
t

0
.0

98
0

0.
11

2
*

0.
11

5
*

0.
11

3*
0.

1
13

*
0
.0

7
7
1

0.
09

0
7

0
.0

97
3

0
.0

9
2
0

0
.0

9
6
9

(0
.0

6
10

)
(0

.0
62

0
)

(0
.0

6
19

)
(0

.0
62

1
)

(0
.0

61
9)

(0
.0

6
0
9
)

(0
.0

6
1
9)

(0
.0

61
7
)

(0
.0

6
2
2
)

(0
.0

6
2
0)

B
lk

sz
d
t

0.
05

06
*
**

0.
05

55
**

*
0.

06
37

*
**

0.
06

01
**

*
0
.0

4
97

*
*
*

0
.0

6
4
9
*
**

0
.0

8
28

*
*
*

0.
08

0
3
*
**

(0
.0

18
2
)

(0
.0

1
82

)
(0

.0
18

1
)

(0
.0

18
1)

(0
.0

1
8
2
)

(0
.0

1
8
2
)

(0
.0

1
81

)
(0

.0
1
8
1
)

lm
on

th
N

o
t

0
.0

24
0*

**
0.

02
35

**
*

0.
0
09

74
*
**

0
.0

6
6
6
*
**

0
.0

6
1
9*

*
*

0.
04

8
8
*
**

(0
.0

03
6
8)

(0
.0

03
71

)
(0

.0
03

70
)

(0
.0

04
2
1
)

(0
.0

04
3
7
)

(0
.0

0
4
3
9
)

te
n
or

5
-0

.0
27

9*
**

-0
.0

17
9*

*
*

-0
.0

68
1
*
*
*

-0
.0

6
1
7
*
**

(0
.0

05
7
4)

(0
.0

05
90

)
(0

.0
0
72

3
)

(0
.0

07
3
0
)

V
IX

C
lo

se
0.

01
59

**
*

0
.0

1
1
4
**

*
(0

.0
00

48
1
)

(0
.0

0
0
54

7
)

2
0
13

.y
ea

r
-0

.2
6
8

-0
.2

8
9

-0
.3

0
0

-0
.4

7
0

-0
.4

8
1

-0
.4

0
9

(0
.1

9
3
)

(0
.4

4
6)

(0
.4

4
6
)

(0
.4

4
6
)

(0
.4

4
6)

(0
.4

4
6
)

20
14

.y
ea

r
-0

.2
2
8

-0
.3

3
8

-0
.3

4
8

-0
.5

0
3

-0
.5

5
1

-0
.4

8
2

(0
.1

9
3
)

(0
.4

4
6)

(0
.4

4
6
)

(0
.4

4
6
)

(0
.4

4
6)

(0
.4

4
6
)

20
15

.y
ea

r
-0

.1
4
4

-0
.2

5
2

-0
.2

6
2

-0
.3

6
0

-0
.4

1
2

-0
.3

8
2

(0
.1

9
3
)

(0
.4

4
6)

(0
.4

4
6
)

(0
.4

4
6
)

(0
.4

4
6)

(0
.4

4
6
)

20
16

.y
ea

r
0.

00
1
5
4

-0
.1

0
6

-0
.1

1
6

-0
.2

1
9

-0
.2

8
4

-0
.2

4
1

(0
.1

9
3
)

(0
.4

4
6)

(0
.4

4
6
)

(0
.4

4
6
)

(0
.4

4
6)

(0
.4

4
6
)

20
17

.y
ea

r
-0

.3
0
2

-0
.4

1
0

-0
.4

1
9

-0
.5

1
8

-0
.5

9
6

-0
.4

9
6

(0
.1

9
4
)

(0
.4

4
6)

(0
.4

4
6
)

(0
.4

4
6
)

(0
.4

4
6)

(0
.4

4
6
)

20
18

.y
ea

r
-0

.3
8
6
**

-0
.4

9
6

-0
.5

0
4

-0
.6

3
6

-0
.7

6
1*

-0
.7

33
(0

.1
9
4
)

(0
.4

4
6)

(0
.4

4
6
)

(0
.4

4
7
)

(0
.4

4
7)

(0
.4

4
7
)

C
o
n
st

a
n
t

4
.0

34
**

*
4
.0

37
**

*
3.

27
3*

**
3.

27
3*

**
3
.2

25
*
**

3.
2
15

**
*

2.
68

7*
**

2.
7
08

**
*

2.
79

8
**

*
3
.4

45
*
*
*

3
.4

5
7
**

*
3.

45
7
*
*
*

2
.1

2
8*

*
*

2.
28

5
*
*
*

2
.3

5
0*

*
*

(0
.0

3
62

)
(0

.0
3
62

)
(0

.0
39

8
)

(0
.0

39
8)

(0
.0

4
03

)
(0

.0
40

5
)

(0
.0

8
98

)
(0

.0
9
09

)
(0

.0
91

1
)

(0
.1

9
7)

(0
.4

4
9
)

(0
.4

4
9
)

(0
.4

57
)

(0
.4

5
8
)

(0
.4

5
8
)

O
b
se

rv
at

io
n
s

1
10

,2
62

11
0,

26
2

11
0,

26
2

1
10

,2
62

11
0,

26
2

11
0,

2
62

11
0,

2
62

11
0,

26
2

10
9
,9

02
1
1
0
,2

62
1
1
0
,2

6
2

11
0
,2

6
2

1
10

,2
6
2

1
1
0
,2

6
2

10
9
,9

0
2

R
-s

q
u
ar

ed
0.

05
5

0
.0

55
0.

0
77

0.
07

7
0.

07
9

0.
07

9
0.

07
9

0.
0
79

0.
08

3
0
.0

8
8

0
.0

8
9

0
.0

8
9

0.
09

1
0
.0

9
2

0
.0

9
3

R
ob

u
st

st
an

d
ar

d
er

ro
rs

in
p
ar

en
th

es
es

**
*

p
<

0.
01

,
**

p
<

0.
0
5,

*
p
<

0.
1



144

T
ab

le
D

.6
:

2S
L

S
R

eg
re

ss
io

n
s

fo
r

C
D

X
.N

A
.I

G

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0
)

(1
1
)

(1
2
)

(1
3)

V
A

R
IA

B
L

E
S

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce

ls
iz

e
0.

09
41

**
*

0.
10

9*
*
*

0.
00

23
1

0.
0
02

31
0
.0

91
6
**

*
0.

09
6
0*

**
0.

09
3
3*

**
0
.0

28
8
*

0.
29

4*
*
*

0
.3

1
9
**

*
0.

32
3
*
*
*

0
.2

9
4*

*
*

0
.2

1
6
*
*
*

(0
.0

19
2)

(0
.0

1
87

)
(0

.0
16

9)
(0

.0
16

9)
(0

.0
1
74

)
(0

.0
17

1
)

(0
.0

17
2
)

(0
.0

16
6)

(0
.0

26
6)

(0
.0

24
2
)

(0
.0

2
3
7
)

(0
.0

2
35

)
(0

.0
21

6
)

vc
le

ar
0
.4

05
**

*
0.

4
20

**
*

0.
72

5*
**

0.
7
25

**
*

0.
69

8
**

*
0.

69
6*

*
*

0.
68

0*
*
*

0.
69

9*
**

0
.6

62
*
*
*

0
.6

4
6
*
**

0
.6

48
*
*
*

0
.4

9
6
**

*
0
.5

35
*
*
*

(0
.0

26
3)

(0
.0

2
73

)
(0

.0
24

7)
(0

.0
24

7)
(0

.0
2
42

)
(0

.0
24

2
)

(0
.0

23
9
)

(0
.0

23
3)

(0
.0

34
1)

(0
.0

35
8
)

(0
.0

3
5
8
)

(0
.0

3
80

)
(0

.0
36

6
)

vc
le

ar
se

ri
es

IG
n

0
.0

05
17

**
*

0.
0
03

60
*
**

-0
.0

11
9
**

*
-0

.0
1
19

**
*

-0
.0

11
0
**

*
-0

.0
1
09

**
*

-0
.0

1
01

**
*

-0
.0

10
8*

**
-0

.0
08

9
9
*
*
*

-0
.0

08
3
6
*
**

-0
.0

0
8
4
4
**

*
-0

.0
0
0
68

0
-0

.0
0
2
4
6

(0
.0

0
10

4)
(0

.0
01

1
6)

(0
.0

01
02

)
(0

.0
01

02
)

(0
.0

0
10

1)
(0

.0
01

0
1)

(0
.0

01
0
1)

(0
.0

00
97

9)
(0

.0
01

6
5
)

(0
.0

01
6
0
)

(0
.0

0
1
6
0
)

(0
.0

0
1
7
5)

(0
.0

0
1
6
8)

v
S
E

F
0.

