
LEARNING FROM STRUCTURED DATA: THEORY,

ALGORITHMS, AND APPLICATIONS

By

JIE SHEN

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Ping Li and Pranjal Awasthi

And approved by

New Brunswick, New Jersey

October 2018

ABSTRACT OF THE DISSERTATION

LEARNING FROM STRUCTURED DATA: THEORY,

ALGORITHMS, AND APPLICATIONS

By JIE SHEN

Dissertation Director:

Ping Li and Pranjal Awasthi

The last few years have witnessed the rise of the big data era, which features the prevalence

of data sets that are high-dimensional, noisy, and dynamically generated. As a consequence, the

gap between the limited availability of computational resources and the rapid pace of data gen-

eration has become ubiquitous in real-world applications, and has in turn made it indispensable

to develop provable learning algorithms with efficient computation, economic memory usage, and

noise-tolerant mechanisms.

Our work is driven inherently by practical large-scale problems, and the goal is to understand the

fundamental limits imposed by the characteristics of the problems (e.g., high-dimensional, noisy,

sequential), explore the benefits of geometric structures (e.g., sparsity, low rank), and offer scalable

optimization tools to balance the trade-off between model accuracy, computational efficiency and

sample complexity.

In the dissertation, we mainly investigate three important problems, as stated below.

• High-dimensional statistics. The large demand of learning from high-dimensional data

where the number of attributes (i.e., data dimension) is of the same order as the number of

samples or even larger has stimulated a large body of novel statistical paradigms, in which

typically a low-dimensional structure is presumed to make the estimation possible. As an

example, for rare diseases there is few patient data for research but usually they are caused

by a small portion of factors such as the physical environment. It is henceforth crucial to

distinguish the determinants from a large pool of possible attributes, namely the problem

of variable selection (also known as support recovery). While it has been established that

many convex programs consistently select the desired variables under certain conditions, the

computational bottleneck has arguably hindered the application of these estimators to modern

ii

data analytics. In this regard, we study a family of non-convex approaches and show that

it admits a superior time complexity, a near-optimal sample size, and a broader range of

applications.

• Online and stochastic optimization. It has been recognized that the challenges of the big

data root not only in the high dimensionality, but also in the rapid pace of data generation. For

example, there are millions of tweets per day, for which even storing the data becomes expen-

sive. In order to process the huge volume of data, any practical algorithm has to be scalable,

in the sense that the model updating and evaluation have to be online and efficient. This mo-

tivates us to examine problems from the perspective of optimization theory. In particular, we

focus on those involving a low-rank or sparse structure, which has a variety of applications

such as recommender systems and image de-noising. We develop novel algorithms whose

time complexity is linear with the sample size, allowing a real-time response. Another salient

feature is that the memory cost is a constant, i.e., independent of the sample size, making them

an appealing mitigation to large-scale machine learning systems. Theoretically, we prove that

the solution produced by our algorithms is accurate and is robust to various types of noise.

• Estimation from quantized data. While a large body of early work emphasizes on the

observation model with real values, in practical applications the observations are often ex-

tremely quantized. Such low-bit observations not only save the storage, but also ease the

process of data acquisition. For instance, ratings at Netflix are changed to either “thumbs up”

or “thumbs down”, since it is sometimes hard for an user to rate one star or two stars if he

dislikes a movie. We study the problem of binary matrix completion, where many entries

of the matrix are missing and the goal is to predict them. We present efficient and robust

algorithms, together with a rigorous analysis and a comprehensive empirical illustration.

iii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisors Ping Li and Pranjal Awasthi. Throughout

the four years of my Ph.D., Ping gives me complete freedom to choose the research topics and offers

high-level guidance, while Pranjal always serves as the source of knowledge for detailed problems.

I learned a great deal during the discussion with them: research, teaching, and even academic career.

It is in a large part to their encouragement and support that I had an extremely enjoyable experience

at Rutgers and was able to work on a broad range of interesting problems.

I would also like to thank the excellent faculty members at Rutgers: William Steiger (who

provided lots of reassuring advice on the career), Cun-Hui Zhang (who is a brilliant statistician and

a prolific source of knowledge beyond statistics), Pierre Bellec (who is always approachable and

happy to hear any of my ideas), Han Xiao, Thu D. Nguyen, Matthew Stone, Abdeslam Boularias,

Zheng Zhang, and Anand D. Sarwate.

Before coming to Rutgers, I already had research experience when I was pursuing my master

degree. I was truly fortunate to have the mentorship of Huan Xu who has a lifelong influence on

shaping me as a researcher. In fact, it was the collaboration with Huan that I had the flavor of

machine learning for the first time, which drove me to delve into the fascinating domain. It was also

a delight to work with Yong Yu and Shuicheng Yan on computer vision – an amazing research area

that attracted me to study computer science.

Many thanks to my peers and friends for their thought-provoking discussion on research: Guang-

can Liu (from whom I learned a lot about scientific writing), Jian Wang (an expert in signal process-

ing), Martin Slawski (really kind and methodical), Anshumali Shrivastava, Jiashi Feng, Yu-Xiang

Wang, Xiao-Tong Yuan, Ji Zhang, Lezi Wang, Atul Dhingra, Nicholas Kleene.

Last but not least, I thank my family – especially my parents. They are always supportive to any

of my decisions. My special thanks go to my co-author Jing Wang, who is now my beloved wife.

She is always patient to listen to any of my feelings and gives me invaluable feedback, as well as

her constant emotional support.

iv

Contents

Abstract . ii

Acknowledgements . iv

1 Introduction 1

1.1 High-Dimensional Statistics . 2

1.1.1 Our Contributions . 3

1.2 Online and Stochastic Optimization . 3

1.2.1 Sparsity-Constrained Minimization and Our Results 4

1.2.2 Low-Rank Matrix Recovery and Our Results 5

1.2.3 Low-Rank Subspace Clustering and Our Results 6

1.3 Estimation from Quantized Data . 7

1.3.1 Our Contributions . 8

1.4 Acknowledgment of Previous Publications . 8

1.5 Notations . 8

2 High-Dimensional Statistics: From Convex to Non-Convex 10

2.1 Background . 10

2.1.1 Contributions . 15

2.1.2 Notation . 15

2.2 Support Recovery with Hard Thresholding Pursuit 15

2.2.1 Preliminary Results: Parameter Estimation 17

2.2.2 Main Results: Strong Support Recovery 22

2.2.3 Statistical Results . 27

v

2.2.4 Experiments . 29

2.3 Towards A Principled Analysis of Support Recovery 32

2.3.1 Deterministic Analysis . 33

2.3.2 Statistical Results . 36

2.3.3 Simulation . 38

2.4 Conclusion . 39

Appendix 2.A Technical Lemmas . 39

2.A.1 Crucial Lemmas . 48

Appendix 2.B Proofs for Section 2.2 . 53

2.B.1 Proof of Proposition 2.1 . 53

2.B.2 Proof of Proposition 2.2 . 54

2.B.3 Proof of Lemma 2.3 . 54

2.B.4 Proof of Proposition 2.4 . 54

2.B.5 Proof of Proposition 2.5 . 56

2.B.6 Proof of Theorem 2.7 . 60

2.B.7 Proof of Theorem 2.8 . 61

2.B.8 Proof of Theorem 2.9 . 61

Appendix 2.C Proofs for Section 2.3 . 61

2.C.1 Proof of Proposition 2.11 . 61

2.C.2 Proof of Theorem 2.12 . 63

2.C.3 Proof of Theorem 2.13 . 65

3 Learning Sparse Models with Stochastic Optimization 72

3.1 Background . 72

3.1.1 Summary of Contributions . 74

3.1.2 Notation . 74

3.2 The Key Bound . 75

3.3 Implications to Compressed Sensing . 79

3.3.1 Iterative Hard Thresholding . 81

3.3.2 Compressive Sampling Matching Pursuit 83

vi

3.4 Hard Thresholding in Large-Scale Optimization 84

3.4.1 Algorithm . 86

3.4.2 Deterministic Analysis . 87

3.4.3 Statistical Results . 92

3.5 Experiments . 96

3.5.1 Sparse Recovery . 96

3.5.2 Classification . 100

3.6 Conclusion and Open Problems . 102

Appendix 3.A Technical Lemmas . 103

Appendix 3.B Proofs for Section 3.2 . 104

3.B.1 Proof of Theorem 3.1 . 104

Appendix 3.C Proofs for Section 3.3 . 107

3.C.1 Proof of Theorem 3.2 . 107

3.C.2 Proof of Theorem 3.3 . 108

Appendix 3.D Proofs for Section 3.4 . 109

3.D.1 Proof of Theorem 3.4 . 109

3.D.2 Proof of Corollary 3.7 . 113

4 Online Optimization for Low-Rank Matrix Recovery 115

4.1 Background . 115

4.1.1 Contributions . 118

4.1.2 Related Work . 118

4.1.3 Notation . 120

4.2 Problem Setup . 120

4.3 Algorithm . 122

4.3.1 Update the Coefficients and Noise . 124

4.3.2 Update the Basis . 127

4.3.3 Memory and Computational Cost . 129

4.4 Theoretical Analysis and Proof Sketch . 130

4.4.1 Assumptions . 130

vii

4.4.2 Main Results . 130

4.4.3 Proof Outline . 131

4.5 Connection to Matrix Completion . 135

4.5.1 Online Implementation . 135

4.5.2 ℓ∞-norm Constrained Variant . 136

4.5.3 Other Types of Loss Functions . 138

4.6 Experiments . 138

4.6.1 Robustness . 139

4.6.2 Convergence Rate . 141

4.6.3 Computational Complexity . 142

4.7 Conclusion . 143

Appendix 4.A Proof Details . 144

4.A.1 Proof of Proposition 4.1 . 144

4.A.2 Proof of Proposition 4.4 . 145

4.A.3 Proof of Corollary 4.5 . 149

4.A.4 Proof of Proposition 4.6 . 150

4.A.5 Proof of Corollary 4.7 . 151

4.A.6 Proof of Proposition 4.9 . 151

4.A.7 Proof of Theorem 4.10 . 152

4.A.8 Proof of Proposition 4.11 . 154

4.A.9 Proof of Theorem 4.12 . 157

4.A.10 Proof of Theorem 4.3 . 159

5 Incremental Minimization for Low-Rank Subspace Clustering 165

5.1 Background . 165

5.1.1 Contributions . 168

5.1.2 Related Work . 168

5.2 Problem Formulation and Algorithm . 170

5.2.1 Expected Loss . 172

5.2.2 Algorithm . 174

viii

5.3 Theoretical Analysis . 180

5.4 Experiments . 185

5.4.1 Settings . 185

5.4.2 Subspace Recovery . 186

5.4.3 Subspace Clustering . 189

5.5 Conclusion . 191

Appendix 5.A Algorithm Details . 192

Appendix 5.B Proofs . 193

5.B.1 Technical Lemmas . 193

5.B.2 Proof of Proposition 5.2 . 194

5.B.3 Proof of Proposition 5.3 . 195

5.B.4 Proof of P-Donsker . 199

5.B.5 Proof of Theorem 5.5 . 200

5.B.6 Proof of Proposition 5.9 . 203

5.B.7 Proof of Theorem 5.6 . 206

5.B.8 Proof of Theorem 5.10 . 209

6 Estimation from Quantized Data 214

6.1 Background . 214

6.1.1 Contributions . 215

6.1.2 Related Work . 216

6.1.3 Notation . 217

6.2 Problem Setup . 217

6.2.1 Assumptions . 219

6.3 Main Results . 220

6.3.1 Upper Bound . 221

6.3.2 Lower Bound . 223

6.4 Proof Sketch . 224

6.5 Numerical Study . 226

6.5.1 Deterministic τ . 226

ix

6.5.2 Random τ . 227

6.6 Conclusion . 228

Appendix 6.A Technical Lemmas . 229

Appendix 6.B Proofs . 230

6.B.1 Proof of Lemma 6.3 . 233

6.B.2 Proof of Theorem 6.1 . 239

6.B.3 Proof of Theorem 6.2 . 239

x

List of Tables

2.1 Comparison to previous work on HTP-style algorithms. 24

5.1 Datasets for subspace clustering. 189

5.2 Clustering accuracy (%) and computational time (seconds in default). For each

data set, the first row indicates the accuracy and the second row the running time. . 191

5.3 Time cost (in seconds) of spectral clustering and k-means. 191

6.1 Upper and lower bounds on the sample complexity in the regime where α is a

constant. 224

xi

List of Figures

2.1 HTP: The iteration number and percentage of success against the sparsity. . . 31

2.2 HTP: The iteration number and percentage of success against the number of

measurements. 31

2.3 PHT: Iteration number and success percentage against sparsity and sample size. 38

3.1 Percentage of successful recovery under various sparsity and sample size. The

values range from 0 to 100, where a brighter color means a higher percentage of

success (the brightest blocks correspond to the value of 100). PGD admits a higher

percentage of recovery compared to IHT because it flexibly chooses the step size

and sparsity parameter. As a stochastic variant, HT-SVRG performs comparably to

the batch counterpart PGD. 97

3.2 Percentage of success of HT-SVRG against the number of measurements (left)

and the sparsity (right). 98

3.3 Minimum number of measurements to achieve 95% and 99% percentage of

success. Red equation indicates the linear regression of HT-SVRG. The markers

and curves for HT-SVRG are almost on top of PGD, which again justifies that HT-

SVRG is an appealing stochastic alternative to the batch method PGD. 99

3.4 Convergence of HT-SVRG with different parameters. We have 100 measure-

ments for the 256-dimensional signal where only 4 elements are non-zero. The

standard setting is k = 36, m = 300 and η = 0.3. Left: If the sparsity parameter

k is not large enough, HT-SVRG will not recover the signal. Middle: A small m

leads to a frequent full gradient evaluation and hence slow convergence. Right: We

observe divergence when η ≥ 3. 99

xii

3.5 Convergence behavior under small step size. We observe that as long as we pick

a sufficiently large value for m, HT-SVRG always converges. This is not surprising

since our theorem guarantees for any η < 1/(4L), HT-SVRG will converge if m

is large enough. Also note that the geometric convergence rate is observed after

certain iterations, e.g., for η = 3 × 10−5, the log(error) decreases linearly after 20

thousands iterations. 100

3.6 Sample images in the MNIST database. 100

3.7 Visualization of the models. We visualize 5 models learned by HT-SVRG under

different choices of sparsity shown on the top of each column. Note that the feature

dimension is 784. From the top row to the bottom row, we illustrate the models of

“0 vs 9”, “1 vs 7”, “2 vs 3”, “4 vs 5” and “6 vs 8”, where for each pair, we label

the small digit as positive and the large one as negative. The red color represents

negative weights while the blue pixels correspond with positive weights. 101

3.8 Quantitative results on convergence and accuracy. The first 5 figures demon-

strate the convergence behavior of HT-SVRG for each binary classification task,

where curves with different colors represent the objective value against number of

stages under different sparsity k. Generally speaking, HT-SVRG converges within

20 stages which is a very fast rate. The last figure reflects the classification accuracy

against the sparsity for all 5 classification tasks, where we find that for a moderate

choice, e.g., k = 70, it already guarantees an accurate prediction (we recall the

dimension is 784). 102

4.1 Performance of subspace recovery under different rank and corruption fraction.140

4.2 EV value against corruption fractions when the matrix has a relatively low rank.140

4.3 EV value against corruption fractions when the matrix has a middle level of

rank. 141

4.4 EV value against number of samples under different corruption fractions. . . 142

4.5 EV value against number of samples under different ambient dimensions. The

rank r = 0.1d and the corruption fraction ρ = 0.3. 142

4.6 EV value against time under different ambient dimensions. 143

xiii

5.1 Subspace recovery under different intrinsic dimensions and corruptions. Brighter

is better. 187

5.2 Convergence rate and time complexity of our algorithm. 188

6.1 Estimation error against sample size under fixed τ . The x-axis is properly nor-

malized by a constant for a better view. The statistical error is approximately linear

with 1/
√
n. 227

6.2 Estimation error against sample size under fixed rank. 227

6.3 Estimation error against sample size under the same and different noise expec-

tation. We observe that the statistical error depends on τ only through its mean. . . 228

xiv

1

Chapter 1

Introduction

With the unprecedented growth of massive data sets in modern data analytics, problems being inves-

tigated in machine learning and statistics often feature high-dimensional, sequential, and quantized

data. For instance, in YouTube millions of new videos are uploaded every day (i.e., sequential), each

of which contains tremendous contents (i.e., high-dimensional) while the user feedback is simply

“thumbs up” or “thumbs down” (i.e., quantized). These problem characteristics pose new challenges

to computer scientists and statisticians, both in the statistical and computational aspects.

On the statistical side, a long-term research line is to understand the fundamental limits imposed

by the properties of the problems, and to determine the sample size under which accurate estimation

of model parameters is possible. The question has been well-understood if there are sufficient

samples or the sample size tends to infinity, which is known as asymptotic analysis. However, in

the high-dimensional regime, the number of observations is typically of the same order of, or even

smaller than the number of unknown parameters. Classical results immediately break down in this

situation. As a matter of fact, it is not possible to identify the model without further information.

On the computational side, parameter estimation usually boils down to solving an optimization

problem, either convex or non-convex, and the regard (or objective) is to design efficient algorithms

that achieve the optimal computational efficiency. While there have been numerous solvers de-

veloped in the last decades, they are typically not scalable to very large-scale data sets since the

computational cost is polynomial in the problem size. Perhaps a more serious issue is that these

elegant solvers are batch methods in nature, meaning that it is rather expensive, or even impossible

to apply them to streaming data.

2

The dissertation concerns exactly both aspects, and our goal is to leverage the hidden structure

of the problem ir order to design provable and efficient algorithms for real-world applications. The

major observation made throughout the dissertation is that in most of the applications, the data lying

in a high-dimensional space typically exhibits a low-dimensional structure, captured by some notion

of sparsity. Such an appealing behavior essentially reduces the problem complexity, eliminates the

statistical issue of model identifiability, and guides the design of efficient algorithms. To be more

concrete, we will present our novel results for three research topics that play a crucial role in ma-

chine learning applications: (1) high-dimensional statistics, which aims to detect useful attributes

from a large pool of features; (2) online and stochastic optimization, which serves as the fundamen-

tal technique for large-scale learning systems; and (3) estimation from quantized data, which allows

statistical inference from extremely simple feedback (or observation).

1.1 High-Dimensional Statistics

Consider the linear regression model

y = Ax̄+ e,

where A ∈ R
n×d is the design matrix, x̄ ∈ R

d is the unknown parameter to be estimated, and

y ∈ R
n is the observation corrupted by the unknown noise e ∈ R

n. A fundamental question to

ask is when it is possible to estimate x̄ from the knowledge of (A,y). This problem has a very

long history in statistics and classical results assert that as soon as the sample size n is sufficiently

large, the estimation error tends to zero. However, in many applications, typically there is a limited

number of samples. For example, consider the Lou Gehrig’s disease. Each year there are only 2 out

of one hundred thousand people are affected by this disease. Therefore, for researchers almost no

data is available for carrying out medical diagnosis. This partially explains the unfortunate fact that

the causal elements are still not known. It is also the case that patients are worried about privacy,

and do not want to share their personal information for research.

When there is insufficient data, classical results fail to offer consistency guarantees for param-

eter estimation. In fact, when n ≪ d, the model is even not identifiable, meaning that there exist

many (or possibly infinite) different parameters x̄ that produce the same response y. Estimation

in this regime is thus referred to as high-dimensional statistics. While it is not possible to perform

3

parameter estimation in general cases, the key assumption that the underlying parameter is sparse

quickly changes the story. Here, we say x̄ is sparse if most of its components are zero. The major

motivation to consider such a special structure is that usually only a small portion of the features

contribute to model prediction, while the remaining might be redundant or have only minor influ-

ence. The community then moved on to incorporate such prior knowledge into algorithm design,

either convex or non-convex. From a mathematical perspective, the assumption essentially reduces

the problem to predicting the positions and values of the non-zero elements of x̄. If we omit the

computational cost, we can enumerate all possible positions and fit the data restricted to these coor-

dinates. Until now, a number of efficient algorithms have been proposed which admit comparable

statistical error rate to the brute-force approach [41, 140, 37, 142, 103, 119].

1.1.1 Our Contributions

We study in Section 2.2 the problem of recovering the support of a sparse signal from its compressed

measurements, i.e., estimating the positions of the non-zero elements of x̄ when n ≪ d. We first

point out that previous work suffers a high computational cost for the sake of support recovery, or

incurs unbounded iteration complexity. From the perspective of optimization, the algorithms de-

veloped in these work are not scalable to massive data sets. Then we offer a novel analysis of a

popular non-convex algorithm, and provably show that under standard conditions, the algorithm is

guaranteed to recover the support in few iterations, and has a low computational cost per iteration.

In order to study the trade-off between computational complexity and statistical accuracy, we gen-

eralize our analysis to a family of non-convex algorithms in Section 2.3. It is shown that if the data

is good enough (in some sense), then it is possible to design algorithms that attain the best of the

two worlds. Otherwise, one has to trade the running time for model accuracy (or vice versa). Our

analysis is applied to, and justified by prevalent statistical models, and is further accompanied by

illustrative experiments.

1.2 Online and Stochastic Optimization

Orthogonal to the high-dimensional regime, in a variety of machine learning applications it is ubiq-

uitous to process data sets containing billions of samples, or their sizes grow dynamically in a rapid

4

pace. For example, there are thousands of tweets appearing online every minute, and the system

needs to detect the trending topics for user recommendation. In this regard, the primary concerns

are designing algorithms that are capable of performing model updating and prediction in an online

and real-time fashion, with a cheap computational cost – typically linear in the sample size.

1.2.1 Sparsity-Constrained Minimization and Our Results

We will study three general problems involving structured constraints that are either sparse or low-

rank. The first problem is sparsity-constrained optimization:

min
x∈Rd

F (x;Zn
1), s. t. ‖x‖0 ≤ s,

where Zn
1 := {Zi}ni=1 is the set of training samples and s < d is a positive integer. If we consider the

linear regression model in the preceding section, then Zn
1 = (A,y) and F (x;Zn

1) = ‖y −Ax‖2.

The sparsity constraint is imposed to guarantee model interpretation. Note that the constraint is

non-convex in nature, which is the major barrier to carry out theoretical analysis of convergence.

This is in stark contrast to the Lasso program [140]

min
x∈Rd

F (x;Zn
1), s. t. ‖x‖1 ≤ λ.

The ℓ1-norm in the above expression is convex and encourages sparsity with a proper choice of

λ > 0. Yet, the main issue of Lasso is that it is in general difficult to characterize the sparsity of the

solution. Thus we choose to stay at the non-convex formulation.

Unlike the compressed sensing problem where n≪ d, here we think of both quantities as large.

It is known that when the data is not good (in some sense), the computational cost of batch methods

is quadratic in n, making existing solvers not scalable [78].

Our Contributions

In Chapter 3 we present the first stochastic solver for the ℓ0-norm constrained non-convex program.

It converges to a global optimum with a linear rate and has a low computational complexity. The to-

tal running time, even when the data is not good, is linear in the sample size. Prior to our work, even

5

the convergence behavior was not clear for such stochastic solvers. Along with the development of

our algorithm, we also offer a tight bound for the expansiveness of the hard thresholding operator

that is invoked to project iterates onto the ℓ0-ball. We show that with the established bound, most of

the theoretical results for hard thresholding based algorithms can be significantly improved.

1.2.2 Low-Rank Matrix Recovery and Our Results

In the last decades, problems involving a low-rank structure have been widely investigated and

have found successful applications in recommender systems and image denoising. In recommender

systems, we are given a set of users and items (e.g., movies). Each user can rate the movie that he

watched, and the goal is to anticipate the potential movies that a user might be interested in. Hence,

if we organize the ratings as a matrix, where each row corresponds to an individual and each column

represents a movie, then item recommendation reduces to filling in the missing entries of the matrix.

Mathematically, suppose that the groundtruth rating matrix is Z = (z1,z2, . . . ,zn) ∈ R
d×n,

and Ω is the set indexing the positions of observed entries (i.e., the ratings from users). We are

interested in recovering Z from ZΩ. Alternatively, the observations {yij} are given by

yij = c⊤i Zcj , (i, j) ∈ Ω,

where {ci} is the canonical basis. This is quite reminiscent of the compressed sensing problem,

and we know that extra assumptions have to be made in order to estimate Z. For example, the

underlying matrix Z is assumed to be low-rank in many problems [58]. To aid intuition, recall that

any matrix Z can be decomposed into Z = UV ⊤. In the context of item recommendation, the ith

row of U is associated with the ith user whereas the jth row of V is associated with the jth item,

and the rating yij is determined by both. Then a low-rank structure would imply that there are not

too many factors influencing the user’s evaluation on an item.

In [36], it was proved that under suitable conditions, an exact estimate of Z can be obtained by

solving the following convex program:

min
X∈Rd×n

‖X‖∗ , s. t. (X)Ω = (Z)Ω.

6

Note that the nuclear norm ‖X‖∗ is the sum of the singular values of X , which is a convex relax-

ation of the rank function. A more general formulation is to consider a noisy matrix recovery model

where each observation is corrupted:

min
X∈Rd×n,E∈Rd×n

‖X‖∗ + λh(E), s. t. Z = X +E,

where h(·) is some regularization determined by the structure of the noise E. For example, if E is

assumed to be sparse, we may choose h(E) =
∑

i,j |eij | as shown in [34]. Note that the missing

entries correspond to the case that the noise E happens to annihilate the clean data X at the positions

indexed by Ω.

Our Contributions

While there have been a large number of algorithms for solving the nuclear-norm based convex

programs, they either incur a computational cost quadratic in the sample size, or have to load all

the data into memory for model updating. For this reason, it is prohibitive to apply them to large-

scale problems. In Chapter 4, we present an efficient online minimization algorithm that deals with

samples in an online manner. Namely, our memory cost is independent of the sample size. Further,

the computational complexity is linear in the sample size which is the best one could wish for in

most cases. We also prove that the solution produced by our algorithm asymptotically converges to

a stationary point of the expected loss.

1.2.3 Low-Rank Subspace Clustering and Our Results

Clustering plays a crucial role in unsupervised machine learning, where the goal is to group similar

data points into a number of clusters. While there are many successful algorithms such as k-means,

they often do not capture the intrinsic structure of the data. For instance, it is not clear how to

integrate the low-rank constraint into k-means. [56] proposed a novel formulation, which attempts

to express each data point zi as a linear combination of the remaining:

Z = ZX, X ∈ R
n×n.

7

The solution X is obviously not unique, and low-rank representation [93] seeks the one with the

lowest rank

min
X∈Rn×n

‖X‖∗ , s. t. Z = ZX, X ∈ R
n×n.

Since rank (Z) ≤ rank (ZX), a low-rank solution X implies the recovery of a low-rank structure

of the data. In this light, the above program is particularly powerful when the true data is low-rank,

as reported in their original work. However, the main shortcoming is that the variable is an n × n

matrix. Thus, the storage and computation are both quadratic in the sample size.

Our Contributions

We present the first practical algorithm for the low-rank representation problem in Chapter 5. It

reduces the memory footprint fromO
(
n2
)

toO (dr), where r is the rank of the data matrix naturally

satisfying r < d ≪ n. Its computational cost is linear in the sample size, which is orders of

magnitude more efficient than state-of-the-art solvers. More importantly, our algorithm can be

implemented in an online fashion, and can cluster data points that are dynamically generated. We

prove that the gains in computational and in memory efficiency do not sacrifice too much in model

accuracy.

1.3 Estimation from Quantized Data

Quantization is the process of converting an input from continuous or real-valued domains to a

discrete set. The classification problem can indeed be regarded as learning from quantized data:

given a set of training data {ai}ni=1 ⊂ R
d and their labels {yi}ni=1, where

yi = sign (ai · x̄) ,

estimate the underlying parameter x̄. In learning theory, this problem is known as learning half-

spaces dating back to [123], whereas in signal processing, it is called 1-bit compressed sensing [25,

70, 116]. Such low-bit observations not only save the storage, but also ease the process of data

acquisition and algorithm implementation on hardware. For example, after watching a video in

YouTube, it is more transparent to ask the user whether he likes or dislikes the video than to have

8

him give a rating ranging from 1 to 10.

Formally, we study the 1-bit matrix completion problem. It follows the standard setup in matrix

completion: many entries are missing in a large matrix. However, now the observations are assumed

to be quantized to either 1 or −1:

yij = δij · sign (mij + eij) , (i, j) ∈ Ω,

where eij is some noise before quantization, δij is the sign flipping noise, and M = (mij) is the

true, low-rank matrix to be estimated. Owing to the quantization, the observation Y = (yij) is no

longer low-rank. Hence one cannot apply the traditional technique to solve the problem.

1.3.1 Our Contributions

In Chapter 6 We propose a convex program to estimate the true matrix M in which each observed

entry is corrupted by both pre-quantization and sign flipping noise. We provably show that our

estimator is robust to both kinds of noise. An upper and lower bound of the statistical error rate is

presented, showing that the sample complexity of our method is near-optimal.

1.4 Acknowledgment of Previous Publications

The results of Chapter 2 and Chapter 3, which have been published in ICML’17 [129], NIPS’17 [130],

and to be published in JMLR [131], are joint work with Ping Li. The results of Chapter 4 and Chap-

ter 5, which have been published in NIPS’14 [133], Machine Learning [134] and ICML’16 [132],

are joint work with Huan Xu and Ping Li. Finally, the results of Chapter 6 are joint work with

Pranjal Awasthi and Ping Li, and are under review.

1.5 Notations

Before delivering the main results, we mention some notations and conventions that are involved

throughout the dissertation. We use bold lowercase letters, e.g., v, to denote a vector (either column

or row) and its ith element is denoted by vi. Several norms will be used for a vector v ∈ R
d:

the ℓ2-norm ‖v‖ :=
√∑d

i=1 v
2
i , the ℓ1-norm ‖v‖1 :=

∑d
i=1 |vi|, and the infinity norm ‖v‖∞ :=

9

max1≤i≤d |vi|. The support set of v, i.e., indices of non-zero entries, is denoted by supp (v), while

that of the k largest elements (in magnitude) is denoted by supp (v, k). The cardinality of supp (v)

is written as |supp (v)| or ‖v‖0.

We write bold capital letters such as M for matrices and its (i, j)-th entry is denoted by mij .

The ith row and jth column of a matrix M are denoted by m(i) and mj respectively. The transpose

of a matrix M is denoted by M⊤. For a square matrix M , its trace is denoted by Tr (M). Suppose

that M ∈ R
n×d has rank r. Let M = USV ⊤ be the singular value decomposition of M , where

U ∈ R
n×r contains the left singular vectors, V ∈ R

d×r contains the right singular vectors, and S ∈

R
r×r is a diagonal matrix containing the singular values. Then the Frobenius norm of M is given

by ‖M‖F :=
√∑r

i=1 s
2
ii =

√∑n
i=1

∑d
j=1m

2
ij , the spectrum norm is ‖M‖ := max1≤i≤r sii and

the nuclear norm is written as ‖M‖∗ =
∑r

i=1 sii.

The capital upright letter C and its subscript variants (e.g., C0,C1) are reserved for absolute

constants whose values may change from appearance to appearance.

10

Chapter 2

High-Dimensional Statistics: From

Convex to Non-Convex

2.1 Background

This chapter is concerned with the problem of recovering an arbitrary sparse signal from a set of

its (compressed) measurements. We say that a signal x̄ ∈ R
d is s-sparse if there are no more than

s non-zeros in x̄. This problem, together with its many variants, have found a variety of successful

applications in bioinformatics [111], statistics [140, 55], signal processing [41, 51, 50, 39] and

mathematical science [40], to name just a few. Of particular interest are (1) x̄ is the true signal and

only a small number of linear measurements are given, referred to as compressed sensing; (2) x̄ is

the global optimum of sparsity-constrained non-convex programs.

Mathematically, the observation model of compressed sensing is as follows:

y = Ax̄+ e, (2.1)

where the sensing matrix A ∈ R
n×d can be chosen by the user and e ∈ R

n is some unknown

noise. The fundamental question to ask is when the signal x̄ can be estimated from the knowledge

of A and the response y ∈ R
n. If the sample size n is greater than the ambient dimension d, it

is well recognized that the problem can be solved by empirical risk minimization. Nevertheless,

compressed sensing considers the high-dimensional regime that n is much smaller than d, which

11

means that (2.1) is an underdetermined system. Thus, in general it is not possible to recover the

underlying signal x̄. Motivated by the observation that in a wide range of applications only a

small number of attributes contribute to model prediction [111], the signal x̄ is typically assumed

to be sparse. Such a simple structure radically changes the premise, and a natural approach is

to enumerate all possible support sets of x̄ (i.e., the positions of its non-zero elements), followed

by minimizing the empirical risk restricted on the support set. This is, unfortunately, NP-hard.

However, what makes high-dimensional statistics and compressed sensing a nice story is that, in

spite of the fact that the natural approach is NP-hard, there are powerful convex formulations that

perform almost as well. For example, when the observation y is noise-free, [41] proposed the

following program termed basis pursuit:

min
x∈Rd

‖x‖1 , s. t. y = Ax.

It was shown in [37] that the optimal solution returned by basis pursuit exactly recovers x̄ under

some conditions. For noisy observation models, one can make use of the Lasso estimator [140]

given by the optimum of the following program:

min
x∈Rd

1

n
‖y −Ax‖2 + λ ‖x‖1 ,

where λ > 0 is a hyper-parameter to be tuned. Again, it was shown that Lasso enjoys appealing

statistical property: its global optimum is close enough to the true signal [146]. Compared to

the brute-force approach, solving a convex program is more efficient. In fact, the computational

complexity is polynomial with respect to the problem size (n, d).

Parallel to the development of convex programs, a large body of work is devoted to greedy al-

gorithms that are computationally more efficient [141, 45, 20, 28, 62, 60]. These algorithms usually

start with an initial guess, and attempt to gradually refine the estimate by gradient descent or boost-

ing. For instance, as one of the earliest pursuit algorithms, orthogonal matching pursuit (OMP) [115]

repeatedly picks a coordinate as the potential support of a solution. While OMP may fail for some

deterministic sensing matrices, [141, 142] showed that it recovers the true signal with high prob-

ability when using random matrices A such as Gaussian. Inspired by the success of OMP, the

12

two concurrent work of compressive sampling matching pursuit (CoSaMP) [103] and subspace pur-

suit (SP) [45] made improvement by selecting multiple coordinates followed by a pruning step in

each iteration, and the recovery condition was framed under the well-known restricted isometry

property (RIP) [37]. Interestingly, the more careful selection strategy of CoSaMP and SP leads to

an optimal sample complexity. The iterative hard thresholding (IHT) algorithm [46, 19, 20] grad-

ually refines the iterates by gradient descent along with truncation. [60] then developed a concise

algorithm termed hard thresholding pursuit (HTP), which combined the idea of CoSaMP and IHT,

and showed that HTP is superior to both in terms of the RIP condition.

Another quintessential example is the sparsity-constrained minimization program recently con-

sidered in machine learning [159, 10, 75, 131], for which the goal is to efficiently learn the global

sparse minimizer x̄ from a set of training data. Formally, these work concerns solving

min
x∈Rd

F (x;Zn
1), s. t. ‖x‖0 ≤ s, (2.2)

where Zn
1 := {Zi}ni=1 is the set of training data. Typical examples include the sparse linear regres-

sion, sparse logistic regression, and sparse support vector machine (SVM), as described below:

• Sparse Linear Regression: for all 1 ≤ i ≤ n, we have Zi = (ai, yi) ∈ R
d × R and the loss

function F (x;Zn
1) =

1
2n ‖Ax− y‖2 is the least-squares;

• Sparse Logistic Regression: for all 1 ≤ i ≤ n, we have Zi = (ai, yi) ∈ R
d × {+1,−1} and

the negative log-likelihood is penalized, i.e., F (x;Zn
1) =

1
n

∑n
i=1 log (1 + exp (−yiai · x));

• Sparse SVM: for all 1 ≤ i ≤ n, we have Zi = (ai, yi) ∈ R
d × {+1,−1} and F (x;Zn

1) =

1
n

∑n
i=1 max{0, 1 − yiai · x} is the hinge loss.

Though in most cases, the underlying signal can be categorized into either of the two classes,

we note that it could also be other object such as the parameter of generalized linear models [105].

Hence, for a unified analysis, this chapter copes with an arbitrary sparse signal and the results to be

established quickly apply to the special instances above.

It is also worth mentioning that while one can characterize the performance of an algorithm and

can evaluate the obtained estimate from various aspects, we are specifically interested in the quality

of support recovery. Recall that for sparse recovery problems, there are two prominent metrics: the

13

ℓ2-distance and the ℓ0-distance. The former one essentially requires that for a given error ǫ > 0, the

solution x̂ returned by an algorithm should approximate x̄ in ℓ2-metric, namely

‖x̂− x̄‖ ≤ ǫ.

Theoretical results phrased in terms of the ℓ2-metric is also referred to as parameter estimation, on

which most of the previous work emphasized. Under this metric, many popular algorithms, e.g., the

Lasso [140, 146] and hard thresholding based algorithms [46, 20, 103, 45, 60, 131], are guaranteed

with accurate approximation up to the noise level. For linear regression, it is sometimes useful to

consider the prediction accuracy [119]

‖Ax̂−Ax̄‖ ≤ ǫ,

though under some conditions it is implied by the performance of parameter estimation.

Support recovery is another important factor to evaluate an algorithm, which is also known as

feature selection or variable selection. It measures the discrepancy of the support set:

‖x̂− x̄‖0 ≤ ǫ.

As one of the earliest work, [141] offered sufficient and necessary conditions under which or-

thogonal matching pursuit and basis pursuit identify the support. The theory was then developed

by [164, 161, 146] for the Lasso estimator and by [157] for the garrotte estimator. Typically, re-

covering the support of a target signal is more challenging than parameter estimation. For instance,

[17] showed that the restricted eigenvalue condition suffices for the Lasso to produce an accurate

estimate whereas in order to recover the sign pattern, a more stringent mutual incoherence condi-

tion has to be imposed [146]. However, as has been recognized, if the support is detected precisely

by a method, then the solution admits the optimal statistical rate [146]. In this regard, research on

support recovery continues to be a central theme in recent years [162, 163, 158, 24, 113].

Our work follows this line and studies the support recovery performance of hard threshold-

ing based algorithms, which enjoy superior computational efficiency to the convex programs when

manipulating a huge volume of data [143]. To be concrete, we will study the hard thresholding

14

pursuit algorithm. It was originally presented by [60] for recovering the true signal in compressed

sensing [50]. [159] suggested using the HTP algorithm for general sparsity-constrained machine

learning problems, and they showed that the solution returned by HTP converges with a geomet-

ric rate. Very recently, a rigorous theoretical analysis on when HTP guarantees support recovery

was independently carried out by [24] and [158]. In [24], they considered the compressed sensing

problem and illustrated that HTP recovers the support of the true signal in finite iterations if the

restricted isometry property (RIP) condition holds [37]. [158] showed that in some situations, HTP

guarantees support recovery without assuming the RIP condition.

Although these appealing theoretical results characterize the behavior of HTP in particular

regimes, it turns out that a thorough understanding on when HTP identifies the support of an arbi-

trary sparse signal is missing in the literature. To be more precise, the RIP condition used in [24]

amounts to imposing a small condition number for the underlying problem, which is not practical

for machine learning applications where the condition number may grow with the sample size. To

guarantee support recovery of an s-sparse signal, [158] required that the signal of interest is the

unique global minimizer of a sparsity-constrained program (which invokes the RIP condition), or

that HTP maintains denser iterates (which hinders a fast update). This poses an interesting question

of whether HTP is able to recover the support without the RIP assumption, or the optimality of the

signal, or the relaxed sparsity.

We will also investigate the trade-off between computational efficiency and statistical accuracy

of hard thresholding based algorithms. To this end, we appeal to the partial hard thresholding

operator [74] which unifies a family of non-convex algorithms. We establish general results which in

turn indicate the best known iteration complexity for specific instances such as HTP and orthogonal

matching pursuit with replacement (OMPR) [73]. It is also worth mentioning that, though our

analysis hinges on the PHT operator, the support recovery results to be established are stronger than

the results in [74] since they only showed parameter estimation of PHT. Finally, while a couple of

previous work considered signals that are not exactly sparse [24], we in this chapter focus on the

sparse case. Extensions to the generic signals are left as interesting future directions.

15

2.1.1 Contributions

We make the following contributions in this chapter. First, we explore in Section 2.2 the support re-

covery performance of HTP, and provably show that for well-conditioned (to be clarified) problems,

it exactly recovers the support in few iterations. For the cases where features are heavily correlated,

we prove that with a slight modification of the algorithm, all the desired features can be detected.

The proofs can be found in Section 2.B, with a few technical lemmas provided in Section 2.A. Then

we move on to the more general PHT algorithm in Section 2.3, and present the first analysis of the

trade-off between computational efficiency and model accuracy for a family of non-convex meth-

ods. The proofs are deferred to Section 2.C. We also illustrate that our theoretical results hold for

a wide range of statistical models, which is further justified by a comprehensive set of numerical

experiments.

2.1.2 Notation

For an integer d, suppose that Ω ⊂ {1, 2, . . . , d} is an index set. Then for v ∈ R
d, vΩ can either

be explained as an |Ω|-dimensional vector or a d-dimensional vector with the elements outside of Ω

set to zero. The s-sparse vector x̄ ∈ R
d is the target signal we aim to recover, and we reserve the

capital letter S for its support. We define x̄min > 0 as the absolute value of the smallest element (in

magnitude) of x̄S ∈ R
s. With a slight abuse of the notation, ∇kF (x̄) should be explained as the

vector consisting of the top k elements (in magnitude) of ∇F (x̄) rather than the kth component of

∇F (x̄).

2.2 Support Recovery with Hard Thresholding Pursuit

In this section, we introduce the problem setting and some preliminary consequences. Then we

present the deterministic results regarding the support recovery performance, followed by a dis-

cussion that related these to concrete statistical models. To be clear, the target signal x̄ ∈ R
d we

consider in this chapter is only endowed with sparsity.

Let us first motivate the HTP algorithm. Consider the sparsity-constrained optimization pro-

gram (2.2). While obtaining an exact solution is NP-hard in general, it is possible to obtain an

approximate one in an efficient manner. To this end, a natural and popular optimization method is

16

gradient descent [107], which starts with an initial guess x0 and updates it by

xt ← xt−1 − η∇F (xt−1), t = 1, 2, . . .

Above η > 0 is the step size to be tuned. Yet, notice that there is a sparsity constraint in (2.2). While

the zero-norm is discrete and non-convex, projection onto the zero-norm ball is quite simple: we

keep the largest s elements (in magnitude) and set the remaining to zero. Such a projection, denoted

by Hk (·), is called hard thresholding. As a matter of fact, for any v ∈ R
d,

Hk (v) := argmin
u∈Rd

‖u− v‖ , s. t. ‖u‖0 ≤ k. (2.3)

Hence, we may combine gradient descent, which is able to decrease the objective function value,

and hard thresholding, which ensures the feasibility of all iterates. That gives the IHT algorithm

bt ← xt−1 − η∇F (xt−1),

xt ← Hk

(
bt
)
.

Note that we allow the sparsity k of the iterates to be greater than, or equal to the true sparsity s.

This offers more flexibility since in practical applications, s may be unknown. On the other hand,

we will show that such a relaxation is crucial for some difficult problems.

The IHT algorithm works well in practice, and enjoys elegant theoretical guarantee [20, 75].

However, with a more careful analysis, [60] pointed out that if the support of xt happens to be

the true support S, then we can eliminate the sparsity constraint, and fully minimize the objective

function F (x) restricted on the support set of xt. This gives the HTP algorithm as follows:

(HTP1) bt ← xt−1 − η∇F (xt−1),

(HTP2) St ← supp
(
bt, k

)
,

(HTP3) xt ← argmin
supp(x)⊂St

F (x),

where we recall that supp
(
bt, k

)
denotes the support set of the top k elements of bt. Below are two

useful properties of the algorithm:

17

• each iterate xt is k-sparse;

• it terminates when St = St−1 at some stage t.

The sparsity of the iterate inherently controls the statistical rate of the problem, hence offering a

near-optimal sample complexity. We will discuss it in more detail in the theoretical analysis. The

termination condition was utilized in previous work [60, 158] to establish iteration complexity.

In addition to the above algorithm proposed originally in [60], we will also consider a more

realistic scenario. That is, for all t ≥ 1, the iterate xt in (HTP3) is subject to

F (xt)− F (xt
∗) ≤ ǫ, (2.4)

where ǫ > 0 is a pre-defined accuracy parameter and xt
∗ is the global minimizer of F (x) restricted

on St. The reason for our consideration is that when solving a general machine learning problem,

it is typically expensive or impossible to obtain the exact minimizer xt
∗. This is not an issue in

compressed sensing where F (x) is the least-squares loss, but is surely a concern for other problems

such as logistic regression. Related to the inexact solutions, a natural question to ask is how the

accuracy parameter ǫ affects the recovery performance of HTP, additively or progressively. Another

issue coming up with the inexact iterates is that the usually employed stopping criterion St = St−1

may not be applicable, which makes part of the analysis in [158] invalid. Note that when exact solu-

tions are available, HTP becomes stationary as soon as the detected support does not change, since

the solutions are entirely determined by the support. Allowing approximate iterates quickly changes

the situation and many stochastic solvers, e.g., stochastic gradient descent, introduce randomness,

rendering (HTP3) outputs different results even restricted on the same support.

2.2.1 Preliminary Results: Parameter Estimation

Our analysis depends on the following two properties of the function F (x).

Definition 2.1 (Restricted Strong Convexity). A differentiable function F (x) is said to satisfy the

property of restricted strong convexity (RSC) at the sparsity level K > 0 with parameter ρ−K > 0,

18

if for all vectors x and x′ with ‖x− x′‖0 ≤ K ,

F (x)− F (x′)−
〈
∇F (x′),x− x′〉 ≥ ρ−K

2

∥∥x− x′∥∥2 .

Definition 2.2 (Restricted Smoothness). A differentiable function F (x) is said to satisfy the prop-

erty of restricted smoothness (RSS) at the sparsity level K > 0 with parameter ρ+K > 0, if for all

vectors x and x′ with ‖x− x′‖0 ≤ K ,

F (x)− F (x′)−
〈
∇F (x′),x− x′〉 ≤ ρ+K

2

∥∥x− x′∥∥2 .

In particular, we require that the RSC condition holds at the sparsity level 2k + s and the RSS

condition holds at the sparsity level 3k. That is, we assume

(A1) F (x) satisfies the RSC property with parameter ρ−2k+s;

(A2) F (x) satisfies the RSS property with parameter ρ+3k.

Note that the RSC and RSS conditions are now standard and are widely utilized for establishing

performance guarantees for a variety of popular algorithms, see, for example, [105, 2, 96]. For

brevity, throughout the chapter we write ρ− := ρ−2k+s and ρ+ := ρ+3k. We also denote κ := ρ+/ρ−

which is called the condition number of the problem.

By examining these conditions for the compressed sensing problem (2.1), we may have some

high-level intuition why the assumptions are vital. By algebra, RSC essentially requires that

(x− x′)⊤∇2F (x′)(x− x′) ≥ ρ−
∥∥x− x′∥∥2 .

Now substituting F (x) with ‖y −Ax‖2 immediately gives

∥∥Ax−Ax′∥∥2 ≥ ρ−
∥∥x− x′∥∥2 ,

or equivalently
∥∥y − y′∥∥2 ≥ ρ−

∥∥x− x′∥∥2 .

This implies that for different input, we always have different output. Therefore, RSC guarantees

19

that the model is always identifiable. It is worth mentioning that the strong convexity is assumed in

a restricted sense, namely only for sparse directions. This is a significant feature since in the high-

dimensional regime n≪ d, the Hessian matrix of F (x) is highly degenerate, and strong convexity

does not hold everywhere.

The RSS property enter our analysis mainly through the condition number κ. As will be clear,

this quantity reflects the correlation among the attributes, and a large value indicates a difficult

instance, which may require more computational resource and samples for the success of estimation.

Our first result states that if (HTP3) outputs exact solutions, then HTP decreases the function

value with a geometric rate before the stopping criterion (i.e., St = St−1) is met. Formally, we have

the following proposition.

Proposition 2.1. Consider the HTP algorithm with exact solutions in (HTP3). Assume (A1) and (A2),

pick η < 1/ρ+ in (HTP1) and set k = s in (HTP2). Then before HTP terminates, it holds that for

all t ≥ 1,

F (xt)− F (x̄) ≤ µ
(
F (xt−1)− F (x̄)

)
,

where

µ = 1− 2ηρ−(1− ηρ+)
1 + s

∈ (0, 1).

Note that we did not assume the optimality of x̄ with respect to the function F (x). In other

words, Proposition 2.1 holds even for F (xt) − F (x̄) < 0. It is also worth mentioning that by the

proposition, we can deduce

F (xt)− F (x̄) ≤ µt
(
F (x0)− F (x̄)

)
.

However, the above inequality does not imply the convergence of {F (xt)}t≥1, since F (xt)−F (x̄)

is not bounded from below. Rather, it is invoked to establish parameter estimation for HTP.

The following proposition shows that when the conditions in Proposition 2.1 are satisfied, we

have an accurate estimate on the signal in the ℓ2-metric.

20

Proposition 2.2. Assume the same conditions as in Proposition 2.1. Then before HTP terminates,

the following holds for t ≥ 1:

∥∥xt − x̄
∥∥ ≤
√
2κ(
√
µ)t
∥∥x0 − x̄

∥∥+ 3

ρ−
‖∇k+sF (x̄)‖ ,

where µ is given in Proposition 2.1.

In the literature, a variety of work has established theoretical guarantees on parameter estima-

tion, either under the RIP condition [24] or by relaxing the sparsity [158]. In contrast, neither of the

conditions are assumed in Proposition 2.2, owing to a careful analysis on the connection between

∇F (xt) and x̄. See Section 2.B for the proof. However, we point out that such an appealing behav-

ior is not guaranteed if (HTP3) does not output exact solutions, and in this case, we have to relax

the sparsity or use the RIP condition. In particular, suppose that

xt
∗ = argmin

supp(x)⊂St

F (x),

and (HTP3) outputs xt that obeys

supp
(
xt
)
⊂ St, F (xt)− F (xt

∗) ≤ ǫ. (2.5)

Note that this is a realistic scenario because even for simple functions, e.g., F (x) is the logistic

loss, convex solvers only ensure ǫ-approximate solutions. The major issue coming up with the ǫ-

approximate solutions is that the gradient of F (x) evaluated at xt does not vanish on the support

St, which makes the analysis of Proposition 2.2 invalid. Yet, we can still bound it under proper

conditions.

Lemma 2.3. Assume (A2) and (2.5). Then at any iteration t ≥ 1, we have

∥∥∇StF (xt)
∥∥ ≤

√
2ρ+ǫ.

Based on the lemma, we show the following RIP-based result for parameter estimation.

Proposition 2.4. Consider the HTP algorithm with inexact solutions (2.5). Suppose that the condi-

tion number κ < 1.25 and set k = s in (HTP2). Then picking η = η′/ρ+ with κ − 0.25 < η′ < 1

21

guarantees

∥∥xt − x̄
∥∥ ≤ (

√
2(κ− η′))t

∥∥x0 − x̄
∥∥+ 6κ

ρ−
‖∇k+sF (x̄)‖+

4
√
ρ+ǫ

ρ−
.

As the RIP condition is hard to fulfill for many machine learning problems, [75] proposed

to relax the sparsity parameter k = O
(
κ2s
)

in order to alleviate it. [131] further showed that

by relaxing the sparsity, a stochastic solver is able to produce an accurate solution for sparsity-

constrained programs. Inspired by their interesting work, we derive the following result for HTP.

Proposition 2.5. Consider the HTP algorithm with inexact solutions (2.5). Pick η < 1/ρ+ and let

k ≥ 2s + 8s
(ηρ−)2 . Then

∥∥xt − x̄
∥∥ ≤
√
2κ(
√
µ)t
∥∥x0 − x̄

∥∥+ 3

ρ−
‖∇k+sF (x̄)‖+

√
4ǫ

ρ−(1− µ) ,

where

µ = 1− ηρ−(1− ηρ+)
2

.

