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ABSTRACT OF THE DISSERTATION

The Effects of Network Structure on Supply Chain Risk

Propagation: A Simulation Study

by Myles D. Garvey

Dissertation Director: Sengun Yeniyurt

Disruptions frequently occur in supply chains and hence pose problems for practitioners

of whom seek to design efficient and resilient supply networks. Events that lead to such

disruptions are commonly referred to as Supply Chain Risks. While many have studied

the effect that risk has on consequences of certain decisions made, few have attempted

to explore the effects that the inherent structure of a supply network has on the global

and local risk of a supply chain. In addition, few have studied the effects that global and

local network structure have on risk propagation to individual firms and connections

within the network. In this dissertation, I explore the effects that inherent global and

local network structural characteristics, operationalized via graph-theoretic measures

as well as local centrality measures, have on global and local risk propagation. I do

so by employing a simulation study to generate a very large data set of networks and

various risk distributions. The primary risk measurement tool used in this study are

Bayesian Networks. Last, I explore the effect that various strategic decisions have on

global and local risk, and how such decisions can alter the current state of risk in supply

networks.
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“All we can know is that we know nothing. And thats the height of human wisdom”

-Leo Tolstoy, War and Peace, Pierre
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Chapter 1

Introduction

In April of 2016, Airbus had reported a 50% drop in their profit due to the delay in

shipment of orders. Reports at the time indicated that this was due to the difficulty

in both the design and execution phase of production. Further compounding the issue

was increased demand alongside high recurring costs. In addition, delay in shipment

of engines manufactured from Pratt and Whitney had itself led to additional delays in

shipment of the fully assembled planes (Wall, 2016).

It was only a few days prior to the release of Airbus’s profits that a deadly 6.5

magnitude earthquake had struck Japan, leaving nine dead as a result. A spokesman

from Sony stated that they were assessing any potential damage at a nearby image-

sensor plant in Kumamoto, whose products are used in the manufacture of Apple’s

iPhone (Landers & Karioka, 2016) Not only was Sony affected by the earthquake,

but so too was Toyota. It was only a few days after reports of the quake that Toyota

announced it was shutting down 26 car assembly lines due to a disturbance in production

from a supplier. Reports indicated that Honda and Nissan also fell victim to the the

disturbance in production. However, the shutdown in Toyota’s assembly lines was

nationwide, unlike it’s competitors, due to it’s lean supply chain. Reports had indicated

that the shutdown was likely to cost Toyota tens of billions of yen (Kubota, 2016).

It wasn’t only Japanese car manufacturers that had to respond with action to the

quake, however. Days after the quake, GM announced it was shutting down production

in assembly plants in Tennessee, Canada, Ohio and Kansas. Their intention was to

thwart the disruption that had occurred in Japan just a few days prior. Unlike Toyota,

however, reports indicated that GM was not anticipating any performance or financial

loss (Nagesh, 2016).
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Nearly a month before the earthquake, on St. Patrick’s Day, it was reported that

Aeropostle was seeking to explore a resolution to a dispute it had with one of it’s

primary suppliers, MGF Sourcing. The conflict began with allegations from Aeropostle

that MGF had not fulfilled a 10-year sourcing agreement. The alleged violation of the

agreement, according to Aeropostle, led to a lack of availability of certain merchandise,

and had warned would lead to a liquidity constraint. Their stock fell by nearly 47%

after reporting a loss for it’s 13th quarter of continual loss (Safdar & Minaya, 2016).

Most recently, at the time of this writing, many automotive companies feared the

impact of the tariffs placed on China by President Trump, and China’s retaliatory

tariffs placed on America, if a trade agreement between the two countries was not

settled. Different automotive companies responded differently near the enactment of

the tariffs. Ford stated that it would cut into it’s margins while keeping it’s prices

the same. Lincoln allegedly had the same response. Unlike Ford and Lincoln, Tesla

intended to raise its prices. Many other companies in both America and China had

feared the potential consequences of the tariffs (Kubota, Deng, & Craymer, 2018).

The prior anecdotes recounted here are only a handful of many supply chain disrup-

tions that occur in firms across the globe every year. They illustrate that disruptions

are not persnickety about industry, firm, country or type. They are bound to occur at

any moment in time due to an unforeseen event or sequence of events. Supply chain

disruptions can occur due to labor union disputes, contractual disputes between buyers

and suppliers, natural disasters, and geopolitical events, among many other reasons.

The question for supply chain practitioners then is, how shall we manage them?

1.1 Background and Motivation for the Dissertation

As the aforementioned anecdotes illustrate, supply chain managers design their net-

works not only for competitive advantage or performance, but also for handling dis-

ruptions. This of course depends on their strategic objectives of having their supply

chains as being more responsive or efficient. In the case of Toyota, their assembly lines

were nationwide, and as a result, a shutdown of all them was necessary not only due
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to the earthquake itself, or the subsequent disruption, but also due to it’s structural

design. The anecdote illustrates that despite Toyota being required to thwart it’s na-

tionwide assembly lines, Nissan and Honda had only suffered a shutdown for a short

period of time and in only a constrained number of it’s lines, with minimal loss. This

is further personified in the instance of GM, whose shutdown occurred in four different

locations due to an incident that happened thousands of miles away. Yet, their loss was

considered trifling.

The earthquake story partly supports the notion that structural characteristics of

a firm’s supply network and strategic decision making in establishing and maintaining

buyer/supplier relations plays a role in determining the potential loss to a firm in the

event of a disruption. Logic would indicate that if it did not, the earthquake inherently

would have ceased production of all manufacturing facilities, and would have resulted

in a loss of similar magnitude across all the automotive firms. This was not the case,

however, in the recounted anecdote. An interesting question that arises out of this

anecdote, as well as the others, is: “how should managers account for supply chain

structure in their strategic decision making?”

The managerial implication of answering this question is important for practitioners

that seek to prepare risk-mitigation strategies in their supply networks, while engaging

in other strategic activities. Indeed, it should be understood that supply chain risk

management intersects strategic decision making. For if it is not, a firm is being myopic

to the possible detrimental effects in the event of a disruption upstream, and a previously

missed trade-off may come to fruition. While costs and performance may be lower and

higher, respectively, for a potential supplier, their risk of disruption may be considerably

high due to connections they themselves have to other high risk-of-disruption firms.

Hence, this dissertation seeks to further explore this inquiry for the primary purpose

of expanding strategic decision making. In addition, knowing how supply network

structure plays a role in determining a firm’s risk of disruption extends to other activities

of the firm that are not necessarily strategic in nature. Production, inventory, financial,

logistic and information processes all partly depend on the actors within the supply

network itself. Knowledge of the nature of the relationship between the constructs of
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structure and risk would advance the body of knowledge of supply chain management

across multiple dimensions and units of analysis of the firm.

In the remainder of this section, I will offer further motivation for the primary topic

of this dissertation. I will first do so by motivating the definition of a supply chain.

Next, I will define and discuss the basic problem of supply chain disruptions and risk

of disruption. Last, I will discuss the motivations behind supply chain risk and its

potential connection with network characteristics.

1.1.1 Supply Chains

I begin the motivation for the primary research question by carefully defining some of

the concepts and terms of which is commonplace in the extant literature. The term

supply chain is actually quite misleading, as it would indicate a simple chain struc-

ture. Early researchers in the field viewed supply chain constructs as an extension

of logistics activities, dyadic relationship management based on resource dependency

theory, and as an extension of the value chain (Stevens, 1989; Oliver, Webber, et al.,

1982; Houlihan, 1985). Indeed, Stevens defined the supply chain as “the connected

series of activities which is concerned with planning, coordinating and controlling ma-

terial, parts and finished goods from suppliers to the customer” (Stevens, 1989, pg. 3).

Unlike the researchers before him (Oliver et al., 1982; Houlihan, 1985), however, he

defined the supply chain as comprising of two types of flows, namely “material and

information”(Stevens, 1989, pg. 3).

Soon thereafter, however, researchers began to understand that supply chains are

actually much more complex than a simple chain (Ellram, 1991; Cooper, Lambert,

& Pagh, 1997; Lambert & Cooper, 2000; Cooper & Ellram, 1993). Indeed, early

researchers recognized that the supply chain is “not just a chain of businesses with

one-to-one, business-to-business relationships, but a network of multiple businesses and

relationships” (Lambert, Cooper, & Pagh, 1998, pg. 1). As such, the tools of mathe-

matical graph theory were seen as applicable in order to gain an understanding of the

complexity of supply networks (Choi & Hong, 2002; Borgatti & Everett, 2006; Choi

& Krause, 2006). This was later extended to include the use of social network theory
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to study the vast and complex inter-dependencies between actors in the supply chain

(Borgatti & Li, 2009; Autry & Griffis, 2008; Carter, Leuschner, & Rogers, 2007; Carter,

Ellram, & Tate, 2007).

It wasn’t very long for research in the supply chain and supply chain management

literature to take off. Various areas of research were being explored such as buyer-

supplier relationship management, supply chain integration, supply chain sustainability,

green supply chains, supply chain risk management, supply chain process frameworks,

supply chain complexity, supply chain robustness and resiliency, procurement, and sup-

plier selection (Croom, Romano, & Giannakis, 2000; Burgess, Singh, & Koroglu, 2006;

D. C. Ho, Au, & Newton, 2002). Many of these areas of research were empirical val-

idations of prior proposed theory (Croom et al., 2000). However, the definition of a

supply chain still varied throughout the literature, as well as that of the management

of supply chains, along with the various constructs within.

Researchers began to take note that while various branches of the supply chain

literature were being explored, a solid theoretical foundation seemed to still be lack-

ing (I. J. Chen & Paulraj, 2004). Various papers rested their theoretical arguments

on a variety of ad-hoc, but still mainly related theoretical lens, such as the resource-

based view (RBV)(Rungtusanatham, Salvador, Forza, & Choi, 2003; Barney, Wright,

& Ketchen Jr, 2001; Miles & Snow, 2007), the knowledge-based view (KBV)(Miles

& Snow, 2007; Hult, Ketchen Jr, & Slater, 2004), transaction cost economics (TCE)

(Ireland & Webb, 2007), resource dependency theory (RDT)(Ketchen Jr & Hult, 2007;

Ireland & Webb, 2007), the practice-based view (PBV) (Bromiley & Rau, 2014; Carter,

Kosmol, & Kaufmann, 2017) and resource orchestration theory (ROT) (Dhanaraj &

Parkhe, 2006; Hinterhuber, 2002). While these are still useful for modern research,

some in the extant literature felt that a collection of theoretical and axiomatic con-

structs, specifically designed for supply chain theory, should be formulated to serve as

a foundation for a more supply-chain specific theoretical lens (I. J. Chen & Paulraj,

2004; Carter, Rogers, & Choi, 2015; Carter et al., 2017). The proposed framework by

(Carter et al., 2015) provided just that, along with a well-defined and grounded set

of constructs that researchers can use to provide for consistency across the literature
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(Carter et al., 2015).

The (Carter et al., 2015) framework is not intended to replace previous theoretical

lens such as the RBV, rather it serves as a compliment to existing frameworks when the

research is supply chain centric. The primary issue they found with the modern stream

of supply chain research is that “we have failed to develop a theory of what we are

managing–a theory of the supply chain”(Carter et al., 2015, pg. 89). They argue that

supply chain construct definition needs to be placed on a solid theoretical foundation,

and they do so in their research. I shall adopt the same definitions for this dissertation

that they have proposed.

First, (Carter et al., 2015) defines a supply chain as “a network, consisting of nodes

and links” (Carter et al., 2015, pg. 90). This definition is in line with the aforemen-

tioned literature as well as the modern literature in supply chains. Hence, I shall use

the term “supply chain” and “supply network” synonymously. Second, (Carter et al.,

2015) continues to argue that “the supply chain as a network operates as a complex

adaptive system, where every agent grapples with the tension between control and

emergence.”(Carter et al., 2015, pg. 91) They argue that much of the supply chain

literature deals with agents, where the nodes in the aforementioned definition repre-

sents a generic agent, of whom looks upstream and downstream, with a constrained

view of clarity, in order to make decisions to control resources or accountability. The

manifestation of these decisions made due to the lack of clarity therefore is a complex

adaptive system, where the network is dynamic and ever-changing. Their definition of

“agent” leaves open the ability to define a wide range of different unit of analyses for

researchers, be it at the firm-level, the location-level, or other levels of analysis.

They continue their framework by contending that supply chains are defined in

a relative manner, particularly to both a specific product and a specific focal firm.

Again, this definition of “the supply chain” leaves enough room open for different levels

of analysis. In addition, they argue there are always two types of chains that are

embedded in the existence of any supply network that is defined: a physical chain and

a support chain. The physical chain is much like the traditional supply chain: a network

of nodes that add value to the product or service. The support chain is a collection of
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nodes that do not add value but are necessary for the physical chain to operate. They

use financial and information flows as an example. While finance and information do

not necessarily add value to the physical product or service, they are necessary for the

proper movement of the product through the physical chain. Last, (Carter et al., 2015)

argues that the supply chain itself is “bounded by the visible horizon of the focal agent”

(Carter et al., 2015, pg. 93). They submit that supply chains are viewed from their

focal agents, and as the distance from the focal agent increases, the horizon for said

agent becomes attenuated. Thus, the boundaries of the supply network, they argue,

are dependent on the “awareness” of the focal agent.

In summary, I adopt (Carter et al., 2015)’s definition of the supply chain as being

a network of nodes and arcs that together form a complex adaptive system comprising

of a variety of agents, relative to a well-defined focal agent and product, of which has

two embedded networks, each respectively handling the product flow, and the support

for the product flow, through other agents, where the horizon is bounded by the focal

agent’s self-awareness.

1.1.2 Supply Chain Disruption and Risk

The aforementioned anecdotes illustrate that supply chains are susceptible to “breaking

down”. That is, the various processes within a supply chain change to an unexpected

state that is not common. This could include a shortage of inventory due to higher

demand, a late shipment from a supplier, a production process whose flow rate or time

is suddenly altered, or anything else that thwarts the movement of the product or

service through the various actors within the supply network.

Supply chain disruption and risk management have been a topic for researchers for

two decades (Chopra & Sodhi, 2004; Denardo & Lee, 1996; G. A. Zsidisin & Ritchie,

2009; Paulsson, 2004; C. S. Tang, 2006; P. R. Kleindorfer & Saad, 2005). Just as

with the definition of the supply chain, there are various definitions for “supply chain

disruption” and “supply chain risk”. I will conduct a more thorough literature review

of this in the next chapter. For the time being, in this section, I would like to clearly

define the terms “disruption” and “supply chain risk”, as well as discuss the common
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theme across various frameworks for their management that have been proposed.

Some authors have confounded the definitions of “risk” and “disruption” to be one

in the same. For example, Hendricks states that “there seems to be widespread recog-

nition that such disruptions have the potential to cause significant negative economic

impacts” (Hendricks & Singhal, 2005b, pg. 35). That is, he is defining a disruption as

a “potential”, which would be interpreted as a risk. In a later study, he mentions that

disruptions themselves “cause” risk.

Others, however, separate the construct of “disruption” and “risk” (Garvey, Carnovale,

& Yeniyurt, 2015; DuHadway, Carnovale, & Hazen, 2017), where one is an event that

could occur (the risk) and the other is a manifestation of that event (the disruption)

(DuHadway et al., 2017). This distinction is important, as it allows for a proper clas-

sification of disruptions and the distinction between an event that is preventing the

normal flow of goods, versus a potential event that could manifest into a disruption.

That is, this distinction of the constructs of risk and disruption allow for a well-grounded

framework to determine the antecedents of a disruption.

Supply chain disruptions are “unplanned and unanticipated events that disrupt the

normal flow of goods and materials within a supply chain” (Craighead, Blackhurst,

Rungtusanatham, & Handfield, 2007, pg. 132 ; Garvey et al., 2015; P. R. Kleindorfer

& Saad, 2005). Equally important to defining a supply chain disruption is to define

supply chain risk, which is considered to be the antecedent of a supply chain disruption

(DuHadway et al., 2017). There is, however, much debate over a precise definition of

“supply chain risk”. Some authors characterize it in terms of consequences (Hendricks

& Singhal, 2005b), where others characterize it in terms of likelihood (Trkman & Mc-

Cormack, 2009; Garvey et al., 2015; P. R. Kleindorfer & Saad, 2005).

In actuality, a supply chain risk is much more multi-faceted than either case. Zsi-

disin, who refused to offer a single definition of supply chain risk in his research, states

that they “have deliberately chosen not to promote a definition for the term risk for

two reasons. Firstly, seeking agreement on a definition has proved problematic for most

fields of study across significant time periods. Secondly, prescribing a particular defi-

nition is likely to prove counter-productive in generating and encouraging the different
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perspectives and approaches adopted by our co-authors”(G. A. Zsidisin & Ritchie, 2009,

pg. 4). He instead enumerates a list of 4 dimensions along which the construct of supply

chain risk can be characterized.

Despite Zsidisin’s objections being unrelated to others’ definitions of risk, it is wor-

thy to note that some have adopted a definition of supply chain risk with respect to

three primary dimensions: the likelihood of the event, the severity of the event, and the

causal pathways that could lead to the event (Khojasteh-Ghamari & Irohara, 2018).

Indeed, “the two main elements, which are probability of occurrence and impact of risk,

are critical to determining the necessity of an action to combat a risk in a supply chain”

(Khojasteh-Ghamari & Irohara, 2018, pg. 8). They go on to offer a mathematical def-

inition of supply chain risk (Khojasteh-Ghamari & Irohara, 2018; Ritchie & Brindley,

2007):

Risk = Likelihood × Severity × Detection

The issue here is that the authors, while offering a definition of risk that is more

congruent with the mathematical definition of risk, again conflates the constructs of

disruption and supply chain risk. In this dissertation, I will contend with Zsidisin’s

notion that offering a very refined definition of supply chain risk would indeed be

counter-productive. However, I will emphasize the distinction between risk and dis-

ruption. Instead, I will offer a broader definition of the construct: a supply chain risk

is the interaction between the total loss of an event if it were to occur and the likeli-

hood of the event occurring, which could lead to a supply chain disruption. Note that

this definition does not necessarily mean “expected loss”. It could be operationalized

from a Value-at-Risk perspective, among other perspectives. This definition is refined

enough for theoretical contributions but not so refined where it limits other authors

perspectives on the subject.

In this dissertation, I will assume that the probability of a disruption is itself a

measurement of the culmination of all of a firm’s risk mitigation strategies (as well

as other non-risk-centric strategies). That is, the probability of a disruption is itself

dependent on the agent’s decision making. It is well known that agents make decisions
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in the face of uncertainty by leveraging proper stochastic model design and optimization

of those models (Prelec & Loewenstein, 1991; Bell, 1982). As a simple demonstration

as to how managerial decision making affects risk, just consider the problem of safety

stock:

If the demand D for a product in a single period of time follows a normal distribution

D ∼ N(µ, σ), and the firm would only like a 5% probability of running out of stock,

then they would order Q units, where P (D < Q) = .95. In this example, the disruption

would be “out of stock” and the probability of this is 0.05. This, however, was a

consequence of ordering and holding the Q units (with a lot of other assumptions for

this simple example).

A similar mathematical demonstration can be had with the notion of a second or

backup supplier, among other risk mitigation strategies. Hence, I submit here that

the probabilities of events that cause a disruption, that is, the likelihood of the risks

manifesting, are partly dependent on the risk mitigation strategies employed by actors

within the network. This is an important observation, as it allows for the ease of

modeling the structure of supply networks and observing how this structure affects

risk. It should be noted, however, that the likelihood of risk is not necessarily wholly

determined by risk mitigation strategies alone.

There still could be other characteristics and behaviors of the agent that determine

the probability of disruption. Since we have adopted (Carter et al., 2015) definition

of the supply chain, it is also logical to assume that the probabilities will also change

over time. Since supply networks are Complex Adaptive Systems (Carter et al., 2015),

agents change their characteristics and behavior over time. Since the likelihood of

risks manifesting into disruptions are partly dependent on these characteristics and

behaviors, it is logical to conclude that the probabilities themselves are not static. In

this dissertation, however, I will assume that the probabilities do not change over time

since I will also assume that the network does not change over time. The inquiry of

evolution of the networks is out of the scope of this dissertation. I do not currently

seek to understand how risk evolves over time. Rather, I seek to understand how risk

is related to network structure in the static environment.
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1.1.3 Structural Network Characteristics and Supply Chain Risk

Not only did the previous examples demonstrate that risk and disruption are key aspects

of supply chain management, but so too is structure. We saw that GM, Honda and

Nisson had responded differently to the earthquake than did Toyota. We saw that Tesla

took a different course of action in regards to their pricing than did Ford and Lincoln

in response to the tariffs. This is due not only to the risk mitigation strategies that

these firms had in place, but also due to their inherent structures that were designed.

Just as with the respective definitions of the supply chain, supply chain risk, and

supply chain disruption, supply chain structure is also defined from a variety of differing

perspectives in the extant literature. Choi contends that the “structure of a supply

network can be viewed as the pattern of relationships among firms engaged in creating

a sellable product” (Choi & Hong, 2002, pg. 470). In addition, he characterizes supply

network structure into three primary dimensions: formalization, centralization, and

complexity. This contrasts with Kim, who uses a categorization of different types of

networks such as small world and scale-free networks, among others(Y. Kim, Chen, &

Linderman, 2015; Watts & Strogatz, 1998).

Last, some authors have taken a more social-network perspective in combination

with more traditional graph-theoretic measures such as density and distance (Carnovale

& Yeniyurt, 2014; Carnovale, Yeniyurt, & Rogers, 2017). Concepts borrowed from

social-network theory such as ego-networks, as well as traditional graph-theoretic mea-

sures such as eigenvector centrality, closeness centrality and betweenness centrality, have

been used to determine their effect on Joint-Venture formation (Carnovale & Yeniyurt,

2014; Carnovale et al., 2017). Such a characterization of a network is, in this author’s

opinion, the most appropriate manner to characterize networks with respect to a pure

structural perspective.

First, while defining structure based on dimensions does offer clarity for strategic

reasons, current construct analysis of structure is heavily reliant on context. The same

holds true for the prior attempts to classify networks into only a handful of catego-

rizations. While conceptualization may offer clarify, classification greatly increases the
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within-group variance in any response variables that may be considered within their

connection to canonical network structure. (Carnovale & Yeniyurt, 2014) approach is

the most appropriate for this dissertation’s purpose as it does not risk the presence of

the aforementioned issues. While still partly context-dependent, his use of the graph

theoretic measures were used to properly characterize a network from a context-free,

structural perspective. Hence, I will extend (Carnovale & Yeniyurt, 2014) approach by

using additional graph-theoretic measures, and attempting to synthesize them into a

handful of reasonable context-free constructs for network structure.

While (Choi & Hong, 2002) extended definition of supply chain structure involves

the description of three dimensions, his original definition is actually quite fitting to

the purpose at hand. Hence, for the purposes of this dissertation, I define the “supply

network structure” in same more general sense that (Choi & Hong, 2002) first defined

it prior to his discussion on three dimensions. More specifically, the “structure of a

supply network can be viewed as the pattern of relationships among firms engaged in

creating a sellable product” (Choi & Hong, 2002, pg. 470). This definition is general

enough to encompass a large number of differing operationalizations without voiding

any prior work on supply network structure.

1.2 Research Objectives and Inquiries

Now that I have clearly defined a few of the terms that are necessary for the primary

inquiry of this dissertation, I shall offer two motivations for the primary topic at hand.

First, I will give a formal justification for the motivation of the primary inquiry using

the extant literature grounded within organization theory. Second, I will give a mathe-

matical exposition for the primary problem at hand by demonstrating a small example.

The mathematics used in this derivation will be explained in greater detail in the next

chapter of this dissertation.
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1.2.1 Conceptual Motivation

I will ground the inquiry for this dissertation in Resource Dependency Theory (RDT).

Resource Dependency Theory states that the “survival of the organization is partially

explained by the ability to cope with environmental contingencies” (Pfeffer & Salan-

cik, 2003, pg. 258). Much of RDT is focused around the constructs of power and

accessibility to resources. It states that firms require resources, and at times, access

to those resources is controlled by other actors within an external environment. The

level of control that these outside actors have on said resources establishes a power dy-

namic between two or more actors(Pfeffer & Salancik, 2003; Emerson, 1962; Casciaro

& Piskorski, 2005). Indeed, Emerson notes that “it would appear that the power to

control or influence the other resides in control over the things he values, which may

range”(Emerson, 1962, pg. p32).

Throughout the process of navigating in this external environment of agents that

have varying degrees of power, firms seek to establish relationships with others of lower

levels of power and minimize or remain independent of relationships with high power

firms. Indeed, “it is possible that when the buyer-supplier relationship dynamic is char-

acterized by coercion, ... [a] supplier may simply wish to avoid attention, or at least has

no inclination to help his customer beyond meeting basic performance expectatations”

(Terpend & Ashenbaum, 2012, pg. 56).

Therefore, RDT considers connections between organizations as “instruments for

reducing power imbalances and for managing mutual dependencies”(Drees & Heugens,

2013, pg. 4) which is further emphasized by (Casciaro & Piskorski, 2005). As a firm

seeks to address these power imbalances, it determines which actors to connect with

and which ones to avoid or minimize interaction. In doing so, they become connected or

disconnected to a larger collection of firms, themselves having unique power dynamics.

Indeed, “while a buyer-supplier relationship is a dyad, it is also part of networks that

have come to bear on individual nodes to the relationship through each others extended

business relationships” (Choi & Kim, 2008, pg. 6). Hence, it can be argued that the

network structure of a supply network is the result of individual firms struggling to
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address a variety of power imbalances.

While power is one aspect of RDT, dependence on resources is another. Recall

that power is only one portion of Pfeffer’s explanation of links between firms. He

states that “an organization’s vulnerability to extraorganizational influence is partly

determined by the extent to which the organization has come to depend on certain

types of exchanges for its operation”(Pfeffer & Salancik, 2003, pg. 46). He continues to

describe two dimensions of the importance of the dependence: the magnitude and the

criticality of the resource exchange. As such, he argues that any problems that arise

out of the organization due to the level of importance that an organization places on

a resource is due to the external environment. Namely, the ability to depend on, and

access, the resource and power dynamics that are encountered through acquiring those

resources.

Therefore, RDT explains that a supply network structure is formulated as a man-

ifestation of power and the need to acquire resources via resource-exchanges (i.e. es-

tablishing links between firms). In addition, RDT can explain why firms within the

supply network experience risk of disruption and the need to manage such uncertain-

ties. These risks are inherent in the environment in which the firm operates. As Pffeffer

states, “interdependence can create problems of uncertainty or unpredictability for the

organization. This uncertainty ... derives from the lack of coordination of activities

among social units”(Pfeffer & Salancik, 2003, pg. 42).

Part of the lack of coordination would be the lack of knowledge of restructuring

of the network itself. Again, as Pffeffer indicates, “organizations facing uncertainty

attempt to cope with it on occasion by restructuring their exchange relationships. The

solution to one organization’s uncertainties ... can create new uncertainties for other

organizations”(Pfeffer & Salancik, 2003, pg. 42). This notion of agents within a net-

work restructuring themselves to manage both uncertainty and power is consistent with

(Carter et al., 2015) conceptualization of the supply network being a complex adaptive

system (Carter et al., 2015).

As such, Resource Dependency Theory explains the following observations in rela-

tion to disruption risk and structural characteristics about a supply network:
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1. Supply Network Structure is consistently in flux due to power imbalances, the

need for survival via resource acquisition, and the need to reduce uncertainties.

2. As the Supply Network changes (due to power, resource, uncertainty), so too do

the uncertainties of all members (and hence the chance of a disruption).

3. Structure and Risk of Disruption are endogenous. The structure, as suggested by

RDT, itself creates uncertainties for actors within the network. As such, actors

respond to the uncertainties by rearranging their structure. By the previous

sentence, since the structure has changed, so too have the uncertainties and hence

the risk for disruption. Again, actors respond by rearranging their structure, and

so forth, ad infinitum. Therefore, the risk of disruption and supply network

structure are intertwined and consistently in flux.

This dissertation seeks not to address all the observations made in the previous

argument. Instead, it seeks to take the first step towards establishing the nature of

the relationship between structure and risk. While the two are intertwined, they only

evolve over the dimension of time. A good first step to understanding this evolution of

the interaction between structure and risk is to first understand how structure and risk

are related in the static sense. Given the aforementioned definition of structure, one can

speculate that it has many possible dimensions that could be used to characterize, both

conceptually and mathematically, the canonical network structure. Laying a foundation

for which particular types of structure affect risk will lay a foundation for future work

as to how these two constructs evolve with each other over time.

1.2.2 Mathematical Motivation for the Dissertation

While I have motivated the primary inquiry of this dissertation from a conceptual point

of view, I would also like to do so from a mathematical point of view. Mathematically,

the structure of a supply network is modeled as a directed graph (Nair & Vidal, 2011;

Garvey et al., 2015; Carnovale & Yeniyurt, 2014). The nodes and arcs can represent

different levels of analysis. If at the firm level, then nodes commonly refer to the

firms within the network (relative to a fixed focal firm) and the arcs represent physical
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material flow, information flow or a financial flow between firms within the network

(Carter et al., 2015). The graph G = (E, V ) is then a combination of two mathematical

sets: the edge set E and the node set V (Diestel, 2017).

As a result, many properties of this mathematical structure exist that help to explain

the graph’s “structure”. Measures such as node count, edge count, degree centrality,

eigenvector centrality, betweenness centrality, girth, connectedness, distance, and many

others all allow for the scholar of graphs to understand the various structural properties,

and even classifications (Diestel, 2017). Such properties are directly related to our

primary inquiry at hand, and as such, I will leverage some of them in this motivation.

To motivate the topic of discussion mathematically, I will leverage two basic prop-

erties of graphs: distance and centrality. “Risk” is defined above as the interaction

between the consequence of an event and the likelihood of the event. Here, and hereto-

fore, I will measure the “consequence” of an event as the number of nodes within a

network that are affected due to a disruption. The likelihoods of disruption are model-

ing using the concept of a Bayesian Network. I will forgo a formal discussion of this in

the current motivation, and direct the reader to the next chapter for further clarifica-

tion. For now, I will assume the reader is familiar with the fundamentals of conditional

probability. The model of risk measurement of a supply network that I will employ is

(Garvey et al., 2015) framework.

For the motivation, I will demonstrate the initial observations of relationships be-

tween the structural characteristics and the risk. Four networks of the same num-

ber of nodes, all of which are connected (i.e. any two nodes have a path between

them), but with different levels of centrality and distance will be studied. Each of

these structures are shown in Figure 1.1. From each network, I generate 99 Bayesian

Networks, where all the conditional probabilities for each node in a single network are

the same. That is, given a probability 0 < p < 1, P (X = 1|Parents(X)) = p and

P (X = 0|Parents(X)) = 1− p, where X is a node in the specific network generated.

I iterate the value of p starting at 0.01 and ending at 0.99, by every 0.01. Hence, for

each of the four networks, I generate 99 Bayesian Networks (a unique Bayesian Network

comprises of the structure and the collection of conditional probabilities). Hence, I will
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Figure 1.1: Four different directed networks, each one of which has 9 nodes.
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study a total of 396 different Bayesian Networks. Varying the probabilities allows for

enough heterogeneity in the probability data to be able to isolate the effects of structure

on risk.

The code to generate these networks is in the appendix and all of the generation

and analysis is conducted in R. I leverage the igraph and bnlearn packages in order to

generate and analyze the Bayesian Networks. For this small demonstration, I analyze

the generated data at two different levels of analysis: the network level and the node

level. Arc analysis is ignored and reserved for the primary inquiry. Leveraging (Garvey

et al., 2015) Risk Model, each node in the network represents a single risk (a generic risk

of disruption) which holds a value of either 0 or 1 (the event occurred or the event did

not occur). Risk is measured using the model’s Expected Location Risk Contribution

Factor (ELRCF) (Garvey et al., 2015). This is a node/arc-level risk metric that is

calculated, for a node n, as:

ELRCF (n) = (1 + ERCF (n|n = 1))P (n = 1) + ERCF (n|n = 0)P (n = 0)

where ERCF is the Expected Risk Contribution Factor, which is defined for a node

n assigned to a value a ∈ {0, 1}

ERCF (n = a) = E

 ∑
i∈D(n)

U(ni)|n = a


where D(n) is the set of descendants of the node n and U(ni) is the cost if the event

ni were to occur (that is, it is the cost when ni = 1). Here, as mentioned previously,

I assume the consequence of a disruption is equal to the number of nodes where the

disruption occurred. Hence, in this case, U(ni) = ni ∈ {0, 1}. The ELRCF for a node

n measures the expected number of descendants of n that will experience a disruption

due to a disruption (or no disruption) at the node n.

For the network-level analysis, the structural characteristics that I study in this

demonstration are the radius, diameter, average betweenness centrality, average close-

ness centrality, average degree centrality and average eigenvector centrality. Overall

“Network Risk” is calculated by finding the average ELRCF of all nodes, the standard

deviation and the coefficient of variation
(
σELRCF
µELRCF

)
. For the node-level analysis, the



19

structural characteristics that I study in this demonstration are betweenness centrality,

closeness centrality, eigenvector centrality, and degree centrality. Risk is calculated at

the node level by finding the ELRCF for the node.

In both levels of analysis, I control for the probability used to generate the data

so that structure can be isolated. The simulation was run in R version 3.3 using the

aforementioned packages and custom code on a Macbook Pro, OS X 10.9.5 with a 2.2

GHz Intel Core i7 and 8GB 1333 MHz DDR3 Memory. The igraph package was used to

calculate the network characteristics and the bnlearn package was leveraged to represent

the Bayesian Networks and to calculate the risk measures. Since the definition of the

risk measures require a large number of numerical calculations, I leveraged the bnlearn

package to conduct a Monte Carlo Simulation using the Liklihood Weighting Sampling

algorithm, of which this package provides. I shall now illustrate some of the results

from the initial demonstration.

First, I will illustrate the network-level analysis. While this analysis is not a focus of

this dissertation, the same measures, calculations and analysis will be used to calculate

k-ego network structural characteristics, and hence the demonstration illustrates the

potential connections between these types of structures and risk. For the Network-

Level analysis, we see from Figure 1.2 that both the distance and centrality measures

have very little impact on the average risk in the network, but it could be argued to

be slightly curvi-linear. However, this may be due to the homogeneity in the overall

network structure itself (after all, I am only looking at 4 different network structures

all of the same node and arc size). The same observations are made from the standard

deviation of the risks and hence are not shown. However, upon further inspection

of the data, plotting the coefficient of variation (CV) against the different structural

variables seems to indicate an inverse quadratic relationship. Figure 1.3 indicates that

the CV of risk starts small for smaller levels of centrality and distance, and increases to

a precipitous. After this point, any increase in distance or centrality indicates a drop in

the coefficient of variation for risk. What is interesting is that this observation holds for

all centrality measures, despite eigenvector and betweenness centrality being inversely

related to closeness centrality. If this association holds in my later analysis, then the



20

0

1

2

3

4

5

Avg Betweenness Centrality

A
vg

. E
LR

C
F

Risk v. Betweenness Cen

0

1

2

3

4

5

Avg Closeness Centrality

A
vg

. E
LR

C
F

Risk v. Closeness Cen

0

1

2

3

4

5

Avg Eigenevector Centrality

A
vg

. E
LR

C
F

Risk v. Eigen Cen

0

1

2

3

4

5

Diameter

A
vg

. E
LR

C
F

Risk v. Diameter

0

1

2

3

4

5

Radius

A
vg

. E
LR

C
F

Risk v. Radius

Figure 1.2: The Expected Location Risk Contribution Factor (ELRCF) plotted against
the 4 different network’s distance and centrality measures.
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pattern that can be postulated is that regardless of the type of centrality, more central

nodes are exposed to a maximum level of risk of disruption, which could be mitigated

by creating additional connections beyond this level. The same would hold for network

distance. These observations, however, may be due to the lack of sufficient structural

data. However, despite the incredibly small sample size of varying structure, we do see

that the CV of risk seems to be associated with the centrality and distance measures

of network structure. We will see later if this holds true in the primary inquiry of this

dissertation. I will now analyze the data from a node-level perspective. Figure 1.4 plots

the risk of a node against it’s different centrality measures. We can see from the plot

that unlike at the network level, the node level seems to indicate a stronger association

between the risk and centrality measures. Risk seems to be positively curvilinear with

degree centrality. Generally, the risk seems to increase exponentially for the Eigenvector

centrality. For Betweenness and Closeness Centrality, again, we notice that despite these

being negatively associated with each other, each of them seems to exhibit a negative

curvilinear association.

The visual analysis of the data simulated seems to indicate that risk, as measured by

the expected number of nodes affected by a disruption, is associated with the varying

dimensions of structural characteristics. The associations, at both the network level and

node level, seem to indicate positive linear associations and possibly exponential and

negative curvilinear. While this little demonstration did not have much heterogeneity

within the structural data itself, it still serves as a motivation for the primary inquiry

at hand.

Thus, from a theoretical perspective and empirical perspective, we can see that

structure is possibly related with the risk within a supply network, ceteris paribus.

This section has served as the foundation for the motivation of the current dissertation

at hand. Now that the primary inquiry is supported by the prior motivation, I will

summarize the primary research objectives of this dissertation.

As the motivation has indicated, the need to characterize the relationships between

the static structure of a network and risk is important to understand it’s evolution over

time. The motivation also argues that understanding this evolution is important for
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Factor (ELRCF) plotted against the 4 different network’s distance and centrality mea-
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firms that seek to survive. Again, according to RDT, firms survive by being able to

appropriately respond to environmental changes. Since the structure of the network is

inherently canonical of the external environment, the firm therefore must understand

the association to design effective risk mitigation strategies.

In the mathematical motivation, I demonstrated that there seems to be some evi-

dence that warrants further investigation into this association. We had seen that at the

network level, structure impacts the coefficient of variation of risk, while at the node

level, it impacts the risk itself. Since firms are embedded in larger structures (Nair,

Blome, Choi, & Lee, 2018; Choi & Kim, 2008), it would be worth while to determine if

structures at a higher level of analysis affect risk at these levels of analysis (for example,

does ego-network structure affect ego-network level risk?) or, to determine if the risk

at a higher level of analysis affects risk at lower levels (for example, does ego-network

risk affect node/arc level risk?). As I will demonstrate in a later chapter, networks have

different levels of analysis of which can be effectively described with the notion of a

k-ego network. In this dissertation, I seek to understand how the structure of the ego

network of the ego network of a firm affects not only the lower ego network risk of a

firm but also the firm risk itself. In addition, understanding arc-level risk would serve

useful if it is found that risks are affected differently for arcs than for nodes. Therefore,

I submit the following objectives that this dissertation seeks to complete:

1. Demonstrate the definition of different levels of embeddedness and visibility through

the construct of a k-ego network.

2. Demonstrate how structure differs across the k-ego networks.

3. Determine the constructs of k-ego network structure that are directly predictive

of k-ego network risk.

4. Determine the nature of the relationship between k-ego networks structure and

k-ego network’s risk for k = 0, 1, 2.

5. Determine the nature of the relationship between structure and arc/node risk.
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6. Determine the relation between higher k-ego-network levels of risk and lower k-

ego-network levels of risk.
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Chapter 2

Literature Review

2.1 Supply Chain Risk and Disruption

2.1.1 Supply Chain Disruptions

A supply chain disruption is an “unplanned and unanticipated event that disrupts

the normal flow of goods and materials within a supply chain” (Craighead et al.,

2007;P. R. Kleindorfer & Saad, 2005; Hendricks & Singhal, 2005b). Special atten-

tion has been given to supply chain disruptions in the extant literature due to the rise

of global sourcing, which inherently increases the potential for disruptions to occur, and

due to the movement towards optimizing the characteristics of the supply chain such

as responsiveness, agility and inventory (Blackhurst*, Craighead, Elkins, & Handfield,

2005). In addition, longer paths and shorter clock speeds lead to increased opportunities

for disruption (P. R. Kleindorfer & Saad, 2005). Not only has attention to disruptions

been given by academics, but also by practitioners, of whom “consider supply chain

disruptions and their associated operational and financial risks to be their single most

pressing concern”(Craighead et al., 2007, pg. 149;Green, 2004).

Supply Chain Disruptions can have significant impact on a firm’s performance.

Indeed, “a disruption affecting an entity anywhere in the supply chain can have a direct

effect on a corporations ability to continue operations, get finished goods to market or

provide critical services to customers” (Jüttner, Peck, & Christopher, 2003). Much

of the extant literature has studied a variety of detrimental impacts that a disruption

within the network has on a firm. For example, Duhhadway had suggested that the

impact on performance is dependent on the type of disruption (DuHadway et al., 2017)

and Rosales indicated that supply chain disruptions such as out of stock (OOS) can
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contribute a negative role in retailer and manufacturing performance (Rosales, Whipple,

& Blackhurst, 2018). (Hendricks & Singhal, 2005a) found that supply chain disruptions

can lead to a decrease in profitability and net sales, as well as an increase in costs and

negative inventory performance (Hendricks & Singhal, 2005a).

In addition, supply chain disruptions can be problematic for production schedul-

ing (Bozarth, Warsing, Flynn, & Flynn, 2009) as well as other activities of the firm.

It has also been shown that disruptions originating from transportation activities can

negatively impact inventory levels, goods in transit as well as the number of unfilled

customer orders (Wilson, 2007). Others have found that speed to recovery lies within

the nature of the disruption itself, as well as having an impact on financial and service

performance (Macdonald & Corsi, 2013). Other firm characteristics, such as robust-

ness and agility, have been demonstrated to amplify/depress the result of disruptions

(Wieland & Marcus Wallenburg, 2012). In addition, supply chain disruptions can have

an impact on a firm’s competitive performance, schedule attainment and customer sat-

isfaction (L. Zhao, Huo, Sun, & Zhao, 2013).

As the aforementioned anecdotes illustrate, when a disruption occurs within a supply

network, firms often have the need to respond with action. More generally, it has been

suggested that firms react to disruptions in one of three ways: parametrical, process

or structural (Ivanov, Dolgui, Sokolov, & Ivanova, 2017). In the case of parametrical,

firms choose to adjust important parameters such as inventory, lead time or prices

(Ivanov, Dolgui, Sokolov, & Ivanova, 2017; Bugerta & Lascha, 2018). On the other

hand, firms may choose to respond by adjusting their processes or their structural

characteristics within the network. Prior research has suggested that firms often form

expectations of subsequent changes to their external environment by other firms in the

network. Indeed, when a disruption occurs, firms speculate on the continuity of a dyadic

relationship. Such speculations involve firm perceptions of opportunism, dependence on

opportunism, and relationship continuance (Ro, Su, & Chen, 2016). Such perceptions

are inherently emotional, behavioral, and subjective, and hence lead firms to decide

if they should retain their supplier relationships (Polyviou, Rungtusanatham, Reczek,

& Knemeyer, 2018). Others in the extant literature have suggested that firms could
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respond through adjustments to price, where is has been shown that “significant cost

savings for the supply chain” can be achieved (Bugerta & Lascha, 2018, pg. 33).

Yet another form of response is to implement a disruption and risk management sys-

tem within the organization(Craighead et al., 2007; DuHadway et al., 2017). An impor-

tant requirement in order to design a proper risk and disruption mitigation and response

system is to first understand the different types of disruptions as well as the common

drivers of them. As Duhadway noted, “in the supply chain literature, disruptions are

often treated as homogenous regardless of the nature of the disruption”(DuHadway et

al., 2017, pg. 4). It should be emphasized here, however, that “supply chain risk”,

which is considered to be an event that “causes” a disruption, and “supply chain dis-

ruption” are different in regards to their nature. Despite this, it is still important to

have a classification of types of disruptions as well as an understanding of how they

manifest. Duhadway has suggested that disruptions can be classified along two pri-

mary dimensions: Behavioral Intent (Intentional/Unintentional) and Disruption Loca-

tion (Endogenous/Exogenous) (DuHadway et al., 2017). Such a classification allows the

supply chain manager to better understand the potential impact on firm performance

due to the different types of disruptions.

Prior literature has made a few findings as to what would drive a disruption. Firm

behaviors such as risk taking propensity, security compliance measure implementation

and safety stock have been found to affect the frequency of supply chain disruptions

(Park, Min, & Min, 2016). Other actors within the environment in which the firm

operates can also affect the occurrence of disruptions, such as violent cargo theft (Ekwall

& Lantz, 2018; DuHadway et al., 2017). In addition, a firm’s willingness to embrace

Supply Chain Disruption Management and Supply Chain Risk Management affects the

frequency in which disruptions manifest in the supply network (Revilla & Saenz, 2017).

Part of proper disruption management involves the ability to detect a disruption.

Many methodologies have been suggested for this purpose. Craighead defined a severe

node as one where the disruption at that node affects a large number of other nodes.

Hence, identifying severe nodes ahead of time would help in the detection of disruptions

(Craighead et al., 2007). Decision support systems that involve the gathering of data
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and scenario analysis is another solution to the problem of detection(K. Zhao, Scheibe,

Blackhurst, & Kumar, 2018). Other methods include Petri Net models (Blackhurst,

Rungtusanatham, Scheibe, & Ambulkar, 2018) and the use of other forms of decision

support systems (T. Wu, Blackhurst, & Ogrady, 2007). A more recent trend has been

to consider the aspects of uncertainty (i.e. supply chain risk) into the detection of

disruptions leveraging Bayesian Networks(Garvey et al., 2015).

Not only has detection been a concern for academics and practitioners, but so too

has been the design and implementation of strategies in order to mitigate against said

disruptions. This stream of literature is vast. Some of the recent work conducted on the

matter has involved the analysis of strategies that involve the use of primary suppliers,

pre-positioned warehouses, backup suppliers and protected suppliers (Kamalahmadi &

Parast, 2017). Others involve the creation of an inference system to predict a disrup-

tion in regards to demand and inventory as well as a reactive strategy by adjusting

production levels in response (Paul, Sarker, & Essam, 2017).

Another mechanism to mitigate disruptions is by the creation of a supplier portfolio,

where different suppliers are used for different purposes and frequencies in the wake of a

disruption (Sawik, 2017; Namdar, Li, Sawhney, & Pradhan, 2018; Sawik, 2018a, 2018b).

The use of order-up-to policies in inventory systems have also been shown to help

mitigate disruptions as well (Schmitt, Kumar, Stecke, Glover, & Ehlen, 2017). Even

more mechanical-based decision making tools, based on Agent-Based models, have been

suggested as an effective way to mitigate(Blos, da Silva, & Wee, 2018), where human

decision making is delegated to an automated decision support system.

Another aspect of disruption mitigation is within the design of the network structure

itself. Indeed, many in the extant literature have studied how best to design a network

when disruption is a possibility. Many of the designs are based on optimizing a vari-

ety of different costs pertaining to inventory, routing, capacity, operating, ordering, as

well as more supply chain centric parameters such as income, responsiveness, flexibility,

environmental impacts, social responsibility, and risk/robustness metrics (Govindan,

Fattahi, & Keyvanshokooh, 2017). Other network designs are based on incorporat-

ing multiple sourcing, extra capacity and emergency stock strategies while taking into
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account resiliency and competitiveness (Rezapour, Farahani, & Pourakbar, 2017; Mar-

golis, Sullivan, Mason, & Magagnotti, 2018; Sáenz, Revilla, & Acero, 2018). Some

network designs are not designs at all, but rather they are the manifestation of deci-

sion making, such as facility location, due to disruptions (Jabbarzadeh, Fahimnia, &

Sabouhi, 2018; Jabbarzadeh, Haughton, & Khosrojerdi, 2018).

In the literature, there have been multiple attempts to determine optimal decision

making by employing operations research models. Such attempts include optimization

of service level (Sawik, 2016), return flows (Ivanov, Pavlov, Pavlov, & Sokolov, 2017),

pricing and inventory decisions (Huang, He, & Li, 2018), budget allocation (Zhang,

Zhao, & Pang, 2018), and supply chain performance as measured by supply chain

system profit (Giri & Sarker, 2017). The literature in this area is quite large, and so I

direct the reader to a recent review in this body of work (Snyder et al., 2016).

2.1.2 Supply Chain Risk and Risk Management

The Need for Supply Chain Risk Management (SCRM)

As previously mentioned, a supply chain risk is distinct from a supply chain disruption.

Indeed, “it is worth noting the distinction between disruption and risk. Whereas dis-

ruptions are typically manifestations of supply chain risks; risk can be present without

a disruption occurring” (DuHadway et al., 2017, pg. 2). Therefore, we can conceptu-

alize a supply chain risk as an event, which holds a certain level of consequence and a

likelihood of occurrence, that could lead to a supply chain disruption (G. A. Zsidisin,

2003; Pettit, Fiksel, & Croxton, 2010; Craighead et al., 2007). As I noted earlier, we

can define supply chain risk as an interaction between an adverse event’s likelihood and

consequence that can manifest into a supply chain disruption. Such a definition allows

for a wide array of operationalizations and different perspectives on “risk”.

Supply chain risks are as important to understand and mitigate as supply chain

disruptions. Previous literature has suggested that supply and demand risk both affect

supply chain performance (Wagner & Bode, 2008). In addition, supply chain risks

have led managers to feel the need, driven by internal and external factors, to change
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the structure and relationships of these networks (Ritchie & Brindley, 2007). These

changes, along with supply chain risk itself, could indeed lead to a reduction in financial

performance depending on the resulting structure (Carnovale & Yeniyurt, 2015; Manuj,

Esper, & Stank, 2014; Kilubi & Haasis, 2015; Kordlouie, Sadeghi, & Sadeghi, 2018).

It also has been demonstrated that a variety of supply chain risks affect SCOR-Based

Performance Metrics (Abolghasemi, Khodakarami, & Tehranifard, 2015; Truong Quang

& Hara, 2018), innovation performance (Wiengarten, Humphreys, Gimenez, & McIvor,

2016; Kwak, Seo, & Mason, 2018), strategic performance (Revilla & Saenz, 2017), and

operational performance (Salam, Ali, & Kan, 2017).

While supply chain risk is inherent within supply networks and can lead to detrimen-

tal effects on performance, researchers have found that the dynamics of risk perception

by practitioners is an important consideration that must be taken into account. In a

survey that Zsidisin conducted on managers within manufacturing firms, it was found

that even “though the chance exists of an undesirable event occurring that would halt

operations, the time and resources necessary for purchasing to plan ahead was not per-

ceived as being important for several of the firms” (G. A. Zsidisin, Panelli, & Upton,

2000, pg. 8). However, when firms do perceive high levels of supply risk within their

supply base, the frequency of disruptions tend to be higher. If firms recognize these

risks and take the time to attempt to mitigate them, however, then they can achieve

a reduction in disruption frequency and from decreased performance (G. A. Zsidisin &

Wagner, 2010; Brusset & Teller, 2017; Kurniawan, Zailani, Iranmanesh, & Rajagopal,

2017; Adebola Adeseun, Anosike, Garza-Reyes, & Al-Talib, 2018).

Therefore, risk mitigation, and hence disruption frequency and performance, is in-

herently dependent not only on higher levels of analysis of the organization, but also to

lower levels. That is, the state of these constructs are inherently dependent on individ-

ual emotion of actors within the organization. For example, researchers have found that

risk perceptions vary across the different levels of the organization, despite managerial

experience having no impact on such perceptions (Adebola Adeseun et al., 2018).

At the supply chain level, it has also been found that the vulnerability of a supply

chain is partly dependent on a firm’s perception of time and dependence of a relationship
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between two firms (Svensson, 2002). Recently it was found that despite having success

in risk mitigation strategies due to the perception of risk, the communication of such

success actually had an inverse effect on the continence of those strategies (DuHadway,

Carnovale, & Kannan, 2018). Therefore, the dynamics of risk management and percep-

tion are much more complicated than tackling risks from a pure strategic point of view.

More specifically, not only are risks of a concern for firms within a supply network, but

so too are the various behavioral dynamics of actors across multiple levels of the supply

network and the organization.

The effects that risk can have on a firm within a supply network, as well as the

behavioral dynamics of actors within the network and the organization, are important

for practitioners to consider while crafting their strategies to meet their objectives.

Simply stating that managers should “account for risk”, however, is vague and ambigu-

ous. Early researchers in the field had identified that supply chain risk is multifaceted

and requires attention to detail. For example, Ellram had identified that when firms

engage in relationships, there exist risks for both parties along economic, managerial

and strategic dimensions (Ellram & Cooper, 1990).

In addition, if firms fail to consider the flexibility of those relationships, then any

risks to and from the supply chain that are inherent within them will be difficult to

change at a later point in time, and hence, a detailed risk analysis is necessary before any

establishment or other changes to a relationship are made (Porter, 1991; Swaminathan,

Smith, & Sadeh, 1998). Furthermore, decisions that firms make within a supply network

are also embedded in a more general environment of “the world”, or as Pfeffer defines,

the “external environment” (Pfeffer & Salancik, 2003).

Risks are not only inherent within the decisions that a firm implements, but also

within this external environment (Barry, 2004; Giunipero & Aly Eltantawy, 2004).

The risks that are present, mutually exclusive to decisions within supply network, but

rather within the external environment in which the supply network operates, indeed

is an important consideration for firms (Paulraj & Chen, 2007; Pfeffer & Salancik,

2003). These risks are complex in nature, and can lead to a chain of events (i.e. a

chain of other risks), that eventually “trickle down” to risks within the supply chain
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environment (Garvey et al., 2015; Qazi, Quigley, & Dickson, 2015).

Firms could address the risks and the manifestation of these risks (i.e. disruptions)

through either proactive or reactive strategies (Elluru, Gupta, Kaur, & Singh, 2017).

However, if firms seek to fulfill their performance objectives, or seek to fulfill a greater

goal of successful integration, they must address the threat of supply chain risks within

a more organized and structured approach (Carter & Rogers, 2008; Flynn, Koufteros,

& Lu, 2016; Blome, Schoenherr, & Rexhausen, 2013). Indeed, as “uncertainty in the

business environment continues to increase, organizations need to adopt a more sys-

tematic and structured approach to supply chain risk management” (Cristopher, 1992,

pg. 8).

SCRM Frameworks: Evolution and Current State

The extant literature currently has differing views on the definition of Supply Chain Risk

Management (SCRM). For example, “an inter-organisational collaborative endeavour

utilising quantitative and qualitative risk management methodologies to identify, eval-

uate, mitigate and monitor unexpected macro and micro level events or conditions,

which might adversely impact any part of a supply chain” (W. Ho, Zheng, Yildiz, &

Talluri, 2015, pg. 5036), while Chopra had seen SCRM as more of a strategic activity of

which entailed stress testing and subsequent tailoring of risk-mitigation strategy to an

individual firm (Chopra & Sodhi, 2004). While much debate still ensures, what seems

to be agreed upon by most academics is that it lies at the intersection of Supply Chain

Management and Risk Management (Khojasteh-Ghamari & Irohara, 2018).

One of the earliest use of the term SCRM was by Christopher, where he argued

that risks need to be managed in a structured and systematic way by having a team of

individuals “audit risk across the supply chain and ... develop and implement strategies

for the mitigation of identified risk” (Cristopher, 1992, pg. 9). In parallel with some in

the literature calling for a more structured SCRM framework, risk management was also

being viewed as a strategic management activity, where “risk” was being understood

from the perspective of loss of competitive advantage (Lonsdale, 1999). Researchers

soon began to realize the need for a well defined taxonomy of risks that are present
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within the supply network and the need for a framework to manage these risks.

Harland was one of the first authors to materialize Christopher’s notion of “audit

risk”, where he proposed a process of SCRM by (1) mapping the supply network,

(2) identifying risks by their type and their potential loss, (3) assessing the risk by

understanding it’s likelihood, exposure, triggers and loss, (4) managing the risk by

developing risk positions (i.e. reactive, defensive, proactive or analytical) and scenarios,

(5) form a collaborative supply network risk strategy, and (6) implement the supply

network risk strategy. He was among the first of many authors to suggest that SCRM

is indeed a collaborative effort among many actors within the network, but had noted

that “their own view of how to deal with risk in the network may not coincide with

other actors and is likely to give rise to destabilising of the network at some point”

(C. Harland, Brenchley, & Walker, 2003, pg. 56).

In addition to Harland’s characterization of SCRM, Zsidisin had proposed a frame-

work for handling supply risk (which, while a consideration for SCRM, is itself distinct

from supply chain risk). His framework involved applying Agency Theory to construct

a method for managing supply risk. He proposed that first, supply risk sources should

be identified and analyzed (with both likelihood and potential loss as factors for con-

sideration), and then a Behavior-Based or Buffer-Based form of management should

be employed (G. Zsidisin & Ellram, 2003). He later refined his framework of supply

risk by building off of Hardland’s framework, and argued that his “view of supply risk

becomes a cornerstone for understanding supply chain or supply network risk, which

would involve defining and studying risk at numerous inter- and intra-organizational

levels” (G. A. Zsidisin, 2003, pg. 21).

Christopher and Peck emphasized the importance of collaboration between members

of a supply network as a key component of SCRM. They stressed that knowledge sharing

is important towards the ultimate goal of risk reduction. Building on the assumption

that “collaborative working in the supply chain is that the exchange of information can

reduce uncertainty” (Christopher & Peck, 2004, pg. 17), they argue that knowledge

sharing via collaborative planning is a cornerstone of SCRM, where “knowledge” can

be broken into three primary levels: strategic, tactical and operational. In addition,
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they place SCRM within a larger context of resiliency, and are among the first in the

literature to introduce the constructs of supply chain vulnerability and robustness to

supply chain risk.

In their landmark paper, Kleindorfer and Saad were among the first to distinguish

between a supply chain disruption and a supply chain risk. They argued that risk

emanates from two sources: (1) issues manifesting from coordination of supply and de-

mand and (2) disruptions to normal activities. They argued that the latter source itself

comprises of a large array of different sources of risk that could be either internal or ex-

ternal to the firm or supply chain and requires it’s own process. Their proposed process

for managing these disruptions include Specifying the Risk Sources and Vulnerabilities

(S), Assessing the Risks (A), and Creating Risk Mitigation (M), of which is analogous to

Harland’s conceptualization of SCRM. In addition, they propose a set of ten principles

for achieving these three objectives. (P. R. Kleindorfer & Saad, 2005). Their work has

served as the template of a SCRM model that years of subsequent and diverse research

streams have been rooted within (Cohen & Kunreuther, 2007; Braunscheidel & Suresh,

2018).

These principles were later, yet separately, echoed by Handfield and Blackhurst and

summarized through their definition of Supply Chain Risk Management as being the

“integration and management of organizations within a supply chain to minimize risk

and reduce the likelihood of disruptions through cooperative organizational relation-

ships, effective business processes, and high levels of information sharing” (Handfield,

Blackhurst, Elkins, & Craighead, 2007, pg. 30). Many authors since then have con-

tributed individual advancements along each of the original dimensions proposed in the

frameworks proposed by Hardland, Kleindorfer, and Handfield, respectively (G. A. Zsi-

disin & Ritchie, 2009; Narasimhan & Talluri, 2009; W. Ho et al., 2015; Fahimnia, Tang,

Davarzani, & Sarkis, 2015; Fan & Stevenson, 2018; Heckmann, Comes, & Nickel, 2015).

However, these original frameworks were far from fixed, and new SCRM frame-

works were continually being proposed in the literature as new areas of Supply Chain

Management were discovered and developed. Along with the expansion of new topics

and constructs within SCM, SCRM frameworks required updating to include newer
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Topic Authors

Supply Chain Structure (Ritchie & Brindley, 2007; Lavastre, Gunasekaran, & Spalanzani, 2014)
(G. Li, Fan, Lee, & Cheng, 2015)

Performance Outcomes (Ritchie & Brindley, 2007; Manuj & Mentzer, 2008)
(DuHadway et al., 2017; G. Li et al., 2015)

Risk/Driver Classification (Manuj & Mentzer, 2008; Pfohl, Köhler, & Thomas, 2010)
(Lavastre et al., 2014)

Behavior and Perception (Manuj & Mentzer, 2008; Lavastre et al., 2014)

Assessment and Measurement (Ritchie & Brindley, 2007; Manuj & Mentzer, 2008)
(Tummala & Schoenherr, 2011; Klibi & Martel, 2012)

(Blos, Hoeflich, & Miyagi, 2015; Garvey et al., 2015; Pettit et al., 2010)

Decision Modeling (Manuj & Mentzer, 2008; R. S. Gaonkar & Viswanadham, 2007)
(Klibi & Martel, 2012)

Mitigation Strategy (Manuj & Mentzer, 2008; Pettit et al., 2010)
(Tummala & Schoenherr, 2011)

SCRM Performance (Manuj & Mentzer, 2008; Agrogiannis & Kinias, 2018)
(Khan, Babar, Tareen, Naeem, & Gailani, 2018)

Strategy Selection (Manuj & Mentzer, 2008)

Coordination & Collaboration (Arshinder, Kanda, & Deshmukh, 2011; G. Li et al., 2015)

Resilience (Pettit et al., 2010)

SCRM Implementation (Pfohl et al., 2010)

Information Sharing (Pfohl et al., 2010; G. Li et al., 2015; DuHadway et al., 2017)

Firm Characteristics (Lavastre et al., 2014; G. Li et al., 2015)

SC Integration (DuHadway et al., 2017)

SC Visibility (DuHadway et al., 2017)

SC Sustainability (Agrogiannis & Kinias, 2018; Khan et al., 2018)

Table 2.1: SCRM Framework Dimensions

dimensions to account for the change in SCM research. Hence, subsequent frameworks

were proposed, but kept the spirit of the aforementioned principles while incorporating

new dimensions and elaborations on old ones. These both include supply chain struc-

ture (node vs chain level), performance outcomes, additional classification of risks and

risk drivers, involvement of actor behavior and risk perception, risk measurement and

assessment, decision modeling, mitigation strategy, risk management performance mea-

surement, strategy selection, coordination/collaboration tools and strategies, resilience,

implementation, information sharing, firm characteristics, supply chain integration, vis-

ibility, and sustainability. Table 2.1 summarizes a sample of the literature in each of

these respective dimensions of new frameworks proposed within the past two decades.

Risk Taxonomies: A Lack of Consensus

Now that I have offered a summarization of Supply Chain Risk Management frame-

works, I feel it necessary to elaborate on only a handful of the aforementioned dimen-

sions. In this dissertation, I shall avoid elaboration on a discussion of all of these
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dimensions, as not all are relevant, directly or indirectly, to the topic at hand. How-

ever, I will elaborate on risk categorization, identification, assessment, measurement,

mitigation strategy, and network design, whilst addressing some common problems that

SCRM seeks to solve, as I feel that these are relevant to the topic at hand and offer a

more holistic context to the primary inquiry of the dissertation.

As mentioned, many frameworks have proposed a categorization of risk (Ellram &

Cooper, 1990; Manuj & Mentzer, 2008; Pfohl et al., 2010; Lavastre et al., 2014). Such

a categorization has been shown to aid in the examination of possible consequences

of said risk (C. Harland et al., 2003). In addition, Kleindorfer and Saad has argued

that traditional “risk management is ... undertaken for each key process to identify

vulnerabilities, triggers for these vulnerabilities, likelihood of occurrence, and mitigation

and risk transfer activities” that give rise to “a taxonomy of major disruption risk

categories that confront key assets of the firm” (P. R. Kleindorfer & Saad, 2005, pg. 58).

That is, they argue that classification is not necessarily a cause of risk management but

rather a manifestation of such an activity.

Classification of supply chain risk in the extant literature is vast, spans across mul-

tiple and sometimes conflicting dimensions, yet serves as a useful tool within both the

risk measurement and management processes. Measurement of risk is inherent in the

mitigation strategies, external environment, supply network environment and firm char-

acteristics. Therefore, classification of risk is a necessity for proper estimation of risk

measurement (via loss and probability of disruption measurement).

Some of the earliest mentions of the need for firms to categorize supply chain risk

dates back to Porter and Ellram, respectively. An observation Porter made regarding

the literature at that time was that “taxonomies have begun to emerge which attempt to

categorize the ways in which firms can respond to uncertainty” (Porter, 1991, pg. 107).

Yet another early contributor to this stream of literature was Ellram, who offered one of

the first supply chain risk classification systems, proposing that firms, when they engage

in relationships, put themselves “at risk” along the categories of economic, strategic and

managerial (Ellram & Cooper, 1990). Soon thereafter, other authors began to offer their

own versions of a risk classification system.
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Giunipero had suggested a breakdown of common “risk creators”, which included

material availability, long distances, insufficient capacity, demand fluctuations, tech-

nological changes, financial instability, labor instability, and management turnover

(Giunipero & Aly Eltantawy, 2004). Harland had designed a more general classifica-

tion of risk from the literature at that time, where he created a taxonomy that included

strategic, operations, supply, customer, asset impairment, competitive, reputation, fi-

nancial, fiscal, regulatory, and legal risk (C. Harland et al., 2003). Gaonkar opted

instead to create a context-free classification, where risk was categorized in three differ-

ent groups: deviation (a difference from an expected operating level), disruption (the SC

network is altered), and disaster (when the external environment is altered)(R. Gaonkar

& Viswanadham, 2004).

Cavinato took a more structure-based approach to risk classification by offering five

levels of which risk can embed itself: physical, financial, informational, relational, and

innovational (Cavinato, 2004). In their landmark paper, Chopra and Sodhi suggested

that risk should be categorized as disruptions, delays, systems, forecast, intellectual

property, procurement, receivables, inventory, and capacity (Chopra & Sodhi, 2004).

Rao had synthesized the extant literature on risk typologies into five categories: en-

vironmental, industry, organization, problem-specific, and decision maker risk. Sub-

sequently, each of these categories had subcategories (Rao & Goldsby, 2009). At the

same time, Wagner and Bode suggested a different typology that was more analogous

to that of Chopra and Sodhi. They argued that risk should be classified by demand

side, supply side, regulatory, legal, bureaucratic, infrastructure, and catastrophic risk

(Wagner & Bode, 2009).

Monroe’s survey of the literature suggested that he found 39 sources of risk in the

supply chain literature, suggesting that academics have yet to agree on a synthesized

taxonomy of supply network risks (Monroe, Teets, & Martin, 2014). In an attempt

to address this problem by synthesizing, forming a consensus, and standardizing a

risk-classification system, Rangel proposed, via a content-analysis on the literature,

a classification system that is based on the SCOR model. He suggested that there

exist 14 categories of risk, each of which are embedded within a particular part of the
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SCOR model: Plan-Based Risks: Strategic, Inertia, Informational, Capacity, Demand;

Source-Based Risks: Supply, Financial, Relational; Make-Based Risks: Operational,

Disruption; Delivery-Based Risks: Customer; Return-Based Risks: Legal; Other-Risks:

Environmental, Cultural (Rangel, de Oliveira, & Leite, 2015).