03
21

**
*

0.
0
74

0*
*
*

0.
07

40
*
**

-0
.0

87
6

-0
.0

9
88

-0
.0

95
0

-0
.1

10
*

-0
.0

06
3
6

-0
.0

97
9

-0
.1

05
-0

.0
96

0
-0

.1
0
6
*

(0
.0

06
17

)
(0

.0
05

8
7)

(0
.0

05
87

)
(0

.0
61

2)
(0

.0
62

2)
(0

.0
62

4)
(0

.0
61

9)
(0

.0
0
97

5)
(0

.0
6
2
9
)

(0
.0

6
39

)
(0

.0
6
4
1
)

(0
.0

6
3
3
)

d
if

M
0.

00
03

91
**

*
0
.0

00
3
91

**
*

0
.0

00
4
08

**
*

0
.0

00
4
09

**
*

0
.0

0
04

12
*
**

0.
00

03
96

*
**

0.
00

04
50

*
*
*

0
.0

00
4
5
3
**

*
0
.0

0
0
4
54

*
*
*

0
.0

0
04

4
6
*
**

0.
0
00

4
2
8
**

*
(9

.6
4e

-0
6
)

(9
.6

4e
-0

6)
(9

.7
7e

-0
6)

(9
.7

6e
-0

6)
(9

.7
8e

-0
6)

(9
.6

0
e-

06
)

(1
.0

2e
-0

5
)

(1
.2

0
e-

0
5
)

(1
.1

9
e-

0
5
)

(1
.1

9e
-0

5
)

(1
.1

3
e-

0
5
)

2
01

3.
ye

ar
-0

.3
15

-0
.3

3
6

-0
.3

42
-0

.3
6
9

-0
.3

1
6

(0
.2

12
)

(0
.4

1
5)

(0
.4

1
5
)

(0
.4

1
7
)

(0
.4

2
4)

2
01

4.
ye

ar
-0

.2
63

-0
.3

5
4

-0
.3

59
-0

.4
3
3

-0
.3

8
6

(0
.2

12
)

(0
.4

1
6)

(0
.4

1
5
)

(0
.4

1
7
)

(0
.4

2
4)

2
01

5.
ye

ar
-0

.1
49

-0
.2

3
6

-0
.2

40
-0

.3
1
9

-0
.3

0
9

(0
.2

12
)

(0
.4

1
6)

(0
.4

1
5
)

(0
.4

1
7
)

(0
.4

2
4)

2
01

6.
ye

ar
0.

0
73

1
-0

.0
0
7
2
8

-0
.0

1
0
6

-0
.1

1
4

-0
.1

0
9

(0
.2

12
)

(0
.4

1
6)

(0
.4

1
5
)

(0
.4

1
8
)

(0
.4

2
4)

2
01

7.
ye

ar
-0

.2
47

-0
.3

2
9

-0
.3

32
-0

.4
5
0

-0
.3

7
8

(0
.2

12
)

(0
.4

1
6)

(0
.4

1
5
)

(0
.4

1
8
)

(0
.4

2
4)

2
01

8.
ye

ar
-0

.4
34

**
-0

.5
2
5

-0
.5

3
0

-0
.7

0
2
*

-0
.6

8
8

(0
.2

13
)

(0
.4

1
6)

(0
.4

1
6
)

(0
.4

1
8
)

(0
.4

2
4)

se
fd

t
0.

12
3
**

*
0
.0

90
1
**

*
0.

0
74

4*
*
*

0.
06

8
1*

**
0.

10
3
*
*
*

0.
08

2
8
*
**

0
.0

7
90

*
*
*

0.
0
83

0
*
*
*

(0
.0

10
1)

(0
.0

17
1)

(0
.0

17
2)

(0
.0

17
0)

(0
.0

1
3
7
)

(0
.0

1
97

)
(0

.0
1
9
5
)

(0
.0

1
9
0
)

v
S
E

F
se

fd
t

0
.0

96
5

0.
10

8
*

0.
10

6*
0.

1
10

*
0
.0

7
1
4

0
.0

7
8
1

0.
07

2
9

0
.0

8
29

(0
.0

61
4)

(0
.0

62
3)

(0
.0

62
5)

(0
.0

62
0)

(0
.0

6
3
0
)

(0
.0

6
41

)
(0

.0
6
4
2
)

(0
.0

6
3
4
)

B
lk

sz
d
t

0.
04

13
**

0.
0
51

6*
*
*

0.
05

5
2*

**
0
.0

24
6

0
.0

51
5
*
*
*

0
.0

5
6
3
**

*
(0

.0
18

3)
(0

.0
18

3)
(0

.0
18

2)
(0

.0
1
9
1)

(0
.0

19
0
)

(0
.0

1
8
6
)

te
n
or

5
-0

.0
33

6
**

*
-0

.0
2
04

**
*

-0
.0

8
83

*
*
*

-0
.0

7
71

*
*
*

(0
.0

05
65

)
(0

.0
05

77
)

(0
.0

0
7
4
7)

(0
.0

0
7
3
6)

V
IX

C
lo

se
0
.0

15
9
**

*
0
.0

1
2
2*

*
*

(0
.0

00
48

4)
(0

.0
0
0
6
1
0)

C
on

st
a
n
t

2
.0

77
**

*
1.

8
23

**
*

2.
98

5*
**

2
.9

85
*
**

1.
3
55

**
*

1.
26

7
**

*
1.

33
0*

**
2
.2

41
*
**

-1
.9

37
*
**

-2
.3

7
3
**

*
-2

.4
48

*
*
*

-1
.8

2
9
*
*
*

-0
.6

7
5

(0
.3

3
4)

(0
.3

26
)

(0
.2

9
9)

(0
.2

99
)

(0
.3

09
)

(0
.3

04
)

(0
.3

05
)

(0
.2

96
)

(0
.5

17
)

(0
.5

9
7)

(0
.5

9
1
)

(0
.5

9
0
)

(0
.5

7
2)

O
b
se

rv
at

io
n
s

11
0,

26
2

11
0,

26
2

11
0,

2
62

11
0,

26
2

11
0
,2

62
11

0,
26

2
11

0,
26

2
10

9
,9

02
11

0,
26

2
11

0
,2

6
2

1
10

,2
6
2

1
1
0,

26
2

1
0
9
,9

0
2

R
-s

q
u
a
re

d
0.

03
0

0
.0

23
0.

07
6

0.
0
76

0
.0

56
0.

05
4

0.
05

6
0
.0

79

R
ob

u
st

st
an

d
a
rd

er
ro

rs
in

p
ar

en
th

es
es

*
**

p
<

0
.0

1,
**

p
<

0.
05

,
*

p
<

0.
1



145

T
ab

le
D

.7
:

R
eg

re
ss

io
n

s
fo

r
C

D
X

.E
M

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

(1
1
)

(1
2)

(1
3
)

(1
4
)

(1
5)

V
A

R
IA

B
L

E
S

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce

vc
le

a
r

-0
.0

35
6

-0
.5

77
*
**

-0
.5

77
**

*
-0

.5
77

*
**

-0
.5

96
*
**

-0
.5

95
*
**

-0
.5

92
*
**

-0
.6

0
3*

**
-0

.6
0
8*

**
-0

.5
7
3*

**
-0

.5
7
4
*
**

-0
.5

7
3
*
*
*

-0
.5

77
*
*
*

-0
.6

2
7*

*
*

-0
.6

3
2
*
**

(0
.0

3
57

)
(0

.0
44

6
)

(0
.0

44
5)

(0
.0

44
5)

(0
.0

4
44

)
(0

.0
44

3
)

(0
.0

44
3)

(0
.0

48
4)

(0
.0

48
6)

(0
.0

44
8
)

(0
.0

4
4
8
)

(0
.0

4
4
6
)

(0
.0

4
4
7
)

(0
.0

4
8
6
)

(0
.0

4
87

)
vc

le
a
r

se
ri

es
E

M
n

0.
01

17
**

*
0.

00
4
52

0
.0

04
5
0

0.
0
04

50
0.

00
28

7
0.

00
29

2
0.

0
02

56
0.

0
03

72
0.