Weak Support Recovery

Propositions 2.4 and 2.5 offer useful results for parameter estimation. Namely it is guaranteed that

∥∥xt − x̄
∥∥ ≤ α · βt + γ,

where the detailed values of α, β and γ are given in the propositions. On the other hand, we have

the following well-known result that relates parameter estimation to support recovery.

Lemma 2.6. If ‖x− x̄‖ < x̄min, then supp (x) = supp (x̄).

The proof follows from algebra and the definition of x̄min. The lemma was broadly used to

show support recovery [146], and in principle we can impose

α · βt < x̄min

2
, γ <

x̄min

2
,

22

which results in supp
(
xt
)
= supp (x̄). However, the primary issue is that the iteration complexity

is O (log(1/x̄min)), where the quantity x̄min is entirely unknown. For practitioners, such a bound

does not guide the execution of the algorithm.

2.2.2 Main Results: Strong Support Recovery

This section is dedicated to a deterministic analysis on the performance of support recovery. In

particular, we focus on the iteration complexity and show that it does not depend on the unknown

quantity x̄min. We first treat the exact case, i.e., (HTP3) outputs exact solutions, along with a

detailed comparison with previous work in the literature. Then we demonstrate that even (HTP3) is

solved approximately, support recovery is still possible provided that ǫ is small enough compared

to the magnitude of the target signal.

The following theorem is one of the main results in the section. It justifies that under proper

conditions, HTP recovers the support of x̄ using finite iterations.

Theorem 2.7. Consider the HTP algorithm with exact solutions in (HTP3). Assume (A1) and (A2).

Pick η < 1/ρ+ in (HTP1) and k = s in (HTP2). Then HTP either terminates early, or recovers the

support of x̄ using at most

tmax =

(
3 log κ

log(1/µ)
+

2 log(2/(1 − λ))
log(1/µ)

+ 2

)
‖x̄‖0 (2.6)

iterations, provided that

x̄min ≥
2
√
2 +
√
κ

ρ−λ
‖∇k+sF (x̄)‖ (2.7)

for some constant λ ∈ (0, 1). Above, the quantity µ is given by

µ = 1− 2ρ−η(1− ηρ+)
1 + s

∈ (0, 1).

Below we discuss the important messages conveyed by the theorem and contrast our result with

prior work. For ease of exposition, we write η = η′/ρ+ for some constant η′ ∈ (0, 1), and it quickly

indicates that µ = 1−Θ(1/κ).

23

Iteration Complexity

We remind that the first term in (2.6) plays the most crucial role, since it dominates the other two

for sufficiently large κ. In the regime where κ itself is bounded by a constant from above, the iter-

ation complexity is simply explained as O (‖x̄‖0). Asymptotically, we can show that the iteration

complexity is dominated by κ log κ as κ tends to infinity, that is,

tmax = O (‖x̄‖0 κ log κ) .

This follows from a simple calculation on the Taylor expansion of log(1/µ) at the point x = 1,

with µ being replaced with 1−Θ(1/κ). Note that the number of iterations we obtained for support

recovery is as few as that for accurate parameter estimation (see Proposition 2.2). It is also worth

mentioning that the linear dependency on the sparsity of x̄ is near-optimal, because in the worst

case HTP may take several steps to pick only one correct support.

Conditions

We also emphasize that the condition (2.7) is now ubiquitous for analyzing the support recovery

performance. The quantity x̄min involved is natural, because a signal with large magnitude is easier

to recover than those with small or vanishing components. To see why ‖∇k+sF (x̄)‖ is used to lower

bound the magnitude of x̄, let us consider the compressed sensing problem (2.1) as an example. In

order to recover the true parameter x̄, we may choose F (x) as the least-squares, of which the

derivative evaluated at x = x̄ is given by

∇F (x̄) = A⊤ (Ax̄− y) = −A⊤e.

Hence,

‖∇k+sF (x̄)‖ =
∥∥∥A⊤

Ωe
∥∥∥ ,

where AΩ is a submatrix of A with columns indexed by Ω. Then the RSC and RSS conditions

assert that
√
ρ− ‖e‖ ≤ ‖∇k+sF (x̄)‖ ≤

√
ρ+ ‖e‖ .

24

Table 2.1: Comparison to previous work on HTP-style algorithms.

Target sparse signal RIP-free No sparsity relaxation Support recovery

[60] true signal ✗ ✓ ✗

[159] arbitrary ✗ ✗ ✗

[75] optimal solution ✓ ✗ ✗

[24] true signal ✗ ✓ ✓

[158, Theorem 1] optimal solution ✗ ✓ ✓

[158, Theorem 3] arbitrary ✓ ✗ ✓

Proposed Theorem 2.7 arbitrary ✓ ✓ ✓

Therefore, imposing the condition (2.7) amounts to distinguishing the true signal from the noise.

Comparison to Prior Work

We contrast our result to the state-of-the-art work [158]. To recover a sparse signal x̄, [158] required

the condition number κ < 1.14, which is not applicable to general machine learning problems. In

addition, support recovery was established only for a carefully chosen F (x), i.e., x̄ must be the

unique global minimizer of F (x) subject to a sparsity constraint (see Theorem 1 therein). Such a

requirement dramatically excludes many popular and simple choices of F (x). For example, let us

again examine the compressed sensing problem. With the presence of noise, it is almost impossible

for x̄ to be the global optimum of F (x) = ‖y −Ax‖2. Hence, one cannot apply the theoretical

result of [158] to justify the performance of HTP. In comparison, our theorem ensures that support

recovery is possible as far as the selected F (x) fulfills the condition (2.7). Though Theorem 3 in

[158] does not assume the RIP condition or the optimality of x̄ with respect to F (x), it requires a

relaxed sparsity parameter k = O
(
κ2s
)
, whereas Theorem 2.7 asserts that k = s suffices. We also

note that the iteration complexity was not provided by [158] in the relaxed sparsity case, whereas

we clearly state the dependency on all the parameters.

Compared with [24], it is not hard to see that the problem considered here is more general, since

we aim to recover an arbitrary sparse signal while they targeted the true parameter of compressed

sensing. [24] also imposed the RIP condition that is not invoked here. [73, 75] presented interesting

HTP-style algorithms with analysis on parameter estimation, but a guarantee on support recovery

was not considered. We summarize the comparison in Table 2.1.

25

Weakness

We remark that though Theorem 2.7 is free of the RIP condition and the relaxed sparsity, it im-

plicitly requires that HTP should not terminate too early. Otherwise, HTP may fail to recover the

support. We believe that it is a very interesting future direction to give a lower bound on the iteration

complexity of HTP. In the sequel, we strengthen our result by providing sufficient conditions which

prevents HTP from early stopping.

Improvements

We move on to the practical scenario where the results to be established also apply to the exact

case. As a reminder, due to the assumption (A1), (HTP3) is virtually solving a convex program.

Yet, since F (x) is a general function, (HTP3) can only be solved approximately by, e.g., gradient

descent [107], stochastic gradient descent [23], or the more recent variance reduced variant [78].

An interesting question to ask is, whether support recovery is possible under such a “noisy” setting,

and how the optimization error ǫ enters the conditions for this end.

The following theorem presents an affirmative answer, though the RIP condition is assumed.

Theorem 2.8. Consider the HTP algorithm with ǫ-approximate solutions in (HTP3). Assume (A1)

and (A2). Suppose that the condition number κ < 1.25. Pick η = η′/ρ+ with κ − 0.25 < η′ < 1

and set k = s in (HTP2). Then HTP recovers the support of x̄ using at most

tmax =

(
log κ

log(1/µ)
+

log(
√
2/(1− λ))

log(1/µ)
+ 2

)
‖x̄‖0 (2.8)

iterations, provided that

x̄min ≥
√
2 + 3

√
2κ

ρ−λ
‖∇k+sF (x̄)‖+

4

ρ−λ

√
ρ+ǫ (2.9)

for some constant λ ∈ (0, 1). Above, the quantity µ is given by

µ =
√
2(κ− η′) ∈ (0,

√
2/4).

Since the condition number is assumed to be well bounded, it follows that the iteration com-

26

plexity is a constant multiple of the sparsity, i.e.,O (‖x̄‖0). By examining the x̄min-condition (2.9),

we find that the optimization error ǫ does not propagate in a progressive manner. Rather, it en-

ters the condition as an additive error. By comparing (2.9) to (2.7), the exact case, one may ar-

gue that (2.9) is more stringent because it requires x̄min ≥ κ ‖∇k+sF (x̄)‖ while (2.7) imposes

x̄min ≥
√
κ ‖∇k+sF (x̄)‖. Yet, we point out that Theorem 2.8 is based on the RIP condition, i.e.,

κ < 1.25. So it is not appropriate to examine the asymptotic behavior for the condition (2.9).

Finally, we study under which RIP-free conditions can HTP guarantee support recovery in the

face of approximate solutions. We have the following result.

Theorem 2.9. Consider the HTP algorithm with ǫ-approximate solutions in (HTP3). Assume (A1)

and (A2). Pick η < 1/ρ+ and let k ≥ 2s+ 8s
(ηρ−)2 in (HTP2). Then HTP recovers the support of x̄

using at most

tmax =

(
3 log κ

log(1/µ)
+

4 log(
√
2/(1− λ))

log(1/µ)
+ 2

)
‖x̄‖0 (2.10)

iterations, provided that

x̄min ≥
2
√
2 +
√
κ

ρ−λ
‖∇k+sF (x̄)‖+ λ−1

(√
2

ρ−(1− µ) +
√

2

ρ−
κ

)
√
ǫ (2.11)

for some constant λ ∈ (0, 1). Above, the quantity µ is given by

µ = 1− ηρ−(1− ηρ+)
2

∈ (0, 1).

To be clear, due to sparsity relaxation, Theorem 2.9 only ensures support inclusion, i.e., S ⊂

Stmax . In [158], they showed that under the condition

x̄min > 1.62

√
2(F (x̄)− F (xopt))

ρ−
,

HTP terminates with output xt satisfying supp
(
xt, s

)
= S. However, the iteration number t was

not given. Either, it is not clear how large the difference F (x̄)− F (xopt) is, where xopt is a global

s-sparse minimizer of F (x) and we recall that x̄ is an arbitrary signal.

In contrast to Theorem 2.8, the quantity
√
ǫ here is multiplied by the condition number κ,

27

which will consume more computational resources in order to fulfill the condition. This is not

surprising because enlarging the support increases the chance of detecting the support but as a

price, it also introduces more noise. Fortunately, under the RSC and RSS assumptions, first order

solvers converges linearly. For instance, after O (κ log(1/ǫ)) steps, gradient descent guarantees an

ǫ-approximate solution.

In view of the existing study on convex optimization (see, for example, [107]), together with

Theorem 2.9, we can show that the total computational complexity of HTP is

(
d+ κ2s log d+ κ3s log(1/ǫ)

)
sκ log κ. (2.12)

To see this, note that (HTP1) consumes O (d) operations and (HTP2) costs O (k log d). Using gra-

dient descent to solve (HTP3) results in a complexity O (kκ log(1/ǫ)). Combining them together,

we obtain the above.

We point out that though Theorem 2.7 and Theorem 2.8 need to know the sparsity s, one can

set k to be a quantity smaller than s. In this case, our analysis shows that HTP recovers the support

of the top-k elements. In realistic applications, usually the parameter k is tuned by cross-validation

though.

2.2.3 Statistical Results

In this section, we relate our main results, Theorem 2.7 to Theorem 2.9, to concrete statistical

models. In particular, we study two prevalent models: the sparse linear regression and the sparse

logistic regression. Notably, it is known that similar statistical results can be built for low-rank

matrix regression, sparse precision matrix estimation, as suggested in [105, 2].

Sparse Linear Regression

For sparse linear regression, the observation model is given by

y = Ax̄+ e, ‖x̄‖0 ≤ s, (2.13)

28

where A ∈ R
n×d is the design matrix, y ∈ R

n is the response, e ∈ R
n is some noise, and x̄ is the

s-sparse true parameter we hope to estimate from the knowledge of A and y. Note that when we

have the additional constraint n≪ d, the model above is exactly that of compressed sensing (2.1).

In order to (approximately) estimate the parameter, a natural approach is to optimize the follow-

ing non-convex program:

min
x

F (x) :=
1

2n

n∑

i=1

‖yi − ai · x‖2 , s. t. ‖x‖0 ≤ s. (2.14)

For our analysis, we assume the following on the design matrix and the noise:

(A3) a1,a2, . . . ,an are independent and identically distributed (i.i.d.) Gaussian random vectors

N(0,Σ). All the diagonal elements of Σ satisfy Σjj ≤ 1. The noise e is independent of A

and its entries are i.i.d. Gaussian random variables N(0, σ2).

Lemma 2.10. Consider the sparse linear regression model (2.13) and the program (2.14). As-

sume (A3). Then for a sparsity level K ,

• with probability at least 1− exp(−C0n),

ρ−K = λmin(Σ)− C1
K log d

n
, ρ+K = λmax(Σ) + C2

K log d

n
;

• with probability at least 1− C3/d

‖∇KF (x̄)‖ ≤ C4σ

√
K log d

n
.

Above, λmin(Σ) and λmax(Σ) are the minimum and maximum singular values of Σ respectively.

This is a standard result in the literature, and its proof can be found in [119, 125]. Note that for

Theorem 2.7, as far as n ≥ 6C1(s log d)/λmin(Σ), the quantity ρ−2k+s is always positive, meaning

that (A1) is satisfied with high probability. This is also true for (A2). For the x̄min-condition

therein, with a calculation we find that it is met with high probability provided that n is large

enough.

29

Sparse Logistic Regression

For sparse logistic regression, the observation model is given by

P(yi | ai; x̄) =
1

1 + exp(−yia⊤
i x̄)

, ‖x̄‖0 ≤ K, ∀ 1 ≤ i ≤ n, (2.15)

where yi is either 0 or 1. It then learns the parameter by minimizing the negative log-likelihood:

min
x

F (x) :=
1

n

n∑

i=1

log
(
1 + exp(−yia⊤

i x)
)
, s. t. ‖x‖0 ≤ K, ‖x‖ ≤ ω. (2.16)

There is a large body of work showing that the statistical property is rather analogous to that of

linear regression. See, for example, [105, 159]. In fact, the statistical results apply to generalized

linear models as well.

2.2.4 Experiments

The HTP algorithm has been studied for several years and has found plenty of successful applica-

tions. There is also a large volume of empirical study, e.g., [24], showing that HTP performs better

in terms of computational efficiency and parameter estimation than compressive sampling matching

pursuit [103], subspace pursuit [45], iterative hard thresholding [20], to name a few. Hence, the

focus of our numerical study is to verify the theoretical findings.

The experimental settings are as follows:

• Data. In order to investigate the performance of HTP with both the exact and inexact solu-

tions, we consider the linear regression model y = Ax̄+ σe, where x̄ is a 100-dimensional

vector with a tunable sparsity s. The elements in the design matrix A and the noise e are i.i.d.

normal variables. The response y is an N -dimensional vector. For a certain sparsity level

s, the support of x̄ is chosen uniformly and the non-zero components of x̄ are i.i.d. normal

variables. If not specified, we set the sample size n = 100 and the noise level σ = 0.01.

• Evaluation metric. In the experiments, we are mainly interested in examining the percentage

of successful support recovery and the iteration number that guarantees it. We mark a trial

as success if before HTP terminates, there is a solution xt satisfying supp
(
xt
)
= supp (x̄).

30

Otherwise, we mark it as failure. The iteration number is counted only for those success trials

and we report the averaged result.

• Solvers. We choose the least-squares loss as the proxy function F (x), for which an exact

solution can be computed in (HTP3). We also implement the gradient descent (GD) algorithm

to approximately solve (HTP3). In order to produce solutions with different optimization error

ǫ, we run the GD algorithm with a various number of gradient oracle calls. In this way, we

are able to examine how ǫ affects support recovery through the number of oracle calls.

• Other settings. The step size η in HTP is fixed as η = 1. We use the true sparsity for

the sparsity parameter k in (HTP2). For each configuration of sparsity, we generate 100

independent copies of x̄. Hence, all the experiments are performed with 100 trials.

A notable aspect of our theoretical results is that after O (sκ log κ) iterations, HTP captures the

support. For the purpose of justification, we vary the sparsity s from 1 to 50, and plot the curve of

the iteration number used to identify the support against the true sparsity s. Note that we use the

same design matrix for all trials, hence a fixed condition number κ. The result is recorded in the

left panel of Figure 2.1. As predicted by our theorem, the iteration number is (almost) linear with

the sparsity. Interestingly, we also find that HTP uses far fewer steps than expected. For example,

to recover the support of a 20-sparse signal, 4 iterations suffice in average, suggesting possible

improvement of our theorems in special cases. Also note that for a given sparsity level, applying

an inexact solver for (HTP3) does not increase the iteration number of HTP. This is not surprising

since our theorem states that the optimization error in (HTP3) only enters the x̄min-condition. In

other words, it only affects the percentage of success as shown in the right panel of Figure 2.1.

Thanks to the linear convergence of gradient descent, it turns out that using 50 calls of gradient

oracle guarantees a comparable performance with the exact solution.

Next, we tune the number of measurements n from 1 to 100, and study the support recov-

ery performance against the choice of n. Here, the sparsity level s is fixed to s = 5. With

the sub-gaussian design, we have shown that the condition number can be upper bounded by

(C1n+ s log d)/(C2n− s log d). This indicates that the condition number is inversely proportional

to N after a proper shifting, and hence the iteration number. The curves on the left panel of Fig-

ure 2.2 matches our assertion. In the right panel, a phase transition emerges [53]. That is, above

31

1 10 20 30 40 50
0

2

4

6

8

10

#non−zeros

#i
te

ra
tio

ns

Exact
GD−10
GD−20
GD−50
GD−100
GD−200

1 10 20 30 40 50
0

20

40

60

80

100

#non−zeros

pe
rc

en
ta

ge
 o

f s
uc

ce
ss

Exact
GD−10
GD−20
GD−50
GD−100
GD−200

Figure 2.1: HTP: The iteration number and percentage of success against the sparsity.

a certain threshold (here the threshold is 20), support recovery is guaranteed with high probability

while below that threshold, we have no hope to estimate the signal. We also find that when suffi-

cient measurements are available, running GD with 10 gradient oracle calls already brings desirable

performance.

1 20 40 60 80 100

2

3

4

5

6

#measurements

#i
te

ra
tio

ns

Exact
GD−10
GD−20
GD−50
GD−100
GD−200

1 20 40 60 80 100
0

20

40

60

80

100

#measurements

pe
rc

en
ta

ge
 o

f s
uc

ce
ss

Exact
GD−10
GD−20
GD−50
GD−100
GD−200

Figure 2.2: HTP: The iteration number and percentage of success against the number of mea-

surements.

We remind that in Figure 2.1 and Figure 2.2, some values of #iterations are not plotted. For

example, we do not have the iteration number for GD–50 in Figure 2.1 when s ≥ 45. This is simply

because all the trials are marked as failure. See the associated percentage of success curve.

Now let us return to the x̄min-condition of Theorem 2.9, i.e., Eq. (2.11). From Figure 2.1 and

Figure 2.2, we conclude that as far as the optimization error is small enough, HTP with inexact

iterates behaves comparably to that with exact solutions. For example, the “GD–200” curve (black

solid) and the “Exact” curve (red dashed) in these two figures actually lie on top of each other even

the RIP condition is not met (small n or large s).

32

2.3 Towards A Principled Analysis of Support Recovery

We have shown that HTP enjoys iteration complexity proportional to the sparsity of the under-

lying signal. This section generalizes the hard thresholding operator to partial hard thresholding

(PHT) [74]. In this way, we are able to study the computational and statistical trade-off among the

family of the algorithms using the PHT operator.

Formally, given a support set T and a freedom parameter r > 0, the PHT operator which is used

to produce a k-sparse approximation to b is defined as follows:

PHTk (b;T, r) := argmin
x∈Rd

‖x− b‖ , s. t. ‖x‖0 ≤ k, |T\ supp (x)| ≤ r. (2.17)

The first constraint simply enforces a k-sparse solution. To gain intuition on the second one, con-

sider that T is the support set of the last iterate of an iterative algorithm, for which |T | ≤ k. Then

the second constraint ensures that the new support set differs from the previous one by at most r po-

sitions. As a special case, one may have noticed that the PHT operator reduces to the standard hard

thresholding when picking the freedom parameter r ≥ k. On the other spectrum, if we look at the

case where r = 1, the PHT operator yields the interesting algorithm termed orthogonal matching

pursuit with replacement [73], which in general replaces one element in each iteration.

It has been shown in [74] that the PHT operator can be computed in an efficient manner for a

general support set T and a freedom parameter r. In this section, our major focus will be on the

case |T | = k. Then Lemma 1 of [74] indicates that PHTk (b;T, r) is given as follows:

top = supp
(
bT , r

)
, PHTk (b;T, r) = Hk

(
bT∪top

)
, (2.18)

where Hk (·) is the standard hard thresholding operator that sets all but the k largest absolute com-

ponents of a vector to zero.

Equipped with the PHT operator, we are now in the position to describe a general iterative

greedy algorithm, termed PHT(r) where r is the freedom parameter in (2.17). At the t-th iteration,

the algorithm reveals the last iterate xt−1 as well as its support set St−1, and returns a new solution

33

as follows:

bt = xt−1 − η∇F (xt−1),

yt = PHTk

(
bt;St−1, r

)
, St = supp

(
yt
)
,

xt = argmin
x∈Rd

F (x), s. t. supp (x) ⊂ St.

Above, we note that η > 0 is a step size and F (x) is a proxy function which should be carefully

chosen (to be clarified later). Typically, the sparsity parameter k equals s, the sparsity of the target

signal x̄. In this section, we again consider a more general choice of k which leads to novel results.

One may have observed that in the context of sparsity-constrained minimization (2.2), the proxy

function F (x) used above is chosen as the objective function [159, 75]. In that scenario, the target

signal is a global optimum and PHT(r) proceeds as projected gradient descent. Nevertheless, recall

that our goal is to estimate an arbitrary signal x̄. It is not realistic to look for a function F (x)

such that our target happens to be its global minimizer. The remedy we will offer is characterizing

a deterministic condition between x̄ and ∇F (x̄) which is analogous to the signal-to-noise ratio

condition, so that any function F (x) fulfilling that condition suffices. In this light, we find that

F (x) behaves more like a proxy that guides the algorithm to a given target. Remarkably, our

analysis also encompasses the situation considered in [159, 75].

2.3.1 Deterministic Analysis

The following proposition shows that under very mild conditions, PHT(r) either terminates or re-

covers the support of an arbitrary s-sparse signal x̄ in few iterations.

Proposition 2.11. Consider the PHT(r) algorithm with k = s. Suppose that F (x) is ρ−2s-RSC and

ρ+2s-RSS, and the step size η ∈ (0, 1/ρ+2s). Let κ := ρ+2s/ρ
−
2s. Then PHT(r) either terminates or

recovers the support of x̄ withinO(sκ log κ) iterations provided that x̄min ≥ 4
√
2+2

√
κ

ρ−
2s

‖∇2sF (x̄)‖.

A few remarks are in order. First, we remind the reader that under the conditions stated above,

it is not guaranteed that PHT(r) succeeds. We say that PHT(r) fails if it terminates at some time

stamp t but St 6= S. This indeed happens if, for example, we feed it with a bad initial point and

pick a very small step size. In particular, if x0
min > η

∥∥∇F (x0)
∥∥
∞, then the algorithm makes

34

no progress. The crux to remedy this issue is imposing a lower bound on η or looking at more

coordinates in each iteration, which is the theme below. However, the proposition is still useful

because it asserts that as far as we make sure that PHT(r) runs long enough (i.e., O (sκ log κ)

iterations), it recovers the support of an arbitrary sparse signal. We also note that neither the RIP

condition nor a relaxed sparsity is assumed in this proposition. The x̄min-condition above is natural,

as has been discussed in Section 2.2.

In the following, we strengthen Prop. 2.11 by considering the RIP condition which requires a

well-bounded condition number.

Theorem 2.12. Consider the PHT(r) algorithm with k = s. Suppose that F (x) is ρ−2s+r-RSC and

ρ+2s+r-RSS. Let κ := ρ+2s+r/ρ
−
2s+r be the condition number which is smaller than 1 + 1/(

√
2 + ν)

where ν =
√

1 + s/r. Pick the step size η = η′/ρ+2s+r such that κ− 1√
2+ν

< η′ ≤ 1. Then PHT(r)

recovers the support of x̄ within

tmax =

(
log κ

log(1/β)
+

log(
√
2/(1 − λ))

log(1/β)
+ 2

)
‖x̄‖0

iterations, provided that for some constant λ ∈ (0, 1)

x̄min ≥
3
√
s+ 6

λρ−2s+r

‖∇s+rF (x̄)‖ .

Above, β = (
√
2 + ν)(κ− η′) ∈ (0, 1).

We remark several aspects of the theorem. The most important part is that Theorem 2.12 offers

the theoretical justification that PHT(r) always recovers the support. This is achieved by imposing

an RIP condition (i.e., bounding the condition number from the above) and using a proper step size.

We also make the iteration bound explicit, in order to examine the parameter dependency. First,

we note that tmax scales approximately linearly with λ. This conforms the intuition because a small

λ actually indicates a large signal-to-noise ratio, and hence easy to distinguish the support of interest

from the noise. The freedom parameter r is mainly encoded in the coefficient β through the quantity

ν. Observe that when increasing the scalar r, we have a small β, and hence fewer iterations. This

is not surprising since a large value of r grants the algorithm more freedom to look at the current

iterate. Indeed, in the best case, PHT(s) is able to recover the support in constant iterations while

35

PHT(1) has to take O (s) steps. However, if we investigate the x̄min-condition, we find that we

need a stronger SNR condition to afford a large freedom parameter.

It is also interesting to contrast Theorem 2.12 to [158, 24], which independently built state-of-

the-art support recovery results for HTP. As has been mentioned, [158] made use of the optimality

of the target signal, which is a restricted setting compared to our result. Their iteration bound

(see Theorem 1 therein), though provides an appealing insight, does not have a clear parameter

dependence on the natural parameters of the problem (e.g., sparsity and condition number). [24]

developed O (s) iteration complexity for compressed sensing. Again, they confined to a special

signal whereas we carry out a generalization that allows us to analyze a family of algorithms.

Though the RIP condition has been ubiquitous in the literature, many researchers point out that it

is not realistic in practical applications [17, 118, 125]. This is true for large-scale machine learning

problems, where the condition number may grow with the sample size (hence one cannot upper

bound it with a constant). A clever solution was first (to our knowledge) suggested by [75], where

they showed that using the sparsity parameter k = O
(
κ2s
)

guarantees convergence of projected

gradient descent. The idea was recently employed by [131, 158] to show an RIP-free condition for

sparse recovery, though in a technically different way. The following theorem borrows this elegant

idea to prove RIP-free results for PHT(r).

Theorem 2.13. Consider the PHT(r) algorithm. Suppose that F (x) is ρ−2k-RSC and ρ+2k-RSS. Let

κ := ρ+2k/ρ
−
2k be the condition number. Further pick k ≥ s +

(
1 + 4

η2(ρ−
2k)

2

)
min{s, r} where

η ∈ (0, 1/ρ+2k). Then the support of x̄ is included in the iterate of PHT(r) within

tmax =

(
3 log κ

log(1/µ)
+

2 log(2/(1 − λ))
log(1/µ)

+ 2

)
‖x̄‖0

iterations, provided that for some constant λ ∈ (0, 1),

x̄min ≥
√
κ+ 3

λρ−2k
‖∇k+sF (x̄)‖ .

Above, we have µ = 1− ηρ−
2k(1−ηρ+

2k)
2 .

We discuss the salient features of Theorem 2.13 compared to Prop. 2.11 and Theorem 2.12.

First, note that we can pick η = Θ(1/(2ρ+2k)) in the above theorem, which results in µ = Θ(1− 1
κ).

36

So the iteration complexity is essentially given byO (sκ log κ) that is similar to the one in Prop. 2.11.

However, in Theorem 2.13, the sparsity parameter k is set to be Θ(s+ κ2 min{s, r}) which guar-

antees support inclusion. We pose an open question of whether the x̄min-condition might be re-

fined, in that it currently scales with
√
κ which is stringent for ill-conditioned problems. Another

important consequence implied by the theorem is that the sparsity parameter k actually depends

on the minimum of s and r. Consider r = 1 which corresponds to the OMPR algorithm. Then

k = Θ(s+ κ2) suffices. In contrast, previous work of [75, 158, 131, 129] only obtained theoretical

result for k = Θ(κ2s), owing to a restricted problem setting. We also note that even in the original

OMPR paper [73] and its latest version [74], such an RIP-free condition was not established.

2.3.2 Statistical Results

Until now, all of our theoretical results are phrased in terms of deterministic conditions (i.e., RSC,

RSS and x̄min). It is known that these conditions can be satisfied by prevalent statistical models

such as linear regression and logistic regression. Here, we give detailed statistical results for sparse

linear regression (2.13), and we refer the reader to [2, 75, 131, 129] for other applications.

Recall the results in Lemma 2.10. For Proposition 2.11, recall that the sparsity level of RSC and

RSS is 2s. Hence, if we pick the sample size n = q · 2C1s log d/σmin(Σ) for some q > 1, then

4
√
2 + 2

√
κ2s

ρ−2s
‖∇2sF (x̄)‖ ≤ 4ω

2
√
2 +

√
σmax(Σ)
σmin(Σ) ·

√
1+C2/qC1

1−1/q

(1− 1/q)
√
qC1σmin(Σ)

.

The right-hand side is monotonically decreasing with q, which indicates that as soon as we pick

q large enough, it becomes smaller than x̄min. To be more concrete, consider that the covariance

matrix Σ is the identity matrix for which σmin(Σ) = σmax(Σ) = 1. Now suppose that q ≥ 2, which

gives an upper bound

4
√
2 + 2

√
κ2s

ρ−2s
‖∇2sF (x̄)‖ ≤

8ω(2
√
2 +

√
2 + C2/C1)√

qC1
.

37

Thus, in order to fulfill the x̄min-condition in Prop. 2.11, it suffices to pick

q = max

{
2,

(
8ω(2

√
2 +

√
2 + C2/C1)√

C1x̄min

)2}
.

For Theorem 2.12, it essentially asks for a well-conditioned design matrix at the sparsity level

2s+ r. Note that κ2s+r ≥ σmax(Σ)/σmin(Σ), which in return requires a well-conditioned covari-

ance matrix. Thus, to guarantee that κ2s+r ≤ 1+ ǫ for some ǫ > 0, it suffices to choose Σ such that

σmax(Σ)/σmin(Σ) < 1 + ǫ and pick n = q · C1(2s + r) log d/σmin(Σ) with

q =
1 + ǫ+C−1

1 C2σmax(Σ)/σmin(Σ)

1 + ǫ− σmax(Σ)/σmin(Σ)
.

Finally, Theorem 2.13 asserts support inclusion by expanding the support size of the iterates.

Suppose that η = 1/(2ρ+2k), which results in k ≥ s + (16κ22k + 1)min{r, s}. Given that the

condition number κ2k is always greater than 1, we can pick k ≥ s + 20κ22k min{r, s}. At a first

sight, this seems to be weird in that k depends on the condition number κ2k which itself relies on the

choice of k. In the following, we present concrete sample complexity showing that this condition

can be met. We will focus on two extreme cases: r = 1 and r = s.

For r = 1, we require k ≥ s+ 20κ22k . Let us pick n = 4C1k log d/σmin(Σ). In this way, we

obtain ρ−2k = 1
2σmin and ρ+2k ≤ (1 + C2

2C1
)σmax(Σ). It then follows that the condition number of the

design matrix κ2k ≤ (2 + C2

C1
)σmax(Σ)/σmin(Σ). Consequently, we can set the parameter

k = s+ 20

((
2 +

C2

C1

)
σmax(Σ)

σmin(Σ)

)2

.

Note that the above quantities depend only on the covariance matrix. Again, if Σ is the identity

matrix, the sample complexity is O (s log d).

For r = s, likewise k ≥ 20κ22ks suffices. Following the deduction above, we get

k = 20

((
2 +

C2

C1

)
σmax(Σ)

σmin(Σ)

)2

s.

38

2.3.3 Simulation

We complement our theoretical results by performing numerical experiments in this section. In

particular, we are interested in two aspects: first, the number of iterations required to identify the

support of an s-sparse signal; second, the tradeoff between the iteration number and percentage of

success resulted from different choices of the freedom parameter r.

We consider the compressed sensing model y = Ax̄ + 0.01e, where the dimension d = 200

and the entries of A and e are i.i.d. normal variables. Given a sparsity level s, we first uniformly

choose the support of x̄, and assign values to the non-zeros with i.i.d. normals. There are two

configurations: the sparsity s and the sample size n. Given s and n, we independently generate 100

signals and test PHT(r) on them. We say PHT(r) succeeds in a trial if it returns an iterate with

correct support within 10 thousands iterations. Otherwise we mark the trial as failure. Iteration

numbers to be reported are counted only on those success trials. The step size η is fixed to be the

unit, though one can tune it using cross-validation for better performance.

1 10 20 30 40 50 60 70 80 90100
0

10
20
30
40
50
60
70
80

#non−zeros

#i
te

ra
tio

ns

r = 1
r = 2
r = 5
r = 10
r = 100

n = 200

1 10 20 30 40 50 60 70 80 90100
0

20

40

60

80

100

#non−zeros

pe
rc

en
ta

ge
 o

f s
uc

ce
ss

r = 1
r = 2
r = 5
r = 10
r = 100

n = 200

1 50 100 150 200

2

4

6

8

10

12

14

#measurements

#i
te

ra
tio

ns

s = 10

r = 100

r = 5

r = 2

r = 1

1 50 100 150 200
0

20

40

60

80

100

#measurements

pe
rc

en
ta

ge
 o

f s
uc

ce
ss

r = 1
r = 2
r = 5
r = 10
r = 100

s = 10

Figure 2.3: PHT: Iteration number and success percentage against sparsity and sample size.

To study how the iteration number scales with the sparsity in practice, we fix n = 200 and tune

s from 1 to 100. We test different freedom parameter r on these signals. The results are shown in

the leftmost figure in Figure 2.3. As our theory predicted, we observe that within O (s) iterations,

PHT(r) precisely identifies the true support. In the second subfigure, we plot the percentage of

success against the sparsity. It appears that PHT(r) lays on top of each other. This is possibly

because we used a sufficiently large sample size.

Next, we fix s = 10 and vary n from 1 to 200. Surprisingly, from the rightmost figure, we

do not observe performance degrade using a large freedom parameter. So we conjecture that the

x̄min-condition we established can be refined.

Figure 2.3 also illustrates an interesting phenomenon: after a particular threshold, say r =

5, PHT(r) does not significantly reduces the iteration number by increasing r. This cannot be

39

explained by our theorems in the section. We leave it as a promising research direction.

2.4 Conclusion

In this chapter, we have studied the iteration complexity of the hard thresholding pursuit algorithm

for recovering the support of an arbitrary s-sparse signal. We have shown that if the iterates of HTP

are exact solutions, HTP recovers the support within O (sκ log κ) iterations where κ is the condi-

tion number. In a more practical machine learning setting, we have proved that even with inexact

solutions, support recovery is still possible with the same iteration bound. We also have presented

a principled analysis on a family of hard thresholding algorithms. To facilitate our analysis, we

appealed to the recently proposed partial hard thresholding operator. We have shown that under the

RIP condition or the relaxed sparsity condition, the PHT(r) algorithm recovers the support of an

arbitrary sparse signal x̄ within O(‖x̄‖0 κ log κ) iterations, provided that a generalized signal-to-

noise ratio condition is satisfied. On account of our unified analysis, we have established the best

known bound for HTP and OMPR. We have also illustrated that the simulation results agree with

our finding that the iteration number is proportional to the sparsity.

There are several interesting future directions. First, it would be interesting to examine if we can

close the logarithmic factor log κ in the iteration bound. Second, it is also useful to study RIP-free

conditions for two-stage PHT algorithms such as CoSaMP. Finally, we pose the open question of

whether one can improve the
√
κ factor in the x̄min-condition.

2.A Technical Lemmas

In this section, we collect technical lemmas that will be invoked in the proof of our main re-

sults. Throughout our proof, we presume without loss of generality that the elements in x̄ =

(x̄1, x̄2, . . . , x̄d) are in descending order by their magnitude, i.e., |x̄1| ≥ |x̄2| ≥ · · · ≥ |x̄s| and

x̄i = 0 for s < i ≤ d. We also write [n] := {1, 2, . . . , n} for brevity.

To ease notation, we also expand the partial hard thresholding algorithm with freedom parameter

40

r as follows at the t-th iteration:

bt = xt−1 − η∇F (xt−1)

J t = St−1 ∪ supp
(
∇F (xt−1), r

)

yt = Hk (() b
t
Jt)

St = supp
(
yt
)

xt = argmin
supp(x)⊂St

F (x)

The following lemma is a characterization of the co-coercivity of the objective function F (x).

A similar result was obtained in Corollary 8 of [110] but we present a refined analysis which is

essential for our purpose.

Lemma 2.14. For a given support set Ω, assume that the function F (x) is ρ+|Ω|-RSS and is ρ−K-RSC

for some sparsity level K . Then, for all vectors x and x′ with |supp (x− x′) ∪ Ω| ≤ K , we have

∥∥∇ΩF (x
′)−∇ΩF (x)

∥∥2 ≤ 2ρ+|Ω|
(
F (x′)− F (x)−

〈
∇F (x),x′ − x

〉)
.

Proof. We define an auxiliary function

G(w) := F (w)− 〈∇F (x),w〉 .

For all vectors w and w′, we have

∥∥∇G(w)−∇G(w′)
∥∥ =

∥∥∇F (w)−∇F (w′)
∥∥ ≤ ρ+|supp(w−w′)|

∥∥w −w′∥∥ ,

which is equivalent to

G(w)−G(w′)−
〈
∇G(w′),w −w′〉 ≤ ρ+r

2

∥∥w −w′∥∥2 , (2.19)

where r := |supp (w −w′)|. On the other hand, due to the RSC property of F (x), we obtain

G(w)−G(x) = F (w)− F (x)− 〈∇F (x),w − x〉 ≥
ρ−|supp(w−x)|

2
‖w − x‖2 ≥ 0,

41

provided that |supp (w − x)| ≤ K . For the given support set Ω, we pick w = x′ − 1
ρ+
|Ω|

∇ΩG(x
′).

Clearly, for such a choice of w, we have supp (w − x) = supp (x− x′)∪Ω. Hence, by assuming

that |supp (x− x′) ∪ Ω| is not larger than K , we get

G(x) ≤ G
(
x′ − 1

ρ+|Ω|
∇ΩG(x

′)

)

≤ G(x′) +

〈
∇G(x′),− 1

ρ+|Ω|
∇ΩG(x

′)

〉
+

1

2ρ+|Ω|

∥∥∇ΩG(x
′)
∥∥2

= G(x′)− 1

2ρ+|Ω|

∥∥∇ΩG(x
′)
∥∥2 ,

where the second inequality follows from (2.19). Now expanding ∇ΩG(x
′) and rearranging the

terms gives the desired result.

Lemma 2.15 (Lemma 1 in [148]). Let u and b be two distinct vectors and let W = supp (u) ∩

supp (b). Also, let U be the support set of the top r (in magnitude) elements in u. Then, the

following holds for all r ≥ 1:

〈u, b〉 ≤
√⌈ |W |

r

⌉
‖uU‖ · ‖bW ‖ .

Lemma 2.16. Suppose that F (x) is ρ−K-RSC and ρ+K -RSS for some sparsity level K > 0. Then for

all θ ∈ R, all vectors x, x′ ∈ R
d and for any Hessian matrix H of F (x), we have

∣∣〈x, (I − θH)x′〉∣∣ ≤ φK ‖x‖ ·
∥∥x′∥∥ ,

provided that |supp (x) ∪ supp (x′)| ≤ K , and

‖((I − θH)x)Ω‖ ≤ φK ‖x‖ , if |Ω ∪ supp (x)| ≤ K,

where

φK = max
{ ∣∣θρ−K − 1

∣∣ ,
∣∣θρ+K − 1

∣∣ }.

Proof. Since H is a Hessian matrix, we always have a decomposition H = A⊤A for some matrix

42

A. Denote T = supp (x) ∪ supp (x′). By simple algebra, we have

∣∣〈x, (I − θH)x′〉∣∣ =
∣∣〈x,x′〉− θ

〈
Ax,Ax′〉∣∣

ζ1
=
∣∣〈x,x′〉− θ

〈
ATx,ATx

′〉∣∣

=
∣∣∣
〈
x, (I − θA⊤

TAT)x
′
〉∣∣∣

≤
∥∥∥I − θA⊤

TAT

∥∥∥ · ‖x‖ ·
∥∥x′∥∥

ζ2
≤ max

{∣∣θρ−K − 1
∣∣ ,
∣∣θρ+K − 1

∣∣} · ‖x‖ ·
∥∥x′∥∥ .

Here, ζ1 follows from the fact that supp (x)∪supp (x′) = T and ζ2 holds because the RSC and RSS

properties imply that the singular values of any Hessian matrix restricted on an K-sparse support

set are lower and upper bounded by ρ−K and ρ+K , respectively.

For some index set Ω subject to |Ω ∪ supp (x)| ≤ K , let x′ = ((I−θH)x)Ω. We immediately

obtain

∥∥x′∥∥2 =
〈
x′, (I − θH)x

〉
≤ φK

∥∥x′∥∥ · ‖x‖ ,

indicating

‖((I − θH)x)Ω‖ ≤ φK ‖x‖ .

The proof is complete.

Lemma 2.17. Suppose that F (x) is ρ−K-RSC and ρ+K-RSS for some sparsity level K > 0. For all

vectors x, x′ ∈ R
d and support set T such that |supp (x− x′) ∪ T | ≤ K , for all θ ∈ R

∥∥(x− x′ − θ∇F (x) + θ∇F (x′)
)
T

∥∥ ≤ φK
∥∥x− x′∥∥ ,

where φK = max
{ ∣∣θρ−K − 1

∣∣ ,
∣∣θρ+K − 1

∣∣ }.

Proof. In fact, for any two vectors x and x′, there always exists a quantity t ∈ [0, 1], such that

∇F (x)−∇F (x′) = ∇2F
(
tx+ (1− t)x′) (x− x′).

43

Let H = ∇2F (tx+ (1− t)x′). We write

∥∥(x− x′ − θ∇F (x) + θ∇F (x′)
)
T

∥∥ =
∥∥(x− x′ − θH(x− x′))T

∥∥

=
∥∥((I − θH)(x− x′))T

∥∥

≤ φK
∥∥x− x′∥∥ ,

where the last inequality applies Lemma 2.16.

Lemma 2.18. Suppose that F (x) is ρ−K -RSC. Then for any vectors x and x′ with ‖x− x′‖0 ≤ K ,

the following holds:

∥∥x− x′∥∥ ≤
√

2max{F (x)− F (x′), 0}
ρ−K

+
2 ‖(∇F (x′))Ω‖

ρ−K
,

where Ω = supp (x− x′).

Proof. The RSC property immediately implies

F (x)− F (x′) ≥
〈
∇F (x′),x− x′〉+ ρ−K

2

∥∥x− x′∥∥2

≥ −
∥∥∇ΩF (x

′)
∥∥ ·
∥∥x− x′∥∥+ ρ−K

2

∥∥x− x′∥∥2 .

Discussing the sign of F (x) − F (x′) and solving the above quadratic inequality completes the

proof.

Proposition 2.19. Suppose that x̄ is s-sparse and for all t ≥ 1, xt is k-sparse. Further assume that

F (x) is ρ−k+s-RSC and ρ+k+s-RSS. Let κ := ρ+k+s/ρ
−
k+s. If for all t ≥ 1

F (xt)− F (x̄) ≤ µt
(
F (xt−1)− F (x̄)

)
+ τ,

where 0 < µt ≤ µ for some 0 < µ < 1, τ ≥ 0, then we have

∥∥xt − x̄
∥∥ ≤
√
2κ(
√
µ1µ2 . . . µt)

∥∥x0 − x̄
∥∥+ 3

ρ−k+s

‖∇k+sF (x̄)‖+
√

2τ

ρ−k+s(1− µ)
.

44

Proof. The RSS property implies that

F (x0)− F (x̄) ≤
〈
∇F (x̄),x0 − x̄

〉
+
ρ+k+s

2

∥∥x0 − x̄
∥∥2

≤
ρ+k+s

2

∥∥x0 − x̄
∥∥2 + 1

2ρ+k+s

‖∇k+sF (x̄)‖2 +
ρ+k+s

2

∥∥x0 − x̄
∥∥2

≤ ρ+k+s

∥∥x0 − x̄
∥∥2 + 1

2ρ+k+s

‖∇k+sF (x̄)‖2 .

Denote µ1:t = µ1µ2 . . . µt. We obtain

F (xt)− F (x̄) ≤ µ1:tρ+k+s

∥∥x0 − x̄
∥∥2 + 1

2ρ+k+s

‖∇k+sF (x̄)‖2 +
τ

1− µ.

By Lemma 2.18, we have

∥∥xt − x̄
∥∥

≤
√

2

ρ−k+s

√
µ1:tρ

+
k+s ‖x0 − x̄‖2 + 1

2ρ+k+s

‖∇k+sF (x̄)‖2 +
τ

1− µ +
2

m
‖∇k+sF (x̄)‖

≤
√
2κ(
√
µ1:t)

∥∥x0 − x̄
∥∥+

√
1

ρ−k+sρ
+
k+s

‖∇k+sF (x̄)‖+
2

ρ−k+s

‖∇k+sF (x̄)‖+
√

2τ

ρ−k+s(1− µ)

≤
√
2κ(
√
µ1:t)

∥∥x0 − x̄
∥∥+ 3

ρ−k+s

‖∇k+sF (x̄)‖+
√

2τ

ρ−k+s(1− µ)
.

The proof is complete.

Lemma 2.20. Suppose that F (x) is ρ−K-RSC and ρ+K-RSS for some sparsity level K > 0. Let

κ := ρ+K/ρ
−
K . For all vectors x, x′ ∈ R

d with |supp (x) ∪ supp (x′)| ≤ K , we have

∥∥x− x′∥∥ ≤ κ
∥∥x′

Ω

∥∥+ 1

ρ−K

∥∥(∇F (x)−∇F (x′))Ω
∥∥ ,

∥∥(x− x′)Ω
∥∥ ≤

(
1− 1

κ

)∥∥x− x′∥∥+ 1

ρ−K

∥∥(∇F (x)−∇F (x′))Ω
∥∥ .

where Ω is the support set of x.

Proof. We begin with bounding the ℓ2-norm of the difference of x and x′. Let T = supp (x′). For

45

any positive scalar θ ∈ R we have

∥∥(x− x′)Ω
∥∥2 =

〈
x− x′ − θ∇F (x) + θ∇F (x′), (x− x′)Ω

〉

+ θ
〈
∇F (x)−∇F (x′), (x − x′)Ω

〉

≤
∥∥(x− x′ − θ∇F (x) + θ∇F (x′))Ω

∥∥ ·
∥∥(x− x′)Ω

∥∥

+ θ
∥∥(∇F (x)−∇F (x′)

)
Ω

∥∥ ·
∥∥(x− x′)Ω

∥∥

≤
∥∥x− x′ − θ(∇F (x))Ω∪T + θ(∇F (x′))Ω∪T

∥∥ ·
∥∥(x− x′)Ω

∥∥

+ θ
∥∥(∇F (x)−∇F (x′)

)
Ω

∥∥ ·
∥∥(x− x′)Ω

∥∥

≤ φK
∥∥x− x′∥∥ ·

∥∥(x− x′)Ω
∥∥+ θ

∥∥(∇F (x)−∇F (x′)
)
Ω

∥∥ ·
∥∥(x− x′)Ω

∥∥ ,

where we recall that φK is given in Lemma 2.16. Dividing both sides by ‖(x− x′)Ω‖ gives

∥∥(x− x′)Ω
∥∥ ≤ φK

∥∥x− x′∥∥+ θ
∥∥(∇F (x)−∇F (x′))Ω

∥∥ .

On the other hand,

∥∥x− x′∥∥ ≤
∥∥(x− x′)Ω

∥∥+
∥∥(x− x′)Ω

∥∥

≤ φK
∥∥x− x′∥∥+ θ

∥∥(∇F (x)−∇F (x′))Ω
∥∥+

∥∥x′
Ω

∥∥ .

Hence, we have

∥∥x− x′∥∥ ≤ 1

1− φK
∥∥x′

Ω

∥∥+ θ

1− φK
∥∥(∇F (x)−∇F (x′))Ω

∥∥ .

Picking θ = 1/ρ+K , we have φK = 1 − 1
κ . Plugging these into the above and noting that ρ+K ≥ ρ−K

complete the proof.

Lemma 2.21. Consider the HTP algorithm with exact solution in (HTP3), or the PHT(r) algorithm.

Assume F (x) is ρ−k+s-RSC. Then for all t ≥ 1,

∥∥∇St\St−1F (xt−1)
∥∥2 ≥ 2ρ−k+sδt

(
F (xt−1)− F (x̄)

)
,

46

where

δt =

∣∣St\St−1
∣∣

|St\St−1|+ |S\St−1| .

Proof. The lemma holds clearly for either St = St−1 or F (xt) ≤ F (x̄). Hence, in the following

we only prove the result by assuming St 6= St−1 and F (xt) > F (x̄). Due to the RSC property, we

have

F (x̄)− F (xt−1)−
〈
∇F (xt−1), x̄− xt−1

〉
≥
ρ−k+s

2

∥∥x̄− xt−1
∥∥2 ,

which implies

〈
∇F (xt−1),−x̄

〉
≥
ρ−k+s

2

∥∥x̄− xt−1
∥∥2 + F (xt−1)− F (x̄)

≥
√

2ρ−k+s

∥∥x̄− xt−1
∥∥√F (xt−1)− F (x̄).

By invoking Lemma 2.15 with u = ∇F (xt−1) and b = −x̄ therein, we have

〈
∇F (xt−1),−x̄

〉
≤
√
|S\St−1|
|St\St−1| + 1

∥∥∇St\St−1F (xt−1)
∥∥ ·
∥∥x̄S\St−1

∥∥

=

√
|S\St−1|
|St\St−1| + 1

∥∥∇St\St−1F (xt−1)
∥∥ ·
∥∥(x̄− xt)S\St−1

∥∥

≤
√
|S\St−1|
|St\St−1| + 1

∥∥∇St\St−1F (xt−1)
∥∥ ·
∥∥x̄− xt

∥∥ .

It is worth mentioning that the first inequality above holds because ∇F (xt−1) is supported on St−1

and St\St−1 contains the
∣∣St\St−1

∣∣ number of largest (in magnitude) elements of ∇F (xt−1).

Therefore, we obtain the result.

Lemma 2.22. Assume that F (x) satisfies the properties of RSC and RSS at sparsity level k+ s+ r.

Let ρ− := ρ−k+s+r and ρ+ := ρ+k+s+r. Consider the support set J t = St−1 ∪ supp
(
∇F (xt−1), r

)
.

We have for any 0 < θ ≤ 1/ρ+,

∥∥x̄
Jt

∥∥ ≤ ν(1− θρ−)
∥∥xt−1 − x̄

∥∥+ ν

ρ−
‖∇s+rF (x̄)‖ ,

47

where ν =
√

1 + s/r. In particular, picking θ = 1/ρ+ gives

∥∥x̄Jt

∥∥ ≤ ν
(
1− 1

κ

)∥∥xt−1 − x̄
∥∥+ ν

ρ−
‖∇s+rF (x̄)‖ .

