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The quantum physics of one dimensional systems exhibits many remarkable and exotic

physical phenomena. These are the result of the strong correlations which exist in such sys-

tems due to the reduced dimensionality and in many cases can be described by Luttinger

Liquid theory. Likewise quantum impurity systems, where a bath of particles couples to

the same impurity, exhibit well known non perturbative phenomena like the Kondo effect.

In this thesis we study the physics of quantum impurities in interacting environments - the

intersection of these two areas. Such Luttinger-impurity systems can be realized experimen-

tally in a range of different settings from quantum wires and carbon nano tubes to edges of

fractional quantum hall systems and cold atom gases. We show that many of the models

used to describe these experiments are integrable and can be studied by means of the Bethe

Ansatz. This powerful and exact method provides us with the exact eigenstates and energy

levels of the model Hamiltonian. The models considered include two which describe a Lutt-

tinger liquid coupled to a back scattering impurity, the Kane-Fisher and weak tunnelling

model as well as Luttinger liquids coupled a quantum dot in various geometries: at the

boundary, sidecoupled and embedded. To incorporate both the backscattering nature of
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the impurities and the interacting bulk particles a new formulation of the Bethe Ansatz is

developed and implemented. The eigenstates and spectra of the models are found and used

to investigate their ground state and thermodynamic properties.
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Introduction and Motivation

Amongst all branches of the physical sciences, physics is most often associated with discov-

ering the fundamental laws of nature. Indeed, one could be forgiven for thinking that this is

the ultimate goal of the field. In particle physics, researchers seek a “theory of everything”

which unites the standard model of particle physics with Einstein’s theory of gravity into

a single fundamental framework[1, 2]. Likewise in cosmology. Roughly 95% of the universe

consists of, for want of a better word “stuff” [3] about which we know practically nothing

and discovering the laws by which it is governed is a necessity to understand cosmic history,

present and future[4].

In contrast the fundamental theory of everything for condensed matter physics is known,

and has been known since the early part of the 20th century [5]. The entirety of the field can

be reduced down to understanding the behaviour of a gas of electrons interacting via the

Coulomb force in a potential created by some ions [6, 7]. Armed with this knowledge the

condensed matter physicist can confidently answer any question that could be posed with

the statement: “That is a result of the interaction between the electrons or the interaction

between the electrons and the ions or a combination of both”. The follow up question is

most decidedly a harder one to answer: “How?”

The basic premise of condensed matter physics, or many-body physics to give it a more

all encompassing title, is to understand how, the same basic building blocks can result in

vastly different phenomena. Metals and insulators, superconductors and topological matter

all emerge from the same fundamental theory and it is the goal of a condensed matter

physicist to discern how this occurs and moreover predict and measure new and interesting
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behavior.

At the outset it seems a daunting task to solve the Schrödinger equations of N ∼ 1023

electrons and ions and indeed such a task is entirely intractable. A more refined approach

is therefore necessary. Typically one is interested in the effects a system exhibits within a

certain energy range and inside this region only certain degrees of freedom may be relevant

to our understanding. For instance, probing a metal on the Planck scale gives one no

more understanding of it’s electrical conductivity then probing it with a hammer would.

This is when the concepts of renormalization and universality, the foundations of modern

condensed matter physics come to the fore [8]. Starting from the fundamental theory, the

unimportant degrees of freedom maybe integrated out resulting in simplified description.

Ideally this simplified model then captures not only the physics of the particular system

under scrutiny but also a whole class of systems with related properties.

In practice, it is not often, if ever that one carries out this renormalization procedure

from beginning to end but instead relies upon experience and physical arguments to discern

an appropriate effective description. Both discovering and understanding these effective

theories is central to help our understanding of the physical systems we hope to measure or

create.

One of the most renowned effective theories is Fermi Liquid theory which succcessfully

captures the low energy behavior of many metals. The idea is based upon the existence of

long lived quasiparticles which interact with each other only weakly and are adiabatically

connected to non interacting fermions [6]. As a result the behavior of Fermi liquids is

qualitatively that of a non interacting Fermi gas and although it is remarkable that so

many materials behave in this way it is rather uninteresting.

To witness more exotic and striking effects one must turn to systems which exhibit

strong correlations between the relevant degrees of freedom. In such systems perturbative

methods can no longer applied and more powerful non-perturbative or exact methods are

required to understand them [7]. Two paradigms of strongly correlated systems are quantum
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(a)

⇑↓↑

⇓↑ ↑

⇑ ↓ ↑

(b)

⇑↓ ↑

⇑ ↑↓

⇓ ↑ ↑

1
Figure 1.1: Here we depict two sequences of scattering events which show how the impu-
rity correlates the bulk. Consider a localized spin interacting with bulk fermions via spin
exchange. (a) If the red particle moves past the impurity first followed by the blue then the
final state of the system is depicted at the bottom. (b) If instead we move the blue particle
past the red first and the two are not coupled to each other we get the final state on the
right. Swapping the order of the red and blue particles again we see that the two end states
are different and so there must be some effect of swapping their order i.e the bulk particles
must be correlated by the impurity.

(a) (b)

1
Figure 1.2: For a system of particles in 2 or higher dimensions shown in (a), particles
may easily avoid each other however when they are restricted to move on a line as in (b)
interactions become unavoidable. In the former case one can envisage starting with a non
interacting system and adiabatically turning on the interactions, a quasi particle picture is
therefore appropriate. In the later case as soon as a non vanishing interaction is included a
drastic change in the system occurs, excitations necessarily involve all the particles meaning
that there are only collective excitations.
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impurity models (QIM) and interacting one dimensional (1D) models. In the first example

a bath of particles which may be 1D or higher dimensional, interacts with a single localized

impurity. The correlations induced amongst the bath particles by interacting with the same

impurity, see FIG. 1.1 can then result in non perturbative phenomena like the Kondo effect

where a magnetic impurity is screened at low temperature[9]. In the second example, the

reduced dimensionalty of the 1D system means that no matter how weak the interactions

any excitation of the system is a collective one [10], see FIG. 1.2. This signals a breakdown

in a perturbative quasiparticle picture and leads to numerous unique phenomena which exist

only in 1D systems. The low energy physics of many one dimensional systems is successfully

captured by Luttinger liquid theory, the 1D counterpart to Fermi liquid theory [11].

In this thesis we will study the overlap between these two areas, wherein quantum impu-

rities are coupled to Luttinger liquids. This is by no means the first study of such systems

and there exists a wealth of literature on the topic dating back to the groundbreaking work

of Kane and Fisher [12, 13]. The majority of the (analytical) work utilizes the method of

bosonization [14], an extremely useful method for dealing with one dimensional systems in

general not just impurity models. The power of this method lies in the ability to map an

interacting theory (see for example (2.5)) to a quadratic bosonic theory after which the

impurity can be treated perturbatively. Another popular though less widely used method

is the Coulomb gas formalism wherein the partition function of the model is mapped to

that of classical gas with logarithmic interactions [15]. Both methods have been highly suc-

cessful and predicted many exotic phenomena which where later observed experimentally

however they still rely on a perturbative treatment of the impurity. To complement the

results of these approaches and expand upon their findings, in this thesis we will employ a

more powerful, exact method known as the Bethe Ansatz.

Originally developed by Bethe to study the XXX spin chain[16], Bethe Ansatz provides

one with all the eigenstates and eigenvalues of a Hamiltonian which can then lead to a

complete analytic description of the physics of the model. The list of models solvable
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by Bethe Ansatz is now quite extensive. Some notable inclusions are the extensions to

anisotropic chains like the XXZ[17], XYZ [18] and related vertex models[19, 20] as well as

higher spin chains [21] and different symmetry groups like the SU(N) chain[22]. Among

some of the early works were solutions to continuum models like Lieb Liniger model[23, 24]

and its extension to arbitrary symmetry, the Gaudin Yang model[25]. Later lattice models

like the famous Hubbard [26] and t−J [27, 28, 29] models were also solved. Following these

quantum field theories were also shown to be amenable to the Bethe Ansatz treatment with

solutions of the massive Thirring [30], Gross-Neveu [31] and Bukvostov-Lipatov models[32]

appearing in quick succession. Later impurity models were also added to the list with some

prominent successes being the solutions of the the Kondo [33, 34] and Anderson impurity

models [35].

The list above includes both interacting models and quantum impurity models however

up till this point the method has not been applied to genuine models of a quantum impurity

coupled to an interacting environment, a Luttinger-impurity model. While there have been

several Bethe Ansatz studies of impurity models with interacting bulks [36, 37, 38] they have

either required additional unphysical bulk interaction terms, bizarre impurity couplings

or do not allow for particle to change chirality. The impediment thus far has been an

appropriate formulation of the Bethe ansatz which allows for bulk particles to interact with

each other in a sensible way as well as with an impurity which may cause them to change

chirality. In this thesis we introduce such a formulation and use it find exact solutions to

a number of widely used Luttinger-impurity models. The exact solution provided by the

method then allows us to study ground state and thermodynamic properties of the system.

The work presented herein has previously been reported in a number of papers written

in collaboration with Prof. Natan Andrei:

• “Quantum impurity in a Luttinger liquid: Exact solution of the Kane-Fisher model”,

C. Rylands and N. Andrei, Phys. Rev. B94, 115142 (2016)
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• “Quantum dot at a Luttinger liquid edge”, C. Rylands and N. Andrei, Phys. Rev.

B96, 115424 (2017)

• “Quantum dot in interacting environments”, C. Rylands and N. Andrei, Phys. Rev.

B97, 155426 (2018)

as well as the preprint “Simplified thermodynamics for Quantum impurity models”, C.

Rylands and N. Andrei, arXiv:1804.00726. These form the basis of Chapters 3-5.

The outline of this thesis is as follows: In chapter 2 we provide a brief introduction to

some aspects of low dimensional physics and particularly Luttinger liquid theory. Following

this we examine a number of quantum impurity models using the Bethe Ansatz method and

introduce the concepts and basic calculations underpinning the method as well as set up

our conventions and notations. We do this by examining the relatively simplistic resonant

level model and then the more complex anisotropic Kondo model. In both cases we show

how the eigenstates are constructed and determine the single particle energy levels. Using

this information the ground state properties of the models as well as the basic excitations

above this are studied. The Yang Yang approach to thermodynamics is also discussed

and the free energy of both models is calculated. In the end we make some comments

regarding calculations in quantum impurity models and also give a very short discussion of

the interacting resonant level model which is closely related to the other two. The bulk of

this chapter is review of known work and results.

In chapter 3 we implement the methods introduced in chapter 2 in a model of a quantum

dot or resonant level coupled to the boundary of a Luttinger liquid. All eigenstates and

eigenvalues of the model are found which allows us to calculate the ground state dot occu-

pation and free energy. We find that the strongly correlated bulk causes a Kondo like effect

to occur with the dot being fully hybridized with the bulk at low energy and decoupled at

high energy. This occurs in the absence of any Kondo type interaction between the dot and

bulk however by including such a term we see that the system remains strongly coupled at
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low energy even in the ferromagnetic Kondo regime[39].

In chapter 4 a different type of impurity model is discussed. Here the impurity is

placed in the bulk of the Luttinger liquid system and causes backscattering to occur. We

exactly solve two models with impurities of this type, the Kane-Fisher model and the weak

tunnelling model. To do this a new formulation of the Bethe Ansatz which can be applied

to models of this type is introduced. Subsequently the eigenstates and eigenvalues of these

models are found. Using these it is shown that the spectrum of the two models are related

by changing the sign of the interaction. We then calculate the free energy and see that the

repulsive Kane-Fisher model generates a strong coupling scale below which the system is

split into two by the impurity. We calculate the impurity entropy along the RG flow and

determine the dimensions of the leading relevant and irrelevant operators about the fixed

points [40].

In the penultimate chapter we study two models which incorporate effects from the

previous two chapters. They consist of Luttinger liquids coupled to quantum dots which

cause backscattering and are arranged in a sidecoupled or embedded geometry. The two

models are solved exactly using the methods developed in the previous chapter and it is

seen that they similarly related to each other by changing the sign of the bulk interaction.

We derive exact expressions for the dot occupation in the sidecoupled model at T = 0 and

derive the free energy of the system also. We find that the dot becomes fully hybridized

with the bulk at low energy for all values of the interaction considered and decoupled at

high energy (a Kondo like effect). The hybridized dot acts like a backscattering impurity at

low temperature which either enhances or suppresses the dot occupation depending on the

sign of the bulk interaction (a Kane-Fisher effect) [41]. In the final chapter we summarize

and discuss outstanding questions and future directions the work can take.
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2

Low Dimensions, Quantum Impurity Models and Bethe

Ansatz

2.1 Low dimensional physics

When a system is restricted to reside in only one spatial dimension a host of surprising

and exotic physical phenomena can occur which have no analogue in higher dimensional

systems. The list of such uniquely one dimensional phenomena is extensive and throughout

the course of this thesis some of them, in particular those pertaining to quantum impurities,

will be encountered.

The fact that there should be a plethora of physical phenomena unique to one dimen-

sional quantum physics can be traced back to a very simple observation observation. If a

collection of particles can only move in one spatial dimension then they either go left or

right so they have no choice but to interact with each other. In comparison, when systems

have a higher number of spatial dimensions in which to travel the likelihood of two particles

crossing paths decreases see FIG. 1.2. In this higher dimensional scenario it is possible to

adopt a Fermi liquid picture of quasiparticles. Starting from a free system the interactions

can be turned on adiabatically and the excitations of the interacting system viewed as being

perturbatively connected to the non interacting particles. In one dimension this is viewpoint

is not possible. No matter how weak the interaction that is introduced the chiral nature of

particle motion means that any excitation necessarily involves all particles. Each particle

becomes strongly correlated with every other particle and the only excitations possible are

collective ones. These collective excitations can be viewed as sound waves propagating in
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(a)

kF-kF

1

(b)

− +

−D −D

1

Figure 2.1: (a)A one dimensional system generically has two Fermi points around which
the spectrum can be approximated as linear. (b) The low energy theory of such a system is
a spinless Luttinger liquid which consists of two branches, one left moving (-) and one right
moving (+). The figure depicts the energy levels of the ground state with energy being the
vertical axis and k the horizontal. To render the theory finite a cutoff has been imposed.

a 1D quantum fluid. The consequences of this are the many fascinating observable effects

unique to one dimensional systems.

To formalize these statements a little consider a system of noninteracting fermions in

one dimension. The particles have a general dispersion relation ε(k) and are described by

the Hamiltonian

H =
∑

k

ε(k)c†kck (2.1)

with c†k and ck are fermion creation and annihilation operators with commutation relations

{c†k, cq} = δk,q. Typical dispersion relations are ε(k) = (vFk)2/2m for a continuum model of

mass m particles or ε(k) = t cos (vFk) for a lattice system with hopping t and where vF is

the Fermi velocity. In a generic case the system has finite number of discrete Fermi points

instead of an extended Fermi surface as would be expected in higher dimensional systems.

For instance in the examples just cited there are only two Fermi points, located at ±kF and

in the region of these the dispersion is approximately linear, ε(k ± kF ) ≈ ±vFk see FIG.

3(a). At low energy one can expand around these points and neglect higher order terms so
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that the system can be described by the Hamiltonian

H ≈
∑

vFk
[
ψ†+(k)ψ+(k) + ψ†−(k)ψ−(k)

]
(2.2)

= −i
∫

dx
[
ψ†+(x)∂xψ+(x)− ψ†−(x)∂xψ−(x)

]
(2.3)

where ψ†± are fermionic operators which create particles around the right and left Fermi

points which obey {ψ†(x), ψ(y)} = δ(x− y). These particles have a fixed chirality and are

right moving, ψ+ or left moving ψ−, see FIG. 2.1 (b). An expansion around the Fermi

points like this is not unique to 1D systems but in this case the reduction leaves a very

simple Hamiltonian consisting of two distinct particle types. In addition to the kinetic part

of the Hamiltonian, density-density interaction terms like

Hint =
∑

k,q

Vk,qc
†
kckc

†
qcq (2.4)

can be treated in a similar fashion. Expanding the operators around the Fermi points,

limiting ourselves to only short range interactions and ignoring Umklapp processes gives us

the Luttinger liquid Hamiltonian[10]

HLL = −i
∫

dx
[
ψ†+(x)∂xψ+(x)− ψ†−(x)∂xψ−(x)

]

+4g

∫
dxψ†+(x)ψ†−(x)ψ−(x)ψ+(x). (2.5)

Where the only survivor of the interaction term is a point like interaction of strength 4g

between particles of different chiralities. A remarkable feature of this low energy Hamilto-

nian is that it is Lorentz invariant which not only has implications for the dynamics of the

system but also provides a pleasing symmetry between the long and short wavelength de-

scriptions of 1D systems1. This spinless Hamiltonian will form the bulk of the models which

1By measuring the system with high enough energy or at short enough length scales directions transverse
to the 1D system will be exposed. Electrons in this 3D system are ultimately governed by the Dirac equation
which is also Lorentz invariant.
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we will study in future chapters and as alluded to already has some surprising features when

compared to its higher dimensional counterpart, the Fermi Liquid. The strong correlations

amongst the particles dissolve the individual fermions, ψ± and the excitations of the system

are instead bosonic density perturbations or sound waves. Although it is possible to exactly

resum perturbation theory[42] for this model and see these effects they can be understood

more clearly by utilizing the bosonized description of the Luttinger liquid [43, 11].

Bosonization maps the fermions appearing in the above Hamiltonian to bosonic opera-

tors described by the equivalent Hamiltonian [10]

HLL =
uF
2π

∫
dxK [∇ϕ(x)]2 +

1

K
[Π(x)]2 (2.6)

where ∇ϕ(x) and Π(x) are conjugate boson fields related to the density and current of the

fermions

∇ϕ(x) = − 1

π

[
ψ†+(x)ψ+(x) + ψ†−(x)ψ−(x)

]
(2.7)

Π(x) = ψ†+(x)ψ+(x)− ψ†−(x)ψ−(x). (2.8)

Here uF is the renormalized Fermi velocity and K is the Luttinger parameter which is

related to the interaction strength K ≈ 1−2g/π. In this notation K = 1 are non interacting

fermions, K < 1 indicates repulsive interactions and K > 1 attractive interactions. Note

that in bosonic form the Hamiltonian is quadratic and its thermodynamics and correlation

functions can be calculated exactly. Using this one can then check that provided K 6= 1 the

quasiparticle weight of the fermions vanishes meaning that such a description is no longer

valid. More explicitly it can be shown that the zero temperature occupation of the ψ+

fermions is[10]

n(k) ∼ |k − kF |
K
2

+ 2
K
−1 (2.9)
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which exhibits a power law singularity at k = kF indicating an absence of fermionic quasi-

particles from the spectrum.

Spin may also be included in the analysis which allows for more general interactions.

Possible additions to the Hamiltonian are

H‖ = 4g‖
∑

σ=↑,↓

∫
dxψ†σ,+(x)ψ†σ,−(x)ψ†(x)σ,−ψ

†
σ,+(x) (2.10)

H⊥ = 4g⊥
∑

σ 6=σ̄

∫
dxψ†σ,+(x)ψ†σ̄,−(x)ψ†(x)σ̄,−ψ

†
σ,+(x) (2.11)

where the first term is the interaction between parallel spins and the second is between anti

parallel spins. The spinful Hamiltonian may be bosonized using an identical procedure.

Upon doing this one obtains two copies of the bosonic theory, one describing the spin degrees

of freedom through ϕs = (ϕ↑−ϕ↓)/
√

2 and characterized by Ks and the other describing the

charge through ϕc = (ϕ↑+ϕ↓)/
√

2 and characterized by Kc. This decoupling of the spin and

charge degrees of freedom is known as spin-charge separation and is one of the more notable

predictions of the theory. Not only have the fermions been dissolved to form a bosonic fluid

but their charge and spin properties have been disassociated from each other and moreover

the excitations of spin and charge fluids are characterized by different Luttinger parameters

and velocities. In the remainder of the thesis we will not discuss models with spin and deal

predominantly with the fermionic description however any discussion of 1D systems would

be deficient without mentioning spin-charge separation and bosonization.

Luttinger liquids provide the low energy effective description of many one dimensional

systems quantum systems. At one point this may have been seen as a purely academic

statement however since the early 90’s 1D systems have been realized in a number of exper-

imental settings including quantum wires, edge states of fractional quantum hall materials

and more recently cold atomic gases to name a few.

There are many different types and construction methods for quantum wires however a

typical method is to layer GaAs and AlGaAs sheets so as to form a 2 dimensional electron



13

(a) (b)

Figure 2.2: Two types of quantum wire constructed using Layered GaAs and AlGaAs.
(a) An early example of this method uses electrodes to form a 1D wire in the centre of
the sample. To the right is a scanning electron microscope image of the device. Image
taken from [44]. (b) On the right a more recent construction method known as cleaved
edge overgrowth is depicted. In this setup the electrodes create the wire at the edge of
the sample The multiple probes allow for different conductance measurements to be made.
Image taken from [45].

gas[44, 46, 45]. Then using either lithography or attaching electrodes and applying a poten-

tial the 2D gas can be restricted to a narrow region, see FIG. 2.2. If the energy gap of the

transverse modes is larger than the temperature and an external gate is used to tune the

chemical potential so that only the lowest band is occupied then the result is a 1D system

whose transport properties conform to Luttinger liquid theory.

Another type of quantum wire and classic realization of Luttinger liquid behavior is

through single walled, carbon nanotubes (CNT). These are sheets of graphene that have

Figure 2.3: In cold atom gas experiments neutral atoms are cooled to nK temperatures and
confined using counter propagating lasers. By using lasers in two directions the particles
can propagate in one direction only. Image taken from [47]
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been rolled into tubes[48]. Depending on the orientation of the sheet way on which the

sheet the nanotubes ranging from metallic to insulator however for short CNTs at low

temperatures Luttinger liquid physics is found. By attaching the CNT to leads via bad

contacts one can measure the transport properties of the nanotubes [49]. The results of

these experiments are in agreement with a liquid charachterized by K ≈ 0.22. CNTs are

particularly nice examples of a Luttinger liquid as one study the effects of an impurity which

can be realized by kink in the tube. We shall discuss this further in later chapters.

The edges of fractional quantum Hall systems are known to support chiral edge modes

[50][51][52]. These are distinct from the interacting left and right movers of (2.5) since

the left and right movers lie on opposite edges of a sample and so cannot interact locally.

Nevertheless they admit a hydrodynamic description, (3.7) with K = 1/m, m being the

filling factor of the material. Again impurities can be engineered into such systems. For

example using lithography to oppositely moving edges can be brought close enough to each

to cause backscattering. We discuss this further in chapter 4.

A more recent experimental realization of 1D systems is through cold atomic gas ex-

periments [53][54][55][47]. Using a combination of cooling techniques, neutral atoms can be

cooled to nK temperatures. These can then be constrained using optical lattices and mag-

netic traps to an array of different geometries including one dimensional tubes, see FIG. 2.3.

The rapid advancement in the experimental techniques has lead to extraordinary control,

precision and tunability of cold atom experiments. The number and type of particle can all

be varied and moreover the interaction strength between them can be tuned by Feschbach

resonance. A wide variety of different 1D systems with tunable parameters can be created

using these methods with Luttinger liquid theory providing a description of the low energy

behavior.

Other less prominent realizations of Luttinger liquids include, some SrCuO compounds

in which spin-charge separation has been observed[56], 4He flowing through nano pores

[57][58], Fermi liquid leads with dissipative contacts [59, 60] or through a quantum simulator
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(a) (b)= ψ†l,±

= ∇ϕs = ∇ϕc

1
Figure 2.4: Spin charge separation. Non interaction fermions in one dimension or inter-
acting fermions in higher dimensions may have spin and charge as intrinsic properties. If
interactions are introduced between the fermions in one dimension however the the fermions
are dissolved and the system is described by two decoupled Luttinger liquids formed of the
spin and charge degrees of freedom.

consisting of a chain large numbers of Josephson junctions[61, 62]. The last two of these

is again of particular interest as one is not only able to engineer different values of the

Luttinger parameter but also couple it to impurities. The realization using impurities will

be discussed later.

2.2 Quantum impurities and Bethe Ansatz

Quantum impurity models are ubiquitous throughout physics describing many experimental

systems, from quantum dots coupled to electronic leads [63, 64, 65] and kinks in carbon

nanotubes [66] to isolated atoms in wave guides to name but a few [67]. Impurity systems

consist of a bath of particles, free or interacting, coupled to a small localized system of

few degrees of freedom, the impurity. Their apparent simplicity often belies the intricate

strong correlation physics that is at play. Examples include the Kondo model [68, 69] where

the bath is a non interacting Fermi liquid and the impurity is a single isolated spin or the

Kane-Fisher model [12] where the bath consists of a 1D gas of interacting fermions and the

impurity is a featureless localized potential which causes backscattering. Such systems can

also provide insight to the more complicated problems such as heavy fermion systems [9] or

other correlated systems through the use of dynamical mean field theory [70].

Many QIMs, in particular the examples cited above, are in fact exactly solvable through

Bethe Ansatz [68, 69, 40]. Here we will review the main concepts of the Bethe Ansatz
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method as it applies to QIMs. We study two models here, the resonant level model and the

anisotropic Kondo model and apart from providing an introduction to the formalism and

allow us to introduce our conventions, the results we derive will serve as good benchmarks

with which to examine the results of the forthcoming chapters.

2.2.1 The Resonant level model

Perhaps the simplest quantum impurity model is the resonant level (RL) model. The

Hamiltonian is given by

H =

∫
−iψ†(x)∂xψ(x) + t

[
ψ†(0)d+ d†ψ(0)

]
+ ε0d

†d . (2.12)

It describes a system of right moving fermions coupled to a localized level on which either

zero or one fermion may reside. The operators ψ†(x) and ψ(x) are the creation and annihi-

lation operators of a right moving fermion at position x while d† and d create and destroy

fermions on the level. The right movers are said to be part of the bulk system however

throughout this thesis they may be referred to as being lead or bath fermions also. The

resonant level is the impurity part of the system but will also be referred to as the dot

part as it provides a simplified description of a quantum dot. The two systems, bulk and

dot are coupled via a tunnelling term which allows bulk fermions to hop onto the dot and

vice versa. This simple model may describe the interaction of a quantum dot with a one

dimensional wire provided there are no bulk fermion-fermion interactions or a dot coupled

to higher dimensional Fermi liquid leads, in which case the right movers represent the in-

coming and outgoing spin polarized, s-wave electrons and the electron-electron interactions

can be ignored.

The RL model is integrable and its eigenstates, spectrum and thermodynamic properties

are well known. Although there are a number of methods that can be used on this simple

model, herein these properties will be derived using Bethe Ansatz. This non perturbative
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and exact method is a powerful tool in studying one-dimensional or quasi one-dimensional

models. The method is very systematic and follows several main steps which we will go

through now. Firstly, one writes down the most general single particle eigenstate allowable

by the symmetries of the model. Typically this takes the form of a plane wave expansion

whose coefficients depend upon the region of configuration space. In the RL model the most

general state is given by

|k〉 =

∫
eikxf(x, k)ψ†(x) |0〉+Bd† |0〉 (2.13)

where f(x, k) and B are the bulk and impurity parts of the wavefunction and |0〉 is the

vacuum state containing no particles, ψ(x) |0〉 = 0. For this to be an eigenstate of (2.12),

f and B must satisfy the associated Schrödinger equations. Applying the Hamiltonian to

|k〉 and integrating by parts we find it is an eigenstate of energy k provided

−i∂xf(x, k) + tδ(x)B = 0 (2.14)

tf(0) + ε0B = kB (2.15)

The solution of these equations is found without too much difficulty by writing the bulk

part as a sum of Heaviside functions, f(x) = A[10]θ(−x) + A[01]θ(x) and determining the

amplitudes. The result is that the single particle eigenstate of the RL model is

|k〉 =

∫
eikx

[
θ(−x) +

k − ε0 − iΓ
k − ε0 + iΓ

θ(x)

]
ψ†(x) |0〉+

t/2

k − ε0 + iΓ
d† |0〉 (2.16)

where Γ = t2/2 is called the hybridization or the level width. In deriving this we have used

the fact that ∂xθ(x) = δ(x) and θ(x)δ(x) = 1
2δ(x) which will be used throughout this thesis.

The above state is not normalized but this may be done easily enough and d following this

it can be checked that states of this form a complete basis of single particle states. The

next step in the Bethe ansatz method is to write down the most general two particle state,
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apply the Hamiltonian to that and solve the resulting Schrödinger equations. If the model

is intergable then knowing the two particle eigenstate is in general sufficient to construct the

N -particle state. We will comment more on this in the next section however in the present

circumstances this is unnecessary as the model is actually non interacting and multiparticle

eigenstates are merely products of single particle states. It can be checked by applying the

Hamiltonian that

∣∣∣~k
〉

=

∫ N∏

j=1

dxj e
ikjxjf(xj , kj)ψ

†(xj) |0〉

+
N∑

l=1

(−1)l



∫ N∏

j 6=l
dxj e

ikjxjf(xj , kj)ψ
†(xj)


 t/2

kl − ε0 + iΓ
d† |0〉 (2.17)

is an eigenstate with energy E =
∑N

j kj . In verifying this one needs to remember that ψ†

are fermions and that the N -particle wavefunction is anti-symmetrized. Indeed we note that

the Hamiltonian, (2.12) with ψ being bosonic is the Dicke model which is fully interacting,

quantum impurity model whose multiparticle states are not products as they are here [71].

This completes the construction of the eigenstates of the RL model on the infinite line.

The next step is to determine the spectrum which we do in the standard manner of

quantum theory by restricting the system to be of size L and imposing some kind of bound-

ary conditions. Here periodic boundary conditions will be used as they are most convenient

but we will encounter other types in future chapters. In terms of the bulk operators this

condition is ψ†(x + L) = ψ†(x). The single particle energies are then quantized according

to

e−ikjL/2 =
kj − ε0 − iΓ
kj − ε0 + iΓ

eikjL/2 (2.18)

or rather

e−ikjL =
kj − ε0 − iΓ
kj − ε0 + iΓ

(2.19)
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The interpretation of this is that a single particle travelling around the system acquires a

phase shift, the
kj−ε0−iΓ
kj−ε0+iΓ term due to moving past the impurity. At the point x = L/2 it

also has a phase due to the plane wave part of eikjL/2. The wavefunction must then be equal

to that at x = −L/2 which has not scattered past the impurity but has a total phase of

e−ikjL/2. The resulting equations, (2.19) are known as the Bethe Ansatz equations (BAE)

or simply Bethe equations. We will encounter BAE again and again throughout this thesis

and see that (2.19) are a particularly simple example. Since the model is non interacting,

the single particle energies are not coupled. In forthcoming interacting models this will not

be the case.

Taking the log of the Bethe equations and rearranging a bit the single particle energy

is seen to satisfy

kj =
2π

L
nj +

2

L
arctan

[
Γ

kj − ε0

]
(2.20)

where nj are integers which are the quantum numbers of the state and must all be distinct

to have a non vanishing wavefunction. The form of this equation and the interpretation

is fairly transparent, the single particle energy is given by a bulk term, 2π/L times an

integer which is then shifted by the phase shift the particle acquires when going past the

impurity. The same basic form will also hold in more complicated impurity models wherein

the excitations and impurity phase shift become dressed. This will allow us to determine

the physical impurity phase shift in those models.

At this point we must discuss some issues when dealing with models which have a linear

dispersion. As Dirac pointed out in the early days of quantum theory Hamiltonians with

linear dispersion relations like the RL model and others which will be considered in future

chapters are unbounded from below. In order to construct physical states one must first fill

the empty vacuum |0〉 with negative energy particles from some cutoff, which we denote -K

up to the Fermi level. This will give the ground state, on top of which holes or particles



20

+−

−K −K

1

Figure 2.5: The linear spectrum of the RL model requires that we impose a cutoff on the
single particle energy of −K = −2πN/L. The ground state is the constructed by filling the
vacuum with negative energy particles from the cutoff up to the Fermi level. In the RL
model there is only a single branch of right movers as opposed to the two branches of the
Luttinger liquid.

can be added to get the rest of the Hilbert space. Any calculation can be performed in

the presence of this cutoff however if we wish to get expressions independent of the cutoff

scheme we have used it should be removed, i.e K →∞. To implement this in the RL model

the number of particles is taken to be N and the cutoff to be K = 2πN/L. Filling up the

negative energy particles by taking nj to be negative integers such that nj = −N, . . . ,−1

gives the ground state, see FIG. 2.5. In the thermodynamic limit it is better to work with kj

rather than the discrete quantum numbers nj . To this end note that the distance between

adjacent single particle energies in the ground state is

kj+1 − kj =
2π

L
+

2

L

(
arctan

[
Γ

kj+1 − ε0

]
− arctan

[
Γ

kj − ε0

])
(2.21)

In the limit of large system size kj+1 − kj vanishes as 1/L and we can derive a continuous

distribution for them, i.e the single particle density of states. Defining this by

ρ = lim
L→∞

1

L

nj+1 − nj
kj+1 − kj

, (2.22)
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the resonant level model density of states is

ρ(k) =
1

2π
+

1

πL

Γ

(k − ε0)2 + Γ2
(2.23)

for −K < k < 0 while when k > 0, ρ(k) = 0. The form of this expression, a sum of two

distinct terms is a common feature of QIMs. The first term is the standard one dimensional

density of states and is the contribution coming form the bulk fermions. The second term

is the modification due to the presence of the impurity, it depends explicitly on the dot

parameters and is of the order 1/L smaller than the bulk. In more complicated models the

impurity term will be identified by depending on some impurity parameter and it being

an order 1/L or 1/N term. This procedure to derive the density and in particular the

definition (2.22) will feature prominently in other analyses. In the interacting models which

will be studied however the coupling between different single particle energies will result in

an integral equation to determine the density.

Using this the ground state energy density of the system is given by

Egs/L =
1

L

N∑

j

kj (2.24)

=

∫ 0

−K
dk ρ(k)k (2.25)

It is typical to consider separately the bulk and impurity/dot parts of the density by writing

ρ(k) = ρb(k) + ρd(k)/L with the dot part naturally being the second term in (2.23). The

dot contribution to the energy is then obtained by integrating over the dot density of states

only Ed =
∫
ρd(k)k which predominantly receives contributions from energies resonant with

the dot energy k ∼ ε0.

A quantity of interest when studying models of this kind is the occupation or charge of

the dot in the ground state, nd =
〈
d†d
〉

which can be measured in an experimental system

by means of a quantum point contact [72]. There are a number of ways one may obtain this
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which are equivalent. The first is by integrating over the dot density of states nd =
∫
ρd(k)

while the second is via the Hellmann-Feynmann theorem which tell us that

nd =
∂Egs

∂ε0
=

∫ 0

−K
dk k

∂ρd(k)

∂ε0
. (2.26)

Using the fact that ∂ρd(k)
∂ε0

= −∂ρd(k)
∂k and integrating by parts one can see that these two

ways are indeed equivalent. An additional method to calculate this quantity which works

in the thermodynamic limit is to return to the Behte equation, (2.20) and sum over all

particles,

E =
N∑

j

kj =
2π

L

N∑

j

nj +
2

L

N∑

j

arctan

[
Γ

kj − ε0

]
(2.27)

The second sum is the dot contribution to the energy which in thermodynamic limit can

be turned into an integral. When doing this, only the bulk part of the density of states is

required as only this will contribute for L→∞. The dot occupation is therefore given by

nd =
∂

∂ε0

∫ 0

−K

dk

2π
arctan

[
Γ

k − ε0

]
(2.28)

which also gives the same answer. Nevertheless, in more complicated scenarios it may be

more convenient to use one method over another. We close this discussion of the ground

state by noting that one may safely remove the cutoff in any expression concerning the dot

without suffering any divergences as the dot density of states is sharply peaked about k ∼ ε0

and goes to zero at k → ±∞. For the ground state dot occupation we get

nd =

∫ 0

−∞

dk

π

Γ

(k − ε0)2 + Γ2
(2.29)

=
1

2
− 1

π
arctan

(ε0
Γ

)
(2.30)

Any bulk quantity will still depend upon the cutoff however this is not always the case in
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QIMs. We will comment more on this expression below but for the moment we note that

the it is a function of ε0/Γ and that in addition to being the coupling constant of the theory

it also sets a scale with respect to which all energies are measured.

The excitations above the ground state can be obtained by adding further electrons

above the Fermi surface, k = 0 which add 2πn/L to the energy of the system. Alternatively

one can introduce a hole to the ground state distribution so that nj+1 − nj > 1 for some j.

In the presence of this excitation the density of states is similar to (2.23) but with the hole

subtracted,

ρ(k) =
1

2π
− δ(k − kh) +

1

πL

Γ

(k − ε0)2 + Γ2
(2.31)

where kh < 0. Integrating this with k the total energy is now E = Egs + |kh|. Extra holes

contribute additively to the energy in the same way. If there are a macroscopic number

of holes the density of states of the particles and holes can be described by continuous

distributions, ρ(k), ρh(k) which satisfies

ρ(k) + ρh(k) =
1

2π
+

1

πL

Γ

(k − ε0)2 + Γ2
. (2.32)

Note that a single hole corresponds to ρh(k) = δ(k − kh), in agreement with our previous

statement. The energy associated to this is then given by integrating over the particle

density,
∫
kρ(k) = Egs −

∫
kρh(k).

We turn now to study the thermodynamic properties of the system and in particular

the finite temperature dot occupation. To begin we write down the partition function of

the theory

Z = Tre−βH =
∑

{nj}
e−βE({nj}) (2.33)

where the sum is over all different energy eigenstates which are labelled by the set of
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quantum numbers nj , j = 1 . . . N . In the thermodynamic limit the description of the states

in terms of nj can be exchanged for one in terms of ρ(k) and ρh(k). The partition function

is then written as a functional integral over these densities

Z =

∫
D[ρ]D[ρh]e−β(E−TS) (2.34)

with E being the energy of a particular particle hole configuration, T the temperature

and S the entropy associated to this configuration. This entropy is known as the Yang-

Yang entropy, it counts the number of microstates, labelled by a particular configuration of

integers nj , that are associated to a single macrostate given by the densities ρ(k), ρh(k)[73].