00
38

3
-0

.0
02

26
-0

.0
0
1
94

-0
.0

0
1
8
9

-0
.0

0
1
4
8

0
.0

0
3
6
2

0
.0

0
3
6
5

(0
.0

03
28

)
(0

.0
03

11
)

(0
.0

03
12

)
(0

.0
03

12
)

(0
.0

03
08

)
(0

.0
03

08
)

(0
.0

03
1
2)

(0
.0

0
35

9)
(0

.0
0
36

0)
(0

.0
03

19
)

(0
.0

0
31

9
)

(0
.0

0
3
1
8)

(0
.0

0
3
2
1
)

(0
.0

03
5
6
)

(0
.0

0
3
57

)
ls

iz
e

0
.0

51
7*

**
0.

0
71

3*
*
*

0.
07

1
2*

**
0.

07
12

**
*

0.
06

42
**

*
0.

0
66

5*
*
*

0.
0
65

3*
*
*

0.
06

5
3*

**
0.

06
53

**
*

0.
06

26
**

*
0.

06
1
1
*
**

0
.0

6
3
5
**

*
0
.0

6
5
0
**

*
0
.0

6
5
0*

*
*

0
.0

6
5
0
**

*
(0

.0
08

79
)

(0
.0

08
78

)
(0

.0
08

78
)

(0
.0

08
78

)
(0

.0
08

89
)

(0
.0

08
91

)
(0

.0
09

0
2)

(0
.0

0
90

3)
(0

.0
0
91

0)
(0

.0
08

74
)

(0
.0

0
87

6
)

(0
.0

0
8
7
8)

(0
.0

0
8
8
9
)

(0
.0

08
8
9
)

(0
.0

0
8
95

)
v
S
E

F
0.

89
4*

**
0
.8

94
*
**

0.
89

4
**

*
1.

60
5*

*
*

1
.5

69
*
**

1.
56

9
**

*
1.

57
0
**

*
1.

57
5*

**
0
.8

28
*
**

1.
61

3
*
*
*

1
.5

7
7
*
**

1
.5

7
8
**

*
1
.5

8
3*

*
*

1
.5

8
6*

*
*

(0
.0

31
2)

(0
.0

3
09

)
(0

.0
30

9)
(0

.0
69

3)
(0

.0
69

9)
(0

.0
69

8
)

(0
.0

70
0
)

(0
.0

70
2)

(0
.0

29
1)

(0
.0

6
9
5
)

(0
.0

70
0
)

(0
.0

70
0
)

(0
.0

70
2
)

(0
.0

7
0
3)

d
if

M
1
.0

2e
-0

5
1.

02
e-

05
-3

.4
4
e-

05
-3

.4
4e

-0
5

-3
.6

6e
-0

5
-5

.2
5e

-0
5

-4
.9

3e
-0

5
-1

.7
0e

-0
5

-3
.1

3
e-

0
5

-3
.1

3
e-

0
5

-2
.8

5e
-0

5
-0

.0
0
0
1
0
3

-0
.0

0
01

0
3

(6
.3

9e
-0

5
)

(6
.3

9e
-0

5)
(6

.3
3e

-0
5)

(6
.3

3
e-

05
)

(6
.3

1e
-0

5)
(6

.8
7e

-0
5)

(6
.9

5
e-

05
)

(6
.2

6e
-0

5
)

(6
.2

5
e-

0
5
)

(6
.2

5
e-

0
5
)

(6
.2

5
e-

0
5)

(6
.7

5e
-0

5
)

(6
.8

2e
-0

5
)

se
fd

t
0.

63
4*

*
*

0
.4

04
*
**

0.
4
01

**
*

0.
40

5
**

*
0.

40
7*

*
*

0
.3

5
1*

*
*

0
.1

23
0.

11
8

0
.1

1
6

0
.1

1
4

(0
.0

52
5)

(0
.0

6
84

)
(0

.0
68

5)
(0

.0
68

9)
(0

.0
69

0)
(0

.0
76

7
)

(0
.0

88
8
)

(0
.0

88
7
)

(0
.0

8
87

)
(0

.0
8
8
8)

v
S
E

F
se

fd
t

-0
.7

85
*
**

-0
.7

4
9*

**
-0

.7
4
9*

**
-0

.7
50

**
*

-0
.7

51
**

*
-0

.8
0
9
*
**

-0
.7

7
3
*
*
*

-0
.7

74
*
*
*

-0
.7

7
9*

*
*

-0
.7

7
8
*
**

(0
.0

61
6)

(0
.0

6
26

)
(0

.0
62

6)
(0

.0
62

6)
(0

.0
62

8)
(0

.0
61

6
)

(0
.0

62
6
)

(0
.0

62
7
)

(0
.0

6
28

)
(0

.0
6
2
9)

B
lk

sz
d
t

0.
3
65

**
*

0.
36

4*
*
*

0.
36

0*
*
*

0
.3

60
*
**

0
.3

6
4
**

*
0
.3

6
5*

*
*

0
.3

48
*
*
*

0
.3

48
*
*
*

(0
.0

90
2
)

(0
.0

90
1)

(0
.0

90
2)

(0
.0

90
2)

(0
.0

9
0
2
)

(0
.0

9
0
1
)

(0
.0

9
0
2
)

(0
.0

90
2
)

lm
on

th
N

ot
0.

01
1
4

0.
01

09
0.

00
7
64

-0
.0

1
39

-0
.0

1
7
5

-0
.0

2
23

*
(0

.0
12

1)
(0

.0
12

2)
(0

.0
12

4)
(0

.0
1
23

)
(0

.0
1
24

)
(0

.0
1
2
8)

te
n
or

5
0.

01
4
3

0
.0

15
2

0.
07

1
1
*
**

0
.0

72
1
*
*
*

(0
.0

20
3
)

(0
.0

21
3)

(0
.0

22
6
)

(0
.0

2
33

)
V

IX
C

lo
se

-0
.0

0
11

6
0.

00
0
4
0
3

(0
.0

01
28

)
(0

.0
0
1
6
6
)

20
1
3.

ye
a
r

-0
.9

43
**

*
-1

.0
6
4
**

*
-1

.1
9
8
*
**

-1
.1

5
6
*
*
*

-1
.1

25
*
*
*

-1
.1

0
9
**

*
(0

.0
3
82

)
(0

.0
4
9
4)

(0
.0

6
5
0
)

(0
.0

7
5
5
)

(0
.0

7
6
0
)

(0
.0

77
5
)

20
14

.y
ea

r
-0

.7
83

**
*

-1
.1

2
6
**

*
-1

.2
5
9
*
**

-1
.2

0
9
*
*
*

-1
.1

57
*
*
*

-1
.1

3
9
**

*
(0

.0
30

2
)

(0
.0

8
0
0
)

(0
.0

9
0
3
)

(0
.0

9
9
2
)

(0
.1

0
0)

(0
.1

0
2
)

2
01

5.
ye

ar
-0

.3
1
1*

**
-0

.6
5
4
*
**

-0
.7

8
7
*
*
*

-0
.7

38
*
*
*

-0
.6

8
9*

*
*

-0
.6

6
9
*
**

(0
.0

13
3)

(0
.0

7
7
0
)

(0
.0

8
7
7
)

(0
.0

9
7
6
)

(0
.0

9
8
8
)

(0
.0

9
96

)
20

1
6.

ye
ar

-0
.3

63
*
**

-0
.7

0
4
*
**

-0
.8

3
8
*
*
*

-0
.7

85
*
*
*

-0
.7

3
7*

*
*

-0
.7

1
7
*
**

(0
.0

15
9)

(0
.0

7
7
1
)

(0
.0

87
7
)

(0
.0

99
0
)

(0
.1

0
0
)

(0
.1

0
2
)

2
0
17

.y
ea

r
-0

.2
54

**
*

-0
.5

9
5
*
*
*

-0
.7

29
*
*
*

-0
.6

7
7*

*
*

-0
.6

2
3
**

*
-0

.6
0
2
*
*
*

(0
.0

16
0)

(0
.0

7
7
1
)

(0
.0

87
7
)

(0
.0

98
8
)

(0
.1

0
0
)

(0
.1

0
3
)

2
01

8
.y

ea
r

-0
.2

00
**

*
-0

.5
4
0
*
*
*

-0
.6

74
*
*
*

-0
.6

2
0*

*
*

-0
.5

3
0
**

*
-0

.5
0
9
*
*
*

(0
.0

1
65

)
(0

.0
77

6
)

(0
.0

8
82

)
(0

.0
9
98

)
(0

.1
0
4
)

(0
.1

05
)

C
o
n
st

a
n
t

3.
38

3*
**

2
.9

91
*
**

2.
9
75

**
*

2.
97

5
**

*
2.

63
8*

**
2.

4
64

**
*

2.
26

1
**

*
2.