Proof. Let T = supp
(
∇F (xt−1), r

)
. Then J t = St−1 ∪ T and St−1 ∩ T = ∅. Since T contains

the top r elements of ∇F (xt−1), we have that each element in T\S is larger (in magnitude) than

that in S\T . In particular, we observe for T 6= S that

1

|T\S|
∥∥∥
(
∇F (xt−1)

)
T\S

∥∥∥
2
≥ 1

|S\T |
∥∥∥
(
∇F (xt−1)

)
S\T

∥∥∥
2
,

which implies

∥∥∥
(
∇F (xt−1)

)
T\S

∥∥∥ ≥
√
r − |T ∩ S|
s− |T ∩ S|

∥∥∥
(
∇F (xt−1)

)
S\T

∥∥∥ ≥
√
r

s

∥∥∥
(
∇F (xt−1)

)
S\T

∥∥∥ .

Since ∇F (xt−1) is supported on St−1, the LHS reads as

∥∥∥
(
∇F (xt−1)

)
T\S

∥∥∥ =
∥∥∥
(
∇F (xt−1)

)
T\(S∪St−1)

∥∥∥ =
1

θ

∥∥∥
(
xt−1 − θ∇F (xt−1)− x̄

)
T\(S∪St−1)

∥∥∥ .

Now we look at the RHS. It follows that

∥∥∥
(
∇F (xt−1)

)
S\T

∥∥∥ =
∥∥∥
(
∇F (xt−1)

)
S\(T∪St−1)

∥∥∥

=
1

θ

∥∥∥
(
xt−1 − θ∇F (xt−1)− x̄

)
S\(T∪St−1)

+ x̄S\(T∪St−1)

∥∥∥

≥ 1

θ

∥∥x̄S\(T∪St−1)

∥∥− 1

θ

∥∥∥
(
xt − θ∇F (xt)− x̄

)
S\(T∪St−1)

∥∥∥ .

48

Hence,

∥∥x̄Jt

∥∥ =
∥∥x̄S\(T∪St−1)

∥∥

≤
√
s

r

∥∥∥
(
xt−1 − θ∇F (xt−1)− x̄

)
T\(S∪St−1)

∥∥∥+
∥∥∥
(
xt−1 − θ∇F (xt−1)− x̄

)
S\(T∪St−1)

∥∥∥

≤
√
s

r

∥∥∥
(
xt−1 − θ∇F (xt−1)− x̄

)
T\S

∥∥∥+
∥∥∥
(
xt−1 − θ∇F (xt−1)− x̄

)
S\T

∥∥∥

≤ ν
∥∥(xt−1 − θ∇F (xt−1)− x̄

)
T∆S

∥∥

≤ ν
∥∥(xt−1 − θ∇F (xt−1)− x̄+ θ∇F (x̄)

)
T∆S

∥∥+ νθ ‖(∇F (x̄))T∆S‖

≤ νφk+s+r

∥∥xt−1 − x̄
∥∥+ νθ ‖(∇F (x̄))T∆S‖ ,

where ν =
√

1 + s/r and the last inequality uses Lemma 2.17. For any 0 < θ ≤ 1/ρ+, we have

∥∥x̄Jt

∥∥ ≤ ν(1− θρ−)
∥∥xt−1 − x̄

∥∥+ ν

ρ−
‖∇s+rF (x̄)‖ .

2.A.1 Crucial Lemmas

Lemma 2.23. Consider the HTP algorithm, or the PHT(r) algorithm with η < 1/ρ+2k . Assume that

F (x) is ρ−2k-RSC and ρ+2k-RSS. Further assume that the sequence of {xt}t≥0 satisfies

∥∥xt − x̄
∥∥ ≤ α · βt

∥∥x0 − x̄
∥∥+ ψ1,

∥∥xt − x̄
∥∥ ≤ γ

∥∥x̄
St

∥∥+ ψ2,

for positive α, ψ1, γ, ψ2 and 0 < β < 1. Suppose that at the n-th iteration (n ≥ 0), Sn contains

the indices of top p (in magnitude) elements of x̄. Then, for any integer 1 ≤ q ≤ s− p, there exists

an integer ∆ ≥ 1 determined by

√
2 |x̄p+q| > αγ · β∆−1

∥∥x̄{p+1,...,s}
∥∥+Ψ

49

where

Ψ = αψ2 + ψ1 +
1

ρ−2k
‖∇2F (x̄)‖ ,

such that Sn+∆ contains the indices of top p + q elements of x̄ provided that Ψ ≤
√
2λx̄min for

some λ ∈ (0, 1).

Proof. We aim at deriving a condition under which [p + q] ⊂ Sn+∆. To this end, it suffices to

enforce

min
j∈[p+q]

∣∣∣bn+∆
j

∣∣∣ > max
i∈S

∣∣∣bn+∆
i

∣∣∣ . (2.20)

On one hand, for any j ∈ [p+ q],

∣∣∣bn+∆
j

∣∣∣ =
∣∣∣
(
xn+∆−1 − η∇F (xn+∆−1)

)
j

∣∣∣

≥ |x̄j | −
∣∣∣
(
xn+∆−1 − x̄− η∇F (xn+∆−1)

)
j

∣∣∣

≥ |x̄p+q| −
∣∣∣
(
xn+∆−1 − x̄− η∇F (xn+∆−1)

)
j

∣∣∣ .

On the other hand, for all i ∈ S,

∣∣∣bn+∆
i

∣∣∣ =
∣∣(xn+∆−1 − x̄− η∇F (xn+∆−1)

)
i

∣∣ .

Hence, we know that to guarantee (2.20), it suffices to ensure for all j ∈ [p+ q] and i ∈ S that

|x̄p+q| >
∣∣∣
(
xn+∆−1 − x̄− η∇F (xn+∆−1)

)
j

∣∣∣+
∣∣(xn+∆−1 − x̄− η∇F (xn+∆−1)

)
i

∣∣ .

50

Note that the right-hand side is upper bounded as follows:

1√
2

∣∣∣
(
xn+∆−1 − x̄− η∇F (xn+∆−1)

)
j

∣∣∣+ 1√
2

∣∣(xn+∆−1 − x̄− η∇F (xn+∆−1)
)
i

∣∣

≤
∥∥∥
(
xn+∆−1 − x̄− η∇F (xn+∆−1)

)
{j,i}

∥∥∥

≤
∥∥∥
(
xn+∆−1 − x̄− η∇F (xn+∆−1) + η∇F (x̄)

)
{j,i}

∥∥∥+ η
∥∥(∇F (x̄)){j,i}

∥∥

≤ φ2k
∥∥xn+∆−1 − x̄

∥∥+ η ‖∇2F (x̄)‖

≤ φ2kα · β∆−1 ‖xn − x̄‖+ φψ1 + η ‖∇2F (x̄)‖ ,

where φ2k is given by Lemma 2.16. Note that φ2k < 1 whenever 0 < η < 1/ρ+2k . Moreover,

‖xn − x̄‖ ≤ γ
∥∥x̄Sn

∥∥+ ψ2 ≤ γ
∥∥∥x̄[p]

∥∥∥+ ψ2 = γ
∥∥x̄{p+1,...,s}

∥∥+ ψ2.

Put all the pieces together, we have

1√
2

∣∣∣
(
xn+∆−1 − x̄− η∇F (xn+∆−1)

)
j

∣∣∣+ 1√
2

∣∣(xn+∆−1 − x̄− η∇F (xn+∆−1)
)
i

∣∣

≤ αγ · β∆−1
∥∥x̄{p+1,...,s}

∥∥+ αψ2 + ψ1 + η ‖∇2F (x̄)‖

≤ αγ · β∆−1
∥∥x̄{p+1,...,s}

∥∥+ αψ2 + ψ1 +
1

ρ−2k
‖∇2F (x̄)‖ .

Therefore, when

√
2 |x̄p+q| > αγ · β∆−1

∥∥x̄{p+1,...,s}
∥∥+ αψ2 + ψ1 +

1

ρ−2k
‖∇2F (x̄)‖ ,

we always have (2.20). Note that the above holds as far as Ψ := αψ2 + ψ1 +
1

ρ−
2k

‖∇2F (x̄)‖ is

strictly smaller than
√
2 |x̄s|.

Theorem 2.24. Assume the same conditions as in Lemma 2.23. Then HTP and PHT(r) successfully

identify the support of x̄ using
(

log 2
2 log(1/β) +

log(αγ/(1−λ))
log(1/β) + 2

)
s number of iterations.

Proof. We partition the support set S = [s] into K folds S1, S2, . . . , SK , where each Si is defined

51

as follows:

Si = {si−1 + 1, . . . , si}, ∀ 1 ≤ i ≤ K.

Here, s0 = 0 and for all 1 ≤ i ≤ K , the quantity si is inductively given by

si = max
{
q : si−1 + 1 ≤ q ≤ s and |x̄q| >

1√
2

∣∣x̄si−1+1

∣∣
}
.

In this way, we note that for any two index sets Si and Sj , Si ∩ Sj = ∅ if i 6= j. We also know by

the definition of si that

|x̄si+1| ≤
1√
2

∣∣x̄si−1+1

∣∣ , ∀ 1 ≤ i ≤ K − 1. (2.21)

Now we show that after a finite number of iterations, say n, the union of the Si’s is contained in Sn,

i.e., the support set of the iterate xn. To this end, we prove that for all 0 ≤ i ≤ K ,

i⋃

t=0

St ⊂ Sn0+n1+···+ni (2.22)

for some ni’s given below. Above, S0 = ∅.

We pick n0 = 0 and it is easy to verify that S0 ⊂ S0. Now suppose that (2.22) holds for i− 1.

That is, the index set of the top si−1 elements of x̄ is contained in Sn0+···+ni−1 . Due to Lemma 2.23,

(2.22) holds for i as long as ni satisfies

√
2 |x̄si | > αγ · βni−1

∥∥x̄{si−1+1,...,s}
∥∥+Ψ, (2.23)

where Ψ is given in Lemma 2.23. Note that

∥∥x̄{si−1+1,...,s}
∥∥2 =

∥∥x̄Si

∥∥2 + · · ·+
∥∥x̄SK

∥∥2

≤ (x̄si−1+1)
2 |Si|+ · · · + (x̄sr−1+1)

2 |SK |

≤ (x̄si−1+1)
2
(
|Si|+ 2−1 |Si+1|+ · · ·+ 2i−K |SK |

)

< 2(x̄si)
2
(
|Si|+ 2−1 |Si+1|+ · · ·+ 2i−K |SK |

)
,

52

where the second inequality follows from (2.21) and the last inequality follows from the definition

of qi. Denote for simplicity

Wi := |Si|+ 2−1 |Si+1|+ · · · + 2i−K |SK | .

As we assumed Ψ ≤
√
2λx̄min, we get

αγ · βni−1
∥∥x̄{si−1+1,...,s}

∥∥+Ψ <
√
2αγ |x̄si |βni−1

√
Wi +

√
2λ |x̄si | .

Picking

ni = log1/β
αγ
√
Wi

1− λ + 2

guarantees (2.23). It remains to calculate the total number of iterations. In fact, we have

tmax = n0 + n1 + · · ·+ nK

=
1

2 log(1/β)

K∑

i=1

logWi +K · log(αγ/(1 − λ))
log(1/β)

+ 2K

ζ1
≤ K

2 log(1/β)
log

(
1

K

K∑

i=1

Wi

)
+

(
log(αγ/(1 − λ))

log(1/β)
+ 2

)
K

ζ2
≤ K

2 log(1/β)
log

(
2

K

K∑

i=1

|Si|
)

+

(
log(αγ/(1 − λ))

log(1/β)
+ 2

)
K

=
K

2 log(1/β)
log

2s

K
+

(
log(αγ/(1 − λ))

log(1/β)
+ 2

)
K

ζ3
≤
(

log 2

2 log(1/β)
+

log(αγ/(1 − λ))
log(1/β)

+ 2

)
s.

Above, ζ1 immediately follows by observing that the logarithmic function is concave. ζ2 uses the

fact that after rearrangement, the coefficient of |Si| is
∑i−1

j=0 2
−j which is always smaller than 2.

Finally, since the function a log(2s/a) is monotonically increasing with respect to a and 1 ≤ a ≤ s,

ζ3 follows.

53

2.B Proofs for Section 2.2

With the technical lemmas, we are now in the position to prove the main results in Section 2.2.

2.B.1 Proof of Proposition 2.1

Proof. Due to the RSS property, we have

F (bt+1
St+1)− F (xt) ≤

〈
∇F (xt), bt+1

St+1 − xt
〉
+
ρ+

2

∥∥bt+1
St+1 − xt

∥∥2

ζ1
=
〈
∇St+1\StF (xt), bt+1

St+1\St

〉
+
ρ+

2

(∥∥∥bt+1
St+1\St

∥∥∥
2

+
∥∥bt+1

St+1∩St − xt
St+1∩St

∥∥2 +
∥∥∥xt

St\St+1

∥∥∥
2)

ζ2
≤
〈
∇St+1\StF (xt), bt+1

St+1\St

〉
+ ρ+

∥∥∥bt+1
St+1\St

∥∥∥
2

ζ3
= − η(1 − ηρ+)

∥∥∇St+1\StF (xt)
∥∥2 .

Above, we observe that ∇F (xt) is supported on St and we simply docompose the support set

St+1∪St into three mutually disjoint sets, and hence ζ1 holds. To see why ζ2 holds, we note that for

any set Ω ⊂ St, bt+1
Ω = xt

Ω. Hence, bt+1
St+1∩St = xt

St+1∩St . Moreover, since xt
St\St+1 = bt+1

St\St+1

and any element in bt+1
St\St+1 is not larger than that in bt+1

St+1\St (recall that St+1 is obtained by

hard thresholding), we have
∥∥∥xt

St\St+1

∥∥∥ ≤
∥∥∥bt+1

St+1\St

∥∥∥ where we use the fact that
∣∣St\St+1

∣∣ =
∣∣St+1\St

∣∣. Therefore, ζ2 holds. Finally, we write bt+1
St+1\St = −η∇St+1\StF (xt) and obtain ζ3.

Since xt+1 is a minimizer of F (x) over the support set St+1, it immediately follows that

F (xt+1)− F (xt) ≤ F (bt+1
St+1)− F (xt) ≤ −η(1− ηρ+)

∥∥∇St+1\StF (xt)
∥∥2 .

Now we invoke Lemma 2.21 and pick η ≤ 1/ρ+,

F (xt+1)− F (xt) ≤ η(ηρ+ − 1) · 2ρ
−

1 + s

(
F (xt)− F (x̄)

)
,

which gives

F (xt+1)− F (x̄) ≤ µ
(
F (xt)− F (x̄)

)
,

54

where µ = 1− 2ρ−η(1−ηρ+)
1+s .

2.B.2 Proof of Proposition 2.2

Proof. This is a direct result by combining Proposition 2.1 and Proposition 2.19.

2.B.3 Proof of Lemma 2.3

Proof. Let xt
∗ = argminsupp(x)⊂St F (x). Since xt and xt

∗ are both supported on St, we apply

Lemma 2.14 and obtain

∥∥∇StF (xt)
∥∥2 =

∥∥∇StF (xt)−∇StF (xt
∗)
∥∥2

≤ 2ρ+
(
F (xt)− F (xt

∗)−
〈
∇F (xt

∗),x
t − xt

∗
〉)

≤ 2ρ+ǫ.

Above, the second inequality uses the fact that ∇StF (xt
∗) = 0 and F (xt) ≤ F (xt

∗) + ǫ.

2.B.4 Proof of Proposition 2.4

Proof. We have by Lemma 2.25 that

∥∥x̄
St+1

∥∥ ≤
√
2ρ
∥∥xt − x̄

∥∥+ 2

ρ−
‖∇k+sF (x̄)‖ ,

where ρ = 1− ηρ−. On the other hand, Lemma 2.20 together with Lemma 2.3 shows that

∥∥xt+1 − x̄
∥∥ ≤ κ

∥∥x̄
St+1

∥∥+ 1

ρ−
‖∇kF (x̄)‖+

1

ρ−
√

2ρ+ǫ.

Therefore,
∥∥xt+1 − x̄

∥∥ ≤
√
2κρ

∥∥xt − x̄
∥∥+ 3κ

ρ−
‖∇k+sF (x̄)‖+

√
2ρ+ǫ

ρ−

We need to ensure

√
2κ(1− ηρ−) < 1.

55

Let η = η′/ρ+ with η′ < 1. Then, the above holds provided that

κ < 1 +
1√
2

and η′ > κ− 1√
2
.

By induction and picking proper η′ to make
√
2κ(1 − ηρ−) <

√
2/4, we have

∥∥xt − x̄
∥∥ ≤ (

√
2(κ− η′))t

∥∥x0 − x̄
∥∥+ 6κ

ρ−
‖∇k+sF (x̄)‖+

4
√
ρ+ǫ

ρ−
.

This completes the proof.

Lemma 2.25. Let x̄ ∈ R
d be an s-sparse vector supported on S. For a k-sparse vector x supported

on Q with k ≥ s, let b = x− η∇F (x) and let T = supp (b, k). Suppose that the function F (x) is

ρ−2k+s-RSC and ρ+2k+s-RSS. Then we have

∥∥x̄S\T
∥∥ ≤ νφ2k+s ‖x− x̄‖+ νη ‖∇T∆SF (x̄)‖ ,

where ν =
√

1 + s/k and φ2k+s is given by Lemma 2.16.

Proof. We note the fact that the support sets T\S and S\T are disjoint. Moreover, the set T\S

contains |T\S| number of top |T | elements of b. Hence, we have

1

|T\S|
∥∥bT\S

∥∥2 ≥ 1

|S\T |
∥∥bS\T

∥∥2 . (2.24)

That is,

∥∥bT\S
∥∥ ≥

√
|T\S|
|S\T |

∥∥bS\T
∥∥ =

√
k − |T ∩ S|
s− |T ∩ S|

∥∥bS\T
∥∥ ≥

√
k

s

∥∥bS\T
∥∥ .

Note that the above holds also for T = S. Since x̄ is supported on S, the left hand side reads as

∥∥bT\S
∥∥ =

∥∥∥(x− x̄− η∇F (x))T\S

∥∥∥ ,

56

while the right hand side reads as

∥∥bS\T
∥∥ =

∥∥∥(x− x̄− η∇F (x))S\T + x̄S\T
∥∥∥

≥
∥∥x̄S\T

∥∥−
∥∥∥(x− x̄− η∇F (x))S\T

∥∥∥ .

Denote ν =
√

1 + s/k. In this way, we arrive at

∥∥x̄S\T
∥∥ ≤

√
s

k

∥∥∥(x− x̄− η∇F (x))T\S

∥∥∥+
∥∥∥(x− x̄− η∇F (x))S\T

∥∥∥

≤ ν ‖(x− x̄− η∇F (x))T∆S‖

≤ ν ‖(x− x̄− η∇F (x) + η∇F (x̄))T∆S‖+ νη ‖∇T∆SF (x̄)‖

≤ ν
∥∥∥(x− x̄− η∇F (x) + η∇F (x̄))T∪Q∪S

∥∥∥+ νη ‖∇T∆SF (x̄)‖

≤ νφ2k+s ‖x− x̄‖+ νη ‖∇T∆SF (x̄)‖ ,

where the second inequality follows from the fact that ax + by ≤
√
a2 + b2

√
x2 + y2 and we

applied Lemma 2.17 for the last inequality.

2.B.5 Proof of Proposition 2.5

Proof. Let xt
∗ = argminsupp(x)⊂St F (x). Then

F (xt)− F (xt−1) ≤ F (xt
∗)− F (xt−1) + ǫ

≤ F (btSt)− F (xt−1) + ǫ

≤ − 1− ηρ+
2η

∥∥btSt − xt−1
∥∥2 + ǫ,

57

where the last inequality follows from Lemma 2.26. Now we bound the term
∥∥btSt − xt−1

∥∥2. Note

that xt−1 is supported on St−1. Hence,

∥∥btSt − xt−1
∥∥2 =

∥∥xt−1
St∩St−1 − η∇StF (xt−1)− xt−1

∥∥2

=
∥∥∥−xt−1

St−1\St − η∇StF (xt−1)
∥∥∥
2

=
∥∥∥xt−1

St−1\St

∥∥∥
2
+ η2

∥∥∇StF (xt−1)
∥∥2

≥ η2
∥∥∇St\St−1F (xt−1)

∥∥2 .

We thus have

F (xt)− F (xt−1) ≤ −(1− ηρ+)η
2

∥∥∇St\St−1F (xt−1)
∥∥2 + ǫ.

Denote ξ =
∥∥∇St−1F (xt−1)

∥∥. We claim that

∥∥∇St\St−1F (xt−1)
∥∥2 ≥ ρ−

(
F (xt−1)− F (x̄)

)
− 2ξ2, (2.25)

which, combined with Lemma 2.3, immediately shows

F (xt)− F (xt−1) ≤ −(1− ηρ+)ηρ−
2

(
F (xt−1)− F (x̄)

)
+ 2ǫ.

Using Proposition 2.19 completes the proof.

To show (2.25), we consider two exhausitive cases:
∣∣St\St−1

∣∣ ≥ s and
∣∣St\St−1

∣∣ < s, and

prove that (2.25) holds for both cases.

58

Case I.
∣∣St\St−1

∣∣ ≥ s. Due to the RSC property, we have

ρ−

2

∥∥x̄− xt−1
∥∥2

≤ F (x̄)− F (xt−1)−
〈
∇F (xt−1), x̄− xt−1

〉

≤ F (x̄)− F (xt−1) +
ρ−

2

∥∥x̄− xt−1
∥∥2 + 1

2ρ−
∥∥∇S∪St−1F (xt−1)

∥∥2

= F (x̄)− F (xt−1) +
ρ−

2

∥∥x̄− xt−1
∥∥2 + 1

2ρ−
∥∥∇S\St−1F (xt−1)

∥∥2 + 1

2ρ−
∥∥∇St−1F (xt−1)

∥∥2

= F (x̄)− F (xt−1) +
ρ−

2

∥∥x̄− xt−1
∥∥2 + 1

2ρ−
∥∥∇S\St−1F (xt−1)

∥∥2 + 1

2ρ−
ξ2.

Therefore, we get

∥∥∇S\St−1F (xt−1)
∥∥2 ≥ 2ρ−

(
F (xt−1)− F (x̄)

)
− ξ2.

Since St contains the k largest absolute values of bt, and
∣∣St\St−1

∣∣ ≥ s ≥
∣∣S\St−1

∣∣, we have

∥∥∥btSt\St−1

∥∥∥
2
≥
∥∥∥btS\St−1

∥∥∥
2
,

which immediately implies (2.25) by noting the fact that btSt\St−1 = −η∇St\St−1F (xt−1) and

btS\St−1 = −η∇S\St−1F (xt−1).

Case II.
∣∣St\St−1

∣∣ < s. Again, we use the RSC property to obtain

ρ−

2

∥∥x̄− xt−1
∥∥2 ≤ F (x̄)− F (xt−1)−

〈
∇F (xt−1), x̄− xt−1

〉

≤ F (x̄)− F (xt−1) +
ρ−

4

∥∥x̄− xt−1
∥∥2 + 1

ρ−
∥∥∇S∪St−1F (xt−1)

∥∥2

= F (x̄)− F (xt−1) +
ρ−

4

∥∥x̄− xt−1
∥∥2 + 1

ρ−
∥∥∇S\St−1F (xt−1)

∥∥2 + 1

ρ−
ξ2

= F (x̄)− F (xt−1) +
ρ−

4

∥∥x̄− xt−1
∥∥2 + 1

ρ−
∥∥∇S\(St∪St−1)F (x

t−1)
∥∥2

+
1

ρ−
∥∥∇(St\St−1)∩SF (x

t−1)
∥∥2 + 1

ρ−
ξ2

≤ F (x̄)− F (xt−1) +
ρ−

4

∥∥x̄− xt−1
∥∥2 + 1

ρ−
∥∥∇S\(St∪St−1)F (x

t−1)
∥∥2

+
1

ρ−
∥∥∇St\St−1F (xt−1)

∥∥2 + 1

ρ−
ξ2. (2.26)

59

We consider the term
∥∥∇S\(St∪St−1)F (x

t−1)
∥∥2 above. Actually, we have

btS\(St∪St−1) = −η∇S\(St∪St−1)F (x
t−1).

Since St contains the k largest absolute values of bt, we know that any component in btΩ is not

larger than that in btSt subject to Ω ∩ St = ∅. In particular,

∥∥∥btS\(St∪St−1)

∥∥∥
2

|S\(St ∪ St−1)| ≤

∥∥∥bt(St∩St−1)\S

∥∥∥
2

|(St ∩ St−1)\S| .

Note that
∣∣St\St−1

∣∣ < s implies
∣∣(St ∩ St−1)\S

∣∣ ≥ k − 2s. Therefore,

η2
∥∥∇S\(St∪St−1)F (x

t−1)
∥∥2 ≤ s

k − 2s

∥∥∥xt−1
(St∩St−1)\S − η∇(St∩St−1)\SF (x

t−1)
∥∥∥
2

≤ 2s

k − 2s

∥∥∥xt−1
(St∩St−1)\S

∥∥∥
2
+

2sη2

k − 2s
ξ2

=
2s

k − 2s

∥∥(xt−1 − x̄)(St∩St−1)\S
∥∥2 + 2sη2

k − 2s
ξ2

≤ 2s

k − 2s

∥∥xt−1 − x̄
∥∥2 + 2sη2

k − 2s
ξ2.

Plugging the above into (2.31), we obtain

ρ−

2

∥∥x̄− xt−1
∥∥2 ≤ F (x̄)− F (xt−1) +

ρ−

4

∥∥x̄− xt−1
∥∥2 + 2s

(k − 2s)η2ρ−
∥∥x̄− xt−1

∥∥2

+
1

ρ−
∥∥∇St\St−1F (xt−1)

∥∥2 + 1

ρ−

(
2s

k − 2s
+ 1

)
ξ2.

Picking k ≥ 2s+ 8s
η2m2 gives

ρ−

2

∥∥x̄− xt−1
∥∥2 ≤ F (x̄)− F (xt−1) +

ρ−

2

∥∥x̄− xt−1
∥∥2

+
1

ρ−
∥∥∇St\St−1F (xt−1)

∥∥2 +
(
η2ρ−

4
+

1

ρ−

)
ξ2.

Since η < 1/ρ+, (ηρ−)2

4 + 1 < 2. Therefore, by re-arranging the above inequality, we prove the

claim (2.25).

Lemma 2.26. Suppose that x is a k-sparse vector and let b = x− η∇F (x). Let T be the support

60

set that contains the k largest absolute values of b. Assume that the function F (x) is ρ+2k-restricted

smooth, the we have the following:

F (bT) ≤ F (x)−
1− ηρ+2k

2η
‖bT − x‖2 .

Proof. The RSS condition implies that

F (bT)− F (x)

≤ 〈∇F (x), bT − x〉+ ρ+2k
2
‖bT − x‖2

≤ − 1

2η
‖bT − x‖2 + ρ+2k

2
‖bT − x‖2 ,

where the second inequality is due to the fact that

‖bT − b‖2 = ‖bT − x+ η∇F (x)‖2

≤ ‖x− x+ η∇F (x)‖2

= ‖η∇F (x)‖2 ,

implying

2η 〈∇F (x), bT − x〉 ≤ −‖bT − x‖2 .

This completes the proof.

2.B.6 Proof of Theorem 2.7

In view of the exact (HTP3), we have by Lemma 2.20

∥∥xt − x̄
∥∥ ≤ κ

∥∥x̄St

∥∥+ 1

ρ−
‖∇kF (x̄)‖ .

With this observation, Lemma 2.23, Theorem 2.24, and specific result in Proposition 2.2, Theo-

rem 2.7 follows immediately.

61

2.B.7 Proof of Theorem 2.8

The theorem follows from Lemma 2.23, Theorem 2.24, the specific result in Proposition 2.4 and

Lemma 2.3.

2.B.8 Proof of Theorem 2.9

The theorem follows from Lemma 2.23, Theorem 2.24, the specific result in Proposition 2.5 and

Lemma 2.3.

2.C Proofs for Section 2.3

This section generalizes the results of HTP, and present a more principled theoretical analysis that

uncovers HTP and OMPR.

2.C.1 Proof of Proposition 2.11

Proof. Recall that we set k = s. Using the RSS property, we have

F (zt
St)− F (xt−1) ≤

〈
∇F (xt−1),zt

St − xt−1
〉
+
ρ+2s
2

∥∥zt
St − xt−1

∥∥2

ζ1
=
〈
∇St\St−1F (xt−1),zt

St\St−1

〉
+
ρ+2s
2

(∥∥∥zt
St\St−1

∥∥∥
2

+
∥∥zt

St∩St−1 − xt−1
St∩St−1

∥∥2 +
∥∥∥xt−1

St−1\St

∥∥∥
2)

ζ2
≤
〈
∇St\St−1F (xt−1),zt

St\St−1

〉
+ ρ+2s

∥∥∥zt
St\St−1

∥∥∥
2

ζ3
= − η(1− ηρ+2s)

∥∥∇St\St−1F (xt−1)
∥∥2 .

Above, we observe that ∇F (xt−1) is supported on St−1 and we simply docompose the support

set St ∪ St−1 into three mutually disjoint sets, and hence ζ1 holds. To see why ζ2 holds, we

note that for any set Ω ⊂ St−1, zt
Ω = xt−1

Ω . Hence, zt
St∩St−1 = xt−1

St∩St−1 . Moreover, since

xt−1
St−1\St = zt

St−1\St and any element in zt
St−1\St is not larger than that in zt

St\St−1 (recall that St

is obtained by hard thresholding), we have
∥∥∥xt−1

St−1\St

∥∥∥ ≤
∥∥∥zt

St\St−1

∥∥∥ where we use the fact that
∣∣St\St

∣∣ =
∣∣St\St−1

∣∣. Therefore, ζ2 holds. Finally, we write zt
St\St−1 = −η∇St\St−1F (xt−1) and

obtain ζ3.

62

Since xt is a minimizer of F (x) over the support set St, it immediately follows that

F (xt)− F (xt−1) ≤ F (zt
St)− F (xt−1) ≤ −η(1− ηρ+2s)

∥∥∇St\St−1F (xt−1)
∥∥2 .

Now we invoke Lemma 2.21 and pick η ≤ 1/ρ+2s,

F (xt)− F (xt−1) ≤ −2mη(1− ηρ+2s) ·
∣∣St\St−1

∣∣
|St\St−1|+ |S\St−1|

(
F (xt−1)− F (x̄)

)
,

which gives

F (xt)− F (x̄) ≤ µt
(
F (xt−1)− F (x̄)

)
,

where µt = 1− 2ηρ−2s(1− ηρ+2s) ·
|St\St−1|

|St\St−1|+|S\St−1| . Now combining this with Prop. 2.19, we have

∥∥xt − x̄
∥∥ ≤
√
2κ
√
µ1µ2 . . . µt

∥∥x0 − x̄
∥∥+ 3

ρ−2s
‖∇2sF (x̄)‖ .

Note that before the algorithm terminates, 1 ≤
∣∣St\St−1

∣∣ ≤ r. Hence,

µt ≤ 1− 2ηρ−2s(1− ηρ+2s)
1 + s

=: µ.

It then follows that

∥∥xt − x̄
∥∥ ≤
√
2κ(
√
µ)t
∥∥x0 − x̄

∥∥+ 3

η
‖∇2sF (x̄)‖ . (2.27)

Lemma 2.20 tells us

∥∥xt − x̄
∥∥ ≤ κ

∥∥x̄
St

∥∥+ 1

η
‖∇sF (x̄)‖ . (2.28)

Hence, in light of Lemma 2.23 and Theorem 2.24, we obtain that PHT(r) recovers the support using

at most

tmax =

(
log 2

log(1/µ)
+

log(2κ)

log(1/µ)
+

2 log(κ/(1 − λ))
log(1/µ)

+ 2

)
‖x̄‖0

63

iterations. Note that picking η = O(1/ρ+2s), we have µ = O(1− 1
κ) and log(1/µ) = O(1/κ). This

gives the O(sκ log κ) bound.

2.C.2 Proof of Theorem 2.12

Proof. Let ρ− := ρ−2s+r and ρ+ := ρ+2s+r. Let φ := φ2s+r = 1 − ηρ− be the quantity given in

Lemma 2.16. Using Lemma 2.27, we obtain

∥∥xt − x̄
∥∥ ≤

(√
2φκ+ ν(κ− 1)

) ∥∥xt−1 − x̄
∥∥+ 3

√
s+ 4

ρ−
‖∇s+rF (x̄)‖ ,

where ν =
√

1 + s/r. We need to ensure that the convergence coefficient is smaller than 1. Con-

sider η = η′/ρ+ with η′ ∈ (0, 1] for which φ = 1− η′/κ. It follows that

√
2φκ+ ν(κ− 1) =

√
2(κ− η′) + ν(κ− 1) ≤ (

√
2 + ν)(κ− η′).

Hence, when we pick 1− 1√
2+ν

< η′ ≤ 1, and the condition number satisfies

κ < η′ +
1√
2 + ν

,

the sequence of xt − x̄ contracts. On the other hand, using Lemma 2.20 we get

∥∥xt − x̄
∥∥ ≤ κ

∥∥x̄St

∥∥+ 1

ρ−
‖∇sF (x̄)‖ .

Hence, applying Lemma 2.23 and Theorem 2.24 we obtain the result.

Lemma 2.27. Consider the PHT(r) algorithm with k = s. Suppose that F (x) is ρ−2s+r-RSC and

ρ+2s+r-RSS. Further suppose that κ < 2. Let the step size η ≤ 1/ρ+2s+r . Then it holds that

∥∥xt − x̄
∥∥ ≤

(√
2φκ+ ν(κ− 1)

) ∥∥xt−1 − x̄
∥∥+ 3

√
s+ 4

ρ−2s+r

‖∇s+rF (x̄)‖ ,

where φ = 1− ηρ−2s+r and ν =
√

1 + s/r.

Proof. Consider the vector zt
Jt . It is easy to see that J t\St contains the r smallest elements of zt

Jt .

64

Hence, for any subset T ⊂ J t such that |T | ≥ r, we have

∥∥∥zt
Jt\St

∥∥∥ ≤
∥∥zt

T

∥∥ .

In particular, we choose T = J t\S and obtain

∥∥∥zt
Jt\St

∥∥∥ ≤
∥∥∥zt

Jt\S

∥∥∥ .

Eliminating the common contribution from J t\(St ∪ S) gives

∥∥∥zt
Jt∩S\St

∥∥∥ ≤
∥∥∥zt

Jt∩St\S

∥∥∥ . (2.29)

The LHS of (2.29) reads as

∥∥∥zt
Jt∩S\St

∥∥∥ =
∥∥(xt−1 − η∇F (xt−1)− x̄)Jt∩S\St + x̄Jt\St

∥∥

≥
∥∥x̄Jt\St

∥∥−
∥∥(xt−1 − η∇F (xt−1)− x̄)Jt∩S\St

∥∥ ,

while the RHS (2.29) is given by

∥∥∥zt
Jt∩St\S

∥∥∥ =
∥∥(xt−1 − η∇F (xt−1)− x̄)Jt∩St\S

∥∥ .

Hence, we have

∥∥x̄Jt\St

∥∥ ≤
∥∥(xt−1 − η∇F (xt−1)− x̄)Jt∩S\St

∥∥+
∥∥(xt−1 − η∇F (xt−1)− x̄)Jt∩St\S

∥∥

≤
√
2
∥∥(xt−1 − η∇F (xt−1)− x̄)Jt

∥∥

≤
√
2φ2s+r

∥∥xt−1 − x̄
∥∥+
√
2η ‖∇k+rF (x̄)‖ ,

where we use Lemma 2.17 for the last inequality and φ2s+r = 1− ηρ−2s+r for η ≤ 1/ρ+2s+r. On the

other hand, Lemma 2.22 shows that

∥∥x̄Jt

∥∥ ≤ ν
(
1− 1

κ

)∥∥xt−1 − x̄
∥∥+ ν

ρ−2s+r

‖∇s+rF (x̄)‖ ,

65

where ν =
√

1 + s/r. The fact St = (J t\St) ∪ J t implies

∥∥x̄St

∥∥ ≤
∥∥x̄Jt\St

∥∥+
∥∥x̄Jt

∥∥

≤
(√

2φ2s+r + ν

(
1− 1

κ

))∥∥xt−1 − x̄
∥∥+

(
√
2η +

ν

ρ−2s+r

)
‖∇k+rF (x̄)‖ .

Next, we invoke Lemma 2.20 to get

∥∥xt − x̄
∥∥ ≤ κ

∥∥x̄St

∥∥+ 1

ρ−2s+r

‖∇kF (x̄)‖ .

Therefore,

∥∥xt − x̄
∥∥ ≤

(√
2φ2s+rκ+ ν(κ− 1)

) ∥∥xt−1 − x̄
∥∥+

(
√
2ηκ+

νκ

ρ−2s+r

+
1

ρ−2s+r

)
‖∇s+rF (x̄)‖

≤
(√

2φ2s+rκ+ ν(κ− 1)
) ∥∥xt−1 − x̄

∥∥+ 2
√
1 + s+ 4

ρ−2s+r

‖∇s+rF (x̄)‖ ,

where we use the assumption that κ < 2, the fact ν ≤
√
1 + s and η ≤ 1/ρ+2s+r < 1/ρ−2s+r for the

last inequality. The result follows by noting 2
√
1 + s < 3

√
s.

2.C.3 Proof of Theorem 2.13

Proof. Using Lemma 2.28, we have

F (xt)− F (x̄) ≤ µ
(
F (xt−1)− F (x̄)

)
,

where

µ = 1− ηρ−2k(1− ηρ+2k)
2

.

Now Prop. 2.19 suggests that

∥∥xt − x̄
∥∥ ≤
√
2κ (
√
µ)t
∥∥x0 − x̄

∥∥+ 3

ρ−2k
‖∇k+sF (x̄)‖ ,

66

and Lemma 2.20 implies

∥∥xt − x̄
∥∥ ≤ κ

∥∥x̄St

∥∥+ 1

ρ−2k
‖∇kF (x̄)‖ .

Combining these with Lemma 2.23 and Theorem 2.24 we complete the proof.

Lemma 2.28. Consider the PHT(r) algorithm. Suppose that F (x) is ρ−2k-RSC and ρ+2k-RSS, and

let κ = ρ+2k/ρ
−
2k be the condition number. Picking the step size 0 < η < 1/ρ+2k and the sparsity

parameter k ≥ s+
(
1 + 4

η2(ρ−
2k)

2

)
min{r, s}, then we have

F (xt)− F (xt−1) ≤ −ηρ
−
2k(1− ηρ+2k)

2

(
F (xt−1)− F (x̄)

)
.

Proof. Using Lemma 2.29 we obtain

F (xt)− F (xt−1) ≤ −1− ηρ+2k
2η

∥∥zt
St − xt−1

∥∥2 .

Note that for the right-hand side, we may expand it as follows:

∥∥zt
St − xt−1

∥∥2 =
∥∥xt−1

St − xt−1 − η∇StF (xt−1)
∥∥2

=
∥∥∥−xt−1

St−1\St − η∇St\St−1F (xt−1)
∥∥∥
2

=
∥∥∥xt−1

St−1\St

∥∥∥
2
+ η2

∥∥∇St\St−1F (xt−1)
∥∥2 ,

where we use the fact that xt−1 is supported on St−1 and ∇F (xt−1) is support on St−1 for the

second equality, and the third one follows in that the support sets are disjoint. It then follows

quickly that

F (xt)− F (xt−1) ≤ −(1− ηρ+2k)η
2

∥∥∇St\St−1F (xt−1)
∥∥2 .

It remains to lower bound the right-hand side in terms of F (xt−1)−F (x̄). In fact, in the following,

67

we show that

∥∥∇St\St−1F (xt−1)
∥∥2 ≥ ρ−2k

(
F (xt−1)− F (x̄)

)
. (2.30)

This suggests

F (xt)− F (xt−1) ≤ −ηρ
−
2k(1− ηρ+2k)

2

(
F (xt−1)− F (x̄)

)

which completes the proof. In the sequel, we prove the inequality (2.30) by discussing the size of

the support set St\St−1.

First, we consider r ≥ s. Then it is possible that
∣∣St\St−1

∣∣ ≥ s.

Case 1.
∣∣St\St−1

∣∣ ≥ s. Using the RSC property, we have

ρ−2k
2

∥∥x̄− xt−1
∥∥2

≤ F (x̄)− F (xt−1)−
〈
∇F (xt−1), x̄− xt−1

〉

≤ F (x̄)− F (xt−1) +
ρ−2k
2

∥∥x̄− xt−1
∥∥2 + 1

2ρ−2k

∥∥∇S∪St−1F (xt−1)
∥∥2

= F (x̄)− F (xt−1) +
ρ−2k
2

∥∥x̄− xt−1
∥∥2 + 1

2ρ−2k

∥∥∇S\St−1F (xt−1)
∥∥2 .

Therefore, we get

∥∥∇S\St−1F (xt−1)
∥∥2 ≥ 2ρ−2k

(
F (xt−1)− F (x̄

)
.

Recall that St\St−1 contains the largest elements of zt
St−1

. Hence, for any support set T ⊂ St−1

with |T | ≤
∣∣St\St−1

∣∣, we have

∥∥zt
T

∥∥ ≤
∥∥∥zt

St\St−1

∥∥∥ .

In particular, we can choose T = S\St−1 as we assumed that
∣∣St\St−1

∣∣ ≥ s ≥ |T |. Then it holds

68

that

∥∥∥zt
St\St−1

∥∥∥
2
≥
∥∥∥zt

S\St−1

∥∥∥
2
.

Note that for the left-hand side, zt
St\St−1 = −η∇St\St−1F (xt−1) while for the right-hand side, it

is exactly equal to −η∇S\St−1F (xt−1). This completes the proof of the first case.

Case 2.
∣∣St\St−1

∣∣ < s ≤ r. The proof of this part is more involved. We still begin with the RSC

property, which gives

ρ−2k
2

∥∥x̄− xt−1
∥∥2 ≤ F (x̄)− F (xt−1)−

〈
∇F (xt−1), x̄− xt−1

〉

≤ F (x̄)− F (xt−1) +
ρ−2k
4

∥∥x̄− xt−1
∥∥2 + 1

ρ−2k

∥∥∇S∪St−1F (xt−1)
∥∥2

= F (x̄)− F (xt−1) +
ρ−2k
4

∥∥x̄− xt−1
∥∥2 + 1

ρ−2k

∥∥∇S\St−1F (xt−1)
∥∥2

= F (x̄)− F (xt−1) +
ρ−2k
4

∥∥x̄− xt−1
∥∥2 + 1

ρ−2k

∥∥∇S\(St∪St−1)F (x
t−1)

∥∥2

+
1

ρ−2k

∥∥∇(St\St−1)∩SF (x
t−1)

∥∥2

≤ F (x̄)− F (xt−1) +
ρ−2k
4

∥∥x̄− xt−1
∥∥2 + 1

ρ−2k

∥∥∇S\(St∪St−1)F (x
t−1)

∥∥2

+
1

ρ−2k

∥∥∇St\St−1F (xt−1)
∥∥2 . (2.31)

Note that the last term is retained for deduction. What we need to show is a proper bound of the

term
∥∥∇S\(St∪St−1)F (x

t−1)
∥∥2 above. First, we observe that

zt
S\(St∪St−1) = −η∇S\(St∪St−1)F (x

t−1).

Next, we compare the elements of S\(St ∪ St−1) to those in (St ∩ St−1)\S. For convenience, we

denote T = J t\(St−1∪St). Since St contains the k largest elements of zt
Jt , those of (St∩St−1)\S

are larger than those in T . On the other hand, recall that elements in J t\St−1 are larger than those

in J t due to the partial hard thresholding. Since T is a subset of J t\St−1, we have that T is larger

than J t. Consequently, elements in (St ∩ St−1)\S are larger than those in T ∪ J t = St−1 ∪ St.

69

This suggests that

∥∥∥zt
S\(St∪St−1)

∥∥∥
2

|S\(St ∪ St−1)| ≤

∥∥∥zt
(St∩St−1)\S

∥∥∥
2

|(St ∩ St−1)\S| .

Note that
∣∣St\St−1

∣∣ < s implies
∣∣(St ∩ St−1)\S

∣∣ ≥ k − 2s. Therefore,

η2
∥∥∇S\(St∪St−1)F (x

t−1)
∥∥2 ≤ s

k − 2s

∥∥∥xt−1
(St∩St−1)\S − η∇(St∩St−1)\SF (x

t−1)
∥∥∥
2

=
s

k − 2s

∥∥∥xt−1
(St∩St−1)\S

∥∥∥
2

=
s

k − 2s

∥∥(xt−1 − x̄)(St∩St−1)\S
∥∥2

≤ s

k − 2s

∥∥xt−1 − x̄
∥∥2 .

Plugging the above into (2.31), we obtain

ρ−2k
2

∥∥x̄− xt−1
∥∥2 ≤ F (x̄)− F (xt−1) +

ρ−2k
4

∥∥x̄− xt−1
∥∥2 + s

(k − 2s)η2ρ−2k

∥∥x̄− xt−1
∥∥2

+
1

ρ−2k

∥∥∇St\St−1F (xt−1)
∥∥2 .

Picking k ≥ 2s+ 4s
η2(ρ−

2k)
2

gives

ρ−2k
2

∥∥x̄− xt−1
∥∥2 ≤ F (x̄)− F (xt−1) +

ρ−2k
2

∥∥x̄− xt−1
∥∥2 + 1

ρ−2k

∥∥∇St\St−1F (xt−1)
∥∥2 ,

which is exactly the claim (2.30).

Now we consider the parameter setting r < s. In this case,
∣∣St\St−1

∣∣ cannot be greater than s.

In fact, like we have done for Case 2, we can show that

η2
∥∥∇S\(St∪St−1)F (x

t−1)
∥∥2 ≤ r

k − r − s
∥∥xt−1 − x̄

∥∥2 .

70

Plugging the above into (2.31), we obtain

ρ−2k
2

∥∥x̄− xt−1
∥∥2 ≤ F (x̄)− F (xt−1) +

ρ−2k
4

∥∥x̄− xt−1
∥∥2 + r

(k − r − s)η2ρ−2k
∥∥x̄− xt−1

∥∥2

+
1

ρ−2k

∥∥∇St\St−1F (xt−1)
∥∥2 .

Using k ≥ s+ r + 4r
η2(ρ−

2k)
2

we prove (2.30).

Overall, we find that picking k ≥ s +
(
1 + 4

η2(ρ−
2k)

2

)
min{r, s} always guarantees the result.

Lemma 2.29. Consider the PHT(r) algorithm. Suppose that F (x) is ρ+2k-RSS. We have

F (xt)− F (xt−1) ≤ −1− ηρ+2k
2η

∥∥zt
St − xt−1

∥∥2 .

Proof. We partition zt into four disjoint parts: St−1\St, St−1∩St, St\St−1 and J t. It then follows

that

∥∥zt
St − zt

∥∥2 =
∥∥∥zt

St−1\St

∥∥∥
2
+
∥∥∥zt

Jt

∥∥∥
2

≤
∥∥∥zt

St\St−1

∥∥∥
2
+
∥∥∥zt

Jt

∥∥∥
2

=
∥∥∥zt

St−1

∥∥∥
2

= η2
∥∥∇F (xt−1)

∥∥2 .

On the other hand, the LHS reads as

∥∥zt
St − zt

∥∥2 =
∥∥zt

St − xt−1 + η∇F (xt−1)
∥∥2

=
∥∥zt

St − xt−1
∥∥2 + η2

∥∥∇F (xt−1)
∥∥2 + 2η

〈
∇F (xt−1),zt

St − xt−1
〉
.

Hence,

〈
∇F (xt−1),zt

St − xt−1
〉
≤ − 1

2η

∥∥zt
St − xt−1

∥∥2 .

71

Using the RSS property, we have

F (xt)− F (xt−1) ≤ F (yt)− F (xt−1)

= F (zt
St)− F (xt−1)

≤
〈
∇F (xt−1),zt

St − xt−1
〉
+
ρ+2k
2

∥∥zt
St − xt−1

∥∥2

≤ − 1− ηρ+2k
2η

∥∥zt
St − xt−1

∥∥2 .

This completes the proof.

72

Chapter 3

Learning Sparse Models with Stochastic

Optimization

3.1 Background

In this chapter, we are interested in the hard thresholding (HT) operator underlying a large body of

the developed algorithms in compressed sensing (e.g., IHT, CoSaMP, SP), machine learning [160],

and statistics [97]. Our motivation is two-fold. From a high level, compared to the convex programs,

these HT-based algorithms are always orders of magnitude computationally more efficient, hence

more practical for large-scale problems [143]. Nevertheless, they usually require a more stringent

condition to guarantee the success. This naturally raises an interesting question of whether we can

derive milder conditions for HT-based algorithms to achieve the best of the two worlds. For prac-

titioners, to address the huge volume of data, a popular strategy in machine learning is to appeal

to stochastic algorithms that sequentially update the solution. However, as many researchers ob-

served [85, 54, 151], it is hard for the ℓ1-based stochastic algorithms to preserve the sparse structure

of the solution as the batch solvers do. This immediately poses the question of whether we are able

to apply the principal idea of hard thresholding to stochastic algorithms while still ensuring a fast

convergence.

To elaborate the problem more precisely, let us first turn to some basic properties of hard thresh-

olding along with simple yet illustrative cases. For a general vector b ∈ R
d, the hard thresholded

73

signal Hk (b) is formed by setting all but the largest (in magnitude) k elements of b to zero. Ties

are broken lexicographically. Hence, the hard thresholded signalHk (b) is always k-sparse, i.e., the

number of non-zero components does not exceed k. Moreover, the resultant signal Hk (b) is a best

k-sparse approximation to b in terms of any ℓp norm (p ≥ 1). That is, for any k-sparse vector x

‖Hk (b)− b‖p ≤ ‖x− b‖p.

In view of the above inequality, a broadly used bound in the literature for the deviation of the

thresholded signal is as follows:

‖Hk (b)− x‖ ≤ 2 ‖b− x‖ . (3.1)

To gain intuition on the utility of (3.1) and to spell out the importance of offering a tight bound for

it, let us consider the compressed sensing problem as an example for which we aim to recover the

true sparse signal x from its linear measurements. Here, b is a good but dense approximation to x

obtained by, e.g., full gradient descent. Then (3.1) justifies that in order to obtain a structured (i.e.,

sparse) approximation by hard thresholding, the distance of the iterate to the true signal x is upper

bounded by a multiple of 2 to the one before. For comparison, it is worth mentioning that ℓ1-based

convex algorithms usually utilize the soft thresholding operator which enjoys the non-expansiveness

property [48], i.e., the iterate becomes closer to the optimum after projection. This salient feature

might partially attribute to the wide range of applications of the ℓ1-regularized formulations. Hence,

to derive comparable performance guarantee, tightening the bound (3.1) is crucial in that it controls

how much deviation the hard thresholding operator induces. This turns out to be more demanding

for stochastic gradient methods, where the proxy b itself is affected by the randomness of sample

realization. In other words, since b does not minimize the objective function (it only optimizes

the objective in expectation), the deviation (3.1) makes it more challenging to analyze the conver-

gence behavior. As an example, [110] proposed a stochastic solver for general sparsity-constrained

programs but suffered a non-vanishing optimization error due to randomness. This indicates that

to mitigate the randomness barrier, we have to seek a better bound to control the precision of the

thresholded solution and the variance.

74

3.1.1 Summary of Contributions

In this work, we make three contributions:

1. We examine the tightness of (3.1) that has been used for a decade in the literature and show

that the equality therein will never be attained. We then improve this bound and quantitatively

characterize that the deviation is inversely proportional to the value of
√
k. Our bound is tight,

in the sense that the equality we build can be attained for specific signals, hence cannot be

improved if no additional information is available. Our bound is universal in the sense that it

holds for all choices of k-sparse signals x and for general signals b.

2. Owing to the tight estimate, we demonstrate how the RIP (or RIP-like) condition assumed

by a wide range of hard thresholding based algorithms can be relaxed. In the context of

compressed sensing, it means that in essence, many more kinds of sensing matrices or fewer

measurements can be utilized for data acquisition. For machine learning, it suggests that

existing algorithms are capable of handling more difficult statistical models.

3. Finally, we present an computationally efficient algorithm that applies hard thresholding in

large-scale setting and we prove its linear convergence to a global optimum up to the statistical

precision of the problem. We also prove that with sufficient samples, our algorithm identifies

the true parameter for prevalent statistical models. Returning to (3.1), our analysis shows

that only when the deviation is controlled below the multiple of 1.15 can such an algorithm

succeed. This immediately implies that the conventional bound (3.1) is not applicable in the

challenging scenario.