To calculate it consider a small segment of the k line of size dk over which ρ and ρh are

approximately constant. Within this region the number of available integers is given by

(
ρ(k) + ρh(k)

)
dk, of those ρh(k)dk are filled while ρh(k)dk are empty. The total number

of configurations is

[
L
(
ρ(k) + ρh(k)

)
dk
]
!

[Lρ(k)dk]! [Lρh(k)dk]!
. (2.35)

This means that the entropy within this region, dS is given by

dS = log

[(
ρ(k) + ρh(k)

)
dk
]
!

[ρ(k)dk]! [ρh(k)dk]!
(2.36)

≈ Ldk
{
ρ(k) log [1 + η(k)] + ρh(k) log

[
1 + η−1(k)

]}
. (2.37)

In going to the second line we have employed Stirling’s approximation. The total entropy

density is therefore obtained by integrating this over all k,

S/L =

∫
dkρ(k) log [1 + η(k)] + ρh(k) log

[
1 + η−1(k)

]
(2.38)

where η = ρ(k)/ρh(k). Once this is inserted into the partition function the functional



25

integrals can be evaluated by the stationary phase approximation. The result is that, Z is

determined by the extremum of the functional F = E − TS

F/L =

∫
dk k ρ(k)− T

{
ρ(k) log [1 + η(k)] + ρh(k) log

[
1 + η−1(k)

]}
. (2.39)

Varying F with respect to the densities gives

δF/L =

∫
dk k δρ− T

{
δρ log [1 + η(k)] + δρh(k) log

[
1 + η−1(k)

]}
. (2.40)

However since removing a particle is the same as adding a hole, the particle and hole

distributions are not independent. By using (2.32) and varying with respect to the densities

the dependence is found to be δρ = −δρh. Plugging this into the above expression and

setting δF = 0 then gives the the minimization condition

η(k) = e
k
T . (2.41)

This equation is known as the Thermodynamic Bethe Ansatz (TBA) equation. It is par-

ticularly simple in this model but we will see later it becomes much more complicated in

interacting models although the procedure to derive it is exactly the same as here. The

interpretation of the TBA will be the same in interacting models also, for example the

combination T log (η) gives the excitation energy of the system which can be readily seen in

this case. Evaluating the functional F at its minimum gives the free energy of the model.

After some algebra using (2.32) we find that the free energy density of the RL model is

F/L = −T
∫

dk

2π
log
[
1 + e−

k
T

]
− T

L

∫
dk

π

Γ

(k − ε0)2 + Γ2
log
[
1 + e−

k
T

]
. (2.42)

What is seen here is a common feature of Bethe ansatz impurity models. The free energy,

just like the ground state energy has split into two parts. The first is the bulk contribution

and is exactly the free energy of a one dimensional, chiral Fermion gas. The second is
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the free energy contribution due to the dot. Like before we identify it as it is order 1/L

smaller than the bulk contribution and explicitly depends upon the impurity parameters.

It takes a natural form, the quantity log
[
1 + e−

k
T

]
is integrated with the dot density of

states. It will be seen that this form is maintained even in interacting case although the

TBA equations are more complicated meaning that the e−
k
T term is replaced by a more

complicated expression that is not always analytically known in closed form. We note here

that the bulk term still requires a cutoff to be imposed by limiting the integration to be in

the region, −K < k but due to the properties of the dot density of states it can be removed

in the dot part. The dot contribution to the free energy density is therefore

fd = −T
∫ ∞

−∞

dk

π

Γ

(k − ε0)2 + Γ2
log
[
1 + e−

k
T

]
(2.43)

The Hellmann-Feynmann can then be used again so that differentiating this with respect

to the dot energy gives the finite temperature dot occupation. After using ∂k = −∂ε0 and

integrating by parts we see it is merely given by the density of states of the dot integrated

with the Fermi function

nd =

∫ ∞

−∞

dk

π

Γ

(k − ε0)2 + Γ2

1

1 + e
k
T

(2.44)

Again a similar expression will be found in interacting case also but with the Fermi function

replaced by a more complicated distribution. In the zero temperature limit the Fermi

function becomes a Heaviside function and we reproduce our ground state calculation.

Let us now examine our expression for the dot occupation and use it to determine the

overall behaviour of the system. At high temperature, T � Γ the free energy of the dot is

found to be fd = −T log(2) which is the free energy of a two level system. This indicates

that at high temperature the system is weakly coupled. It can be considered a decoupled two

level system and a chiral Fermi gas. At low temperature the free energy vanishes indicating

that the dot is delocalized or in other words is fully hybridized with the dot. We can check
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this against the dot occupation which at high temperature is either nd = 0, 1 depending

on the value of ε0 while at low temperature it is fixed to be nd = 1/2 (for ε0 = 0). The

same picture holds also if the relevant energy is ε0 rather than temperature. Returning

to the ground state expression we see that at low energy ε0 � Γ the occupation is 1/2

while at ±ε0 � Γ is is either 0 or 1. Note that here the quantity Γ has two meanings it is

both the coupling constant of the theory and the scale with respect to which one measures

the energy. In this light it is perhaps tautological to state that in the high temperature

regime system is weakly coupled since Γ � T defines this regime and similarly in the low

temperature, strong coupling regime. As we move on to more complicated models however,

similar statements will become less obvious and we can refer back to the intuition developed

here.

2.2.2 Anisotropic Kondo Model

In this section we move on to a much more complicated and important model, the anisotropic

Kondo model (AKM). The AKM is the archetypal quantum impurity model exhibiting

many features common to QIMs such as asymptotic freedom, running coupling constants

and spin-charge separation. The basic format of the last section will be followed here also,

the eigenstates will be constructed, the ground state and its properties determined after

which the finite temperture behavior is studied.

The Hamiltonian is

H = −i
∑

a=↑↓

∫
ψ†a(x)∂xψa(x) + J‖ψ

†
a(0)ψ†a(0)σzaaσ

z
0

+ J⊥
(
ψ†↑(0)ψ†↓(0)σ+

0 + ψ†↓(0)ψ†↑(0)σ−0
)
. (2.45)

where ψ†a(x) are right moving fermions with spin a =↑, ↓ coupled via exchange interaction to

a localized magnetic impurity at the origin described by the Pauli matrices ~σ0. It describes

a free, chiral Fermi gas interacting with a magnetic impurity at the origin. Unlike the RL
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(a)

⇑↑↓ ↑ ↓ ↓↑

(b)

⇑↓↑↓ ↑ ↓ ↓↑

1
Figure 2.6: The anisotropic Kondo model describes a single impurity spin at the origin
interacting via spin exchange with a bath of fermions. In (a) we depict the bath as a non
interacting one dimensional wire. Alternatively the bath can be a higher dimensional Fermi
liquid with ψ†↑,↓ describing the radial part of s-wave electrons. In this perspective fermions
to the left of the impurity are incoming and those to the right being outgoing. (b) At low
temperature the impurity spin is screened by the bulk becoming a singlet. This is often
depicted as being formed from a single bulk particle and the impurity spin as we do here
but is actually a highly non trivial many body effect.

model the system is not spin polarized and the bulk fermions may exchange their spin with

the impurity. In this form and in slightly modified versions it is perhaps the most studied and

cited model in condensed matter physics. The physics of the Kondo model is encountered

in almost every area of the field from heavy fermions [9] and topological materials[74] to

quantum dots[64, 63] and AMO systems [75, 76]. It has been studied using using a plethora

of different techniques both numerical and analytic and has been the proving ground for

some fundamental approaches like Anderson’s scaling theory[77], Wilson’s renormalization

group [78] and the Bethe Ansatz[68, 69].

The Hamiltonian presented here can be used as an effective description of dilute magnetic

impurities inside a metal, in which case chiral fermions represent incoming and outgoing

s-waves scattering off the impurity. Alternatively it could be realized as a quantum dot

coupled to a 2-dimensional Fermi liquid leads, where the quantum dot has been tuned so
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Dot	

Source	

Drain	

Electrodes	

Figure 2.7: A scanning electron microscope image of a quantum dot system described by
the Kondo model. A two dimensional electron gas is formed using layered GaAs and AlAs
onto which elctorde are deposited. The electrodes deplete the gas below them forming two
regions, the source and drain, separated by a small island. This island forms a quantum
dot with discrete energy levels. Tunnelling to and from the dot is controlled by the middle
electrodes on the left. Transport measurements through the system exhibit Kondo physics.
Image adapted from [64]

that the electron number on the dot does not change, see FIG. 2.7.

The solution of the isotropic model, J⊥ = J‖ was obtained by Andrei [33] and Wiegmann[79]

while the anisotropic version in region 0 ≤ J⊥ ≤ J‖ was solved by Wiegmann[35]. Since

then many extensions of the Kondo model have been solved, including higher spin[80, 81],

multichannel[82, 83, 84] and multiflavor systems as well as generalizations to other symme-

try groups[85]. Our review here mostly follows the comprehensive review paper of Tsvelik

and Wiegmann [69] but includes some comments on alternative approaches to their methods

later in the chapter .

We begin with the single particle solution, which is written generally as

|k〉 =
∑

aj=↑,↓

∫
fa1,a0(x)eikxψ†a1

(x) |0〉 ⊗ |a0〉 (2.46)
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where |a0〉 = |↑〉 or |↓〉 is the state of the impurity spin. Following the logic of the last

chapter, the wavefunction is expanded as a sum of Heaviside functions,

fa1,a0(x) = A[10]
a1,a0

θ(−x) +A[01]
a1,a0

θ(x).

Applying the Hamiltonian to this state and requiring it to be an eigenstate with energy k

fixes the relationship between the amplitudes on either side of the impurity. Upon doing

this, the relation is found to be

A[01]
a1a0

=
[
S10A[01]

]
a1,a0

. (2.47)

Here S10 is a 4× 4 matrix, called the single particle or impurity S-matrix which is given by

S10 = eiζ




1 0 0 0

0 sinh (c)
sinh (c+iγ)

sinh (iγ)
sinh (c+iγ) 0

0 sinh (iγ)
sinh (c+iγ)

sinh (c)
sinh (c+iγ) 0

0 0 0 1




, (2.48)

cos (γ) =
cos (J‖)

cos (J⊥)
, coth2(1/c) =

sin2 (J‖)

sin
(
J‖ − J⊥

)
sin
(
J⊥ + J‖

) , (2.49)

ζ = J‖ − J⊥/2 . (2.50)

We have chosen here to replace the Hamiltonian parameters J⊥,‖ with c and γ in order to

bring S10 to the form above which will become important when determining the spectrum.

Often c will be referred to as the impurity parameter and γ as the anisotropy. The mapping

between J⊥,‖ and c, γ was derived in [35] and is in fact not universal as the former are

bare parameters which will become renormalized by the interactions and depend upon the

renormalization scheme used and how one regularizes the delta function interaction. At

weak coupling the different renormalization and regularization schemes agree so we may
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write

γ ∼
√
J2
‖ − J2

⊥, c/γ ∼ 1/J‖. (2.51)

In the end these are replaced with a universal quantity, TK known as the Kondo scale or

Kondo temperature. Results written only in terms of this allow one to compare between

the different schemes.

To understand this better, consider for the moment the equation

−i∂xf(x) + 2gδ(x)f(x) = 0 (2.52)

which can be solved using the Ansatz f(x) = Aθ(−x) + Bθ(x). Inserting this into the

above equation the coefficients are determine to be related by B = e2i arctan (g)A. This is

the approach used in many works most notably [33]. Alternatively one can rewrite the

equation as ∂x log[f(x)] = 2gδ(x). Integrating this equation gives the solution instead to

be f(x) = e2igSgn(x) which corresponds to B = e2igA. This second approach is favored

by other authors including in [69]. The discrepancy between the two results comes from

the pathological nature of the delta function interaction and the different ways it can be

regularized. Equations of this type appear again and again in Bethe Ansatz solutions of

QIMs and one therefore needs to be careful when dealing with them. The approach we

take here is to work with the generic phase shift B = eiφ(g)A with the understanding the

relationship between g and φ depends on the manner in which we derived the eigenstates

(although both schemes agree for at small g). The phase shift can thereafter be related

to a physical parameter like the Fermi edge exponent, Luttinger parameter K or replaced

entirely by the a scale like the Kondo scale in order to obtain universal results[86].

Obtaining the two particle eigenstate is the next step in the Bethe Ansatz procedure.
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We write the 2 particle state as

∑

a1,a2,a0

∫
Fa1,a2,a0(x1, x2)

2∏

j=1

eikjxjψ†aj (xj) |0〉 ⊗ |a0〉 (2.53)

and again expand the wavefunction in Heavisides. This time we include extra regions

corresponding to the ordering in configuration space of the bulk fermions,

Fa1,a2,a0(x1, x2) =
∑

Q

A[Q]
a1,a2,a0

θ(xQ) (2.54)

= A[120]
a1,a2,a0

θ(x2 − x1)θ(−x1)θ(−x2) +A[210]
a1,a2,a0

θ(x1 − x2)θ(−x1)θ(−x2)

+A[102]
a1,a2,a0

θ(−x1)θ(x2) +A[201]
a1,a2,a0

θ(x1)θ(−x2)

+A[012]
a1,a2,a0

θ(x2 − x1)θ(x1)θ(x2) +A[021]
a1,a2,a0

θ(x1 − x2)θ(x1)θ(x2)(2.55)

Where Q refers to all different ordering of the 2 particles and the impurity and θ(xQ) is

a Heaviside which is non zero only inside that region. In the RL model our two particle

state only consisted of 4 bulk terms labelled by the position of the fermion in relation to

the impurity here we also include different amplitudes for different orderings of the bulk

fermions in relation to each other.

Applying the Hamiltonian to our 2-particle state and suppressing spin indices we find

that

A[102] = S20A[120], A[012] = S10A[102] (2.56)

A[201] = S10A[210], A[021] = S20A[201] (2.57)

where S10 acts as in (2.48) in the a1, a0 spaces and as the identity on the a2 space and S20

similarly acts as the matrix in (2.48) but in the a2, a0 spaces and the identity in the a1

space. The relationship between the two sets of orderings of particles x1 < x2 and x2 < x1

is however not fixed by the Hamiltonian. The reason for this is because the kinetic part of
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Figure 2.8: The Yang Baxter equation is a statement that in an integrable model the order
of scattering events does not matter. In this figure we depict the a three particle scattering
event. On the left particles 1 and 2 scatter first followed by 1 and 3 and then 2 and 3. On
the right hand side 2 and 3 scatter first then 1 and 3 followed by 1 and 2. Assigning an
S-matrix to each intersection of lines we arrive at the Yang Baxter equation. In more than
one dimension the Coleman-Mandula theorem states that a symmetry such as this cannot
occur unless all the S-matrices are trivial[87]. In one dimensional system the theorem does
not apply and integrable models exhibit non trivial conservation laws which allow one to
independently move each of the lines. Holding the 1 and 3 lines fixed one can shift the 2 line
to the right, such a shift is associated to a constant of motion and therefore the amplitude
for this event is unchanged resulting in the Yang Baxter equation.

the Hamiltonian gives zero when acting on the Heavisides,

[∂x1 + ∂x2 ] θ(x2 − x1) = 0 (2.58)

Thus according to the Hamiltonian A[120] = S12A[210] with S12, the two particle S-matrix

being completely arbitrary. This ultimately results from the enormous degeneracy present

in a massless system with linear dispersion, as is the case for the bulk of the AKM. This

degeneracy can be seen in the two particle case by noting that the state with single particle

energies k1, k2 is degenerate with a k1 − q, k2 + q state. Practically this means that there

are an infinite number of different bases in which the bulk can be diagonalized, the addition

of the impurity breaks translational invariance and lifts the degeneracy [88]. The form of

the impurity dictates that a particular basis or rather a particular S12 is picked out.

The “choice” of basis is fixed by the consistency of the construction which is enforced

by the Yang Baxter equation. This equation is central to the Bethe Ansatz construction
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A[201]A[102]

A[021]

A[210]

A[012]

A[120]

S12

S10

S20

S20

S10

S12

Figure 2.9: The amplitudes in the two particle wavefunction are related to each other by
application of the single and two particle S-matrices. Starting from one set of amplitudes
A[120] (suppressing the spin indices) we can proceed either clockwise or counter clockwise
direction. The result should be the same in either direction if the construction is consistent.
Equating the two final expressions gives the Yang Baxter equation (2.59)
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and appears as a crucial element in all studies of integrable models. In general it is written

as

SijSikSjk = SjkSikSij (2.59)

while in the 2 particle case under consideration now takes i = 1, j = 2, k = 0. It states that

the ordering of a scattering event in an integrable model should not matter, see FIG. 2.8. In

addition if the S-matrices satisfy this equation then starting from one set of amplitudes, for

example A
[120]
a1,a2,a0 one can consistently construct the rest of the wavefunction, see FIG. 2.9.

In a non interacting model, like the RL one may take S12 = 1 as the single particle S-matrices

are c-numbers however in the AKM they are non commuting matrices, S20S10 6= S10S20. In

addition to this the S-matrix should satisfy a unitarity condition, S12S21 = 1 which states

that if we swap the order of particles 1 and 2 and then swap them back there should be

no effect. Given these conditions we take S12 = S21 = P 12 where P 12 is the permutation

operator on the spaces labelled by a1, a2. It acts as
[
P 12

]a′1a′2
a1,a2

Aa′1,a′2 = Aa2,a1 and therefore

satisfies the unitarity condition but also using P 12S10P 12 = S20 satisfies the Yang -Baxter

equation. Alternatively one can directly substitute the matrix form

P 12 =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




. (2.60)

into (2.59) and confirm that it is a solution of the Yang Baxter equation. Using this in (2.55)

we get the consistent 2 particle eigenstate of the AKM. Therefore despite the fact that there

are no fermion-fermion interactions present in the Hamiltonian the impurity dictates that

we should include S12 in the wavefunction. This is the first indication that the impurity

causes strong correlations to occur between bulk fermions. The choice of P 12 is not unique,
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an overall phase can be included and still the Yang Baxter equation is satisfied. This will

not effect the final results however and so we do not include it.

We may now go on to construct the N particle wavefunctions. The state with energy

E =
∑N

j kj is a standard generalization of the 2 particle case,

∣∣∣~k
〉

=
∑

Q

∫
d~xAQ~a θ(xQ)

N∏

j=1

eikjxjψ†aj (xj) |0〉 ⊗ |a0〉 . (2.61)

Where ~a = {a1, . . . aN , a0} with aj =↑, ↓ the spin of the jth particle, 0 indicating the

impurity, Q are orderings of the N particles and the impurity in configuration space and

θ(xQ) is a Heaviside function which is non zero only for a certain ordering. There are (N+1)!

regions in the N particle state. The amplitudes are related to each other via products of

S-matrices, for example A[...jk... ] = SjkA[...kj... ] where Sij = P ij for j, k 6= 0 or if k = 0 Sj0 is

given by the operator acting as the matrix in (2.64) in the jth particle and impurity spaces

and the identity elsewhere. The consistency of the construction is guaranteed by the fact

that all the S-matrices satisfy the Yang-Baxter equation (2.59) and also SijSji = 1 which is

the unitarity condition. That this is a sufficient condition to give a consistent wavefunction

can be see explicitly in the three particle case as shown by FIG. 2.10 or more generally

by noting that the S-matrices form a representation of the symmetric group of N objects

who’s group law is equivalent to the Yang Baxter equation [89].

We have successfully diagonalized the AKM on the infinite line which in itself is a worthy

accomplishment given the highly nontrivial nature of the model however it is rather difficult

to discern the physics of the model directly through its Bethe Ansatz eigenstates. To study

the equilibrium properties of the AKM however we instead go beyond this and determine its

spectrum. This is done, as before by imposing periodic boundary conditions on the system
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Figure 2.10: For the three particle state the Yang Baxter diagrom of FIG. 2.9 is generalized
to the above figure with the numbers at the vertices indicating the ordering of particles. In
this diagram 4 indicates the impurity. Each face of the three dimensional shape gives a new
consistency condition which needs to be satisfied. There are only two types however which
occur, the Yang Baxter equation and the unitarity condition SijSji = 1 which are satisfied
by the choice Sij = P ij . Figure taken from [68]
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of size L. The resulting equation (c.f (2.19)) is

e−ikjLA[12...N0]
σ1...σN

= (Zj)
σ′1...σ

′
N

σ1...σN
A

[12...N0]
σ′1...σ

′
N

(2.62)

Zj = Sjj−1 . . . Sj1Sj0SjN . . . Sjj+1 (2.63)

where Zj is an operator which acts in the spin space of the particles that takes the jth

particle around the system scattering past all others and the impurity on the way. Using

the Yang Baxter equation it is straightforward to not only show [Zj , Zk] = 0 but furthermore

that Zj = Z1, ∀j. The fact that all Zj are equal comes from the lack of a dimensionful

parameter in the Hamiltonian, in cases where the coupling constants are dimensionful (see

chapter 6) we will see that they Zj are not equal but nevertheless commute with each other.

The task is now to diagonalize Z1 operator whose eigenvalues will give us the single particle

energy levels according to (2.62).

2.2.3 Quantum Inverse Scattering Method

This new diagonalization problem can be solved by a second Bethe ansatz method known

as the quantum inverse scattering method (QISM). We will not go into all the details here,

mostly providing results and refer the reader to several excellent reviews in [88, 69, 90]. The

first step in this procedure is to introduce the R-matrix

R(u) =




1 0 0 0

0 sinh (u)
sinh (u+iγ)

sinh (iγ)
sinh (u+iγ) 0

0 sinh (iγ)
sinh (u+iγ)

sinh (u)
sinh (u+iγ) 0

0 0 0 1




(2.64)
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which is a function if u, the spectral parameter and satisfies a continuous version of the

Yang Baxter equation,

Rij(u− v)Rik(u)Rjk(v) = Rjk(v)Rik(u)Rij(u− v) (2.65)

with i, j, k labelling 2 dimensional vectors spaces on which the R-matrices act e.g. Rij acts

on the i and j spaces. This particular choice of R-matrix is associated to numerous integrable

models including the XXZ spin chain, [91], the 6-vertix model[19] and the massive Thirring

model [92] and shall feature later on in this thesis also. In the context of the AKM it allows

us to package both the impurity and two particle S-matrices together as Si0 = eiζRi0(c)

and Sij = Rij(0). The next step is to construct the monodromy matrix, Ξ(u) which is a

product of R-matrices

ΞA(u) = R1A(u− θ1) . . . RNA(u− θN )R0A(u− θ0) (2.66)

where the index A refers to an auxiliary particle space, 0, . . . , N refer to the impurity and

particle spaces and we introduced shifts in the spectral parameters, θj known as inhomo-

geneities. The monodromy matrix also satisfies a version of the Yang Baxter equation

RAB(u− v)ΞA(u)ΞB(v) = ΞB(v)ΞA(u)RAB(u− v). (2.67)

The trace of the monodromy matrix over the auxiliary space is an important object known

as the transfer matrix,

t(u) = TrA{ΞA(u)}. (2.68)
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By taking the trace of (2.67) over the spaces A and B we find that the transfer matrix

commutes with itself for any spectral parameter

[t(u), t(v)] = 0.

The obvious consequence of this is that one can simultaneously diagonalize transfer matrices

evaluated at different spectral parameters. In addition by writing t(v) as a series expansion,

t(v) =
∑∞

0 vnIn with In being some operators we get that

[t(u), In] = 0 (2.69)

which means that t(u) has an extensive number of commuting partners. Consequently the

transfer matrix is integrable. By Using QISM one can prove that a certain problem is

integrable before actually constructing any eigenstates. In contrast when using the Bethe

Ansatz method one cannot know if it will be possible before actually attempting to solve

the problem.

While this is an interesting construction and ties in somewhat with our theme of inte-

grability one may ask what it has to do with the problem of diagonalizing Zj . The answer

is that by choosing the inhomogeneities θ0 = −c and θj = 0, j > 0 and taking u = 0 we get

eiζt(0)|θj=0,θ0=−c = Zj (2.70)

Therefore our diagonalization problem stemming from the application of periodic boundary

conditions is also integrable. This mapping of the periodic boundary condition problem

onto another integrable system is the crucial ingredient to solving a QIM through Bethe

Ansatz and accordingly is the most difficult part. There are many QIMs for which one can

construct the appropriate eigenstates on the infinite line as we did in the last section but

which lack a R-matrix description, as in (2.64), and therefore a mapping such as this when
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periodic boundary conditions are introduced.

Aside from proving that one can solve the eigenvalue problem we are interested in,

the quantum inverse scattering method provides a way to construct the eigenstates of the

transfer matrix. In the auxiliary space, A the monodromy matrix can be written as a 2× 2

matrix

ΞA(u) =



A(u) B(u)

C(u) D(u)


 (2.71)

where A,B,C,D are rather complicated operators acting on the 0, . . . , N spaces. In this

notation the transfer matrix is given by t(u) = A(u) + D(u). The commutation relations

between these operators at different spectral parameters can be derived by writing out the

Yang Baxter equation (2.67) in this notation and upon doing this one finds that the opera-

tors commute with themselves, [A(u), A(v)] = [B(u), B(v)] = [C(u), C(v)] = [D(u), D(v)] =

0 but also

A(u)B(v) =
sinh (u− v + iγ)

sinh (u− v)
B(v)A(u)− sinh (iγ)

sinh (u− v)
B(u)A(v) (2.72)

D(u)B(v) =
sinh (v − u+ iγ)

sinh (v − u)
B(v)D(u)− sinh (iγ)

sinh (v − u)
B(u)D(v). (2.73)

The C and B operators are then used as creation and annihilation operators to construct

the eigenstates of the transfer matrix. Consider the state constructed from C operators at

different spectral parameters,

M∏

j=1

C(λj) |⇓〉 (2.74)

where M ≤ (N + 1)/2 and |⇓〉 = ⊗N |↓〉 is called the reference state which acts as the

vacuum for the construction. The action of the transfer matrix on the reference state can

be computed easily using (2.64) (2.66) and (2.71). Acting upon the state (2.74) with the
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transfer matrix and employing the commutations relations above one finds that it is indeed

an eigenstate provided certain conditions on the λj are met. For our particular choices of

inhomgeneities the eigenvalues of t(0) associated with the state (2.74) are

M∏

j

sinh (λj − iγ/2)

sinh (λj + iγ/2)
(2.75)

with the λj satisfying a set of Bethe Ansatz equations

[
sinh (λj − iγ/2)

sinh (λj + iγ/2)

]N
=

sinh (λj + c+ iγ/2)

sinh (λj + c− iγ/2)

M∏

j 6=k

sinh (λj − λk − iγ)

sinh (λj − λk + iγ)
. (2.76)

The λj are known as Bethe parameters or Bethe roots and they encode all the information

about the spin degrees of freedom in the AKM. In addition to the Bethe equations the

Bethe parameters must also satisfy a type of Pauli exclusion principle λj 6= λk. If this is not

satisfied it is possible to check that the state (2.74) vanishes[93]. It is another peculiarity of

1D physics that Bethe Ansatz models always exhibit a Pauli principle of this sort regardless

of the statistics of the system.

We can interpret these set of equations in a similar way we did before as a particle

moving around the system. In this instance however the “particle” here is a flipped spin

and the system around which this up spin travels is the spin space of the N particles and

impurity of which M are flipped. The left hand side of the equations is the plane wave

phase that the spin acquires as it moves around the system. The product on the right

hand side is the phase shift acquired each time the spin moves past other flipped spins of

bulk particles while the remaining term, which depends on c is the phase shift of the spin

moving past the impurity. We see here again the impact that the impurity has on the bulk

system. Despite them having no interactions amongst themselves the particles or rather

their spin parts acquire complicated phase shifts and become strongly correlated with each

other. Interestingly only a single term in these equations actually depends on the impurity

parameter, c.
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Collecting the results of this and the previous section we have that an N -particle eigen-

state of the AKM has energy E =
∑N

l=1 kl where the single particle energies are determined

by

e−iklL = eiζ
M∏

j=1

sinh (λj − iγ/2)

sinh (λj + iγ/2)
(2.77)

[
sinh (λj − iγ/2)

sinh (λj + iγ/2)

]N
=

sinh (λj + c+ iγ/2)

sinh (λj + c− iγ/2)

M∏

j 6=k

sinh (λj − λk − iγ)

sinh (λj − λk + iγ)
(2.78)

and the total z component of spin, which is conserved, for this eigenstate is Sz = (N + 1−

M)/2. Before proceeding with the analysis of these equations, two important limits should

be noted. The first is γ → 0 which is the isotropic limit. To take this one rescales the

Bethe parameters λ → γλ and then takes the limit. This reproduces the isotropic Kondo

Bethe equations [33, 34]. The other limit is taking γ = π/2 in which case all two particle

phase shifts disappear and it can be checked that one obtains the RL model of the previous

section. This is often called the Toulouse limit. In the next section the Bethe equations are

studied with γ arbitrary and any results are valid also when either of these limits is taken.

2.2.4 Groundstate and excitations

The exact diagonalization of the AKM has been achieved with the spectrum completely

described at finite N and L by (2.77) and (2.78). We are now in a position to examine

the ground state and excitations of the system. Before proceeding however we make some

definitions which will be useful throughout the thesis
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p(x, n, 1) = i log

[
sinh (x+ inγ/2)

sinh (x− inγ/2)

]
(2.79)

p(x, n,−1) = i log

[
cosh (x+ inγ/2)

cosh (x− inγ/2)

]
(2.80)

an(x) =
1

2π

d

dx
p(x, n, 1) (2.81)

bn(x) =
1

2π

d

dx
p(x, n,−1) (2.82)

the Fourier transform of an and bn are also used extensively and are given by

ãn(ω) =
sinh ([π − nγ]ω/2)

sinh (πω/2)
, b̃n(ω) = −sinh (nγω/2)

sinh (πω/2)
(2.83)

With these in place the ground state of the model can be constructed. To do this the

appropriate quantum numbers of the system must be identified. Taking the log of (2.77)

and (2.78) gives

kl =
2π

L
nl +

1

L
ζ +

1

L

M∑

j=1

p(λj , 1, 1) (2.84)

Np(λj , 1, 1) + p(λj + c, 1, 1) = 2πIj +
∑

j 6=k
p(λj − λk, 2, 1) (2.85)

with nl and Ij being integers or half integers depending on the value of M . These serve as

the quantum numbers of the system and can be associated with the charge and spin degrees

of freedom respectively. Inserting (2.85) into (2.84) and summing over all particles gives

the total energy of the system to be

E =

N∑

l

2π

L
nl +

M∑

j

2π

L
Ij +

N

L

M∑

j

p(λj , 1, 1) +
N

L
ζ. (2.86)

The first two terms here are the bulk energy while the second two, which are order 1/N

smaller, correspond to the impurity energy. The last term is a constant phase shift which

is routinely ignored in analyses of QIMs as it has no effect on the overall physics of the
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Figure 2.11: Here we plot the Bethe parameters vs their quantum numbers Ij for the
ground state configuration of the AKM with γ = π/3 and (a) N = 50 (b) N = 100. Below
this we plot continuous ground state distribution, ρgs(λ) (Red solid line) from (2.87) again
for γ = π/3. The points are the discrete version evaluated using (2.21) and the Bethe roots
with (c) N = 50 and (d)N = 100. Even for 50 particles the continuous distribution provides
a good fit to the roots with the gaps between the points closing as we increase N .

system[69, 68]. It can be removed entirely by adding a forward scattering delta function

impurity at the origin with an appropriate strength[88] and in what follows it shall be

dropped from our analysis.

Considering just the bulk energy for the moment we see it is described by two sets

of quantum numbers associated to spin and charge which are decoupled from each other.

One may independently change one set of quantum numbers with out affecting the other.

This is a manifestation of the famous spin-charge separation which was encountered already

through bosonization [10, 14]. The ground state of the model is constructed by filling the

charge quantum numbers up from the cutoff. As in the RL model we take K = 2πD with

D = N/L and nl = −l. For the spin part we must take M = (N + 1)/2 and fill the spin

quantum numbers up from −(N + 1)/4 to (N + 1)/4 (we consider odd N for convenience).

The spin quantum numbers are in one to one correspondence with the Bethe parameters
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Figure 2.12: (a) We plot the Bethe roots at γ = π/3, c = 10 both with (Red dots) and
without (Blue dots) the impurity contribution for N = 50. (b) The discrete distribution
of the roots for N = 100 with and without the impurity contribution. We see that the
impurity contributes to a small shift in the distribution of the roots which reduces with
increasing N .

λj and so the spin part of the system may be descirbed in terms of these instead. The

advantage of doing this is that we may proceed just as in (2.21) and derive an equation for

the density of the λj

ρgs(λ) = Na1(λ) + a1(λ+ c)−
∫

dµa2(λ− µ)ρgs(µ) (2.87)

Note that now the density appears on both sides of the equation due to the correlations

between the spins of the particles giving us a linear integral which must be solved. The

solution is found straightforwardly via Fourier transform with the result

ρgs(λ) =
N

2γ cosh
(
π
γλ
) +

1

2γ cosh
(
π
γ (λ+ c)

) . (2.88)

In FIG. 2.11 we plot the Bethe roots for the ground state distribution for N = 50, 100 and

compare the them with the distribution derived above. One can see that already for these

small numbers the continuous distribution provides a good fit to the roots and that as N

is increased they become more and more dense along the curve.

This density of states enjoys the same separable structure we saw before. We can

identify the first term with the bulk spin degrees of freedom and the second as the impurity
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part which provides an order 1/N contribution compared to the bulk part. In FIG. 2.12

we compare the positions and distribution of the Bethe roots when the impurity term is

present and absent.

The total Sz of the groundstate can be calculated by integrating over the density of

states and in particular the impurity spin has

sz0 =
1

2
−
∫

1

2γ cosh
(
π
γ (λ+ c)

) (2.89)

= 0 (2.90)

which shows the the impurity spin is screened in the ground state, see FIG. 2.6. The spin

contribution to the energy is similarly calculated to be

Eimp =
N

L

∫
dλ

p(λ, 1, 1)

2γ cosh
(
π
γ (λ+ c)

) (2.91)

The excitations above the ground state can be either in the charge or spin sector. The

former, called holons are the same as in the RL model and arise from removing one of

the charge quantum numbers. The spin excitations, termed spinons similarly come from a

hole in the spin quantum numbers. Unlike holons, however the strongly correlated nature

of the spin degrees of freedom means that by introducing a spinon the entire Fermi sea

is modified by its presence. To see this back reaction and calculate the spinon energy we

consider two holes introduced to the ground state at λ = λ1, λ2. The density of states of is

then a solution of

ρ(λ) = Na1(λ) + a1(λ+ c)− δ(λ− λ1)− δ(λ− λ2) (2.92)

−
∫

dµa2(λ− µ)ρ(µ) (2.93)

The linear nature of this integral equation allows one to separate out the undisturbed ground

state contribution from the modification due to the excitation, ρ(λ) = ρgs(λ)+ρh(λ), where
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the latter solves

ρh(λ) = −δ(λ− λ1)− δ(λ− λ2)−
∫

dµa2(λ− µ)ρh(µ) (2.94)

and the former is given by (2.88). This new integral equation can also be solved via Fourier

transform and upon doing so can be used to find that the excitation energy of the two holes

is

Eh =
N

L

∫
dλ p(λ, 1, 1)ρh(λ) (2.95)

= 2D arctan e
π
γ
λ1 + 2D arctan e

π
γ
λ2 (2.96)

The total spin of this excitation can be determined by Szh = −
∫
ρh = π

π−γ which is unex-

pectedly not an integer or half integer but in the isotropic limit γ → 0 gives Sz = 1 2. So in

the isotropic limit this gives a spin-1 or triplet excitation and it is natural then to assume

that in this limit each spinon carries spin 1/2. To confirm that this is the case one should

be able to construct a singlet excitation also using two holes. To do so one must consider

a complex conjugate pair of Bethe roots, λs ± iγ/2 called a 2-string in addition to the two

holes at λ1, λ2 with λs = (λ1+λ2)/2. This modifies the density to ρ = ρgs(λ)+ρh(λ)+ρs(λ)

where the ρs(λ) is the modification to the density of states caused by the presence of the

2-string. It is determined by the equation

ρs(λ) = −a3(λ− λs)− a1(λ− λs)−
∫

dµa2(λ− µ)ρs(µ). (2.97)

Proceeding as before the excitation energy is E = Eh + Es with the part due to the string

2In [69], this non integer value is attributed to a renormalisation of the compressibility and g-factors
due to the the two particle S-matrix, S12. In the AKM this is seen as a spurious effect and subsequent
calculations redefine both quantities with this fact accounted for. As we shall see later on the same S-matrix
appears in studies of the Luttinger impurity systems. In that case however the effect is not disregarded in
this way and must occur in order to obtain the correct current and compressibility.
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being

Es = p(λs, 3, 1) + p(λs, 1, 1) +

∫
dλ p(λ, 1, 1)ρs(λ) (2.98)

= 0. (2.99)

The proof of this is most easily seen by Fourier transforming the expression on the right

hand side, recalling that the transform of a convolution is just the product of the transforms.

The addition of the string therefore causes no change in the energy, the singlet excitation

energy being given by (2.96). It does however change the total z spin, which is now given

by
∫
ρh + ρs = 2γ

π−2γ . In the isotropic limit this becomes 0, justifying the name of singlet

excitation. More excitations can be created by adding more holes or holes and 2-strings to

the ground state.

What we have seen here is that introducing an excitation to the system causes the ground

state density of states to be disturbed due to the strong correlations amongst the particles.

This in turn dresses the excitations and results in a relativistic dispersion, 2D arctan e
π
γ
λ
.

Note that these spinon excitations are eigenstates of the Hamiltonian meaning the system

can be viewed as a gas of spinons which have infinite lifetime and are unaffected by the

impurity other than to pick up a phase shift as they move past it. This phase shift is the

physical impurity phase shift and comes from the dressing of the bare phase shift which

appears in the Bethe equations, the p(λ+ c, 1, 1) term. It is possible to calculate this object

using boundary conformal field theory [13] and the bootstrap method[94] and so it is an

important cross check to be able to obtain it using Bethe Ansatz. The method of doing this

was developed in the context of the chiral Gross-Neveu model[95] and relies on being able

to take the universal limit D →∞ while still having L finite.