28
8*

*
*

2.
36

6*
**

3.
6
97

**
*

3
.7

4
8
**

*
3
.7

0
8*

*
*

3
.9

14
*
*
*

4.
04

1
*
*
*

4.
11

3
*
*
*

(0
.1

45
)

(0
.1

45
)

(0
.1

81
)

(0
.1

81
)

(0
.1

82
)

(0
.1

88
)

(0
.2

91
)

(0
.2

97
)

(0
.2

9
9)

(0
.1

82
)

(0
.1

8
3
)

(0
.1

8
3
)

(0
.2

6
1
)

(0
.2

6
7
)

(0
.2

69
)

O
b
se

rv
at

io
n
s

40
,3

42
40

,3
42

40
,3

4
2

40
,3

42
40

,3
42

40
,3

4
2

4
0,

34
2

40
,3

4
2

40
,1

23
40

,3
42

40
,3

4
2

4
0
,3

4
2

4
0
,3

42
4
0,

34
2

4
0,

12
3

R
-s

q
u
ar

ed
0
.0

02
0.

04
7

0
.0

47
0.

04
7

0
.0

58
0.

05
9

0
.0

59
0.

05
9

0
.0

59
0.

07
2

0
.0

7
4

0
.0

7
5

0.
07

5
0
.0

7
5

0
.0

7
5

R
ob

u
st

st
an

d
a
rd

er
ro

rs
in

p
ar

en
th

es
es

*
**

p
<

0.
0
1,

*
*

p
<

0.
05

,
*

p
<

0
.1



146

T
ab

le
D

.8
:

2S
L

S
R

eg
re

ss
io

n
s

fo
r

C
D

X
.E

M

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0
)

(1
1)

(1
2
)

(1
3
)

V
A

R
IA

B
L

E
S

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce

ls
iz

e
0
.2

51
**

*
0.

22
6*

**
0.

2
29

**
*

0.
22

9*
**

0
.1

21
*
*

0.
1
17

**
0.

11
5*

*
0.

09
84

*
-0

.0
04

34
0.

0
0
7
57

0
.0

0
35

8
-0

.0
1
2
8

-0
.0

2
9
8

(0
.0

4
48

)
(0

.0
43

3)
(0

.0
44

2
)

(0
.0

44
2)

(0
.0

54
5)

(0
.0

5
42

)
(0

.0
54

4)
(0

.0
53

2
)

(0
.0

45
1)

(0
.0

5
4
1
)

(0
.0

53
8
)

(0
.0

54
6
)

(0
.0

53
7
)

vc
le

a
r

-0
.0

3
74

-0
.5

97
**

*
-0

.5
98

**
*

-0
.5

9
8*

**
-0

.6
0
3*

**
-0

.6
0
1*

**
-0

.6
12

**
*

-0
.6

15
**

*
-0

.5
64

**
*

-0
.5

6
6
*
**

-0
.5

6
5
*
*
*

-0
.6

12
*
*
*

-0
.6

1
3*

*
*

(0
.0

3
50

)
(0

.0
36

6)
(0

.0
36

8
)

(0
.0

36
8)

(0
.0

45
2)

(0
.0

4
50

)
(0

.0
48

7)
(0

.0
48

8
)

(0
.0

36
7)

(0
.0

4
5
6
)

(0
.0

45
4
)

(0
.0

48
6
)

(0
.0

48
6
)

vc
le

a
r

se
ri

es
E

M
n

0.
01

05
**

*
0
.0

03
3
2

0.
0
03

39
0
.0

03
3
9

0.
0
02

51
0.

00
26

0
0
.0

03
80

0.
00

38
8

-0
.0

01
96

-0
.0

0
1
7
2

-0
.0

0
1
6
4

0
.0

0
3
4
3

0
.0

0
3
40

(0
.0

03
4
0)

(0
.0

03
32

)
(0

.0
03

32
)

(0
.0

03
3
2)

(0
.0

03
12

)
(0

.0
03

11
)

(0
.0

0
35

7)
(0

.0
03

59
)

(0
.0

03
32

)
(0

.0
0
32

0
)

(0
.0

0
3
19

)
(0

.0
0
3
5
3)

(0
.0

0
3
5
4
)

v
S
E

F
0.

9
24

**
*

0.
92

6*
*
*

0.
9
26

**
*

1.
60

7*
*
*

1
.5

68
*
**

1.
56

9*
**

1.
5
74

**
*

0.
81

3
**

*
1.

6
1
2
**

*
1
.5

7
8*

*
*

1
.5

84
*
*
*

1.
58

8
*
*
*

(0
.0

22
2)

(0
.0

22
6
)

(0
.0

22
6)

(0
.0

70
0)

(0
.0

70
6
)

(0
.0

7
07

)
(0

.0
70

6
)

(0
.0

22
7)

(0
.0

6
9
2)

(0
.0

6
9
4)

(0
.0

6
9
4
)

(0
.0

6
9
4
)

d
if

M
-5

.1
3e

-0
5

-5
.1

3e
-0

5
-5

.5
9e

-0
5

-5
.3

1e
-0

5
-6

.8
9e

-0
5

-6
.1

1
e-

05
9.

80
e-

06
-1

.0
3
e-

0
5

-7
.8

6
e-

0
6

-7
.6

9
e-

0
5

-6
.9

6
e-

0
5

(4
.8

5e
-0

5)
(4

.8
5
e-

05
)

(6
.5

4e
-0

5)
(6

.5
3e

-0
5
)

(7
.0

1e
-0

5
)

(7
.0

8e
-0

5)
(4

.8
2e

-0
5)

(6
.5

1e
-0

5
)

(6
.5

1
e-

0
5
)

(6
.8

7
e-

0
5
)

(6
.9

4
e-

0
5
)

2
0
13

.y
ea

r
-1

.0
05

-1
.1

1
7
*
**

-1
.2

4
7
*
*
*

-1
.2

41
*
*
*

-1
.2

5
6*

*
*

(1
.5

1
5)

(0
.0

7
1
9
)

(0
.0

77
7
)

(0
.0

77
5
)

(0
.0

7
76

)
2
0
14

.y
ea

r
-0

.8
36

-1
.1

7
8
*
**

-1
.3

0
8
*
*
*

-1
.2

82
*
*
*

-1
.2

9
8*

*
*

(1
.5

1
5)

(0
.0

9
7
7
)

(0
.1

0
2
)

(0
.1

0
1
)

(0
.1

0
1
)

2
0
15

.y
ea

r
-0

.3
66

-0
.7

0
7
*
**

-0
.8

3
8
*
*
*

-0
.8

15
*
*
*

-0
.8

2
6*

*
*

(1
.5

1
5)

(0
.0

9
4
6
)

(0
.0

98
6
)

(0
.0

98
3
)

(0
.0

9
80

)
2
0
16

.y
ea

r
-0

.4
17

-0
.7

5
8
*
**

-0
.8

8
8
*
*
*

-0
.8

68
*
*
*

-0
.8

8
2*

*
*

(1
.5

1
5)

(0
.0

9
4
9
)

(0
.0

98
9
)

(0
.0

98
6
)

(0
.0

9
85

)
2
0
17

.y
ea

r
-0

.3
01

-0
.6

4
2
*
**

-0
.7

7
2
*
*
*

-0
.7

44
*
*
*

-0
.7

5
9*

*
*

(1
.5

1
5)

(0
.0

9
1
1
)

(0
.0

95
8
)

(0
.0

95
5
)

(0
.0

9
66

)
2
0
18

.y
ea

r
-0

.2
45

-0
.5

8
5
*
**

-0
.7

1
5
*
*
*

-0
.6

50
*
*
*

-0
.6

5
8*

*
*

(1
.5

1
5)

(0
.0

9
0
8
)

(0
.0

95
7
)

(0
.0

96
4
)

(0
.0

9
58

)
se

fd
t

0.
62

2*
*
*

0.
38

0*
**

0.
38

5*
**

0
.3

93
*
**

0.
36

2
*
*
*

0
.1

5
0

0
.1

57
*

0
.1

6
5
*

(0
.0

53
5)

(0
.0

73
6)

(0
.0

74
2)

(0
.0

74
0)

(0
.0

7
7
3)

(0
.0

9
2
8
)

(0
.0

9
2
9
)

(0
.0

9
2
9
)

v
S
E

F
se

fd
t

-0
.7

7
3*

**
-0

.7
3
7*

**
-0

.7
38

**
*

-0
.7

43
**

*
-0

.8
2
1
*
*
*

-0
.7

88
*
*
*

-0
.7

9
7*

*
*

-0
.8

0
2
**

*
(0

.0
63

0)
(0

.0
64

7)
(0

.0
64

9)
(0

.0
64

8)
(0

.0
6
2
2)

(0
.0

6
3
4
)

(0
.0

6
3
5
)

(0
.0

6
3
5
)

B
lk

sz
d
t

0.
38

6
**

*
0.