Despite multiple well-crafted attempts to standardize the classification, authors to

this day still have yet to agree on a dominant classification system. For example, as

recent as the year of the writing of this dissertation, yet another classification system

was proposed by Khojasteh-Ghamari and Irohara. After conducting their own careful

review of the literature, risks were categorized based on being supply-based, demand-

based, or process-based risk (Khojasteh-Ghamari & Irohara, 2018). Time will only tell

which, if any, classification system will be standardized and dominantly accepted by

academics and practitioners alike. For this dissertation, I will not adopt any system of

categorization for the sake of avoiding debate in an area that is not the focus of this work.

Instead, I shall strictly focus on the category of “structural risk”. This category can be

mapped to any of the current classification systems proposed via careful consideration.

Therefore, the contributions of this dissertation will not be lost with any generality of

current or future classification systems.

Supply Chain Risk Identification

Identifying the type of risk that a supply network is exposed to is only one dimension

of a larger framework of risk identification. Indeed, in Kleindorfer and Saad’s SAM

framework, not only should risks be categorized, but also identified within a network.

Countless research has been conducted in this area of the literature. Earlier research

in the area was from (Chapman, Christopher, Jüttner, Peck, & Wilding, 2002). They

suggested that risk identification should follow a “3-P” approach (Philosophy, Princi-

ples, and Processes). They argue, from a philosophical perspective, that if firms seek

to achieve supply chain continuity, they must embrace “...risk awareness for their top

managers;... an understanding that changes in business strategy change supply-chain

risk profiles;... that risk management is an integrated part of SCM;... and that each

individual employee in each entity must have: a) risk awareness; b) an understanding
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of his or her role in the risk management process” (Chapman et al., 2002, pg. 63).

From a principles perspective, they argue that “risk considerations should influence the

supply-chain design and structure,...,risk management should be based on a high level

of supply-chain visibility and understanding amongst all entities, ... risk management

should be based on clear performance requirements and lines of communication be-

tween all entities, ... [and] supply-chain risk management should be based on process

alignment and co-operation within and between the entities” (Chapman et al., 2002,

pg. 63). Last, from a process perspective, they argue that a collection of activities

such as a formal risk identification process, assessment process, continuity and coordi-

nation management process, and learning processes, should be established if firms seek

to address supply chain disruptions.

Juttner had later built on this framework by conducting a survey of practitioners

to not only validate the model but also gain an understanding of the current state of

SCRM from practitioners at the time (Jüttner, 2005). Generally, issues arise with the

construction of a standardized risk identification framework. Gaudenzi had noted two

such problems, one being that risk is present at various levels of the organization and

the supply network environment, and secondly that risk evaluation is subjective, since

“each analyst has his or her own concept of what constitutes a risk and of what is the

nature of the upstream and downstream relationships” (Gaudenzi & Borghesi, 2006,

pg. 114). Gaudenzi instead opted for a more pragmatic and quantitative approach

by applying the Analytic Hierarchy Process (AHP) to risk identification and priority.

Not only was this one (of many) methods to quantify a “risk”, but also as an early

attempt to remove the notion of subjectivity naturally within the inquiry “which risks

are important”.

This trend of “subjectivity-free” risk identification continued in the literature stream

with more quantitative approaches. For example, Neiger suggested applying the value-

focused process engineering methodology to supply chain risk identification. The gen-

eral idea is to link value-focused decision modeling with extended-event-driven process

chain modeling. He proposed five steps to achieve this process of identification, which

involved risk source identification, risk measurement, and connecting this with various
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objectives that a firm sets (Neiger, Rotaru, & Churilov, 2009).

Other researchers have suggested that risk identification is partly dependent on the

perceptions of actors within the firm and supply network (G. A. Zsidisin & Wagner,

2010). In addition, other approaches have been suggested. A Bill-of-Materials approach

was proposed as a way to determine risks from a manufacturing perspective (Takata

& Yamanaka, 2013). So too was the approach for surveying a stake-holder network for

outside perceptions of sustainability risk identification (Busse, Schleper, Weilenmann, &

Wagner, 2017). Other more quantitative approaches have been suggested as well, such

as extensions of the AHP approach (Song, Ming, & Liu, 2017) and the use of gathering

and analyzing big data (K.-J. Wu et al., 2017; Sommerfeld, Teucke, & Freitag, 2018).

In addition, Petri-Nets have been suggested as a possible way to quantify the risk

identification process of more event-driven decision-support systems within the supply

chain (Liu, Liu, & Liu, 2018).

Supply Chain Risk Assessment

Once risks have been identified, the next step is to assess them for their relevance and

potential negative consequences to determine what, if any, mitigation strategies should

be employed. Again, the current literature in this area is quite large and diverse. Early

authors in the field had suggested employing methods from reliability theory such as

fault-mode analysis, event-based analysis, decision-support analysis,interpretive struc-

tural modeling (ISM) , and AHP. (Gilchrist, 1993; T. Wu, Blackhurst, & Chidambaram,

2006; Nishat Faisal, Banwet, & Shankar, 2007). Others include Chance Constrained

Programming (CCP), Data Envelopment Analysis (DEA), Multi-Objective Program-

ming (MOP), and Petri-Net Modeling (D. Wu & Olson, 2008; Pfohl, Gallus, & Thomas,

2011; X. Wang, Chan, Yee, & Diaz-Rainey, 2012; Zegordi & Davarzani, 2012; Aqlan &

Lam, 2015a, 2015b; Torres-Ruiz & Ravindran, 2018).

Other methods include the use of graph theoretic measures to quantify the vulnera-

bility of a location in a supply network (Wagner & Neshat, 2010; Y. Kim et al., 2015).

More recently, two trends have emerged suggesting newer methods to be used within

risk assessment. The first is that of the Monte Carlo Simulation. A few studies have
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already employed this method by simulating faults and disruptions within networks

and quantifying the consequences of the effects (D. Wu & Olson, 2008; Klibi & Mar-

tel, 2012; Vilko & Hallikas, 2012; T. Wu, Huang, Blackhurst, Zhang, & Wang, 2013;

Winter, Deniaud, Marmier, & Caillaud, 2018).

The second recent trend is the leveraging of Bayesian Networks to not only measure

risk, but also risk-dependencies. This is a well-needed tool for the relatively new field of

supply chain risk propagation assessment. Bayesian Networks, as I will explain in more

detail later, model the interdependencies of random events via conditional probability

distributions. The resulting network could then be used to construct risk measures, as

well as conduct simulations to find vulnerabilities, and be used as a real-time decision

support system for risk monitoring (and inferring the next most likely event to be

influenced by a disruption) (Garvey et al., 2015). Some authors have already leveraged

Bayesian Networks as a way to assess a variety of different risks as well as their inter-

dependencies (Lockamy III & McCormack, 2010; Garvey et al., 2015; Qazi, Quigley, &

Dickson, 2015).

Some Common Mitigation Strategies

Once the risks have been identified and assessed, the next step recommended by Klein-

dorfer is to design the proper mitigation strategy to address the risks. Again, this field

of study in the extant literature is vast, and the methods range over strategic, tactical

to operational. Just as with the taxonomy of risks, there seems to lack a consensus on

a taxonomy of risk mitigation strategy. Some believe that risk mitigation should be

seen from one of two primary approaches: preventative and reactionary.

Wagner and Bode suggested this approach to what he refers to as “Cause-Oriented”

and “Effect-Oriented” SCRM Practices. Cause-Oriented strategies are more ”top-

down” approaches, where one concern their efforts at identifying and reducing the

potential causes of a disruption. (Wagner & Bode, 2009; Nyoman Pujawan & Geraldin,

2009). The idea is simple from this perspective: firms should avoid activities that are

“risky”. A second approach is the Effect-Oriented strategy, where firms instead focus

less on reducing the likelihood of an event and more on reducing the potential negative
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consequences of the event.

An example of Cause-Oriented Mitigation (i.e. preventative) is that of mitigation of

cultural risk via understanding the barriers of cultural understanding (Jia & Rutherford,

2010). On the other hand, an example of Effect-Oriented Mitigation is that of buffering,

which is “an effort to reduce a firms exposure to the current exchange partner and to

mitigate the detrimental consequences of disturbances that the relationship may confer”

(Bode, Wagner, Petersen, & Ellram, 2011, pg. 836).

Other classification systems involve conducting the mitigation strategy based on

the type of risk that is to be addressed. Since I have argued that there is no consen-

sus within a supply chain risk classification system, there equally will be no consensus

within a supply chain risk mitigation strategy classification system. As such, these

other more complex systems of classification that rest on the type of “risk category”

include a variety of strategies. For example, Chaghooshi identified over 41 different

risk mitigation strategies in the extant literature (Chaghooshi, Momeni, Abdollahi, Sa-

fari, & Kamalabadi, 2018). Some examples include strategic stock, excess and reserved

capacity, a flexible supply base, an economic supply incentive, multiple routes, post-

ponement, distributed power, and many others. To discuss all of these at length would

be outside the scope of this dissertation.

However, Kilubi had attempted to synthesize and categorize the variety of mitiga-

tion strategies within the extant literature. Upon an extensive analysis of the literature,

he took some of the categories mentioned by Chaghooshi (albeit, independently), and

assigned them to one of two categories: supply risk/demand risk. The strategies consid-

ered were: visibility and transparency, flexibility, relationships, postponement, multiple

sourcing, flexible contracts, redundancy, collaboration, joint planning and coordination.

The supply dimension was then crossed with the demand dimension, to create a 2 by

2 matrix and hence resulting in 4 general “supply chain risk mitigation” strategy cat-

egories. The “demand risk” was similar to others in regards to being proactive vs

reactive (Kilubi, 2016).

While I will not diverge on a discussion of each and every possible mitigation strat-

egy, I will point out that it is within the interest of this dissertation to discuss current
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strategies in regards to supply network vulnerability, resiliency and robustness. That

is, risk mitigation strategies that are centered around the design and redesign of the

supply network via its structural properties.

A few of the articles in the extant literature have currently addressed these types

of strategies. Behzadi tested the strategies of backup suppliers, moderating disrup-

tion probabilities, and the use of multiple suppliers within the network. It can be

argued that these are all structural-based mitigation strategies (Behzadi, O’Sullivan,

Olsen, Scrimgeour, & Zhang, 2017). Giaglis suggested that real-time vehicle routing

is an effective transportation-based mitigation strategy (which would lend itself to a

structural-based strategy in regards to mitigating “arc-risk”) (Giaglis, Minis, Tatarakis,

& Zeimpekis, 2004). Zhalechian designed a variety of risk-mitigation strategies when

a network-design is of the hub-and-spoke form (Zhalechian, Torabi, & Mohammadi,

2018). Zokaee considered the problem of optimal network design under demand, sup-

ply, and transportation cost uncertainty (Zokaee, Jabbarzadeh, Fahimnia, & Sadjadi,

2017). There are many more types of structure-based risk mitigation strategies in the

extant literate. I will direct the reader to Kainuma, who conducts a decent literature

review on the matter (Kainuma, 2018).

2.1.3 Supply Chain Risk Measurement

Imperative to risk mitigation and assessment is the ability to properly measure and

quantify supply chain risk. The notion of measurement of risk is still debated in the

extant literature, as it is still in it’s infancy. Yet again, no consensus seems to have been

reached on this topic. This may be due to the ever-changing nature of SCRM. As such,

I will review through some of the prior approaches to measuring supply chain risk. I

will then argue that the measures proposed by Garvey, Carnovale and Yeniyurt are the

most appropriate for supply chain risk management, as their measurement framework

is general enough to apply for every type of risk that the supply chain risk manager

is likely to encounter, regardless of level or experience. In addition, their approach

allows for the combination of subjective likelihood estimation by managers, as well as

objective measurements recorded by monitoring technology.
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Prior Attempts to Quantify Supply Chain Risk

One of the more popular methods to measure and analyze supply chain risk is the

Analytic Hierarchy Process (AHP). This method is inherently a multi-criteria decision-

making methodology, but has been applied to the measurement of supply chain risks in

recent years. Among the first was (T. Wu, Blackhurst, & Ogrady, 2007). The method

proposed was to first categorize risk based on a manager’s perceived level of severeness.

The likelihoods of the risks occurring were also captured by expert opinion. These two

concepts were taken into account using the traditional formula of risk: Likelihood ×

Severity × Detection. The AHP method then takes this information and organizes

it into a matrix by looking at pair-wise comparisons. The analyst then calculates a

priority vector, defined as the Eigenvector of the largest Eigenvalue of the matrix. The

priority vector is a ranking of the risks, which contains “measures of risk” for each

factor or source of the event.

Extensions of the AHP model for risk measurement have also been proposed over

the years. The notion of “uncertainty” of the expert opinion was controlled for by

leveraging fuzzy set theory in combination with an AHP approach (X. Wang et al.,

2012; Samvedi, Jain, & Chan, 2013; PrasannaVenkatesan & Goh, 2016). It was also

extended by combining it with a failure mode and effects model (P.-S. Chen & Wu,

2013). In addition, the AHP method had been applied within industry-specific risk

source measurement as well as multi-dimensional consequence impact measurement

(Q. Dong & Cooper, 2016; PrasannaVenkatesan & Goh, 2016; Mital, Del Giudice, &

Papa, 2018).

Yet another tool that has been proposed for risk measurement is the Data Envel-

opment Analysis (DEA). This approach differs from AHP in that efficiency scores are

assigned to decision making units (DMU) and then a sequence of linear programs are

solved to identify the “most efficient” unit. From there, other units are compared to

this most efficient unit, and inefficient units are able to be identified. The approach

has been applied to various decision making problems within supply chain (D. Wu &

Olson, 2008; T. Wu, Shunk, Blackhurst, & Appalla, 2007; Weng, Wu, Blackhurst, &
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Mackulak, 2009). In addition, it has been applied to supply chain risk measurement

approaches and decision making problems (Talluri, Narasimhan, & Nair, 2006). For

application to risk measurement, typically a random variable is introduced into the set

of constraints for the primary DEA model.

An approach that attempts to capture inter-dependencies of risk, is the Interpretive

Structure Model (ISM). This approach gathers information from various risk sources

and creates a dependency graph. The graph is then converted into a matrix, where then

it is converted into an equation. Each instantiation of the risk is then replaced into the

equation, where a “risk score” is calculated for each respective risk. This approach has

been applied to identifying sources of information risk (Nishat Faisal et al., 2007) as

well as more general categories of risk (Pfohl et al., 2011; Nguyen et al., 2018). Similar

graph-theoretic approaches have been proposed that is analogous, yet more general,

than ISM (Wagner & Neshat, 2012; Nakatani et al., 2018).

Zegordi argues that “the main assumption [of current risk measurement] is risks

patterns, can be estimated as different distribution functions, these estimations are

based on previous risk experiences and existence of definable behavior” (Zegordi &

Davarzani, 2012, pg. 2104). As such, he argues that disruption analysis (and therefore

risk analysis) should be conducted within a deterministic framework. Such a framework

is the Petri-Net model, proposed by Carl Petri. This approach is more of a system-

engineering and reliability modeling approach. The idea is that system (in this case,

the supply chain) is modeled with different types of nodes (called place and transition

nodes), and different events are “fired” throughout the system. The results of the

events can then be analyzed for reliability and efficiency purposes. This method was

applied by Zegordi, among others, to model supply chain disruptions and the anticipated

subsequent consequences (Zegordi & Davarzani, 2012; Zhang & Lam, 2016; Blackhurst

et al., 2018; Liu et al., 2018).

A variety of other approaches have also been suggested. The idea of these other

approaches rest on an “expert level” of knowledge of the risks themselves. The idea is

that a group of experts are surveyed to estimate the likelihood of an adverse event and

the subsequent potential damage of the event, where “damage” is measured a variety
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of different ways (estimated cost, estimated number of nodes, estimated environmental

damage, scaled response, etc). The common approach to these methods is to create an

index for both likelihood and severity, respectively, via survey methods. The indicies

are then used to calculate composite risk measures for each source of risk. One such

example of designing this composite score is to simply multiply the severity index score

by the likelihood index score. Other methods involve just a simple scaled response

for the construct “risk”(Tummala & Schoenherr, 2011; Baharmand, Comes, & Lauras,

2017; Kumar, Basu, & Avittathur, 2018; Vilko & Hallikas, 2012; Varzandeh, Farahbod,

& Zhu, 2016).

More in line with the mathematical notion of “risk” are methods that quantify it

with probability distributions. A “risk” is simply modeled as a random variable, which

of course has a collection of outcomes and an associated probability distribution. The

modeling process varies. A modeler could designate the random variable to represent

whether or not a particular event occurred (thus holding a value of 1 or 0), and assign a

simple Bernoulli distribution to the variable. Separately, the consequence of the risk can

be a cost function of the variable itself. Another approach is to model the consequence

of the risk itself using the random variable. That is, the outcome of the consequence

can lie on a numerical continuum (or within a discrete collection of potential losses),

and the probabilities of those losses are described via the distribution of the random

variable. A third approach, common in financial risk modeling, is to model a loss/gain

of a “risk” as a random variable, where both positive values and negative values are

possible outcomes for the random variable. These modeling approaches have been the

standard approach in the process of incorporating the notion of “uncertainty” into a

variety of operations research and supply chain models (Klibi & Martel, 2012; Han &

Shin, 2016; X. Chen, Xi, & Jing, 2017; Wagner, Mizgier, & Papageorgiou, 2017).

While the random variable approach to modeling both the consequence and likeli-

hood of a supply chain risk is more in line with it’s mathematical definition, there are

many other tools and measures of risk that are derived from the random variable itself.

Simply modeling the risk as a random variable is not enough. As any student of proba-

bility knows, the random variable is just that, random. In order to gain understanding
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of the underlying phenomena that the RV is representing, well-defined measures need

to be designed from the RV to make sense of it. One approach, and the most com-

mon, is to find the expectation of the random variable (Snyder, Scaparra, Daskin, &

Church, 2006; Nooraie & Parast, 2015; Meena & Sarmah, 2016; Nooraie & Parast,

2016; Govindan & Fattahi, 2017). Such an approach allows for a deterministic sense of

the underlying phenomenon, as well as it’s ease of incorporation into decision making

modeling such as mathematical programming approaches. Two other possibilities are

to look at the “risk”, derived from the random variable, from a Value-At-Risk (VaR)

perspective (Mehrjoo & Pasek, 2016; Mizgier, Pasia, & Talluri, 2017). In addition, the

RV can be used to estimate a “worst-cost” scenario (Snyder et al., 2006).

Another application of the random variable approach is to consider decision prob-

lems of risk measurement within the scope of what is known as the Real Options Ap-

proach. This approach is derived from the concept of a financial option. For example,

if a perspective buyer of a stock would like to purchase said stock, but feels that the

“risk” of doing so at the moment is too high, he can instead opt to purchase a contract,

rather than the stock itself. The contract value is itself significantly lower than the

value of the stock.

For example, 100 shares of Apple may cost him now $19,000. If he purchases the

stock, and the value of Apple decreases to $150 per share, this would equate to a loss

of $4,000. Instead, the buyer can buy a contract, that gives him the right, but not the

obligation, to purchase the 100 shares of Apple. The contract would cost significantly

less. For example, for a $195 contract that expires in four weeks, this would probably

cost him a total of $200. The “risk” of the buyer purchasing Apple stock is significantly

higher than that of the contract. If the stock indeed drops to $150 per share, the buyer

only sees a loss of his full $200, rather than the $4,000. If the stock goes higher to $220

per share, the buyer can purchase the stock at $195 per share (due to the contract) and

sell it for $220 (for a profit of $25 per share, or, $2500 - $200 = $2300).

The same approach can be used for measuring risk within supply networks for certain

types of mitigation strategies. For example, Carbonara used the real options approach

to analyze the strategy of postponement (Carbonara & Pellegrino, 2017). The idea
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is simple: a manufacturer could decide to design their process in a way that can be

changed to produce a different product. The investment into this level of flexibility is

analogous to the “contract cost” in the options framework. During a disruption, the

manufacturer has the “right”, but not the “obligation” to adjust the process during

a disruption to produce a different product. The “exercise” of the contract is the

decision to shift manufacturing to the new product. The “expiration” of the contract

is the decision to continue current manufacturing of the current product. The “strike

price” and “underlying price” are analogous to the current state of the supply chain

(that is, whether or not a disruption has occurred). This interpretation of the process

allows the analyst to incorporate more of a financial risk perspective to supply chain

risk measurement. That is, the analyst can determine the measurement of a supply

chain risk by employing familiar types of financial risk management in options theory

(such as optimal time to exercise, “strike price” to buy, optimal number of contracts,

etc).

A more recent approach to supply chain risk measurement is the use of Bow-Tie

Analysis. This approach fuses together the use of random variables and that of fault-tree

and event-based modeling approaches. The mechanism behind this analysis is to map

the “risks” into nodes of a network. The dependencies are then drawn. Some nodes are

“risk enhancers” while others can be modeled as “risk reducers”. These essentially can

represent management’s various mitigation (or other decisions) strategies. The risks

themselves are modeled as random variables that have probabilities of occurring. It is

often assumed that these probabilities must be independent of the other risks. Risk

scores for particular actions and events can then be analyzed by taking into account

these dependencies and random variables. While the approach has been traditionally

applied in studying operational risk, it has recently been employed to measure supply

chain risk (Aqlan & Lam, 2015b, 2016).

Last, and more recently, the use of Bayesian Networks have been applied to supply

networks as a means to an end: to construct meaningful risk measures. The dynamics

of Bayesian Networks will be discussed later. The idea is simple however. Risks are

modeled as random variables. They can be discrete or continuous. Each risk is also
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modeled as a node in a directed graph. The “structure” of the network is determined

by drawing directed arcs between the nodes. These determinations are made either by

expert opinion, through learning algorithms from data, or a combination of both. Once

the graph is drawn, conditional probability distributions are determined, again either

by expert opinion or via learning from data.

The resulting structure is called a Bayesian Network. This network can then be

used to conduct inquiries. If we know that a particular risk has manifested, we then

call the manifestation evidence. Upon the existence of evidence (either through one

or more risks), we can update our beliefs, or probabilities, of the other events in the

network. The resulting structure can hence be used for risk measurement calculation,

disruption simulation, real-time risk monitoring or as a knowledge-based tool of risk.

That is, it is very flexible and can easily apply to many different areas of study.

Bayesian Network’s applications to supply chain risk measurement is nothing new.

Pai was the first to propose their use (Pai, Kallepalli, Caudill, & Zhou, 2003). Unfor-

tunately, the literature did not seem to adopt their methodology, nor did it’s potential

usefulness for modeling the interdependencies between risks be seen be academics. Soon

thereafter, Lockamy had applied Bayesian Networks to SCRM by leveraging them to

create “risk profiles” for firms. The idea was to take information regarding different

risks inherent within each firm and use a Bayesian Network to create risk profiles. The

risk profiles were then used in tandem with a Value at Risk approach to calculate a

VaR for each firm (Lockamy III, 2011; Lockamy III & McCormack, 2010, 2012).

Recent expansion of this area of research has been expanded by two authors: Garvey

and Qazi, who independently decided to leverage Bayesian Networks for the goal of

designing risk measures of propagation and resiliency. (Garvey et al., 2015) proposed

an approach that involved (1) taking each location in the supply network (both node and

arc) and identifying the collection of all possible risks in those locations, (2) identifying

the interdependencies of the risks within each location and across the locations, (3) use

data or expert opinion to estimate the conditional probabilities of the risks identified,

and last (4) use the resulting Bayesian Network (which they coined as the Risk Graph)

to construct risk measures.
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The measures they proposed are inherently measures of risk propagation. Their

model is general enough to incorporate both causal risk and diagnostic risk measure-

ment, as well as have the ability to construct other types of risk, resilience and robust-

ness measures. The model is flexible enough to incorporate subjective and objective

knowledge, as well as apply to a wide array of applications, at a variety of levels of

analysis, for a variety of areas within SCRM. In other words, their model is the most

flexible in the extant literature to be applied to almost any supply chain risk problem

that requires measurement of supply chain risk, and it could be argued that all other

models of measurement proposed thus far can be represented within the context of their

model (Garvey et al., 2015).

Independent of (Garvey et al., 2015), (Qazi, Quigley, & Dickson, 2015; Qazi, Dick-

son, Quigley, & Gaudenzi, 2018; Qazi, Quigley, Dickson, & Gaudenzi, 2015; Qazi,

Quigley, Dickson, Gaudenzi, & Ekici, 2015; Qazi, Quigley, Dickson, Gaudenzi, & Önsel,

2015; Qazi, Quigley, & Dickson, 2018; Qazi, Quigley, Dickson, & Ekici, 2017) also

applied Bayesian Networks supply chain risk measurement and propagation . They

extended (Garvey et al., 2015) framework by proposing new risk measures that are de-

pendent on the risk factor type itself. They argued that (Garvey et al., 2015) model had

a major shortfall. Indeed, they state that the “association of this measure (Garvey et

al., 2015) with each element of the supply network rather than risk factor itself results

in a major problem because for all different combinations of instantiation of risk factors

corresponding to each element, propagation across the pure descendants only depends

on the state of specific parent node that connects risks of that element to the rest of

risk factors” (Qazi, Quigley, Dickson, Gaudenzi, & Önsel, 2015, pg. 426). However, I

will argue later that such criticisms will not threaten the strength of this research.

2.1.4 Supply Chain Risk Propagation (SCRP)

Risk Propagation vs. Disruption Propagation

A recent trend in the literature has been the emergence of the construct risk propaga-

tion. Unlike traditional risk management, which views risk as the potential to directly
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manifest into a disruption, risk propagation seeks to understand the sequence of events

that lead to the disruption itself (with the “events” not necessarily being disruptions)

as well as the potential to cause other disruptions (Garvey et al., 2015). This recent

trend is important to understand from a managerial viewpoint, as it would allow for the

proper mitigation of risks that lead to other risks of which eventually “trickle down”

to the primary driver of the disruption.

There is some confusion and intertwining of the notions of “disruption” and “risk”

in the extant literature. Recent literature has attempted to disentangle these two

constructs. (Garvey et al., 2015) began by suggesting that a supply chain risk is an

adverse event that can manifest into a disruption (Garvey et al., 2015). This is further

advocated by (DuHadway et al., 2017), who offers a classification of disruption itself.

Disruption propagation focuses on the sequence of events that occur due to a disrup-

tion itself. That is, it’s focus is on what the disruption itself portends. If a system such

as a logistics network or a computer network is of a structure that was intentionally

designed, then the designer has intentionally placed dependencies within the system

itself. Hence, if a disruption were to occur, then the disruption should be expected to

spread throughout the rest of the designed system. Understanding the planned inner-

connections between these various components of the system is of no doubt important.

Hence, a disruption propagation analysis seeks to understand the deterministic failures

in the event of a single failure in the system (this is, at it’s core, the reason for reliability

theory). This form of analysis makes itself an appropriate candidate for applications of

reliability-theory-based and event-driven-based analytical frameworks. The determin-

istic nature of the various management activities and physical locations allow for the

ease of use for these types of analytical frameworks, as has been demonstrated in the

prior literature (Wagner & Neshat, 2012; Nakatani et al., 2018; Zegordi & Davarzani,

2012; Zhang & Lam, 2016; Blackhurst et al., 2018; Liu et al., 2018).

The reason as to why prior literature has applied deterministic-based analytical

frameworks to supply-network risk propagation appears to be due to a lack of proper

distinction between risk propagation and disruption propagation. I will clarify them

now more formally with a definition that I feel is most appropriate given the nature
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of supply networks. Supply chain disruption propagation is a sequence of deterministic

events that will occur in the event of an originating disruption due to the design of the

supply network. Here, “design” encompasses not only structure, but also mitigation

policy, strategic decisions, best practices, people, and processes. That is, more gener-

ally, anything within the network that was knowingly and purposely implemented or

integrated.

On the other hand, supply chain risk propagation is the sequence of events that

could occur, which may (or may not), lead to a disruption propagation or a different risk

propagation. Hence, supply chain risk propagation encompasses supply chain disruption

propagation, but is more general and encompassing of the environment of which is

external to not only the firm, but also the supply network itself. There are two points

of emphasis I would like to make in this definition. First, the use of the word “event”

is to be understood as either a risk or a disruption. Second, I use sequence in the most

general sense possible, in so being that a sequence of “disruptions” followed by “no

disruption” does not necessarily imply that subsequent nodes will therefore have “no

disruption”.

A Review of Risk Propagation

Risk propagation has gained attention over the past few years, as authors have began

to recognize that it’s impacts and forms of analysis diverge from more traditional risk

assessment methods. In the era of big data and blockchain, firms have an ever-growing

quantity of data available to them regarding the structure and various operations within

their supply networks. This observation is personified by the current literature on risk

propagation. One of the early works in the literature is from Ghadge , who constructed

a conceptual framework of risk propagation (Ghadge, Dani, & Kalawsky, 2011).

His dissertation work later presented an early analytical approach to analyzing this

form of risk and disruption, as well as explain some of the difficulties in modeling such

an issue. His approach was to use data to estimate the probabilities of various risks

within the network. He subsequently ran a simulation and computed final risk measures

based on probabilities of cost and time impacts (Ghadge, Dani, Chester, & Kalawsky,
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2013). In addition, early attempts to model risk propagation had their roots in Shin

(Shin, Shin, Kwon, & Kang, 2012). They developed a model that is similar to (Garvey

et al., 2015), where they consider key risk indicators in each location of a supply network

leveraging Bayesian Networks.

After this time, the risk propagation literature seemed to attract interest from

academics across multiple different methodological perspectives. Graph-theoretic ap-

proaches were proposed by leveraging network characteristics in the use of risk propaga-

tion and robustness measures (Olivares Aguila & ElMaraghy, 2018; Bakshi & Mohan,

2015). Structural equation modeling and statistical approaches were offered as yet

another means to measure the affects of propagation (Truong Quang & Hara, 2018;

Ghadge et al., 2013).

Simulations also began to attract interest in the literature. Ivanov proposed using

a systems approach to model the supply network and to randomly generate disrup-

tions and random recovery efforts. He measured a variety of resulting key supply chain

performance metrics to determine the various impacts of a distinct, yet related, phe-

nomenon known as the “ripple effect” (Ivanov, 2017). Others conducted simulations

of risk communication efforts (Jiang, Liu, Huang, & Zhang, 2017), impact of trust and

topology (Hou, Wang, Wu, & He, 2018) and mitigation efforts of propagation (Z. Wang,

Hu, & Gong, 2018).

Others in the literature took more of a traditional risk management approach and

applied it to propagation. Value at risk was used to measure the propagation impacts in

the case of information sharing (Xu et al., 2015) and being used in sensitivity and risk

aggregation (Mizgier, 2017). In addition, some have leveraged the concept of Shannon’s

Entropy, which also was used to quantify the impacts of the ripple effect (Levner &

Ptuskin, 2018).

However, despite these prior attempts, two primary methods of analysis grew within

this stream of literature that currently seem to be dominant. Given the “cause-and-

effect” nature of disruptions and the construct of propagation, academics from the

complex-systems and decision-analysis literature seem to have applied traditional re-

liability and event-based modeling to measuring impacts of propagation. Govindan
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proposed a multi-criteria decision making model to better understand the impacts of

propagation (Govindan & Chaudhuri, 2016). The systems-based approach was also ap-

plied to risk propagation in quantification of the ripple effect (Sokolov, Ivanov, Dolgui,

& Pavlov, 2016; Dolgui, Ivanov, & Sokolov, 2018). The same modeling approach was

also applied to studying risk propagation’s effect on reliability and resiliency (X. Chen

et al., 2017; Valenzuela, Fu, Xiao, & Goh, 2018). In addition, the construct of “cascad-

ing failure” was studied within the context of systems-based models (L. Tang, Jing, He,

& Stanley, 2016; Y. Wang & Zhang, 2018). There are many others in this literature

stream as well that I have chosen to refer the reader to various literature reviews on the

matter (Scheibe & Blackhurst, 2018; Brintrup & Ledwoch, 2018; Dolgui et al., 2018).

In addition to the reliability systems engineering approach to risk propagation, a

second approach has emerged as a dominant tool. The application of Bayesian Net-

works seemed to have been proposed to fill a void that exists in the systems-reliability

literature: incorporating uncertainty. As mentioned, Shin was among the first in the lit-

erature to suggest that Bayesian Networks can be used to model the interdependencies

of risks within a supply network (Shin et al., 2012). (Garvey et al., 2015) synthesized

the risk measurement literature to propose not only new supply chain risk measures,

but a general framework that leverages Bayesian Networks to measure supply chain risk

propagation (Garvey et al., 2015). Qazi, in a series of papers, had extended (Garvey

et al., 2015) framework to address a variety of issues in risk management through the

lens of risk propagation leveraging the framework proposed by (Garvey et al., 2015)

(Qazi, Quigley, & Dickson, 2015; Qazi, Dickson, et al., 2018; Qazi, Quigley, Dickson,

& Gaudenzi, 2015; Qazi, Quigley, Dickson, Gaudenzi, & Ekici, 2015; Qazi, Quigley,

Dickson, Gaudenzi, & Önsel, 2015; Qazi, Quigley, & Dickson, 2018; Qazi et al., 2017).

Others had applied the Bayesian Network approach to measuring resiliency and

robustness in supply networks while taking into account risk propagation (Hosseini &

Barker, 2016; Han & Shin, 2016). In addition, others created extensions and other

tangential ideas to the framework proposed by Garvey and later extended by Qazi

(Ojha, Ghadge, Tiwari, & Bititci, 2018; Fu, Zhang, Montewka, Yan, & Zio, 2016;

Daultani, Goswami, Vaidya, & Kumar, 2017). Hence, the risk propagation literature
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is dominant in two primary methods of analysis: systems-based reliability analysis and

Bayesian-Network-based risk analysis.

2.2 Fundamentals of Bayesian Networks

2.2.1 Conditional Probability and Independence

In basic probability theory, the notion of a random variable X typically represents

a numerical value that could possibly be assigned to X at some point in the future,

once observed. Every random variable has two primary components. Namely, the

sample space SX and a corresponding probability distribution f(x) that describes the

frequency of observations of the possible values that X can be assigned. A sub-branch of

Probability Theory is that of the Bayesian Philosophy, Bayesian Statistics, or Bayesian

Probability. All rest on the general principle that the idea of probability is inherently

a belief that one holds, measured on a 0 to 1 scale (0 being less likely, 1 being more

likely). The idea is that every individual has a collection of observations and concepts

often referred to as knowledge. This knowledge, often represented as ξ, represents all

the beliefs that one has about the world surrounding them, and is often referred to as

a priori knowledge, or prior belief.

Bayesian Probability/Philosophy/Statistics is based on this fundamental view of

probability. In addition, it is based on one more fundamental concept, that of con-

ditional probability. Conditional probability transcends the concept of belief updating.

For example, if X represents the amount of income we will earn next year, then an

individual initially holds a belief that X will be a with a value of belief of P (X = a | ξ).

When an individual observes a new event e, say, such as a new boss entering the ranks,

this belief is then updated to an a posteri belief, namely P (X = a | ξ, e). To compute

this, the standard definition of conditional probability is often employed:

P (X = a | ξ, e) =
P (X = a, ξ, e)

P (ξ, e)

Typically, Bayes Theorem is employed in the denominator in order to obtain a
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meaningful result. Namely:

P (X = a | ξ, e) =
P (X = a, ξ, e)

P (ξ, e)
=

P (X = a, ξ, e)∑
i∈SX P (ξ, e|X = i)P (X = i)

In probability, random variables can be understood to be independent if they do

not exhibit a dependence on each other. Mathematically, if we have variables X and

Y , then they are independent if P (X|Y ) = P (X). That is, if the belief that X will

occur given knowledge of the variable Y is the same as having no knowledge of Y , then

intuitively, the two variables are independent. In addition, two variables are said to

be conditionally independent with respect to a variable C if they happen to both be

dependent on C (and hence, they themselves may not be independent), but become

independent when knowledge of C is known. For example, if A depends on C, and B

depends on C, then we say that A and B are conditionally independent with respect

to C if P (A|B,C) = P (A|C). In other words, the knowledge of B in that instance is

excessive and useless knowledge. One must of course be careful with this interpretation.

If knowledge of C is unknown, it is still plausible for A and B to be dependent on each

other. This is why we refer to this instance as conditional independence. That is,

we only know that the two variables are independent when given information about

another common variable.

2.2.2 Bayesian Networks: A Model of Belief Propagation

The model of dependency between random variables that I have illustrated above is

quite simple to understand when the number of variables is very low. On the other

hand, if we happen to have a large number of variables, then merely describing the

dependencies descriptively or mathematically becomes a burden. This was the primary

motivation behind the invention of the Bayesian Network. The Bayesian Network is a

directed acyclic graph, where the nodes represent the random variables under consider-

ation and the directed arcs represent probability dependencies between the variables.

We must think of a Bayesian Network as essentially a cause and effect diagram. This is

one reason why the resulting network must be acyclic. If we had a directed cycle, the

notion of endogeneity would enter into our model of dependency. That is, we essentially
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x1

P (x1)

T F

0.8 0.2

x3

P (x3|x1)
x3

x1 T F

F 0.8 0.2

T 0.3 0.7

x5

P (x5|x3, x4)
x5

x3 x4 T F

F F 0.4 0.6

F T 0.1 0.9

T F 0.3 0.7

T T 0.7 0.3

x2

P (x2)

T F

0.4 0.6

x4

P (x4|x2)
x4

x2 T F

F 0.6 0.4

T 0.1 0.9

x6

P (x6)

T F

0.25 0.75

x7

P (x7|x5, x6)
x7

x5 x6 T F

F F 0.5 0.5

F T 0.8 0.2

T F 0.3 0.7

T T 0.11 0.89

Figure 2.1: An example of a Bayesian Network (Garvey, Carnovale, & Yeniyurt, 2015).

would have a chicken and egg problem (that is, which came first?).

Once the random variables have been decided and the causal paths have been drawn

between them (or, more appropriately, between the nodes that represent the random

variable), then we must specify the conditional probability distributions for each vari-

able. For example, in Figure 2.1 the variable x7 is dependent on the variables x6 and

x5. Therefore, in order to model the probabilities of the possible values for the random

variable x7, we must specify four distinct (though not necessarily unique) probability

distributions for x7, each one corresponding to a specific outcome of the combination

of the values for x6 and x5. If these variables are binary random variables, then the

only two values they can hold are 0 or 1 (or, F or T).

Therefore, there are four scenarios that are possible: x6 = 0, x5 = 0, x6 = 1, x5 = 0,

x6 = 0, x5 = 1, x6 = 1, x5 = 1. Hence, we must define what the probability of x7 would

be in each of these four instances (in order words, we need to specify four probability

distributions for the variable x7, as well as all other variables in the model, in order for
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it to be “fully specified”). If a node has n parents, then the number of distributions

we must assign to it is 2n (assuming all the variables are binary). The natural question

that comes to mind with this specification of a model is, where do the probabilities

come from?

2.2.3 Learning Bayesian Networks

Bayesian Networks are not just pulled out of thin air. Analysts do not just assign

arbitrary probabilities for the 2n requirements. These probability distributions come

from one of two sources, which is what precisely makes Bayesian Networks very flexible

to many scenarios: (1) We query “experts” in the field, ask them what they believe

causes a certain variable, or, ask them to identify a cause and effect diagram based

on their expertise. From there, a survey design can be implemented and we can use

a scaled response survey to have these “experts” “guesstimate” the 2n probabilities.

(2) We can use a data set and estimate the probabilities using statistical estimation

methods (Gibb’s Sampling, MCMC, GMM, etc).

The beauty of Bayesian Networks is that since the random variables are assumed

binary (they don’t need to be, but for this dissertation, they are considered as such),

each distribution can be itself modeled as a Beta distribution. So, once the structure

of the Bayesian Network is known, and once the probability distributions of the the

network is also known, we can represent the Bernoulli Distribution by converting it

to a Beta distribution. The distinct advantage of doing this is having the ability to

leverage both expert data and objective observational data (or both!).

Ideally, a system can be “calibrated” using expert opinion. Once the system “starts”,

it learns by observing new data and reestimating the parameters of the Beta Distri-

bution. New probabilities are then stored. That is, the Bayesian Network can act as

a knowledge network that is always updating it’s beliefs given new information about

the world. The source of the information is of no concern to the Network. Expert,

objective, pulled out of the sky. It doesn’t matter, the Bayesian Network can handle it

all.

We can design the network structure in any way we wish. Typically, however, a
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standard procedure is taken if we are attempting to find the structure of a Bayesian

Network from a given data set. The first task is often referred to as structure learning.

The second take is often referred to as parameter learning. Structure learning involves

using the data and the defined variables (the nodes) to find an optimal structure (that

is, the “best way” to combine the nodes with directed arcs), where the only constraint

placed on the procedure is that it must render an acyclic graph. After the structure

is known to the analyst, the analyst then takes the data and finds the parameters of

the Bayesian Network. This could either be trying to estimate the alpha and beta

parameters of the Beta Distribution, or, simply finding the conditional probabilities

directly from the data using a simple proportion (since the simple proportion in this

instance is the MLE estimate).

Typically, on a more mechanical level, the minimum descriptive length (MDL) and

the Bayesian Information Criterion (BIC) are used to judge how good of a “fit” the

structure is to the data. There are many algorithms that accomplish the estimation of

network structure and the estimation of the network parameters (Heckerman, Geiger,

& Chickering, 1995; Heckerman, 1998; Pearl, 2014; Garvey et al., 2015). I will avoid

a discussion entirely of these since they are outside the scope of this dissertation, and

I direct the reader to the aforecited references. The important idea to take from this

review is that Bayesian Networks represent random variables, of which have a depen-

dency structure on them, that we are seeking to leverage in order to conduct something

known as probabilistic inference (Pearl, 2014).

2.2.4 Belief Inference and Propagation

Once we have a fully specified Bayesian Network, the next natural question is to ask,

how shall we leverage it? One of the fundamental philosophical reasons for constructing

the Bayesian Network is that it was intended to act as means to reason probabilisti-

cally. That is, to make judgments about certain events or outcomes of scenarios when

certain information is provided to the user. Pearl refers to this process of attempting

to understand the “likelihood”, or, more apropos, the “belief” of an event or scenario

as probabilistic reasoning (Pearl, 2014).
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Bayesian Philosophy rests on the foundational philosophical axiom that all humans

are inherited with a certain innate set of knowledge. The brain essentially holds a

memory of this knowledge by remembering a combination of concepts (which in our

application, would the be nodes in the Bayesian Network of which represents the prob-

abilistic events), or relations between concepts (that is, the notion of logical inference).

For example, if we happen to see that many times when it is cloudy out, rain may

follow soon after. We may remember this, that is, learn this by accomplishing a few

mental tasks. First, what does it mean to be “cloudy”? What does it mean to be

“raining”? Once our brains have a conceptualization of the concept at hand (what

Plato referred to as ideas), we then often conduct inductive logic. That is, our brains

have a tendency to generalize repeated occasions where two concepts happen to occur

close to each other in time (Russell, 1919), and hence we remember these observations,

and therefore have the ability to conduct inductive inference (Russell, 1912).

Hence, after we have “learned” the general attributes of “sky”, “clouds”, “rain”, our

minds organize these concepts via a temporal ordering, where it remembers what will

subsequently follow when one of the concepts are realized. If we realize a concept, we

then infer that the related concept will occur (Occam’s Razor suggests that our minds

will think that if something is likely, then it is certain, despite the obvious problem

with such a conclusion. Rather, as Popper argues, we just simply need to consider it as

a proportion of times something has occurred (Popper, 1959). Nothing more, nothing

less).

For example, after a sufficient number of observations of the two simple concepts of

“clouds” and “rain”, we tend to believe that it will rain if we happen to see clouds. If

one has woken up during the beginning of the day, one may expect the probability that

it will rain during the day to be quite low (say 0.20). The moment they step outside

and look up to see dark clouds, their belief of it raining has changed, and the chances

of it has increased. That is, the individual has reasoned probabilistically that upon the

observation of evidence, namely the clouds, they must take into account this evidence

and update their probabilities.

These are often referred to as subjective probabilities, since the likelihoods of the
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event occurring are partly dependent on prior knowledge and recent evidence observa-

tion. Philosophically speaking, the Objectivist would of course disagree with the general

idea that a probability is somehow subjective. The Bayesianist truly believes that their

observations have been correct, and hence, upon the sight of new evidence, they can

conduct inference using that evidence and their own set of prior knowledge.

To illustrate the process of belief updating, let me formalize this more mathemati-

cally. First, let C denote the event that it is cloudy (0 if not, 1 if it is). Let R represent

the event that it is raining (0 if not, 1 if it is). Suppose that based on prior knowledge

and your own personal observations, you estimate that the probability that it will rain,

given that there are no clouds, is 0.1. One the other hand, assume you estimate the

probability that it will rain, given that there are clouds, is 0.6.

With Bayesian Networks, if the the events are modeled using binary states (happens,

does not happen),relative to the observer, there are really three states: happens, does

not happen, no knowledge. For example, if you happen to be inside the whole day and

would like to know the probability it will rain, then you have no evidence to use to

calculate P (R), but rather, only prior knowledge. What you do have, however, are the

conditional probabilities. Thus, using the law of conditional expansion, we can write

P (R = 1) = P (R = 1|C = 0)P (C = 0) + P (R = 1|C = 1)P (C = 1). Suppose you

believe that the probability it will be cloudy outside is 0.4. This is called your belief,

also known as an a priori belief (or more mechanically, an apriori distribution). If this

is the case, then you know that P (C = 0) = 0.6, P (C = 1) = 0.4. Hence, you should

be able to easily compute P (R = 1):

P (R = 1) = P (R = 1|C = 0)P (C = 0) + P (R = 1|C = 1)P (C = 1)

= (0.1)(.6) + (.6)(.4)

= 0.3

On the other hand, suppose you happen to know that it is indeed cloudy outside.
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Then, you would have the following:

P (C = 1) = 1

P (C = 0) = 0

P (R = 1) = P (R = 1|C = 0)P (C = 0) + P (R = 1|C = 1)P (C = 1)

= (0.1)(0) + (.6)(1)

= 0.6

That is, we obtain two different probabilities for the same exact event. So what

was different between the two? Namely, the observation of evidence available to us. In

the first example, we did not have exact knowledge regarding the clouds, and instead

speculated that P (C = 1) = 0.4. That is, we had a prior belief in what we thought the

probability of it being cloudy outside was simply because we didn’t have any evidence

or knowledge on the event regarding the clouds. On the other hand, in the second case,

we have complete and exact knowledge. We may have walked outside, observed it was

cloudy, and shifted our belief of it being cloudy from 0.4 to 1.0.

This form of probabilistic inference is often what is called causal analysis, or, prob-

abilistic induction. We can think of this as forward inference, since we start with

beliefs at “the top” and “work down” the chain of causality. However, the advantage

of Bayesian Networks is that we can also work backwards, through a process known

as abduction. The classic example of this entails the character of Sherlock Holmes, of

whom is famously known for his “deductive ability”.

This is actually a misnomer, as no where in the novels does it portray Holmes of

having deductive ability (other than by the use of the term), but rather, abductive ability.

Deductive ability would mean that Holmes had started with evidence and worked down

a chain of known events. That is, if he were given evidence and was attempting to

predict the next murder (of which, would lead to the rendering of additional evidence

at a later point in time). However, the novels clearly specify that Holmes would start

from evidence, and attempt to put the pieces together, in an attempt to explain what

had happened, rather than what will happen.

Bayesian Networks can be conducted in the same manner. For example, suppose we
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know that it is raining, but we didn’t know if there were clouds before the rain came.

We can determine the probability that there were clouds before the rain by using Bayes

Theorem:

P (C = 1|R = 1) =
P (R = 1|C = 1)P (C = 1)

P (R = 1)

=
P (R = 1|C = 1)P (C = 1)

P (R = 1|C = 0)P (C = 0) + P (R = 1|C = 1)P (C = 1)

=
(0.6)(0.4)

(0.1)(0.6) + (0.6)(0.4)

=
.24

0.3

= 0.80

The way in which we would interpret this probability is not “there is an 80% prob-

ability that it will be cloudy assuming it has rained”. Rather, the proper way to think

of this is “there is an 80% probability that it was cloudy before it rained”. That is,

abductive reasoning is centered around the premise of speculation of what had hap-

pened prior to the observation of the evidence. One is not deducing what will happen

next, but rather, is abducing what had already happed upon the presentation of the

evidence. That is, it is speculation of how the evidence came to be rendered.

We can think of deducing as more of a causal speculation activity, while abducing is

more of a diagnostic activity. Such two opposing perspectives makes Bayesian Networks

a great candidate for analyzing uncertainties such as supply chain propagation risk. If

we had a mapping of possible events that could occur within the supply network that

could, but not necessary will, lead to a disruption, then we can leverage Bayesian

Networks in two ways: (1) as a diagnostic tool to determine what was the sequence of

events that led to the disruption, and, where within the upstream we should expect

damage or loss, or (2) as a causal tool to determine the potential consequences of an

action upon the observation of evidence. The framework of probabilistic reasoning

handles both of these use cases well.

However, the example I have provided is very simplistic in nature. The applicabil-

ity of Bayesian Networks shine when there are many variables to consider, as well as

a conceptualization of those variables. Once the network is built and fully specified, it
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can then be leveraged for a variety of purposes (for example, understanding where a

problem may have arisen in order to properly identify the “root cause”, or understand-

ing the potential consequences of an action, such as running a new type of television

advertisement or product launch).

The updating of beliefs are not as simply as I have portrayed above. Applications

that leverage Bayesian Networks often have many variables with complex structures. To

conduct belief propagation in the way we just did would result in an exponential number

of equations that would need to be solved, only to simply query the network. When

we update beliefs in a procedure described above, the term often used is inference, or

belief propagation. The problem of calculating these probabilities is actually an NP-

Hard problem. However, thanks to the advent of technology, super computers, and big

data infrastructure, we have the ability to conduct simulation algorithms such as Gibbs

sampling and other more general MCMC (Monte-Carlo Markov Chain). Another area

of interest in computing these probabilities is that of approximate belief propagation.

Such methods use iterative approaches until convergence of the probabilities is attained.

As this area of literature is vast,and out of the scope of this dissertation, I will simply

direct the reader to the aforecited references.

2.3 Supply Network Structure

As mentioned earlier, supply networks are complex adaptive systems (Carter et al.,

2015). Such a structure implies that (1) networks are formed as a result of agents acting

dynamically due to consistent changes within the environment and (2) the structure is a

manifestation of cumulative behavior of the agents. These two observations alone form

the foundation of two distinct, yet related, forms of analysis of these networks: graph-

theoretic network theory and social network theory. The graph-theoretic constructs

allow the scholar of supply networks to quantify the inherent structural characteristics

of the underlying network in a context-free manner. The social network constructs

allow the scholar of supply networks to quantify the resulting structural characteristics

of various relationships between and among actors, as well as the network itself. Much

work has been done in these two areas of study in their application to supply chains. I
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will now review this stream of literature that is directly related to the primary inquiry

of this dissertation.

2.3.1 The Basic Supply Network Model

As mentioned, (Carter et al., 2015) synthesized the literature of supply networks and

arrived at the conclusion that supply networks are inherently complex adaptive systems

(Carter et al., 2015). This approach to understanding the supply network has led to

a plethora of literature to better understand how networks form or emerge. Before

reviewing this literature, it would be worth while to review through the fundamental

model of a supply chain itself. Typically, supply networks are modeled as directed

graphs (Garvey et al., 2015). While this is a useful tool, the problem in this basic model

rests within the criteria of what constitutes a “node” and subsequently an “edge”. Much

debate has ensued throughout the prior years as to what constitutes a “supply chain”.

Peck was among the earlier contributors in the literature to recognize the frustration

of multiple definitions. I will ground my definition within her approach, along with my

own amendments to it. She offered a thorough breakdown of “the supply chain” by

recognizing that it is multi-dimensional and has multiple levels of analysis (Peck, 2005).

She offers five levels of analysis of which I will review and amend within the theoretical

development section of this dissertation. For now it is important to understand that

Peck’s contribution of the formation of a framework within which to model supply

chains had served as a baseline foundation for supply chain research, offering researcher

a tool to carefully describe their indented level of analysis.

In the subsequent sections, I assume that a particular level of analysis has been

selected by the researcher. As such, the subsequent discussions on “supply chain struc-

ture” are hence based on the assumption that a level of analysis has been selected.

However, there is no loss of generality in making this assumption. The literature I

present in the next few sections is easily applied to all the aforementioned levels of

analysis. Hence, when I say “the node” or “the firm”, I am referring to one of the 8

types (of which are fully justified in the theoretical chapter) of nodes described in the

framework of levels of analysis for supply networks, with no one in particular to the
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discussion at hand. In addition, when I use the words “the link” or ”the edge” or “the

relationship”, again, I am referring to one of the 8 types of connections described in

the level of analysis framework, with again, no particular one chosen for discussion of

the literature.

2.3.2 The Risk Graph

Some aspects of supply networks that have been previously explored in the literature

review of this dissertation are the notions of “risk”, “disruption”, and “propagation”.

Such phrases require a conceptualization of the supply network itself to study. For

example, simply studying “risk factors” such as what the extant literature does (Qazi,

Quigley, & Dickson, 2015; Qazi, Dickson, et al., 2018; Qazi, Quigley, Dickson, & Gau-

denzi, 2015; Qazi, Quigley, Dickson, Gaudenzi, & Ekici, 2015; Qazi, Quigley, Dickson,

Gaudenzi, & Önsel, 2015; Qazi, Quigley, & Dickson, 2018; Qazi et al., 2017; Lock-

amy III, 2011; Lockamy III & McCormack, 2010, 2012; Pai et al., 2003) is not sufficient

enough to capture the underlying dynamics and interdependencies of risk and it’s prop-

agation throughout the network, where such propagations are inherently dependent on

the structural design of the network itself. This point was ardently argued in (Garvey

et al., 2015). Indeed, they astutely observed that “extant literature in the field of sup-

ply chain has been incorporating elements of risk into supply chain models rather than

adapting current risk models and placing them within a supply chain setting” (Garvey

et al., 2015, pg. 619). The implication of their framework is that supply chain risk

should be considered element-centric, where “element” refers to a node or link in the

supply chain.

As such, (Garvey et al., 2015) framework laid the analytical and conceptual founda-

tion of this idea of the interaction between supply chain risk and supply chain design.

Their construction of the “Risk Graph” personifies the appropriate definition of “supply

chain risk”. Recall that supply chain risk was defined as an interaction between the

consequence and likelihood of an event that has the potential to manifest into a supply

chain disruption. The definition itself implies that supply chain risk is element-centric.



68

That is, we cannot simply study “risk factors”, but rather, “element-centric risk fac-

tors”, since the “factors” in one area of the network may impact “factors” in another

area and in different manners.

(Garvey et al., 2015) risk graph is a probabilistic model that is constructed under a

strict set of assumptions (which could of course be relaxed for practical implementation)

using the structure of the supply network itself and fusing it together with the variety

of supply chain risks that are present within each element of the network (either within

a node or within a link). They argue that it is illogical to presume that risk “flows”

directly from one risk in a location to another risk in a different location where there is

no direct connection between the locations. I admit that this is a shortsighted view of

the model, and I will address this shortcoming in the Theoretical Development of this

dissertation.

For now, I will briefly review through (Garvey et al., 2015) model, as it serves as the

foundation for the analytical methods used in this dissertation. Some of the notation

they used in their paper has been altered herein, but I will be clear in meaning here.

First, the model of risk propagation measurement begins with a set of nine fundamental

assumptions behind the model. They are (Garvey et al., 2015, pg. 621):

1. The entire structure of the supply network is known.

2. All risks considered are modeled as binary random variables.

3. All conceivable risks to a supply network at any location (i.e. at the node or edge

level) in the network have been accounted for.

4. Given a set of risks, the causal relationships among the risks are determined in

a procedural and objective manner that results in an acyclic directed graph (i.e.

given two experts and the same set of risks, they will arrive at the same acyclic,

causal structure of the graph).

5. Given a set of risks, the procedure for determining the causal structure of the risks

must be based on the structure of the supply network (i.e. given any two locations

in the supply network, node or edge, not connected directly in the supply network



69

in any way, then any risks inherent in one location cannot be causally related to

any risks in the other location).

6. The data for all risks and conditional probability tables/distributions can be de-

termined in full (i.e. distributions and parameter estimates for the random vari-

ables or the conditional probability tables have already been determined and

estimated).

7. The resulting network allows for tractable probabilistic inference.

8. The resulting Bayesian Network constructed using the risks inherent in a supply

network using the procedure given below is the “best fit” network to the data.

9. All risks that are dependent on business decisions are static and have only a single

distribution (i.e. decisions remain static and result in only a single probability

distribution for a risk related to that particular decision).

The model for how risks within a supply network interact is then constructed using

a procedure which takes as it’s input (1) the structure of the supply network, (2) the

collection of all identified risks, (3) the probability distributions between risks, and (4)

a procedure that can determine if two risks are causally related (this is somewhat of a

corollary of (3)). I will formalize this here.

Let N = {x1, x2, x3, ..., xn} denote the set of nodes in the supply network and

let E = {e1, e2, ..., em} denote the set of connections in the supply network. Here,

the subscripts on the edges have no particular meaning as to which nodes in N are

connected. For simplicity, I simply just index them from 1 to m edges. Of course, n

represents the number of nodes in the supply network. The supply network is then the

union of these two sets S = N ∪ E.

Now, let R(z) = {X1(z), X2(z), ..., Xφ(z)(z)} denote the set of risks at location z ∈ S

of the network. Here, it is assumed that Xi(z) represents the i-th risk at location z ∈ S

and is itself a binary random variable with a sample space of SXi(z) = {0, 1}. In

addition, φ(z) represents the number of risks at location z ∈ S.

Next, let the set of all random variables (i.e. set of all risks present at all locations)
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be denoted as NR =

(
n⋃
i=1

R(xi)

)⋃( m⋃
j=1

R(ej)

)
. In otherwords,

NR = {X1(x1), ..., Xφ(x1)(x1), ..., X1(xn), ..., Xφ(xn)(xn),

X1(e1), ..., Xφ(e1)(e1), ..., X1(em), ..., Xφ(em)(em)}

So far, we have created a collection of risks in the entire supply network. The

next step is to create the collection of connections between these risks. This is done

by leveraging the structure of the supply network. (Garvey et al., 2015) specified an

algorithm for constructing this collection of connections between the random variables.

They make two basic assumptions for the algorithm. First, they define a function for

any location in the network which will return the neighbors of that location. I will

define it here as:

ζ(z) =

 NGR(z), z ∈ N

{xi, xj}, z ∈ E ∧ z = (xi, xj)


There is some slight abuse of notation here. Here, GR will represent the final Risk

Graph, this is something we have not yet defined. In addition, while we have indexed

the edge set E of the supply network, we have not defined these elements as they

usually are defined in graph theoretic language (an ordered pair of vertices, where the

first entry represents the tail (source) node and the second entry represents the head

(sink) node). Hence, it should be assumed that if

z = ek ∈ E, then ∃!i, j ∈ {1, n} s.t. i 6= j,∧ek = (xi, xj)

The next assumption that Garvey makes is that there exists a function, I will de-

note it ϕ(Xi(z1), Xj(z2)), that will determine if there is a causal connection between

risk i ∈ {1, ..., φ(z1)} at location z1 ∈ S and risk j ∈ {1, ..., φ(z2)} at location z2 ∈ S.

They define this function to be at the discretion of the analyst. I will adjust this func-

tion to also determine if the analyst believes that adding such a causal dependency

will result in a directed acyclic graph. Recall that Bayesian Networks necessitate the

resulting structure to be a DAG. Hence, when I use the notation Xi(z1) ⇒ Xj(z2), it
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will simply represent a query to an “analyst” that will be able to determine if (1) the

two risks are somehow related and (2) if the consideration of a causality between the

risks will result in a DAG. Hence, for the purpose of their framework, they define it

generally. I will simplify their definition here as:

ϕ(Xi(z1), Xj(z2)) =

 TRUE, Xi(z1)⇒ Xj(z2)

FALSE, Else


Last, Garvey proposes an algorithm to construct the collection of causalities be-

tween the risks in the network. I will forgo a description of the algorithm, since it can

be expressed more compactly as a mathematical set. To do so, I will define one more

function, which will return TRUE if one location in the supply network is a “neighbor”

of another location in the supply network when given two risks:

δ(Xi(z1), Xj(z2)) =

 TRUE, z1 ∈ ζ(z2) ∨ z2 ∈ ζ(z1)

FALSE, Else


Therefore, the edge set in the Risk Graph is defined as:

ER = { (Xi(z1), Xj(z2)) ∈ NR ×NR | ϕ(Xi(z1), Xj(z2)) ∧ δ(Xi(z1), Xj(z2))}

The Risk Graph GR = NR ∪ ER is a directed acyclic graph (DAG) of nodes, which

represent binary random variables (which themselves represent risks of disruption), of

whose dependencies are determined based on if the risks lie within the same location

of the supply network S, or, if the locations of where the risks lie are neighbors of each

other in the supply network S, and if the risks are causally related, as determined by

some form of “analyst”.

2.3.3 Measuring Network Structure

As I mentioned previously, the structure of a supply network is important to understand

the various dynamics of supply chains. Past literature has shown that the structure
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itself is related to a plethora of various constructs within the supply chain. I will

review these later. For the time being, I will review the literature of prior attempts to

characterize and measure the supply network structure. Many attempts have been made

at this. The logic is usually centered around the ability to operationalize the construct

of “supply chain structure” for the ends of relating it to other constructs. Later I will

argue that such a pursuit is somewhat misguided since “structure” is too broad of a

construct that necessitates the design of sub-constructs, and a different approach should

be pursued. There are three broad ways the literature has characterized the structure

of supply networks.

The first is through conceptual approaches, which partly rest on the “type” of

supply network itself, usually requiring some form of contextual information regarding

other constructs such as product category or power. In addition, this category has

adopted some constructs of social network theory. There is some overlap between

these constructs being more mechanical than conceptual. I will review them under

the conceptual, however, since the primary purpose was conceptual by design, and the

mechanics are merely operationalizations of those constructs.

The second approach to characterizing supply networks is through a classification

approach that is partly dependent on the more mechanical aspects of structure and

construct. Classification has been conducted using both conceptual and mechanical

definitions of structure, and hence this area of the literature can be thought of as

an intersection of the two extremes. We can think of these classifications as the so

called “centralization-based” categorization systems. The categories are typically de-

rived from social network theory, and networks within these categories have been seen

to exhibit similar characteristics. Last, I will review the more mechanical approaches to

characterizing structure. These are the more traditional-based methods to characterize

structure. Before the advent of supply-chain, and even social-network theory, these

measures were used to solve problems dating as far back as the 18th century. They

are still widely used today, and I argue that they are not only sufficient but should be

the preferred approach to characterizing supply network structure through the proper

construction of the constructs for which these measures reflect.



73

Context-Dependent Conceptualization of Structure

When I say “Conceptual Characterization”, I am referring to a characterization or a

classification of the network structure due to theoretical abstract constructs that are

not based on inherent and context-free quantitative characteristics. For example, some

may classify the “supply network structure” based the types of nodes and how many of

those different types of nodes are in the network (i.e. how many raw material sources,

how many manufacturer, how many retailers, etc). In any case, there exist many such

characterization/classification schemes of which I will now review.

The construct of supply chain structure grew out of those borrowed from the con-

structs of organizational and enterprise networks (Delfmann & Albers, 2000; M. Dong,

2001; Domı́nguez Cañizares, 2014). Of course, as the supply chain literature began to

show signs of progress, one of the earliest areas of contribution was mapping the supply

chain, and explaining the various structural properties of them. While not explicitly

using the term “supply chain” in his research, there is no doubt what Anderson was

describing in his study of business networks, of which he defined as “set of two or more

connected business relationships, in which each exchange relation is between business

firms that are conceptualized as collective actors” (Anderson, H̊akansson, & Johanson,

1994, pg. 2). His paper had described the nature of a dyadic relationship between two

firms. His basic model of the dyad comprised of a focal relationship, between a supplier

and a buyer. The supplier of whom had suppliers themselves and the buyer of whom

had buyers themselves.

This early conceptualization of the “supply chain” was used by Anderson to describe

the basic structural properties of a dyadic relationship that was embedded within a

business network. He sought to develop network-based constructs that would be useful

in elaborating on the nature of dyads. One of the first constructs he proposed was the

notion of the network horizon, which he defined as “how extended an actor’s view of the

network is” (Anderson et al., 1994, pg. 4). He argued that this construct is dependent

on the actor’s perspective within the network. In addition, he defined the notion of

the network context, which is the part of the network’s horizon that an actor concerns
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them-self about.

He claimed that this construct is characterized on three primary dimensions: the

actors, the activities, and the resources of which the firm is engaged within the “im-

portant part” of the horizon. He claims that each actor’s context in a network most

likely is overlapping with other actor’s contexts. Furthermore, given a firm, it’s network

context and the network itself, Anderson argues that a firm also establishes its network

identity, which he defined as “the perceived attractiveness (or repulsiveness) of a firm

as an exchange partner due to its unique set of connected relations with other firms,

links to their activities, and ties with their resources” (Anderson et al., 1994, pg. 4).

Furthermore, Anderson argues that network identities too are dependent on the three

aforementioned dimensions.

Last, he attempts to characterize how embedded a dyadic relationship is within the

business network by defining what he referred to as relationship connectedness. These

constructs are distinct from the graph theoretic term connectedness. The idea behind

his contribution of these constructs was to eventually determine how “well connected”

a dyadic relationship is with respect to the network. This is inherently a contextual

issue of the relationship. The two constructs he offered to help describe this notion of

“embeddedness” were anticipated constructive effects and anticipated deleterious effects

on network identity. These constructs essentially characterize the firm’s perception of

other firms in which it is part of a dyad and how these dyads affect it’s identity in either

a positive or negative way.

These early characterizations of network structure laid a foundation for the early

scholars of the supply chain literature to design frameworks from where a supply net-

work structure can be characterized. Of course one of the most prominent contributions

was from Lambert, Cooper, and Pagh, who offered one of the first characterizations of

the structural dimensions of a supply network (Lambert et al., 1998). They proposed

that the supply network be characterized by the dimensions of the horizontal structure,

the vertical structure and last the horizontal position of the focal firm. The horizontal

structure is defined as the number of tiers across the supply chain while the vertical

structure is defined as the number of suppliers/customers within each tier. Last, the
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horizontal position refers to how near or far the focal firm is from the initial source of

supply or the ultimate consumer.

