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Dissertation	Directors:	
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	 Mosquito-borne	pathogens	continue	to	afflict	human	populations	around	the	

world.	Currently,	our	best	methods	for	combatting	the	majority	of	them	focus	on	

controlling	the	vector	species	that	transmit	these	pathogens.	In	the	absence	of	

systematic	protocols	developed	by	careful	scientific	research,	current	control	

methods	vary	significantly	across	space	at	multiple	scales,	and	are	reactively	

executed	in	response	to	various	entomological	and	epidemiological	indices.	The	

resulting	spatiotemporal	patchwork	of	mosquito	control	across	the	local,	regional,	

and	global	landscape	provides	the	immediate	potential	to	generate	metapopulation	

dynamics	in	both	mosquito	vector	species	and	the	pathogens	they	transmit.	In	this	

dissertation,	I	explore	these	largely	unstudied,	novel	dynamics,	with	the	goal	of	

illuminating	ways	in	which	mosquito	control	methods	can	better	protect	the	global	

health	landscape	from	mosquito-borne	pathogens.		

	 In	chapter	one,	I	examine	the	timing	of	larval	control	when	triggered	by	

different	types	and	scales	of	surveillance	information,	and	how	well	each	

surveillance	type	informs	intervention	that	effectively	reduces	human	infections.	In	
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chapter	two,	I	explore	how	the	spatial	distribution	of	larval	control	across	a	

landscape	causes	and	interacts	with	mosquito	metapopulation	dynamics	to	

determine	the	efficacy	of	control	efforts.	In	chapter	three,	I	compare	the	efficacies	of	

adulticide	treatment	and	larval	control	in	reducing	the	number	of	human	infections	

in	different	entomological	contexts.	Ultimately,	all	three	chapters	demonstrate	that	

local	context	determines	when	and	where	different	types	of	mosquito	control	

should	be	used,	and	highlight	the	need	for	further	basic	and	applied	research	on	

vector	mosquitoes	in	order	to	develop	cost-effective,	context-specific	programs	for	

the	control	of	mosquito-borne	viruses.	
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INTRODUCTION	
	

Anthropogenic	change	has	altered	spatial	processes,	increasing	the	risk	of	

disease	outbreaks	in	humans,	wildlife,	livestock,	and	crops	around	the	world.	

International	travel	increases	the	spread	of	pathogens	across	the	globe,	and	

urbanization	increases	the	rate	at	which	infected	and	susceptible	human	hosts	

encounter	each	other	(Tatem	et	al.	2006,	Kilpatrick	and	Randolph	2012).	Habitat	

loss	leads	to	high	population	densities	of	wildlife	at	the	small,	intact	sites,	increasing	

intraspecific	transmission	of	pathogens	(Hess	1996,	Altizer	et	al.	2011).	Habitat	

destruction	and	fragmentation	also	reduce	the	prevalence	of	top	predators	in	

anthropogenic	landscapes,	and	epidemiological	models	indicate	that	this	predator	

removal	may	increase	the	number	and	proportion	of	prey	hosts	infected	with	a	

disease	across	a	landscape	(Ostfeld	and	Holt	2004).	Some	conservation	efforts,	such	

as	translocations,	also	effectively	increase	pathogen	dispersal	over	long	distances,	as	

well	as	human	transport	of	wildlife	in	international	trade	(Daszak	et	al.	2001,	

Brunner	et	al.	2015).	All	of	these	changes	contribute	to	the	“pathogen	pollution”	that	

is	linked	to	numerous	emerging	infectious	diseases	in	wildlife	and	humans	(Daszak	

et	al.	2001,	Cunningham	et	al.	2003).	

	 International	trade	and	travel	have	also	enabled	invasions	of	weedy	species	

that	quickly	thrive	in	new	habitats	by	outcompeting	native	species	(McKinney	and	

Lockwood	1999)	or	occupying	previously	empty	niches.	The	yellow	fever	mosquito	

(Aedes	aegypti)	and	Asian	tiger	mosquito	(Aedes	albopictus)	exemplify	this	situation	

(Juliano	and	Lounibos	2005),	and	are	efficient	vectors	of	numerous	viruses	that	
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have	caused	recent	epidemics	throughout	the	world,	such	as	yellow	fever,	dengue,	

chikungunya,	West	Nile,	and	Zika	(Gratz	2004,	Chouin-Carneiro	et	al.	2016).	They	

have	become	globally	invasive,	putting	immunologically	naïve	human	populations	at	

risk	of	these	novel	pathogens.	Thus,	more	effective	methods	and	research	into	best	

practices	are	needed	to	control	the	abundance	of	invasive	mosquitoes	and	the	

pathogens	they	transmit.		

	 Many	invasive	mosquito	species	are	highly	synanthropic,	preferring	to	

inhabit	urban	environments	with	high	densities	of	human	blood	meal	sources,	

and/or	making	use	of	human-altered	habitats.	Though	thought	to	be	limited	in	

dispersal	ability	(Reiter	2007),	females	find	and	oviposit	in	small	pools	of	standing	

water	that	are	present	throughout	urban	habitats	(i.e.,	in	tires	and	corrugated	

extension	spouts	(Unlu	et	al.	2013,	2014)).	Importantly,	the	heterogeneous	nature	of	

control	interventions	must	affect	the	dispersion	of	mosquitoes	across	urban	and	

suburban	landscapes,	likely	generating	source-sink	dynamics	as	some	areas	are	

controlled	more	often	and	with	different	methods	than	others	(Auger	et	al.	2008).	

Control	efforts	may	thus	alter	and/or	create	metapopulation	dynamics	in	both	the	

mosquitoes	and	the	pathogens	they	transmit.		

	 Vector	control	may	engender	a	situation	akin	to	the	traditional	blinking	lights	

model	of	metapopulations.	In	this	model,	patches	in	a	metapopulation	“blink”	in	and	

out	of	existence	due	to	the	interplay	between	patch	colonization	and	extinction	rates	

(Hanski	1991).	Though	similar,	the	metapopulation	dynamics	created	by	control	are	

distinct	from	this	model	because	they	impose	extrinsic	causes	of	patch	“extinctions.”	

A	vector	metapopulation’s	viability	in	this	context	depends	on	the	interaction	
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between	metapopulation	dynamics	(life	history	traits	such	as	reproductive	capacity,	

extinction	proneness,	and	dispersal	ability)	and	landscape	dynamics	(rate	and	

spatial	arrangement	of	control	efforts,	in	this	context)	(Keymer	et	al.	2000,	

Akçakaya	and	Radeloff	2004).	When	considering	the	viability	of	a	vector-borne	

pathogen,	epidemiological	parameters,	such	as	intrinsic	and	extrinsic	incubation	

periods	and	host	immune	responses,	must	also	be	considered,	as	well	as	

demographic	characteristics	of	the	host	population.	

	 Current	control	methods	either	target	the	immature	stages	that	develop	in	

small	pools	(herein	referred	to	as	“larval	control”)	or	target	the	terrestrial	adults.	

Larval	control	is	commonly	implemented	by	emptying	and	cleaning	any	water-

holding	containers	that	are	suitable	oviposition	sites,	or	by	applying	larvicides	to	

pools	that	cannot	be	emptied.	Because	adult	mosquitoes	are	not	limited	to	the	

discrete,	aquatic	habitats	that	immatures	occupy,	area-wide	application	of	adulticide	

is	the	primary	method	employed	when	targeting	adults.	Control	methods	targeting	

immatures	likely	alter	mosquito	ecology	and	metapopulational	dynamics	differently	

from	methods	targeting	adults.	Thus,	they	likely	also	have	different	impacts	on	

human	disease	risk.	

	 In	order	to	be	successful,	control	efforts	should	reduce	the	population	of	

infected	mosquito	vectors	to	below	the	thresholds	required	to	maintain	ongoing	

circulation	(i.e.,	beneath	the	reproductive	threshold,	R0),	causing	local	extinctions	of	

the	pathogens	they	transmit.	However,	once	control	ceases	and	the	vector	

population	recovers,	human	travel	can	easily	reintroduce	the	pathogen,	causing	a	

new	local	outbreak	(Adams	and	Kapan	2009).	The	ways	in	which	control	efforts	
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create	or	alter	the	metapopulation	dynamics	of	both	vector	and	pathogen	have	gone	

largely	unexplored	in	epidemiological	modeling.	A	more	robust	understanding	of	

the	mechanisms	operating	in	vector	metapopulations	in	both	the	presence	and	

absence	of	vector	control	may	be	crucial	as	pathogens	continue	to	emerge	and	

spread.	

	 Due	to	its	theoretical	nature,	my	dissertation	and	its	conclusions	cannot	yet	

be	directly	applied	to	real-world	control	efforts.	However,	I	hope	my	research	will	

ignite	discussions	among	scientists,	local	governments,	and	mosquito	control	

professionals	about	when	and	where	different	methods	of	control	should	occur,	as	

well	as	the	importance	of	considering	ecological	context,	in	order	to	implement	

more	cost-effective	methods	that	better	protect	the	public	from	vector-borne	

diseases.	

	

Chapter	one		

	 The	type,	quality,	and	frequency	of	mosquito	and	disease	surveillance	is	

extremely	varied	at	all	scales,	with	municipalities,	counties,	states,	and	countries	

often	working	independently	to	combat	pathogens	and	vectors	that	ignore	these	

artificial	boundaries.	The	resulting	spatiotemporal	variability	in	control	across	a	

landscape	likely	alters	mosquito	metapopulation	dynamics.	Surveillance	

information	might	include	epidemiological	data	on	the	incidence	of	reported	human	

infections	or	the	number	of	mosquitoes	that	test	positive	for	a	certain	pathogen.	

Surveillance	may	also	involve	collection	of	ecological/entomological	data	on	the	

abundance	of	immature	or	adult	mosquitoes.	In	my	first	chapter,	I	examine	the	
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efficacy	of	larval	mosquito	control	when	triggered	by	these	different	types	and	

scales	of	surveillance	information	across	a	landscape.	The	results	highlight	the	

importance	of	implementing	control	measures	in	the	early	stages	of	an	outbreak.	

Ideally,	control	should	begin	before	an	outbreak	occurs,	indicating	that	

epidemiological	surveillance	information	is	an	inherently	ineffective	trigger	for	

control	implementation	when	the	goal	of	the	vector	control	program	is	to	reduce	

human	disease	risk.	

	

Chapter	two	

	 Spatial	processes	have	been	largely	ignored	in	the	past	when	considering	

how	to	effectively	allocate	limited	resources	available	for	mosquito	control.	For	my	

second	chapter,	I	explore	how	the	spatial	distribution	of	larval	mosquito	control	

across	a	landscape	affects	how	well	control	efforts	reduce	human	infections	with	a	

mosquito-borne	pathogen.	The	results	demonstrate	the	potential	to	improve	the	

cost-effectiveness	of	vector	control	by	distributing	control	efforts	in	particular	

patterns	to	manipulate	mosquito	metapopulation	dynamics.	However,	the	ideal	way	

of	distributing	control	largely	depends	on	the	demography	of	the	local	mosquito	

population,	so	information	on	local	dynamics	is	necessary	to	develop	effective	site-

specific	control	distributions.	Additional	complications	arise	if	areas	deemed	

important	locations	for	implementing	control	are	on	privately	owned	land,	since	

government	agencies	cannot	enact	control	measures	there	without	the	landowner’s	

consent.	Because	of	this,	citizen	cooperation	will	likely	be	critical	to	implementing	

control	that	effectively	protects	the	health	of	all	citizens.	
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Chapter	three	

	 For	my	third	chapter,	I	compare	the	efficacy	of	adulticide	treatment	with	that	

of	larval	control,	using	various	biting	rates	and	adult	mosquito	death	rates.	Despite	

little	evidence	demonstrating	its	efficacy,	mosquito	control	agencies	typically	spray	

adulticides	as	the	initial	emergency	response	to	combat	mosquito-borne	pathogens.	

Methods	targeting	adult	mosquitoes	inherently	create	different	mosquito	

population	dynamics	from	methods	targeting	immature	mosquitoes,	though	the	

different	demographic	processes	created	by	these	two	approaches	have	rarely	been	

investigated.		The	results	of	this	chapter	suggest	that	mosquito	population	context	

does	play	a	pivotal	role	in	determining	whether	adulticide	treatment	or	larval	

control	better	reduces	human	infections.	For	instance,	larval	control,	as	opposed	to	

adulticide	treatment,	may	better	reduce	outbreaks	of	highly	transmissible	viruses,	

and/or	of	pathogens	vectored	by	aggressively-biting	mosquitoes.	Thus,	methods	

targeting	immatures	should	perhaps	be	implemented	in	emergency	situations	

rather	than	methods	targeting	adults.		
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ABSTRACT	

	

With	the	emergence	or	re-emergence	of	numerous	mosquito-borne	diseases	in	

recent	years,	effective	methods	for	emergency	vector	control	responses	are	

necessary	to	reduce	human	infections.	Current	vector	control	practices	often	vary	

significantly	between	different	jurisdictions,	and	are	executed	independently	and	at	

different	spatial	scales.	Various	types	of	surveillance	information	(e.g.,	number	of	

human	infections	or	adult	mosquitoes)	trigger	the	implementation	of	control	

measures,	though	the	target	and	scale	of	surveillance	vary	locally.	This	patchy	

implementation	of	control	measures	likely	alters	the	efficacy	of	control.	We	modeled	

six	different	scenarios,	with	larval	mosquito	control	occurring	in	response	to	

surveillance	data	of	different	types	and	at	different	scales	(e.g.,	across	the	landscape	

or	in	each	patch).	Our	results	indicate	that:	earlier	application	of	larvicide	after	an	

escalation	of	disease	risk	achieves	much	greater	reductions	in	human	infections	

than	later	control	implementation;	uniform	control	across	the	landscape	provides	

better	outbreak	mitigation	than	patchy	control	application;	and	different	types	of	

surveillance	data	require	different	levels	of	sensitivity	in	their	collection	to	

effectively	inform	control	measures.	Our	simulations	also	demonstrate	a	potential	

logical	fallacy	of	reactive,	surveillance-driven	vector	control:	measures	stop	being	

implemented	as	soon	as	they	are	deemed	effective.	This	false	sense	of	security	leads	

to	patchier	control	efforts	that	will	do	little	to	curb	the	size	of	future	vector-borne	

disease	outbreaks.	More	investment	should	be	placed	in	collecting	high	quality	

information	that	can	trigger	early	and	uniform	implementation,	while	researchers	
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work	to	discover	more	informative	metrics	of	human	risk	to	trigger	more	effective	

control.	

	

	

INTRODUCTION	

	

Container-inhabiting	mosquitoes	in	the	genus	Aedes,	specifically	Ae.	aegypti	

and	Ae.	albopictus,	are	competent	carriers	of	many	flaviviruses,	including	Zika,	

dengue,	yellow	fever,	and	chikungunya	(Gratz	2004,	Chouin-Carneiro	et	al.	2016,	

Weger-Lucarelli	et	al.	2016).	They	are	also	notoriously	difficult	to	control	because	

they	thrive	in	urban	and	suburban	settings	where	the	immatures	develop	in	water-

holding	containers	present	in	homes	and	backyards	(Powell	et	al.	2013,	Unlu	et	al.	

2013,	2014).	Previous	attempts	to	eradicate	Ae.	aegypti	(the	yellow	fever	mosquito)	

from	its	invasive	range	in	the	Americas	were	successful	only	in	the	short-term;	

within	a	few	years	after	eradication	had	occurred	across	large	portions	of	Central	

and	South	America,	they	began	recolonizing	and	soon	achieved	numbers	greater	

than	their	pre-eradication	campaign	abundances	(Reiter	2001).	Although	invasive	

Aedes	are	very	difficult	to	eradicate	once	they	become	established	in	a	new	area,	

reducing	their	abundance	during	outbreaks	can	significantly	reduce	the	number	of	

humans	who	become	infected	(Lorenzi	et	al.	2016).	Especially	for	newly	emerging	

or	re-emerging	mosquito-borne	viruses	like	Zika,	most	human	populations	are	

highly	susceptible	to	the	virus	and	vaccines	are	not	yet	ready	for	use.	Therefore,	

control	of	vector	populations	before	and	during	outbreaks	remains	the	best	direct	
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means	available	of	limiting	the	size	of	outbreaks,	which	may	continue	to	emerge	in	

the	coming	years	(Manore	et	al.	2017).	

	 Although	vector	control	interventions	and	implementation	methods	vary	

widely	between	local	agencies	(NACCHO	2016),	many	implement	Integrated	

Mosquito	Management	(IMM)	techniques	(Rose	2001)	that	target	the	larval	and	

adult	stages	at	different	times.	In	the	absence	of	mosquito-borne	infectious	disease	

circulation	in	the	local	human	population,	mosquito	control	efforts	tend	to	target	the	

aquatic	larval	stage	via	source	reduction,	through	both	draining/elimination	of	

oviposition	sites	and	larvicide	application	to	water-holding	containers	in	active	use	

(e.g.,	bird	baths,	recycling	cans)		(Fonseca	et	al.	2013).	However,	source	reduction	is	

difficult	to	implement	for	control	of	container-inhabiting	species	because	their	

larval	habitats	are	often	abundant,	cryptic,	and/or	on	privately	owned	land.	During	

active	outbreaks,	common	practice	has	included	application	of	adulticide	in	and	

around	areas	with	high	prevalence	of	human	infection	(WHO	1997).	Unfortunately,	

these	chemical	control	methods	have	become	less	effective	in	recent	years	due	to	

the	evolution	of	resistance	to	multiple	types	of	insecticides	in	mosquito	populations	

worldwide	(Corbel	et	al.	2017).	Alternative,	non-chemical	control	methods	are	being	

developed	and	tested	(Hoffmann	et	al.	2011,	Yakob	and	Walker	2016),	but	they	will	

likely	need	to	be	part	of	a	larger	IMM	strategy	in	order	to	provide	effective	outbreak	

prevention	or	mitigation	within	a	broader	eco-evolutionary	context	(Agusto	et	al.	