To calculate it we define the counting function,

Z(λ) = Np(λ, 1, 1) + p(λ+ c, 1, 1)−
∑

j 6=k
p(λ− λk, 2, 1) (2.100)
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which has the property Z(λj) = 2πIj/L provided λj is a solution of the Bethe equations

(2.85) and furthermore is related to the density by ∂λZ(λ) = ρ(λ). If the solution of the

Bethe equations contains a hole at say λh corresponding to Ih being missing from the

sequence {Ij} then we have Z(λh) = 2πIh/L. In the thermodynamic limit we can replace

the sum in (2.101) by an integral over the density of states so for the state with two holes

at λh
1,2 corresponding to the missing quantum numbers Ih

1,2 we get

Z(λ) = Np(λ, 1, 1) + p(λ+ c, 1, 1)−
∫

dµ p(λ− µ, 2, 1)
[
ρgs(µ) + ρh(µ)

]
. (2.101)

Evaluating this at one of the hole positions λ = λh
1 and using (2.92) we find after some

algebra that

2D arctan e
π
γ
λh

1 =
2π

L
Ih

1 +
1

L

∫ ∞

−∞

dω

4πiω

eiω(λh
1+c)

cosh (γω/2)

+
1

L

∫ ∞

−∞

dω

4πiω
eiω(λh

1−λh
2) sinh [(π − 2γ)ω/2]

sinh [(π − γ)ω/2] cosh (γω/2)
(2.102)

Comparing this with our equation for the single particle energy in the RL model (2.20) we

can identify the second term on the right with the physical impurity phase shift and the

third term with the phase shift of the λh
1 hole scattering past the λh

2 hole. It is interesting

to note that the after a redefinition of the rapidity λ → γλ the impurity phase shift is

independent of the anisotropy and coincides with the isotropic case [88] and is given by

δ(λ) = π − 2 arctan (eπ(λ+c/γ)). (2.103)

2.2.5 Thermodynamics of the AKM

We now examine the thermodynamic properties of the AKM, following the the same logic

as the RL model. Rather than the very simple expressions encountered in that instance

however, the correlations amongst the spin degrees of freedom will result in a huge increase

in complexity. To get started we must discuss the types of solutions to the Bethe equations
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iπ

-iπ

0

2-string

3-string

4-string

1

Figure 2.13: We depict here some of the types of strings allowed by the choice of γ = π/ν
in the complex λ plane as given by (2.104). The distance between adjacent red crosses in
the imaginary direction is γ/2.
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that are possible. As was seen in the last section, the Bethe parameters, may be real as in the

ground state or come in complex conjugate pairs called a 2-string as in a singlet excitation.

These do not exhaust the possibilities however and other configurations of complex Bethe

parameters are also allowed. The simplest types, called j-strings occur when γ = π/ν with

ν > 2 a positive integer. Other values of γ allow for different string configurations but in

this section we shall only discuss this simplest case, for a full account see [96]. A j-string

is a collection of Bethe parameters, arranged in a string like pattern around the real axis

taking the form

λ(j,m) = λj + i(2j + 1−m)γ/2, (2.104)

for m = 1 . . . , j, see FIG. 2.13. Given our choice for the anisotropy only strings of length

j ≤ ν − 1 are allowed. These types of strings are said to have parity vj = 1 and within this

nomenclature real Bethe parameters are called 1-strings. In addition to these we may also

have strings of negative parity which we refer to as ν-strings. These, vν = −1 strings are

centred on the iπ/2 axis, taking the form λν + iπ/2. Solutions containing Bethe parameters

which do not fall into the string classification are also known to exist however in the ther-

modynamic limit and when considering the finite temperature properties of the system it is

known that only the string solutions contribute[97, 98, 99, 100, 101, 102]. For an arbitrary

configuration of j-strings, λ
(j,m)
αj = λ

(j)
αj + i(2j + 1−m)γ/2 with αj = 1, . . . ,Mj . The Bethe

equations become

Np(λ(j)
αj , nj , vj) + p(λ(j)

αj + c, nj , vj) = 2πI(j)
αj +

ν∑

k

Mk∑

αk

Θjk(λ
(j)
αj − λ(k)

αk
) (2.105)

where Θ is the phase shift of a j-string and a k-string,

Θjk(λ) = p(λ, |nj − nk|, vjvk) + p(λ, nj + nk, vjvk)

+2

nj+nk−2∑

q

p(λ, |nj − nk|+ 2q, vjvk) (2.106)
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with nj = j, for vj = 1 j = 1 . . . , ν−1, nν = 1 for vν = −1. In the thermodynamic limit the

real part of these strings can be described by their own continuous distributions denoted

ρn(λ) and ρh
n(λ) where the later is the distribution of n-string holes which satisfy the set of

coupled integral equations

Naj(λ) + aj(λ+ c) = ρj(λ) + ρh
j (λ) +

ν∑

k

Ajk ∗ ρk(λ) (2.107)

Naν(λ) + aν(λ+ c) = −ρν(λ)− ρh
ν(λ) +

ν∑

k

Aνk ∗ ρk(λ) (2.108)

for 1 ≤ j ≤ ν where we have introduced Ajk(λ) = 1
2π

d
dλΘjk(λ) and also defined aν(λ) =

b1(λ) and ∗ denotes a convolution f ∗ g(x) =
∫

dy f(x − y)g(y). These are known as the

Gaudin-Takahashi equations and are equivalent to (2.32) in the RL model. There are some

obvious differences however, firstly there are ν of them (for ν irrational there will infact be

an infinite number of them) and secondly they are all coupled. The (spin) energy of the

state described by these is

E =
ν∑

j=1

∫
dλ p(λ, nj , vj)ρj(λ) (2.109)

and the Yang Yang entropy associated to it is a straightforward generalization of what we

had before

S =
ν∑

j=1

∫
dλρj(λ) log [1 + ηj(λ)] + ρh

j (λ) log
[
1 + η−1

j (λ)
]
. (2.110)

where ηj = ρj/ρ
h
j . Using this we can construct the spin part of the free energy by minimizing

the functional F = E − TS with respect to ρj and ρh
j . As we said before this works the

same in interacting and noninteracting models alike. The TBA equations determining the
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saddle point of the free energy are

ηj(λ) =
D

T
p(λ, nj , 1) +

ν∑

k

(−1)δj,νAjk ∗ log [1 + ηj(λ)] (2.111)

for j < ν and log ην = − log ην−1. And the free energy is given by

F = N
ν∑

j

(−1)δj,ν
∫
aj(λ) log [1 + ηj(λ)] +

ν∑

j

(−1)δj,ν
∫
aj(λ+ c) log [1 + ηj(λ)](2.112)

Note that the TBA do not depend upon the impurity parameter, c. This is because the

saddle point of the free energy in the thermodynamic limit should only depend upon bulk

quantities, a term of order 1/L cannot shift the position of the saddle point. As should be

expected however the free energy does receive an impurity contribution. These equations

can be simplified considerably by inverting the matrix Ajk in the TBA. We carry out a

similar calculation in the next chapter so we merely state that the resummed TBA are

log ηj(λ) = s ∗ log (1 + ηj+1(λ))(1 + ηj−1(λ)) + δj,ν−2s ∗ log (1 + η−1
ν (λ))

−δj,1
2D

γT
arctan e

π
γ
λ

(2.113)

log ην−1(λ) = s ∗ log (1 + ην−2(λ)) = − log ην(λ) (2.114)

where s(λ) = 1
2γ sech(πλ/γ). The driving term in these set of integral equations can be

identified as being proportional to the excitation energy of a single spinon, which is a

common occurrence in TBA of this kind. One can also resum the free energy, using the

j = 1 TBA equation (2.111) inserted into (2.112) one finds it is

F = Egs − TN
∫

dλs(λ) log
[
1 + η−1

1 (λ)
]
− T

∫
dλs(λ+ c) log

[
1 + η−1

1 (λ)
]

(2.115)

We see here a recognizable form consisting of a sum of bulk and impurity terms. The

second term is the bulk part of the free energy, it can be checked that this is the as in
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(a)	 (b)	

(c)	 (d)	

Figure 2.14: The universal TBA equations (2.118) can be numerically integrated using an
iterative procedure. Here we plot the thermodynamic function eϕj , j < ν for (a) γ = π/4
and (b) γ = π/5. Below this we plot the impurity free energy (red solid) given by (2.120) as

function of T/TK for (c) γ = π/4 and (d) γ = π/5. We also plot
∂Fimp

∂T (blue solid) and see
it approaches − log(2) (dashed black). Thus the free energy vanishes at low temperature
while the high temperature value approaches −T log(2) in agreement with our RG analysis.

the RL model[69] (recall that we consider here only the spin part so it should be the same

half of a two component free, chiral Fermi gas, i,e a one component chiral, free Fermi gas).

The last term is the impurity contribution, it takes a similar form to the RL model in

that it is an integral over the impurity ground state density of states times the many body

generalization of log (1 + e−k/T ).

We are now almost ready to analyze the thermodynamics of the AKM, the only step

remaining being to take the universal limit. Recall in the RL model we could safely remove

the cutoff on the impurity terms and obtain results which only depended on ε0/Γ. The

same is true here also. We must take D → ∞ in both the free energy and the TBA to do
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this we define the universal thermodynamic functions

ϕj(λ) =
1

T
log
(
ηj(λ+

γ

π
log γ

T

D
)
)
. (2.116)

Inserting these into (2.114) and approximating the driving term,

−2D

T
arctan exp

(
π(λ+

γ

π
log γ

T

D
)/γ

)
' −2e

π
γ
λ
, (2.117)

an approximation valid since only this range of values contributes to η1(λ), we obtain the

universal (or scaling) form of the TBA equations,

ϕj(λ) = s ∗ log (1 + eϕj−1(λ))(1 + eϕj+1(λ))1+δj,ν−2 − δj,12e
π
γ
λ
, j < ν − 1(2.118)

ϕν−1(λ) = s ∗ log (1 + eϕν−2(λ)) = −ϕν(λ) (2.119)

which are independent of the cutoff. In terms of these the impurity part of the free energy

is given by

Fimp = −T
∫

dλ s

(
λ+

γ

π
log

T

TK

)
log
[
1 + e−ϕ1(λ)

]
(2.120)

wherein we have introduced the Kondo temperature, TK . This scale has been dynamically

generated by the model and expressed in terms of the bare parameters is

TK = De
−π
γ
c
. (2.121)

We can now take the universal limit by removing the cutoff D → ∞ while holding TK

fixed. For weak bare coupling and anisotropy we can write this in terms of the original

Hamiltonian coupling constant using (2.51)

TK ∼ De−π/J‖ (2.122)
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Figure 2.15: The RG flow diagram of the AKM reproduced and adapted from [69]. The
vertical and horizontal axes are J⊥ and J‖ respectively and the trajectories are lines of
constant γ. The red triangle represents the region for which there is a Bethe Ansatz solution,
the green square is the physical parameter regime and the blue dome the weak coupling
region where poor mans scaling can be applied. The remainder of the diagram is produced
by invoking symmetry arguments. Image adapted from [69].

in agreement with perturbation theory. Beyond weak coupling expansion the dependence

of the Kondo scale on the bare parameters does not agree with perturbation theory due to

the different renormalisation schemes used. Importantly though all quantities calculated in

either perturbation theory, numerically or in this way via Bethe Ansatz agree once expressed

in terms of T/TK .

The form of the Kondo scale allows us to gain a picture of the RG flow of the AKM.

Inverting the relationship we see that that the coupling constant runs meaning that its

strength depends upon the relevant energy scale,

J‖(Λ) ∼ π

log
(
TK
Λ

) (2.123)

for some energy scale, Λ which could be temperature or an external magnetic field. In

particular as Λ→∞ the coupling constant c vanishes. This is the phenomena of asymptotic

freedom, the coupling constant flows from weak coupling at high energy to strong coupling at
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low energy with the consequence that the impurity becomes screened at low temperatures

and is decoupled at high temperature. Away from the isotopic line the picture is more

complicated and J⊥ runs also with the quantity γ being a constant along the flow.

In FIG. 2.15 we depict the RG flow of the model. The vertical and horizontal axes are

J⊥ and J‖ respectively, the curves are lines of constant γ which does not run under the

RG flow and the arrows indicate the direction of the flow from high energy to low. The

physical region which corresponds to the Kondo effect is contained within J⊥, |J‖| ≤ π, the

green rectangle and the region for which the Bethe ansatz solution was obtained in [35] is

0 < J‖ < J⊥, the red triangle. The region in which we have analyzed the thermodynamics

the overlap of the two regions, the physical Bethe Ansatz region. Note that there exists a

region which is unphysical yet still solvable by Bethe Ansatz. The blue dome indicates the

perturbative region where the poor man scaling analysis of Anderson can be applied and

agrees with the diagram as a whole[77]. We see that within the physical region all lines flow

to (π, π) which is the strong coupling point where the impurity is screened. The vertical

line at the edge of the region has the value γ = π/2 and is the Toulouse line, the physics of

which is described by the RL model we discussed in the previous section, and the diagonal

red line has γ = 0 and describes the isoptropic model. Note that the anisotropy is irrelevant

and both the AKM and iostropic models flow to the same point.

This overall picture can then be confirmed by explicitly calculating the high and low

temperature impurity entropy as we did for the RL model which can be done analytically

or by numerically integrating the TBA equations. In FIG. 2.14 carry out a numerical

integration of the TBA and free energy, we plot the thermodynamic functions eϕj for γ =

π/4 and π/5. One sees that the free energy vanishes at low energy and approaches −T log 2

as the temperature increases.
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2.2.6 Alternative approach to impurity thermodynamics

An important observation to make regarding calculation of impurity quantities using Bethe

Ansatz is that any impurity terms may effectively be ignored when calculating say the

saddle point of the free energy or determining the ground state. The reason being that once

we have identified the appropriate basis in which to diagonalize the system, i.e the correct

S12, the impurity only modifies the bulk behavior by terms of order 1/N . Such a term could

therefore not change the overall ground state or finite temperature properties of the bulk.

Adopting such a viewpoint when studying QIMs can sometimes be advantageous due the

simplifications that can occur when the impurity terms are dropped. To see this in action

we can take an alternative approach to calculating the impurity free energy along the lines

of the final method used to calculate the dot occupation of the RL model (2.28). Inserting

(2.105) into (2.109) we find that the impurity contribution to the energy is

Eimp = − 1

L

ν∑

j=1

∫
dλ p(λ+ c, nj , vj)ρj(λ). (2.124)

where we have already taken N and L large so the system is described by the densities ρj .

At finite temperature the particular densities appearing here are those which correspond to

the solutions of the TBA, ηj . The relationship between these can be found by inverting the

matrix 1 +A in (2.107) which gives

ρj(λ) + ρh
j (λ) = s ∗

[
ρh
j−1(λ) + ρh

j+1(λ)
]

+ [Ns(λ) + s(λ+ c)] δj,1 (2.125)

along with ρν−1 + ρh
ν−1 = s ∗ ρh

ν−2 and ρν−1 + ρh
ν−1 = ρν + ρh

ν . Since the densities will be

used in the dot energy the s(λ+ c) term from the j = 1 equation can be dropped as it will

not contribute in the thermodynamic limit giving,

ρj(λ) + ρh
j (λ) = s ∗

[
ρh
j−1(λ) + ρh

j+1(λ)
]

+Ns(λ)δj,1. (2.126)
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Comparing these with the TBA (2.111) one can identify

ρj(λ) = (−1)1+δj,νγ
TL

2π

d

dλ
log
[
1 + η−1

j (λ)
]
. (2.127)

This relation is exact when the impurity term is neglected and otherwise receives an ad-

ditional correction of the order 1/N . To find the exact correction caused by the impurity

requires a more careful treatment than allowed by the Yang Yang method as presented here.

Using the methods developed in [103] it would be possible to find it, however when working

in the N →∞ limit it is not necessary.

Inserting this into the expression for the dot energy we find that the contribution to the

free energy is given by

Fimp =

ν∑

j=1

(−1)1+δj,ν

∫
dλ

2π
p(λ+ c, nj , vj)

d

dλ
log [1 + ηj(λ)] (2.128)

=
ν∑

j

(−1)δj,ν
∫
aj(λ+ c) log [1 + ηj(λ)] (2.129)

in agreement with our previous calculation. Therefore both approaches, this one and the

exact method of the previous section yield identical results in the thermodynamic limit.

The advantage of the former is that we have gained the expression (2.127) which can be

very useful when calculating properties of the impurity.

2.2.7 The Interacting Resonant Level model

Before concluding our review of Bethe Ansatz and QIMs we briefly discuss another model

closely related to the AKM and RL model, the interacting resonant level (IRL). The Hamil-

tonian was first introduced as a means of studying the AKM[104] and then subsequently

solved via Bethe ansatz [105]. Following the discovery of the exact solution of the Kondo

model the model fell out of favor somewhat but has since enjoyed a resurgence as an effective

description of a quantum dot coupled to Fermi liquid leads.
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Figure 2.16: The IRL model is strongly coupled at low energy and describes the physics
in the region of the Kondo strong coupling fixed point. The RG flow in the neighborhood
of the fixed point is depicted above. The U < 0 region coincides with the physical AKM
model, (bounded by the red lines) whereas the unphysical region corresponds to U > 0.
Image adapted form [69].

The system in its simplest form consists of right moving fermions coupled to a resonant

level at the origin like the RL model but with an additional Coulomb interaction between

the occupied level and the bulk. The Hamiltonian is

H =

∫
−iψ†(x)∂xψ(x) + t

[
ψ†(0)d+ d†ψ(0)

]
+ ε0d

†d

+Ud†dψ†(0)ψ(0) (2.130)

where we have taken the Coulomb interaction to be strength U . As mentioned before, this

Hamiltonian is integrable and one can construct the eigenstates in the same manner as the

previous models. The single particle eigenstates are the same as the RL model and given

by (2.16) while the general two particle state can be written

|k1, k2〉 =

∫ ∑

Q

AQθ(~xQ)eik1x1+ik2x2ψ†(x1)ψ†(x2) |0〉

+

∫ ∑

P

[
BP

1 e
ik1x +BP

2 e
ik2x
]
θ(xP )ψ†(x)d† |0〉 . (2.131)
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Here, in the first line we have expanded the two fermion part of the wavefunction into 6

regions which contain every ordering of the particles with respect to the origin 3

∑

Q

AQθ(~xQ) = A[120]θ(x2 − x1)θ(−x2)θ(−x1) +A[210]θ(x1 − x2)θ(−x2)θ(−x1)

+A[201]θ(−x2)θ(x1) +A[102]θ(−x2)θ(x1)

+A[021]θ(x1 − x2)θ(x2)θ(x1) +A[012]θ(x2 − x1)θ(x2)θ(x1) (2.132)

In the second line of (2.131), the wavefunction in the dot part is expanded in regions P

which correspond to the fermion being either to the left or to the right of the origin e.g.

B
[10]
2 is the amplitude for the particle with k2 to the left of the dot while the other particle

is on it.

Acting on this state with the Hamiltonian we find it is an eigenstate provided,

A[201]

A[210]
=

A[012]

A[102]
=
k1 − ε0 − iΓ
k1 − ε0 + iΓ

, (2.133)

A[102]

A[120]
=

A[021]

A[201]
=
k2 − ε0 − iΓ
k2 − ε0 + iΓ

(2.134)

where these are recognizable as being the phase acquired by a particle with energy kj

scattering past the dot. Furthermore the two particle interaction U imposes the condition

A[210]

A[120]
=

A[021]

A[012]
= S12 (2.135)

S12 =
k1 + k2 − 2ε̄0 − iU2 (k1 − k2)

k1 + k2 − 2ε̄0 + iU2 (k1 − k2)
. (2.136)

S12 being the S-matrix when a particle of energy k1 scatters past one of energy k2, and

we defined ε̄0 = ε0 − ΓU/2. Proceeding in the same way all the eigenstates of the IRL can

be constructed and the spectrum determined by applying periodic boundary conditions.

3The original solution of the model in [105] had a different expansion of the general 2 particle wavefunction
corresponding to a different regularization of the delta functions and Heavisides. The resulting wavefunction
is similar however there are some slight but important differences.
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In contrast to the AKM this does not lead to another eigenvalue problem which needs

to be solved via QISM. Since the two particle S-matrix, S12 is actually just a phase, the

Bethe equations are obtained directly by writing down the periodic boundary conditions

equation. In this sense the IRL is a much easier model to solve but one which contains no

less interesting physics. The resulting set of Bethe equations are

e−ikjL =
kj − ε0 − iΓ
kj − ε0 + iΓ

N∏

l

kj + kl − 2ε̄0 − iU2 (kj − kl)
kj + kl − 2ε̄0 + iU2 (kj − kl)

. (2.137)

As was the case with the AKM there is some ambiguity in how the parameter U appears in

the above two particles phase shift. It must be related to some measurable quantity. To do

this we recall that using the Coulomb gas representation of Anderson and Yuval[15, 106, 107]

one can view the partition function of this model as being due to a series of Fermi edge

singularities [108]. By comparing results in both the Bethe formulation and the Coulomb

gas we can replace any instance of U with the Fermi edge exponent

αFES(U)↔ 1− 2

π
arctan (U/2). (2.138)

Note that usually Fermi edge exponent consists of two terms the Mahan term and the

Anderson term. It would seem that the above relation is missing the latter and would only

agree for U � 1 however this the same discrepancy we encountered when studying the

AKM. Once the above replacement is made the results in both methods agree.

In opening this section we mentioned that there exists a close relationship between

the IRL and the AKM, in fact it is often stated that the two models are the same. To

expand more on this we rewrite the IRL Bethe equations in terms of the particle rapidity

kj = Dexj − ε̄0 [109],

e−iDe
xjL = eiε̄0L

cosh 1
2 (xj − c+ iγ)

cosh 1
2 (xj − c− iγ)

N∏

l

sinh 1
2 (xj − xl − 2iγ)

sinh 1
2 (xj − xl + 2iγ)
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where we have taken γ = π
2 + arctan (U2 ) and ec ∝ Γ

D . Which are very close to those

describing the AKM. We shall encounter very similar equations in the next section and so

leave a full analysis to then however it should be noted that the left hand side of the two

sets of Bethe equations are different. This difference prevents one from equating the two

models outside of the low energy regime where one can show they agree [69]. Thus the

low energy physics of the IRL is the same as the AKM and its RG diagram is the same

as the AKM in the region of the strong coupling fixed point see FIG. 2.16. Comparing

the definition of the anisotropy parameter in both models at weak bare coupling gives
√
J2
‖ − J2

⊥ ≈ π/2 + U/2 meaning that the physical region of the AKM corresponds to an

attractive Coulomb interaction U < 0.

2.3 Conclusion

In this chapter we have studied the physics of a number of quantum impurity models, the

resonant level model, the anisotropic Kondo model and then very briefly the interacting

resonant level model. To do this we have used the Bethe Ansatz method which allowed

us to calculate the exact eigenstates and spectra of each model. We saw that the same

basic principles applied in both the relatively simple RL model and more complicated the

AKM. The exact solution allowed us to determine the ground state, excitations and free

energy although we only carried this out in the first two. We also discussed some subtleties

regarding coupling constants in Bethe Ansatz solutions and emphasized the importance of

relating constants to physical quantities.

In this very brief overview of QIMs and Bethe Ansatz we have neglected to mention some

important topics. For example the AKM remains integrable in the presence of an applied

magnetic field, in fact since the total z-component of spin is conserved the eigenstates are

the same as we derived above but the energy level naturally get shifted. It is possible then to

derive the ground state and finite temperature properties of the impurity in the presence of

this field, we shall complete such calculations in subsequent chapters and so for brevity have
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omitted them in this chapter. Another omission is the quantum transfer matrix method

approach to integrable thermodynamics. This elegant approach does not require the string

hypothesis but gives entirely equivalent results. Throughout the thesis we shall rely upon

the Yang Yang method and the string hypothesis however we present a brief overview of

this method as it applies to QIMs in the appendix.

Throughout the rest of the thesis we will re use the same concepts and techniques

sometimes in a modified form. We will endeavor to provide a very brief review of these

concepts when they are employed in future chapters and ask the reader to refer back here

for a more complete account.
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3

Quantum Dot at a Luttinger Liquid edge

3.1 Quantum dot at a Luttinger liquid edge

In this chapter we begin to present the original work of this thesis. We study a system

consisting of a Luttinger liquid coupled to a quantum dot on the boundary. The Luttinger

liquid is expressed in fermionic form and the dot is modeled as an interacting resonant level

on to which the bulk fermions can tunnel. We use the fermionic form of the Hamiltonian so

as to make use of the Bethe Ansatz method which is the main theoretical tool of this thesis.

The model can be considered a warm up problem to those presented in the next chapters.

It is simpler as the bulk system has no internal degrees of freedom and the impurity only

allows forward scattering.

We will solve the Hamiltonian exactly and construct all eigenstates using a nonstandard

coordinate Bethe Ansatz. This nonstandard appraoch will be extended in the next chapters

to more complex models.

3.2 Introduction

As we discussed in the introductory chapter Luttinger liquid theory posesses some remark-

able features. Notably, the presence of interaction causes the Fermi surface to be destroyed

so that the excitations are collective bosonic density perturbations. The effects of the elec-

trons being dissolved are most dramatic when the system is coupled to an impurity and in

particular to a quantum dot [12]. Quantum dots are created by confining a two dimensional

electron gas to small enough size that its energy levels become discrete and the relevant
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t

d†ψ±

1

Figure 3.1: Our system consists of a semi infinite Luttinger liquid coupled to a quantum
dot modeled as a resonant level. The Luttinger liquid consists of left and right moving
interacting fermions which can tunnel to and from the level and experience a Coulomb
force from an occupied dot.

degrees of freedom on the dot are fermionic. Therefore when coupled to a Luttinger liquid

there exists an interplay between the tunneling which is mediated by fermions and the large

number of bosons excited as a fermion is added to the bulk.

The system we study in this chapter is depicted in FIG. 3.1: a spinless Luttinger liquid

is coupled to a quantum dot at the boundary. The model can describe a quantum dot

placed at the end of a spin-polarized nano wire[110] or placed in the middle of a fractional

quantum Hall edge [50]. We construct the exact eigenstates of the system through the Bethe

Ansatz method and go on to study both the zero and finite temperature properties of the

system. In particular we compute the exact dot occupation as a function of the dot energy

in all parameter regimes. Through the exact solution we show system flows from weak

to strong coupling for all values of the bulk interaction, with the flow characterized by a

non-perturbative Kondo scale, TK . The weak coupling regime corresponding to a decoupled

(or localized) dot and Luttinger liquid while the strong coupling regime constitutes a dot

that is fully hybridized with the bulk. We identify the critical exponents at the weak and

strong coupling regimes.

Having analyzed the system thoroughly using Bethe Ansatz we compare with work done

on this model using the method of Bosonization. We show that although a naive analysis of

the system using this method will produce similar conclusions one must make an incorrect

identification of the bulk system in order to do so.
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3.3 The Hamiltonian

As depicted in FIG 3.1 we consider a Luttinger liquid on a half line. The Hamiltonian is

given by

HLL = −i
∫ 0

−L/2
dx(ψ†+∂xψ+ − ψ†−∂xψ−)

+4g

∫ 0

−L/2
dxψ†+(x)ψ†−(x)ψ−(x)ψ+(x) (3.1)

where ψ†± are right and left moving fermions restricted to the space x ∈ [−L/2, 0] [10] and

we have set vf = 1 and εf = 0. There are normally two U(1) conserved charges present

in HLL namely the number of left and right movers, N̂± =
∫ 0
−L/2 ψ

†
±(x)ψ±(x). These are

combined to a single conservation law by the boundary condition ψ−(0) = −ψ+(0) mixing

the two chirality particles.

By itself this Hamiltonian is easy to diagonalize and it is most conveniently done by

unfolding the system to the full line using ψ−(x) = −ψ(−x) and ψ+(x) = ψ(x) for x ≤ 0.

The result of this is

H ′LL = −i
∫ L/2

−L/2
dxψ†∂xψ +

∫ L/2

−L/2
4gψ†(x)ψ†(−x)ψ(−x)ψ(x)

so that only right movers are present but the interaction is now non local and the system

extends from −L/2 to L/2. In the unfolded model the interaction occurs between two

particles only when x1 + x2 = 0 and we can expand the wavefunction in plane waves and

as a sum of Heaviside functions θ(±(x1 + x2)). The general two particle eigenstate with

energy E = k1 + k2 can therefore be written as,

|k1, k2〉 =

∫
d~xF (x1 + x2)

2∏

j=1

eikjxjψ†(xj) |0〉

where similar to previous models we take F (z) = Aθ(−z) + Bθ(z). Acting on this state
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with H ′LL we find it to be an eigenstate provided

[−i∂x1 − i∂x2 + 4gδ(x1 + x2)]F (x1 + x2) = 0. (3.2)

The solution of this is easily found to be

F (x1 + x2) = θ(x1 + x2) + eiφθ(−x1 − x2) (3.3)

where φ = −2 arctan (g) is the two particle phase shift. The relation between φ and g

is dependent on how one regularizes the delta function interaction however the different

schemes one can use agree at weak coupling so that one can write φ ∼ −2g, (c.f. (2.51)).

The generalization to higher particle numbers is straightforward. The N particle eigen-

state with energy E =
∑

j kj is

∣∣∣~k
〉

=

∫
d~x
∏

i<j

F (xi + xj)
N∏

j=1

eikjxjψ†(xj) |0〉 (3.4)

which can be confirmed explicitly by acting upon this state with H ′LL.

Having identified the eigenstates of the Luttinger liquid on a half line we can now

determine the spectrum. As is standard in quantum mechanics we do this by imposing a

boundary condition which will give us a quantization condition for the single particle energy

levels. Imposing periodic boundary conditions ψ(L/2) = ψ(−L/2) in the unfolded language

of H ′ corresponds to an open boundary condition, ψ+(−L/2) = −ψ−(−L/2) in the original

folded system of HLL. This constrains the single particle energies kj , j = 1, . . . N according

to

e−ikjL = ei(N−1)φ (3.5)

with the total energy being the sum of these E =
∑N

j kj . Thus the energy levels of a
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Luttinger liquid in a box are shifted by a constant compared to those of a free model,

E =

N∑

j

2πnj
L
−N(N − 1)

φ

L
(3.6)

with nj being integers which serve as the quantum numbers of the state.

As we discussed in the previous chapter the system can likewise be described using

bosonization so that the Hamiltonian takes the form

HLL =
uF
2π

∫ 0

−L/2
dxK [∇ϕ(x)]2 +

1

K
[Π(x)]2 (3.7)

where ϕ(x) and Π(x) are canonically conjugate bosonic fields and K ≈ 1 − 2g/π. We

will naturally want to compare the bosonic and fermionic approaches which requires us to

determine this relation between K and φ. To do so we compute the compressibility in the

fermionic language and match it to the known result from bosonization. With this in mind

we recall that the linear spectrum of the fermionic model (3.1) means we need to impose

a momentum cutoff of −D and construct the ground state by populating states from this

level up. Therefore in the thermodynamic limit the ground state energy for the system with

density D = N/L and chemical potential µ is,

E

L
=

∫ 2πD−D

−D

[
k −

(
φ

∫ 2πD−D

−D

dq

2π

)
− µ

]
dk

2π
. (3.8)

Varying the density with both the cutoff and µ held fixed we can find how the Density

depends upon µ which is used to find the compressibility of the bulk. Sending D → D+δD

and minimizing E with respect to δD we get 2π(1− φ
π )D = D+µ and so the compressibility

is related to φ by φ/π = 1− κ/κ0 where we denote the free compressibility by κ0 = 1/2π

and that of the Luttinger liquid κ. An analogous calculation performed in the bosonic

language gives the compressibility in terms of K[10, 14]. The relation between the our
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bosonic and fermionic parameters is

φ

π
= 1− 1

K
. (3.9)

We replace the renormalization scheme dependent coupling g with the scattering phase φ

which can be directly related to measurable quantities via (3.9). Note that being a phase

φ is restricted to lie in the interval [−π, π] and therefore the fermionic Hamiltonian (3.1)

can only realize K ∈ [1/2,∞]. It should be kept in mind however that the Luttinger

Hamiltonian serves only as the low energy description of many one dimensional systems

provided g and K are not too large. The allowed range of values of K depending upon

specifics of the original model.

The Luttinger wire is attached to a quantum dot modeled by a resonant level with

energy ε0 via a tunneling term t [111]. They are further coupled via a Coulomb interaction

U ,

Ht =
t

2
(ψ†+(0)− ψ†−(0))d+ h.c, (3.10)

Hd = ε0d
†d+

U

2
d†d

∑

σ=±
ψ†σ(0)ψσ(0). (3.11)

When coupled to the dot the conservation law takes the form N̂ = N̂+ + N̂− + n̂d, the

total particle number (here n̂d = d†d). In writing the Coulomb term in this may we can

view U > 0 as being a repulsion between an occupied dot and a fermion at the edge of the

wire or alternately as an attractive interaction between a hole on the dot and a fermion on

the edge. The later viewpoint will prove useful when analyzing the renormalization group

behaviour of the model.
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3.4 The Eigenstates

We will proceed with the diagonalization of H = HLL +Ht +Hd in the usual Bethe Ansatz

manner by first finding the single particle eigenstates, then the two particle states from

which we deduce the N particle solution. Following this the spectrum is determined in

terms of the Bethe Ansatz equations by imposing boundary conditions on the system.

Turning now to the full model we again unfold the system as before but this time must

consider first the single particle state. The most general single particle state of energy k

can be written as

|k〉 =

∫
eikx

[
A[10]θ(−x) +A[01]θ(x)

]
ψ†(x) |0〉+Bd† |0〉 (3.12)

Upon acting on this state with the Hamiltonian we find it is an eigenstate provided,

S10 =
A[01]

A[10]
=

k − ε0 − iΓ
k − ε0 + iΓ

, (3.13)

B =
t

k − ε0

(
A[10] +A[01]

)
. (3.14)

The quantity Γ = t2/2 is the hybridization width while S10 is the single particle S-matrix for

fermion scattering past the dot. Since the bulk interaction is not active in the single particle

sector this eigenstate coincides with the resonant level model of the previous chapter.

Moving to the two particle case the interaction parameters U and g enter into play. We

can write the state with energy E = k1 + k2 as

|k1, k2〉 =

∫ ∑

Q

AQθ(~xQ)eik1x1+ik2x2ψ†(x1)ψ†(x2) |0〉

+

∫ ∑

P

[
BP

1 e
ik1x +BP

2 e
ik2x
]
θ(xP )ψ†(x)d† |0〉 . (3.15)

Here, in the first line we have expanded the two fermion part of the wavefunction into 8 re-

gions which contain every ordering of the particles in addition to distinguishing whichever is
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closest to the origin, labelled byQ ∈ {[120], [210], [012], [021], [102A], [102B], [201A], [201B]}.

For example the amplitude A[102B] corresponds to the region with x1 < 0 < x2 and

|x1| > |x2| whereas A[102A] has |x2| > |x1|. The θ(~xQ) are Heaviside functions which

are non zero only in the region Q. Explicitly we have

∑

Q

AQθ(~xQ) = A[120]θ(x2 − x1)θ(−x2)θ(−x1) +A[210]θ(x1 − x2)θ(−x2)θ(−x1)

+A[102A]θ(−x2 − x1)θ(x2)θ(−x1) +A[102B]θ(x2 + x1)θ(x2)θ(−x1)

+A[201A]θ(x2 + x1)θ(−x2)θ(x1) +A[201B]θ(−x2 − x1)θ(x2)θ(−x1)

+A[021]θ(x1 − x2)θ(x2)θ(x1) +A[012]θ(x2 − x1)θ(x2)θ(x1) (3.16)

These extra regions compared to standard Bethe wavefunctions are required by the non

local interaction and we will see throughout this thesis that this is necessary when searching

for Bethe Ansatz solutions of Luttinger impurity sytems. In the second line of (3.15), the

wavefunction in the dot part is expanded in regions P which correspond to the fermion

being either to the left or to the right of the origin e.g. B
[10]
2 is the amplitude for the

particle with k2 to the left of the dot while the other particle is on it represented by d†.

Acting on this state with the Hamiltonian we find it is an eigenstate provided,

A[201A]

A[210]
=

A[012]

A[102A]
=
k1 − ε0 − iΓ
k1 − ε0 + iΓ

, (3.17)

A[102B]

A[120]
=

A[021]

A[201B]
=
k2 − ε0 − iΓ
k2 − ε0 + iΓ

, (3.18)

A[102A]

A[102B]
=

A[201B]

A[201A]
= eiφ (3.19)

A[210]

A[120]
=

A[021]

A[012]
= S12 (3.20)

with

S12 =
k1 + k2 − 2ε̄0 − iU

′

2 (k1 − k2)

k1 + k2 − 2ε̄0 + iU
′

2 (k1 − k2)
(3.21)
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being the S-matrix when a particle of energy k1 scatters past one of energy k2, and we

defined,

arctan (U ′/2) = arctan (U/2)− arctan (g)

ε̄0 = ε0 − ΓU ′/2.

The parameters U ′ and ε̄0 are bare quantities and as such depend upon the regularization

scheme employed. These parameters must be related to universal quantities to acquire

meaning as is always the case for renormalizable field theories. Below we relate U ′ to K

and ε̄0 to the renormalized dot energy.

Generalizing to N particles, the state consists of parts with the dot occupied or unoc-

cupied. The latter is written as

∣∣∣~k
〉

=
∑

Q

∫
AQθ(~xQ)e

∑N
j kjxj

N∏

j=1

ψ†(xj) |0〉 . (3.22)

The sum is now over 2NN ! regions Q and the amplitudes are related to each by generalisa-

tions of the the various phase shifts given in (3.13), (3.21) and (3.19),

Sj0 =
kj − ε0 − iΓ
kj − ε0 + iΓ

(3.23)

Sij =
ki + kj − 2ε̄0 − iU

′

2 (ki − kj)
ki + kj − 2ε̄0 + iU

′

2 (ki − kj)
. (3.24)

The occupied dot part can also be written in such a fashion, we omit it here as we will only

require (3.22) to proceed. The consistency of the solution is guaranteed as the S-matrices

satisfy the reflection equation [112],

Sk0eiφSj0Sjk = SjkSj0eiφSk0 (3.25)
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along with the Yang Baxter equation SkiSjiSjk = SjkSjiSki. In contrast to the AKM they

satisfy these consistency conditions trivially as all the S-matrices are phases and furthermore

note that Sij was determined by the Hamiltonian rather than being a solution of the Yang

Baxter equation.