Around the same time Lambert’s model of “supply chain structure” was being de-

veloped, Fisher had suggested that supply chains should be differentiated by innovative

versus functional products (Fisher, 1997). Lamming built on this work by empirically

validating Fisher’s model and also suggesting that supply chains should be categorized

based on two primary dimensions: the innovativeness of the product and the complex-

ity of the product. They argue in grounded research and from empirical observations

that supply chains must fall within one of the four categories determined by these two

dimensions (Lamming, Johnsen, Zheng, & Harland, 2000). They followed this work

with a subsequent study where they further elaborated on their dimensions of firms

being “dynamic” and the degree of “influence” of which they possess (C. M. Harland,

Lamming, Zheng, & Johnsen, 2001).

Another proposal for describing the structure of a supply network was character-

izing different attributes that firms possess as well as the characterization of their

inter-connections being either financial, informational or material (Swaminathan et al.,

1998). A similar idea was proposed by Choi, who suggested that supply networks should

be studied through the lens of a complex adaptive system. In addition, he argues that

the characterization of a network overall could be based on three primary dimensions:

internal mechanisms, environment and co-evolution. While his characterizations were

still fairy conceptual, he did mention the that the constructs of complexity and connect-

edness are most likely involved in the determination of how a supply network evolves

(Choi, Dooley, & Rungtusanatham, 2001) as well as having the potential to explain

firm attributes and behaviors. Similar arguments were also suggested in Harland’s

work (C. Harland, Zheng, Johnsen, & Lamming, 2004).

Despite these early conceptualizations of characterizing the structure of a supply

network, most of these were inherently reliant on qualitative attributes of the network

such as product type of firm attributes. Meyr was among the first in the literature to

suggest that networks can be characterized along two primary dimensions: functional

characteristics and structural characteristics. The “functional” comprised of similar
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attributes that prior work had pointed out. However, the “structural” dimension was

among the first in the literature to describe the “structure” of the network from more of

a quantitative perspective, by suggesting this dimension could be explained by variables

such as power imbalances and degree of globalization(Meyr & Stadtler, 2005).

Similarly, Vereecke argued that firms can be characterized within their network by

not only observing their functional properties but also their structural properties in

so far as where they lie within their network (Vereecke, Van Dierdonck, & De Meyer,

2006). Likewise, Singh had argued that supply chains should be characterized by their

network topology, flows of information and material, governance between key network

partners, and a “value structure” of the product (Singh Srai & Gregory, 2008). Sen-

timents were the same in other research that suggested characterization by link type

as well as different forms of “complexity” (Bode & Wagner, 2015; Pedroso & Nakano,

2009). Last, others have characterized network structure based on firm strategy (Kilubi,

2016), embeddeness within the network (Yan, Choi, Kim, & Yang, 2015), as well as

using industry-specific attributes for such characterizations of structure (MacCarthy &

Jayarathne, 2013).

Partial-Context-Free and Context-Dependent Classification and Taxonomy

Conceptual attributes of network structure help simplify the complex nature of net-

works. As with any abstract construct, they help us understand the intuitive nature of

something that is abstract, while helping us to filter away “garbage” to better under-

stand the underlying attribute (Churchill Jr, 1979). There is little doubt that concep-

tual characterizations of network structure aid us in understanding it’s abstract nature.

So too, however, does classification.

While conceptualization of complex attributes of an entity help us gain an intuitive

sense of the underlying attribute, it does little in the way of understanding how “similar”

or “different” the entity is from another. In our case, that of network structure, we

must ask, “how do we distinguish between one entity from another?”. That is, not

only would we seek to be able to identify a supply network, based on it’s structure, as

“this” or of “that form”, but as a second criteria, be able to distinguish it from other
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individuals (networks) (Sneath, 1957b, 1957a). Conceptualization aids in our thinking

for the former, but not so much in the latter (depending on the definitions and variability

of said conceptualizations). Hence, an alternative approach to characterizing network

structure would be through a proper classification (i.e. a typology or taxonomy).

However, how might one construct such a classification system? As we have already

seen from a conceptual point of view, there are primarily two dimensions in which the

extant literature seems to strive towards classification of supply networks: structure and

function (the former sounds a bit recursive, but is salient none-the-less). The taxonomy

or classification is not only based on our observations of the entities we seek to organize,

but also is based on our planned goals for the taxonomy. Indeed, a “classification is

greatly influenced by the purpose for which it is devised” (Sneath, 1957b, pg. 184). A

logistics manager would hardly find it useful to classify networks based on corporate

strategy, and a supply chain manager may find it hardly useful to classify based on

mathematics. This would explain the vast number of attempts in the extant literature

to design “The Supply Chain Taxonomy.” Despite this, I will review through a sample

of them now to cover what has been proposed in the past as motivation for the final

section in this chapter.

Some of the notions of “types of supply networks” grew out of Lambert’s work.

When he defined Supply Chain Structure as having a horizontal dimension, a vertical

dimension, and a horizontal position, some academics felt it natural to extend this

towards a classification of supply networks (vertical networks vs horizontal networks)

(Lambert et al., 1998). Choi extended this idea, despite reducing these three dimen-

sions to a single network characteristic in his own framework (of which he termed as

“complexity”, the other two respectively being “formalization” and “centralization”).

Indeed, “in the supply network, the measurement of complexity in terms of these three

variables [vertical, horizontal, distance] becomes rather straightforward, once a com-

plete map of the supply network has been obtained. It would simply entail counting

the number of tiers (vertical complexity), the number of suppliers in each tier (hori-

zontal complexity), and the average distance between two firms engaged in buying and

supplying (spatial complexity)”(Choi & Hong, 2002, pg. 471).
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What is interesting is that around the time that Lambert and Choi, respectively,

published their work on supply chain structure from a more theoretical lens, another

stream of literature in the supply chain structure branch was at it’s infancy, despite

originating in a entirely distinct area of study. In 2001, the now-famous paper by

Strogatz, was published, describing the general idea of “small-world networks”, and

characterizing this class of complex networks as one where some notion of order can

be found in disorder (Strogatz, 2001). It did not take long for academics in the supply

chain literature to adopt Strogatz ideas, and soon an entire new form of classification

was born.

Rather than classify networks based on the relation of a firm to it’s network, or

it’s level of “embeddeddness”, the structural classification approach, based on graph-

theoretic measures, was beginning to show signs of progress in the literature in their

applications to supply chain management. Indeed, Pathak offered a taxonomy of supply

chain structures as having no structure, centralized, linear, flat, hierarchical, federated

or of starburst design. He offered clear graph-theoretic criteria for each of these groups

of networks, as well as example industries in where one might likely find them (Pathak,

Dilts, & Mahadevan, 2009). In addition, based on the structure, he offered propositions

in regards to a firm’s survival and ability to compete in different types of networks.

The more “graph-theoretic” approach to classifying networks was also extended,

when it was noticed that social network theory (an extension of graph theory) could be

applied to supply networks to help explain a wide array of phenomena. Such theories

leveraged the mathematical properties of the graphs, but only doing so in a way that

allowed for meaningful classifications (where the criteria for classification was based on

the mathematics of the graph) (Capaldo & Giannoccaro, 2015b; Y. Kim, Choi, Yan, &

Dooley, 2011; Galaskiewicz, 2011). In addition, the approach in this stream has also

been applied to risk analysis (Ledwoch, Yasarcan, & Brintrup, 2018; Basole & Bellamy,

2014b) as well as trust and firm performance (Capaldo & Giannoccaro, 2015a).

This stream of literature had eventually matured to a point where a standard clas-

sification of types of networks were discovered (Pathak et al., 2009; Basole & Bellamy,
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2014a; Y. Kim et al., 2015). Pathak had categorized different networks based on graph-

theoretic metrics such as maximum depth, degree, if they network did not have any

directed cycles, and if the the network resembled rings or trees (Pathak et al., 2009). He

argued that there were four major categories of networks: No Structure, Centralized,

Linear, and Hierarchical. On the other hand, Capaldo, who was seeking to determine

if structure affected trust, had classified networks similarly to how social scientists

classify them: Erdos-Renyi random, Ring, Small World, Block Diagonal, Preferential

attachment, scale-free-like, hierarchical, diagonal, centralized, and dependent (Capaldo

& Giannoccaro, 2015a). Rivkin also used a similar classification of networks in his

research to better understand the structure of complex systems, where his classifica-

tion comprised of random, local,small world, block-diagonal, preferential attachment,

scale-free, centralized, hierarchical, diagonal, dependent. (Rivkin & Siggelkow, 2007)

The second stream of literature for supply network classification is one that orig-

inates from Lambert and Choi (Choi & Hong, 2002; Lambert et al., 1998). Indeed,

they recognized that the structure of a supply network has two important perspec-

tives: the micro and macro, one of which grew out of the other in the literature. From

the macro-perspective, the notions of vertical and horizontal size were defined. Choi

generalized this notion a bit further. He understood that Lambert’s three dimensions

intuitively represent how large the network is and where within the network a focal firm

lies. Given this notion of magnitude, together with it’s size increasing with actors dy-

namically changing the network structure, he defined these three concepts, when taken

together, as “complexity”. Furthermore, Choi understood at the time that looking

only at dyadic relationships was myopic, and that if they sought to advance in their

performance, they would need to look outward toward the horizon, on the macro level

(Choi & Kim, 2008). He referred to this concept of being “in the network” as structural

embededness. That is, where does the firm lie with respect to the rest of the network?

Choi’s notion of structural embeddedness is a generalization of Lambert’s notion of

“horizontal position”. It sought to emphasize not only how well connected firms were

relative to their overall dyadic relations, but also, how “deep” within a network a firm
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lies. Other works in the literature stream soon adopted this idea, with some hypoth-

esizing that embeddedness was related to a firm’s performance (Choi & Kim, 2008;

Bernardes, 2010). In addition, some attempted to fuse the works of Choi and Lam-

bert’s notion of structural characterization of a supply network with that of the more

traditional functional characteristics mentioned earlier (Giannakis & Croom, 2004).

In addition, some sought to understand embeddeness within a larger scope of re-

search such as supply chain mapping and it’s relation to supply chain performance

(Iyengar, Rao, & Goldsby, 2012; Yu, Suojapelto, Hallikas, & Tang, 2008). Innovation

was also explored within the context of network embedesness (Ahuja, Soda, & Zaheer,

2012; Schilling & Phelps, 2007; M. C. Dong, Liu, Yu, & Zheng, 2015). Ironically, how-

ever, Choi’s initial work on more conceptual structural metrics of a supply network

began to turn more to the quantitative side. Indeed, Choi himself had contributed

to this area by trying to further quantify the construct of “embeddness” (Y. Kim et

al., 2011) via graph-theoretic measures such as centrality and distance-based metrics.

In addition, some had continued to expand Choi’s contributions by determining how

structural embededness can be measured and simultaneously be understood in connec-

tion with other the processes used to map the supply chain (Kito, Brintrup, New, &

Reed-Tsochas, 2014; Carnovale, 2014). This area of “embeddness-based classification”

grew ever so closer to the more quantitative social network end, and it could be argued

that the two forms of classification have converged in ideas over the past years.

The second perspective that Choi took was that from the micro perspective. He

realized that one way in which we can understand a firm’s position within the larger

network is if we also understand where it lies within it’s local network. In so doing,

Choi applied the concept of triads to supply network structure theory. He argued that

triads form “the fundamental building block of networks” (Choi & Wu, 2009, pg. 10).

In addition, it brought to light yet another concept from social network theory of which

soon was applied to supply network study: structural holes. A structural hole is “a

special type of triad occurs frequently in the supply network, wherein a buyer keeps

suppliers apart in order to engage them in competition” (Choi & Wu, 2009, pg. 11).

Hence, Choi helped bring focus to the study of triads in the SCM literature of the day.
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The construct of the triad allowed research to flourish in the area of structural studies

of supply networks. Dubois had posited that triads can explain certain sourcing policies

as well as competitive behavior (Dubois & Fredriksson, 2008), and Wu found that

certain forms of triads impact supplier performance (Z. Wu, Choi, & Rungtusanatham,

2010). Not only are triads are the building blocks of supply networks, but it could be

argued that they are the building blocks to yet another important construct taken from

social network theory: the ego-network.

An ego-network is the network of individuals that are neighbors (they are a buyer

or a supplier) of a firm in the supply network, along with their respective links between

them (if they exist). The research in dyads and triads eventually grew more outward

to the study of ego-networks. Borgotti had suggested to borrow concepts and measures

from social network theory to help quantify ego-networks and their structural charac-

teristics. In addition, Carnovale had found that ego networks can explain the outcome

of potential joint-venture formations (Carnovale & Yeniyurt, 2014).

Hence, to summarize, the literature calls for a vast and varying degree of different

taxonomies for supply networks. The extant literature seems to suggest classification in

one of two manners: through the dyad/triad/ego-network perspective and through the

more graph-theoretic perspective. However, my review on this matter is limited, and

intentionally so. For a more in-depth review of the varying different types of network

classification, see (Bellamy & Basole, 2013).

Graph-Theoretic Based Characterization

Thus far, I have ventured into two primary ways on how supply chain structure can be

characterized: (1) through conceptual methods and context-dependent information, or

(2) through the classification approach. As mentioned, for the classification approach,

researchers have found that certain types of networks tend to share similar types of

graph-theoretic properties, namely in their adjacency matrices (Rivkin & Siggelkow,

2007; Pathak et al., 2009). However, simply just categorizing networks is not the magic

hammer that can fix all problems. Indeed, as mentioned earlier, classification systems

are often designed for a well-designed goal, objective and problem (Sneath, 1957b,
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1957a). Furthermore, if classification of graphs themselves are based on the metrics

(Watts & Strogatz, 1998), then it begs to ask, why are we bothering to classify in the

first place if we have the raw data? (Answer: it depends on the problem).

Unlike classification systems or conceptual-based characterization of networks, graph-

theory provides the perfect tool box to objectively be able to understand a network’s

“structure”. In the remainder of this section, I will offer a review of the literature that

has taken this third approach to characterizing network structure. In addition, I will

summarize some of the most important aspects of graph theory, and it’s application to

understanding structural characteristics.

Graph theory has it’s roots in practical problem solving. The motivation for the

theory began with Leonhard Euler and his now popular Seven Bridges of Knigsberg

Problem (Euler, 1736). The problem that he was seeking to solve was to determine if

there was a walk around the seven bridges of Knigsberg, of which connected two parts

of mainland to two islands, in such a way that he will not have to cross the same bridge

twice. He later found that there had existed no such solution, and hence it was deemed

impossible.

Euler’s approach to the problem, however, had motivated the study of a new field of

mathematics: namely Graph Theory (and, on a mildly related topic, it also motivated

the field of Topology). Since then, Graph Theory has been applied to a wide range of

different problems whose solutions were not as evident had it not been for the model and

study of a graph. Throughout the years since Euler, many have described the properties

of graphs by constructing measures which takes into account the whole network, as well

as properties concerning the nodes and edges.

Arc/Node-Level Measures

As I defined in an earlier section, a graph is a set that is composed of two other sets,

one being the collection of vertices (also known as nodes), and the other being the

collection of edges (also known as arcs, links). Once a graph is constructed, one often

seeks to describe the attributes of the graph. There is a plethora and a vast diversity of

different measures that one can calculate to describe these attributes. On a node/arc

level, the following are common measures used to gain a clearer understanding of that
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node/arc’s attribute within the graph and their influence.

1. Betweenness Centrality

2. Closeness Centrality

3. Eigenvector Centrality

4. Degree Centrality

5. Eccentricity

6. Min Distance from Center

7. Max Distance from Center

8. Average Shortest Path

9. Density

10. Number of Triads

11. Number of Structural Holes

12. k-Ego Connectivity

13. Coreness

14. Clustering Coefficient

Network-Level Measures

There are quite a few measures that capture some of the structural characteristics at

the higher network-level of analysis of which I have summarized below. Many of these

characteristics fully explain the graph’s “structure”. In addition, some of them are

averages or centralized versions of their node counter-parts. When a scholar of graphs

studies the network-level structure, what they often encounter is a distribution of the

node-level values, which is contrasted with the node-level metrics (no such issue arises

in that instance). As such, some have proposed methods for combining these values

so as to gain an intuition for the “network’s structure”. The primary ways in which
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to accomplish this within graph-theory are through the methods of centralization of a

measure and the average of a measure.

When one computes measures that are at the network level of analysis, there are

two general classes of such metrics. The first collection comprises of those where a

simple addition or count is necessary to compute the measure. For example, the “node

connectivity” is a network-level metric, and is computed by finding the minimum num-

ber of nodes that must be removed from the graph in order to disconnect it. Such

a calculation was not inherently an amalgamation, combination, or more generally a

function of node or edge level attributes. That is, these types of measures can readily

be computed without first computing node/edge-level attributes.

On the other hand, the nodes and edges within a network themselves have prop-

erties. One can describe the structural characteristics of the overall network by also

summarizing the node/edge level characteristics. However, even this can be done in

a multitude of ways. One of course take a more traditional statistical approach by

calculating the various moments of the data (the mean, the variance, the skewness,

etc). A tangential approach that is more aligned with graph theory is to use Freeman’s

Centralization.

This metric is inherently different from the traditional statistical approach in two

primary ways. First, the Freeman Centralization seeks to characterize how central a

network is by finding the average distance of each element in the network (typically

only the nodes) from the maximum of such a distance. That is, unlike the mean, which

seeks to find a point of balance within the data with respect to different, and unlike

variances which seeks to find the average squared distance from the center (as measured

by the mean), the centralization measures the average distance in the network from the

highest such values of centrality.

There are commonly two forms of centralization: normalized and non-normalized.

A normalized centralization finds the average distance of a node in the graph from the

maximum value of a centrality measure and divides this by the maximum distance of a

node in the graph from the maximum value of the same centrality measure among all

other graphs of the same size. That is, the measure is dependent on looking towards
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other graphs of the same size. The non-normalized approach does not conduct this

division, and typically keeps the value as is.

More specifically, for a node n ∈ N , if we have a centrality measure , (a function

C : N −→ R), then the Freeman Centralization for the network as a whole would be:

Centralization(C(n)) =

∑
n∈N

(
max
k∈N
{C(k)} − C(n)

)
max
Nj∈N∗

{ ∑
n∈Nj

(
max
k∈n
{C(k)} − C(n)

)}

where N∗ represents the collection of all graphs of size |N |. This is the normalized

version of the metric. The non-normalized version of the metric would be:

Centralization(C(n)) =
1

|N |
∑
n∈N

(
max
k∈N
{C(k)} − C(n)

)
Again, I enumerate a list of known network-level measures that mathematically

characterize the network structure. I will review through these and the node/arc level

in a later chapter.

1. Number of Nodes/Arcs

2. Edge Connectivity

3. Node Connectivity

4. Diameter

5. Radius

6. Girth

7. Circumference

8. Clique Number

9. Number of Largest Cliques

10. Average Clique Size
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11. Min Distance from Center

12. Max Distance from Center

13. Density

14. Number of Triads

15. Number of Structural Holes

16. Average/Centralization Betweenness Centrality

17. Average/Centralization Closeness Centrality

18. Average/Centralization Eigenvector Centrality

19. Average/Centralization Degree Centrality

20. Average/Centralization Eccentricity

21. Average/Centralization Shortest Path

22. Average/Centralization Constraint

23. Average/Centralization k-Ego Connectivity

24. Average/Centralization Coreness

25. Average/Centralization Clustering Coefficient

2.3.4 Network Structure Dynamics in Supply Chains

So far I have discussed a bit of the background in the literature for prior attempts

to characterize the “supply chain structure”. Some methods, as I mentioned earlier,

are more contextual in nature. For example, we may classify a supply chain into

a“Banking Supply Chain” if it’s primary business is banking. We may classify a toy

manufacture as a “manufacturing supply chain”, so on and so forth. These may be

insightful for managerial purposes, however, the lack of concern of so called objective

structure inherent in the graph itself is myopic to not only strategic management, but

also towards other constructs pertaining to supply chain.



87

Those in the extant literature of the recent prior few years seem to be converging

onto more and more of a consensus on a proper characterization of supply networks.

They often propose that a fusion between the contextual-factors and the graph-theoretic

constructs. In addition, this lends a very helpful hand for firms attempting to under-

stand, and possibly extend, beyond their horizons. Some in the extant literature have

had it as their research goal to “map” the entire supply network of a focal firm. Such

an endeavor has led to a steady-increase in Agent-Based Modeling work,evolutionary

algorithm design, and more generally, simulation approaches applied to and with the

theory of complex adaptive systems (Nair & Vidal, 2011; Pathak, Day, Nair, Sawaya,

& Kristal, 2007). The goal of these researchers, using these methods, was to simulate

a real sequence of events within a supply network based on previous and empirically

sound attributes. The researcher would then keep track of the evolution of the supply

network and gain a further understanding of the transcendence of the network itself

into a particular pattern or state (Snyder et al., 2006).

Indeed, much work in this area of the literature and has already been conducted for

a variety of reasons such as studying ordering strategies (Lin & Wang, 2011), how firms

handle risk and resiliency (K. Zhao, Kumar, Harrison, & Yen, 2011), their ability to

design robust networks (Zokaee et al., 2017), and to ascertain just simply the structural

properties of the supply network that changes over time as it’s complexity increases

(Orenstein, 2016). The network design of a supply chain has been shown in the past

to affect a variety of different constructs in supply chain. Our anecdotes aside, supply

chain structure has been show to affect performance (Choi et al., 2001), innovation

(Choi et al., 2001), trust (Ireland & Webb, 2007), information and knowledge sharing

(Kotabe, Martin, & Domoto, 2003), and risk and disruption (Han & Shin, 2016)

2.3.5 Why Bother to Classify?

A simple question that comes to mind when studying most of the aforementioned topics

is, “why bother to classify supply networks?” Graph-theory allows us access to a

plethora of numerical equations that help us further quantify the structure. Again, while

classification and context-dependent characterizations may help managers with certain
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tasks, they lack the ability to fully understand the dynamics between the inherent

structure of the network and whatever we are attempting to determine the structure

affects. That is, by using classification methods to study the effects on a variety of

dependent variables, we are, in essence, “throwing away” good data.

I hence contend that a more appropriate manner to study the affects of structure

on whatever our intended topic at hand is, is to first characterize our networks using

the variety of measures discussed above. Naturally, we can expect a lot of correlation

between groups of these measures. However, simply categorizing the networks and

pigeonholing them into groups, as what has been conducted in past research with

structural-based research, would essentially be intentionally increasing the variance of

the dependent variable for no apparent reason. Further, it would be more difficult to

isolate out effects on dependent variables by categorizing. Hence, one of the underlying

assumptions behind this dissertation is that categorizing for the purpose of analyzing

cause and effect relationships on supply network metrics, when no such categorization

is necessary, would essentially be throwing away good information, and hence, it will

be avoided.

2.4 Current Research Gaps in the Literature

Given the literature just reviewed, I have identified a few gaps in the current stream

of literature as it pertains to structure and risk, as well as some tangential topics as

well. In this section, I will discuss some of these gaps, and motivate the final research

questions at hand.

2.4.1 Context-Free Network Structure Conceptualization

As the literature review illustrates, there are many perspectives on what constitutes

a “network structure”. This author’s perspective is on the canonical and context-free

perspective. That is, given a network, any network (a computer network, a distribu-

tion network, a supply network, a social network, etc), can we describe the inherent
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structure of the network, without relying on a particular context (i.e. a definition, char-

acterization, or classification of the specific nodes and links), and/or, without engulfing

ourselves in a sea of mathematical measures, that are either seemingly unrelated or

overly duplicated? I argue in the affirmative, and not only so, but also argue that such

a characterization is of extreme importance to understanding a variety of supply chain

construct dynamics, many of which have already been studied from other structural

perspectives.

The literature review illustrates that there have been multiple attempts to charac-

terize the supply network structure. I have organized this literature into three primary

areas of discussion that seem to be salient: Context-Dependent Conceptualization of

Structure, Partial-Context-Free and Context-Dependent Classification and Taxonomy,

and Graph-Theoretic Based Characterization. The literature that has specifically fo-

cused on the topic of characterization has primarily been within the context-dependent

conceptualization of structure. While these may be useful for isolating supply chain

specific construct dynamics, there is little discussion on how the canonical structure, as

Choi defines it, is related to the various aforementioned supply chain constructs that

have been studied. For example, a researcher may seek to understand how “supply

chain structure” impacts the continuance of a buyer-supplier relationship. Their char-

acterization of “the network structure” may be via a classification of nodes and links

(such as having types of nodes like a manufacturer, a retailer, etc, and types of links

such as information, material, financial). Again, this may be of interest with respect to

that specific characterization of the network, but speaks little to the relation between

the canonical structure of the network and the constructs under study.

A recent advancement has been the convergence of literature towards the classifica-

tion of supply network structures, and the design of structure-based taxonomies, which

appear to be converging towards a consensus within the literature. However, as I have

previously argued, classification based systems are essentially throwing away good data.

In addition, while theoretically interesting, it is quite difficult to justify their useful-

ness within practice. Rarely would a manager know the structure of the network they
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lie within. Hence, understanding weather or not a scale-free based network is more/-

less “risky” than a small-world network may be an interesting thought experiment, but

that is about the only usefulness to practitioners that exist within these results of recent

research.

Last is the topic of graph theoretic-based characterizations. I have argued that

these indeed have been useful in a plethora of studies in being able to isolate the effects

that the “canonical structure” has on certain supply chain constructs such as power,

trust, joint-venture formation, collaboration, etc. However, the primary drawback to

this area of research is a lack of a conceptual characterization of “structure”, and a

lack of generalizability of the results. For example, if a researcher happens to find

that “closeness centrality has a positive relationship with power”, for example, is a

relationship not between a construct and another construct, but rather an observable

and another construct. Again, while interesting, the results found in this area of research

lack generality, and are heavily reliant on the graph-theoretic measures, rather than on

the constructs of which the measures reflect.

To the best of my knowledge, given the review of the supply network literature,

the complex adaptive systems literature, the graph-theoretic literature and the social-

network literature, there appears to be a lack of a conceptual framework that would

describe context-free network structural characteristics. For example, relating back to

the aforementioned example, it would be “more interesting” to understand the general

relationship between a general construct of “centrality” and “power”, rather than a

specific relationship between the observable “closeness centrality” (a more specific form

of “centrality”) and “power”. Interestingly enough, such a framework seems to not

exist in the literature.

The reason for the need of such a framework is to be able to transcend an intuitive

conceptualization of “structure” without having to rely on (1) context or (2) mathemat-

ical measures. There exist many graph-theoretic measures to understand “structure”.

Many of them, however, are correlated and related, yet distinct. I argue that many of

them are actually observables of a collection of more general structural constructs, part

of a larger framework of a “Theory of the Network”. The implications of identifying
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such a framework of constructs would be immense, not only for supply chain theory,

but also, for any science that leverages network design. I hence contend that this is a

major gap in the extant literature.

2.4.2 Network-Based Hierarchical Levels of Structural Analysis

Yet another gap within the literature is that of a conceptual network-structure “level-

of-analysis”. That is, when studying networks, what is the unit of analysis we seek to

further explain? As far as I can extract from the extant literature, there seems to only

be a small taxonomy of varying levels of analysis within a network, namely: global—

level (the entire network), ego—level (with respect to a node), triad—level, dyad—level,

and node level. Some instances do involve the notion of a “core”, but these are much

more mathematical in nature, and while may be an interesting topic to further explore

at a later point in time, still lacks the justification to be placed in a taxonomy of level

of analysis of networks.

I submit here, however, that a network inherently has more levels of analysis than

what currently exists in the aforementioned taxonomy. More specifically, I argue that

the construct of the ego network can be further generalized outward towards what

I define as the k-ego-network. I will define this construct more thoroughly in the

theoretical portion of the dissertation. For now, we can think of this construct as the

ego-network of the ego network of ... the ego network of a node (k-times). For example,

a 2-ego-network of a node would be the induced subgraph of the union of nodes in the

respective ego-networks of the nodes in the primary ego-network of interest. This notion

will be illustrated further below in the theoretical development. However, I argue the

need for such a construct in order to understand how relationships between a variety of

supply network constructs may differ across the differing levels of analysis, which may

predict a class of new managerial-based problems for researchers to answer.

2.4.3 Risk Propagation

In this dissertation, I will loosely use the phrase “supply chain risk” or “supply network

risk”. It should be noted, however, given the literature review above, that there is a
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great distinction between a supply chain risk and a supply chain risk propagation.

These two constructs are indeed related, yet, very distinct. From what I can gather

in the extant literature, there seems to lack a proper conceptual line of demarcation

between these constructs. Indeed, many researchers seem to conflate them, and even

define them as equivalent phenomena.

It is important, however, to understand that these are indeed distinct constructs. I

feel that a current gap in the literature is a proper line of demarcation in the definition

of these constructs. I will motivate such definitions in the theoretical development. It

should be very clearly stated that in this dissertation, the primary and even tangential

topic of concern is NOT on supply network risk, but rather, on supply network risk

propagation. However, in the interest of brevity, the reader should be aware that when

I refer to supply chain risk, I will be doing so synonymously with supply chain risk

propagation, since the context of this dissertation is clear. The reader should, however,

be aware that these are very distinct conceptualizations, as I will outline within the

theoretical portion of this dissertation.

2.4.4 Intersection of Risk Propagation and Network Structure

As far as I have researched, there is very little research at the intersection of risk

and network structure. As I reviewed earlier, much of the risk literature has focused

on measuring risk from a subjective standpoint, or focusing on only a single location

(Heckmann et al., 2015; Olson & Wu, 2011). The measurements used in much of this

area do not capture the interdependencies between risks. The studies that do attempt

to measure risk propagation (Qazi, Quigley, & Dickson, 2015; Qazi, Dickson, et al.,

2018; Qazi, Quigley, Dickson, & Gaudenzi, 2015; Qazi, Quigley, Dickson, Gaudenzi,

& Ekici, 2015; Qazi, Quigley, Dickson, Gaudenzi, & Önsel, 2015; Qazi, Quigley, &

Dickson, 2018; Qazi et al., 2017; Lockamy III, 2011; Lockamy III & McCormack, 2010,

2012; Pai et al., 2003) have not ventured yet into studying how the structure of a

network affects the propagation, with the exception of a notable few (Y. Kim et al.,

2015). The studies that do attempt to ascertain this connection, however, have only

focused on them using a classification system, rather than using the underlying metrics
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that capture the structure of the supply network. Hence, a large gap in the current

literature is the intersection of risk propagation and the underlying network structure.

2.4.5 Supply Chain Horizon and Risk Propagation

In addition to propagation and risk, the extant literature that lies at the intersection of

supply chain horizon and risk propagation is mostly strategic (Busse, 2016; Barratt &

Oke, 2007; Wei & Wang, 2010). Few attempts have been made to quantify the notion

of “the horizon”. In addition to this lack of quantification is the lack of studying it’s

impacts on propagation, containment of propagation, and among other related topics.

Indeed, (Carter et al., 2015) contends that practically no research is in existence on top-

ics pertaining to the supply chain that is outside the visibility of the horizon, let alone

those aspects and their connection with risk propagation (Carter et al., 2015). There-

fore, a useful first step towards understanding the connection between “the horizon”

and risk propagation would be to first quantify “horizon”.

2.4.6 Hierarchical Levels of Structural Analysis and Risk

2-Ego Network Risk

As mentioned, there is little research that attempts to quantify the “visibility” of the

horizon. One approach to do so is by looking at a firm’s ego-network. However, this

is not enough. Ego-networks themselves are embedded in a larger network, as I have

discussed in the above section. Hence, if we had a notion of “continually embedded ego-

networks”, this may serve useful in our quest in not only understanding propagation,

but propagation that is outside the visibility of the horizon. I there informally (later

to be formalized) define the following:

A k-ego network of a node or edge is the induced subgraph of the nodes in the union

of each node’s own (k-1)-ego network. Therefore, this is defined recursively. A 0-ego

network would be the node or edge in a supply network. A 1-ego network would be the

ego network as prior literature has discussed. A 2-ego network would be the induced

subgraph on the union of each node’s own ego network in the first ego network, and so



94

on.

The notion of the k-ego network allows the researcher a way to quantify “the hori-

zon”. The logic being that a firm would be close with it’s first ego network, but as

we go outwards, the focal firm looses information of the other actors in the subsequent

higher-order ego networks. However, it can be speculated that the first and second

order ego-networks is sufficient information for the firm. It would be difficult to believe

that a firm is aware of their supplier’s supplier’s supplier, and their supplier’s customers’

customers (or supplier’s).

While obviously an entire enumeration is not possible, it would be a fair assumption

to presume that the focal firm, dependent on some characteristics of itself of course,

may have sufficient knowledge up to and including the 2-Ego Network level. As this

is a new concept of “visibility”, there obviously has not been any research conducted

on it’s relation to supply network risk propagation. Hence, this is yet another possible

area of exploration

Ego-Network Risk

While I have just introduced the concept of the k-ego network, the 1-ego-network has

been known to scholars for quite some time. Shocking, however, is the lack of re-

search in it’s connection to risk. As far as this author is concerned, there exists no

literature exploring the link between ego-network and risk, let alone risk propagation.

Assuming this is true, then there exists great opportunity to study how the structure

of ego-networks impact the overall ego-network’s risk. In addition, given the embedded

structure of the definition of k-ego networks, it would be interesting to determine if risk

“trickles down” from one level of analysis to another.

Node and Arc-Level Risk

As I have demonstrated earlier, much work has been conducted in the past to study

how robust, resilient and “at risk” a firm is within a supply network. What is currently

missing from the extant literature, however, is the study of structure and arc-level

risk. Few studies have been conducted on this potential connection, and most concern
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themselves over transportation risk (Linh, Amer, Lee, & Phuc, 2018; Baharmand et al.,

2017; C. Li, Ren, & Wang, 2016). What would be an interesting development in the

literature would be to determine if node-level risks are affected differently than arc-level

risks. In addition, the risk of propagation and the structural characteristics of node/arc

would indeed be a useful contribution if such a connection is found.

2.4.7 Research Questions

Given the literature review and the identified gaps in the extant literature, I therefore

submit the following research questions that this dissertation seeks to address:

1. What are the underlying conceptual constructs of a network structure that current

graph-theoretic measures would reflect?

2. How does 2-ego network structure differ from 1-ego network structure?

3. What is the impact of 2-ego network structure on 2-ego network risk?

4. What is the impact of 1-ego network structure on 1-ego network risk?

5. What is the impact of Node Structure on Node risk?

6. What is the impact of Arc Structure on Arc Risk?

7. Does the relationship between network structure and network risk depend on the

k − ego level?

8. How does 2-ego network risk impact 1-ego network risk?

9. How does 1-ego network risk impact Node/Arc network risk?
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Chapter 3

Theory Development

In this chapter, I will lay the theoretical foundation upon which this research is built.

First, I will offer a discussion on the general study of supply networks. I will offer three

points of contention, namely, that (1)specific to supply networks, a proper taxonomy

of supply network level-of-analysis needs to be clearly defined, (2) more generally to

any network structure, there exist a greater depth to the current taxonomy of general

network-based levels of analysis, and (3) the canonical structure of a network needs to

be characterized through the use of a general and conceptual framework of constructs.

I will first argue that the current taxonomies of levels of analysis within the supply

chain literature is lacking, and even to certain degree, ambiguous. I will identify a

workable taxonomy that is currently salient in the extant literature, but argue that

it is missing what I consider very important amendments for the sake of theoretical

completeness, as well as offer a theoretical foundation upon which I will rest other

arguments for tangential topics within this dissertation.

After, I will argue that the level of analysis from a pure canonical network perspec-

tive is also incomplete. Thus far, most researchers study relationships within networks

from either a “global perspective” or a “local perspective”. I argue that studying re-

lationships within these two extremes is either impractical (in the case of the former)

or myopic (in the case of the latter). As such, I argue that a general network structure

actually has a much more refined taxonomy of levels-of-analysis. I will argue that the

introduction of a construct of which I have defined as the k-ego network is a solution

to the problem of understanding relationships in-between these two extremes.

From the perspective of characterizing a canonical network structure from a con-

ceptual point of view, I will then establish a theoretical framework upon which I argue
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network structures rest upon. Throughout my literature review, I have found, shock-

ingly, that no attempts have been made to synthesize the graph-theoretic and social-

network-theoretic measures into a handful of conceptual dimensions (constructs) of the

network. These dimensions, I will argue, make up any form of network (directed, or

undirected, and in any field of study, and within any given context). I will argue that

there exist five fundamental dimensions of a graph’s canonical structure, and argue how

and why the currently known graph-theoretic measures of structure are associated with

these dimensions. I will offer clear and unambiguous definitions of these dimensions as

well.

After, I will offer a philosophical discussion on risk measurement. These arguments

will cement the foundation for my arguments as to why I leverage the measurement

framework in this dissertation. Indeed, there has been a plethora of methodologies

proposed to measure and classify “risk”. I argue in the discussion that the primary

reason that this is the case is due to an inherently philosophical disagreement between

the varying perspectives in scientific philosophy. I last argue that the disagreements

and varying perspectives can be synthesized into a singular framework of which is all

encompassing of these differing perspectives, namely, the Bayesian Philosophy.

After this discussion, I will argue that the extant literature has conflated two im-

portant and naturally distinct constructs: risk and risk propagation. I will motivate a

proper definitional line of demarcation between these two constructs, and argue that it

is important that researchers begin to take into consideration the differences between

these. Propagation is a relatively new area of study in the supply chain literature. Given

that it is still in it’s infancy, it would be worth while to offer a formalized definition

that distinguishes these two constructs from each other, despite them being related.

One of the major issues in measuring risk propagation is that many presume risk can

only flow within a few well-defined paths throughout the network. After my discussion

on the line of demarcation of the aforementioned constructs, I will argue that the

aforementioned assumption, of which most deterministic and even more recent Bayesian

Network models rest upon for their analysis and measurement, is inherently flawed

within the study of supply network risk propagation. Indeed, many have applied the
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deterministic model of disruption propagation to risk propagation. I will argue that

these two constructs, while related, are yet distinct. Furthermore, I argue that there

is a major issue with applying deterministic-based disruption propagation models to

study risk propagation in supply networks.

Thereafter, I will argue that many of these deterministic models miss a phenomena

that I have defined as the “Invisible Path of Causality”, something that is inherent

within a supply network due to it’s various dimensional contextual levels of analysis. I

will then argue that the only way to account for these paths of which the prior literature

has failed to account for is via the proper application of the Bayesian Philosophy and

the various network models within it. I will illustrate, however, that many of whom

have applied the Bayesian Network approach have done so inappropriately, and often

miss some of the most useful aspects of the theoretical framework (namely, probabilistic

reasoning).

After presenting my arguments as to why current deterministic models are insuf-

ficient to measure risk propagation, and why current Bayesian Network models have

fallen short in proper risk propagation measurement, I will offer a discussion on what

we mean by “risk propagation” within a supply network. I will carefully define three

constructs of risk propagation. There is no doubt in this author’s mind that more exist.

As a foundation for future research, however, these three basic interpretations of risk

propagation are of the utmost importance to currently focus our attention on, as I will

argue they capture most of what many believe “propagation” comprises of.

The primary issue with the topic at hand is that it is inherently mathematical,

however, I am going to characterize them from a conceptual perspective. In light of

this, I feel the need to justify the approach of conceptual development rather than

provide formal mathematical proof. Let me be clear. The theory I have built below

is conceptual, about something that is mathematical. Some may feel that I should be

providing a hard mathematical proof to either motivate or justify my hypotheses. I will

argue that this is not necessary, since I am not attempting to understand relationships

between what I will identify as “observables”, but rather, between the “constructs”,

which no mathematical equation can fully explain. Hence, I find that there is a need for
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me to justify my method of argumentation, so I can proceed with the formal arguments

on a solid philosophical footing to avoid the criticisms I would expect from some that

tend to view these constructs within a more mathematical frame of reference.

Last, in this chapter, I will develop a collection of hypotheses that seek to answer the

primary research questions at hand. I will justify each hypothesis resting on work within

the previous literature. Conducting a full-scale mathematical proof for each of these

hypotheses would be difficult, if not meaningless, given the conceptual nature of the

material at hand. Given that we have conceptual constructs of structure and risk, I feel

that the most appropriate way to justify these hypotheses is through a combination of

using what has been found in the extant literature in regards to relationships between

structure and risk. In this dissertation, I will opt out of mathematical derivations.

While they may help to provide theoretical strength between the constructs, I argue

that they are not necessary for the topic at hand.

3.1 Supply Chains and Network Structure

3.1.1 The Level-of-Analysis for Networks: A Contextual Perspective

In the literature review, I stated that Peck had organized the construct of a supply

chain across multiple levels of analysis. These levels were inherently contextual, that

is, based on the descriptions of the nodes and edges within what one means when they

refer to “the supply network”. As mentioned earlier, the precise definition of the supply

chain is fairly ambiguous, and is entirely dependent on how one characterizes the nodes

and edges within the network. (Carter et al., 2015)’s framework avoided such issues

by merely using the term agent. Their framework for the Theory of Supply Chain was

indeed general enough to encompass nearly all research that had been conducted within

supply chain management (Carter et al., 2015).

However, I argue that when a researcher (and equally important, a practitioner)

within the supply network literature (and in practice) seeks to understand some new

relationship between constructs, or when they introduce new constructs for that matter,

that they should carefully argue as to which level (or levels) of analysis does (do) their
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theory apply? Careful definition of the nodes and links within the network from a supply

chain contextual perspective is important, as it removes the ambiguities that seem to

exist within the extant literature. For example, some within operations research may

construct vehicle routing problems within a “supply network”. The first fundamental

question before taking on such an endeavor would be: “what is the definition of the

node, and what is the definition of the link?”.

This may seem at first like an trifling question, as the typical answer would be “the

firm” and “material flow”, respectively. However, even the definitions of “the firm” and

“the material flow” are ambiguous without being more specific. For example, there is

little doubt that a distribution network comprising of warehouses and manufacturing

plants is often considered a “supply network” in vehicle routing models (Melo, Nickel,

& Saldanha-Da-Gama, 2009). However, “the firms” would be physical locations, most

likely with many locations under the ownership of one firm, and others under the

ownership of another firm. If we look towards more of the strategic literature such

as joint-venture formation within supply networks, then “the firm” is not a physical

location, but rather the entity that comprises of all locations, people, and stakeholders

as well as assets, where a single node would represent all of these, and a link would

represent a form of a buyer-supplier relationship (either via contract agreement, physical

material flow, etc)(Carnovale & Yeniyurt, 2014). That is, the former (the distribution

network) is inherently embedded into the latter (the organizational network).

Hence, by the above illustration, we can see some potential issues that may arise

when theory is constructed absent of a clear indication of the specific supply chain level

of analysis. The natural question that arises, however, is: if the level of analysis within

a supply chain is important to consider, then what are the levels of analysis in the first

place?

Peck offers a brilliant taxonomy of supply network level of analysis, wherein she

argued that the supply chain has 4 distinct levels of analysis (Peck, 2005). I will review

each of them now. I will argue after, however, that her model is incomplete, and requires

revision. Namely, I will argue that there exists one additional level of analysis below

her lowest proposed level, and two higher levels of analysis above her highest proposed
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level.

On Peck’s lowest level of analysis, of which she refers to as the “value stream/product

or process” level, nodes represent organizations and links represent more of a “logistics

pipeline”, where the product “flows” from organization to organization, each one adding

value in the process. She argues that both material and information flows through on

this dimension of the network. The next dimensional level that Peck describes is that

of asset and infrastructure dependencies. On this level, nodes represent fixed assets

such as facilities, physical locations, or components of an IT infrastructure such as

computer hardware. The “links” on this level represent the connections between these

assets, that is, the modes of transportation such as communication, railways, roads,

waterways, etc(Peck, 2005).

The next dimensional level up, Peck argues, represents an organizational network.

She argues that nodes represent organizations and edges represent dependencies be-

tween those organizations such as trading relationships and power dependencies. She

argues that this is the “corporate risk management, business strategy and microeco-

nomics” level of analysis. Last, Peck describes the highest level of analysis, which is the

“environment” level of analysis. She argues that this is the “wider macroeconomic and

natural environment within which organizations do business, assets and infrastructure

are positioned and value streams flow” (Peck, 2005, pg. 223).

Unfortunately, Peck does not offer a definition between nodes and links at this

level of analysis. In fact, in one of her diagrams demonstrating this multi-dimensional

system, she writes “???” at this level(Peck, 2005). For the sake of completeness,

I will argue that this level of analysis should be split into two additional levels of

analysis. In addition, I argue that this taxonomy of supply chain level of analysis is

incomplete. It fails to account for the interactions between firms and consumers, as

well as in between consumers. This is especially important to consider, at least from

a theoretical perspective, given that social networks now dominate a communication

connection between firms and consumers (as well as between consumers).

First, directly above the organizational-network level of analysis should rest an

industry-level of analysis. Here, nodes represent individual industries or government
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entities and links represent the dependencies of common forms of resources that these

industries require to produce value for products that are commonplace within those

industries (and, links to the government nodes when there is significant regulatory

interaction in those respective industries). Second, at the highest level of analysis, I

argue that nodes should represent countries and links between the nodes represent trade

agreements and international product flow between the countries.

Last, I argue that there should exist, at the very lowest level of analysis, a “peo-

ple supply network”. The nodes in this network would represent a consumer (where

a consumer is defined as an individual of whom has a need for the product, but does

not necessarily know about or possess the product), a pseudo-consumer (defined as an

individual of whom knows about the product and does not have a need for the product,

but has a direct social connection to a consumer or a stakeholder), a stakeholder of

whom either directly or indirectly is involved with the product (an employee, an owner,

a representative, an investor, etc) and last a government official of whom regulates the

product. The “connections” between nodes in this network would represent commu-

nication, physical material handling, or financial handling with respect to the product

(either its existence, its purpose, its delivery, its manufacturing, its design, etc) between

two individuals.

I anticipate much criticism to this conceptual addition to the dimensions of a supply

network due to practical concerns. However, I argue that such an addition is necessary

to justify certain dynamics between supply chain constructs of which are studied at the

higher and more practical levels of analysis. Furthermore I later leverage this newer

dimension in order to justify some theoretical aspects of risk propagation. As Friedman

states, “the relevant question to ask about the assumptions of a theory is not whether

they are descriptively realistic, for they never are, but whether they are sufficiently good

approximations for the purpose in hand. ”(Friedman, 1953, pg. 14). From a practical

perspective, of course it would be impossible to study these networks in their entirety

(as it is much greater in size than the organizational-level supply network).

However, certain dynamics between consumers and firms, and among consumers

themselves, seem to lack proper justification within a supply chain theory of which
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is missing one of the most important actors which serve as it’s mere justification for

existence: the consumer. The consumer is what drives this existence. Supply chains

exist to provide value contribution to a product. But a product can only exist if there

is a need from a market, and of course, the market itself comprises of consumers. This

is often an overlooked point of contention when academics have attempted to place

supply chain on a theoretical basis. While it is true that we had strayed away from

understanding what we are managing (Carter et al., 2015), we also, in my view, have

strayed from for whom are we managing.

Hence, this amended taxonomy of Peck’s “supply chain” allows the researcher to

direct their focus of research towards a specific level of analysis of the supply chain

itself. Taking this conceptualization of the supply chain together with Carter’s Theory

of the Supply Chain (Carter et al., 2015) sets a foundation upon which research in

Supply Chain Management can be fruitfully developed while at the same time remaining

theoretically well-grounded. It should be noted, however, that despite a supply chain

having various dimensions of analysis, a single level is still considered to be a complex

adaptive system. Only the definitions (within (Carter et al., 2015)’s theory) of “agent”

and “behavior” change when a shift in the level of analysis is made. All else should

remain equal. Therefore, given the prior arguments and development above, I formalize

the following:

Definition 3.1.1. The Supply Chain Level of Analysis Taxonomy is a collection of

levels of analysis that describe unambiguously the nodes and links within a supply

network. The levels are as follows, from smallest to largest:

1. The People Supply Network- Nodes are consumers, pseudo-consumers, stake-

holders, or government officials. Edges represent material, information or financial

flows between individuals of which are directly related to the product for which

the network describes.

2. The Value-Chain Supply Network - Nodes represent organizations (more as

a proxy to a specific process) that have a specific value-adding process in regards
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to the product. Edges represent the same three dimensions, namely material, in-

formation and financial flow. This dimension describes more of the inter-relations

and integrations between the various value adding processes for the specific prod-

uct.

3. The Infrastructure Supply Network - Nodes represent physical locations

and entities such as manufacturing plants, warehouses, computers, etc. Edges

represent the transportation mechanism for material, information or money, in

relationship to the specific product.

4. The Organizational Supply Network - Nodes represent organizations. Edges

represent strategic relationships such as strategic alliances, buyer-supplier rela-

tionships, and power dynamics, in relationship to the specific product.

5. The Industry Supply Network - Nodes represent industries and government

institutions. Edges represent the same three flows as before in regards to a type

of product (or more generally a need for the product).

6. The Global Supply Network - Nodes represent countries and edges represent

trading agreements between countries, again, specific to a type of product (or

more generally a need for the product).

3.1.2 The Level-of-Analysis for Networks: A Non-Contextual Per-

spective

Not only is the level of analysis from a supply chain theory perspective important to

emphasize during the theory development of any new conceptual addition to nomolog-

ical nets, but so too is the level of analysis from a canonical structural perspective. As

mentioned earlier, supply chains are inherently networks. While I have argued that it

is important to provide a clear contextual level of analysis whilst developing additions

to supply chain theory, I also will argue that providing the specific network level-of-

analysis is equally important. At any of the aforementioned levels of analysis, there

exists the network. These level of analyses only speak towards the definitions of the
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nodes and the arc. They fail to provide the focal point of which nodes and arcs are

under study.

Is a single node under study? An arc? A group of nodes? As my prior literature

review has revealed, a few levels of analysis from a pure canonical network perspective

have be leveraged. Researchers have focused their attention on only a handful of these:

1. The Node Level

2. The Link Level (Also known as the dyad)

3. The Triad Level

4. The Ego-Network Level

5. The Network (or Global) Level

I argue that this taxonomy of structural-based levels of analysis is also incomplete.

There clearly is no gap between node and dyad, dyad and triad, triad and ego. However,

there is a gap between ego and global. I argue that all of these levels of analysis can

be easily summarized through the construct of what I define as the k-ego network. I

define this level of analysis recursively for ease of exposition:

Definition 3.1.2. The 0-Ego-Network of a node n or an edge e is the node or edge

itself.

Definition 3.1.3. Let n be an element in a graph (either a node or an edge). Let

Ek−1 be the group of nodes in the (k− 1) Ego-Network. Then the k-ego network of an

element n is the induced subgraph of the union of nodes in Ek−1 along with the nodes

in the respective 1-Ego-Networks of all nodes in Ek−1. That is, the k-Ego-Network of

an element n is the induced subgraph of all nodes in the respective 1-Ego-Networks of

nodes in the (k − 1)-Ego-Network of element n. If the element n is a node, then it’s

1-Ego-Network is simply the induced subgraph of all nodes it directly connects to. If n

is an edge, than it’s 1-Ego-Network is the union of the 1-Ego-Networks of the nodes of

which the node is incident to.



106

n1

1-Egon1

2-Egon1

3-Egon1

n2 n3 n4

n5 n6 n7 n8

n9 n10 n11 n12

n13 n14 n15 n16

Figure 3.1: The 0-Ego-Network (in yellow area), 1-Ego-Network (in red area), 2-Ego-
Network (in green area), and 3-Ego-Network (in blue area) of node n1.

To illustrate this definition, I direct the reader to Figures 3.1 and 3.2. In both of

these illustrations the networks are exactly the same. However, the point of reference

is different. In Figure 3.1, we can see that the point of references is node n1. In this ex-

ample, the 0-Ego-Network would just simply be the induced subgraph on the collection

of nodes E0 = {n1}. Moving one level up, we see that the 1-Ego-Network would be n1

together with all the neighbors of n1. This would be the collection E1 = {n1, n2, n5, n6}.

Next, the 2-Ego-Network would be all the nodes in the 1-Ego-Network together with

the neighbors of all the nodes in the 1-Ego-Network. We can see that these neighbors

are n9, n10, n11, n12, n8, n4, and n3. Therefore, the nodes in the 2-Ego-Network would be

E2 = {n1, n2, n3, n4, n5, n6, n8, n9, n10, n11, n12}. Last we have the nodes in the 3-Ego-

Network, which again would comprise of the nodes in the E2 together with the neighbors

of all nodes in E2. These neighbors are n13, n14, n15, n16, and n7. Hence, the 3-Ego-

Network would be E3 = {n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, n15, n16},

or, in other words, the entire network itself.

It is wise to notice that these levels of analysis are with respect to the node n1.

These levels of analysis change when the perspective from which analysis is conducted

changes. For example, Figure 3.2 illustrates that same exact network, only with the

Ego-Network analysis conducted from the perspective of node n7. Following a similar
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n1

0-Egon7

2-Egon7

3-Egon7

1-Egon7

4-Egon7

n2 n3 n4

n5 n6 n7 n8

n9 n10 n11 n12

n13 n14 n15 n16

Figure 3.2: The 0-Ego-Network (in yellow area), 1-Ego-Network (in red area), 2-Ego-
Network (in green area), 3-Ego-Network (in blue area), and the 4-Ego-Network (in gray
area) of node n7.

breakdown as earlier, we notice that the nodes in the 0-Ego-Network is the set {n7}.

When we move to the 1-Ego-Network, the nodes are E1 = {n7, n8, n3, n4}.

By the same logic posed earlier, the 2-Ego-Network would comprise of the nodes

E2 = {n7, n8, n3, n4, n2, n5, n6, n10, n11, n12}. Next is the 3-Ego-Network, which has

the nodes E3 = {n7, n8, n3, n4, n2, n5, n6, n10, n11, n12, n1, n9, n14, n15, n16}. Last, of

course, is the 4-Ego-Network, which would be equivalent to the entire network: E4 =

{n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, n15, n16}. Notice how these sub-

groups of nodes are different than that of the n1 perspective. This illustrates that fact

that k-Ego-Networks are relative to a given node in the graph (and edge, where the

“ego network” of the edge would be the union of the Ego-Network of each respective

node in the dyadic relationship).

Hence, we can relate the traditional levels of analysis to this more general construct

as follows:

1. The Node Level = 0-Ego-Network of a Node

2. The Link Level (Also known as the dyad) = 0-Ego-Network of an Edge

3. The Triad Level ⊆ k-Ego-Network of a Node/Edge
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4. The Ego-Network Level = 1-Ego-Network of a Node/Edge

5. The Network (or Global) Level = M -Ego-Network of a Node/Edge, where M

is the smallest such number such that all nodes in the network are also in the

M -Ego-Network, and vice versa.

While I do contend that this is not an exact equivalence of prior levels of structural

analysis, I do argue that prior levels can indeed be related to this new construct as

I have illustrated above. This definition of a structural level of analysis allows the

researcher of supply networks (and more generally of any field of study that leverages

network theory) an easy to use toolbox to (1) clearly specify the level of analysis using

only a number of “levels up” from a given location (Node or Edge), (2) encompasses

prior levels of analysis that supply network theory has been built on, (3) allows for

structural-based measurement of supply network constructs such as “visibility”, or a

more methodical definition of “the horizon”.

3.1.3 Network Characterizations: A Mess of Context

In the literature review, I had reviewed through a few of the basic measures of network

structure that past researchers have employed in their research. The issue that I cur-

rently identify, however, is that there are so many measures of “structure”, and yet,

very few attempts to synthesize them into a handful of dimensions. As mentioned, Choi

had made a prior attempt at doing this with his three dimensions of “structure”. How-

ever, the dimensional approach he had taken was myopic with respect to other types

of graph-theoretic measures, and he involved conceptual characterizations of supply

chain. In addition, his dimensional suggestion was partially rested upon a combination

of graph-theoretic measures and context-based measures. While these are useful for ex-

plaining strategic dynamics within the supply network, they are practically useless for

describing the pure structural components of the supply network. Indeed, Choi simply

characterizes “network structure” through the use of only a single dimension, namely

“complexity”. Yet, there are sub-dimensions of “complexity” that would be fruitful to

further explore.
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A more thorough examination of the extant literature revealed that no attempts, to

the best of this author’s knowledge, have been made to reduce these plethora of network

measures into only a handful of dimensions. There may indeed be a perfectly acceptable

reason for this. From the graph-theoretic perspective, mathematicians often do not rest

on dimensionality reduction to characterize mathematical structures. Their character-

izations are axiomatic in nature. Furthermore, their characterization of “structure”

typically rest on studying a variety of different morphisms between structures. That

is, they have a tendency to conduct classification or organization of structure based on

equivalence classes of mappings between structures, rather than characterizing those

structures via inherent properties.

As for the social science perspective on network analysis, I argue that such an at-

tempt for dimensionality reduction and description has not been conducted simply due

to two reasons: (1) correlations between the measures are often so high, that they typ-

ically take a simple average of the measures (Carter, Ellram, & Tate, 2007) and think

of this reduction as simply a means to an end (to reduce correlation between exogenous

factors). In addition, (2) social scientists are more interested in understanding how an

environment evolves, rather than describing the static characteristics of the environ-

ment itself. This may seem counter-intuitive, since a description of the environment

is necessary in order to understand an “evolution” of the environment itself (and the

results of various behaviors from actors within the environment).

However, in my view, social scientists have taken for granted the characterization

(or rather, lack thereof) of the environment (i.e. the network) as something which is

a fleeting thought, or a trifling matter, and instead take for granted of the fact that

the characterizations are easily measured by graph-theoretic mechanics, that they have

no logical reason to study the structure itself. To them, it would seem as though it

were a pointless endeavor, since structure is only a proxy to describe the interrelations

between actors, which is their more primary pursuit of knowledge.

What is interesting is that any research in social network analysis focuses mostly on

the contextual behavior of actors within a network, without first clearly defining the

structural attributes of the environment in which they operate. It would be analogous



110

to Issaic Newton trying to understand the relationship between gravity and movement

of particles in the universe, without first describing the nature of the universe itself first.

Maybe this is due to social scientists holding a more Objectivist view of science towards

their primary field of study. Recall that Objectivism does not assume a context, and

rather rests on the belief that there exist only a single “nature”. However, from the

Relativist perspective, context matters (G. B. Kleindorfer, O’Neill, & Ganeshan, 1998).

In any case, I have argued that there exists a lack of research to properly characterize

the structure from a more theoretical and conceptual approach of which is context-free.

I may be mistaken, since this literature is vast. But upon a very structured and thor-

ough review of the literature, this author has yet to find an attempt to view “network

structure” as a synthesized taxonomy of inherent context-free structural dimensions.

There is no doubt that I will receive criticism of this argument that I have put forth.

Some may contend that such attempts have been made in the social science literature.

However, as Burt mentions, the structure of networks have primarily been focused on

actors and relationships between those actors. In regards to measuring the “relation-

ship” or more generally the “link” between two actors, Burt argues that measurement

can be carried out by understanding the strength of the relationship as well as the level

of joint involvement in activities that both parties engage within.(Burt, 1982).

The primary concern that I raise is that terms such as “strength” and “activity”

are inherently rested upon a proper context in which the the network model is being

leveraged. I furthermore argue that this research has not much been of interest to the

social scientist or the mathematician. This is not a task for mathematicians, as such

an endeavor is not in their typical repertoire, or primary area of focus. In addition,

social scientists seem to have avoided this endeavor as well by simply assuming that the

environment has already properly been characterized by mathematicians (which they

have not), via the graph-theoretic measures, or, they feel the need to characterize the

network with context-dependent constructs and definitions (such as in (Choi & Krause,

2006), for example). In addition, these scientists view these measures as being more

reflective of agent behavior or state than they do of network structure (for example,

centrality is not viewed as a structural component, but rather as a means for describing
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power or influence of an agent) (Burt, 1982; Freeman, 1978). I therefore argue that a

revision to structural analysis of networks is needed. One of which is designed from a

context-free perspective.

3.1.4 The Fundamental 5-Dimensions: Towards Characterizing Net-

works

Every graph, no matter the context, can have a structure of which can be characterized

by two fundamental dimensions: what is the state of being, and how can one operate

within that state of being (assuming the structure, or “state”, cannot be changed).

That is, structure can be characterized in regards to both attribute and description of

capacitated and potential behavior within the network. We can attempt to describe

the structure of the network from the perspective of a static sense of time. That

is, assuming that no actors within the network can “move” within a single unit of

time, the primary inquiry rests within the canonical structural characteristics. That

is, what is the current state of the structure, assuming behavior is held static? This

is contrasted with describing structure based on potential behavior within the network

itself, without changing any structural characteristic. That is, describing the structure

of the network from a “flow” or “potential flow” based perspective. I therefore contend

that all networks, regardless of context, can be described structurally from these two

viewpoints: what it is, independent of the actor’s movements, and how the is can be

leveraged to move within the is.

Here is an analogy to rest on during this discussion that will make this dimensional

characterization much more intuitive to understand. For example, we can describe the

“structure” of the transportation network of New York City from one of two perspec-

tives: what the streets and modes of transportation “look like”, and, the ability for

individuals to “flow” through that structure. From the former perspective, we most

likely would describe the “structure” of NYC according to how many subway lines ex-

ists, how many roads there are to travel upon, the average length of those nodes, and

so on. That is, we would be describing static-based attributes about the NYC trans-

portation system. On the other hand, we can describe the ability for one to “move”
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within that structure. Such examples may include the number of paths between any

two points in the city, the number of circular paths within the roads of the city, the

ability to access other areas of the city during the event of a shut down of a road or

a subway. That is, the second dimension, or perspective, describes what actors can

“do” within the NYC transit system, while the first dimension merely describes the

attributes of the system itself in the static sense.

A traveler in NYC might first know their current location. They then may look at

a subway map. The subway map would indicate the locations that the subway system

can serve. In addition, the traveler may know from this map how “far apart” the

locations are from each other. This, of course, would be describing the subway system

from a static perspective. The traveler than may look at specific subway lines that

run from one location to another. In addition, they may observe the timetables of the

subways that travel throughout the network. The notions of “path” and “movement”,

or “potential movement” as well as “time of travel”, again, are describing the structure

of the network, but from a dynamic perspective. Dynamic, not in the sense of changing

the subway system itself, or the various subway lines, but rather the current ability to

travel within the network itself, and to understand the structure of the network separate

from one’s ability to move within the network.

Generalizing this idea, we can describe the network structure of any graph or net-

work by considering these two primary dimensions. There exist sub-dimensions, of

which will be considered themselves the primary dimensions of this dissertation. In

the static sense, the constructs of distance and clustering are “static”, in that they

don’t depend on the actor within the network conducting a form of behavior in order

to describe it’s current state of being. On the other hand, the notions of feedback (the

ability to “loop back” to a position in a certain way), connectedness, and accessibility,

respectively, describe the structural characteristics of which depend on (or describe) an

action that could be taken by an actor within the network itself. Paying no mind to

this distinction between “static” and “dynamic” structural attributes of a network, I

will argue that a complete network structure can be inherently characterized according
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to five fundamental structural dimensions: Distance, Centrality (Accessibility), Clus-

tering, Feedback (or Thickness), and Connectivity. All graph-theoretic measures can

be categorized within any 5 of these fundamental dimensions. I will review and justify

each one below.

Centrality

Centrality has been discussed at length in a variety of works on graph theory (Borgatti

& Everett, 2006; Borgatti & Li, 2009). Typically it describes how “well connected” a

node is to other nodes in the network. The construct of “well-connected” can take on

multiple interpretations. For example, some interpretations of centrality have been that

it is analogous to “power” or “influence” (Carter, Ellram, & Tate, 2007; Burt, 1982) as

well as in regards to how other “well-connected” nodes are connected to another “well-

connected” node (Eigenvector-Centrality) (Kito et al., 2014). Another interpretation

of “centrality” is how many other nodes it is connected to (degree centrality), as well as

how accessible other nodes are, with respect to graph distance, a node is to other nodes

(closeness centrality) (J.-B. Kim, 2015). The notion of centrality has been described

from an “embeddedness” perspective. It has been used to describe the general position

of an overall industry relative to other industries (Nuss, Chen, Ohno, & Graedel, 2016)

as well as product positioning (Nuss, Graedel, Alonso, & Carroll, 2016).

Centrality has also been viewed from the perspective of being able to “reach”,

“share”, or “connect” with other actors within a network. That is, the perspective

taken from this view is that of “accessibility” (Carnovale, Rogers, & Yeniyurt, 2016).

Some have also characterized centrality from a “connectedness” perspective. Rather

than a measure of “ability to reach”, some have seen it as a measure of “ability to

remain accessible” (Y. Kim et al., 2015). This, I argue however, should not be consid-

ered a proper interpretation of “centrality”, but rather that of “connectedness”. While

related to the notion of “accessibility”, connectedness describes the opposite character-

istic (ability to remain accessible in the event of a structure change, verses the inherent

characteristic of accessibility).
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Yet another interpretation is that of “betweenness”, which describes the proportion

of paths that travel through a given node with respect to the total number of possible

shortest paths between two nodes. This is more of a measure of “relative accessibility

or “accessibility relative to a fixed location”. In light of all these interpretations of

“centrality” in the prior literature, the common trend between them all is that of

“accessibility”. I therefore will define the dimension of centrality as:

Definition 3.1.4. The characteristic of centrality of a node or a network is the ability

for a node to reach another node, through a form of travel or flow, within the network.

There are a variety of graph-theoretic measures that can be expected to describe this

dimension. First and foremost, the construct of centrality is inherently dependent on

that of distance. Node’s being “accessible” speaks towards the notion of flow or travel.

Upon any travel, if we seek to understand how “easy” it is to travel, one aspect in doing

so is that of distance. We can henceforth expect any graph-theoretic measure which

involves the basic definition of geodesic distance to be categorized in this dimension.

This is simply due to the fact that distance is itself inherently describing the construct

of “accessibility”, which of course the definition of centrality rests upon. Hence, the

following metrics can be expected to comprise of the centrality dimension: betweenness

centrality, degree centrality, closeness centrality, eigenvector centrality, eccentricity, and

average shortest path length.

Connectedness

Connectedness describes the dynamic ability for one node to “reach” another node in

the graph through a walk on the edges of the graph(Diestel, 2017). As I have mentioned

above in the previous sub-section, this dimension pertains more towards a network’s

ability to remain “accessible”, rather than it’s inherent level of accessibility. Typically

there are two notions of “connectedness” in traditional graph theory: edge and node

connectedness. Both notions describe how many nodes/edges must be removed in

order to disconnect the network. In this sense, the connectedness describes the extent
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to which a network can remain “connected” or accessible (i.e. any two nodes can reach

each other via a path) in the event of a failure.