2012,	Yakob	et	al.	2017).	

	 While	trying	to	discover	and	implement	the	most	effective	emergency	vector	

control	regimes	(e.g.,	Unlu	et	al.	2016;	Gaff	et	al.	2015),	scientists	and	mosquito	
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control	specialists	rarely	consider	the	fact	that	different	agencies	enact	control	

measures	in	response	to	different	types	and	scales	of	information.	Private	citizens	

may	be	bothered	by	the	abundance	of	mosquitos	in	their	own	house	or	yard	

(Dickinson	and	Paskewitz	2012),	and	enact	bottom-up	control	on	that	small	scale,	

while	local/municipal	vector	control	agencies	enact	mosquito	control	measures	

across	their	own	jurisdictions,	and	state/national/global	health	agencies	may	

implement	larger	scale,	top-down	control	measures.		

Critically,	control	efforts	at	these	various	spatial	scales	are	frequently	

implemented	reactively,	only	after	a	certain	surveillance	threshold	is	reached.	

Reactive	control	can	occur	in	response	to	surveillance	of	different	potential	risks,	

such	as	the	number	of	adult	mosquitoes	in	a	small	area,	or	the	number	of	human	

arbovirus	cases	in	a	larger	region.	At	small	scales	(households	to	neighborhoods),	

during	times	of	high	risk	of	mosquito-borne	viral	outbreaks,	surveillance	of	the	

number	of	adult	mosquitoes	is	collected	from	appropriate	traps	in	districts	that	can	

afford	them.	At	larger	scales	(counties	to	states),	surveillance	of	the	number	of	

human	arbovirus	cases	is	more	common,	though	inadequate	support	for	these	

systems	threatens	the	capacity	to	identify	outbreaks	before	they	become	epidemics	

(Hadler	et	al.	2015).	Thus	far,	little	attention	has	been	paid	to	the	reactive	nature	of	

many	control	efforts,	and	the	differences	caused	by	focusing	on	different	triggers	for	

control.	These	independently-motivated	actions,	triggered	and	enacted	at	different,	

often	overlapping,	spatial	scales	of	control	create	a	broad	patchwork	of	vector	

control	that	needs	to	be	considered	in	order	to	implement	effective	control	across	

all	spatial	scales.		
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	 Mosquito	control	efforts	are	also	often	implemented	only	after	human	

infections	have	been	detected	or	mosquito	populations	have	peaked	(Eisen	et	al.	

2009,	Unlu	et	al.	2016).	Although	proactive	control	of	mosquito	populations	before	

introduction	of	a	pathogen	into	the	landscape	reduces	outbreak	size	and	public	

health	costs	more	effectively	than	reactive	control	(Eisen	et	al.	2009,	Vazquez-

Prokopec	et	al.	2010),	the	funds	necessary	to	implement	these	measures	often	

diminish	in	the	absence	of	an	outbreak	(McKenna	2016).	

While	both	adulticidal	and	larvicidal	control	efforts	are	in	common	use,	we	

restricted	our	consideration	here	to	purely	larval	control	strategies,	though	work	is	

underway	to	contrast	our	findings	with	outcomes	from	other	methods.	Because	we	

were	modelling	only	short-term	control	measures,	we	chose	to	use	larval	control	

since	it	hinders	mosquito	population	growth	more	immediately,	while	single	

applications	of	adulticide	only	reduce	the	adult	population	until	larvae	mature	and	

replace	it.	In	addition,	commonly	used	larvicides	can	be	delivered	to	larval	habitats	

in	slow-dissolving	briquettes	that	remain	effective	for	long	periods,	preventing	

immediate	compensation	(Skovmand	et	al.	2009).	Larval	vector	control	at	a	large	

spatial	scale	can	be	accomplished	either	through	the	tremendous	effort	of	mosquito	

control	experts	and	citizen	volunteers	to	implement	widespread	spot	treatment	by	

emptying,	overturning,	or	removing	containers	providing	larval	habitat;	or	by	using	

newly	developed	aerosolized	sprays	designed	to	activate	in	pools	of	standing	water	

(Faraji	and	Unlu	2016).	While	both	metapopulation	theory	and	pest	management	

practice	posit	that	such	area-wide	and	uniform	control	would	best	reduce	vector	

populations	(Levins	1968,	Vreysen	et	al.	2007),	it	rarely	occurs,	due	to	the	small	
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scale	of	the	information	obtained	by	vector	control	agencies,	variability	in	skill	and	

engagement	among	these	agencies,	cost	limitations	(Shepard	et	al.	2014),	and	

environmental	contamination	concerns	(Zhong	et	al.	2010).	Instead,	control	efforts	

occur	on	a	smaller	scale,	with	patchy	distributions	of	spot	treatment	across	the	

landscape	(Unlu	et	al.	2013).	

	 We	present	a	mathematical	model	of	mosquito-borne	viral	transmission	to	

explore	how	the	various	triggering	mechanisms	for	initiation	of	control	alter	the	

spatial	patchiness	in	control	coverage	and	ultimately	impact	the	effectiveness	of	

outbreak	mitigation	efforts.			

	

	

METHODS	

	

We	used	a	simple	grid	landscape	of	20	(five	by	four)	identical	patches	to	form	

the	spatial	basis	of	our	model.	Within	this	landscape,	the	location	and	movement	of	

mosquitoes	were	modeled	explicitly	to	capture	the	metapopulation	dynamics	that	

result	from	differences	in	surveillance	and	control	and	affect	disease	transmission.	

Humans	were	assumed	to	be	mobile	enough	that	a	mosquito	in	any	patch	can	bite	

any	human	(see	Table	1	for	a	list	of	additional	assumptions).		

We	constructed	the	following	discrete-time	SIR-type	difference	equation	

model	using	variables	and	parameters	defined	in	Tables	2	and	3:		
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Equations	1-3	describe	the	number	of	female	pre-adult	(or	“juvenile”	to	avoid	

confusion	with	patch	designation	in	variable	indices),	naïve/uninfected	adult,	and	

infected	adult	female	mosquitoes,	respectively,	in	patch	p	on	day	t.	All	immature,	

pre-reproductive	stages	are	incorporated	into	the	juvenile	compartment.	Equations	

4-6	describe	the	number	of	susceptible,	infected,	and	recovered	humans	on	day	t.		

Human	demography	was	not	included	because	we	assume	that	the	model	will	be	

run	for	a	short	enough	timeframe	that	the	human	population	size	(1000	individuals)	

does	not	change.	The	adult	mosquito	dispersal	matrix	was	generated	using	a	

probability	of	adult	mosquito	dispersal	out	of	each	patch	of	0.1.	For	each	patch	p,	

this	dispersal	probability	was	divided	by	the	number	of	patches	adjacent	to	patch	p,	

so	that	there	was	an	equal	probability	of	dispersing	from	patch	p	to	each	adjacent	



	
	

15	
	

patch	q.	Dispersal	only	occurred	between	adjacent	patches	to	reflect	the	limited	

mobility	of	Aedes	mosquitoes	(Trpis	and	Hausermann	1986,	Edman	et	al.	1998).		

Since	it	has	been	demonstrated	that	the	order	of	events	for	discrete-time	

models	affect	the	outcome	(Bodine	et	al.	2012,	Massaro	et	al.	2013),	we	provide	the	

order	of	our	model	dynamics	as	follows:	On	day	t,	adult	mosquitoes	from	day	t-1	lay	

eggs	in	their	current	patch	up	to	the	juvenile	carrying	capacity,	then	either:	die	and	

are	removed	from	the	population;	remain	in	their	current	patch;	or	disperse	to	an	

adjacent	patch.	All	compartment	transitions	also	occur	simultaneously	after	egg	

laying,	based	on	the	previous	day’s	abundances	(juvenile	mosquitoes	grow	to	

become	uninfected	adults,	uninfected	mosquitoes	become	infected,	susceptible	

humans	become	infected,	and	infected	humans	recover).	

	 Each	run	of	the	model	proceeded	for	200	days	without	disease	or	control	to	

bypass	transient	population	dynamics	before	surveillance	and	control	

implementation	began.	We	chose	to	begin	surveillance	before	disease	introduction	

to	mimic	how	control	agencies	may	respond	to	knowledge	of	an	increased	risk	of	

arboviral	outbreaks	(e.g.,	from	a	national	media	report	on	mosquito-borne	viruses),	

before	any	pathogen	is	known	to	be	circulating.	After	the	seventh	day	of	surveillance	

in	each	run,	one	human	became	infected,	and	each	simulation	then	continued	for	

150	days	post-infection	(156	total	days	of	surveillance)	to	examine	the	short-term	

dynamics	immediately	following	the	introduction	of	a	pathogen	into	the	system.	

	

Incorporating	surveillance	and	reactive	control	into	simulations	
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	 To	reflect	the	diversity	of	current	mosquito	control	practices	and	examine	

potential	alternatives,	we	simulated	six	scenarios	with	different	triggers	for	the	

implementation	of	control	efforts	(Table	4).	To	examine	the	relationship	between	

the	threshold	level	of	the	surveillance	data	that	triggers	control	and	how	effectively	

each	scenario	reduces	human	infections,	we	first	ran	each	of	the	four	surveillance	

scenarios	1000	times	at	each	of	10	different	thresholds.	We	then	ran	all	six	

scenarios	for	5000	Monte	Carlo	realizations	at	a	single	threshold.		

For	each	run	in	all	scenarios	(except	for	S-None),	16	out	of	the	20	patches	

were	stochastically	selected	to	participate	in	surveillance	and	control	for	all	156	

days	of	each	simulation.	This	level	of	participation	was	chosen	as	an	arbitrarily	high	

level	to	simulate	more	effective	control	conditions.	Surveillance	occurred	daily	in	

participating	patches;	on	each	day	t	that	the	surveillance	target	met	or	exceeded	the	

threshold	level,	treatment	was	applied	on	days	t+1	through	t+11.	Treatment	affected	

only	juvenile	mosquitoes	and	was	assumed	to	be	completely	effective	for	ten	days	

after	the	initial	application,	so	that	there	were	no	juveniles	in	treated	patches.	

Treatment	ceased	only	after	ten	consecutive	days	on	which	the	surveillance	target	

remained	below	the	threshold	for	triggering	control.			

	

L-Inf:	Large-scale	human	infection	surveillance.	This	scenario	simulated	how	

county,	state,	or	federal	agencies	might	use	the	larger-scale	information	available	on	

human	epidemiology.	Control	was	implemented	when	the	total	number	of	humans	

infected	on	day	t	exceeded	the	threshold	for	control	in	that	run.	All	participating	

patches	were	then	treated	starting	on	day	t+1	through	day	t+11,	regardless	of	any	
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local	differences	between	patches.	Thus,	all	participating	patches	were	either	

untreated	or	treated	at	any	given	time	(Figure	1b).		

	

S-Ad,	S-Juv,	and	S-Inf:	Small-scale	mosquito	surveillance.	In	all	three	of	these	

scenarios,	control	occurred	in	each	participating	patch	individually,	based	on	

surveillance	information	from	each	patch	(Table	4),	simulating	how	individuals	or	

local	municipalities	might	use	smaller-scale	information	about	mosquitoes.	Control	

occurred	in	patch	p	when	the	variable	being	assessed	in	patch	p	on	day	t	was	above	

the	threshold	for	control	in	that	run.	Only	patch	p	was	then	treated	on	day	t+1	

through	day	t+11,	so	some	participating	patches	may	be	treated	on	a	given	day,	

while	others	may	not	be,	depending	on	local	dynamics	(Figure	1a).	

	

L-None	and	S-None:	No	surveillance	and	large-	or	small-scale	control.	To	

determine	whether	surveillance-based	treatment	is	more	effective	than	control	that	

is	uninformed	by	any	ecological	or	epidemiological	data,	we	also	examined	the	effect	

of	treating	patches	without	any	surveillance	information	to	guide	the	timing	of	

control.	In	each	run	of	L-None,	the	16	participating	patches	were	treated	on	days	2-

137	(~70%	treatment	coverage)	to	simulate	large-scale	control	implementation	

immediately	after	learning	of	the	risk	for	disease	introduction.	To	evaluate	the	

efficacy	of	small-scale	control	implementation	in	response	to	increased	risk,	in	each	

run	of	S-None,	each	of	the	20	patches	was	treated	on	109	stochastically	selected	

days	of	the	156-day	simulation	(also	~70%	treatment	coverage)	beginning	on	day	

two.		
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Analysis	

	 Since	one	of	the	primary	goals	of	vector	control	is	to	mitigate	human	disease	

risk,	we	report	results	using	the	percent	reduction	in	human	infections,	calculated	

for	each	run	as	the	percent	difference	between	the	number	of	human	infections	in	

that	run	and	the	number	of	human	infections	when	the	model	is	run	without	any	

surveillance	or	control.		

	 Because	different	scenarios	cause	different	amounts	of	the	landscape	to	be	

controlled	over	time,	we	also	determined	the	percent	of	the	landscape	that	was	

treated	over	the	156	days	of	each	simulation,	calculated	as	the	total	number	of	days	

that	all	patches	were	treated	in	that	run,	out	of	all	3,120	possible	days	of	treatment	

(20	patches	´	156	days).		

	

	

RESULTS	

	

Threshold	sensitivity	 	

	 For	human	and	mosquito	infection	surveillance	(L-Inf	and	S-Inf,	

respectively),	efficacy	of	control	initially	declined	very	steeply,	even	between	the	

very	sensitive	thresholds	of	just	one	and	two	infected	individuals,	though	mosquito	

infection	surveillance	was	much	less	effective	than	human	infection	surveillance	

across	all	thresholds	(Figure	2).	Even	slightly	higher	thresholds	delay	the	onset	of	

control	enough	to	significantly	reduce	control	efficacy	in	these	scenarios.	Control	in	
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response	to	the	number	of	juvenile	or	adult	mosquitoes	was	much	more	effective	at	

lower	thresholds	than	the	disease	surveillance	scenarios	because	of	treatment	

application	prior	to	disease	introduction,	which	lowers	the	reproductive	number	of	

the	pathogen	by	lowering	the	abundance	of	the	vector.	The	adult	mosquito	

surveillance	scenario	(S-Ad)	achieved	the	greatest	reduction	in	human	cases	for	the	

two	most	sensitive	thresholds	tested	before	rapidly	declining	in	response	to	

progressively	higher	thresholds.	Juvenile	mosquito	surveillance	(S-Juv)	achieved	

about	a	70%	reduction	in	human	cases	for	the	eight	lowest	thresholds	before	

precipitously	dropping	in	efficacy	when	using	the	two	highest	thresholds.	

	

	

Comparison	of	surveillance	scenarios	at	a	single	threshold		

	 All	of	the	following	results	for	the	surveillance	scenarios	use	thresholds	of	1	

human	or	mosquito	infection	(for	L-Inf	and	S-Inf),	or	10%	of	the	baseline	abundance	

of	the	adult	mosquito	population	in	each	patch	(for	S-Ad)	or	the	juvenile	mosquito	

population	in	each	patch	(for	S-Juv).	Due	to	these	low	thresholds,	our	simulations	

represent	best-case	circumstances	of	highly	accurate	and	efficient	monitoring	and	

control	programs.	

	 Simulations	with	control	in	all	participating	patches	in	response	to	one	

human	infection	(L-Inf)	lead	to	a	57.3%	mean	reduction	in	total	human	infections,	

with	a	range	of	54.9-59.5%	(Figure	3,	Table	5).	In	all	runs	with	this	scenario,	71.8%	

of	the	landscape	was	controlled	over	the	course	of	the	simulation,	since	all	
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participating	patches	were	treated	starting	on	day	17	(10	days	after	disease	

introduction)	through	all	156	days	of	surveillance	(Figure	4a).		

	 Simulations	with	control	in	each	participating	patch	when	adult	mosquito	

abundance	exceeded	10%	of	the	baseline	(S-Ad)	lead	to	an	85.6%	mean	reduction	in	

human	infections,	with	a	range	of	82.0-87.7%.	The	high	efficacy	of	this	scenario	is	

due	to	control	occurring	before	disease	introduction	since	the	surveillance	target	

concerned	ecological	rather	than	epidemiological	dynamics.	Control	coverage	

ranged	from	74.3-79.0%	because	adult	populations	periodically	dropped	below	the	

threshold	for	control	(Figure	4b),	depending	on	the	locations	of	the	participating	

patches	in	each	run.		

	 Enacting	control	when	the	number	of	juvenile	mosquitoes	exceeded	10%	of	

the	baseline	(S-Juv)	achieved	a	mean	reduction	of	73.4%	and	a	range	of	70.7-75.4%.	