38
2*

**
0.

37
4*

*
*

0
.3

3
8*

*
*

0
.3

14
*
*
*

0.
30

7
*
*
*

(0
.0

94
1)

(0
.0

94
2)

(0
.0

9
41

)
(0

.0
9
37

)
(0

.0
9
41

)
(0

.0
9
40

)
te

n
or

5
0
.0

14
9

0.
0
16

3
0.

07
1
3
*
**

0.
07

0
7
*
**

(0
.0

20
3)

(0
.0

21
1)

(0
.0

2
2
6
)

(0
.0

2
3
2
)

V
IX

C
lo

se
-0

.0
00

8
34

-0
.0

0
04

9
4

(0
.0

01
31

)
(0

.0
0
1
63

)
C

o
n
st

a
n
t

0.
15

4
0.

48
4

0.
52

9
0.

5
29

1.
75

9
**

1.
68

4
*

1.
73

8*
*

1
.9

97
*
*

4.
78

9*
**

4
.6

2
2
*
*
*

4
.6

8
6
*
**

5
.0

1
9
**

*
5
.3

0
6*

*
*

(0
.7

25
)

(0
.7

03
)

(0
.6

91
)

(0
.6

91
)

(0
.8

54
)

(0
.8

5
9)

(0
.8

66
)

(0
.8

51
)

(1
.6

86
)

(0
.8

9
5)

(0
.8

9
1
)

(0
.9

0
8
)

(0
.8

9
6
)

O
b
se

rv
at

io
n
s

40
,3

42
4
0,

34
2

40
,3

4
2

40
,3

4
2

40
,3

42
40

,3
42

40
,3

4
2

40
,1

23
40

,3
42

40
,3

4
2

4
0
,3

4
2

4
0
,3

42
4
0,

12
3

R
-s

q
u
ar

ed
0.

03
5

0.
0
35

0.
0
35

0.
05

6
0.

0
58

0.
0
58

0.
05

8
0.

0
70

0
.0

72
0.

07
3

0
.0

7
2

0
.0

71

S
ta

n
d
ar

d
er

ro
rs

in
p
ar

en
th

es
es

**
*

p
<

0.
0
1,

*
*

p
<

0.
0
5,

*
p
<

0.
1



147

T
ab

le
D

.9
:

R
eg

re
ss

io
n

s
fo

r
IT

R
X

A

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0
)

(1
1
)

(1
2
)

(1
3
)

(1
4
)

(1
5
)

V
A

R
IA

B
L

E
S

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce

vc
le

ar
0
.0

22
8

0
.0

23
3

0.
0
10

5
0.

01
05

-0
.1

20
**

*
-0

.1
2
0*

**
-0

.1
1
4*

**
-0

.1
13

**
*

-0
.0

57
1*

*
-0

.0
82

0
-0

.0
82

3
*
*

-0
.0

8
2
4
**

-0
.0

7
9
2*

*
-0

.0
7
88

*
*

-0
.0

7
2
6
*
*

(0
.0

23
8)

(0
.0

2
40

)
(0

.0
2
29

)
(0

.0
22

9
)

(0
.0

21
4)

(0
.0

2
14

)
(0

.0
21

6
)

(0
.0

22
2)

(0
.0

2
60

)
(0

.0
5
9
1
)

(0
.0

3
35

)
(0

.0
3
3
5
)

(0
.0

3
3
4)

(0
.0

3
35

)
(0

.0
3
5
9
)

ls
iz

e
-0

.0
3
25

**
-0

.0
32

3*
*

-0
.0

33
2*

**
-0

.0
33

2*
**

-0
.0

34
1*

**
-0

.0
3
47

**
*

-0
.0

43
2*

**
-0

.0
43

3
**

*
-0

.0
42

1
**

*
-0

.0
3
2
4
*
*

-0
.0

3
39

*
*
*

-0
.0

34
5
*
*
*

-0
.0

4
2
0
*
**

-0
.0

4
2
0
*
**

-0
.0

4
1
9
**

*
(0

.0
12

9)
(0

.0
1
29

)
(0

.0
1
24

)
(0

.0
12

4
)

(0
.0

12
5)

(0
.0

1
25

)
(0

.0
12

5
)

(0
.0

12
5)

(0
.0

1
29

)
(0

.0
1
4
1
)

(0
.0

1
23

)
(0

.0
1
2
3
)

(0
.0

1
2
4)

(0
.0

1
25

)
(0

.0
1
3
1
)

v
S
E

F
0.

32
7*

**
0
.2

85
*
**

0.
2
85

**
*

0.
17

3*
**

0.
17

3
**

*
0.

17
4*

*
*

0.
17

4
**

*
0.

16
1*

*
*

0
.1

74
0
.1

72
*
*
*

0
.1

7
2
**

*
0.

17
3
*
*
*

0
.1

7
3
**

*
0.

16
8
*
*
*

(0
.0

41
2)

(0
.0

41
2
)

(0
.0

41
2)

(0
.0

3
88

)
(0

.0
38

8
)

(0
.0

38
5)

(0
.0

38
7
)

(0
.0

39
0)

(0
.1

1
2
)

(0
.0

3
6
1
)

(0
.0

3
6
1)

(0
.0

35
8
)

(0
.0

3
5
9
)

(0
.0

3
6
7)

d
if

M
0
.0

00
6
69

**
*

0
.0

00
6
69

**
*

0.
00

05
9
3*

**
0.

00
05

8
8*

**
0.

00
06

0
8*

**
0.

0
00

60
1
**

*
0.

0
00

55
5
**

*
0.

0
00

52
3
*
*
*

0
.0

00
5
2
2
**

*
0
.0

0
0
5
17

*
*
*

0
.0

0
05

3
4
*
**

0
.0

00
5
3
7
**

*
0
.0

0
0
5
13

*
*
*

(7
.5

5e
-0

5)
(7

.5
5e

-0
5
)

(7
.5

3e
-0

5)
(7

.5
3
e-

05
)

(7
.5

1e
-0

5)
(8

.5
3e

-0
5)

(8
.9

1e
-0

5)
(5

.5
5e

-0
5
)

(7
.4

6
e-

0
5)

(7
.4

6
e-

0
5
)

(7
.4

3
e-

0
5
)

(8
.6

6e
-0

5
)

(9
.1

0
e-

05
)

se
fd

t
0.

7
59

**
*

0.
64

1
**

*
0.

63
7*

*
*

0.
63

9*
*
*

0.
60

1*
**

0.
21

3
0
.0

8
8
9

0.
08

9
7

0
.0

8
95

0
.0

4
7
8

(0
.0

73
5)

(0
.1

44
)

(0
.1

43
)

(0
.1

43
)

(0
.1

48
)

(0
.1

4
0
)

(0
.1

8
6
)

(0
.1

86
)

(0
.1

8
6
)

(0
.1

9
2
)

o.
v
S
E

F
se

fd
t

-
-

-
-

-
-

-
-

-
-

B
lk

sz
d
t

0.
14

9
0.

15
4

0.
15

1
0.

1
73

0
.1

5
7

0.
16

2
0
.1

6
3

0
.1

8
8

(0
.1

64
)

(0
.1

64
)

(0
.1

64
)

(0
.1

68
)

(0
.1

6
4)

(0
.1

6
4
)

(0
.1

6
4
)

(0
.1

6
8)

lm
o
n
th

N
ot

0.
02

44
0.

02
42

0.
0
13

9
0
.0

21
2

0
.0

2
1
3

0.
01

7
5

(0
.0

15
6)

(0
.0

15
5)

(0
.0

16
4)

(0
.0

1
55

)
(0

.0
15

4
)

(0
.0

1
6
3
)

te
n
o
r5

0.
00

83
5

0.
02

22
-0

.0
02

7
2

0
.0

00
4
9
5

(0
.0

40
6)

(0
.0

44
0)

(0
.0

4
60

)
(0

.0
4
9
0
)

V
IX

C
lo

se
0
.0

13
8
**

*
0
.0

08
8
4
*
**

(0
.0

03
01

)
(0

.0
0
3
2
8)

2
0
14

.y
ea

r
0.

5
7
5
*
**

0
.4

04
*
*
*

0
.4

0
4
**

*
0.

39
9
*
*
*

0
.3

9
9
**

*
0.