3.1.2 Notation

For an integer d > 0, suppose that Ω is a subset of {1, 2, . . . , d}. Then for a general vector

v ∈ R
d, we define PΩ (·) as the orthogonal projection onto the support set Ω which retains elements

contained in Ω and sets others to zero. That is,

(PΩ (v))i =





vi, if i ∈ Ω,

0, otherwise.

75

In particular, let Γ be the support set indexing the k largest absolute components of v. In this way,

the hard thresholding operator is given by

Hk (v) = PΓ(v).

We will also use the orthogonal projection of a vector v onto an ℓ2-ball with radius ω. That is,

Πω(v) =
v

max{1, ‖v‖ /ω} .

3.2 The Key Bound

We argue that the conventional bound (3.1) is not tight, in the sense that the equality therein can

hardly be attained. To see this, recall how the bound was derived for a k-sparse signal x and a

general one b:

‖Hk (b)− x‖ = ‖Hk (b)− b+ b− x‖
ξ
≤ ‖Hk (b)− b‖+ ‖b− x‖ ≤ 2 ‖b− x‖ ,

where the last inequality holds because Hk (b) is a best k-sparse approximation to b. The major

issue occurs in ξ. Though it is the well-known triangle inequality and the equality could be attained

if there is no restriction on the signals x and b, we remind here that the signal x does have a

specific structure – it is k-sparse. Note that in order to fulfill the equality in ξ, we must have

Hk (b)− b = γ(b− x) for some γ ≥ 0, that is,

Hk (b) = (γ + 1)b− γx. (3.2)

One may verify that the above equality holds if and only if

x = b = Hk (b) . (3.3)

To see this, let Ω be the support set ofHk (b) and Ω be the complement. Let b1 = PΩ (b) = Hk (b)

and b2 = PΩ(b). Likewise, we define x1 and x2 as the components of x supported on Ω and Ω

respectively. Hence, (3.2) indicates x1 = b1 and x2 = (1 + γ−1)b2 where we assume γ > 0 since

76

γ = 0 immediately impliesHk (b) = b and hence the equality of (3.1) does not hold. If ‖b1‖0 < k,

then we have x2 = b2 = 0 since b1 contains the k largest absolute elements of b. Otherwise, the

fact that ‖x‖0 ≤ k and x1 = b1 implies x2 = 0, and hence b2. Therefore, we obtain (3.3).

When (3.3) happens, however, we in reality have ‖Hk (b)− x‖ = ‖b− x‖ = 0. In other

words, the factor of 2 in (3.1) can essentially be replaced with an arbitrary constant! In this sense,

we conclude that the bound (3.1) is not tight. Our new estimate for hard thresholding is as follows:

Theorem 3.1 (Tight Bound for Hard Thresholding). Let b ∈ R
d be an arbitrary vector and x ∈ R

d

be any K-sparse signal. For any k ≥ K , we have the following bound:

‖Hk (b)− x‖ ≤ √ν ‖b− x‖ , ν = 1 +
ρ+

√
(4 + ρ) ρ

2
, ρ =

min{K, d − k}
k −K +min{K, d − k} .

In particular, our bound is tight in the sense that there exist specific vectors of b and x such that the

equality holds.

Remark 1 (Maximum of ν). In contrast to the constant bound (3.1), our result asserts that the

deviation resulting from hard thresholding is inversely proportional to
√
k (when K ≤ d − k) in

a universal manner. When k tends to d, ρ is given by (d − k)/(d − K) which is still decreasing

with respect to k. Thus, the maximum value of ρ equals one. Even in this case, we find that
√
νmax =

√
1 +

√
5+1
2 =

√
5+1
2 ≈ 1.618.

Remark 2. Though for some batch algorithms such as IHT and CoSaMP, the constant bound (3.1)

suffices to establish the convergence due to specific conditions, we show in Section 3.4 that it cannot

ensure the global convergence for stochastic algorithms.

Remark 3. When x is not exactly K-sparse, we still can bound the error by ‖Hk (b)− x‖ ≤

‖Hk (b)−Hk (x)‖ + ‖Hk (x)− x‖. Thus, without loss of generality, we assumed that the signal

x is K-sparse.

Proof. (Sketch) Our bound follows from fully exploring the sparsity pattern of the signals and from

fundamental arguments in optimization. Denote

w := Hk (b) .

77

Let Ω be the support set of w and let Ω be its complement. We immediately have PΩ (b) = w. Let

Ω′ be the support set of x. Define

b1 = PΩ\Ω′ (b) , b2 = PΩ∩Ω′ (b) , b3 = PΩ\Ω′ (b) , b4 = PΩ∩Ω′ (b) .

Likewise, we define xi and wi for 1 ≤ i ≤ 4. Due to the construction, we have w1 = b1,w2 =

b2,w3 = w4 = x1 = x3 = 0. Our goal is to estimate the maximum value of ‖w − x‖2 / ‖b− x‖2.

It is easy to show that when attaining the maximum, ‖b3‖ must be zero. Denote

γ :=
‖w − x‖2

‖b− x‖2
=

‖b1‖2 + ‖b2 − x2‖2 + ‖x4‖2

‖b1‖2 + ‖b2 − x2‖2 + ‖b4 − x4‖2
. (3.4)

Note that the variables here only involve x and b. Arranging the equation we obtain

(γ − 1) ‖b2 − x2‖2 + γ ‖b4 − x4‖2 − ‖x4‖2 + (γ − 1) ‖b1‖2 = 0. (3.5)

It is evident that for specific choices of b and x, we have γ = 1. Since we are interested in the

maximum of γ, we assume γ > 1 below. Fixing b, we can view the left-hand side of the above

equation as a function of x. One may verify that the function has a positive definite Hessian matrix

and thus it attains the minimum at stationary point given by

x∗
2 = b2, x∗

4 =
γ

γ − 1
b4. (3.6)

On the other hand, (3.5) implies that the minimum function value should not be greater than zero.

Plugging the stationary point back gives

‖b1‖2 γ2 − (2 ‖b1‖2 + ‖b4‖2)γ + ‖b1‖2 ≤ 0.

Solving the above inequality with respect to γ, we obtain

γ ≤ 1 +
(
2 ‖b1‖2

)−1
(
‖b4‖2 +

√(
4 ‖b1‖2 + ‖b4‖2

)
‖b4‖2

)
. (3.7)

To derive an upper bound that is uniform over the choice of b, we recall that b1 contains the largest

78

absolute elements of b while b4 has smaller values. In particular, the average in b1 is larger than

that in b4, which gives

‖b4‖2/‖b4‖0 ≤ ‖b1‖2/‖b1‖0.

Note that ‖b1‖0 = k−‖b2‖0 = k−(K−‖b4‖0). Hence, combining with the fact that 0 ≤ ‖b4‖0 ≤

min{K, d − k} and optimizing over ‖b4‖0 in the above inequality gives

‖b4‖2 ≤
min{K, d − k}

k −K +min{K, d − k} ‖b1‖
2 . (3.8)

Finally, we arrive at a uniform upper bound

γ ≤ 1 +
ρ+

√
(4 + ρ) ρ

2
, ρ =

min{K, d − k}
k −K +min{K, d − k} .

See Appendix 3.B for the full proof.

Remark 4 (Tightness). We construct proper vectors b and x to establish the tightness of our bound

by a backward induction. Note that γ equals ν if and only if ‖b4‖2 = ρ ‖b1‖2. Hence, we pick

‖b4‖2 = ρ ‖b1‖2 , x2 = b2, x4 =
ν

ν − 1
b4, (3.9)

where x2 and x4 are actually chosen as the stationary point as in (3.6). We note that the quantity of

ν only depends on d, k and K , not on the components of b or x. Plugging the above back to (3.4)

justifies γ = ν.

It remains to show that our choices in (3.9) do not violate the definition of bi’s, i.e., we need to

ensure that the elements in b1 or b2 are equal to or greater than those in b3 or b4. Note that there is

no such constraint for the K-sparse vector x. Let us consider the case K < d− k and ‖b4‖0 = K ,

so that ‖b1‖0 = k and ρ = K/k. Thus, the first equality of (3.9) holds as soon as all the entries of

b have same magnitude. The fact ‖b4‖0 = K also implies Ω′ is a subset of Ω due to the definition

of b4 and the sparsity of x, hence we have x2 = 0 = b2. Finally, picking x4 as we did in (3.9)

completes the reasoning since it does not violate the sparsity constraint on x.

As we pointed out and just verified, the bound given by Theorem 3.1 is tight. However, if there

is additional information for the signals, a better bound can be established. For instance, let us

79

further assume that the signal b is r-sparse. If r ≤ k, then b4 is a zero vector and (3.7) reads as

γ ≤ 1. Otherwise, we have ‖b4‖0 ≤ min{K, r − k} and (3.8) is improved to

‖b4‖2 ≤
min{K, r − k}

k −K +min{K, r − k} ‖b1‖
2 .

Henceforth, we can show that the parameter ρ is given by

ρ =
min{K, r − k}

k −K +min{K, r − k} .

Note that the fact r ≤ d implies that the above is a tighter bound than the one in Theorem 3.1.

We would also like to mention that in Lemma 1 of [75], a closely related bound was established:

‖Hk (b)− b‖ ≤
√
d− k
d−K ‖b− x‖ . (3.10)

One may use this nice result to show that

‖Hk (b)− x‖ ≤ ‖Hk (b)− b‖+ ‖b− x‖ ≤
(
1 +

√
d− k
d−K

)
‖b− x‖ , (3.11)

which also improves on (3.1) provided k > K. However, one shortcoming of (3.11) is that the

factor depends on the dimension. For comparison, we recall that in the regime K ≤ d − k, our

bound is free of the dimension. This turns out to be a salient feature to integrate hard thresholding

into stochastic methods, and we will comment on it more in Section 3.4.

3.3 Implications to Compressed Sensing

In this section, we investigate the implications of Theorem 3.1 for compressed sensing and signal

processing. Since most of the HT-based algorithms utilize the deviation bound (3.1) to derive the

convergence condition, they can be improved by our new bound. We exemplify the power of our

theorem on two popular algorithms: IHT [20] and CoSaMP [103]. We note that our analysis also

applies to their extensions such as [10]. To be clear, the purpose of this section is not dedicated to

improving the best RIP condition for which recovery is possible by any methods (either convex or

non-convex). Rather, we focus on two broadly used greedy algorithms and illustrate how our bound

80

improves on previous results.

We proceed with a brief review of the problem setting in compressed sensing. Compressed

sensing algorithms aim to recover the true K-sparse signal x∗ ∈ R
d from a set of its (perhaps

noisy) measurements

y = Ax∗ + e, (3.12)

where e ∈ R
d is some observation noise and A is a known n × d sensing matrix with n ≪ d,

hence the name compressive sampling. In general, the model is not identifiable since it is an under-

determined system. Yet, the prior knowledge that x∗ is sparse radically changes the premise. That

is, if the geometry of the sparse signal is preserved under the action of the sampling matrix A for

a restricted set of directions, then it is possible to invert the sampling process. Such a novel idea

was quantified as the kth restricted isometry property of A by [37], which requires that there exists

a constant δ ≥ 0, such that for all k-sparse signals x

(1− δ) ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ) ‖x‖2 . (3.13)

The kth restricted isometry constant (RIC) δk is then defined as the smallest one that satisfies the

above inequalities. Note that δ2k < 1 is the minimum requirement for distinguishing all k-sparse

signals from the measurements. This is because for two arbitrary k-sparse vectors x1 and x2 and

their respective measurements y1 and y2, the RIP condition reads as

(1− δ2k) ‖x1 − x2‖2 ≤ ‖y1 − y2‖2 ≤ (1 + δ2k) ‖x1 − x2‖2 ,

for which δ2k < 1 guarantees that x1 6= x2 implies y1 6= y2. To date, there are three quintessen-

tial examples known to exhibit a profound restricted isometry behavior as long as the number of

measurements is large enough: Gaussian matrices (optimal RIP, i.e., very small δk), partial Fourier

matrices (fast computation) and Bernoulli ensembles (low memory footprint). Notably, it was shown

in recent work that random matrices with a heavy-tailed distribution also satisfy the RIP with over-

whelming probability [1, 89].

Equipped with the standard RIP condition, many efficient algorithms have been developed. A

partial list includes ℓ1-norm based convex programs, IHT, CoSaMP, SP and regularized OMP [104],

81

along with much interesting work devoted to improving or sharpening the RIP condition [149, 102,

30, 101]. To see why relaxing RIP is of central interest, note that the standard result [12] asserts that

the RIP condition δk ≤ δ holds with high probability over the draw of A provided

n ≥ C0δ
−2k log(d/k). (3.14)

Hence, a slight relaxation of the condition δk ≤ δ may dramatically decrease the number of mea-

surements. That being said, since the constant C0 above is unknown, in general one cannot tell the

precise sample size for greedy algorithms. Estimating the constant is actually the theme of phase

transition [53, 52]. While precise phase transition for ℓ1-based convex programs has been well

understood [146], an analogous result for greedy algorithms remains an open problem. Notably,

in [18], phase transition for IHT/CoSaMP was derived using the constant bound (3.1). We believe

that our tight bound shall sharpen these results and we leave it as our future work. In the present

chapter, we focus on the ubiquitous RIP condition. In the language of RIP, we establish improved

results.

3.3.1 Iterative Hard Thresholding

The IHT algorithm recovers the underlying K-sparse signal x∗ by iteratively performing a full

gradient descent on the least-squares loss followed by a hard thresholding step. That is, IHT starts

with an arbitrary point x0 and at the t-th iteration, it updates the new solution as follows:

xt = Hk

(
xt−1 +A⊤(y −Axt−1)

)
. (3.15)

Note that [20] used the parameter k = K . However, in practice one may only know to an upper

bound on the true sparsity K . Thus, we consider the projection sparsity k as a parameter that

depends on K . To establish the global convergence with a geometric rate of 0.5, [20] applied the

bound (3.1) and assumed the RIP condition

δ2k+K ≤ 0.18. (3.16)

82

As we have shown, (3.1) is actually not tight and hence, their results, especially the RIP condition

can be improved by Theorem 3.1.

Theorem 3.2. Consider the model (3.12) and the IHT algorithm (3.15). Pick k ≥ K and let

{xt}t≥1 be the iterates produced by IHT. Then, under the RIP condition δ2k+K ≤ 1/
√
8ν, for all

t ≥ 1
∥∥xt − x∗∥∥ ≤ 0.5t

∥∥x0 − x∗∥∥+C ‖e‖ ,

where ν is given by Theorem 3.1.

Let us first study the vanilla case k = K . [20] required δ3K ≤ 0.18 whereas our analysis

shows δ3K ≤ 0.22 suffices. Note that even a little relaxation on RIP is challenging and may require

several pages of mathematical induction [33, 29, 61]. In contrast, our improvement comes from a

direct application of Theorem 3.1 which only modifies several lines of the original proof in [20]. See

Appendix 3.C for details. In view of (3.14), we find that the necessary number of measurements

for IHT is dramatically reduced with a factor of 0.67 by our new theorem in that the minimum

requirement of n is inversely proportional to the square of δ2k+K .

Another important consequence of the theorem is a characterization on the RIP condition and

the sparsity parameter, which, to the best of our knowledge, has not been studied in the literature. In

[20], when gradually tuning k larger than K , it always requires δ2k+K ≤ 0.18. Note that due to the

monotonicity of RIC, i.e., δr ≤ δr′ if r ≤ r′, the condition turns out to be more and more stringent.

Compared to their result, since ν is inversely proportional to
√
k, Theorem 3.2 is powerful especially

when k becomes larger. For example, suppose k = 20K . In this case, Theorem 3.2 justifies that

IHT admits the linear convergence as soon as δ41K ≤ 0.32 whereas [20] requires δ41K ≤ 0.18.

Such a property is appealing in practice, in that among various real-world applications, the true

sparsity is indeed unknown and we would like to estimate a conservative upper bound on it.

On the other hand, for a given sensing matrix, there does exist a fundamental limit for the max-

imum choice of k. To be more precise, the condition in Theorem 3.2 together with the probabilistic

argument (3.14) require

1/
√
8ν ≥ δ2k+K , C1ν(2k +K) log (d/(2k +K)) ≤ n.

83

Although it could be very interesting to derive a quantitative characterization for the maximum value

of k, we argue that it is perhaps intractable owing to two aspects: First, it is known that one has

to enumerate all the combinations of the 2k +K columns of A to compute the restricted isometry

constant δ2k+K [8, 9]. This suggests that it is NP-hard to estimate the largest admissible value of

k. Also, there is no analytic solution of the stationary point for the left-hand side of the second

inequality.

3.3.2 Compressive Sampling Matching Pursuit

The CoSaMP algorithm proposed by [103] is one of the most efficient algorithms for sparse recov-

ery. Let F (x) = ‖y −Ax‖2. CoSaMP starts from an arbitrary initial point x0 and proceeds as

follows:

Ωt = supp
(
∇F (xt−1), k

)
∪ supp

(
xt−1

)
,

bt = argmin
x

F (x), s. t. supp (x) ⊂ Ωt,

xt = Hk

(
bt
)
.

Compared to IHT which performs hard thresholding after gradient update, CoSaMP prunes the

gradient at the beginning of each iteration, followed by solving a least-squares program restricted

on a small support set. In particular, in the last step, CoSaMP applies hard thresholding to form a k-

sparse iterate for future updates. The analysis of CoSaMP consists of bounding the estimation error

in each step. Owing to Theorem 3.1, we advance the theoretical result of CoSaMP by improving

the error bound for its last step, and hence the RIP condition.

Theorem 3.3. Consider the model (3.12) and the CoSaMP algorithm. Pick k ≥ K and let {xt}t≥1

be the iterates produced by CoSaMP. Then, under the RIP condition

δ3k+K ≤
(√

32ν + 49− 9
)1/2

4
√
ν − 1

,

it holds that for all t ≥ 1

∥∥xt − x∗∥∥ ≤ 0.5t
∥∥x0 − x∗∥∥+C ‖e‖ ,

84

where ν is given by Theorem 3.1.

Roughly speaking, the bound is still inversely proportional to
√
ν. Hence, it is monotonically

increasing with respect to k, indicating our theorem is more effective for a large quantity of k. In

fact, for the CoSaMP algorithm, our bound above is superior to the best known result even when

k = K . To see this, we have the RIP condition δ4K ≤ 0.31. In comparison, [103] derived a bound

δ4K ≤ 0.1 and [62, Theorem 6.27] improved it to δ4K < 0.29 for a geometric rate of 0.5. We

notice that for binary sparse vectors, [75] presented a different proof technique and obtained the

RIP condition δ4K ≤ 0.35 for CoSaMP.

3.4 Hard Thresholding in Large-Scale Optimization

Now we move on to the machine learning setting where our focus is pursuing an optimal sparse

solution that minimizes a given objective function based on a set of training samples Zn
1 := {Zi}ni=1.

Different from compressed sensing, we usually have sufficient samples which means n can be very

large. Therefore, the computational complexity is of primary interest. Formally, we are interested

in optimizing the following program:

min
x∈Rd

F (x;Zn
1) =

1

n

n∑

i=1

f(x;Zi), s. t. ‖x‖0 ≤ K, ‖x‖ ≤ ω. (3.17)

The global optimum of the above problem is denoted by xopt. We note that the objective function is

presumed to be decomposable with respect to the samples. This is quite a mild condition and most

of the popular machine learning models fulfill it. Typical examples include (but not limited to) the

sparse linear regression and sparse logistic regression:

• Sparse Linear Regression: For all 1 ≤ i ≤ n, we have Zi = (ai, yi) ∈ R
d × R and

the loss function F (x;Zn
1) = 1

2n ‖Ax− y‖2 is the least-squares and can be explained by

f(x;Zi) =
1
2 ‖ai · x− yi‖2.

• Sparse Logistic Regression: For all 1 ≤ i ≤ n, we have Zi = (ai, yi) ∈ R
d × {+1,−1} and

the negative log-likelihood is penalized, i.e., F (x;Zn
1) =

1
n

∑n
i=1 log (1 + exp (−yiai · x))

for which f(x;Zi) = log (1 + exp (−yiai · x)).

85

To ease notation, we will often write F (x;Zn
1) as F (x) and f(x;Zi) as fi(x) for i = 1, 2, · · · , n.

It is worth mentioning that the objective function F (x) is allowed to be non-convex. Hence, in order

to ensure the existence of a global optimum, a natural option is to impose an ℓp-norm (p ≥ 1) con-

straint [94, 95]. Here we choose the ℓ2-norm constraint owing to its fast projection. Previous work,

e.g., [2] prefers the computationally less efficient ℓ1-norm to promote sparsity and to guarantee the

existence of optimum. In our problem, yet, we already have imposed the hard sparsity constraint so

the ℓ2-norm constraint is a better fit.

The major contribution of this section is a computationally efficient algorithm termed hard

thresholded stochastic variance reduced gradient method (HT-SVRG) to optimize (3.17), tackling

one of the most important problems in large-scale machine learning: producing sparse solutions

by stochastic methods. We emphasize that the formulation (3.17) is in stark contrast to the ℓ1-

regularized programs considered by previous stochastic solvers such as Prox-SVRG [152] and

SAGA [48]. We target here a stochastic algorithm for the non-convex problem that is less ex-

ploited in the literature. From a theoretical perspective, (3.17) is more difficult to analyze but it

always produces sparse solutions, whereas performance guarantees for convex programs are fruit-

ful but one cannot characterize the sparsity of the obtained solution (usually the solution is not

sparse). When we appeal to stochastic algorithms to solve the convex programs, the ℓ1-norm for-

mulation becomes much less effective in terms of sparsification, naturally owing to the randomness.

See [85, 151, 54] for more detailed discussion on the issue. We also remark that existing work such

as [159, 10, 75] investigated the sparsity-constrained problem (3.17) in a batch scenario, which is

not practical for large-scale learning problems. The perhaps most related work to our new algorithm

is [110]. Nonetheless, the optimization error therein does not vanish for noisy statistical models.

Our main result shows that for prevalent statistical models, our algorithm is able to recover

the true parameter with a linear rate. Readers should distinguish the optimal solution xopt and the

true parameter. For instance, consider the model (3.12). Minimizing (3.17) does not amount to

recovering x∗ if there is observation noise. In fact, the convergence to xopt is only guaranteed to an

accuracy reflected by the statistical precision of the problem, i.e., ‖x∗ − xopt‖, which is the best

one can hope for any statistical model [2]. We find that the global convergence is attributed to both

the tight bound and the variance reduction technique to be introduced below, and examining the

necessity of them is an interesting future work.

86

Algorithm 1 Hard Thresholded Stochastic Variance Reduced Gradient Method (HT-SVRG)

Require: Training samples {Zi}ni=1, maximum stage count S, sparsity parameter k, update fre-
quency m, learning rate η, radius ω, initial solution x̃0.

Ensure: Optimal solution x̃S .
1: for s = 1 to S do

2: Set x̃ = x̃s−1, µ̃ = 1
n

∑n
i=1∇fi(x̃), x0 = x̃.

3: for t = 1 to m do

4: Uniformly pick it ∈ {1, 2, · · · , n} and update the solution

bt = xt−1 − η
(
∇fit(xt−1)−∇fit(x̃) + µ̃

)
,

rt = Hk

(
bt
)
,

xt = Πω(r
t).

5: end for

6: Uniformly choose js ∈ {0, 1, · · · ,m− 1} and set x̃s = xjs .
7: end for

3.4.1 Algorithm

Our algorithm (Algorithm 1) applies the framework of [78], where the primary idea is to leverage

past gradients for the current update for the sake of variance reduction – a technique that has a

long history in statistics [114]. To guarantee that each iterate is k-sparse, it then invokes the hard

thresholding operation. Note that the orthogonal projection for rt will not change the support set,

and hence xt is still k-sparse. Also note that our sparsity constraint in (3.17) reads as ‖x‖0 ≤ K .

What we will show below is that when the parameter k is properly chosen (which depends on K),

we obtain a globally convergent sequence of iterates.

The most challenging part on establishing the global convergence comes from the hard thresh-

olding operation Hk

(
rt
)
. Note that it is bt that reduces the objective value in expectation. If bt is

not k-sparse (usually it is dense), xt is not equal to bt so it does not decrease the objective function.

In addition, compared with the convex proximal operator [48] which enjoys the non-expansiveness

of the distance to the optimum, the hard thresholding step can enlarge the distance up to a multiple

of 2 if using the bound (3.1). What makes it a more serious issue is that these inaccurate iterates

xt will be used for future updates, and hence the error might be progressively propagated at an

exponential rate.

Our key idea is to first bound the curvature of the function from below and above to establish

RIP-like condition, which, combined with Theorem 3.1, downscales the deviation resulting from

87

hard thresholding. Note that ν is always greater than one (see Theorem 3.1), hence the curvature

bound is necessary. Due to variance reduction, we show that the optimization error vanishes when

restricted on a small set of directions as soon as we have sufficient samples. Moreover, with hard

thresholding we are able to control the error per iteration and to obtain near-optimal sample com-

plexity.

3.4.2 Deterministic Analysis

We will first establish a general theorem that characterizes the progress of HT-SVRG for approx-

imating an arbitrary K-sparse signal x̂. Then we will discuss how to properly choose the hyper-

parameters of the algorithm. Finally we move on to specify x̂ to develop convergence results for a

global optimum of (3.17) and for a true parameter (e.g., x∗ of the compressed sensing problem).

Assumptions

Recall Definition 2.1 and Definition 2.2. We assume the following:

(A1) F (x) satisfies the RSC condition with parameter αk+K .

(A2) For all 1 ≤ i ≤ n, fi(x) satisfies the RSS condition with parameter L3k+K .

Here, we recall that K was first introduced in (3.17) and the parameter k was used in our algorithm.

Compared to the convex algorithms such as SAG [124], SVRG [78] and SAGA [48] that assume

strong convexity and smoothness everywhere, we only assume these in a restricted sense. This

is more practical especially in the high dimensional regime where the Hessian matrix could be

degenerate [2]. We also stress that the RSS condition is imposed on each fi(x), whereas prior work

requires it for F (x) which is milder than ours [105].

Upper Bound of Progress

For brevity, let us denote

L := L3k+K, α := αk+K , c := L/α,

88

where we call the quantity c as the condition number of the problem. It is also crucial to measure

the ℓ2-norm of the gradient restricted on sparse directions, and we write

‖∇3k+KF (x)‖ := max
Ω

{
‖PΩ (∇F (x))‖ : |Ω| ≤ 3k +K

}
.

Note that for convex programs, the above evaluated at a global optimum is zero. As will be clear,

‖∇3k+KF (x)‖ reflects how close the iterates returned by HT-SVRG can be to the point x. For

prevalent statistical models, it vanishes when there are sufficient samples. Related to this quantity,

our analysis also involves

Q(x) :=

(
16νη2Lωm+

2ω

α

)
‖∇3k+KF (x)‖+ 4νη2m ‖∇3k+KF (x)‖2 ,

where we recall that ν is the expansiveness factor given by Theorem 3.1, η and m are used in the

algorithm and ω is a universal constant that upper bounds the ℓ2-norm of the signal we hope to

estimate. Virtually, with an appropriate parameter setting, Q(x) scales as ‖∇3k+KF (x)‖ which

will be clarified. For a particular stage s, we denote Is := {i1, i2, · · · , im}, i.e., the samples

randomly chosen for updating the solution.

Theorem 3.4. Consider Algorithm 1 and a K-sparse signal x̂ of interest. Assume (A1) and (A2).

Pick the step size 0 < η < 1/(4L). If ν < 4L/(4L− α), then it holds that

E
[
F (x̃s)− F (x̂)

]
≤ βs

[
F (x̃0)− F (x̂)

]
+ τ(x̂),

where the expectation is taken over {I1, j1,I2, j2, · · · ,Is, js} and 0 < β < 1 provided that m is

large enough. In particular, for 1/(1 − ηα) < ν < 4L/(4L − α), we have

β = β1 :=
1

(2νηα− 2νη2αL− ν + 1)m
+

2νη2αL

2νηα − 2νη2αL− ν + 1
,

τ(x̂) = τ1(x̂) :=
αQ(x̂)

2(2νηα − 2νη2αL− ν + 1)(1 − β1)m
.

For ν ≤ 1/(1 − ηα), we have

β = β2 :=
1

νηα(1 − 2ηL)m
+

2ηL

1− 2ηL
, τ(x̂) = τ2(x̂) :=

Q(x̂)

2νηα(1 − 2ηL)(1 − β2)m
.

89

The proof can be found in Appendix 3.D.1.

Remark 5. For the theorem to hold,
√
ν <

√
4L/(4L− α) ≤

√
4/3 ≈ 1.15 due to L ≥ α. Hence,

the conventional bound (3.1) is not applicable. In contrast, Theorem 3.1 asserts that this condition

can be fulfilled by tuning k slightly larger than K .

Remark 6. With the conditions on η and ν, the coefficient β is always less than one provided that

m is sufficiently large.

Remark 7. The theorem does not assert convergence to an arbitrary sparse vector x̂. This is because

F (x̃s)− F (x̂) might be less than zero. However, specifying x̂ does give convergence results, as to

be elaborated later.

Hyper-Parameter Setting

Before moving on to the convergence guarantee, let us discuss the minimum requirement on the

hyper-parameters k, m and η, and determine how to choose them to simplify Theorem 3.4.

For the sake of success of HT-SVRG, we require ν < 4c/(4c−1), which implies ρ < 1/(16c2−

4c). Recall that ρ is given in Theorem 3.1. In general, we are interested in the regime K ≤ k ≪ d.

Hence, we have ρ = K/k and the minimum requirement for the sparsity parameter is

k > (16c2 − 4c)K. (3.18)

To our knowledge, the idea of relaxed sparsity was first introduced in [163] for OMP and in [75]

for projected gradient descent. However, the relaxed sparsity here emerges in a different way in that

HT-SVRG is a stochastic algorithm, and their proof technique cannot be used.

We also contrast our tight bound to the inequality (3.11) that is obtained by combining the

triangle inequality and Lemma 1 of [75]. Following our proof pipeline, (3.11) gives

k ≥
(
1−

(√
4c(4c− 1)−1 − 1

)2)
d+

(√
4c(4c − 1)−1 − 1

)2
K

which grows with the dimension d, whereas using Theorem 3.1 the sparsity parameter k depends

only on the desired sparsity K . In this regard, we conclude that for the stochastic case, our bound

is vital.

90

Another component of the algorithm is the update frequency m. Intuitively, HT-SVRG performs

m number of stochastic gradient update followed by a full gradient evaluation, in order to mitigate

the variance. In this light, m should not be too small. Otherwise, the algorithm reduces to the

full gradient method which is not computationally efficient. On the other spectrum, a large m

leads to a slow convergence that is reflected in the convergence coefficient β. To quantitatively

analyze how m should be selected, let us consider the case ν ≤ 1/(1 − ηα) for example. The case

1/(1− ηα) < ν < 4L/(4L−α) follows in a similar way. In order to ensure β2 < 1, we must have

m > 1/ (νηα(1 − 4ηL)). In particular, picking

η =
η′

L
, η′ ∈ (0, 1/4), (3.19)

we find that the update frequency m has to satisfy

m >
c

νη′(1− η′) , (3.20)

which is of the same order as in the convex case [78] when η′ = Θ(1). Note that the way we choose

the learning rate η = η′/L is also a common practice in convex optimization [107].

With (3.18), (3.19) and (3.20) in mind, we provide detailed choices of the hyper-parameters.

Due to 0 < η < 1/(4L), β1 is monotonically increasing with respect to ν. By Theorem 3.1, we

know that ν is decreasing with respect to k. Thus, a larger quantity of k results in a smaller value of

β1, and hence a faster rate. Interestingly, for β2 we discover that the smaller the k is, the faster the

algorithm concentrates. Hence, we have the following consequence:

Proposition 3.5. Fix η and m. Then the optimal choice of ν in Theorem 3.4 is ν = 1/(1 − ηα) in

the sense that the convergence coefficient β attains the minimum.

In light of the proposition, in the sections to follow, we will only consider the setting ν = 1/(1−

ηα). But we emphasize that our analysis and results essentially apply to any ν ≤ 4L/(4L − α).

Now let

η =
1

8L
, m = 4(8c − 1), k = 8c(8c − 1)K. (3.21)

91

This gives

β =
2

3
, τ(x̂) =

5ω

α
‖∇3k+KF (x̂)‖+

1

αL
‖∇3k+KF (x̂)‖2 . (3.22)

Global Linear Convergence

We are in the position to state the global linear convergence to an optimum of the sparsity-constrained

optimization program (3.17).

Corollary 3.6. Assume (A1) and (A2). Consider the HT-SVRG algorithm with hyper-parameters

given in (3.21). Then the sequence {x̃s}s≥1 converges linearly to a global optimum xopt of (3.17)

E
[
F (x̃s)− F (xopt)

]
≤
(
2

3

)s [
F (x̃0)− F (xopt)

]

+
5ω

α
‖∇3k+KF (xopt)‖+

1

αL
‖∇3k+KF (xopt)‖2 .

Proof. This is a direct consequence of Theorem 3.4.

Whenever ∇3k+KF (xopt) = 0, the corollary reads as

E
[
F (x̃s)− F (xopt)

]
≤
(
2

3

)s [
F (x̃0)− F (xopt)

]
.

It implies that if one is solving a convex problem without the sparsity constraint but the optimal

solution happens to be sparse, it is safe to perform hard thresholding without loss of optimality. In

the noiseless compressed sensing setting where y = Ax∗, the corollary guarantees that HT-SVRG

exactly recovers the underlying true signal x∗ when F (x) is chosen as the least-squares loss in that

xopt = x∗ and ∇F (x∗) = A⊤(Ax∗ − y) = 0.

On the other side, the RSC property implies that

‖x̃s − x̂‖ ≤
√

2max{F (x̃s)− F (x̂), 0}
α

+
2 ‖∇k+KF (x̂)‖

α
.

The proof is straightforward and can be found in Lemma 14 of [129]. Now we specify x̂ as the

true parameter of some statistical model, for instance, x∗ in (3.12). It is hence possible to establish

recovery guarantee of x∗, which is known as the problem of parameter estimation.

92

Corollary 3.7. Assume (A1) and (A2). Let L′ be the RSS parameter of F (x) at the sparsity

level 3k +K . Consider the HT-SVRG algorithm with hyper-parameters given in (3.21). Then the

sequence {x̃s}s≥1 recovers a K-sparse signal x∗ with a geometric rate

E
[
‖x̃s − x∗‖

]
≤
√

2L′

α
·
(
2

3

) s
2 ∥∥x̃0 − x∗∥∥+

√
10ω

α2
‖∇3k+KF (x∗)‖

+

(√
2

α3
+

3

α

)
‖∇3k+KF (x

∗)‖ .

The proof can be found in Appendix 3.D.2.

Remark 8. The RSS parameter L′ of F (x) always ranges in [α,L], which is simply by definition.

Computational Complexity

We compare the computational complexity of HT-SVRG to that of projected gradient descent (PGD)

studied in [75], which is a batch counterpart to HT-SVRG. First, we remark that the analysis of

PGD is based on the smoothness parameter L′ of F (x) at sparsity level 2k + K . We write c′ =

L′/α. To achieve a given accuracy ǫ > 0, PGD requires O (c′ log(1/ǫ)) iterations. Hence the

total computational complexity is O (nc′d log(1/ǫ)). For HT-SVRG, in view of Corollary 3.6, the

convergence coefficient is a constant. Hence, HT-SVRG needs O (log(1/ǫ)) iterations where we

note that the error term ‖∇3k+KF (x
∗)‖ can be made as small as ǫ with sufficient samples (to be

clarified in the sequel). In each stage, HT-SVRG computes a full gradient µ̃ followed by m times

stochastic updates. Therefore, the total complexity of HT-SVRG is given by O ((n+ c)d log(1/ǫ))

by noting the fact m = O (c). In the scenario c < n(c′ − 1), HT-SVRG significantly improves on

PGD in terms of time cost.

3.4.3 Statistical Results

The last ingredient of our theorem is the term τ(x̂) which measures how close the iterates could be to

a given sparse signal x̂. With appropriate hyper-parameter settings, the quantity relies exclusively

on ‖∇3k+KF (x̂)‖, as suggested by (3.22). Thereby, this section is dedicated to characterizing

‖∇3k+KF (x̂)‖. We will also give examples for which HT-SVRG is computationally more efficient

than PGD. For the purpose of a concrete result, we study two problems: sparse linear regression and

93

sparse logistic regression. These are two of the most popular statistical models in the literature and

have found a variety of applications in machine learning and statistics [119]. Notably, it is known

that similar statistical results can be built for low-rank matrix regression, sparse precision matrix

estimation, as suggested in [105, 2].

Sparse Linear Regression

For sparse linear regression, the observation model is given by

y = Ax∗ + e, ‖x∗‖0 ≤ K, ‖x∗‖ ≤ ω, (3.23)

where A ∈ R
n×d is the design matrix, y ∈ R

n is the response, e ∈ R
n is some noise, and x∗ is the

K-sparse true parameter we hope to estimate from the knowledge of A and y. Note that when we

have the additional constraint n≪ d, the model above is exactly that of compressed sensing (3.12).

In order to (approximately) estimate the parameter, a natural approach is to optimize the follow-

ing non-convex program:

min
x

F (x) :=
1

2n

n∑

i=1

‖yi − ai · x‖2 , s. t. ‖x‖0 ≤ K, ‖x‖ ≤ ω. (3.24)

For our analysis, we assume the following on the design matrix and the noise:

(A3) a1,a2, . . . ,an are independent and identically distributed (i.i.d.) Gaussian random vectors

N(0,Σ). All the diagonal elements of Σ satisfy Σjj ≤ 1. The noise e is independent of A

and its entries are i.i.d. Gaussian random variables N(0, σ2).

Proposition 3.8. Consider the sparse linear regression model (3.23) and the program (3.24). As-

sume (A3). Then for a sparsity level r,

• with probability at least 1− exp(−C0n),

αr = λmin(Σ)− C1
r log d

n
, L′

r = λmax(Σ) + C2
r log d

n
;

94

• with probability at least 1− C3r/d

Lr = C4r log d;

• and with probability at least 1− C5/d

‖∇rF (x
∗)‖ ≤ C6σ

√
r log d

n
, ‖∇rF (xopt)‖ ≤ L′

r ‖xopt − x∗‖+C6σ

√
r log d

n
.

Above, λmin(Σ) and λmax(Σ) are the minimum and maximum singular values of Σ respectively.

We recall that αr and Lr are involved in our assumptions (A1) and (A2), and L′
r is the RSS

parameter of F (x). The estimation for αr , L′
r and ‖∇rF (x

∗)‖ follows from standard results in

the literature [119], while that for Lr follows from Proposition E.1 in [13] by noting the fact that

bounding Lr amounts to estimating maxi ‖Hr(ai)‖2. In order to estimate ‖∇rF (xopt)‖, notice

that

‖∇rF (xopt)‖ ≤ ‖∇rF (xopt)−∇rF (x
∗)‖+ ‖∇rF (x

∗)‖

≤ ‖∇F (xopt)−∇F (x∗)‖+ ‖∇rF (x
∗)‖

≤ L′
r ‖xopt − x∗‖+ ‖∇rF (x

∗)‖ ,

where we use the definition of RSS in the last inequality.

Now we let r = 3k +K = const · c2K and get α = λmin(Σ)−C1
c2K log d

n , L = C4c
2K log d.

Suppose that λmin(Σ) = 2C4(K log d)2 and n = q · C1

C4
K log d with q ≥ 1. Then our assump-

tions (A1) and (A2) are met with high probability with

α = C4(K log d)2, L = C4(K log d)3, and c = K log d.

For Corollary 3.6, as far as

s ≥ C7 log

(
F (x̃0)− F (xopt)

ǫ

)
, n = C7 (ωσ)

2 ǫ−2K log d,

95

we have

E
[
F (x̃s)− F (xopt)

]
≤ ǫ+ λmax(Σ)

λmin(Σ)
‖xopt − x∗‖+

(
λmax(Σ)

λmin(Σ)
‖xopt − x∗‖

)2

for some accuracy parameter ǫ > 0. This suggests that it is possible for HT-SVRG to approximate

a global optimum of (3.17) up to ‖xopt − x∗‖, namely the statistical precision of the problem.

Returning to Corollary 3.7, to guarantee that

E
[
‖x̃s − x∗‖

]
≤ ǫ,

it suffices to pick

s ≥ C8 log(ω
√
c′/ǫ), n = C8(ωσ)

2ǫ−4K log d.

Finally, we compare the computational cost to PGD. It is not hard to see that under the same

situation λmin(Σ) = 2C4(K log d)2 and n = C1

C4
K log d,

L′ = C4(K log d)3, c′ = K log d, provided that λmax(Σ) = C4(K log d)3 − C2C4

C1
(K log d)2.

Thus c < n(c′ − 1), i.e., HT-SVRG is more efficient than PGD. It is also possible to consider other

regimes of the covariance matrix and the sample size, though we do not pursue it here.

Sparse Logistic Regression

For sparse logistic regression, the observation model is given by

Pr(yi | ai; x
∗) =

1

1 + exp(−yiai · x∗)
, ‖x∗‖0 ≤ K, ‖x‖ ≤ ω, ∀ 1 ≤ i ≤ n, (3.25)

where yi is either 0 or 1. It then learns the parameter by minimizing the negative log-likelihood:

min
x

F (x) :=
1

n

n∑

i=1

log (1 + exp(−yiai · x)) , s. t. ‖x‖0 ≤ K, ‖x‖ ≤ ω. (3.26)

There is a large body of work showing that the statistical property is rather analogous to that of

linear regression. See, for example, [105]. In fact, the statistical results apply to generalized linear

96

models as well.

3.5 Experiments

In this section, we present a comprehensive empirical study for the proposed HT-SVRG algorithm

on two tasks: sparse recovery (compressed sensing) and image classification. The experiments on

sparse recovery is dedicated to verifying the theoretical results we presented, and we visualize the

classification models learned by HT-SVRG to demonstrate the practical efficacy.

3.5.1 Sparse Recovery

To understand the practical behavior of our algorithm as well as to justify the theoretical analysis,

we perform experiments on synthetic data. The experimental settings are as follows:

• Data Generation. The data dimension d is fixed as 256 and we generate an n× d Gaussian

random sensing matrix A whose entries are i.i.d. with zero mean and variance 1/n. Then

1000 K-sparse signals x∗ are independently generated, where the support of each signal

is uniformly chosen. That is, we run our algorithm and the baselines for 1000 trials. The

measurements y for each signal x∗ is obtained by y = Ax∗ which is noise free. In this way,

we are able to study the convergence rate by plotting the logarithm of the objective value

since the optimal objective value is known to be zero.

• Baselines. We mainly compare with two closely related algorithms: IHT and PGD. Both of

them compute the full gradient of the least-squares loss followed by hard thresholding. Yet,

PGD is more general, in the sense that it allows the sparsity parameter k to be larger than the

true sparsity K (k = K for IHT) and also considers a flexible step size η (η = 1 for IHT).

Hence, PGD can be viewed as a batch counterpart to our method HT-SVRG.

• Evaluation Metric. We say a signal x∗ is successfully recovered by a solution x if

‖x− x∗‖
‖x∗‖ < 10−3.

In this way, we can compute the percentage of success over the 1000 trials for each algorithm.

97

• Hyper-Parameters. If not specified, we use m = 3n, k = 9K , and S = 10000 for HT-

SVRG. We also use the heuristic step size η = 2/svds(AA⊤) for HT-SVRG and PGD,

where svds(AA⊤) returns the largest singular value of the matrix AA⊤. Since for each

stage, HT-SVRG computes the full gradient for (2m/n+ 1) times, we run the IHT and PGD

for (2m/n + 1)S iterations for fair comparison, i.e., all of the algorithms have the same

number of full gradient evaluations.

Phase Transition

Our first simulation aims at offering a big picture on the recovery performance. To this end, we

vary the number of measurements n from 1 to 256, roughly with a step size 8. We also study the

performance with respect to the true sparsity parameter K , which ranges from 1 to 26, roughly

with step size 2. The results are illustrated in Figure 3.1, where a brighter block means a higher

percentage of success and the brightest ones indicate exact sparse recovery. It is apparent that PGD

and HT-SVRG require fewer measurements for an accurate recovery than IHT, possibly due to the

flexibility in choosing the sparsity parameter and the step size. We also observe that as a stochastic

algorithm, HT-SVRG performs comparably to PGD. This suggests that HT-SVRG is an appealing

solution to large-scale sparse learning problems in that HT-SVRG is computationally more efficient.

#Measurements (n)

S
pa

rs
ity

 (
K

)

1 24 72 136 200 256

1

8

14

20

26

IHT

#Measurements (n)

S
pa

rs
ity

 (
K

)

1 24 72 136 200 256

1

8

14

20

26

PGD

#Measurements (n)

S
pa

rs
ity

 (
K

)

1 24 72 136 200 256

1

8

14

20

26

HT−SVRG

Figure 3.1: Percentage of successful recovery under various sparsity and sample size. The val-
ues range from 0 to 100, where a brighter color means a higher percentage of success (the brightest
blocks correspond to the value of 100). PGD admits a higher percentage of recovery compared
to IHT because it flexibly chooses the step size and sparsity parameter. As a stochastic variant,
HT-SVRG performs comparably to the batch counterpart PGD.

In Figure 3.2, we exemplify some of the results obtained from HT-SVRG by plotting two kinds

of curves: the success of percentage against the sample size n and that against the signal sparsity K .

In this way, one can examine the detailed values and can determine the minimum sample size for a

98

particular sparsity. For instance, the left panel tells that to ensure that 80% percents of the 16-sparse

signals are recovered, we have to collect 175 measurements. We can also learn from the right panel

that using 232 measurements, any signal whose sparsity is 22 or less can be reliably recovered.

1 50 100 150 200 256
0

20

40

60

80

100

#Measurements (n)

P
er

ce
nt

ag
e

of
 s

uc
ce

ss
 (

%
)

8

K = 4

K = 26

16

20

12

1 4 8 12 16 20 26
0

20

40

60

80

100

Sparsity (K)

P
er

ce
nt

ag
e

of
 s

uc
ce

ss
 (

%
)

72

192

112

n = 232

152

n = 32

Figure 3.2: Percentage of success of HT-SVRG against the number of measurements (left) and

the sparsity (right).

Based on the results in Figure 3.1 and Figure 3.2, we have an approximate estimation on the

minimum requirement of the sample size which ensures accurate (or exact) recovery. Now we are

to investigate how many measurements are needed to guarantee a success percentage of 95% and

99%. To this end, for each signal sparsity K , we look for the number of measurements n0 from

Figure 3.1 where 90 percents of success are achieved. Then we carefully enlarge n0 with step size

1 and run the algorithms. The empirical results are recorded in Figure 3.3, where the circle markers

represent the empirical results with different colors indicating different algorithms, e.g., red circle

for empirical observation of HT-SVRG. Then we fit these empirical results by linear regression,

which are plotted as solid or dashed lines. For example, the green line is a fitted model for IHT. We

find that n is almost linear with K . Especially, the curve of HT-SVRG is nearly on top of that of

PGD, which again verifies HT-SVRG is an attractive alternative to the batch method.

Influence of Hyper-Parameters

Next, we turn to investigate the influence of the hyper-parameters, i.e., the sparsity parameter k,

update frequency m and step size η on the convergence behavior of HT-SVRG. We set the true

sparsity K = 4 and collect 100 measurements for each groundtruth signal, i.e., n = 100. Note that

the standard setting we employed is k = 9K = 36, m = 3n = 300 and η = 2/svds(AA⊤) ≈ 0.3.

Each time we vary one of these parameters while fixing the other two, and the results are plotted in

Figure 3.4. We point out that although the convergence result (Theorem 3.4) is deterministic, the

99

1 5 10 15 20 25 30
10

50

100

150

200

250

Sparsity (K)

#M
ea

su
re

m
en

ts
 (

n)

HT−SVRG regression
HT−SVRG empirical
PGD regression
PGD empirical
IHT regression
IHT empirical

95% Success

n = 1.7K*log256 + 33

1 5 10 15 20 25 30
10

50

100

150

200

250

Sparsity (K)

#M
ea

su
re

m
en

ts
 (

n)

HT−SVRG regression
HT−SVRG empirical
PGD regression
PGD empirical
IHT regression
IHT empirical

99% Success

n = 1.7K*log256 + 40

Figure 3.3: Minimum number of measurements to achieve 95% and 99% percentage of success.

Red equation indicates the linear regression of HT-SVRG. The markers and curves for HT-SVRG
are almost on top of PGD, which again justifies that HT-SVRG is an appealing stochastic alternative
to the batch method PGD.

vanishing optimization error (Proposition 3.8) is guaranteed under a probabilistic argument. Hence,

it is possible that for a specific configuration of parameters, 97% of the signals are exactly recovered

but HT-SVRG fails on the remaining, as we have observed in, e.g., Figure 3.2. Clearly, we are not

supposed to average all the results to examine the convergence rate. For our purpose, we set a

threshold 95%, that is, we average over the success trials if more than 95% percents of the signals

are exactly recovered. Otherwise, we say that the set of parameters cannot ensure convergence and

we average over these failure signals which will give an illustration of divergence.

1 10 20 30 40 50

−5

0

5

Stage Count

O
bj

ec
tiv

e
V

al
ue

 (
lo

g)

k ≤ 10

12

k = 36
28

20

K = 4

1 200 400 600 800

−5

0

5

Stage Count

O
bj

ec
tiv

e
V

al
ue

 (
lo

g)

300

m = 10
20

100
60

n = 100

1 10 20 30 40 50

−5

0

5

Stage Count

O
bj

ec
tiv

e
V

al
ue

 (
lo

g)

0.45
0.6

0.3

η = 1.5

Figure 3.4: Convergence of HT-SVRG with different parameters. We have 100 measurements
for the 256-dimensional signal where only 4 elements are non-zero. The standard setting is k = 36,
m = 300 and η = 0.3. Left: If the sparsity parameter k is not large enough, HT-SVRG will not
recover the signal. Middle: A small m leads to a frequent full gradient evaluation and hence slow
convergence. Right: We observe divergence when η ≥ 3.

The left panel of Figure 3.4 verifies the condition that k has to be larger thanK , while the second

panel shows the update frequency m can be reasonably small in the price of a slow convergence rate.

Finally, the empirical study demonstrates that our heuristic choice η = 0.3 works well, and when

100

η > 3, the objective value exceeds 10120 within 3 stages (which cannot be depicted in the figure).

For very small step sizes, we plot the convergence curve by gradually enlarging the update frequency

m in Figure 3.5. The empirical results agree with Theorem 3.4 that for any 0 < η < 1/(4L), HT-

SVRG converges as soon as m is large enough.

1 1000 2000 3000 4000 5000

−5

0

5

Stage Count

O
bj

ec
tiv

e
V

al
ue

 (
lo

g)

m = 600

m = 2000

m = 300

η = 3e−3

0 1 2 3 4 5

−5

0

5

Stage Count (x104)
O

bj
ec

tiv
e

V
al

ue
 (

lo
g)

m = 600
m = 2000

m = 300

η = 3e−4

0 1 2 3 4 5

−5

0

5

Stage Count (x104)

O
bj

ec
tiv

e
V

al
ue

 (
lo

g)

m = 600

η = 3e−5
m = 300

m = 2000

Figure 3.5: Convergence behavior under small step size. We observe that as long as we pick a
sufficiently large value form, HT-SVRG always converges. This is not surprising since our theorem
guarantees for any η < 1/(4L), HT-SVRG will converge if m is large enough. Also note that the
geometric convergence rate is observed after certain iterations, e.g., for η = 3×10−5, the log(error)
decreases linearly after 20 thousands iterations.

3.5.2 Classification

In addition to the application of sparse recovery, we illustrated that HT-SVRG can deal with binary

classification by minimizing the sparse logistic regression problem (3.26). Here, we study the per-

formance on a realistic image dataset MNIST1, consisting of 60 thousands training samples and 10

thousands samples for testing. There is one digit on each image of size 28-by-28, hence totally 10

classes. Some of the images are shown in Figure 3.6.