In	this	scenario,	because	the	direct	effect	of	treating	the	larval	habitats	caused	the	

juvenile	populations	to	fall	to	zero	(below	the	threshold	for	triggering	control),	all	

participating	patches	were	untreated	on	the	same	day,	every	11	days,	once	the	

previously	applied	larvicide	was	no	longer	in	effect	(Figure	4c).	Because	these	

dynamics	occurred	in	all	runs,	this	scenario	essentially	caused	the	accidental	

emergence	of	large-scale	control,	leading	to	71.8%	control	coverage	in	all	runs.	The	

lapses	in	control	every	11	days	caused	periodic	spikes	in	mosquito	abundance	that	

made	this	scenario	less	effective	than	S-Ad	at	this	control	threshold.		

	 Control	in	each	participating	patch	in	response	to	one	mosquito	infection	(S-

Inf)	was	the	least	effective	scenario.	Despite	treating	an	average	of	65.6%	of	the	

larval	habitats	over	all	156	days	of	surveillance,	it	led	to	a	mean	reduction	in	human	
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infections	of	just	31.2%	and	a	range	of	28.4-34.6%	(Figure	3,	Table	5).	This	is	

because	it	took	up	to	25	days	after	disease	introduction	(day	32	of	surveillance)	for	

the	virus	to	infect	mosquitoes	in	all	participating	patches,	so	treatment	did	not	occur	

in	many	of	these	patches	until	later	in	the	course	of	the	outbreak	(Figure	4d).		

	

Scenarios	without	surveillance	

Treatment	in	both	L-None	and	S-None	began	on	day	2,	rather	than	on	day	3	

as	it	did	in	S-Ad	and	S-Juv,	because,	once	aware	of	the	risk	of	disease	introduction,	

control	is	enacted	on	the	following	day,	without	a	lag	for	collecting	surveillance	

information.	L-None	achieved	an	average	of	87.5%	infection	reduction,	the	highest	

of	any	of	the	scenarios	tested,	and	the	smallest	range	of	just	2.5	percentage	points.	

The	results	of	S-None	demonstrate	a	strong	negative	linear	relationship	

(R2=0.862)	between	the	average	timing	of	control	implementation	and	the	

reduction	in	human	infections	(Figure	5),	indicating	that	implementing	larval	

control	measures	earlier	in	the	course	of	the	spread	of	the	disease	is	vitally	

important	to	reducing	outbreak	size.	Average	human	infection	reduction	was	71.0%,	

but	ranged	from	66.2-75.0%	even	though	69.9%	of	the	landscape	was	treated	in	all	

5000	runs,	with	differences	in	efficacy	largely	due	to	when	treatment	occurred.	

	

	

DISCUSSION	
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	 The	scenarios	that	yielded	the	fewest	human	infections	after	150	days	of	

arbovirus	transmission	had	larvicide	treatment	in	participating	patches	beginning	

before	or	soon	after	disease	introduction	and	largely	remaining	in	effect	throughout	

the	simulations	(Figure	4).	This	result	suggests	that,	where	early	detection	of	an	

outbreak	is	possible,	collecting	surveillance	information	continuously	throughout	

the	course	of	an	outbreak	may	not	be	necessary,	and	in	fact	may	be	a	waste	of	

resources	that	should	instead	be	put	toward	immediate	and	consistent	control	

efforts	as	soon	as	the	risk	of	an	arbovirus	outbreak	increases,	though	risk	

assessment	would	still	be	necessary	to	determine	when	emergency	control	efforts	

can	cease.	However,	it	should	be	noted	that,	because	we	modelled	a	theoretical	

landscape	with	a	ubiquitous	human	population,	these	results	are	not	immediately	

applicable	to	current	vector	control	programs	across	scales.	Rather,	we	hope	this	

research	sparks	a	discussion	among	local	governments,	mosquito	control	experts,	

and	researchers	about	how	control	regimes	across	numerous	independent	

jurisdictions	can	best	limit	surveillance	and	treatment	application	costs	while	

remaining	effective.		

Scenarios	in	which	control	began	before	disease	introduction	achieved	much	

greater	reductions	in	human	infection	than	scenarios	in	which	control	was	only	

implemented	after	arbovirus	was	already	circulating.	Surveillance	information	on	

vector	ecology	and	population	dynamics	may	thus	provide	more	effective	triggers	

for	control	than	surveillance	information	on	epidemiological	dynamics	that,	by	

nature,	only	trigger	control	after	disease	introduction.	Indeed,	an	increase	in	dengue	

infections	in	Singapore	over	the	past	few	decades	has	coincided	with	a	shift	in	the	
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focus	of	surveillance	from	vector	populations	to	human	infection	cases	(Ooi	et	al.	

2006).	However,	the	resources	needed	for	vector	surveillance	are	often	only	

available	when	the	risk	of	disease	introduction	is	both	known	and	acknowledged,	

and	may	only	be	provided	after	active	transmission	has	been	confirmed.	This	

creates	an	impossible	situation	for	underfunded	mosquito	control	agencies,	which	

cannot	enact	control	without	surveillance	information	to	trigger	it,	and	cannot	

acquire	surveillance	information	without	the	resources	to	collect	it.		

The	small-scale	surveillance	scenarios	demonstrate	another	limiting	factor	in	

the	success	of	vector	control	programs.	The	results	from	these	scenarios	imply	an	

intuitive,	but	often	neglected,	fallacy	of	threshold-based,	surveillance-driven	vector	

control:	the	more	effective	the	measure	is	in	the	short-term,	the	sooner	it	stops	

being	implemented,	and	the	less	effective	it	is	in	the	long-term.		For	instance,	in	the	

runs	of	S-Ad	that	yielded	infection	reductions	on	the	lower	end	of	that	scenario’s	

range,	mosquito	populations	in	some	patches	would	dip	below	the	threshold	for	

applying	further	control	measures,	leading	to	lapses	in	treatment	that	caused	

greater	production	of	adult	mosquitoes.	The	fluctuations	in	the	number	of	treated	

patches	in	the	S-Juv	simulations	(Figure	4c)	similarly	demonstrate	lapses	in	control	

due	to	short-term	control	success.	Although	our	simulations	were	not	tailored	to	

explore	this	particular	problem,	they	nonetheless	reveal	the	potential	for	threshold-

based	programs	to	interpret	surveillance	data	as	premature	implications	of	

successful	outbreak	mitigation.	The	ability	of	vector	control	in	reducing	arboviral	

outbreaks	could	be	greatly	improved	with	more	accurate	metrics	of	human	disease	

risk,	such	as	those	that	incorporate	surveillance	data	from	multiple	targets	and	
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consider	human	behavioral	exposure	and	other	socioecological	factors	(Gujral	et	al.	

2007,	Adams	and	Kapan	2009,	Kilpatrick	and	Pape	2013,	Stewart	Ibarra	et	al.	2014,	

Stewart-Ibarra	et	al.	2014,	Stone	et	al.	2017),	rather	than	using	the	direct	impacts	of	

control	measures	to	approximate	their	efficacy.	

The	threshold	results	from	S-Juv	demonstrate	another	potential	inefficiency	

of	surveillance-driven	control:	for	some	surveillance	targets,	extensive	and	highly	

sensitive	surveillance	may	not	achieve	infection	reductions	any	greater	than	would	

less	costly,	moderately	sensitive	methods	(Figure	2).		Thus,	results	from	this	

scenario	under	our	model	assumptions	suggest	that	control	in	response	to	juvenile	

mosquito	abundance	may	be	a	good	option	if	surveillance	data	are	not	guaranteed	

to	be	particularly	accurate,	because	it	achieves	similar	infection	reductions	when	

using	either	highly	sensitive	or	intermediate	control	thresholds.	Information	on	

larval	mosquito	abundance	is	easily	obtained	by	“citizen	scientists”	(Silvertown	

2009,	Kampen	et	al.	2015),	who	could	assist	mosquito	control	experts	with	

surveillance	data	collection,	thus	reducing	costs	for	local	municipalities.	Because	

moderate	data	sensitivity	is	sufficient	to	inform	control	efforts	in	this	scenario,	a	

slight	loss	in	accuracy	in	data	collected	by	citizen	scientists	would	not	reduce	the	

efficacy	of	control	efforts	informed	by	this	information.			

Unlike	those	of	S-Juv,	the	threshold	sensitivity	results	from	L-Inf	revealed	a	

steep	initial	decline	in	the	reduction	in	infections	achieved,	with	a	drop	in	efficacy	of	

15	percentage	points	between	control	thresholds	of	just	one	and	two	human	

infections	(Figure	2).	The	higher	reductions	achieved	using	the	lowest	control	

threshold	are	due	to	earlier	implementation	of	larvicide	treatment;	the	only	change	
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in	control	implementation	at	higher	thresholds	is	the	delaying	of	treatment	

application,	which	allowed	mosquito	populations	to	remain	high	and	transmit	more	

of	the	virus	to	the	human	population.	If	highly	sensitive	human	infection	

surveillance	causes	quicker	implementation	of	control	measures,	then	collecting	this	

information	is	well	worth	the	costs.		

Implementing	small-scale	larval	control	in	response	to	surveillance	of	adult	

mosquito	infections	(S-Inf),	however,	was	consistently	the	least	effective	of	the	

surveillance	methods	simulated,	even	when	using	the	most	sensitive	threshold.	

Thus,	when	implementing	larval	control	measures	only,	the	costs	of	labor,	

equipment,	and	laboratory	testing	associated	with	obtaining	this	information	may	

outweigh	the	benefits.	Ongoing	work	is	examining	whether	other	methods,	such	as	

adulticide	treatment,	in	response	to	mosquito	infection	surveillance	may	provide	

worthwhile	benefits.	

Our	results	reveal	numerous	advantages	to	large-scale	surveillance	and	

control,	particularly	with	anticipatory	implementation	before	disease	introduction	

(as	in	L-None)	rather	than	responsive	implementation	after	transmission	has	begun	

(as	in	L-Inf).	Although	L-Inf	yielded	lower	efficacy	than	the	anticipatory	scenarios,	it	

achieved	greater	infection	reductions	at	all	thresholds	than	S-Inf	(the	other	

responsive	scenario),	due	to	earlier	uniform	implementation	of	control	in	all	

participating	patches	(Figure	4).	This	suggests	that	even	when	anticipatory	methods	

are	not	possible,	implementation	of	control	early	in	an	outbreak	can	still	prevent	

many	people	from	acquiring	infections.	L-Inf	was	also	the	only	scenario	in	which	

there	were	no	gaps	in	treatment	once	it	began	(Figure	4),	which	would	prevent	the	
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mosquito	populations	from	compensating	for	the	decreased	density	of	immatures	in	

each	treated	larval	pool.		

The	two	large-scale	control	scenarios	(L-Inf	and	L-None)	had	the	smallest	

ranges	in	efficacy	(Figure	3,	Table	5),	indicating	that	the	homogenous/uniform	

control	inherent	to	large-scale	implementation	yields	more	predictable	outcomes	

that	are	less	dependent	on	the	location	of	the	participating	patches	than	small-scale	

control.	In	the	small-scale	scenarios,	the	runs	on	the	lower	end	of	each	scenario’s	

efficacy	range	exhibited	patchier	control	implementation	(due	to	spatial	effects	that	

will	be	examined	in	future	efforts),	while	the	more	effective	runs	better	

approximated	the	uniformity	of	the	large-scale	scenarios.	This	suggests	that	when	

the	locations	of	participating	patches	can	be	carefully	chosen	to	lead	to	spatially	and	

temporally	homogenous	control	measures	across	the	landscape,	small-scale	

surveillance	and	control	can	yield	similar	treatment	uniformity	to	purposeful	large-

scale	control.	However,	when	some	areas	of	the	landscape	cannot	be	treated	for	a	

reason	unrelated	to	mosquito	and	epidemiological	dynamics	(e.g.,	inaccessibility,	

private	land,	protected	wildlife	areas),	small-scale	surveillance	may	yield	patchier	

implementation	of	control	measures	that	are	less	effective	than	the	uniform	control	

implemented	using	large-scale	surveillance.	Engagement	of	private	citizens	to	

actively	participate	in	local	efforts,	such	as	data	collection	from	ovitraps,	can	make	

these	more	effective	uniform	methods	more	economically	and	logistically	feasible	

(Regis	et	al.	2008,	Fonseca	et	al.	2013,	Ryan	et	al.	2015).	

	 The	theoretical	nature	of	this	model	highlights	the	real-world	inefficiencies	

that	plague	the	efficacy	of	responses	to	vector-borne	disease	outbreaks	at	any	scale.	
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In	our	simulations,	treatment	of	larval	habitats	occurs	one	day	after	the	surveillance	

data	threshold	is	reached;	in	reality,	control	efforts	may	not	be	implemented	for	

many	weeks	due	to	inadequate	surveillance	and	funding.	Also,	because	large	

proportions	of	those	infected	with	dengue	or	Zika	experience	no	or	mild	symptoms	

(Sikka	et	al.	2016),	many	people	may	need	to	be	infected	before	anyone	would	seek	

medical	care	and	testing.	It	may	then	take	months	and	multiple	laboratory	tests	to	

confirm	and	report	a	human	diagnosis,	though	there	are	fewer	hurdles	to	testing	

and	reporting	mosquito	infections	in	areas	with	sufficient	resources	(Lindsey	et	al.	

2012).	Despite	the	utility	of	the	CDC’s	ArboNET	system	for	arboviral	incidence	

reporting	(Marfin	et	al.	2001),	the	time	currently	required	to	test	for	arbovirus	

postpones	the	implementation	of	control	measures	in	response	to	this	information,	

significantly	reducing	the	efficacy	of	these	responses	(Figure	5).	Thus,	while	our	

current	systems	of	surveillance	remain	in	place,	implementing	control	in	response	

to	epidemiological	surveillance	would	likely	not	be	as	effective	in	reality	as	it	is	in	

this	model.	Future	research	should	incorporate	these	inefficiencies	in	surveillance	

data	collection	and	control	implementation	into	simulations,	as	well	as	more	

complex	ecological	dynamics	assumed	absent	here,	including:	co-infection	with	

multi-strain	pathogens	in	a	metapopulation	framework;	evolution	of	insecticide	

resistance	in	mosquito	populations;	and	insecticide	effectiveness	across	a	range	of	

environmental	variables.	

	 The	extent	and	methods	of	vector	and	arbovirus	surveillance	and	control	

vary	widely	between	jurisdictions	in	the	United	States	(Lindsey	et	al.,	2012;	

NACCHO,	2016).	This	likely	leads	to	patchy	implementation	of	control	regimens	that	
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lack	the	urgency	and	uniformity	of	the	more	effective	scenarios	simulated	here.	This	

lack	of	uniformity	also	pervades	the	research	that	has	been	done	on	the	

effectiveness	of	various	vector	control	approaches.	Thus,	while	it	would	be	useful	to	

compare	our	results	with	more	real-world	studies,	the	current	literature	contains	

little	overlap	in	study	design,	making	it	difficult	to	compare	the	results	of	these	

disparate	approaches	(Bowman	et	al.	2016).	Increased	standardization	in	methods,	

investment	in	proactive	approaches,	and	communication	about	vector	population	

dynamics	locally,	nationally,	and	internationally	could	significantly	reduce	the	

public	health	risks	of	Zika	virus	and	other	current	and	future	vector-borne	

infectious	diseases.	

	

	

CONCLUSIONS	

	 	

	 In	our	simulations,	vector	control	implemented	in	anticipation	of	an	

arboviral	outbreak	was	much	more	effective	at	reducing	the	number	of	human	

infections	than	control	efforts	that	began	after	disease	introduction.	Thus,	

surveillance	information	on	mosquito	ecology	and	demography	may	more	

effectively	inform	control	application	than	information	on	epidemiology	that	

inherently	can	only	trigger	treatment	after	disease	transmission	has	begun.	Uniform	

control	applied	consistently	across	space	and	time	can	further	mitigate	outbreaks	

more	than	patchy	control	application,	indicating	that	large-scale	efforts	informed	by	

landscape-wide	surveillance,	or	even	well-positioned	small-scale	implementation,	
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may	be	more	effective	than	haphazard	small-scale	efforts	enacted	in	each	patch	

independently.	For	some	surveillance	targets,	only	very	sensitive	and	accurate	

information	can	notify	control	agencies	of	an	escalating	risk	quickly	enough	for	

them	to	implement	effective	control,	so	limited	resources	would	be	well	spent	on	

collecting	high	quality	surveillance	data.	However,	other	types	of	surveillance	data	

may	still	effectively	inform	control	without	requiring	high	sensitivity	in	their	

collection.	Critically,	rather	than	responding	to	a	true	measure	of	control	efficacy	

and	risk	level,	some	control	efforts	triggered	by	surveillance	may	instead	foster	a	

false	sense	of	security	that	leads	to	ineffective	or	prematurely	relaxed	efforts	(c.f.	

Arosteguí	et	al.	2013,	Gubler	2002,	Reyes-Castro	et	al.	2017)	.	Further	research	on	

the	previously	neglected	topics	of	surveillance	target	and	scale	in	mosquito-borne	

disease	control	can	help	determine	economical	methods	to	both	collect	high	quality	

surveillance	information	and	implement	continuously	effective	responses,	especially	

in	regions	where	the	best	outcomes	require	the	participation	and	cooperation	of	

many	local	jurisdictions.		
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Table	1.	Assumptions	of	the	model.	