This notion has been used to model resiliency of a supply network (Y. Kim et

al., 2015). However, this is an improper definition and incongruent with the extant

literature. Resiliency refers to “the ability of a system to return to its original state

after disruptions” (Y. Wang & Xiao, 2016; Ivanov, Dolgui, & Sokolov, 2017; Blackhurst,

Dunn, & Craighead, 2011), rather than it’s ability to withstand such a disruption. The

construct of “ability to remain connected” or “ability to withstand” is known in the

network and supply chain literature as robustness (Nair & Vidal, 2011). In this sense,

it is a deterministic metric, as it speaks towards the “worst-case-scenario” of which is

reflective of the network structure, rather than incorporating randomness. The same

type of measures can be designed for collections of nodes like cliques or ego-networks.

That is, the scholar of graphs can look past a network’s ability to “remain accessible” via

edges and nodes and more outwards towards groups of nodes and edges (hence reflecting

group-based robustness). Any graph-theoretic measure that relies on the “removal” of

a node, edge or combination thereof would capture this underlying construct of “ability

to remain connected”. I hence expect edge-connectivity, node-connectivity, ego-network

connectivity, clique-based connectivity, and coreness measures to properly describe this

dimension.

Edge connectivity is defined as the number of edges that must be removed to discon-

nect the graph. Node-connectivity is defined as the number of nodes required to remove

in order to disconnect a graph. When a node is removed, all of it’s corresponding edges

are also implicitly removed. The k-Ego-Network connectivity, a measure that I have

defined in this dissertation, is the number of levels that one must “go up” in k in order

for the collection of nodes to disconnect the network.

Coreness of a node is defined based on the k-core of a graph. According to this

definition, “informally, a k-core is obtained by recursively removing all nodes of degree

smaller than k, until the degree of all remaining vertices is larger than or equal to k”

(Montresor, De Pellegrini, & Miorandi, 2013). The coreness of a vertex is then defined

as the maximum k such that it lies within the k-core of the graph, but not within the
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(k + 1)-core of the graph. This inherently rests on the act of a “removal”, and by my

definition, would therefore characterize “connectedness”.

Hence, heretofore, I define the construct of connectedness as:

Definition 3.1.5. The characteristic connectedness is the ability of a network or an

element of a network to remain accessible after the removal or blockage of elements

within the network.

Clustering

Yet another dimension of a graph is it’s tendency to “cluster” with other nodes in the

graph. Indeed, this dimension has been defined as “the degree to which the network

is formed of tightly interconnected cliques”(Ahuja et al., 2012, pg. 437). There can be

many operationalizations of the notion of a “cluster”. Clustering can be understood

not from the lens of degree, or “closeness”, as intuition might suggest, but rather, of

“cliqueness”. It describes the extent to which nodes are “close” to each other, but not

necessarily in the sense of distance, but rather that of “grouping” or “completeness”.

Clustering and centrality are indeed related to each other (Schilling & Phelps, 2007).

Upon initial inspection of our notion of “clustering”, one may be inclined to define such

a construct as nothing more than either an equivalence or a sub-dimension of centrality.

However, many of the metrics used to measure the extent of “grouping” or “cliqueness”

is not based on distance, but rather that of counting. One of the most popular measures

of clustering is of course the clustering coefficient. But let us observe it’s calculation.

It is a ratio of the number of actual triads a node has in it’s ego-network divided by

the number of possible triads with it’s neighbors for the node in the network(Strogatz,

2001). This calculation is conducted naturally by counting.

Another measure of “cluster” is that of “cliqueness”. A clique in a network is

collection of nodes such that the induced subgraph is itself a complete graph (Burt,

1982). For example, if we have a network with nodes A, B, C, and D, and A is

connected to B and C, B is connected to A, C and D, C is connected to A, B and
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(a) An example of clustering. We can see that
A,B, and C form a clique. We also see that B,C,
and D also form a clique.

A

B

C

D

(b) The density is 0.67 while it’s clustering co-
efficient is 0.33

Figure 3.3: Caption place holder

D, and D is connected to B, and C, then we can see that the nodes A, B and C form

a clique of size three, since the induced sub-graph of A, B, and C form a complete

graph (all nodes have an edge between every other node). This is illustrated in Figure

3.3a. The maximum sized clique is therefore found through a counting process. The

same holds true for the number of cliques of size k in a network. Another measure

that would characterize cliques would be density. This is not necessarily a one to one

relationship, however, since high density graphs do not necessarily predict the level of

“grouping”. However, if there exist a high number or high degree of grouping, then we

should expect the densities of graphs to be much higher. For example, it is possible to

have a graph that has high density, but low levels of grouping. On the other hand, high

levels of grouping may result in higher density levels,although this is not necessarily

always true. If we go back to the aforementioned example with the four nodes, with

the connections, however, of A to B, A to C, B to D, C to D, then the density is 0.67

(fairly high), while it’s average clustering coefficient is 0.33 (fairly low). We can see

this illustrated in Figure 3.3b

While the relationship between density and clustering is not very clear, we can

contend that density and clustering are at least related in a proportional sense. Hence,

this is enough reason to suggest that density may, in combination with other metrics,

be reflective of the degree of clustering. Density, of course, is again dependent on a

counting procedure in order to obtain its value. Therefore, the notion of counting arcs

or sub-structures is representative of the construct of clustering. Variables that would

involve this process of counting and of which could can be expected to represent the
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extent of clustering within a network would be the clustering coefficient, the number of

triads and structural holes, the density, and clique number. The common characteristic

in all these interpretations of clustering is the notion of the counting for the means to

an end, in order to determine some sense of “completeness”. Therefore, I define the

construct of “clustering” as :

Definition 3.1.6. The characteristic of clustering of a network or a node within a net-

work is the extent to which the network or node exhibits membership within complete

groups. That is, it is a measure of “completeness” in the graph-theoretic sense.

Feedback/Thickness

Graphs often have what are known as cycles in them. A cycle is a sequence of nodes

that one must take from a starting node in such a way that no node or edge is visited

twice. The famous “traveling salesman problem” is an example of a problem that

involves a cycle in a graph (namely, the “best” cycle). Cycles can explain a graph’s

“ability to flow back”, more specifically, the ability of an actor at one node to traverse

in a way that allows them to cycle back. The implications for this type of dimension

are tremendous for risk and other related areas in supply networks.

Cycle membership of a node, or the number of cycles and length of cycles within the

network, help describe the movement ability within the network itself. While centrality

measures accessibility, feedback measures a special form of accessibility. It therefore

could be argued that feedback is nothing more than a special sub-dimension of centrality,

since it speaks towards the network’s ability of accessibility. However, what makes this

dimension distinct from the centrality construct is it’s interaction with the construct of

connectedness. Since cycles describe an actors ability to travel back to their starting

location in a specific manner, then the cutting of a cycle would portend a possible level

of robustness. In addition, feedback can be argued to be related to the construct of

clustering. If we have a graph that is highly clustered, of large cluster sizes or of a large

number of clusters, then by definition of the cluster, we must have cycles embedded
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within these types of cliques. Recall that a clique is an induced subgraph of nodes

such that the induced subgraph is a complete graph. A complete graph of nodes of size

three or more would indicate the existence of a cycle. In addition, triads are themselves

cycles within a graph. Therefore, a more appropriate argument would be that feedback

is an interaction between the constructs of centrality, connectedness, and clustering.

It describes the ability of an actor within a network to easily transition back to it’s

starting place within an linear and non-repetitive manner.

If we look at cycles from less of an “ability to move back” perspective and more

from a static structure perspective, then it could be argued that cycles explain a graph’s

“thickness”. That is, from a topological perspective, cycles would themselves determine

the “structure” classification of a graph(just as the genus of a topological space explains

the structure of that space). Observing the construct of feedback from a static per-

spective would therefore lead us to the belief that feedback measures the “ability to

morph and compress”. If we were to compress nodes into other nodes in such a way

that we are only allowed to fuse two nodes into one such that doing so would preserve

all other paths to and from the same node, then we can see that the feedback construct

would lead us to an understanding of minimum (girth) and maximum (circumference)

thickness.

The primary method of measuring this construct involves both counting and mea-

suring distance. Understanding the number of ways in which a node, or any node, in

a network can traverse back to itself entails a sense of understanding the distance in

order to do so. This of course involves a counting procedure. However, the number of

cycles is only one characteristic of feedback. The length of those cycles also describes

the accessibility of a node to traverse back to itself as well as how “thick” the network

is. This interpretation of feedback involves the use of geodesic distance of the graph.

Hence, we should be able to expect that feedback/thickness can be measured using the

girth, circumference, number of cycles, and average cycle size. I therefore and hence-

forth define the dimension of feedback as:

Definition 3.1.7. The structural characteristic of feedback or thickness is the ability
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of a node to traverse the network in a way that it does not travel back to previously

visited locations to itself. It also can be understood to be how thick the underlying

network structure is after a series of compression actions.

Distance

The last dimension is that of distance. Distance describes the “width” or the “length”

of the graph, without the action of “compression”. Lambert and Choi’s early concep-

tualizations of structure of supply networks rested on this type of dimension. It further

describes a nodes ability to access another node in the network, as well as generally how

far apart nodes are from each other, and the center. Distance could be argued to be a

sub-dimension of centrality. There is no doubt that centrality requires the measurement

of geodesic distance in order to properly characterize it. Graph distance requires the

same. The natural question that comes to mind then, is, what makes the construct of

“distance” distinct from “accessibility”?

While centrality rests on the notion of geodesic distance for it’s proper calculations,

one can actually consider centrality to be a sub-dimension of distance, not the other way

around. Distance measures “how far apart” are the nodes, rather than how “accessible”

they are. Of course an argument could be made that supports the idea that these two

ideas are one in the same. Again, I will illustrate this with the example I had used

above.

The notions of distance and accessibility can be appropriately illustrated using the

New York City subway system example. If we would like to speak of the “distance” of

the overall network itself, we may be inclined to measure how far apart the stops within

the subway system are from each other. This again, however, does not speak towards

the “accessibility” within the stops in the network. It may be that two stops from each

other are “far apart”. In other words, at it’s best case, we may need to take multiple

subway lines to reach another stop from our starting location. The number of stops in

between the two is one description of the “distance” of the subway network.
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On the other hand, the ability to travel from one stop to another is not reflected

in the notion of “distance”. It may be there there are over 1000 different paths we

can take starting at our location in order to arrive at our destination. It may not be

optimal in doing so, but it describes the ability to get to that destination from our

starting point. The former idea of “how big” is the subway network, reflects the idea of

the “best way” to arrive at point B from point A. The latter idea of centrality reflects

the number of ways in which we can arrive at our destination, not necessarily in the

“best way” possible (geodesitcally at least).

Therefore, while centrality reflects a network structure’s ability of accessibility, al-

beit, not necessarily the “best” way possible, the distance reflects the graph’s ability to

reach a location using the “best way possible”. Graph distance is therefore measured us-

ing a combination of geodesic distance and the min/max function. We therefore should

expect the number of edges and nodes, the diameter, the radius, the distance from

the center of the graph and eccentricity to properly reflect this graph characteristic.

Therefore, I define:

Definition 3.1.8. The graph characteristic of distance indicates the “best way possi-

ble” to traverse through the graph. It indicates how “spread out” the nodes are from

each other.

3.2 Risk Measurement and Risk Propagation: How Risk “Flows”

3.2.1 A Philosophical Discussion on Risk Measurement

“Risk” in its most general sense is still debated as to it’s meaning. As mentioned earlier,

some view risk as being solely the likelihood of an adverse event manifesting into some-

thing nefarious. Others view it as strictly the potential for something to “go wrong”.

One of the most common approaches, in SCM, is to consider risk as a mathematical

combination of three dimensions: likelihood, consequence, and the sequence of events

that can lead to the consequences (sometimes referred to as detection). That is, some
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view it as a mathematical product of likelihood, severity, and detection.

While many attempt to place risk within a quantitative framework, there are deep-

rooted philosophical problems in doing so that are often overlooked. In fact, I argue

that no consensus among risk measure has been reached due to these problems. It

could be argued, as I will do so here, that the definition and perception of risk is the

result of holding either an Objectivist view or a Relativist view (G. B. Kleindorfer

et al., 1998). The Objectivist holds “the basic conviction that there is or must be

some permanent, ahistorical matrix or framework to which we can ultimately appeal in

determining the nature of rationality, knowledge, truth, reality, goodness, or rightness”

(Bernstein, 2011, pg. 8), while the relativist “not only denies the positive claims of the

objectivist but ... [holds] the basic conviction that when we turn to the examination

of those concepts that philosophers have taken to be the most fundamental-whether it

is the concept of rationality, truth, reality, right, the good, or norms- we are forced to

recognize that in the final analysis all such concepts must be understood as relative to

a specific conceptual scheme, theoretical framework, paradigm, form of life, society, or

culture.” (Bernstein, 2011).

Risk, as we defined earlier, is a combination of likelihood and severity. The notion

of “likelihood” is itself deeply philosophical. From the viewpoint of the aforementioned

dichotomy, the Objectivist views “the likelihood” as being somewhat of a constant

(not in the sense of change, but rather in the sense of perspective), something that

is universal, and that no matter one’s observations, the existence of that likelihood is

not unique to any particular context or individual. That is, the “likelihood” is part of

“nature”. From this viewpoint, we hence are studying “what is”, rather than “what

ought to be” (Keynes et al., 1890). This is not strictly an Objectivist point of view,

but rather an economic positive viewpoint of scientific philosophy.

The relativist, however, may view this differently. Since they reject the notion of

an all universal logical framework where models and theories can be tested against and

within, the idea of having some form of “universal likelihood” is just not possible when

such universal environment fails to exist. The relativist views probability as a measure
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of truth, but relative to a specific framework or theory. This dichotomy of perspec-

tive is personified within the works of Friedman, who comments on the importance

to distinguish normative and positive economics. In regards to legislation that many

within an economy regard as important to their everyday lives, Friedman notes that

“Self-proclaimed “experts” speak with many voices and can hardly all be regarded as

disinterested; in any event, on questions that matter so much, “expert” opinion could

hardly be accepted solely on faith even if the “experts” were nearly unanimous and

clearly disinterested” (Friedman, 1953, pg. 695).

Friedman essentially notes that while normative economics has it’s place in regards

to finding middle ground in ultimate economic goals across those of whom disagree,

positive economics is argued to be no different than any of the other natural sciences.

That is, economics follows laws no different than how physics or chemistry does. The

point here is that positive economics is more of an Objectivist viewpoint where nor-

mative is more of a Relativist view. Friedman’s characterization of positive economics

being a form of natural science of course does not come without potential criticism. As

he states, “of course, the fact that economics deals with the interrelations of human

beings, and that the investigator is himself part of the subject matter being investi-

gated in a more intimate sense than in the physical sciences, raises special difficulties in

achieving objectivity at the same time that it provides the social scientist with a class

of data not available to the physical scientist”(Friedman, 1953).

Furthermore, Friedman argues that theories are not to be judged based on how

close their assumptions are to being “realistic”, but rather on the ability to empirically

validate the predictions that the theory provides. He argues that assumptions cannot

be “realistic”, but does contend that they can be “approximately” realistic. Indeed, he

argues “the relevant question to ask about the assumptions of a theory is not whether

they are descriptively realistic, for they never are, but whether they are sufficiently

good approximations for the purpose in hand. And this question can be answered only

by seeing whether the theory works, which means whether it yields sufficiently accurate

predictions. The two supposedly independent tests thus reduce to one test”(Friedman,

1953, pg. 14).
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Hence, the Objectivist vs. Relativist dichotomy, along with the Objectivist’s sub-

theory of Instrumentalism, raises issues in the settling of a singular framework of risk

measurement, as it would portend a great debate between the measurement of likelihood

in itself. Kleindorfer notes, however, that the Instrumentalist view is not necessarily

a pure subset of Objectivism (G. B. Kleindorfer et al., 1998). Rather, the view is an

answer to the critics of the Objectivist view. That is, if no theory is to be constructed,

then at the least, the Instrumentalist view is a way in which we can organize our

observations in order to make predictions.

This dichotomy and the view of Instrumentalism portends a great strife between

those who view probability as something of which is inherently subjective and those

of whom view it as a measure of the natural world. What is interesting is that prob-

ability in itself is a paradoxical answer to a complex problem: that of characterizing

uncertainty (how can we characterize something of which we are uncertain?). Indeed,

as Popper states, “these [random events] seem to be characterized by a peculiar kind

of incalculability which makes one disposed to believeafter many unsuccessful attempt-

sthat all known rational methods of prediction must fail in their case. We have, as it

were, the feeling that not a scientist but only a prophet could predict them. And yet,

it is just this incalculability that makes us conclude that the calculus of probability can

be applied to these events” (Popper, 1959, pg. 138). He later argues that the paradox

can be resolved by taking the subjective view (which is one that he rejects, at least

within the scope of statements to be considered scientific or cognitively meaningful,

where “subjective” was taken to mean “expectation”).

I argue, however, that most managers would prescribe to an Instrumentalist philos-

ophy. As they are very practical in nature, they want a theory that works, and care

little as to why “it works” (short of the “why” manifesting into some form of cost).

A measurement system of risk therefore must be one that appropriately predicts the

future manifestation of those risks (i.e. disruptions). However, even this is a claim that

is difficult to justify. While managers want something that “works”, the criteria upon

which something “works” is inherently subjective. Earlier we defined a supply chain

disruption as one which results in the supply chain from operating at “normal” levels.
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This is arbitrary enough to argue that “normal” is actually a relative construct defined

by the actors within the chain itself. What may be “normal” for one firm may not be

so for another. So while one firm may experience a deviation from normality, the other

firm may not perceive it as such, as their definition of “normal” may be different.

In addition, managers most likely received training within the frequentist philos-

ophy of inferential statistics. Their viewpoint of probability most likely is that it is

an objective reality rather than a subjective observation. They view it as something

of which needs to be estimated via samples, where the samples are derived from a

larger population (in this case, the population would be all possible disruptions that

could occur in the past, present and future). If this is true, then any risk measurement

framework of which is empirically verified or constructed itself from empirical obser-

vation would be circular in nature (managers learn frequentist statistics and hold an

objectionist viewpoint, academics design frameworks from these observations, of which

managers then subsequently learn).

Hence, given the behavioral characteristics of the inquiry at hand, it is difficult to

prescribe a single measurement of “risk” to supply chains. This would explain the vast

variation in attempts to measure such a construct in the extant literature. However,

this is not reason enough to not attempt to synthesize the measures into a singular

framework from wherein these different measures are derived. The differing approaches,

I argue, can be synthesized using Garvey’s framework, and more generally prescribing

the Bayesian philosophy.

As Kleindorfer points out, “the Bayesian approach is concerned principally with

dealing with the problem of probabilistic induction (of which the deterministic version

is a special case) in a consistent way”(G. B. Kleindorfer et al., 1998, pg. 1095). Risk

measurement is inherently a probabilistic inductive activity, despite practitioners and

some academics viewing it otherwise. For the manager, probability is seen as a means

to an end, that is, as a way to describe the indescribable with the purpose of making a

decision in the face of uncertainty.

Given the practical nature of their mindset, it would be difficult to believe that a

manager sees probability as a means for reasoning, but rather views it as a purposeful
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tool for results (nor would they have any reason to care for it as a means for reasoning).

Paradoxically, however, such a view actually transcends their philosophy of pragmatic

decision making. When probability is viewed from a subjective lens, the probability

eventually converges. Unlike the frequentist, the Bayesianist views empirical obser-

vations as knowledge. The knowledge is then taken into consideration to update a

previously held belief into a newer belief. The “observation” can be in the form of a

single observation (from a single individual) or from a variety of observations (made

from multiple individuals). This conceptualization of data is vastly different from that

of the frequentist, of whom views empirical observations as being a sample of which

originated from a population.

The Bayesian approach to probability and empiricism is apropos for the purpose

of estimating risk. The frequentist would argue that the probability of a disruption

manifesting can be estimated from prior data on disruptions, surveying variety of view-

points and summarizing them, or a combination thereof. However, the population of

“disruption” is consistently in flux. It changes due to the actors within the network,

within the organization, and within the external environment. It would be difficult to

model the complexities of this dynamic population of “disruption” from a frequentist

viewpoint, and even just as difficult to estimate it.

Hence, I conclude by arguing that the Bayesian philosophy is a good fit for the goal

of measuring supply chain risk. The risks inherent within the network are not fixed.

It can even be argued that the types of risk are consistently in flux (which would also

explain the vast number of classification systems proposed throughout the years). The

Bayesian philosophy is easy to consider the “population” as dynamic, as it doesn’t view

data as being “sampled” from the population, but rather as an inclination of the nature

of that population itself. Having an a priori belief in the probabilities of disruption is

also natural to how firms operate. Given the diverse definition of “normality” as well as

varying perspectives on when the current state of an organization is no longer “normal”,

the Bayesian approach allows the incorporation of all these philosophical considerations.

Therefore, risk measurement in this dissertation will employ the Bayesian approach, as

risk assessment and even mitigation can be argued to be forms of probabilistic reasoning.
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3.2.2 The Line of Demarcation between Supply Chain Risk and Sup-

ply Chain Risk Propagation

Supply chain risk, as I have defined above, is the interaction between the likelihood

and the consequence of an event that has the potential to manifest into a supply chain

disruption. This definition is very broad and general. It is not specific to a location,

type, form, classification, or industry. With that said, the term propagation implies

that there is some form of flow involved with the risk itself. This is distinct, since risk

does not necessitate a flow in order to manifest. That is, the action of flowing is a

sufficient condition, not a necessary condition of risk.

To illustrate this, let me take from an example. One could decide to play a game of

roulette at the casino. The notion of “risk” in this case is again some form of interaction

between likelihood and consequence. In this example, and from the perspective of a

gambler, risk is charactered by the expected loss of the casino game. That is, what

is the average net winnings for the gambler assuming they were to play the game an

infinite number of times? The “risk” of loosing or gaining a certain expected quantity

of money (which would represent the “consequence” in this example) is inherent only

within the action of playing the game. That is, it is self-contained, and its likelihood

as well as consequence is not inherently reliant on a sequence of other events in order

for the risk to either manifest or “spread”. In fact, the risk is only describing a singular

and fleeting moment in time. There is no notion of the risk being “caused by” or the

risk itself “causing” another event.

This however is contrasted with other forms of risk, that indeed can be characterized

by being dependent on a sequence of events, such as a distribution center being out

of stock due to sudden shifts in demand patterns, or a machine breaking down and

hence leading to a shortfall of order quantities or lead time extensions. The events of

“lead-time extension” or “order-quantity shortfall” are inherently dependent on other

events that could manifest. The aforementioned events are not “self-contained”. They

only occur as a consequence of another self contained event. For example, an individual

does not have a headache for no reason. A headache is inherently a manifestation of
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something else that is “wrong” within the body (lack of food, dehydration, something

more nefarious).

Therefore, risk is not necessarily dependent on a sequence of events, but some

risks are. Hence, this line of demarcation between the two forms of events is what

would distinguish the definitions between a supply chain risk and a supply chain risk

propagation. The former is all encompassing of the general notion of an event that has

consequence and likelihood of which could manifest into a disruption. The latter is a

sequence of events that when considered together could lead to a “final” supply chain

risk to manifest.

3.2.3 The Problem of Deterministic Propagation

Most of the previous work on risk propagation has assumed that risk “flows” through the

network via well defined pathways. While this is true, it is also a bit misleading. Risk

certainly “flows” in this regard. However, it is not necessary that a risk be manifested

into an occurrence of the event, nor is it necessary to have knowledge (or lack of

knowledge) for the risk to “flow”.

To personify this point, let me illustrate a simple example. Suppose we have three

firms in a supply network: a raw material source, a manufacturer, and a retailer.

Suppose that a disruption to production occurs at the raw material source. There is

some level of loss at the raw material source, and there is a probability of this event

“trickling down” to both the manufacturer and to the retailer. In this case, we know

that a risk at the raw materials source has manifested into a disruption. Suppose,

however, that the manufacturer keeps enough safety stock on hand of the raw materials

to effectively meet their delivery promises to the retailer. Intuitively, we would believe

that the disruption has been thwarted and that it would be impossible to trickle further

down to the retailer. Indeed, many models of risk assessment rest on this fundamental

assumption (Wagner & Neshat, 2012; Nakatani et al., 2018; Zegordi & Davarzani, 2012;

Zhang & Lam, 2016; Blackhurst et al., 2018; Liu et al., 2018).

However, this assumption is flawed. There are two ways that a disruption can

present itself to the retailer during a similar time as the raw materials. The first is by
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mere coincidence. We should not assume that given that a disruption has been mitigated

from the upstream of the supply chain that all other disruptions, independent of the

primary disruption, somehow magically becomes dissolved. It is entirely plausible to

assume that the risk of disruption is still present at a lower node in the network, despite

a disruption being thwarted in the upstream. The second way in which a disruption

can “trickle down”, despite it being “thwarted” above, is due more to a methodical

reason as to how risk dependency is modeled.

3.2.4 The Invisible Path of Causality

In the example network, the physical dependencies between the firms are modeled. As

such, there is no reason to “connect” the raw materials source to the retailer. They

do not conduct business, share information, or maintain any form of a relationship.

However, that is not to say that the retailer is ignorant of all that happens upstream.

If the retailer obtains the knowledge of the disruption at the raw material source,

either dependent or independent of information sharing with the manufacturer, then

the retailer may feel that a “disruption” is on it’s way.

This in turn may lead the retailer to intentionally force a disruption of operation on

itself so as to prevent a possible loss of something of greater value, such as brand value

(this strategy can be somewhat thought of as a “vaccination approach” to mitigation;

that is, accept some level of known pain now with an intentional self-inflicted disruption

rather than wait for an unknown level of pain and uncontrollable disruption later). For

example, it may decide to shut it’s store down for a day until it gains confirmation from

the manufacturer that the disruption has been thwarted and deliveries are on schedule.

Another possible scenario is that the market itself could gain information regarding the

disruption at the raw materials source, and hence, an abrupt shift in demand patterns

within the market occur (hence leading to a disruption at the lowest point in the chain).

It could be argued that such a discrepancy could be accounted for by establishing a

link between the raw material’s source and the retailer (and between the raw materials

source and “the market”). From a methodological perspective, this would indeed solve

the problem, and full paths can be considered again from a deterministic perspective.
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However, a loss of meaning of the network itself would ensue. If we follow the reasoning

posited above, then risk can spread from any node that is in the upstream to any

node that is more downstream, as I illustrated earlier. If we seek to solve the problem

illustrated above by adding links, then it would be necessary to establish a link from

all nodes to all other nodes. That is, every supply network, or more generally, a model

of risk within supply networks, would simply be a complete graph (which is a network

where every pair of nodes has a link between them). The underlying structure and

meaning of the network would dissipate, and become theoretically useless.

In supply chain, we need a sound and logical reason to model a connection between

two firms. We cannot simply justify a connection between two firms by claiming that

it is possible the one firm is able, or possibly able, to acquire information about the

other firm. A link between two firms in any model of a supply network needs to be

justified from some form of meaningful relationship between the two firms (be it tactical,

operational or strategic). This is a cornerstone of social network theory, of which supply

network theory is built atop. For example, if you happened to see Kevin Bacon at a

local Starbucks, does this equate to you now having a “tie” with Kevin Bacon? I

would speculate in the negative. You may have obtained information on Kevin Bacon’s

favorite drink to order, but this is not reason alone to establish a link in your own social

network to him. Therefore, such a modeling approach is not an appropriate solution to

the aforementioned “issue”.

This “issue” is inherently a form of bounded rationality of the agent in the supply

network (be it a manager or an analyst). Recall, I argued earlier that risk measurement

(and more generally, assessment) is inherently subjective. However, despite the bounded

rationality of the analyst, this does not negate the existence of a series of complex

interactions between two events that may not have any “logical” reason to be connected,

but rather only so through means that are ineffable. In the aforementioned example, I

mentioned two ways in which disruption can ensue at the retailer. In actuality, there

are probably an inconceivable number of “paths” of causality between the raw materials

source and the retailer through nodes that were not considered, yet are located within

other dimensions of a supply network (i.e. a people-supply network, per se). These
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unseen paths through these unseen nodes are what I am defining as the “Invisible

Paths of Causality”.

Essentially, I am arguing that despite the limitation of the analyst to foresee every

possible event and interdependence between the events, there still, none the less, exist

the possibility of one known event to “cause” another event, despite the path between

them forestalling such a scenario. For the modeler to pursue an interest in identifying

these invisible paths would not be worthwhile, practical, or cost-effective. This is why

Garvey et. al had argued in favor of constructing a network of risk factors that is

inherently derived off the structure of the supply network. The reason rests in Occam’s

Razor: it is simple to model, and hence, is likely the “correct” way to model it.

Most analytical models of risk strive towards this notion of simplicity. As with any

theory of, well, anything, “one of the most common mistakes of beginners is the inclusion

of too much detail in their models. The old hands always tell novices to make their

models as simple as possible by including only first order effects” (G. B. Kleindorfer

et al., 1998, pg. 1092). On the other hand, however, by ignoring these invisible paths

of causality within a supply network, we focus directly on the real supply network

structure (rather than on a higher-dimensional, more abstract and more difficult to

describe supply network), and may miss the potential to model these paths of causality,

which may be as detrimental to the firm as well-conceived known paths of causality.

If there exists a model that can accurately predict the occurrence of one event, given

knowledge of an indirect event (occurred, or, did not occur), yet with no “logical” path

as traditional analysis demands, using only the structure of the supply network as

a structural criteria, then we have fulfilled Friedman’s conceptualization of a “good”

theory. Indeed, a “theory is simpler the less the initial knowledge needed to make

a prediction within a given field of phenomena”(Friedman, 1953, pg. 698) Short of

Popper’s and Friedman’s treatment on the simplicity of models and theory (Friedman,

1953; Popper, 1959), I think it stands to reason that attempting to chase after this

“Invisible Path of Causality” from a more analytical approach is inherently foolish.

Yet, a lack of knowledge of this type of causality path is a major drawback to current

models of risk propagation (of which I will review shortly). So then, how do we keep the
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simplicity of the risk propagation model, but also try and account for these “Invisible

Paths”?

3.2.5 Balancing Model Complexity and Error in Risk Propagation

I say “issue” because it really is not an issue when risk propagation is modeled using

Bayesian Networks. Just I have have argued above for their use in risk measurement,

a Bayesian Network is useful for risk propagation measurement (and, measurement

of risk characterized via propagation). The framework of Bayesian Networks allow

for the capturing of these so called “invisible paths of causality” via the conditional

probabilities. In the previous example, the probability that a disruption will occur at

the manufacturer, given that a disruption has occurred at the raw materials source,

may be observed to be, for example, 0.6. As for the retailer, we may find that the

probability of a disruption at the retailer, given that a disruption has occurred at the

manufacturer, may be 0.2. In the traditional frameworks of risk analysis, this would

essentially be enough information to use to prescribe a set of risk scores to the events.

However, this is being myopic, given that the model specification is incomplete.

Indeed, what was not specified in the example above was the probability that a

disruption occurs at the retailer (and the same for the manufacturer), given that a

disruption did not occur at the manufacturer. This probability may be, for example,

0.6. This example may seem paradoxical to intuition. However, I have already implicitly

argued as to how this may happen. Why is it that the probability of a disruption at the

retailer may only be 0.2 if a disruption occurs at the manufacturer, but would be 0.6

when such a disruption does not occur at the manufacturer? One possible explanation

could lie within the contract that is between the retailer and manufacturer.

A disruption indeed may occur at the manufacturer, but maybe their contract re-

quired the manufacturer hold a certain level of safety stock to be allocated and used

for that specific retailer. In this case, even if a disruption were to occur within the

manufacturer, they would be able to contain it to within their own firm. What then

dictates the probability of a disruption being higher (0.6) if it is known that a disrup-

tion did not occur at the manufacturer? This may be due to a disruption occurring at
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the raw materials source. As I argued earlier, knowledge can travel to the market, or

the retailer obtaining that knowledge can induce a self-inflicted form of a disruption.

In such a case of an “invisible path of causality”, the Bayesian model would be able

to take into account these intricacies without further complicating the model from a

structural perspective.

To further elaborate on this notion of “invisible paths of causality”, there is yet

another portion of this that the extant literature seems to ignore, ironically especially

within the literature that leverages Bayesian Networks. One of the key benefits of using

Bayesian Networks is due to the ability to reason probabilistically. In the aforemen-

tioned example, the retailer may have knowledge of a disruption at the raw material

source, but may not know if the disruption “trickled down” to the manufacturer.

The extant literature confounds the notion of “no disruption” and “no knowledge”

(Qazi, Quigley, & Dickson, 2015; Qazi, Dickson, et al., 2018; Qazi, Quigley, Dickson,

& Gaudenzi, 2015; Qazi, Quigley, Dickson, Gaudenzi, & Ekici, 2015; Qazi, Quigley,

Dickson, Gaudenzi, & Önsel, 2015; Qazi, Quigley, & Dickson, 2018; Qazi et al., 2017).

These are very distinct from each other. In the more deterministic frameworks of

reliability or event-failure modes, it is assumed that each node has one of two states:

operating or not operating (in the case of disruption and what some refer to as “risk”, it

would be “occurred” or “did not occur”). However, in the Bayesian Network framework,

if each node is modeled with two states, then in reality, it actually has three states (the

event occurred, the event did not occur, no knowledge of the event).

When knowledge of the event is ascertained, it is referred to as evidence. Therefore,

for the retailer, having information regarding the disruption at the raw material’s plant,

would not be able to conduct a proper analysis using a more traditional deterministic

approach if knowledge is not known about the state of operation at the manufacturer.

This is the distinct advantage of leveraging a Bayesian Network. The network allows

the evidence of disruption at the raw material source to flow to the manufacturer. The

belief of a disruption propagating to the retailer can then be inferred through a complex

algorithm known as belief propagation, despite having no knowledge of the current state

at the manufacturer.
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I will now illustrate the “Path of Invisible Causality” with a small demonstration,

and also emphasize via this example as to why Bayesian Networks are the appropriate

solution to capturing these inconceivable paths. Let us begin with a simple example,

the same one as above. Suppose we have three nodes: a raw materials source, a

manufacturer, and last a retailer. There is a link in the supply network from the raw

materials to the manufacturer. In addition, there is a link from the manufacturer to

the retailer. Let us say, for illustration, that there is a link between the raw material’s

source and the retailer. There is no logical reason for this connection other than the

fact that the retailer has the ability to acquire information regarding the raw material’s

source, either directly or indirectly. As I have previously argued, adding such a link

is not quite in line with traditional theory on SCM. As there is no level of reasonable

argumentation as to why these two nodes should be connected, then, from a modeling

perspective, they should be disconnected.

However, again, as I argued earlier, if an actor within the retailer gains information

from an actor within the raw materials (that is, via the lower dimension of supply

chain structure, the “people-supply-chain”), then the raw material disruption would

indeed impact decisions made at the retailer, despite no logical reason (at the higher

level of analysis) to model a connection between the two. The link, in this example, is

justified by a link in the “people-supply-chain”, despite such link having no meaning in

the “organizational-level”. Let’s suppose now that a disruption could occur at the raw

material source. Then both the manufacturer will have a probability of disruption and

the retailer will have a probability of disruption (since the raw material and retailer

are linked via this lower-dimensional connection). Within the Bayesian Framework of

Analysis, we therefore must model the probability of a disruption at the retailer as being

dependent on what is known at (1) the raw materials source and (2) the manufacturer.

Suppose the conditional probability table comprises of the likelihoods as demonstrated

in Table 2.1. Furthermore, suppose the probability of a disruption at a manufacture

and the retailer, respectively, are as in the same table. Under this model of risk, the

“invisible path of causality” would be the link between the retailer and the raw material

source. However, due to the mechanics of Bayesian Networks, we can “fold” the link
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Raw Material = 0 Raw Material = 1

P(R) M = 0 M = 1 M=0 M=1

R=0 0.6 0.2 0.1 0.7

R=1 0.4 0.8 0.9 0.3

Table 3.1: Conditional Probability Table of Disruption at Retailer Given Manufacturer
and Raw Material

P(RM)

RM=0 0.4

RM=1 0.6

Table 3.2: Conditional Probability Table of Disruption at Raw Material

between these two into a simple chain from the raw material, to the manufacturer,

and to the retailer. That is, we can take this more unrealistic risk analysis (since it

is assumed to be unrealistic to model risk between the retailer and the raw material

source), and fold it into model that “makes sense” from an organizational network

perspective. That is, there will be no link between the raw material and retailer, but

rather, only indirectly via the manufacturer. Let us observe the mathematics as to how

this compression can occur.

Ideally, we would like to find P (Retailer = 1 |Manufacturer = 0) and P (Retailer =

1 | Manufacturer = 1). Finding such probabilities would result in a complete speci-

fication of the more realistic probability model. In the less realistic probability model,

however, we have another parent of the Retailer, namely, the raw material source. How-

ever, using the law of conditional probability, from Bayesian Analysis, we can find the

aforementioned probability by conditioning against the raw material source:

P (R = 1 |M = 0) = P (R = 1 |M = 0 ∧RM = 0) · P (RM = 0)

+P (R = 1 |M = 0 ∧RM = 1) · P (RM = 1)

= (0.4)(0.4) + (0.9)(0.6)

= 0.7
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and:

P (R = 1 |M = 1) = P (R = 1 |M = 1 ∧RM = 0) · P (RM = 0)

+P (R = 1 |M = 1 ∧RM = 1) · P (RM = 1)

= (0.8)(0.4) + (0.3)(0.6)

= 0.5

Therefore, the less logical network can be compressed in the “more logical” form

by the distribution of P (R = 1|M = 0) = 0.7 and P (R = 1|M = 1) = 0.5. Hence,

we can see that the “invisible path of causality”, which was modeled above with a link

between the raw material’s source to the retailer, can be compressed into a form where

no such link exists (the more logical form shown in Figure ). Furthermore, if these

probabilities were estimated from a dataset of observations, then we should see the

same probabilities illustrated above (in the two separate models).

Hence, I have illustrated here that if the “invisible path of causality” is modeled as a

link between the two nodes in the Bayesian Network, that this link can be “compressed”

into a network that is more “logical” according to the level of analysis. Furthermore, I

have demonstrated through this analysis that the probability of disruption at a lower

node can actually be higher (0.7) when no disruption occurs at the direct parents (the

Manufacturer) than the probability of a disruption at the Retailer when a disruption

occurs at a Manufacturer (0.5) due to this “unseen” path of causality from the raw

material source to the retailer.

If the analyst is presented with proper disruption data, then the estimation of such

a Bayesian Model will result in similar outcomes. That is, despite all prior comments

from the previous literature on the matter, I have illustrated that accounting for “dis-

ruption” at lower nodes (such as the retailer) despite no such disruption occurring at

the manufacturer, while it occurring at the Raw Materials source, is of the utmost im-

portance due to this “invisible path of causality”. Again, this path only becomes visible

when the analyst is present with enough data, or chooses to adopt a model of causality

via Bayesian Networks ignoring the supply network structure. As I have argued above,

adopting such an approach is misleading, and most likely too time consuming. If we
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have data regarding disruptions at the lower levels of the supply chain, despite them

being “thwarted” at higher level nodes, then we can easily estimate the chances of a

disruption, despite knowledge of the disruption being “thwarted” at the middle level.

Previous models of supply chain risk have rested on deterministic models such as

Petri-Nets and Event-Failure models. While there is absolutely no doubt these are

sufficient for conducting a disruption analysis, I have argued here that they fall short

in accounting for these “invisible paths of causality”. The modeler of deterministic

events is hence left at a fork in the road. Either they ignore the structure of the supply

chain network and apply their more traditional methods of fault analysis to a network

that is (1) complex and (2) non-nonsensical from a theoretical supply-chain point of

view, or, they must abandon the possible link of causality all together, which of course,

will inflate their errors in their analysis. This argument alone is sufficient to justify

that fault-analysis and reliability-based methodology towards risk propagation analysis

in supply networks is a very poor measurement and methodological approach. It is

almost quite near literally fitting a square peg into a round hole. Henceforth, I submit

here, that for risk propagation analysis, the only model that can properly capture the

interdependencies of risk is a Bayesian Network model (and, possibly the generalization

of such a model, such as Dynamic Bayesian Networks).

3.2.6 Constructs of Supply Chain Risk Propagation

I defined earlier that “risk” can be understood as the interaction between likelihood and

consequence. I adopted this definition since there are many interpretations of “risk”.

However, the adoption of this definition leads to some slight construct measurement

issues. For one, a manager may view “risk” from a vastly different perspective than a

different manager. From a high-level management perspective, “risk” may be viewed

as a disruption occurring at the firm level, and affecting not only the firm itself, but

the firm’s relationships. Strategic Management seeks to address the continued survival

of the firm by ensuring that it’s performance is operating at an acceptable level to due

so. Over the prior few years of theory development in the literature, it has been shown

that part of this survival rests on not only one’s own firm surviving, but others within
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it’s supply base (or, more generally, it’s ego-network).

Therefore, a corporate-level manager may see “risk” from the lens of not only dis-

ruptions occurring within the firm, but also helping to mitigate any of those risks from

spreading to lower parts of the supply chain (and upstream members). A production

manager, on the other hand, may view risk much differently, and within a much more

refined scope. They may view “risk” simply as a disruption that occurs within their

own firm, and may not particularly care if that manifestation of the disruption contin-

ues to “trickle-down” to the next level, so long as their firm is “spared” of the cost of

the disruption. This may seem myopic, but it also may be due simply to the role and

level the manager holds for their position within the organization.

The production manager most likely would like to measure risk in terms of the chance

of a disruption, and even the consequence of it, only within the firm itself. If an event

is “risky”, but the consequence to the firm itself is low, then the measurement of risk

of which the manager seeks to have reflecting the construct would most likely be solely

focused on the consequences to the firm itself. The corporate-level manager, on the

other hand, may view “risk” differently. They may view risk from the perspective of a

total cumulative effect within the supply chain. They, after all, are forward looking, and

seek to ensure that their corporate strategies are effectively carried out with minimal

disruption to them.

These may involve the collaboration and coordination between and among multiple

firms, in multiple locations, at multiple different points in time. Therefore, unlike the

production manager, the corporate manager most likely would like a measure of risk

that reflects the cumulative damage to the chain, and not only the consequence of a

disruption within their firm. While an event may seem unlikely, or may be low in

consequence to the individual firm, where the production manager sees no issue, the

corporate level manager sees a problem (the propagated consequences may be more

severe than the consequences within the focal firm itself). As such, multiple metrics of

risk are necessary for different purposes of measurement, as well as applying to different

types of agents acting within the network.

Three fundamental measures that can come to mind when viewing risk through the
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lens of a “supply network” are as follows: where else did the risk occur upstream, where

else can the risk spread to downstream, and to what extent does the current node in

the network contribute to the difference between these two extremes? That is, risk

can be viewed from a diagnostic perspective, a causal perspective, or from a “change”

perspective. I will now address all of these below.

Propagation Diagnostics: Risk Significance

Upon the observation (or simulated observation) of a disruption, one question that

of course would come to mind is: from where did it originate? This of course is the

more general process of diagnosing a business problem. Knowing what had caused a

particular observation made within the firm would give the power of knowledge to the

firm to best adjust any strategy, if necessary, as well fine-tune any controls within their

own organization.

The process is analogous to the one that a medical doctor often conducts. When a

patient comes in with certain symptoms, ideally, it is the doctor’s goal to understand

what may have caused the symptoms themselves. Understanding this would lead the

doctor to the primary, or handful of primary, reasons for the symptoms. They then can

address the primary problem at hand, rather than separately prescribing medications

to fix the symptoms instead of the core problem (or problems). As we know, fixing

symptoms may lead to temporary relief for “pain”, but would be ignoring the longer-

term issue, and hence, recurrence of the symptoms should be expected. A supply chain

manager must take the same approach.

That is, when a disruption occurs, it is the job of the supply chain manager to un-

derstand the underlying reason for the disruption itself. Such an understanding allows

the supply chain manager to ascertain further knowledge of the disruption. This knowl-

edge, in turn, can help further understand the potential solution and immediate action

to take to either help reduce a further worsening of the disruption or to help outright

prevent it from occurring again in the future. In addition, even if this knowledge is not

directly usable by the focal firm, it may be used for either strategic reasons or compet-

itive reasons. The firm could be highly cooperative with other firms in it’s network. If
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such firms form a tight clique, they most likely share information regarding disruptions

so as to have the entire clique “optimized”, rather than just the firm. On the other

hand, if the firm is more opportunistic of disruptions, then such knowledge could help

the firm gain a competitive advantage that was not previously realized. Particularly

the knowledge of disruption, which could indeed affect changes to pricing or allocation

policy.

Therefore, a useful risk metric to have in the manager’s tool box would be how

“significant” a node is within the supply network with respect to diagnostic-based risk.

That is, given information regarding the occurrence of a disruption at the current

location of focus, where else, or, more appropriately, how much additional damage

should we expect to see within the upstream of the network? The risk significance

would therefore indicate how much damage was necessary, or expected, in order to

“trickle down” to the current focal node in the network. This risk is “significant” in

that it indicates a level of “robustness” for the current focal location. Higher levels of

this construct would indicate a certain level of significance for the current node. That

is, high levels for this node would essentially be “better”, since we need to expect a

larger amount of risk to manifest in order for it to manifest within our own location.

Lower levels of course could be interpreted as being “worse”, since fewer disruptions

need to occur in order for the disruption to eventually manifest in the current location.

Therefore, if we are observing this construct from a robustness perspective, “lower” risk

significance is “bad”, in that our current node is very sensitive to occurring from only

a handful of disruptions. “Higher” risk significance would be “good”, in that we need

to expect the disruptions to “trickle down” in a much larger extent.

This construct could of course be interpreted from the opposite perspective. If we

happen to notice that we have a low “risk significance”, then the cost that we must

expect upstream needs to be low in order for the cost at the current location to manifest.

Depending on the expected consequence to occur in light of a disruption at the current

location, then, a “low significance” would indicate a low cost, which means that the

node is of little concern. High significance would translate to higher cost. Therefore, if

the significance is higher, we should expect higher costs across the upstream members.
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Therefore, the interpretation of “risk significance” really depends on how one defines

“cost” as well as their behavioral attributes (are they more opportunistic, or are they

more cooperative?). Regardless of perspective, the measure simply strives to reflect one

property: how much “risk” can be expected “upstream”? When I say “upstream”, I

am referring to the direct ancestors of the location. This would exclude any damage

lost or disruptions observed at children of ancestors of a focal firm that are themselves

not ancestors. This definition of risk is refined to the scope of only those nodes in the

network that have a one-way directed path of risk propagation. Therefore, I define the

following construct of risk:

Definition 3.2.1. The supply chain risk significance of a location in a supply network is

the possible or potential level of damage that could have occurred at the ancestors of the

location upon the observation of a disruption, or no disruption, at the aforementioned

location in the supply network

Propagation Causality: Risk Contribution

Some view risk from the lens that it “spreads”. That is, not only can risk impact a

single location within a supply network, but can also continue to affect others within

the downstream, as a result of either mitigating or not mitigating it at a particular

location. If a risk were to manifest into a disruption, a question that may be of interest

to the practitioner may be “where else can I anticipate the disruption to spread?”.

Unlike significance, the risk contribution considers the potential a posteri impacts

of a disruption (while significance considers the a priori). From this perspective of

“risk”, it is viewed more within the control of a location, which differs from the risk

significance. That is, we can consider a location to be “risky” if it has a tendency to

spread any disruptions that occur at it’s location (or, if it has a tendency to thwart

disruptions locally, but manages to spread risks of disruption downstream).

In a supply network, the downstream comprises of those nodes that are direct de-

scendants of the a focal location. It may not be as linear as we intuitively think it

is. The customers may themselves have multiple customers, and so on and so forth.

Since these customers are partly dependent on the supply chain activities of the focal
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node, it is logical to assume that a risk of disruption “spreading” down stream to these

descendant nodes is possible in the face of a disruption.

An analogy to this interpretation is determining the likely symptoms of which may

manifest if a patient is known to have a certain sickness or disease. The medical

doctor will analyze the patient, and attempt to understand which symptoms are most

likely to manifest as a result. This of course is yet another form of business problem

solving, primarily within the area of decision analysis. Often, practitioners attempt to

understand the potential consequences of their decisions, and from there, make decisions

in a way that minimize the negative consequences.

A measure of risk that could prove useful for practitioners is that of how risk spreads

downstream. Decision making at a focal node, as argued earlier, may manifest into

disruptions at a later point in time. If we understood the total cost of the downstream

if a disruption were to occur (or not occur), then we would have a proper measure

to use to gauge decision making when facing the uncertainty of a supply network risk

spreading to the downstream of the network.

Hence, I define the following:

Definition 3.2.2. The supply chain risk contribution of a location in a supply network

is the possible or potential level of damage that could occur at the descendants of the

location upon the observation of a disruption, or no disruption, at the aforementioned

location in the supply network

Propagation Change: Risk Velocity

While cost may be of a concern to practitioners, so too are metrics that indicate the

“speed” or rate of change of those costs with respect to “flowing” through a particular

location. Risk in a supply network is no different than this conceptualization of “speed

of spread”. While the cost at one location may be low in the upstream, it may be higher

in the downstream as a result of “flowing” through that location versus an alternative

location.

Understanding how risk “changes” as it “flows” through different locations would
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help a manager identify potential “enablers” versus “depressors” of risk as it flows

throughout the network. Such a metric would aid managers in understanding which

mitigation strategies have worked in preventing the flow of risk and which ones further

accelerate risk itself.

The word “velocity” comes from physics, which is often defined as a “change in

position within a given quantity of time”. If we ignore the notion of time for the

moment, and instead look at change with respect to “change in location”, then we

can relate the construct of “velocity” to that of risk. In addition, future measures

can be constructed such as acceleration, which may help further aid the practitioner

in identifying truly “risky” nodes when “risk” is viewed more from a perspective of

“contagion” or “rate of spread” than it is from a cumulative loss perspective.

Hence, I define the following:

Definition 3.2.3. The supply chain risk velocity of a location in a supply network is

the rate of change in the possible or potential level of damage within the ancestors

and descendants of the focal location, with respect to the change in moving from the

upstream to the downstream, upon the observation of a disruption, or no disruption,

at the aforementioned location in the supply network

3.2.7 Methods of Operationalization for Risk Propagation Constructs

Earlier in the dissertation, I reviewed through a variety of prior methods that have

been suggested in the extant literature in order to measure risk. There have been many

approaches that have ranged from using subjective-scaled responses, AHP, DEA, ISM,

Fault-Analysis, Petri-Nets, Graph-Theoretic Based Measures (Connectivity), Value-

at-Risk (VaR), worst-case-scenario, and expectation-based methods, as well as other

computations based on random variables and the use of their respective probability

distributions.

As I have argued in the previous sections, the Bayesian Network approach allows for

the research of supply chain risk to easily measure and account for a variety of different
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forms and types of risk. The conceptualizations of supply chain risk propagation out-

lined above can easily be operationalized by leveraging the Bayesian Network approach

(as well as other approaches). The first step in doing so is of course to define what one

means by “risk” when one is conducting research (or attempting to measure it).

As I have reviewed earlier, the notion of “risk” is inherently subjective. Often times,

it’s interpretation depends on how it is being involved within the particular system of

study or operation. Above I outlined three fundamental constructs of supply network

risk propagation. I intentionally defined them conceptually, albeit not arbitrarily, since,

to the best of this author’s knowledge, no prior attempt at conceptually defining “supply

chain risk propagation” has been conducted. The definitions I have set forth in the

previous section can be used as the baseline for understanding risk from a propagation

perspective within the supply network.

When it comes to research, however, we must find ways to operationalize these

constructs. Recall that I have defined supply chain risk as an interaction between the

consequence and the likelihood of the consequence occurring. This notion of “interac-

tion” between these two ideas is implicit within the definitions (via the use of the phrase

“potential consequence”). However, when conducting research, the word “interaction”

could be interpreted a variety of ways, as I had illustrated earlier in this dissertation.

Therefore, proper operationalizations of the risk propagation constructs would re-

quire the researcher of supply network risk propagation to first establish what they

mean by “interaction”. This could mean ignoring the “positive” outcomes of an event

and simply multiplying the likelihood by the consequence. This could also mean “ex-

pectation”, where the traditional mathematical expectation operator is used on the

random variable, or random variables, that describe the various risks. In addition, one

could also take the perspective of interaction meaning a “certain percentage of”, just

as in many Value-At-Risk models. A variance or more general moment’s perspective

can also be taken.

Therefore, operationalizing these constructs involves first (1) identifying the risks

themselves and establishing how they are to be modeled (as scores, random variables,
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etc), next (2) by establishing how the likelihood, consequence, or both are operational-

ized (i.e. what does the researcher mean by “likelihood”, and further, what do they

mean by “consequence” or “cost”), and last (3) establishing the nature of the “inter-

action” between the likelihood and consequence (none, if only one of these are chosen

to represent “risk”). Again, the “interaction” is what defines the risk constructs above.

Hence, in order for the risk constructs to be properly operationalized, the notion of

“interaction” must also, and it must be clear from the research of risk propagation

what specific type of interaction between the two is being used to model “risk”.

In the research methods chapter of this dissertation, I will explain the specific forms

of operationalizations I use in this dissertation (mostly that of the expectation opera-

tor). I want to make it clear that such an operationalization should not result in a loss

of generality for describing how the constructs of, well, anything, and risk propagation,

are related. Hence, I argue here, that when researchers seek to operationalize these con-

structs of risk propagation, they must offer clear and unambiguous operationalizations

or interpretations of “interaction”.

3.3 Hypothesis Development

3.3.1 Conceptual Development

2-Ego Network Risk

2-Ego Network Risk is dependent on the risk of the nodes and arcs within the 2-Ego

Network. It is, conceptually, a “collective” risk of the group. As the one of the primary

topics of this dissertation, I seek to examine if the overall network structure of the 2-Ego

Network would affect the the overall risk of the 2-Ego Network. As I have defined above,

every network structure has the five dimensions: Centrality, Connectivity, Feedback,

Distance, and Clustering. To the best of the this author’s knowledge, no prior work

has been conducted that observes any potential relationship between these constructs

(relative to a 2-Ego Network) and the construct of supply chain risk propagation. As

a reminder to the reader, I will be using the phrases “supply chain risk” and “supply

chain risk propagation” interchangeably. Please keep in mind, these are technically
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distinct. For the sake of brevity, however, I will drop “propagation”, and the reader

should be aware that whenever I used “supply chain risk”, I am referring to “supply

chain risk propagation”.

We can speculate, that we should not expect the structural design of 2-Ego-Networks

to affect the 2-Ego-Network risk in the same manner as that of 1-Ego-Networks affecting

1-Ego-Network risk, unless the two structures are exactly the same. First, 2-Ego-

Networks will be at an absolute minimum the same as the 1-Ego-Network. In this

instance, structure would impact risk in the same exact manner (since the networks

would be the same). However, it can be reasoned that this trivial case is unlikely to

occur in realistic supply networks. For this scenario to be actualized, all firms in a focal

firm’s ego-network would themselves need to have the same exact ego-network as the

focal-firm.

Previous literature has suggested that firms can have as much, at the low end, as 200

suppliers (Kito et al., 2014; Carnovale & Yeniyurt, 2015). Therefore, the probability

that a firm’s ego-network would be isomorphic onto it’s 2-ego-network would infinites-

imally small. Given this, we know that it’s more likely for a firm’s 2-ego-network to

be different in structure than it’s ego-network. By definition, however, the firm’s ego-

network would be a sub-graph in it’s 2-ego-network. Since we have argued that it is

unlikely for a firm’s 2-ego-network to be isomorphic to it’s ego network, we therefore

are left to conclude that a firm’s 2-ego-network will most likely be larger than it’s

ego-network.

Since a firm’s 2-ego-network will most likely include nodes not in it’s ego-network,

then we should expect the distance from these nodes to the focal firm (and other nodes

in the ego network) to be larger (by definition). Therefore, we should expect

Hypothesis 1. A focal firm’s 2-Ego-Network Distance, ceteris paribus, is greater than

or equal to it’s 1-Ego-Network Distance.

Since the 2-ego-network of the focal firm will include nodes that are not in the

ego-network, the nodes in the 2-Ego-Network have greater accessibility to other nodes

within the network. While the distances in the ego-network will generally be higher,
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there will indeed be more connections within the 2-Ego-Network, since there are more

nodes within the 2-Ego-Network. Recall that accessibility is the construct of the “ease

of ability to reach” another node. From the network perspective, this entails observing

the general accessibility starting from any node in the network and “reaching” another

node. We should therefore reason that

Hypothesis 2. A focal firm’s 2-Ego-Network Centrality, ceteris paribus, is larger than

or equal to it’s 1-Ego-Network Centrality.

Recall that clustering is the construct that indicates “how close” or “how tight” a

group of firms are to each other. Clustering is essentially a characteristic of a group

of firms “working close together and with each other”, or, put another way, the extent

of forming a social “clique”. In the 2-ego-network level, in order for the property of

cliques to form, there needs to exist, at the minimum, a high number of triads in the

2-ego-network. While it can be expected that a higher level of triads exist in 2-Ego-

Networks, the number necessary to create large cliques also increases with the number

of nodes that a firm in the 2-Ego-Network is connected to.

In addition, there is only one instance where clustering would be high in a 2-ego-

network: the firms not in the ego-network that are in the 2-ego-network would all need

to be connected. Since a firm can have well over 200 suppliers, it would be unreasonable

to observe this level of forming cliques with this many of nodes. That is, greater efforts

from a greater number of firms would be required to form a clique. This does not

seem reasonable. Those efforts are not as high at the ego-network level, however, since

there will most likely be fewer nodes in the ego-network. Put another way, it is easier

for a firm within a 1-ego-network to form a clique than it is within it’s 2-ego-network.

Therefore, we should expect to see

Hypothesis 3. A focal firm’s 2-Ego-Network Clustering, ceteris paribus, is smaller

than or equal to it’s 1-Ego-Network Clustering.

Since the 2-Ego-Network is at least as great in size as the 1-Ego-Network, the 2-

Ego-Network will most likely have a higher probability of containing a circular path

(though not necessarily triads). However, the cycles will be of a greater size than those
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of the 1-Ego-Network (since there are a greater number of nodes). Therefore, we should

expect

Hypothesis 4. A focal firm’s 2-Ego-Network Feedback/Thickness, ceteris paribus, is

greater than or equal to it’s 1-Ego-Network Feedback/Thickness.

Last, again, since there are a greater number of nodes in the 2-Ego-Network, the

number of arcs in the 2-ego-network should be expected to be at least as great as those

in the 1-Ego-Network. The effect of removing a node or an edge in the 2-Ego-Network

should not be as damaging as removing one in the 1-Ego-Network if there are a large

number of arcs. However, the primary issue with the 2-Ego-Network is that it’s size will

generally be much greater than it’s ego-network counterpart. We would need to observe

a proportional change in the number of arcs within the 2-Ego-Network. While the 2-

Ego-Network will in fact contain more nodes than those of the Ego-Network, the number

of arcs do not grow as fast, since many are left out into the 3-Ego-Network. That is to

say, node density should be expected to be quite low. Given the higher potential for

firms to cluster within the ego-network rather than within the 2-ego-network, it would

be reasonable to presume that the 2-Ego-Network is more sparse. That is to say,

Hypothesis 5. A focal firm’s 2-Ego-Network Connectivity, ceteris paribus, is less than

or equal to it’s 1-Ego-Network Connectivity.

Another inquiry that comes to mind is just how might the structural dimensions of

a 2-Ego-Network affect the 2-Ego-Network’s risk? There is some precedent to base my

arguments on. Choi and Krause had argued that the “complexity” of a supply base

is in a positive quadratic association with a focal firm’s supply risk (Choi & Krause,

2006). However, “complexity”, as they defined and used the construct, is a cumulative

construct of the network structure. He does however further break this down into three

sub-constructs, namely the number of firms, the level of differentiation, and level of

inter-relationships. He argues that the level of differentiation is in a positive curvilinear

association while the level of inter-relationships is in a negative curvilinear association

with risk when the number of firms is held constant (Choi & Krause, 2006).
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They define differentiation in regards to contextual characteristics of the firm, but

implies that such levels of differentiation are essentially manifested into a structure, such

that the “structure refers to the group of companies that have organized themselves

around a powerful focal company and work together as if they belong in the same

clan” (Choi & Krause, 2006). On the other hand, they define inter-relationships as the

tendency for firms to collaborate and form triads. He argues that firms of whom are less

differentiated expose themselves to less risk (while firms with less inter-relationships

have higher levels of risk, due to lack of ability to handle disruptions and a loss in

opportunity to learn and share information).

Essentially, Choi and Krause has argued, albeit on a higher dimensional level, that

risk is in a non-linear relationship with structure. This view has been supported by

others in the literature as well. Kim argues that as networks exhibit power-law degree

distributions (few nodes with high levels of degree, many nodes with low levels of

degree), the risk (they use resilience, but their definition resembled robustness, a sub-

construct of risk), tends to be lower (although, not necessarily linear) (Y. Kim et

al., 2015). Mildly contradictory to Choi, Bode had found that there was a positive-

curvilinear (not necessarily quadratic) relationship between the supply chain complexity

and the risk (Bode & Wagner, 2015). Basole had found similar conclusions with his

own “health measures” in networks that exhibited small-world properties (Basole &

Rouse, 2008).

Therefore, the literature seems to have lightly and within an ad-hoc manner, estab-

lished that there exists a non-linear relationship with the construct of supply chain risk

(it should be emphasized here again then when I refer to “risk” in this dissertation, I

am referring to “risk propagation”, something the extant literature has not studied in

depth). Where the extant literature lacks, however, is in (1) describing the relationship

between more refined constructs of network structure and risk and (2) describing such

a relationship with risk propagation (which is a distinct construct from just risk).

Choi’s work is the closest that comes to breaking down complexity of the structure

of a network into smaller pieces, but relies on some contextual factors in doing so, and

merely treats sub-dimensional structure as an a posteri effect. Choi’s conceptualization
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of differentiation is most closely related with the structural dimensions of Distance and

Connectivity, while his conceptualization of inter-relationships are more aligned with

the dimensions of Clustering, Centrality, and Feedback. Choi’s constructs of differenti-

ation and inter-relationships can be mapped to the 5 Fundamental Dimensions that I

have described above. As such, I will be able to formulate my hypotheses by leveraging

a combination of theory designed by Choi, Bode, and Basole from the extant literature.

Choi’s definition of his differentiation dimension is primarily based on the idea that

firms can either decide to cluster together with other agents of whom share similar

philosophy and culture, or, they can choose to differentiate themselves and instead

work with many individuals, each of opposing cultures and philosophies. Given two

networks of the same size (same number of nodes), if one network has a larger distance

than the another network, then this is indicative of the former network being more

“spread apart”. That is, on the whole, most nodes are not tightly formed together, but

rather are connected within a very sparse manner. As such, networks that exhibit this

type of distance-based sparsity could be argued to be a reflection of a network that is

“differentiated”. It would be difficult to argue otherwise, for if a network were “sparse”

or “spread apart”, generally speaking, then by definition, there exist fewer connections

within the network (more connections would imply that the shortest distance between

two points could decrease). This leads to the conclusion that the dimension of Distance

would be positively associated with the construct of “differentiation”. So we should

therefore anticipate that

Hypothesis 6. A focal firm’s 2-Ego-Network Distance, ceteris paribus, is in a positive

curvi-linear relationship with 2-Ego-Network Risk.

The construct of connectivity describes the network’s “robustness”. That is, it is a

characterization of the network’s ability to remain connected in the event of some form

of removal (node, edge, group of nodes/edges). Highly connected graphs would imply

that the number of unique pathways between any two nodes is generally higher than

a network of the same size who’s connectivity is less. That is, less connected graphs

require the removal of fewer members in the network in order to disconnect the graph.
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This in itself would imply that fewer distinct paths run between the various nodes in

the network. Given the level of paths between any two nodes in the network, this would

transcend the notion that nodes are more “spread out”, not in the sense of distance,

but rather that of ability to travel.

Logic would dictate that highly clustered groups of individuals would not be as well

connected as less clustered networks. If a network has many tight clusters of groups

(that is, high levels of clusters), then few actors will only interact with a few other

actors. It would indeed be rare, and run counter to definition, for an actor that is not

well differentiated to have many connections to actors within different cliques. In other

words, taking the “clique” as the unit of analysis itself, we should expect to see high

levels of connections within the clique, but, very low levels of connections between the

cliques. As such, the connectivity construct would be positively associated with the

differentiation construct (higher levels of connectivity should exhibit higher levels of

connectivity). Hence, we can speculate that

Hypothesis 7. A focal firm’s 2-Ego-Network Connectedness, ceteris paribus, is in a

positive curvi-linear relationship with 2-Ego-Network Risk.

Choi’s conceptualization of inter-relationships is primarily concerned with describing

a firm’s willingness to move from a dyadic perspective in buyer-supplier relationship

management towards a triadic viewpoint, as well as other firms within a potential

triad strengthening it’s relationships with each other. Networks that display higher

levels of inter-relationships, between and within firms, should be expected to exhibit

many “well-connected” firms within that network that are themselves “well connected”.

Hence, for a network where centrality levels tend to be fairly high, then we should be

able to expect the inter-relationships of the to also be high. As a firm becomes more

central, it’s accessibility to other nodes within the network because elevated, which

would translate to a decrease in it’s distance to other node. Hence, it would be natural

that it follows that

Hypothesis 8. A focal firm’s 2-Ego-Network Centrality, ceteris paribus, is in a nega-

tive curvi-linear relationship with 2-Ego-Network Risk.
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Networks where clustering is fairly high, by the previous argumentation, should be

expected to have smaller distances as well as smaller levels of connectedness. As such,

it would naturally follow that network with high clustering would be associated with

networks where inter-relationships are high. When cliques form within a network, a

firm within the clique would be more highly accessible, and can be expected to interact

more with the other actors within the clique (by definition, if it’s a click, then there

must be a high level of interaction of some nature between the firms within the clique).

Hence, it would naturally follow that

Hypothesis 9. A focal firm’s 2-Ego-Network Clustering, ceteris paribus, is in a nega-

tive curvi-linear relationship with 2-Ego-Network Risk.

Last, when the feedback of a network is high, then it is illustrative of the fact that

there are either many cycles, cycles of larger size, or both. In the case of the former,

a network that contains many cycles within the network, when compared to a network

of the same size with fewer cycles, should be expected to have more triads and higher

clustering coefficients. In the latter case, large cycle sizes would imply a high degree of

clustering, since many triads would be necessary in order to form a cycle of large size in

the first place. Hence it naturally follows that networks of which possess higher feedback

levels would also be expected to exhibit higher inter-relatedness levels. Therefore, it

should follow that

Hypothesis 10. A focal firm’s 2-Ego-Network Feedback, ceteris paribus, is in a nega-

tive curvi-linear relationship with 2-Ego-Network Risk.