Figure 3.6: Sample images in the MNIST database.

1
http://yann.lecun.com/exdb/mnist/

101

The update frequency m is fixed as m = 3n. We compute the heuristic step size η as in the

previous section, i.e., η = 2/svds(AA⊤) ≈ 10−3. Since for the real-world dataset, the true sparsity

is actually unknown, we tune the sparsity parameter k and study the performance of the algorithm.

First, we visualize five pair-wise models learned by HT-SVRG in Figure 3.7, where each row

is associated with a binary classification task indicated by the two digits at the leading of the row,

and the subsequent red-blue figures are used to illustrate the learned models under different spar-

sity parameter. For example, the third colorful figure depicted on the second row corresponds to

recognizing a digit is “1” or “7” with the sparsity k = 30. In particular, for each pair, we label the

small digit as positive and the large one as negative, and the blue and red pixels are the weights with

positive and negative values respectively. Apparently, the models we learned are discriminative.

k = 10 100 120 15020 30 40 50 60 80

Figure 3.7: Visualization of the models. We visualize 5 models learned by HT-SVRG under
different choices of sparsity shown on the top of each column. Note that the feature dimension is
784. From the top row to the bottom row, we illustrate the models of “0 vs 9”, “1 vs 7”, “2 vs 3”,
“4 vs 5” and “6 vs 8”, where for each pair, we label the small digit as positive and the large one as
negative. The red color represents negative weights while the blue pixels correspond with positive
weights.

We also quantitatively show the convergence and prediction accuracy curves in Figure 3.8. Note

that here, the y-axis is the objective value F (x̃s) rather than log(F (x̃s)− F (xopt)), due to the fact

that computing the exact optimum of (3.26) is NP-hard. Generally speaking, HT-SVRG converges

quite fast and usually attains the minimum of objective value within 20 stages. It is not surprising to

see that choosing a large quantity for the sparsity leads to a better (lower) objective value. However,

in practice a small assignment for the sparsity, e.g., k = 70 facilitates an efficient computation while

still suffices to ensure fast convergence and accurate prediction.

102

10 20 30 40
0

0.1

0.2

0.3

0.4

Stage Count

O
bj

ec
tiv

e
V

al
ue

0 vs 9

k = 20
k = 40
k ≥ 60

10 20 30 40
0

0.1

0.2

0.3

Stage Count

O
bj

ec
tiv

e
V

al
ue

1 vs 7

k = 20

k ≥ 40

10 20 30 40

0.1

0.2

0.3

0.4

Stage Count

O
bj

ec
tiv

e
V

al
ue

2 vs 3

k = 60
k = 40
k = 20

k ≥ 100

10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

Stage Count

O
bj

ec
tiv

e
V

al
ue

4 vs 5

k = 20

k = 40
k = 60

k ≥ 100

10 20 30 40
0

0.1

0.2

0.3

0.4

Stage Count

O
bj

ec
tiv

e
V

al
ue

6 vs 8

k = 20

k = 60

k ≥ 100

10 30 50 70 90 110 130 150
92

94

96

98

100

Sparsity k

A
cc

ur
ac

y
(%

)

0 vs 9
1 vs 7
2 vs 3
4 vs 5
6 vs 8

Figure 3.8: Quantitative results on convergence and accuracy. The first 5 figures demonstrate the
convergence behavior of HT-SVRG for each binary classification task, where curves with different
colors represent the objective value against number of stages under different sparsity k. Generally
speaking, HT-SVRG converges within 20 stages which is a very fast rate. The last figure reflects
the classification accuracy against the sparsity for all 5 classification tasks, where we find that for a
moderate choice, e.g., k = 70, it already guarantees an accurate prediction (we recall the dimension
is 784).

3.6 Conclusion and Open Problems

In this chapter, we have provided a tight bound on the deviation resulting from the hard thresholding

operator, which underlies a vast volume of algorithms developed for sparsity-constrained problems.

Our derived bound is universal over all choices of parameters and we have proved that it cannot

be improved without further information on the signals. We have discussed the implications of

our result to the community of compressed sensing and machine learning, and have demonstrated

that the theoretical results of a number of popular algorithms in the literature can be advanced. In

addition, we have devised a novel algorithm which tackles the problem of sparse learning in large-

scale setting. We have elaborated that our algorithm is guaranteed to produce global optimal solution

for prevalent statistical models only when it is equipped with the tight bound, hence justifying that

the conventional bound is not applicable in the challenging scenario.

There are several interesting open problems. The first question to ask is whether one can es-

tablish sharp RIP condition or sharp phase transition for hard thresholding based algorithms such

as IHT and CoSaMP with the tight bound. Moreover, compared to the hard thresholded SGD

103

method [110], HT-SVRG admits a vanishing optimization error. This poses a question of whether

we are able to provably show the necessity of variance reduction for such a sparsity-constrained

problem.

3.A Technical Lemmas

We present some useful lemmas that will be invoked by subsequent analysis.

Lemma 3.9. Consider the HT-SVRG algorithm for a fixed stage s. Let x̂ be the target sparse vector.

Let Ω be a support set such that supp
(
xt−1

)
∪ supp (x̃) ∪ supp (x̂) ⊆ Ω. Put r = |Ω|. Assume

(A2). For all 1 ≤ t ≤ m , denote vt = ∇fit(xt−1)−∇fit(x̃) + µ̃. Then we have the following:

Eit|xt−1

[∥∥PΩ
(
vt
)∥∥2

]
≤ 4Lr

[
F (xt−1)− F (x̂)

]
+ 4Lr [F (x̃)− F (x̂)]

− 4Lr

〈
∇F (x̂),xt−1 + x̃− 2x̂

〉
+ 4 ‖PΩ (∇F (x̂))‖2 .

Proof. We have

∥∥PΩ
(
vt
)∥∥2 =

∥∥PΩ
(
∇fit(xt−1)−∇fit(x̃) + µ̃

)∥∥2

≤ 2
∥∥PΩ

(
∇fit(xt−1)−∇fit(x̂)

)∥∥2 + 2 ‖PΩ (∇fit(x̃)−∇fit(x̂)− µ̃)‖2

= 2
∥∥PΩ

(
∇fit(xt−1)−∇fit(x̂)

)∥∥2 + 2 ‖PΩ (∇fit(x̃)−∇fit(x̂))‖2

+ 2 ‖PΩ (µ̃)‖2 − 4 〈PΩ (∇fit(x̃)−∇fit(x̂)) ,PΩ (µ̃)〉
ξ1
= 2

∥∥PΩ
(
∇fit(xt−1)−∇fit(x̂)

)∥∥2 + 2 ‖PΩ (∇fit(x̃)−∇fit(x̂))‖2

+ 2 ‖PΩ (µ̃)‖2 − 4 〈∇fit(x̃)−∇fit(x̂),PΩ (µ̃)〉
ξ2
≤ 4Lr

[
fit(x

t−1)− fit(x̂)−
〈
∇fit(x̂),xt−1 − x̂

〉]

+ 4Lr [fit(x̃)− fit(x̂)− 〈∇fit(x̂), x̃− x̂〉]

+ 2 ‖PΩ (µ̃)‖2 − 4 〈∇fit(x̃)−∇fit(x̂),PΩ (µ̃)〉 ,

where ξ1 is by algebra, ξ2 applies Lemma 2.14 and the fact that |Ω| = r.

104

Taking the conditional expectation, we obtain the following:

Eit|xt−1

[∥∥PΩ
(
vt
)∥∥2

]

≤ 4Lr

[
F (xt−1)− F (x̂)

]
+ 4Lr [F (x̃)− F (x̂)]

− 4Lr

〈
∇F (x̂),xt−1 + x̃− 2x̂

〉
+ 2 〈2PΩ (∇F (x̂))− PΩ (µ̃) ,PΩ (µ̃)〉

= 4Lr

[
F (xt−1)− F (x̂)

]
+ 4Lr [F (x̃)− F (x̂)]

− 4Lr

〈
∇F (x̂),xt−1 + x̃− 2x̂

〉
+ ‖2PΩ (∇F (x̂))‖2

− ‖2PΩ (∇F (x̂))− PΩ (µ̃)‖2 − ‖PΩ (µ̃)‖2

≤ 4Lr

[
F (xt−1)− F (x̂)

]
+ 4Lr [F (x̃)− F (x̂)]

− 4Lr

〈
∇F (x̂),xt−1 + x̃− 2x̂

〉
+ 4 ‖PΩ (∇F (x̂))‖2 .

The proof is complete.

Corollary 3.10. Assume the same conditions as in Lemma 3.9. If ∇F (x̂) = 0, we have

Eit|xt−1

[∥∥PΩ
(
vt
)∥∥2

]
≤ 4Lr

[
F (xt−1) + F (x̃)− 2F (x̂)

]
.

3.B Proofs for Section 3.2

3.B.1 Proof of Theorem 3.1

Proof. The result is true for the trivial case that b is a zero vector. In the following, we assume that

b is not a zero vector. Denote

w := Hk (b) .

Let Ω be the support set of w and let Ω be its complement. We immediately have PΩ (b) = w.

Let Ω′ be the support set of x. For the sake of simplicity, let us split the vector b as follows:

b1 = PΩ\Ω′ (b) , b2 = PΩ∩Ω′ (b) ,

b3 = PΩ\Ω′ (b) , b4 = PΩ∩Ω′ (b) .

105

Likewise, we denote

w1 = PΩ\Ω′ (w) , w2 = PΩ∩Ω′ (w) , w3 = PΩ\Ω′(w) = 0, w4 = PΩ∩Ω′ (w) = 0,

x1 = PΩ\Ω′ (x) = 0, x2 = PΩ∩Ω′ (x) , x3 = PΩ\Ω′(x) = 0, x4 = PΩ∩Ω′ (x) .

Due to the hard thresholding, we have

w1 = b1, w2 = b2.

In this way, by simple algebra we have

‖w − x‖2 = ‖b1‖2 + ‖b2 − x2‖2 + ‖x4‖2 ,

‖b− x‖2 = ‖b1‖2 + ‖b2 − x2‖2 + ‖b3‖2 + ‖b4 − x4‖2 .

Our goal is to estimate the maximum of ‖w − x‖2 / ‖b− x‖2. It is easy to show that when

attaining the maximum value, ‖b3‖ must be zero since otherwise one may decrease this term to

make the objective larger. Hence, maximizing ‖w − x‖2 / ‖b− x‖2 amounts to estimating the

upper bound of the following over all choices of x and b:

γ :=
‖b1‖2 + ‖b2 − x2‖2 + ‖x4‖2

‖b1‖2 + ‖b2 − x2‖2 + ‖b4 − x4‖2
. (3.27)

Firstly, we consider the case of ‖b1‖ = 0, which means Ω = Ω′ implying γ = 1. In the

following, we consider ‖b1‖ 6= 0. In particular, we consider γ > 1 since we are interested in the

maximum value of γ.

Arranging (3.27) we obtain

(γ − 1) ‖b2 − x2‖2 + γ ‖b4 − x4‖2 − ‖x4‖2 + (γ − 1) ‖b1‖2 = 0. (3.28)

Let us fix b and define the function

G(x2,x4) = (γ − 1) ‖b2 − x2‖2 + γ ‖b4 − x4‖2 − ‖x4‖2 + (γ − 1) ‖b1‖2 .

106

Thus, (3.28) indicates that G(x2,x4) can attain the objective value of zero. Note that G(x2,x4) is

a quadratic function and its gradient and Hessian matrix can be computed as follows:

∂

∂x2
G(x2,x4) = 2(γ − 1)(x2 − b2),

∂

∂x4
G(x2,x4) = 2γ(x4 − b4)− 2x4,

∇2G(x2,x4) = 2(γ − 1)I ,

where I is the identity matrix. Since the Hessian matrix is positive definite, G(x2,x4) attains the

global minimum at the stationary point, which is given by

x∗
2 = b2, x∗

4 =
γ

γ − 1
b4,

resulting in the minimum objective value

G(x∗
2,x

∗
4) =

γ

1− γ ‖b4‖
2 + (γ − 1) ‖b1‖2 .

In order to guarantee the feasible set of (3.28) is non-empty, we require that

G(x∗
2,x

∗
4) ≤ 0,

implying

‖b1‖2 γ2 − (2 ‖b1‖2 + ‖b4‖2)γ + ‖b1‖2 ≤ 0.

Solving the above inequality with respect to γ, we obtain

γ ≤ 1 +

‖b4‖2 +
√(

4 ‖b1‖2 + ‖b4‖2
)
‖b4‖2

2 ‖b1‖2
. (3.29)

To derive an upper bound that is uniform over the choice of b, we recall that b1 contains the largest

absolute elements of b while b4 has smaller values. In particular, the averaged value of b4 is no

107

greater than that of b1 in magnitude, i.e.,

‖b4‖2
‖b4‖0

≤ ‖b1‖
2

‖b1‖0
.

Note that ‖b1‖0 = k−‖b2‖0 = k−(K−‖b4‖0). Hence, combining with the fact that 0 ≤ ‖b4‖0 ≤

min{K, d − k} and optimizing over ‖b4‖0 gives

‖b4‖2 ≤
min{K, d − k}

k −K +min{K, d − k} ‖b1‖
2 .

Plugging back to (3.29), we finally obtain

γ ≤ 1 +
ρ+

√
(4 + ρ) ρ

2
, ρ =

min{K, d − k}
k −K +min{K, d − k} .

The proof is complete.

3.C Proofs for Section 3.3

3.C.1 Proof of Theorem 3.2

We follow the proof pipeline of [20] and only remark the difference of our proof and theirs, i.e.,

where Theorem 3.1 applies. In case of possible confusion due to notation, we follow the symbols

in Blumensath and Davies. One may refer to that article for a complete proof.

The first difference occurs in Eq. (22) of [20], where they reached

(Old)
∥∥∥xs − x[n+1]

∥∥∥ ≤ 2
∥∥∥xs

Bn+1 − a
[n+1]
Bn+1

∥∥∥ ,

while Theorem 3.1 gives

(New)
∥∥∥xs − x[n+1]

∥∥∥ ≤
√
ν
∥∥∥xs

Bn+1 − a
[n+1]
Bn+1

∥∥∥ .

Combining this new inequality and Eq. (23) therein, we obtain

∥∥∥xs − x[n+1]
∥∥∥ ≤
√
ν
∥∥∥(I −Φ

⊤
Bn+1ΦBn+1)r

[n]
Bn+1

∥∥∥+
√
ν
∥∥∥(Φ⊤

Bn+1ΦBn+1\Bn+1)r
[n]
Bn+1\Bn+1

∥∥∥ .

108

By noting the fact that
∣∣Bn ∪Bn+1

∣∣ ≤ 2s+s∗ where s∗ denotes the sparsity of the global optimum

and following their reasoning of Eq. (24) and (25), we have a new bound for Eq. (26):

(New)
∥∥∥r[n+1]

∥∥∥ ≤
√
2νδ2s+s∗

∥∥∥r[n]
∥∥∥+

√
(1 + δs+s∗)ν ‖e‖ .

Now our result follows by setting the coefficient of
∥∥r[n]

∥∥ to 0.5. Note that specifying ν = 4 gives

the result of [20].

3.C.2 Proof of Theorem 3.3

We follow the proof technique of Theorem 6.27 in [62] which gives the best known RIP condition

for the CoSaMP algorithm to date. Since most of the reasoning is similar, we only point out the

difference of our proof and theirs, i.e., where Theorem 3.1 applies. In case of confusion by notation,

we follow the symbols used in [62]. The reader may refer to that book for a complete proof.

The first difference is in Eq. (6.49) of [62]. Note that to derive this inequality, Foucart and

Rauhut invoked the conventional bound (3.1), which gives

(Old)
∥∥xS − xn+1

∥∥2 ≤
∥∥(xS − un+1)

Un+1

∥∥2 + 4
∥∥(xS − un+1)Un+1

∥∥2 ,

while utilizing Theorem 3.1 gives

(New)
∥∥xS − xn+1

∥∥2 ≤
∥∥(xS − un+1)

Un+1

∥∥2 + ν
∥∥(xS − un+1)Un+1

∥∥2 .

Combining this new inequality with Eq. (6.50) and Eq. (6.51) therein, we obtain

∥∥xS − xn+1
∥∥ ≤
√
2δ3s+s∗

√
1 + (ν − 1)δ23s+s∗

1− δ23s+s∗
‖xn − xS‖

+
√
2δ3s+s∗

√
1 + (ν − 1)δ23s+s∗

1− δ23s+s∗

∥∥(A∗e′)(S∪Sn)∆Tn+1

∥∥

+
2

1− δ3s+s∗

∥∥(A∗e′)Un+1

∥∥ ,

where s∗ denotes the sparsity of the optimum. Our new bound follows by setting the coefficient of

‖xn − xS‖ to 0.5 and solving the resultant equation. Note that setting ν = 4 gives the old bound

109

of Foucart and Rauhut.

3.D Proofs for Section 3.4

3.D.1 Proof of Theorem 3.4

Proof. Fix a stage s. Let us denote

vt = ∇fit(xt−1)−∇fit(x̃) + µ̃,

so that

bt = xt−1 − ηvt.

By specifying Ω = supp
(
xt−1

)
∪ supp

(
xt
)
∪ supp (x̃) ∪ supp (x̂), it follows that

rt = Hk

(
bt
)
= Hk

(
PΩ
(
bt
))
.

Thus, the Euclidean distance of xt and x̂ can be bounded as follows:

∥∥xt − x̂
∥∥2 ≤

∥∥rt − x̂
∥∥2 =

∥∥Hk

(
PΩ
(
bt
))
− x̂

∥∥2 ≤ ν
∥∥PΩ

(
bt
)
− x̂

∥∥2 , (3.30)

where the first inequality holds because xt = Πω(r
t) and ‖x̂‖ ≤ ω. We also have

∥∥PΩ
(
bt
)
− x̂

∥∥2 =
∥∥xt−1 − x̂− ηPΩ

(
vt
)∥∥2

=
∥∥xt−1 − x̂

∥∥2 + η2
∥∥PΩ

(
vt
)∥∥2 − 2η

〈
xt−1 − x̂,vt

〉
,

where the second equality uses the fact that
〈
xt−1 − x̂,PΩ

(
vt
)〉

=
〈
xt−1 − x̂,vt

〉
. The first

term will be preserved for mathematical induction. The third term is easy to manipulate thanks to

the unbiasedness of vt. For the second term, we use Lemma 3.9 to bound it. Put them together,

110

conditioning on xt−1 and taking the expectation over it for (3.30), we have

Eit|xt−1

[∥∥xt − x̂
∥∥2
]

ξ1
≤ ν

∥∥xt−1 − x̂
∥∥2 + 4νη2L

[
F (xt−1)− F (x̂) + F (x̃)− F (x̂)

]
− 2νη

〈
xt−1 − x̂,∇F (xt−1)

〉

− 4νη2L
〈
∇F (x̂),xt−1 + x̃− 2x̂

〉
+ 4νη2 ‖PΩ (∇F (x̂))‖2

ξ2
≤ ν(1− ηα)

∥∥xt−1 − x̂
∥∥2 − 2νη(1 − 2ηL)

[
F (xt−1)− F (x̂)

]
+ 4νη2L [F (x̃)− F (x̂)]

+ 4νη2L ‖PΩ (∇F (x̂))‖ ·
∥∥xt−1 + x̃− 2x̂

∥∥+ 4νη2 ‖PΩ (∇F (x̂))‖2

≤ ν(1− ηα)
∥∥xt−1 − x̂

∥∥2 − 2νη(1 − 2ηL)
[
F (xt−1)− F (x̂)

]

+ 4νη2L [F (x̃)− F (x̂)] + 4νη2Q′(4Lω +Q′)

where ξ1 applies Lemma 3.9, ξ2 applies Assumption (A1) and we write Q′ := ‖∇3k+KF (x̂)‖ for

brevity.

Now summing over the inequalities over t = 1, 2, · · · ,m, conditioning on x̃ and taking the

expectation with respect to Is = {i1, i2, · · · , im}, we have

EIs|x̃
[
‖xm − x̂‖2

]

≤ [ν(1− ηα) − 1]EIs|x̃

m∑

t=1

∥∥xt−1 − x̂
∥∥2 +

∥∥x0 − x̂
∥∥2 + 4νη2Q′(4Lω +Q′)m

− 2νη(1 − 2ηL)EIs|x̃

m∑

t=1

[
F (xt−1)− F (x̂)

]
+ 4νη2Lm [F (x̃)− F (x̂)]

= [ν(1− ηα) − 1]mEIs,js|x̃ ‖x̃s − x̂‖2 + ‖x̃− x̂‖2 + 4νη2Q′(4Lω +Q′)m

− 2νη(1 − 2ηL)mEIs,js|x̃ [F (x̃s)− F (x̂)] + 4νη2Lm [F (x̃)− F (x̂)]

≤ [ν(1− ηα) − 1]mEIs,js|x̃ ‖x̃s − x̂‖2 +
(
2

α
+ 4νη2Lm

)
[F (x̃)− F (x̂)]

− 2νη(1 − 2ηL)mEIs,js|x̃ [F (x̃s)− F (x̂)] + 4νη2Q′(4Lω +Q′)m+ 2Q′ω/α, (3.31)

where we recall that js is the randomly chosen index used to determine x̃s (see Algorithm 1). The

last inequality holds due to the RSC condition and
∥∥xt
∥∥ ≤ ω. For brevity, we write

Q := 4νη2Q′(4Lω +Q′)m+ 2Q′ω/α, Q′ = ‖∇3k+KF (x̂)‖ .

111

Based on (3.31), we discuss two cases to examine the convergence of the algorithm.

Case 1. ν(1− ηα) ≤ 1. This immediately results in

EIs|x̃
[
‖xm − x̂‖2

]

≤
(
2

α
+ 4νη2Lm

)
[F (x̃)− F (x̂)]− 2νη(1 − 2ηL)m EIs,js|x̃ [F (x̃

s)− F (x̂)] +Q,

which implies

νη(1− 2ηL)mEIs,js|x̃ [F (x̃s)− F (x̂)] ≤
(
1

α
+ 2νη2Lm

)
[F (x̃)− F (x̂)] + Q

2
.

Pick η such that

1− 2ηL > 0, (3.32)

we obtain

EIs,js|x̃ [F (x̃
s)− F (x̂)] ≤

(
1

νηα(1− 2ηL)m
+

2ηL

1− 2ηL

)
[F (x̃)− F (x̂)]+ Q

2νηα(1− 2ηL)m
.

To guarantee the convergence, we must impose

2ηL

1− 2ηL
< 1. (3.33)

Putting (3.32), (3.33) and ν(1− ηα) ≤ 1 together gives

η <
1

4L
, ν ≤ 1

1− ηα. (3.34)

The convergence coefficient here is

β =
1

νηα(1 − 2ηL)m
+

2ηL

1− 2ηL
. (3.35)

112

Thus, we have

E [F (x̃s)− F (x̂)] ≤ βs
[
F (x̃0)− F (x̂)

]
+

Q

2νηα(1 − 2ηL)(1 − β)m,

where the expectation is taken over {I1, j1,I2, j2, · · · ,Is, js}.

Case 2. ν(1− ηα) > 1. In this case, (3.31) implies

EIs|x̃
[
‖xm − x̂‖2

]
≤
(
2

α
+ 4νη2Lm

)
[F (x̃)− F (x̂)] +Q

+

(
2

α
[ν(1− ηα)− 1]m− 2νη(1 − 2ηL)m

)
EIs,js|x̃ [F (x̃

s)− F (x̂)] .

Rearranging the terms gives

(
2νηα− 2νη2αL− ν + 1

)
mEIs,js|x̃ [F (x̃

s)− F (x̂)] ≤
(
1 + 2νη2αLm

)
[F (x̃)− F (x̂)]+αQ

2
.

To ensure the convergence, the minimum requirements are

2νηα − 2νη2αL− ν + 1 > 0,

2νηα − 2νη2αL− ν + 1 > 2νη2αL.

That is,

4ναLη2 − 2ναη + ν − 1 < 0.

We need to guarantee the feasible set of the above inequality is non-empty for the positive variable

η. Thus, we require

4ν2α2 − 4× 4ναL(ν − 1) > 0,

which is equivalent to

ν <
4L

4L− α.

113

Combining it with ν(1− ηα) > 1 gives

1

1− ηα < ν <
4L

4L− α.

To ensure the above feasible set is non-empty, we impose

1

1− ηα <
4L

4L− α,

so that

0 < η <
1

4L
,

1

1− ηα < ν <
4L

4L− α. (3.36)

The convergence coefficient for this case is

β =
1

(2νηα− 2νη2αL− ν + 1)m
+

2νη2αL

2νηα − 2νη2αL− ν + 1
. (3.37)

Thus,

E [F (x̃s)− F (x̂)] ≤ βs
[
F (x̃0)− F (x̂)

]
+

αQ

2(2νηα − 2νη2αL− ν + 1)(1 − β)m.

By combining (3.34) and (3.36), the minimum requirement for η and ν is

0 < η <
1

4L
, ν <

4L

4L− α.

The proof is complete.

3.D.2 Proof of Corollary 3.7

Proof. By noting the concavity of the square root function, we have

E

[√
max{F (x̃s)− F (x̂), 0}

]
≤
√
E
[
max{F (x̃s)− F (x̂), 0}

]

≤
√
(2/3)smax{F (x̃0)− F (x̂), 0} + τ(x̂).

114

Suppose that F (x) satisfies RSS with parameter L′ ∈ [α,L]. It follows that

F (x̃0)− F (x̂) ≤
〈
∇F (x̂), x̃0 − x̂

〉
+
L′

2

∥∥x̃0 − x̂
∥∥2 ≤ 1

2L′ ‖∇k+KF (x̂)‖2 + L′ ∥∥x̃0 − x̂
∥∥2 .

Recall that

τ(x̂) =
5ω

α
‖∇3k+KF (x̂)‖+

1

αL
‖∇3k+KF (x̂)‖2 .

Hence using
√
a+ b+ c+ d ≤ √a+

√
b+
√
c+
√
d gives

E

[√
max{F (x̃s)− F (x̂), 0}

]
≤
√
L′
(
2

3

) s
2 ∥∥x̃0 − x̂

∥∥+
√

5ω

α
‖∇3k+KF (x̂)‖

+

(
1

α
+

√
1

2α

)
‖∇3k+KF (x̂)‖ .

Finally, the RSC property immediately suggests that (see, e.g., Lemma 20 in [130])

E
[
‖x̃s − x̂‖

]
≤
√

2

α
E

[√
max{F (x̃s)− F (x̂), 0}

]
+

2 ‖∇k+KF (x̂)‖
α

≤
√

2L′

α
·
(
2

3

) s
2 ∥∥x̃0 − x̂

∥∥+
√

10ω

α2
‖∇3k+KF (x̂)‖

+

(√
2

α3
+

3

α

)
‖∇3k+KF (x̂)‖ .

The proof is complete.

115

Chapter 4

Online Optimization for Low-Rank

Matrix Recovery

4.1 Background

In the last decade, estimating low-rank matrices has attracted increasing attention in the machine

learning community owing to its successful applications in a wide range of fields including sub-

space clustering [93], collaborative filtering [63] and robust dimensionality reduction [34]. Suppose

that we are given an observed data matrix Z in R
d×n, i.e., n observations in d ambient dimensions,

we aim to learn a prediction matrix X with a low-rank structure so as to approximate the obser-

vation. This problem, together with its many variants, typically involves minimizing a weighted

combination of the residual error and a penalty for the matrix rank.

Generally speaking, it is intractable to optimize a matrix rank due to the discrete and non-convex

nature [120]. To tackle this challenge, researchers suggested alternative convex relaxations to the

matrix rank. The two most widely used convex surrogates are the nuclear norm [120] and the max-

norm (a.k.a. γ2-norm) [138]. The nuclear norm is defined as the sum of the matrix singular values.

Like the ℓ1 norm in the vector case that induces sparsity, the nuclear norm was proposed as a rank

minimization heuristic and was able to be formulated as a semi-definite programming (SDP) prob-

lem [58]. By combining the SDP formulation and the matrix factorization technique, [138] showed

that the collaborative filtering problem can be effectively solved by optimizing a soft-margin based

116

program. Another interesting work on the nuclear norm comes from the data compression commu-

nity. In real-world applications, due to possible sensor failure and background clutter, the underly-

ing data can easily be corrupted. In this case, estimates produced by Principal Component Analysis

(PCA) may be deviated far from the true subspace [79]. To handle the (gross) corruption, in the

seminal work of [34], Candès et al. proposed a new formulation termed Robust PCA (RPCA), and

proved that under mild conditions, solving a convex optimization problem consisting of a nuclear

norm regularization and a weighted ℓ1 norm penalty can exactly recover the low-rank component of

the underlying data even if a constant fraction of the entries are arbitrarily corrupted.

The max-norm variant was developed as another convex relaxation to the rank function [138],

where Srebro et al. formulated the max-norm regularized problem as an SDP and empirically

showed the superiority to the nuclear norm. The main theoretical study on the max-norm comes

from [139], where Srebro and Shraibman considered collaborative filtering as an example and

proved that the max-norm scheme enjoys a lower generalization error than the nuclear norm. Fol-

lowing these theoretical foundations, [76] improved the error bound for the clustering problem.

Another important contribution from [76] is that they partially characterized the subgradient of the

max-norm, which is a hard mathematical entity and cannot be fully understood to date. How-

ever, since SDP solver is not scalable, there is a large gap between the theoretical progress and

the practical applicability of the max-norm. To bridge the gap, a number of follow-up work at-

tempted to design efficient algorithms to solve max-norm regularized or constrained problems. For

example, [121] devised a gradient-based optimization method and empirically showed promising

results on large collaborative filtering data sets. [87] presented large-scale optimization methods for

max-norm constrained and max-norm regularized problems and showed a convergence to stationary

point.

Nevertheless, algorithms presented in prior work [138, 121, 87, 112] require to access all the

data when the objective function involves a max-norm regularization. In the large-scale setting, the

applicability of such batch optimization methods will be hindered by the memory bottleneck. In

this chapter, henceforth, we propose an online algorithm to solve max-norm regularized problems.

The main advantage of online algorithms is that the memory cost is independent of the sample size,

which makes it a good fit for the big data era.

To be more detailed, we are interested in a general max-norm regularized matrix decomposition

117

(MRMD) problem. Suppose that the observed data matrix Z can be decomposed into a low-rank

component X and some structured noise E, we aim to simultaneously and accurately estimate the

two components, by solving the following convex program:

(MRMD) min
X,E

1

2
‖Z −X −E‖2F +

λ1
2
‖X‖2max + λ2h(E). (4.1)

Here, ‖·‖F denotes the Frobenius norm which is a commonly used metric for evaluating the resid-

ual, ‖·‖max is the max-norm (which promotes low-rankness), and λ1 and λ2 are two non-negative

parameters. h(E) is some (convex) regularizer that can be adapted to various kinds of noise. We

require that it can be represented as a summation of column norms. Formally, there exists some

regularizer h̃(·), such that

h(E) =
n∑

i=1

h̃(ei), (4.2)

where ei is the ith column of E. Classical examples include:

• ‖E‖1. That is, the ℓ1 norm of the matrix E seen as a long vector, which is used to handle

sparse corruption. In this case, h̃(·) is the ℓ1 vector norm. Note that when equipped with this

norm, the above problem reduces to the well-known RPCA formulation [34], but with the

nuclear norm being replaced by the max-norm.

• ‖E‖2,1. This is defined as the summation of the ℓ2 column norms, which is effective when

a small fraction of the samples are contaminated (recall that each column of Z is a sample).

The matrix ℓ2,1 norm is typically used to handle outliers and interestingly, the above program

becomes Outlier PCA [154] in this case.

• ‖E‖2F or E = 0. The formulation of (4.1) works as a large-margin based program, with the

hinge loss replaced by the squared loss [138].

Hence, (4.1) is quite general and our algorithmic and theoretical results hold for such a general

form, uncovering important problems including max-norm regularized RPCA, max-norm regular-

ized Outlier PCA and maximum margin matrix factorization. Furthermore, with a careful design,

the above formulation (4.1) can be extended to address the matrix completion problem [36], as we

will show in Section 4.5.

118

Considering the connection between max-norm and nuclear norm, one might be interested in an

alternative formulation as follows:

min
X,E

1

2
‖Z −X −E‖2F +

λ′1
2
‖X‖max + λ2h(E). (4.3)

First, we would like to point out that the above formulation is equivalent to (4.1), in the sense that

if we choose proper parameter λ′1 for (4.3) and some parameter λ1 for (4.1), they produce same

solutions. To see this, we note that (4.3) is equivalent to the following constrained program:

min
X,E

1

2
‖Z −X −E‖2F + λ2h(E), s. t. ‖X‖max ≤ κ,

for some parameter κ. Taking the square on both sides of the inequality constraint gives

min
X,E

1

2
‖Z −X −E‖2F + λ2h(E), s. t. ‖X‖2max ≤ κ2.

Again, we know that for some proper choice of λ1, the above program is equivalent to (4.1). The

reason we choose (4.1) is for a convenient computation of the solution. We defer a more detailed

discussion to Section 4.3.

4.1.1 Contributions

In summary, our main contributions is two-folds: 1) We are the first to develop an online algorithm

to solve a family of max-norm regularized problems (4.1), which admits a wide range of applications

in machine learning. We also show that our approach can be used to solve other popular max-norm

regularized problems such as matrix completion. 2) We prove that the sequence of solutions pro-

duced by our algorithm converges to a stationary point of the expected loss function asymptotically

(see Section 4.4).

4.1.2 Related Work

Here we discuss some relevant work in the literature. Most previous work on max-norm focused on

showing that it is empirically superior to the nuclear norm in real-world problems, such as collabora-

tive filtering [138], clustering [76] and hamming embedding [108]. Other work, for instance, [126],

119

studied the influence of data distribution with the max-norm regularization and observed good per-

formance even when the data are sampled non-uniformly. There are also interesting work which

investigated the connection between the max-norm and the nuclear norm. A comprehensive study

on this problem, in the context of collaborative filtering, can be found in [139], which established

and compared the generalization bound for the nuclear norm regularization and the max-norm,

showing that the latter one results in a tighter bound. More recently, [63] attempted to unify them

to gain insightful perspective.

Also in line with this work is matrix decomposition. As we mentioned, when we penalize

the noise E with ℓ1 matrix norm, it reverts to the well known RPCA formulation [34]. The only

difference is that [34] analyzed the RPCA problem with the nuclear norm, while (4.1) employs the

max-norm. Owing to the explicit form of the subgradient of the nuclear norm, [34] established a

dual certificate for the success of their formulation, which facilitates their theoretical analysis. In

contrast, the max-norm is a much harder mathematical entity (even its subgradient has not been fully

characterized). Henceforth, it still remains challenging to understand the behavior of the max-norm

regularizer in the general setting (4.1). Studying the conditions for the exact recovery of MRMD is

out of the scope of this chapter. We leave this as a future work.

From a high level, the goal of this chapter is similar to that of [59]. Motivated by the celebrated

RPCA problem [34, 154, 155], [59] developed an online implementation for the nuclear-norm regu-

larized matrix decomposition. Yet, since the max-norm is a more complicated mathematical entity,

new techniques and insights are needed in order to develop online methods for the max-norm regu-

larization. For example, after converting the max-norm to its matrix factorization form, the data are

still coupled and we propose to transform the problem to a constrained one for stochastic optimiza-

tion.

The main technical contribution of this chapter is converting max-norm regularization to an

appropriate matrix factorization problem that is amenable to online implementation. Compared

to [99] which also studies online matrix factorization, our formulation contains an additional struc-

tured noise that brings the benefit of robustness to contamination. Some of our proof techniques

are also different. For example, to prove the convergence of the dictionary and to well define their

problem, [99] assumed that the magnitude of the learned dictionary is constrained. In contrast, we

prove that the optimal basis is uniformly bounded, and hence our problem is naturally well-defined.

120

Our algorithm can be viewed as a majorization-minimization scheme, for which [98] derived a

general analysis on the convergence behavior. However, we find that Algorithm 1 in [98] requires

the knowledge of the Lipschitz constant to obtain a surrogate function. In our work, we use a

suboptimal solution to derive the surrogate function (see Step 3 and Step 5 in our Algorithm 2 to be

introduced). Due to such a different mechanism, it remains an open question whether one can apply

their algorithm and theoretical analysis to the problem considered here. It is also worth mentioning

that in order to establish their theoretical results, [98] assumed that the iterates and the empirical

loss function are uniformly bounded (see Assumption (C) and Assumption (D) therein). For our

problem, we can virtually prove this property (see Proposition 4.4 and Corollary 4.5 to follow).

Finally, we note that our algorithm is different from block coordinate descent, see, e.g., [147].

In fact, block coordinate descent randomly and independently picks a mini-batch of samples and

updates a block variable, whereas we in each iteration update only the variables associated with

the revealed sample. Another key difference is that [147] considered a strongly convex objective

function, while we are working with a non-convex case.

4.1.3 Notation

There are four matrix norms that will be heavily used: ‖M‖F for the Frobenius norm, ‖M‖1 for

the ℓ1 matrix norm seen as a long vector, ‖M‖max for the max-norm induced by the product of

ℓ2,∞-norm on the factors of M . Here, the ℓ2,∞-norm is defined as the maximum ℓ2 row norm.

4.2 Problem Setup

We are interested in developing an online algorithm for the MRMD problem (4.1) so as to mitigate

the memory issue. To this end, we utilize the following definition of the max-norm [138]:

‖X‖max := min
U ,V

{
‖U‖2,∞ · ‖V ‖2,∞ : X = UV ⊤,U ∈ R

d×r,V ∈ R
n×r
}
, (4.4)

121

where r is an upper bound on the intrinsic dimension of the underlying data. Plugging the above

back to (4.1), we obtain an equivalent form:

min
U ,V ,E

1

2

∥∥∥Z −UV ⊤ −E

∥∥∥
2

F
+
λ1
2
‖U‖22,∞ ‖V ‖22,∞ + λ2h(E). (4.5)

In this chapter, if not specified, “equivalent” means we do not change the optimal value of the

objective function. Intuitively, the variable U serves as a (possibly overcomplete) basis for the

clean data while correspondingly, the variable V works as a coefficients matrix with each row

being the coefficients for each sample (recall that we organize the observed samples in a column-

wise manner). In order to make the new formulation (4.5) equivalent to MRMD (4.1), the quantity

of d should be sufficiently large due to (4.4).

At a first sight, the problem can only be optimized in a batch manner for which the memory cost

is prohibitive. To see this, note that we are considering the regime of r < d≪ n and the size of the

coefficients V is proportional to n. In order to optimize the above program over the variable V , we

have to compute the gradient with respect to it. Recall that the ℓ2,∞-norm counts the largest ℓ2 row

norm of V , hence coupling all the samples (each row of V associates with a sample).

Fortunately, we have the following proposition that alleviates the inter-dependency among the

rows of V , hence facilitating an online algorithm where the rows of V can be optimized sequen-

tially.

Proposition 4.1. Problem (4.5) is equivalent to the following constrained program:

min
U ,V ,E

1

2

∥∥∥Z −UV ⊤ −E

∥∥∥
F
+
λ1
2
‖U‖22,∞ + λ2h(E), s. t. ‖V ‖22,∞ ≤ 1. (4.6)

Moreover, there exists an optimal solution (U∗,V ∗,E∗) attained at the boundary of the feasible

set, i.e., ‖V ∗‖22,∞ is equal to the unit.

Proposition 4.1 is crucial for the online implementation. It states that our primal MRMD prob-

lem (4.1) can be transformed to an equivalent constrained program (4.6) where the coefficients of

each individual sample (i.e., a row of the matrix V) is uniformly and separately constrained.

Consequently, we can, equipped with Proposition 4.1, rewrite the original problem in an online

122

fashion, with each sample being separately processed:

min
U ,V ,E

1

2

n∑

i=1

‖zi −Uvi − ei‖2 +
λ1
2
‖U‖22,∞ + λ2

n∑

i=1

h̃(ei), s. t. ‖vi‖2 ≤ 1, ∀ i ∈ [n], (4.7)

where zi is the ith observation, vi is the ith row of V and ei is some structured error penalized

by the (convex) regularizer h̃(·) (recall that we require h(E) can be decomposed column-wisely).

Merging the first and third term above gives a compact form:

min
U

min
V ,E

n∑

i=1

ℓ̃(zi,U ,vi,ei) +
λ1
2
‖U‖22,∞ , s. t. ‖vi‖2 ≤ 1, ∀i ∈ [n], (4.8)

where

ℓ̃(z,U ,v,e) :=
1

2
‖z −Uv − e‖2 + λ2h̃(e). (4.9)

This is indeed equivalent to optimizing (i.e., minimizing) the empirical loss function:

min
U

fn(U), (4.10)

where

fn(U) :=
1

n

n∑

i=1

ℓ(zi,U) +
λ1
2n
‖U‖22,∞ , (4.11)

and

ℓ(z,U) = min
v,e,‖v‖2≤1

ℓ̃(z,U ,v,e). (4.12)

Note that by Proposition 4.1, as long as the quantity of d is sufficiently large, the program (4.10)

is equivalent to the primal formulation (4.1), in the sense that both of them could attain the same

minimum. Compared to MRMD (4.1), which is solved in a batch manner by prior work, the formu-

lation (4.10) paves a way for stochastic optimization procedure since all the samples are decoupled.

4.3 Algorithm

Based on the derivation in the preceding section, we are now ready to present our online algorithm

to solve the MRMD problem (4.1). The implementation is outlined in Algorithm 2. Here we briefly

explain the underlying intuition. We optimize the coefficients v, the structured noise e and the basis

123

Algorithm 2 Online Max-Norm Regularized Matrix Decomposition

Require: Z ∈ R
d×n (observed samples), parameters λ1 > 0 and λ2 > 0, U0 ∈ R

d×r (initial
basis), zero matrices A0 ∈ R

r×r and B0 ∈ R
d×r.

Ensure: Optimal basis Un.
1: for t = 1 to n do

2: Access the t-th sample zt.
3: Compute the coefficient and noise:

{vt,et} = argmin
v,e,‖v‖2≤1

ℓ̃(zt,U t−1,v,e).

4: Compute the accumulation matrices At and Bt:

At ←−At−1 + vtv
⊤
t ,

Bt ←−Bt−1 + (zt − et) v
⊤
t .

5: Compute the basis U t by optimizing the surrogate function (4.13):

U t = argmin
U

1

t

t∑

i=1

ℓ̃(zi,U ,vi,ei) +
λ1
2t
‖U‖22,∞

= argmin
U

1

t

(
1

2
Tr
(
U⊤UAt

)
−Tr

(
U⊤Bt

))
+
λ1
2t
‖U‖22,∞ .

6: end for

U in an alternating manner, with only the basis U and two accumulation matrices being kept in

memory. At the t-th iteration, given the basis U t−1 produced by the previous iteration, we can

optimize (4.12) by examining the Karush-Kuhn-Tucker (KKT) conditions. To obtain a new iterate

U t, we then minimize the following objective function:

gt(U) :=
1

t

t∑

i=1

ℓ̃(zi,U ,vi,ei) +
λ1
2t
‖U‖22,∞ , (4.13)

where {vi}ti=1 and {ei}ti=1 are already on hand. It can be verified that (4.13) is a surrogate function

of the empirical loss ft(U) (4.11), since the obtained vi’s and ei’s are suboptimal. Interestingly,

instead of recording all the past vi’s and ei’s, we only need to store two accumulation matrices

whose sizes are independent of n, as shown in Algorithm 2. In the sequel, we elaborate each step.

124

4.3.1 Update the Coefficients and Noise

Given a sample z and a basis U , we are able to estimate the optimal coefficients v and the noise e

by minimizing ℓ̃(z,U ,v,e). That is, we are to solve the following program:

min
v,e

1

2
‖z −Uv − e‖2 + λ2h̃(e), s. t. ‖v‖ ≤ 1. (4.14)

We notice that the constraint only involves the variable v, and in order to optimize v, we only

need to consider the residual term in the objective function. This motivates us to employ a block

coordinate descent algorithm. Namely, we alternatively optimize one variable with the other fixed,

until some stopping criteria is fulfilled. In our implementation, when the difference between the

current and the previous iterate is smaller than 10−6, or the number of iterations exceeds 100, our

algorithm will terminate and return the optimum.

Optimize the Coefficients v

Now it remains to show how to compute a new iterate for one variable when the other one is fixed.

According to [14], when the objective function is strongly convex with respect to (w.r.t.) each block

variable, we are guaranteed that the block coordinate minimization algorithm converges. In our case,

we observe that such a condition holds for e but not necessary for v. In fact, the strong convexity

w.r.t. v holds if and only if the basis U is with full rank. When U is not full rank, we may compute

the Moore Penrose pseudo inverse to solve v. However, for computational efficiency, we append a

small jitter ǫ
2 ‖v‖

2 to the objective if necessary, so as to guarantee the convergence (ǫ = 0.01 in our

experiments). In this way, we obtain a potentially admissible iterate for v as follows:

v0 = (U⊤U + ǫId)
−1U⊤(z − e). (4.15)

Here, ǫ is set to be zero if and only if U is full rank.

Next, we examine if v0 violates the inequality constraint in (4.14). If it happens to be a feasible

solution, i.e., ‖v0‖ ≤ 1, we have found the new iterate for v. Otherwise, we conclude that the

optimum of v must be attained on the boundary of the feasible set, i.e., ‖v‖ = 1, for which the

125

minimizer can be computed by the method of Lagrangian multipliers:

max
η

min
v

1

2
‖z −Uv − e‖2 + η

2

(
‖v‖2 − 1

)
, s. t. η > 0, ‖v‖ = 1. (4.16)

By differentiating the objective function with respect to v, we have

v =
(
U⊤U + ηId

)−1
U⊤(z − e). (4.17)

The following argument helps us to efficiently search the optimal solution.

Proposition 4.2. Let v be given by (4.17), where U , z and e are assumed to be fixed. Then, the ℓ2

norm of v is strictly monotonically decreasing with respect to the quantity of η.

Proof. For simplicity, let us denote

v(η) =
(
U⊤U + ηId

)−1
b,

where b = U⊤(z − e) is a fixed vector. Suppose we have a full singular value decomposition

(SVD) on U = LSR⊤, where the singular values {s11, s22, · · · , sdd} (i.e., the diagonal elements

in S) are arranged in a decreasing order and at most r number of them are non-zero. Substituting

U with its SVD, we obtain the squared ℓ2 norm for v(η):

‖v(η)‖2 = b⊤
(
RS2R⊤ + ηId

)−2
b = b⊤RSηR

⊤b,

where Sη is a diagonal matrix whose ith diagonal element equals (s2ii + η)−2.

For any two entities η1 > η2, it is easy to see that the matrix Sη1 − Sη2 is negative definite.

Hence, it always holds that

‖v(η1)‖2 − ‖v(η2)‖2 = b⊤R(Sη1 − Sη2)R
⊤b < 0,

which concludes the proof.

The above proposition offers an efficient computation scheme, i.e., bisection method, for search-

ing the optimal v as well as the dual variable η. To be more detailed, we can maintain a lower bound

126

η1 and an upper bound η2, such that ‖v(η1)‖ ≥ 1 and ‖v(η2)‖ ≤ 1. According to the monotonic

property shown in Proposition 4.2, the optimal η must fall into the interval [η1, η2]. By evaluating

the value of ‖v‖ at the middle point (η1+η2)/2, we can sequentially shrink the interval until ‖v‖ is

close or equal to one. Note that we can initialize η1 with zero (since ‖v0‖ > 1 implies the optimal

η∗ > ǫ ≥ 0). The bisection routine is summarized in Algorithm 3.

Algorithm 3 Bisection Method for Problem (4.16)

Require: U ∈ R
d×r, z ∈ R

d, e ∈ R
d.

Ensure: Optimal primal and dual pair (v, η).
1: Initialize the lower bound η1 = 0 and the upper bound η2 large enough such that ‖v(η2)‖ ≤ 1.
2: repeat

3: Compute the middle point:

η ← 1

2
(η1 + η2).

4: if ‖v(η)‖ < 1 then

5: Update η2:

η2 ← η.

6: else

7: Update η1:

η1 ← η.

8: end if

9: until ‖v‖ = 1

Optimize the Noise e

We have clarified the technique used for solving v in Problem (4.14) when e is fixed. Now let us

turn to the phase where v is fixed and we want to find the optimal e. Since e is an unconstrained

variable, generally speaking, it is much easier to solve, although one may employ different strategies

for various regularizers h̃(·). Here, we discuss the solutions for popular choices of the regularizer.

1. h̃(e) = ‖e‖1. The ℓ1 regularizer results in a closed form solution for e as follows:

e = Sλ2
[z −Uv], (4.18)

where Sλ2
[·] is the soft-thresholding operator [49].

127

Algorithm 4 The Coefficients and Noise Update (Problem (4.14))

Require: U ∈ R
d×r, z ∈ R

d, parameter λ2 and a small jitter ǫ.
Ensure: Optimal v and e.

1: Initialize e = 0.
2: repeat

3: Compute the potential solution v0 given in (4.15).
4: if ‖v0‖ ≤ 1 then

5: Update v with

v = v0,

6: else

7: Update v by Algorithm 3.
8: end if

9: Update the noise e.
10: until convergence

2. h̃(e) = ‖e‖. The solution in this case can be characterized as follows (see, for example, [93]):

e =





‖z−Uv‖
‖z−Uv‖−λ2

(z −Uv), if λ2 < ‖z −Uv‖ ,

0, otherwise.

(4.19)

Finally, for completeness, we summarize the routine for updating the coefficients and the noise

in Algorithm 4. The readers may refer to the preceding paragraphs for details.

4.3.2 Update the Basis

With all the past filtration Ft = {zi,vi,ei}ti=1 on hand, we are able to compute a new basis U t by

minimizing the surrogate function (4.13). That is, we are to solve the following program:

min
U

1

t

t∑

i=1

ℓ̃(zi,U ,vi,ei) +
λ1
2t
‖U‖22,∞ . (4.20)

By a simple expansion, for any i ∈ [t], we have

ℓ̃(zi,U ,vi,ei) =
1

2
Tr
(
U⊤Uviv

⊤
i

)
− Tr

(
U⊤(zi − ei)v

⊤
i

)
+

1

2
‖zi − ei‖2 + λ2h̃(ei).

(4.21)

128

Substituting back into (4.20), putting At =
∑t

i=1 viv
⊤
i , Bt =

∑t
i=1(zi − ei)v

⊤
i and removing

constant terms, we obtain

U t = argmin
U

1

t

(
1

2
Tr
(
U⊤UAt

)
− Tr

(
U⊤Bt

))
+
λ1
2t
‖U‖22,∞ . (4.22)

In order to derive the optimal solution, firstly, we need to characterize the subgradient of the

squared ℓ2,∞-norm. In fact, let Q be a positive semi-definite diagonal matrix, such that Tr (Q) = 1.

Denote the set of row index which attains the maximum ℓ2 row norm of U by I . In this way, the

subgradient of 1
2 ‖U‖

2
2,∞ is given by

∂

(
1

2
‖U‖22,∞

)
= QU , qii 6= 0 if and only if i ∈ I, qij = 0 for i 6= j. (4.23)

Equipped with the subgradient, we may apply block coordinate descent to update each column

of U sequentially. We assume that the objective function (4.22) is strongly convex w.r.t. U , imply-

ing that the block coordinate descent scheme can always converge to the global optimum [14].

We summarize the update procedure in Algorithm 5. In practice, we find that after revealing a

large number of samples, performing one-pass update for each column of U is sufficient to guaran-

tee a desirable accuracy, which matches the observation in [99].

Algorithm 5 The Basis Update

Require: U ∈ R
d×r in the previous iteration, accumulation matrix A and B, parameter λ1 > 0.

Ensure: Optimal basis U (updated).
1: repeat

2: Compute the subgradient of 1
2 ‖U‖

2
2,∞:

G = ∂

(
1

2
‖U‖22,∞

)
.

3: for j = 1 to d do

4: Update the jth column of U :

uj ← uj −
1

ajj

(
Uaj − bj + λ1gj

)
.