Topic	 Assumptions	

Landscape	

• All	patches	are	identical,	with	equal	connectivity	between	all	
adjacent	patches.	

• The	landscape	is	completely	isolated.	
• Humans	move	homogeneously	throughout	the	landscape.	

Control	

• Surveillance	is	100%	accurate	and	results	are	immediate	enough	to	
inform	the	following	day’s	actions.	

• Treatment	to	each	larval	development	(“breeding”)	pool	is	
completely	effective	for	exactly	10	days.	

• Source	reduction	via	larvicide	application	is	the	only	control	
measure	implemented.	

Epidemiology	

• The	single	arbovirus	strain	is	only	transmitted	horizontally	and	only	
between	mosquitoes	and	humans.	

• Recovery	causes	complete	life-long	immunity	in	humans;	mosquitoes	
do	not	recover	from	infection.	

• Transmission	of	the	virus	is	immediate;	there	is	no	latency/exposed	
period.	

• No	viral	evolution	occurs.	
• Viral	infection	has	no	effect	on	mosquito	life	history.	

Mosquito	population	

• Mosquito	feeding	on	humans	has	no	effect	on	birth	or	death	rate,	and	
both	are	constant	throughout	mosquito	lifetime.	

• No	evolution	occurs	in	the	mosquito	population,	including	no	
evolution	of	resistance	to	treatment.	

• Oviposition	of	non-diapause	eggs	occurs	daily.	
• A	fixed	percent	of	mosquitoes	in	each	patch	disperse	to	an	adjacent	

patch	each	day;	dispersal	is	not	density-dependent.	
• No	regulation	of	the	adult	population	occurs,	only	density-dependent	

regulation	of	the	juvenile	population.	
• Juveniles	cannot	grow	and	die	on	the	same	day;	eggs	cannot	be	laid	

and	die	on	the	same	day.	
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Table	2.	Variables	used	in	model	equations.	

Variable	 Definition	
Mj	 Number	of	juvenile	(pre-adult)	mosquitoes	
Mn	 Number	of	adult	naïve	(uninfected)	female	mosquitoes	
Mi	 Number	of	adult	infected	female	mosquitoes	
Hs	 Number	of	susceptible	humans	
Hi	 Number	of	infected	humans	
Hr	 Number	of	recovered	humans	

p	and	q	 Patch	identifiers	
t	 Day	identifier	

	
	
Table	3.	Parameter	definitions	and	values	used	in	model	simulations.	
	

Parameter Value(s) Definition 

Treat 0=untreated 
1=treated Matrix of control schedule in each patch 

µ� 1/20 Per capita death rate of mosquitoes  
(after density-independent mortality) 

n* 3 Per capita birth rate of mosquitoes  
(after density-independent mortality) 

K* 350 Carrying capacity of juvenile mosquitoes in each pool 
g� 1/10 Growth rate of mosquitoes from juvenile to adult 

D* C G$,D
∀DF$

= 0.1 Matrix of mosquito dispersal probabilities between pools 

r^ 0.3 Biting rate 

c* 0.003 Scaling constant (to enable reasonable pace of outbreak amid a 
ubiquitous human population) 

T* Tmh = 0.08 
Thm = 0.07 

Transmission probabilities per bite from mosquitoes to humans 
(Tmh) and humans to mosquitoes (Thm) 

g� 1/4 Recovery rate of humans 
All	rates	are	in	days.	
*=Assumed	for	model	exploration	
�=Modified	from	(Erickson	et	al.	2010)	
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Table	4.	Summary	of	the	surveillance	and	control	scenarios	simulated.	“L”	

stands	for	large-scale	and	“S”	for	small-scale	control	implementation.	“Inf”	refers	to	

surveillance	of	the	number	of	human	or	mosquito	infections,	“Ad”	refers	to	adult	

mosquito	surveillance,	and	“Juv”	to	immature	mosquito	surveillance.	

Scenario	 Focus	of	
Surveillance	

Scale	of	
Surveillance	and	

Response	

Number	(Percent)	
of	Patches	
Participating	

Range	of	Threshold	
Values	Tested	

L-Inf	 Infected	
humans	 Whole	landscape	 16	(80%)	 1-10	infected	humans	

S-Ad	 Adult	
mosquitoes	 Individual	patch	 16	(80%)	

10%-100%	baseline*	
adult	abundance	

S-Juv	 Juvenile	
mosquitoes	

Individual	patch	 16	(80%)	 10%-100%	baseline*	
juvenile	abundance	

S-Inf	 Infected	
mosquitoes	

Individual	patch	 16	(80%)	 1-10	infected	
mosquitoes	

L-None	 None	 Whole	landscape	 16	(80%)	 N/A	

S-None	 None	 Individual	patch	 20	(100%)	 N/A	

*	Baselines	are	average	per	patch	abundances	in	the	10	days	before	surveillance	begins.	

	
Table	5.	Results	from	5000	runs	of	each	scenario.	
	

Scenario	 Control	
Threshold/Trigger	

Mean	
reduction	
in	human	
infections	

Range	of	
human	
infection	
reduction	

Proportion	
of	landscape	
treated	over	

time	

First	day	of	
treatment	

L-Inf	 1	infected	human	 57.3%	 54.9-59.5%	 All	0.718	 17	

S-Ad	 10%	adult	baseline	 85.6%	 82.0-87.7%	 0.743-0.790	 3	

S-Juv	 10%	juvenile	baseline	 73.4%	 70.7-75.4%	 All	0.718	 3	

S-Inf	 1	infected	mosquito	 31.2%	 28.4-34.6%	 0.642-0.664	 25-32	

L-None	 On	days	2-137	 87.5%	 86.2-88.7	 All	0.697	 2	

S-None	 On	109	stochastically	
selected	days	 71.0%	 66.2-75.0%	 All	0.699	 2	
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Figure	1.	Representations	of	control	implementation	over	time	in	small-scale	

and	large-scale	surveillance	scenarios.	Grey	squares	receive	larvicidal	treatment,	

while	white	squares	do	not.	(a)	The	small-scale	control	of	S-Ad,	S-Juv,	S-Inf,	and	S-

None	yields	patchier	control,	with	the	number	and	location	of	treated	patches	

changing	over	time.	(b)	The	large-scale	control	of	L-Inf	and	L-None	yields	spatially	

uniform	control,	with	all	participating	patches	either	treated	or	untreated	at	each	

time	step.	
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Figure	2.	Average	infection	reduction	at	each	threshold	level	tested,	for	

scenarios	using	surveillance.	Shaded	regions	indicate	two	standard	deviations	

around	the	mean.	Top	panel:	results	from	scenarios	L-Inf	and	S-Inf,	using	threshold	

numbers	of	infections	to	trigger	treatment.	Bottom	panel:	Results	from	scenarios	S-

Ad	and	S-Juv,	using	threshold	proportions	of	baseline	abundance	to	trigger	

treatment.		
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Figure	3.	Box-and-whisker	plots	of	human	infection	reduction	in	all	six	

scenarios.	Whiskers	extend	to	the	upper	and	lower	adjacent	values.	
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Figure	4.	Number	of	patches	receiving	treatment	in	surveillance	scenarios	on	

each	of	the	156	days	of	surveillance	and	control.	Blue	dotted	lines	indicate	

introduction	of	one	infected	human.	(a)	L-Inf	(large-scale	human	infection	

surveillance);	(b)	S-Ad	(small-scale	adult	mosquito	surveillance);	(c)	S-Juv	(small-

scale	juvenile	mosquito	surveillance);	(d)	S-Inf	(small-scale	mosquito	infection	

surveillance).	Because	S-Ad	and	S-Inf	have	slightly	different	numbers	of	patches	

treated	each	day	in	each	run,	one	representative	run	from	each	scenario	was	chosen	

for	the	figure.	Effectiveness	percentages	are	the	average	percent	reduction	in	human	

infections	under	that	scenario,	compared	to	implementing	no	control	measures.		
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Figure	5.	S-None	demonstrates	the	importance	of	early	vector	control	in	

reducing	outbreak	size.	All	patches	in	each	run	were	treated	on	109	days	of	the	

156-day	simulation.	The	x-axis	shows	the	average	day	number	on	which	treatment	

occurred	in	all	20	patches	in	each	run,	with	the	left	side	indicating	earlier	average	

treatment,	and	the	right	side	indicating	later	average	treatment	across	the	

landscape.	
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ABSTRACT	

	

	 Recent	epidemics	of	mosquito-borne	dengue	and	Zika	viruses	demonstrate	

the	urgent	need	for	effective	measures	to	control	these	diseases.	The	best	method	

currently	available	to	prevent	or	reduce	the	size	of	outbreaks	is	to	reduce	the	

abundance	of	their	mosquito	vectors,	but	there	is	little	consensus	on	which	

mechanisms	of	control	are	most	effective,	or	when	and	where	they	should	be	

implemented.	Although	the	optimal	methods	are	likely	context-dependent,	broadly	

applicable	strategies	for	mosquito	control,	such	as	how	to	distribute	limited	

resources	across	a	landscape	in	times	of	high	epidemic	risk,	can	mitigate	(re)-

emerging	outbreaks.	We	used	mathematical	simulations	to	examine	how	the	spatial	

distribution	of	larval	mosquito	control	affects	the	size	of	disease	outbreaks,	and	how	

mosquito	metapopulation	dynamics	and	demography	might	impact	the	efficacy	of	

different	spatial	distributions	of	control.	We	found	that	the	birth	rate	and	

mechanism	of	density-dependent	regulation	of	mosquito	populations	affected	the	

average	outbreak	size	across	all	control	distributions.	These	factors	also	determined	

whether	control	distributions	favoring	the	interior	or	the	edges	of	the	landscape	

most	effectively	reduced	human	infections.	Thus,	understanding	local	mosquito	

population	regulation	and	dispersion	can	lead	to	more	effective	control	strategies.	
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INTRODUCTION	

	

	 Mosquitoes	that	lay	their	eggs	in	peri-domestic	water-filled	containers	have	

become	invasive	across	the	globe	(Juliano	and	Lounibos	2005,	Schaffner	et	al.	2013),	

and	can	transmit	a	diversity	of	viruses	that	have	caused	recent	viral	epidemics	

throughout	the	world,	such	as	yellow	fever,	dengue,	chikungunya,	West	Nile,	and	

Zika	(Gratz	2004,	Chouin-Carneiro	et	al.	2016).	These	and	other	vector-borne	

diseases	will	likely	continue	to	emerge	and	spread	with	increasing	globalization	and	

urbanization	(Tatem	et	al.	2006,	Kilpatrick	and	Randolph	2012).	Thus,	effective	

emergency	measures	will	be	necessary	to	protect	affected	populations	from	

mosquito-borne	diseases	and	their	potentially	tragic	lasting	effects,	such	as	

neurological	birth	defects	in	children	born	from	women	infected	with	the	Zika	virus	

(Rasmussen	et	al.	2016).	 		

	 The	mechanisms	and	patterns	of	vector	population	regulation	are	integral	to	

the	metapopulation	dynamics	of	vectors	and	the	diseases	those	vectors	transmit	

(White	et	al.	2011,	Smith	et	al.	2013,	Godfray	2013).	Intraspecific	competition	for	

resources	among	pre-adults	of	many	invasive	mosquito	species	is	thought	to	impose	

significant	regulation	on	many	populations	(Juliano	2007).	The	effect	of	conspecific	

density	on	oviposition	site	selection	by	gravid	females	appears	to	be	highly	context-

dependent	(Wasserberg	et	al.	2014,	Day	2016);	the	presence	of	conspecifics	may	

signify	high	habitat	quality	and	attract	greater	oviposition,	or	signify	high	larval	

competition	and	deter	further	oviposition	in	favor	of	less	competitive	larval	

development	sites	(Onyabe	and	Roitberg	1997,	Kiflawi	et	al.	2003,	Wong	et	al.	2011,	



	
	

41	
	

Fonseca	et	al.	2015).	Wasserberg	et	al.	(2014)	suggest	a	negative	parabolic	

relationship	between	conspecific	density	and	oviposition	rate,	with	the	highest	

oviposition	rates	in	pools	with	intermediate	densities	that	balance	the	risks	and	

rewards	of	both	density	extremes.		

	 Despite	their	public	health	importance,	existing	mosquito	control	strategies	

are	highly	variable	in	effort,	resources,	and	methods	used	(Hadler	et	al.	2015),	

leading	to	patchy	and	inconsistent	control	measures	across	both	space	and	time.	

According	to	metapopulation	theory,	this	likely	creates	a	rescue	effect	in	which	

mosquito	metapopulations,	and	thus	the	reservoir	of	mosquito-borne	diseases,	are	

maintained	in	untreated	refuges	that	then	act	as	sources	when	new	uncontrolled	

sites	become	available	(Grenfell	and	Harwood	1997).	Although	many	critical	

mosquito	species	display	low	dispersal	ability	(Trpis	and	Hausermann	1986),	

mosquito-borne	disease	can	be	transmitted	over	long	distances	in	either	infected	

humans	(Stoddard	et	al.	2009,	Stone	et	al.	2017)	or	in	infected	mosquitoes	that	often	

get	transported	via	human	travel	networks	(Eritja	et	al.	2017).	Research	that	

considers	the	effects	of	both	mosquito	and	human	movement	in	a	metapopulation	

context	would	enable	the	application	of	more	targeted	and	effective	approaches	and	

allow	for	more	accurate	epidemiological	and	entomological	predictions.		

Empirical	work	indicates	that	focusing	treatment	efforts	in	highly	productive	

“hot	spots”	can	reduce	mosquito	populations	at	minimal	cost	(Smith	et	al.	2013,	

Faraji	and	Unlu	2016,	Unlu	et	al.	2016),	but	this	requires	existing	knowledge	about	

the	productivity	of	local	mosquito	populations,	as	well	as	coordinated	comparisons	

of	this	information	across	space.	Any	time	an	arbovirus	outbreak	occurs,	emergency	
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vector	control	measures	need	to	be	implemented	quickly;	the	time	it	takes	to	

identify	hot	spots	can	postpone	the	implementation	of	control	measures,	leading	to	

larger	outbreaks	(Schwab	et	al.	2017).	Also,	due	to	complex	oviposition	site	

selection	dynamics,	applying	control	measures	only	in	hot	spots	may	leave	a	

sufficient	abundance	of	immature	mosquitoes	in	the	remaining	larval	pools	to	

maintain	transmission	of	mosquito-borne	diseases	in	some	ecological	contexts	

(Wasserberg	et	al.	2014).	The	development	of	standardized,	effective	best	practices	

to	employ	during	time	of	high	epidemic	risk	could	significantly	reduce	outbreaks	

sizes.	

	 While	consistent	control	application	over	large	contiguous	areas	would	

reduce	mosquito	populations	better	than	smaller-scale	approaches	(Levins	1968,	

Hendrichs	et	al.	2007),	large-scale	treatment	of	entire	landscapes	is	rarely	possible	

because	of	insufficient	resources	(Hadler	et	al.	2015),	environmental	contamination	

concerns,	inability	to	access	private	properties,	and	a	lack	of	coordination	among	

local	jurisdictions.	The	synanthropic	nature	of	some	species,	particularly	Ae.	aegypti	

and	Ae.	albopictus,	has	added	to	these	logistical	control	difficulties;	small	pools	of	

water	that	are	ubiquitous	in	urban	and	domestic	environments	provide	ideal	sites	

for	oviposition	by	females	and	subsequent	development	of	immatures.	The	resulting	

spatial	and	temporal	heterogeneity	in	control	efforts	may	reduce	the	temporal	

correlation	of	mosquito	population	dynamics	between	nearby	areas,	contributing	to	

the	long-term	persistence	of	mosquito-borne	disease	even	while	reducing	the	size	of	

each	individual	outbreak	(Bolker	and	Grenfell	1996,	Grenfell	and	Harwood	1997,	

Bjørnstad	et	al.	1999).		
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	 We	focus	solely	on	insecticidal	methods	targeted	at	the	aquatic	pre-adult	

stages,	which	we	refer	to	as	“larval	control”	for	the	remainder	of	this	manuscript.	

There	is	growing	evidence	that	low	residue	adulticides,	currently	preferred	as	they	

minimize	non-target	effects	and	resistance	evolution,	are	not	particularly	effective	

and	are	only	active	for	a	few	days.	In	contrast,	some	larvicides	can	remain	effective	

for	months	(Skovmand	et	al.	2009).	However,	strong	density-dependence	among	

juveniles	has	been	shown	to	cause	larval	control	efforts	to	fail	to	reduce	adult	

mosquito	populations.	This	may	be	due	to	compensation	or	overcompensation,	in	

which	control	efforts	that	kill	a	proportion	of	juveniles	allow	competition	for	

resources	among	the	remaining	juveniles	to	relax	(Legros	et	al.	2009).	In	some	

circumstances,	this	allows	a	greater	proportion	of	these	larvae	to	develop	into	

adults	than	if	the	site	had	remained	uncontrolled	and	thus	denser	and	more	

resource-limited.	Understanding	the	ecological	and	demographic	contexts	under	

which	compensation	and	overcompensation	occur	would	inform	more	effective	and	

more	economical	methods	of	control	(Juliano	2007).	