The k dependent two body S-matrix (3.21) is the same form as the IRL model which

describes a dot coupled to Fermi liquid leads [105]. The effect of the bulk interaction on this

is to shift U → U ′. This makes explicit the relationship between the IRL and the Luttinger

resonant level model seen in [113], that is, when only the thermodynamics of the dot are

concerned one can deal with the level-lead interaction instead of a bulk interaction. Bulk

properties, however, differ in both models as does the structure of the wave functions which

will show up as different correlation functions. We comment further on this below when

comparing the Bethe Ansatz results to those obtained using bosonization.

To determine the spectrum we impose periodic boundary conditions in the unfolded

system which as stated before corresponds to an open boundary condition at x = −L/2 in

the folded language. Upon doing so we find the Bethe equations which determine the kj ,

e−ikjL = ei(N−1)φkj − ε0 − iΓ
kj − ε0 + iΓ

N∏

l

kj + kl − 2ε̄0 − iU
′

2 (kj − kl)
kj + kl − 2ε̄0 + iU

′

2 (kj − kl)
. (3.26)

The interpretation of these in the folded system is an incoming right mover incident from

the left, moving toward the dot and scattering past the other particles in the system. When

the other particle is an outgoing left mover a constant phase eiφ is acquired whereas if it

goes past another incoming particle it gains the k dependent two particle phase shift (3.21).

After scattering off the dot and picking a factor as in (3.13), the particle moves back across

the system as a left mover this time picking up eiφ from the remaining incoming particles

and (3.21) from the other outgoing left movers.

We conclude this section by remarking that the coupling of the dot to the bulk system

has caused two differences in the Bethe equations as compared to the e−ikjL = ei(N−1)φ we
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found above for a Luttinger liquid in a box. These are the inclusion of the dot phase shift

and the k dependent two particle phase shift. The complicated nature of the two particle

phase shift that has been induced by the presence of the impurity is a reflection of the fact

that quantum impurities can cause strong correlations of bulk materials. The physics of

the impurity is the result of highly nontrivial many body effects. In the absence of the

Luttinger liquid interaction we recover the Bethe equations of the IRL model discussed in

the previous chapter.

Moreover we would like to comment that the relation between K and φ obtained before

is still valid despite the inclusion of this new two particle phase shift. To see this we drop the

dot term in the Bethe equations and take their log to recover the Luttinger liquid energy,

E =
2π

L

N∑

j

nj −N(N − 1)
φ

L
(3.27)

with nj being integers. The log of the two particle phase shift is odd and therefore cancels

out when summed over all particles. This is the discrete form of (3.8) and we could proceed

as we did before to obtain the same relation.

3.5 Zero Temperature properties

Having obtained the Bethe equations, (3.26), we seek to identify the ground state of the

system. This is most easily accomplished by describing the particles in terms of their

rapidity xj defined by kj = Dexj + ε̄0, where −D is the lower momentum cutoff. The energy

is now: E =
∑N

j Dexj +Nε̄0 and (3.26) becomes,

e−iDe
xjL = ei(N−1)φ+iε̄0L

cosh 1
2 (xj − c+ i∆)

cosh 1
2 (xj − c− i∆)

×
N∏

l

sinh 1
2 (xj − xl − 2i∆)

sinh 1
2 (xj − xl + 2i∆)

(3.28)
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The parameters ∆, c and φ encode the interactions in the model and the effect of the dot,

they are defined as

ec = γ
Γ

D (3.29)

∆ =
π

2

(
2− 1

K

)
+ arctan (

U

2
). (3.30)

with γ = 1/
√

1 + (U ′/2)2. Here we see that the presence of the U contributes to a lo-

cal modification of φ or K in the bosonized language. This could be understood physi-

cally by integrating out the dot degrees of freedom, whereupon the interaction term in the

Hamiltonian is modified locally near the dot. Alternatively recall also that we can relate

arctan(U/2) to αFES(U) and so we can see that the bulk interaction causes a shift in this

quantity αFES ↔ 1
K − 2

π arctan(U/2). Bulk properties are still dependent only on φ or K

but dot quantities like the occupation calculated below depend on ∆. At ∆ = π/2 the two

particle phase shift vanishes and the system simplifies considerably. Setting U = 0 this

corresponds to the resonant level model of free fermions coupled to the dot. At nonzero U

however it is possible to tune bulk and boundary interactions in a manner which results in

a free model.

Identifying the ground state

To identify the ground state of the system we must list the possible types of solutions to the

Bethe equations (3.28). In order to do so we note that apart from the dot term the Bethe

equations are similar to those of the massive Thirring model which have been widely studied

[114][115][116][117] and in fact can be thought of as a massless limit of these [118][119]. This

massless limit is known not to change the possible types of solutions known as strings which

depend upon ∆ and we now list. First consider ∆ > π/2 and in particular take

π
ν − 2

ν − 1
< ∆ ≤ πν − 1

ν
(3.31)
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Figure 3.2: (a) The configurations of allowed strings for π/4 ≤ ∆ < π/3 on the left and for
2π/3 < ∆ ≤ 3π/4 on the right. In both cases strings of length up n ≤ 3 are allowed, as
well as additional 1-strings corresponding to a positive/negative energy particle (analogous
to the negative parity strings of the AKM). Red crosses mark the string elements and
underneath each (n, l) denotes the string length and the element of the string (see text).
On the left, the spacing between adjacent elements of a string, i.e between l and l + 1 for
fixed n, is i∆ and the elements are symmetrically placed (modulo 2π) with respect to iπ
axis, in addition to real 1-strings. For the strings on the right, the spacing is i(π −∆), the
elements are symmetrically placed around the real axis and there are 1-strings occupying
the iπ axis. 2 (b) The form of the ground state depends on the regime in which ∆ lies. For
∆ > π/3 it consists of 1− strings only, below this it changes to consisting of 1− and 2−
strings and then to include 3−strings and so on.

(a)

+−

−D

−De−B

1

(b)

− 1-string (ν−2)-string

−D

−De−B

1
Figure 3.3: (a) In the regime ∆ ≥ π/3 the ground state consists of a single type of right
moving particle. The state is constructed by populating all negative energy particles of
from the cutoff −D up to some level −De−B with B determine by the dot energy ε0. (b)
For ∆ < π/3 there are additional (right moving) negative energy particles in the spectrum
corresponding to strings. The ground state is constructed by populating all off these negative
energy particles from the cutoff up. We choose to impose the same cutoff on all these
branches.



79

with ν ≥ 3 a positive integer. In this region the rapidities may form n-strings such that

xl = x+ i(π−∆)(n−1−2l) with x real, l = 0, . . . , n−2 and 0 ≤ n ≤ ν−1. These n-strings

can be thought of as bound states and have positive bare energy

En(x) =
sin (n(π −∆))

sin (∆)
Dex. (3.32)

Additionally there are negative energy particles, the equivalent of the negative parity string

in the AKM, that have Im(x) = π and bare energy −Dex. For ∆ ≤ π/2 the range slips into

regions,

π

ν
≤ ∆ <

π

ν − 1
(3.33)

in which the n-strings take the different form xl = x+ iπ + i∆(n− 1− 2l), l = 0, . . . , ν − 2

and n ≤ ν − 2. The n-strings now have negative bare energy

En(x) = −sin (n∆)

sin (∆)
Dex (3.34)

and are in addition to particles with positive bare energy E = Dex which have real rapidity.

The arrangement of the allowed strings for two values of ∆ are shown explicitly in FIG. 3.2

(a). As mentioned before, deviations to these string solutions as well solutions which fall

outside this class are known to exist and are important when studying the completeness of

the Bethe ansatz eigenstates as well as when correlation functions are considered [97, 98,

99, 100, 101, 102]. For our purposes however we shall simply use the strings as presented

above.

Following [115], we now proceed to construct the ground state which consists of all

possible negative energy particles filled from the cutoff,−D, upwards. The same analysis

also works in the case of the IRL model and was done for the first time in this work. We

begin by considering the regime ∆ ≥ π/3 where only one type of negative energy particle

is available (below π/2 2-strings are also allowed but these can be shown to increase the
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energy). Therefore we set Im(xj) = π in (3.28) and take the thermodynamic limit by

sending N,L → ∞ while the cutoff D is held fixed at a value larger than all quantities

such as ε̄0,Γ. The density, D = N/L is then obtained by minimizing the energy for a given

large D, see FIG. 3.3. In this limit the particle rapidities xj approach each other and can be

described by the density of states, ρ(x). Similarly holes added to this state can be described

by the density ρh(x). The Bethe equations become an integral equation determining these

distributions,

1

2π
Dex +

1

L
a1

(
x− c

2

)
= ρ(x) + ρh(x) +

∫ 0

−B
a2

(
x− y

2

)
ρp(y) (3.35)

where the lower integration limit B depends on ε̄0 and is determined by minimizing the

energy with the dot energy fixed and aj(x) was defined in (2.81). This then determines the

hole distribution ρh(x).

If we set ε̄0 = 0 then no holes appear in the ground state meaning ρh(x) = 0 and B =∞.

Since we are interested in the physics at scales well below the cutoff D which we later send

to ∞, we need only be concerned with rapidities x � 0. The ground state distribution,

denoted ρ0(x) can therefore be found by Fourier transform giving

ρ0(x) =
tan ( π

2

2∆)

π − 2∆

D
2π
e
π

2∆
x +

1

L
s(x− c) (3.36)

s(x) =
1

4∆ cosh(πx/2∆)
(3.37)

The first term of ρ0(x) is the bulk contribution and the second is due to the dot.

To confirm that that this is indeed the ground state of the system for ∆ ≥ π/3 we

can construct excitations and check that they increase the energy. The simplest type of

excitation consists of adding a hole to the ground state. Following the procedure of Chapter
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2 we find that the energy εh(x)

εh(x) =
tan ( π

2

2∆)

π − 2∆
De π

2∆
x > 0. (3.38)

Here the excitation is proportional to the bulk part of the ground state density of states,

this a feature shared by many Bethe Ansatz solvable models although not by the AKM.

Other excitations consist of adding n-strings or positive energy particles which can also be

shown to increase the energy.

We now consider the parameter regime, ∆ < π/3. The availability of additional neg-

ative energy particles in this regime changes the nature of the ground state [116]. More

specifically, for values of ∆ specified by (3.33) the ground state consists of all n-strings for

n ≤ ν − 2 filled from the cutoff upwards; e.g for π/4 ≤ ∆ < π/3 the ground state consists

of both 1- and 2-strings, while for π/5 ≤ ∆ < π/4 the ground state consists of all possible

1-, 2- and 3-strings, see FIG. 4(b). Inserting these configurations into (3.28) and taking the

thermodynamic limit the Bethe equations become ν − 2 coupled integral equations for the

n-string particle and hole distributions ρj(x), ρhj (x),

sin (n∆)

sin (∆)

D
2π
ex +

1

L
an

(
x− c

2

)
= ρn(x) + ρh

n(x)

+

ν−2∑

k

∫ 0

−B
Ank

(
x− y

2

)
ρk(y) (3.39)

Where as before

Ank = an+k(x) + ak−n(x) + 2
n−1∑

l=1

ak−n+2l(x)

is the derivative of the phase shift between strings of length n and k with n < k and has

the property Aj,k = Ak,j . Also, as before B must be determined by minimizing the energy

with ε̄0 held fixed.

We first analyze the system with ε̄0 = 0 where again there are no holes in the ground



82

state and B =∞. The solution is obtained by inverting the matrix 1 +A [116],

(1 +A)−1
jk = δjk(δ(x)− δk,ν−1b(x))− (δj,k+1 + δj,k−1) s(x) (3.40)

b̃(ω) =
sinh [(π − (ν − 1)∆)ω]

2 cosh (∆ω) sinh [π − (ν − 2)∆)ω]
. (3.41)

Applying this to (3.39) we obtain the ground state distributions,

ρ0
n(x) = dn

D
2π
e
π

2∆
x + δj,1

1

L
s(x− c) (3.42)

where the coefficients dn are

dn =
1

π − 2∆

(
2 sin (n∆)

tan (∆)

)
for n < ν − 2 (3.43)

dν−2 =
1

π − 2∆

(
sin ((ν − 3)∆)

sin (∆)

sin ((ν − 2)∆)

sin (∆)
tan (π − (ν − 1)∆)

π

2∆

)

Note that the dot contribution appears only in the distribution of 1-stings ρ0
1(x) and is the

same as for ∆ ≥ π/3 (3.36). Again, to verify this is the ground state we show that any

modification results in excitations that increase the energy. The simplest type of excitation

is adding a hole to the n-string distribution. Just as before the energy of this is given by

εhn(x) = dnDe
π

2∆
x > 0. (3.44)

Other excitations consist of adding ν-strings or positive energy particles which can be also

checked to increase the energy.

The Dot Occupation

In this section we calculate the ground state occupation of the dot nd =
〈
d†d
〉

as a function

of the dot energy ε̄0 and ∆. The non zero dot energy means that the ground state will

contain holes as well as particles and furthermore that B is finite. To determine B we recall
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Figure 3.4: (a) The dot occupation, n<>d , as a function of ε̄0/TK for ∆ = π/3 (dashed,
blue), ∆ = π/2 (dotted black) and ∆ = 3π/4 (solid, red) from (3.53) (b) n>>d from (3.54) as
function of TK/ε̄0 for ∆ = π/3 (dashed, blue), ∆ = π/2 (dotted black) and ∆ = 3π/4 (solid,
red) from (3.54). Recall that for ∆ = π/2 the system interactions simplify considerably,
corresponding to K = 1/2 (maximally repulsive) for U = 0.

that the energy is given generically by E = −D∑j e
xj +Nε̄0 and that the ground state is

found by balancing the energy cost due to the second term with that of a hole. Therefore

provided ε̄ > 0 and given that εhn(x), εh(x) ∝ De π
2∆
x we have

ε̄0 = αDe− π
2∆
B (3.45)

where α is a positive constant whose value depends on the regime in which ∆ lies. We

derive an explicit expression for α in each regime in appendix B. The case of negative dot

energy can be treated using particle hole symmetry.

Since the ground state differs considerably above and below ∆ = π/3 we will employ

the two different methods to find nd that were discussed in the context of the RL model.

We begin with the region ∆ ≥ π/3 and obtain the desired quantity by integrating over the

dot contribution to the density of states,

nd =

∫ 0

−B
ρd(x)dx (3.46)

a1

(
x− c

2

)
= ρd(x) +

∫ ∞

−B
a2

(
x− y

2

)
ρd(y)dy (3.47)
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The second line is obtained by extracting the dot dependent quantities from (3.35) and

extending the upper integral limit to ∞ which can be done as the driving term is localised

about x = c� 0. The dot distribution can be found by means of the Wiener-Hopf method

(See [69], [68] or [96] and references therein for a full account). We factorize the Fourier

transform of the kernel into factors G±(ω) that are analytic in the upper and lower half

planes,

1

1 + 2ã2(2ω)
= G+(ω)G−(ω)

where G+(ω) = G−(−ω),

G+(ω) =
Γ(1

2 − i∆
π ω)Γ(1− iπ−∆

π ω)√
2(π −∆)Γ(1− iω)

eiωa, (3.48)

a =

(
π −∆

π

)
log

(
π −∆

∆

)
− log

( π
∆

)
. (3.49)

and Γ(x) is the Gamma function. Then, noting that nd = ρ̃pd(0) we find

nd =
−i
2π
G+(0)

∫ ∞

−∞

G−(ω)ã1(ω)

ω − i0 eiω(c+B). (3.50)

which can be evaluated by closing the contour in the upper or lower half plane depending

upon the sign of c+B. Having determined B through (3.45) we have that,

c+B =
2∆

π
log

(
TK
ε̄0

)
(3.51)

TK ≡ αD
(
γ

Γ

D

) π
2∆

(3.52)

where we have defined the strong coupling scale TK . All physical energies are measured

with respect to this scale which has been dynamically generated by the model. We hold

it fixed while taking D → ∞ thereby obtaining universal results. The form of TK will be

discussed further below.

We now proceed to obtain expressions for the dot occupation using (3.50). By closing
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the contour in the upper half plane we determine the expansion for ε̄0 < TK (and ∆ ≥ π/3)

which we denote n<>d (ε̄0,∆),

n<>d (ε̄0,∆) =
1

2
− 1√

π

∞∑

n=0

(−1)n

n!

e
π

2∆
(2n+1)a

2n+ 1

(
ε̄0
TK

)2n+1

× Γ(1 + π
2∆(2n+ 1))

Γ(1 + π−∆
2∆ (2n+ 1))

. (3.53)

On the other hand, closing the contour in the lower half plane we get the occupation when

the dot energy is larger than the strong coupling scale, ε̄0 ≥ TK . Denoting this n>>d (ε̄0,∆),

the expansion is now,

n>>d (ε̄0,∆) =
1

2
√
π

∞∑

n=1

(−1)n+1

n!
e−na

Γ(1
2 + ∆

π n)

Γ(1− π−∆
π n)

(
TK
ε̄0

) 2∆
π
n

. (3.54)

The dot occupation is plotted for some values of ∆ in FIG. 3.4 where we have used nd(−ε̄0) =

1− nd(ε̄0) [111] to obtain the expressions for negative dot energy.

To find the expressions analogous to (3.53) and (3.54) in the region ∆ < π/3 is more

difficult. We employ a different method and will derive only the form of the dot expansion

by examining the analytic structure of the resulting equations. Starting from (3.28) it can

be shown that the dot contribution to ground state energy of the system is,

Ed = E0
d −

∫ −B

−∞
S(x− c)ρh

1(x)

where S′(x) = s(x) and E0
d is the dot energy when ε̄0. The dot occupation is therefore given

by,

nd =
1

2π

∂

∂ε̄0

∫ ∞

−∞

s̃(ω)

iω
r̃1(ω)e−iω(c+B)dω (3.55)

where we have defined rn(x) = ρh
n(x−B) with B(ε̄0) already determined. Now to evaluate

this explicitly one needs to solve (3.39) for the hole distributions which cannot be achieved
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analytically. We can however determine the positions of its zeros and poles. Given that

ρh
1(x) = 0 for x > −B we know that r̃1(ω) is analytic in the lower half plane and additionally

r1(x) ∝ De− π
2∆
B. Furthermore the zeros and poles of r̃h1 (ω) are fixed by the poles and zeros

of the determinant of 1+A respectively [116]. Thus it has zeros at iπ(n+1/2)/∆ and poles

at i(n+ 1). Combining all this we find the dot occupation for ∆ < π/3. For small ε̄0 < TK

we denote it n<<d ,

n<<d (ε̄0,∆) =
1

2
+

∞∑

n=0

(−1)ncn

(
ε̄0
TK

)2n+1

(3.56)

for some constants, cn depending on r1(ω).

3.6 Thermodynamic properties of the dot

In this section we will study the system at finite temperature and calculate the free energy

of the dot. We shall find a RG flow from weak to strong coupling as the temperature is

lowered (from a localized to a delocalized dot) in agreement to the previously section. To

simplify matters we specify that either ∆ = π/ν with ν ≥ 3 being a positive integer or

∆ = π− π/ν. The former covers the region ∆ < π/2 and the later ∆ > π/2. It is expected

that the free energy of the system be a smooth function of ∆ so our choice here will not

affect the overall picture of the finite temperature properties it presents.

In contrast to the zero temperature properties the region ∆ ≤ π/3 is easier to analyze

and so we shall concentrate on ∆ = π/ν and also setting ε̄0 = 0. For this choice of parameter

there are strings of length up to ν − 1 and so excitations are created by introducing holes

in these string distributions and adding particles above the Fermi sea with real rapidity.

Following [96] (see also chapter 2) we consider the free energy F = E − TS where E is the

energy of a state with an arbitrary configuration of strings, holes and particles,

E = −D
ν−1∑

j

∫ 0

−∞

sin (j∆)

sin (∆)
exρj(x) +D

∫ 0

−∞
exρν(x) (3.57)
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and S is the Yang-Yang entropy S =
∑

j

∫ [
(ρj + ρh

j ) log (ρj + ρh
j )− ρj log (ρj)− ρh

j log (ρh
j )
]

where the sum is over j = 1, . . . , ν with ν denoting the distributions of the real rapidity

particles. We minimize F with respect to ρj to obtain the thermodynamic Bethe Ansatz

equations (TBA) for ηj(x) ≡ ρh
j (x)/ρj(x) which determine the saddle point,

log (ηj(x)) = s∗
[
log (1 + ηj−1(x))(1 + ηj+1(x))1+δj,ν−2

]

−dj
D
T
e
π

2∆
x . (3.58)

Here ∗ denotes the convolution f ∗ g =
∫
f(x − y)g(y)dy and additionally log (ην−1(x)) =

− log (η+(x)). The driving terms of these equations, are the energies of the fundamental

excitations above the ground state, namely those obtained by adding holes to the j-string

distributions. Comparing these to the TBA for the AKM we derived in Chapter 2 one can

see that they are similar however driving terms appear in all of the equations rather than

just j = 1.

We can then use (3.58) to simplify the free energy and after doing so the part which

depends on the dot is given by

Fd = Ed − T
∫
s(x− c) log (1 + η1(x)). (3.59)

The first term is the ground state energy of the dot and the second term captures the

finite temperature behaviour. Similar to the case of zero temperature discussed in previous

sections the behaviour away from the fixed point it is determined by the 1-string distribution.

At this stage the free energy and TBA still depend on the cutoff but we can remove this

dependence and take the universal limit as we did before by introducing the functions

ϕ(x + 2∆
π logα′T/D) with 1/α′ = αγπ/2∆. Taking D → ∞ while holding TK fixed then

gives

ϕj(x) = s ∗
[
log (1 + eϕj−1(x))(1 + eϕj+1(x))1+δj,ν−2

]
− α′dje

π
2∆
x (3.60)
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along with ϕν−1(x) = −ϕν(x). The temperature dependent part of the free energy is now

dependent on TK ,

Fd = −T
∫ ∞

−∞
s(x+

2∆

π
log

(
T

TK

)
) log (1 + eϕ1(x)). (3.61)

At high temperature T � TK the integral is dominated by x → −∞. In this limit the

driving terms of (3.60) vanish and the solutions are given by constants eϕj = (j + 1)2 − 1,

eϕν−1 = ν − 1. Using these in the free energy (dropping the non universal part, Ed) we find

Fd(T � TK) = −T log 2 (3.62)

which is the free energy of a two level system without energy splitting. Thus at high energy

the dot is decoupled as expected from our analysis at T = 0 of the large ε̄0 regime. Similarly

the low temperature, T � TK , behavior of the dot is determined by the x → ∞ part of

the free energy. In this case the driving terms of (3.60) blow up giving ϕj = −α′dje
π

2∆
x

allowing us to obtain an expansion for the free energy at low temperature. We achieve this

following the arguments of [69] by introducing c̃(ω) =
∫

exp (−iωx) log(1 + exp (ϕ1(x))),

which is finite for Im(ω) > 0. Rewritten in terms of this new function the dot free energy is

Fd = −T 1

2π

∫ ∞

−∞
s̃(ω)c̃(ω)e

− 2∆
π
iω T
TK (3.63)

= −T
∞∑

n=0

(−1)nc̃(i
π

2∆
(2n+ 1))

(
T

TK

)2n+1

(3.64)

where to obtain the second line we have closed the contour in the upper half plane and

picked up the poles from s̃(ω). The entropy of the dot Sd = −Fd/T vanishes at T = 0 as

expected for a dot that is fully hybridised with the bulk. The coefficients of the expansion
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can be determined for large n

c̃(i
π

2∆
(2n+ 1)) =

∫ ∞

−∞
e
π

2∆
(2n+1) log (1 + eϕ1(x)) (3.65)

→
∫ ∞

−∞
e
π

2∆
(2n+1)e−α

′d1e
π

2∆
x

=
1

(α′d1)2n+1
(2n)! . (3.66)

We see that the free energy is of a form similar to the expansion of the dot occupation in

powers of ε̄0/TK obtained at zero temperature and again the leading irrelevant operator

about the strong coupling fixed point is the stress energy tensor resulting in a power law

dependence in the specific heat Cv ∼ T/TK .

The thermodynamics for ∆ = π − π/ν can be investigated by similar means. We omit

the details here but it can be shown that at high temperature the dot is again decoupled

while at low temperature it is fully hybridized with the free energy having an expansion in

terms of odd powers of T/TK as in (3.63).

3.7 The RG Flow

In the preceding sections we have derived the dot occupation in the ground state and

dot free energy as a function of ∆ and ε̄0/TK or T/TK , with TK being a strong coupling

scale generated by the model. The dynamic generation of a scale TK , akin to the Kondo

scale, can be understood in this spinless model by making the analogy between the charge

fluctuations on the dot and the spin fluctuations in the Kondo model. By identifying the

impurity spin and dot occupation via sz0 = nd−1/2, a screened Kondo spin corresponds to a

fully hybridized dot with fixed occupation, nd = 1/2 while the unscreened spin corresponds

to the dot being decoupled and therefore being either full or empty, nd = 0, 1. The role of

an external magnetic field in the Kondo model is fulfilled here by the dot energy ε̄0. It is

interesting to note that while the Kondo model is also integrable[68, 69] there is no known

solution of the model in the presence of a local field acing on the impurity. In the present

case however one is free to choose any dot energy and retain integrability. We will now
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discuss appearance of these localized/unscreened and delocalized/screened regimes in our

model.

In order to obtain universal results we have held TK fixed while removing the cutoff

D → ∞ having previously assumed all scales are much smaller than D. In particular we

must have TK � D and so to fulfill this we need ∆ > 0. For ∆ < 0 on the other hand there

is no universal regime as the would-be scale is above the cutoff and universal results cannot

be obtained. If we set U = 0 then this transition between universal and non-universal

regimes occurs at K = 1/2 and is shifted by a non zero U in agreement with perturbation

theory [111]. One can understand this by calculating the density of states at the edge of the

boundary. Following the procedure in [88] or alternatively using bosonization[10, 14] one

see that the density of states enjoys an enhancement at the boundary for K > 1/2 while

it is suppressed below this. This enhancement allows for the dot to become hybridized

with the bulk even in the absence of U or more surprisingly even in the presence of strong

repulsive interaction between an edge fermion and hole on the dot, U large and negative.

Therefore by tuning the bulk interaction we can cause the onset of the strong coupling

regime well beyond were the system would otherwise be weakly coupled. In the absence of

bulk interaction, the approach to the critical point ∆ → 0 can be considered the isotropic

limit in the Kondo language with ∆ < 0 being the ferromagnetic regime and ∆ > 0 the

anti-ferromagnetic.

We may also explore the low energy behavior of the system. Rewriting (3.52) as,

Γ

D = γ−1

(
TK
αD

) 2∆
π

(3.67)

we see that reducing the cut-off à la Wilson[78], Γ/D flows to strong coupling provided

0 < ∆ < π. Note that despite the change in the ground state the renormalization group

analysis is unaffected and so we have a unified picture for all 0 < ∆ < π of the system being

weakly coupled at high energy and flowing to strong coupling at low energy. The strong
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Figure 3.5: The RG flow of the system. For ∆ > 0 the system flows to strong coupling
and generates a scale TK allowing for universal results. In the region of the strong coupling
fixed point the RG flow is the same as the IRL model which is depicted in FIG. 2.16 with
U → U ′. For ∆ < 0 it flows to weak coupling and the system is non universal. The point
∆ = 0 is the isotropic point.

coupling fixed point controls the impurity behavior for low T and low ε̄0, while the weak

coupling regime is reached when either of these quantities is large.

We can obtain from our expressions for the dot occupation information about how the

RG flow approaches the strong and weak coupling fixed points by identifying the respective

leading irrelevant and relevant operators [94]. For ε̄0 < TK , i.e in the region of the strong

coupling fixed point the expansions for all ∆ > 0 are given in terms of odd powers of ε̄0/TK

and so the leading irrelevant operator that governs the flow about the strong coupling fixed

point has dimension 2 . It is natural to identify this operator with the stress energy tensor.

We can also extract the dimension of the leading relevant operator around the weak coupling

fixed point i.e at high energy from the exponents in the dot occupation for ε̄0 > TK . Again

although the ground state changes form these exponents do not change and so we have

the dimension of the operator is 1 − ∆/π for all ∆ > 0. The weak coupling fixed point

corresponds to the decoupled dot so the leading relevant operator is d†ψ(0). By setting
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U = 0 we see that its dimension is 1/2K in agreement with perturbation theory [10] but is

shifted if U 6= 0.

We have the following picture of the system: For ∆ > 0 the system exhibits a renormal-

ization group flow from weak coupling at high energy to strong coupling at low energy. The

strong coupling fixed point is at ε̄0 = 0 and describes the system where the dot and the bulk

are fully hybridized. By introducing an energy scale i.e. allowing ε̄0 6= 0 we perturb away

from this fixed point. The leading irrelevant operator describing this is the stress energy

tensor. The weak coupling fixed point is reached at high energy and describes a decoupled

dot and bulk. By reducing the energy scale we move away from the fixed point allowing for

tunneling to occur which is governed by the operator d†ψ(0). At ∆ = 0 the system under-

goes a quantum phase transition such that the low energy fixed point is no longer strongly

coupled and the dot is not fully hybridized. Any results in this regime depend upon the

RG scheme used. We depict the RG flow in terms of Γ/D as a function of ∆ ∈ [−π, π] in

FIG. 3.5.

3.8 Comparison to Bosonisation

The model has been studied in the past in an interesting paper by Furusaki and Matveev

[111] who study the system in the perturbative regime. It was stated that the anisotropic

Kondo model (AKM) is equivalent to the Luttinger dot model we study here and that

further the equivalence holds also in the absence of bulk interaction K = 1 and U 6= 0

[14]. This was shown through bosonizing the model and performing a number of unitary

transformations. In this section we show that in fact there are some subtleties to this

relationship which are routinely overlooked when employing these methods with the result

that the two models should not be considered equivalent. We review the method below and

highlight some inconsistencies inherent in the method.
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We start by bosonizing the unfolded Luttinger-dot model and take

ψ(x) ∼ e−2iϕ(x) (3.68)

where ϕ is a boson with the following mode expansion[10]

ϕ(x) = −π
L
Nx− i π

L

∑(
L|p|
2π

) 1
2 1

p
e−ipx

(
b†p + b−p

)
e−|p|/2D (3.69)

The Hamiltonian in bosonic form is thus

H =
1

π

∫ L/2

−L/2
K (∇ϕ)2 + U ′d†d∇ϕ(0) + t′d†e−2iϕ(0) + h.c (3.70)

where we have absorbed any constants into new U ′ and t′ and suppressed Klein factors. We

can then absorb the Luttinger parameter into a redefinition of the field ϕ(x) = Φ(x)/
√
K

to get

H =
1

π

∫ L/2

−L/2
(∇Φ)2 +

U ′√
K
d†d∇Φ(0) + t′d†e−2iΦ(0)/

√
K + h.c (3.71)

Φ(x) = −
√
Kπ

L
Nx− i

√
Kπ

L

∑(
L|p|
2π

) 1
2 1

p
e−ipx

(
b†p + b−p

)
e−|p|/2D (3.72)

Note the appearance of the factor 1/
√
K in the exponent of tunnelling term renders the

operator therein single valued under the periodic boundary condition x→ x+ L also note

the change in the zero mode is reflective of the fact that the fermions are interacting.

We now perform the bosonization of the AKM. Recall that the AKM Hamiltonian is

H = −i
∑

a=↑↓

∫
ψ†a(x)∂xψa(x) + J‖ψ

†
a(0)ψ†a(0)σzaaσ

z
0

+ J⊥
(
ψ†↑(0)ψ†↓(0)σ+

0 + ψ†↓(0)ψ†↑(0)σ−0
)
. (3.73)

Where the system is placed on a ring of length L with periodic boundary conditions ψa(x+
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L) = ψa(x) and after bosonization it becomes

1

π

∫ L/2

−L/2
(∇φ↑)2 + (∇φ↓)2 + J ′z (∇φ↑(0)−∇φ↓(0)) + J ′⊥e

−2i(φ↑(0)−φ↓(0))S+ + h.c (3.74)

where again we have the mode expansion

φ↑,↓(x) = −π
L
N↑,↓x− i

π

L

∑(
L|p|
2π

) 1
2 1

p
e−ipx

(
b†p↑,↓ + b−p,↑,↓

)
e−|p|/2D (3.75)

We introduce the charge field φc = (φ↑ + φ↓)/
√

2 and spin field φs = (φ↑ − φ↓)/
√

2. These

two sectors decouple and we have the spin Hamiltonian

Hs =
1

π

∫ L/2

−L/2
(∇φs)2 +

√
2J ′z (∇φs(0)) + J ′⊥e

−2
√

2iφs(0)S+ + h.c (3.76)

with

φs(x) = − π√
2L

(N↑ −N↓)x− i
π

L

∑(
L|p|
2π

) 1
2 1

p
e−ipx

(
b†p,s + b−p,s

)
e−|p|/2D (3.77)

Note that the zero mode of the spinon field has changed by a factor of 1/
√

2 and also the

Hamiltonian contains exp
(
2
√

2iφs(0)
)

where as before the
√

2 present there is necessary

for this operator to be single valued and also that the boundary conditions are correctly

reproduced exp
(
2
√

2iφs(0)
)

= exp
(
2
√

2iφs(L)
)
. These new factors reflect the fact that

φs is a spinon field and so does not describe a free fermion.

Now the trick that is employed is to apply the following transformation

U = exp
(

(
√

2− 1)Szφs(0)
)

to the Hamiltonian. The result of this is

U†HsU =
1

π

∫ L/2

−L/2
(∇φs)2 +

√
2J ′′z (∇φs(0)) + J ′⊥e

−2iφs(0)S+ + h.c (3.78)
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The effect has been to change the coefficient in the exponent appearing in the J ′⊥ term

back to the original one and also J ′z → J ′′z . Similarly one can apply the rotation UK =

exp
(

(1/
√
K − 1)SzΦ(0)

)
to the Luttinger-dot model (3.71) which gives

U†KHUK =
1

π

∫ L/2

−L/2
(∇Φ)2 +

U ′′√
K
d†d∇Φ(0) + t′d†e−2iΦ(0) + h.c (3.79)

where we find a new exponent in the tunnelling term and also shifted U ′ → U ′′. At this

point it is very tempting to equate (3.78) with (3.79) however while the impurity terms

look the same it is important to note that for arbitrary K the bulks are different as can

be seen from the mode expansions of Φ and φs. To make this more clear we can take

K = 1 in which case the bulk term of (3.79) represents free fermions while that of the

AKM represents spinons. Again this is reflected in the different zero modes of their mode

expansions (3.77) and (3.72). Furthermore one can note that the e−2iφs(0) 6= e−2iφs(L) so

the transformed AKM Hamiltonian does not respect the boundary condition. We can also

consider the correlation function
〈
e−2iφs(x)e2iφs(0)

〉
which is no longer single valued as we

can shift x→ x+ L in which case

〈
e−2iφs(x)e2iφs(0)

〉
→ e−i

√
2(N↑−N↓)

〈
e−2iφs(x)e2iφs(0)

〉
(3.80)

meaning that this correlator is well defined only if N↑ −N↓ = 0. The two mode expansions

do however agree for K = 1/2.

Therefore in bosonization one can see that the two models are not equivalent although

the impurity parts appear the same, the bulks are different. In the Bethe language one can

see the difference by comparing the TBA equations of both models (2.118) and (3.60). In

the former the driving terms appear only in the j = 1 term whereas in the later they occur

in every equation. Since the TBA are determined solely by the bulk system we see that

they differ in this formulation also.
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3.9 Conclusion

In this chapter we have solved via the Bethe Ansatz the model of a Luttinger liquid coupled

to an interacting resonant level at its boundary using Bethe Ansatz. We constructed the

ground state and excitations of the model. It was seen that if the Luttinger interaction is

sufficiently strong and repulsive (or alternatively if U is strong and attractive) the ground

state changes from consisting of a single type of particle to a multicomponent condensate

of strings. We then calculated the occupation of the dot as a function of the dot energy at

T = 0 obtaining exact expressions at ∆ ≥ π/3 and the functional form below this. Following

this we calculated the free energy of the system and studied it at low and high temperature.

From these calculations we determined that for ∆ > 0 the system is strongly coupled at

low energy and weakly coupled at high energy. The weak coupled fixed point describes

a dot that is decoupled from the bulk and the leading relevant operator is the tunnelling

term ψ†(0)d, and has dimension 1−∆/π. The strong coupling fixed point describes a fully

hybridized dot and bulk with the leading irrelevant operator being the stress energy tensor.

The system changes from being strongly coupled to weakly coupled coupled at low

energy when ∆ = 0. In the absence of bulk interactions this can be considered as akin to

the isotropic point in the AKM. When bulk interactions are present however, the strong

correlations present in the model due to the bulk interaction and dot cause an enhancement

of the density of states at the boundary which allows for a strong coupling regime to occur

even in what would otherwise be the ferromagnetic Kondo regime.
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4

Local Scatterer in a Luttinger Liquid

In the previous chapter we studied the physics of a quantum impurity which has internal

degrees of freedom coupled to the edge of an interacting environment. We saw interesting

interplay between the bosonic bulk degrees of freedom and the fermionic dot degrees of

freedom. In this chapter we study a different type of impurity, a localized potential which

has no internal degrees of freedom but which is placed in the bulk of the system and

will cause backscattering to occur, that is it may change left movers to right movers and

vice versa. This effect necessitates a new Bethe Ansatz approach which encorporates such

processes. We formulate this approach in this chapter and apply it to the aformentioned

backscattering impurity model, which we refer to as the Kane-Fisher model as well as the

closely related weak-tunneling model.

These were the first instances models with impurities which allow for both reflection

and transmission to be solved exactly using Bethe Ansatz.