5: end for

6: until convergence

As we discussed in the introduction, one may prefer the formulation (4.3) to (4.1), although in

129

some sense they are equivalent. It is worth mentioning that our algorithm can easily be tailored to

solve (4.3) by modifying Step 5 of Algorithm 2 as follows:

U t = argmin
U

1

t

(
1

2
Tr
(
U⊤UAt

)
− Tr

(
U⊤Bt

))
+
λ1
2t
‖U‖2,∞.

Again, we are required to derive the optimal solution by examining the subgradient of the last term,

which is given by

∂ ‖U‖2,∞ = QW , qii 6= 0 if and only if i ∈ I, qij = 0 for i 6= j,

where each row of W is as follows:

w(i) =
1

‖u(i)‖u(i), ∀ 1 ≤ i ≤ p. (4.24)

4.3.3 Memory and Computational Cost

As one of the main contributions of this work, our OMRMD algorithm (i.e., Algorithm 2) is appeal-

ing for large-scale problems (the regime r < d ≪ n) since the memory cost is independent of n.

To see this, note that when computing the optimal coefficients and noise, only zt and U t−1 are ac-

cessed, which costsO (dr) memory. To store the accumulation matrix At, we needO
(
r2
)

memory

while that for Bt is O (dr). Finally, we find that only At and Bt are needed for the computation

of the new iterate U t. Therefore, the total memory cost of OMRMD is O (dr), i.e., independent

of n. In contrast, the SDP formulation introduced by [138] requires O
(
(d+ n)2

)
memory usage,

the local-search heuristic algorithm [121] needs O (r(d+ n)) and no convergence guarantee was

derived. Even for a recently proposed algorithm [87], they require to store the entire data matrix

and thus the memory cost is O (dn).

In terms of computational efficiency, our algorithm can be fast. One may have noticed that the

computation is dominated by solving Problem (4.14). The computational complexity of (4.17) in-

volves an inverse of a r × r matrix followed by a matrix-matrix and a matrix-vector multiplication,

totally O
(
dr2
)
. For the basis update, obtaining a subgradient of the squared ℓ2,∞-norm is O (dr)

since we need to calculate the ℓ2 norm for all rows of U followed by a multiplication with a diag-

130

onal matrix (see (4.23)). A one-pass update for the columns of U , as shown in Algorithm 5 costs

O
(
dr2
)
. Note that the quadratic dependency on r is mild in the low-rank setting.

4.4 Theoretical Analysis and Proof Sketch

In this section we present our main theoretical result regarding the validity of the proposed algo-

rithm. We first discuss some necessary assumptions.

4.4.1 Assumptions

(A1) The observed samples are independent and identically distributed (i.i.d.) with a compact

support Z . This is a very common scenario in real-world applications.

(A2) The surrogate functions gt(U) in (4.13) are strongly convex. In particular, we assume that

the smallest singular value of the positive semi-definite matrix 1
tAt defined in Algorithm 2 is

not smaller than some positive constant β1.

(A3) The minimizer for (4.12) is unique. Notice that ℓ̃(z,U ,v,e) is strongly convex w.r.t. e and

convex w.r.t. v. We can enforce this assumption by adding a jitter ǫ
2‖v‖22 to the objective

function, where ǫ is a small positive constant.

4.4.2 Main Results

It is easy to see that Algorithm 2 is devised to optimize the empirical loss function (4.11). In

stochastic optimization, we are mainly interested in the expected loss function, which is defined as

the averaged loss incurred when the number of samples goes to infinity. If we assume that each

sample is independently and identically distributed (i.i.d.), we have

f(U) := lim
n→∞

fn(U) = Ez[ℓ(z,U)]. (4.25)

The main theoretical result of this work is stated as follows.

Theorem 4.3 (Convergence to a stationary point of the expected loss function). Let {U t}∞t=1 be the

sequence of solutions produced by Algorithm 2. Then, the sequence converges to a stationary point

131

of the expected loss function (4.25) when t tends to infinity.

Remark 9. The theorem establishes the validity of our algorithm. Note that on one hand, the

transformation (4.4) facilitates an amenable way for the online implementation of the max-norm.

On the other hand, due to the non-convexity of our new formulation (4.6), it is generally hard to

desire a local, or a global minimizer [14]. Although Burer and Monteiro [26] showed that any local

minimum of an SDP is also the global optimum under some conditions (note that the max-norm

problem can be transformed to an SDP [138]), it is not clear how to determine that a solution is a

local optimum or a stationary point. Very recently, [16] showed that global convergence is possible

for a family of batch methods. Yet, it is not clear how to apply their results in the stochastic setting.

From the empirical study in Section 4.6, we find that the solutions produced by our algorithm always

converge to the global optimum when the samples are drawn from a i.i.d. Gaussian distribution.

4.4.3 Proof Outline

The essential tools for our analysis are from stochastic approximation [22] and asymptotic statis-

tics [144]. There are four key stages in our proof and one may find the full proof in Appendix 4.A.

Stage I. We first show that all the stochastic variables {U t,vt,et}∞t=1 are uniformly bounded.

The property is crucial because it justifies that the problem we are solving is well-defined. Also,

the uniform boundedness will be heavily used for deriving subsequent important results, e.g., the

Lipschitz property of the surrogate function.

Proposition 4.4 (Uniform bound of all stochastic variables). Let {vt,et,U t}∞t=1 be the sequence

of the solutions produced by Algorithm 2. Then,

1. For any t > 0, the optimal solutions vt and et are uniformly bounded.

2. For any t > 0, the accumulation matrices 1
tAt and 1

tBt are uniformly bounded.

3. There exists a compact set U , such that for any t > 0, we have U t ∈ U .

Proof. (Sketch) The uniform bound of et follows by constructing a trivial solution (0,0) for (4.9),

which results in an upper bound for the optimum of the objective function. Notably, the upper

bound here only involves a quantity on ‖zt‖, which is assumed to be uniformly bounded. Since vt

132

is always upper bounded by the unit, the first claim follows. The second claim follows immediately

by combining the first claim and Assumption (A1). In order to show that U t is uniformly bounded,

we utilize the first order optimality condition of the surrogate (4.13). Since 1
tAt is positive definite,

we can represent U t in terms of 1
tBt, Gt and the inverse of 1

tAt, where Gt is the subgradient,

whose Frobenius norm is in turn bounded by that of U t. Hence, it follows that U t can be uniformly

bounded.

Note that [99, 59] assumed that the dictionary (or basis) is uniformly bounded. In the above

proposition, we prove that such a condition naturally holds in our case.

Corollary 4.5 (Uniform bound and Lipschitz of the surrogate). Following the notation in Proposi-

tion 4.4, we have for all t > 0,

1. ℓ̃ (zt,U t,vt,et) (4.9) and ℓ (zt,U t) (4.12) are both uniformly bounded.

2. The surrogate function, i.e., gt(U) defined in (4.13) is uniformly bounded over U .

3. Moreover, gt(U) is uniformly Lipschitz over the compact set U .

Stage II. We next show that the positive stochastic process {gt(U t)}∞t=1 converges almost surely.

To establish the convergence, we verify that {gt(U t)}∞t=1 is a quasi-martingale [22] that converges

almost surely. To this end, we illustrate that the expectation of the discrepancy of gt+1(U t+1) and

gt(U t) can be upper bounded by a family of functions ℓ(·,U) indexed by U ∈ U . Then we show

that the family of the functions is P-Donsker [144], the summands of which concentrate around its

expectation within an O (1/
√
n) ball almost surely. Therefore, we conclude that {gt(U t)}∞t=1 is a

quasi-martingale and converges almost surely.

Proposition 4.6. Let U ∈ U and denote the minimizer of ℓ̃(z,U ,v,e) as:

{v∗,e∗} = argmin
v,e,‖v‖≤1

1

2
‖z −Uv − e‖2 + λ2h̃(e).

Then, the function ℓ(z,U) defined in Problem (4.12) is continuously differentiable and

∇Uℓ(z,U) = (Uv∗ + e∗ − z)v∗⊤.

133

Furthermore, ℓ(z, ·) is uniformly Lipschitz over the compact set U .

Proof. The gradient of ℓ(z, ·) follows from Lemma 4.14. Since each term of ∇U ℓ(z,U) is uni-

formly bounded, we conclude the uniform Lipschitz property of ℓ(z,U) w.r.t. U .

Corollary 4.7 (Uniform bound and Lipschitz of the empirical loss). Let ft(U) be the empirical loss

function defined in (4.11). Then ft(U) is uniformly bounded and Lipschitz over the compact set U .

Corollary 4.8 (P-Donsker of ℓ(z,U)). The set of measurable functions {ℓ(z,U), U ∈ U} is

P-Donsker (see definition in Lemma 4.13).

Proposition 4.9 (Concentration of the empirical loss). Let ft(U) and f(U) be the empirical and

expected loss functions we defined in (4.11) and (4.25). Then we have

E
[√
t ‖ft − f‖∞

]
= O (1) .

Proof. Since ℓ(z,U) is uniformly upper bounded (Corollary 4.5) and is always non-negative, its

square is uniformly upper bounded, hence its expectation. Together with Corollary 4.8, Lemma 4.13

applies.

Theorem 4.10 (Convergence of the surrogate). The sequence {gt(U t)}∞t=1 we defined in (4.13)

converges almost surely, where {U t}∞t=1 is the solution produced by Algorithm 2. Moreover, the

infinite summation
∑∞

t=1 |E[gt+1(U t+1)− gt(U t) | Ft]| is bounded almost surely.

Proof. The theorem follows by showing that the sequence of {gt(U t)}∞t=1 is a quasi-martingale,

and hence converges almost surely. To see this, we note that for any t > 0, the expectation

of the difference gt+1(U t+1) − gt(U t) conditioned on the past information Ft is bounded by

supU (f(U)−ft(U))/(t+1), which is of order O
(
1/(
√
t(t+ 1))

)
due to Proposition 4.9. Hence,

Lemma 4.15 applies.

Stage III. Now we prove that the sequence of the empirical loss function, {ft(U t)}∞t=1 defined

in (4.11) converges almost surely to the same limit of its surrogate {gt(U t)}∞t=1. According to the

central limit theorem, we assert that ft(U t) also converges almost surely to the expected loss f(U t)

defined in (4.25), implying that gt(U t) and f(U t) converge to the same limit almost surely.

134

We first establish the numerical convergence of the basis sequence {U t}∞t=1, based on which

we show the convergence of {ft(U t)}∞t=1 by applying Lemma 4.16.

Proposition 4.11 (Numerical convergence of the basis component). Let {U t}∞t=1 be the basis se-

quence produced by the Algorithm 2. Then, for any t > 0, we have

‖U t+1 −U t‖F = O
(
1

t

)
. (4.26)

Theorem 4.12 (Convergence of the empirical and expected loss). Let {f(U t)}∞t=1 be the sequence

of the expected loss where {U t}∞t=1 is the sequence of the solutions produced by the Algorithm 2.

Then, we have

1. The sequence of the empirical loss {ft(U t)}∞t=1 converges almost surely to the same limit of

the surrogate.

2. The sequence of the expected loss {f(U t)}∞t=1 converges almost surely to the same limit of

the surrogate.

Proof. Let bt = gt(U t) − ft(U t). We show that infinite series
∑∞

t=1 bt/(t + 1) is bounded by

applying the central limit theorem to f(U t) − ft(U t) and the result of Theorem 4.10. We further

prove that |bt+1 − bt| can be bounded by O (1/t), due to the uniform boundedness and Lipschitz of

gt(U t), ft(U t) and ℓ(zt,U t). According to Lemma 4.16, we conclude the convergence of {bt}∞t=1

to zero. Hence the first claim. The second claim follows immediately owing to the central limit

theorem.

Final Stage. According to Claim 2 of Theorem 4.12 and the fact that 0 belongs to the subgradient

of gt(U) evaluated at U = U t, we are to show the gradient of f(U) taking at U t vanishes as

t tends to infinity, which establishes Theorem 4.3. To this end, we note that since {U t}∞t=1 is

uniformly bounded, the non-differentiable term 1
2t ‖U‖

2
2,∞ vanishes as t goes to infinity, implying

the differentiability of g∞(U∞), i.e. ∇g∞(U∞) = 0. On the other hand, we show that the gradient

of f(U) and that of gt(U) are always Lipschitz on the compact set U , implying the existence of

their second order derivative even when t→∞. Thus, by taking a first order Taylor expansion and

let t go to infinity, we establish the main theorem.

135

4.5 Connection to Matrix Completion

While we mainly focus on the matrix decomposition problem, our method can be extended to the

matrix completion (MC) problem [27, 36] with max-norm regularization [31, 32] – another popu-

lar topic in machine learning and signal processing. We focus on the max-norm regularized MC

problem with squared Frobenius loss widely considered in the literature, which can be described as

follows:

min
X

1

2
‖PΩ (Z −X)‖2F +

λ

2
‖X‖2max ,

where Ω is the set of indices of observed entries in Z and PΩ(M) is the orthogonal projection onto

the span of matrices vanishing outside of Ω so that the (i, j)-th entry of PΩ(M) is equal to mij if

(i, j) ∈ Ω and zero otherwise. Interestingly, the max-norm regularized MC problem can be cast into

our framework. To see this, let us introduce an auxiliary matrix M , with mij = c > 0 if (i, j) ∈ Ω

and mij = 1/c otherwise. The reformulated MC problem,

min
X,E

1

2
‖Z −X −E‖2F +

λ

2
‖X‖2max + ‖M ◦E‖1 , (4.27)

where “◦” denotes the entry-wise product, is similar to our MRMD formulation (4.1). And it is

easy to show that when c tends to infinity, the reformulated problem converges to the original MC

problem.

4.5.1 Online Implementation

We now derive a stochastic implementation for the max-norm regularized MC problem. Note that

the only difference between the Problem (4.27) and Problem (4.1) is the ℓ1 regularization on E,

which results a new penalty on e for ℓ̃(z,U ,v,e) (which is originally defined in (4.9)):

ℓ̃(z,U ,v,e) =
1

2
‖z −Uv − e‖2 + ‖m ◦ e‖1 . (4.28)

136

Here, m is a column of the matrix M in (4.27). According to the definition of M , m is a vector

with element value being either c or 1/c. Let us define two support sets as follows:

Ω1 := {i | mi = c, 1 ≤ i ≤ p},

Ω2 := {i | mi = 1/c, 1 ≤ i ≤ p},

where mi is the ith element of vector m. In this way, the newly defined ℓ̃(z,U ,v,e) can be written

as

ℓ̃(z,U ,v,e) =

(
1

2

∥∥zΩ1
− (Uv)Ω1

− eΩ1

∥∥2 + c
∥∥eΩ1

∥∥
1

)

+

(
1

2

∥∥zΩ2
− (Uv)Ω2

− eΩ2

∥∥2 + 1

c

∥∥eΩ2

∥∥
1

)
. (4.29)

Notably, as Ω1 and Ω2 are disjoint, given z, U and v, the variable e in (4.29) can be optimized by

soft-thresholding in a separate manner:

eΩ1
= Sc[zΩ1

− (Uv)Ω1
], eΩ2

= S1/c[zΩ2
− (Uv)Ω2

]. (4.30)

Hence, we obtain Algorithm 6 for the online max-norm regularized matrix completion (OM-

RMC) problem. The update principle for v is the same as we described in Algorithm 4 and that for

e is given by (4.30). Note that we can use Algorithm 5 to update U as usual.

4.5.2 ℓ∞-norm Constrained Variant

In some matrix completion applications, one may have to take another ℓ∞-norm constraint into

account, i.e.,

‖X‖∞ ≤ τ, for some τ > 0. (4.31)

For example, the rating value of the Netflix dataset is not greater than 5. In the 1-bit setting, the en-

tries of a matrix can either be 1 or−1 [47]. Other examples can be found in, e.g., [82]. Interestingly,

Algorithm 6 can be adjusted to such a constraint.

137

Algorithm 6 Online Max-Norm Regularized Matrix Completion

Require: Z ∈ R
d×n (observed samples), parameters λ1 and λ2, U0 ∈ R

d×r (initial basis), zero
matrices A0 ∈ R

d×d and B0 ∈ R
d×r.

Ensure: optimal basis U t.
1: for t = 1 to n do

2: Access the t-th sample zt.
3: Compute the coefficient and noise:

{vt,et} = argmin
v,e,‖v‖2

2
≤1

ℓ̃(zt,U t−1,v,e)

= argmin
v,e,‖v‖2

2
≤1

(
1

2
‖zt −U t−1v − e‖22 + ‖mt ◦ e‖1

)
.

4: Compute the accumulation matrices At and Bt:

At ← At−1 + vtv
⊤
t ,

Bt ← Bt−1 + (zt − et)v
⊤
t .

5: Compute the basis U t by optimizing the surrogate function (4.13):

U t = argmin
U

1

t

t∑

i=1

ℓ̃(zi,U ,vi,ei) +
λ1
2t
‖U‖22,∞

= argmin
U

1

t

t∑

i=1

(
1

2
‖zi −Uvi − ei‖2 + ‖mi ◦ ei‖1

)
+
λ1
2t
‖U‖22,∞

= argmin
U

1

t

t∑

i=1

(
1

2
‖zi −Uvi − ei‖2

)
+
λ1
2t
‖U‖22,∞

= argmin
U

1

t

(
1

2
Tr
(
U⊤UAt

)
− Tr

(
U⊤Bt

))
+
λ1
2t
‖U‖22,∞ .

6: end for

To see this, we observe that the constraint ‖X‖∞ ≤ τ amounts to restricting

|xij | ≤ τ

for all entries xij of X . Due to the matrix factorization X = UV ⊤, we know that it requires

∣∣∣u(i)v(j)⊤
∣∣∣ ≤ τ, ∀ i ∈ [p], ∀ j ∈ [n], (4.32)

where we recall that u(i) and v(j) are the ith row of U and the jth row of V , respectively. Propo-

138

sition 4.1 already ensures

‖v(j)‖ ≤ 1, ∀ j ∈ [n].

Since
∣∣u(i)v(j)⊤

∣∣ ≤ ‖u(i)‖ · ‖v(j)‖, we obtain a sufficient condition for (4.32):

‖u(i)‖ ≤ τ, ∀ i ∈ [n].

That is,

‖U‖2,∞ ≤ τ,

which can easily be fulfilled by an orthogonal projection onto the ℓ2 ball with radius τ , i.e., if

‖U t‖2,∞ > τ , we set U t ← τ
‖Ut‖2,∞

U t.

4.5.3 Other Types of Loss Functions

We in this chapter emphasize on the squared Frobenius loss for the max-norm regularized prob-

lems. There is also solid theoretical analysis for other formulations, e.g., logistic regression and

probit regression [31]. Unfortunately, it seems that one cannot trivially extend the proposed online

algorithms to a general loss function. To be more precise, for Frobenius (or ℓ2) loss, we are guar-

anteed with a nice property that minimizing the surrogate (4.20) is equivalent to solving (4.22), for

which only O (dr) memory is needed. For general models, such a property does not hold and we

conjecture that more technique is needed to find a good approximation to (4.20).

4.6 Experiments

In this section, we report numerical results on synthetic data to demonstrate the effectiveness and

robustness of our online max-norm regularized matrix decomposition (OMRMD) algorithm. Some

experimental settings are used throughout this section, as elaborated below.

Data Generation. The simulation data are generated by following a similar procedure in [34]. The

clean data matrix X is produced by X = UV ⊤, where U ∈ R
d×r and V ∈ R

n×r. The entries of

139

U and V are i.i.d. sampled from the normal distribution N(0, 1). We choose sparse corruption in

the experiments, and introduce a parameter ρ to control the sparsity of the corruption matrix E, i.e.,

a ρ-fraction of the entries are non-zero whose locations are uniformly sampled and the magnitude

follows a uniform distribution over [−1000, 1000]. Finally, the observation matrix Z is produced

by Z = X +E.

Baselines. We mainly compare with two methods: Principal Component Pursuit (PCP) and on-

line robust PCA (OR-PCA). PCP is the state-of-the-art batch method for subspace recovery, which

was presented as a robust formulation of PCA in [34]. OR-PCA is an online implementation of

PCP, which also achieves state-of-the-art performance over the online subspace recovery algorithms.

Sometimes, to show the robustness, we will also report the results of online PCA [3], which incre-

mentally learns the principal components without taking the noise into account.

Evaluation Metric. Our goal is to estimate the correct subspace for the underlying data. Here,

we evaluate the fitness of our estimated subspace basis Û (with columns normalized to have unit

length) and the ground truth basis U by the Expressed Variance (EV) [153]:

EV(Û ,U) :=
Tr
(
Û

⊤
UU⊤Û

)

Tr
(
UU⊤) . (4.33)

The values of EV range in [0, 1] and a higher value indicates a more accurate recovery.

Other Settings. Throughout the experiments, we set the ambient dimension d = 400, the total

number of samples n = 5000 and pick the value of r as the true rank unless otherwise specified.

We fix the tunable parameter λ1 = λ2 = 1/
√
d, and use default parameters for all baselines we

compare with. Each experiment is repeated 10 times and we report the averaged EV as the result.

4.6.1 Robustness

We first study the robustness of OMRMD, measured by the EV value of its output after accessing

the last sample, and compare it to the nuclear norm based OR-PCA and the batch algorithm PCP.

In order to make a detailed examination, we vary the true rank from 0.02d to 0.5d, with a step size

0.04d, and the corruption fraction ρ from 0.02 to 0.5, with a step size 0.04.

The general results are illustrated in Figure 4.1 where a brighter color means a higher EV (hence

140

rank / ambient dimension

fr
ac

tio
n

of
 c

or
ru

pt
io

n

0.02 0.14 0.26 0.38 0.5

0.5

0.38

0.26

0.14

0.02

(a) OMRMD

rank / ambient dimension

fr
ac

tio
n

of
 c

or
ru

pt
io

n

0.02 0.14 0.26 0.38 0.5

0.5

0.38

0.26

0.14

0.02

(b) OR-PCA

rank / ambient dimension

fr
ac

tio
n

of
 c

or
ru

pt
io

n

0.02 0.14 0.26 0.38 0.5

0.5

0.38

0.26

0.14

0.02

(c) PCP

Figure 4.1: Performance of subspace recovery under different rank and corruption fraction.

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 8

OMRMD
OR−PCA
PCP

(a)

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 24

OMRMD
OR−PCA
PCP

(b)

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 40

OMRMD
OR−PCA
PCP

(c)

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 56

OMRMD
OR−PCA
PCP

(d)

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 72

OMRMD
OR−PCA
PCP

(e)

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 88

OMRMD
OR−PCA
PCP

(f)

Figure 4.2: EV value against corruption fractions when the matrix has a relatively low rank.

better performance). We observe that for easy tasks (i.e., few corruption and low rank case), both

OMRMD and OR-PCA perform comparably. However, for more difficult cases, OMRMD out-

performs OR-PCA. In order to further investigate this phenomenon, we plot the EV curve against

the fraction of corruption under a given matrix rank. In particular, we group the results into two

parts, one with relatively low rank (Figure 4.2) and the other with middle level of rank (Figure 4.3).

Figure 4.2 indicates that when manipulating a low-rank matrix, OR-PCA works as well as OM-

RMD under a low level of noise. For instance, the EV produced by OR-PCA is as close as that

of OMRMD for rank less than 40 and ρ no more than 0.26. However, when the rank becomes

141

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 104

OMRMD
OR−PCA
PCP

(a)

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 120

OMRMD
OR−PCA
PCP

(b)

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 136

OMRMD
OR−PCA
PCP

(c)

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 168

OMRMD
OR−PCA
PCP

(d)

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 184

OMRMD
OR−PCA
PCP

(e)

0.02 0.14 0.26 0.38 0.5

0.4

0.6

0.8

1

fraction of corruption

E
V

rank = 200

OMRMD
OR−PCA
PCP

(f)

Figure 4.3: EV value against corruption fractions when the matrix has a middle level of rank.

larger, OR-PCA degrades quickly compared to OMRMD. This is possibly because the max-norm

is a tighter approximation to the matrix rank. Since PCP is a batch formulation and accesses all the

data in each iteration, it always achieves the best recovery performance.

4.6.2 Convergence Rate

We next study the convergence of OMRMD by plotting the EV curve against the number of samples.

Besides OR-PCA and PCP, we also add online PCA [3] as a baseline algorithm. The results are

illustrated in Figure 4.4 where we set d = 400 and the true rank as 80. As expected, PCP achieves

the best performance since it is a batch method and needs to access all the data during optimization.

Online PCA degrades significantly even with low corruption (Figure 4.4a). OMRMD is comparable

to OR-PCA when the corruption is low (Figure 4.4a), and converges significantly faster when the

data is grossly corrupted (Figure 4.4c and 4.4d). This observation agrees with Figure 4.1, and again

suggests that in the noisy scenario, max-norm may be a better fit than the nuclear norm.

Indeed, OMRMD converges much faster even in large scale problems. In Figure 4.5, we com-

pare the convergence rate of OMRMD and OR-PCA under different ambient dimensions. The rand

of the data are set with 0.1d, indicating a low-rank structure of the underlying data. Again, we

142

1 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Number of Samples

E
V

OMRMD
OR−PCA
PCP
Online PCA

(a) ρ = 0.01

1 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Number of Samples

E
V

OMRMD
OR−PCA
PCP
Online PCA

(b) ρ = 0.1

1 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Number of Samples

E
V

OMRMD
OR−PCA
PCP
Online PCA

(c) ρ = 0.3

1 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Number of Samples

E
V

OMRMD
OR−PCA
PCP
Online PCA

(d) ρ = 0.5

Figure 4.4: EV value against number of samples under different corruption fractions.

assume the rank is known so r = 0.1d. The error corruption ρ is fixed to 0.3 – a difficult task

for recovery. We observe that for high dimensional cases (d = 1000 and d = 3000), OMRMD

significantly outperforms OR-PCA. For example, in Figure 4.5b, OMRMD achieves the EV value

of 0.8 only with accessing about 2000 samples, whereas OR-PCA needs to reveal 60, 000 samples

to obtain the same accuracy!

2 4 6 8 10
x 10

4

0

0.2

0.4

0.6

0.8

1

Number of Samples

E
V

OMRMD
OR−PCA
PCP

(a) d = 400

2 4 6 8 10
x 10

4

0

0.2

0.4

0.6

0.8

1

Number of Samples

E
V

OMRMD
OR−PCA
PCP

(b) d = 1000

2 4 6 8 10
x 10

4

0

0.2

0.4

0.6

0.8

1

Number of Samples

E
V

OMRMD
OR−PCA
PCP

(c) d = 3000

Figure 4.5: EV value against number of samples under different ambient dimensions. The rank
r = 0.1d and the corruption fraction ρ = 0.3.

4.6.3 Computational Complexity

We note that OMRMD is a little bit inferior to OR-PCA in terms of computation per iteration, as

our algorithm may solve a dual problem to optimize v (see Algorithm 4) if the initial solution v0

violates the constraint. We plot the EV curve with respect to the running time in Figure 4.6. It

shows that, OR-PCA is about 3 times faster than OMRMD when processing a data point. However,

we point out here that we emphasize on the convergence rate. That is, given an EV value, how

much time the algorithm will take to achieve it. In Figure 4.6c, for example, OMRMD takes 50

minutes to achieve the EV value of 0.6, while OR-PCA uses nearly 900 minutes. From Figure 4.5

and Figure 4.6, it is safe to conclude that OMRMD is superior to OR-PCA in terms of convergence

143

rate in the price of a little more computation per sample.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Time (minutes)

E
V

OMRMD
OR−PCA

(a) d = 400

0 200 400 600
0

0.2

0.4

0.6

0.8

1

Time (minutes)

E
V

OMRMD
OR−PCA

(b) d = 1000

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Time (minutes)

E
V

OMRMD
OR−PCA

(c) d = 3000

Figure 4.6: EV value against time under different ambient dimensions.

4.7 Conclusion

In this chapter, we have developed an online algorithm for the max-norm regularized matrix de-

composition problems. Using the matrix factorization form of the max-norm, we converted the

original problem to a constrained one which facilitates an online implementation for solving the

batch problem. We have established theoretical guarantees that the sequence of the solutions con-

verges to a stationary point of the expected loss function asymptotically. Moreover, we empirically

compared our proposed algorithm with OR-PCA, which is a recently proposed online algorithm for

nuclear-norm based matrix decomposition. The simulation results have suggested that the proposed

algorithm is more robust than OR-PCA, in particular for hard tasks (i.e., when a large fraction

of entries are corrupted). We also have investigated the convergence rate for both OMRMD and

OR-PCA, and have shown that OMRMD converges much faster than OR-PCA even in large-scale

problems. When acquiring sufficient samples, we observed that our algorithm converges to the

batch method PCP, which is a state-of-the-art formulation for subspace recovery. Our experiments,

to an extent, suggest that the max-norm might be a tighter relaxation of the rank function compared

to the nuclear norm.

144

4.A Proof Details

4.A.1 Proof of Proposition 4.1

Proof. Let us denote k = ‖V ‖2,∞. We presume that k is positive. Otherwise, the low-rank com-

ponent X we aim to recover is a zero matrix, which is of little interest. Now we construct two

auxiliary variables Ū = kU ∈ R
d×r and V̄ = 1

kV ∈ R
n×r. Replacing U and V with 1

k Ū and

kV̄ in (4.5) respectively, we have:

min
Ū ,V̄ ,E

1

2

∥∥∥∥Z −
(
1

k
Ū

)(
kV̄
)⊤ −E

∥∥∥∥
2

F

+
λ1
2

∥∥∥∥
1

k
Ū

∥∥∥∥
2

2,∞

∥∥kV̄
∥∥2
2,∞ + λ2h(E).

That is, we are to solve

min
Ū ,V̄ ,E

1

2

∥∥∥Z − Ū V̄
⊤ −E

∥∥∥
2

F
+
λ1
2

∥∥Ū
∥∥2
2,∞

∥∥V̄
∥∥2
2,∞ + λ2h(E).

The fact that V̄ = 1
kV and k is the maximum of the ℓ2 row norm of V implies

∥∥V̄
∥∥
2,∞ = 1.

Therefore, we can reformulate our MRMD problem as a constrained program:

min
Ū ,V̄ ,E

1

2

∥∥∥Z − Ū V̄
⊤ −E

∥∥∥
2

F
+
λ1
2

∥∥Ū
∥∥2
2,∞ + λ2h(E), s. t.

∥∥V̄
∥∥2
2,∞ = 1.

To see why the above program is equivalent to (4.6), we only need to show that each optimal

solutions (U∗,V ∗,E∗) of (4.6) must satisfy ‖V ∗‖22,∞ = 1. Suppose that k = ‖V ∗‖2,∞ < 1. Let

U ′ = kU∗ and V ′ = 1
kV

∗. Obviously, (U ′,V ′,E∗) are still feasible. However, the objective

value becomes

1

2

∥∥∥Z −U ′V
′⊤ −E∗

∥∥∥
2

F
+
λ1
2

∥∥U ′∥∥2
2,∞ + λ2h(E

∗)

=
1

2

∥∥∥Z −U∗V ∗⊤ −E∗
∥∥∥
2

F
+
λ1
2
· k2 ‖U∗‖22,∞ + λ2h(E

∗)

<
1

2

∥∥∥Z −U∗V ∗⊤ −E∗
∥∥∥
2

F
+
λ1
2
‖U∗‖22,∞ + λ2h(E

∗),

which contradicts the assumption that (U ∗,V ∗,E∗) is the optimal solution. Thus we complete the

proof.

145

4.A.2 Proof of Proposition 4.4

Proof. Note that for each t > 0, ‖vt‖ ≤ 1. Thus vt is uniformly bounded. Let us consider the

optimization problem (4.14). As the trivial solution vt = 0 and et = 0 are feasible, we have

ℓ̃(zt,U t−1,0,0) =
1

2
‖zt‖2 .

Therefore, the optimal solution should satisfy:

1

2
‖zt −U t−1vt − et‖2 + λ2 ‖et‖1 ≤

1

2
‖zt‖2 ,

which implies

‖et‖1 ≤
1

2λ2
‖zt‖2 .

Since zt is uniformly bounded (Assumption (A1)), et is uniformly bounded.

To examine the uniform bound for 1
tAt and 1

tBt, note that

1

t
At =

1

t

t∑

i=1

viv
⊤
i ,

1

t
Bt =

1

t

t∑

i=1

(zi − ei) v
⊤
i .

Since for each i, vi, ei and zi are uniformly bounded, 1
tAt and 1

tBt are uniformly bounded.

Based on Claim 1 and Claim 2, we prove that U t can be uniformly bounded. First let us denote

1
tAt and 1

tBt by Ãt and B̃t, respectively.

Step 1: According to Claim 2, there exist constants C1 and C that are uniform over t, such that

∥∥∥Ãt

∥∥∥
F
≤ C1,

∥∥∥B̃t

∥∥∥
F
≤ C.

On the other hand, from Assumption (A2), the eigenvalues of Ãt is lower bounded by a positive

constant β1 that is uniform over t, implying the trace norm (sum of the singular values) of Ãt is

146

uniformly lower bounded by a positive constant. As all norms are equivalent, we can show that

∥∥∥Ãt

∥∥∥
F
≥ C0 > 0,

where C0 is a positive constant which is uniform over t.

Recall that U t is the optimal basis for (4.22). Thus, the subgradient of the objective function

taken at U t should contain zero, that is,

U tÃt − B̃t +
λ1
t
Gt = 0,

where Gt is the subgradient of 1
2‖U t‖22,∞ produced by (4.23). Note that, as all of the eigenvalues

of Ãt are lower bounded by a positive constant, Ãt is invertible. Thus,

U t =

(
B̃t −

λ1
t
Gt

)
Ã

−1

t ,

where Ã
−1

t is the inverse of Ãt.

Now we derive the bound for U t:

‖U t‖F =

∥∥∥∥
(
B̃t −

λ1
t
Gt

)
Ã

−1

t

∥∥∥∥
F

≤
∥∥∥∥B̃t −

λ1
t
Gt‖F · ‖Ã

−1

t

∥∥∥∥
F

≤
(∥∥∥B̃t

∥∥∥
F
+
λ1
t
‖Gt‖F

)∥∥∥Ã−1

t

∥∥∥
F

=
∥∥∥Ã−1

t

∥∥∥
F

∥∥∥B̃t

∥∥∥
F
+
λ1
t

∥∥∥Ã−1

t

∥∥∥
F
‖Gt‖F

≤
∥∥∥Ã−1

t

∥∥∥
F

∥∥∥B̃t

∥∥∥
F
+
λ1
t

∥∥∥Ã−1

t

∥∥∥
F
‖U t‖F .

It follows that

(
1− λ1

t

∥∥∥Ã−1

t

∥∥∥
F

)
‖U t‖F ≤

∥∥∥Ã−1

t

∥∥∥
F

∥∥∥B̃t

∥∥∥
F
.

As all of the eigenvalues of Ãt are uniformly lower bounded, those of Ã
−1

t are uniformly upper

bounded. Thus the trace norm of Ã
−1

t are uniformly upper bounded. As all norms are equivalent,

147

‖Ã−1

t ‖F is also uniformly upper bounded by a constant, say C2. Thus,

(
1− λ1

t
C2

)
‖U t‖F ≤

(
1− λ1

t

∥∥∥Ã−1

t

∥∥∥
F

)
‖U t‖F ≤

∥∥∥Ã−1

t

∥∥∥
F

∥∥∥B̃t

∥∥∥
F
≤ C2C.

Particularly, let

t0 = min
t
{t ≥ 2λ1C2, t is an integer} .

Then, for all t ≥ t0,

‖U t‖F ≤ 2C2C. (4.34)

Step 2: Let us consider a uniform bound for U t, with 0 < t < t0. Recall that U t is the minimizer

for gt(U), that is

U t = argmin
U

gt(U)

= argmin
U

1

t

t∑

i=1

(
1

2
‖zi −Uvi − ei‖2 + λ2h̃(ei)

)
+
λ1
2t
‖U‖22,∞

= argmin
U

t∑

i=1

1

2
‖zi −Uvi − ei‖2 +

λ1
2
‖U‖22,∞

:= argmin
U

g̃t(U).

Consider a trivial but feasible solution with U = 0,

g̃t(0) =

t∑

i=1

1

2
‖zi − ei‖2 .

The inequality

g̃t(U t) ≤ g̃t(0)

148

implies

‖U t‖22,∞ ≤
1

λ1

t∑

i=1

‖zi − ei‖2 .

Since

‖U t‖2F ≤ d ‖U t‖22,∞ ≤
d

λ1

t∑

i=1

‖zi − ei‖2 ,

we have

‖U t‖F ≤

√√√√ d

λ1

t∑

i=1

‖zi − ei‖2.

For all 0 < t < t0,

‖U t‖F ≤

√√√√ d

λ1

t∑

i=1

‖zi − ei‖2 ≤

√√√√ d

λ1

t0∑

i=1

‖zi − ei‖2. (4.35)

Note that each term, particularly t0, can be uniformly upper bounded, thus
√

d
λ1

∑t0
i=1 ‖zi − ei‖2

can also be uniformly upper bounded. Namely, for all 0 < t < t0, U t is also uniformly upper

bounded.

Step 3: Now let us define

Umax = max



2C2C,

√√√√ d

λ1

t0∑

i=1

‖zi − ei‖2


 .

Then, for all t > 0,

‖U t‖F ≤ Umax.

All the constants, C0, C1, C2 and C are independent from t, making them uniformly bounded. Also,

t0 is a constant that is uniform over t. Thus, U t can be uniformly bounded.

149

4.A.3 Proof of Corollary 4.5

Proof. The uniform bound of vt, et and zt, combined with the uniform bound of U t, implies

the uniform boundedness for ℓ̃ (zt,U t,vt,et) and ℓ (zt,U t). Thus, gt(U t) and ft(U t) are also

uniformly bounded.

To show that gt(U) is uniformly Lipschitz, we compute its subgradient at any U ∈ U :

‖∇Ugt(U)‖F =

∥∥∥∥
1

t
(UAt −Bt) +

λ1
t
G

∥∥∥∥
F

≤
∥∥∥∥
1

t
(UAt −Bt)

∥∥∥∥
F

+
λ1
t
‖U‖F

≤
∥∥∥∥
1

t
(UAt −Bt)

∥∥∥∥
F

+ λ1 ‖U‖F

where G ∈ ∂ 1
2 ‖U‖2,∞. Since U , 1

tAt and 1
tBt are all uniformly bounded, the subgradient of

gt(U) is uniformly bounded. This implies that gt(U) is uniformly Lipschitz.

Lemma 4.13 (A corollary of Donsker theorem [144]). Let F = {fθ : X → R, θ ∈ Θ} be a set of

measurable functions indexed by a bounded subset Θ of Rd. Suppose that there exists a constant K

such that

|fθ1(x)− fθ2(x)| ≤ K ‖θ1 − θ2‖ ,

for every θ1 and θ2 in Θ and x in X . Then, F is P-Donsker. For any f in F , let us define Pnf , Pf

and Gnf as

Pnf =
1

n

n∑

i=1

f(Xi), Pf = E[f(X)], Gnf =
√
n(Pnf − Pf).

Let us also suppose that for all f , Pf2 < δ2 and ‖f‖∞ < M and that the random elements

X1,X2, · · · are Borel-measurable. Then, we have

E ‖G‖F = O (1)

where ‖G‖F = supf∈F |Gnf |.

Now let us verify that the set of functions {ℓ(z,U),U ∈ U} indexed by U fulfills the hypothe-

ses in the corollary of Donsker Theorem. In particular, we have verified that:

150

• The index set U is uniformly bounded (see Proposition 4.4).

• Each ℓ(z,U) can be uniformly bounded (see Corollary 4.5).

• Any of the functions ℓ(z,U) in the family is uniformly Lipschitz (see Proposition 4.6).

Next, we show that the family of functions ℓ(z,U) is uniformly Lipschitz w.r.t. U . We intro-

duce the following lemma as it will be useful for our discussion.

Lemma 4.14 (Corollary of Theorem 4.1 from [21]). Let f : Rd × R
r → R. Suppose that for all

x ∈ R
d the function f(x, ·) is differentiable, and that f and∇uf(x,u) are continuous on R

d×R
r.

Let v(u) be the optimal value function v(u) = minx∈C f(x,u), where C is a compact subset of

R
d. Then v(u) is directionally differentiable. Furthermore, if for u0 ∈ R

r, f(·,u0) has unique

minimizer x0 then v(u) is differentiable in u0 and ∇uv(u0) = ∇uf(x0,u0).

4.A.4 Proof of Proposition 4.6

Proof. By fixing the variable z, the function ℓ̃ can be seen as a mapping:

R
r+d × U → R

([v; e],U) 7→ ℓ̃(z,U ,v,e).

It is easy to show that ∀ [v; e] ∈ R
r+d, ℓ̃(z, ·,v,e) is differentiable. Also ℓ̃(z, ·, ·, ·) is continuous

on R
r+d×U . ∇

U
ℓ̃(z,U ,v,e) = (Uv+e−z)v⊤ is continuous on R

r+d×U . ∀U ∈ U , according

to Assumption (A3), ℓ̃(z,U , ·, ·) has a unique minimizer. Thus Lemma 4.14 applies and we prove

that ℓ(z,U) is differentiable in U and

∇Uℓ(z,U) = (Uv∗ + e∗ − z)v∗⊤.

Since every term in ∇Uℓ(z,U) is uniformly bounded (Assumption (A1) and Proposition 4.4),

we conclude that the gradient of ℓ(z, ·) is uniformly bounded, implying that ℓ(z,U) is uniformly

Lipschitz w.r.t. U .

151

4.A.5 Proof of Corollary 4.7

Proof. As ℓ(z,U) can be uniformly bounded (Corollary 4.5), we derive the uniform boundedness

of ft(U). Let G ∈ 1
2∂ ‖U‖2,∞. By computing the subgradient of ft(U) at U , we have

‖∇ft(U)‖F =

∥∥∥∥∥
1

t

t∑

i=1

∇Uℓ(zi,U) +
λ1
t
G

∥∥∥∥∥
F

≤ 1

t

t∑

i=1

∥∥∥(Uvi + ei − zi)v
⊤
i

∥∥∥
F
+
λ1
t
‖U‖F

=
1

t

t∑

i=1

∥∥∥Uviv
⊤
i + (ei − zi)v

⊤
i

∥∥∥
F
+
λ1
t
‖U‖F

≤ 1

t

t∑

i=1

(
‖U‖F ·

∥∥∥viv
⊤
i

∥∥∥
F
+
∥∥∥(ei − zi)v

⊤
i

∥∥∥
F

)
+
λ1
t
‖U‖F .

Note that all the terms (i.e. zi, U , vi, ei) in the right hand inequality are uniformly bounded. Thus,

we say that the subgradient of ft(U) is uniformly bounded and ft(U) is uniformly Lipschitz.

4.A.6 Proof of Proposition 4.9

Proof. Based on Proposition 4.4 and Proposition 4.6, we argue that the set of measurable functions

{ℓ(z,U),U ∈ U} is P-Donsker (defined in Lemma 4.13). From Corollary 4.5, we know that

ℓ(z,U) can be uniformly bounded by a constant, say C. Also note that from the definition of

ℓ(z,U) (see (4.12)), it is always non-negative. Thus, we have

ℓ2(z,U) ≤ C2,

implying the uniform boundedness of E[ℓ2(z,U)]. Thus, Lemma 4.13 applies and we have

E
[√
t ‖(ft − f)‖∞

]
= O (1) .

The proof is complete.

152

4.A.7 Proof of Theorem 4.10

We are ready to prove the convergence of gt(U t), which requires to justify that the stochastic process

{gt(U t)}∞t=1 is a quasi-martingale, defined as follows:

Lemma 4.15 (Sufficient condition of convergence for a stochastic process [22]). Let (Ω,F , P) be

a measurable probability space, ut, for t ≥ 0, be the realization of a stochastic process and Ft be

the filtration by the past information at time t. Let

δt =





1 if E[ut+1 − ut | Ft] > 0,

0 otherwise.

If for all t, ut ≥ 0 and
∑∞

t=1 E[δt(ut+1 − ut)] < ∞, then ut is a quasi-martingale and converges

almost surely. Moreover,

∞∑

t=1

|E[ut+1 − ut | Ft]| < +∞ a.s.

Proof. For convenience, let us first define the stochastic positive process

ut = gt(U t) ≥ 0.

We consider the difference between ut+1 and ut:

ut+1 − ut = gt+1(U t+1)− gt(U t)

= gt+1(U t+1)− gt+1(U t) + gt+1(U t)− gt(U t)

= gt+1(U t+1)− gt+1(U t) +
1

t+ 1
ℓ(zt+1,U t)−

1

t+ 1
gt(U t)

= gt+1(U t+1)− gt+1(U t) +
ft(U t)− gt(U t)

t+ 1
+
ℓ(zt+1,U t)− ft(U t)

t+ 1
. (4.36)

As U t+1 minimizes gt+1(U), we have

gt+1(U t+1)− gt+1(U t) ≤ 0.

153

As gt(U t) is the surrogate function of ft(U t), we have

ft(U t)− gt(U t) ≤ 0.

Thus,

ut+1 − ut ≤
ℓ(zt+1,U t)− ft(U t)

t+ 1
. (4.37)

Let us consider the filtration of the past information Ft and take the expectation of (4.37) con-

ditioning on Ft:

E[ut+1 − ut | Ft] ≤
E[ℓ(zt+1,U t) | Ft]− ft(U t)

t+ 1

≤ f(U t)− ft(U t)

t+ 1

=
f(U t)− f ′t(U t)− λ1

2t ‖U t‖22,∞
t+ 1

≤ ‖f − f
′
t‖∞

t+ 1
− λ1

2t(t+ 1)
‖U t‖22,∞

≤ ‖f − f
′
t‖∞

t+ 1
, (4.38)

where

f ′t(U) =
1

t

t∑

i=1

ℓ(zi,U).

Note that

f ′(U) = lim
t→∞

f ′t(U) = Ez[ℓ(z,U)] = f(U).

From Proposition 4.9, we have

E

[∥∥∥
√
t(f ′t − f ′)

∥∥∥
∞

]
= O (1) .

Also note that according to Proposition 4.4, we have ‖U t‖F ≤ Umax. Thus, considering the

154

positive part of E[ut+1 − ut | Ft] in (4.38) and taking the expectation, we have

E
[
E[ut+1 − ut | Ft]

+
]
= E

[
max{E[ut+1 − ut | Ft], 0}

]
≤ C√

t(t+ 1)
,

where C is a constant. Therefore, defining the set T = {t | E[ut+1 − ut | Ft] > 0} and

δt =





1 if t ∈ T ,

0 otherwise,

we have

∞∑

t=1

E[δt(ut+1 − ut)] =
∑

t∈T
E[(ut+1 − ut)]

=
∑

t∈T
E[E[ut+1 − ut | Ft]]

=
∞∑

t=1

E[E[ut+1 − ut | Ft]
+]

< +∞.

According to Lemma 4.15, we conclude that gt(U t) is a quasi-martingale and converges almost

surely. Moreover,
∞∑

t=1

|E[ut+1 − ut | Ft]| < +∞ a.s. (4.39)

The proof is complete.

4.A.8 Proof of Proposition 4.11

We now show that gt(U t) and f(U t) converge to the same limit almost surely. Consequently,

f(U t) converges almost surely. First, we prove that bt := gt(U t) − ft(U t) converges to 0 almost

surely. We utilize the lemma from [99] for the proof.

Lemma 4.16 (Lemma 8 from [99]). Let at, bt be two real sequences such that for all t, at ≥ 0, bt ≥

0,
∑∞

t=1 at =∞,
∑∞

t=1 atbt <∞, ∃K > 0, such that |bt+1 − bt| < Kat. Then, limt→+∞ bt = 0.

We notice that another sequence {at}∞t=1 should be constructed in Lemma 4.16. Here, we

155

take the at = 1
t ≥ 0, which satisfies the condition

∑∞
t=1 at = ∞. Next, we need to show that

|bt+1 − bt| < Kat, where K is a constant. To do this, we alternatively show that |bt+1 − bt| can be

upper bounded by ‖U t+1 −U t‖F , which can be further bounded by Kat.

Proof. Let us define

ĝt(U) =
1

t

(
1

2
Tr
(
U⊤UAt

)
− Tr

(
U⊤Bt

))
+
λ1
2t
‖U‖22,∞ .

According the strong convexity of At (Assumption (A2)), and the convexity of ‖U‖22,∞, we can

derive the strong convexity of ĝt(U). That is,

ĝt(U t+1)− ĝt(U t) ≥ 〈Gt,U t+1 −U t〉+
β1
2
‖U t+1 −U t‖2F ,

where Gt ∈ ∂ĝt(U t). As U t is the minimizer of ĝt, we have

0 ∈ ∂ĝt(U t).

Let Gt be the zero matrix. Then we have

ĝt(U t+1)− ĝt(U t) ≥
β1
2
‖U t+1 −U t‖2F . (4.40)

On the other hand,

ĝt(U t+1)− ĝt(U t) =ĝt(U t+1)− ĝt+1(U t+1) + ĝt+1(U t+1)− ĝt+1(U t) + ĝt+1(U t)− ĝt(U t)

≤ĝt(U t+1)− ĝt+1(U t+1) + ĝt+1(U t)− ĝt(U t). (4.41)

Note that the inequality is derived by the fact that ĝt+1(U t+1) − ĝt+1(U t) ≤ 0, as U t+1 is the

minimizer of ĝt+1(U). Let us denote ĝt(U)− ĝt+1(U) by δt(U). We have

δt(U) =
1

t

(
1

2
Tr
(
U⊤UAt

)
− Tr

(
U⊤Bt

))
− 1

t+ 1

(
1

2
Tr
(
U⊤UAt+1

)
− Tr

(
U⊤Bt+1

))

+
λ1
2t
‖U‖22,∞ −

λ1
2(t+ 1)

‖U‖22,∞ .

156

By a simple calculation, we have the gradient of δt(U):

∇δt(U) =
1

t
(UAt −Bt)−

1

t+ 1
(UAt+1 −Bt+1) +

(
1

t
− 1

t+ 1

)
λ1G

=
1

t

(
U(At −

t

t+ 1
At+1) +

t

t+ 1
Bt+1 −Bt +

λ1
t+ 1

G

)
,

where G ∈ ∂ ‖U‖22,∞. We then compute the Frobenius norm of the gradient of δt(U):

‖∇δt(U)‖F ≤
1

t

(∥∥∥∥U(At −
t

t+ 1
At+1)

∥∥∥∥
F

+

∥∥∥∥
t

t+ 1
Bt+1 −Bt

∥∥∥∥
F

+
λ1
t+ 1

‖U‖F
)

≤ 1

t

(
‖U‖F ·

∥∥∥∥At −
t

t+ 1
At+1

∥∥∥∥
F

+

∥∥∥∥
t

t+ 1
Bt+1 −Bt

∥∥∥∥
F

+
λ1
t+ 1

‖U‖F
)

=
1

t

(
‖U‖F ·

∥∥∥∥
1

t+ 1
At −

t

t+ 1
vt+1v

⊤
t+1

∥∥∥∥
F

+

∥∥∥∥
1

t+ 1
Bt −

t

t+ 1
(zt+1 − et+1) v

⊤
t+1

∥∥∥∥
F

+
λ1
t+ 1

‖U‖F
)
. (4.42)

According to the first order Taylor expansion,

δt(U t+1)− δt(U t) = Tr
(
(U t+1 −U t)

⊤∇δt (αU t + (1− α)U t+1)
)

≤ ‖U t+1 −U t‖F · ‖∇δt (αU t + (1− α)U t+1)‖F ,

where α is a constant between 0 and 1. According to Proposition 4.4, U t and U t+1 are uniformly

bounded, so αU t + (1− α)U t+1 is uniformly bounded. According to Proposition 4.4, 1
t+1At,

t
t+1vt+1v

⊤
t+1, 1

t+1Bt and t
t+1 (zt+1 − et+1)v

⊤
t+1 are all uniformly bounded. Thus, there exists a

constant C1, such that

‖∇δt (αU t + (1− α)U t+1)‖F ≤
C1

t
,

resulting that

δt(U t+1)− δt(U t) ≤
C1

t
‖U t+1 −U t‖F .