Further, it has been established in the literature that structural characteristics at

different tiers in the supply network affect risk differently (Bode & Wagner, 2015). The

notion of the “tier” of the supply network is a conceptualization of Lambert’s notion

of horizontal distance (Lambert et al., 1998). It can be argued that the structure of a

k-ego-network is itself a generalization of Lambert’s notion of a “tier”. His construct

is only encompassing of a single direction (either downstream, or upstream), that is,

the upper tiers or the lower tiers. The k-ego-network construct is encompassing of

both directions and outward from a fixed position. For example, the 1-ego-network
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would include the 1-tier suppliers and the 1-tier customers. The 2-ego-network would

encompass the 2-tier suppliers and the 2-tier suppliers (as well as the 1’s). That is, the

k-ego-network is a cumulative structure of tiers.

1-Ego Network Risk

I have hypothesized that the overall structure of a 2-Ego-Network should be expected

to be different than that of the 1-Ego-Network. As such, this is partial motivation as to

how the structure of a 2-Ego-Network might portend different risks on such a network

than those of the lower 1-Ego-Network. Indeed, it has been found in the past that firm’s

exposed to high risk nodes are themselves at risk (Basole & Bellamy, 2014b). Increasing

the network view from ego-network to 2-ego-network would imply that a firm of high

risk in the 2-ego-network that is not in the 1-ego-network could potentially transfer

that risk to the focal firm via the ego-network structures. That is, there is a greater

possibility of high-risk firms in the 2-ego-network than there are in the 1-ego-network.

It can further be argued that firms in the 1-ego-network, depending on the type of

collaboration strategies employed, are more generally aware of each other’s risks via

information sharing. As such, risk should generally be lower in the 1-Ego-Network as

a result. However, a focal firm will not have interaction with a firm in it’s 2-Ego-

Network. A decrease in visibility and information could lead to a loss in identifying

proper mitigation strategies. Hence, since the structure of the Ego-Network and 2-Ego-

Networks are different, and, since the risk distributions of the networks would most

likely differ as well, we should anticipate that:

Hypothesis 11. A focal firm’s 2-Ego-Network Risk, ceteris paribus, is greater than or

equal to it’s 1-Ego-Network Risk.

As I mentioned earlier, there is some preliminary evidence that structure of supply

networks affect risk at different tiers in the network (Bode & Wagner, 2015). Since the

k-Ego-Network structure is a generalization of the more traditional “tier” structure,

it would be logical to infer that structure affects risk different at varying degrees of
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k-ego-networks. Choi’s original conceptualizations of network complex and their asso-

ciated relation with risk was primarily discussed at the network level. As such, I argue

that Choi’s conceptualization of differentiation and inter-relatedness is analogous to

the 2-Ego Network. The 2-Ego-Network of a firm would be sufficiently large enough

to consider application of Choi’s constructs. However, I argue that Choi’s conceptu-

alization of “network structure” and “risk” is not applicable in the same manner to

Ego-Networks or Local-Risk.

When a firm is engaged with other firms in their ego-network (by definition of

course), that network will of course exhibit certain structural properties, as I have

argued previously. These structural properties are inherently dependent on the level

of ego-network in which they are considered. As I argued earlier, the size of a 2-ego-

network will be larger than the size of a 1-ego-network (with the exception of a few

trivial cases). Choi’s theory on the relationship between complexity and risk could be

argued to be more reflected within networks of larger size. Indeed, as far as this author

is aware, these properties are reflected in higher-tier levels of Bode’s simulation study

(Bode & Wagner, 2015).

When a node is added into a firm’s ego-network, the size of the ego-network changes

by a factor of less than 1. However the effect on the size of the firm’s 2-ego-network

can be much larger than this. If a focal firm has 200 firms in it’s ego network, and 400

firms in it’s 2-Ego-Network, and decides to add a firm of whom has in their own ego

network 500 distinct firms that are not in any way associated with firms in the focal

firm’s ego-network, then the size of the ego network increased by a factor of 1.005, while

the size of the 2-Ego-Network increased by a factor of 2.25, a percentage difference of

124%. In other words, for every 1% change in the Ego-Network, there is a 250% change

in size of the 2-Ego-Network (assuming uniqueness of firms).

It would be logical to presume that when an Ego-Network changes by a small

amount, the impact to the ego-network risk is minimal, as not much about the overall

network structure has changed. However, when a 2-Ego-Network changes, it does so

not in small quantities, but in large quantities. That is, 2-Ego-Networks change as a

result of changes in 1-Ego-Networks. Such changes to the 2-Ego-Networks would be
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large, as I demonstrated earlier. Therefore, it would be logical to assume that typical

changes to the 2-Ego-Network would result in large changes in risk as a result, either

through the introduction of new nodes, or new edges that were not previous considered

to be part of the 2-Ego-Network (but now are due to the changes). Therefore, just due

to as a matter of size differences, we should anticipate at least some differing effects on

2-Ego-Network risk from the structure.

When the 2-Ego-Network changes, as I have argued, it will most likely change

in large ways. The impact of 1-Ego-Network structural changes, however, should be

anticipated to be minimal, since the changes to the 1-Ego-Network structure is minimal.

Furthermore, it can be argued that probabilities of disruption within Ego-Networks

should be anticipated to be generally lower than those in 2-Ego-Networks. This is

due to higher-levels of information sharing and collaboration and coordination efforts

of those within the focal firm’s ego-network. Observing this strictly from a structural

perspective, when the sizes of the Ego-Networks are small (as most are when compared

to the sizes of 2-Ego-Networks), the levels of connectivity and distance will be lower,

while the levels of clustering, feedback, and centrality would be larger, due to the small

size of the network. As such, in 1-Ego-Networks, I do anticipate similar affects to risk,

however, I will note that I hypothesize these affects will will be on a smaller level than

the effects within the 2-Ego-Network. Hence, we should expect:

Hypothesis 12. A focal firm’s 1-Ego-Network Centrality, ceteris paribus, is in a neg-

ative curvi-linear relationship with 1-Ego-Network Risk.

Hypothesis 13. A focal firm’s 1-Ego-Network Clustering, ceteris paribus, is in a neg-

ative curvi-linear relationship with 1-Ego-Network Risk.

Hypothesis 14. A focal firm’s 1-Ego-Network Feedback, ceteris paribus, is in a nega-

tive curvi-linear relationship with 1-Ego-Network Risk.

Hypothesis 15. A focal firm’s 1-Ego-Network Distance, ceteris paribus, is in a positive

curvi-linear relationship with 1-Ego-Network Risk.

Hypothesis 16. A focal firm’s 1-Ego-Network Connectedness, ceteris paribus, is in a

positive curvi-linear relationship with 1-Ego-Network Risk.
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Node/Arc Level Risk

When we observe the network from the local perspective, that is, from the individual

firm or relationship level of analysis, we are able to characterize the structure of that in-

dividual firm/relationship based on it’s structural properties within the overall network

itself. In some sense this is a paradox. We are observing “local” properties, but those

local properties are inherently defined based on the “global” structure of the network.

None-the-less, these individuals in the network exhibit these structural properties, and

one can argue that “how they lie” within the overall network, from the 5-Dimensional

perspective, will portend it’s inherent risk.

For example, when the centrality of a node (with respect to the entire network) is

high, then it is highly accessible to other nodes within the network. That is, there are

many paths of relative short distance between the location of interest (node or edge)

to another location (again, node or edge). It would be logical to presume that when

the node is highly accessible to a variety of other nodes within the overall network,

that it puts itself at risk due to the risk of those other nodes. Unlike 2-Ego Networks

and Ego-Networks that will have a smaller number of nodes (and hence, lower levels of

centrality), node/edge based centrality will generally be higher.

Choi has argued in that with respect to supply bases (partial ego-networks), that

higher centrality will portend higher levels of risk. We should anticipate that since

node/edge-level characteristics are always considered with respect to the global network,

then their various dimensional characteristics should be “larger” than those of their k-

Ego-Network counter-parts (since “Ego-Network” Dimensions would only consider the

structural attributes within that induced network, and not the entire network).

This may seem paradoxical due to the natural ordering of the levels of analysis (2-

Ego-Network> 1-Ego-Network> Local). However, the ordering, based on the definition

of the structural characteristics with respect to the level of analysis, would actually be

different (Local > 2-Ego-Network > 1-Ego-Network), since the local characteristics are

always considered from the global network perspective, which is distinct from how the

k-Ego-Network characteristics are considered. Hence, if we argue that the structural
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constructs at higher levels of analysis follow the reasoning of Choi, of which I do here,

then we should see the same patterns, yet possibly of different degrees, within the

relationship between local structure and risk. Therefore, we should anticipate by the

reasoning I have presented above that

Hypothesis 17. A focal firm’s Local Centrality, ceteris paribus, is in a negative curvi-

linear relationship with Local Risk.

Hypothesis 18. A focal firm’s Local Clustering, ceteris paribus, is in a negative curvi-

linear relationship with Local Risk.

Hypothesis 19. A focal firm’s Local Feedback, ceteris paribus, is in a negative curvi-

linear relationship with Local Risk.

Hypothesis 20. A focal firm’s Local Distance, ceteris paribus, is in a positive curvi-

linear relationship with Local Risk.

Hypothesis 21. A focal firm’s Local Connectedness, ceteris paribus, is in a positive

curvi-linear relationship with Local Risk.

A point of contention here is that I have mentioned “local risk” without regard to the

definition of“local”, that is, “edge” or “node”. I contend that both node-base and edge-

based measures affect the local risk in the same manner. However, I will hypothesize

one more point. Nodes and edges are distinct in that a node is self-contained, while

an edge always requires the definition of two nodes to exist (it makes no logical sense

to speak of an edge that only has “one” connection to a node). However, what may

be of interest is how the “edges” are structurally related to other “edges”, and, if this

structure portends effects on node/arc risk. Due to the fact that supply networks will

ultimately have more connections than actors, it would be logical to presume that the

affects of “edge structure” would impact risk at a more heightened effect than “node

structure” would. This is just simply due to the number of edges in the graph. I

speculate the form and direction of the relationships between edge and node structure

and edge/node risk are the same as I have hypothesized above (as “local”). I will make

one clear hypothesis however, given this logic of “more edges” than “nodes”:
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Hypothesis 22. A focal firm’s edge structure has a greater impact on edge risk than

the focal firm’s node structure has on node risk.

Cross-Level Risk Effects

A fairly understudied topic in the literature is how risk “propagates” from one (struc-

tural, not supply chain) level of analysis to another. Only a handful of studies have

considered studying risk at the tier level (the ones I have mentioned previously). How-

ever, to the best of this author’s knowledge, it has yet to be understood how risk “flows”

from higher-order groups of nodes to lower-order groups of nodes (ie from k-ego-network

to (k-1)-ego-network), if it flows at all. An analogy is in order here to understand this

embedded and cumulative effect of so called cross-level risk flow.

During the financial crisis of 2008, the United States had suffered one of the worst

recessions in nearly a generation. It has been speculated that one of the primary sources

of the “disruption” to the economy was primarily due to the banking industry, as a result

of underwriting loans to individuals of whom could not inherently afford the credit

they were taking. This of course was due to government regulation via the Community

Reinvestment Act, which guaranteed financial institutions their backing of the loans

in the event of default. The lack of proper liquidity requirements to maintain a stable

financial system had essentially led to a full collapse of the private-equity markets. As

a result, many found it difficult to gain proper credit to finance their various economic

activities. This eventually “trickled down” to various industries, of whom could not

acquire the proper levels of operating cash to finance their day-to-day activities. The

result was massive layoffs across the economy. As such, at the individual level, the

typical working household had to rely on unemployment and government assistance as

well as savings until they can later find meaningful employment.

The previous historical anecdote illustrates how risk emanates at a higher level of

analysis (the general American economy) down to the smallest level of analysis (the

household, or, individual actor within the greater economy). Similar arguments are

often posed for/against massive tax cuts at the Federal level in terms of these actions

“propagating” throughout various levels of analysis. Risk behaves no different in supply
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networks. We could arguably notice that a sub-network (such as a k-ego-network) has

been “disrupted”. From this level, it can be argued that the disruption “flows” down

to a smaller level of analysis, say, the firm level, and of course subsequently down to

the smallest level of analysis (the “people-supply chain”, which is not considered in the

current arguments).

The primary question at hand is, how does this notion of “risk flow” manage to move

from a very global and abstract environment down to a very local and deterministic

environment? I argue that one way that this flow can be characterized is through the

leveraging of the k-ego-construct. Disruptions need not occur at the “network-level” in

order to eventually “tickle down” to the local level. They can occur at any level. The

key importance to the analysis here is of course first fixing a point of reference, just as

we do in geometry. If we fix the point of reference to be the focal firm, then disruption

can logically occur at any location in the network. It can be argued that viewing sources

of risk from this perspective is only viewing risk on a projected dimension of a much

larger space of analysis.

Rather, in reality, “risk” manifests relative to a fixed focal firm at a specific “k-

ego-network”. The risk then “spreads down” from the k-ego-network to the (k-1)-

ego-network, and so forth, until it spreads, or stops, at a an n < k, or, at the focal

firm, of whom will either be able to thwart the disruption, or, either intentionally or

unintentionally enable it to continue it’s path of destruction, ironically, back downwards

to the outer k-ego-networks. Therefore, risk “spreads” in regards to (1) a point of

reference (the focal firm) and (2) through various nodes that are members of a variety

of embedded dimensional networks (i.e. the k-ego-networks). We can think of this as

somewhat of a “Theory of Relativity for Supply Network Risk Propagation”:

Hypothesis 23. The Theorem of Relativity for Supply Chain Risk Propagation

Suppose a focal firm has at most n-ego-networks. Then if a disruption is to manifest at

the k ≤ n level of analysis, then the risk of disruption, but not necessarily the disruption

itself, will spread to the (k − 1)-ego-network level.

This is a very general theorem, of which will require careful additional examination
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in a future study. However, the general spirit of the theorem will be studied in this

dissertation by observing the effects of 2-Ego-Network Risk on 1-Ego-Network Risk. I

have argued that risk can spread, relative to a focal firm, from higher-order ego-networks

to lower-order ego-networks. The natural extension to this line of theory is to inquire

as to how the risk may spread from one level down to the next? In this dissertation, I

will explore the linear effects of spread of risk between levels. It would be worth while

in a follow up study to determine more carefully how risk spreads, and if it spreads in

more than just a linear manner.

Hypothesis 24. The 2-Ego-Network Risk, ceteris paribus, is in a positive linear rela-

tionship with the 1-Ego-Network Risk.

Logically, by induction, we should be able to infer that the 1-Ego-Netowrk risk is in

the same relationship with the local risk. Hence, I suggest that

Hypothesis 25. The 1-Ego-Network Risk, ceteris paribus, is in a positive linear rela-

tionship with the Local Risk.

Furthermore, I would like to argue that, again, the risk at the 1-ego-network level

would most likely affect the node risk differently from the arc risk. This may be due

to the fact that an edge requires two nodes, while a node does not require any such

connections. The risk that affects the edge is a reflection of the agreement between

two parties and their perspective on the edge’s own ego network (the union of the

ego-networks of the two firms). Therefore the ego-network risk of an edge is naturally

larger than that of a node’s. I will argue, however, that regardless of node or edge, the

same relationship holds. Namely, that it is a positive quadratic relationship. However,

I argue that the edge’s impact of the edge’s ego-network risk on it’s own risk is more

substantial than that of the node. That is, there is more opportunity for the edge to

engage in “risk compensation”, since the compensation is a collective matter in this

case. If both sides of the edge are fairly low-risk-averse, this will then attenuate the

curve much higher than the node’s ego-network risk on the node-based risk.

In any case, I have demonstrated here that the structure within a structural level of

analysis impacts the risk within that level of analysis. In addition, I have demonstrated
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that these relationships are anything but homogeneous, but rather, are inherently de-

pendent on the particular level of analysis that is being studied. In addition, I have

demonstrated that the structural differences across the different levels of analysis is in

part to explain the differences in risk across these levels.
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Chapter 4

Research Design

4.1 Population and Variable Definition

4.1.1 Description of the Population of Interest

The population of interest in this research is the collection of all supply networks, their

respective embedded 2-Ego-Networks and 1-Ego-Networks, as well as the collection of

all nodes and edges embedded in those networks, with respect to no specific level of

Supply Chain Level of Analysis. The goal of this research is to understand how the

structure of the various “sub-networks” impact the “sub-network’s” risk. As such, this

dissertation focuses on the population of all supply networks.

Supply networks, as I have previously covered in the literature review, tend to

follow a “hierarchical” system, although not always. It recently has been suggested

that supply networks actually follow more of a complex adaptive system (Carter et al.,

2015). In either case, it can be argued that the network indeed follows at least some

form of hierarchy (although, very loosely) in terms of “raw materials”, “manufacturers”,

“distributors”, and “retailers”. The primary assumption regarding the structure of the

networks considered is that they are “evolved”, starting a discrete number of “focal

firms”, and building upwards and downwards to other firms, at random. While the

resulting network may be “random” or “complex”, the heart of the structure can still

be characterized by the number of “levels”, although I opt not to do so here, since the

primary inquiry of this dissertation is to focus on core-graph-theoretic constructs and

measures.
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4.1.2 Dependent Variables

The primary dependent variables in this research were 2-Ego Network Risk, 1-Ego-

Network Risk and Node/Arc Risk. Risk was characterized using the three sub-constructs

mentioned earlier (contribution, significance, and velocity), and they were all oper-

ationalized in three ways (average, standard deviation, and coefficient of variation).

First, from (Garvey et al., 2015) model using the Expected Location Risk Contribu-

tion Factor (ELRCF) (discussed earlier). The second conceptualization leveraged a

new measure I designed, of which I call the Expected Location Risk Significance Factor

(ELRSF). This is a diagnostic measure that seeks to measure the number of anticipated

ancestors that we can expect to have been disrupted given that a risk at a location had

manifested or not manifested (knowledge of disruption/no disruption is known). It’s

definition is:

ELRSF (n) = (1 + ERSF (n|n = 1))P (n = 1) + ESSF (n|n = 0)P (n = 0)

where ERSF is the Expected Risk Significance Factor, which is defined for a node

n assigned to a value a ∈ {0, 1} and n has a set of ancestors A(n):

ERSF (n = a) = E

 ∑
i∈A(n)

U(ni)|n = a


The last construct of the dependent variable is yet measured a new way in which I

have termed the Expected Location Risk Velocity (ELRV). This measures the average

percentage change in the risks present downstream compared to risks upstream. Nega-

tive values would indicate that the current node is a “depressor” of risk, while positive

values would indicate an “increaser” of risk (analogous to increasing “position” or “de-

creasing” position change). The mathematical definition would be:

ELRV (n) = ERV (n|n = 1)P (n = 1) + ERV (n|n = 0)P (n = 0)

where ERV is the Expected Risk Velocity, which is defined for a node n assigned to
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a value a ∈ {0, 1}

ERV (n = a) = E

[∑
i∈D(n) U(ni)−

∑
i∈A(n) U(ni)∑

i∈A(n) U(ni)
|n = a

]
Given the different constructs of risk, one must beg the question “which shall we use

to test the hypotheses?”. These are all sub-constructs of the primary risk construct.

Recall our discussion earlier. Risk significance is the construct of “pre-risk prorogation”

(what has happened already?). Risk confidence is what is anticipated to happen further

down the stream. I argue that Risk Velocity is the most appropriate and most related

to the general risk construct. The velocity measures the percentage change of risk flow.

Hence, negative values indicate that the node is a “risk depressor”, while positive values

indicate that the node is a “risk enabler”. Hence, from the perspective of the node (or

more generally the edge), being “risky” in the sense of increasing one set of damages

into another (or depressing them), the risk velocity would be the most appropriate sub-

construct. The study still controls for the significance and the confidence out of both

curiosity and proper statistical control of latent factors. But the primary variable used

for the hypothesis testing will indeed be the velocity. It’s specific operationalization,

the coefficient of variation, will be used as the primary dependent variable to use to

formally conduct the hypothesis testing.

4.1.3 Independent Variables

The initial independent variables considered in this research were mainly the structural

variables of a network. I will later discuss how I have reduced these down to the five con-

ceptual dimensions that I had discussed earlier. I considered the following independent

variables in the current research, all of which were calculated using R and the igraph

package. The First and Second Ego-Network levels share the same structural variables.

For the first and second ego-network level, the independent variables considered were:

1. Number of Nodes/Arcs - The number of nodes in the 2-ego and 1-ego networks,

respectively.

2. Edge/Node Connectivity - The number of edges/nodes that must be removed

from the 2-ego or 1-ego network, respectively.
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3. Diameter/Radius - Diameter is the maximum of the eccentricities of the nodes

(the maximum geodesic distance from the current node to any other node). The

radius is the minimum of such values. Namely:

diameter = max
i∈N
{ε(i)}

radius = min
i∈N
{ε(i)}

4. Girth - The smallest length cycle in the graph. It is set to 0 if there are no cycles

in the graph.

5. Clique Number - A clique is a collection of nodes in a graph such that the induced

subgraph forms a complete graph. The Clique Number is the largest number of

nodes that form a clique.

6. Number of Largest Cliques - This is a count of the number of cliques that have

the size of the clique number of the graph.

7. Average Clique Size - This is the average of the sizes of all unique cliques in the

network.

8. Number of Structural Holes, Number of Triads - A structural hole is a set of

three nodes such that two nodes share a common neighbor, but are not neighbors

themselves. A triad is a complete graph of size three. These measure the total

number of unique structural holes and the number of unique triads in the network.

9. Centralized/Average Constraint - Constraint is a measure of “cluster”. It essen-

tially reflects the level of neighbors that “influence” the current node in such a

way that “prevents” it from connecting with new nodes. It is a common measure

of “influence” in social network theory. I omit the formula here for complexity

and scope issues. The constraint of a network can be calculated in two ways:

Freeman’s Centralization (to determine how “central” the node is with respect to

constraint) and a typical mean.
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10. Density - The density of a network is the number of arcs divided by the the number

of possible arcs the network can have. The density of a node is the proportion of

it’s degree to the total number of possible nodes it can connect to in the network.

11. Centralized/Average Clustering Coefficient - The clustering coefficient is the pro-

portion of actual triads a node exhibits with it’s neighbors to the total number of

possible triads a node can exhibit with it’s neighbors. This is a local-based mea-

sure. It can be generalized to a network-based metric by either (1) calculating

the Freeman Centrality of the Clustering Coefficient or (2) finding the mean of

the Clustering Coefficient.

12. Average Shortest Path Distance - This is the average of the shortest paths be-

tween two any two nodes. Namely, if d(i, j) represents the geodesic distance of

the shortest path between node i and node j, then:

ASPD =
1

N

N∑
i=1

N∑
j=1,j 6=i

d(i, j)

13. Centralized/Average Betweeness Centrality - This measures the proportion of

paths from any two nodes that pass through a given node. Namely, given a node

k:

BC =
∑
i 6=k

∑
j 6=i,j 6=k

σi,j(k)

σi, j

where σi,j(k) represents the number of unique paths between i and j that pass

through k, and σi,j represents the number of unique paths between i and j.

This measure can be measured at a network level by finding either the Freeman

Centrality or the mean.

14. Centralized/Average Eigen Centrality - This measures how “well-connected” a

node is to other “well-connected” nodes. It can be computed by looking at the

eigen-centralities of it’s neighbors. If we would like to compute the eigen-centrality

for node n, and N(n) is it’s neighbors, then we can compute n’s eigen-centrality
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by:

en =
1

λ

∑
k∈N(n)

ek

The measures can be found by computing the eigen-vectors of the adjacency

matrix of the entire network (assuming it is undirected). The vector of centralities

would be the absolute value of the eigen-vector that corresponds to the largest

eigen-value.

15. Centralized/Average Closeness Centrality - This is a measure of how “close” two

nodes are from each other. It is the opposite of the “average shortest path”. That

is, the closeness centrality of a node n, with d(n, i) representing the shortest path

between nodes n and i, is:

C(n) =
1∑

i 6=n d(n, i)

Once again, this can be generalized to a network-measure by finding the Freeman

Centrality or the average of the values of all nodes.

16. Centralized/Average Degree Centrality - The degree centrality of a node is the

size of it’s collection of neighbors. That is:

DC(n) = |N(n)|

This can be generalized to a network-measure by finding the Freeman Centrality

or the average of the values of all nodes.

17. Centralized/Average Eccentricity - For a node n, it’s eccentricity is the largest

geodesic distance (the shortest path to a node i, d(n, i)) to any other node i in

the network. Namely:

ε(n) = max
i∈N,i6=n

d(n, i)
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This can be generalized to a network-measure by finding the Freeman Centrality

or the average of the values of all nodes.

18. Graph Center - While this is not a graph measure, per se, it is used for other mea-

sures. The graph center is the collection of nodes with the minimum eccentricity.

That is:

ω = {n | ε(n) = min
i∈N
{ε(i)}}

19. Min Distance to the Center - The minimum distance of a node n to the center of

the graph is smallest distance to a node that is in the center. Namely:

MinCenter(n) = min
k∈ω
{d(n, k)}

20. Max Distance to the Center - The maximum distance of a node n to the center

of the graph is the largest distance to a node that is in the center. Namely:

MaxCenter(n) = max
k∈ω
{d(n, k)}

21. Coreness - The coreness of a node n is the level k such that the node n is in the

k-core of the graph, but not in the (k + 1)-core of the graph. The k-core of a

graph is the induced subgraph of nodes such that all the nodes in the k-core have

a degree of at least k.

22. k-Ego-Connectivity - The smallest value of k such that the k-ego-network discon-

nects the graph.

All of the variables described here either had a canned method in the igraph package

of R, or, were hand-coded by the author of this dissertation. There are three levels of

analysis in this dissertation, namely the 2-Ego-Network level, the 1-Ego-Network level,

and the local level. The measures were calculated for each level using the method

described earlier. The 2-Ego-Network and 1-Ego-Network are levels of analysis that

involve multiple nodes and edges. Hence, the metrics were computed using either (1)
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network-based metrics (2) the Freeman Centralization and (3) the average. Node-level

attributes were computed directly according to their respective definitions. The edge-

level attributes were computed by first finding the line graph of the graph, and then

computing node-level metrics. The line graph of a graph is the resulting graph by

assigning nodes to represent the edges in the original graph, and by connecting two

nodes if their corresponding edges in the original graph were incident (that is, they

share the same vertex in the original graph).

Control Variables

The study controlled for three primary variables of interest, namely the alpha param-

eter, the beta parameter, and a dummy variable indicating if a data point in the local

data was a node or an edge. The alpha and beta needed to be controlled for since

probability obviously is a big factor in the calculation and determination of the risks.

However, controlling for all probabilities would be cumbersome. Hence, one way to

control for the probabilities simulated is to simply use the parameters from the distri-

bution in which the probabilities were sampled, as a regressor in the primary model, so

that proper structural effects can be isolate and omitted variable bias can reduce.

4.2 Design of the Simulation

The simulation was designed to sample different supply network structures of varying

sizes and structure in order to capture the variability in structure so that if a relation-

ship between structure and risk exist, the relationship can be properly isolated. The

simulation operated off of the following assumptions:

1. A network had a minimum of 100 nodes.

2. The network had a variety of “levels”, as small as 5.

3. A node in the network had at most 10 parents.

4. Every location in the generated network corresponded to one and only one “risk”.

This is a bit of a departure from Garvey’s model. However, it simplified the
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calculations. Hence, every node and edge that exists in the generated supply

network had one and only one risk associated with it.

5. The resulting risk graph was generated according to (Garvey et al., 2015) algo-

rithm. Only parents that were generated for a node were allowed to connect to

their direct children, or edges connecting to the children, and no others.

6. Edges in the supply network were assumed to connect to two node locations from

the supply network. The risk at the edge was represented as a node in the risk

graph. It was only allowed to have one parent, and one child.

7. The conditional probabilities of the distributions in the risk graph were sampled

randomly from the same Beta Distribution with a given α and β value. That is, an

α and β value chosen at random (uniformly), and all the conditional probabilities

in a given risk graph were sampled from the same Beta(α, β).

The design of the simulation involved generating the supply networks and their

corresponding risk graphs. From there, their respective node/edge-level risk measures

were computed. After, for each node and edge in the network, the 2-Ego-Network

was found, and structural characteristics of only the 2-Ego-Network were recorded,

along with the risk metrics for the 2-Ego-Network (an average, standard deviation, and

coefficient of variation of the respective risk measures of the nodes and edges in only

the 2-Ego-Network). The same was conducted for the 1-Ego-Network. The node-level

attributes were computed using the same package, and the corresponding risk measures

for the node were recorded. For the edges, the line graph was used as the primary

mechanism to calculate the edge’s structural characteristics. The risk measures for the

edges were also recorded.

The simulation was conducted using a custom-engineered system of virtual machines

leveraging a variety of Amazon EC2 Instances, with an R-Instance installed on each of

them. 10 smaller machines were used to generate the networks and compute their risk

graphs. Every 10 networks that were generated were stored into a single compressed

file using the Brotli compression algorithm. The file was then stored on an Amazon
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S3 Bucket. A second phase of the simulation (which ran in parallel to the first phase)

was to have three higher-quality Amazon EC2 instances “listening” on each of the S3

Buckets.

As soon as a file was placed on there from the first phase, the EC2 instance would

sweep it up, decompress it (again, using Brotli), and compute the risk measures specified

above using bnlearn’ s likelihood-weighting simulation belief inference algorithm. After

this machine was complete with conducting the full computation of the risk scores, it

saved the networks into a file and again compressed it using the Brotli algorithm. The

resulting file was then placed automatically on a separate S3 Bucket. A third tier of

the simulation had a separate three Amazon EC2 instances listening on these 2nd tier

buckets. As soon as a file was placed on these buckets, the code would sweep up the

file, decompress it, and calculate (1) all the possible 2-Ego-Networks in the graph, (2)

all the structure metrics for each 2-Ego-Network and risk scores, (3) all the possible

Ego-Networks in the graph, (4) all the structure metrics for each Ego-Network, (5) all

the node and edge metrics along with their corresponding and respective risk scores.

The final results were placed into three different tables (one for the 2-Ego-Network

data, one for the 1-Ego-Network Data, one for the edge/node data). The file was then

again compressed using Brotli and moved to a different S3 Bucket. The last phase, a

final EC2 instance was listening on the last tier of S3 buckets for new files. The instance

would read the file, decompress it, and append a data frame. Once the simulation had

finished, the final EC2 Instance wrote the final 3 files as comma-separated-value (CSV)

files on the server. The author then downloaded the files to be used for further analysis.

The total time to run the simulation was approximately 2 hours.

The general steps of the simulation are outlined below:

1. Using igraph, generate an empty graph of a given number of nodes.

2. Divide this size into roughly equal components, indexing from 1 to n, where lower

indexes would correspond to higher levels in the network.

3. For each node n in each layer i, randomly choose a number of parents (up to a

maximum of 10) from layers 1 to i− 1 , and create the edges.
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4. Calculate the number of structural holes, and randomly choose a number to con-

vert them into full triads.

5. Take the resulting supply network and convert it into a risk graph by taking each

node and edge and assigning it a unique node in the risk graph.

6. The edges in the risk graph were purely determined by the structure of the supply

network.

7. Calculate the number of probability distributions that must be sampled for a

given node/edge.

8. Sample from a Beta distribution with a given α and β

9. Assign the conditional probabilities in the risk graph to these sampled probabili-

ties for each node/edge.

10. Calculate the risk measures using the graphs generated above and using bnlearn’s

simulation tools for probabilistic inference.

11. Use igraph to calculate the structural variables.

12. Take the results and store in a file.

13. Aggregate the files into three data sets (one data set for each structural level)

4.3 Description of Resulting Datasets

The resulting datasets were structure-level information for the 2-Ego Network, 1-Ego

Network and Node/Arc Level. A total of 600 different networks were randomly sampled.

This resulted in each data file comprising of an equal number of 322,000 observations.

The variables in the Ego-2-Level were described above. The dataset comprised of

39 columns and 322,000 observations. The variables in the Ego-1-Level were also as

described above, with the notable exception of the addition of the 2-Ego-Network Risks.

The dataset comprised of 48 columns and 322,000 observations.
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4.4 Empirical Models

In the design of the research, I have three measures the constructs of 2-Ego-Network

Risk. Namely, the average 2-Ego-Network Risk, the standard deviation of 2-Ego-

Network Risk and last the coefficient of variation of 2-Ego-Network Risk. Risk itself is

decomposed into three sub-constructs, namely contribution, significance and velocity.

I use the following notation to denote the variables:

1. C is Centrality

2. N is Connectivity

3. L is Clustering

4. F is Feedback

5. D is Distance

6. I is Risk Confidence

7. S is Risk Significance

8. V is Risk Velocity

9. E is Dummy Variable for Node(1)/Edge(0)

Given that I have 3 operationalizations each for 3 different risk constructs that use the

same regressors, it is highly likely that the error terms in each model, across the models,

will be correlated. As such, I leverage a Seemingly Unrelated Regression (SUR) model.

In this case, because I have three different levels of analysis, of which are connected via

3 variables each (namely, the risk confidence, significance, and velocity, respectively), I

estimate the SUR separately. Thus, there will be three systems of equations. The first

will be the system of equations for the 2-Ego-Network risk model, the second for the

1-Ego-Network risk model, and the third for the local-network risk model. The models,

given their length, are displayed on the following page.
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Chapter 5

Analysis and Results

5.1 Descriptive Statistics

The raw network dataset that was generated by the simulation comprised of 600 distinct

networks. The average number of nodes was 215.25, with a standard deviation of 10.066.

The average number of arcs was 321.417, with a standard deviation of 63.484. We

can notice, unfortunately, that the simulation resulted in networks that had extreme

homogeneity within connectivity. The girth for all networks was 3, which indicates

that every network had a triad. All other metrics had a fair level of heterogeneity. The

entire summary statistics are shown in Table 5.1.

The three raw datasets were loaded into R and were initially cleaned by removing

any duplicate entries that the simulation may have produced (it is possible that from a

single network, duplicate ego-networks/2-ego networks corresponding to two different

nodes/edges were recorded). After the duplicates were removed from the 2-Ego-Network

dataset, the resulting number of observations was 193,147. The average size of the 2-

Ego-Network comprised of 14.63 nodes with a standard deviation of 11.4. The average

number of arcs was 26.1 with a standard deviation of 28.4. The summary for the rest

of the variables is shown in Table 5.2. There are some notable outliers that must be

addressed, namely in the risk variables. We can see that while the inner-quantile range

is fairly tight, the outer quartiles contain data on a very different order of magnitude,

indicating that further data cleansing is necessary.

Likewise, we notice that for the 1-Ego-Network data the number of observations,

after removal of duplicates, amounted to a total sample size of 254,331. The average

1-Ego-Network size was 6.179 with a standard deviation of 3.7. The average number

of arcs was 10.205 with a standard deviation of 11.601. We notice similar issues in the
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Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

eNNodes 600 215.250 10.066 200 206.8 223.2 236
eNArcs 600 321.417 63.484 210 268.8 370 478
eEdgeConnectivity 600 1.000 0.000 1 1 1 1
eNodeConnectivity 600 1.000 0.000 1 1 1 1
eDiameter 600 17.368 1.919 13 16 18 24
eRadius 600 8.935 0.996 7 8 9 12
eGirth 600 3.000 0.000 3 3 3 3
eCliqueNum 600 5.143 1.680 3 4 6 11
eNumOfLargestCliques 600 6.723 8.593 1 2 8 61
eAvCliqueSize 600 2.119 0.554 1.520 1.722 2.323 4.550
eNSH 600 660.505 150.013 381 531.8 769 1,228
eNTriads 600 158.537 123.190 5 59 234.2 588
eAvgConstraint 600 0.646 0.026 0.583 0.624 0.668 0.703
eConstraintCen 600 77.280 6.771 60.907 72.312 82.561 93.015
eDensity 600 0.014 0.003 0.009 0.012 0.016 0.022
eClusterCoeff 600 0.356 0.152 0.030 0.248 0.477 0.667
eClusterCoeffAv 600 0.324 0.145 0.016 0.215 0.439 0.622
eAvgShortestPathDis 600 7.399 0.610 5.820 6.976 7.815 9.323
eAvgBetweeness 600 686.120 79.019 508.112 630.537 741.615 944.684
eAvgCloseness 600 0.001 0.0001 0.0005 0.001 0.001 0.001
eAvgDegree 600 2.987 0.575 2.034 2.510 3.440 4.587
eAvgEV 600 0.066 0.013 0.028 0.057 0.073 0.121
eCenBetweeness 600 2,581,848.000 562,548.900 1,425,497 2,150,697.0 2,902,111.0 4,687,632
eCenEigen 600 201.153 10.359 179.266 192.683 209.408 229.430
eCenCloseness 600 19.813 2.307 13.214 18.153 21.332 26.668
eCenDegree 600 1,796.032 434.197 885 1,482.2 2,016.8 3,298
eAvgEccentricity 600 13.122 1.355 9.822 12.176 13.919 17.895
eEccentricityCen 600 914.870 160.686 503 801 1,002.2 1,558

Table 5.1: Summary Statistics of the Raw Network Data

risk measures as we noticed in the 2-Ego-Network data, which again would indicate

that further data cleansing is needed. The results are shown in Table 5.3

The dataset for the nodes and edges comprised of the full 322,000 observations.

There may be “duplicates”, per se, however, they were not removed, as it is possible

that one observation belonged to an edge while another belonged to a node, and hence

are considered distinct, despite have the same exact characteristics. Recall that I seek

to isolate the differences in the effect on risk between the nodes and the edges, and

hence, removing duplicate information would prevent me from properly analyzing the

two populations. The average value for the isNode variable was .401, which indicates

that 40.1% of the observations were nodes while the remaining 59.9% were edges. Again

we notice similar issues with the risk measures that were observed in the 1-Ego-Network

and 2-Ego-Network data sets, hence indicating that further data cleansing is necessary.

The correlation matrices are shown in Tables 5.5, 5.6, 5.7. Across all the data sets, we

do see very high correlation between the number of nodes and the number of arcs, as
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Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

alpha 193,147 3.075 1.197 1 2 4 7
beta 193,147 5.512 2.867 1 3 8 10
eNNodes 193,147 14.763 11.353 3 6 20 83
eNArcs 193,147 26.056 28.438 2 7 34 243
eEdgeConnectivity 193,147 1.049 0.233 1 1 1 5
eNodeConnectivity 193,147 1.000 0.004 1 1 1 2
eDiameter 193,147 3.633 1.096 2 3 5 5
eRadius 193,147 2.069 0.693 1 2 3 3
eGirth 193,147 2.541 1.080 0 3 3 3
eCliqueNum 193,147 3.863 1.531 2 3 5 11
eNumOfLargestCliques 193,147 2.732 2.472 1 1 3 37
eAvCliqueSize 193,147 2.025 0.601 1.400 1.636 2.244 5.499
eNSH 193,147 50.253 71.446 1 6 63 877
eNTriads 193,147 21.150 40.042 0 1 21 443
eAvgConstraint 193,147 0.720 0.095 0.374 0.651 0.791 0.924
eConstraintCen 193,147 4.815 4.878 0.284 1.250 6.660 36.388
eDensity 193,147 0.326 0.181 0.036 0.176 0.467 0.848
eClusterCoeff 193,147 0.412 0.238 0.000 0.263 0.600 0.980
eClusterCoeffAv 193,147 0.466 0.261 0.000 0.303 0.666 0.977
eAvgShortestPathDis 193,147 2.152 0.558 1.152 1.667 2.607 3.739
eAvgBetweeness 193,147 10.512 12.092 0.333 1.667 15.050 92.169
eAvgCloseness 193,147 0.089 0.099 0.004 0.021 0.120 0.389
eAvgDegree 193,147 2.929 1.147 1.333 2.000 3.600 9.846
eAvgEV 193,147 0.518 0.172 0.143 0.375 0.652 0.917
eCenBetweeness 193,147 2,248.995 5,700.472 2.000 32.000 1,521.000 113,007.400
eCenEigen 193,147 8.740 8.902 0.586 2.090 12.451 66.816
eCenCloseness 193,147 3.000 2.198 0.500 1.333 4.009 15.873
eCenDegree 193,147 79.103 105.544 2 10 103 1,134
eAvgEccentricity 193,147 3.147 0.931 1.667 2.500 4.000 4.750
eEccentricityCen 193,147 8.205 8.519 1 2 11 60
avg elrcf 193,147 10.728 11.100 0.128 3.132 14.592 149.428
avg elrsf 193,147 6.273 3.889 0.257 3.584 7.890 47.390
avg elrv 193,147 4.815 7.770 −0.977 −0.297 7.759 120.174
sd elrcf 193,147 19.372 21.275 0.056 3.723 28.856 193.074
sd elrsf 193,147 1.795 1.460 0.072 0.862 2.253 21.200
sd elrv 193,147 14.236 19.170 0.018 1.032 22.776 174.067
cv elrcf 193,147 1.576 0.586 0.200 1.126 1.976 4.776
cv elrsf 193,147 0.321 0.192 0.015 0.165 0.453 1.467
cv elrv 193,147 5.053 3,057.665 −296,747.800 −0.384 3.590 1,237,882.000

Table 5.2: Summary Statistics for The 2-Ego-Network Original Data-Set

should be expected. In addition, we notice that the diameter of the network is highly

correlated with the radius (which is not necessarily obvious, despite the names) and the

average shortest path distance. The number of structural holes is correlated very high

with the constraint (as expected) as well as with the number of triads. We also notice

fairly high correlations between the various centrality measures (closeness, eigenvector,

betweenness, and degree), which again was expected.

However, we also notice that the dependent variables across all the data sets seem

to be highly correlated. This may be an indication that the error terms across the

models, if we were to run them individually, would result in cross-equation correlation
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and possible endogeneity. This provides enough justification for the model specification

and estimation approach that I will explain below.
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Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

avg elrcf 2ego 254,331 10.682 11.058 0.128 3.193 14.440 149.428
avg elrsf 2ego 254,331 6.364 3.933 0.257 3.645 8.007 47.390
avg elrv 2ego 254,331 4.741 7.725 −0.977 −0.288 7.547 120.174
sd elrcf 2ego 254,331 19.354 21.241 0.056 3.869 28.605 193.074
sd elrsf 2ego 254,331 1.840 1.478 0.072 0.894 2.312 21.200
sd elrv 2ego 254,331 14.092 19.109 0.018 1.063 22.284 174.067
cv elrcf 2ego 254,331 1.593 0.580 0.200 1.149 1.981 4.776
cv elrsf 2ego 254,331 0.323 0.191 0.015 0.169 0.453 1.467
cv elrv 2ego 254,331 3.392 2,717.067 −296,747.800 −0.442 3.637 1,237,882.000
alpha 254,331 3.065 1.192 1 2 4 7
beta 254,331 5.527 2.864 1 3 8 10
eNNodes 254,331 6.179 3.700 2 3 8 29
eNArcs 254,331 10.205 11.601 1 3 13 129
eEdgeConnectivity 254,331 1.377 0.748 1 1 2 10
eNodeConnectivity 254,331 1.187 0.597 1 1 1 10
eDiameter 254,331 2.148 0.770 1 2 3 3
eRadius 254,331 1.382 0.486 1 1 2 2
eGirth 254,331 2.170 1.342 0 0 3 3
eCliqueNum 254,331 3.412 1.394 2 2 4 11
eNumOfLargestCliques 254,331 1.859 1.452 1 1 2 31
eAvCliqueSize 254,331 1.908 0.592 1.333 1.444 2.129 5.503
eNSH 254,331 12.311 20.524 0 1 15 485
eNTriads 254,331 8.989 20.901 0 0 8 287
eAvgConstraint 254,331 0.812 0.159 0.242 0.720 0.906 1.125
eConstraintCen 254,331 1.327 1.581 0.000 0.099 1.838 16.174
eDensity 254,331 0.630 0.243 0.111 0.429 0.833 1.000
eClusterCoeff 254,331 0.465 0.339 0.000 0.000 0.727 1.000
eClusterCoeffAv 254,331 0.508 0.357 0.000 0.000 0.810 1.000
eAvgShortestPathDis 254,331 1.434 0.316 1.000 1.167 1.682 2.287
eAvgBetweeness 254,331 1.554 1.731 0.000 0.250 2.429 12.667
eAvgCloseness 254,331 0.302 0.312 0.020 0.086 0.389 1.000
eAvgDegree 254,331 2.610 1.397 1.000 1.600 3.250 11.176
eAvgEV 254,331 0.753 0.173 0.285 0.612 0.890 1.000
eCenBetweeness 254,331 94.293 207.940 0.000 1.000 87.000 4,100.010
eCenEigen 254,331 2.030 2.136 0.000 0.438 3.124 14.982
eCenCloseness 254,331 1.357 1.187 0.000 0.500 2.076 7.787
eCenDegree 254,331 17.980 26.511 0 2 24 322
eAvgEccentricity 254,331 1.898 0.623 1.000 1.500 2.538 2.905
eEccentricityCen 254,331 1.860 1.907 0 1 3 14
avg elrcf 254,331 9.136 13.292 0.056 1.802 10.271 218.835
avg elrsf 254,331 6.597 4.263 0.169 3.651 8.345 67.955
avg elrv 254,331 3.721 9.597 −0.991 −0.693 2.707 195.706
sd elrcf 254,331 13.523 21.050 0.023 1.552 15.218 225.270
sd elrsf 254,331 1.330 1.282 0.015 0.564 1.632 22.486
sd elrv 254,331 9.063 18.535 0.008 0.349 6.582 225.798
cv elrcf 254,331 1.208 0.523 0.023 0.822 1.515 4.776
cv elrsf 254,331 0.244 0.205 0.005 0.100 0.318 1.485
cv elrv 254,331 1.653 2,680.906 −296,747.800 −0.582 2.589 1,237,882.000

Table 5.3: Summary Statistics for The 1-Ego-Network Original Data-Set



180

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

alpha 322,000 3.063 1.191 1 2 4 7
beta 322,000 5.525 2.864 1 3 8 10
avg elrcf ego 322,000 8.879 13.040 0.056 1.823 9.811 218.835
avg elrsf ego 322,000 6.652 4.288 0.169 3.685 8.417 67.955
avg elrv ego 322,000 3.547 9.436 −0.991 −0.689 2.424 195.706
sd elrcf ego 322,000 13.208 20.840 0.023 1.598 14.448 225.270
sd elrsf ego 322,000 1.338 1.269 0.015 0.579 1.640 22.486
sd elrv ego 322,000 8.763 18.329 0.008 0.359 6.047 225.798
cv elrcf ego 322,000 1.217 0.521 0.023 0.835 1.517 4.776
cv elrsf ego 322,000 0.243 0.202 0.005 0.102 0.312 1.485
cv elrv ego 322,000 4.420 3,264.272 −296,747.800 −0.640 2.606 1,237,882.000
isNode 322,000 0.401 0.490 0 0 1 1
nBetweenness 322,000 818.526 2,151.709 0.000 0.000 618.000 51,751.500
nCloseness 322,000 0.001 0.0002 0.0002 0.0004 0.001 0.001
nEigen 322,000 0.082 0.184 0.000 0.0003 0.051 1.000
nDegree 322,000 5.432 4.352 1 2 7 36
nEccentricity 322,000 12.626 2.249 6 11 14 24
nMinCenterDistance 322,000 3.918 1.849 0 3 5 12
nMaxCenterDistance 322,000 4.493 1.817 0 3 6 12
nAvgSPathDis 322,000 6.858 1.638 3.042 5.649 7.906 16.348
nDensity 322,000 0.018 0.012 0.002 0.009 0.025 0.098
nClusterCoeff 322,000 0.482 0.328 0.000 0.267 0.667 1.000
nCoreness 322,000 3.803 2.877 1 2 5 19
nTriads 322,000 11.694 20.525 0 1 13 316
nSH 322,000 9.811 18.143 0 0 11 314
nEgoConnectivity 322,000 0.858 0.719 0 0 1 9
elrsf 322,000 6.775 4.683 0.019 3.549 8.736 78.592
elrcf 322,000 6.772 22.569 0.006 0.641 4.044 529.657
elrv 322,000 2.322 18.147 −1.000 −0.938 −0.085 528.897

Table 5.4: Summary Statistics for The Node/Edge Original Data-Set
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The correlation matrices and descriptive analysis thus leads to some initial consid-

erations that must be taken before a proper model is run. First, the correlations across

many of the variables are very high (many larger than .9). This may be problematic

and can lead to multi-collinearity concerns if I were the run the models on the current

independent variables. Second, in order to properly test the hypotheses argued in the

previous chapter, I will need to conduct a factor analysis to reduce the variables to the

5-Fundamental Structural Dimensions of the Graph.

Next, the descriptive statistics of the variables seem to indicate very tight inter-

quartile ranges, but the outside quartiles are very sparse. This leads to an indication

that there may be extreme outliers, which may cause issues if we conduct a factor

analysis and later a regression analysis. Hence, proper additional cleansing of the data

is necessary. Last, given the nature of the data and the problem at hand, as well as

how the data was generated, I anticipate that the error terms in each of the empirical

specifications will have high levels of correlation. In such an instance, it would be wise

to run a Seemingly Unrelated Regression (SUR) in order to avoid the issues at hand.

The standard estimation approach for this is Feasible Generalized Least Squares, and

hence, endogeneity and heteroscdastisity concerns are fairly tempered given the level

of consistently and efficiency of this estimator.

5.2 Factor Analysis

5.2.1 1-Ego-Network and 2-Ego-Network Factor Analysis

Given the high levels of correlation across the proposed independent variables, as well

as the need to explain the proposed constructs with the measured variables, I conducted

an exploratory factor analysis on the all variables except the dependent risk variables

and the alpha and beta variables (which are control variables). The initial analysis of

the 2-ego-network and the 1-ego-network data, respectively, indicated that the optimal

number of factors to consider was 5, as we can observe from the scree plot. At first,

I conducted two separate EFA’s on the respective data sets. However, doing so led to

some inconsistencies. While most variables loaded onto similar factors, some for the
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Figure 5.1: The scree plot for the EFA on the combined 2-Ego-Network and 1-Ego-
Network data.

1-Ego-Network were loaded onto factors that did not seem to be clear as to why.

Given the nature of the data and the similarity and conformity of the 2-Ego-Network

and 1-Ego-Network data, I had decided to pool the two data-sets together and run a

joint-factor analysis to ensure a consistent loading of factors across the data sets. The

scree plot for this final analysis is shown in Figure 5.1. Again, the optimal number

of factors to consider was indicated to be 5. I had ran a final version of the EFA

using the Minimum Residual Method with a Varimax Rotation in R using the psych

package. The final loadings are shown in Table 5.8, with the highest loading of the
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variable highlighted in gray. The recommended 1-to-1 mappings of the variables onto

the factors is indicated in Figure 5.2.

MR1 MR3 MR4 MR2 MR5

eNNodes 0.84 0.47 0.23 0.11 -0.01
eNArcs 0.82 0.27 0.49 0.12 0.01

eNSH 0.89 0.25 0.29 0.03 -0.01
eConstraintCen 0.84 0.37 0.32 0.09 -0.12

eAvgBetweeness 0.89 0.42 0.03 0.04 -0.02
eCenBetweeness 0.87 0.11 0.02 0.01 0.01

eCenEigen 0.88 0.44 0.12 0.06 -0.04
eCenCloseness 0.74 0.51 0.29 0.11 -0.07

eCenDegree 0.91 0.28 0.23 0.04 -0.03
eEccentricityCen 0.77 0.44 0.17 0.06 -0.06

eDiameter 0.39 0.86 0.11 0.07 -0.15
eRadius 0.42 0.75 0.10 0.06 -0.12

eNumOfLargestCliques 0.22 0.39 0.04 -0.25 0.10
eDensity -0.29 -0.90 -0.14 -0.04 0.21

eAvgShortestPathDis 0.51 0.83 0.01 0.03 -0.12
eAvgCloseness -0.06 -0.77 -0.28 -0.37 -0.02

eAvgEV -0.41 -0.84 -0.16 -0.09 0.17
eAvgEccentricity 0.42 0.86 0.10 0.08 -0.16

eCliqueNum 0.35 0.15 0.76 0.47 0.04
eAvCliqueSize 0.30 0.11 0.85 0.38 0.10

eNTriads 0.65 0.04 0.67 0.08 0.02
eAvgConstraint -0.19 -0.62 -0.68 -0.07 -0.02

eAvgDegree 0.27 0.26 0.81 0.40 0.18
eGirth 0.10 0.35 0.14 0.86 0.05

eClusterCoeff 0.04 -0.07 0.33 0.89 0.24
eClusterCoeffAv 0.09 0.03 0.32 0.85 0.29

eEdgeConnectivity -0.09 -0.14 0.23 0.21 0.87
eNodeConnectivity -0.03 -0.24 -0.03 0.21 0.72

Table 5.8: The 1-Ego-Network and 2-Ego-Network Factor Loadings from the EFA.

From the plot and the table, we can make the following observations. The variables

Centralized Degree, Average Betweenness Centrality, Number of Structural Holes, Cen-

tralized Eigenvector Centrality, Centralized Betweenness Centrality, Centralized Con-

straint, Number of Arcs, Centralized Eccentricity, and Centralized Closeness Centrality

have all loaded onto factor MR1. This factor mostly corresponds to the theoretical con-

struct of Centrality, as I have argued earlier. What is surprising is that the number

of structural holes have loaded onto this factor, which is a variable I had expected to

load onto the clustering and possibly even feedback constructs. All variables loaded
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Factor Analysis
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Figure 5.2: The final loadings of the 2-Ego-Network and 1-Ego-Network data.
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positively onto this factor.

The second factor, MR3, had Density, Average Eccentricity, Diameter, Average

Eigenvector Centrality, Average Shortest Path Distance, Average Closeness Centrality

and Radius load onto it. Most of these were expected, and this factor would describe

the Distance construct. Density, Average Eigenvector Centrality and Average Closeness

Centrality loaded negatively on this construct. This makes sense. As density increases,

the number of arcs increase, and hence this expands the number of possible paths

between two nodes, which would imply that a new shortest path would be available

between two firms. That is, the distance between two nodes shrink as the density

increases, simply due to the fact that there are more available paths to link the nodes.

In addition, networks with higher levels of average eigenvector centrality would indicate

that many nodes are again highly connected and dense. By the preceding argument, we

should have expected to see this. Last, as closeness centrality increases, again, nodes

are more accessible to each other via short paths, and hence, the overall distance of the

network shrink.

We notice that Average Clique Size, Average Degree, Clique Number, Average Con-

straint, and Number of Triads are loaded onto the third factor, MR4. This factor would

describe the Clustering construct, and all variables, with the exception of degree, have

loaded as expected. Constraint is negatively associated with the factor. This is quite

surprising, since constraint is a measure of clustering in itself. Higher levels of constraint

typically translate to an increased number of triads, which implies that the clustering

of the network would be higher. This would indicate that the construct of clustering is

much more multifaceted that simply characterizing it by triads.

Next, we notice that the Centralized Clustering Coefficient, Girth, and the Average

Clustering Coefficient are associated with factor MR2, which would indicate that this

factor is associated with the construct of Feedback. All variables loaded positively on

the factor. Higher girth would indicate longer shortest cycles, which would of course

translate to the network being more “thick”. Higher levels of the Clustering coefficients,

both centralized and average, would indeed indicate higher levels of Feedback. When the

clustering coefficients are higher, there exist more triads. Eventually, as the proportion
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of possible triads increase, so too does the establishment of a cycle (and, a larger length

cycle). Hence, the loadings are indeed in line with the definition of the construct,

and emphasize that “triadic analysis” is in itself descriptive of the different tangential

construct of Feedback, rather than Clustering.

Last we notice that, as expected, node and edge connectivity loaded on the fac-

tor MR5, which of course would be indicative of the Connectivity construct. Node

connectivity loaded less than that of edge connectivity.

Hence, we have the following factor interpretations:

1. MR1 = Centrality

2. MR3 = Distance

3. MR4 = Clustering

4. MR2 = Feedback

5. MR5 = Connectivity

5.2.2 Node and Edge Factor Analysis

Next I ran a factor analysis on the Node/Edge level data set to reduce the high levels

of correlation and to extract the factors of which the theory seems to indicate it’s

existence. The node and edge data were pooled together and all variables except the

alpha, beta, isNode, and risk measures were used in the factor analysis. A preliminary

analysis produced the scree plot shown in Figure 5.3, which indicates that the optimal

number of factors was again 5, inline with the theoretical justification.

We notice from Figure 5.4 as well as from Table 5.9 that there are five factors of

which we must identify. The first factor loading, MR1, had the variables Number of

Structural Holes, Number of Triads, Degree, Coreness, Density, Eigenvector Centrality,

and Betweenness Centrality load onto it. Given that Degree, Coreness, Eigenvector

and Betweenness Centrality loaded onto this factor indicates that this is our Centrality

construct. What is interesting is the the number of structural holes and triads, typically

Clustering and Feedback based measures, loaded onto this. However, given that this
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Factor Analysis
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Figure 5.4: The final factor loadings for the Node and Edge data.
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MR1 MR2 MR4 MR3 MR5

nBetweenness 0.35 -0.20 0.10 -0.16 -0.30
nEigen 0.62 -0.27 0.37 -0.02 -0.05

nDegree 0.92 -0.26 -0.07 0.21 -0.17
nDensity 0.83 -0.24 0.23 0.23 -0.38

nCoreness 0.86 -0.25 -0.07 0.42 0.02
nTriads 0.96 -0.21 -0.00 0.06 0.15

nSH 0.96 -0.20 -0.01 -0.13 0.01
nEccentricity -0.23 0.88 -0.09 -0.10 0.08

nMinCenterDistance -0.25 0.91 -0.14 -0.05 0.16
nMaxCenterDistance -0.25 0.91 -0.16 -0.04 0.17

nAvgSPathDis -0.38 0.81 -0.15 -0.19 0.18
nCloseness -0.01 -0.52 0.72 -0.15 -0.25

nClusterCoeff 0.10 -0.10 -0.05 0.56 0.11
nEgoConnectivity 0.01 0.14 -0.06 0.08 0.47

Table 5.9: The EFA Loadings on the Node/Edge data set

analysis is conducted at the local level, rather than a network-level, it can be argued that

the number of possible triads and structural holes a node can have is inherently degree-

based, which of course is centrality based. More generally this further illustrates the

need for the network Constructs, since their observables are dependent on the structural

level-of-analysis (That is, number of triads describes one factor at one structural level,

but describes a different factor better at a different level).

The second factor, MR2, had the variables Minimum Center Distance, Maximum

Center Distance, Eccentricity, and Average Shortest Path Distance load. This clearly

is our Distance construct. All measures are indeed inherently distance-based.

The third factor MR4 was in a one-to-one relationship with the closeness centrality.

I argue that this is the Clustering construct. When closeness has a low value, this

indicates that nodes are less accessible, which implies that their ability to form cliques

decreases. Therefore, at the node/edge level, it is reasonable to presume that this

variable will load onto this factor.

The factor MR3 is our Feedback construct. Again, clustering coefficients are calcu-

lated as the proportion of actual triads to the number of possible triads that a node

be part of. When this value is higher, then there are more triads, which increases the

probability of a cycle forming, along with the cycle distance if one indeed forms. The
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last factor, MR5, is obviously our Connectivity construct. Again, the k-ego connectivity

indicates the number of ego networks one must “go up”, or remove, before the entire

network becomes disconnected. Hence, we can conclude the following:

1. MR1 = Centrality

2. MR2 = Distance

3. MR4 = Clustering

4. MR2 = Feedback

5. MR5 = Connectivity

After the factor analysis was conducted on the the primary independent variables

of which needed to be reduced dimensionally, I used R’s psych package’s functionality

to obtain the finalized factor scores. After, I conducted a confirmatory factor analysis

(CFA) of the risk variables. Unlike the other independent variables, where the structural

constructs can be argued to be described by the same observables, but at different levels

of analysis, and there is reason to believe that a variable could be loaded on to more

than one factor, the risk variables themselves should indeed be forced to load onto their

own respective factors as the theory would mandate.

For each construct of risk (confidence, significance, and velocity), I had three oper-

ationalizations (average, standard deviation, and coefficient of variation). While I kept

these for the primary analysis of the data, when they are used as the independent vari-

able for the Ego-1 and Node/Edge models, they will exhibit high levels of correlation

(as is indicative of the original correlation matrices). Therefore, I had ran a confirma-

tory factor analysis on the risk data for the 1-Ego-Network data (2-Ego-Network Risk)

and the Local-Network data (1-Ego-Network Risk), respectively.

The statistics for the CFA for the 2-Ego-Network Risk are shown in Table 5.10.

Unfortunately given the CFI, TLI, RMSEA, and SRMR, we notice this is not what

traditionally would be considered a “good fit”. However, I had made the decision to

keep the loadings so as to reduce these observables into a single factor score for the
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Measure Value

Optimization method NLMINB
Number of free parameters 21
Number of observations 254331
Estimator ML
Model Fit Test Statistic 805754.964
Degrees of freedom 24
P-value (Chi-square) 0.000
Comparative Fit Index (CFI) 0.746
Tucker-Lewis Index (TLI) 0.619
Loglikelihood user model (H0) -4278141.883
Loglikelihood unrestricted model (H1) -3875264.401
Number of free parameters 21
Akaike (AIC) 8556325.766
Bayesian (BIC) 8556545.140
Sample-size adjusted Bayesian (BIC) 8556478.401
RMSEA 0.363
90 Percent Confidence Interval 0.363 , 0.364
P-value RMSEA ≤ 0.05 0.000
SRMR 0.254

Table 5.10: The 2-Ego-Network Risk CFA Statistics

independent variable in the model. While the reliability of these measures may be

questioned, there is little doubt that the validity of them are in tact. The loads for the

CFA are shown in Table 5.11.

I then ran a second CFA but on the 1-Ego-Network Risk Data (the independent

variables for the Local-Network Risk Models). The results, shown in Table 5.12, were

not too different from that of the 2-Ego-Network Risk Data. In fact, we notice that the

statistics and loadings are very similar to each other, despite the data sets representing

risk at different levels of analysis. With that said, we also notice the same issues with

overall “fit”. The primary issue at hand is of course reflected within the fit statistics of

CFI, TLI, RMSEA, and SRMR. Again, I had chosen to ignore what would be considered

a “poor fit” given the theoretical nature of the variables. The primary purpose at hand

for the CFA is to (1) combine the known observables of each respective dependent

variable into a single factor score and (2) reduce the potential of multi-collinearity in

the final regression model. Despite the “poor fit”, I argue that both of these goals have

been accomplished, and hence, reliability should be of no concern for these specific
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Variable Loading

contribution

avg elrcf 2ego 1.000
sd elrcf 2ego 2.188
cv elrcf 2ego 0.034

significance

avg elrsf 2ego 1.000
sd elrsf 2ego -0.498
cv elrsf 2ego -9.351

velocity

avg elrv 2ego 1.000
sd elrv 2ego 2.731
cv elrv 2ego -0.000

Table 5.11: The 2-Ego-Network Risk CFA Loadings

measures. The final loadings of this CFA are shown in Table 5.13

After, R’s lavaan package was able to automatically compute the factor scores for

these constructs. These scores, along with the factor scores from the EFA on the pri-

mary constructs, were organized into three separate data sets of which were then further

cleansed of extreme outliers before the final analysis was conducted. The correlation

tables for these final data sets are reported for the 2-Ego-Network data in Table 5.14,

for the 1-Ego-Network data in Table 5.15, and last for the Local-Network data in Ta-

ble 5.16. In addition, the summary statistics for the final data sets are reported in

Table 5.17 (2-Ego-Network Data), Table 5.18 (1-Ego-Network Data), and Table 5.19

(Local-Network Data).
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Measure Value

Optimization method NLMINB
Number of free parameters 21
Number of observations 322000
Estimator ML
Model Fit Test Statistic 837850.243
Degrees of freedom 24
P-value (Chi-square) 0.000
Comparative Fit Index (CFI) 0.780
Tucker-Lewis Index (TLI) 0.670
Loglikelihood user model (H0) -5548765.932
Loglikelihood unrestricted model (H1) -5129840.811
Number of free parameters 21
Akaike (AIC) 11097573.865
Bayesian (BIC) 11097798.193
Sample-size adjusted Bayesian (BIC) 11097731.454
RMSEA 0.329
90 Percent Confidence Interval 0.329,0.330
P-value RMSEA ≤ 0.05 0.000
SRMR 0.167

Table 5.12: The 1-Ego-Network Risk CFA Statistics

Variable Loading

contribution

avg elrcf ego 1.000
sd elrcf ego 1.831
cv elrcf ego 0.025

significance

avg elrsf ego 1.000
sd elrsf ego -0.428
cv elrsf ego -0.214

velocity

avg elrv ego 1.000
sd elrv ego 2.111
cv elrv ego -0.000

Table 5.13: The 1-Ego-Network Risk CFA Loadings
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Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

alpha 90,442 3.077 1.152 1 2 4 7
beta 90,442 5.741 2.743 1 4 8 10
Centrality 90,442 0.135 1.103 −1.010 −0.550 0.421 4.617
Distance 90,442 0.881 0.734 −0.923 0.358 1.507 2.020
Clustering 90,442 −0.137 0.706 −1.710 −0.562 0.123 2.517
Feedback 90,442 0.117 0.712 −1.864 −0.230 0.594 1.419
Connectivity 90,442 −0.210 0.470 −1.255 −0.565 0.138 1.022
avg elrcf 90,442 8.883 6.321 1.105 3.998 12.312 40.029
avg elrsf 90,442 5.707 2.808 1.593 3.601 7.205 16.264
avg elrv 90,442 3.357 4.550 −0.787 0.131 5.206 21.328
sd elrcf 90,442 15.488 12.606 1.237 5.359 23.036 59.365
sd elrsf 90,442 1.595 0.785 0.462 0.994 2.029 4.205
sd elrv 90,442 10.199 11.481 0.342 1.765 15.110 45.107
cv elrcf 90,442 1.618 0.460 0.784 1.249 1.945 2.836
cv elrsf 90,442 0.309 0.140 0.104 0.197 0.397 0.688
cv elrv 90,442 2.405 4.728 −18.453 1.803 3.950 24.609

Table 5.17: Summary Statistics for The Factored 2-Ego-Network Data-Set.

A final data table was then assembled and cleaned for further preprocessing. The

variables that were intended to be reduced dimensionally were removed and replaced

with the construct factor scores. To ensure the data was proper and free of outliers for

analysis, I removed the outer 5% of the data (2.5% on each side). Unfortunately the

factor loadings and the original simulation had produced some very large outliers that

could not be handled during the analysis phase in any other manner. Hence, they were

removed.