	 Here,	we	use	a	theoretical	discrete-time	SIR-type	difference	equation	model	

to	examine	how	the	spatial	distribution	of	mosquito	control	alters	the	efficacy	of	

control	in	reducing	human	infections,	and	how	mosquito	metapopulation	dynamics	

and	demography	might	impact	the	efficacy	of	different	spatial	control	distributions.	

Work	by	Lutambi	et.	al.	found	that	spatial	clustering	of	certain	control	interventions	

may	be	less	effective	at	reducing	biting	mosquito	abundance	than	less	clustered	

distributions	(Lutambi	et	al.	2014).	We	build	on	this	foundation	by	also	
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incorporating	mosquito-borne	disease	transmission	into	our	simulations,	as	well	as	

two	different	potential	types	of	simple	density-dependence.	

		

METHODS	

	

The	model	presented	here	builds	on	a	model	previously	employed	by	Schwab	

et	al.	(2017)	to	explore	the	efficacy	of	different	types	of	surveillance	data	to	trigger	

effective	control.	

We	used	a	simple	grid	landscape	of	20	(five	by	four)	identical	patches	to	form	

the	spatial	basis	of	our	model.	Within	this	landscape,	the	location	and	movement	of	

mosquitoes	were	modeled	explicitly	to	simulate	metapopulation	dynamics	of	both	

the	vector	and	the	disease,	but	humans	are	assumed	to	be	mobile	enough	that	a	

mosquito	in	any	patch	can	bite	any	human	(see	Table	1	for	a	list	of	additional	

assumptions).		

	 The	equations	for	female	juvenile/pre-adult	(Mj,p,t),	naïve/uninfected	adult	

(Mn,p,t),	and	infected	adult	(Mi,p,t)	mosquitoes	in	patch	p	on	day	t	are:	

!",$,% = 	 (1 − +,-./$,%0 12!",$,%34(1 − 5"06 (1 − 8)

+ 	;(T∝V,W)(!<,$,%34 + !=,$,%340 >1 −
!",$,%34
?

@A	

(1)	

!<,$,% = B!<,$,%34 + C !<,D,%34

∀DF$

GD,$ − C !<,$,%34G$,D
∀$FD

− ,H+IJK=,%34!<,$,%34L(1 − 5X)

+ 8!",$,%34(1 − 5"0	

(2)	
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!=,$,% = B!=,$,%34 + C !=,D,%34

∀DF$

GD,$ − C !=,$,%34G$,D
∀$FD

+ 	,H+IJK=,%34!<,$,%34L (1 − 5X)	 (3)	

	

The	equations	for	susceptible	(Hs,t),	infected	(Hi,t),	and	recovered	(Hr,t)	humans	on	

day	t	are:	

KN,% = KN,%34 − KN,%34,H+JIC!=,$,%34

∀$

	 (4)	

K=,% = K=,%34 + KN,%34,H+JIC!=,$,%34

∀$

− OK=,%34	 (5)	

KP,% = KP,%34 + OK=,%34	 (6)	

	

	 Parameter	definitions	and	values	used	are	in	Table	2.	The	adult	mosquito	

dispersal	matrix	was	generated	using	a	probability	of	adult	mosquito	dispersal	out	

of	each	patch	of	0.1.	For	each	patch	p,	this	dispersal	probability	was	divided	by	the	

number	of	patches	adjacent	to	patch	p,	so	that	there	was	an	equal	probability	of	

dispersing	from	patch	p	to	each	adjacent	patch	q.		Mosquitoes	could	only	disperse	to	

an	adjacent	patch	to	reflect	the	limited	dispersal	ability	of	many	container-breeding	

species	(Trpis	and	Hausermann	1986).		 	

	 Before	each	simulation,	we	ran	the	model	for	200	days	without	disease	or	

control	so	that	the	behavior	of	the	mosquito	populations	was	caused	by	model	

dynamics	and	not	by	initial	conditions.	On	day	1	of	each	simulation,	surveillance	of	

human	infections	began,	though	disease	was	not	yet	introduced	into	the	landscape.	

At	the	end	of	day	7	(after	control	decisions	have	been	made),	one	human	became	
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infected	with	an	arbovirus,	initiating	disease	transmission	on	day	8.	The	simulation	

then	proceeded	for	150	days	with	disease	(156	total	days	with	surveillance).		

	 The	order	of	events	on	each	day	of	the	simulation	is	as	follows:	On	day	t,	

adult	mosquitoes	from	day	t-1	lay	eggs	in	their	current	patch,	with	the	number	of	

eggs	regulated	by	the	designated	juvenile	density-dependence	mechanism	(see	

below).	Then,	a	proportion	of	both	juvenile	and	adult	mosquitoes	die	and	are	

removed	from	the	population.	All	compartment	transitions	then	occur	

simultaneously,	using	the	number	of	mosquitoes	from	day	t-1	that	are	still	alive	

(juvenile	mosquitoes	grow	to	become	uninfected	adults,	uninfected	mosquitoes	

become	infected,	susceptible	humans	become	infected,	and	infected	humans	

recover).		

	

Mosquito	demography	 	

	 To	examine	how	the	interplay	of	within-patch	mosquito	demography	and	

between-patch	dispersal	affect	control	outcomes,	we	ran	our	simulations	under	four	

different	demographic	circumstances:	logistic	density-dependence	(LDD)	with	a	

high	and	a	low	birth	rate,	and	nonlinear/multiphasic	density-dependence	(MPDD)	

with	a	high	and	a	low	birth	rate.	In	all	forms	of	density-dependence	used,	only	the	

juvenile	populations	in	each	patch	are	directly	regulated.		

	 	We	incorporated	logistic	density-dependence	by	setting	a=0	in	Equation	1,	

so	that	the	number	of	juveniles	added	to	each	pool	is	unaffected	by	x.	We	

incorporated	multiphasic	density	dependent	population	regulation	by	setting	a=1	

when	the	number	of	juveniles	in	a	patch	reached	80%	of	carrying	capacity	or	above,	
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thereafter	restricting	juvenile	increase	to	only	a	proportion	(x)	of	the	unrestricted	

LDD-based	increase.	We	used	these	extreme	parameters	in	order	to	examine	a	very	

different	demographic	situation	from	simple	logistic	growth.	Biologically,	dynamics	

similar	to	those	in	MPDD	could	arise	if	high	larval	densities	not	only	increase	larval	

competition	for	resources,	but	also	attract	more	predators,	increase	disease	

transmission,	and/or	repel	female	oviposition.	

	

Incorporating	control	into	simulations	

	 To	capture	the	patchiness	of	mosquito	control	efforts,	and	the	many	potential	

spatial	distributions	of	control	that	this	patchiness	creates,	we	ran	the	model	5000	

times,	with	16	out	of	the	20	patches	(80%)	arbitrarily	selected	at	the	start	of	each	

run	to	participate	in	disease	surveillance	and	control	in	that	simulation.	Treatment	

affected	only	juvenile	mosquitoes	and	was	assumed	to	be	completely	effective,	so	

that	when	the	value	of	Treat	in	patch	p	on	day	t	equaled	1,	Equation	1	equaled	0	and	

there	were	no	juveniles	in	that	patch	on	that	day.		

In	our	simulations,	larval	control	occurred	when	there	was	at	least	one	

infected	human	in	the	landscape	on	day	t	(the	efficacy	of	this	and	other	surveillance	

scenarios	were	examined	elsewhere	(Schwab	et	al.	2017)).	All	16	participating	

patches	were	then	treated	starting	on	day	t+1	through	day	t+11,	regardless	of	any	

local	differences	between	patches,	so	that	all	participating	patches	were	either	

untreated	or	treated	on	any	given	day.	Due	to	this	low	threshold	for	triggering	

control,	and	the	high	level	of	participation	among	the	patches,	our	simulations	
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represent	best-case	scenarios	of	effective	monitoring	programs	and	well-funded	

control	agencies.	

	

Quantifying	the	spatial	distribution	of	control	effort	

	 To	quantitatively	compare	the	spatial	patterns	of	treatment	in	each	run,	we	

created	a	metric	based	on	Simpson’s	Evenness	Index	that	we	call	insulation	(Á).		We	

computed	this	metric	in	each	run	by	first	calculating	Simpson’s	evenness	index	

(Smith	and	Wilson	1996)	of	the	number	of	participating	patches	in	each	of	20	

different	spatial	windows	in	the	landscape,	with	each	window	containing	one	focal	

patch	and	all	of	its	adjacent	patches	(Figure	1).	To	have	the	highest	evenness	value	

of	1,	all	patches	in	that	window	participated	in	control	in	that	run;	the	fewer	patches	

in	that	window	that	participated,	the	lower	the	evenness	value.	To	get	a	metric	of	

the	control	distribution	across	the	whole	landscape	(Equation	7),	we	summed	all	of	

the	evenness	values	from	each	window	and	subtracted	that	sum	from	20	(the	

number	of	patches)	such	that	insulation	is	equal	to:	

	

Á = |Z| −C
[$
\$∀$

	

	

where	|Z|	is	the	total	number	of	patches,	p	is	the	patch	identity,	np	is	the	number	of	

participating	patches	in	the	window	for	patch	p,	and	wp	is	the	total	number	of	

patches	in	the	window	for	patch	p	(1	+	the	number	of	patches	adjacent	to	patch	p).		
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	 In	the	20-patch	landscape	we	simulated,	this	metric	essentially	quantifies	

whether	the	spatial	distribution	of	control	effort	favored	patches	located	on	the	

edges	of	the	landscape	(high	insulation,	e.g.,	Figure	2a)	or	patches	that	are	centrally	

located	in	the	landscape	(low	insulation,	e.g.,	Figure	2b).	The	same	total	amount	of	

control	occurred	in	all	runs;	only	the	distribution	of	this	control	was	allowed	to	vary.			

Because	the	goal	of	this	research	was	to	determine	how	spatial	processes	

involved	in	mosquito	control	impact	the	number	of	humans	who	contract	mosquito-

borne	disease,	we	report	results	using	the	percent	reduction	in	human	infections,	

which	was	calculated	by	first	determining	how	many	humans	become	infected	in	

each	demographic	circumstance	when	there	is	no	control	implementation,	then	

calculating	what	percent	of	this	number	of	humans	did	not	become	infected	in	each	

run.		

	

	

RESULTS	

	

	 Human	infections	were	reduced	the	most	in	runs	using	MPDD	and	the	higher	

birth	rate,	followed	by	MPDD	and	LDD	with	the	lower	birth	rate,	and	reduced	the	

least	in	runs	with	LDD	and	the	higher	birth	rate	(Table	3).		

	 Simulations	using	LDD	demonstrated	negative	linear	relationships	between	

insulation	and	infection	reduction	(Figure	3a-b),	indicating	that	low	insulation	

achieves	greater	reductions	in	these	circumstances	(e.g.,	Figure	2b).	However,	

Figure	3a	shows	that	the	smallest	reductions	in	human	infections	occurred	in	runs	
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with	medium	insulation	values,	suggesting	a	non-linear	interaction	between	the	

insulation	metric	used	here	and	control	efficacy	in	this	circumstance.	Overall,	the	

greatest	reductions	in	LDD	circumstances	were	more	likely	to	be	achieved	when	the	

four	non-participating	patches	were	in	the	corners	or	on	the	edges	of	the	landscape	

(Figure	4a-b),	and	the	central	patches	all	participated.	Regardless	of	the	location	of	

the	participating	patches,	LDD	with	the	lower	birth	rate	always	achieved	greater	

reductions	than	LDD	with	the	higher	birth	rate.	In	all	LDD	simulations	with	the	

higher	birth	rate,	treatment	in	all	participating	patches	began	after	10	days	of	

disease	transmission	(Table	3).	This	is	the	earliest	implementation	of	control	among	

the	four	circumstances	tested,	due	to	greater	vector	abundance	causing	more	

human	infections	to	occur	sooner	(Figure	5).	In	LDD	with	the	lower	birth	rate,	

treatment	began	one	day	later	(after	11	days	of	disease	transmission),	because	

lower	vector	abundances	from	the	lower	birth	rate	reduced	the	effective	rate	of	

transmission.	

The	results	from	simulations	using	MPDD	were	markedly	different	from	

those	of	the	LDD	circumstances.	With	the	lower	birth	rate,	the	location	of	the	

participating	patches	had	little	effect	on	human	infection	reduction	(Figure	3d,	

Figure	4d).	Interestingly,	these	simulations	with	the	lower	birth	rate	were	always	

less	effective	than	MPDD	with	the	higher	birth	rate	(Figure	5).	With	the	higher	birth	

rate,	infection	reduction	had	a	positive	linear	relationship	with	insulation	in	this	

circumstance	(Figure	3c),	indicating	that	high	insulation	of	control	distribution	(i.e.,	

participation	of	edge	patches	favored	over	that	of	interior	patches	as	in	Figure	2a)	

achieves	the	greatest	reductions	in	human	infections.	Figure	4c	demonstrates	that,	
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for	MPDD	with	the	higher	birth	rate,	simulations	achieved	greater	average	

reductions	when	the	control	distribution	favored	the	participation	of	edge	patches,	

and	especially	of	corner	patches,	rather	than	the	participation	of	interior	patches.	

However,	Figure	3c	shows	that	the	greatest	reductions	were	achieved	in	runs	with	

medium	insulation	values,	again	suggesting	a	non-linear	interaction	between	

insulation	and	control	efficacy	in	this	circumstance,	as	with	LDD	and	the	higher	

birth	rate.	Despite	achieving	greater	reductions	than	the	other	circumstances,	

control	measures	were	only	implemented	after	15	days	of	disease	transmission,	the	

latest	among	the	four	circumstances.		

	

DISCUSSION	

	

Current	ideas	about	the	effects	of	landscape	configuration	on	pest	control	

focus	largely	on	biological	control	in	agroecosystems,	and	the	role	of	landscape	

complexity	in	maintaining	natural	enemy	populations	(Tscharntke	et	al.	2007,	

Chaplin-Kramer	et	al.	2011).	However,	it	is	difficult	to	apply	this	body	of	knowledge	

to	the	control	of	anthropophilic	mosquito	species	that	thrive	in	urban	areas,	and	a	

comparable	understanding	of	the	role	of	landscape	configuration	on	mosquito	

metapopulation	dynamics	is	lacking.	Thus,	finding	effective	spatial	distributions	for	

mosquito	control	requires	more	specialized	consideration.	Our	simulations	

approach	this	line	of	research,	and	ultimately	demonstrate	that	the	distribution	of	

control	across	a	landscape	differentially	affects	control	efficacy	in	different	

ecological	contexts.	These	results	suggest	that	there	may	not	be	a	“one	size	fits	all”	
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emergency	control	plan	for	effectively	preventing	or	mitigating	mosquito-borne	

disease	outbreaks	in	all	circumstances.	

In	both	circumstances	using	logistic	density-dependence	in	the	juvenile	

mosquito	populations	(LDD),	simulations	with	control	distributions	displaying	low	

insulation	patterns	achieved	the	greatest	reductions	in	human	infections.	When	the	

four	non-participating	patches	were	on	the	edges	of	the	landscape,	they	received	

lower	subsidies	of	immigrating	adults	and	started	out	at	lower	abundances	of	both	

adults	and	juveniles.	This	caused	their	oscillating	juvenile	populations	to	have	

smaller	overshoots	of	carrying	capacity	with	low	insulation	(top	two	rows	of	Figure	

6)	than	with	high	insulation	(top	two	rows	of	Figure	7).	With	fewer	adult	

mosquitoes	in	the	landscape	in	the	long-term,	fewer	human	infections	occurred.	

Conversely,	in	high	insulation	simulations	that	favored	the	participation	of	edge	

patches	over	that	of	central	patches,	mutual	population	amplification	between	the	

non-participating	patches	increased	the	number	of	adult	mosquitoes,	reducing	the	

efficacy	of	control	measures.		

In	contrast,	simulations	with	high	insulation	patterns	achieved	greater	

reductions	when	using	multiphasic	density-dependence	(MPDD)	and	the	higher	

birth	rate.	Preferentially	treating	edge	patches	over	interior	patches	enhanced	

control	efficacy	in	this	circumstance	because	these	patches	started	out	with	higher	

abundances	and	received	dispersing	adults	from	more	patches,	causing	their	

juvenile	populations	to	remain	consistently	above	the	threshold	for	oviposition	

restriction	(see	patch	6	in	Figure	6).	In	low	insulation	simulations,	however,	the	

lower	density	of	juveniles	in	non-participating	patches,	and	the	lack	of	adult	
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dispersal	between	non-participating	patches,	caused	the	juvenile	populations	to	

more	quickly	decline	to	below	80%	of	carrying	capacity.	Once	juvenile	abundance	

dipped	below	this	threshold,	oviposition	restrictions	were	no	longer	in	place,	

causing	the	number	of	juveniles	to	then	surpass	the	threshold	again,	then	rapidly	

decline	again	to	below	the	threshold	due	to	the	imposed	oviposition	restrictions	

(Figure	7).		

Unlike	the	other	three	circumstances,	the	location	of	the	participating	

patches	had	little	effect	on	the	efficacy	of	MPDD	simulations	with	the	lower	birth	

rate	(Figure	3d,	Figure	4d).	This	lower	birth	rate	was	not	low	enough	to	completely	

negate	the	effects	of	MPDD	by	always	keeping	juvenile	populations	below	the	

threshold,	but	also	not	high	enough	to	cause	sufficient	population	amplification	to	

maintain	juveniles	above	the	threshold,	even	in	centrally-located	patches.	Thus,	the	

juvenile	populations	in	the	non-participating	patches	continued	to	fluctuate	or	

began	fluctuating	soon	after	control	implementation	(Figures	6	and	7).	