157

Applying this property in (4.41), we have

ĝt(U t+1)− ĝt(U t) ≤ δt(U t+1)− δt(U t) ≤
C1

t
‖U t+1 −U t‖F . (4.43)

From (4.40) and (4.43), we conclude that

‖U t+1 −U t‖F ≤
2C1

β1
· 1
t
,

which completes the proof.

4.A.9 Proof of Theorem 4.12

Proof. We start our proof by deriving an upper bound for gt(U t)− ft(U t).

Step 1: According to (4.36),

bt
t+ 1

= gt+1(U t+1)− gt+1(U t) +
ℓ(zt+1,U t)− ft(U t)

t+ 1
+ ut − ut+1

≤ ℓ(zt+1,U t)− ft(U t)

t+ 1
+ ut − ut+1.

Taking the expectation conditioning on the past information Ft in the above equation, and noting

that

E

[bt
t+ 1

| Ft

]
=
gt(U t)− ft(U t)

t+ 1
,

E

[ℓ(zt+1,U t)− ft(U t)

t+ 1
| Ft

]
=
f(U t)− ft(U t)

t+ 1
,

we have

bt
t+ 1

≤ f(U t)− ft(U t)

t+ 1
+ E[ut − ut+1 | Ft].

Thus,

∞∑

t=1

bt
t+ 1

≤
∞∑

t=1

f(U t)− ft(U t)

t+ 1
+

∞∑

t=1

E[ut − ut+1 | Ft].

158

According to the central limit theorem,
√
t(f(U t) − ft(U t)) is bounded almost surely. Also,

from (4.39),

∞∑

t=1

E[ut − ut+1 | Ft] ≤
∞∑

t=1

|E[ut − ut+1 | Ft]| < +∞.

Thus,

∞∑

t=1

bt
t+ 1

< +∞.

Step 2: We examine the difference between bt+1 and bt:

|bt+1 − bt| = |gt+1(U t+1)− ft+1(U t+1)− gt(U t) + ft(U t)|

≤ |gt+1(U t+1)− gt(U t)|+ |ft+1(U t+1)− ft(U t)|

= |gt+1(U t+1)− gt(U t+1) + gt(U t+1)− gt(U t)|

+ |ft+1(U t+1)− ft(U t+1) + ft(U t+1)− ft(U t)|

≤ |gt+1(U t+1)− gt(U t+1)|+ |gt(U t+1)− gt(U t)|

+ |ft+1(U t+1)− ft(U t+1)|+ |ft(U t+1)− ft(U t)|

=

∣∣∣∣
1

t+ 1
ℓ(zt+1,U t+1)−

1

t+ 1
gt(U t+1)

∣∣∣∣+ |gt(U t+1)− gt(U t)|

+

∣∣∣∣
1

t+ 1
ℓ(zt+1,U t+1)−

1

t+ 1
ft(U t+1)

∣∣∣∣+ |ft(U t+1)− ft(U t)| .

According to Corollary 4.5 and Corollary 4.7, we know that there exist constant C1 and C2 that are

uniformly over t, such that

|gt(U t+1)− gt(U t)| ≤ C1 ‖U t+1 −U t‖F ,

|ft(U t+1)− ft(U t)| ≤ C2 ‖U t+1 −U t‖F .

Combing with Proposition 4.11, there exists a constant C3 that is uniformly over t, such that

|gt(U t+1)− gt(U t)|+ |ft(U t+1)− ft(U t)| ≤
C3

t
.

159

As we shown, ℓ(zt+1,U t+1), gt(U t+1) and ft(U t+1) are all uniformly bounded. Therefore, there

exists a constant C4, such that

|ℓ(zt+1,U t+1)− gt(U t+1)|+ |ℓ(zt+1,U t+1)− ft(U t + 1)| ≤ C4.

Finally, we have

bt+1 − bt ≤
C4

t+ 1
+

C3

t
≤ C5

t
,

where C5 is a constant that is uniformly over t.

Applying Lemma 4.16, we conclude that {bt} converges to zero. That is,

lim
t→+∞

gt(U t)− ft(U t) = 0. (4.44)

In Theorem 4.10, we have shown that gt(U t) converges almost surely. This implies that ft(U t)

also converges almost surely to the same limit of gt(U t).

According to the central limit theorem,
√
t(f(U t)− ft(U t) is bounded, implying

lim
t→+∞

f(U t)− ft(U t) = 0, a.s.

Thus, we conclude that f(U t) converges almost surely to the same limit of ft(U t) (or, gt(U t)).

4.A.10 Proof of Theorem 4.3

According to Theorem 4.12, we can see that gt(U t) and f(U t) converge to the same limit almost

surely. Let t tends to infinity, as U t is uniformly bounded (Proposition 4.4), the term λ1

2t ‖U t‖22,∞
in gt(U t) vanishes. Thus gt(U t) becomes differentiable. On the other hand, we have the following

proposition about the gradient of f(U).

Proposition 4.17 (Subgradient of f(U)). Let f(U) be the expected loss function defined in (4.25).

Then, f(U) is continuously differentiable and ∇f(U) = Ez[∇Uℓ(z,U)]. Moreover, ∇f(U) is

uniformly Lipschitz on U .

160

Proof. Since ℓ(z,U) is continuously differentiable (Proposition 4.6), f(U) is continuously differ-

entiable and ∇f(U) = Ez[∇U ℓ(z,U)].

Now we prove the second claim. Let us consider a matrix U and a sample z, and denote

v∗(z,U) and e∗(z,U) as the optimal solutions for (4.12).

Step 1: First, ℓ̃(z,U ,v,e) is continuous in z, U , v and e, and has a unique minimizer. This implies

that v∗(z,U) and e∗(z,U) is continuous in z and U .

Let us denote Λ as the set of the indices such that ∀j ∈ Λ, e∗j 6= 0. According to the first order

optimal condition for (4.14) w.r.t e, we have

z −Uv − e ∈ λ2∂ ‖e‖1 ,

implying

|(z −Uv − e)j | = λ2, ∀j ∈ Λ.

Since z − Uv − e is continuous in z and U , we consider a small perturbation of (z,U) in

one of their open neighborhood V , such that for all (z′,U ′) ∈ V , we have if j /∈ Λ, then
∣∣(z′ −U ′v∗′ − e∗′)j

∣∣ < λ2 and e∗′j = 0, where v∗′ = v∗(z′,U ′) and e∗′ = e∗(z′,U ′). That

is, the support set of e∗ does not change.

Let us denote D = [U I] and b = [v; e] and consider the function

ℓ̃(z,UΛ, bΛ) :=
1

2
‖z −DΛbΛ‖2 + λ2 ‖[0 I]bΛ‖1 .

According to Assumption (A3), ℓ̃(z,UΛ, ·) is strongly convex with a Hessian lower-bounded by a

positive constant C1. Thus,

ℓ̃(z,UΛ, b
′∗
Λ)− ℓ̃(z,UΛ, b

∗
Λ) ≥ C1

∥∥bΛ − b′Λ
∥∥2 = C1

(∥∥v∗ − v′∗∥∥2 +
∥∥e∗Λ − e′∗Λ

∥∥2
)
. (4.45)

161

Step 2: We shall prove that ℓ̃(z,U , ·) − ℓ̃(z′,U ′, ·) is Lipschitz w.r.t. b.

2
(
ℓ̃(z,U , b)− ℓ̃(z′,U ′, b)

)
− 2

(
ℓ̃(z,U , b′)− ℓ̃(z′,U ′, b′)

)

= ‖z −Db‖22 − ‖z −Db′‖22 + ‖z′ −D′b′‖22 − ‖z′ −D′b‖22

= 2z⊤D(b′ − b) + b⊤D⊤Db− b′⊤D⊤Db′ − 2z′⊤D′(b′ − b)− b⊤D′⊤D′b+ b′⊤D′⊤D′b′

= 2
[
(z⊤D − z′⊤D′)(b′ − b)

]
+
[
b⊤D⊤Db− b⊤D′⊤D′b+ b′⊤D′⊤D′b′ − b′⊤D⊤Db′

]
.

For the first term,

(z⊤D − z′⊤D′)(b′ − b) =(z⊤D − z⊤D′ + z⊤D′ − z′⊤D′⊤)(b′ − b)

=
(
z⊤(D −D′) + (z⊤ − z′⊤)D′

)
(b′ − b).

As each sample is bounded, D is bounded (as U is bounded), so the ℓ2 norm of the first term can

be bounded as follows:

∥∥∥(z⊤D − z′⊤D′)(b′ − b)
∥∥∥

=
∥∥∥
(
z⊤(D −D′) + (z⊤ − z′⊤)D′

)
(b′ − b)

∥∥∥

≤
(∥∥z‖2‖D −D′‖F + ‖z − z′‖2‖D′‖F

)
· ‖b′ − b

∥∥

≤
(
C1

∥∥D −D′‖F +C2‖z − z′‖2
)
· ‖b′ − b

∥∥ . (4.46)

162

For the second term, we have

b⊤D⊤Db− b⊤D′⊤D′b+ b′⊤D′⊤D′b′ − b′⊤D⊤Db′

= b⊤
(
D⊤D −D′⊤D′

)
b− b′⊤

(
D⊤D −D′⊤D′

)
b′

= b⊤
(
D⊤D −D′⊤D′

)
b− b⊤

(
D⊤D −D′⊤D′

)
b′ + b⊤

(
D⊤D −D′⊤D′

)
b′

− b′⊤
(
D⊤D −D′⊤D′

)
b′

= b⊤
(
D⊤D −D′⊤D′

) (
b− b′

)
+
(
b− b′

)⊤ (
D⊤D −D′⊤D′

)
b′

= b⊤
(
D⊤D −D⊤D′ +D⊤D′ −D′⊤D′

) (
b− b′

)

+
(
b− b′

)⊤ (
D⊤D −D⊤D′ +D⊤D′ −D′⊤D′

)
b′

= b⊤
(
D⊤ (D −D′)+

(
D⊤ −D′

)
D′
) (

b− b′
)

+
(
b− b′

)⊤ (
D⊤ (D −D′)+

(
D⊤ −D′

)
D′
)
b′.

Since D is bounded and b is bounded, the second term can be bounded as follows:

∥∥∥b⊤D⊤Db− b⊤D′⊤D′b+ b′⊤D′⊤D′b′ − b′⊤D⊤Db′
∥∥∥

=
∥∥∥b⊤

(
D⊤ (D −D′)+

(
D⊤ −D′⊤

)
D′
) (

b− b′
)

+
(
b− b′

)⊤ (
D⊤ (D −D′)+

(
D⊤ −D′⊤

)
D′
)
b′
∥∥∥

≤ C3

∥∥D −D′∥∥
F
·
∥∥b− b′

∥∥ . (4.47)

Combining (4.46) and (4.47), we prove that the function ℓ̃(z,U , ·)− ℓ̃(z′,U ′, ·) is Lipschitz:

(
ℓ̃(z,U , b)− ℓ̃(z′,U ′, b)

)
−
(
ℓ̃(z,U , b′)− ℓ̃(z′,U ′, b′)

)

≤
(
(C1 +C3)

∥∥D −D′∥∥
F
+C2

∥∥z − z′∥∥)∥∥b− b′
∥∥

=
(
(C1 +C3)

∥∥D −D′∥∥
F
+C2

∥∥z − z′∥∥)
√
‖v − v′‖2 + ‖e− e′‖2. (4.48)

163

Step 3: According to (4.45) and (4.48), and the fact that b′∗ minimizes ℓ̃(z′,U ′, ·), we have

C1

(∥∥v∗ − v′∗∥∥2 +
∥∥e∗Λ − e′∗Λ

∥∥2
)

≤ ℓ̃(z,UΛ, b
′∗
Λ)− ℓ̃(z,UΛ, b

∗
Λ)

= ℓ̃(z,UΛ, b
′∗
Λ)− ℓ̃(z′,U ′

Λ, b
∗
Λ) + ℓ̃(z′,U ′

Λ, b
∗
Λ)− ℓ̃(z,UΛ, b

∗
Λ)

≤ ℓ̃(z,UΛ, b
′∗
Λ)− ℓ̃(z′,U ′

Λ, b
′∗
Λ) + ℓ̃(z′,U ′

Λ, b
∗
Λ)− ℓ̃(z,UΛ, b

∗
Λ)

≤
(
(C1 +C3)

∥∥D −D′∥∥
F
+C2

∥∥z − z′∥∥)
√
‖v∗ − v′∗‖2 +

∥∥e∗Λ − e′∗Λ
∥∥2.

Therefore, v∗(z,U) and e∗(z,U) are Lipschitz, which concludes the proof.

Finally, taking a first order Taylor expansion for f(U t) and gt(U t), we can show that the gradi-

ent of f(U t) equals to that of gt(U t) when t tends to infinity. Since U t is the minimizer for gt(U),

we know that the gradient of f(U t) vanishes. Therefore, we have proved Theorem 4.3.

Proof. According to Proposition 4.4, the sequences {1tAt} and {1tBt} are uniformly bounded.

Then, there exist sub-sequences of {1tAt} and {1tBt} that converge to A∞ and B∞ respectively.

In that case, U t converges to U∞. Let W be an arbitrary matrix in R
d×r, and {hk} be a positive

sequence that converges to zero.

Since gt is the surrogate function of ft, for all t and k, we have

gt(U t + hkW) ≥ ft(U t + hkW).

Let t tend to infinity:

g∞(U∞ + hkW) ≥ f(U∞ + hkW).

Since U t is uniformly bounded, when t tends to infinity, the term λ1

2t ‖U t‖2∞ will vanish. In this way,

gt(·) becomes differentiable. Also, the Lipschitz of ∇f(U) (proved in Proposition 4.17) implies

that the second derivative of f(U t) can be uniformly bounded. And by a simple calculation, this

also holds for gt(U t). Thus, we can take the first order Taylor expansion even when t tends to

164

infinity. Using a first order Taylor expansion, and note the fact that g∞(U∞) = f(U∞), we have

Tr
(
hkW

⊤∇g∞(U∞)
)
+ o(hkW) ≥ Tr

(
hkW

⊤∇f(U∞)
)
+ o(hkW).

Since {hk} is a positive sequence, by multiplying 1
hk‖W ‖F

on both side, it follows that

Tr

(
1

‖W ‖F
W⊤∇g∞(U∞)

)
+

o(hkW)

hk‖W ‖F
≥ Tr

(
1

‖W ‖F
W⊤∇f(U∞)

)
+
o(hkW)

hk‖W ‖F
.

Now let k tend to infinity:

Tr

(
1

‖W ‖F
W⊤∇g∞(U∞)

)
≥ Tr

(
1

‖W ‖F
W⊤∇f(U∞)

)
.

Since the inequality holds for all matrix W ∈ R
d×r, it can easily show that

∇g∞(U∞) = ∇f(U∞).

Since U t always minimizes gt(·), we have

∇f(U∞) = ∇g∞(U∞) = 0,

which implies that when t tend to infinity, U t is a stationary point of f(·).

165

Chapter 5

Incremental Minimization for

Low-Rank Subspace Clustering

5.1 Background

In modern scientific computing, data are routinely generated from a union of small subspaces for

which, traditional tools such as principal component analysis are not able to identify the group

structure. As an alternative, in the past a few years, subspace clustering [145, 136] has been ex-

tensively studied and has established solid applications in, for example, computer vision [56] and

network topology inference [57]. Among many subspace clustering methods which seek a struc-

tured representation to fit the underlying data, two prominent examples are sparse subspace clus-

tering (SSC) [56, 137] and low-rank representation (LRR) [92]. Both of them utilize the idea of

self-expressiveness, i.e., expressing each sample as a linear combination of the remaining. Hence,

the coefficients quickly suggest which data points belong to the same group (i.e., subspace). What

is of difference is that SSC pursues a sparse solution, i.e., using a small fraction of samples to rep-

resent each data point. In this light, not only the clustering structure can be found by SSC, but also

the most correlated samples are detected. For LRR, it prefers a (global) low-rank structure. This is

motivated by many applications where the union of the subspaces is still of low rank. An appealing

property of LRR is that it comes up with the theoretical guarantee of recovering the true low-rank

model in addition to clustering the samples.

166

In this chapter, we are interested in the LRR method, which is shown to achieve the state-of-the-

art performance on a broad range of real-world problems [92]. Recently, [91] demonstrated that,

when equipped with a proper dictionary, LRR can even handle the coherent data – a challenging

issue in the literature [36, 34] but is ubiquitous in realistic data sets such as the Netflix movie rating

problem.

Formally, the LRR program we investigate here is formulated as follows [92]:

min
X,E

λ1
2
‖Z − Y X −E‖2F + ‖X‖∗ + λ2 ‖E‖1 . (5.1)

Here, Z = (z1,z2, · · · ,zn) ∈ R
d×n is the observation matrix with n samples, each of which is

a d-dimensional column vector. The matrix Y ∈ R
d×n is a given dictionary, E is some possible

sparse corruption and λ1 > 0 and λ2 > 0 are two tunable parameters. Typically, Y is chosen

as the data set Z itself, hence the idea of self-expressiveness. As X is penalized by the nuclear

norm which is a convex surrogate of the rank function, the program seeks a low-rank representation

among all samples, each of which can be approximated by a linear combination of the atoms in the

dictionary Y . Note that a column of X is the coefficients associated with an individual sample.

When the optimal solution is obtained, one may perform spectral clustering [109] on X since the

entries reflect the correlation between the (uncorrupted) data.

To aid intuition and to introduce more background for the LRR program (5.1), we discuss the

ability of subspace clustering of LRR in the noiseless case. That is, the data matrix Z is gener-

ated from a union of (low-rank) subspaces. Since each sample can be represented only by those

belonging to the same subspace, one may simply solve the linear system

Z = ZX,

which certainly produces a block diagonal solution of X as long as the small subspaces are indepen-

dent. That being said, a careful reader may observe that the above linear system does not exclude

the trivial identity matrix X = In. In order to alleviate it and to conform the low-rank structure of

167

the data, LRR looks for the one with the lowest rank, i.e.,

min
X

‖X‖∗ , s. t. Z = ZX. (5.2)

The following lemma, which is due to [93], justifies that the above program correctly segments the

data.

Lemma 5.1. Suppose that there are k number of small subspaces and without loss of generality, the

data matrix is organized as Z = (Z1,Z2, · · · ,Zk), where Zi ∈ R
d×ni is the collection of samples

coming from the ith subspace. Further assume that there are sufficient samples for each subspace

such that ni > rank (Zi). If the subspaces are mutually independent, then there exists an optimal

solution to (5.2),

X∗ =




X∗
1 0 0 0

0 X∗
2 0 0

0 0
. . . 0

0 0 0 X∗
k




such that rank (X∗
i) = rank (Zi) for all 1 ≤ i ≤ k.

More generally, one may think of the noisy model Z = Y X+E+G for some given dictionary

Y , a sparse corruption E and a Gaussian noise G. In this case, program (5.1) is a straightforward

extension to achieve the robustness. While a large body of work has shown that LRR is able to

segment the data (see, e.g., [91]), three issues are immediately incurred for LRR in the face of big

data:

(I1) Memory cost of X . In the LRR formulation (5.1), there is typically no sparsity assumption

on X . Hence, the memory footprint of X is proportional to n2 which precludes most of the

recently developed nuclear norm solvers [90, 71, 4, 69].

(I2) Computational cost of ‖X‖∗. Since the size of the nuclear norm regularized matrix X is

n×n, optimizing such problems can be computationally expensive even when n is moderate,

say n = 1000 [120].

168

(I3) Memory cost of Y . As the size of the dictionary Y is proportional to sample size n, it is

prohibitive to store the entire dictionary Y during optimization when n is large.

To remedy these problems, especially the memory bottleneck, one potential way is solving the LRR

program in an online manner. That is, we sequentially reveal the samples z1,z2, · · · ,zn and update

the components in X and E. Nevertheless, it turns out that the LRR program (5.1) is not suitable

for online minimization. To see this, we note that each column of X is the coefficients of a sample

with respect to the entire dictionary Y , for example, z1 ≈ Y x1 + e1. This indicates that without

further technique, we have to load the entire dictionary Y so as to update x1 and e1. Again, this

yields an O (n) memory cost. Hence, for our purpose, we need to tackle a more serious challenge:

(I4) Partial realization of Y . We are required to guarantee the optimality of the solution but can

only access part of the atoms of Y in each iteration.

5.1.1 Contributions

In this chapter, henceforth, we propose a new algorithm termed online low-rank subspace clustering

(OLRSC), which admits a low computational complexity. Compared to existing solvers, OLRSC

reduces the memory cost of LRR from O
(
n2
)

to O (dr) where r is an estimated rank of the uncor-

rupted data (r < d ≪ n). This nice property makes OLRSC an appealing solution for large-scale

subspace clustering problems. Furthermore, we prove that the sequence of the solutions produced

by OLRSC converges to a stationary point of the expected loss function asymptotically even though

one atom of Y is available at each iteration. In a nutshell, OLRSC resolves all practical issues of

LRR and still promotes global low-rank structure – the merit of LRR. Finally, concerning the ro-

bustness of the algorithm, our empirical study suggests accurate recovery of the true subspace even

when a large fraction of the entries are corrupted.

5.1.2 Related Work

Low-rankness has been studied for more than two decades. As one of the earliest work, [58] ap-

pealed to a rank minimization program for system identification and signal processing. It was

further suggested that the nuclear norm (also known as trace norm) is a good convex surrogate to

the rank of a matrix. Such a key observation was utilized in machine learning for recommender

169

systems [138, 121]. Though empirically effective, it was not clear under which conditions such a

nuclear norm based program exactly returns the true low-rank solution. In the seminal work of [34],

it was shown that if the singular vectors of the true low-rank matrix does not concentrate around

the canonical basis, formally referred to as the incoherence property, then a convex program with

proper parameter setting recovers the underlying matrix even a constant fraction of the entries are

corrupted. Following [34], a considerable number of work extends the low-rank model to accom-

modate outliers [154], high-dimensional case [153], graph clustering [43], to name a few. This work

considers the variant of multiple subspaces, which is due to [93]. In particular, in place of drawing

insight on the statistical performance, we mainly focus on an efficient and provable algorithm for

subspace clustering. There is a plethora of work attempting to mitigate the memory and computa-

tional bottleneck of the nuclear norm regularizer. However, to the best of our knowledge, none of

them can handle Issue (I3) and Issue (I4).

One of the most popular ways to alleviate the huge memory cost is online implementation. [59]

devised an online algorithm for the robust principal component analysis (RPCA) problem, which

makes the memory cost independent of the sample size. Yet, compared to RPCA where the size of

the nuclear norm regularized matrix is d× n, that of LRR is n× n – a worse and more challenging

case. Moreover, their algorithm cannot address the partial dictionary issue that emerges in our case.

To tackle the computational overhead, [71] utilized a sparse semi-definite programming solver

to derive a simple yet efficient algorithm. Unfortunately, the memory requirement of their algorithm

is proportional to the number of observed entries, making it impractical when the regularized matrix

is large and dense (which is the case of LRR). [4] combined stochastic subgradient and incremental

SVD to boost efficiency. But for the LRR problem, the type of the loss function does not meet the

requirements and thus, it is still not practical to use that algorithm in our case.

Another line in the literature explores a structured formulation of LRR beyond the low-rankness.

For example, [150] provably showed that combining LRR and SSC can take advantages of both

methods. Whereas [150] promotes the sparsity on the representation matrix X , [128] demonstrated

how to pursue a sparsity structure on the factors of X , which is known to be more flexible [68]. Due

to the non-convexity of matrix factorization, a large body of work is dedicated to characterizing the

conditions under which gradient descent ensures global optimum [72, 88, 64].

170

5.2 Problem Formulation and Algorithm

Recall the LRR program given in (5.1). Our goal is to efficiently learn the representation matrix

X and the corruption matrix E in an online manner so as to mitigate the issues mentioned. To

this end, we reformulate it as an empirical risk minimization problem which is amenable for online

optimization.

The first technique for our purpose is a non-convex reformulation of the nuclear norm. Assume

that the rank of X is at most r. Then [58] showed that,

‖X‖∗ = min
U ,V ,X=U

⊤
V

1

2

(
‖U‖2F + ‖V ‖2F

)
, (5.3)

where U ∈ R
r×n and V ∈ R

r×n. The minimum can be attained at, for example, U⊤ = U0S
1/2
0

and V ⊤ = V 0S
1/2
0 where X = U0S0V

⊤
0 is the singular value decomposition. In this way, (5.1)

can be written as follows:

min
U ,V ,E

λ1
2

∥∥∥Z − Y U⊤V −E

∥∥∥
2

F
+

1

2
‖U‖2F +

1

2
‖V ‖2F + λ2 ‖E‖1 . (5.4)

Note that by this reformulation, updating the entries in X amounts to sequentially updating the

columns of U and V , as shown below:




x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...

xn1 xn2 · · · xnn




︸ ︷︷ ︸
X∈Rn×n

=




u⊤
1

u⊤
2

...

u⊤
n




︸ ︷︷ ︸
U

⊤∈Rn×r

×
(
v1 v2 · · · vn

)

︸ ︷︷ ︸
V ∈Rr×n

.

For instance, when we have {ui}ti=1 and {vj}tj=1 on hand, we are able to recover the components

{xij}1≤i,j≤t since each xij equals u⊤
i vj . It is worth mentioning that this technique is utilized in [59]

for online RPCA. Unfortunately, the size of U and V in our problem are both proportional to the

sample size n and the dictionary Y is partially observed in each iteration, making the algorithm

in [59] not applicable to LRR. Related to the online implementation, another challenge is that, all

the columns of U are coupled together at this moment as U⊤ is left multiplied by Y in the first term

171

of (5.4). Since we do not want to load the entire dictionary Y , this makes it difficult to sequentially

compute the columns of U .

For the sake of decoupling the columns of U , as part of the crux of our techniques, we introduce

an auxiliary variable D = Y U⊤, whose size is d × r (i.e., independent of the sample size n).

Interestingly, in this way, we are approximating the term Z − E with DV , which provides an

intuition on the role of D: namely, D can be seen as a basis dictionary of the clean data, with V

being the coefficients.

These key observations allow us to derive an equivalent reformulation to LRR (5.1):

min
D,U ,V ,E

λ1
2
‖Z −DV −E‖2F +

1

2

(
‖U‖2F + ‖V ‖2F

)
+ λ2 ‖E‖1 , s. t. D = Y U⊤.

By penalizing the constraint in the objective, we obtain a regularized version of LRR on which our

new algorithm is based:

min
D,U ,V ,E

λ1
2
‖Z −DV −E‖2F +

1

2

(
‖U‖2F + ‖V ‖2F

)
+ λ2 ‖E‖1 +

λ3
2

∥∥∥D − Y U⊤
∥∥∥
2

F
.

(5.5)

We note that there are two advantages of (5.5) compared to (5.1). First, it is amenable for online

optimization. Second, it is more informative since it explicitly models the basis of the union of

subspaces, which yields a better subspace recovery and clustering to be shown in Section 5.4.

We also point out that due to our explicit modeling of the basis, we unify LRR and RPCA as

follows: for LRR, D ≈ Y U⊤ (or D = Y U⊤ if λ3 tends to infinity) while for RPCA, D = U⊤.

That is, ORPCA [59] considers a problem of Y = Id whose size is independent of n, hence can

be kept in memory which naturally resolves Issue (I3) and (I4). This is why RPCA can be easily

implemented in an online fashion while LRR cannot.

Now we return to the online implementation of LRR. The main idea is optimizing a surrogate

of the empirical risk function (to be defined) in each iteration, which is fast and memory efficient.

172

Let zi, yi, ei, ui, and vi be the ith column of matrices Z, Y , E, U and V respectively and let

ℓ̃(D,v,e;z) :=
λ1
2
‖z −Dv − e‖2 + 1

2
‖v‖2 + λ2 ‖e‖1 ,

ℓ(D;z) := min
v,e

ℓ̃(D,v,e;z). (5.6)

Further, we define

h̃(D,U ;Y) :=

n∑

i=1

1

2
‖ui‖2 +

λ3
2

∥∥∥∥∥D −
n∑

i=1

yiu
⊤
i

∥∥∥∥∥

2

F

,

h(D;Y) := min
U

h̃(D,U ;Y). (5.7)

Then (5.5) can be rewritten as follows:

min
D

min
U ,V ,E

n∑

i=1

ℓ̃(D,vi,ei;zi) + h̃(D,U ;Y), (5.8)

which amounts to minimizing the empirical loss function:

min
D

fn(D) :=
1

n

n∑

i=1

ℓ(D;zi) +
1

n
h(D;Y). (5.9)

5.2.1 Expected Loss

In stochastic approximation, we are also interested in analyzing the optimality of the obtained solu-

tion with respect to the expected loss function [23]. To this end, we first derive the optimal solutions

Ũ , Ṽ and Ẽ that minimize (5.8) which renders a concrete form of the empirical loss function

fn(D).

Given D, we need to compute the optimal solutions Ũ , Ṽ and Ẽ to evaluate the objective value

of fn(D). What is of interest here is that, the optimization procedure of U is quite different from

that of V and E. According to (5.6), when D is given, each ṽi and ẽi can be solved by only

accessing the ith sample zi. However, the optimal ũi depends on the whole dictionary Y as the

second term in h̃(Y ,D,U) couples all the ui’s. Fortunately, we can obtain a closed form solution

for each ũi, as stated below.

Proposition 5.2. Suppose that Y and D are fixed. Then the optimal solution Ũ = (ũ1, ũ2, . . . , ũn)

173

that minimizes h̃(D,U ;Y) and Eq. (5.5) is given by

ũi = D⊤
(

1

λ3
Id + Y Y ⊤

)−1

yi, ∀ i ∈ [n]. (5.10)

Hence,

h(D;Y) =
1

2

∥∥∥∥∥D
⊤
(

1

λ3
Id + Y Y ⊤

)−1

Y

∥∥∥∥∥

2

F

+
1

2λ3

∥∥∥∥∥

(
1

λ3
Id + Y Y ⊤

)−1

D

∥∥∥∥∥

2

F

. (5.11)

The result follows by noting the first order optimality condition and some basic algebra. The

proof can be found in Appendix 5.B.2.

Let σi(Y) be the singular values of the matrix Y ∈ R
d×n where 1 ≤ i ≤ d. By calculation, it

is not hard to see that

σmax

((
1

λ3
Id + Y Y ⊤

)−1
)

=
1

(σp(Y))2 + λ−1
3

≤ λ3,

σmax

((
1

λ3
Id + Y Y ⊤

)−1

Y

)
=

σi(Y)

(σi(Y))2 + λ−1
3

≤
√
λ3
2

for some i.

Thereby, we obtain the upper bound

h(D;Y) ≤ λ3
8
‖D‖2F +

λ3
2
‖D‖2F ≤

5λ3
8
‖D‖2F .

Suppose that D is fixed. Also notice that the size of D does not grow with n. It follows that

lim
n→∞

1

n
h(D;Y) = 0,

if λ3 is such that limn→∞ λ3/n = 0. Hence, asymptotically, minimizing the empirical loss fn(D)

amounts to optimizing n−1
∑n

i=1 ℓ(D;z). Note that when λ1 and λ2 are independent of n, we

quickly get

lim
n→∞

1

n

n∑

i=1

ℓ(D;zi) = Ez[ℓ(D;z)], (5.12)

assuming that all the samples are drawn i.i.d. from some unknown distribution. This gives the

174

expected loss function

f(D) := Ez[ℓ(z,D)] = lim
n→∞

fn(D). (5.13)

5.2.2 Algorithm

We are now in the position to elaborate an online optimization algorithm for low-rank subspace

clustering. Namely, we show how to solve (5.9) in an efficient manner. From a high level, we

alternatively minimize over the variables D and {ui,vi,ei}ni=1. That is, we begin with an initial

(and inaccurate) guess of the variable D, and solve the subproblems (5.6) and (5.7). Using the

obtained solution, we construct a surrogate function of the empirical loss (5.9), which is further

optimized to refine our initial guess of D. Such a paradigm was utilized in [99, 98, 133] for different

problems. It turns out that the case studied here is more challenging due to the component h(D;Y)

of the empirical loss function. To optimize it in an online manner and to analyze the performance,

we develop novel techniques that will be described in the following.

Optimize v and e

For exposition, we first investigate the sum of ℓ(D;zi) where 1 ≤ i ≤ n in (5.9). This is where the

variables vi and ei are involved. Suppose that at the t-th iteration, a fresh sample zt is drawn and

we have an initial guess of D, say Dt−1. Then it is easy to see that the optimal solution {v∗
t ,e

∗
t }

that minimizes ℓ̃(Dt−1,v,e;zt) is given by

{v∗
t ,e

∗
t } = argmin

v,e

λ1
2
‖zt −Dt−1v − e‖2 + 1

2
‖v‖2 + λ2 ‖e‖1 .

Since the objective function is jointly strongly convex over the variables {v,e}, one may apply

coordinate descent to obtain the optimum [14]. In particular, we observe that if e is fixed, we can

optimize v in closed form:

v = (D⊤
t−1Dt−1 + Ir/λ1)

−1D⊤
t−1(zt − e). (5.14)

175

Conversely, given v, the variable e is obtained via soft-thresholding [49]:

e = Sλ2/λ1
[zt −Dt−1v]. (5.15)

See Algorithm 8 in Appendix 5.A for details. It follows that ℓ̃(Dt−1,v
∗
t ,e

∗
t ;zt) is a surrogate to

ℓ(D;zt), since Dt−1 is our guess of the optimal D.

Optimize u

We move on to describe how to optimize the second component h(D;Y), which contains the

variables {ui}i≥1. Again, we will assume that an initial guess of D is available, so we only need

to minimize a surrogate. However, looking at the solution (5.10), we notice that even D is given

(e.g., some initial guess Dt−1), we have to load the entire dictionary Y ∈ R
d×n so as to obtain the

local optimum ũt, and hence a surrogate of h(D;Y). This is quite different from the scheme of

optimizing v and e, where optimum only depends on the new sample. Indeed, though the framework

of our algorithm follows from [99, 59, 133], none of them considers the situation as we stated here

(the optimum in their work can be computed directly when a new sample arrives).

In order to remedy the issue, our novelty here is constructing a proxy function by minimizing

which, we are generating a solution that gradually approximates to the one of h̃(D,U ;Y). The

proxy function is given as follows

ℓ̃2(D,u;M ,y) :=
1

2
‖u‖2 + λ3

2

∥∥∥D −M − yu⊤
∥∥∥
2

F
. (5.16)

Suppose that we store the accumulation matrix

M t−1 :=
t−1∑

i=1

yi(u
∗
i)

⊤ ∈ R
d×r, (5.17)

where we define M0 as a zero matrix. At the t-th iteration, when a new atom yt is revealed,

we calculate u∗
t as the minimizer of ℓ̃2(Dt−1,u;M t−1,yt), for which we have the closed form

solution

u∗
t = (‖yt‖2 + 1/λ3)

−1(Dt−1 −M t−1)
⊤yt. (5.18)

176

Algorithm 7 Online Low-Rank Subspace Clustering

Require: Z ∈ R
d×n (observed samples), Y ∈ R

d×n, parameters λ1, λ2 and λ3, random matrix
D0 ∈ R

d×r (initial basis), zero matrices M 0, A0 and B0.
Ensure: Optimal basis Dn.

1: for t = 1 to n do

2: Access the t-th sample zt and the t-th atom yt.
3: Compute the coefficient and noise:

{v∗
t ,e

∗
t } = argmin

v,e
ℓ̃(Dt−1,v,e;zt),

u∗
t = argmin

u

ℓ̃2(Dt−1,M t−1,u;yt).

4: Update the accumulation matrices:

M t ← M t−1 + yt(u
∗
t)

⊤,

At ← At−1 + v∗
t (v

∗
t)

⊤,

Bt ← Bt−1 + (zt − e∗t)(v
∗
t)

⊤.

5: Update the basis:

Dt = argmin
D

1

t

[
1

2
Tr
(
D⊤D(λ1At + λ3Ir)

)
− Tr

(
D⊤(λ1Bt + λ3M t)

)]
.

6: end for

The solution in (5.18) differs from that of (5.10) a lot. Though (5.18) is not an accurate solution

that minimizes h̃(D,U ;Y), the computation is efficient. More importantly, u∗
t only depends on

yt rather than the entire atom dictionary. We will also show that (5.18) suffices to guarantee the

convergence of the algorithm to a stationary point of the expected loss function.

To gain intuition on the connection between ℓ̃2(D,u;M ,y) and h̃(D,U ;Y), assume we have

n atoms in total (i.e., Y has n columns). It turns out that for the function h̃(D,U ;Y), U can

be optimized using block coordinate minimization (BCM), with each column of U being a block

variable. Initially, we may set all these columns to a zero vector. As BCM proceeds, we update

ut while keeping the other ui’s for i 6= t. Note that in this way, optimizing h̃(D,U ;Y) over ut

amounts to minimizing the function ℓ̃2(D,u;M t−1,yt) where Mt−1 is defined in (5.17). So after

revealing all the atoms, each ut is sequentially updated only once. Henceforth, our strategy can be

seen as a one-pass BCM algorithm for the function h̃(D,U ;Y).

177

Optimize D

As soon as {v∗
i ,e

∗
i ,u

∗
i }ti=1 are available, we can refine the initial guess Dt−1 by optimizing the

surrogate function

gt(D) :=
1

t

(t∑

i=1

ℓ̃(D,v∗
i ,e

∗
i ;zi) +

t∑

i=1

1

2
‖u∗

i ‖2 +
λ3
2
‖D −M t‖2F

)
. (5.19)

Let us look at the first term:

g̃t(D) :=
1

t

t∑

i=1

ℓ̃(D,v∗
i ,e

∗
i ;zi), (5.20)

which is a surrogate of 1
t

∑t
i=1 ℓ(D;zi). Though the above objective function involves the past iter-

ates {v∗
i ,e

∗
i }ti=1 whose memory cost is proportional to the sample size, we show that the minimizer

of (5.20) can be computed by accessing only two accumulation matrices whose sizes are indepen-

dent of the sample size. To see this, we may expand the function ℓ̃(D,v∗
i ,e

∗
i ;zi) as follows:

ℓ̃(D,v∗
i ,e

∗
i ;zi) =

λ1
2
‖zi −Dv∗

i − e∗i ‖2 +
1

2
‖v∗

i ‖2 + λ2 ‖e∗i ‖1

=
λ1
2

Tr
(
D⊤Dv∗

i (v
∗
i)

⊤
)
+ λ1 Tr

(
D⊤(e∗i − zi)(v

∗
i)

⊤
)

+
λ1
2
‖zi − e∗i ‖2 +

1

2
‖v∗

i ‖2 + λ2 ‖e∗i ‖1 .

Since the variable here is D, it holds that the minimizer of (5.20) is given by the following:

min
D

1

t

t∑

i=1

[
λ1
2

Tr
(
D⊤Dv∗

i (v
∗
i)

⊤
)
+ λ1Tr

(
D⊤(e∗i − zi)(v

∗
i)

⊤
)]

. (5.21)

As the trace is a linear mapping, solving the above program only needs to record two accumulation

matrices

At :=
t∑

i=1

v∗
i (v

∗
i)

⊤ ∈ R
r×r, Bt :=

t∑

i=1

(zi − e∗i)(v
∗
i)

⊤ ∈ R
d×r. (5.22)

178

Using the result of (5.21) and doing some calculation, we derive Dt as follows:

Dt = argmin
D

1

t

[1
2
Tr
(
D⊤D(λ1At + λ3Ir)

)
−Tr

(
D⊤(λ1Bt + λ3M t)

)]

= (λ1Bt + λ3M t)(λ1At + λ3Ir)
−1, (5.23)

where At and Bt are given in (5.22) and M t is defined in (5.17). Numerically, we apply coordinate

descent to solve the above program owing to its efficiency. See more details in Appendix 5.A.

Memory Cost

It is remarkable that the memory cost of Algorithm 7 is O (dr). To see this, note that when solving

v∗
t and e∗t , we load Dt−1 and a sample zt into the memory, which costs O (dr). To compute the

optimal u∗
t , we need to access Dt−1 and M t−1 ∈ R

d×r. Although we aim to minimize (5.19),

which seems to require all the past information, we actually only need to record At, Bt and M t,

whose sizes are at most O (dr) (recall that r < d).

Time Complexity

In addition to the memory efficiency, we further elaborate that the the computation in each iteration

is cheap. To compute {v∗
t ,e

∗
t}, one may utilize the block coordinate method in [122] which enjoys

linear convergence due to strong convexity. One may also apply the stochastic variance reduced

algorithms which also ensure a geometric rate of convergence [152, 48]. The u∗
t is obtained by

simple matrix-vector multiplications, which costs O (dr). It is easy to see the complexity of Step 4

is O (dr) and that of Step 5 is O
(
dr2
)
.

A Fully Online Subspace Clustering Scheme

Now we have provided a way to learn the low-rank representation matrix X in an online manner.

Usually, researchers in the literature will take an optional post-processing step to refine the seg-

mentation accuracy, for example, applying spectral clustering [109] on the obtained representation

matrix X∗. In this case, one has to collect all the u∗
i ’s and v∗

i ’s to compute X∗ = (U ∗)⊤V ∗

which will again increase the memory cost to O
(
n2
)
. Here, we suggest an alternative scheme

which admits O (kr) memory usage where k is the number of subspaces. The idea is appealing to

179

the well-known k-means clustering in place of spectral clustering. One notable advantage is that

updating the k-means model can be implemented in an online manner. In fact, the online k-means

algorithm can be easily integrated into Algorithm 7 by observing that v∗
i is the robust feature for the

ith sample. On the other hand, updating the k-means model is quite cheap, since the computational

cost is O (kr).

An Alternative Online Implementation

Our strategy for solving ut is based on a carefully designed proxy function which resolves Issue (I4)

and has a low complexity. Yet, to tackle Issue (I4), another potential way is to avoid the variable ut.

Recall that we derive the optimal solution Ũ (provided that D is given) to h̃(D,U ;Y) as follows

(see Proposition 5.2):

Ũ = Y ⊤
(
λ−1
3 Id + Y Y ⊤

)−1
D.

Plugging it back to h̃(D,U ;Y), we obtain

h̃(D,U ;Y) =
1

2
Tr
(
DD⊤ (Qn − λ3−1Q2

n

))
+
λ3
2

∥∥D − λ3−1QnD
∥∥2
F
,

where

Qn =
(
λ3

−1Id + Y Y ⊤
)−1

.

Here, the subscript of Qn denotes the number of atoms in Y . Note that the size of Qn is d × d.

Hence, if we incrementally compute the accumulation matrix Y Y ⊤ =
∑t

i=1 yiy
⊤
i , we can update

the variable D in an online fashion. Namely, at t-th iteration, we re-define the surrogate function as

follows:

gt(D) :=
1

t

[
t∑

i=1

ℓ̃(zi,D,vi,ei) +
λ3
2

∥∥∥∥D −
1

λ3
QtD

∥∥∥∥
2

F

+
1

2
Tr

(
DD⊤

(
Qt −

1

λ3
Q2

t

))]
.

Again, by noting the fact that ℓ̃(zi,D,vi,ei) only involves recording At and Bt, we show that

the memory cost is independent of sample size. However, the main shortcoming is that the time

180

complexity of computing the inverse of a d × d matrix in each iteration is O
(
d3
)

which is not

efficient in the high-dimensional regime (the time complexity of ours is proportional to dr2). Either,

it is not clear how to analyze the convergence.

5.3 Theoretical Analysis

In this section, we present theoretical evidence that our algorithm guarantees that the sequence

{Dt}t≥1 converges to a stationary point of the expected loss (5.9) asymptotically. We note that the

problem studied here is non-convex, and hence convergence to a stationary point is the best one can

hope in general [14]. As we have mentioned in related work, there are elegant results showing that

convergence to global optimum is possible for batch alternating minimization under more stringent

conditions on the data. See, for example, [72, 64].

We make two assumptions throughout our analysis.

(A1) The observed data are generated i.i.d. from some (unknown) distribution and there exist con-

stants α0 and α1, such that the conditions 0 < α0 ≤ ‖zt‖ ≤ α1 and α0 ≤ ‖yt‖ ≤ α1 hold

almost surely for all t ≥ 1.

(A2) The smallest singular value of 1
tAt is bounded away from zero almost surely.

Note that the first assumption is very mild. In fact, in many applications the data points are normal-

ized to unit length, and in this case α0 = α1 = 1. To understand the second assumption, recall that

Dt is computed in (5.23). If λ3 = o(t), then asymptotically the solution Dt is not unique. Hence,

Assumption (A2) ensures that we always have a unique solution that minimizes the surrogate func-

tion gt(D). Geometrically, as we have noted that vi is the coefficient of zi in terms of the basis

dictionary D, the assumption simply requires that the data points are in general positions.

We also need the following parameter settings.

(P1) λ1 and λ2 are independent of the sample size n.

(P2) limn→∞ λ3/n = 0.

As we have shown in Section 5.2, these parameter scalings give the expected loss function as

in (5.13). We note that (P1) is also required in previous work [99, 59, 133], though not set out

181

explicitly. (P2) is specific to our problem. It facilitates the characterization of the empirical loss

function when n tends to infinity. Otherwise, even the convergence of the sequence {fn(D)}n≥1 is

not clear (consider, e.g., λ3 = n sinn).

We present a fundamental result that will be heavily invoked in the subsequent analysis.

Proposition 5.3. Let {u∗
t }t≥1, {v∗

t}t≥1, {e∗t}t≥1 and {Dt}t≥1 be the sequence of the optimal

solutions produced by Algorithm 7. Assume (A1) and (A2). Further suppose that λ2 does not grow

with t. Then, for all t ≥ 1,

1. v∗
t , e∗t , 1

tAt and 1
tBt are uniformly bounded from above;

2. M t is uniformly upper bounded;

3. Dt is supported on some compact set D;

4. u∗
t is uniformly upper bounded.

Note that we prove the result by assuming a weaker condition than (P1): the parameter λ2

does not grow with the sample size t. While it is not surprising to see that u∗
t ,v

∗
t ,e

∗
t and Dt are

bounded from above due to the regularization, it is interesting to note that M t =
∑t

i=1 yi(u
∗
i)

⊤

is also upper bounded. Intuitively, this holds since the last term in (5.5) imposes that M t cannot

deviate far from Dt. However, the technical challenge is that Dt itself depends on M t, as shown

in (5.23), and neither Dt nor M t is bounded without the boundedness of the other. To remedy this,

we propose a novel technique which conducts mathematical induction simultaneously on Dt and

M t. This tremendously simplifies the proof of our earlier version [132]. See Appendix 5.B.3 for

the proof.

The proposition has many implications. For example, the uniform boundedness of the solutions

immediately implies that the surrogate function gt(D) and the empirical loss function ft(D) are

bounded from above for all D ∈ D, which is necessary for the convergence.

Next, we prove that the sequence of {gt(Dt)}t≥1 converges almost surely. We will make use of

the following lemma, which is due to [22].

182

Lemma 5.4. Let (Ω,F , P) be a measurable probability space, ψt, for t ≥ 1, be the realization of

a stochastic process and Ft be the filtration by the past information at time t. Let

δt =





1 if E[ψt+1 − ψt | Ft] > 0,

0 otherwise.

If for all t, ψt ≥ 0 and
∑∞

t=1 E[δt(ψt+1 − ψt)] < ∞, then ψt is a quasi-martingale and converges

almost surely. Moreover, it holds almost surely that

∞∑

t=1

|E[ψt+1 − ψt | Ft]| < +∞.

Based on the lemma, we show the following result.

Theorem 5.5. Assume (A1) and (A2). Set the parameters λ1, λ2 and λ3 such that they satisfy (P1)

and (P2). Then the sequence of {gt(Dt)}t≥1 converges almost surely, where {Dt}t≥1 is the solu-

tion produced by Algorithm 7. Moreover, the following holds almost surely:

∞∑

t=1

∣∣E
[
ψt+1 − ψt | Ft

]∣∣ < +∞, (5.24)

where Ft = {zi,yi}ti=1.

Proof. (Sketch) We will view {gt(Dt)}t≥1 as a non-negative stochastic process, withFt = {zi,yi}ti=1

be the filtration of the past information. In order to apply Lemma 5.4, we write ψt := gt(Dt) and

compute the variation between two consecutive iterations:

ψt+1 − ψt = gt+1(Dt+1)− gt+1(Dt)︸ ︷︷ ︸
ζ1

+
f̃t(Dt)− g̃t(Dt)

t+ 1︸ ︷︷ ︸
ζ2

+
ℓ(zt+1,Dt)− f̃t(Dt)

t+ 1︸ ︷︷ ︸
ζ3

+

[
1

t+ 1

t+1∑

i=1

1

2
‖u∗

i ‖2 +
λ3

2(t+ 1)
‖Dt −M t+1‖2F

− 1

t

t∑

i=1

1

2
‖u∗

i ‖2 −
λ3
2t
‖Dt −M t‖2F

]
.

183

Here,

f̃t(Dt) =
1

t

t∑

i=1

ℓ(Dt;zi).

Since Dt+1 minimizes gt+1(D), we have ζ1 ≤ 0. Also, recall that g̃t(D) is a surrogate of f̃t(D),

implying ζ2 ≤ 0. For ζ3, the P-Donsker lemma (see Proposition 5.16) gives

E
[
E[ζ3 | Ft]

]
≤ C√

t(t+ 1)

for some constant C. Finally, we need to upper bound the terms in the brackets which are specific

to the online subspace clustering problem. In light of the bound of ζ3, one may look for a way to

bound them with O
(
1/t3/2

)
. Surprisingly, it turns out that our algorithm automatically guarantees

that the sum of the terms in the brackets is not greater than zero. This follows by noting the closed-

form solution of u∗
i (5.18) and the fact that M t =

∑t
i=1 yi(u

∗
i)

⊤. Putting all the pieces together

completes the proof.

We move on to show that the sequence of {ft(Dt)}t≥1 converges. In particular, we justify that

gt(D) acts as a good surrogate of ft(D) in the sense that the sequence of the surrogate converges

to the same limit of that of the empirical loss.

Theorem 5.6. Assume (A1) and (A2). Set the parameters λ1, λ2 and λ3 such that they sat-

isfy (P1) and (P2). Let {Dt}t≥1 be the solution produced by Algorithm 7. Then, the sequence

of {ft(Dt)}t≥1 converges almost surely to the same limit of {gt(Dt)}t≥1.

Corollary 5.7. Assume sames conditions as in Theorem 5.6. Then the sequence of {f(Dt)}t≥1

converges almost surely to the same limit of {ft(Dt)}t≥1 or equivalently, {gt(Dt)}t≥1.

Proof. (Sketch) We need several tools in the literature to prove this result. From a high level,

since we have already shown that {gt(Dt)}t≥1 converges, we only need to deduce that the limit

of gt(Dt) − ft(Dt) is zero. A useful result for this purpose is stated below, which is borrowed

from [99].

Lemma 5.8 (Lemma 8 in [99]). Let {at}t≥1, {bt}t≥1 be two real sequences such that for all t, at ≥

0, bt ≥ 0,
∑∞

t=1 at =∞,
∑∞

t=1 atbt <∞, there exists a scalar C > 0, such that |bt+1 − bt| < C·at.

184

Then, limt→∞ bt = 0.

In particular, we set at = (t + 1)−1 and bt = gt(Dt) − ft(Dt) ≥ 0. First, we verify that the

sum of the infinite series {atbt}t≥1 is finite. By algebra, we obtain

bt
t+ 1

≤ g̃t(Dt)− f̃t(Dt)

t+ 1
+
qt(Dt)

t+ 1
,

where

qt(Dt) =
1

t

t∑

i=1

1

2
‖u∗

i ‖2 +
λ3
2t
‖Dt −M t‖2F .

Then by utilizing the uniform boundedness of Dt and M t, it is possible to derive

bt
t+ 1

≤ ℓ(Dt;zt+1)− f̃t(Dt)

t+ 1
+ ψt − ψt+1 +

C

2t(t+ 1)

for some absolute constant C. As we have shown in the proof sketch of Theorem 5.5, the first term

scales as O
(
1/t3/2

)
, which combined with (5.24) imply that

∑∞
t=1

bt
t+1 is finite.