42
4
*
*
*

(0
.0

52
4
)

(0
.1

26
)

(0
.1

2
6
)

(0
.1

2
7)

(0
.1

28
)

(0
.1

3
2
)

2
0
15

.y
ea

r
0.

7
7
0
*
**

0
.5

99
*
*
*

0
.5

9
9
**

*
0.

59
2
*
*
*

0
.5

9
2
**

*
0.

58
0
*
*
*

(0
.0

52
3
)

(0
.1

23
)

(0
.1

2
3
)

(0
.1

2
4)

(0
.1

25
)

(0
.1

3
0
)

2
0
16

.y
ea

r
1.

0
1
0
*
**

0
.8

39
*
*
*

0
.8

4
0
**

*
0.

83
6
*
*
*

0
.8

3
6
**

*
0.

85
0
*
*
*

(0
.0

53
4
)

(0
.1

22
)

(0
.1

2
2
)

(0
.1

2
3)

(0
.1

25
)

(0
.1

2
9
)

2
0
17

.y
ea

r
0.

6
4
3
*
**

0
.4

71
*
*
*

0
.4

7
2
**

*
0.

47
0
*
*
*

0
.4

6
9
**

*
0.

52
3
*
*
*

(0
.0

67
8
)

(0
.1

29
)

(0
.1

2
9
)

(0
.1

3
0)

(0
.1

31
)

(0
.1

3
6
)

2
0
18

.y
ea

r
0.

3
8
4
*
**

0
.2

1
3
*

0.
21

3
*

0
.2

10
*

0.
20

7
0
.1

90
(0

.0
90

5
)

(0
.1

26
)

(0
.1

2
6
)

(0
.1

2
7)

(0
.1

36
)

(0
.1

4
2
)

C
on

st
a
n
t

4.
91

4*
**

4
.9

04
**

*
3
.7

67
*
**

3.
7
67

**
*

3.
28

9*
**

3
.2

76
*
**

2.
9
22

**
*

2
.9

34
*
**

2.
96

2*
*
*

3.
41

9
*
*
*

3
.4

0
3*

*
*

3
.3

9
0
*
**

3
.0

83
*
*
*

3
.0

7
9
*
**

3
.0

42
*
*
*

(0
.2

0
8)

(0
.2

0
8)

(0
.2

30
)

(0
.2

30
)

(0
.2

42
)

(0
.2

44
)

(0
.3

58
)

(0
.3

6
2)

(0
.3

7
9)

(0
.2

5
2
)

(0
.2

4
4)

(0
.2

4
5
)

(0
.3

5
5
)

(0
.3

6
2)

(0
.3

8
0
)

O
b
se

rv
at

io
n
s

6
,2

29
6
,2

29
6
,2

29
6,

22
9

6,
2
29

6,
22

9
6
,2

29
6
,2

29
5,

76
3

6
,2

29
6
,2

2
9

6
,2

2
9

6
,2

2
9

6
,2

29
5
,7

6
3

R
-s

q
u
a
re

d
0
.0

01
0
.0

02
0.

02
4

0.
0
24

0
.0

63
0.

06
3

0.
0
63

0.
0
63

0.
06

6
0
.0

84
0
.0

8
5

0
.0

8
5

0
.0

8
5

0
.0

85
0
.0

8
7

R
ob

u
st

st
an

d
ar

d
er

ro
rs

in
p
a
re

n
th

es
es

**
*

p
<

0.
01

,
*
*

p
<

0.
0
5,

*
p
<

0.
1



148

T
ab

le
D

.1
0:

2S
L

S
R

eg
re

ss
io

n
s

fo
r

IT
R

X
A

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0
)

(1
1
)

(1
2
)

(1
3)

V
A

R
IA

B
L

E
S

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce
lp

ri
ce

lp
ri

ce

ls
iz

e
-0

.0
76

3
*

-0
.0

74
7*

0.
02

73
0.

02
73

0.
02

99
0.

03
08

0.
03

03
-0

.0
01

92
0.

01
99

0.
02

1
2

0.
02

22
0
.0

22
7

0.
00

89
6

(0
.0

4
44

)
(0

.0
44

4
)

(0
.0

43
0
)

(0
.0

43
0)

(0
.0

46
1)

(0
.0

46
0)

(0
.0

4
60

)
(0

.0
4
66

)
(0

.0
41

6
)

(0
.0

45
5
)

(0
.0

4
54

)
(0

.0
4
55

)
(0

.0
46

0)
vc

le
a
r

0
.0

1
46

0.
01

54
0.

02
18

0.
02

18
-0

.1
08

**
*

-0
.1

08
**

*
-0

.1
07

**
*

-0
.0

5
21

**
-0

.0
67

4
-0

.0
67

0*
-0

.0
66

7*
-0

.0
6
58

*
-0

.0
61

3*
(0

.0
4
89

)
(0

.0
48

9
)

(0
.0

48
4
)

(0
.0

48
4)

(0
.0

22
4)

(0
.0

22
4)

(0
.0

2
29

)
(0

.0
2
66

)
(0

.0
60

1
)

(0
.0

34
3
)

(0
.0

3
43

)
(0

.0
3
43

)
(0

.0
36

4)
v
S
E

F
0.

32
5
**

*
0.

28
7*

*
0.

28
7*

*
0.

17
5*

**
0.

17
6*

**
0.

17
6*

*
*

0.
16

1*
**

0.
17

5
0
.1

73
**

*
0.

17
3
**

*
0.

17
3*

*
*

0.
16

7*
**

(0
.1

16
)

(0
.1

15
)

(0
.1

15
)

(0
.0

38
9)

(0
.0

38
9)

(0
.0

3
91

)
(0

.0
38

9
)

(0
.1

12
)

(0
.0

36
2
)

(0
.0

3
62

)
(0

.0
3
63

)
(0

.0
36

8)
d
if

M
0
.0

00
6
68

**
*

0.
0
00

66
8*

**
0.

00
05

92
**

*
0.

00
05

88
**

*
0.

00
05

82
**

*
0.

0
00

54
5
**

*
0.

0
00

52
3
**

*
0.

00
05

2
2*

**
0.

00
0
51

7*
*
*

0
.0

00
52

2
**

*
0
.0

00
5
02

**
*

(5
.6

8e
-0

5)
(5

.6
8e

-0
5)

(7
.5

5e
-0

5)
(7

.5
5e

-0
5)

(8
.5

7e
-0

5
)

(8
.8

6e
-0

5)
(5

.5
5
e-

05
)

(7
.4

7e
-0

5)
(7

.4
6
e-

0
5)

(8
.6

6e
-0

5
)

(9
.0

3
e-

05
)

20
13

.y
ea

r
-0

.3
79

**
*

-0
.2

2
2*

-0
.2

2
2*

-0
.2

17
-0

.1
9
1

(0
.0

90
6)

(0
.1

26
)

(0
.1

26
)

(0
.1

35
)

(0
.1

4
2)

20
14

.y
ea

r
0
.2

06
*
*

0.
20

6*
**

0
.2

07
*
**

0
.2

11
**

*
0.

25
7
**

*
(0

.0
90

3)
(0

.0
53

4)
(0

.0
53

4
)

(0
.0

6
35

)
(0

.0
7
11

)
20

15
.y

ea
r

0.
3
94

**
*

0.
39

4*
*
*

0.
39

4*
**

0
.3

99
*
**

0
.4

03
**

*
(0

.0
89

8)
(0

.0
47

2)
(0

.0
47

2
)

(0
.0

5
94

)
(0

.0
6
58

)
20

16
.y

ea
r

0.
6
30

**
*

0.
63

0*
*
*

0.
63

1*
**

0
.6

34
*
**

0
.6

69
**

*
(0

.0
85

4)
(0

.0
37

3)
(0

.0
37

3
)

(0
.0

4
48

)
(0

.0
5
14

)
20

17
.y

ea
r

0.
2
62

**
*

0.
26

2*
*
*

0.
26

2*
**

0
.2

66
*
**

0
.3

46
**

*
(0

.0
85

8)
(0

.0
40

8)
(0

.0
40

8
)

(0
.0

5
11

)
(0

.0
6
26

)
20

18
o.

ye
a
r

-
-

-
-

-

se
fd

t
0.

75
8*

**
0.

65
2*

**
0.

65
4*

**
0.

6
08

**
*

0
.1

96
0.

08
16

0
.0

81
1

0.
04

06
(0

.0
73

5)
(0

.1
44

)
(0

.1
44

)
(0

.1
48

)
(0

.1
38

)
(0

.1
86

)
(0

.1
8
6)

(0
.1

9
1)

o
.v

S
E

F
se

fd
t

-
-

-
-

-
-

-
-

B
lk

sz
d
t

0.
13

3
0.