Many	researchers	have	posited	that	mosquito	control	efforts	may	fail	to	

reduce	mosquito	populations	because	of	compensating	or	overcompensating	

density-dependence	(Agudelo-Silva	and	Spielman	1984,	Yakob	et	al.	2008,	White	et	

al.	2010);	when	control	measures	reduce	mosquito	abundance,	they	also	reduce	the	

burden	of	larval	competition,	which	both	theory	and	empirical	data	suggest	may	

allow	populations	to	compensate	or	overcompensate	by	producing	that	many	or	

more	additional	mosquitoes.	With	the	multiphasic	density-dependence	examined	

here,	certain	spatial	patterns	of	control	implementation	cause	the	non-participating	

patches	to	synergistically	prevent	compensation	on	a	larger	scale	through	mutual	
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population	amplification	that	causes	decreased	oviposition	in	untreated	patches.	

This	finding	suggests	that	detailed	knowledge	of	local	mosquito	metapopulation	and	

demographic	dynamics	can	inform	mosquito	control	programs	about	where	to	focus	

limited	resources	to	better	protect	people	throughout	the	landscape	from	mosquito-

borne	diseases.	

	 Despite	the	theoretical	possibility	that	compensation	and	overcompensation	

may	render	larvicide	application	ineffective	or	counterproductive,	we	see	no	

evidence	in	any	of	our	simulations	of	larval	control	leading	to	greater	adult	

mosquito	production.	This	may	be	due	to	the	high	level	of	participation	and/or	the	

assumption	of	completely	effective	larvicide,	such	that	treated	patches	contain	no	

pre-adults,	but	simulations	that	relax	these	assumptions	also	all	yield	fewer	human	

infections	than	implementing	no	control	(Schwab	et	al.	unpublished	data).	These	

simulations	suggest	that	any	control	may	reduce	disease	prevalence	better	than	no	

control,	though	the	cost-effectiveness	of	implementing	uninformed	control	remains	

unclear.		

	 Although	we	only	modeled	the	short-term	effects	of	emergency	responses	to	

a	single	pathogen	introduction	event,	further	research	examining	these	dynamics	

over	longer	time	scales	may	reveal	important	eco-evolutionary	impacts	of	the	

spatial	distribution	of	mosquito	control.	For	instance,	local	disease	extinctions	in	

areas	participating	in	mosquito	control	measures	may	inadvertently	increase	

mosquito	and/or	disease	metapopulation	persistence	by	desynchronizing	regional	

population	dynamics	and	enabling	recolonization	of	previously	controlled	patches	

(Fox	et	al.	2017).	In	addition,	certain	spatial	and	temporal	patterns	of	insecticide	
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application	could	help	maintain	low	levels	of	insecticide	resistance	in	vector	

populations	by	promoting	the	survival	of	susceptible	individuals	in	untreated	

refuges	(Carriere	et	al.	2012).		

	 Integrated	vector	management	(IVM)	programs	that	combine	numerous	

approaches	will	likely	be	vital	to	future	arbovirus	control	efforts	(Yakob	et	al.	2017).	

In	our	simulations,	the	higher	birth	rate	lead	to	greater	mosquito	production	and	

less	effective	larval	control	measures	than	the	lower	birth	rate	when	using	logistic	

density-dependence	(Figure	5).	Thus,	mosquito	control	efforts	that	effectively	

reduce	birth	rate,	such	as	release	of	insects	carrying	a	dominant	lethal	gene	(RIDL)	

(Phuc	et	al.	2007,	Carvalho	et	al.	2015),	may	improve	control	efficacy	in	populations	

regulated	by	logistic	density-dependence,	and	the	simultaneous	use	of	multiple	

control	measures	may	lead	to	the	fewest	infections.	However,	some	combinations	of	

approaches	may	partially	counteract	each	other,	and	would	be	best	implemented	

only	after	careful	consideration	of	local	mosquito	ecology.	For	instance,	simulations	

using	multiphasic	density-dependence	(MPDD)	were	more	effective	with	the	higher	

birth	rate	than	with	the	lower	birth	rate	(Figure	5),	so	adding	RIDL	to	a	larvicide	

application	regime	could	lead	to	more	human	infections	than	larvicide	application	

alone	in	these	circumstances.	

	 These	results	demonstrate	that	site-specific	knowledge	of	mosquito	

metapopulation	dynamics	can	inform	more	effective	distributions	of	mosquito	

control	measures.	However,	the	mechanisms	of	population	regulation	in	natural	

populations	of	invasive	mosquitoes	remain	poorly	understood	(Legros	et	al.	2009,	

Walsh	et	al.	2011).	This	dearth	of	knowledge	currently	prevents	the	use	of	
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mathematical	models	to	establish	effective	emergency	control	regimes	uniquely	

tailored	to	particular	ecological	contexts.	In	addition	to	the	empirical	work	needed	

to	understand	mosquito	population	dynamics,	further	theoretical	research	should	

expand	on	this	simple	model	to	explore	the	efficacy	of	different	control	distributions	

in	simulations	that	incorporate	more	complex	landscape	configurations	and	density-

dependent	effects	on	the	fitness	of	eclosing	adults.	A	more	thorough	understanding	

of	the	mechanisms	regulating	mosquito	populations,	as	well	as	the	spatial	dynamics	

created	by	different	configurations	of	control,	can	lead	to	more	effective	measures	

for	controlling	mosquitoes	and	the	diseases	they	transmit.		 	
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Table	1.	Assumptions	of	the	model.	
	
Topic	 Assumptions	

Landscape	

All	patches	are	identical,	with	equal	connectivity	between	all	adjacent	patches.	

The	landscape	is	completely	isolated.	

Humans	move	homogeneously	throughout	the	landscape.	

Control	

Surveillance	is	100%	accurate	and	results	are	immediate	enough	to	inform	the	following	
day’s	actions.	

Treatment	to	each	larval	development	pool	is	completely	effective	for	exactly	10	days.	

Source	reduction	via	larvicide	application	is	the	only	control	measure	implemented.	

Epidemiology	

The	single	arbovirus	strain	is	only	transmitted	horizontally	and	only	between	
mosquitoes	and	humans.	

Recovery	causes	complete	life-long	immunity	in	humans;	mosquitoes	do	not	recover	
from	infection.	

Transmission	of	the	virus	is	immediate;	there	is	no	latency/exposed	period.	
No	viral	evolution	occurs.	

Mosquito	
population	

Mosquito	feeding	on	humans	has	no	effect	on	birth	or	death	rate,	and	both	are	constant	
throughout	mosquito	lifetime.	

No	evolution	occurs	in	the	mosquito	population,	including	no	evolution	of	resistance	to	
treatment.	

Oviposition	of	non-diapause	eggs	occurs	daily;	the	maximum	number	of	eggs	oviposited	
per	day	in	patch	i	is	a	function	of	the	carrying	capacity	of	patch	i.	

A	fixed	percent	of	mosquitoes	in	each	patch	disperse	to	an	adjacent	patch	each	day;	
dispersal	is	not	density-dependent.	

No	regulation	of	the	adult	population	occurs,	only	density-dependent	regulation	of	the	
juvenile	population.	

Eggs/juveniles	cannot	be	laid	and	die	on	the	same	day.	
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Table	2.	Parameter	definitions	and	values	used	in	model	simulations.		
	
Parameter	 Value(s)	 Definition	

Treat	
0	=	untreated	
1	=	treated	 Matrix	of	control	schedule	in	each	patch	

µ^	 1/20	 Per	capita	death	rate	of	mosquitoes		
(after	density-independent	mortality)	

n*	 Low	=	3	
High	=	5	

Average	number	of	eggs	laid	per	female	per	day		
(after	density-independent	mortality)	

a	

LDD:		
ap,t	=	0	

Triggering	mechanism	for	multiphasic	density-dependence	MPDD:	
Mj,p,t-1	<	0.8K	Þ	ap,t	=	0,		
Mj,p,t-1	³	0.8K	Þ	ap,t	=	1	

x	 0.1	 Proportion	of	eggs	still	laid	when	ap,t	=	1	

K*	 350	
Daily	availability	under	carrying	capacity	of	additional	juvenile	

mosquitoes	that	can	be	added	to	each	pool	at	stability	
g^	 1/10	 Growth	rate	of	mosquitoes	from	juvenile	to	adult	

D*	 C G$,D
∀DF$

= 0.1	 Matrix	of	mosquito	dispersal	probabilities	between	pools	

r^	 0.3	 Biting	rate	

c*	 0.003	
Scaling	constant	(to	enable	reasonable	pace	of	outbreak	amid	a	

ubiquitous	human	population)	

T*	 Tmh	=	0.08	
Thm	=	0.07	

Matrix	of	transmission	probabilities	per	bite	from	mosquitoes	to	
humans	(Tmh)	and	humans	to	mosquitoes	(Thm)	

g^	 1/4	 Recovery	rate	of	humans	
All	rates	are	in	days.	
*=Assumed	for	model	exploration	
^=Modified	from	(Erickson	et	al.	2010)	
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Table	3.	Control	efficacy	and	spatial	effects	depend	on	mosquito	population	

dynamics.	

	
Density-dependence	 Logistic	(LDD)	 Multiphasic	(MPDD)	

Birth	rate	 High	 Low	 High	 Low	
Mean	%	reduction	in	
infections	±	SD	 52.0%	±	0.96	 67.4%	±	0.66	 81.5%	±	0.73	 73.8%	±	0.36	

Range	in	%	reduction	
in	infections	 48.4-54.8%	 65.0-69.0%	 79.2-84.2%	 72.3-75.0%	

Days	of	disease	
transmission	before	
treatment	begins	

10	 12	 15	 13	

Slope	of	regression	line	
between	Á	and	%	

reduction	
-1.73	 -1.46	 1.28	 0.018	

R2	of	regression	line	
between	Á	and	%	

reduction	
0.540	 0.815	 0.534	 0.0004	
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Figure	1.	Simulated	landscape	with	patch	numbers.	Each	box	represents	the	

spatial	window	used	for	calculating	control	insulation	for	each	of	the	two	starred	

patches.		
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Figure	2.	Representations	of	spatial	control	distributions.	(a)	demonstrates	high	

insulation,	and	(b)	demonstrates	low	insulation.	Patches	that	participated	in	control	

efforts	are	shown	in	blue,	while	patches	that	did	not	participate	are	shown	in	white.	

	
	 	

a)

b)
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Figure	3.	Scatter	plots	of	control	insulation	and	percent	reduction	in	human	

infections	in	each	of	the	four	demographic	contexts.	Note	the	different	scales	of	

the	y-axis.	Each	dot	represents	results	from	one	simulation,	with	points	on	the	left	

side	of	each	plot	from	low	insulation	runs	(more	participation	in	the	interior	of	the	

landscape),	and	points	on	the	right	side	from	high	insulation	runs	(more	

participation	on	the	edges).	The	linear	regression	lines	are	shown	in	black.	
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Figure	4.	Average	benefit	of	patch	participation	in	each	circumstance.	The	color	

of	each	block	represents,	for	that	patch,	the	average	reduction	when	that	patch	

participated	divided	by	the	average	reduction	when	that	patch	did	not	participate.	

Values	<1	(darker	blue)	signify	that	the	average	reduction	was	higher	when	that	

patch	did	not	participate,	this	patch	should	remain	untreated	when	resources	are	

limited;	values	>1	(darker	red)	signify	that	the	average	was	higher	when	that	patch	

did	participate,	so	ideally	this	patch	should	be	involved	in	control	implementation.	
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Figure	5.	Average	number	of	humans	infected	in	each	demographic	

circumstance	on	each	of	the	150	days	of	disease	transmission.	Shaded	areas	

indicate	two	standard	deviations	around	the	mean	number	of	infections	each	day.	
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Figure	6.	The	number	of	juveniles	in	each	non-participating	(NP)	patch	during	

the	most	effective	runs	of	each	circumstance.	The	first	column	shows	control	

distributions	that	yielded	the	greatest	reduction	in	human	infections	for	each	

demographic	context,	with	white	squares	representing	participating	patches	and	

non-white	squares	representing	NP	patches.	Each	row	contains	the	graphs	of	the	

juvenile	populations	in	NP	patches	for	the	circumstance	labeled	above	the	landscape	

depiction	at	the	start	of	that	row,	with	the	line	color	of	each	graph	corresponding	to	

the	location	of	that	patch	in	the	landscape	depiction.	The	x-axis	of	all	juvenile	plots	

ranges	from	day	7	(day	of	disease	introduction)	through	day	156,	with	grid	lines	

marking	days	40,	80,	and	120.	The	y-axis	of	all	juvenile	plots	ranges	from	250-900	

individuals,	with	grid	lines	marking	every	one	hundred	between	300	and	900.
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Figure	7.	The	number	of	juveniles	in	each	non-participating	(NP)	patch	during	

the	least	effective	runs	of	each	circumstance.	The	first	column	shows	control	

distributions	that	yielded	the	lowest	reduction	in	human	infections	for	each	

demographic	context,	with	white	squares	representing	participating	patches	and	

non-white	squares	representing	NP	patches.	Each	row	contains	the	graphs	of	the	

juvenile	populations	in	NP	patches	for	the	circumstance	labeled	above	the	landscape	

depiction	at	the	start	of	that	row,	with	the	line	color	of	each	graph	corresponding	to	

the	location	of	that	patch	in	the	landscape	depiction.	The	x-axis	of	all	juvenile	plots	

ranges	from	day	7	(day	of	disease	introduction)	through	day	156,	with	grid	lines	

marking	days	40,	80,	and	120.	The	y-axis	of	all	juvenile	plots	ranges	from	250-900	

individuals,	with	grid	lines	marking	every	hundred	between	300	and	900.
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ABSTRACT	

	

	 When	faced	with	evidence	of	active	transmission	of	mosquito-borne	

pathogens	such	as	Zika	virus	and	chikungunya,	mosquito	control	agencies	typically	

spray	adulticides	as	the	primary	means	of	control.		However,	there	exist	little	to	no	

formal	analyses	of	the	relative	efficacies	of	adult	vs.	larval	control	in	reducing	the	

risk	of	transmitting	mosquito-borne	viruses	to	humans.	To	address	this	deficiency,	

we	present	a	mathematical	model	to	test	whether	adulticide	or	larval	control	

regimes	yield	greater	reductions	in	the	number	of	humans	who	acquire	a	mosquito-

borne	virus.		To	account	for	uncertainty	in	biting	and	demographic	rates,	as	well	as	

potential	variability	across	populations,	we	simulated	both	types	of	control	using	

various	biting	rates	and	adult	mosquito	lifespans.	In	our	simulations,	larval	control	

more	effectively	reduced	outbreak	sizes	when	using	higher	biting	and	shorter	

lifespans,	while	adulticide	better	reduced	human	infections	when	using	medium	to	

low	biting	rates	and	higher	lifespans.	These	results	suggest	that	larval	control	

interventions	may	be	a	better	strategy	to	control	outbreaks	of	particularly	virulent	

viruses,	viruses	transmitted	by	highly	aggressive	mosquitoes,	and/or	under	

socioeconomic	conditions	that	magnify	contact.	Much	work	remains	to	be	done	to	

determine	what	methods	of	mosquito	control	best	protect	human	populations	from	

mosquito-borne	viruses	in	different	epidemiological	and	ecological	contexts.	
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INTRODUCTION	

	

	 Vector	control	is	the	best	method	currently	available	for	combatting	the	

continued	emergence	of	mosquito-borne	pathogens	(Lorenzi	et	al.	2016).	While	

there	are,	of	course,	control	measures	that	focus	on	non-lethal	methods	of	control	

(e.g.,	Harris	et	al.	2012),	for	these	first	explorations,	we	restrict	ourselves	solely	to	

targeted	lethal	efforts.	Due	to	the	physiological	and	habitat	differences	between	

mosquito	life	history	stages,	mosquito	control	efforts	that	target	either	adults	or	

immature	stages	(eggs,	larvae	and	pupae)	differ	significantly.	Methods	for	the	

control	of	immatures	(hereafter	referred	to	as	“larval	control”)	include	source	

reduction	(removal	and	drainage	of	aquatic	oviposition	sites/larval	development	

pools),	biological	control,	and	application	of	larvicides	and	pupicides.	Adult-targeted	

efforts	are	mostly	limited	to	adulticide	applications.	

	 	“Container-breeding”	species,	namely	Aedes	aegypti	and	A.	albopictus,	

transmit	many	pathogens,	such	as	Zika,	dengue,	chikungunya,	and	yellow	fever	

(Focks	and	Chadee	1997,	Moore	and	Mitchell	1997,	Focks	et	al.	2000,	Gratz	2004,	

Reiter	et	al.	2006,	Medlock	et	al.	2012).	These	often	highly	anthropophilic	species	

thrive	in	urban	environments	and	oviposit	in	small	pools	of	standing	water	that	can	

be	abundant	throughout	urban	habitats	(Unlu	et	al.	2013).	Due	to	the	difficulty	of	

locating	and	accessing	these	numerous	oviposition	sites,	source	reduction	efforts	to	

control	container-breeding	species	are	often	quite	time-	and	labor-intensive.	