5.3 Structural Difference Testing

As I mentioned in the hypothesis development, we can and should expect the 2-Ego-

Networks and the 1-Ego-Networks to have different structures along the five structural

dimensions. Figure 5.5 illustrates these differences by each construct for each level of

analysis (2-Ego, 1-Ego, and Local).

We notice from these plots that the structural differences are indeed there, and

the structure itself appears to depend on the specific level of analysis. We also notice

that the speculation of Local structures being closer to that of the 2-Ego-Network
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Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

alpha 101,035 3.090 1.166 1 2 4 7
beta 101,035 5.616 2.753 1 3 8 10
contribution 101,035 −0.543 11.118 −39.659 −7.587 2.877 216.320
significance 101,035 0.097 2.900 −33.277 −1.198 1.850 16.741
velocity 101,035 −0.404 6.814 −34.872 −4.538 2.072 45.083
Centrality 101,035 −0.360 0.211 −0.818 −0.526 −0.200 0.313
Distance 101,035 −0.138 0.589 −1.715 −0.822 0.350 0.942
Clustering 101,035 −0.032 0.712 −0.775 −0.491 0.133 3.480
Feedback 101,035 0.410 0.804 −1.805 0.128 0.906 1.485
Connectivity 101,035 −0.139 0.783 −1.140 −0.677 0.083 3.192
avg elrcf 101,035 7.052 6.386 0.867 2.724 9.104 49.182
avg elrsf 101,035 6.240 3.123 1.511 3.908 7.865 17.797
avg elrv 101,035 1.612 3.546 −0.860 −0.474 2.046 26.660
sd elrcf 101,035 9.539 9.755 0.744 2.761 12.511 54.381
sd elrsf 101,035 1.288 0.672 0.387 0.781 1.629 3.711
sd elrv 101,035 4.606 6.861 0.184 0.686 5.149 39.536
cv elrcf 101,035 1.244 0.400 0.558 0.939 1.489 2.453
cv elrsf 101,035 0.231 0.116 0.077 0.141 0.295 0.614
cv elrv 101,035 1.063 4.466 −18.669 −0.996 2.975 21.160

Table 5.18: Summary Statistics for The Factored 1-Ego-Network Data-Set.

than to that of the 1-Ego-Network is reflected here, hence illustrating the argument

posed earlier that “Local” structure is actually closer to “Global” structure, since local

structure figures are calculated relative to the entire global network.

To test these hypotheses, I conducted 5 one-tailed difference of means tests to com-

pare the constructs of the 2-Ego-Network structures against the 1-Ego-Network struc-

tures. In addition, I conducted a difference of means test between the 1-Ego-Network

risk and the 2-Ego-Network by conducting a one-tailed hypothesis test. The same

analysis was conducted for comparisons to the local. Last, I compared the structural

characteristics between the edge’s and the node’s. These results are summarized in

Table 5.20.

5.4 Causal Analysis

After the factor analysis as well as the data cleaning, I had 3 final cleaned data sets

ready for analysis. The final correlation matrices and summary statistics, respectively,
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Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

alpha 205,327 3.067 1.175 1 2 4 7
beta 205,327 5.680 2.785 1 3 8 10
isNode 205,327 0.337 0.473 0 0 1 1
contribution 205,327 −1.261 12.097 −52.568 −6.823 −1.431 242.254
significance 205,327 0.119 2.501 −24.919 −0.576 1.561 23.822
velocity 205,327 −0.772 8.015 −24.950 −3.709 −2.304 88.491
Centrality 205,327 −0.193 0.583 −0.924 −0.567 −0.026 2.908
Distance 205,327 0.090 0.844 −1.593 −0.557 0.689 2.170
Clustering 205,327 −0.151 0.758 −1.945 −0.678 0.354 2.199
Feedback 205,327 0.099 0.775 −1.332 −0.494 0.657 1.948
Connectivity 205,327 −0.037 0.676 −1.790 −0.485 0.608 1.087
elrsf 205,327 6.549 3.494 1.322 3.958 8.335 18.874
elrcf 205,327 2.520 3.087 0.202 0.703 3.009 23.032
elrv 205,327 −0.480 0.767 −1.000 −0.923 −0.398 3.641

Table 5.19: Summary Statistics for The Factored Node/Edge Data-Set.

Construct Ego1 < Ego2 Local < Ego1 Node < Edge

Centrality p < 2.2e− 16∗ p = 1 p < 2.2e− 16∗
Distance p < 2.2e− 16∗ p < 2.2e− 16∗ p = 1

Clustering p = 1 p < 2.2e− 16∗ p = 1
Feedback p = 1 p < 2.2e− 16∗ p < 2.2e− 16∗

Connectivity p = 1 p = 1 p = 1
Velocity p < 2.2e− 16∗ p < 2.2e− 16∗ p < 2.2e− 16∗

Table 5.20: Results of One-Tailed Structural Comparison.

are reported for the 2-Ego-Network Data (Figures 5.14,5.17),1-Ego-Network Data (Fig-

ures 5.15,5.18),Local-Network Data (Figures 5.16,5.19). The densities of the different

levels of analysis for all constructs at that level, the dependent risk variables, and the

independent factored risk variables, are shown for the 2-Ego-Network(Figure 5.6), the

1-Ego-Network(Figures 5.7,5.8), and the Local-Network (Figures 5.8,5.9).

Before conducting the final analysis, we can also take a look at the raw data plots to

gain some insight into the hypothesized relationships between the structural constructs

and the risk. The plots shown in Figure 5.10 indicate that most of the associations

appear to be curvilinear, with Connectivity and Distance appearing with a positive

curvilinear association and with the other factors as a negative curvilinear association.

In Figure 5.11, we notice that Centrality, Distance, and Connectivity appear to follow a

positive curvilinear association, while Clustering and Feedback are negative curvilinear.
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Last, in the local plots shown in Figure 5.13, we notice Centrality, and Feedback appear

to follow a negative curvilinear association, while Clustering, Distance, and Connectiv-

ity appear to be positive curvilinear. Therefore, from a visual inspection, we can see

that the results of our analysis below may justify most of the hypotheses above.

In regards to associations between higher-level risk and lower-level risk, we can

further inspect visually the potential associations between these two. Figure 5.12 illus-

trates the potential association between the three risk constructs of the 2-Ego-Network

and the risk of the 1-Ego-Network. We notice that contribution and significance are in

negative curvilinear associations with each other, while velocity is in a positive associ-

ation with risk. In Figure 5.14 we see the association between the local risk and the

higher level 1-Ego-Network risk constructs. Contribution and significance appears to

be in a negative association, while the velocity is only slightly in negative curvilinear

association. I have hypothesized that these would be linear and have modeled them as

such.

With this in mind, as well as the empirical models listed earlier, I ran three separate

Seemingly Unrelated Regression models using R systemfit package. Before doing so,

I had levered R’s usdm package to conduct a step-wise VIF on all the independent

variables for the three datasets. The first is shown in Table 5.21. We can see from

the table that all VIFs for the planned regressors are less than 10, indicating that

multicollinearity would not be of a concern in the final fitting of the model.

Next, I ran the same analysis on the 1-Ego-Network data set to isolate the potential

issues of multicollinearity, with results shown in Table 5.22. We can see indeed that

despite the poor fit on the CFA on the risk variables of contribution, significance and

velocity, their respective VIF scores were very low, indicating that these indeed would

not pose problems with multicollinearity. All other regressors had a VIF less than 10,

which indicates again the multicollinearity should not be a cause of concern.

Last, I ran the same procedure on the local data set to once again ensure that there

will be no issues with multicollinearity. As we can see from Table 5.23, once again, that

despite the poor fit from the CFA on the risk variables of contribution, significance

and velocity, that the VIFs were all low, indicating that these would not be a cause of
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Variables VIF

1 alpha 1.67
2 beta 2.81
3 Centrality 6.17
4 Distance 5.08
5 Clustering 2.11
6 Feedback 2.66
7 Connectivity 2.39
8 avg elrcf 45.32
9 avg elrsf 7.70

10 avg elrv 56.86
11 sd elrcf 68.64
12 sd elrsf 10.72
13 sd elrv 61.40
14 cv elrcf 4.69
15 cv elrsf 11.57
16 cv elrv 1.18
17 Centrality2 3.88
18 Distance2 4.56
19 Clustering2 1.52
20 Feedback2 1.49
21 Connectivity2 1.69

Table 5.21: The VIFs for the variables in the 2-Ego-Network Model.
.

concern. Further, all variables had a VIF of less than 10, once again indicating that

fitting the linear models to these regressors would not pose multicollinearity concerns

in the final model fits.

5.5 Results

5.5.1 2-Ego-Network Risk

The overall model fit of 8 out of the 9 equations in the 2-Ego-Network system had an

R2 of over 0.22, with the standard deviation of the risk significance being the best fit,

as judged by R2, at 0.66. A Wald χ2-Test was conducted on the entire system with

the restriction of βi1,j1 = 0. The result was significant (p < 0.05), indicating an overall

good fit of the system. In addition, a second restriction χ2-Test was conducted with

the restriction of the parameters on the squared terms individually set to 0. Again,

this test had indicated that the curvi-linear model is indeed a proper fit to the data
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Variables VIF

1 alpha 1.67
2 beta 2.74
3 contribution 1.85
4 significance 1.90
5 velocity 1.89
6 Centrality 9.29
7 Distance 3.39
8 Clustering 3.98
9 Feedback 2.22

10 Connectivity 2.21
11 avg elrcf 33.82
12 avg elrsf 7.46
13 avg elrv 44.12
14 sd elrcf 45.24
15 sd elrsf 10.76
16 sd elrv 45.52
17 cv elrcf 3.35
18 cv elrsf 12.74
19 cv elrv 1.16
20 Centrality2 8.37
21 Distance2 1.72
22 Clustering2 2.98
23 Feedback2 1.79
24 Connectivity2 1.88

Table 5.22: The VIFs for the variables in the 1-Ego-Network Model.

(p < 0.05). In addition, most of the coefficients were found to be statistically significant

(p < 0.05).

The effect that alpha and beta had on the respective dependent variables seemed to

be fairly consistent in regards to their direction. Higher levels of the alpha parameter

for the Beta distribution seemed to indicate higher levels of overall risk across most

of the models. Higher levels of the beta parameter for the Beta distribution seems

to portend lower levels of risk. In regards to the primary variable of interest in this

dissertation, the Coefficient of Variation for the Risk Velocity, nearly all coefficients

were found significant, although the R2 was very low at a value of 0.04.

The resulting model indicates that there is a positive curvi-linear association be-

tween Distance and the Coefficient of Variation of Velocity (heretofore known as “Risk”)

and both coefficients were found significant (p < 0.05). This confirms Hypothesis 6. In
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Variables VIF

1 alpha 1.33
2 beta 1.74
3 isNode 2.76
4 contribution 2.03
5 significance 1.20
6 velocity 1.70
7 Centrality 7.40
8 Distance 1.76
9 Clustering 2.52

10 Feedback 3.56
11 Connectivity 3.03
12 elrsf 2.29
13 elrcf 3.91
14 elrv 3.88
15 Centrality2 4.45
16 Distance2 1.23
17 Clustering2 1.45
18 Feedback2 1.44
19 Connectivity2 1.35

Table 5.23: The VIFs for the variables in the Local-Network Model.

addition, connectedness was found to be in a positive curvi-linear association(p < 0.05),

thus supporting Hypothesis 7. Feedback was also found to be significant (p < 0.05)

and in a negative curvi-linear association, thus confirming Hypothesis 8. Centrality was

found significant (p < 0.05) and in a negative curvi-linear relationship, thus confirming

Hypothesis 9. Last, the model reveals that there is a statistically significant association

between Clustering and Risk(p < 0.05), and it was found to be negative curvi-linear,

thus confirming Hypothesis 10.

5.5.2 1-Ego-Network Risk

The 1-Ego-Network results also had similar R2 values to those of the 2-Ego-Network.

Most values were above 0.22, however, the variables of interest only had an R2 of 0.06.

Overall, the fit of the model seems to be justified. I also ran a restricted Wald χ2-Test

with all of the parameters set equal to 0. The test confirmed that the model is indeed

a good fit with the data (p < 0.05). A second restricted Wald χ2-Test was conducted

on only the parameters of the squared terms. Again the test indicated that the system
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µc µs µv σc σs σv cc cs cv
(Intercept) 8.21(0.07)* 13.28(0.14)* 1.49(0.01)* 6.17(0.03)* 1.57(0.01)* 0.28(0)* 2.25(0.05)* 7.16(0.13)* 2.01(0.06)*

alpha 1.26(0.02)* 2.11(0.03)* 0(0) 0.94(0.01)* 0.24(0)* 0(0)* 0.09(0.01)* 0.51(0.03)* 0.02(0.01)
beta -0.77(0.01)* -1.24(0.01)* 0(0)* -0.63(0)* -0.17(0)* 0(0)* 0.03(0)* -0.14(0.01)* -0.04(0.01)*

Centrality 3.68(0.03)* 8.53(0.07)* 0.29(0)* -0.35(0.01)* 0.36(0)* 0.09(0)* 2.7(0.03)* 7.52(0.06)* 1.09(0.03)*
Distance 2(0.05)* 4(0.1)* 0.12(0)* 0.34(0.02)* 0.32(0)* 0.05(0)* 1.07(0.04)* 2.96(0.09)* 0.71(0.04)*

Clustering 1.62(0.03)* 2.82(0.06)* 0.04(0)* 0.68(0.01)* 0.46(0)* 0.05(0)* 0.48(0.02)* 1.29(0.05)* 0.35(0.03)*
Feedback 1.23(0.03)* 2.09(0.06)* 0.01(0)* 1.23(0.01)* 0.48(0)* 0.03(0)* 0.04(0.02) 0.36(0.06)* -0.07(0.03)*

Connectivity 0.57(0.06)* 0.79(0.11)* -0.01(0)* 0.36(0.02)* 0.18(0)* 0.02(0)* 0.14(0.04)* 0.33(0.1)* -0.01(0.05)
Centrality2 -0.45(0.01)* -1(0.02)* -0.04(0)* 0.08(0)* -0.02(0)* -0.01(0)* -0.3(0.01)* -0.72(0.02)* -0.24(0.01)*

Distance2 -0.39(0.03)* -0.56(0.06)* 0.01(0)* 0(0.01) -0.02(0)* -0.01(0)* -0.27(0.02)* -0.54(0.06)* 0.08(0.03)*
Clustering2 -0.02(0.02) 0.04(0.05) 0(0)* 0.01(0.01) 0.02(0)* 0(0)* 0.04(0.02)* 0.12(0.04)* -0.08(0.02)*
Feedback2 0.06(0.03)* 0.36(0.05)* 0.02(0)* 0.18(0.01)* 0.06(0)* 0(0) -0.03(0.02) 0.11(0.05)* -0.1(0.02)*

Connectivity2 0.67(0.07)* 0.92(0.13)* 0.02(0.01)* -0.49(0.03)* -0.12(0.01)* 0(0)* 0.6(0.05)* 1.13(0.12)* 0.39(0.06)*

σ 5.13 9.94 0.4 1.96 0.45 0.1 3.87 9.28 4.64
R2 0.34 0.38 0.26 0.51 0.67 0.48 0.28 0.35 0.04

Adjusted R2 0.34 0.38 0.26 0.51 0.67 0.48 0.28 0.35 0.04

Table 5.24: Results from SUR Estimation of 2-Ego-Network System

µc µs µv σc σs σv cc cs cv
(Intercept) 9.45(0.08)* 13.76(0.12)* 1.38(0.01)* 6.11(0.03)* 1.43(0.01)* 0.27(0)* 3.04(0.04)* 7.79(0.08)* 1.68(0.07)*

alpha 0.81(0.01)* 0.95(0.02)* -0.01(0)* 0.93(0.01)* 0.19(0)* 0(0)* 0(0.01) 0.07(0.02)* -0.06(0.01)*
beta -0.5(0.01)* -0.51(0.01)* 0.01(0)* -0.64(0)* -0.13(0)* 0(0)* 0.05(0)* 0.06(0.01)* 0.04(0.01)*

Centrality 6.88(0.24)* 14.08(0.35)* 0.5(0.02)* -1.67(0.09)* 0.21(0.02)* 0.12(0)* 5.26(0.13)* 11.78(0.24)* 1.13(0.2)*
Distance 2.53(0.05)* 4.5(0.07)* 0.14(0)* 0.24(0.02)* 0.27(0)* 0.04(0)* 1.27(0.03)* 2.98(0.05)* 0.63(0.04)*

Clustering 2.43(0.04)* 3.73(0.06)* 0.12(0)* 0.56(0.02)* 0.49(0)* 0.06(0)* 0.75(0.02)* 1.61(0.04)* 0.63(0.03)*
Feedback 0.92(0.03)* 1.21(0.04)* 0(0)* 0.95(0.01)* 0.33(0)* 0.02(0)* 0.05(0.01)* 0.21(0.03)* -0.05(0.02)*

Connectivity 0.08(0.03)* -0.02(0.04) -0.01(0)* 0.4(0.01)* 0.14(0)* 0.01(0)* -0.24(0.02)* -0.47(0.03)* -0.04(0.03)
contribution 0.09(0)* 0.18(0)* 0.01(0)* 0.03(0)* 0.01(0)* 0(0)* -0.01(0)* -0.01(0)* 0.01(0)*
significance -0.25(0.01)* -0.52(0.01)* -0.03(0)* 0.13(0)* -0.01(0)* -0.02(0)* -0.39(0)* -0.75(0.01)* -0.15(0.01)*

velocity 0.23(0)* 0.4(0)* 0.01(0)* -0.17(0)* 0(0) 0.01(0)* 0.23(0)* 0.45(0)* 0.1(0)*
Centrality2 5.31(0.33)* 9.29(0.49)* 0.32(0.02)* -1.94(0.13)* 0.09(0.03)* 0.1(0)* 3.78(0.18)* 7.34(0.34)* 0.89(0.28)*

Distance2 -0.1(0.06) -0.05(0.08) 0.01(0)* -0.02(0.02) 0.05(0)* 0.01(0)* -0.06(0.03) -0.09(0.06) 0.11(0.05)*
Clustering2 -0.32(0.02)* -0.51(0.03)* -0.03(0)* 0.06(0.01)* 0(0) 0(0)* -0.15(0.01)* -0.28(0.02)* -0.18(0.02)*
Feedback2 -0.15(0.02)* -0.07(0.04) -0.01(0)* 0.34(0.01)* 0.06(0)* 0(0)* -0.13(0.01)* -0.12(0.02)* -0.2(0.02)*

Connectivity2 -0.01(0.02) 0.04(0.03) 0(0)* -0.09(0.01)* -0.05(0)* 0(0)* 0.06(0.01)* 0.13(0.02)* 0(0.02)

σ 5.12 7.54 0.35 2.05 0.39 0.07 2.82 5.29 4.32
R2 0.36 0.4 0.22 0.57 0.66 0.58 0.37 0.4 0.06

Adjusted R2 0.36 0.4 0.22 0.57 0.66 0.58 0.37 0.4 0.06

Table 5.25: Results from SUR Estimation of 1-Ego-Network System

model is indeed a proper fit (p < 0.05).

The effect that alpha and beta had on the risk were analogous to their effect on

the 2-Ego-Network risk. Alpha was found to be positively associated with risk while

Beta was the opposite. Connectivity was found to be neither significant in the linear

term nor significant in the quadratic term (p > 0.05). This unfortunately will not

support Hypothesis 16. Interestingly, Centrality was found to be in a positive curvi-

linear relationship with risk (ego1-risk) (p < 0.05), which is contrary to the results from

the 2-Ego-Network model. Unfortunately, however, Hypothesis 12 would be invalidated

by this interesting observation. The Clustering construct was found to be in a negative

association with risk, thus confirming Hypothesis 13 (p < 0.05). Feedback was found to

be statistically significant(p < 0.05), and it did exhibit a negative curvi-linear pattern,

thus confirming Hypothesis 14. Furthermore, distance was found to be statistically
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Contribution Significance Velocity

(Intercept) 2.2(0.03)* 5.18(0.03)* -0.43(0.01)*
alpha 0.38(0)* 0.95(0)* -0.02(0)*
beta -0.28(0)* -0.63(0)* 0.01(0)*

isNode 1.02(0.02)* 2.25(0.02)* -0.04(0)*
Centrality 0.39(0.02)* -1.91(0.03)* 0.29(0.01)*

Distance -0.28(0.01)* 1.04(0.01)* -0.18(0)*
Clustering -0.04(0.01)* -1.46(0.01)* 0.14(0)*
Feedback 0.27(0.01)* 1.55(0.01)* -0.09(0)*

Connectivity -1.87(0.01)* -0.24(0.01)* -0.42(0)*
contribution 0.02(0)* 0.03(0)* 0(0)*
significance 0.01(0)* 0.04(0)* -0.02(0)*

velocity 0(0)* -0.04(0)* 0.01(0)*
Centrality2 0.47(0.02)* 0.92(0.02)* 0.02(0)*

Distance2 -0.02(0.01)* 0.12(0.01)* 0.01(0)*
Clustering2 0.18(0.01)* 0.32(0.01)* 0(0)
Feedback2 -0.27(0.01)* -0.3(0.01)* -0.03(0)*

Connectivity2 0.68(0.01)* 0.04(0.01)* 0.16(0)*

σ 2.37 2.57 0.61
R2 0.41 0.46 0.36

Adjusted R2 0.41 0.46 0.36

Table 5.26: Results from SUR Estimation of Node/Edge System

significant (p < 0.05) and had a positive curvi-linear association. This would indeed

validate Hypothesis 15. Last, connectedness was found to be statistically insignificant,

hence, Hypothesis 16 could not be validated.

5.5.3 Local Risk

The last data set comprised of the node and edge level data. The model was ran,

but different from the prior two systems. This system did indeed still have the three

measures of risk for 1-Ego-Network as the independent variables, respectively, but it

also only had three dependent variables. The overall fit of the model seemed to be better

than the prior two systems. Indeed, the smallest R2 value was only 0.36. Overall most

statistics were shown to be significant. Again, a Wald χ2-Test was conducted on the

parameters with the restriction of them set all to 0 individually. The results showed that

the model was an overall good fit (p < 0.05). A second restriction test was conducted

on the parameters but only those of the squared terms. Again, the Wald Test revealed

that the model was an overall good fit to the data (p < 0.05).
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The three control variables of alpha, beta, and isNode, were all found to be statis-

tically significant (p < 0.05). Alpha and beta once again was shown to have a pattern

consistent across the all the models. The results indicate that there is a statistically

significant relationship between Centrality and Risk. This was found to be significant at

(p < 0.05) and indicates that the association is positive curvi-linear, hence invalidating

Hypothesis 17. Clustering was not found to be statistically significant at this level of

analysis (p > 0.05), and hence, Hypothesis 18 cannot be properly justified from this

research. Feedback was found to be in a negative association with risk (p < 0.05), and

transcends a negative curvi-linear relationship, which is in line to my Hypothesis 19.

Distance was found to be statistically significant, and in a positive curvilinear trend

(p < 0.05), consistent with Hypothesis 20. Last, Connectedness was found to be a

positive curvilinear pattern (p < 0.05), hence, Hypothesis 21 is supported.

5.5.4 Cross-Risk and Structural Differences

The last part of the analysis was to conduct a series of structural tests to determine

if the various structural properties change from the 2-Ego-Network to the lower levels,

and so on. A simple comparison of means between two populations was conducted.

The results are summarized in Table 5.3. As we can see, the 2-Ego-Network Distance

tends to be greater than that of the 1-Ego-Network, which would confirm Hypothesis

1(p < 0.05). Next, we observe that the Centrality in the 2-Ego-Network is larger

than the Centrality in the 1-Ego-Network, which would indeed confirm Hypothesis

2(p < 0.05). For the last three structural characteristics, namely Clustering, Feedback,

and Connectivity, we notice that the Ego-Network actually held larger values in these

variables than it’s 2-Ego-Network. Hypotheses 3 and 5 were hence confirmed(p < 0.05),

but unfortunately Hypothesis 4 was not not. Last, we notice that the velocity (risk of

the network) is larger for the 2-ego-network than it is for the ego-network (p < 0.05).

Hence, Hypothesis 11 is supported as well.

While I have not argued or designed any hypotheses regarding the structural dif-

ferences between the 1-Ego-Network and the Local Network, I would like to illustrate

some of the comparisons drawn from these two data sets. First, we notice that the
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Centrality of the Ego-Network is actually less than that of the Local element. This

makes sense, as I had explained earlier, the local elements are actually based on global

network properties. Next, we notice that the distance, clustering and feedback are all

less in the Local element than within the Ego-Network. Finally we notice that the risk

in the ego network tends to be higher than the risk at the node level. If we turn to

Table 5.3, we will see a comparison drawn between the nodes and edges. We notice

that the centrality for the edges is higher than that of the nodes. Again, this is in line

with our earlier reasoning. Next, the Distance and Clustering are actually greater at

the node level rather than at the edge level. Feedback, however, is less in the nodes

than in the edges. Last, the connectivity tends to best higher in the edges than in the

nodes. The risks of the edges, however, are generally higher than the risk of the nodes.

Looking back at the Local SUR Model, we can see that the coefficient on the variable

isNode is negative and significant (p < 0.05). Therefore, Hypothesis 22 is supported,

and we would conclude that Edge structure has a larger effect on edge risk than node

structure has on node risk. In addition, we do see, however, that the 2-Ego-Network risk

has a positive linear effect on the 1-Ego-Network risk (p < 0.05), and hence, Hypothesis

24 is supported. The same observation is made regarding the effect that the 1-Ego-

Network risk has on the Local Node/Edge Risk (p < 0.05). Therefore, Hypothesis 25

is also supported.

5.6 Summary of Hypothesis Test Results
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Hypothesis Number Description of Hypothesis Result

1 2-Ego-Network Distance > 1-Ego-Network Distance Supported

2 2-Ego-Network Centrality > 1-Ego-Network Centrality Supported

3 2-Ego-Network Clustering < 1-Ego-Network Clustering Supported

4 2-Ego-Network Feedback > 1-Ego-Network Feedback Not Supported

5 2-Ego-Network Connectivity < 1-Ego-Network Connectivity Supported

6 2EN: Distance +CL Association with 2EN Risk Supported

7 2EN: Connectedness +CL Association with 2EN Risk Supported

8 2EN: Feedback -CL Association with 2EN Risk Supported

9 2EN: Centrality -CL Association with 2EN Risk Supported

10 2EN: Clustering -CL Association with 2EN Risk Supported

11 2-Ego-Network Risk > 1-Ego-Network Risk Supported

12 1EN: Centrality -CL Association with 1EN Risk Not Supported

13 1EN: Clustering -CL Association with 1EN Risk Supported

14 1EN: Feedback -CL Association with 1EN Risk Supported

15 1EN: Distance +CL Association with 1 EN Risk Supported

16 1EN: Connectedness +CL Association with 1EN Risk Not Supported

17 L: Centrality -CL Association with L Risk Not Supported

18 L: Clustering -CL Association with L Risk Not Supported

19 L: Feedback -CL Association with L Risk Supported

20 L: Distance +CL Association with L Risk Supported

21 L: Connectedness +CL Association with L Risk Supported

22 Edge Structure on Edge Risk > Node Structure on Node Risk Supported

23 Risk Trickles Down k-Ego-Networks Sequentially Future Research Topic

24 2 Ego Network Risk +L Association with 1 Ego Network Risk Supported

25 1 Ego-Network Risk +L Association with Local Network Risk Supported

Table 5.27: The set of hypotheses and their results.
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Chapter 6

Discussion, Limitations and Managerial Implications

6.1 Discussion of Results

The results of the data analysis offer some interesting insights into how the structure

of a supply network may affect the risk and the risk propagation of the network. Such

results can be used to isolate a hidden conceptual framework of risk propagation. From

the 2-Ego-Network level, I have demonstrated that it’s structure is inherently different

than than the 1-Ego-Network level. Further, I argued theoretically that as firms change

and manipulate their 1-Ego-Networks, a chain reaction occurs, which may result in a

very drastic change of the firm’s 2-Ego-Network. Another aspect of the results is that

the structure of the various ego networks and local node/edges impact risk based on how

they are situated with respect to the 5 Fundamental Structural dimensions. I also have

demonstrated that risk of which is inherent within the 2-Ego-Network is different than

the risk that is inherent within the 1-Ego-Network (namely, its larger). In addition, I

have demonstrated that the risk within the 1-Ego-Network is larger than the risk within

the local node/edge. And subsequently, I have demonstrated that the risk of edges is

often higher than the risk of nodes.

That is, I have empirical evidence to suggest some initial observations that can be

used to construct a generic conceptual model of risk propagation. From what I have

verified in this dissertation, I have shown that 2-Ego-Network Risk > 1-Ego-Network

Risk > Edge-Risk > Node Risk. This ordering of structures in the network allows

the theorist to better understand how risk “propagates” to a focal firm, outward-to-

inwards. I would imagine that it is not too difficult to infer that given a node n in the

network, such that it’s highest k-ego-network level is m (that is, n’s m-ego-network =

the entire supply network), that risk has the tendency to emanate from the outside and
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downwards through the various k-ego networks. That is, risk begins at m, trickles down

to (m− 1), etc. As I have demonstrated, we have an ordering in place, that essentially

states that risk will decrease or reduce as it moves down the various k-ego-networks.

I have termed this theorem the “The Theorem of Relativity for Supply Chain Risk

Propagation”, since this is paradoxically a network phenomena, but the flow is to be

understood from the perspective of multi-level embedded structures, of which are all

relative to a specific focal firm. This sequence of structures is specific to the firm, not

the network, despite it characterizing movement within the network itself. Of course

this study is not sufficient proof for this phenomena, but it is an interesting observation

that the results seem to imply towards a transcendence of a more conceptual framework

of understanding and managing supply chain risk propagation.

Other than the potential conceptual motivations that the results of the analysis

seem to infer, there are strategic and practical understandings that can be extracted

from the results. I have demonstrated that structural characteristics of the embedded

structures affect risk differently. For example, the results indicate that the Centrality

construct, at the 2-Ego Network Level, will be related to risk in a negative manner.

Therefore, firms within a firm’s 2-Ego Network may strive to increase the entire group’s

centrality as a means to reduce overall 2-Ego-Network risk. What is interesting is that

there is a paradoxical effect at the Ego-Network level. Namely, when firms within the

ego-network increase their centrality, they increase the ego-network’s risk. The same

holds true at the node and arc level, according to the results. This implies that a

struggle is at play. Which strategy should a firm pursue? Encouraging their neighbors

and their neighbor’s neighbors to increase centrality levels for the “greater good”, or,

should the firms and ego-networks be more self-fulfilling, and decrease their centrality

levels for their benefit? This remains an observation that will be left to answer for

future research.

The results indicate that centrality is really the only metric that exhibits this charac-

teristic of opposing effects on risk. All the other dimensions seem to be fairly aligned in

how they respectively affect the respective structure’s risk. However, while structurally

they affect risk in the same manner (either negative curvilinear or positive curvilinear),
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the shapes of these curves may very well differ from level to level. As these are curvi-

linear, there is always a trade-off to consider. For example, in the case of a dimension

being negatively curvilinear, the question for the firm is, should it reduce it’s dimen-

sion (either cluster or connectedness, for example), in order to achieve lower risk levels,

or, should they increase it well beyond the point where the maximum occurs? There

may be benefits in doing so for either case, and of course would depend on the specific

context at hand.

Other than these observations of the dynamics between the different levels of the

k-ego-networks and risk, we can visualize the curvilinear effects that the models happen

to suggest. Figures 6.5,6.4,6.3,6.2,6.1 illustrate the estimated curvilinear models on the

various levels of risk. We can make a few observations, and identify potential trade-offs:

1. Increasing distance in the 2-Ego-Network will result in a decrease of risk. How-

ever, the same action in the 1-Ego-Network will actually increase risk. Increasing

distance at the node level will decrease risk.

2. Increasing centrality at the 2-Ego-Network level will increase risk. However, this

risk appears to either reach a carrying capacity or reverse direction entirely. The

carrying capacity is the more plausible speculation. This essentially says that

the 2-Ego-Network’s risk is capped with respect to centrality. Once the 2-Ego-

Network reaches a certain centrality level, then the marginal effects on risk for

marginal additions to centrality is practically nothing.

3. At the 1-Ego-Network level, however, we notice that increased centrality, initially,

will result in a reduction of risk. However, once it reaches past a certain point,

it will accelerate. That is, the relationship between centrality and risk differs

between the 2-Ego-Network and the 1-Ego-Network.

4. We notice that local centrality is the worst offender. There is no gain in regards

to risk by increasing centrality locally, since doing so will always result in an

increase in risk Amazingly, this would partially contradict Choi’s speculations on

the relationship between complexity and risk. Recall that he argues firms that

increase their inter-relationships should experience lower levels of risk. This may
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be true for inner-firm, or single location risk, but as these results illustrate, risk

propagation itself would be accelerated with increased levels of inter-relationships.

This indicates that firms need to be careful in weighing the benefits of reducing

within-firm risk while increasing risk propagation as a result.

5. Clustering is the same across all dimensional levels. It appears to impact risk in

similar ways that other dimensions do. Therefore, we can speculate that this is

the most “stable” dimension. Furthermore, in the 2-Ego-Network level, it reaches

a carrying capacity much soon than centrality. This would imply that 2-Ego-

Networks are much more robust to risk when changes to clustering have ensued.

6. Connectivity appears to be a “wolf in sheep’s clothing”. Across nearly all the

dimensions, a familiar pattern emerges. Once the connectivity increases, the

entity enjoys an initial reduction in risk. However, if the entity becomes too-

connected, risk appears to return. That is, it is a “consume in moderation”

dimension for those who seek to minimize risk via connectivity.

7. Of all the dimensions, feedback appears to the dimension that offers the most

amount of benefits. Increasing the feedback at any level of the network appears

to always result in reduction of risk.

8. A pattern across the levels of analysis is how the risk “flows” to the lower levels of

analysis. We can see from Figure 6.3 that as the risk significance increases in the

higher dimension, the lower dimension will experience a drop in their own risk.

We also notice that as risk velocity increases in the higher dimension, risk in the

lower dimension also increases. Contribution seems to have little impact on lower

dimensional risks.

6.2 Contributions of this Research

As far the author of this study is aware, this is the first major study to properly distin-

guish between supply chain disruption propagation and supply chain risk propagation.

Many in the current literature have confounded these two constructs (Fan & Stevenson,
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2018), however, while some have taken the more careful approach of distinguishing be-

tween supply chain risk and supply chain disruption (DuHadway et al., 2017), no one, to

the best of this author’s knowledge, have attempted to distinguish (1) between supply

chain risk and supply chain risk propagation and (2) distinguish between supply chain

risk propagation and supply chain disruption propagation. Furthermore, there has been

a gap in the extant literature in attempting to explain why it is that just so many risk

measurement frameworks exist, as well as classification systems. This research is the

first of it’s kind to provide a philosophical foundation to better understanding why so

much diversity and disagreement within the risk literature is still salient to this day.

Another issue that this author has identified is a lack of study between the link

of supply chain structure and a variety of supply chain constructs. I have explained

why this gap exists: there are too many characterization frameworks for explaining and

describing supply network structure. This dissertation has taken the time to review

through many of these and to synthesize the literature into three main and primary ar-

eas of this research stream: Context-Dependent, Context-Free and Context-Dependent

Classification, and Graph-Theoretical. Despite the plethora of methodologies that are

salient in the extant literature to accomplish a proper understanding of supply network

structure characterization, few attempts have been made to generalize it to a perspective

where all other viewpoints can easily be incorporated. The conceptual characterization

of general networks is the first of it’s kind, as far as this author is aware. Given that I

have isolated the 5-fundamental conceptual dimensions of a general network, this con-

ceptual framework can now be applied to a variety of areas, not just limited to supply

networks, to gain a more thorough and practical understanding of networks, without

getting caught up in the vast plethora of graph-theoretic and social-theoretic metrics.

In addition, another contribution that this dissertation has made is within the sup-

ply chain visibility stream. I have taken great care to synthesize the horizon-based

literature and fuse it with the structure-based literature, to design a new structure that

is (1) practical, (2) easy to understand, (3) easily implemented into other conceptual

and mathematical frameworks, and (4) can act as a measure of supply chain visibility.

As (Carter et al., 2015) has mentioned, practically no research exists that study the
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dynamics of a supply network outside the attenuated horizon (Carter et al., 2015). The

construct I have introduced, the k-ego-network, allows the supply chain researcher a

measure and method for better understanding this attenuated horizon, and I foresee

it’s usage for better understanding these dynamics that occur outside the horizon, yet,

“trickle down” to within the horizon. The k-ego-network will now allow researchers a

tool to understand more complicated constructs in a simple and elegant manner.

This research has also contributed to field of supply chain risk propagation, as

the primary topic itself of course. Risk propagation research is still in it’s infancy

(Garvey et al., 2015), and the necessary theoretical and analytical constructs and tools,

respectively, have yet to be matured. I have taken great care to accomplish both in this

dissertation. I have introduced the general constructs of contribution, significance, and

velocity in regards to risk propagation. Admittedly, these constructs initially began

from a quest to measure risk. Ironically, the measures themselves I have managed to

generalize to more practical abstract notions of “diagnostic”, “causal”, and “change”,

from the perspective of risk propagation. In addition to the new constructs, I have also

introduced measure-based operationalizations of the constructs (conveniently named

the same, and dependent on the general framework of measuring and understanding

risk propagation, namely (Garvey et al., 2015) framework).

Another contribution to the literature was the formalization of a framework for the

supply network level of analysis. While this conceptualization is nothing new to the

literature, it did have gaps. The original conceptualization lost clarity of the levels of

analysis the higher up dimensionally they went (Peck, 2005). In addition, the original

framework for understanding the different levels of analysis of a supply network was

not considering one of the most important actors in the network: the consumer. I

have extended this conceptual framework of supply network level dimensions to include

two higher-order dimensions and one extreme low dimension (i.e. the people-supply-

network). I subsequently have leveraged this framework to explain and justify why the

current applications of reliability-based theory, disruption analysis, and fault-tree and

Petri-Net models are not a proper application for studying supply chain risk and supply

chain risk propagation.
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As I argued earlier, many authors in the extant literature think in a singular and

linear dimension when it comes to disruption and “risk” (many still conflate these two)

analysis. Nearly all models have assumed that once a disruption “stops” at a location,

it is absolutely impossible for it to continue to “trickle down”. I have argued, leveraging

the construct of the “people-supply-network”, that this is an unrealistic and misguided

assumption, something that the extant literature has been exercising for years. The

many models of fault-analysis and more deterministic approaches have entirely ignored

certain aspects of the contextual constructs that are necessary to understand in just

so how a disruption might “continue”, despite it paradoxically being “stopped”. I

have offered a very convincing argument above, and continue to argue that the only

approach to achieve balance between modeling efficiencies versus realities is to precisely

use a Bayesian Network approach. I argued in this dissertation that such an approach

allows the researcher and practitioner to account for “unanticipated risk”, which is

something that nearly all the deterministic models miss.

Last, I have contributed to an area of research that is very scarce of publication,

but has much opportunity to grow. The relationship between supply network structure

and supply network risk propagation has been proposed and empirically validated by

this research. The fundamental 5-dimensions of any network have been related to risk,

and a greater understanding of how this interaction between structure and risk play out

together will certainly go a long way in providing a foundation for future researchers

to build upon, of which will better aid researchers to understand and craft proper mit-

igation strategies that not only consider contextual factors during the decision making

process, but technical factors, but from an easy to understand and simplistic conceptual

framework.

In addition, to the best of this author’s knowledge, no attempt has been made to

understand the dynamics between supply chain ego-network structure and risk. This

is actually quite surprising, since the incorporation of ego-networks into the supply

chain literature has now spanned well over two decades. Yet another interesting gap

in the literature was to understand how risk affects nodes and arcs, and if they do

so differently. In this research I have suggested and verified that arc-based risk and
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node-based risk is indeed inherently different. If not due to contextual reasons, then

certainly, as I have demonstrated in this dissertation, due to pure structural reasons.

I also have demonstrated that ego-network structure differs at different level of k-ego-

networks, and have argued that the inherent structural characteristics of ego-networks

are different than those of individual nodes or arcs,despite them together comprising of

an ego network or a higher-order ego-network.

6.3 Limitations of Research

While I remain confident in the results of this study, no research is without it’s potential

sources of problems to creep in and disrupt the ability to generalize any results. My

study is of course no different. While I have taken the utmost careful approach to

ensure that every step in this research was conducted thoroughly and without bias,

there are limitations in the ability to generalize these results.

First, the networks I had generated were not based on an evolutionary algorithm

that would result to “real world networks”. In addition, they certainly were not based

on real-world supply network data. I made careful assumptions regarding how supply

networks form, but not nearly as restrictive as others in the literature have, especially

within the complex systems and evolutionary network streams of literature. Hence, the

external validity of the results of this study may indeed be at risk. With that said, I

had attempted to achieve as much heterogeneity within the dataset so as to properly

isolate the effects of structure on risk.

Next, the framework for risk measurement had assumed that a “consequence” was

defined as the number of nodes that either were affected or could be affected due to

a disruption in the network. The results of this study may very well change under

the assumption that “consequence” is not measured as a form of count, but rather of

monetary value, or some other form of utility. Therefore, the results of this study can

only be argued to hold within environments where actors consider “consequence” from

the perspective of “number of areas affected”.
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The simulation of this study was designed to randomly sample conditional probabil-

ities from a Beta Distribution of a given α and β parameter. Hence, the generalizability

of these results would only logically hold within environments where all the conditional

probabilities within a network themselves follow a Beta Distribution. This unfortu-

nately is a restriction to the current study at hand, as it may well be the case that

probability and structure are interlinked, or, that probabilities of disruptions may fol-

low certain patterns in specific areas of a supply network, which is a characteristic that

the Beta Distribution would most likely not be able to reflect.

Yet another limitation of this study is the lack of consideration of time. Disruptions

and risk always have delays and the dimension of time involved. This study had sought

to understand the connection between structure and risk in a static sense. However,

natural supply networks do not operate in a static world, and, as such, the networks are

ever changing. Therefore, consequentially, the results of this study can only be spoken

from a single moment in time. Further study would need to be conducted to understand

the evolutionary dimensions and attributes of the relationships between structure and

risk.

I also argue that another limitation of this study is within some of the measures

I had employed for the construct of “Feedback”. While I firmly trust the results of

this study, and proper variables appeared to have loaded on the construct properly,

there are other measurements I could have employed that would, I argue, have better

reflected this construct. Measurements such as graph circumference, average cycle size,

and total number of cycles as well as total number of largest/smallest cycles would

have offered additional clarity to this construct. Unfortunately, due to time constraints

and a lack of proper algorithms to identify these fully, I made the difficult decision to

ignore these observables. While I feel this is a limitation, I am confident that a follow

up study could employ these measures and should be able to draw similar conclusions

as I have here.

Last, a limitation of this study is due to the calculation of the risk measures them-

selves. I have demonstrated, despite past criticism from some in the extant literature,

that it is possible to conduct inference within large Bayesian Networks in an efficient
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manner, thanks to (1) advancements in algorithm design and (2) big data and dis-

tributed computing. However, while I have taken every effort possible to ensure min-

imal errors within these risk calculations, they are not perfect. The measures were

computed based on algorithms in a canned packed of R, and these methods leverage

simulation.

In an attempt to strike a balance between efficiency of computing versus minimal

errors, I had chosen a middle ground between these two extremes. After many prelimi-

nary tests to ensure the consistency of these simulation algorithms, I fixed the iteration

sizes of the canned procedures to 5000 iterations. In larger networks, this may be con-

sidered too small. However, while I do claim this to be a limitation, I do not argue

this is an inherent “problem” of the study in itself. Even within large networks, I had

observed that the errors of the simulations were only as high as 0.5%. They were very

efficient and consistent. Hence, while I do admit this is a possible limitation, I do

not consider this to be of a major concern given the pre-testing conducted on these

simulation procedures to ensure small error sizes.

6.4 Managerial Implications

The core purpose of this research was to gain a better understanding of the possible

(now confirmed) relationship between inherent network structure and risk and risk

propagation. When managers make decisions, they often do so in the face of uncertainty.

They are not aware of all the consequences of their actions and decisions. While it may

be cost or even initially “risk” effective to contract with a particular supplier, a lack of

understanding the inherent structural changes to the supply network could lead to the

opposite results a practitioner had expected.

This research presents a conceptual framework of network structure that helps to

avoid the over complexity and vast number of possible measures of “a network”. Such

a conceptual framework will allow a manager to better understand the possible impli-

cations of their decisions from a structure-based view. In addition, they would be able

to understand how might a change to their network (if they can characterize such a
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change), impact their risk propagation levels. In addition, the framework presented in

this study gives practitioners a collection of additional “dials” to turn, and to consider

when attempting to optimize risk-mitigation policy.

The results of this study have illuminated just how turning those different dials

will manifest into risk propagation. While some of those traditional dials such as

“connectedness” may be appealing to turn and leverage, due to conventional wisdom

at least, this study has established that these “dials” have their limits. There is no free

lunch, as practitioners are well aware. When it comes to risk mitigation strategy, this

study is the first to provide them a set of conceptual tools to use to consider within

their decision making with respect to network structure.

Now that I have uncovered the static dynamics between structure and risk propaga-

tion, managers can attempt to use these to better understand which policies work best

for them. In addition, this research has uncovered a dynamic between high and low

dimensions of the supply network. At it’s core, these dimensions are nothing more than

subgraphs of the network. However, the light that I have cast on them illustrates that

these dimensions have special purpose and meaning. When a firm makes a decision to

change it’s structure, this in effect will change the structure of the supply network, the

ego-network, and the k-ego-network.

As demonstrated here, there are risk dynamics between these ego-networks. A

strategy that may work well for an individual firm in regards to their risk may not

work as well for the group (ego or more generally k-ego) as a whole. The question then

for practitioners is how to best strike a balance between these paradoxical dynamics.

6.5 Future Research and Open Research Questions

As mentioned, this research is the first of it’s kind to thoroughly understand the dy-

namics between structure and risk propagation. Throughout this dissertation, I have

developed a few new tools of which I have leveraged to justify the individual parts of

the primary inquiry of this thesis. As such, these smaller developments, along with the

primary results, naturally lend themselves to unexplored boundaries that leave open
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more questions than answers.

In regards to risk propagation and k-ego-networks, it would be worth while to further

explore the competing dynamics of the effect that these structures have on risk at lower

dimensions. Understanding the strategic implications would be of the utmost impor-

tance in this relatively new area of research, and I foresee many practical applications

to determining optimal risk mitigation strategies.

In addition, it would be worth while to explore additional dynamics of the k-ego-

networks, and, to explore the risk at these higher level networks. While it would be

practically useless, what would be interesting to understand is just how far up the k-

ego-network ladder one must consider before there is a diminishing return in investment

of visibility and information seeking. Furthermore, understanding the dynamics of risk

at these higher levels of analysis would enable us to better understand how risk “flows”

from top to bottom, and under what conditions will the flow of this risk be thwarted.

Furthermore, throughout this research I leveraged a new construct that I designed

known as the “people supply network”. Ultimately, supply networks comprise of peo-

ple. While we can create conceptualizations of abstract entities like “the firm” or “the

supply network”, at the heart of these constructs lie people, no different than how the

atom lies at the heart of people. With the advent of social media and firms exceed-

ingly moving towards social media to reach their market, understanding the dynamic

interactions between people within the firm and those outside would allow for a clearer

understanding of certain dynamics within supply networks that are still left to be ex-

plored. I have laid down a preliminary framework for this level of analysis. It may

be worth while to develop a full and well argued framework for this level of analysis.

Once designed, it’s application to better understanding risk propagation within supply

network’s would easily be adopted. At the heart of the supply network and the various

risks within that network lie the people.

Hence, I have motivated the following future questions that currently are left open

to solve:
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1. What are the dynamics between the varying dimensions of supply network struc-

ture and k-ego-network risk?

2. How does risk propagation evolve over time as the network evolves?

3. Do higher-order k-ego-networks experience higher levels of risk, and, if so, can

collaborative strategies to mitigate this risk be beneficial, or harmful to the firm?

4. Under what conditions, given that network structure affects risk, would a firm find

it beneficial to act opportunistically from a structural perspective by “tuning” the

aforementioned dials?

5. What other properties of k-ego-networks affect other supply chain constructs such

as power/trust/innovation, etc?
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Chapter 7

Conclusion

Within this dissertation, I have sought to ascertain an understanding of a relationship

between canonical network structure and risk. I feel that this dissertation has laid

the theoretical and mathematical foundations to do just that. Many firm currently

operate under the assumption that risk flows within a well defined collection of paths.

I have argued that such a perspective is myopic, and doing so may lead to sub-optimal,

if not non-optimal, decision making. Managerial decision making rests upon proper

information available to said decision maker. If such information is inherently flawed,

then it is logical to assume that the subsequent consequences of the decisions made will

themselves lead to sub-optimal, or non-optimal, decisions.

As far as this author is concerned, no other researcher has taken upon the task to

properly identify the core conceptual structural dimensional of a network (any network

for that matter). This, as far as I can see, is very problematic. When a decision

maker implements a well-defined construct that was designed along traditional strategic

and managerial dimensions, what seems to be evident is that many are ignorant to

the subsequent effects within the overall network that manifestations of such decision

eventually come to form as a reality. If managers and practitioners alike took a more

careful approach to their overall local, ego-network, and 2-ego-network designs, they

may indeed achieve optimality in decision making. As I have demonstrated, decisions

made within firms, from a network-structure perspective, affect the consequences of

risk propagation within firms across the network, as well as within these tightly-formed

groups, often coined “cliques”.

As primary inquiry of which may be of the interest to the practitioner may indeed be

“at what point shall my local benefit outweigh the group benefit?”. I have demonstrated
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that decisions pertaining to structural relationships between entities within a network

do indeed play a determination towards that group’s overall risk. At the end of the day,

however, it is the individual firm that must weigh these benefits and risks, and make

a determination as to what structural strategy such a firm must take in order to fulfill

it’s strategic objectives.

This dissertation has laid down both the mathematical and conceptual frameworks

that will allow decision makers the tool-kit to be able to properly assess risk. Not only

will they be able to assess risk from an internal perspective, but also of those more

general networks (such as ego-network of 2-ego network, etc). Such an understanding

of these dynamics will indeed leave the manager to consider not only what may be

worthwhile to explore from a pure profit perspective, but also, from a risk perspective,

of which portends potential issues within supply networks themselves. As such, this

dissertation sets forth the primary conceptual framework for managers to leverage for

the underlying objective of understanding the connection between their network struc-

ture and risk. If they happen to understand the dynamics between, lets say, centrality

and risk, at different levels of the supply network, they may indeed pursue very differ-

ent forms of strategic decision making than otherwise thought. Hence, this dissertation

lends itself towards the advancement of strategic decision making.

In addition, this dissertation has implied that there exist multiple conceptualiza-

tions of “risk propagation”. Namely, from the perspective of “causal”, “diagnostic”,

and “change”. This is the first of it’s kind characterization of supply network risk

propagation. Such a characterization could aid firms in deciding if they should be-

have more towards a group-based dynamic optimized solution or towards a firm-based

optimized solution. In fact, I foresee future research in this field attempting to under-

standing the game-theoretic properties with respect to risk. Such a contribution would

indeed be worthwhile, and would offer a strategic tool for firms that seek to optimize

internal-based performance supply chain metrics.

In conclusion, I submit that this dissertation has set the theoretical conceptual

foundation for much research to be explored. “Risk” has been throughly examined.

However, risk propagation has not. This leads itself towards open questions, that have
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yet to be explored. For example, could the various structural dynamics portend risk

within networks, along varying degrees of analysis? Could there be a “social optimality

where all parties, within a specified k-ego network benefit? And further, what would

that k be?.
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Appendix A

R-Code for Simulation

1 #################################################

2 #EC2 Functions

3 #################################################

4 library(aws.s3)

5 library(igraph)

6 library(bnlearn)

7 library(doParallel)

8 library(foreach)

9 library(brotli)

10 instanceID = 1

11 #Removed in publication for security reasons

12 Sys.setenv("AWS_ACCESS_KEY_ID" = "",

13 "AWS_SECRET_ACCESS_KEY" = "",

14 "AWS_DEFAULT_REGION" = "us -east -1")

15

16 ec2Work = function(instanceID){

17

18 readBucket = paste("mgarvey",instanceID ,sep="")

19 writeBucket = switch(instanceID

,11 ,11 ,11 ,11 ,12 ,12 ,12 ,13 ,13 ,13 ,14 ,15 ,16 ,17 ,17 ,17)

20 writeBucket = paste("mgarvey",writeBucket ,sep="")

21 if(instanceID ==4)

22 writeBucket = c(writeBucket ,12)

23 if(instanceID ==7)

24 writeBucket = c(writeBucket ,13)

25

26 toWork = function (){}

27 if(instanceID <=10){

28 toWork = ec2GenerateNetwork
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29 }

30 else if(instanceID <=13){

31 toWork = ec2CalculateELR

32 }

33 else{

34 toWork = ec2CalculateMeasures

35 }

36

37 toWork(instanceID ,readBucket ,writeBucket)

38 }

39

40 ec2GenerateNetwork = function(instanceID ,readBucket ,writeBucket){

41 cores = detectCores ()

42 cores = floor(cores)

43

44 cluster= makeCluster(cores)

45 registerDoParallel(cluster)

46

47 toGenerate = seq(max (100*(instanceID -1) ,100) ,100*instanceID ,1)

48 toGen = c()

49 for(alpha in 10:1){

50 toGen = c(toGen ,paste(toGenerate ,"_",alpha ,sep=""))

51 }

52

53 ret = foreach(i = toGen ,. packages = c("bnlearn","igraph","brotli","

aws.s3"),.export=ls(globalenv ())) %dopar% {

54 splitNum = unlist(strsplit(i,"_"))

55 size = as.numeric(splitNum [1])

56 alpha = as.numeric(splitNum [2])

57

58 toret = list()

59 count = 1

60 for(beta in 1:10){

61 g=generateSupplyNetwork(size ,floor (.7*size))

62 while(components(g)$no!=1)

63 g=generateSupplyNetwork(size ,floor (.7*size))

64
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65 toret[[ count]] = generateRiskGraph(g,alpha ,beta)

66 count=count+1

67 }

68 x=brotli_compress(serialize(toret ,NULL))

69 saveRDS(x,i)

70 #s3saveRDS(x,i,ifelse(length(writeBucket)>1,sample(writeBucket ,1)

,writeBucket))

71 ""

72 }

73 stopCluster(cluster)

74 }

75

76 ec2CalculateELR = function(instanceID ,readBucket ,writeBucket){

77 bList = list.files()

78 countWait = 1

79 cores = detectCores ()

80 cores = floor (.75*cores)

81 #for(k in bList){

82 if(TRUE){

83 cluster= makeCluster(cores)

84 registerDoParallel(cluster)

85

86 ret = foreach(i = bList ,. packages = c("bnlearn","igraph","brotli"

,"aws.s3") ,.export=ls(globalenv ())) %dopar% {

87 x=readRDS(i)

88 x=brotli_decompress(x)

89 x=unserialize(x,NULL)

90 toReturn = list()

91 count = 1

92 for(j in 1: length(x)){

93 graphData = x[[j]]

94 elrAll = calculateELRAll(graphData)

95 riskMeasures = convertRiskMeasures(elrAll)

96 toReturn [[count ]] = c(graphData ,riskMeasures)

97 count = count+1

98 }

99
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100 x = serialize(toReturn ,NULL)

101 x = brotli_compress(x)

102 saveRDS(x,paste(i,"_e",sep=""))

103 #s3saveRDS(x,i,writeBucket)

104 ""

105 }

106 stopCluster(cluster)

107 #bList = get_bucket_df(readBucket)$Key

108 }

109 }

110

111 ec2CalculateMeasures = function(instanceID ,readBucket ,writeBucket){

112 dumpBucket="mgarveydumpbucket"

113 bList = get_bucket_df(readBucket)$Key

114 countWait = 1

115 cores = detectCores ()

116 cores = floor (.75*cores)

117 while(TRUE){

118 while(( length(bList)<cores&&countWait <3)){

119 Sys.sleep (30)

120 bList = get_bucket_df(readBucket)$Key

121 countWait = countWait +1

122 }

123

124 if(length(bList)==0){

125 next

126 countWait = 1

127 }

128 countWait =1

129 cluster= makeCluster(cores)

130 registerDoParallel(cluster)

131

132 ret = foreach(i = bList ,. packages = c("bnlearn","igraph","brotli"

,"aws.s3") ,.export=ls(globalenv ())) %dopar% {

133 x=s3readRDS(i,readBucket)

134 x=brotli_decompress(x)

135 x=unserialize(x,NULL)
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136

137 graphData = x[[1]]

138 elrAll = getAllMetrics(graphData)

139 e1 = elrAll [["egodata1"]]

140 e2 = elrAll [["egodata2"]]

141 loc = elrAll [["localData"]]

142

143 for(j in 2: length(x)){

144 graphData = x[[j]]

145 elrAll = getAllMetrics(graphData)

146 e1 = rbind(e1 ,elrAll [["egodata1"]])

147 e2 = rbind(e2 ,elrAll [["egodata2"]])

148 loc = rbind(loc ,elrAll [["localData"]])

149 }

150

151 x = serialize(e1 ,NULL)

152 x = brotli_compress(x)

153 s3saveRDS(x,paste("ego1_",i,sep=""),writeBucket)

154

155 x = serialize(e2 ,NULL)

156 x = brotli_compress(x)

157 s3saveRDS(x,paste("ego2_",i,sep=""),writeBucket)

158

159 x = serialize(loc ,NULL)

160 x = brotli_compress(x)

161 s3saveRDS(x,paste("loc_",i,sep=""),writeBucket)

162

163 delete_object(i,readBucket)

164 put_object(i,dumpBucket)

165 ""

166 }

167 stopCluster(cluster)

168 bList = get_bucket_df(readBucket)$Key

169 }

170

171 }

172
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173

174 ec2CombineMeasures = function(instanceID){

175

176 }

177

178

179

180

181 #################################################

182 #Utility Functions

183 #################################################

184 getDesc=function(graph ,node){

185 #First , obtain the adjacency matrix

186 adj_matrix = amat(graph)

187

188 #Next , create a list of names

189 node_labels = colnames(adj_matrix)

190

191 #Create and initialize list of nodes to further explore

192 to_explore = colnames(adj_matrix)[which(adj_matrix[node ,]==1)]

193

194 #Now , create an empty vector that will store the decendent names

195 desc = c()

196

197 #Create list of explored

198 explored = c(node)

199

200 #if there are no children , just return an empty list

201 if(length(to_explore)==0)

202 return(c())

203

204 #While there are nodes left to explore , account for children

205 while(length(to_explore) >0){

206 #Set the next node to explore , add it to the desc list and

explored list

207 next_node = to_explore [1]

208 desc=c(desc ,next_node)
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209 explored=c(explored ,next_node)

210

211 #Now , obtain the children for this node

212 children = colnames(adj_matrix)[which(adj_matrix[next_node ,]==1)]

213

214 #Iterate through the children. If we didn ’t explore one , add it

to the list

215 for(i in children){

216 if(!is.element(i,explored)){

217 to_explore=c(to_explore ,i)

218 }

219 }

220

221 #Last , remove the first entry since we just explored it

222 to_explore=to_explore [-1]

223 }

224 desc=intersect(desc ,desc)

225 return(desc)

226 }

227 getAllDesc = function(graph){

228 to_return = list()

229 to_return [["graph"]] = graph

230

231 nodes = colnames(amat(graph))

232

233 for(i in nodes){

234 desc = getDesc(graph ,i)

235

236 to_return [[i]] = desc

237 }

238

239 return(to_return)

240

241 }

242 getAnces = function(graph ,node){

243 #First , obtain the adjacency matrix

244 adj_matrix = amat(graph)
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245

246 #Next , create a list of names

247 node_labels = colnames(adj_matrix)

248

249 #Create and initialize list of nodes to further explore

250 to_explore = colnames(adj_matrix)[which(adj_matrix[,node ]==1)]

251

252 #Now , create an empty vector that will store the ancestor names

253 ances = c()

254

255 #Create list of explored

256 explored = c(node)

257

258 #if there are no parents , just return an empty list

259 if(length(to_explore)==0)

260 return(c())

261

262 #While there are nodes left to explore , account for children

263 while(length(to_explore) >0){

264 #Set the next node to explore , add it to the desc list and

explored list

265 next_node = to_explore [1]

266 ances=c(ances ,next_node)

267 explored=c(explored ,next_node)

268

269 #Now , obtain the children for this node

270 parents = colnames(adj_matrix)[which(adj_matrix[,next_node ]==1)]

271

272 #Iterate through the children. If we didn ’t explore one , add it

to the list

273 for(i in parents){

274 if(!is.element(i,explored)){

275 to_explore=c(to_explore ,i)

276 }

277 }

278

279 #Last , remove the first entry since we just explored it
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280 to_explore=to_explore [-1]

281 }

282 ances=intersect(ances ,ances)

283 return(ances)

284 }

285 getAllAnces = function(graph){

286 to_return = list()

287 to_return [["graph"]] = graph

288 nodes = colnames(amat(graph))

289 for(i in nodes){

290 ances = getAnces(graph ,i)

291 to_return [[i]] = ances

292 }

293 return(to_return)

294 }

295 getRoots = function(graph ,isMatrix=FALSE){

296 m=graph

297

298 if(!isMatrix)

299 m = as_adjacency_matrix(graph ,sparse=FALSE)

300 if(length(m) <=1)

301 return(m)

302 roots = which(apply(m,2,sum)==0)

303 return(roots)

304 }

305 getParents = function(graph ,node){

306 return(graph$nodes [[node]]$parents)

307 }

308 getChildren = function(graph ,node){

309 return(graph$nodes [[node]]$children)

310 }

311

312 getAllCycles = function(graph){

313 adj = as_adj(graph ,sparse=FALSE)

314

315 nodes = as.vector(V(graph))

316 for(i in as.vector(V(graph))){
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317 dfsr = as.vector(dfs(graph ,i)$order)

318 adjTemp = matrix(rep(0,length(V(graph))),nrow=length(V(graph)))

319 for(j in 1:( length(dfsr)) -1){

320 if(adj[dfsr[j],dfsr[j+1]]==1)

321 adjTemp[dfsr[j],dfsr[j+1]]=1

322 }

323

324 toExtract = adj - adjTemp

325 toExtract[upper.tri(toExtract)] = 0

326 missingEdges = which(toExtract!=0)

327

328 for(k in missingEdge){

329 row = k%% length(nodes)

330 column = ceiling(k/length(nodes))

331 edge = paste(row ,"-",column)

332

333 }

334 }

335

336 }

337 kEgoConnectivity = function(graph ,node){

338 otherNodes = setdiff(names(V(graph)),node)

339 k = components(induced_subgraph(graph ,otherNodes))$no

340 level = 0

341 while(k==1&&length(otherNodes) >0){

342 level=level+1

343 ego = getKEgo(graph ,level ,node)

344 otherNodes = setdiff(names(V(graph)),names(V(ego)))

345 k = components(induced_subgraph(graph ,otherNodes))$no

346 }

347 return(level)

348 }

349 countTriads = function(graph ,node){

350 #First , enumerate the neighbors

351 neighbors = names(neighbors(graph ,node))

352 if(length(neighbors) <2)

353 return(list(count=0,pairs=list()))
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354 adjM = as_adj(graph ,sparse=FALSE)

355 pairs = list()

356 count = 0

357 for(i in 1:( length(neighbors) -1)){

358 for(j in i:length(neighbors)){

359 p1 = neighbors[i]

360 p2 = neighbors[j]

361 if(adjM[p1,p2]==1){

362 count = count+1

363 pair = c(p1,p2)

364 pairs [[count]] = pair

365 }

366 }

367 }

368 return(list(count=count ,pairs=pairs))

369 }

370 convertGraph = function(graph){

371 if(class(graph)=="igraph"){

372 toRet = empty.graph(paste("n" ,1:length(V(graph)),sep=""))

373 amat(toRet) = as_adj(graph)

374 }

375 return(graph_from_adjacency_matrix(amat(graph)))

376 }

377

378 findStructuralHoles = function(graph ,node){

379 #First , enumerate the neighbors

380 neighbors = names(neighbors(graph ,node))

381 if(length(neighbors) <2)

382 return(list(count=0,pairs=list()))

383 adjM = as_adj(graph ,sparse=FALSE)

384 count = 0

385 triads = list()

386 for(i in 1:( length(neighbors) -1)){

387 for(j in (i+1):length(neighbors)){

388 p1 = neighbors[i]

389 p2 = neighbors[j]

390 if(adjM[p1,p2]==0){
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391 count = count+1

392 pair = c(p1,p2)

393 triads [[paste(node ,"-",p1,"-",p2,sep="")]]= list(missing=c(p1,

p2))

394 }

395 }

396 }

397 return(list(count=count ,triads=triads))

398 }

399 findAllStructuralHoles = function(graph){

400 sh=list()

401 nodes=V(graph)$name

402 for(i in nodes){

403 sh=c(sh,findStructuralHoles(graph ,i)$triads)

404 }

405 return(sh)

406 }

407 splitVector = function(x,m){

408 ret = list()

409 count = 1

410 gSize = floor(length(x)/m)

411 for(i in 1:m){

412 start = (i-1)*gSize+1

413 end = i*gSize

414 ret[[ count]] = x[start:end]

415 count = count+1

416 }

417 rem = length(x)%%m

418 index = length(x)

419 if(rem ==0)

420 return(ret)

421

422 for(i in 1:rem){

423 ni = sample (1: length(ret) ,1)

424 ret[[ni]] = c(ret[[ni]],x[index])

425 index = index -1

426 }
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427 index = 1

428 for(i in 1: length(ret)){

429 for(j in 1: length(ret[[i]])){

430 ret[[i]][j] = index

431 index = index+1

432 }

433 }

434 return(ret)

435 }

436 findLayer = function(layers ,node){

437 for(i in 1: length(layers)){

438 if(is.element(node ,layers [[i]]))

439 return(i)

440 }

441 }

442 findOnes = function(matrix){

443 x = which(matrix ==1)

444 f = x[1]

445 x=x[-1]

446 size = nrow(matrix)

447 row = f%%size

448 row = ifelse(row==0,3,row)

449 col = ceiling(f/size)

450 toRet = c(row ,col)

451

452 for(i in x){

453 f = i

454 row = f%%size

455 row = ifelse(row==0,3,row)

456 col = ceiling(f/size)

457 toRet = rbind(toRet ,c(row ,col))

458 }

459 colnames(toRet)=c("from","to")

460 return(toRet)