13
1

0
.1

62
0.

14
4

0
.1

46
0.

17
3

(0
.1

64
)

(0
.1

64
)

(0
.1

68
)

(0
.1

64
)

(0
.1

64
)

(0
.1

68
)

te
n
o
r5

0.
00

64
9

0.
02

20
-0

.0
05

95
-0

.0
01

34
(0

.0
40

6)
(0

.0
44

0)
(0

.0
46

0)
(0

.0
49

0)
V

IX
C

lo
se

0
.0

14
4
**

*
0.

00
98

8
**

*
(0

.0
02

93
)

(0
.0

03
23

)
C

o
n
st

a
n
t

5.
63

0
*
**

5.
59

7*
**

2.
78

0*
**

2.
78

0*
**

2.
24

5*
**

2.
20

9*
**

2.
22

3*
**

2.
5
76

**
*

2.
94

0
**

*
2.

72
5
**

*
2.

68
6*

*
*

2.
66

8*
**

2
.7

40
*
**

(0
.7

27
)

(0
.7

27
)

(0
.7

0
9)

(0
.7

09
)

(0
.7

58
)

(0
.7

57
)

(0
.7

58
)

(0
.7

7
6)

(0
.6

9
7)

(0
.7

66
)

(0
.7

6
5)

(0
.7

7
8)

(0
.8

0
8)

O
b
se

rv
a
ti

o
n
s

6
,2

2
9

6,
22

9
6,

2
29

6,
22

9
6,

22
9

6,
22

9
6,

22
9

5,
76

3
6,

22
9

6
,2

29
6,

22
9

6
,2

29
5,

76
3

R
-s

q
u
ar

ed
0
.0

0
1

0
.0

21
0.

02
1

0.
06

0
0.

06
0

0.
06

0
0.

0
65

0.
08

2
0
.0

82
0.

08
3

0.
08

3
0
.0

85

S
ta

n
d
ar

d
er

ro
rs

in
p
ar

en
th

es
es

**
*

p
<

0.
01

,
**

p
<

0.
05

,
*

p
<

0.
1



149

Appendix E

Details of proofs in chapter 3

Proof of lemma 2. I use the change of measure introduced by Collin-Dufresne et al.

[37] in order to include the interaction or correlation of default intensities of the bond or

reference entity with seller default. Thus, given the default intensities in (3.3.1) I have the

following

Pr[τC ≥ s∗, τB ≥ s∗] ≡ E[1τC≥s∗ , 1τB≥s∗ ]

=EC [1τC≥s∗ , e
−

∫ s∗
0 (b0−b1,τC≥s∗ )]

=EC [1τC≥s∗ , e
−s∗(b0−b1,τC≥s∗ )]

=e−s
∗c0

∫ ∞
s∗

c0e
−c0µ+b1s∗dµ

=− e−s∗c0e−c0µ+b1s∗
∣∣∣∣∞
s∗

=e−s
∗(c0+b0−b1)

It is trivial to verify the following joint probabilities using same method.

Pr[τC < s∗, τB ≥ s∗] = e−s
∗b0(1− e−c0s∗)

Pr[τC ≥ s∗, τB < s∗] = e−s
∗c0(1− es∗(b1−b0)) ≡ pC(1− pB)

Pr[τC < s∗, τB < s∗] = 1− e−s∗b0 − e−s∗c0(1− es∗b0)

The premium is determined by zero-profit condition;

pC(1− pB)[−m+ qm] + (1− pC)qm+ pCpS [−R+ qm] = 0
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Proof of lemma 3. The first order condition is:

(1− pC)[−U ′1(·) + U ′2(·)] + pCpB[−U ′3(·) + U ′2(·)]− pB

(1− pB)
a[U ′1(·) + U ′2(·) + U ′3(·)]− ϕ = 0

Variable a = R
m and U1 ≡ U(w−qm), U2 ≡ U(w−qm−L+m) and U3 ≡ U(w−qm−L+R).

ϕ is the multiplier associated to inequality in the program. Since U ′1(·) < U ′2(·) < U ′3(·) then

solution requires m > R and L > m. Since R is exogenous, lemma 1 state that a reduction

of recovery will reduce premium and as a consequence inequality in (3.3) will be slack. Also,

if the intensity of default (b1) increases then premium decreases and inequality will be slack

too. The former can be easily verified in the first order condition i.e range between U ′2(·)

and U ′1(·) increases which implies insurance will be lower.

Proof of proposition 3. The proposed solution involves the following: i) interior

solution for Φdf and Φmrg; ii) the feasibility condition is binding; iii) consumption at first

state of nature must be less than before in exactly Φdf units (the interim participation

constraint for c1 is binding); iv) the incentive compatibility constraint for c2 is binding.

Proof of proposition 5. I verify the sign of ∂R/q
∂N = − 1

(∆λ+λ)2
∂∆λ
∂N . Thus,

∂∆λ

∂N
=
ωbγλ(1− λ)

2 +N
− (ωb(N + 1)− ωs)γλ(1− λ)

(2 +N)2

=
ωbγλ(1− λ)(2 +N)

(2 +N)2
− (ωb(N + 1)− ωs)γλ(1− λ)

(2 +N)2

=
(ωb + ωs)γλ(1− λ)

(2 +N)2
> 0

I assume that all extra buyers are expected to receive same endowment i.e. ωib ≡ ωb.

Proof of lemma 4. Since market clearing condition is mND = (N + 1)mb, then,

(N + 1)

R+ κ

[
− ∆λ

γλ(1− λ)
+ ωb

]
=

(∆λ+ λ)(R+ κ)− λ(ε+ κ)

γλ(1− λ)(ε+ κ)2

Above expression can be arranged as follows

(R+ κ)2(∆λ+ λ)− (R+ κ)λ(ε+ κ)2 − (−∆λ+ ωbλ(1− λ))(N + 1)(ε+ κ)2
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Thus (R+ κ) = β(∆λ, λ, ωs, γ)(ε+ κ) ≡ β(∆λ)(ε+ κ) is the root to above expression.

Proof of lemma 5. Applying envelope theorem,

∂Πi

∂κ
= −∆λ

∂R+(κ)

∂κ
+ λ+ γλ(1− λ)[wi(G)− (R+ + κ)](

∂R+(κ)

∂κ
− 1)

Doing arrangement of above expression we have that

∂Πi

∂κ
=

[
q − λ(R+ + κ)

γλ(1− λ)(R+ + κ)

1

R+
+

λ

γλ(1− λ)R+

]
(−κ+ 1) = 0

In the case for sellers, in equilibrium R+ κ = 1 thus, both seller’s function to maximize is

ΠD = θ − η−1κm− λ(ε+ κ)m− γ

2
λ(1− λ)[(ε+ κ)m]2

ΠND = θ − η−1κm+ ∆λ+ λ+ λ(ωs −m)− γ

2
λ(1− λ)(ωs −m)2

Thus respectively ∂ΠD
∂κ < 0 and ∂ΠND

∂κ < 0

Proof of proposition 6. Applying the price rule into seller function when non-

defaulting:

ΠND = θ + ∆m+ λωs −
γ

2
λ(1− λ)(ωs −m)2

≡ θ + ∆λ
[ ∆λ

γλ(1− λ)
+ ωs

]
+ λωs −

[ ∆

γλ(1− λ)

]2

≡ θ +
(∆λ)2

γλ(1− λ)
(1− γ

2
) + (∆λ+ λ)ωs

Accordingly, for seller function when defaulting

ΠD = θ + (∆ + λ)ωs − λεm−
γ

2
λ(1− λ)(εm)2

Thus, seller always makes a choice of non-defaulting evaluated at that insurance level (m∗)

in particular.

(∆λ)2

γλ(1− λ)
(1− γ

2
) > −λεm∗ − γ

2
λ(1− λ)(εm∗)2

Thus, insurer gets worse beyond m ≥ m∗; the insurer only suffers larger deadweight costs

of default. If parameters γ increases, the RHS of above expression is bounded and it would

push the insurance level under defaulting towards zero. In this case there is no solution
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since market clearing condition fails. It is assumed that ε > 0; otherwise, insurance level

would be undetermined under choice of defaulting.