4.1 Introduction

Perhaps the most well known and striking effect occurring in Luttinger-impurity systems

was elucidated by Kane and Fisher [12]. Using bosonization and perturbation theory it

was shown that a local impurity can be a relevant or irrelevant perturbation to a Luttinger

Liquid depending on the sign of the interaction in the liquid. For repulsive interactions

amongst the fermions the strength of the impurity will grow at low energy and the one

dimensional system will be split into two Luttinger liquids weakly coupled at their edges
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Figure 4.1: Atomic force microscope images of a kinked carbon nano tubes connected
to three electrodes. The kink can occur as a result of two defects depicted on the left.
Conductance measurements on these sample shows behavior indicative of a Luttinger liquid
coupled to an impurity as we discuss here. Image taken from [49]

by a tunnelling term (weak-tunnelling Hamiltonian), while for attractive interactions the

strength of the impurity will decrease and the system will heal itself. Hence one finds a

vanishing conductance at the impurity site at low temperature in the first case and in a

perfect conductance in the second.

Such a Luttinger impurity system can be realized in a number of experimental scenarios.

The edge states of a fractional quantum hall material and utilizing either lithography or

a top gate to create two edges that are pinched together. The close proximity of the two

edges is enough to cause backscattering to occur which is described by the Kane-Fisher

model [51, 52, 10]. Carbon nano tubes (CNT) are known to be excellent examples of

systems described by Luttinger Liquid theory, with the value of K realized varying between

individual CNTs. Defects in the hexagonal structure of the tube can result in kinks as

shown in FIG. 4.1. Conductance measurements along straight and kinked sections of the

CNT show that the kinks behave as impurities such as the ones we consider here[49].

Another scenario entails using a short CNT as a resonant level and coupling it to resistive

2-dimensional leads. By engineering the coupling between the CNT and leads as well as

tuning the Fermi level in the tube one can realize the weak tunneling model[120, 60], see

FIG. 4.2. We will discuss this realization more in the next chapter.

In this chapter we introduce a new type of coordinate Bethe Ansatz for use in quantum
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Figure 4.2: An atomic force microscope image of the experimental set up used by the Duke
group[120]. A carbon nano tube (CNT) is coupled to resistive source (S) and drain (D) .
The leads are 2 dimensional and non interacting but due to the dissipative tunnelling to
the dot they can be described by Luttinger liquid theory [59]. By appropriately tuning the
the various gate voltages (SG1) and (SG2) one can create tunnelling between the two leads
which is described by the weak tunnelling model. The figure is taken from [120].



100

t
ψ± ψ±

ψ±

U
ψ±

(a)

(b)

1

Figure 4.3: The two models studied in this chapter are depicted above: (a) The weak tun-
neling model consists of the two otherwise disjoint Luttinger Liquids which are connected by
a tunneling term with strength t. (b) The Kane-Fisher model consists of a single Luttinger
liquid with a local impurity in the centre of strength U which allows for both transmission
and reflection of particles.

impurity models with bulk interaction. We present the method by solving exactly the Kane-

Fisher model of an impurity in a Luttinger liquid with arbitrary boundary conditions, see

FIG. 4.3 (b). The method uses a scattering Bethe basis which incorporates the impurity

scattering processes that lead to a varying number of left and right movers. The boundary

condition problem leads to a Quantum Inverse Scattering problem which is in turn solved

using the Off Diagonal Bethe Ansatz (ODBA) [90] approach of deriving the Bethe Ansatz

equations. Incorporating twisted boundary conditions being physically equivalent to driving

a persistent current around the system allows for the possibility of studying transport across

the impurity.

We also study the Weak-Tunnelling Hamiltonian describing two separate Luttinger liq-

uids coupled via a tunnelling parameter, see FIG. see FIG. 4.3 (a). The model is of great

interest by itself and is thought to describe the strong coupling fixed point of the Kane-

Fisher model. We find that the Weak-Tunnelling Hamiltonian is solvable by the same

procedure requiring only simple modifications and show it is dual to the impurity model.

Having constructed the eigenstates of the two models and determined their spectra in terms
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of the Bethe Ansatz equations we go on to study their thermodynamic behavior. The free

energy is calculated and it is seen that both models dynamically generate a strong coupling

scale TKF or TWT . We study the renormalization group flow of both models and determine

their critical exponents. We compare the results with those of perturbation theory [12].

4.2 Bethe Basis of the impurity-Luttinger model

The Hamiltonian of the impurity model we seek to diagonalise is H = HLL + HI with the

various terms given by,

HLL =
∑

σ=±

∫
σψ†σ (−i∂x −A)ψσ(x) + 4gψ†+(x)ψ†−(x)ψ−(x)ψ+(x), (4.1)

HI = U
[
ψ†+(0)ψ−(0) + ψ†−(0)ψ+(0)

]
+ U ′

[
ψ†+(0)ψ+(0) + ψ†−(0)ψ−(0)

]
.

Here U ′ and U describe the forward and backward scattering off the impurity respectively

with the later mediating a flip of chirality ψ†± → ψ†∓. As before we have set vf = 1 and

εf = 0. In addition have included a gauge field A which, when the system is placed on a ring

means it is threaded by a flux Φ =
∫
xA. Equivalently we may solve for the wavefunction

with twisted boundary conditions. This will induce a persistent current throughout the

system and allow the effect of the impurity on the current to be studied.

To begin we discuss the construction of the eigenfunctions of H. In the presence of the

impurity only the total number of fermions N = N+ + N− is conserved, hence the wave

functions must consist of components of left and right movers consistent with N . We start

with the single particle eigenstates, the most general form for which can be written as

∫
dx
[(
eikxA

[10]
+ ψ†+(x) + e−ikxA[10]

− ψ†−(x)
)
θ(−x)

+
(
eikxA

[01]
+ ψ†+(x) + e−ikxA[01]

− ψ†−(x)
)
θ(x)

]
|0〉 . (4.2)

Applying the Hamiltonian to the wave function fixes two of these amplitudes A
[··]
± . Here we
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(a)

d†

A
[10]
+

A
[10]
−

A
[01]
+

A
[01]
−

1

Figure 4.4: (a) The single particle wavefunction given by (4.3) is depicted. Particles are

either incoming on the left or right with amplitudes A
[10]
+ , A

[01]
− or outgoing on the left or

right with amplitudes A
[10]
− , A

[01]
+ .

wish to take a physical picture and define a S10 which maps a particle past the impurity.

This is in contrast to what is standard in Bethe ansatz where the S-matrix maps between

regions of configuration space to the left and right of the impurity, see chapter 2. Therefore

we consider A
[10]
+ and A

[01]
− as the incoming amplitudes and A

[10]
− and A

[01]
+ as the outgoing

ones, see FIG. 4.4. The solution of the Schrödinger equation relates the two sets via



A

[01]
+

A
[10]
−


 = S



A

[10]
+

A
[01]
−


 , S =



α β

β α


 , (4.3)

α =
1− U2/4 + U ′2/4

1 + iU ′ + U2/4− U ′2/4 , (4.4)

β =
−iU

1 + iU ′ + U2/4− U ′2/4 . (4.5)

We recognize α and β as the transmission and reflection coefficients respectively and note

the unimportant role of the forward scattering term. Its presence merely redefines these

coefficients but does not change the left-right mixing imposed by the backward scattering

term. In what follows we set U ′ = 0.

The form in which we have written the above equation allows us to easily apply periodic
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or twisted boundary conditions,

e−ikL



A

[10]
+

A
[01]
−


 =



eiΦ 0

0 e−iΦ


S



A

[10]
+

A
[01]
−


 . (4.6)

We now proceed to the two particle case. The bulk interaction term couples left- to right-

movers only and preserves their number unchanged unlike the impurity term and unlike the

previous chapter where the boundary condition caused mixing between the chiralities. Thus

in the absence of the impurity a state consisting of one left mover and one right mover takes

the form
∣∣∣~k
〉

=

∫
dx1 dx2 F (x1, x2)eik1x1−ik2x2ψ†+(x1)ψ†−(x2)|0〉

The wave function F (x1, x2) must satisfy a Schrödinger equation,

[−i(∂x1 − ∂x2) + 4gδ(x1 − x2)]F (x1, x2) = 0

The solution is easily found to be

F (x1, x2) = θ(x1 − x2) + eiφθ(x2 − x1)

and the scattering phase shift given by φ = −2 arctan (g). For the scattering of two right

movers or two left movers the phase shift is actually undetermined by the Schrodinger

equation, we choose it to be: eiφ++ = eiφ−− = 1.

As seen for a single particle the impurity mixes both the left and right movers. A

non-interacting model could therefore be handled via utilising an odd-even basis ψe/o(x) =

(ψ+(x) ± ψ−(−x))/
√

2. However doing so for the full model will only serve to complicate

the interaction term. On the other hand in the absence of the impurity the left-right basis

is appropriate. To diagonalise both we need to use a basis which naturally incorporates

both aspects, we’ll refer to it as an in-out scattering Bethe Basis.
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To construct it we follow the logic of the previous chapter and divide configuration space

into 8 regions, to be labelled Q , which are specified not only by the ordering of x1, x2 and

the impurity but also according to which position is closer to the origin. For example if

x1 is to the left of the impurity, x2 to its right with x2 closer to the impurity then the

amplitude in this region is denoted A
[102B]
σ1σ2 , σj = ± being the chirality of the particle at xj .

The region in which x1 is closer is denoted A
[102A]
σ1σ2 . The consequence for the wavefunction

is that we include Heaviside functions θ(xQ) which have support only in a certain region,

e.g θ(x[102B]) = θ(x2)θ(−x1)θ(−x1 − x2). A general two particle eigenstate for H can be

written as,

|k1, k2〉 =
∑

Q

∑

σ1σ2

∫
θ(xQ)AQσ1σ2

eσ1ik1x1+σ2ik2x2ψ†σ1
(x1)ψ†σ1

(x2) |0〉 .

In contrast to the boundary dot case the amplitudes in each of the regions carries a chirality

index σj for each particle. The form of this wavefunction requires some comment. The

linear derivative acts as ±i(∂1 − ∂2) when the particles are of opposite chirality and as

±i(∂1 + ∂2) when they have the same chirality. This allows us to introduce an arbitrary

function of x1 ± x2 when the particles are of the same or opposite chirality. Accordingly,

applying the Hamiltonian to this ansatz fixes some but not all the amplitudes. In particular

when switching between the regions weighted by θ(±(x1 − x2)) in the σ1 = σ2 sector and

θ(±(x1 +x2)) in the σ1 = −σ2 sector the linear derivative allows us to choose any S-matrix

we like provided it does not mix the σ1 = σ2 with the σ1 = −σ2 amplitudes.

This is similar to the freedom we had when constructing eigenstates of the AKM. Just

as in that case, the energy level k1 + k2 is degenerate with (k1 + q) + (k2 − q) for any q.

Thus, as degenerate perturbation theory requires, an appropriate basis in the degenerate

subspace needs to be found in which the perturbation can be turned on. This corresponds

to the consistent choice of the S-matrices, as described.

The specific form of this additional S-matrix is dictated by the requirement that the
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wavefunction be consistent. Typically this would require the S-matrices be solutions of the

Yang Baxter equation but here the different configuration space set up will modify this and

will lead to a generalised Yang-Baxter relation. To make these statements more explicit let

us form column vectors of the amplitudes,

~A1 =




A
[120B]
++

A
[102B]
+−

A
[201B]
−+

A
[021B]
−−




~A2 =




A
[210A]
++

A
[102A]
+−

A
[201A]
−+

A
[012A]
−−




~A3 =




A
[201A]
++

A
[012A]
+−

A
[210A]
−+

A
[102A]
−−




~A4 =




A
[201B]
++

A
[021B]
+−

A
[120B]
−+

A
[102B]
−−




(4.7)

~A5 =




A
[021B]
++

A
[201B]
+−

A
[102B]
−+

A
[120B]
−−




~A6 =




A
[012A]
++

A
[201A]
+−

A
[102A]
−+

A
[210A]
−−




~A7 =




A
[102A]
++

A
[210A]
+−

A
[012A]
−+

A
[201A]
−−




~A8 =




A
[102B]
++

A
[120B]
+−

A
[021B]
−+

A
[201B]
−−




We interpret ~A1 ( ~A2) as the amplitudes where both particles are incident on the impurity

but particle 2 (1) is closer, ~A5 ( ~A6) are the amplitudes in which both particles are outgoing

with particle 2 (1) closer to the impurity, ~A8 ( ~A3) describes particle 2 (1) having scattered

off the impurity and is still closer to the impurity than 1 (2) while ~A7 ( ~A4 ) also describes

particle 2 (1) having scattered but with 1 (2) is closer. We depict the first and last of these

vectors in FIG.4.5 .

The Hamiltonian fixes the following relations between these amplitudes

~A8 = S20 ~A1, ~A3 = S10 ~A2, (4.8)

~A5 = S20 ~A4, ~A6 = S10 ~A7, (4.9)

~A7 = S12 ~A8, ~A4 = S12 ~A3, (4.10)
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(a) (b)











1Figure 4.5: The amplitudes in the two particle wavefunction are arranged into 8 vectors
given by (4.7) and according to whether the particles are incoming or outgoing as well
as their ordering with respect to the impurity. (a) The amplitudes in ~A1 consist of both
particles incoming but particle 2 (black) closer to the impurity than particle 1 (red). (b)
The amplitudes in ~A8 consist of particle two outgoing. These vectors are related by S20.

where

S20 = S ⊗ 1, S10 = 1⊗ S, (4.11)

and the matrix S is given in (4.3). Additionally, as discussed above

S12 =




1 0 0 0

0 eiφ 0 0

0 0 eiφ 0

0 0 0 1




. (4.12)

The freedom mentioned previously enters upon considering ~A1 ↔ ~A2 and ~A5 ↔ ~A6. Again,

these S-matrices are restricted only in that they cannot mix σ1 = σ2 amplitudes with
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~A1

~A2

~A3

~A5

~A4

~A7

~A8

~A6

W 12

S10

S12

S20

S20

S12

S10

W 12

Figure 4.6: The amplitudes of the two particle wavefunction are related by applying the op-
erators as depicted here. For consistency we require the amplitudes obtained by proceeding
clockwise or counter-clockwise are the same resulting in (4.15).

σ1 = −σ2. We choose to take

~A2 = W 12 ~A1, ~A6 = W 12 ~A5, (4.13)

W 12 =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




. (4.14)

This is dictated by the consistency of the wave function which requires the S-matrices to

satisfy a reflection equation,

S20S12S10W 12 = W 12S10S12S20. (4.15)

Inserting (4.14)(4.11)(4.8) it is easy to see this indeed holds. By introducing the extra

regions indexed by A,B we have changed the consistency condition from the Yang-Baxter

equation to a generalised version that takes the form of a reflection equation. The same
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generalised Yang-Baxter equation appears in studies of a two particle Bose-Hubbard model

[121] and also appears in studying models with open boundary conditions [112]. In FIG.

4.6 we depict how one can construct the entire 2 particle wavefuction by application of the

various S-matrices starting from ~A1. The consistency of the construction is guaranteed by

satisfying (4.15). In addition, the two particle S-matirices must satisfy unitarity conditions,

S12
[
S21
]−1

= 1 and W 12
[
W 21

]−1
= 1 which they do. These stem from the natural

expectation that exchanging the order of two particles and then changing them back should

have no effect overall.

We may interpret the W 12 matrix as exchanging the positions the particles when they

are both either incoming or outgoing. Similarly the S12 matrix describes the scattering of

an incoming particle past an outgoing one and vice versa.

As explained, the partition to these extra regions is dictated by linear derivative and

the degeneracies associated with it, which require us to choose the correct basis in the

degenerate subspace. This basis, the Bethe basis, corresponds to the introduction of the

S-Matrix W 12 which satisfies the consistency conditions. Such a degeneracy is not present

within a massive theory. The addition of a m(ψ†+ψ−+ψ†−ψ+) changes the dispersion relation

k → ±
√
k2 +m2 thereby lifting the degeneracy. Consistency of a nontrivial bulk interaction

in the presence of a transmitting and reflecting impurity within a massive theory requires

a number of relations to be satisfied in addition to the Yang Baxter equation [122]. These

relations are depicted in FIG. 4.7. We also show how by removing the mass they can be

modified to reproduce the single consisitency condition of (4.15).

The generalization to N particles is immediate. The N particle eigenstate with energy

E =
∑N

j kj is,

∣∣∣~k
〉

=
∑

Q

∑

~σ

∫
θ(xQ)AQ~σ e

i
∑
σjkjxj

∏
ψ†σj (xj) |0〉 . (4.16)

The sum is over the 2NN ! regions consisting of all orderings of xj and the origin and indexed
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=

=

Figure 4.7: The top diagram is an example of a consistency relation for a massive field
theory with a reflecting and transmitting impurity. If a particle approaching the impurity
form the right is transmitted and one approaching form the left is reflected then the order
in which this occurs should not matter if the theory is integrable. There are three other
diagrams that must also be satisfied the mirror image along with both particles transmitted,
both reflected etc. The bottom diagram depicts how this is modified in the massless case. In
the massless theory, the linear derivative allows is to introduce the W 12 represented here by
dotted red line, all the other diagrams are modified in the same way and become identical.
This leads to a single consistency relation (4.15).
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by which particle is closest to the impurity. Just as in the two particle case the amplitudes

AQ~σ are related to each other by applying the S-matrices,

Sj0 = Sj ⊗k 6=j 1, (4.17)

Sij =




1 0 0 0

0 eiφ 0 0

0 0 eiφ 0

0 0 0 1




ij

⊗k 6=i,j 1, (4.18)

W ij =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




ij

⊗k 6=i,j 1. (4.19)

The subscripts denote which particle spaces the operators act upon. In order for this wave-

function to be consistent it must satisfy the following Yang-Baxter and reflection equations,

Sk0SjkSj0W jk = W jkSj0SjkSk0 (4.20)

W jkW jlW kl = W klW jlW jk (4.21)

W jkSjlSkl = SklSjlW jk. (4.22)

The first equation is a simple N-particle generalizatioon of (4.15), the second is the consis-

tency condition arising from swapping the order of three particles which are all incoming,

see FIG. 4.8 while the last is when two particles are incoming and the other outgoing or two

particles are outgoing and one incoming. Satisfying these is a sufficient condition for the

consistency of the wave function because the S-matrices form a representation of the reflec-

tion group just as those in other integrable models form a representation of the permutation

group [123, 89, 112]. This will be made evident in the next section when the continuous

versions of the S-matrices and the Bethe equations are found.
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~B3
~B6

~B4

~B2

~B5

~B1

W 12

W 13

W 23

W 23

W 13

W 12

Figure 4.8: Consider an N-particle wavefunction of the form (4.16). The part of the
wavfunction corresponding to particles 1,2 and 3 all being incident and in adjacent regions
must satisfy the consistency condition (4.21). Any manner of swapping the order in which
the particles will hit the impurity must be equivalent to any other. Denoting the amplitudes
in this part of the wavefunction by ~Bj we see that consistency of the construction results
in the figure above and (4.21).
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To determine the spectrum of the model we place the system on a ring of size L. The flux,

Φ = AL through the loop then imposes twisted boundary conditions so that upon traversing

the entire system a particle picks up an additional phase eσiΦ, σ being the chirality of the

particle. We obtain the following equations which determine kj

e−ikjLAσ1...σN = (Zj)
σ′1...σ

′
N

σ1...σN
Aσ′1...σ′N (4.23)

Zj = W j−1j ..W 1jBjS
1j ..SjNSj0W jN ..W jj+1 (4.24)

where the matrix Zj transfers the jth particle around the ring. Comparing with the same

operator for the AKM we see that there are twice as many S-matrices as there are two

types of bulk scattering processes, corresponding to the two types of S-matrices, Sij (in-in

or out-out) and W ij (in-out or out-in). In the AKM only the first type occurs as once

the particles are outgoing fr0m the impurity they non longer encounter incoming particles.

Here the matrices Bj act in the jth particle chirality space and impose the twisted boundary

conditions,

Bj =



eiΦ 0

0 e−iΦ


 . (4.25)

We could also require hard wall boundary conditions at x = ±L/2 by taking Bj = −σx.

More complicated boundary conditions are easily included, indeed one can take B to be of

the same form as the impurity S-matrix our system would then consist of a ring geometry

with two diametrically opposed Kane-Fisher type impurities. In the thermodynamic limit

the effects of the impurities decouple from each other and so one we will consider only a

one impurity system.

As in the AKM there a no dimensionful parameters in the Hamiltonian and accordingly

by using (4.15)(4.21)(4.22) it can be shown that all transfer matrices Zj are equivalent. We
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restrict our attention to solving,

(
B1S

12 . . . S1NS10W 1N . . .W 12
)σ′1...σ′N
σ1...σN

Aσ′1...σ′N

= e−ikLAσ1...σN . (4.26)

and denote the operator on the left hand side Z. Its eigenvalues determine the allowed values

of the momenta kj and therefore the spectrum, E =
∑

j kj . However, before proceeding to

the diagonalization of the transfer matrix we turn to the solution of another closely related

model, the Weak-Tunnelling model.

4.3 Bethe Ansatz eigenstates of the Weak -Tunnelling Hamiltonian

The embedding of an impurity in a Luttinger liquid could be viewed from the complementary

scenario of two liquids which are coupled by a weak link or tunnel junction. Therefore in

addition to the impurity model we will also consider the Weak-Tunnelling Hamiltonian,

HWT which is believed to govern the behaviour of the system in the vicinity of the strong

coupling point but also can be realized experimentally in CNTs as discussed earlier. The

model consists of two Luttinger liquids each described by HLL, occupying the regions from

−L/2 to 0 and 0 to L/2 denoted by the subscripts l and r respectively (see (3.1)). These

are coupled to each other via the tunnelling term,

Ht = t
(
ψ†+,r(0) + ψ†−,r(0)

)(
ψ+,l(0) + ψ−,l(0)

)
+ h.c (4.27)

which allows for tunnelling between the otherwise disjoint Luttinger liquids.

The single particle solution of the Weak-Tunnelling Hamiltonian is of a similar form to
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(4.2),

∫ 0

−L
2

[
eikxA

[10]
+ ψ†+,l(x) + e−ikxA[10]

− ψ†−,l(x)
]
|0〉

+

∫ L
2

0

[
eikxA

[01]
+ ψ†+,r(x) + e−ikxA[01]

− ψ†−,r(x)
]
|0〉 . (4.28)

Here we have used the same notation as in the impurity case so that A
[10]
σ is the amplitude

of a particle of chirality σ in the left system and A
[01]
σ in the right system. Acting on

this with the Hamiltonian and using the boundary conditions ψ†+,l(0) = −ψ†−,l(0) and

ψ†+,r(0) = −ψ†−,r(0) we find that



A

[01]
+

A
[10]
−


 = St



A

[10]
+

A
[01]
−


 , St =



αt βt

βt αt


 , (4.29)

αt =
−4it

1 + 4t2
, βt =

1− 4t2

1 + 4t2
. (4.30)

The imposition of hard wall boundary conditions at x = ±L/2 gives this time

e−ikL



A

[10]
+

A
[01]
−


 = −σxSt



A

[10]
+

A
[01]
−


 . (4.31)

The set up for higher particle number is the same as for the impurity model and the

analysis of the preceding section transfers to the present case. This enables us to construct

consistent N particle eigenstates. The two particle S-matrices are given by (4.18) and (4.19).

The difference is the single particle S-matrix Sj0 being replaced with Sj0t = St j⊗Nk 6=j1. These

are readily seen to satisfy the consistency conditions (4.15)-(4.22).

As before we impose boundary conditions to determine the spectrum and obtain,

(
B1S

12 . . . S1NS10
t W

1N . . .W 12
)σ′1...σ′N
σ1...σN

Aσ′1...σ′N = e−ikLAσ1...σN . (4.32)
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where for hard walls at x = ±L/2, B1 = −σx. We could also have applied periodic or

twisted boundary conditions by including a more general B1 instead of −σx. An interesting

scenario would be when we include a tunnel junction and an impurity. The effects of both

the impurity and junction would compete against each other and by including a twist also

the persistent current through the system could be measured. We shall not consider this

setup in this thesis but hope to return to the system in future work.

The system with periodic or twisted boundary conditions no longer describes two disjoint

liquids filling the left and right half lines but rather a ring containing a weak link. We shall

see below that this is the dual system to the impurity model on a ring and to distinguish it

form the impurity model we denote the operator above by Zt.

In what follows we will be concerned with properties of the impurity and weak link which

in the thermodynamic limit will be independent of the type boundary condition imposed.

4.4 Off-Diagonal Bethe Ansatz

In the previous section we showed that in order to determine the spectrum of H or HWT we

must diagonalise Z or Zt. To achieve this we will make use of the Off Diagonal Bethe Ansatz

[90]. This method is related closely to the QISM we used when diagonalizing the Z operator

of the AKM. Recall the procedure was to relate Z to the transfer matrix t(u) which was

constructed by taken the trace over a product of R-matrices. The eigenstates of t(u) where

obtained by using the operator C which was the lower left element of the monodromy matrix

when written in the auxiliary basis. To construct them one merely had to take products

of C operators evaulated a different spectral parameters acting on a reference state. The

reference state we chose in the AKM was |⇓〉 although |⇑〉 in conjunction with B operators

works also. In some models however an appropriate reference state is not available and so

one knows that the system is integrable but the eighnestates cannot be constructed in the

regular manner.

The ODBA is an alternative method which allows on to obtain the eigenvalues of t(u)
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even in a system in which there is no reference state. It has already been successfully

used to obtain the exact solutions for many integrable models with a broken U(1) symme-

try. The present problem will be shown to be mappable onto one arising when an XXZ

Hamiltonian is diagonalised with open boundary conditions, which is amongst those already

considered[124]. We will use its solution to obtain the eigenvalues of Z and Zt. Although

the following procedure can be used with any type of boundary conditions we will do so

only for twisted boundary conditions.

We begin by following the initial steps of the QISM and construct the monodromy

matrix. It is formed from an AKM - like R-matrix and of reflection matrices. The R-matrix

is

R(u) =




1 0 0 0

0 sinhu
sinh (u+η)

sinh η
sinh (u+η) 0

0 sinh η
sinh (u+η)

sinhu
sinh (u+η) 0

0 0 0 1




. (4.33)

where u is the spectral parameter and η the crossing parameter which encodes the inter-

actions of the model. We shall identify it in our case as : e−η = eiφ = 1−ig
1+ig with g the

Luttinger liquid interaction coupling constant.

The reflection or boundary matrices, K±(u), we use take the form of integrable boundary

conditions for the XXZ model [125]

K−(u) =




2i cosh (c+ θ/2) coshu sinh 2u

sinh 2u 2i cosh (c+ θ/2) coshu


 (4.34)

K+(u) =




2 (sinh (−θ) cosh (iΦ) cosh (u+ η) − sinh (2u+ 2η)

− cosh (θ) sinh (iΦ) sinh (u+ η))

2 (sinh (−θ) cosh (iΦ) cosh (u+ η)

− sinh (2u+ 2η) + cosh (θ) sinh (iΦ) sinh (u+ η))




Herein we have introduced the parameter c = log
(
(1− U2/4)/U

)
for the impurity
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model, U being the strength of coupling of the impurity to the liquid, or c = log
(
4t/(1− 4t2)

)

for the Weak -Tunnelling model. Let us denote the latter by ct when a distinction is re-

quired. The logarithmic dependence on the bare coupling constant will be important later

when considering thermodynamic quantities, we will see that it leads to generation of a

scale with power law dependence on the bare parameters in (4.1). In addition we have also

introduced an inhomogeneity parameter θ which will enable us to relate the monodromy

matrix to Z or Zt. The R-matrices satisfy a continuous version of the Yang Baxter equation

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v) (4.35)

and along with the K matrices satisfy a continuous reflection equation also

R12(u− v)K1(u)R12(u+ v)K2(v) = K2(v)R12K1(u)R12(u− v). (4.36)

Using the definitions above we construct the monodromy matrix,

ΞA(u) = CK+(u)RA1(u+ θ/2) . . .RAN (u+ θ/2)

×K−(u)RAN (u− θ/2) . . .RA1(u− θ/2) (4.37)

with C = −βe−η
sinh θ sinh 3θ

2

and β → βt for the Weak-Tunnelling model where β and βt are given

in (4.3) and (4.30) respectively. The form of (4.37) is similar to that of the XXZ model

with two boundaries described by K+ and K−. The transfer matrix is given by the trace

over this auxiliary space,

t(u) = TrA ΞA(u). (4.38)

The judicious choice of boundary matrices means that the transfer matrices commute for

differing spectral parameter, [t(u), t(v)] = 0 [112] and by expanding in powers of u a set
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of operators which commute with t(v) is generated. This proves the integrability of the

transfer matrix.

We now return to our original problem, the diagonalization of Z. The choice of (4.33)

and (??)-(??) as well as the dependence of the monodromy matrix on θ means that we can

relate this to the transfer matrix. In particular, setting u = θ/2 we have,

Z = lim
θ→∞

t(θ/2). (4.39)

and similarly Zt with the appropriate replacements. What we have shown, therefore, is

that determining the spectrum of Z or Zt is related to that of the open XXZ chain with

prescribed inhomogeneities, boundaries and twists. In addition we have established the

integrability of both the Kane-Fisher impurity and Weak-Tunnelling models.

At this point the QISM ceases to be of use. The reason for this is the non diagonal

nature of the boundary matrices means that there is no proper reference state upon which

to build the eigenstates of t(u) and determine the eigenvalues. And so we know that the

boundary condition problem is integrable but according to the QISM we cannot construct

the eigenstates.

This problem can be circumvented by means of the newly developed ODBA approach.

We shall not go into the details here but the procedure is straightforward if a little tedious.

The basic idea is to prove some relations which the transfer matrix satisfies and in particular

how it behaves at the values u = θj with θj being the inhomogeneities. Combining this with

the behaviour at u→ ±∞ provides enough information to fix the eigenvalues of t(u)[90].

The eigenvalue is parametrised by Bethe roots, µj which are fixed by the Bethe equations.

The states can then also be recovered by means of separation of variables [126]. Presently

we are only interested in eigenvalues of t(u) and so postpone any discussion of the states to

future work.

The transfer matrix t(u) has previously been considered in [124] wherein the eigenvalues,
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Λ(u), and the Bethe equations were determined. Inserting (??)-(??) and (4.37) into their

results we find for N even (see appendix C),

Λ(θ/2) = −4iβeiφ
sinh (θ − 2iφ) cosh (c) cosh (θ/2)

sinh (θ − iφ) sinh θ

× cosh (θ/2− iΦ)
N∏

j

sinh (θ/2− µj + iφ)

sinh (θ/2 + µj − iφ)
. (4.40)

We have restricted ourselves to u = θ/2 since we are only interested in determining

e−ikL = limθ→∞ Λ(θ/2). In addition we obtain the Bethe equations,


cosh


i(N + 1)φ+ c+ iπ/2 + iΦ− θ/2 + 2

N∑

j=1

µj


− 1




× sinh (2µj − iφ) sinh (2µj − 2iφ)

2i cosh (µj + c+ θ/2− iφ) cosh (µj − iφ) cosh (µj − iφ+ iΦ) sinh (µj − θ − iφ)

=

N∏

l=1

sinh (µj + µl − iφ) sinh (µj + µl − 2iφ)

sinh (µj + θ/2− iφ) sinh (µj − θ/2− iφ)
(4.41)

along with the selection rules µj 6= µk and µj 6= µk + iφ. These selection rules are anal-

ogous to the exclusion principle in other Bethe Ansatz problems and result in a vanishing

wavefunction if not obeyed[93]. Upon taking the limit, θ →∞ (4.40) and (4.41) completely

determine the spectrum of Z. Prior to doing so we should consider the dependence of µj on

θ. The dependence of the Bethe parameters on the inhomogeneity θ follows from the form of

(4.40) and (4.41) with half the roots scaling as −θ/2 while the other half go as θ/2. This is

also the case for N odd, as N+1 Bethe parameters are required by the ODBA solution[124].

We separate out the θ dependent part and introduce two sets of Bethe parameters {λj , νj},

µj =





λj + iφ/2 + θ/2 ifj ≤ N
2

−νj−N/2 + iφ/2− θ/2 ifj > N
2 .

(4.42)

The validity of this assumption will be checked by recovering the Luttinger liquid spectrum
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when the impurity is removed. Inserting (5.48) into (4.40) the eigenvalues become

e−ikL =
−e−iΦ
α

N/2∏

j

sinh (λj − iφ/2)

sinh (νj + iφ/2)
e−λj+νj+iφ. (4.43)

Two sets of Bethe equations for λj and νj are obtained from (4.41) and (5.48),

sinhN (λj − iφ/2) = −e−2λj−iφ+2c+2iΦe2
∑
k(2λk−νk)

×
N/2∏

k

sinh (λj − νk) sinh (λj − νk − iφ) (4.44)

sinhN (νj + iφ/2) =
2i cosh (c− νj − iφ/2)

eνj−c+iφ/2
e2

∑
k λk

×
N/2∏

k

sinh (νj − λk) sinh (νj − λk + iφ) (4.45)

with the selection rules now reading λj 6= νk, λj 6= λk, νj 6= νk.

4.5 Luttinger Liquid limit

The complexity of both the eigenvalues and Bethe equations is a common feature of models

solved by ODBA and accordingly makes them more difficult to treat. However we can gain

some insight as to the structure of the solutions by considering the case of weak or vanishing

impurity strength U → 0. This will also serve as a check on (5.48) by correctly reproducing

the spectrum of the Luttinger Liquid. In this limit the impurity parameter, c→∞, blows

up. Inserting this in (4.44), (4.45) we see that the solutions are either λj = νj or λj = νj+iφ.

In terms of the original parameters these are µj+N/2 = −µj + iφ or µj+N/2 = −µj + 2iφ.

This leaves half the parameters, µj , j ≤ N/2 undetermined. To fix these remaining µj , we

return to the expression for Λ(u) as given by [124] and assume there are M pairs such that

µj+N/2 = −µj + iφ while the other N/2 −M are of the form µj+N/2 = −µj + 2iφ. Upon

taking c → ∞ we find that the N/2−M latter pairs decouple and we are left with a T-Q
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relation in terms of M parameters µj (see appendix D). From this we derive the eigenvalues

e−ikL = eMiφ−iΦ
M∏

j=1

sinh (λj − iφ/2)

sinh (λj + iφ/2)
. (4.46)

The Bethe equations are similar to those of the XXZ and AKM models,

sinhN (λj − iφ/2)

sinhN (λj + iφ/2)
= ei(N−2M)φ+2iΦ

M∏

k 6=j

sinh (λj − λk − iφ)

sinh (λj − λk + iφ)
(4.47)

and additionally the right hand side is similar to those found in the previous chapter. The

extra phase factor in the Bethe equations will not change the structure of the solutions

which are either real or form strings in the Thermodynamic limit [96] for −π ≤ φ ≤ π, see

previous chapters for further details. It is however, crucial in obtaining the correct energy

of the Luttinger liquid. Combining (4.46) and (4.52) we obtain,

E =
2π

L

N∑

k

nk −
2π

L

M∑

j

Ij −
2M(N −M)

L
φ

+
Φ

L
(N − 2M). (4.48)

The last term is recognisable as −A(N+ − N−) and so we have reproduced the Luttinger

liquid spectrum. This validates our choice of (5.48). As we saw with the AKM there are

two sets of quantum numbers, nk which are the charge degrees of freedom and Ij which

now represent the chiral degrees of freedom. The independence of these sets is a chiral-

charge separation akin to the spin-charge separation in other models. The ground state is

associated to filing the charge quantum numbers p form the cutoff nj = −N, . . . ,−1 while

for the chiral quantum numbers we take M = N/2 and −N/4 + 1/2 ≤ Ij ≤ N/4 − 1/2.

Excitations above this are found by placing holes in these sets of quantum numbers produces

the simplest types of excitations. A hole in the charge numbers is still called a holon and we
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introduce the term chiron1 to describe a hole in the chiral quantum numbers. Despite the

similarity to the AKM a chiron is very different from a spinon as can be seen by examining

the wavefunctions of these excitations using (4.16) and (2.61).

Before proceeding to a study of the impurity thermodynamics we should recall that

string solutions to the BAE represent gapless excitations of the Luttinger liquid and their

structure depends heavily on the strength of the interaction. While we have successfully

diagonalised the model for all φ and U ≥ 0, for clarity we hereafter restrict ourselves to the

simplest structure and take |φ| = π/ν with ν > 2 an integer. This then fixes the allowed

string lengths and parities. Common to other integrable models we can have j-strings

λ(j,l) = λj + i(2j + 1− l)φ/2, (4.49)

for j = 1 . . . , ν − 1. These are said to have parity vj = 1. In addition to these we may

also have strings of negative parity, vν = −1 which are centred on the iπ/2 axis. As a

consequence of our choice of φ, however only 1-strings of negative parity are allowed,

λνα + iπ/2. (4.50)

These string configurations are depicted in FIG. 2.13. Once again these represent bulk

excitations and so will not be affected by the introduction of a local impurity. Our choice of

scattering Bethe basis has dictated these as the appropriate excitations of the bulk which

diagonalise the impurity.

The formal similarity between the Bethe Ansatz equations of the XXZ system with

boundaries and the impurity Luttinger system arises from the analogy of spin degrees of

freedom in the first and the chiral degrees of freedom in the second system, though their

dynamics is of course very different. We note that for the XXZ with generic boundary fields

1Chiron was a centaur from greek mythology who was described as the ”wisest and justest of all the
centaurs”[127]
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the residual U(1) spin symmetry is broken by the off diagonal elements of the boundary

matrices and it is this that necessitates the use of the ODBA. For the Luttinger liquid we

also have a U(1) symmetry (with charge N+ −N−) which is why we are led to taking the

XXZ R-matrix while the inclusion of the impurity breaks this and forces us to adopt the

ODBA. The remaining U(1) symmetry in impurity model is associated with the length of

the XXZ chain.

4.6 Thermodynamics

Having shown how the spectra of Z and Zt are described by (4.43), (4.44) and (4.45) we

determine from it the spectrum of H and HWT and proceed to study their thermodynamic

behaviour. In particular we calculate the free energy and entropy of the impurity and tunnel

junction.

Unlike the previous chapter we do not examine the ground state properties of the system.

The reason being that for a featureless impurity like the one we are dealing with here there

are no interesting questions to ask about its behavior at zero temperature, in contrast for

the RL model where we could investigate zero temperature dot occupation. It would be

interesting however to compute the ground state energy as a function of flux which would

give us the persistent (equilibrium) current through the system. For the moment however

we are interested in impurity effects but not finite size effects. As a result we will lose

sensitivity to the influence of the flux Φ [128]. In the following we set Φ to zero and will

address transport properties (the non-equilibrium current) at finite temperature through

the Kubo formula.