Adulticide	application	is	more	commonly	used	to	control	these	species,	with	the	goal	

of	eliminating	any	infected	mosquitoes	before	an	outbreak	occurs.	
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	 We	have	a	relatively	poor	understanding	of	the	population	dynamics	of	

container-breeding	mosquitoes,	and	there	are	conflicting	results	among	the	studies	

that	have	been	done,	especially	regarding	oviposition	site	selection	(Wasserberg	et	

al.	2014,	Day	2016).	In	particular,	very	few	studies	have	directly	measured	the	

effects	of	different	control	methods	on	the	incidence	of	infection	among	mosquito	or	

human	populations	(Esu	et	al.,	2010;	Farajollahi	et	al.,	2012;	but	see	Teng	et	al.,	

2007),	so	it	is	currently	unclear	whether	targeting	the	juveniles	or	the	adults	more	

effectively	curbs	viral	transmission.	Despite	the	lack	of	available	data,	mosquito	

control	professionals	are	under	pressure	to	take	action	to	protect	the	public.	

Adulticide	spraying	is	usually	the	first,	and	sometimes	only,	control	measure	

enacted	to	combat	the	transmission	of	mosquito-borne	viruses	(Mount	et	al.	1996,	

WHO	1997).	However,	there	is	little	empirical	evidence	suggesting	that	this	is	an	

effective	method	by	itself	(Esu	et	al.	2010,	Farajollahi	et	al.	2012,	Bowman	et	al.	

2016).	

	 There	is	an	“unspoken	rule”	in	professional	mosquito	control	that	the	best	

methods	are	the	ones	that	kill	the	greatest	number	of	adult	mosquitoes,	an	

understandable	but	possibly	misguided	notion	that	results	in	a	bias	towards	

adulticide	applications	(Mount	et	al.	1996).	With	this	approach,	the	outcome	of	

control	efforts	is	clear:	sudden	declines	in	mosquito	bites	are	seen	as	proof	of	

successful	control.	But	effective	larval	control	methods	work	by	preventing	adult	

mosquitoes	from	emerging;	they	provide	much	less	tangible	evidence	of	success,	

making	these	methods	less	understandable	to	the	public	and	to	policymakers.	
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	 There	are	many	potential	reasons	why	adulticide-focused	mosquito	control	

efforts	may	be	less	successful	than	expected	and	why	larval	control	may	be	a	more	

effective	option.	For	instance,	widespread	and	frequent	usage	of	adulticides	has	led	

to	extensive	insecticide	resistance	in	mosquito	populations	(Corbel	et	al.	2017).	It	is	

much	more	difficult	to	evolve	resistance	to	source	reduction	efforts	without	vastly	

changing	life	history	characteristics,	and	resistance	to	Bti,	a	commonly	used	

larvicidal	biological	agent,	is	rare	and	potentially	energetically	costly	(Tetreau	et	al.	

2013).	In	addition,	adulticide	typically	remains	effective	for	a	very	short	period	of	

time,	potentially	allowing	immatures	to	quickly	replace	the	killed	adults.	This	does	

likely	reduce	infection	prevalence	among	adult	mosquitoes,	despite	achieving	only	

transient	population	reduction.	On	the	other	hand,	larvicides	can	remain	active	for	

several	weeks,	even	months	(Skovmand	et	al.	2009),	providing	longer-term	ultimate	

suppression	of	adult	mosquito	populations	with	a	smaller	labor	cost.	Adulticides	can	

also	have	significant	non-target	effects,	including	on	humans,	so	their	use	is	tightly	

regulated.	Bti,	on	the	other	hand,	is	specific	to	mosquitoes,	black	flies	and	other	

aquatic	insect	detritivores.	Without	extensive	non-target	effects,	its	use	is	not	as	

heavily	regulated,	so	it	can	be	applied	more	often.	Finally,	adulticide	application	

requires	specific	training	and	licensure,	while	container	removal	can	be	done	by	

anyone	and	has	thus	been	incorporated	into	successful	public	education	initiatives	

(Fonseca	et	al.	2013).	

	 The	question	we	aim	to	address	here	is:	under	what	circumstances	would	

adulticide	application	better	reduce	human	infections	with	a	mosquito-borne	virus	

than	larval	control?	We	employ	a	spatially	explicit	difference	equation	model,	
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simulating	arboviral	transmission	between	a	mosquito	metapopulation	and	a	

human	population,	in	order	to	compare	the	efficacy	in	reducing	human	infections	of	

mosquito	control	programs	targeting	either	immature	or	adult	life	stages,	across	

various	biting	rates	and	adult	mosquito	lifespans.	

	

	

METHODS	

	

	 We	used	a	model	previously	employed	in	Schwab	et	al.	2017,	Schwab	et	al.	

2018	(in	revision),	and	Lemanski	et	al.	2018	(in	review).	Model	equations,	as	well	as	

parameter	definitions	and	values	used	in	the	present	study,	can	be	found	in	

Appendix	1.		For	a	more	complete	description	of	this	model	and	its	assumptions,	see	

(Schwab	et	al.	2017).	

	 In	keeping	with	these	previous	studies,	we	made	the	following	assumptions	

about	the	nature	of	the	landscape.	Simulations	of	this	model	were	run	on	a	grid	

landscape	with	20	(five	by	four)	identical	patches.	To	incorporate	metapopulation	

dynamics,	adult	mosquitoes	could	disperse	to	any	adjacent	patch	each	day,	

reflecting	the	limited	dispersal	ability	of	many	container-breeding	species	(Trpis	

and	Hausermann	1986).	Humans,	however,	were	assumed	to	be	mobile	enough	that	

they	created	a	homogenous	and	ubiquitous	population;	thus,	a	mosquito	in	any	

patch	could	bite	any	human.	

	 To	focus	our	study	on	mitigation	of	novel	introduction	or	annual	

reintroduction	of	otherwise	absent	infections,	surveillance	of	human	infections	
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began	on	day	1	of	the	simulation,	though	disease	was	not	yet	introduced	into	the	

landscape.	At	the	end	of	day	7	(after	control	decisions	had	been	made),	one	human	

became	infected	with	an	arbovirus,	initiating	disease	transmission	on	day	8.	The	

simulation	then	proceeded	for	150	more	days	(156	total	days	with	surveillance).		

	 The	order	of	events	on	each	day	of	the	simulation	was	as	follows:	Adult	

mosquitoes	laid	eggs	in	their	current	patch.	Then,	proportions	of	both	juvenile	and	

adult	mosquitoes	died	and	were	removed	from	the	population.	Adult	dispersal	and	

all	compartment	transitions	then	occurred	simultaneously,	using	the	number	of	

mosquitoes	from	the	previous	day	that	remained	alive	(juvenile	mosquitoes	grew	to	

become	uninfected	adults,	uninfected	mosquitoes	became	infected,	susceptible	

humans	became	infected,	and	infected	humans	recovered).		

	

Parameter	combinations	

	 To	incorporate	parameter	sensitivity,	we	simulated	both	adulticide	

application	and	larval	control	using	three	different	rates	at	which	mosquitoes	feed	

off	of	humans	(“biting	rates”)	and	up	to	14	different	adult	mosquito	lifespans	(Table	

1).	We	ran	the	model	1000	times	for	each	combination	of	control	type	(larval	

control	or	adulticide),	biting	rate,	and	adult	mosquito	lifespan.	For	the	medium	and	

high	biting	rates,	we	did	not	run	the	model	with	all	14	of	the	lifespans	used	with	the	

high	biting	rate	because,	with	the	medium	and	low	biting	rates,	the	shorter	lifespans	

limited	the	entomological	inoculation	rate,	and	hence	the	reproductive	number	of	

the	disease	declined	to	near	or	below	one,	so	epidemics	were	either	very	small	or	

did	not	occur.		
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	 For	each	combination	of	parameters,	we	calculated	the	average	percent	

reduction	in	human	infections.	The	number	of	humans	infected	in	the	absence	of	

either	adulticide	or	larval	control	can	be	found	in	Table	1.	To	address	our	question	

about	the	circumstances	under	which	adulticide	would	more	effectively	curb	

disease	transmission	than	larval	control,	we	also	subtracted,	for	each	combination,	

the	average	percent	reduction	using	larval	control	from	the	average	percent	

reduction	using	adulticide.	

	

Incorporating	larval	control	and	adulticide	treatment	

	 For	both	the	larval	control	and	the	adulticide	simulations,	16	out	of	the	20	

patches	in	the	landscape	were	arbitrarily	selected	at	the	start	of	each	run	to	

participate	in	human	infection	surveillance	and	control.	When	there	was	at	least	one	

infected	human,	control	was	triggered	to	begin	in	all	16	participating	patches	on	the	

following	day,	with	adulticide	lasting	one	day	and	larval	control	lasting	10	days.	Due	

to	the	regulations	governing	application	of	insecticides,	most	adulticides	can	only	be	

applied	at	their	maximum	dosage	about	once	per	week,	leading	to	temporary	40-

90%	reductions	in	adult	Ae.	albopictus	populations	in	one	study	(Farajollahi	et	al.	

2012).	Since	our	simulations	involve	repeated	applications	more	often,	we	assumed	

that	smaller	doses	of	adulticide	were	applied	to	treat	patches,	killing	10%	of	all	

adult	mosquitoes	(regardless	of	infection	status)	in	all	16	participating	patches	for	

one	day.	We	plan	in	future	work	to	compare	the	benefit	of	high	doses	applied	less	

often	versus	low	doses	applied	more	often.	Larval	control	was	assumed	to	be	

completely	effective,	so	that	when	treatment	was	triggered,	there	were	no	juveniles	



	
	

75	
	

in	any	of	the	16	participating	patches	for	the	following	ten	days.	For	simplicity,	we	

assume	that	either	adulticide	application	or	larval	control	occur,	though	additional	

research	should	address	the	effects	of	combining	these	approaches.			

	

	

RESULTS	

	

Parameter	sensitivity	

Simulations	using	the	high	biting	rate	yield	smaller	infection	reductions	than	

simulations	using	the	medium	or	low	biting	rate.	Both	larval	control	and	adulticide	

can	effectively	reduce	human	infections	at	longer	lifespans	when	using	the	low	

biting	rate	than	when	using	the	high	biting	rate	(Figure	1).	In	addition	to	the	effects	

of	different	biting	rates,	different	lifespans	also	alter	the	efficacies	of	adulticide	and	

larval	control	relative	to	each	other,	though	each	becomes	more	effective	as	lifespan	

decreases.	Shorter	life	expectancies	improve	the	relative	efficacy	of	larval	control	

until	mosquitoes	live	for	such	a	short	time	that	preventing	their	eclosion	becomes	

less	beneficial	(as	occurs	with	lifespans	corresponding	to	death	rates	higher	than	

0.12	in	Figure	2).	At	the	same	time,	shorter	lifespans	decrease	the	efficacy	of	

adulticide	treatment	because	adults	already	live	for	short	enough	periods	of	time	

that	further	decreasing	their	lifespan	becomes	less	beneficial.	

	

Adulticide	versus	larval	control:	high	biting	rate	
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When	using	the	high	biting	rate	and	short	adult	mosquito	lifespans	(corresponding	

to	death	rates	between	0.05	and	0.08),	neither	adulticide	nor	larval	control	

effectively	reduces	human	infections	(Figure	1).	When	death	rates	are	between	0.9	

and	0.15,	the	efficacy	of	both	control	types	increases,	but	larval	control	more	

effectively	reduces	human	infections	by	seven	to	50	percentage	points	than	

adulticide	treatment,	with	larval	control	yielding	fewer	infections	than	adulticide	by	

50	percentage	points	with	a	death	rate	of	0.12	(Figure	2).	When	the	death	rates	are	

between	0.16	and	0.18,	both	adulticide	and	larval	control	very	effectively	reduce	

human	infections	by	up	to	96.4%.		

	

Adulticide	versus	larval	control:	medium	biting	rate	

When	using	the	medium	biting	rate	and	intermediate	lifespans	(corresponding	to	

death	rates	between	0.05	and	0.08),	adulticide	more	effectively	reduces	human	

infections	than	larval	control	by	five	to	29	percentage	points,	with	the	greatest	

differences	at	longer	lifespans,	when	the	efficacy	of	larval	control	remains	below	

25%.	When	death	rates	are	between	0.09	and	0.11,	both	adulticide	and	larval	

control	very	effectively	reduce	human	infections	by	up	to	95.5%.	(We	do	not	include	

results	for	shorter	lifespans	due	to	lack	of	disease	outbreak	with	those	parameters	–	

see	Methods).	

	

Adulticide	versus	larval	control:	low	biting	rate	

When	using	the	low	biting	rate	and	a	death	rate	of	0.05,	adulticide	much	more	

effectively	reduces	human	infections	than	larval	control	(93.4%	versus	47.2%,	a	
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difference	of	46.2	percentage	points	[Figures	1	and	2]).	When	the	death	rate	is	0.06,	

the	efficacy	of	larval	control	increases	to	86.1%,	but	adulticide	remains	about	10	

percentage	points	higher.	When	the	death	rates	are	0.07	and	0.08,	both	adulticide	

and	larval	control	achieve	reductions	of	about	95%.		

	

	

DISCUSSION	

	

	 Vector	control	effectively	reduces	the	transmission	of	vector-borne	

pathogens	by	limiting	the	inoculation	rates	of	vector	populations.	There	are	many	

potential	methods	of	controlling	entomological	inoculation	rates,	some	of	which	

work	more	directly	and	intuitively	than	others.	We	examine	here	the	control	

methods	that	involve	complex	interactions	of	and	between	intraspecific	vector	

population	dynamics,	interspecific	vector-host	dynamics,	and	epidemiological	

circumstances.	

	 When	there	is	active	transmission	of	a	mosquito-borne	virus,	or	a	high	risk	of	

active	transmission,	adulticide	application	is	largely	considered	the	most	effective,	

and	quickest	acting,	mosquito	control	method	(Mount	et	al.	1996).	However,	our	

results	suggest	that	with	aggressively-biting	mosquitoes	and/or	highly	

transmissible	viruses	(such	that	lower	biting	rates	also	yield	rapid	viral	

transmission),	larval	control	can	be	more	effective	than	adulticide	application.	This	

is	expected	to	be	the	case	when	sufficiently	high	biting	rates	allow	adult	mosquitoes	

to	quickly	both	bite	an	infected	human	and	then	transmit	infection	by	biting	a	
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second,	susceptible	human.		It	is	more	beneficial	in	these	circumstances	to	prevent	

more	adult	mosquitoes	from	emerging	at	all	by	implementing	larval	control	than	to	

apply	adulticide	that	reduces	the	number	of	adults	that	have	already	had	the	chance	

to	engage	in	transmission	of	the	virus.		

	 However,	the	benefit	of	larval	control	may	not	be	immediately	apparent.	For	

the	first	approximately	20	days	of	control	in	simulations	using	the	parameter	

combination	that	yielded	the	greatest	differential	benefit	of	larval	control,	there	are	

actually	more	new	human	infections	with	larval	control	than	with	adulticide	(Figure	

3,	top	panel).	This	occurs	because	larval	control	has	no	direct	effect	on	adults,	so	

adults	that	were	present	before	control	began	remain	alive	for	longer	than	they	do	

in	simulations	with	adulticide.	This	causes	greater	viral	transmission	until	the	

prevention	of	eclosion	due	to	larval	control	sufficiently	reduces	the	adult	

population.	If	only	short-term	epidemiological	data	are	available,	adulticide	would	

appear	to	more	effectively	reduce	outbreaks	than	larval	control,	even	though	many	

fewer	people	would	acquire	the	virus	over	longer	timescales	with	larval	control	

than	with	adulticide.	Larval	control	is	so	effective	here	that	the	number	of	human	

infections	drops	below	the	threshold	for	triggering	control.	This	causes	control	to	

cease	around	day	112,	leading	to	a	subsequent	spike	in	the	number	of	adult	

mosquitoes	(Figure	4,	top	panel).	This	spike,	in	turn,	causes	more	human	infections	

(Figure	3,	top	panel),	which	triggers	the	continuation	of	larval	control,	which	again	

reduces	the	number	of	adult	mosquitoes.	For	more	on	the	effects	of	triggering	

control	based	on	different	types	of	surveillance	data,	see	(Schwab	et	al.	2017).	
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	 There	are	other	areas	of	parameter	space	where	the	efficacy	of	adulticide	

greatly	exceeds	that	of	larval	control.	However,	the	mechanism	of	this	differential	

benefit	is	quite	different	from	the	mechanism	commonly	believed	to	be	at	play	by	

professionals	choosing	to	treat	an	area	with	adulticide	(i.e.,	that	directly	reducing	

the	number	of	adults	best	reduces	viral	spread).	When	both	the	biting	rate	is	low	

and	the	lifespan	is	long,	adulticide	treatment	yields	significantly	fewer	human	

infections	than	larval	control	(Figure	3,	bottom	panel),	despite	there	actually	being	

more	total	mosquitoes	after	day	50	with	adulticide	than	with	larval	control	(Figure	

4,	bottom	panel).	This	occurs	because	both	the	biting	and	dying	rates	are	low	

enough	that	being	killed	by	adulticide	prevents	mosquitoes	from	otherwise	having	

the	time	to	bite	two	people	and	thus	contribute	to	the	number	of	infected	humans.	