Proof of proposition 7. Participation constraint in combination with CDS premium

(expression (3.11)) and optimal amount of insurance under default (expression (3.10)) can

be expressed as follows:

κ = α(∆λ+ λ)β(ε+ κ) +
(θ − c)γλ(1− λ)(ε+ κ)

β(∆λ+ λ)− λ

Thus, re-arranging terms, I have the following

κ =
α(∆λ+ λ)β + (θ−c)γλ(1−λ)

β(∆λ+λ)−λ

1− α(∆λ+ λ)β − (θ−c)γλ(1−λ)
β(∆λ+λ)−λ

ε

Above expression is linear as long as the collateral budget constraint is slack (ς = 0). If

not, collateral size is the root to the following polynomial

κ =
(α(∆λ+ λ)2β2(1 + ςα)− λα(∆ + λ)β + (θ − c)γλ(1− λ))(ε+ κ)− ςκα(∆λ+ λ)β

(∆λ+ λ)β(1 + ςα)− λ− ςκ
ε+κ

Proof of proposition 8. In range ε ∈ (ε, ε0) the second root for R is lower than in

range ε ∈ (ε0, ε). The condition ε ≤ ς−1 delivers a guarantee for the existence of an incentive

contract when ς < 0. To see this I combine the binding clearing budget constraint and the

corner solution κ = 1; Thus, 1 = κ ≡ ςε.

Proof of proposition 11. Since clearing budget constraint is slack, the multiplier

associated to this restriction (%) must be equal to zero. There is no overidentification since

there are 4 pair of equations and variables (φs, φb, R and q). Since a solution considering

φs > 0 forces to have non-defaulting contracts i.e. higher value of social utility function, then

a corner solution exists. This result (φb = 0) hinges on the amount of resources available

in the clearinghouse. Once the clearing budget constraint is binding, the multiplier related

to that restriction must be greater than zero and therefore additional resources need to be

collected (φb > 0).

Proof of lemma 6. Market clearing condition must be satisfied for a non-defaulting
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choice; thus, insurance supply is given by expression;

mnd ≡
1

R

[
q(1 + %α)− λR− (1 + %)φs

γλ(1− λ)R
+ ωs

]

Since R+ ϕ = 1 the insurance demand is as follows;

mb =
−q + λ

γλ(1− λ)
+ ωb

Thus, in equilibrium mnd = (N + 1)mb. Notice that φb = 0 given by solution in program

(P2).

Proof of proposition 12. I evaluate the following expression across range of ε > ε0

∂β

∂∆λ
≡
ωsγλ(1− λ)

(
λ+ 4ωsγλ(1− λ)[∆λ+ λ]

)− 1
2

∆λ+ λ
−
(λ+

√
λ+ 4ωsγλ(1− λ)[∆λ+ λ]

2(∆λ+ λ)2

)
(E.1)

since β is equal to
λ±
√
λ+4ωsγλ(1−λ)[∆λ+λ]

2(∆λ+λ) ; then I plug the former into expression (E.1)

∂β

∂∆λ
≡
ωsγλ(1− λ)

[
1

β− λ
2(∆λ+λ)

]
2(∆λ+ λ)2

− β

∆λ+ λ

≡ 1

∆λ+ λ

[
ωsγλ(1− λ)

2β(∆λ+ λ)− λ
− β

]

≡ 1

(∆λ+ λ)(2β(∆λ+ λ)− λ)

[
ωsγλ(1− λ)− β(2β(∆λ+ λ)− λ)

]

The roots of above right hand expression is

β̃ =
λ−

√
λ2 + 8ωsγλ(1− λ)[∆λ+ λ]

4(∆λ+ λ)

Since β > β̃ then, ∂β
∂∆λ < 0. Since default fund φs increases and decreases accordingly

to restriction R + ϕ ≤ 1, ∂R
∂φs < 0 when former restriction is binding; thus R is always

increasing across range of φs which behaves according to size of ε.
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Appendix F

Solution for programs

F.1 Program P1

In order to solve the program (P1) I propose a numerical method. Since the function is not

continuous and , the solution is found in the following steps:

1. I setup a search grid for the collateral size in the limits κ ∈ [0, κ].

2. If set B(ε) =
{
κ |+κε−1

}
is not empty for a small enough ε then there is a candidate

κc.

3. If restrictions in program (P1) are fulfilled then κc is a solution and premium asso-

ciated to this level of collateral is the premium under collateralization. Otherwise,

κ∗ = 0 and the premium is identical under bilateral negotiation.

F.2 Program P2

The first order conditions are:

∂L
∂φs
≡ ΠB

(1− λ)2

{
(∆λ+ λ)

∂R

∂φs
− 1 +

∂∆λ

∂φs
R
}
ms + ς

(
α(∆λ+ λ)

∂R

∂φs
− 1 +

∂∆λ

∂φs

)
ms

+
ΠD

(1− λ)2

{
−∆λ

∂R

∂φs
+ 1− ∂∆λ

∂φs
+ γλ(1− λ)

[
ωb − (R+ ϕ+ φb)mb

]( ∂R
∂φs

+ λ−1
)}
mb

ψs0 − ψs1 + ψ
( ∂R
∂φs

+ λ−1
)

= 0

(F.1)
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∂L
∂φb
≡ ΠD

(1− λ)2

{
− (∆λ+ λ)

∂R

∂φb
− (1− λ) + λ

( ∂R
∂φb

+
∂ϕ

∂φb

)
− ∂∆λ

∂φb
R+

γλ(1− λ)[ωb − (R+ ϕ+ φb)m
b]
( ∂R
∂φb

+ 1 +
∂ϕ

∂φb

)}
mb + ςα

(
(∆λ+ λ)

∂R

∂φb
+R

∂∆λ

∂φb

)
mb

+
ΠB

(1− λ)2

(
(∆λ+ λ)

∂R

∂φb
+
∂∆λ

∂φb
R
)
ms + ψb0 − ψb1 − ψ

( ∂R
∂φb

+
∂ϕ

∂φb

)
= 0

(F.2)

Thus, jointly with above expressions (F.1) and (F.2),premium determination, clearinghouse

balance sheet and clearing market condition, below conditions needs to be fulfilled for the

optimal solution,

ς((αq − φs)ms + θ − c) = 0

ψ(1−R− ϕ) = 0

ψs0φs = 0

ψs1(1− φs) = 0

ψb0φb = 0

ψb1(1− φb) = 0

Solution is found for φs and ψb0 using expressions (F.1) and (F.2). An interior solution (i.e.

φs > 0 and φb > 0) is also provided for a binding clearing budget participation i.e. ς > 0

and a demanding calls for more resources i.e. higher ωb and λ.

Partial derivatives in expressions (F.1) and (F.2) are defined as follows;

∂∆λ

∂φs
= −

(−1

R̂2

(
λ− γλ(1− λ)

(ωs
R̂
− ωb

))
+

1

R̂
γλ(1− λ)

ωs

R̂2

) 1

λ

∂∆λ

∂φb
= −

(−1

R̂2

(
λ− γλ(1− λ)

(ωs
R̂
− ωb

))
+

1

R̂
γλ(1− λ)

ωs

R̂2

)1− λ
λ
− 1− λ

R̂
;

∂R

∂φs
=

Ωs,0(ε)− 2(φb+R+ϕ)
λ

[
(∆λ+ λ)R(1 + %α)− λε− φs(1 + %)

]
+ (φb +R+ ϕ)2[(1 + %α)∂∆λ

∂φs
+ (1 + %)]

Ωs,1(ε) + 2(φb +R+ ϕ)
[
(∆λ+ λ)R(1 + %α)− λε− φs(1 + %)

]
+ (φb +R+ ϕ)2(∆λ+ λ)(1 + %α)

∂R

∂φb
=

Ωb,0(ε)− (φb +R+ ϕ)2 ∂∆λ
∂φb

(1 + %α)R− 2(φb+R+ϕ)
λ

[
(∆λ+ λ)R(1 + %α)− λε− φs(1 + %)

]
Ωb,1(ε) + (φb +R+ ϕ)2(∆λ+ λ)(1 + %α) + 2(φb +R+ ϕ)

[
(∆λ+ λ)R(1 + %α)− λε− φs(1 + %)

]
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Where above expressions as a function of deadweight losses are;

Ωs,0(ε) ≡
(∂∆λ

∂φs
R+ 1 + γ(1− λ)ωb

)
ε2

Ωs,1(ε) ≡ (−γλ(1− λ)ωb + ∆λ)ε2

R̂ = ϕ̂− 1

Ωb,0(ε) ≡
(∂∆λ

∂φs
R+ γ(1− λ)ωb

)
ε2

Ωb,1(ε) ≡ Ωs,1(ε)

Expressions R̂ and ϕ̂ are the recovery rate and collectable funds in a scenario with fully

coverage.
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