Dealing directly with (4.44) and (4.45) is arduous due to their non standard form but

methods have been developed to extract physical quantities in the thermodynamic limit

[129, 130, 131]. These methods are either based upon taking a special value of the inter-

action parameter which results in drastically simplified equations or by showing that the

inhomogeneous term in the T-Q Ansatz can be discounted in the thermodynamic limit to
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order 1/N . The later approach is one which we will adopt here. We have just seen that for

c → ∞ the eigenvalues and Bethe equations are given by (4.46) and (4.52). For large but

finite c, corresponding to U � 1, the form of these equations are modified by an impurity

term which is necessarily of the order 1/N . Indeed we know that any bulk properties can-

not be modified by introducing an impurity. Thus, we make the assumption that the Bethe

parameters are either real, form strings of positive parity such that

Im{λ(j,l)} = Im{ν(j,l)} = (2j + 1− l)φ/2 (4.51)

or negative parity Im{λj} =Im{νj} = π/2 in the thermodynamic limit or come in pairs

Im{λj − νj} = φ. Given these assumptions the system is described by the BAE

sinh2N (λj − iφ/2)

sinh2N (λj + iφ/2)
=

[
cosh (λj − c− iφ/2)

cosh (λj − c+ iφ/2)

]N/2∏

k 6=j

sinh2 (λj − λk − iφ)

sinh2 (λj − λk + iφ)
. (4.52)

The continuous form of the Bethe Ansatz equations follow with the result that the distri-

butions for the j-strings and holes, ρj(x) and holes ρh
j (x) [96] satisfy,

Naj(x) +
1

2
bj(x− c) = ρj(x) + ρh

j (x) +
ν∑

k

Ajk ∗ ρk(x) (4.53)

Naν(x) +
1

2
bν(x− c) = −ρν(x)− ρh

ν(x) +
ν∑

k

Aνk ∗ ρk(x) (4.54)

where we have used again the functions defined in (2.81).

The form of the Bethe equations is very similar to the that of the anisotropic Kondo

model considered in chapter 2. Indeed if we exchange 1
2bj for aj we recover (2.111). The

difference in the impurity terms can be understood by noticing the impurity we presently

consider is not merely a particle at a fixed location but introduces a new aspect, the mixing

of the left and right movers this is in contrast to the Kondo model or AKM. In addition

the change in term ensures that if the non interacting limit is taken, φ → 0, the impurity

term vanishes and the distributions are those of free fermions. The same limit in the AKM
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would give the isotropic Kondo model instead. We also have an extra non interacting point

corresponding to φ = π/2 in which all the equations simplify considerably.

Following the standard procedure we construct the free energy, F = E−TS, where E is

the energy and S =
∑

j

∫ [
(ρj + ρhj ) log (ρj + ρhj )− ρj log (ρj)− ρhj log (ρhj )

]
is the entropy

associated to the distributions. It then minimised with respect to ρj and ρh
j which are

solutions of the BAE. The result of this minimization gives the TBA equations ,

log ηj(x) = s ∗ log (1 + ηj+1(x))(1 + ηj−1(x))

+δj,ν−2s ∗ log (1 + η−1
ν (x))− δj,1

2D

φT
arctan e

π
φ
x

(4.55)

log ην−1(x) = s ∗ log (1 + ην−2(x)) = − log ην(x) (4.56)

with ηj(x) = ρhj (x)/ρj(x), s(x) = 1
2φ coshπx/φ . These TBA are identical to the AKM as

could have been anticipated by recalling that do not depend upon the impurity.

Having taken the thermodynamic limit and derived the TBA equations we proceed to

take the scaling limit to obtain universal quantities, eliminating any dependence on D.

As we shall see the the model generates an energy scale TKF which will be held fixed as

D →∞. Thus high and low temperature regimes will be defined with respect to TKF and

always small compared to D. With this in mind we introduce the universal functions [69],

ϕj(x) =
1

T
log
(
ηj(x+

φ

π
log φ

T

D
)
)
. (4.57)

Inserting these into (4.55) and approximating the driving term,

−2D

T
arctan exp

(
π(x+

φ

π
log φ

T

D
)

)
' −2e

π
φ
x
, (4.58)

an approximation valid since only this range of values contributes to η1(x), we obtain the
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universal (or scaling) form of the TBA equations,

ϕj(x) = s ∗ log (1 + eϕj−1(x))(1 + eϕj+1(x))1+δj,ν−2 − δj,12e
π
φ
x
, j < ν − 1 (4.59)

ϕν−1(x) = s ∗ log (1 + eϕν−2(x)) = −ϕν(x). (4.60)

The free energy can then be written as

F = FLL + F i (4.61)

with FLL being the bulk contribution to the free energy while the impurity contribution is,

F i = −T
∫

dx s(x+
φ

π
log

T

TKF
) log (1 + eϕν−1(x)). (4.62)

There are two things to note here. The first is that the dependence is on the ν − 1 ther-

modynamic function ϕν−1 rather than ϕ1 as was the case in the AKM. The second is the

appearance of a scale TKF = Deπc/φ which has been generated by the model. We will

measure all temperatures relative to this scale and can obtain universal results by keeping

TKF fixed while taking D → ∞. In terms of the original parameters of the Hamiltonian

this is

TKF = D

(
U

1− U2/4

)−π
φ

. (4.63)

This scale is power law in the interaction strength which matches predictions made by

Renormalisation Group techniques [12]. Having identified the scale we can determine the

dependence of the impurity strength on the cutoff D. The behaviour depends on the sign

of the interaction strength. For repulsive interactions φ < 0,

U(D) ∼
(
TKF
D

) |φ|
π

(4.64)
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Figure 4.9: In the Kane-Fisher model the low energy behavior of the model depends on the
sign of the interaction. For repulsive interactions, K < 1 the impurity strength grows at
low energies so that the fixed point theory consists of two disconnected Luttinger liquids.
In the opposite regime of attractive interactions, K > 1 the impurity strength weakens at
low energy so that the fixed point theory describes a clean wire with non impurity.

which show U → 0 as D →∞, or running the argument backwards, indicating the strength-

ening of the impurity at small energy increases as D is decreased. In contrast, for attractive

interactions the U(D) grows with the scale signifying the healing of the system at low

energy, see 4.9.

Likewise, the Weak-Tunnelling Hamiltonian also generates a scale TWT = Deπct/φ. The

complementary nature of these models is exposed when written in the bare parameters,

TWT = D

(
4t

1− 4t2

)π
φ

. (4.65)

The change in the sign of the exponent causes the tunnelling parameter to run oppositely

to the impurity strength. The two systems thus become disjoint when the interactions are

repulsive and completely joined for attractive interactions at low energies.

At this point we should replace our phase shift φ with the quantity K. The relation of

the last chapter φ/π = 1− 1/K was derived for a Luttinger liquid with hard wall boundary

conditions. This result can therefore be applied to the weak tunnelling model

TWT = D

(
4t

1− 4t2

) K
K−1

. (4.66)



128

while an analogous calculation for a liquid with periodic boundary conditions gives us that

TKF = D

(
U

1− U2/4

) 1
1−K

. (4.67)

Any thermodynamic calculations are valid only when the generated scale is less than the

cutoff. Accordingly we are hereafter restricted to the repulsive regime of the impurity model

and the attractive regime for the Weak-Tunnelling Hamiltonian. We will only present the

former but the latter is similar with the appropriate replacement of the scale.

Having taken the scaling limit we turn now to study the universal temperature depen-

dence of the free energy. It requires the full solution of the TBA equations which can be

achieved only numerically. Here we shall consider the high T � TKF and low temperature

T � TKF limits and leave the study of the crossover to a later publication.

The free energy is given in terms of ϕν−1 which is coupled to all other ϕj but still we

can obtain some results for high and low temperature. At T � TKF the integral in (4.62) is

dominated by the behaviour at x→ −∞, in this limit the driving term drops out of (4.55)

and the solutions are constants. Denoting eϕj(−∞) = xj , we get,

xj = (j + 1)2 − 1, xν−1 = ν − 1 = 1/xν . (4.68)

Similarly for low T � TKF we look for solutions at x→∞. This time we denote eϕj(∞) = yj

and find

yj = j2 − 1, yν−1 = ν − 2 = 1/yν . (4.69)

Using the expression for the free energy along with (4.69) and (4.68) we can calculate

the difference in the impurity entropy between fixed points ,

SiUV − SiIR =
1

2
log

ν

ν − 1
(4.70)

=
1

2
log

(
1

K

)
(4.71)
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where we used K = (ν − 1)/ν for our choice of φ. This shows the usual decrease as the

system flows from the UV to the IR fixed points (a flow from weak to strong coupling regime

for repulsive interactions), a decrease which in the language of the renormalisation group

counts the degrees of freedom that were integrated out. The result agrees with the values

calculated for the boundary terms in both the boundary Sine-Gordon model [119] as well

as XXZ with parallel boundary fields [132].

We now consider the corrections to the asymptotic limits (4.68) and (4.69) which can

also be calculated [132]. The corrections yield the specific heat which is found to scale as,

C(T � TKF ) ∼
(

T

TKF

) 2
K
−2

(4.72)

C(T � TKF ) ∼
(
TKF
T

)2−2K

. (4.73)

These indicate that both the strong and weak coupling fixed point are Non-Fermi Liquid in

nature.

Using arguments from boundary conformal field theory [133] we can identify the leading

irrelevant operators at both fixed points and thus determine the scaling of the conductance

as given by Kubo’s formula. At low temperature the conductance vanishes as G ∼ T
2
K
−2

corresponding to the effective increase of the strength of the impurity U as D is decreased

noted earlier. Thus the low temperature physics is governed by strong coupling Hamiltonian

where the wire is cut by the impurity and for which the Weak-Tunnelling model is the

starting point. At high temperatures, in addition to the wire conductance G0 = Ke2/h, we

have the impurity correction G ∼ T 2K−2, its vanishing at high temperatures corresponding

to the healing of the wire [12]. We expect similar results to be obtained from finite size

calculations on a ring threaded by flux Φ. Performing the same analysis for the weak

tunnelling model within the region K > 1 can be reproduced by making the replacement

K → 1/K in the above formulae.
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SUV − SIR = 1
2 log (1/K)

Cv ∼
(
TKF

T

)2−2K
Cv ∼

(
T

TKF

)2/K−2

wc scT
TKF

� 1 T
TKF
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Figure 4.10: Here we summarize the results of this section. The backscattering impurity
is weakly coupled at high temperature and strongly coupled at low temperature. The flow
between the fixed points is characterized by the difference in impurity entropy. In the
region of the fixed points the specific heat shows non fermi liquid behavior from which the
dimensions of the leading relevant/irrelevant operators can be determined.

The weak tunnelling model is often used as the strong coupling description of the Kane-

Fisher model[12] although the validity of this approach is not agreed upon in the literature

[134, 135, 136, 137, 138]. In the above analysis we have seen that the K < 1 Kane-Fisher

model is dual to the K > 1 Weak-Tunneling model. Unfortunately we cannot make any

statement regarding the Weak-Tunneling model in the region K < 1 and its relation to the

K < 1 Kane-Fisher model as there is no way to universally remove the cutoff.

4.7 Elementary Excitations

In the previous section we derived the impurity thermodynamics of both the Kane-Fisher

impurity model and Weak-Tunnelling model with spin isotropic bulk interaction. Here we

will discuss the elementary excitation of the models, which we have called chirons owing

to their origin in the chiral degrees of freedom. The ground state of the system contains

only real roots whose distribution is governed by the j = 1 equation of (4.53) with the

ρh
1(x) = ρj(x) = 0 for j > 1. Excitations above this ground state are obtained by adding

holes in this distribution. The chiron energy, ε = 2D arctan e
π
|φ|x

h

, appears as the diving

term in the TBA equations (4.55) with xh being the position of the hole in the distribution.

Using the method of [88] which we outlined in chapter 2 we can determine their phase

shift as they scatter past the impurity. To do this we note that in the absence of the impurity
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the chiron energy should take on values 2πIh/L (See Eq.(4.48)). The 1/L deviation of ε

from this value gives the chiron- impurity phase shift. Up to an overall constant phase the

impurity S-matrix is

Sc,i(ε) = ei∆
c,i(
|φ|
π

log (ε/TKF )), (4.74)

∆c,i(x) =

∫
dω

8πiω

tanh (ω/2)

sinh ((π/|φ| − 1)ω/2)
eiωx

This is valid for π/|φ| being an arbitrary rational number between 0 and 1. We see that

the phase shift is non trivial at both low and high energies as both IR and UV fixed points

are non trivial. This is to be compared with bare electrons which are perfectly transmitted

at high energies and reflected at low energy.

Adding two holes to the ground state distribution allows us to calculate the chiron-chiron

phase shift in the same manner,

Sc,c(ε1, ε2) = ei∆
c,c(ε1−ε2), (4.75)

∆c,c(x) =

∫
dω

4πiω

sinh ((π/|φ| − 2)ω/2)eiωx

cosh (ω/2) sinh ((π/|φ| − 1)ω/2)

With εj the energies of the two chirons. The full physical spectrum is thus built up by

adding holes and strings to the ground state distribution. The interpretation of the strings

is commented on below.

We now turn to discuss the relation between our approach with the bootstrap approach

where the spectrum of the Hamiltonian and the various S-matrices are postulated on the

basis of integrability properties. It is known that the impurity model without spin is related

via bosonisation and folding procedures to the massless limit of the boundary Sine-Gordon

model. Its spectrum is taken to consist of solitons, anti-solitons and their bound states

known as sreathers. The dressed S-matrices, derived via the bootstrap method of [139],

are non diagonal for generic interaction strength and calculating thermodynamic quantities
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leads to an equation similar in structure to (4.23). For special values of the interaction

however, the bulk scattering becomes diagonal and the computations simplify considerably,

the right hand side becoming a mere phase. The inclusion of spin in this method is more

complicated and is only achieved in certain interaction regimes [140]. In contrast the present

method constitutes a bottom up approach. We have diagonalised the actual quantum

Hamiltonian for all values of the interaction, our restriction to |φ| = π/ν and weak bare

coupling is purely for the convenience of its simplified string structure. The model has also

been extensively investigated at arbitrary coupling using the Q-operator approach with the

results derived therin broadly agreeing with those derived here[141, 142].

4.8 Conclusions

In this chapter we have solved exactly two related Hamiltonians, a Luttinger liquid coupled

to an impurity or a tunnel junction with arbitrary boundary conditions. This was achieved

via a new type of coordinate Bethe ansatz that incorporates the reflecting and transmitting

properties of the impurity in conjunction with the Off Diagonal Bethe Ansatz. We found

that determining the spectrum is equivalent to an analogous problem for an open XXZ chain

with one boundary corresponding to the impurity and the other the associated to the type

of boundary condition in the original model. The thermodynamics of both models were

then studied and it was shown that a scale is naturally generated such that the impurity

strength and tunnelling parameter run oppositely confirming the duality of the models.

The impurity free energy for the simplest interaction regime was calculated and was seen

to coincide with that obtained in [119] using the bootstrap approach. The diagonalization

of the model allows us to view the system as a gas of excitations in the chiral degrees of

freedom, chirons, which scatter with a pure phase off the impurity.
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5

Quantum Dot in a Luttinger Liquid

So far we have studied two types of quantum impurities coupled to a Luttinger liquid. One

in which a backscattering impurity is placed in the bulk of the Luttinger liquid but itself

has no degrees of freedom and one in which there are impurity degrees of freedom but it

is placed at the boundary of the system. In this chapter we will study two systems which

incorporate both of these scenarios. They consist of a quantum dot coupled to the bulk of a

Luttinger liquid realizing a backscattering bulk impurity which carries degrees of freedom.

We find the exact solution of both models, constructing the eigenstates and finding the

spectra using the methods of the last two chapters and study the ground state and finite

temperature properties.

5.1 Introduction

Throughout this thesis we aim to highlight how remarkable the effects of coupling a quantum

impurity to an interacting one dimensional lead can be. We have encountered two of the

most striking phenomena in the previous chapters. The first entailed placing a quantum

dot at the boundary of the system. As the dot was at the boundary it broke no symmetries

of the system but it did have its own degrees of freedom which where fermionic in nature.

The resulting interplay with the bulk bosonic degrees of freedom caused a strong coupling

scale, TK , to be dynamically generated and the dot to be completely hybridized with the

bulk at low energies, T, ε0 � TKF . This Kondo type behavior occurred even in the absence

of any Kondo type coupling between the dot and the liquid. Including such a term in the

form of a Coulomb interaction (the U term) between the dot and the wire we saw that the
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strong coupling regime persisted even if the Kondo term was ferromagnetic .

The second type of impurity was a backscattering or Kane-Fisher (KF) type impurity

placed in the bulk of the Luttinger liquid. Although carrying no degrees of freedom the

impurity broke the individual number conservation of left and right movers. This also

resulted in the generation of a strong coupling scale, TKF below which the system would

be split in two provided there were repulsive bulk interactions. We also saw that a duality

existed between this model and one in which the impurity was replaced by a tunnel junction.

In that system the tunnelling at the junction vanished at low energy if the bulk interactions

were repulsive, however if they were attractive the tunnelling would grow at low energies

and a strong coupling scale TWT would be generated. The spectra of the two models were

seen to be related by taking the map K → 1/K.

More interesting still are scenarios in which the impurity has internal degrees of freedom

and also causes backscattering. Among these, systems of quantum dots coupled to interact-

ing leads have attracted much attention [12][143][144][111][145][113][146][147][148][149][150].

These allow for richer and more exotic phases to appear. For example, the Kane-Fisher im-

purity flows to strong coupling provided K < 1 but the dot flowed to strong coupling

provided K > 1/2 and so one can expect interesting competition between the two effects

when 1/2 < K < 1.

Such systems are readily achievable in many experimental settings allowing for con-

frontation of theory with experiment [120][151]. In particular the Duke group realizes the

embedded geometry, see FIG. 5.1(a) of a dot placed between two otherwise disconnected

leads. To do this they use a short carbon nano tube as a quantum dot and attach it to

two 2-dimensional Fermi liquid leads with tunnelling from the leads to the dot mediated

via dissipative environment. It is known however that such non interacting, resistive 2-

dimensional leads can be described by Luttinger liquid theory[59, 110] and by properly

tuning the Fermi level on the dot using a back gate a single level can be made available thus

realizing a Luttinger-resonant level model. An AFM image of the experiment is depicted in
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1
Figure 5.1: We consider two geometries of Luttinger dot system; (a) embedded and (b)
side-coupled. The embedded geometry also includes a Coulomb interaction between the
dot and leads. Once unfolded the side-coupled and embedded geometries are the same but
with the latter containing non local interactions (5.2).

Figure 5.2: An atomic force microscope image of the setup utilized by the Duke group.
A carbon nano tube is attached to a source and drain created from thin Cr films. The
tunneling between the leads and dot is tuned by the side gates shown. Not shown is a back
gate which tunes the Fermi level of the carbon nano tube so that it realizes a resonant level.
Figures are taken from [151]
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FIG. 5.2. Measurement of the conductance has revealed interesting non-Fermi liquid scaling

as well as Majorana physics. Using a similar setup it may be possible to also realize the

other geometry of a sidecoupled dot, see FIG. 5.1 (a). Other experimental setups also exist

which may realize the Luttinger-dot system more directly, for example using on fractional

quantum Hall materials as discussed in the last chapter [50, 51, 52].

In this chapter we solve exactly Luttinger liquid-quantum dot systems in both the em-

bedded (see FIG. 5.1(a)) and side coupled (see FIG. 5.1(b)) geometries. We do this using

the Bethe Ansatz approach formulated in the last chapter. We shall construct the eigen-

states and determine the spectra of the models via the Bethe Ansatz equations and study

both the ground state and finite temperature properties. In particular we calculate the dot

occupation as a function of both temperature and dot energy.

The exact solution shows that the spectra of the two geometries are related by changing

the sign of the bulk interaction, or rather K → 1/K a fact previously known through

bosonization [146] and an effect which was seen in the last chapter between the KF and

WT models.

In the last chapter we saw how the system consisted of decoupled charge and chiral

degrees of freedom, each with their own quantum numbers and can be considered a gas of

holons and chirons with the later acquiring a phase shift as they scatter past the impurity.

Here we will see that the charge and chiral degrees of freedom remain coupled as the impurity

can change both the charge and chirality of the bulk. At low energies we show that the dot

becomes fully hybridized and acts as a backscattering impurity for the side-coupled model

and as a tunnel junction for the embedded system. This creates a competition between the

charge and chiral degrees of freedom when the backscattering or tunnel junction is irrelevant

and leads to non Fermi liquid exponents in the dot occupation.
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5.2 Models

The systems we consider consist of a quantum dot attached to a Luttinger liquid, the

attachment being either in the embedded or the side-coupled geometry. For convenience we

recall that the Hamiltonian of a Luttinger liquid is given by,

HLL = −i
∫

dx (ψ†+∂xψ+ − ψ†−∂xψ−)

+4g

∫
dxψ†+(x)ψ†−(x)ψ−(x)ψ+(x) (5.1)

For the side-coupled geometry we have x ∈ [−L/2, L/2] while the embedded geometry is

similar to the WT model of the last chapter and consists of two Luttinger liquids restricted

to x ∈ [−L/2, 0] and x ∈ [0, L/2]. It is convenient to bring the two systems into similar

form by unfolding the embedded geometry in the standard way to give,

Hemb
LL = −i

∫
dx(ψ†+∂xψ+ − ψ†−∂xψ−)

+4g
∑

σ=±

∫
dxψ†σ(x)ψ†σ(−x)ψσ(−x)ψσ(x) (5.2)

The embedded system now consists of one branch of left-movers and one branch of right

movers restricted to x ∈ [−L/2, L/2] but unlike the side-coupled system where the left and

right fermions interact locally with each other, in the embedded system after unfolding the

interaction is between particles of the same chirality and is non local. We can compare

this to the boundary-dot model of chapter 3 which after unfolding had only one remaining

chirality. The embedded model can thus be considered a two lead generalization of that

system.

As ever, the linear spectrum requires a cutoff to be imposed in order to render the

energies finite imposing it on the particle momenta requires k ≥ −K = −2πD. All physical

quantities are taken to be small compared with the cutoff and at the end of the calculation

we send D →∞, to obtain universal results.
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The quantum dot is modelled by a resonant level with energy ε0 described by,

Hdot = ε0d
†d, (5.3)

coupled to Luttinger liquid via a tunnelling term,

Ht =
t

2
(ψ†+(0) + ψ†−(0))d+ h.c (5.4)

which mediates both forward and backscattering in the model, the latter changing left

movers to right movers and vice versa. Furthermore in the embedded system we add a

Coulomb interaction between the ends of the leads and the dot which is the same strength

as the Luttinger interaction,

Hc = gd†d
∑

σ=±
ψ†σ(0)ψσ(0). (5.5)

Both energy scales in the dot Hamiltonian are small compared the the cut-off, ε0,Γ � D,

where Γ = t2 is the level width. We shall determine the spectrum and the full set of exact

eigenstates of both Hamiltonians, Hsc = HLL+Ht+Hdot and Hemb = Hemb
LL +Ht+Hdot+Hc,

using the Bethe Ansatz approach developed in the last chapter.

5.3 Eigenstates of the models, duality and Bethe equations

To begin note that after the unfolding procedure, the two systems differ only in the two

particle interaction, it is either local or non-local, meaning the single particle eigenstates are

the same in both models. We construct them in what should by now be a familiar fashion:

writing down the most general state which is consistent with the symmetry of the model

and applying the Hamiltonian to it. Since the tunnelling to and from the dot takes place at

the origin we expand the wavefunction in plane waves on either side of it, the most general
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Figure 5.3: The linear derivative requires that we cutoff the bottom of the Dirac sea so that
k > −2πD which we will take to infinity in the end. When the rapidity notation is used
the dot energy acts as a chemical potential and in the ground state levels are filled up to
−Ke−B/2, with B = B(ε0). In comparison to the boundary dot case there are two branches
of particles corresponding to left and right movers.

form for the single particle state of energy E = k being,

∑

σ=±

∫
eσikx

[
θ(−x)A[10]

σ + θ(−x)A[01]
σ

]
ψ†σ(x) |0〉+Bd† |0〉 , (5.6)

The amplitudes A
[10]
+ and A

[01]
− are those of an incoming particle and are related to the

outgoing amplitudes A
[10]
− and A

[01]
+ (see FIG. 4.4) by the bare single particle S-matrix -

S, which takes an incoming particle to an outgoing one. In contrast to the KF/WT mod-

els it depends explicitly on the particle momenta due to the presence of the dimensionful

tunnelling parameter t and the neceesity for the components of the S-matrix to be dimen-

sionless. As we did for the boundary dot model it is convenient to trade in the particle
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momentum k for the rapidity variable z, defined as k − ε0 = Dez/2, we have,



A

[01]
+

A
[10]
−


 = S(z)



A

[10]
+

A
[01]
−


 (5.7)

S(z) =




ez/2

ez/2+iec
−iec

ez/2+iec

−iec
ez/2+iec

ez/2

ez/2+iec


 (5.8)

with ec = Γ/D. In addition the dot amplitude B is

B =
∑

σ=±

1

2
e(c−z)/2

(
A[10]
σ +A[01]

σ

)
. (5.9)

From here periodic boundary conditions can be imposed ψ†±(−L/2) = ψ†±(L/2) resulting in

e−iDe
z/2L−iε0L



A

[10]
+

A
[01]
−


 = S(z)



A

[10]
+

A
[01]
−


 (5.10)

which can then be solved for the allowed values of the rapidity z.

We now proceed to the two particle case wherein the bulk interaction g enters differently

in both models. We shall first consider the side-coupled model and discuss the embedded

model subsequently. The construction of the two particle state follows the same logic as was

used in the KF and WT models. The difference now is that the S-matrices and in particular

our choice of W ij will depend explicitly on the particle rapidities and the wavefuncion also

contains dot terms ∝ d† |0〉. For clarity of presentation we reiterate the construction here,

repeating many of the same statements appropriately modified for the present purposes.

Since the two particle interaction is point-like as is the tunnelling to the dot we may

divide configuration space into regions such that the interactions only occur at the boundary

between two regions. Therefore away from these boundaries we write the wavefunction as

a sum over plane waves. For two particles we require 8 regions which are specified not only

by the ordering of the particle positions x1, x2 and the impurity but also according to which
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position is closer to the origin. For example if x1 is to the left of the impurity, x2 to its

right with x2 closer to the impurity then the amplitude in this region is denoted A
[102B]
σ1σ2 ,

σj = ± being the chirality of the particle at xj . The region in which x1 is closer is denoted

A
[102A]
σ1σ2 . The most general two particle state with energy E = k1 + k2 =

∑2
j=1Dezj/2 + 2ε0

is therefore

|k1, k2〉 =
∑

Q

∑

σ1,σ2=±

∫
θ(xQ)AQσ1σ2

2∏

j

eiσjkjxjψ†σj (xj) |0〉

+
∑

σ=±

∫ [
θ(−x)B[10]

σ + θ(x)B[01]
σ

]
ψ†σ(x)d† |0〉 . (5.11)

The amplitudes AQσ1σ2 are related to each other by S-matrices which are fixed by the Hamil-

tonian and in turn fix B
[10]
± and B

[01]
± . To define these S-matrices we form column vectors

of the amplitudes,

~A1 =




A
[120B]
++

A
[102B]
+−

A
[201B]
−+

A
[021B]
−−




~A2 =




A
[210A]
++

A
[102A]
+−

A
[201A]
−+

A
[012A]
−−




~A3 =




A
[201A]
++

A
[012A]
+−

A
[210A]
−+

A
[102A]
−−




~A4 =




A
[201B]
++

A
[021B]
+−

A
[120B]
−+

A
[102B]
−−




~A5 =




A
[021B]
++

A
[201B]
+−

A
[102B]
−+

A
[120B]
−−




~A6 =




A
[012A]
++

A
[201A]
+−

A
[102A]
−+

A
[210A]
−−




~A7 =




A
[102A]
++

A
[210A]
+−

A
[012A]
−+

A
[201A]
−−




~A8 =




A
[102B]
++

A
[120B]
+−

A
[021B]
−+

A
[201B]
−−




(5.12)

The interpretation of these is exactly the same as in the previous chapter: ~A1 are the am-

plitudes where both particles are incident on the impurity but particle 2 is closer. Similarly

in ~A2 both particles are incoming but the order in which they hit the impurity is exchanged

i.e 1 is closer. In the nomenclature of the last chapter they should be related by the in-in

S-matrix. The amplitudes ~A5 and ~A6 are similar but the particles being outgoing instead.
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The vector ~A8 describes particle 2 having scattered off the impurity and is still closer to

the impurity than 1 while ~A7 also describes particle 2 having scattered but with 1 is closer.

These are related by an in-out S-matrix. The remaining two vectors ~A3 and ~A4 are similar

but with particle 1 being incoming and 2 outgoing.

After applying the Hamiltonian to (5.11) we find that it is an eigenstate provided,

~A8 = S20(z2) ~A1, ~A3 = S10(z1) ~A2, (5.13)

~A5 = S20(z2) ~A4, ~A6 = S10(z1) ~A7, (5.14)

~A7 = S12 ~A8, ~A4 = S12 ~A3, (5.15)

~A2 = W 12(z2 − z1) ~A1, ~A6 = W 12(z2 − z1) ~A5. (5.16)

The S-matrices S20 and S10 which take a particle past the impurity, i.e. from incoming to

outgoing are

S20(z2) = S(z2)⊗ 1, S10(z1) = 1⊗ S(z1), (5.17)

with S(z) the same as in the single particle state (5.8), the S-matrix S12 scatters an incoming

particle past an outgoing particle and is

S12 =




1 0 0 0

0 eiφ 0 0

0 0 eiφ 0

0 0 0 1




. (5.18)

where φ = −2 arctan (g) encodes the bulk interaction and W 12(z2 − z1) which scatters an
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incoming (outgoing) particle past another incoming (outgoing) particle is given by

W 12(z) =




1 0 0 0

0
sinh 1

2
(z)

sinh 1
2

(z−2iφ)

− sinh iφ

sinh 1
2

(z−2iφ)
0

0 − sinh iφ

sinh 1
2

(z−2iφ)

sinh 1
2

(z)

sinh 1
2

(z−2iφ)
0

0 0 0 1




. (5.19)

In addition the dot amplitudes are given by

B
[10]
± =

1

2
e(c−z2)/2

∑

σ=±

[
A

[210A]
σ± +A

[201A]
σ±

]

−1

2
e(c−z1)/2

∑

σ=±

[
A

[120B]
±σ +A

[102B]
±σ

]
, (5.20)

B
[01]
± =

1

2
e(c−z2)/2

∑

σ=±

[
A

[102A]
σ± +A

[012A]
σ±

]

−1

2
e(c−z1)/2

∑

σ=±

[
A

[201B]
±σ +A

[021B]
±σ

]
. (5.21)

Inserting these expressions for the amplitudes into (5.11) we get the two particle eigenstate

of the side-coupled model.

Since all amplitudes are generated from ~A1 by successive application of the various S-

matrices, as depicted in FIG. 4.6, there are two ways to obtain each ~Aj both of which

must be equivalent for the construction to be consistent. This consistency imposes that the

S-matrices satisfy a generalised Yang Baxter equation similar to the last chapter but which

is rapidity dependent

S20(z2)S12S10(z1)W 12(z2 − z1) = W 12(z2 − z1)S10(z1)S12S20(z2) (5.22)

Despite the increased complexity of this relation due to the forms of W 12 and Sj0 this

equation is still satisfied, which can be checked by substitution. Furthermore the unitarity
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conditions must also hold. In addition to S12
[
S21
]∗

= 1, we need that

W 12(z2 − z1)W 21(z1 − z2) = 1

both of which are indeed satisfied.

It is important to note that while no interaction between two incoming (outgoing) par-

ticles is present in the Hamiltonian, W 12 is necessary for (5.11) to be an eigenstate. In

contrast to AKM and KF models the form of W 12 is not a freedom afforded by the linear

derivative. Recall that in those models the Hamiltonian did not fix the in-in or out-out

S-matrix and one had to invoke the Yang Baxter equation to fix W 12 and have a consistent

wavefunction. In the present case W 12 is fixed by the Hamiltonian and subsequently we

checked that the consistency condition was satisfied. The lack of freedom in our choice of

W 12 stems from the additional Schrödinger equation from the ”dot” part of the wavefunc-

tion i.e the part of the eigenstate ∝ d† |0〉. Recall that when we looked at the boundary-dot

model of chapter 3 there was also no freedom and the two particle phase shift was deter-

mined by the Hamiltonian.

We can now construct the two particle eigenstates of the sidecoupled model and then

go on to impose periodic boundary conditions. Upon doing so one finds

e−ik1L ~A1 = S12S10W 12 ~A1 (5.23)

e−ik2LW 12 ~A1 = S12S20 ~A1 (5.24)

which can be solved to determine z1,2.

The eigenstates for higher particle number are constructed similarly and the N particle

state with energy E =
∑N

j=1 kj =
∑N

j=1Dezj/2 +Nε0 is,
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∣∣∣~k
〉

=
∑

Q

∑

~σ

∫
θ(xQ)AQ~σ

N∏

j

eiσjkjxjψ†σj (xj) |0〉

+
′∑

P

′∑

~σ

∫
θ(xP )BP

~σ

′∏

j

eiσjkjxjψ†σj (xj)d
† |0〉 (5.25)

The first line here should is familiar from the previous chapter. Again θ(xQ) are Heaviside

functions which partition configuration space into 2NN ! regions with Q labelled by the

ordering of the N particles as well as according to which particle is closest to the origin

while ~σ = (σ1, . . . , σN ) with σj = ±. The second line is a new addition compared to the

KF model, concerning as it does the occupied dot portion of the wavefunction. The primed

sums indicate that one particle is removed - being on the dot - and the sums are over the

remaining N − 1 particle system. There are thus 2N−1(N − 1)! P regions. Just as in the

two particle case the amplitudes are related to each other via S-matrices which act on the

2N dimensional space

Sj0 = Sj(zj)⊗k 6=j 1, (5.26)

Sij =




1 0 0 0

0 eiφ 0 0

0 0 eiφ 0

0 0 0 1




ij

⊗k 6=i,j 1, (5.27)

W ij =




1 0 0 0

0
sinh 1

2
(zj−zi)

sinh 1
2

(zj−zi−2iφ)

− sinh iφ

sinh 1
2

(zj−zi−2iφ)
0

0 − sinh iφ

sinh 1
2

(zj−zi−2iφ)

sinh 1
2

(zj−zi)
sinh 1

2
(zj−zi−2iφ)

0

0 0 0 1



ij

⊗k 6=i,j1. (5.28)

where the subscripts denote which particle spaces the operators act upon. In order for
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this wavefunction to be consistent it must satisfy the following Yang-Baxter and reflection

equations,

Sk0SjkSj0W jk = W jkSj0SjkSk0 (5.29)

W jkW jlW kl = W klW jlW jk (5.30)

W jkSjlSkl = SklSjlW jk. (5.31)

The first of these being the generalisation to N particles of (5.22) while the remaining two

come from the consistency of the wavefunction away from the dot, (5.30) arises from the

swapping the order of 3 particles which are either all incoming or outgoing and (5.31) is

when one of the three differs form the other two. These are indeed satisfied by (5.26),(5.27)

and (5.38) which is a sufficient condition for the consistency of the wave function [89]. The

expressions for BP
~σ in terms AQ~σ can also be found and are straightforward generalizations

of (5.20) and (5.21). Therefore we have successfully constructed the N particle eigenstates

of the side-coupled model.

The spectrum can then be determined by imposing periodic boundary conditions. As

we are interested in studying properties of the dot in the thermodynamic limit the type

of boundary condition imposed at x = ±L/2 will not affect the result. This results in an

eigenvalue problem which determines the kj through

e−ikjLAσ1...σN = (Zj)
σ′1...σ

′
N

σ1...σN
Aσ′1...σ′N (5.32)

Zj = W j−1j ..W 1jS1j ..SjNSj0W jN ..W jj+1 (5.33)

where the matrix Zj takes the jth particle past all others and past the impurity. By using

(5.22), (5.30) and (5.31) one can show that the Zj commute with each other [Zj , Zk] = 0

∀j, k. They are therefore simultaneously diagonalisable and the spectrum of the side-coupled

model is determined by the eigenvalues of the Zj operators. In this case the Zj are not all
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the same as they were for the previous models we studied. This stems from the appearance

of the dimensionful parameter t in the Hamiltonian which resulted in rapidity dependent

phase shifts Sj0 and W ij . This will ultimately result in the charge and chiral degrees of

freedom remaining coupled. This occurs also in the Bethe Ansatz solutions of the Anderson

impurity model[35] and the Hubbard model[152] .

The manner in which we have constructed the eigenstates allows one to apply any bound-

ary conditions to the system and we have chosen a periodic system here for convenience. As

we did with the KF model however we may impose a twisted boundary condition in which

case our transfer matrix is modified to

Zj = W j−1j ..W 1jBjS
1j ..SjNSj0W jN ..W jj+1 (5.34)

where

Bj =



eiΦ 0

0 e−iΦ


 . (5.35)

with Φ =
∫
A being the total flux threaded through the system. This can then be used

to calculate the equilibrium, persistent current around the system by studying for instance

∂Egs

∂Φ . Aside from twisted boundary conditions like this one can also introduce another dot

at x = L/2 so that the system consists of two resonant levels coupled to a Luttinger liquid

at diametrically opposed parts of the periodic system. This opens up the possibitliy to

study how the occupation of one level is affected by the other, the occurrence of the RKKY

interaction[153, 154, 155] and the effect that the bulk interactions have on these processes.