461 }

462

463 getEdgesFromGraph = function(graph ,nodes){
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464

465 }

466 #################################################

467 #################################################

468

469 #################################################

470 #Primary Calculation Functions

471 #################################################

472 calculateProb=function(graph ,fit ,node){

473 cmd = paste("cpquery(fit ,event=(",node ,"==1),evidence=TRUE)",sep=""

)

474 prob = eval(parse(text=cmd))

475 }

476 calculateER = function(graph ,fit ,node ,value){

477 ev = paste("(",node ,"==",value ,")",sep="")

478 des = getDesc(graph ,node)

479 anc = getAnces(graph ,node)

480 nodes=union(des ,anc)

481 cmd = paste("cpdist(fit ,nodes ,evidence=",ev ,")",sep="")

482 samps = apply(eval(parse(text=cmd)),2,as.numeric)

483

484 #getDescedents

485 dsamps = apply(t(t(samps[,des])) ,1,sum)

486

487 #getAcen

488 asamps = apply(t(t(samps[,anc])) ,1,sum)

489

490 samps = matrix(c(dsamps ,asamps),ncol =2)

491

492 vels = apply(samps ,1,function(x){

493 if(x[2]==0)

494 return(x[1])

495 else{

496 return ((x[1]-x[2])/x[2])

497 }

498 })

499
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500

501 ercf = mean(dsamps)

502 ersf = mean(asamps)

503 erv = mean(vels)

504

505 return(list(ercf=ercf ,ersf=ersf ,erv=erv))

506 }

507 calculateELR = function(graph ,fit ,node){

508 prob = calculateProb(graph ,fit ,node)

509 r0 = calculateER(graph ,fit ,node ,0)

510 r1 = calculateER(graph ,fit ,node ,1)

511

512 elrcf = (1+r1[["ercf"]])*prob + r0[["ercf"]]*(1-prob)

513 elrsf = (1+r1[["ersf"]])*prob + r0[["ersf"]]*(1-prob)

514 elrv = r1[["erv"]]*prob + r0[["erv"]]*(1-prob)

515

516

517 return(list(elrcf = elrcf ,elrsf=elrsf ,elrv = elrv))

518 }

519 calculateELRAll = function(graphData ,multi=FALSE){

520 graph = graphData [["graph"]]

521 fit = graphData [["fit"]]

522 if(multi){

523 nodes = names(graph$nodes)

524 cl = makeCluster(detectCores ()/2)

525 registerDoParallel(cl)

526 ret=list()

527 ret = foreach(i = nodes , .final = function(x) setNames(x, nodes)

,.packages = "bnlearn" ,.export=ls(globalenv ())) %dopar% {

528 calculateELR(graph ,fit ,i)

529 }

530 stopCluster(cl)

531 stopImplicitCluster ()

532 return(ret)

533 }

534 nodes = names(graph$nodes)

535 ret=list()
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536 for(i in nodes){

537 ret[[i]]= calculateELR(graph ,fit ,i)

538 }

539 return(ret)

540 }

541 getAllMetrics = function(graphData){

542 #First , get 2-ego level metrics:

543 sNetwork = graphData$supplyNetwork

544 nodes = c(V(sNetwork)$name ,E(sNetwork)$name)

545 egodata2 = getEgoMetrics(graphData ,2,nodes [1])

546 node = nodes [1]

547 nodes=nodes [-1]

548 gd = graphData

549 gd[["2egoRisk"]] = list()

550 gd[["2egoRisk"]][[ node ]]= list(avg_elrcf=egodata2[,"avg_elrcf"],avg_

elrsf=egodata2[,"avg_elrsf"],avg_elrv=egodata2[,"avg_elrv"],sd_

elrcf=egodata2[,"sd_elrcf"],sd_elrsf=egodata2[,"sd_elrsf"],sd_

elrv=egodata2[,"sd_elrv"],cv_elrcf=egodata2[,"cv_elrcf"],cv_elrsf

=egodata2[,"cv_elrsf"],cv_elrv=egodata2[,"cv_elrv"])

551 count = 1

552

553 for(i in nodes){

554 egodata2=rbind(egodata2 ,getEgoMetrics(gd ,2,i))

555 count=count+1

556 gd[["2egoRisk"]][[i]]= list(avg_elrcf=egodata2[count ,"avg_elrcf"],

avg_elrsf=egodata2[count ,"avg_elrsf"],avg_elrv=egodata2[count ,"

avg_elrv"],sd_elrcf=egodata2[count ,"sd_elrcf"],sd_elrsf=egodata2[

count ,"sd_elrsf"],sd_elrv=egodata2[count ,"sd_elrv"],cv_elrcf=

egodata2[count ,"cv_elrcf"],cv_elrsf=egodata2[count ,"cv_elrsf"],cv

_elrv=egodata2[count ,"cv_elrv"])

557 }

558 count = 1

559 egodata = getEgoMetrics(gd ,1,node)

560 gd[["egoRisk"]] = list()
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561 gd[["egoRisk"]][[ node ]]= list(avg_elrcf=egodata[,"avg_elrcf"],avg_

elrsf=egodata[,"avg_elrsf"],avg_elrv=egodata[,"avg_elrv"],sd_

elrcf=egodata[,"sd_elrcf"],sd_elrsf=egodata[,"sd_elrsf"],sd_elrv=

egodata[,"sd_elrv"],cv_elrcf=egodata[,"cv_elrcf"],cv_elrsf=

egodata[,"cv_elrsf"],cv_elrv=egodata[,"cv_elrv"])

562

563

564 for(i in nodes){

565 egodata=rbind(egodata ,getEgoMetrics(gd ,1,i))

566 count=count+1

567 gd[["egoRisk"]][[i]] =

568 list(avg_elrcf=egodata[count ,"avg_elrcf"],avg_elrsf=egodata[

count ,"avg_elrsf"],avg_elrv=egodata[count ,"avg_elrv"],sd_elrcf=

egodata[count ,"sd_elrcf"],sd_elrsf=egodata[count ,"sd_elrsf"],sd_

elrv=egodata[count ,"sd_elrv"],cv_elrcf=egodata[count ,"cv_elrcf"],

cv_elrsf=egodata[count ,"cv_elrsf"],cv_elrv=egodata[count ,"cv_elrv

"])

569

570 }

571

572 localData = getLocalMetrics(gd ,node)

573 for(i in nodes){

574 localData = rbind(localData ,getLocalMetrics(gd ,i))

575 }

576

577 return(list(egodata2=egodata2 ,egodata1=egodata ,localData=localData)

)

578 }

579

580

581 getLocalMetrics = function(graphData ,node){

582 graph = graphData [["supplyNetwork"]]

583 egoRisk = graphData [["egoRisk"]]

584 if(substr(node ,1,1)=="e")

585 graph = graphData [["lineGraph"]]

586

587
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588 nBetweenness = betweenness(graph ,node)

589 nCloseness = closeness(graph ,node)

590 nEigen = eigen_centrality(graph ,node)$vector[node]

591 nDegree = degree(graph ,node)

592 nEccentricity = eccentricity(graph ,node)

593 #First , find the center

594 me = eccentricity(graph)

595 graphCenter = names(which(me == min(me)))

596 nMinCenterDistance = min(distances(graph ,node ,graphCenter))

597 nMaxCenterDistance = max(distances(graph ,node ,graphCenter))

598

599 nDist = distances(graph ,node)

600 nAvgSPathDis = sum(nDist)/(length(nDist) -1)

601

602 nDensity = nDegree/vcount(graph)

603 nClusterCoeff = transitivity(graph ,"local",node ,isolates="zero")

604 nCoreness = coreness(graph)[node]

605 nTriads = countTriads(graph ,node)$count

606 nSH = choose(nDegree ,2)-nTriads

607 nEgoConnectivity = kEgoConnectivity(graph ,node)

608 isNode = ifelse(substr(node ,1,1)=="n" ,1,0)

609 elrsf = graphData [["elrsf"]][ node]

610 elrcf = graphData [["elrcf"]][ node]

611 elrv = graphData [["elrv"]][ node]

612 #get av ,sd and cv of elrcf , elrsf and elrrv for 2-ego

613 avg_elrcf_ego = egoRisk [[node ]][["avg_elrcf"]]

614 avg_elrsf_ego = egoRisk [[node ]][["avg_elrsf"]]

615 avg_elrv_ego = egoRisk [[node ]][["avg_elrv"]]

616

617 sd_elrcf_ego = egoRisk [[node ]][["sd_elrcf"]]

618 sd_elrsf_ego = egoRisk [[node ]][["sd_elrsf"]]

619 sd_elrv_ego = egoRisk [[node ]][["sd_elrv"]]

620

621 cv_elrcf_ego = egoRisk [[node ]][["cv_elrcf"]]

622 cv_elrsf_ego = egoRisk [[node ]][["cv_elrsf"]]

623 cv_elrv_ego = egoRisk [[node ]][["cv_elrv"]]

624
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625 alpha = graphData [["alpha"]]

626 beta = graphData [["beta"]]

627

628 toRet = cbind(alpha ,beta ,avg_elrcf_ego ,avg_elrsf_ego ,avg_elrv_ego ,

sd_elrcf_ego ,sd_elrsf_ego ,sd_elrv_ego ,cv_elrcf_ego ,cv_elrsf_ego ,

cv_elrv_ego ,isNode ,nBetweenness ,nCloseness ,nEigen ,nDegree ,

nEccentricity ,nMinCenterDistance ,nMaxCenterDistance ,nAvgSPathDis ,

nDensity ,nClusterCoeff ,nCoreness ,nTriads ,nSH ,nEgoConnectivity ,

elrsf ,elrcf ,elrv)

629

630 return(toRet)

631 }

632

633

634

635

636 getEgoMetrics = function(graphData ,k,node){

637 sNetwork = graphData [["supplyNetwork"]]

638 graph = graphData [["graph"]]

639 elrcf = graphData [["elrcf"]]

640 elrsf = graphData [["elrsf"]]

641 elrv = graphData [["elrv"]]

642 riskMeasures = list()

643 if(k==1){

644 riskMeasures = graphData [["2egoRisk"]]

645 }

646

647

648 #Core Graph Metrics

649 egoN = getKEgo(sNetwork ,k,node)

650 metrics = getEgoGraphMetrics(egoN)

651

652

653 nodes = as_ids(V(egoN))

654 nodes = c(nodes ,edge_attr(egoN ,"name",E(egoN)))

655 #Now , find the ELRCF for the ego network

656 elrcf_vals = elrcf[nodes]
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657 avg_elrcf = mean(elrcf_vals)

658 sd_elrcf = sd(elrcf_vals)

659 cv_elrcf = sd_elrcf/avg_elrcf

660

661 #Ditto for the ELRSF

662 elrsf_vals = elrsf[nodes]

663 avg_elrsf = mean(elrsf_vals)

664 sd_elrsf = sd(elrsf_vals)

665 cv_elrsf = sd_elrsf/avg_elrsf

666

667 #Last , the velocity

668 elrv_vals = elrv[nodes]

669 avg_elrv = mean(elrv_vals)

670 sd_elrv = sd(elrv_vals)

671 cv_elrv = sd_elrv/avg_elrv

672

673 alpha = graphData [["alpha"]]

674 beta = graphData [["beta"]]

675 metrics = cbind(alpha ,beta ,metrics ,avg_elrcf ,avg_elrsf ,avg_elrv ,sd_

elrcf ,sd_elrsf ,sd_elrv ,cv_elrcf ,cv_elrsf ,cv_elrv)

676

677 if(k==1){

678 #get av,sd and cv of elrcf , elrsf and elrrv for 2-ego

679 avg_elrcf_2ego = riskMeasures [[node ]][["avg_elrcf"]]

680 avg_elrsf_2ego = riskMeasures [[node ]][["avg_elrsf"]]

681 avg_elrv_2ego = riskMeasures [[node ]][["avg_elrv"]]

682

683 sd_elrcf_2ego = riskMeasures [[node ]][["sd_elrcf"]]

684 sd_elrsf_2ego = riskMeasures [[node ]][["sd_elrsf"]]

685 sd_elrv_2ego = riskMeasures [[node ]][["sd_elrv"]]

686

687 cv_elrcf_2ego = riskMeasures [[node ]][["cv_elrcf"]]

688 cv_elrsf_2ego = riskMeasures [[node ]][["cv_elrsf"]]

689 cv_elrv_2ego = riskMeasures [[node ]][["cv_elrv"]]

690
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691 metrics=cbind(avg_elrcf_2ego ,avg_elrsf_2ego ,avg_elrv_2ego ,sd_

elrcf_2ego ,sd_elrsf_2ego ,sd_elrv_2ego ,cv_elrcf_2ego ,cv_elrsf_2ego

,cv_elrv_2ego ,metrics)

692 return(metrics)

693 }

694 return(metrics)

695 }

696

697 #More of a utility for getEgoMetrics

698 getEgoGraphMetrics = function(egoNetwork){

699 egoN = egoNetwork

700 eNNodes = length(V(egoN))

701 eNArcs = length(E(egoN))

702 eEdgeConnectivity = edge_connectivity(egoN)

703 eNodeConnectivity = vertex_connectivity(egoN)

704 eDiameter = diameter(egoN)

705 eRadius = radius(egoN)

706 eGirth = girth(egoN)$girth

707 eCliqueNum = clique_num(egoN)

708 eNumOfLargestCliques = length(largest_cliques(egoN))

709 eAvCliqueSize = mean(unlist(lapply(cliques(egoN),length)))

710 eNSH = triad_census(egoN)[11]

711 eNTriads = triad.census(egoN)[16]

712 eAvgConstraint = mean(constraint(egoN))

713 eConstraintCen = centralize(constraint(egoN),normalized=FALSE)

714 eDensity = edge_density(egoN)

715 eClusterCoeff = transitivity(egoN ,isolates="zero")

716 eClusterCoeffAv = transitivity(egoN ,type="average",isolates="zero")

717 eAvgShortestPathDis = mean_distance(egoN)

718 eAvgBetweeness = mean(betweenness(egoN))

719 eAvgCloseness = mean(closeness(egoN))

720 eAvgDegree = mean(degree(egoN))

721 eAvgEV = mean(eigen_centrality(egoN)$vector)

722 eCenBetweeness = centr_betw(egoN ,normalized=FALSE)$centralization

723 eCenEigen = centr_eigen(egoN ,normalized=FALSE)$centralization

724 eCenCloseness = centr_clo(egoN ,normalized=FALSE)$centralization

725 eCenDegree = centr_degree(egoN ,normalized=FALSE)$centralization
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726 eAvgEccentricity = mean(eccentricity(egoN))

727 eEccentricityCen = centralize(eccentricity(egoN),normalized=FALSE)

728 ret=cbind(eNNodes ,eNArcs ,eEdgeConnectivity ,eNodeConnectivity ,

eDiameter ,eRadius ,eGirth ,eCliqueNum ,eNumOfLargestCliques ,

eAvCliqueSize ,eNSH ,eNTriads ,eAvgConstraint ,eConstraintCen ,

eDensity ,eClusterCoeff ,eClusterCoeffAv ,eAvgShortestPathDis ,

eAvgBetweeness ,eAvgCloseness ,eAvgDegree ,eAvgEV ,eCenBetweeness ,

eCenEigen ,eCenCloseness ,eCenDegree ,eAvgEccentricity ,

eEccentricityCen)

729 return(ret)

730 }

731

732 convertRiskMeasures = function(measureData){

733 theNodes = names(measureData)

734 newList = list()

735 elrcf = c()

736 elrsf = c()

737 elrv = c()

738

739 for(i in theNodes){

740 measures = measureData [[i]]

741 elrcf=c(elrcf ,measures$elrcf)

742 elrsf = c(elrsf ,measures$elrsf)

743 elrv = c(elrv , measures$elrv)

744 }

745

746 names(elrcf) = theNodes

747 names(elrsf) = theNodes

748 names(elrv) = theNodes

749

750 return(list(elrcf=elrcf ,elrsf=elrsf ,elrv=elrv))

751 }

752

753 #################################################

754 #Network Generation Functions

755 #################################################

756 getKEgo=function(graph ,k,node){
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757 sNetwork = graph

758

759 if(substr(node ,1,1)=="n"){

760 nodes = c(substr(node ,2,nchar(node)))

761 nodes = as.numeric(nodes)

762 for(i in 1:k){

763 nodesTemp = nodes

764 for(j in nodes){

765 nodesTemp = union(nodesTemp ,as.vector(neighbors(sNetwork ,j,"

all")))

766 }

767 nodes = nodesTemp

768 }

769 return(induced_subgraph(sNetwork ,nodes))

770 }else{

771 edgeNum = as.numeric(substr(node ,2,nchar(node)))

772 vert = get.edges(sNetwork ,E(sNetwork))[edgeNum ,]

773 vert = paste("n",vert ,sep="")

774 g1 = getKEgo(graph ,k,vert [1])

775 g2 = getKEgo(graph ,k,vert [2])

776 tNodes = union(as_ids(V(g1)),as_ids(V(g2)))

777 return(induced_subgraph(sNetwork ,tNodes))

778 }

779 }

780

781 populateUniform=function(graph){

782 nodes = names(graph$nodes)

783 dis = list()

784 for(i in nodes){

785 print(i)

786 parents = getParents(graph ,i)

787

788 numC = 2^( length(parents)+1)

789 x=rep(.5,numC)

790 dim(x) = rep(2,length(parents)+1)

791 x_lab = list()

792 x_lab[[i]] = c("TRUE","FALSE")
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793 for(j in parents){

794 x_lab[[j]] = c("TRUE","FALSE")

795 }

796 dimnames(x) = x_lab

797 dis[[i]] = x

798 }

799

800 dfit = custom.fit(graph ,dis)

801 return(dfit)

802 }

803 populateUniformDiff=function(graph ,prob){

804 nodes = names(graph$nodes)

805 dis = list()

806 for(i in nodes){

807 print(i)

808 parents = getParents(graph ,i)

809

810 numC = 2^( length(parents)+1)

811 x=rep(c(prob ,1-prob),numC/2)

812 dim(x) = rep(2,length(parents)+1)

813 x_lab = list()

814 x_lab[[i]] = c("TRUE","FALSE")

815 for(j in parents){

816 x_lab[[j]] = c("TRUE","FALSE")

817 }

818 dimnames(x) = x_lab

819 dis[[i]] = x

820 }

821

822 dfit = custom.fit(graph ,dis)

823 return(dfit)

824 }

825 populateBeta=function(graph ,a,b){

826 nodes = names(graph$nodes)

827 dis = list()

828

829 for(i in nodes){
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830 print(i)

831 parents = getParents(graph ,i)

832

833 numC = 2^( length(parents)+1)

834 numToGen = numC/2

835

836 x=rep(0,numC)

837 probs = round(rbeta(numToGen ,a,b) ,2)*100

838 odd = which(probs%%2!=0)

839 probs[odd]= probs[odd]+1

840 probs=probs/100

841 antiProbs = 1-probs

842 x[seq(1,numC ,2)] = probs

843 x[seq(2,numC ,2)] = antiProbs

844 dim(x) = rep(2,length(parents)+1)

845 x_lab = list()

846 x_lab[[i]] = c(1,0)

847 for(j in parents){

848 x_lab[[j]] = c(1,0)

849 }

850 dimnames(x) = x_lab

851 dis[[i]] = x

852 }

853

854 dfit = custom.fit(graph ,dis)

855 return(dfit)

856

857 }

858 populateSame=function(graph ,prob){

859 nodes = names(graph$nodes)

860 dis = list()

861

862 for(i in nodes){

863 print(i)

864 parents = getParents(graph ,i)

865

866 numC = 2^( length(parents)+1)
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867 numToGen = numC/2

868

869 x=rep(0,numC)

870 probs = rep(prob ,numToGen)

871 antiProbs = 1-probs

872 x[seq(1,numC ,2)] = probs

873 x[seq(2,numC ,2)] = antiProbs

874 dim(x) = rep(2,length(parents)+1)

875 x_lab = list()

876 x_lab[[i]] = c(1,0)

877 for(j in parents){

878 x_lab[[j]] = c(1,0)

879 }

880 dimnames(x) = x_lab

881 dis[[i]] = x

882 }

883

884 dfit = custom.fit(graph ,dis)

885 return(dfit)

886

887 }

888

889 generateSupplyNetwork = function(n,horizontal = 5){

890 vertical = 5

891 nodesPerLevel = floor(n/horizontal)

892

893 graph=make_empty_graph()

894 graph = add_vertices(graph ,n,attr=list(name=paste("n" ,1:n,sep="")))

895 layers = splitVector (1:n,horizontal)

896 for(i in 2: horizontal){

897 nodes = layers [[i]]

898 potentialParents = 1:( min(nodes) -1)

899 for(j in nodes){

900 dist = abs(rnorm (10 ,.5 ,.25))

901 dist = dist/sum(dist)

902 pSize = sample (1:min(10, length(potentialParents),1,prob = dist)

)
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903 nP = sample (1: length(potentialParents),min(pSize ,length(

potentialParents)))

904 for(k in 1: pSize){

905 graph = add_edges(graph ,c(nP[k],j))

906 }

907 }

908 }

909 eNames = c()

910 edges = get.edges(graph ,E(graph))

911 for(i in 1:nrow(edges)){

912 eNames = c(eNames ,paste("e",i,sep=""))

913 }

914 graph = set_edge_attr(graph ,"name",E(graph),eNames)

915

916 sh1=findAllStructuralHoles(graph)

917 ta1 = sample(names(sh1),sample (5: length(names(sh1))))

918 visited = c()

919 for(i in ta1){

920 nums = sh1[[i]]$missing

921 if(is.element(paste(nums ,collapse=""),visited))

922 next

923 num=sapply(nums ,function(x){as.numeric(substr(x,2,nchar(x)))})

924 nEdge = length(E(graph))+1

925 if(num[1]<num [2]){

926 graph=add_edges(graph ,num ,attr=list(name=paste("e",nEdge ,sep=""

)))

927 nEdge = nEdge+1

928 visited = c(visited ,paste(nums ,collapse=""),paste(rev(nums),

collapse=""))

929 }

930 }

931

932 return(graph)

933 }

934 generateRiskGraph = function(supplyNetwork ,alpha ,beta){

935

936 nNodes = length(V(supplyNetwork))
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937 nEdges = length(E(supplyNetwork))

938 nodes = paste("n" ,1:nNodes ,sep="")

939 eNodes = paste("e" ,1:nEdges ,sep="")

940

941 nodes = c(nodes ,eNodes)

942

943 graph = empty.graph(nodes)

944 mat = amat(graph)

945 edges = get.edges(supplyNetwork ,E(supplyNetwork))

946 for(i in 1:nrow(edges)){

947 e=edges[i,]

948 v = paste("n",e,sep="")

949 mat[v[1],v[2]] = 1

950 mat[v[1], paste("e",i,sep="")] = 1

951 mat[paste("e",i,sep=""),v[2]] = 1

952 }

953 amat(graph) = mat

954 fit = populateBeta(graph ,alpha ,beta)

955 supplyNetwork = as.undirected(supplyNetwork)

956 lineGraph = line.graph(supplyNetwork)

957 lineGraph = set_vertex_attr(lineGraph ,"name",V(lineGraph),E(

supplyNetwork)$name)

958

959 return(list(graph = graph ,supplyNetwork = supplyNetwork , lineGraph

= lineGraph , alpha = alpha ,beta = beta ,fit = fit))

960 }

961

962 #################################################

963 #Demonstrations/Simulations

964 #################################################

965 demonstration = function (){

966 nodes=paste("n" ,1:9,sep="")

967 g1=empty.graph(nodes)

968 g2=empty.graph(nodes)

969 g3=empty.graph(nodes)

970 g4=empty.graph(nodes)

971
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972 m=matrix(rep(0,81),nrow =9)

973 m[1 ,2]=1

974 m[2 ,3]=1

975 m[3 ,4]=1

976 m[4 ,5]=1

977 m[5 ,6]=1

978 m[6 ,7]=1

979 m[7 ,8]=1

980 m[8 ,9]=1

981 amat(g1)=m

982 m=matrix(rep(0,81),nrow =9)

983 m[1 ,5]=1

984 m[2 ,5]=1

985 m[3 ,5]=1

986 m[4 ,5]=1

987 m[5 ,6]=1

988 m[5 ,7]=1

989 m[5 ,8]=1

990 m[5 ,9]=1

991 amat(g2)=m

992 m=matrix(rep(0,81),nrow =9)

993 m[1 ,2]=1

994 m[1 ,3]=1

995 m[2 ,4]=1

996 m[2 ,5]=1

997 m[4 ,8]=1

998 m[3 ,6]=1

999 m[3 ,7]=1

1000 m[7 ,9]=1

1001 amat(g3)=m

1002 m=matrix(rep(0,81),nrow =9)

1003 m[1 ,2]=1

1004 m[1 ,3]=1

1005 m[2 ,4]=1

1006 m[4 ,6]=1

1007 m[6 ,8]=1

1008 m[3 ,5]=1
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1009 m[5 ,7]=1

1010 m[7 ,9]=1

1011 amat(g4)=m

1012

1013 gi1=graph_from_adjacency_matrix(amat(g1),mode="undirected")

1014 gi2=graph_from_adjacency_matrix(amat(g2),mode="undirected")

1015 gi3=graph_from_adjacency_matrix(amat(g3),mode="undirected")

1016 gi4=graph_from_adjacency_matrix(amat(g4),mode="undirected")

1017

1018 results = matrix(rep(0,9),nrow=1,byrow=TRUE)

1019 tNames = c("radius","diameter","abc","acc","aec","aelrcf","sdelrcf"

,"cvelrcf","prob")

1020 fb1 = c(radius(gi1),diameter(gi1),mean(betweenness(gi1)),mean(

closeness(gi1)),mean(eigen_centrality(gi1)$vector))

1021 fb2 = c(radius(gi2),diameter(gi2),mean(betweenness(gi2)),mean(

closeness(gi2)),mean(eigen_centrality(gi2)$vector))

1022 fb3 = c(radius(gi3),diameter(gi3),mean(betweenness(gi3)),mean(

closeness(gi3)),mean(eigen_centrality(gi3)$vector))

1023 fb4 = c(radius(gi4),diameter(gi4),mean(betweenness(gi4)),mean(

closeness(gi4)),mean(eigen_centrality(gi1)$vector))

1024

1025 for(i in seq (0.01 ,.99 ,.01)){

1026 if(100*i%% 10==0)

1027 print(i)

1028 f1=populateSame(g1,i)

1029 f2=populateSame(g2,i)

1030 f3=populateSame(g3,i)

1031 f4=populateSame(g4,i)

1032

1033 tc = list(f1,f2,f3,f4)

1034

1035 r1 = convertRiskMeasures(calculateELRAll(list(graph=g1,fit=f1)))

1036 r2 = convertRiskMeasures(calculateELRAll(list(graph=g2,fit=f2)))

1037 r3 = convertRiskMeasures(calculateELRAll(list(graph=g3,fit=f3)))

1038 r4 = convertRiskMeasures(calculateELRAll(list(graph=g4,fit=f4)))

1039

1040 e1 = unlist(r1$elrcf)
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1041 e2 = unlist(r2$elrcf)

1042 e3 = unlist(r3$elrcf)

1043 e4 = unlist(r4$elrcf)

1044

1045 m1 = mean(e1)

1046 m2 = mean(e2)

1047 m3 = mean(e3)

1048 m4 = mean(e4)

1049

1050 s1 = sd(e1)

1051 s2 = sd(e2)

1052 s3 = sd(e3)

1053 s4 = sd(e4)

1054

1055 cv1 = s1/m1

1056 cv2 = s2/m2

1057 cv3 = s3/m3

1058 cv4 = s4/m4

1059 ne1 = c(fb1 ,m1 ,s1 ,cv1 ,i)

1060 ne2 = c(fb2 ,m2 ,s2 ,cv2 ,i)

1061 ne3 = c(fb3 ,m3 ,s3 ,cv3 ,i)

1062 ne4 = c(fb4 ,m4 ,s4 ,cv4 ,i)

1063

1064 results=rbind(results ,ne1 ,ne2 ,ne3 ,ne4)

1065 results=results [-1,]

1066 }

1067 df=data.frame(results)

1068 names(df)=tNames

1069 return(df)

1070 }

1071 demonstration2 = function (){

1072 g1=empty.graph(nodes)

1073 g2=empty.graph(nodes)

1074 g3=empty.graph(nodes)

1075 g4=empty.graph(nodes)

1076

1077 m=matrix(rep(0,81),nrow =9)
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1078 m[1 ,2]=1

1079 m[2 ,3]=1

1080 m[3 ,4]=1

1081 m[4 ,5]=1

1082 m[5 ,6]=1

1083 m[6 ,7]=1

1084 m[7 ,8]=1

1085 m[8 ,9]=1

1086 amat(g1)=m

1087 m=matrix(rep(0,81),nrow =9)

1088 m[1 ,5]=1

1089 m[2 ,5]=1

1090 m[3 ,5]=1

1091 m[4 ,5]=1

1092 m[5 ,6]=1

1093 m[5 ,7]=1

1094 m[5 ,8]=1

1095 m[5 ,9]=1

1096 amat(g2)=m

1097 m=matrix(rep(0,81),nrow =9)

1098 m[1 ,2]=1

1099 m[1 ,3]=1

1100 m[2 ,4]=1

1101 m[2 ,5]=1

1102 m[4 ,8]=1

1103 m[3 ,6]=1

1104 m[3 ,7]=1

1105 m[7 ,9]=1

1106 amat(g3)=m

1107 m=matrix(rep(0,81),nrow =9)

1108 m[1 ,2]=1

1109 m[1 ,3]=1

1110 m[2 ,4]=1

1111 m[4 ,6]=1

1112 m[6 ,8]=1

1113 m[3 ,5]=1

1114 m[5 ,7]=1
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1115 m[7 ,9]=1

1116 amat(g4)=m

1117

1118 gi1=graph_from_adjacency_matrix(amat(g1),mode="undirected")

1119 gi2=graph_from_adjacency_matrix(amat(g2),mode="undirected")

1120 gi3=graph_from_adjacency_matrix(amat(g3),mode="undirected")

1121 gi4=graph_from_adjacency_matrix(amat(g4),mode="undirected")

1122 detach("package:bnlearn",unload=TRUE)

1123 library(igraph)

1124 results = matrix(rep(0,6),nrow=1,byrow=TRUE)

1125 tNames = c("dc","ec","bc","cc","prob","elrcf")

1126 fb1=cbind(t(t(degree(gi1))),t(t(eigen_centrality(gi1)$vector)),t(t(

betweenness(gi1))),t(t(closeness(gi1))))

1127 fb2=cbind(t(t(degree(gi2))),t(t(eigen_centrality(gi2)$vector)),t(t(

betweenness(gi2))),t(t(closeness(gi2))))

1128 fb3=cbind(t(t(degree(gi3))),t(t(eigen_centrality(gi3)$vector)),t(t(

betweenness(gi3))),t(t(closeness(gi3))))

1129 fb4=cbind(t(t(degree(gi4))),t(t(eigen_centrality(gi4)$vector)),t(t(

betweenness(gi4))),t(t(closeness(gi4))))

1130

1131 library(bnlearn)

1132 for(i in seq (0.01 ,.99 ,.01)){

1133 if(100*i%% 10==0)

1134 print(i)

1135 f1=populateSame(g1,i)

1136 f2=populateSame(g2,i)

1137 f3=populateSame(g3,i)

1138 f4=populateSame(g4,i)

1139

1140 r1 = convertRiskMeasures(calculateELRAll(list(graph=g1,fit=f1)))

1141 r2 = convertRiskMeasures(calculateELRAll(list(graph=g2,fit=f2)))

1142 r3 = convertRiskMeasures(calculateELRAll(list(graph=g3,fit=f3)))

1143 r4 = convertRiskMeasures(calculateELRAll(list(graph=g4,fit=f4)))

1144

1145

1146 e1 = cbind(t(t(rep(i,9))),t(t(unlist(r1$elrcf))))

1147 e2 = cbind(t(t(rep(i,9))),t(t(unlist(r2$elrcf))))
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1148 e3 = cbind(t(t(rep(i,9))),t(t(unlist(r3$elrcf))))

1149 e4 = cbind(t(t(rep(i,9))),t(t(unlist(r4$elrcf))))

1150

1151

1152 ne1 = cbind(fb1 ,e1)

1153 ne2 = cbind(fb2 ,e2)

1154 ne3 = cbind(fb3 ,e3)

1155 ne4 = cbind(fb4 ,e4)

1156

1157 results=rbind(results ,ne1 ,ne2 ,ne3 ,ne4)

1158 }

1159 df=data.frame(results)

1160 df=df[-1,]

1161 names(df)=tNames

1162 return(df)

1163 }

1164

1165 testSimulation = function (){

1166 library(bnlearn)

1167 s1 = generateSupplyNetwork (100 ,70)

1168 s2 = generateSupplyNetwork (100 ,70)

1169

1170

1171 while(components(s1)$no!=1){

1172 s1=generateSupplyNetwork (100 ,70)

1173 }

1174 while(components(s2)$no!=1){

1175 s2=generateSupplyNetwork (50 ,34)

1176 }

1177

1178 sh1=findAllStructuralHoles(s1)

1179 ta1 = sample(names(sh1),sample (5: length(names(sh1))))

1180

1181 sh2=findAllStructuralHoles(s2)

1182 ta2 = sample(names(sh2),sample (5: length(names(sh2))))

1183

1184 sh1=findAllStructuralHoles(s1)
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1185 ta1 = sample(names(sh1),sample (5: length(names(sh1))))

1186 visited = c()

1187 for(i in ta1){

1188 nums = sh1[[i]]$missing

1189 if(is.element(paste(nums ,collapse=""),visited))

1190 next

1191 num=sapply(nums ,function(x){as.numeric(substr(x,2,nchar(x)))})

1192 nEdge = length(E(s1))+1

1193 if(num[1]<num [2]){

1194 s1=add_edges(s1,num ,attr=list(name=paste("e",nEdge ,sep="")))

1195 nEdge = nEdge+1

1196 visited = c(visited ,paste(nums ,collapse=""),paste(rev(nums),

collapse=""))

1197 }

1198 }

1199

1200 r1 = generateRiskGraph(s1 ,10 ,10)

1201 r2 = generateRiskGraph(s2 ,10 ,10)

1202

1203 m1 = calculateELRAll(r1$graph ,r1$fit)

1204 m2 = calculateELRAll(r2$graph ,r2$fit)

1205

1206 m1 = convertRiskMeasures(m1)

1207 m2 = convertRiskMeasures(m2)

1208

1209 r1 = c(r1,m1)

1210 r2 = c(r2,m2)

1211

1212 detach("package:bnlearn",unload=TRUE)

1213

1214 graphData1 = list()

1215

1216

1217 n1 = c(V(r1$supplyNetwork)$name ,E(r1$supplyNetwork)$name)

1218 n2 = c(V(r2$supplyNetwork)$name ,E(r2$supplyNetwork)$name)

1219

1220 met1 = getEgoMetrics(r1 ,2,n1[1])
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1221 met2 = getEgoMetrics(r2 ,2,n2[1])

1222

1223 n1=n1[-1]

1224 n2=n2[-1]

1225

1226 for(i in n1){

1227 met1 = rbind(met1 ,getEgoMetrics(r1 ,2,i))

1228 }

1229 for(i in n2){

1230 met2 = rbind(met2 ,getEgoMetrics(r2 ,2,i))

1231 }

1232

1233 met = rbind(met1 ,met2)

1234 return(met)

1235 }

Listing A.1: R Functions and code for the simulation.
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Appendix B

R Code for Data Analysis

1 library(car)

2 library(lmtest)

3 library(systemfit)

4 library(gmm)

5 library(xtable)

6 library(psych)

7 library(texreg)

8 library(lavaan)

9 library(texreg)

10 library(ggplot2)

11 library(reshape2)

12

13 removeOutliers=function(data ,vars=c()){

14 variables = vars

15 if(length(vars)==0){

16 variables = names(data)

17 }

18 tdata = data

19 for(i in variables){

20 tdata = tdata[tdata[,i]>quantile(tdata[,i] ,.025) ,]

21 tdata = tdata[tdata[,i]<quantile(tdata[,i] ,.975) ,]

22 }

23 return(tdata)

24 }

25 corstars <-function(x, method=c("pearson", "spearman"),

removeTriangle=c("upper", "lower"),

26 result=c("none", "html", "latex")){

27 #Compute correlation matrix

28 require(Hmisc)
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29 x <- as.matrix(x)

30 correlation_matrix <-rcorr(x, type=method [1])

31 R <- correlation_matrix$r # Matrix of correlation coeficients

32 p <- correlation_matrix$P # Matrix of p-value

33

34 ## Define notions for significance levels; spacing is important.

35 mystars <- ifelse(p < .0001, "*", ifelse(p < .001, "*", ifelse(p

< .01, "*", ifelse(p < .05, "*", ""))))

36

37 ## trunctuate the correlation matrix to two decimal

38 R <- format(round(cbind(rep(-1.11, ncol(x)), R), 2))[,-1]

39

40 ## build a new matrix that includes the correlations with their

apropriate stars

41 Rnew <- matrix(paste(R, mystars , sep=""), ncol=ncol(x))

42 diag(Rnew) <- paste(diag(R), " ", sep="")

43 rownames(Rnew) <- paste (1: ncol(x),".",colnames(x),sep="")

44 colnames(Rnew) <- 1:ncol(x)

45

46 ## remove upper triangle of correlation matrix

47 if(removeTriangle [1]=="upper"){

48 Rnew <- as.matrix(Rnew)

49 Rnew[upper.tri(Rnew , diag = TRUE)] <- ""

50 Rnew <- as.data.frame(Rnew)

51 }

52

53 ## remove lower triangle of correlation matrix

54 else if(removeTriangle [1]=="lower"){

55 Rnew <- as.matrix(Rnew)

56 Rnew[lower.tri(Rnew , diag = TRUE)] <- ""

57 Rnew <- as.data.frame(Rnew)

58 }

59

60 ## remove last column and return the correlation matrix

61 Rnew <- cbind(Rnew [1: length(Rnew) -1])

62 if (result [1]=="none") return(Rnew)

63 else{
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64 if(result [1]=="html") print(xtable(Rnew), type="html")

65 else return(xtable(Rnew ,type="latex"))

66 }

67 }

68

69 ###########################################

70 #Data Loading and Cleaning

71 ###########################################

72

73 #First , load the data in:

74 ego2_data = read.csv("final_dissertation_data_ego2.csv")

75 ego_data = read.csv("final_dissertation_data.csv")

76 local_data = read.csv("final_dissertation_data_local.csv")

77

78 #Get rid of the indexing that are in the first two columns of each

file:

79 ego2_data = ego2_data[,-c(1,2)]

80 ego_data = ego_data[,-c(1,2)]

81 local_data = local_data[,-c(1,2)]

82

83 #Get rid of duplicates in each respective data set

84 ego2_data = unique(ego2_data)

85 ego_data = unique(ego_data)

86 local_data = unique(local_data)

87

88 ###########################################

89 #Exploratory Factor Analysis (EFA)

90 ###########################################

91

92 ####1-Ego Network and 2-Ego -Network Data EFA ####

93 #Isolate the Independent Variables , The Raw Factor Data , & Dependent

Variables from Each Data Set

94 iv_ego2 = ego2_data [,1:2]

95 rfd_ego2 = ego2_data [ ,3:30]

96 dv_ego2 = ego2_data [ ,31:39]

97 iv_risk_ego1 = ego_data [,1:9]

98 iv_ego1 = ego_data [ ,10:11]
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99 rfd_ego1 = ego_data [ ,12:39]

100 dv_ego1 = ego_data [ ,40:48]

101

102 #Combine the 2-ego network and ego -network data

103 rfd_combined = rbind(rfd_ego2 ,rfd_ego1)

104

105 #Run a preliminary EFA using Minimum Residual and Principal Axis FA ,

save plot to file:

106 pdf("egofactorscreeplot.pdf")

107 factor.prelim.anal_ego = fa.parallel(rfd_combined ,fm="minfes", fa="fa

")

108 dev.off()

109

110 #Next , run the actural factor analysis using Minimum Residual FA w/

Varimax Rotation

111 factor.analysis_ego = fa(rfd_combined ,nfactors = 5,rotate = "varimax"

,fm="minres")

112

113 #Write the EFA Plot to a file

114 pdf("egoefaplot.pdf")

115 fa.diagram(factor.analysis_ego ,cut =0.2)

116 dev.off()

117

118 #Fix up the loading table to make it look nice:

119 factor.loadings_ego=matrix(factor.analysis_ego$loadings [1:140] , ncol

=5)

120 rownames(factor.loadings_ego) = dimnames(factor.analysis_ego$loadings

)[[1]]

121 colnames(factor.loadings_ego) = dimnames(factor.analysis_ego$loadings

)[[2]]

122 max_vals = apply(abs(factor.loadings_ego),1,max)

123 temp_tab = (abs(factor.loadings_ego) == max_vals)

124 tOrder = c()

125 for(i in 1:5){

126 tOrder = c(tOrder ,which(temp_tab[,i]))

127 }

128 factor.loadings_ego = factor.loadings_ego[tOrder ,]
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129

130 #Now write it to Latex Form. This will manually be cleaned up later

in the diss

131 print(xtable(factor.loadings_ego , type = "latex"), file = "efa_ego.

tex")

132

133 #Construct the factor scores for the 2-ego -network

134 factor.scores_ego = factor.analysis_ego$scores

135 colnames(factor.scores_ego)=c("Centrality","Distance","Clustering","

Feedback","Connectivity")

136 factor.scores_ego2 = factor.scores_ego [1: nrow(rfd_ego2) ,]

137 factor.scores_ego1 = factor.scores_ego[-(1: nrow(rfd_ego2)) ,]

138

139 #Combine to get the final data set for ego2 and clean it by removing

outliers

140 iv_ego2 = cbind(iv_ego2 ,factor.scores_ego2)

141 data_ego2 = cbind(iv_ego2 ,dv_ego2)

142 data_ego2 = removeOutliers(data_ego2 ,c(colnames(factor.scores_ego2),

names(dv_ego2)))

143

144 #Now Conduct a confirmatory factor analysis on the risk variables

from ego 2:

145 contribution=paste("contribution=~",paste(names(iv_risk_ego1)[seq

(1,9,3)],collapse="+"),sep="")

146 significance=paste("significance=~",paste(names(iv_risk_ego1)[seq

(2,9,3)],collapse="+"),sep="")

147 velocity = paste("velocity=~",paste(names(iv_risk_ego1)[seq(3,9,3)],

collapse="+"),sep="")

148 model = paste(contribution ,significance ,velocity ,sep="\n")

149

150 iv_risk_ego1[,"cv_elrv_2ego"] = iv_risk_ego1[,"cv_elrv_2ego"]/10000

151 risk.factors_ego1 = cfa(model ,data=iv_risk_ego1)

152 risk.factors_ego1.scores = predict(risk.factors_ego1)

153

154

155 #Combine the data for ego1

156 iv_ego1 = cbind(iv_ego1 ,risk.factors_ego1.scores ,factor.scores_ego1)
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157 data_ego1 = cbind(iv_ego1 ,dv_ego1)

158 data_ego1 = removeOutliers(data_ego1 ,c(colnames(factor.scores_ego1),

names(dv_ego1)))

159

160 #### Local Data EFA ####

161

162 #Isolate the Independent Variables , The Raw Factor Data , & Dependent

Variables

163 iv_risk_local = local_data [ ,3:11]

164 iv_local = local_data[,c(1:2 ,12)]

165 rfd_local = local_data [ ,13:26]

166 dv_local = local_data [ ,27:29]

167

168 #Run a preliminary EFA using Minimum Residual and Principal Axis FA ,

save plot to file:

169 pdf("localfactorscreeplot.pdf")

170 factor.prelim.anal_local = fa.parallel(rfd_local ,fm="minfes", fa="fa"

)

171 dev.off()

172

173 #Next , run the actural factor analysis using Minimum Residual FA w/

Varimax Rotation

174 factor.analysis_local = fa(rfd_local ,nfactors = 5,rotate = "varimax",

fm="minres")

175

176 #Write the EFA Plot to a file

177 pdf("localefaplot.pdf")

178 fa.diagram(factor.analysis_local ,cut =0.2)

179 dev.off()

180

181 #Fix up the loading table to make it look nice:

182 factor.loadings_local=matrix(factor.analysis_local$loadings [1:70] ,

ncol =5)

183 rownames(factor.loadings_local) = dimnames(factor.analysis_local$

loadings)[[1]]

184 colnames(factor.loadings_local) = dimnames(factor.analysis_local$

loadings)[[2]]
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185 max_vals = apply(abs(factor.loadings_local),1,max)

186 temp_tab = (abs(factor.loadings_local) == max_vals)

187 tOrder = c()

188 for(i in 1:5){

189 tOrder = c(tOrder ,which(temp_tab[,i]))

190 }

191 factor.loadings_local = factor.loadings_local[tOrder ,]

192

193 #Now write it to Latex Form. This will manually be cleaned up later

in the diss

194 print(xtable(factor.loadings_local , type = "latex"), file = "efa_

local.tex")

195

196 #Get the factor scores

197 factor.scores_local = factor.analysis_local$scores

198 colnames(factor.scores_local) = c("Centrality","Distance","Clustering

","Feedback","Connectivity")

199 #Now Conduct a confirmatory factor analysis on the risk variables

from ego 1:

200 contribution=paste("contribution=~",paste(names(iv_risk_local)[seq

(1,9,3)],collapse="+"),sep="")

201 significance=paste("significance=~",paste(names(iv_risk_local)[seq

(2,9,3)],collapse="+"),sep="")

202 velocity = paste("velocity=~",paste(names(iv_risk_local)[seq(3,9,3)],

collapse="+"),sep="")

203 model = paste(contribution ,significance ,velocity ,sep="\n")

204

205 iv_risk_local[,"cv_elrv_ego"] = iv_risk_local[,"cv_elrv_ego"]/10000

206 risk.factors_local = cfa(model ,data=iv_risk_local)

207 risk.factors_local.scores = predict(risk.factors_local)

208

209 #Now combine the variables and clean them up:

210 iv_local = cbind(iv_local ,risk.factors_local.scores ,factor.scores_

local)

211 data_local = cbind(iv_local ,dv_local)

212 data_local = removeOutliers(data_local ,c(colnames(factor.scores_local

),names(dv_local)))
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213

214 ###########################################

215 #Correlation Matrices

216 ###########################################

217 #For the original data -sets

218 ec2 = ego2_data

219 ec1 = ego_data

220 loc = local_data

221 #names(ec2) = 1: length(names(ec2))

222 #names(ec1) = 1: length(names(ec1))

223 #names(loc) = 1: length(names(loc))

224

225 corr_ego2_original = corstars(ec2 ,result="latex")

226 print(corr_ego2_original ,file="ego2_corr_orig.tex")

227

228 corr_ego1_original = corstars(ec1 ,result="latex")

229 print(corr_ego1_original ,file="ego1_corr_orig.tex")

230

231 corr_local_original = corstars(loc ,result="latex")

232 print(corr_local_original ,file="local_corr_orig.tex")

233

234 #For the factored Correlation Matrices

235 corr_ego2_factor = corstars(data_ego2 ,result="latex")

236 print(corr_ego2_factor ,file="ego2_corr_factor.tex")

237

238 corr_ego1_factor = corstars(data_ego1 ,result="latex")

239 print(corr_ego1_factor ,file="ego1_corr_factor.tex")

240

241 corr_local_factor = corstars(data_local ,result="latex")

242 print(corr_local_factor ,file="local_corr_factor.tex")

243

244

245 ###########################################

246 #Plotting

247 ###########################################

248 #Demonstration Plots

249



287

250

251

252 #2-Ego Factor Hists

253 x <- data_ego2[,c(3:7)]

254 data <- melt(x)

255 ego2_hist_fac = ggplot(data ,aes(x=value , fill=variable)) + geom_

density(alpha =0.2)+xlab("Factor Score")+ylab("Density") + ggtitle

("2-Ego -Network Factor Densities")+theme(plot.title = element_

text(hjust = 0.5))+labs(fill="Factors")

256

257 #2-Ego Risk Hists

258 x <- data_ego2[,c(9:16)]

259 data <- melt(x)

260 ego2_hist_risk = ggplot(data ,aes(x=value , fill=variable)) + geom_

density(alpha =0.2)+xlab("Risk Value")+ylab("Density") + ggtitle("

2-Ego -Network Risk Densities")+theme(plot.title = element_text(

hjust = 0.5))+labs(fill="Risks")+xlim(-5,5)

261

262 #1-Ego Factor Hists

263 x <- data_ego1[,c(6:10)]

264 data <- melt(x)

265 ego1_hist_fac = ggplot(data ,aes(x=value , fill=variable)) + geom_

density(alpha =0.2)+xlab("Factor Score")+ylab("Density") + ggtitle

("1-Ego -Network Factor Densities")+theme(plot.title = element_

text(hjust = 0.5))+labs(fill="Factors")

266

267 #1-Ego Risk Hists

268 x <- data_ego1[,c(11:19)]

269 data <- melt(x)

270 ego1_hist_risk = ggplot(data ,aes(x=value , fill=variable)) + geom_

density(alpha =0.2)+xlab("Risk Value")+ylab("Density") + ggtitle("

1-Ego -Network Risk Densities")+theme(plot.title = element_text(

hjust = 0.5))+labs(fill="Risks")+xlim(-5,5)

271

272 #1-Ego IndRisk Hists

273 x <- data_ego1[,c(3:5)]

274 data <- melt(x)
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275 ego1_hist_risk_ind = ggplot(data ,aes(x=value , fill=variable)) + geom_

density(alpha =0.2)+xlab("Independent Risk Value")+ylab("Density")

+ ggtitle("1-Ego -Network Independent Risk Densities")+theme(plot

.title = element_text(hjust = 0.5))+labs(fill="Risks")+xlim(-5,5)

276

277

278 #Local Factor Hists

279 x <- data_local[,c(7:11)]

280 data <- melt(x)

281 local_hist_fac = ggplot(data ,aes(x=value , fill=variable)) + geom_

density(alpha =0.2)+xlab("Factor Score")+ylab("Density") + ggtitle

("Local -Network Factor Densities")+theme(plot.title = element_

text(hjust = 0.5))+labs(fill="Factors")

282

283 #Local Risk Hists

284 x <- data_local[,c(12:14)]

285 data <- melt(x)

286 local_hist_risk = ggplot(data ,aes(x=value , fill=variable)) + geom_

density(alpha =0.2)+xlab("Risk Value")+ylab("Density") + ggtitle("

Local -Network Risk Densities")+theme(plot.title = element_text(

hjust = 0.5))+labs(fill="Risks")+xlim(-5,5)

287

288 #Local IndRisk Hists

289 x <- data_local[,c(4:6)]

290 data <- melt(x)

291 local_hist_risk_ind = ggplot(data ,aes(x=value , fill=variable)) + geom

_density(alpha =0.2)+xlab("Independent Risk Value")+ylab("Density"

) + ggtitle("Local -Network Independent Risk Densities")+theme(

plot.title = element_text(hjust = 0.5))+labs(fill="Risks")+xlim

(-5,5)

292

293

294 pdf("hist1.pdf")

295 grid.arrange(ego2_hist_risk ,ego2_hist_fac ,nrow =2)

296 dev.off()

297

298 pdf("hist2.pdf")
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299 grid.arrange(ego1_hist_risk_ind ,ego1_hist_fac ,nrow =2)

300 dev.off()

301

302 pdf("hist3.pdf")

303 grid.arrange(ego1_hist_risk ,local_hist_risk ,nrow =2)

304 dev.off()

305

306 pdf("hist4.pdf")

307 grid.arrange(local_hist_risk_ind ,local_hist_fac ,nrow =2)

308 dev.off()

309

310 #Final Data Set Hists by Variable

311 #Centrality

312 df = data.frame(Q = c(data_ego2$Centrality ,data_ego1$Centrality ,data_

local$Centrality),

313 type = c(rep("Ego2", nrow(data_ego2)), rep("Ego1",

nrow(data_ego1)),rep("Local", nrow(data_local))))

314 density_cen = ggplot(df ,aes(x=Q, fill=type)) + geom_density(alpha

=0.7)+xlab("Factor Score")+ylab("Density") + ggtitle("Centrality

Densities")+theme(plot.title = element_text(hjust = 0.5))+labs(

fill="Level") + xlim(-2,2)

315

316 #Connectivity

317 df = data.frame(Q = c(data_ego2$Connectivity ,data_ego1$Connectivity ,

data_local$Connectivity),

318 type = c(rep("Ego2", nrow(data_ego2)), rep("Ego1",

nrow(data_ego1)),rep("Local", nrow(data_local))))

319 density_con = ggplot(df ,aes(x=Q, fill=type)) + geom_density(alpha

=0.7)+xlab("Factor Score")+ylab("Density") + ggtitle("

Connectivity Densities")+theme(plot.title = element_text(hjust =

0.5))+labs(fill="Level") + xlim(-2,2)

320

321 #Clustering

322 df = data.frame(Q = c(data_ego2$Clustering ,data_ego1$Clustering ,data_

local$Clustering),

323 type = c(rep("Ego2", nrow(data_ego2)), rep("Ego1",

nrow(data_ego1)),rep("Local", nrow(data_local))))
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324 density_clu = ggplot(df ,aes(x=Q, fill=type)) + geom_density(alpha

=0.7)+xlab("Factor Score")+ylab("Density") + ggtitle("Clustering

Densities")+theme(plot.title = element_text(hjust = 0.5))+labs(

fill="Level") + xlim(-2,2)

325

326 #Feedback

327 df = data.frame(Q = c(data_ego2$Feedback ,data_ego1$Feedback ,data_

local$Feedback),

328 type = c(rep("Ego2", nrow(data_ego2)), rep("Ego1",

nrow(data_ego1)),rep("Local", nrow(data_local))))

329 density_fee = ggplot(df ,aes(x=Q, fill=type)) + geom_density(alpha

=0.7)+xlab("Factor Score")+ylab("Density") + ggtitle("Feedback

Densities")+theme(plot.title = element_text(hjust = 0.5))+labs(

fill="Level") + xlim(-2,2)

330

331 #Distance

332 df = data.frame(Q = c(data_ego2$Distance ,data_ego1$Distance ,data_

local$Distance),

333 type = c(rep("Ego2", nrow(data_ego2)), rep("Ego1",

nrow(data_ego1)),rep("Local", nrow(data_local))))

334 density_dis = ggplot(df ,aes(x=Q, fill=type)) + geom_density(alpha

=0.7)+xlab("Factor Score")+ylab("Density") + ggtitle("Distance

Densities")+theme(plot.title = element_text(hjust = 0.5))+labs(

fill="Level") + xlim(-2,2)

335

336 pdf("level_densities.pdf")

337 grid.arrange(density_cen ,density_con ,density_clu ,density_fee ,density_

dis ,nrow =3)

338 dev.off()

339 #Scatter Plots

340 #2-Ego SPs

341 #Centrality

342 ind = cut(data_ego2$Centrality ,breaks =10)

343 dat = data.frame(cbind(ind ,risk = as.numeric(data_ego2$cv_elrv)))

344 dat$cen=ind
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345 ego2_cen_sp = ggplot(dat , aes(x=cen , y=risk)) + geom_boxplot(outlier

.size = -1)+ylim (-10,10)+ggtitle("2-Ego Risk v. Centrality")+ylab

("Risk")+xlab("Centrality")+theme(plot.title = element_text(hjust

= 0.5),axis.text.x=element_blank())

346 #Clustering

347 ind = cut(data_ego2$Clustering ,breaks =10)

348 dat = data.frame(cbind(ind ,risk = as.numeric(data_ego2$cv_elrv)))

349 dat$cen=ind

350 ego2_cl_sp = ggplot(dat , aes(x=cen , y=risk)) + geom_boxplot(outlier.

size = -1)+ylim (-10,10)+ggtitle("2-Ego Risk v. Clustering")+ylab(

"Risk")+xlab("Clustering")+theme(plot.title = element_text(hjust

= 0.5),axis.text.x=element_blank())

351 #Connectivity

352 ind = cut(data_ego2$Connectivity ,breaks =10)

353 dat = data.frame(cbind(ind ,risk = as.numeric(data_ego2$cv_elrv)))

354 dat$cen=ind

355 ego2_con_sp = ggplot(dat , aes(x=cen , y=risk)) + geom_boxplot(outlier

.size = -1)+ylim (-10,10)+ggtitle("2-Ego Risk v. Connectivity")+

ylab("Risk")+xlab("Connectivity")+theme(plot.title = element_text

(hjust = 0.5),axis.text.x=element_blank())

356 #Distance

357 ind = cut(data_ego2$Distance ,breaks =10)

358 dat = data.frame(cbind(ind ,risk = as.numeric(data_ego2$cv_elrv)))

359 dat$cen=ind

360 ego2_dis_sp = ggplot(dat , aes(x=cen , y=risk)) + geom_boxplot(outlier

.size = -1)+ylim (-10,10)+ggtitle("2-Ego Risk v. Distance")+ylab("

Risk")+xlab("Distance")+theme(plot.title = element_text(hjust =

0.5),axis.text.x=element_blank ())

361 #Feedback

362 ind = cut(data_ego2$Feedback ,breaks =10)

363 dat = data.frame(cbind(ind ,risk = as.numeric(data_ego2$cv_elrv)))

364 dat$cen=ind

365 ego2_fb_sp = ggplot(dat , aes(x=cen , y=risk)) + geom_boxplot(outlier.

size = -1)+ylim (-10,10)+ggtitle("2-Ego Risk v. Feedback")+ylab("

Risk")+xlab("Feedback")+theme(plot.title = element_text(hjust =

0.5),axis.text.x=element_blank ())

366
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367 pdf("ego2sp.pdf")

368 grid.arrange(ego2_cen_sp,ego2_cl_sp,ego2_con_sp,ego2_dis_sp,ego2_fb_

sp,nrow = 3)

369 dev.off()

370

371 #1-Ego SPs

372 #Centrality

373 ind = cut(data_ego1$Centrality ,breaks =10)

374 dat = data.frame(cbind(ind ,risk = as.numeric(data_ego1$cv_elrv)))

375 dat$cen=ind

376 ego1_cen_sp = ggplot(dat , aes(x=cen , y=risk)) +ylim (-10,10)+ geom_

boxplot(outlier.size = -1)+ggtitle("1-Ego Risk v. Centrality")+

ylab("Risk")+xlab("Centrality")+theme(plot.title = element_text(

hjust = 0.5),axis.text.x=element_blank())

377 #Clustering

378 ind = cut(data_ego1$Clustering ,breaks =10)

379 dat = data.frame(cbind(ind ,risk = as.numeric(data_ego1$cv_elrv)))

380 dat$cen=ind

381 ego1_cl_sp = ggplot(dat , aes(x=cen , y=risk)) + ylim (-10,10)+geom_

boxplot(outlier.size = -1)+ggtitle("1-Ego Risk v. Clustering")+

ylab("Risk")+xlab("Clustering")+theme(plot.title = element_text(

hjust = 0.5),axis.text.x=element_blank())

382 #Connectivity

383 ind = cut(data_ego1$Connectivity ,breaks =10)

384 dat = data.frame(cbind(ind ,risk = as.numeric(data_ego1$cv_elrv)))

385 dat$cen=ind

386 ego1_con_sp = ggplot(dat , aes(x=cen , y=risk)) + ylim (-10,10)+geom_

boxplot(outlier.size = -1)+ggtitle("1-Ego Risk v. Connectivity")+

ylab("Risk")+xlab("Connectivity")+theme(plot.title = element_text

(hjust = 0.5),axis.text.x=element_blank())

387 #Distance

388 ind = cut(data_ego1$Distance ,breaks =10)

389 dat = data.frame(cbind(ind ,risk = as.numeric(data_ego1$cv_elrv)))

390 dat$cen=ind
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391 ego1_dis_sp = ggplot(dat , aes(x=cen , y=risk)) + ylim (-10,10)+geom_

boxplot(outlier.size = -1)+ggtitle("1-Ego Risk v. Distance")+ylab

("Risk")+xlab("Distance")+theme(plot.title = element_text(hjust =

0.5),axis.text.x=element_blank ())

392 #Feedback

393 ind = cut(data_ego1$Feedback ,breaks =10)

394 dat = data.frame(cbind(ind ,risk = as.numeric(data_ego1$cv_elrv)))

395 dat$cen=ind

396 ego1_fb_sp = ggplot(dat , aes(x=cen , y=risk)) + ylim (-10,10)+geom_

boxplot(outlier.size = -1)+ggtitle("1-Ego Risk v. Feedback")+ylab

("Risk")+xlab("Feedback")+theme(plot.title = element_text(hjust =

0.5),axis.text.x=element_blank ())

397

398 pdf("ego1sp.pdf")

399 grid.arrange(ego1_cen_sp,ego1_cl_sp,ego1_con_sp,ego1_dis_sp,ego1_fb_

sp,nrow = 3)

400 dev.off()

401

402 #1-Ego Network Risks

403

404 #Contribution

405 ind = cut(data_ego1$contribution ,breaks =10)

406 dat = data.frame(cbind(ind ,risk = as.numeric(data_ego1$cv_elrv)))

407 dat$cen=ind

408 ego1_cont_sp = ggplot(dat , aes(x=cen , y=risk)) + ylim (-10,10)+geom_

boxplot(outlier.size = -1)+ggtitle("1-Ego Risk v. 2-Ego -Contri")+

ylab("Risk")+xlab("Contribution")+theme(plot.title = element_text

(hjust = 0.5),axis.text.x=element_blank())

409

410 #Significance

411 ind = cut(data_ego1$significance ,breaks =10)

412 dat = data.frame(cbind(ind ,risk = as.numeric(data_ego1$cv_elrv)))

413 dat$cen=ind

414 ego1_sig_sp = ggplot(dat , aes(x=cen , y=risk)) + ylim (-10,10)+geom_

boxplot(outlier.size = -1)+ggtitle("1-Ego Risk v. 2-Ego -Sign")+

ylab("Risk")+xlab("Significance")+theme(plot.title = element_text

(hjust = 0.5),axis.text.x=element_blank())
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415

416 #Velocity

417 ind = cut(data_ego1$velocity ,breaks =10)

418 dat = data.frame(cbind(ind ,risk = as.numeric(data_ego1$cv_elrv)))

419 dat$cen=ind

420 ego1_vel_sp = ggplot(dat , aes(x=cen , y=risk)) + ylim (-10,10)+geom_

boxplot(outlier.size = -1)+ggtitle("1-Ego Risk v. 2-Ego -Vel")+

ylab("Risk")+xlab("Velocity")+theme(plot.title = element_text(

hjust = 0.5),axis.text.x=element_blank())

421

422 pdf("ego1spr.pdf")

423 grid.arrange(ego1_cont_sp,ego1_sig_sp,ego1_vel_sp,nrow = 2)

424 dev.off()

425

426 #Local SPs

427 #Centrality

428 ind = cut(data_local$Centrality ,breaks =10)

429 dat = data.frame(cbind(ind ,risk = as.numeric(data_local$elrv)))

430 dat$cen=ind

431 loc_cen_sp = ggplot(dat , aes(x=cen , y=risk)) +ylim (-10,10)+ geom_

boxplot(outlier.size = -1)+ggtitle("Local Risk v. Centrality")+

ylab("Risk")+xlab("Centrality")+theme(plot.title = element_text(

hjust = 0.5),axis.text.x=element_blank())

432 #Clustering

433 ind = cut(data_local$Clustering ,breaks =10)

434 dat = data.frame(cbind(ind ,risk = as.numeric(data_local$elrv)))

435 dat$cen=ind

436 loc_cl_sp = ggplot(dat , aes(x=cen , y=risk)) + ylim(-3,3)+geom_

boxplot(outlier.size = -1)+ggtitle("Local Risk v. Clustering")+

ylab("Risk")+xlab("Clustering")+theme(plot.title = element_text(

hjust = 0.5),axis.text.x=element_blank())

437 #Connectivity

438 ind = cut(data_local$Connectivity ,breaks =10)

439 dat = data.frame(cbind(ind ,risk = as.numeric(data_local$elrv)))

440 dat$cen=ind
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441 loc_con_sp = ggplot(dat , aes(x=cen , y=risk)) + ylim(-3,3)+geom_

boxplot(outlier.size = -1)+ggtitle("Local Risk v. Connectivity")+

ylab("Risk")+xlab("Connectivity")+theme(plot.title = element_text

(hjust = 0.5),axis.text.x=element_blank())

442 #Distance

443 ind = cut(data_local$Distance ,breaks =10)

444 dat = data.frame(cbind(ind ,risk = as.numeric(data_local$elrv)))

445 dat$cen=ind

446 loc_dis_sp = ggplot(dat , aes(x=cen , y=risk)) + ylim(-3,3)+geom_

boxplot(outlier.size = -1)+ggtitle("Local Risk v. Distance")+ylab

("Risk")+xlab("Distance")+theme(plot.title = element_text(hjust =

0.5),axis.text.x=element_blank ())

447 #Feedback

448 ind = cut(data_local$Feedback ,breaks =10)

449 dat = data.frame(cbind(ind ,risk = as.numeric(data_local$elrv)))

450 dat$cen=ind

451 loc_fb_sp = ggplot(dat , aes(x=cen , y=risk)) + ylim(-3,3)+geom_

boxplot(outlier.size = -1)+ggtitle("Local Risk v. Feedback")+ylab

("Risk")+xlab("Feedback")+theme(plot.title = element_text(hjust =

0.5),axis.text.x=element_blank ())

452

453 pdf("locsp.pdf")

454 grid.arrange(loc_cen_sp,loc_cl_sp,loc_con_sp,loc_dis_sp,loc_fb_sp,

nrow = 3)

455 dev.off()

456

457 #Local Network Risks

458

459 #Contribution

460 ind = cut(data_local$contribution ,breaks =10)

461 dat = data.frame(cbind(ind ,risk = as.numeric(data_local$elrv)))

462 dat$cen=ind

463 loc_cont_sp = ggplot(dat , aes(x=cen , y=risk)) + ylim(-1,2)+geom_

boxplot(outlier.size = -1)+ggtitle("Local Risk v. 1-Ego -Contri")+

ylab("Risk")+xlab("Contribution")+theme(plot.title = element_text

(hjust = 0.5),axis.text.x=element_blank())

464
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465 #Significance

466 ind = cut(data_local$significance ,breaks =10)

467 dat = data.frame(cbind(ind ,risk = as.numeric(data_local$elrv)))

468 dat$cen=ind

469 loc_sig_sp = ggplot(dat , aes(x=cen , y=risk)) + ylim(-1,2)+geom_

boxplot(outlier.size = -1)+ggtitle("Local Risk v. 1-Ego -Sign")+

ylab("Risk")+xlab("Significance")+theme(plot.title = element_text

(hjust = 0.5),axis.text.x=element_blank())

470

471 #Velocity

472 ind = cut(data_local$velocity ,breaks =10)

473 dat = data.frame(cbind(ind ,risk = as.numeric(data_local$elrv)))

474 dat$cen=ind

475 loc_vel_sp = ggplot(dat , aes(x=cen , y=risk)) + ylim(-1,2)+geom_

boxplot(outlier.size = -1)+ggtitle("Local Risk v. 1-Ego -Vel")+

ylab("Risk")+xlab("Velocity")+theme(plot.title = element_text(

hjust = 0.5),axis.text.x=element_blank())

476

477 pdf("locspr.pdf")

478 grid.arrange(loc_cont_sp,loc_sig_sp,loc_vel_sp,nrow = 2)

479 dev.off()

480

481 #Final Functions

482 #2-Ego -Network Risks

483 #pdf(" ego2functions.pdf")

484 p1=ggplot(data.frame(x = c(0, 1)), aes(x = x)) +

485 stat_function(fun=function(x).39*x^2 -.01*x+2.01, aes(colour="

Connectivity"),size =1.5)+

486 stat_function(fun=function(x) -.1*x^2 -.07*x+2.01, aes(colour="

Feedback"),size =1.5)+

487 stat_function(fun=function(x) -.08*x^2+.35*x+2.01, aes(colour="

Clustering"),size =1.5)+

488 stat_function(fun=function(x).08*x^2 -.71*x+2.01, aes(colour="

Distance"),size =1.5)+

489 stat_function(fun=function(x) -.24*x^2+1.09*x+2.01, aes(colour="

Centrality"),size =1.5)+

490 scale_x_continuous(name = "Factor Value",
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491 breaks = seq(-2,2,.5),

492 limits=c(-2, 2)) +

493 scale_y_continuous(name = "2-Ego -Network Risk") +

494 ggtitle("2-Ego -Network Risk") +

495 scale_colour_manual("Variables", values = c("#4271AE", "#1 F3552","

darkslateblue","firebrick","green4")) +

496 theme_economist ()+

497 theme(legend.position = "bottom", legend.direction = "horizontal",

498 legend.box = "horizontal",

499 legend.key.size = unit(1, "cm"),

500 plot.title = element_text(family="Helvetica"),

501 text = element_text(family = "Helvetica"),

502 axis.title = element_text(size = 12),

503 legend.text = element_text(size = 9),

504 legend.title=element_text(face = "bold", size = 9))

505

506 #dev.off()

507

508 #1-Ego -Network Risks

509 #pdf(" ego1functions.pdf")

510 p2=ggplot(data.frame(x = c(0, 1)), aes(x = x)) +

511 stat_function(fun=function(x) -.04*x+1.68, aes(colour="Connectivity

"),size =1.5)+

512 stat_function(fun=function(x) -.2*x^2 -.05*x+1.68, aes(colour="

Feedback"),size =1.5)+

513 stat_function(fun=function(x) -.18*x^2+.63*x+1.68, aes(colour="

Clustering"),size =1.5)+

514 stat_function(fun=function(x) .11*x^2+.63*x+1.68, aes(colour="

Distance"),size =1.5)+

515 stat_function(fun=function(x) .89*x^2+1.13*x+1.68, aes(colour="

Centrality"),size =1.5)+

516 scale_x_continuous(name = "Factor Value",

517 breaks = seq(-2,2,.5),

518 limits=c(-2, 2)) +

519 scale_y_continuous(name = "1-Ego -Network Risk") +

520 ggtitle("1-Ego -Network Risk") +
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521 scale_colour_manual("Variables", values = c("#4271AE", "#1 F3552","

darkslateblue","firebrick","green4")) +

522 theme_economist ()+

523 theme(legend.position = "bottom", legend.direction = "horizontal",

524 legend.box = "horizontal",

525 legend.key.size = unit(1, "cm"),

526 plot.title = element_text(family="Helvetica"),

527 text = element_text(family = "Helvetica"),

528 axis.title = element_text(size = 12),

529 legend.text = element_text(size = 9),

530 legend.title=element_text(face = "bold", size = 9))

531

532 #dev.off()

533 #1-Ego -Network Risks , Ind -Risks

534 #pdf(" ego1rfunctions.pdf")

535 p3=ggplot(data.frame(x = c(0, 1)), aes(x = x)) +

536 stat_function(fun=function(x) .1*x+1.68, aes(colour="2-Ego Velocity

"),size =1.5)+

537 stat_function(fun=function(x) -.15*x+1.68, aes(colour="2-Ego

Significance"),size =1.5)+

538 stat_function(fun=function(x) .01*x+1.68, aes(colour="2-Ego

Contribution"),size =1.5)+

539 scale_x_continuous(name = "Factor Value",

540 breaks = seq(-10,10,2),

541 limits=c(-10, 10)) +

542 scale_y_continuous(name = "1-Ego -Network Risk") +

543 ggtitle("1-Ego -Network Risk vs 2-Ego -Network -Risk") +

544 scale_colour_manual("Variables", values = c("#4271AE", "#1 F3552","

darkslateblue","firebrick","green4")) +

545 theme_economist ()+

546 theme(legend.position = "bottom", legend.direction = "horizontal",

547 legend.box = "horizontal",

548 legend.key.size = unit(1, "cm"),

549 plot.title = element_text(family="Helvetica"),

550 text = element_text(family = "Helvetica"),

551 axis.title = element_text(size = 12),

552 legend.text = element_text(size = 9),
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553 legend.title=element_text(face = "bold", size = 9))

554

555 #dev.off()

556 #Local - Risks

557 #pdf(" localfunctions.pdf")

558 p4=ggplot(data.frame(x = c(0, 1)), aes(x = x)) +

559 stat_function(fun=function(x) .16*x^2 -.42*x-.43, aes(colour="

Connectivity"),size =1.5)+

560 stat_function(fun=function(x) -.03*x^2 -.09*x-.43, aes(colour="

Feedback"),size =1.5)+

561 stat_function(fun=function(x) .14*x-.43, aes(colour="Clustering"),

size =1.5)+

562 stat_function(fun=function(x) .01*x^2 -.18*x-.43, aes(colour="

Distance"),size =1.5)+

563 stat_function(fun=function(x) .02*x^2+.29*x-.43, aes(colour="

Centrality"),size =1.5)+

564 scale_x_continuous(name = "Factor Value",

565 breaks = seq(-2,2,.5),

566 limits=c(-2, 2)) +

567 scale_y_continuous(name = "Local Risk") +

568 ggtitle("Local Risk") +

569 scale_colour_manual("Variables", values = c("#4271AE", "#1 F3552","

darkslateblue","firebrick","green4")) +

570 theme_economist ()+

571 theme(legend.position = "bottom", legend.direction = "horizontal",

572 legend.box = "horizontal",

573 legend.key.size = unit(1, "cm"),

574 plot.title = element_text(family="Helvetica"),

575 text = element_text(family = "Helvetica"),

576 axis.title = element_text(size = 12),

577 legend.text = element_text(size = 9),

578 legend.title=element_text(face = "bold", size = 9))

579

580 #dev.off()

581

582 #Local - Risks

583 #pdf(" localrfunctions.pdf")
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584 p5=ggplot(data.frame(x = c(0, 1)), aes(x = x)) +

585 stat_function(fun=function(x) .01*x-.43, aes(colour="1-Ego Velocity

"),size =1.5)+

586 stat_function(fun=function(x) -.02*x-.43, aes(colour="1-Ego

Significance"),size =1.5)+

587 stat_function(fun=function(x) -.43, aes(colour="1-Ego Contribution"

),size =1.5)+

588 scale_x_continuous(name = "Factor Value",

589 breaks = seq(-10,10,2),

590 limits=c(-10, 10)) +

591 scale_y_continuous(name = "Local Risk") +

592 ggtitle("Local Risk vs 1-Ego -Risk") +

593 scale_colour_manual("Variables", values = c("#4271AE", "#1 F3552","

darkslateblue","firebrick","green4")) +

594 theme_economist ()+

595 theme(legend.position = "bottom", legend.direction = "horizontal",

596 legend.box = "horizontal",

597 legend.key.size = unit(1, "cm"),

598 plot.title = element_text(family="Helvetica"),

599 text = element_text(family = "Helvetica"),

600 axis.title = element_text(size = 12),

601 legend.text = element_text(size = 9),

602 legend.title=element_text(face = "bold", size = 9))

603

604 #dev.off()

605 pdf("grid.pdf")

606 grid.arrange(p1 ,p2 ,p3,p4,nrow = 2)

607 dev.off()

608

609 #Demonstration 1 Plots

610 df = demonstration ()

611

612 #diameter

613 ind = cut(df$diameter ,breaks =10)

614 dat = data.frame(cbind(ind ,risk = as.numeric(df$aelrcf)))

615 dat$cen=ind
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616 dem1_diam = ggplot(dat , aes(x=cen , y=risk)) + geom_boxplot(outlier.

size = -1)+ylim (0,5)+ggtitle("Risk v. Diameter")+ylab("Avg. ELRCF

")+xlab("Diameter")+theme(plot.title = element_text(hjust = 0.5),

axis.text.x=element_blank ())

617

618 #radius

619 ind = cut(df$radius ,breaks =10)

620 dat = data.frame(cbind(ind ,risk = as.numeric(df$aelrcf)))

621 dat$cen=ind

622 dem1_rad = ggplot(dat , aes(x=cen , y=risk)) + geom_boxplot(outlier.

size = -1)+ylim (0,5)+ggtitle("Risk v. Radius")+ylab("Avg. ELRCF")

+xlab("Radius")+theme(plot.title = element_text(hjust = 0.5),axis

.text.x=element_blank())

623

624 #acc

625 ind = cut(df$acc ,breaks =10)

626 dat = data.frame(cbind(ind ,risk = as.numeric(df$aelrcf)))

627 dat$cen=ind

628 dem1_acc = ggplot(dat , aes(x=cen , y=risk)) + geom_boxplot(outlier.

size = -1)+ylim (0,5)+ggtitle("Risk v. Closeness Cen")+ylab("Avg.