While	larval	control	does	eventually	lead	to	reduced	numbers	of	adults,	they	stay	

alive	long	enough	to	bite	two	people,	leading	to	more	human	infections.		In	this	case,	

the	efficacy	of	adulticide	treatment	in	reducing	outbreak	size	would	not	be	reflected	

in	surveillance	data	of	mosquito	population	sizes;	only	infection	surveillance	(of	

either	humans	or	mosquitoes)	would	demonstrate	this	differential	benefit.	

	 Consideration	of	the	spatial	metapopulation	dynamics	created	by	mosquito	

control	efforts	introduces	an	additional	level	of	complexity,	causing	variation	in	

efficacy	among	simulations	run	with	the	same	combinations	of	parameters.	When	

the	biting	rates	are	medium	to	high,	adulticide	simulations	yield	much	more	variable	

results	than	larval	control	simulations	(Figure	1).	This	suggests	that	the	effect	of	

adult-targeted	control	regimes	will	depend	on	the	spatial	distribution	of	adulticide	
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applications	(for	more	on	the	effects	of	spatial	distributions	of	larval	control,	see	

Schwab	et	al	2018,	in	revision).	

	 Although	not	examined	in	this	paper,	mosquito	control	efforts	always	

operate	under	strict	economic	constraints	(Halasa	et	al.	2012,	Lemanski	et	al	2018,	

in	review).	In	the	simulations	presented	here,	larval	control	remains	completely	

effective	for	ten	days,	while	adulticide	only	works	for	one	day.	Thus,	many	fewer	

individual	implementations	of	larval	control	need	to	occur	to	achieve	the	same	

number	of	days	of	treatment	with	adulticide.	Fewer	implementations	of	larval	

control	translates	to	fewer	hours	spent	by	staff	on	control	efforts,	which	could	save	

financially	strapped	agencies	significant	sums	of	money,	as	long	this	occurs	in	a	

context	conducive	to	effective	larval	control.	However,	these	savings	might	be	offset	

by	the	labor-intensive	nature	of	finding	and	accessing	larval	containers.	A	thorough	

cost-effectiveness	study	comparing	larval	control	and	adulticide	in	a	

metapopulation	context	would	be	a	useful	next	step.	

	 The	efficacy	of	mosquito	control	in	reducing	human	infections	largely	

depends	on	ecological	context	(Medlock	et	al.	2012,	Schwab	et	al.	2018,	in	revision).	

Accurate	empirical	estimates	of	mosquito	biting	and	lifespans	would	therefore	be	

critical	for	mosquito	control	professionals	to	be	able	to	determine	which	control	

methods	would	be	most	effective.	Until	we	are	able	to	accurately	evaluate	mosquito	

lifespans,	we	may	be	able	to	figure	out	where	we	are	in	parameter	space	by	looking	

at	how	effective	different	strategies	have	been.	We	could	then	use	that	knowledge	to	

amend	our	strategies	and	employ	methods	expected	to	be	more	successful	in	our	

particular	context.	
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CONCLUSIONS	

	

	 Quick	and	effective	mosquito	control	measures	remain	the	primary	means	of	

reducing	human	diseases	caused	by	mosquito-borne	viruses.	Although	adulticide	is	

commonly	applied	as	an	emergency	measure	for	controlling	outbreaks	of	mosquito-

borne	pathogens,	larval	control	more	effectively	reduced	the	total	number	of	human	

infections	than	adulticide	application	in	our	simulations	when	using	a	high	mosquito	

biting	rate.	Adulticide	was	more	effective	than	larval	control	only	when	using	lower	

biting	rates.	Thus,	with	aggressive	mosquitoes	or	highly	virulent	pathogens,	larval	

control	may	better	reduce	total	outbreak	sizes,	while	adulticide	application	may	be	

more	effective	in	other	contexts.	However,	depending	on	the	average	lifespan	of	

particular	mosquito	populations,	there	are	cases	in	which	adulticide	and	larval	

control	will	be	expected	to	yield	similar	results.	The	ability	to	obtain	accurate	

empirical	estimates	of	mosquito	demographic	rates	in	individual	jurisdictions	will	

lead	to	better	predictions	for	which	methods	of	control	would	best	reduce	human	

risks	from	mosquito-borne	viruses.		

	 Due	to	the	limitations	imposed	by	economic	constraints,	continued	

theoretical	and	empirical	research	are	needed	to	discover	which	mosquito	control	

methods	are	most	cost-effective	in	different	ecological	contexts.	Because	the	short-

term	and	long-term	effects	of	control	can	be	different	from	one	another,	assessment	

of	control	effectiveness	via	collection	of	surveillance	information	should	continue	
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for	as	long	as	possible.	In	addition,	our	results	demonstrate	that	trends	may	differ	

between	epidemiological	and	population	information,	indicating	that	both	are	

needed	to	fully	understand	the	impacts	of	mosquito	control	on	mosquito	population	

abundances	and	ultimately	on	mosquito-borne	pathogen	transmission.		
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Table	1.	Parameter	combinations	used	in	simulations	with	either	adulticide	

treatment	or	larval	control.	

	
Biting	rate	 Adult	mosquito	death	

rate	(corresponding	
lifespan	in	nearest	

whole	days)	

Number	of	human	
infections	in	the	absence	

of	control	

High	(0.83)	 0.05	(20)	 999.00	
0.06	(17)	 999.00	
0.07	(14)	 999.00	
0.08	(13)	 998.99	
0.09	(11)	 998.87	
0.10	(10)	 998.00	
0.11	(9)	 994.90	
0.12	(8)	 986.92	
0.13	(8)	 971.97	
0.14	(7)	 947.06	
0.15	(7)	 910.07	
0.16	(7)	 858.05	
0.17	(6)	 787.03	
0.18	(6)	 685.26	

Medium	(0.48)	 0.05	(20)	 999.00	
0.06	(17)	 998.60	
0.07	(14)	 994.00	
0.08	(13)	 977.35	
0.09	(11)	 937.61	
0.10	(10)	 860.74	
0.11	(9)	 701.87	

Low	(0.33)	 0.05	(20)	 996.16	
0.06	(17)	 974.29	
0.07	(14)	 892.90	
0.08	(13)	 628.24	
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Figure	1.	Average	percent	reductions	in	human	infections	using	either	

adulticide	or	larval	mosquito	control	methods.	Shaded	areas	indicate	two	

standard	deviations	around	the	mean.	Top	panel	shows	reductions	when	simulating	

a	high	biting	rate,	across	14	different	adult	mosquito	death	rates.	Bottom	panel	(left)	

shows	reductions	when	simulating	a	medium	biting	rate,	across	seven	different	

death	rates	(reciprocal	of	the	lifespans).	Bottom	panel	(right)	shows	reductions	with	

a	low	biting	rate,	across	four	death	rates.	Bottom	panel	graphs	do	not	include	higher	

death	rates	due	to	lack	of	disease	outbreak	with	those	parameters	(see	Methods).	
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Figure	2.	Average	benefit	of	adulticide	over	larval	control.	Graphed	values	are	

the	differences	in	average	human	infection	reduction	between	adulticide	and	larval	

control:	positive	values	indicate	greater	reductions	with	adulticide;	negative	values	

indicate	greater	reductions	with	larval	control.	Solid	line	with	circles	represents	

results	with	high	mosquito	biting,	across	14	adult	mosquito	death	rates	(reciprocal	

of	the	lifespans).	Dashed	line	with	triangles	represents	medium	biting	across	seven	

death	rates.	Dotted	line	with	squares	represents	low	biting	across	four	death	rates.	
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Figure	3.	Number	of	new	human	infections	each	day	using	either	adulticide	or	

larval	control	with	two	different	parameter	combinations.	Shaded	areas	

indicate	two	standard	deviations	around	the	mean.	Top	panel	shows	new	human	

infections	when	simulating	a	high	biting	rate	and	an	adult	mosquito	death	rate	

(reciprocal	of	the	lifespan)	of	0.12.	Bottom	panel	shows	new	human	infections	when	

simulating	a	low	biting	rate	and	an	adult	mosquito	death	rate	of	0.05.	Pathogen	

introduction	occurred	on	day	7	in	both	panels;	control	was	triggered	by	detection	of	

at	least	one	human	infection	(first	occurring	on	day	14	in	the	top	panel	and	on	day	

17	in	the	bottom	panel).	

	

		
	
	 	



	
	

87	
	

Figure	4.	Total	number	of	adult	mosquitoes	in	the	landscape	on	each	day	using	

either	adulticide	or	larval	control	with	two	different	parameter	combinations.	

Shaded	areas	indicate	two	standard	deviations	around	the	mean.	Top	panel	shows	

total	adult	mosquitoes	when	simulating	a	high	biting	rate	and	an	adult	mosquito	

death	rate	of	0.12.	Bottom	panel	shows	total	adult	mosquitoes	when	simulating	a	

low	biting	rate	and	an	adult	mosquito	death	rate	of	0.05.	Pathogen	introduction	

occurred	on	day	7	in	both	panels;	control	was	triggered	by	detection	of	at	least	one	

human	infection	(first	occurring	on	day	14	in	the	top	panel	and	on	day	17	in	the	

bottom	panel).	

	

	
	
	 	



	
	

88	
	

APPENDIX	
	
As	presented	earlier	and	reproduced	here	for	clarity,	the	equations	for	female	

juvenile/immature	(Mj,p,t),	naïve/uninfected	adult	(Mn,p,t),	and	infected	adult	(Mi,p,t)	

mosquitoes	in	patch	p	on	day	t	are:	

!",$,% = 	 2!",$,%34(1 − 5"06 (1 − 8) + 	;(!<,$,%34 + !=,$,%340 >1 −
!",$,%34
?

@	 (1)	

!<,$,% = B!<,$,%34 + C !<,D,%34

∀DF$

GD,$ − C !<,$,%34G$,D
∀$FD

− ,H+IJK=,%34!<,$,%34L(1 − 5X)

+ 8!",$,%34(1 − 5"0	

(2)	

!=,$,% = B!=,$,%34 + C !=,D,%34

∀DF$

GD,$ − C !=,$,%34G$,D
∀$FD

+ 	,H+IJK=,%34!<,$,%34L (1 − 5X)	 (3)	

	
The	equations	for	susceptible	(Hs,t),	infected	(Hi,t),	and	recovered	(Hr,t)	humans	on	

day	t	are:	

KN,% = KN,%34 − KN,%34,H+JIC!=,$,%34

∀$

	 (4)	

K=,% = K=,%34 + KN,%34,H+JIC!=,$,%34

∀$

− OK=,%34	 (5)	

KP,% = KP,%34 + OK=,%34	 (6)	
	
	

To	simulate	adulticide	treatment,	multiply	Equations	2	and	3	by	(1 − +,-./$,%0.	

To	simulate	larval	control,	multiply	Equation	1	by	(1 − +,-./$,%0.	
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Table	A1.	Parameter	definitions	and	values	used	in	model	simulations.	
Parameter	 Value(s)	 Definition	

Treat	

When	untreated,	Treatp,d=0	
When	treated	via	larval	control,	

Treatp,d=1	
When	treated	with	adulticide,	

Treatp,d=0.1	

Matrix	of	control	schedule	in	each	patch	

µj 0.05 Per	capita	death	rate	of	juvenile	mosquitoes		
(after	density-independent	mortality) 

µa	 0.05-0.18	(see	Table	1	of	main	text)	 Per	capita	death	rate	of	adult	mosquitoes		
(after	density-independent	mortality)	

n	 3	
Average	number	of	eggs	laid	per	female	per	day		

(after	density-independent	mortality)	

K	 350	
Daily	availability	under	carrying	capacity	of	additional	
juvenile	mosquitoes	that	can	be	added	to	each	pool	at	

stability	
g	 1/10	 Growth	rate	of	mosquitoes	from	juvenile	to	adult	

G	 C G$,D
∀DF$

= 0.1	 Matrix	of	mosquito	dispersal	probabilities	between	
pools	

r	
0.83	(High)	

0.48	(Medium)	
0.33	(Low)	

Biting	rate	

c	 0.003	 Scaling	constant	(to	enable	reasonable	pace	of	
outbreak	amid	a	ubiquitous	human	population)	

T	 Tmh	=	0.08	
Thm	=	0.07	

Matrix	of	transmission	probabilities	per	bite	from	
mosquitoes	to	humans	(Tmh)	and	humans	to	

mosquitoes	(Thm)	
g	 1/4	 Recovery	rate	of	humans	

	
	
	
Table	A2.	Variables	used	in	model	equations.	
Variable	 Definition	
Mj	 Number	of	juvenile	(immature)	mosquitoes	
Mn	 Number	of	adult	naïve	(uninfected)	female	mosquitoes	
Mi	 Number	of	adult	infected	female	mosquitoes	
Hs	 Number	of	susceptible	humans	
Hi	 Number	of	infected	humans	
Hr	 Number	of	recovered	humans	
p	and	q	 Patch	identifiers	
t	 Day	identifier	
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CONCLUDING	REMARKS	

	

	 The	work	presented	here	highlights	the	complexity	of	the	dynamics	involved	

in	improving	vector-borne	pathogen	control,	and	the	need	for	both	basic	and	

applied	research	on	culicine	vector	species,	improved	communication	between	

researchers	and	mosquito	control	professionals,	and	coordination	between	

neighboring	mosquito	control	districts.	In	order	to	increase	support	for	vector	

control	programs,	future	efforts	should	also	aim	to	educate	policy	makers	on	disease	

and	vector	ecology.		

	 In	chapter	one,	I	demonstrate	potential	inefficiencies	in	surveillance-driven	

control	and	emphasize	the	need	to	initiate	control	measures	before	or	soon	after	

pathogen	introduction.	In	chapter	two,	I	show	how	the	ideal	distribution	of	limited	

control	resources	depends	on	the	demographic	context.	In	chapter	three,	I	compare	

the	efficacy	of	control	targeting	either	the	immature	or	adult	mosquito	life	stages,	

and	establish	the	importance	of	considering	ecological	context	here	as	well	when	

deciding	which	method	to	employ.	Together,	these	chapters	reveal	the	importance	

of	cooperation	and	coordination	across	multiple	scales	in	order	to	gather	

sufficiently	informative	surveillance	data	and	employ	sufficiently	comprehensive	

control	measures.	If	an	infected	person	enters	a	patch	that	does	not	conduct	

epidemiological	surveillance,	control	measures	will	not	be	implemented	until	an	

epidemic	is	already	underway	and	the	pathogen	has	spilled	over	into	adjacent	

patches.	If	landowners	decline	control	application	on	property	that	is	integral	to	

effective	resource	distribution,	more	people	across	the	entire	landscape	will	acquire	
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infections.	If	anthropogenic	nutrient	enrichment	alters	community	dynamics	and	

ultimately	affects	mosquito	demographic	rates	in	a	patch	not	conducting	

entomological	surveillance,	landscape-scale	control	decisions	may	not	reflect	the	

methods	that	would	best	reduce	outbreaks	of	mosquito-borne	viruses.	

	 Future	work	expanding	on	my	dissertation	research	should	incorporate	

evolution	of	both	hosts	and	pathogens	(Urban	et	al.	2008).	For	instance,	as	

insecticide	resistance	becomes	increasingly	commonplace,	modeling	how	resistance	

evolves	in	a	metapopulation	context	may	reveal	spatial	and	temporal	patterns	of	

insecticide	application	that	reduce	the	strong	selective	advantage	for	resistance	

genes.	I	also	plan	to	expand	on	some	preliminary	results	demonstrating	how	a	lack	

of	coordination	in	larval	control	may	be	counterproductive	and	actually	alter	

metapopulation	dynamics	in	a	way	that	causes	more	humans	to	become	infected	

than	when	no	control	is	implemented.		

	 While	my	dissertation	work	aims	to	improve	methods	of	vector	control,	the	

modeling	framework	developed	here	could	easily	be	applied	to	conservation	

contexts	instead,	with	the	goal	of	reducing	disease	incidence	in	endangered	

metapopulations.	Many	emerging	infectious	diseases	(EIDs)	affect	wildlife	species	

with	complex	spatial	structures	and	temporal	patterns,	such	as	Ranaviruses	in	

amphibians	that	breed	in	temporary	ponds	(Gray	et	al.	2009);	white-nose	syndrome	

in	hibernating	bats	in	the	northeastern	Unites	States	(Frick	et	al.	2010);	a	protozoan	

parasite	in	migratory	monarch	butterflies	(Altizer	et	al.	2011);	and	sudden	oak	

death	in	forests	of	the	western	United	States	(Meentemeyer	et	al.	2011).	Other	

diseases	that	fit	this	paradigm	have	great	economic	importance,	such	as	Porcine	
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Epidemic	Diarrhea	and	Asian	Soybean	Rust,	while	still	others	pose	a	health	risk	to	

humans,	as	habitat	loss	and	human	encroachment	increase	the	likelihood	of	

infections	spilling	over	from	wild	to	human	and	domesticated	hosts	(Daszak	et	al.	

2001,	Ostfeld	and	Holt	2004,	Altizer	et	al.	2013).	Modeling	these	epidemics	using	the	

framework	developed	here	may	offer	more	realistic	and	accurate	predictions	than	

current	models	that	do	not	include	metapopulation	and	patch	dynamics,	and	lead	to	

more	effective	control	measures	(Meentemeyer	et	al.	2012).	
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