Having obtained the eigenstates of the sidecoupled model we now do the same for the

embedded dot geometry. Once the embedded system has been unfolded its eigenstates

can be constructed in the same manner as we did for the side-coupled model. The single

particle states are given by (5.6) however the multiparticle states are modified by the non

local interaction as well as the addition of the Coulomb term, Hc. Following the same steps
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as the last section one finds that the N particle state is given by

∣∣∣~k
〉

=
∑

Q

∑

~σ

∫
θ(xQ)AQ~σ

N∏

j

eiσjkjxjψ†σj (xj) |0〉

+
′∑

P

′∑

~σ

∫
θ(xP )BP

~σ

′∏

j

eiσjkjxjψ†σj (xj)d
† |0〉 (5.36)

where now the various amplitudes are related to each other by the S-matrices

Sijemb =




eiφ 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiφ




ij

⊗k 6=i,j 1, (5.37)

W ij
emb =




1 0 0 0

0
sinh 1

2
(zj−zi)

sinh 1
2

(zj−zi+2iφ)

sinh iφ

sinh 1
2

(zj−zi+2iφ)
0

0 sinh iφ

sinh 1
2

(zj−zi+2iφ)

sinh 1
2

(zj−zi)
sinh 1

2
(zj−zi+2iφ)

0

0 0 0 1



ij

⊗k 6=i,j1. (5.38)

and the single particle S-matrices Sj0 the same as (5.26). The inclusion of the Coulomb

term (5.5) is essential for this and in its absence the model is not integrable, despite this

though the S-matrices are very similar to those of the side coupled model, indeed the in-

in matrix is related to the sidecoupled version by changing the sign of the interactions,

W ij
emb = W ij |φ→−φ. Similarly for the in-out matrix we have that Sijemb = eiφSij |φ→−φ. Thus

if it weren’t for the additional phase required in the later relation the two models would

exactly map to each other under φ → −φ. To investigate this further let us impose the

periodic boundary condition ψ†±(−L/2) = ψ†±(L/2). This then results in another eigenvalue
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problem,

e−ikjLAσ1...σN =
(
Zemb
j

)σ′1...σ′N
σ1...σN

Aσ′1...σ′N (5.39)

where Zemb
j is defined similarly to Zj in (5.33) but using W ij

emb and Sijemb. The mapping can

aslo be applied to the transfer matrix above so that

e−i(N−1)φZemb
j = Zj |φ→−φ. (5.40)

Therefore, the spectrum of the embedded model is obtained from the side-coupled model by

changing the sign of the interaction, φ→ −φ modulo the additional phase above. An overall

phase shift like this could be cancelled if one were to impose a different boundary condition

on either system. For instance taking instead a twisted boundary condition ψ†±(−L/2) =

eiξψ†±(L/2) where ξ = (N − 1)φ Mod 2π in the embedded model would give us an exact

mapping between the two different geometries.

We can replace the bare phase shift φ by the universal Luttinger liquid parameter K

using [40] [39]

K =





1 + φ
π side-coupled

1

1−φ
π

embedded

(5.41)

meaning that in the thermodynamic limit the two models (with appropriately chosen bound-

ary conditions) are related by taking K → 1/K. A similar duality map was found to exist

between the embedded and sidecoupled models using boosnization[146]. In that instance

the duality was said to be between the models regardless of their respective boundary con-

ditions. The result was derived using the same unitary transformation method that we

reviewed in chapter 3, section3.8. As we saw though one must be careful when equating

Hamiltonians in this fashion. By choosing the boundary conditions in each model correctly,



150

however one can restore the single valued nature of the correlators as in (3.80) and thereafter

it is correct to say that there is an exact mapping between the two models.

As was the case for the sidecoupled model we are free to apply arbitrary boundary

conditions in the embedded model and in particular we can thread the system with a flux

and use it to calculate the persistent current. The calculation of the current (at T = 0)

requires one to calculate the finite size correction to the ground state energy and so in

this scenario one would need to take care with the boundary conditions in order to apply

the duality mapping to the result. In any case the type of boundary condition applied

to the system should not affect thermodynamic properties of the impurity in the limit

N,L → ∞ which is what will study hereafter and so we will disregard these intricacies.

In the subsequent sections all calculations will be done for the side-coupled model with

periodic boundary conditions the results of which can then be translated to the embedded

model by taking K → 1/K. Note that as φ is a phase shift and restricted to [−π, π] we

see that the side-coupled system may realize values of K ∈ [0, 2] whereas the embedded

system has K ∈ [1/2,∞] although once again we should mention that the Luttinger liquid

description is only a valid low energy effective description for a much narrower range of K.

5.4 Off Diagonal Bethe Ansatz and the Luttinger limit

Our task now is to determine the eigenvalues of Zj which we will do following the method

used for the KF model. We begin by considering the monodromy matrix

ΞA(u) = CK+(u)RA1(u+ θ/2− z1/2) . . .RAN (u+ θ/2− zN/2)

×K−(u)RAN (u− θ/2 + zN/2) . . .RA1(u− θ/2 + z1/2) (5.42)
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where C = −ezj+iφ

sinh (3θ/2) sinh (θ) and the boundary matrices are given by

K−(u) =




2i cosh (θ/2− c) coshu sinh (2u)

sinh (2u) 2i cosh (θ/2− c) coshu


 (5.43)

K+(u) =




2 sinh (−θ) cosh (u− iφ) sinh (2u− 2iφ)

sinh (2u− 2iφ) 2 sinh (−θ) cosh (u− iφ)


 . (5.44)

with ec = Γ/D. The trace of the monodromy matrix, t(u) = TrA[ΞA(u)] evaluated at a

particular spectral parameter will then give us each of the Zj operators

Zj = lim
θ→∞

t(θ/2− zj/2). (5.45)

As we saw in the previous chapter this type of transfer matrix is associated with the open

XXZ model and has been studied extensively, in particular using the ODBA method. Fol-

lowing the same procedure we find that the eigenvalues of the transfer matrix t(θ/2− zj/2)

are

Λ(θ/2− zj/2) = −4iC sinh (θ − zj − 2iφ) cosh (c− zj/2) cosh2 (θ/2− zj/2)

sinh (θ − iφ− zj)

× sinh (3θ/2− zj/2)

N∏

k

sinh (θ/2− zj/2− µk + iφ)

sinh (θ/2− zj/2 + µk − iφ)
. (5.46)

with the Bethe equations given by

[
i sinh

(
−i(N + 1)φ− c− θ/2 + 2

∑N
j=1 µj

)
− 1
]

sinh (2µj − iφ) sinh (2µj − 2iφ)

2i cosh (µj − c+ θ/2− iφ) cosh2 (µj − iφ) sinh (µj − θ − iφ)

=
N∏

l=1

sinh (µj + µl − iφ) sinh (µj + µl − 2iφ)

sinh (µj − zl/2 + θ/2− iφ) sinh (µj + zl/2− θ/2− iφ)
(5.47)

In addition the Bethe parameters must also satisfy the selection rules µj 6= µk and µj 6=

µk+iφ. Upon taking the limit, θ →∞ (5.46) and (5.47) completely determine the spectrum

of Zj and therefore the sidecoupled Lutinger-dot model. In order to take this limit we
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redefine the Bethe parameters in the following way

2µj =





−λj + iφ+ θ ifj ≤ N
2

νj−N/2 + iφ− θ ifj > N
2 .

(5.48)

Inserting these into (5.46) and (5.47) and then taking the θ → ∞ limit we have that the

single particle energy is

e−iDe
zα/2L = − ezα+c

ezα/2 + iec
2 cosh (zα/2 + c)eiNφ/2

N/2∏

k

sinh 1
2(zα − λk + iφ)

sinh 1
2(zα − λk − iφ)

eνk−λk(5.49)

while the two sets of Bethe equations are

N/2∏

k

sinh (λj − νk + iφ) sinh (λj − νk) = −e−
∑
α zα/2+

∑
k(2λk−νk)+iφ+2c−λj

×
N∏

α

sinh
1

2
(zα − λj + iφ) (5.50)

N/2∏

k

sinh (νj − λk − iφ) sinh (νj − λk) = −e
−∑

α zα/2+
∑
k λk+iφ/2+c−λj

2 cosh (νj − c− iφ/2)

×
N∏

α

sinh
1

2
(zα − νj − iφ) (5.51)

In addition we also have the selection rules which are now λj 6= λk, νj 6= νk, λj 6= νk.

Equations (5.49)-(5.51) describe exactly the sidecoupled model for all values of φ and c with

finite N and L. Naturally these are very similar to those we encountered when analyzing

the KF model and we shall take a similar approach to solving them. Indeed we can recover

the Luttinger liquid spectrum, thereby validating our limiting procedure, in the same way.

Leaving the details to the appendix we find that upon taking c → −∞ we get that the
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energy of the system is E =
∑

αDezα/2 +Nε0 where

e−iDe
zα/2L = eiMφ−iε0L

N/2∏

k

sinh (1
2(zα − λk − iφ))

sinh (1
2(zα − λk + iφ))

(5.52)

N∏

α

sinh (1
2(λj − zα + iφ))

sinh (1
2(λj − zα − iφ))

= ei(N−2M)

N/2∏

j 6=k

sinh (1
2(λj − λk + 2iφ))

sinh (1
2(λj − λk − 2iφ))

. (5.53)

These differ from the Bethe equations previously cited as describing the Luttinger liquid,

(4.48) (4.52) which at first may seem worrying. We should recall however that the large

degeneracy afforded to the system when the impurity is absent by the linear spectrum.

This allows us to diagonalize the Luttinger liquid in many different bases each of which will

provide a different set of Bethe equations. The expressions above actually correspond to a

solution of the Lutinger liquid in the basis appropriate for sidecoupled quantum dot while

those we encoutered previously were in the appropriate basis for the KF or WT models.

Irrespective of the choice of basis that is made though they should all return the same

eigenvalues which we can check here by inserting (5.53) into (5.52). After taking the log

and summing over all particles we get

E =
2π

L

N∑

k

nk −
2π

L

M∑

j

Ij −
2M(N −M)

L
φ

which coincides with the previous result (4.48) at zero flux.

Away from the Luttinger limit we are still left with a number of complex Bethe equations

to solve in order to study the our model. Rather than deal with them directly we adopt

the approach of the last chapter and make the simplifying assumption that when ec � 1

the solutions to the Bethe equations obey the string hypothesis (see FIG. 5.6). Given these
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the system is described by

e−i2De
zα/2L = eiNφ−2iε0L

[
ezα/2 − iec
ezα/2 + iec

]
N/2∏

k

sinh2 (1
2(zα − λk − iφ))

sinh2 (1
2(zα − λk + iφ))

(5.54)

N∏

α

sinh2 (1
2(λj − zα + iφ))

sinh2 (1
2(λj − zα − iφ))

=

[
cosh (1

2(λj − 2c+ iφ))

cosh (1
2(λj − 2c− iφ))

]
N/2∏

j 6=k

sinh2 (1
2(λj − λk + 2iφ))

sinh2 (1
2(λj − λk − 2iφ))

.(5.55)

where the parameters λj describe the chiral degrees of freedom, zα describe the charge

degrees of freedom and the energy of the system is

E =
∑

α

Dezα/2 +Nε0. (5.56)

In the remainder of the chapter we use (5.54)(5.55) along with (5.56) to study the impurity

properties in the thermodynamic and universal limit. We close the section by commenting

that the condition ec � 1 is quite natural to take as it states that the bare hybridization be

much smaller than the bandwith Γ� D, an assumption that is made to reduce a system to

the Hamiltonian (5.1). Finally one should also check that in the non interacting limit the

(2 channel) RL model is recovered. We postpone this to the next section where we recover

the ground state dot occupation.

5.5 Ground state dot occupation

Having obtained the Bethe equations governing the system we can now construct the ground

state. To do this we first must fill the empty Dirac sea with negative energy particles from

the cutoff, −D up to some level determined by minimisation of the energy (and depending

on ε0, see FIG. 5.3). After this the thermodynamic limit N,L → ∞ is taken holding the

density D = N/L fixed and finally we take the universal limit by removing the cutoff

D →∞ while holding some other scale, which has been generated by the model, fixed. We

will see below that this scale is the level width Γ. Once the ground state has been found

we will use it to derive exact expressions for the occupation of the dot, nd =
〈
d†d
〉

as a
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function of ε0.

The form of the possible negative energy states entering the ground state depends upon

the value of K, whether it is greater or less than 1 and so the ground state must be

constructed separately in each case. Nevertheless we will find a single expression for the

dot occupation valid in both regimes.

5.5.1 Attractive interactions, K > 1

We begin with φ ∈ [0, π] which corresponds to K ∈ [1, 2]. Here the ground state consists of

so-called z−λ 2-strings [96] wherein the rapidities form complex conjugate pairs with their

real part coinciding with one of the chiral variables,

zj = z∗N+1−j = λj + 2πi+ iφ. (5.57)

with each pair having bare energy −2 cos (φ/2)Deλj , see FIG. 5.6. Inserting these expres-

sions into (5.54) and (5.55) we obtain equations for the real parts of the pairs, λj . In the

thermodynamic limit we describe them by the density ρ1(λ) which we split into bulk and

boundary contributions ρb
1(λ) + 1

Lρ
d
1(λ). The dot occupation is then given by,

nd = 2

∫
ρd

1(λ). (5.58)

The factor of 2 appears here as each λ corresponds to a pair of rapidities. These distribu-

tions, ρb
1(λ), 1

Lρ
d
1(λ) are determined by the Bethe equations in their continuous form which

for the bulk part is,

cosφ/2

2π
Deλ/2 = ρb

1(λ) +

∫ ∞

−B
a2(

λ− µ
2

)ρb
1(µ) (5.59)
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where −B = −B(ε0) is the λ value of the highest filled level. When the dot energy vanishes

we have that B(0) =∞ and bulk distribution is easily found by Fourier transform to be

ρb
1(λ) =

Deλ/2
4π cos (φ/2)

(5.60)

with the bulk part of the ground state energy being

Egs = −
∫ ∞

−∞
2 cos (φ/2)Deλ/2ρb

1(λ). (5.61)

To confirm this is indeed the ground state one can introduce excitations and check the energy

is increased, the simplest type of which consists of adding holes to the distribution. Following

the prodecure of chapter 2 we find that the energy of a hole turns out to be proportional

to the ground state distribution i.e. a hole at λ = λh has energy εh(λh) = 4πρb
1(λh),

increasing the energy. This is similar to the boundary dot model where we also employed a

rapidity notation the addition factor of 2 compared to there is due to our choice of k ∼ ez/2

rather than k ∼ ez. The other excitations consist of breaking up a z − λ pair and placing

them above the Fermi surface such they have real rapidity. Each particle then has energy

εp(z) = 2Dez/2 in addition to the hole introduced in the ρ1(λ) distribution.

When ε0 6= 0 the additional term in the energy (see (5.56)) needs to be balanced by the

addition of holes to the ground state with rapidities starting at −B(ε0). The form of the

hole energy, εh(λ) gives us that [39]

B(ε0) = log

(
α
D
ε0

)
(5.62)

where α is a constant. An explicit expression for α could be derived following the steps of

appendix B, however to understand the behavior of the system the exact form of α is not

required.

Considering now the dot part of the Bethe equations, the dot contribution to the density
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satisfies,

f1(λ− 2c) = ρd
1(λ) +

∫ ∞

−B
a2(

λ− µ
2

)ρd
1(µ), (5.63)

with fn(x) =
1

2π

∫ ∞

−∞
eiωx

sinh (π − nφ)ω

sinh 2πω
. (5.64)

The solution is obtained by the Wiener-Hopf method (see [69],[68] or [96] and references

therein). Upon integrating over the result as in (5.58) we find that the exact dot occupation

in the ground state is,

nd =
−i

2
√
π

∫ ∞

−∞
dω
e−iω(2 log ( ε0Γ )+a)

sinh (2πω)

× Γ(1
2 + i(K − 1))ω)

Γ(1 + iω)Γ(1− i(2−K)ω)
. (5.65)

where Γ(x) is the Gamma function, a is the constant,

ea =
φ

πα2

[
π − φ
φ

]π−φ
π

(5.66)

and we have used (5.41) to write nd in terms of the Luttinger K.

As there is no dependence on the cutoff we can safely take the universal limit D → ∞

while holding the level width Γ fixed. The width serves as both the coupling constant and

as the strong coupling scale paramerizing the model, with respect to which all quantities are

measured. It appears here, rather surprisingly, unrenormalized by the interactions which

are present in the system and independent of the raw cut-off. This behavior is more akin

to the non interacting RL model in which the bulk is a Fermi liquid than the boundary

dot system of chapter 3. This is a first hint of the competition between the Kondo and KF

effects which occur in this model. We will comment on this further in the next section but

for now we examine the expression (5.65).

First we can check that upon inserting K = 1 in the above expression we recover the
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non interacting result

nd =
1

2
− 1

π
arctan

(ε0
Γ

)
. (5.67)

which is that of the RL model. Note that in chapter 2 we considered only a single branch of

right movers and currently there are both left and right. In the non interacting limit though

one can perform an odd-even transformation in the Hamiltonian, ψe,o = (ψ+±ψ−)/
√

2 which

decouples the odd modes and leave the one channel RL model we studied before.

The recovery of the noninteracting result is a highly nontrivial verification of our solution.

To take this limit in the Bethe equations one should rescale both the rapidities and Bethe

parameters z → φz and λ → φλ and then take φ → 0. This still leaves us with a set of

complicated Bethe equations to solve but which nevertheless return the above result.

For other values we may evaluate (5.65) by contour integration and obtain an expansion

of nd for ε0 < Γ or ε0 > Γ giving

nd =





1
2 −

[∑∞
n=0 an

(
ε0
Γ

)2n+1
+ bn

(
ε0
Γ

)(2n+1)/(K−1)
]

∑∞
n=0 cn

(
Γ
ε0

)n+1
for Γ < ε0

(5.68)

where an, bn and cn are constants. Furthermore the capacitance of the dot is

χ =
∂nd
∂ε0

∣∣∣∣
ε0=0

=
ea/2

π(K − 2)Γ
. (5.69)

We see that at low energy, ε0 < Γ the system is strongly coupled with the dot becoming

hybridized with the bulk. At the low energy fixed point (ε0 = 0) the dot is fully hybridized

and has nd = 1/2. The leading term in the expansion about this is ε0/Γ which indicates that

the leading irrelevant operator has dimension 2. We identify it as the stress energy tensor

[94]. The next order term (ε0/Γ)1/(K−1) is due to the backscattering which is generated at

low energies but is irrelevant for K > 1. At high energies, ε0 > Γ, the system becomes
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Figure 5.4: The dot occupation at small (left) and large (right) dot energy, ε0/Γ, for different
values of K > 1. The effect of attractive interactions is to suppress the dot occupation
as compared to the non interacting case (dashed line). This effect becomes stronger for
increasing K.

weakly coupled with the fixed point (ε0 → ∞) describing a decoupled empty dot, nd = 0.

The expansion about this fixed point is in terms of integer powers indicating that the

tunnelling operator d†ψ(0) has dimension 1/2. The first few terms of the expansion are

plotted in FIG. 5.4 from which we see that the dot occupation is suppressed as a function

of ε0 for K > 1 as compared to the non interacting case due to the backscattering.

5.5.2 Repulsive Interactions, K < 1

The ground state takes a different form in the region φ ∈ [−π, 0] which corresponds to

K ∈ [0, 1] . It is constructed by taking the chiral parameters λj ∈ R to be real and the

rapidities placed on the 2πi line i.e. Im(zα) = 2π. Inserting these values into the Bethe

equations and then passing to the continuous form we obtain a set of coupled integral

equations for the distributions of the charge, ρ−(z) and chiral variables σ1(λ) which we can

again split into bulk and dot contributions. The bulk contributions ρb
−(z) and σb

1 (λ) are

governed by the continuous Bethe equations,

Dez/2
4π

= ρb
−(z)−

∫ ∞

−B′
a1(z − y)σb

1 (y)

∫ ∞

−B′
a1(λ− y)ρb

−(y) = σ1(λ) +

∫ ∞

−∞
a2(λ− y)σb

1 (y) (5.70)
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Figure 5.5: The dot occupation at small (left) and large (right) dot energy for different
values of K. The effect of repulsive interactions K < 1 is to enhance the dot occupation as
compared to the non interacting case (dashed line) with the effect increasing as K decreases.

where the rapidities are bounded by −B′(ε0). When the dot energy is set to zero we have

that B′(0) =∞ and the bulk ground state distributions are found to be,

ρb
−(z) =

Dez/2
2π

, (5.71)

σb
1 (λ) =

Dez/2
4π cos (φ/2)

. (5.72)

The fundamental excitations above this ground state consist of adding holes to either of

these distributions. The energy of these are εh(z) = 4πρb
−(z) and εh(λ) = 4πσb

1 (λ) for

a charge hole and chiral hole respectively. As in the previous section these are used to

determine B′ which gives the same relation as (5.62). The dot occupation is subsequently

obtained by integrating over the dot part of the charge distribution nd =
∫
ρd
−(z)dz which

is determined by,

g2(λ− 2c) = ρd
−(λ) +

∫ ∞

−B′
g1(λ− y)ρd

−(y), (5.73)

gn(x) =
1

2π

∫ ∞

−∞
eiωx

sinh (π − φ)ω

2 cosh (φω) sinh (nπω)
. (5.74)

The solution is again determined using the Wiener-Hopf method with the result that the

dot occupation for K < 1 is also given by (5.65). Note however that the poles at ω =

i(K − 1)(2n + 1)/2 have shifted from the upper half plane to the lower half plane. This
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changes the expansions at high and low energy to be

nd =





1
2 −

∑∞
n=0 an

(
ε0
Γ

)2n+1

∑∞
n=0 cn

(
Γ
ε0

)n+1
+ bn

(
Γ
ε0

)(2n+1)/(1−K)
(5.75)

with the capacitance being given by (5.69). As in the K > 1 region, the dot is strongly

coupled at low energy and weakly coupled at high energy with the same leading terms in

the expansion about these points however the term generated by the backscattering now

appears in the expansion about the high energy fixed point. This stems from the fact that

backscattering is relevant for K < 1 and leads to an enhancement of the dot occupation as

compared to the K = 1 case, see FIG. 5.5.

The dot occupation for the embedded system is simply obtained from (5.65) by using

the mapping K → 1/K.

5.6 RG flow

In the previous section we derived exact expressions for the dot occupation for the side-

coupled model as a function of ε0 measured with respect to the strong coupling scale. This

strong coupling scale is given by Γ, the level width. It does not depend on K as might

have been expected for an interacting model and in fact coincides with the free model1. To

understand why the level width is not renormalised by K we can make use of the mapping

to the embedded model which can be viewed as a two lead version of the model considered

in chapter 3. The strong coupling scale in the embedded model should behave similarly to

the single lead case, where a dot is placed at a Luttinger liquid edge [146]. For an arbitrary

1In QIMs there are in fact a number of different scales present. For instance in the AKM there is TK but
also TH which is the natural scale that emerges when studying the ground state magnetization under the
applied field H. There is a certain amount of freedom in choosing these particular forms for the scale as one
could also define them to include an overall constant. Often they are fixed so that a particular observable
takes a natural form, e.g in the Kondo model TH is chosen so that there is no log−2 (H/TH) in the high
field expansion of the magnetization. The ratio of these numbers given certain conventions like the one just
stated then gives a universal number known which can be calculated with the same result using different
methods. For more details see [68].
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φ < 0 φ > 0

2πi

-2πi

0

2-string

4-string
2ν-string

1

Figure 5.6: At finite temperature the rapidity and chiral variables may form z − λ strings
where n λs and 2n zs form a set given by (5.77). On the left we show how a 2-string,
4-string and the negative parity 2ν-string are arranged for φ < 0. On the right we depict
the same for φ > 0. Note only the z positions are changed when going from left to right
which results in a change in sign of the energy from the strings.
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Coulomb interaction, U we saw that D(Γ/D)1/α where α = 1+2 [arctan (g)− arctan (U)] /π

(c.f.(3.52)). Taking U = g, as required by the mapping (see (5.5)), reduces this to Γ, the

free value. The non-renormalization of the level width suggests that the tunnelling operator

d†ψ±(0) should have the same dimension as the free model which is confirmed by the high

energy expansions of the dot occupation. This is in stark contrast to the the fact that

fermions in a Luttinger liquid (away from the edge) have dimension (K+1/K)/4. Thus the

remarkably simple expression for the strong coupling scale and critical exponents present

here stand in contrast to a quite substantial modification of the fermions in the vicinity of

the dot.

We now have the following picture of the side-coupled system. For all K ∈ [0, 2] the

system flows from weak coupling at high energy to strong coupling at low energy. The low

energy fixed point describes a dot which is fully hybridized with the bulk and has the fixed

point occupation nd = 1/2. The hybridized dot then acts as a backscattering potential via

co-tunnelling. The leading irrelevant operator which perturbs away from the fixed point is

the stress energy tensor and results in odd integer powers of ε0/Γ in the dot occupation.

For K > 1 the backscattering is irrelevant which gives rise to odd powers of (ε0/Γ)1/(K−1)

resulting in a suppression of the dot occupation at ε0 > 0. For K < 1 on the other hand

it is relevant and generates no other terms in the expansion. The high energy fixed point

describes a decoupled dot which has nd = 0 for ε0 → ∞ or nd = 1 for ε0 → −∞. By

reducing the energy scale we flow away from the fixed point with the tunnelling operator

d†ψ±(0) which is the leading relevant operator and has dimension 1/2 as in the free model.

This give rise to integer powers of Γ/ε0 in nd. Additionally when K < 1 backscattering is

relevant and causes odd powers of (Γ/ε0)1/(1−K) to appear resulting in an enhancement of

the dot occupation .
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Figure 5.7: Here we plot the universal thermodynamic functions which are the solutions
of the TBA (5.81)-(5.83) for several values of ν with ε0 = 0. In the top line with plot
eκj for j < ν and ν = 3, 4, 5 from left to right respectively. In the next we plot eϕj for
j < ν and ν = 3, 4, 5 from left to right respectively and in the bottom line we plot eϕ± for
the same values. These were obtained by numerically solving the TBA using an iterative
procedure. In all the cases shown it is easy to confirm that the attain the asymptotic values
quoted in the text (5.84), (5.86). The functions apply to both the repulsive regime where
the Luttinger parameter is K = 2/3, 4/5, 5/6 respectively and the attractive regime where
we have K = 4/3, 6/5, 7/6.
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Figure 5.8: We plot here the contribution to the specific heat due to the dot as a function
of T/Γ for several values of the interaction. The dashed line indicates the linear behaviour
at low T . At high T the specific heat approaches a different constant according to (5.7.1)

5.7 Thermodynamics

In this section we study the finite temperature properties of the dot by calculating the free

energy. As before we use the methods developed by Yang and Yang [73] and later extended

by Takahashi [96] based on the string hypothesis. The form of the strings depend upon

the model and the values of the parameters therein and differ somewhat from what we

have encountered before. To simplify matters we take φ = ±π/ν with ν an integer so that

K = ν±1
ν . With this value fixed the hypothesis states that the Bethe equations allow for

the following forms of the charge and chiral variables.

The rapidities can be real or complex with Im(z) = 0, 2π. These contribute bare energy

±Dez/2 and we denote the distributions of these ρ±(z). The chiral variables can take on

complex values so that they arrange into n-strings with n < ν such that

λ
(n)
l = λ(n) + iφ(n− 1− 2l), l = 0, . . . , n− 1 (5.76)

or λ can be a negative parity string and lie on the iπ line . The λ n-strings have no bare
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Figure 5.9: The finite temperature dot occupation is plotted as a function of ε0/Γ for several
values of the temperature. Above we plot the dot occupation with K = 2

3 (solid lines) and
K = 1 (dashed lines). The repulsive bulk interactions result in an enhancement of the dot
occupation in comparison to the non interacting case. This is effect is most pronounced
for lower temperatures. At higher temperature the interacting and non interacting curves
coincide owing to the fact that the dot becomes decoupled. Below we plot the same for
K = 4

3 (solid lines) and plot again K = 1 (dashed) for comparison. The dot occupation is
suppressed due to the attractive interactions wth the effect becoming more pronounced for
lower T/Γ.
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Figure 5.10: The dot occupation for fixed εo/Γ as a function of temperature. The interac-
tion is taken to be K = 4

3 (dot-dashed lines), K = 1 (dashed lines) and K = 2
3 (solid lines).

We see the enhancement and suppression of the dot occupation for repulsive and attractive
interaction with the effect most pronounced as the temperature is lowered.

energy and we denote the distributions of their common real part by σn(λ) with n = ν

denoting the negative parity string. Also possible are z − λ 2n-strings consisting of 2n zs

and a λ n-string taking the values

z
(n)
l+1 = λ(n) + iφ(n− 2j) + iπ + sgn(φ)iπ (5.77)

z
(n)
l+n+1 = λ(n) + iφ(n− 2l) + iπ − sgn(φ)iπ (5.78)

where j = 0, . . . , n and l = 1, . . . , n− 1. These contribute bare energy

En = −2sgn(φ) cos (n
φ

2
)Deλ(n)/2.

In addition there is also a negative parity z − λ string

λ = λ(ν) + iπ, z1,2 = λ(ν) ± i(π − φ) (5.79)
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which has energy

2 sin (
φ

2
)Deλ(ν)/2.

We denote the distributions of the z − λ 2n-strings by ρn(z) with n = ν indicating the

negative parity string. Several string type are depicted in FIG. 5.6 for both φ > 0 and

φ < 0.

Having elucidated the string structure of the model, the free energy is found in what

should by now be a familiar manner. Recall the free energy is found by minimizing F =

E−TS, where E is the energy of an arbitrary configuration of strings and S is its associated

Yang-Yang entropy. We minimize it with respect to ρ±, ρn and σn which are solutions of the

Bethe Ansatz equations. The result of this minimization gives the thermodynamic Bethe

ansatz (TBA) equations which determine F . Owing to the different string structures for K

greater than or less than 1 we consider each region separately.

5.7.1 K = ν−1
ν

We start with φ = −π/ν, corresponding to K = ν−1
ν < 1, describing repulsive interactions.

In this region we find the dot contribution to the free energy is

Fd = E0
d − T

∫
f0(x+ 2 log

(
T

Γ

)
) log (1 + eϕ−(x))

−T
∫
f0 ∗ s(x+ 2 log

(
T

Γ

)
) log (1 + eκ1(x))

−T
∫
s(x+ 2 log

(
T

Γ

)
) log (1 + eκν−1(x)) (5.80)

where E0
d is the ground state energy due to the dot, s(x) = sech(πx/2φ)/4φ and ∗ denotes

the convolution f ∗ g =
∫
f(x − y)g(y)dy. The thermodynamic functions ϕ±, ϕn and κn

are related to the distributions ρ±, ρn and σn respectively and are solutions of the TBA

equations which in this case are
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ϕ+ = s ∗ log

(
1 + eϕ1

1 + eκ1

)
, ϕ− = −2ex/2 + s ∗ log

(
1 + eϕ1

1 + eκ1

)
(5.81)

ϕn = s ∗ log (1 + eϕn−1)(1 + eϕn+1)(1 + e−ϕν )δn,ν−2 + δn,1s ∗ log

(
1 + eϕ+

1 + eϕ−

)
(5.82)

κn = s ∗ log (1 + eκn−1)(1 + eκn+1)1+δn,ν−2

−δn,1
[

ex/2

cos (φ/2)
− s ∗ log

(
1 + eϕ+

1 + eϕ−

)]
(5.83)

along with ϕν−1 = s∗log (1 + eϕν−2)+ νε0
T = −ϕν+2νε0

T and κν−1 = s∗log (1 + eκν−2) = −κν .

Just as in the calculation of the dot occupation in the ground state the above equations

are independent of the cutoff which has been removed while holding Γ fixed. These ex-

pressions give the exact dot free energy of the system in all temperature regimes. Their

complicated nature precludes any analytic solution for the thermodynamic functions but

are straightforwardly determined numerically through iteration of the integral equations.

Before doing this however we can examine them in the limits of low and high tempera-

ture. The functions f0(x) and s(x) appearing in the free energy are sharply peaked about

zero meaning that for T → 0,∞ the free energy is determined by the solutions of the TBA

in the x→∞,−∞ limits respectively. Setting ε0 = 0 and taking first the high temperature

limit, x → −∞ we see that the driving terms in the TBA vanish and the thermodynamic

functions are constants eϕ±(−∞) = 1,

eϕj(−∞) = eκj(−∞) = (j + 1)2 − 1 (5.84)

eϕν−1(−∞) = eκν−1(−∞) = ν − 1. (5.85)

Likewise in the opposite low temperature limit x→∞ we get eϕ−(∞) = 0, eϕ+(∞) = 3,

eκj(∞) = j2 − 1, eκν−1(∞) = ν − 2 (5.86)

eϕj(∞) = (j + 2)2 − 1, eϕν−1(∞) = ν. (5.87)
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The free energy thus becomes linear in T in both the high and low temperature limit. The

thermodynamic functions can be obtained by numerically integrating the TBA. In FIG.5.7

we plot eϕ± , eϕj , eκj for a number of values of ν with ε0 = 0. WE see that all the functions

are monotonic and attain the asymototic values given in (5.84) and (5.86).

Using these we can check the RG picture we arrived at earlier using the ground state

dot occupation still holds true at finite temperature. First note that the energy scale, the

temperature in this case, is measured with respect to Γ which serves as both the strong

coupling scale and the level width for the model. Thus the system is strongly coupled at

low temperature T � Γ and weakly coupled at high temperature T � Γ. Furthermore by

inserting (5.86) (5.84) into (5.80) we obtain the g-function of the model, defined to be the

difference in the UV and IR entropy of the impurity

g = SUV − SIR = log 2 +
1

2
log

(
1

K

)
. (5.88)

This is always positive for the range of values considered in agreement with the requirement

that as we move along the RG flow by lowering the temperature, degrees of freedom are

integrated out. The first term comes from the charge degrees of freedom and corresponds

to the difference in entropy of a decoupled dot at high temperature compared to one fully

hybridized at low temperature. The second term comes from the chiral degrees of freedom

and is the same as for the Kane-Fisher model of chapter 4[119][40]. We see from this that

at high temperature the dot is decoupled and as T is lowered it becomes hybridized with

the dot whereupon it acts as a back scattering impurity. In the non interacting limit the

K → 1 this last term disappears and we recover the expected result.

We may go beyond the fixed point behaviour to get the leading order corrections and

determine the specific heat. Following [69][132] we expand about the low temperature so-

lution log (1 + exp (ϕ−)) ≈ exp
(
−2ex/2

)
and log (1 + exp (κ1)) ≈ exp

(
−ex/2/ cos (φ/2)

)
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for x� 0. The low temperature specific heat is then found to be

Cv ∼
T

Γ
(5.89)

which agrees with the expectation that the irrelevant operator is the stress energy tensor.

In FIG. 5.8 we plot the specific heat for a number of different values of ν and see that the

it is indeed linear at low temperature and then asymptotes to constant values according to

.

By numerically integrating the TBA and using them in (5.80) we can obtain the finite

temperature dot occupation of the system. This is plotted in FIG. 5.9 for K = 2
3 as a

function of ε0/Γ at different values of the temperature, T/Γ. For the same value of K we

plot the dot occupation at fixed ε0/Γ as a function T/Γ in the FIG. 5.10. Comparing to

the dashed lines which are the non interacting values we see that the dot occupation is

enhanced just as it was at zero T . This enhancement is strongest at low T and is washed

out at high temperature as the system becomes weakly coupled.

5.7.2 K = ν+1
ν

We turn now to the case of φ = π/ν or K = ν+1
ν > 1, attractive interactions. In this

regime we will see that tunnelling to the dot is still relevant however it must compete with

the backscattering that this generates which is irrelevant for K > 1[12]. This competition

makes itself felt via changes in the free energy and TBA equations. The dot contribution

to the free energy is now given by

Fd = E0
d − T

∫
f0(x+ 2 log

(
T

Γ

)
) log (1 + e−ϕ+(x))

−T
∫
f0 ∗ s(x+ 2 log

(
T

Γ

)
) log (1 + eϕ1(x))

−T
∫
s(x+ 2 log

(
T

Γ

)
) log (1 + eκν−1(x)) (5.90)



172

with the TBA equations being

ϕ+ = 2ex/2 + s ∗ log

(
1 + eϕ1

1 + eκ1

)
, ϕ− = s ∗ log

(
1 + eϕ1

1 + eκ1

)
(5.91)

ϕn = s ∗ log (1 + eϕn−1)(1 + eϕn+1)(1 + e−ϕν )δn,ν−2

−δn,1
[
s ∗ log

(
1 + e−ϕ+

1 + e−ϕ−

)
+

ex/2

cos (φ/2)

]
(5.92)

κn = s ∗ log (1 + eκn−1)(1 + eκn+1)1+δn,ν−2 − δn,1s ∗ log

(
1 + e−ϕ+

1 + e−ϕ−

)
(5.93)

and ϕν−1 = s∗log (1 + eϕν−2)+ νε0
T = −ϕν+ 2νε0

T as well as κν−1 = s∗log (1 + eκν−2) = −κν .

Comparing to the K < 1 case we see that the roles of eφ− and e−φ+ have been exchanged

and that the exponential driving term now appears in the ϕj equations rather than κj ones.

We gain insight to the K > 1 region by looking at the asymptotic solutions of the

TBA. The high temperature solutions, x→ −∞ remain unchanged and are given by (5.84),

therefore as T → ∞ the system is the same regardless of K. In the low temperature limit

however the solutions are different as should be the case given the ground state is of a

different form. We get that e−ϕ+(∞) = 0, eϕ−(∞) = 3,

eϕj(∞) = j2 − 1, eϕν−1(∞) = ν − 2 (5.94)

eκj(∞) = (j + 2)2 − 1, eκν−1(∞) = ν (5.95)

Using these in the g function we obtain the same form as before,

g = log 2 +
1

2
log

(
1

K

)
. (5.96)

Note however that although g > 0, the second term which is due to the backscattering, is

negative for K > 1. This relative sign between the charge and chiral terms is related to the

competition between the tunnelling and the backscattering. Upon taking the K → 1 we

recover the non interacting result. The low temperature corrections to the fixed point can
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be obtained as they were in the previous section. This time however the driving terms in the

TBA do not appear in the κ1 equation but in the ϕ1 equation instead and consequently we

take log (1 + exp (−ϕ+)) ≈ exp
(
−2ex/2

)
and log (1 + exp (ϕ1)) ≈ exp

(
−ex/2/ cos (φ/2)

)

for x� 0 and find the specific heat to be

Cv ∼
T

Γ
+ a

(
T

Γ

)α
. (5.97)

Again the leading order term coincides with the stress tensor being the leading irrelevant

operator the next order term scales as Tα where α = 2 for K = ν+1
ν , ν > 2. It is expected

however that α becomes non integer when increasing K beyond this as is the case in the

ground state dot occupation.