ELRCF")+xlab("Avg Closeness Centrality")+theme(plot.title =

element_text(hjust = 0.5),axis.text.x=element_blank())

629

630 #abc

631 ind = cut(df$abc ,breaks =10)

632 dat = data.frame(cbind(ind ,risk = as.numeric(df$aelrcf)))

633 dat$cen=ind

634 dem1_abc = ggplot(dat , aes(x=cen , y=risk)) + geom_boxplot(outlier.

size = -1)+ylim (0,5)+ggtitle("Risk v. Betweenness Cen")+ylab("Avg

. ELRCF")+xlab("Avg Betweenness Centrality")+theme(plot.title =

element_text(hjust = 0.5),axis.text.x=element_blank())

635

636 #aevc

637 ind = cut(df$aec ,breaks =10)

638 dat = data.frame(cbind(ind ,risk = as.numeric(df$aelrcf)))

639 dat$cen=ind
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640 dem1_aec = ggplot(dat , aes(x=cen , y=risk)) + geom_boxplot(outlier.

size = -1)+ylim (0,5)+ggtitle("Risk v. Eigen Cen")+ylab("Avg.

ELRCF")+xlab("Avg Eigenevector Centrality")+theme(plot.title =

element_text(hjust = 0.5),axis.text.x=element_blank())

641

642 pdf("avgrisk.pdf")

643 grid.arrange(dem1_abc ,dem1_acc ,dem1_aec ,dem1_diam ,dem1_rad ,nrow = 2)

644 dev.off()

645

646 #diameter

647 ind = cut(df$diameter ,breaks =10)

648 dat = data.frame(cbind(ind ,risk = as.numeric(df$cvelrcf)))

649 dat$cen=ind

650 dem1_diam = ggplot(dat , aes(x=cen , y=risk)) + geom_boxplot(outlier.

size = -1)+ylim (.5 ,1)+ggtitle("Risk v. Diameter")+ylab("Avg.

ELRCF")+xlab("Diameter")+theme(plot.title = element_text(hjust =

0.5),axis.text.x=element_blank ())

651

652 #radius

653 ind = cut(df$radius ,breaks =10)

654 dat = data.frame(cbind(ind ,risk = as.numeric(df$cvelrcf)))

655 dat$cen=ind

656 dem1_rad = ggplot(dat , aes(x=cen , y=risk)) + geom_boxplot(outlier.

size = -1)+ylim (.5 ,1)+ggtitle("Risk v. Radius")+ylab("Avg. ELRCF"

)+xlab("Radius")+theme(plot.title = element_text(hjust = 0.5),

axis.text.x=element_blank ())

657

658 #acc

659 ind = cut(df$acc ,breaks =10)

660 dat = data.frame(cbind(ind ,risk = as.numeric(df$cvelrcf)))

661 dat$cen=ind

662 dem1_acc = ggplot(dat , aes(x=cen , y=risk)) + geom_boxplot(outlier.

size = -1)+ylim (.5 ,1)+ggtitle("Risk v. Closeness Cen")+ylab("Avg.

ELRCF")+xlab("Avg Closeness Centrality")+theme(plot.title =

element_text(hjust = 0.5),axis.text.x=element_blank())

663

664 #abc
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665 ind = cut(df$abc ,breaks =10)

666 dat = data.frame(cbind(ind ,risk = as.numeric(df$cvelrcf)))

667 dat$cen=ind

668 dem1_abc = ggplot(dat , aes(x=cen , y=risk)) + geom_boxplot(outlier.

size = -1)+ylim (.5 ,1)+ggtitle("Risk v. Betweenness Cen")+ylab("

Avg. ELRCF")+xlab("Avg Betweenness Centrality")+theme(plot.title

= element_text(hjust = 0.5),axis.text.x=element_blank())

669

670 #aevc

671 ind = cut(df$aec ,breaks =10)

672 dat = data.frame(cbind(ind ,risk = as.numeric(df$cvelrcf)))

673 dat$cen=ind

674 dem1_aec = ggplot(dat , aes(x=cen , y=risk)) + geom_boxplot(outlier.

size = -1)+ylim (.5 ,1)+ggtitle("Risk v. Eigen Cen")+ylab("Avg.

ELRCF")+xlab("Avg Eigenevector Centrality")+theme(plot.title =

element_text(hjust = 0.5),axis.text.x=element_blank())

675

676 pdf("cvrisk.pdf")

677 grid.arrange(dem1_abc ,dem1_acc ,dem1_aec ,dem1_diam ,dem1_rad ,nrow = 2)

678 dev.off()

679

680 df = demonstration2 ()

681 #diameter

682 ind = cut(df$dc ,breaks =20)

683 dat = data.frame(cbind(ind ,risk = as.numeric(df$elrcf)))

684 dat$cen=ind

685 dem1_diam = ggplot(dat , aes(x=cen , y=risk)) + geom_boxplot(outlier.

size = -1)+ggtitle("Risk v. Degree Cen")+ylab("Avg. ELRCF")+xlab(

"Degree Cen")+theme(plot.title = element_text(hjust = 0.5),axis.

text.x=element_blank ())

686

687 #radius

688 ind = cut(df$ec ,breaks =20)

689 dat = data.frame(cbind(ind ,risk = as.numeric(df$elrcf)))

690 dat$cen=ind
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691 dem1_rad = ggplot(dat , aes(x=cen , y=risk)) + geom_boxplot(outlier.

size = -1)+ggtitle("Risk v. Eigen Cen")+ylab("Avg. ELRCF")+xlab("

Eigen Cen")+theme(plot.title = element_text(hjust = 0.5),axis.

text.x=element_blank ())

692

693 #acc

694 ind = cut(df$bc ,breaks =20)

695 dat = data.frame(cbind(ind ,risk = as.numeric(df$elrcf)))

696 dat$cen=ind

697 dem1_acc = ggplot(dat , aes(x=cen , y=risk)) + geom_boxplot(outlier.

size = -1)+ggtitle("Risk v. Betweenness Cen")+ylab("Avg. ELRCF")+

xlab("Betweenness Cen")+theme(plot.title = element_text(hjust =

0.5),axis.text.x=element_blank ())

698

699 #abc

700 ind = cut(df$cc ,breaks =20)

701 dat = data.frame(cbind(ind ,risk = as.numeric(df$elrcf)))

702 dat$cen=ind

703 dem1_abc = ggplot(dat , aes(x=cen , y=risk)) + geom_boxplot(outlier.

size = -1)+ggtitle("Risk v. Closeness Cen")+ylab("Avg. ELRCF")+

xlab("Closeness Centrality")+theme(plot.title = element_text(

hjust = 0.5),axis.text.x=element_blank())

704

705 pdf("cvrisklocal.pdf")

706 grid.arrange(dem1_abc ,dem1_acc ,dem1_diam ,dem1_rad ,nrow = 2)

707 dev.off()

708 ###########################################

709 #Summary Statistics

710 ###########################################

711

712 #Summary Statistics for original data set

713 stargazer(ego2_data)

714 stargazer(ego_data)

715 stargazer(local_data)

716

717 stargazer(data_ego2)

718 stargazer(data_ego1)
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719 stargazer(data_local)

720

721 stargazer(networkChar [,-1])

722 ###########################################################

723 ################# The Data Analysis #########################

724 ###########################################################

725

726 ###########################################

727 #Some data prep

728 ###########################################

729 #Get the squares of the data

730 local_sq_names = names(data_local)[7:11]

731 ego1_sq_names = names(data_ego1)[6:10]

732 ego2_sq_names = names(data_ego2)[3:7]

733

734 local_sq_names2=paste(local_sq_names ,"2",sep="")

735 ego1_sq_names2=paste(ego1_sq_names ,"2",sep="")

736 ego2_sq_names2=paste(ego2_sq_names ,"2",sep="")

737

738 local_sq = data_local[,local_sq_names ]^2

739 ego1_sq = data_ego1[,ego1_sq_names ]^2

740 ego2_sq = data_ego2[,ego2_sq_names ]^2

741

742 colnames(local_sq) = local_sq_names2

743 colnames(ego1_sq) = ego1_sq_names2

744 colnames(ego2_sq) = ego2_sq_names2

745

746 #Primary datasets

747 #Node -Only Data

748 data_node = data_local[data_local [,3]==1,-3]

749 #Edge -Only Data

750 data_edge = data_local[data_local [,3]==0,-3]

751

752 #Pooled Node/Edge Data

753 data_local = cbind(data_local ,local_sq)

754 #1-Ego -Network Data

755 data_ego1 = cbind(data_ego1 ,ego1_sq)



306

756 #2-Ego -Network Data

757 data_ego2 = cbind(data_ego2 ,ego2_sq)

758

759 #All -Pooled Data

760 trows = nrow(data_ego1)+nrow(data_ego2)+nrow(data_local)

761 tcols = ncol(data_ego1)+ncol(data_ego2)+ncol(data_local)

762

763 m = matrix(rep(0,trows*tcols),nrow = trows)

764

765 rrow = 1

766 rcol = 22

767 for(i in 1:nrow(data_ego2)){

768 rcol=1

769 for(j in 1:ncol(data_ego2)){

770 m[rrow ,rcol] = data_ego2[i,j]

771 rcol=rcol+1

772 }

773 rrow=rrow+1

774 }

775 print("Ego1")

776 for(i in 1:nrow(data_ego1)){

777 rcol =22

778 for(j in 1:ncol(data_ego1)){

779 m[rrow ,rcol] = data_ego1[i,j]

780 rcol=rcol+1

781 }

782 rrow=rrow+1

783 }

784 print("Local")

785 for(i in 1:nrow(data_local)){

786 rcol =46

787 for(j in 1:ncol(data_local)){

788 m[rrow ,rcol] = data_local[i,j]

789 rcol=rcol+1

790 }

791 rrow=rrow+1

792 }
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793 colnames(m) = c(paste("ego2_",colnames(data_ego2),sep=""),paste("ego1

_",colnames(data_ego1),sep=""),paste("local_",colnames(data_local

),sep=""))

794 data_pooled = m

795 alpha = c()

796 beta = c()

797

798 for(i in 1:nrow(data_pooled)){

799 alpha = max(data_pooled[i,c("ego2_alpha","ego1_alpha","local_alpha"

)])

800 beta = max(data_pooled[i,c("ego2_beta","ego1_beta","local_beta")])

801 }

802

803 data_pooled = data.frame(cbind(alpha ,beta ,data_pooled[,-c

(1,2,22,23,46,47)]))

804 #Construct the various model text to make life easy :), these are for

non -pooled data

805 #Linear Models for Ego2

806 lace2 = avg_elrcf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity

807 lase2 = avg_elrsf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity

808 lave2 = avg_elrv~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity

809

810 lsce2 = sd_elrcf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity

811 lsse2 = sd_elrsf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity

812 lsve2 = sd_elrv~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity

813

814 lcce2 = cv_elrcf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity

815 lcse2 = cv_elrsf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity
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816 lcve2 = cv_elrv~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity

817

818

819 #Linear Models for Ego1

820 lace1 = avg_elrcf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity

821 lase1 = avg_elrsf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity

822 lave1 = avg_elrv~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity

823

824 lsce1 = sd_elrcf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity

825 lsse1 = sd_elrsf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity

826 lsve1 = sd_elrv~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity

827

828 lcce1 = cv_elrcf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity

829 lcse1 = cv_elrsf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity

830 lcve1 = cv_elrv~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity

831

832 #Linear Models for Ego1 (Non -Pooled Node and Edge)

833 lcl = elrcf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity

834 lsl = elrsf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity

835 lvl = elrv~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity

836

837 #Linear Models for Ego1 (Pooled Node and Edge)

838 lclp = elrcf~alpha+beta+isNode+Centrality+Distance+Clustering+

Feedback+Connectivity+contribution+significance+velocity
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839 lslp = elrsf~alpha+beta+isNode+Centrality+Distance+Clustering+

Feedback+Connectivity+contribution+significance+velocity

840 lvlp = elrv~alpha+beta+isNode+Centrality+Distance+Clustering+Feedback

+Connectivity+contribution+significance+velocity

841

842 #Curvi -Linear Models for Ego2

843 clace2 = avg_elrcf~alpha+beta+Centrality+Distance+Clustering+Feedback

+Connectivity+Centrality2+Distance2+Clustering2+Feedback2+

Connectivity2

844 clase2 = avg_elrsf~alpha+beta+Centrality+Distance+Clustering+Feedback

+Connectivity+Centrality2+Distance2+Clustering2+Feedback2+

Connectivity2

845 clave2 = avg_elrv~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+Centrality2+Distance2+Clustering2+Feedback2+

Connectivity2

846

847 clsce2 = sd_elrcf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+Centrality2+Distance2+Clustering2+Feedback2+

Connectivity2

848 clsse2 = sd_elrsf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+Centrality2+Distance2+Clustering2+Feedback2+

Connectivity2

849 clsve2 = sd_elrv~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+Centrality2+Distance2+Clustering2+Feedback2+

Connectivity2

850

851 clcce2 = cv_elrcf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+Centrality2+Distance2+Clustering2+Feedback2+

Connectivity2

852 clcse2 = cv_elrsf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+Centrality2+Distance2+Clustering2+Feedback2+

Connectivity2

853 clcve2 = cv_elrv~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+Centrality2+Distance2+Clustering2+Feedback2+

Connectivity2

854

855 #Curvi -Linear Models for Ego1
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856 clace1 = avg_elrcf~alpha+beta+Centrality+Distance+Clustering+Feedback

+Connectivity+contribution+significance+velocity+Centrality2+

Distance2+Clustering2+Feedback2+Connectivity2

857 clase1 = avg_elrsf~alpha+beta+Centrality+Distance+Clustering+Feedback

+Connectivity+contribution+significance+velocity+Centrality2+

Distance2+Clustering2+Feedback2+Connectivity2

858 clave1 = avg_elrv~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity+Centrality2+

Distance2+Clustering2+Feedback2+Connectivity2

859

860 clsce1 = sd_elrcf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity+Centrality2+

Distance2+Clustering2+Feedback2+Connectivity2

861 clsse1 = sd_elrsf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity+Centrality2+

Distance2+Clustering2+Feedback2+Connectivity2

862 clsve1 = sd_elrv~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity+Centrality2+

Distance2+Clustering2+Feedback2+Connectivity2

863

864 clcce1 = cv_elrcf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity+Centrality2+

Distance2+Clustering2+Feedback2+Connectivity2

865 clcse1 = cv_elrsf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity+Centrality2+

Distance2+Clustering2+Feedback2+Connectivity2

866 clcve1 = cv_elrv~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity+Centrality2+

Distance2+Clustering2+Feedback2+Connectivity2

867

868 #Curvi -Linear Models for Ego1 (Non -Pooled Node and Edge)

869 clcl = elrcf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity+Centrality2+

Distance2+Clustering2+Feedback2+Connectivity2

870 clsl = elrsf~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity+Centrality2+

Distance2+Clustering2+Feedback2+Connectivity2
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871 clvl = elrv~alpha+beta+Centrality+Distance+Clustering+Feedback+

Connectivity+contribution+significance+velocity+Centrality2+

Distance2+Clustering2+Feedback2+Connectivity2

872

873 #Curvi -Linear Models for Ego1 (Pooled Node and Edge)

874 clclp = elrcf~alpha+beta+isNode+Centrality+Distance+Clustering+

Feedback+Connectivity+contribution+significance+velocity+

Centrality2+Distance2+Clustering2+Feedback2+Connectivity2

875 clslp = elrsf~alpha+beta+isNode+Centrality+Distance+Clustering+

Feedback+Connectivity+contribution+significance+velocity+

Centrality2+Distance2+Clustering2+Feedback2+Connectivity2

876 clvlp = elrv~alpha+beta+isNode+Centrality+Distance+Clustering+

Feedback+Connectivity+contribution+significance+velocity+

Centrality2+Distance2+Clustering2+Feedback2+Connectivity2

877

878 #Pooled Data Sets:

879 #Construct the various model text to make life easy :)

880

881 #Linear Models for Ego2

882 place2 = ego2_avg_elrcf~alpha+beta+ego2_Centrality+ego2_Distance+ego2

_Clustering+ego2_Feedback+ego2_Connectivity

883 plase2 = ego2_avg_elrsf~alpha+beta+ego2_Centrality+ego2_Distance+ego2

_Clustering+ego2_Feedback+ego2_Connectivity

884 plave2 = ego2_avg_elrv~alpha+beta+ego2_Centrality+ego2_Distance+ego2_

Clustering+ego2_Feedback+ego2_Connectivity

885

886 plsce2 = ego2_sd_elrcf~alpha+beta+ego2_Centrality+ego2_Distance+ego2_

Clustering+ego2_Feedback+ego2_Connectivity

887 plsse2 = ego2_sd_elrsf~alpha+beta+ego2_Centrality+ego2_Distance+ego2_

Clustering+ego2_Feedback+ego2_Connectivity

888 plsve2 = ego2_sd_elrv~alpha+beta+ego2_Centrality+ego2_Distance+ego2_

Clustering+ego2_Feedback+ego2_Connectivity

889

890 plcce2 = ego2_cv_elrcf~alpha+beta+ego2_Centrality+ego2_Distance+ego2_

Clustering+ego2_Feedback+ego2_Connectivity

891 plcse2 = ego2_cv_elrsf~alpha+beta+ego2_Centrality+ego2_Distance+ego2_

Clustering+ego2_Feedback+ego2_Connectivity
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892 plcve2 = ego2_cv_elrv~alpha+beta+ego2_Centrality+ego2_Distance+ego2_

Clustering+ego2_Feedback+ego2_Connectivity

893

894 #Linear Models for Ego1

895 place1 = ego1_avg_elrcf~alpha+beta+ego1_Centrality+ego1_Distance+ego1

_Clustering+ego1_Feedback+ego1_Connectivity+ego1_contribution+

ego1_significance+ego1_velocity

896 plase1 = ego1_avg_elrsf~alpha+beta+ego1_Centrality+ego1_Distance+ego1

_Clustering+ego1_Feedback+ego1_Connectivity+ego1_contribution+

ego1_significance+ego1_velocity

897 plave1 = ego1_avg_elrv~alpha+beta+ego1_Centrality+ego1_Distance+ego1_

Clustering+ego1_Feedback+ego1_Connectivity+ego1_contribution+ego1

_significance+ego1_velocity

898

899 plsce1 = ego1_sd_elrcf~alpha+beta+ego1_Centrality+ego1_Distance+ego1_

Clustering+ego1_Feedback+ego1_Connectivity+ego1_contribution+ego1

_significance+ego1_velocity

900 plsse1 = ego1_sd_elrsf~alpha+beta+ego1_Centrality+ego1_Distance+ego1_

Clustering+ego1_Feedback+ego1_Connectivity+ego1_contribution+ego1

_significance+ego1_velocity

901 plsve1 = ego1_sd_elrv~alpha+beta+ego1_Centrality+ego1_Distance+ego1_

Clustering+ego1_Feedback+ego1_Connectivity+ego1_contribution+ego1

_significance+ego1_velocity

902

903 plcce1 = ego1_cv_elrcf~alpha+beta+ego1_Centrality+ego1_Distance+ego1_

Clustering+ego1_Feedback+ego1_Connectivity+ego1_contribution+ego1

_significance+ego1_velocity

904 plcse1 = ego1_cv_elrsf~alpha+beta+ego1_Centrality+ego1_Distance+ego1_

Clustering+ego1_Feedback+ego1_Connectivity+ego1_contribution+ego1

_significance+ego1_velocity

905 plcve1 = ego1_cv_elrv~alpha+beta+ego1_Centrality+ego1_Distance+ego1_

Clustering+ego1_Feedback+ego1_Connectivity+ego1_contribution+ego1

_significance+ego1_velocity

906

907 #Linear Models for Ego1 (Non -Pooled Node and Edge)
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908 plcl = local_elrcf~alpha+beta+local_Centrality+local_Distance+local_

Clustering+local_Feedback+local_Connectivity+local_contribution+

local_significance+local_velocity

909 plsl = local_elrsf~alpha+beta+local_Centrality+local_Distance+local_

Clustering+local_Feedback+local_Connectivity+local_contribution+

local_significance+local_velocity

910 plvl = local_elrv~alpha+beta+local_Centrality+local_Distance+local_

Clustering+local_Feedback+local_Connectivity+local_contribution+

local_significance+local_velocity

911

912 #Linear Models for Ego1 (Pooled Node and Edge)

913 plclp = local_elrcf~alpha+beta+local_isNode+local_Centrality+local_

Distance+local_Clustering+local_Feedback+local_Connectivity+local

_contribution+local_significance+local_velocity

914 plslp = local_elrsf~alpha+beta+local_isNode+local_Centrality+local_

Distance+local_Clustering+local_Feedback+local_Connectivity+local

_contribution+local_significance+local_velocity

915 plvlp = local_elrv~alpha+beta+local_isNode+local_Centrality+local_

Distance+local_Clustering+local_Feedback+local_Connectivity+local

_contribution+local_significance+local_velocity

916

917 #Curvi -Linear Models for Ego2

918 pclace2 = ego2_avg_elrcf~alpha+beta+ego2_Centrality+ego2_Distance+

ego2_Clustering+ego2_Feedback+ego2_Connectivity+ego2_Centrality2+

ego2_Distance2+ego2_Clustering2+ego2_Feedback2+ego2_Connectivity2

919 pclase2 = ego2_avg_elrsf~alpha+beta+ego2_Centrality+ego2_Distance+

ego2_Clustering+ego2_Feedback+ego2_Connectivity+ego2_Centrality2+

ego2_Distance2+ego2_Clustering2+ego2_Feedback2+ego2_Connectivity2

920 pclave2 = ego2_avg_elrv~alpha+beta+ego2_Centrality+ego2_Distance+ego2

_Clustering+ego2_Feedback+ego2_Connectivity+ego2_Centrality2+ego2

_Distance2+ego2_Clustering2+ego2_Feedback2+ego2_Connectivity2

921

922 pclsce2 = ego2_sd_elrcf~alpha+beta+ego2_Centrality+ego2_Distance+ego2

_Clustering+ego2_Feedback+ego2_Connectivity+ego2_Centrality2+ego2

_Distance2+ego2_Clustering2+ego2_Feedback2+ego2_Connectivity2
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923 pclsse2 = ego2_sd_elrsf~alpha+beta+ego2_Centrality+ego2_Distance+ego2

_Clustering+ego2_Feedback+ego2_Connectivity+ego2_Centrality2+ego2

_Distance2+ego2_Clustering2+ego2_Feedback2+ego2_Connectivity2

924 pclsve2 = ego2_sd_elrv~alpha+beta+ego2_Centrality+ego2_Distance+ego2_

Clustering+ego2_Feedback+ego2_Connectivity+ego2_Centrality2+ego2_

Distance2+ego2_Clustering2+ego2_Feedback2+ego2_Connectivity2

925

926 pclcce2 = ego2_cv_elrcf~alpha+beta+ego2_Centrality+ego2_Distance+ego2

_Clustering+ego2_Feedback+ego2_Connectivity+ego2_Centrality2+ego2

_Distance2+ego2_Clustering2+ego2_Feedback2+ego2_Connectivity2

927 pclcse2 = ego2_cv_elrsf~alpha+beta+ego2_Centrality+ego2_Distance+ego2

_Clustering+ego2_Feedback+ego2_Connectivity+ego2_Centrality2+ego2

_Distance2+ego2_Clustering2+ego2_Feedback2+ego2_Connectivity2

928 pclcve2 = ego2_cv_elrv~alpha+beta+ego2_Centrality+ego2_Distance+ego2_

Clustering+ego2_Feedback+ego2_Connectivity+ego2_Centrality2+ego2_

Distance2+ego2_Clustering2+ego2_Feedback2+ego2_Connectivity2

929

930 #Curvi -Linear Models for Ego1

931 pclace1 = ego1_avg_elrcf~alpha+beta+ego1_Centrality+ego1_Distance+

ego1_Clustering+ego1_Feedback+ego1_Connectivity+ego1_contribution

+ego1_significance+ego1_velocity+ego1_Centrality2+ego1_Distance2+

ego1_Clustering2+ego1_Feedback2+ego1_Connectivity2

932 pclase1 = ego1_avg_elrsf~alpha+beta+ego1_Centrality+ego1_Distance+

ego1_Clustering+ego1_Feedback+ego1_Connectivity+ego1_contribution

+ego1_significance+ego1_velocity+ego1_Centrality2+ego1_Distance2+

ego1_Clustering2+ego1_Feedback2+ego1_Connectivity2

933 pclave1 = ego1_avg_elrv~alpha+beta+ego1_Centrality+ego1_Distance+ego1

_Clustering+ego1_Feedback+ego1_Connectivity+ego1_contribution+

ego1_significance+ego1_velocity+ego1_Centrality2+ego1_Distance2+

ego1_Clustering2+ego1_Feedback2+ego1_Connectivity2

934

935 pclsce1 = ego1_sd_elrcf~alpha+beta+ego1_Centrality+ego1_Distance+ego1

_Clustering+ego1_Feedback+ego1_Connectivity+ego1_contribution+

ego1_significance+ego1_velocity+ego1_Centrality2+ego1_Distance2+

ego1_Clustering2+ego1_Feedback2+ego1_Connectivity2
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936 pclsse1 = ego1_sd_elrsf~alpha+beta+ego1_Centrality+ego1_Distance+ego1

_Clustering+ego1_Feedback+ego1_Connectivity+ego1_contribution+

ego1_significance+ego1_velocity+ego1_Centrality2+ego1_Distance2+

ego1_Clustering2+ego1_Feedback2+ego1_Connectivity2

937 pclsve1 = ego1_sd_elrv~alpha+beta+ego1_Centrality+ego1_Distance+ego1_

Clustering+ego1_Feedback+ego1_Connectivity+ego1_contribution+ego1

_significance+ego1_velocity+ego1_Centrality2+ego1_Distance2+ego1_

Clustering2+ego1_Feedback2+ego1_Connectivity2

938

939 pclcce1 = ego1_cv_elrcf~alpha+beta+ego1_Centrality+ego1_Distance+ego1

_Clustering+ego1_Feedback+ego1_Connectivity+ego1_contribution+

ego1_significance+ego1_velocity+ego1_Centrality2+ego1_Distance2+

ego1_Clustering2+ego1_Feedback2+ego1_Connectivity2

940 pclcse1 = ego1_cv_elrsf~alpha+beta+ego1_Centrality+ego1_Distance+ego1

_Clustering+ego1_Feedback+ego1_Connectivity+ego1_contribution+

ego1_significance+ego1_velocity+ego1_Centrality2+ego1_Distance2+

ego1_Clustering2+ego1_Feedback2+ego1_Connectivity2

941 pclcve1 = ego1_cv_elrv~alpha+beta+ego1_Centrality+ego1_Distance+ego1_

Clustering+ego1_Feedback+ego1_Connectivity+ego1_contribution+ego1

_significance+ego1_velocity+ego1_Centrality2+ego1_Distance2+ego1_

Clustering2+ego1_Feedback2+ego1_Connectivity2

942

943 #Curvi -Linear Models for Ego1 (Pooled Node and Edge)

944 pclclp = local_elrcf~alpha+ beta+ local_isNode+ local_Centrality+

local_Distance+ local_Clustering+ local_Feedback+ local_

Connectivity+ local_contribution+ local_significance+ local_

velocity+ local_Centrality2+ local_Distance2+ local_Clustering2+

local_Feedback2+ local_Connectivity2

945 pclslp = local_elrsf~alpha+ beta+ local_isNode+ local_Centrality+

local_Distance+ local_Clustering+ local_Feedback+ local_

Connectivity+ local_contribution+ local_significance+ local_

velocity+ local_Centrality2+ local_Distance2+ local_Clustering2+

local_Feedback2+ local_Connectivity2
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946 pclvlp = local_elrv~alpha+ beta+ local_isNode+ local_Centrality+

local_Distance+ local_Clustering+ local_Feedback+ local_

Connectivity+ local_contribution+ local_significance+ local_

velocity+ local_Centrality2+ local_Distance2+ local_Clustering2+

local_Feedback2+ local_Connectivity2

947

948 ###########################################

949 #System Linear Regression for Each Level

950 #(Linear Model)

951 ###########################################

952

953 ####2-Ego -Network Structure

954 #SUR

955 lmsurego2 = systemfit(list(lace2 ,lsce2 ,lcce2 ,lase2 ,lsse2 ,lcse2 ,lave2 ,

lsve2 ,lcve2),method="SUR",data=data_ego2)

956

957 ####1-Ego -Network Structure

958 #SUR

959 lmsurego1 = systemfit(list(lace1 ,lsce1 ,lcce1 ,lase1 ,lsse1 ,lcse1 ,lave1 ,

lsve1 ,lcve1),method="SUR",data=data_ego1)

960

961 ####Local -Network Structure

962 #SUR

963 lmsurelocal = systemfit(list(lclp ,lslp ,lvlp),method="SUR",data=data_

local)

964

965

966 ###########################################

967 #System Linear Regression for Each Level

968 #(Curvi -Linear Model)

969 ###########################################

970

971 ####2-Ego -Network Structure

972 #SUR

973 clmsurego2 = systemfit(list(clace2 ,clsce2 ,clcce2 ,clase2 ,clsse2 ,clcse2

,clave2 ,clsve2 ,clcve2),method="SUR",data=data_ego2)

974 #Format these nice:
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975 rnames = c()

976 sigmas = c()

977 r2 = c()

978 ar2 = c()

979 x=c()

980 for(i in clmsurego2$eq){

981 si = summary(i)

982 coef = si$coefficients

983 rnames = rownames(coef)

984 sig = coef[,4]

985 sig = sapply(sig ,function(x){ifelse(x<.05,"*","")})

986 co = round(coef[,1],2)

987 toBind2 = paste("(",round(coef [,2],2),")",sep="")

988 toBind = paste(co,toBind2 ,sig ,sep="")

989 x=cbind(x,toBind)

990 r2=c(r2,si$r.squared)

991 ar2 = c(ar2 ,si$adj.r.squared)

992 sigmas = c(sigmas ,si$sigma)

993 }

994 mnames = c("mu_c","mu_s","mu_v","sigma_c","sigma_s","sigma_v","c_c","

c_s","c_v")

995 colnames(x) = mnames

996 x = rbind(x,round(sigmas ,2))

997 x = rbind(x,round(r2 ,2))

998 x = rbind(x,round(ar2 ,2))

999 rownames(x) = c(rnames ,"sigma","R2","Adjusted R2")

1000 ego2regout = x

1001 ####1-Ego -Network Structure

1002 #SUR

1003 clmsurego1 = systemfit(list(clace1 ,clsce1 ,clcce1 ,clase1 ,clsse1 ,clcse1

,clave1 ,clsve1 ,clcve1),method="SUR",data=data_ego1)

1004 #Format these nice:

1005 rnames = c()

1006 sigmas = c()

1007 r2 = c()

1008 ar2 = c()

1009 x=c()



318

1010 for(i in clmsurego1$eq){

1011 si = summary(i)

1012 coef = si$coefficients

1013 rnames = rownames(coef)

1014 sig = coef[,4]

1015 sig = sapply(sig ,function(x){ifelse(x<.05,"*","")})

1016 co = round(coef[,1],2)

1017 toBind2 = paste("(",round(coef [,2],2),")",sep="")

1018 toBind = paste(co,toBind2 ,sig ,sep="")

1019 x=cbind(x,toBind)

1020 r2=c(r2,si$r.squared)

1021 ar2 = c(ar2 ,si$adj.r.squared)

1022 sigmas = c(sigmas ,si$sigma)

1023 }

1024 mnames = c("mu_c","mu_s","mu_v","sigma_c","sigma_s","sigma_v","c_c","

c_s","c_v")

1025 colnames(x) = mnames

1026 x = rbind(x,round(sigmas ,2))

1027 x = rbind(x,round(r2 ,2))

1028 x = rbind(x,round(ar2 ,2))

1029 rownames(x) = c(rnames ,"sigma","R2","Adjusted R2")

1030 ego1regout = x

1031 ####Local -Network Structure

1032 #SUR

1033 clmsurelocal = systemfit(list(clclp ,clslp ,clvlp),method="SUR",data=

data_local)

1034 #Format these nice:

1035 rnames = c()

1036 sigmas = c()

1037 r2 = c()

1038 ar2 = c()

1039 x=c()

1040 for(i in clmsurelocal$eq){

1041 si = summary(i)

1042 coef = si$coefficients

1043 rnames = rownames(coef)

1044 sig = coef[,4]
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1045 sig = sapply(sig ,function(x){ifelse(x<.05,"*","")})

1046 co = round(coef[,1],2)

1047 toBind2 = paste("(",round(coef [,2],2),")",sep="")

1048 toBind = paste(co,toBind2 ,sig ,sep="")

1049 x=cbind(x,toBind)

1050 r2=c(r2,si$r.squared)

1051 ar2 = c(ar2 ,si$adj.r.squared)

1052 sigmas = c(sigmas ,si$sigma)

1053 }

1054 mnames = c("c","s","v")

1055 colnames(x) = mnames

1056 x = rbind(x,round(sigmas ,2))

1057 x = rbind(x,round(r2 ,2))

1058 x = rbind(x,round(ar2 ,2))

1059 rownames(x) = c(rnames ,"sigma","R2","Adjusted R2")

1060 localregout = x

1061 ###########################################

1062 #Full System Linear Regression for Each Level

1063 #(Cuvi -Linear Model)

1064 ###########################################

1065 #All Levels in one model

1066 #SUR

1067

1068

1069 model = list(pclace2 ,pclase2 ,pclave2 ,pclsce2 ,pclsse2 ,pclsve2 ,pclcce2 ,

pclcse2 ,pclcve2 ,pclace1 ,pclase1 ,pclave1 ,pclsce1 ,pclsse1 ,pclsve1 ,

pclcce1 ,pclcse1 ,pclcve1 ,pclclp ,pclslp ,pclvlp)

1070 pooled_fit=systemfit(model ,method="SUR",data=data_pooled)

1071

1072 #Get Results into a nice table format

1073

1074 ###########################################

1075 #Structure Comparisons

1076 #

1077 ###########################################

1078 cen = t.test(data_ego1$Centrality ,data_ego2$Centrality ,alternative="

less")
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1079 dis = t.test(data_ego1$Distance ,data_ego2$Distance ,alternative="less"

)

1080 con = t.test(data_ego1$Connectivity ,data_ego2$Connectivity ,

alternative="less")

1081 fed = t.test(data_ego1$Feedback ,data_ego2$Feedback ,alternative="less"

)

1082 clu = t.test(data_ego1$Clustering ,data_ego2$Clustering ,alternative="

less")

1083

1084 cen = t.test(data_local$Centrality ,data_ego1$Centrality ,alternative="

less")

1085 dis = t.test(data_local$Distance ,data_ego2$Distance ,alternative="less

")

1086 con = t.test(data_local$Connectivity ,data_ego1$Connectivity ,

alternative="less")

1087 fed = t.test(data_local$Feedback ,data_ego1$Feedback ,alternative="less

")

1088 clu = t.test(data_local$Clustering ,data_ego1$Clustering ,alternative="

less")

1089 vel = t.test(data_local$velocity ,data_ego1$velocity ,alternative="less

")

1090

1091 cen = t.test(data_node$Centrality ,data_edge$Centrality ,alternative="

less")

1092 dis = t.test(data_node$Distance ,data_edge$Distance ,alternative="less"

)

1093 con = t.test(data_node$Connectivity ,data_edge$Connectivity ,

alternative="less")

1094 fed = t.test(data_node$Feedback ,data_edge$Feedback ,alternative="less"

)

1095 clu = t.test(data_node$Clustering ,data_edge$Clustering ,alternative="

less")

1096 vel = t.test(data_node$velocity ,data_edge$velocity ,alternative="less"

)

1097

1098

1099
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1100 ###########################################

1101 #Regression Restrictions

1102 #

1103 ###########################################

1104 m=matrix(0,nrow=45,ncol = 144)

1105 count = 0

1106 rCount = 1

1107 for(i in 0:8){

1108 b=12+16*i

1109 e=b+4

1110 for(j in b:e){

1111 m[rCount ,j] = 1

1112 rCount = rCount +1

1113 }

1114 }

1115

1116 m = matrix(0,nrow = 108, ncol = 117)

1117 count = 2

1118 for(i in 1:108){

1119 m[i,count] = 1

1120 count=count+1

1121 if(count%% 14==0)

1122 count = count+1

1123 }

1124 for(i in 2:117){

1125 if()

1126 }

1127 clmsurego2

Listing B.1: R Listing Data Analysis
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Pfohl, H.-C., Köhler, H., & Thomas, D. (2010). State of the art in supply chain risk

management research: empirical and conceptual findings and a roadmap for the

implementation in practice. Logistics research, 2 (1), 33–44.

Polyviou, M., Rungtusanatham, M. J., Reczek, R. W., & Knemeyer, A. M. (2018).

Supplier non-retention post disruption: What role does anger play? Journal of

Operations Management .

Popper, K. R. (1959). The logic of scientific discovery. University Press.

Porter, M. E. (1991). Towards a dynamic theory of strategy. Strategic management

journal , 12 (S2), 95–117.

PrasannaVenkatesan, S., & Goh, M. (2016). Multi-objective supplier selection and

order allocation under disruption risk. Transportation Research Part E: Logistics

and Transportation Review , 95 , 124–142.

Prelec, D., & Loewenstein, G. (1991). Decision making over time and under uncertainty:

A common approach. Management science, 37 (7), 770–786.

Qazi, A., Dickson, A., Quigley, J., & Gaudenzi, B. (2018). Supply chain risk network

management: A bayesian belief network and expected utility based approach for

managing supply chain risks. International Journal of Production Economics,

196 , 24–42.

Qazi, A., Quigley, J., & Dickson, A. (2015). Supply chain risk management: Systematic

literature review and a conceptual framework for capturing interdependencies

between risks. In Industrial engineering and operations management (ieom), 2015



344

international conference on (pp. 1–13).

Qazi, A., Quigley, J., & Dickson, A. (2018). Cost-effectiveness and manageability

based prioritisation of supply chain risk mitigation strategies. In Supply chain

risk management (pp. 23–42). Springer.

Qazi, A., Quigley, J., Dickson, A., & Ekici, Ş. Ö. (2017). Exploring dependency based
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Sáenz, M. J., Revilla, E., & Acero, B. (2018). Aligning supply chain design for boosting

resilience. Business Horizons, 61 (3), 443–452.

Safdar, K., & Minaya, E. (2016, March 17). Aropostale says it is explor-

ing strategic alternatives, in dispute with supplier. Wall Street Journal .

Retrieved from https://www.wsj.com/articles/aeropostale-posts-another

-loss-explores-strategic-review-1458250252

Salam, M. A., Ali, M., & Kan, K. A. S. (2017). Analyzing supply chain uncertainty

to deliver sustainable operational performance: Symmetrical and asymmetrical

modeling approaches. Sustainability , 9 (12), 2217.

Samvedi, A., Jain, V., & Chan, F. T. (2013). Quantifying risks in a supply chain through

integration of fuzzy ahp and fuzzy topsis. International Journal of Production

Research, 51 (8), 2433–2442.

Sawik, T. (2016). On the risk-averse optimization of service level in a supply chain under

disruption risks. International Journal of Production Research, 54 (1), 98–113.

Sawik, T. (2017). A portfolio approach to supply chain disruption management. Inter-

national Journal of Production Research, 55 (7), 1970–1991.

https://www.wsj.com/articles/aeropostale-posts-another-loss-explores-strategic-review-1458250252
https://www.wsj.com/articles/aeropostale-posts-another-loss-explores-strategic-review-1458250252


346

Sawik, T. (2018a). Disruption mitigation and recovery in supply chains using portfolio

approach. Omega.

Sawik, T. (2018b). Selection of dynamic supply portfolio. In Supply chain disruption

management using stochastic mixed integer programming (pp. 43–67). Springer.

Scheibe, K. P., & Blackhurst, J. (2018). Supply chain disruption propagation: a

systemic risk and normal accident theory perspective. International Journal of

Production Research, 56 (1-2), 43–59.

Schilling, M. A., & Phelps, C. C. (2007). Interfirm collaboration networks: The impact

of large-scale network structure on firm innovation. Management science, 53 (7),

1113–1126.

Schmitt, T. G., Kumar, S., Stecke, K. E., Glover, F. W., & Ehlen, M. A. (2017).

Mitigating disruptions in a multi-echelon supply chain using adaptive ordering.

Omega, 68 , 185–198.

Shin, K., Shin, Y., Kwon, J.-H., & Kang, S.-H. (2012). Risk propagation based dynamic

transportation route finding mechanism. Industrial Management & Data Systems,

112 (1), 102–124.

Singh Srai, J., & Gregory, M. (2008). A supply network configuration perspective on

international supply chain development. International Journal of Operations &

Production Management , 28 (5), 386–411.

Sneath, P. H. (1957a). The application of computers to taxonomy. Microbiology , 17 (1),

201–226.

Sneath, P. H. (1957b). Some thoughts on bacterial classification. Microbiology , 17 (1),

184–200.

Snyder, L. V., Atan, Z., Peng, P., Rong, Y., Schmitt, A. J., & Sinsoysal, B. (2016).

Or/ms models for supply chain disruptions: A review. IIE Transactions, 48 (2),

89–109.

Snyder, L. V., Scaparra, M. P., Daskin, M. S., & Church, R. L. (2006). Planning for

disruptions in supply chain networks. In Models, methods, and applications for

innovative decision making (pp. 234–257). INFORMS.

Sokolov, B., Ivanov, D., Dolgui, A., & Pavlov, A. (2016). Structural quantification of the



347

ripple effect in the supply chain. International Journal of Production Research,

54 (1), 152–169.

Sommerfeld, D., Teucke, M., & Freitag, M. (2018). Identification of sensor requirements

for a quality data-based risk management in multimodal supply chains. Procedia

CIRP , 72 , 563–568.

Song, W., Ming, X., & Liu, H.-C. (2017). Identifying critical risk factors of sustainable

supply chain management: A rough strength-relation analysis method. Journal

of cleaner production, 143 , 100–115.

Stevens, G. C. (1989). Integrating the supply chain. International Journal of Physical

Distribution & Materials Management , 19 (8), 3–8.

Strogatz, S. H. (2001). Exploring complex networks. nature, 410 (6825), 268.

Svensson, G. (2002). A typology of vulnerability scenarios towards suppliers and cus-

tomers in supply chains based upon perceived time and relationship dependencies.

International Journal of Physical Distribution & Logistics Management , 32 (3),

168–187.

Swaminathan, J. M., Smith, S. F., & Sadeh, N. M. (1998). Modeling supply chain

dynamics: A multiagent approach. Decision sciences, 29 (3), 607–632.

Takata, S., & Yamanaka, M. (2013). Bom based supply chain risk management. CIRP

Annals-Manufacturing Technology , 62 (1), 479–482.

Talluri, S., Narasimhan, R., & Nair, A. (2006). Vendor performance with supply

risk: A chance-constrained dea approach. International Journal of Production

Economics, 100 (2), 212–222.

Tang, C. S. (2006). Perspectives in supply chain risk management. International

journal of production economics, 103 (2), 451–488.

Tang, L., Jing, K., He, J., & Stanley, H. E. (2016). Complex interdependent supply

chain networks: Cascading failure and robustness. Physica A: Statistical Mechan-

ics and its Applications, 443 , 58–69.

Terpend, R., & Ashenbaum, B. (2012). The intersection of power, trust and supplier

network size: Implications for supplier performance. Journal of Supply Chain

Management , 48 (3), 52–77.



348

Torres-Ruiz, A., & Ravindran, A. R. (2018). Multiple criteria framework for the sus-

tainability risk assessment of a supplier portfolio. Journal of Cleaner Production,

172 , 4478–4493.

Trkman, P., & McCormack, K. (2009). Supply chain risk in turbulent environmentsa

conceptual model for managing supply chain network risk. International Journal

of Production Economics, 119 (2), 247–258.

Truong Quang, H., & Hara, Y. (2018). Risks and performance in supply chain: the

push effect. International Journal of Production Research, 56 (4), 1369–1388.

Tummala, R., & Schoenherr, T. (2011). Assessing and managing risks using the supply

chain risk management process (scrmp). Supply Chain Management: An Inter-

national Journal , 16 (6), 474–483.

Valenzuela, J. F. B., Fu, X., Xiao, G., & Goh, R. S. M. (2018). A network-based

impact measure for propagated losses in a supply chain network consisting of

resilient components. Complexity , 2018 .

Varzandeh, J., Farahbod, K., & Zhu, J. J. (2016). Global logistics and supply chain

risk management. Journal of Business and Behavioral Sciences, 28 (1), 124.

Vereecke, A., Van Dierdonck, R., & De Meyer, A. (2006). A typology of plants in global

manufacturing networks. Management Science, 52 (11), 1737–1750.

Vilko, J. P., & Hallikas, J. M. (2012). Risk assessment in multimodal supply chains.

International Journal of Production Economics, 140 (2), 586–595.

Wagner, S. M., & Bode, C. (2008). An empirical examination of supply chain per-

formance along several dimensions of risk. Journal of business logistics, 29 (1),

307–325.

Wagner, S. M., & Bode, C. (2009). Dominant risks and risk management practices in

supply chains. In Supply chain risk (pp. 271–290). Springer.

Wagner, S. M., Mizgier, K. J., & Papageorgiou, S. (2017). Operational disruptions and

business cycles. International journal of production economics, 183 , 66–78.

Wagner, S. M., & Neshat, N. (2010). Assessing the vulnerability of supply chains using

graph theory. International Journal of Production Economics, 126 (1), 121–129.

Wagner, S. M., & Neshat, N. (2012). A comparison of supply chain vulnerability indices



349

for different categories of firms. International Journal of Production Research,

50 (11), 2877–2891.

Wall, R. (2016, April 29). Business news: Airbus takes a stumble — jet maker’s

profit falls 50% as deliveries lag; spending to produce new models saps cash.

Wall Street Journal . Retrieved from https://www.wsj.com/articles/airbus

-profit-falls-50-in-first-quarter-1461821681

Wang, X., Chan, H. K., Yee, R. W., & Diaz-Rainey, I. (2012). A two-stage fuzzy-ahp

model for risk assessment of implementing green initiatives in the fashion supply

chain. International Journal of Production Economics, 135 (2), 595–606.

Wang, Y., & Xiao, R. (2016). An ant colony based resilience approach to cascad-

ing failures in cluster supply network. Physica A: Statistical Mechanics and its

Applications, 462 , 150–166.

Wang, Y., & Zhang, F. (2018). Modeling and analysis of under-load-based cascading

failures in supply chain networks. Nonlinear Dynamics, 92 (3), 1403–1417.

Wang, Z., Hu, H., & Gong, J. (2018). Simulation based multiple disturbances evaluation

in the precast supply chain for improved disturbance prevention. Journal of

Cleaner Production, 177 , 232–244.

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of small-worldnetworks.

nature, 393 (6684), 440.

Wei, H.-L., & Wang, E. T. (2010). The strategic value of supply chain visibility:

increasing the ability to reconfigure. European Journal of Information Systems,

19 (2), 238–249.

Weng, S.-J., Wu, T., Blackhurst, J., & Mackulak, G. (2009). An extended dea model for

hospital performance evaluation and improvement. Health Services and Outcomes

Research Methodology , 9 (1), 39.

Wieland, A., & Marcus Wallenburg, C. (2012). Dealing with supply chain risks: Linking

risk management practices and strategies to performance. International Journal

of Physical Distribution & Logistics Management , 42 (10), 887–905.

Wiengarten, F., Humphreys, P., Gimenez, C., & McIvor, R. (2016). Risk, risk manage-

ment practices, and the success of supply chain integration. International Journal

https://www.wsj.com/articles/airbus-profit-falls-50-in-first-quarter-1461821681
https://www.wsj.com/articles/airbus-profit-falls-50-in-first-quarter-1461821681


350

of Production Economics, 171 , 361–370.

Wilson, M. C. (2007). The impact of transportation disruptions on supply chain per-

formance. Transportation Research Part E: Logistics and Transportation Review ,

43 (4), 295–320.

Winter, A., Deniaud, I., Marmier, F., & Caillaud, E. (2018). A risk assessment model for

supply chain design. implementation at kuehne+ nagel luxembourg. In Logistics

operations management (gol), 2018 4th international conference on (pp. 1–8).

Wu, D., & Olson, D. L. (2008). Supply chain risk, simulation, and vendor selection.

International journal of production economics, 114 (2), 646–655.

Wu, K.-J., Liao, C.-J., Tseng, M.-L., Lim, M. K., Hu, J., & Tan, K. (2017). Toward

sustainability: using big data to explore the decisive attributes of supply chain

risks and uncertainties. Journal of Cleaner Production, 142 , 663–676.

Wu, T., Blackhurst, J., & Chidambaram, V. (2006). A model for inbound supply risk

analysis. Computers in industry , 57 (4), 350–365.

Wu, T., Blackhurst, J., & Ogrady, P. (2007). Methodology for supply chain disruption

analysis. International journal of production research, 45 (7), 1665–1682.

Wu, T., Huang, S., Blackhurst, J., Zhang, X., & Wang, S. (2013). Supply chain risk

management: An agent-based simulation to study the impact of retail stockouts.

IEEE Transactions on Engineering Management , 60 (4), 676–686.

Wu, T., Shunk, D., Blackhurst, J., & Appalla, R. (2007). Aidea: A methodology for

supplier evaluation and selection in a supplier-based manufacturing environment.

International journal of manufacturing technology and management , 11 (2), 174–

192.

Wu, Z., Choi, T. Y., & Rungtusanatham, M. J. (2010). Supplier–supplier relationships

in buyer–supplier–supplier triads: Implications for supplier performance. Journal

of Operations Management , 28 (2), 115–123.

Xu, H.-Y., Fu, X., Ponnambalam, L., Namatame, A., Yin, X. F., & Goh, R. S. M.

(2015). A model to evaluate risk propagation considering effect of dynamic risk

information sharing and multi-sourcing in supply chain networks. In Industrial



351

engineering and engineering management (ieem), 2015 ieee international confer-

ence on (pp. 1593–1597).

Yan, T., Choi, T. Y., Kim, Y., & Yang, Y. (2015). A theory of the nexus supplier: A

critical supplier from a network perspective. Journal of Supply Chain Manage-

ment , 51 (1), 52–66.

Yu, L., Suojapelto, K., Hallikas, J., & Tang, O. (2008). Chinese ict industry from supply

chain perspectivea case study of the major chinese ict players. International

Journal of Production Economics, 115 (2), 374–387.

Zegordi, S. H., & Davarzani, H. (2012). Developing a supply chain disruption analy-

sis model: Application of colored petri-nets. Expert Systems with Applications,

39 (2), 2102–2111.

Zhalechian, M., Torabi, S. A., & Mohammadi, M. (2018). Hub-and-spoke network

design under operational and disruption risks. Transportation Research Part E:

Logistics and Transportation Review , 109 , 20–43.

Zhang, Y., & Lam, J. S. L. (2016). Estimating economic losses of industry clusters due

to port disruptions. Transportation Research Part A: Policy and Practice, 91 ,

17–33.

Zhang, Y., Zhao, C., & Pang, B. (2018). Budget allocation in coping with supply chain

disruption risks. International Journal of Production Research, 1–16.

Zhao, K., Kumar, A., Harrison, T. P., & Yen, J. (2011). Analyzing the resilience

of complex supply network topologies against random and targeted disruptions.

IEEE Systems Journal , 5 (1), 28–39.

Zhao, K., Scheibe, K., Blackhurst, J., & Kumar, A. (2018). Supply chain network ro-

bustness against disruptions: Topological analysis, measurement, and optimiza-

tion. IEEE Transactions on Engineering Management .

Zhao, L., Huo, B., Sun, L., & Zhao, X. (2013). The impact of supply chain risk on

supply chain integration and company performance: a global investigation. Supply

Chain Management: An International Journal , 18 (2), 115–131.

Zokaee, S., Jabbarzadeh, A., Fahimnia, B., & Sadjadi, S. J. (2017). Robust supply

chain network design: an optimization model with real world application. Annals



352

of Operations Research, 257 (1-2), 15–44.

Zsidisin, G., & Ellram, L. (2003). An agency theory investigation of supply chain risk

management. Journal of Supply Chain Management , 39 (3), 15–27.

Zsidisin, G. A. (2003). A grounded definition of supply risk. Journal of Purchasing

and Supply Management , 9 (5-6), 217–224.

Zsidisin, G. A., Panelli, A., & Upton, R. (2000). Purchasing organization involvement in

risk assessments, contingency plans, and risk management: an exploratory study.

Supply Chain Management: An International Journal , 5 (4), 187–198.

Zsidisin, G. A., & Ritchie, B. (2009). Supply chain risk management–developments,

issues and challenges. In Supply chain risk (pp. 1–12). Springer.

Zsidisin, G. A., & Wagner, S. M. (2010). Do perceptions become reality? the moderat-

ing role of supply chain resiliency on disruption occurrence. Journal of Business

Logistics, 31 (2), 1–20.


	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Background and Motivation for the Dissertation
	Supply Chains
	Supply Chain Disruption and Risk
	Structural Network Characteristics and Supply Chain Risk

	Research Objectives and Inquiries
	Conceptual Motivation
	Mathematical Motivation for the Dissertation


	Literature Review
	Supply Chain Risk and Disruption
	Supply Chain Disruptions
	Supply Chain Risk and Risk Management
	The Need for Supply Chain Risk Management (SCRM)
	SCRM Frameworks: Evolution and Current State
	Risk Taxonomies: A Lack of Consensus
	Supply Chain Risk Identification
	Supply Chain Risk Assessment
	Some Common Mitigation Strategies

	Supply Chain Risk Measurement
	Prior Attempts to Quantify Supply Chain Risk

	Supply Chain Risk Propagation (SCRP)
	Risk Propagation vs. Disruption Propagation
	A Review of Risk Propagation


	Fundamentals of Bayesian Networks
	Conditional Probability and Independence
	Bayesian Networks: A Model of Belief Propagation
	Learning Bayesian Networks
	Belief Inference and Propagation

	Supply Network Structure
	The Basic Supply Network Model
	The Risk Graph
	Measuring Network Structure
	Context-Dependent Conceptualization of Structure
	Partial-Context-Free and Context-Dependent Classification and Taxonomy
	Graph-Theoretic Based Characterization

	Network Structure Dynamics in Supply Chains
	Why Bother to Classify?

	Current Research Gaps in the Literature
	Context-Free Network Structure Conceptualization
	Network-Based Hierarchical Levels of Structural Analysis
	Risk Propagation
	Intersection of Risk Propagation and Network Structure
	Supply Chain Horizon and Risk Propagation
	Hierarchical Levels of Structural Analysis and Risk
	2-Ego Network Risk
	Ego-Network Risk
	Node and Arc-Level Risk

	Research Questions


	Theory Development
	Supply Chains and Network Structure
	The Level-of-Analysis for Networks: A Contextual Perspective
	The Level-of-Analysis for Networks: A Non-Contextual Perspective
	Network Characterizations: A Mess of Context
	The Fundamental 5-Dimensions: Towards Characterizing Networks
	Centrality
	Connectedness
	Clustering
	Feedback/Thickness
	Distance


	Risk Measurement and Risk Propagation: How Risk ``Flows''
	A Philosophical Discussion on Risk Measurement
	The Line of Demarcation between Supply Chain Risk and Supply Chain Risk Propagation
	The Problem of Deterministic Propagation
	The Invisible Path of Causality
	Balancing Model Complexity and Error in Risk Propagation
	Constructs of Supply Chain Risk Propagation
	Propagation Diagnostics: Risk Significance
	Propagation Causality: Risk Contribution
	Propagation Change: Risk Velocity

	Methods of Operationalization for Risk Propagation Constructs

	Hypothesis Development
	Conceptual Development
	2-Ego Network Risk
	1-Ego Network Risk
	Node/Arc Level Risk
	Cross-Level Risk Effects



	Research Design
	Population and Variable Definition
	Description of the Population of Interest
	Dependent Variables
	Independent Variables
	Control Variables


	Design of the Simulation
	Description of Resulting Datasets
	Empirical Models

	Analysis and Results
	Descriptive Statistics
	Factor Analysis
	1-Ego-Network and 2-Ego-Network Factor Analysis
	Node and Edge Factor Analysis

	Structural Difference Testing
	Causal Analysis
	Results
	2-Ego-Network Risk
	1-Ego-Network Risk
	Local Risk
	Cross-Risk and Structural Differences

	Summary of Hypothesis Test Results

	Discussion, Limitations and Managerial Implications
	Discussion of Results
	Contributions of this Research
	Limitations of Research
	Managerial Implications
	Future Research and Open Research Questions

	Conclusion
	Appendix A. R-Code for Simulation
	Appendix B. R Code for Data Analysis
	References