The finite temperature dot occupation is plotted in FIG. 5.9 and FIG. 5.10. We see

that the dot occupation is suppressed as compared to K = 1 or K < 1, with the effect

being most pronounced at low temperature. At high T the dot becomes decoupled and the

occupation approaches that of the non interacting case.

5.8 Conclusion

In this chapter we have solved two related models of quantum dots coupled to Luttinger

liquids. The first consists of a dot side-coupled to the Luttinger liquid while in the second

the dot is placed between two otherwise disconnected liquids. The latter also requires that

a Coulomb interaction between the occupied dot and the end of the liquids is included and

it is tuned to the same value as the bulk interaction. The side-coupled model however,

requires no such tuning. Both models represent an amalgamation of the effects seen in the

previous two chapters, exhibiting both Kondo and KF physics.

The solution shows that the two models are related by taking K → 1/K provided one

takes appropriate boundary conditions. We derived the Bethe equations for both models

and used them to construct the ground state and derive exact expressions for the dot
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occupation in all parameter regimes. It was seen that the side-coupled system is strongly

coupled at low energies so that the dot becomes fully hybridised with the bulk and acts as

a backscattering potential. The effect of the backscattering is to either suppress or enhance

the dot occupation depending on the sign of the interactions.

The scaling dimensions of the leading relevant and irrelevant operators about the UV

and IR fixed points were found to coincide with that of the free model. The surprising

result that the fixed points appear, at least to leading order to be Fermi liquid is in start

contrast to the non-Fermi liquid nature of the bulk system.

We then examined the finite temperature properties of the dot by deriving the Thermo-

dynamic Bethe equations and free energy of the system. It was seen that at low temperature

dot is fully hybridised with the bulk and the interactions resulting in a suppression or en-

hancement of the dot occupation. The effect of the interactions is washed out at high

temperature whereupon the dot decouples.

The lack of fine tuned parameters in the side-coupled model make it a good candidate

for experimental realizations. Such a system may be created placing a quantum dot near a

carbon nanotube, the edge of a quantum Hall sample or a topological insulator. The dot

occupation can then be measured by means of a quantum point contact and compared to

(5.65).



175

6

Summary and Outlook

The goal of this thesis was to investigate the physics of quantum impurities when coupled

to a strongly correlated environment, in particular the Luttinger liquid. Furthermore we

aimed to study these systems by exactly diagonalizing their Hamiltonians using the Bethe

Ansatz method. After a brief introductory chapter we gave an overview of the Bethe Ansatz

and its application to a number of quantum impurity models. We began by investigating

the simplest of these the resonant level model and then subsequently the more complicated

anisotropic Kondo model and finally the closely related interacting resonant level model.

In each case we studied the ground state and excitations of the model and then calculated

the free energy at arbitrary temperature. We saw that the same basic principles of the

technique applied equally in the non interacting and interacting model alike modulo some

additional complexity of the relevant equations in the later case.

Following this we examined our first new model which consisted of a Luttinger liquid

coupled to a resonant level at the boundary. We successfully constructed all the eigenstates

of the model and explored the occupation of the level at zero temperature before going onto

study the finite temperature properties of the system. We saw that the strongly correlated

nature of the bulk resulted in an enhancement of the density of states at the boundary

which allowed for the level to become fully hybridized with the bulk at low energy and

then become completely decoupled at high energy. This Kondo type of behavior occurs in

the absence of any Kondo type coupling between the bulk and level. When such a term is

included it was shown that Kondo screening can still take place even if the Kondo term is

ferromagnetic. We compared these results to those obtained using bosonization and found
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some mild discrepancies. After reviewing the methods used to obtain these and similar

results we showed that the discrpancy is a result of the incorrect treatment of the bulk

system in bosonization.

In the next chapter we studied a different type of impurity which causes backscattering

in the Luttinger liquid. We studied the physics of this backscattering type of impurity

through two related models, the Kane-Fisher model and the weak-tunnelling model. We

constructed all the eigenstates of both models using a new formulation of the coordinate

Bethe Ansatz which took into account all types of scattering processes that can occur in

these models. The spectrum was then found by mapping the boundary condition problem

to an open XXZ chain which had previously been well studied. Using this we then studied

the finite temperature behavior of the system, calculating the free energy and g-function as

well as determining the dimensions of the leading relevant and irrelevant operators about

the IR and UV fixed points. The results were found to be in agreement with those obtained

using bosonization as well as the bootstrap method. At low temperature the repulsive KF

model was shown to generate a strong coupling scale, TKF and flow to a strong coupling

fixed point in which the system was split in two. The attractive system meanwhile was

seen to exhibit non universal behavior. A duality between the KF model and WT model

was discovered which mapped the KF model with Luttinger parameter K to the WT model

with 1/K which amounts to changing the sign of the interactions. Consequently we were

also able study the finite temperature properties of the attractive WT model and saw that

it generated a strong coupling scale TWT below which the otherwise split system would

become healed.

In the penultimate chapter we studied two models which would incorporate both the

Kondo-like physics of boundary dot model and the Kane-Fisher physics of the previous

chapter. The two models were a resonant level sidecoupled to a Luttinger liquid and a level

embedded between two liquids. In the later a Coulomb interaction was also required to

maintain integrability. We found the eigenstates and spectrum of both models using the
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Bethe Ansatz formulated while studying the KF model and subsequently derived expression

for the ground state occupation of the level as well as the free energy. For the sidecoupled

model we found that at low energy the dot becomes fully hybridized with the bulk similar

to the Kondo effect in the boundary model and then acted as a backscattering impurity.

When the bulk interactions were repulsive and hence backscattering was relevant we saw

a resulting enhancement of the level occupation at low energy. In the opposite case we

saw that although the dot remained hybridized backscattering was irrelevant and so the

Kondo and KF effects were in opposition, the effect was seen in a suppression of the dot

occupation at low temperature. We found that a K → 1/K duality also existed between

the sidecoupled and embedded models however in contradiction to the bosonization result

we showed that it required certain particular choice of boundary conditions to hold.

Many interesting and important questions remain to be answered about the models we

have studied and the techniques we have used. A particularly intriguing line of inquiry

regards the calculation of transport properties of the models. As mentioned inn Chapters

3 and 4, our formulation allows for one to exactly solve the systems with any boundary

condition. In particular we can study the systems on a ring through which a flux is threaded

by applying twisted boundary conditions. Since the gauge field associated with this flux

couples to the current we can determine the ground state equilibrium current or conductance

by calculating the finite size corrections to the energy in the presence of the shift. We can

also adopt an approach used by Andrei[156] to study the magnetoresistance of the Kondo

model. There it was shown that the magnetoresistance was related to the physical impurity

S-matrix in the presence of a magnetic field a quantity that can be found exactly using Bethe

Ansatz. A similar line of arguement can be applied to our models also which would allow

one to calculate the non-quilibrium conductance across the impurity. Aside from transport

properties, the freedom to choose any boundary condition allows one to study two-impurity

systems. In the sidecoupled dot geometry for instance one can impose a rapidity dependent

boundary condition at x = ±L/2 so that the system consists of two resonant levels coupled
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to a Luttinger liquid in a ring geometry at opposite points. By studying the finite size

corrections to the energy levels caused by the impurities one can study how the occupation

of each level is correlated and also study the emergence of the RKKY interaction in a

strongly correlated system.

These projects both entail the study of the system beyond the approximations we have

used on this thesis. Recall that in order to derive usable Bethe equations and study the

systems we had to make some assumptions about the structure of the solutions in the

thermodynamic limit. These simplifications were based on general grounds and properties

of impurity models and were subsequently checked by comparing with other methods. In

order to study the transport properties and two impurity models we would need to go beyond

these approximations. A more intensive study of the Bethe equations and eigenvalues of the

type we have used in this thesis is therefore required before engaging in these endeavors.

While obviously necessary and useful, a study like this could produce interesting physical

phenomena, for instance it is known that integrable models with open boundary conditions

can support an exotic array of bound states [139, 90, 157], thus it is possible that impurity

bound states like this may also exist in the models we have considered.

Lastly we recall that the real prize of being able to solve QIMs like the Kondo model

was to give an exact description of the physics in the crossover regime between weak and

string coupling. This was achieved both by calculating observables like the magnetization

or dot occupation but also by calculating the universal Wilson number which characterizes

the crossover regime and can be compared with other methods[158]. In this thesis we have

achieved the former by calculated observable like the dot occupation in all regimes but

not the later. It would therefore be desirable to define and calculate the equivalent of the

Wilson number for these systems and compare with purely numerical methods.
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Appendix A

Another approach to impurity thermodynamics: without

strings

The importance of the transfer matrix, t(u), in the solution of the Kondo problem was

highlighted in chapter 2. Its eigenvalues evaluated at u = 0 give the Bethe momenta

kj at finite N and L. In this appendix we exploit this equivalence between the transfer

matrix and the AKM Hamiltonian to derive a simplified and more general expression for

the thermodynamics of the model. The method falls under the umbrella of the Quantum

transfer matrix method which has been applied to spin chains and integrable QFTs. The

method does not rely upon the string hypothesis and therefore does not require a restriction

to say φ = π/ν it can be shown however that the results in either method are equivalent.

Since we predominantly use the string hypothesis in this thesis we have chosen to present

this method in an appendix.

The work in this section is adapted from the preprint [159] which at the time we believed

was the first time the method had been applied to QIMs. Subsequently we discovered that

it also appears in earler work of Klümper [160].

Recall that in the AKM we have that all the single particle energies are the same modulo

a trivial charge part

kl =
2π

L
nl +

1

L

M∑

j

p(λj , 1, 1) (A.1)

As each energy eigenvalues is given as the sum over all single particle momenta, E =
∑

l kl,

we see that it splits into two parts, E = Ec + Es. The first, Ec =
∑

l 2πnl/L, is due to
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τ

τ ′2M

N + 1

c

1
Figure A.1: The transfer matrix τ(u) defined in (??) is also the horizontal transfer matrix
of the classical six vertex model. The partition function of (A.4) is that of a model on a
square (N +1)×2N ′ lattice with a inhomogeneity of c on the first vertical link and periodic
boundary conditions in both directions. Alternately one can calculate the partition function
using the vertical transfer matrix τ ′ instead.

the charge degrees of freedom and merely describes a free spinless Fermi gas. The second,

Es = D
∑M

j p(λj , 1, 1), describes the spin degrees of freedom and is non trivial. Summing

in over all single particle momenta e−iEL = e−i
∑
j kjL = e−iEsL . This amounts to taking a

power of t(0) so

e−iELA[12,...,N,0] = e−iEsLA[12,...,N,0] = t(0)NA[12,...,N,0] (A.2)

as the trivial charge part cancels out since e−iEcL = 1.

Proceeding along these lines we can introduce the time variable t and write Tr{ e−iHt} =

Tr{ e−iHst}Tr{ e−iHct}, where Hs,c refer to the effective spin and charge Hamiltonians 1.

Further, as Tr{ e−iHst} is determined only by the eigenvalues of Hs, which are in turn

1This can be explicitly done using bosonization
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determined by the transfer matrix, we have

Tr{ e−iHst} = lim
Univ

lim
N→∞

Tr{ t(0)2M} (A.3)

with t = 2M
N L where we first take the thermodynamic limit, N → ∞ holding D fixed and

then take the universal limit D →∞, M →∞ such that both t, and TK are held fixed. We

thus see that the transfer matrix provides a regularization of the time evolution operator

for the spin part of the AKM at finite N and L.

Carrying out a Wick rotation to imaginary time we obtain the partition function of the

AKM,

Tr{ e−βH} = Zc lim
Univ

lim
N→∞

Tr{ t(0)2M} |t→−iβ (A.4)

with Zc being the charge part of the partition function which is easily computed through

standard techniques. In what follows we are concerned only with the impurity properties

which carry no charge degrees of freedom and so we will drop Zc from now on with the

understanding that we are considering only the spin part of the model.

The quantity Tr{ t(0)2M} is actually the partition function of the classical 6 vertex

model on a (N +1)×2M square lattice wherein t(0) is the transfer matrix in the horizontal

direction [19], see FIG. A.1. Due to rotational invariance we can also compute the partition

function of this model using the transfer matrix in the vertical direction which is of a similar

form,

Tr{ t(0)2M} = Tr{ t′(0)N t′(c)} (A.5)

t′(u) = Tr0̄ [R10̄(u) . . . R2M 0̄(u)] . (A.6)

The two transfer matrices t′(0) and t′(c) commute and are therefore simultaneously di-

agonalizable. Furthermore, as the limit N → ∞ of the partition function is taken first,
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t

L

L

t

(a) (b)

1

Figure A.2: The two ways of computing the partition function of (A.5). On the right, (b)
we take the spatial distance L = N/D → ∞ and the partition function consists of a sum
over all states. On the left, (a) we view the system as being on a finite ring t = 2M/D but
by taking L→∞ we project onto the maximal eigenvalue only.

Tr{ t′(0)N t′(c)} is determined solely by the largest eigenvalue of t′(u)[19] see FIG. 2. The

task of computing the partition function of the AKM has therefore been reduced to finding

the largest eigenvalue of a six vertex model on a torus - a decidedly simpler task. The only

complication being that we must compute this eigenvalue for finite M and in the end take

the appropriate limits. Denoting Λ = limN→∞Tr{ t′(0)N t′(c)}, the largest eigenvalue, we

have,

Λ=

M∏

j=1

[
sinh (λj + iγ/2)

sinh (λj − iγ/2)

]N sinh (λj + c+ iγ/2)

sinh (λj + c− iγ/2)
(A.7)

where the λj now satisfy,

[
sinh (λj − iγ/2)

sinh (λj + iγ/2)

]2M

=
M∏

j 6=k

sinh (λj − λk − iγ)

sinh (λj − λk + iγ)
. (A.8)

Note that now any dependence on the impurity parameter c is contained in the eigenvalue,

Λ rather than the Bethe equations. This has its counterpart, in the language of conventional

TBA [68, 69], where in thermodynamic limit the saddle point of the partition function is
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found to depend only on the bulk and not the impurity. Taking the log of these Bethe

equations (A.8) we have,

2Mp(λj1, 1) = −π(M − 2j + 1) +
M∑

k 6=j
p(λj − λk, 2, 1) (A.9)

where the choice of M = M as well as the logarithmic branches encoded in the successive

integers (M − 2j + 1), j = 1, ...,M leads to maximal eigenvalue.

It is convenient to rewrite the last equation in terms of the counting function Z(λ),

Z(λ) = 2Mp(λ, 1, 1)−
M∑

k

p(λ− λk, 2, 1) (A.10)

which has the property that, for M even, eiZ(λj) = −1 when λj is a solution of (A.9) and

furthermore is an analytic function in the region |Im(λ)| ≤ min(γ/2, π − γ/2). Using these

two properties in conjunction with the Residue Theorem we are able to rewrite the sum

present in (A.10) as an integral[161, 162]

M∑

k

p(λ− λk, 2, 1) =

∮

C

dµ

2πi
p′(λ− µ, 2, 1)

× log
(

1 + e−iZ(µ)
)
. (A.11)

The contour, C is taken to run from −∞ to ∞ at Im(µ) = −η and the back again at

Im(µ) = η with 0 < η ≤ min(γ/2, π − γ/2). In this way only the poles at λ = λj and no

other non-analytic points are encircled. Inserting the integral form of the sum into (A.10)

and rearranging using Fourier transforms and 2M = tD we find a single non linear integral

equation (NLIE) which determines Z,

Z(λ) = 2tD arctan
(
eπλ/γ

)
+ 2Im

∫ ∞

−∞
G(λ− µ− iη)

× log
(

1 + eiZ(µ+iη)
)

(A.12)
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The function G(x) present here is related to the physical two particle phase shift in the

AKM and is given by[69]

G(x) =

∫
eiωx

4π

sinh [(π/2− γ)ω]

cosh [γω/2] sinh [(π − γ)ω/2]
. (A.13)

Meanwhile the driving term appearing in the (A.12) is in fact the energy of the funda-

mental excitation in the AKM. In the universal limit D → ∞ we may replace this with

2tD arctan
(
eπλ/γ

)
→ 2tDeπλ/γ .

We now return to the eigenvalue Λ and seek to express it in terms of the counting

function, Z. Taking the logarithm of (A.7) we can split Λ into a sum of bulk and impurity

contributions log Λ = log Λb + log Λi with log Λb = −iN∑M
j p(λj , 1, 1) being the bulk part

and log Λi = −i∑M
j p(λj − c, 1, 1) being the impurity part. Using the same trick to convert

the sum to an integral we have the bulk part is,

log Λb = −itND
∫ ∞

−∞
dλ s(λ)p(λ, 1, 1) (A.14)

+2iN Im

∫ ∞

−∞
s(λ+ iη) log

(
1 + eiZ(λ+iη)

)

where we have defined s(x) = sech(πx/γ)/2γ. The impurity part is similarly found to be

log Λi = −itD
∫ ∞

−∞
dλ s(λ− c)p(λ, 1, 1) (A.15)

+2iIm

∫ ∞

−∞
s(λ− c+ iη) log

(
1 + eiZ(λ+iη)

)

At this point we are in a position to perform the Wick rotation t → −iβ and obtain the

free energy of the AKM for any γ. We are mostly interested in the region γ ≤ π/2 which

contains the Toulouse point and the isotropic limit so we will restrict to this which allows
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us to choose η = γ/2. Making the following definitions,

ε(λ) = −iZ (γ{λ− log 2βD}/π + iγ/2) (A.16)

G0(λ) = G(γλ/π), G1(λ) = G0(λ+ iπ − i0) (A.17)

and then taking D →∞ holding Tk fixed we find from (A.16) the impurity part of the free

energy is

Fi(T ) = Ei,0 −
T

2π

∫
sech

(
λ+ log

T

2Tk

)[
log
(

1 + e−ε(λ)
)

+ log
(

1 + e−ε
∗(λ)
)]

(A.18)

where Ei,0 is the dot contribution to the ground state energy and the function ε(λ) is a

solution of the NLIE,

ε(λ) = eλ −G0 ∗ log
(

1 + e−ε(λ)
)

+G1 ∗ log
(

1 + e−ε
∗(λ)
)
. (A.19)

The free energy and the corresponding NLIE have a physically transparent form. The

quantity sech
(
λ+ log T

2Tk

)
is the density of states of the dot while log

(
1 + e−ε(λ)

)
and

log
(
1 + e−ε

∗(λ)
)

can be interpreted as the Fermi functions of the fundamental excitation of

the system and its antiparticle where we treat ε and ε∗ as the quasi energies. The interactions

in the system are encoded in the NLIE which couples the two excitations together via G0(x)

which is the derivative of the two particle phase shift and G1(x) which is the derivative of the

phase shift between a particle and its anti particle. The driving term eλ is the renormalized

excitation energy .
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Similarly we can determine the bulk part of the free energy from (A.15),

Fb(T ) = Eb,0 −
T 2L

2π

∫
eλ
[
log
(

1 + e−ε(λ)
)

+ log
(

1 + e−ε
∗(λ)
)]
. (A.20)

Just as for the impurity free energy this takes the form of the density of states eλ/2π for the

bulk system integrated over the Fermi functions. The similarity between the expressions

for Fb(T ) and Fi(T ) at low temperatures is the basis of the Fermi-liquid description of the

impurity low-temperature physics.
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Appendix B

Derivation of Equation (3.45)

Here we derive the dependence of B on ε̄0 given in (3.45). Allowing for holes the energy is

given by with rapidities from −∞ up to an upper bound −B

E0/L = −D
∫ 0

−B
exρp(x)dx+ ε̄0

∫ 0

−B
ρp(x)dx (B.1)

The lower limit −B must be determined by minimising the energy with respect to it for

fixed ε̄0 similar to our calculation of (3.9). We begin by inverting (3.35) so as to find an

equation for ρh(x),

ρ0(x) = ρ(x) + ρh(x) +

∫ −B

−∞
J(x− y)ρh(y)dy. (B.2)

wherein J̃ = −ã2/(1 + ã2) and the driving term is the ground state distribution from (??).

This is a Wiener-Hopf integral and accordingly the solution is

ρ̃h(ω) = ρ0(−B)
(G−(ω)G+(i π2∆))−1

π
2∆ + iω

. (B.3)

with G±(ω) defined in (3.48).

Inserting (B.2) into the expression for the energy (??) we find that the change due to

ε̄0 is

δE/L = ε̄0

[∫
ρ0(x)− π

2(π −∆)

∫ −B

−∞
ρh(x)

]
+ 2π

∫ −B

−∞
ρ0(x)ρh(x) (B.4)
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We recognise the first two terms as counting the number of particles minus the holes and

the last term as the dressed energy of adding these holes. From (B.3) one can see that

ρh(x) ∝ e− π
2∆
B and so minimising the energy with respect to B we find that

e−
π

2∆
B =

(
e
π

2∆
aπ(π − 2∆)

tan ( π
2

2∆)

Γ(1 + π
2∆)

Γ(1
2 + π

2∆)

)
ε̄0
D . (B.5)

We can perform an analogous calculation in the ∆ < π/3 regime where the energy is

E/L = −
ν−1∑

j

D sin (j∆)

sin (∆)
exρpj (x) + ε̄0

ν−1∑

j

j

∫
ρpj (x). (B.6)

By inverting the Bethe equations using (3.40) and inserting them into (B.6) we get shift in

energy due to ε̄0

δE/L =
ν−1∑

j

∫ −B

−∞
2πρ0

j (x)ρhj (x) + ε̄0



ν−1∑

j

∫
jρ0
j (x)−

∫ −B

−∞

πε̄0ρ
h
ν−1(x)

2(π − (ν − 2)∆)


 (B.7)

The first term is the contribution to the ground state energy due the added holes and the

second and third count the number of particles minus holes. In order to minimize this we

need not know the explicit form of the hole distributions but only that ρhj ∝ e−
π

2∆
B (c.f

(B.3)). Thus we find that

e−
π

2∆
B =

(
1

8(π − (ν − 1)∆)

ρ̃hν−2(0)
∑ν−1

j dj ρ̃hj (−i π2∆)

)
ε̄0
D . (B.8)
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Appendix C

Mapping to the open XXZ model

In this appendix we derive the eigenvalues (4.40) and Bethe equations (4.41). First we will

review the results of [124]. They start with the following definitions of R and K matrices,

Rij(u) =




sinhu+η
sinh η 0 0 0

0 sinhu
sinh η 1 0

0 1 sinhu
sinh η 0

0 0 0 sinhu+η
sinh η




, (C.1)

K−(u) =



K−11(u) K−12(u)

K−21(u) K−22(u)


 (C.2)

K−11(u) = 2 (sinhα− coshβ− coshu+ coshα− sinhβ− sinhu) , (C.3)

K−22(u) = 2 (sinhα− coshβ− coshu− coshα− sinhβ− sinhu) , (C.4)

K−12(u) = eθ− sinh 2u, K−21(u) = e−θ− sinh 2u (C.5)

Along with these we can define a K+(u) = K−(−u−η) wherein all subscripts − are replaced

by +. These then satisfy the reflection equation (RE), dual reflection equation (the RE for

K+) and Yang-Baxter (YB) equations. The parameters η, α±, β±θ± are free and but are

related to the various coupling constants, and interactions strengths in the problem at hand.

Given these definitions the authours define the following monodromy and transfer matrices,

Θ0(u) = K+(u)R0N (u+ θN ) . . . R01(u+ θ1)K−(u)R0N (u− θN ) . . . R01(u− θ1)(C.6)

τ(u) = Tr0 Θ(u) (C.7)
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following the Boundary inverse method we get [τ(u), τ(v)] = 0 and thus the problem is

tractable. Indeed they go on to construct the eigenvalues, Λ(u) of τ(u) via an inhomogeneous

T-Q relation. For even N the result is

Λ(u) = a(u)
Q1(u− η)

Q2(u)
+ d(u)

Q2(u+ η)

Q1(u)
+

2c̄ sinh 2u sinh (2u+ 2η)

Q1(u)Q2(u)
A(u)A(−u− η) (C.8)

Where the functions above are defined to be,

A(u) =
N∏

l=1

sinh (u− θl + η) sinh (u+ θl + η)

sinh2 η
(C.9)

Q1(u) =

N∏

j=1

sinh (u− µj)
sinh η

, Q2(u) =

N∏

j=1

sinh (u+ µj + η)

sinh η
(C.10)

a(u) = −4
sinh (2u+ 2η)

sinh (2u+ η)
sinh (u− α−)

× cosh (u− β−) sinh (u− α+) cosh (u− β+)A(u) (C.11)

d(u) = a(−u− η) (C.12)

c̄ = cosh


(N + 1)η + α− + α+ + β− + β+ + 2

N∑

j=1

µj


− cosh (θ− − θ+)(C.13)

Here the parameters µj are the Bethe parameters and θl the inhomogeneities. From this

T-Q relation one obtains the Bethe equations by demanding that the function has only

simple poles whose residues vanish, which gives,

c̄ sinh (2µj + η) sinh (2µj + 2η)

2 sinh (µj + α− + η) cosh (µj + β− + η) sinh (µj + α+ + η) cosh (µj + β+ + η)

=

N∏

l=1

sinh (µj + µl + η) sinh (µj + µl + 2η)

sinh (µj + θl + η) sinh (µj − θl + η)
(C.14)

Along with these we have so called selection rules µj 6= µk and µj 6= −µk − η.

Now our problem is to diagonalise the operator

Z = S12 . . . S1NS1W 1N . . .W 12
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in which

Sj =



α β

β α


 , W ij =




1 0 0 0

0 eiφ 0 0

0 0 eiφ 0

0 0 0 1




, (C.15)

α =
1− U2/4

1 + U2/4
, β =

−iU
1 + U2/4

, eiφ =
1− ig
1 + ig

(C.16)

and W ij = P ij is the permutation of the two spaces. In order to diagonalise this we

introduce the R-matrix

R(u) =




1 0 0 0

0 sinhu
sinh (u+η)

sinh η
sinh (u+η) 0

0 sinh η
sinh (u+η)

sinhu
sinh (u+η) 0

0 0 0 1




(C.17)

which is related to both the S-matrices present in Z,

Rij(0) = P ij , lim
u→∞

Rij(u)|η=−iφ = W ij (C.18)

Thus we are lead to try diagonalise the transfer matrix, t(u)

Ξ0(u) = R01(u+ θ/2) . . .R0N (u+ θ/2)K−(u)R0N (u− θ/2) . . .R0(u− θ/2)(C.19)

t(u) = Tr0 Ξ(u) (C.20)

Which is related to Z by

Z = lim
θ→∞

t(θ/2) (C.21)

provided the boundary matrix is chosen so that it goes to S0 in the limit. We can see that

Θ(u) and Ξ(u) are similar in structure and indeed there is a simple mapping between them.
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Once we have this mapping then we can make the same replacements in (C.8)(D.13)and

obtain the eigenvalues and bethe equations.

Firstly we should specify the boundary matrices. As there is no K+ in Z we should

require that either K+ = 1 or that it is ∝ 1 when u = θ/2 (or B0 for twisted boundary

conditions) and after limθ→∞. In addition K− should be proportional to S0 after the same

operations. Therefore we choose

K−(u) =
β

sinh θ




2i cosh (c+ θ/2) coshu sinh 2u

sinh 2u 2i cosh (c+ θ/2) coshu


 (C.22)

K+(u) =
e−η

sinh 3θ/2
(C.23)

×




2 (sinh (−θ) cosh (iΦ) cosh (u+ η) − sinh (2u+ 2η)

− cosh (θ) sinh (iΦ) sinh (u+ η))

2 (sinh (−θ) cosh (iΦ) cosh (u+ η)

− sinh (2u+ 2η) + cosh (θ) sinh (iΦ) sinh (u+ η))




In both cases we have taken the liberty of including an overall constant factor. One can

then check that

lim
θ→∞

K−(θ/2) =



iβec β

β iβec


 , lim

θ→∞
K+(θ/2) = −



eiΦ 0

0 e−iΦ


 (C.24)

Which is what we want provided ec = α/iβ = (1 − U2/4)/U . In terms of the parameters

introduced previously, these are obtained by taking

α− = c+ θ/2 + iπ/2, α+ = −θ, β− = 0, β+ = iΦ, θ± = 0 (C.25)

and including an overall factor of

−βe−η
sinh θ sinh 3θ/2

(C.26)



205

Turning our attention to the R matrices we see that they differ by an overall factor

R(u) =
sinh η

sinh (u+ η)
R(u) (C.27)

We are now able to relate Θ(u) and Ξ(u). Specifically we want to go from Θ(u) to Ξ(u). To

achieve this relabel the spaces so the orderings match, N −m→ m+ 1 and take θk = θ/2

∀k,

Ξ(u) =
−βe−η

sinh θ sinh 3θ/2

N∏

j=1

sinh η

sinh (u− θ/2 + η)

sinh η

sinh (u+ θ/2 + η)
Θ(u)|θk=θ/2 (C.28)

We are interested in the eigenvalue at u = θ/2 = θj . At this value of the spectral

parameter the second and third terms in Λ(u) vanish so we are merely interested in

Λ(θ/2) = −4iβe−η
sinh (θ + 2η) cosh (c) cosh (θ/2) cosh (θ/2 + iΦ)

sinh (θ + η) sinh θ

N∏

j

sinh (θ/2− µj − η)

sinh (θ/2 + µj + η)

(C.29)

The Bethe equations are

[
cosh

(
(N + 1)η + c+ iπ/2 + iΦ− θ/2 + 2

∑N
j=1 µj

)
− 1
]

sinh (2µj + η) sinh (2µj + 2η)

2 sinh (µj + c+ θ/2 + η) cosh (µj + η) cosh (µj + η + iΦ) sinh (µj − θ + η)

=
N∏

l=1

sinh (µj + µl + η) sinh (µj + µl + 2η)

sinh (µj + θ/2 + η) sinh (µj − θ/2 + η)
(C.30)

Up till now we have dealt with N even however there also exists a solution for N odd.

This requires the use of N + 1 Bethe parameters. The energy is still given by (4.40) but

with the sums running up to (N + 1)/2. Additionally the Bethe equations are modified,
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[
cosh

(
(N + 3)η + c+ iΦ− θ/2 + 2

∑N+1
j=1 µj

)
− 1
]

2 sinh (µj + c+ θ/2 + η) cosh (µj + η)

×sinh (2µj + η) sinh (2µj + 2η) sinh (µj) sinh (µj + η)

cosh (µj + iΦ + η) sinh (µj − θ + η)

=

∏N+1
l=1 sinh (µj + µl + η) sinh (µj + µl + 2η)

sinhN (µj + θ/2 + η) sinhN (µj − θ/2 + η)
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Appendix D

Recovering the Luttinger Liquid

In this appendix we check that upon setting the impurity strength to zero that the solution

reduces to the Luttinger Liquid. First we should describe the desired result. For a Luttinger

liquid we can specify the number of left and right movers as they are conserved. WLOG

we can set the number of right movers to be M and the number of left movers N −M . For

one of the right movers to traverse the system on a ring of length it must scatter past the

N −M left movers and so it has a total phase shift (N −M)iφ. Therefore the right mover

contribution to the energy is −M(N −M)φ/L. Similarly a left mover has a total phase

shift of Miφ and therefore the left moving sector also contributes −M(N −M)φ/L. We

should hope to find that the energy reduces to

E = · · · − i2M(N −M)

L
η (D.1)

Where η = −iφ. In addition the degeneracy of this energy is
(
N
M

)
. Now we look to our

derived Bethe equations. We will only consider N even but for N odd the same argument

applies.

[
cosh

(
(N + 1)η + c− θ/2 + 2

∑N
j=1 µj

)
− 1
]

sinh (2µj + η) sinh (2µj + 2η)

2 sinh (µj + c+ θ/2 + η) cosh2 (µj + η) sinh (µj − θ + η)

=

N∏

l=1

sinh (µj + µl + η) sinh (µj + µl + 2η)

sinh (µj + θ/2 + η) sinh (µj − θ/2 + η)
(D.2)
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and that it stays the same order on both side if µj = λj +θ/2, µk = νk−N/2−θ for k > N/2.

Which gave us

e2λj−2c sinhN (λj + η) = e2
∑
k(2λk+νk)e3Nη/2

N/2∏

k=1

sinh (λj + νk + η) sinh (λj + νk + 2η)

e−νj−η−c
sinhN (νj + η)

2 sinh (νj + c+ η)
=

N/2∏

l=1

sinh (νj + λl + η) sinh (νj + λl + 2η)e2λl+η.

after taking the limit θ → ∞. Removing the impurity corresponds to U = 0 or taking

c → ∞. We see that upon doing so the left hand side vanishes and we are forced to

conclude that the Bethe roots form pairs (λj , νj), of two types,

(λj ,−λj − η) or (λj ,−λj − 2η) (D.3)

In terms of of the original roots we have the condition that either µj+N/2 = −µj − η or

µj+N/2 = −µj − 2η. However there are still N/2 free parameters µj . To constrain these we

need to use this pair structure in the T-Q relation. Let’s say that there are M pairs of roots

such that µj+N/2 = −µj − η and that we reorder them so that these occur for j = 1 . . .M .

We can then sub this back into our T-Q relation for the eigenvalue Λ(u) and take the limit

c→∞. Our new T-Q relation is

Λ(u) =
−2eθ/2−u−η

sinh θ sinh 3θ/2

sinh(2u+ 2η)

sinh (2u+ η)
sinh (u+ θ) coshu cosh (u− iΦ)

×
M∏ sinh (u− µj − η)

sinh (u+ µj + η)

sinh (u+ µj)

sinh (u− µj)

+
2eθ/2+u

sinh θ sinh 3θ/2

sinh 2u

sinh (2u+ η)
sinh (u+ η − θ) cosh (u+ η)

× cosh (u+ iΦ + η)
sinhN (u− θ/2) sinhN (u+ θ/2)

sinhN (u− θ/2 + η) sinhN (u+ θ/2 + η)

×
M∏ sinh (u− µj + η)

sinh (u+ µj + 2η)

sinh (u+ µj + η)

sinh (u− µj)
(D.4)
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There are two things to note about this expression the first is that the N−M pair of roots of

the second type have cancelled out and do not contribute and also the inhomogeneous term

has also vanished. As before we are only interested in taking the eigenvalues at u = θ/2

and then in the limit θ/2→∞. With this value of the spectral parameter the second term

also vanishes,

Λ(θ/2) =
2e−η

sinh θ

sinh(θ + 2η)

sinh θ + η
cosh (θ/2) cosh (θ/2− iΦ)

×
M∏ sinh (µj + η − θ/2)

sinh (µj − θ/2)

sinh (µj + θ/2)

sinh (µj + θ/2 + η)
(D.5)

If we shift µj = λj + θ/2− η/2 and take θ →∞ get the momenta of the system

e−ikL = e−Mη−iΦ
M∏ sinh (λj + η/2)

sinh (λj − η/2)
(D.6)

from which we get that the energy is given by

E =
2π

L

N∑

k

nk + i
N

L

M∑
log

sinh (λj + η/2)

sinh (λj − η/2)
− iMN

L
η +

N

L
Φ (D.7)

To evaluate this explicitly we need to use the Bethe equations from our new T-Q relation.

As before we demand that Λ has only simple poles and that the residues vanish. The simple

pole restriction gives us the selection rule µj 6= µk and µj 6= −µk−η. The vanishing residues



210

then results in the Bethe equations

0 =
−2eθ/2−µj−η

sinh θ sinh 3θ/2

sinh(2µj + 2η)

sinh (2µj + η)
sinh (µj + θ) cosh (µj) cosh (µj − iΦ)

×
M∏ sinh (µj − µk − η)

sinh (µj + µk + η)
sinh (µj + µk)

+
2eθ/2+µj

sinh θ sinh 3θ/2

sinh 2µj
sinh (2µj + η)

sinh (µj + η − θ) cosh (µj + η)

× cosh (µj + iΦ + η)
sinhN (µj − θ/2) sinhN (µj + θ/2)

sinhN (µj − θ/2 + η) sinhN (µj + θ/2 + η)
(D.8)

×
M∏ sinh (µj − µk + η)

sinh (µj + µk + 2η)
sinh (µj + µk + η) (D.9)

Performing the necessary algebra give us

e−2µj−η sinh(2µj + 2η) sinh (µj + θ) cosh (µj) cosh (µj − iΦ)

sinh 2µj sinh (µj + η − θ) cosh (µj + η) cosh (µj + iΦ + η)

×sinhN (µj − θ/2 + η) sinhN (µj + θ/2 + η)

sinhN (µj − θ/2) sinhN (µj + θ/2)

=
M∏ sinh (µj − µk + η) sinh (µj + µk + η)

sinh (µj − µk − η) sinh (µj + µk)
(D.10)

We should make the same change of variables as before. Here do it in two steps for clarity.

First let µj = λj + θ/2,

sinh(2λj + θ + 2η) sinh (λj + 3θ/2) cosh (λj + θ/2) cosh (λj + θ/2− iΦ)

sinh (2λj + θ) sinh (µj + η − θ) cosh (λj + θ/2 + η) cosh (λj + θ/2 + iΦ + η)

×sinhN (λj + η) sinhN (λj + θ + η)

sinhN λj sinhN (λj + θ)

= e−2λj−θ−η
M∏ sinh (λj − λk + η) sinh (λj + λk + θ + η)

sinh (λj − λk − η) sinh (λj + λk + θ)
(D.11)

Now we can take the limit and shift λj by −η/2 and get (4.52)

sinhN (λj + η/2)

sinhN (λj − η/2)
eNη−2iΦ = −e2Mη

M∏ sinh (λj − λk + η)

sinh (λj − λk − η)
. (D.12)
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Taking the log of these we obtain

N log
sinh (λj + η/2)

sinh (λj − η/2)
= −(N − 2M)η + 2iΦ +

M∑

k

log
sinh (λj − λk + η)

sinh (λj − λk − η)
+ 2πiIj (D.13)

where Ij is a half integer. Using this in our energy equation and the fact that we have a

double sum over the antisymmetric function log
sinh (λj−λk+η)
sinh (λj−λk−η) we get (4.48).
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