Next, we claim that

|bt+1 − bt| ≤
C0

t+ 1
,

for some absolute constant C0. The follows heavily from Proposition 5.3 where we showed that all

the variables are uniformly bounded, and hence all involved functions evaluated at these solutions

are bounded from above. To be more concrete, using triangle inequality we get

|bt+1 − bt| ≤ |gt+1(Dt+1)− gt(Dt+1)|+ |ft+1(Dt+1)− ft(Dt+1)|

+ |gt(Dt+1)− gt(Dt)|+ |ft(Dt+1)− ft(Dt)| .

The first two terms on the right-hand side are upper bounded by O (1/t) due to uniform bounded-

ness. For the last two terms, we utilize the fact that gt(D) and ft(D) are both Lipschitz to show

that they are bounded by O (‖Dt+1 −Dt‖F) from above. The following proposition illustrates

that the variation of Dt+1 and Dt vanishes with the rate O (1/t), whose proof can be found in

185

Appendix 5.B.6.

Proposition 5.9. Assume (A1) and (A2). Further suppose that λ1 and λ2 do not grow with t. Let

{Dt}t≥1 be the basis sequence produced by Algorithm 7. Then,

‖Dt+1 −Dt‖F = O

(
1

t

)
.

Thus, in allusion to Lemma 5.8, we complete the proof of Theorem 5.6. The corollary follows

immediately because the central limit theorem asserts that
√
t(f(Dt)− ft(Dt)) is upper bounded.

Finally, we show that asymptotically, Dt acts as a stationary point of the expected loss function.

Theorem 5.10. Assume (A1), (A2), (P1) and (P2). Let {Dt}∞t=1 be the sequence of optimal bases

produced by Algorithm 7. Then, the sequence converges to a stationary point of the expected loss

function f(D) when t goes to infinity.

5.4 Experiments

This section gives empirical evidence that our algorithm OLRSC is fast and robust. We demonstrate

by simulations that the solution is good enough. In fact, we find that after revealing all the data

points, OLRSC is able to recover the true subspace even with grossly corrupted entries. Thus, it is

interesting to study the statistical performance of OLRSC in the future work. We also illustrate that

OLRSC is orders of magnitude faster than batch methods such as LRR and SSC.

5.4.1 Settings

Before presenting the empirical results, we first introduce the universal settings used throughout the

section.

Baselines

For the subspace recovery task, we compare our algorithm with ORPCA [59], LRR [92] and

PCP [34]. For the subspace clustering task, we choose ORPCA, LRR and SSC [56] as the compet-

186

itive baselines. Recently, [91] improved the vanilla LRR by utilizing some low-rank matrix for Y .

We denote this variant of LRR by LRR2 and accordingly, our algorithm equipped with such a basis

dictionary Y is denoted as OLRSC2.

Evaluation Metric

We evaluate the fitness of the recovered subspaces D (with each column being normalized) and the

ground truth L by the Expressed Variance (EV) [153]:

EV(D,L) :=
Tr
(
DD⊤LL⊤)

Tr
(
LL⊤) . (5.25)

The value of EV is between 0 and 1, and a higher value means better recovery (EV = 1 means exact

recovery).

The performance of subspace clustering is measured by clustering accuracy which is provided

in the SSC toolkit. Its value also ranges in the interval [0, 1], and a higher value indicates a more

accurate clustering.

Parameters

We set λ1 = 1, λ2 = 1/
√
d and λ3 =

√
t/d, where t is the iteration counter. Note that the

parameter settings satisfy (P1) and (P2). In particular, limt→∞ λ3/t = 0. We follow the default

parameter setting for the baselines.

5.4.2 Subspace Recovery

Simulation Data

We use 4 disjoint subspaces {Sk}4k=1 ⊂ R
d, whose bases are denoted by {Lk}4k=1 ∈ R

d×rk . The

clean data matrix Z̄k ∈ Sk is then produced by Z̄k = LkR
⊤
k , where Rk ∈ R

nk×rk . The entries

of Lk’s and Rk’s are sampled i.i.d. from the normal distribution. Finally, the observed data matrix

Z is generated by Z = Z̄ + E, where Z̄ is the column-wise concatenation of Z̄k’s followed by

a random permutation, E is the sparse corruption whose ρ fraction entries are non-zero and follow

an i.i.d. uniform distribution over [−2, 2]. We independently conduct each experiment 10 times and

report the averaged results.

187

Rank / Dimension

C
or

ru
pt

io
n

0.05 0.2 0.35 0.5

0.5

0.4

0.3

0.2

0.1

0
OLRSC

Rank / Dimension

C
or

ru
pt

io
n

0.05 0.2 0.35 0.5

0.5

0.4

0.3

0.2

0.1

0
ORPCA

Rank / Dimension

C
or

ru
pt

io
n

0.05 0.2 0.35 0.5

0.5

0.4

0.3

0.2

0.1

0
LRR

Rank / Dimension

C
or

ru
pt

io
n

0.05 0.2 0.35 0.5

0.5

0.4

0.3

0.2

0.1

0
PCP

Figure 5.1: Subspace recovery under different intrinsic dimensions and corruptions. Brighter
is better.

Robustness

We illustrate by simulation results that OLRSC can effectively recover the underlying subspaces,

confirming that Dt converges to the union of subspaces. For the two online algorithms OLRSC and

ORPCA, We compute the EV after revealing all the samples. We examine the performance under

different intrinsic dimension rk’s and corruption ρ. To be more detailed, the rk’s are varied from

0.01d to 0.1d with a step size 0.01d, and the ρ is from 0 to 0.5, with a step size 0.05.

The results are presented in Figure 5.1. The most intriguing observation is that OLRSC as an

online algorithm outperforms its batch counterpart LRR! Such improvement may come from the

explicit modeling for the basis, which makes OLRSC more informative than LRR. To fully under-

stand the rationale behind this phenomenon is an important direction for future research. Notably,

OLRSC consistently beats ORPCA (an online version of PCP), in that OLRSC takes into account

that the data are produced by a union of small subspaces. While PCP works well for almost all

scenarios, OLRSC degrades a little when addressing difficult cases (high rank and corruption). This

188

4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

Number of Samples (x103)

E
V

OLRSC
OLRSC2
ORPCA
LRR
LRR2
PCP

ρ=0.01

4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

Number of Samples (x103)

E
V

OLRSC
OLRSC2
ORPCA
LRR
LRR2
PCP

ρ=0.3

4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

Number of Samples (x103)

E
V

OLRSC
OLRSC2
ORPCA
LRR
LRR2
PCP

ρ=0.5

0.01 0.1 0.3 0.5

5

10

15

20

25

30

Corruption ρ

T
im

e
(m

in
)

OLRSC
OLRSC2
ORPCA
LRR
LRR2
PCP

Figure 5.2: Convergence rate and time complexity of our algorithm.

is not surprising since Theorem 5.10 is based on asymptotic analysis and hence, we expect that

OLRSC will converge to the true subspace after acquiring more samples.

Convergence Rate and Time Complexity

Now we test on a large data set to show that our algorithm usually converges to the true subspace

faster than ORPCA. We plot the EV curve against the number of samples in Figure 5.2. Firstly,

when equipped with a proper matrix Y , OLRSC2 and LRR2 can always produce an exact recovery

of the subspace as PCP does. When using the data set itself for Y , OLRSC still converges to a

favorable point after revealing all the samples. Compared to ORPCA, OLRSC is more robust and

converges much faster for hard cases (see, e.g., ρ = 0.5). Again, we note that in such hard cases,

OLRSC outperforms LRR, which agrees with the observation in Figure 5.1.

We also illustrate the time complexity of the algorithms in the last panel of Figure 5.2. In short,

our algorithms (OLRSC and OLRSC2) admit the lowest computational complexity for all cases.

One may argue that PCP spends slightly less time than ours for a small ρ (0.01 and 0.1). However,

189

we remark here that PCP utilizes a highly optimized C++ toolkit to boost computation while our

algorithms are fully written in Matlab. We believe that ours will work more efficiently if properly

optimized by, e.g., the blas routine. Another important message conveyed by the figure is that,

OLRSC is always being orders of magnitude computationally more efficient than the batch method

LRR, as well as producing comparable or even better solution.

5.4.3 Subspace Clustering

Datasets

We examine the performance of subspace clustering on 5 realistic databases shown in Table 5.1,

which can be downloaded from the LibSVM website. For MNIST, We randomly select 20 thousands

samples to form MNIST-20K since we find it time consuming to run the batch methods on the entire

database.

Table 5.1: Datasets for subspace clustering.

#classes #samples #features

Mushrooms 2 8124 112
DNA 3 3186 180
Protein 3 24,387 357
USPS 10 9298 256
MNIST-20K 10 20,000 784

Standard Clustering Pipeline

In order to focus on the solution quality of different algorithms, we follow the standard pipeline

which feeds X to a spectral clustering algorithm [109]. To this end, we collect all the u’s and v’s

produced by OLRSC to form the representation matrix X = UV ⊤. For ORPCA, we use R0R
⊤
0

as the similarity matrix [92], where R0 is the row space of Z0 = L0Σ0R
⊤
0 and Z0 is the clean

matrix recovered by ORPCA. We run our algorithm and ORPCA with 2 epochs so as to refine the

coefficients (i.e., U and V in ours and R0 in ORPCA). Note that for subspace clustering, this step is

essential because the initial guess of D results in bad solutions of the coefficients at the beginning.

190

Fully Online Pipeline

As we discussed in Section 5.2.2, the (optional) spectral clustering procedure needs the similarity

matrix X , making the memory proportional to n2. To tackle this issue, we proposed a fully online

scheme where the key idea is performing k-means on V . Here, we examine the efficacy of this

variant, which is called OLRSC-F.

Results

The results are recorded in Table 5.2, where the time cost of spectral clustering or k-means is not

included so we can focus on comparing the efficiency of the algorithms themselves. Also note that

we use the data set itself as the dictionary Y because we find that an alternative choice of Y does not

help too much on this task. For OLRSC and ORPCA, they require an estimation on the true rank.

Here, we use 5k as such estimation where k is the number of classes of a data set. Our algorithm

significantly outperforms the two state-of-the-art methods LRR and SSC both in terms of accuracy

and efficiency. One may argue that SSC is slightly better than OLRSC on Protein. Yet, it spends

1 hour while OLRSC only costs 25 seconds. Hence, SSC is not practical. Compared to ORPCA,

OLRSC always identifies more correct samples as well as consumes comparable running time. For

example, on the USPS data set, OLRSC achieves the accuracy of 65.95% while that of ORPCA is

55.7%. Regarding the running time, OLRSC uses only 7 seconds more than ORPCA – same order

of computational complexity, which agrees with the qualitative analysis in Section 5.2.2 and the one

in [59].

More interestingly, it shows that the k-means alternative (OLRSC-F) usually outperforms the

spectral clustering pipeline. This suggests that perhaps for robust subspace clustering formulations,

the simple k-means paradigm suffices to guarantee an appealing result. On the other hand, we report

the running time of spectral clustering and k-means in Table 5.3. As expected, since spectral cluster-

ing computes SVD for an n-by-n similarity matrix, it is quite slow. In fact, it sometimes dominates

the running time of the whole pipeline. In contrast, k-means is extremely fast and scalable, as it can

be implemented in online fashion.

191

Table 5.2: Clustering accuracy (%) and computational time (seconds in default). For each data
set, the first row indicates the accuracy and the second row the running time.

OLRSC OLRSC-F ORPCA LRR SSC

Mush- 85.09 89.36 65.26 58.44 54.16
rooms 8.78 8.78 8.30 46.82 32 min

DNA
67.11 83.08 53.11 44.01 52.23
2.58 2.58 2.09 23.67 3 min

Protein
43.30 43.94 40.22 40.31 44.27

24.66 24.66 22.90 921.58 65 min

USPS
65.95 70.29 55.70 52.98 47.58
33.93 33.93 27.01 257.25 50 min

MNIST- 57.74 55.50 54.10 55.23 43.91
20K 129 129 121 32 min 7 hours

Table 5.3: Time cost (in seconds) of spectral clustering and k-means.

Mushrooms DNA Protein USPS MNIST-20K

Spectral 295 18 7567 482 4402
k-means 2 6 5 19 91

5.5 Conclusion

In this chapter, we have proposed an online algorithm termed OLRSC for subspace clustering,

which dramatically reduces the memory cost of LRR from O
(
n2
)

to O (dr). One of the key

techniques is an explicit basis modeling, which essentially renders the model more informative than

LRR. Another important component is a non-convex reformulation of the nuclear norm. Combining

these techniques allows OLRSC to simultaneously recover the union of the subspaces, identify the

possible corruptions and perform subspace clustering. We have also established the theoretical

guarantee that solutions produced by our algorithm converge to a stationary point of the expected

loss function. Moreover, we have analyzed the time complexity and empirically demonstrated that

our algorithm is computationally very efficient compared to competing baselines. Our extensive

experimental study on synthetic and realistic data sets also illustrates the robustness of OLRSC. In

a nutshell, OLRSC is an appealing algorithm in all three worlds: memory cost, computation and

robustness.

192

5.A Algorithm Details

Algorithm 8 Solving v and e

Require: D ∈ R
d×r, z ∈ R

d, parameters λ1 > 0 and λ2 > 0.
Ensure: Optimal v and e.

1: Set e = 0.
2: repeat

3: Update v:

v = (D⊤D +
1

λ1
I)−1D⊤(z − e).

4: Update e:

e = Sλ2/λ1
[z −Dv].

5: until convergence

Algorithm 9 Solving D

Require: D ∈ R
d×r in the previous iteration, accumulation matrix M , A and B, parameters

λ1 > 0 and λ3 > 0.
Ensure: Optimal D (updated).

1: Denote Â = λ1A+ λ3I and B̂ = λ1B + λ3M .
2: repeat

3: for j = 1 to r do

4: Update the jth column of D:

dj ← dj −
1

âjj

(
Dâj − b̂j

)

5: end for

6: until convergence

For Algorithm 8, we set a threshold ǫ = 10−3. Let {v′,e′} and {v′′,e′′} be the two consecu-

tive iterates. If the maximum of ‖v′ − v′′‖/‖v′‖ and ‖e′ − e′′‖/‖e′‖ is less than ǫ, then we stop

Algorithm 8.

For Algorithm 9, we observe that a one-pass update on the dictionary D is enough for the final

convergence of D, as we showed in the experiments. This is also observed in [99].

193

5.B Proofs

5.B.1 Technical Lemmas

We need several technical lemmas for our proof.

Lemma 5.11 (Corollary of Thm. 4.1 in [21]). Let f : Rp×Rq → R. Suppose that for all x ∈ R
p the

function f(x, ·) is differentiable, and that f and ∇uf(x,u) are continuous on R
p × R

q. Let v(u)

be the optimal value function v(u) = minx∈C f(x,u), where C is a compact subset of Rp. Then

v(u) is directionally differentiable. Furthermore, if for u0 ∈ R
q, f(·,u0) has unique minimizer x0

then v(u) is differentiable in u0 and ∇uv(u0) = ∇uf(x0,u0).

Lemma 5.12 (Corollary of Donsker theorem [144]). Let F = {fθ : X → R, θ ∈ Θ} be a set of

measurable functions indexed by a bounded subset Θ of Rd. Suppose that there exists a constant K

such that

|fθ1(x)− fθ2(x)| ≤ K ‖θ1 − θ2‖ ,

for every θ1 and θ2 in Θ and x in X . Then, F is P-Donsker. For any f in F , let us define Pnf , Pf

and Gnf as

Pnf =
1

n

n∑

i=1

f(Xi), Pf = E[f(X)], Gnf =
√
n(Pnf − Pf).

Let us also suppose that for all f , Pf2 < δ2 and ‖f‖∞ < M and that the random elements

X1,X2, · · · are Borel-measurable. Then, we have

E ‖G‖F = O (1) ,

where ‖G‖F = supf∈F |Gnf |.

194

5.B.2 Proof of Proposition 5.2

Proof. The optimal solution U for (5.7) is given by the first order optimality condition:

∂h̃(Y ,D,U)

∂U
= U + λ3(UY ⊤ −D⊤)Y = 0,

by which we have

Ũ = D⊤Y

(
1

λ3
In + Y ⊤Y

)−1

= D⊤
(

1

λ3
Id + Y Y ⊤

)−1

Y .

Note that ũi is the ith column of Ũ . So for each i ∈ [n],

ũi = D⊤
(

1

λ3
Id + Y Y ⊤

)−1

yi.

Also, we have

Y Ũ
⊤
= Y Y ⊤

(
1

λ3
Id + Y Y ⊤

)−1

D

=

(
1

λ3
Id + Y Y ⊤ − 1

λ3
Id

)(
1

λ3
Id + Y Y ⊤

)−1

D

= D − 1

λ3

(
1

λ3
Id + Y Y ⊤

)−1

D.

Thus,

h(D;Y) =
1

2

∥∥∥∥∥D
⊤
(

1

λ3
Id + Y Y ⊤

)−1

Y

∥∥∥∥∥

2

F

+
1

2λ3

∥∥∥∥∥

(
1

λ3
Id + Y Y ⊤

)−1

D

∥∥∥∥∥

2

F

.

195

5.B.3 Proof of Proposition 5.3

Proof. Let us consider the optimization problem of solving v and e. As the trivial solution {v′
t,e

′
t} =

{0,0} is feasible, we have

ℓ̃1(Dt−1,v
′
t,e

′
t;zt) = λ2 ‖zt‖1 .

Therefore, the optimal solution should satisfy:

λ1
2
‖zt −Dt−1v

∗
t − e∗t ‖2 +

1

2
‖v∗

t‖2 + λ2 ‖e∗t‖1 ≤ λ2 ‖zt‖1 ,

which implies

1

2
‖v∗

t‖2 ≤ λ2 ‖zt‖1 , λ2 ‖e∗t ‖1 ≤ λ2 ‖zt‖1 .

Since zt is uniformly bounded (Assumption (A1)) and λ2 does not grow with t, v∗
t and e∗t are both

uniformly bounded from above.

To examine the uniform boundedness for 1
tAt and 1

tBt, note that

1

t
At =

1

t

t∑

i=1

v∗
i (v

∗
i)

⊤,

1

t
Bt =

1

t

t∑

i=1

(zi − e∗i) (v
∗
i)

⊤.

Since for each i, v∗
i , e∗i and zi are uniformly bounded from above, 1

tAt and 1
tBt are uniformly

upper bounded.

Now we derive the bound for Dt and M t. We inductively show that both the sequences

{Dt}t≥1 and {M t}t≥1 are uniformly bounded. First, let us denote the upper bound of 1
tBt by

C2, i.e.,

∥∥∥∥
1

t
Bt

∥∥∥∥ ≤ C2, ∀ t ≥ 1. (5.26)

196

Also, Assumption (A2) indicates that there exists an absolute constant C3, such that

∥∥∥∥
1

t
At

∥∥∥∥ ≥ C3, ∀ t ≥ 1. (5.27)

Now suppose that for all 1 ≤ i ≤ t− 1, it holds for some absolute constant C1 > C2/C3 that

‖Di‖ ≤ C1, ‖M i‖ ≤ C1.

Using the closed form solution of u∗
t , we have

M t = M t−1 + yt(u
∗
t)

⊤

= M t−1 + ‖yt‖2
(
‖yt‖2 +

1

λ3

)−1

(Dt−1 −M t−1)

=
‖yt‖2

‖yt‖2 + 1
λ3

Dt−1 +
λ−1
3

‖yt‖2 + 1
λ3

M t−1.

Hence,

‖M t‖ ≤
‖yt‖2

‖yt‖2 + λ−1
3

‖Dt−1‖+
λ−1
3

‖yt‖2 + λ−1
3

‖M t−1‖ ≤ C1.

Now using the closed form solution of Dt, we have

Dt = (λ1Bt + λ3M t)(λ1At + λ3Id)
−1 =

(
λ1
t
Bt +

λ3
t
M t

)(
λ1
t
At +

λ3
t
Id

)−1

.

Combining the above with (5.26) and (5.27) gives us

‖Dt‖ ≤
(
λ1C2 +

λ3
t
C1

)(
λ1C3 +

λ3
t

)−1

=
λ3
λ1C3

C1 − C2/C3

t+ λ3

λ1C3

+
C2

C3
.

It turns out that the maximum of the right hand side is attained at t = 1 due to our earlier choice

C1 > C2/C3. Hence, we have

‖Dt‖ ≤ C1.

197

The induction is complete.

By examining the closed form of u∗
t , and note that we have proved the uniform boundedness of

Dt and M t, we conclude that u∗
t is uniformly upper bounded.

Corollary 5.13. Assume same conditions as in Proposition 5.3. Further suppose that λ1 does not

grow with t. Then, for all t ≥ 1,

1. ℓ̃(Dt,v
∗
t ,e

∗
t ;zt) and ℓ(Dt;zt) are uniformly bounded from above.

2. 1
t h̃(Dt,U

∗
1:t;Y 1:t) is uniformly upper bounded where U∗

1:t = (u∗
1, . . . ,u

∗
t) and Y 1:t =

(y1, . . . ,yt).

3. The surrogate function gt(Dt) defined in (5.19) is uniformly upper bounded and Lipschitz.

Proof. To show Claim 1, we just need to examine the definition of ℓ̃(Dt,v
∗
t ,e

∗
t ;zt) (see Eq. (5.6))

and notice that zt, Dt, v∗
t and e∗t are all uniformly bounded. This implies that ℓ̃(Dt,v

∗
t ,e

∗
t ;zt) is

uniformly bounded and so is ℓ(Dt;zt). Likewise, we prove that 1
t h̃(Dt,U

∗
1:t;Y 1:t) is uniformly

bounded. The uniform boundedness of gt(Dt) follows immediately.

To show that gt(D) is Lipschitz, we show that the gradient of gt(D) is uniformly bounded for

all D ∈ D.

‖∇gt(D)‖F =

∥∥∥∥λ1D
(
1

t
At +

λ3
t
Id

)
− λ1

t
Bt −

λ3
t
M t

∥∥∥∥
F

≤ λ1 ‖D‖F
(∥∥∥∥

1

t
At

∥∥∥∥
F

+

∥∥∥∥
λ3
t
Id

∥∥∥∥
F

)
+ λ1

∥∥∥∥
1

t
Bt

∥∥∥∥
F

+

∥∥∥∥
λ3
t
M t

∥∥∥∥
F

.

Notice that each term on the right hand side of the inequality is uniformly bounded from above and

λ1 does not grow with t. Thus the gradient of gt(D) is uniformly bounded, implying that gt(D) is

Lipschitz.

Proposition 5.14. Let D ∈ D and denote the minimizer of ℓ̃(D,v,e;z) as:

{v′,e′} = argmin
v,e

ℓ̃(D,v,e;z).

198

Then, the function ℓ(D;z) is continuously differentiable and

∇Dℓ(D;z) = (Dv′ + e′ − z)(v′)⊤.

Furthermore, ℓ(D;z) is uniformly Lipschitz.

Proof. By fixing z, the function ℓ̃ can be seen as a mapping:

R
r+d ×D → R

([v; e],D) 7→ ℓ̃(D,v,e;z).

It is easy to show that for all [v; e] ∈ R
r+d, ℓ̃(D,v,e;z) is differentiable with respect to D. Also

ℓ̃(D,v,e;z) is continuous on R
r+d×D and so is its gradient∇

D
ℓ̃(D,v,e;z) = (Dv+e−z)v⊤.

For all D ∈ D, since ℓ̃(D,v,e;z) is strongly convex w.r.t. v and e, it has a unique minimizer

{v′,e′}. Thus Lemma 5.11 applies and we prove that ℓ(D;z) is differentiable in D and

∇Dℓ(D;z) = (Dv′ + e′ − z)(v′)⊤.

Since every term in ∇Dℓ(D;z) is uniformly bounded (Assumption (A1) and Proposition 5.3), we

conclude that the gradient of ℓ(D;z) is uniformly bounded, implying that ℓ(z,D) is uniformly

Lipschitz w.r.t. D.

Corollary 5.15. Let ft(D) be the empirical loss function defined in (5.9). Then ft(D) is uniformly

bounded from above and Lipschitz for all t ≥ 1 and D ∈ D.

Proof. Since ℓ(D;z) can be uniformly bounded (Corollary 5.13), we only need to show that

1
th(D;Y) is uniformly bounded, where Y = (y1,y2, . . . ,yt). Note that we have derived the

form for h(D;Y) in Proposition 5.2:

1

t
h(D;Y) =

1

2t

t∑

i=1

∥∥∥∥∥D
⊤
(

1

λ3
Id + Y Y ⊤

)−1

yi

∥∥∥∥∥

2

+
1

2λ3t

∥∥∥∥∥

(
1

λ3
Id + Y Y ⊤

)−1

D

∥∥∥∥∥

2

F

.

Since every term in the above equation can be uniformly bounded, 1
th(D;Zt) is uniformly bounded

and so is ft(D).

199

To show that ft(D) is uniformly Lipschitz, it amounts to prove that its gradient can be uniformly

bounded from above. Using Proposition 5.14, we have

∇ft(D) =
1

t

t∑

i=1

∇ℓ(D;zi) +
1

t
∇h(D;Zt)

=
1

t

t∑

i=1

(Dv∗
i + e∗i − zi)(v

∗
i)

⊤

+
1

t

t∑

i=1

(
1

λ3
Id + Y Y ⊤

)−1

yiy
⊤
i

(
1

λ3
Id + Y Y ⊤

)−1

D

+
λ3
t

(
1

λ3
Id + Y Y ⊤

)−2

D.

Then the Frobenius norm of ∇ft(D) can be bounded by:

‖∇ft(D)‖F ≤
1

t

t∑

i=1

‖Dv∗
i + e∗i − zi‖ · ‖v∗

i ‖

+
1

t

t∑

i=1

∥∥∥∥∥

(
1

λ3
Id + Y Y ⊤

)−1
∥∥∥∥∥

2

F

· ‖yi‖2 · ‖D‖F

+
λ3
t

∥∥∥∥∥

(
1

λ3
Id + Y Y ⊤

)−1
∥∥∥∥∥

2

F

· ‖D‖F .

One can easily check that the right hand side of the inequality is uniformly bounded from above.

Thus ‖∇ft(D)‖F is uniformly bounded, implying that ft(D) is uniformly Lipschitz.

5.B.4 Proof of P-Donsker

Proposition 5.16. Let f̃t(D) = 1
t

∑t
i=1 ℓ(D;zi). Then we have

E[
√
t
∥∥∥f̃t − Ez[ℓ(D;z)]

∥∥∥
∞
] = O (1) .

Proof. Let us consider {ℓ(D;z)} as a set of measurable functions indexed by D ∈ D. As we

showed in Proposition 5.3, D is a compact set. Also, we have proved that ℓ(D;z) is uniformly Lip-

schitz over D (Proposition 5.14). Thus, {ℓ(D;z)} is P-Donsker (see the definition in Lemma 5.12).

Furthermore, as ℓ(D;z) is non-negative and its magnitude is uniformly upper bounded (Corol-

lary 5.13), so is ℓ2(D;z). Hence we have Ez[ℓ
2(D;z)] ≤ c for some absolute constant c. Note

200

that we have verified all the hypotheses in Lemma 5.12. Hence the proof is complete.

5.B.5 Proof of Theorem 5.5

Proof. Note that gt(Dt) can be viewed as a stochastic positive process since every term in gt(Dt)

is non-negative and the samples are drawn randomly. We define for all t ≥ 1

ψt := gt(Dt).

To show the convergence of ψt, we need to bound the difference of ψt+1 and ψt:

ψt+1 − ψt = gt+1(Dt+1)− gt(Dt)

= gt+1(Dt+1)− gt+1(Dt) + gt+1(Dt)− gt(Dt)

= gt+1(Dt+1)− gt+1(Dt) +
1

t+ 1
ℓ(zt+1,Dt)−

1

t+ 1
g̃t(Dt)

+

[
1

t+ 1

t+1∑

i=1

1

2
‖u∗

i ‖2 +
λ3

2(t+ 1)
‖Dt −M t+1‖2F

− 1

t

t∑

i=1

1

2
‖u∗

i ‖2 −
λ3
2t
‖Dt −M t‖2F

]

= gt+1(Dt+1)− gt+1(Dt) +
f̃t(Dt)− g̃t(Dt)

t+ 1
+
ℓ(zt+1,Dt)− f̃t(Dt)

t+ 1

+

[
1

t+ 1

t+1∑

i=1

1

2
‖u∗

i ‖2 +
λ3

2(t+ 1)
‖Dt −M t+1‖2F

− 1

t

t∑

i=1

1

2
‖u∗

i ‖2 −
λ3
2t
‖Dt −M t‖2F

]
. (5.28)

Here,

g̃t(Dt) =
1

t

t∑

i=1

ℓ̃(D,vi,ei;zi),

and

f̃t(Dt) =
1

t

t∑

i=1

ℓ(Dt;zi).

201

First, we bound the four terms in the brackets of (5.28). We have

1

t+ 1

t+1∑

i=1

1

2
‖u∗

i ‖2 −
1

t

t∑

i=1

‖u∗
i ‖2 =

−1
t(t+ 1)

t∑

i=1

1

2
‖u∗

i ‖2 +
1

2(t+ 1)

∥∥u∗
t+1

∥∥2

≤ 1

2(t+ 1)

∥∥u∗
t+1

∥∥2 , (5.29)

and

λ3
2(t+ 1)

‖Dt −M t+1‖2F −
λ3
2t
‖Dt −M t‖2F

=
−λ3

2t(t+ 1)
‖Dt −M t‖2F +

λ3
2(t+ 1)

∥∥∥zt+1(u
∗
t+1)

⊤
∥∥∥
2

F

− λ3
t+ 1

Tr
(
(Dt −M t)

⊤zt+1(u
∗
t+1)

⊤
)

=
−λ3

2t(t+ 1)
‖Dt −M t‖2F +

λ3
2(t+ 1)

∥∥∥zt+1(u
∗
t+1)

⊤
∥∥∥
2

F

− λ3
t+ 1

(
‖zt+1‖2 +

1

λ3

)∥∥u∗
t+1

∥∥2

≤ 1

t+ 1

(
λ3
2

∥∥∥zt+1(u
∗
t+1)

⊤
∥∥∥
2

F
− (λ3 ‖zt+1‖2 + 1)

∥∥u∗
t+1

∥∥2
)

≤ 1

t+ 1

(
−λ3

2
‖zt+1‖2

∥∥u∗
t+1

∥∥2 −
∥∥u∗

t+1

∥∥2
)
, (5.30)

where the first equality is derived by the fact that M t+1 = M t + zt+1(u
∗
t+1)

⊤, and the second

equality is derived by the closed form solution of u∗
t+1 (see (5.18)).

Combining (5.29) and (5.30), we know that

1

t+ 1

t+1∑

i=1

1

2
‖u∗

i ‖2 −
1

t

t∑

i=1

‖u∗
i ‖2

+
λ3

2(t+ 1)
‖Dt −M t+1‖2F −

λ3
2t
‖Dt −M t‖2F

≤ 1

2(t+ 1)

∥∥u∗
t+1

∥∥2 + 1

t+ 1

(
− λ3

2
‖zt+1‖2

∥∥u∗
t+1

∥∥2 −
∥∥u∗

t+1

∥∥2
)

=
1

t+ 1

(
−λ3

2
‖zt+1‖2

∥∥u∗
t+1

∥∥2 − 1

2

∥∥u∗
t+1

∥∥2
)
≤ 0.

202

Therefore,

ψt+1 − ψt ≤ gt+1(Dt+1)− gt+1(Dt) +
1

t+ 1
ℓ(zt+1,Dt)−

1

t+ 1
g̃t(Dt)

= gt+1(Dt+1)− gt+1(Dt) +
f̃t(Dt)− g̃t(Dt)

t+ 1
+
ℓ(zt+1,Dt)− f̃t(Dt)

t+ 1

≤ ℓ(zt+1,Dt)− f̃t(Dt)

t+ 1
,

where the last inequality holds because Dt+1 is the minimizer of gt+1(D) and g̃t(D) is a surrogate

function of f̃t(D).

Let Ft be the filtration of the past information. We take the expectation on the above equation

conditional on Ft:

E[ψt+1 − ψt | Ft] ≤
E[ℓ(zt+1,Dt) | Ft]− f̃t(Dt)

t+ 1

≤ f(Dt)− f̃t(Dt)

t+ 1

≤

∥∥∥f − f̃t
∥∥∥
∞

t+ 1
.

From Proposition 5.16, we know

E

[∥∥∥f − f̃t
∥∥∥
∞

]
= O

(
1√
t

)
.

Thus,

E
[
E[ψt+1 − ψt | Ft]

+
]
= E

[
max{E[ψt+1 − ψt | Ft], 0}

]
≤ c√

t(t+ 1)
, (5.31)

where c is some constant.

Now let us define the index set

T =
{
t : t ≥ 1,E

[
ψt+1 − ψt | Ft

]
> 0
}
,

203

and the indicator function

δt =





1, if t ∈ T ,

0, otherwise.

It follows that

∞∑

t=1

E[δt(ψt+1 − ψt)] =
∑

t∈T
E[ψt+1 − ψt]

=
∑

t∈T
E[E[ψt+1 − ψt | Ft]]

=
∞∑

t=1

E[E[ψt+1 − ψt | Ft]
+]

≤+∞,

where the last inequality holds in view of (5.31).

Thus, Lemma 5.4 applies. That is, {gt(Dt)}t≥1 is a quasi-martingale and converges almost

surely. In addition,
∞∑

t=1

∣∣E
[
ψt+1 − ψt | Ft

]∣∣ < +∞, a.s.

5.B.6 Proof of Proposition 5.9

Proof. According the strong convexity of gt(D) (Assumption (A2)), we have,

gt(Dt+1)− gt(Dt) ≥
β0
2
‖Dt+1 −Dt‖2F , (5.32)

On the other hand,

gt(Dt+1)− gt(Dt) = gt(Dt+1)− gt+1(Dt+1) + gt+1(Dt+1)− gt+1(Dt)

+ gt+1(Dt)− gt(Dt)

≤ gt(Dt+1)− gt+1(Dt+1) + gt+1(Dt)− gt(Dt). (5.33)

204

Note that the inequality is derived by the fact that gt+1(Dt+1) − gt+1(Dt) ≤ 0, as Dt+1 is the

minimizer of gt+1(D). Let

Gt(D) = gt(D)− gt+1(D). (5.34)

By a simple calculation, we obtain the gradient of Gt(D):

∇Gt(D) =∇gt(D)−∇gt+1(D)

=
1

t

[
D (λ1At + λ3Id)− (λ1Bt + λ3M t)

]

− 1

t+ 1

[
D(λ1At+1 + λ3Id)− (λ1Bt+1 + λ3M t+1)

]

=
1

t

[
D

(
λ1At + λ3Id −

λ1t

t+ 1
At+1 −

λ3t

t+ 1
Id

)

+
λ1t

t+ 1
Bt+1 − λ1Bt +

λ3t

t+ 1
M t+1 − λ3M t

]

=
1

t

[
D

(
λ1
t+ 1

At+1 − λ1vt+1v
⊤
t+1 +

λ3
t+ 1

Id

)

+ λ1(zt+1 − et+1)v
⊤
t+1 −

λ1
t+ 1

Bt+1 + λ3zt+1u
⊤
t+1 −

λ3
t+ 1

M t+1

]

So the upper bound of the Frobenius norm of ∇Gt(D) follows immediately:

‖∇Gt(D)‖F

≤ 1

t

[
‖D‖F

(
λ1

∥∥∥∥
At+1

t+ 1

∥∥∥∥
F

+ λ1

∥∥∥vt+1v
⊤
t+1

∥∥∥
F
+

λ3
t+ 1

‖Id‖F

)

+ λ1

∥∥∥(zt+1 − et+1)v
⊤
t+1

∥∥∥
F
+ λ1

∥∥∥∥
Bt+1

t+ 1

∥∥∥∥
F

+ λ3

∥∥∥zt+1u
⊤
t+1

∥∥∥
F
+

λ3
t+ 1

‖M t+1‖F

]

=
1

t

[
‖D‖F

(
λ1

∥∥∥∥
At+1

t+ 1

∥∥∥∥
F

+ λ1

∥∥∥vt+1v
⊤
t+1

∥∥∥
F

)
+ λ1

∥∥∥(zt+1 − et+1)v
⊤
t+1

∥∥∥
F

+ λ1

∥∥∥∥
Bt+1

t+ 1

∥∥∥∥
F

+ λ3

∥∥∥zt+1u
⊤
t+1

∥∥∥
F

]
+

λ3
t(t+ 1)

[
‖Id‖F + ‖M t+1‖F

]
.

205

We know from Proposition 5.3 that all the terms in the above equation are uniformly bounded from

above. Thus, there exist constants c1, c2 and c3, such that

‖∇Gt(D)‖F ≤
1

t
(c1 ‖D‖F + c2) +

c3
t
. (5.35)

According to the first order Taylor expansion,

Gt(Dt+1)−Gt(Dt)

= Tr
(
(Dt+1 −Dt)

⊤∇Gt (ρDt + (1− ρ)Dt+1)
)

≤ ‖Dt+1 −Dt‖F · ‖∇Gt (ρDt + (1− ρ)Dt+1)‖F ,

where ρ is some scalar between 0 and 1. According to Proposition 5.3, Dt and Dt+1 are uniformly

bounded, indicating that ρDt + (1− ρ)Dt+1 is uniformly bounded. In view of (5.35), there exists

a constant c4, such that

‖∇Gt (αDt + (1− α)Dt+1)‖F ≤
c4
t
,

resulting in

Gt(Dt+1)−Gt(Dt) ≤
c4
t
· ‖Dt+1 −Dt‖F .

Combining (5.32), (5.33) and the above equation, we have

‖Dt+1 −Dt‖F =
2c4
β0t

.

206

5.B.7 Proof of Theorem 5.6

Proof. Recall that f̃t(D) = 1
t

∑t
i=1 ℓ(D;zi) and g̃t(D) = 1

t

∑t
i=1 ℓ̃(D,v∗

i ,e
∗
i ;zi). Define

bt := gt(Dt)− ft(Dt)

= g̃t(Dt)− f̃t(Dt) +

[
1

t

t∑

i=1

1

2
‖u∗

i ‖2 +
λ3
2t
‖Dt −M t‖2F

− 1

t

t∑

i=1

1

2

∥∥∥∥∥D
⊤
t

(
1

λ3
Id + Y Y ⊤

)−1

zi

∥∥∥∥∥

2

− 1

2λ3

∥∥∥∥∥

(
1

λ3
Id + Y Y ⊤

)−1

Dt

∥∥∥∥∥

2

F

]

= g̃t(Dt)− f̃t(Dt) + qt(Dt),

where qt(Dt) denotes the four terms in the brackets. Using (5.28), we have

bt
t+ 1

=
g̃t(Dt)− f̃t(Dt)

t+ 1
+
qt(Dt)

t+ 1

= gt+1(Dt+1)− gt+1(Dt) +
ℓ(Dt;zt+1)− f̃t(Dt)

t+ 1
+ ψt − ψt+1

+

[
qt(Dt)

t+ 1
+

1

t+ 1

t+1∑

i=1

1

2
‖u∗

i ‖2 +
λ3

2(t+ 1)
‖Dt −M t+1‖2F

− 1

t

t∑

i=1

1

2
‖u∗

i ‖2 −
λ3
2t
‖Dt −M t‖2F

]
.

Note that it always holds that for some constant c,

qt(Dt)

t+ 1
≤ 1

t(t+ 1)

t∑

i=1

1

2
‖u∗

i ‖2 +
λ3

2t(t+ 1)
‖Dt −M t‖2F

≤ 1

t(t+ 1)

t∑

i=1

1

2
‖u∗

i ‖2 +
c

2t(t+ 1)
,

where the second inequality is due to the fact that Dt and M t are both uniformly bounded (see

Proposition 5.3).

On the other hand, from (5.29) we know that

1

t+ 1

t+1∑

i=1

1

2
‖u∗

i ‖2 −
1

t

t∑

i=1

‖u∗
i ‖2 =

−1
t(t+ 1)

t∑

i=1

1

2
‖u∗

i ‖2 +
1

2(t+ 1)

∥∥u∗
t+1

∥∥2 ,

207

while (5.30) implies

λ3
2(t+ 1)

‖Dt −M t+1‖2F −
λ3
2t
‖Dt −M t‖2F ≤

1

t+ 1

(
−λ3

2
‖zt+1‖2

∥∥u∗
t+1

∥∥2 −
∥∥u∗

t+1

∥∥2
)
.

Combining these pieces, we have

qt(Dt)

t+ 1
+

1

t+ 1

t+1∑

i=1

1

2
‖u∗

i ‖2 +
λ3

2(t+ 1)
‖Dt −M t+1‖2F

− 1

t

t∑

i=1

1

2
‖u∗

i ‖2 −
λ3
2t
‖Dt −M t‖2F

≤ c

2t(t+ 1)
+

1

2(t+ 1)

∥∥u∗
t+1

∥∥2 + 1

t+ 1

(
−λ3

2
‖zt+1‖2

∥∥u∗
t+1

∥∥2 −
∥∥u∗

t+1

∥∥2
)

=
c

2t(t+ 1)
− 1

2(t+ 1)

∥∥u∗
t+1

∥∥2 − λ3
2(t+ 1)

‖zt+1‖2
∥∥u∗

t+1

∥∥2

≤ c

2t(t+ 1)
.

Therefore,

bt
t+ 1

≤ gt+1(Dt+1)− gt+1(Dt) +
ℓ(Dt;zt+1)− f̃t(Dt)

t+ 1

+ ψt − ψt+1 +
c

2t(t+ 1)

≤ ℓ(Dt;zt+1)− f̃t(Dt)

t+ 1
+ ψt − ψt+1 +

c

2t(t+ 1)
,

where we use the fact that Dt+1 minimizes gt+1(D) in the second inequality and we denote ψt =

gt(Dt). By taking the expectation over z conditional on the past filtration Ft, we have

bt
t+ 1

≤ c1√
t(t+ 1)

+ |E[ψt − ψt+1 | Ft]|+
c

2t(t+ 1)
,

which is an immediate result from Proposition 5.16. Thereby,

∞∑

t=1

bt
t+ 1

≤
∞∑

t=1

c1√
t(t+ 1)

+
∞∑

t=1

|E[ψt − ψt+1 | Ft]|+
∞∑

t=1

c

2t(t+ 1)
< +∞.

Here, the last inequality is derived by applying (5.24).

208

Next, we examine the difference between bt+1 and bt:

|bt+1 − bt| = |gt+1(Dt+1)− ft+1(Dt+1)− gt(Dt) + ft(Dt)|

≤ |gt+1(Dt+1)− gt(Dt+1)|+ |gt(Dt+1)− gt(Dt)|

+ |ft+1(Dt+1)− ft(Dt+1)|+ |ft(Dt+1)− ft(Dt)| . (5.36)

For the first term on the right hand side, we have

|gt+1(Dt+1)− gt(Dt+1)|

=
∣∣∣g̃t+1(Dt+1)− g̃t(Dt+1) +

1

t+ 1

t+1∑

i=1

1

2
‖u∗

i ‖2 −
1

t

t∑

i=1

1

2
‖u∗

i ‖2

+
λ3

2(t+ 1)
‖Dt+1 −M t+1‖2F −

λ3
2t
‖Dt+1 −M t‖2F

∣∣∣

=
∣∣∣g̃t+1(Dt+1)− g̃t(Dt+1)−

1

t(t+ 1)

t∑

i=1

1

2
‖u∗

i ‖2 −
1

2(t+ 1)

∥∥u∗
t+1

∥∥2

− λ3
2t(t+ 1)

‖Dt+1 −M t‖2F −
λ3

2(t+ 1)

∥∥∥zt+1(u
∗
t+1)

⊤
∥∥∥
2

F

∣∣∣

≤ |g̃t+1(Dt+1)− g̃t(Dt+1)|+
1

t(t+ 1)

t∑

i=1

1

2
‖u∗

i ‖2 +
1

2(t+ 1)

∥∥u∗
t+1

∥∥2

+
λ3

2t(t+ 1)
‖Dt+1 −M t‖2F +

λ3
2(t+ 1)

∥∥∥zt+1(u
∗
t+1)

⊤
∥∥∥
2

F

ζ1
≤ |g̃t+1(Dt+1)− g̃t(Dt+1)|+

c1
t+ 1

=

∣∣∣∣
1

t+ 1
ℓ(Dt+1;zt+1)−

1

t+ 1
g̃t(Dt+1)

∣∣∣∣+
c1
t+ 1

ζ2
≤ c2
t+ 1

,

where c1 and c2 are some uniform constants. Note that ζ1 holds because all the u∗
t , Dt+1, M t

and zt+1 are uniformly bounded (see Proposition 5.3), and ζ2 holds because ℓ(zt+1,Dt+1) and

g̃t(Dt+1) are uniformly bounded (see Corollary 5.13).

209

For the third term on the right hand side of (5.36), we can similarly show that

|ft+1(Dt+1)− ft(Dt+1)| ≤
∣∣∣f̃t+1(Dt+1)− f̃t(Dt+1)

∣∣∣+ c3
t+ 1

=

∣∣∣∣
1

t+ 1
ℓ(Dt+1;zt+1)−

1

t+ 1
f̃t(Dt+1)

∣∣∣∣+
c3
t+ 1

ζ3
≤ c4
t+ 1

,

where c3 and c4 are some uniform constants, and ζ3 holds as ℓ(Dt+1;zt+1) and f̃t(Dt+1) are both

uniformly bounded (see Corollary 5.15).

Using Corollary 5.13 and Corollary 5.15, we know that both gt(D) and ft(D) are uniformly

Lipschitz. That is, there exist uniform constants κ1, κ2, such that

|gt(Dt+1)− gt(Dt)| ≤ κ1 ‖Dt+1 −Dt‖F
ζ4
≤ κ3
t+ 1

,

|ft(Dt+1)− ft(Dt)| ≤ κ2 ‖Dt+1 −Dt‖F
ζ5
≤ κ4
t+ 1

.

Here, ζ4 and ζ5 are derived by applying Proposition 5.9 and κ3 and κ4 are some uniform constants.

Finally, we have a bound for (5.36):

|bt+1 − bt| ≤
κ0
t+ 1

,

where κ0 is some uniform constant.

By applying Lemma 5.8, we conclude that {bt}t≥1 converges to zero. That is,

lim
t→+∞

gt(Dt)− ft(Dt) = 0.

Since we have proved in Theorem 5.5 that gt(Dt) converges almost surely, we conclude that ft(Dt)

converges almost surely to the same limit of gt(Dt).

5.B.8 Proof of Theorem 5.10

We need a technical result to prove Theorem 5.10.

Proposition 5.17. Let f(D) be the expected loss function which is defined in (5.13). Then, f(D)

210

is continuously differentiable and ∇f(D) = Ez[∇Dℓ(D;z)]. Moreover, ∇f(D) is uniformly

Lipschitz on D.

Proof. We have shown in Proposition 5.14 that ℓ(D;z) is continuously differentiable, f(D) is also

continuously differentiable and we have ∇f(D) = Ez[∇Dℓ(D;z)].

Next, we prove the Lipschitz of ∇f(D). Let v′(D′;z′) and e′(D′;z′) be the minimizer of

ℓ̃(D′,v,e;z′). Since ℓ̃(D,v,e;z) has a unique minimum and is continuous in D, v, e and z,

v′(D′;z′) and e′(D′;z′) is continuous in D and z.

Let Λ = {j | e′j 6= 0}. According the first order optimality condition, we know that

∂ℓ̃(D,v,e;z)

∂e
= 0,

which implies

λ1(z
′ −D′v′ − e′) ∈ λ2∂

∥∥e′
∥∥
1
.

Hence,

∣∣(z′ −D′v′ − e′)j
∣∣ = λ2

λ1
, ∀j ∈ Λ.

Since z−Dv− e is continuous in z and D, there exists an open neighborhood V , such that for all

(z′′,D′′) ∈ V , if j /∈ Λ, then |(z′′ −D′′v′′ − e′′)j | < λ2

λ1
and e′′j = 0. That is, the support set of e′

will not change.

Let us denote H = [D Id], r = [v⊤ e⊤]⊤ and define the function

ℓ̃(HΛ, rΛ;z) =
λ1
2
‖z −HΛrΛ‖2 +

1

2
‖[Id 0]rΛ‖2 + λ2

∥∥[0 I |Λ|]rΛ
∥∥
1
.

Above, rΛ = [v⊤ e⊤Λ]
⊤, and accordingly for HΛ. Since ℓ̃(DΛ, rΛ;z) is strongly convex with

respect to rΛ, there exists a uniform constant κ1, such that for all r′′Λ,

ℓ̃(H ′
Λ, r

′′
Λ;z

′)− ℓ̃(H ′
Λ, r

′
Λ;z

′) ≥ κ1
∥∥r′′Λ − r′Λ

∥∥2 = κ1

(∥∥v′′ − v′∥∥2 +
∥∥e′′Λ − e′Λ

∥∥2
)
. (5.37)

211

On the other hand,

ℓ̃(H ′
Λ, r

′′
Λ;z

′)− ℓ̃(H ′
Λ, r

′
Λ;z

′)

= ℓ̃(H ′
Λ, r

′′
Λ;z

′)− ℓ̃(H ′′
Λ, r

′′
Λ;z

′′) + ℓ̃(H ′′
Λ, r

′′
Λ;z

′′)− ℓ̃(D′
Λ, r

′
Λ;z

′)

≤ ℓ̃(H ′
Λ, r

′′
Λ;z

′)− ℓ̃(H ′′
Λ, r

′′
Λ;z

′′) + ℓ̃(H ′′
Λ, r

′
Λ;z

′′)− ℓ̃(H ′
Λ, r

′
Λ;z

′), (5.38)

where the last inequality holds because r′′ is the minimizer of ℓ̃(H ′′, r;z′′).

We shall prove that ℓ̃(H ′
Λ, rΛ;z

′) − ℓ̃(H ′′
Λ, rΛ;z

′′) is Lipschitz w.r.t. r, which implies the

Lipschitz of v′(D;z) and e′(D;z). By algebra, we have

∇r

(
ℓ̃(H ′

Λ, rΛ;z
′)− ℓ̃(H ′′

Λ, rΛ;z
′′)
)
= λ1

[
H ′⊤

Λ (H ′
Λ −H ′′

Λ) + (H ′
Λ −H ′′

Λ)
⊤H ′′

Λ

+H ′⊤
Λ (z′′ − z′) + (H ′′

Λ −H ′
Λ)

⊤z′′
]
.

Note that ‖H ′
Λ‖F , ‖H ′′

Λ‖F and z′′ are all uniformly bounded by Assumption (A1) and Proposi-

tion 5.3. Hence, there exists uniform constants c1 and c2, such that

∥∥∥∇r

(
ℓ̃(z′,H ′

Λ, rΛ)− ℓ̃(z′′,H ′′
Λ, rΛ)

)∥∥∥ ≤ c1
∥∥H ′

Λ −H ′′
Λ

∥∥
F
+ c2

∥∥z′ − z′′∥∥ ,

which implies that ℓ̃(H ′
Λ, rΛ;z

′)− ℓ̃(H ′′
Λ, rΛ;z

′′) is Lipschitz w.r.t rΛ where the Lipschitz coeffi-

cient c(H ′
Λ,H

′′
Λ,z

′,z′′) = c1 ‖H ′
Λ −H ′′

Λ‖F + c2 ‖z′ − z′′‖. Combining this fact with (5.37) and

(5.38), we obtain

κ1
∥∥r′′Λ − r′Λ

∥∥2 ≤ c(H ′
Λ,H

′′
Λ,z

′,z′′)
∥∥r′′Λ − r′Λ

∥∥ .

Therefore, r(D;z) is Lipschitz and so are v(D;z) and e(D;z). Note that according to Proposi-

tion 5.14,

∇f(D′)−∇f(D′′) = Ez

[
(H ′r′ − z)(v′)⊤ − (H ′′r′′ − z)(v′′)⊤

]

=Ez

[
H ′r′(v′ − v′′)⊤ + (H ′ −H ′′)r′(v′′)⊤

+H ′′(r′ − r′′)(v′′)⊤ + z(v′′ − v′)⊤
]
.

212

Thus,

∥∥∇f(D′)−∇f(D′′)
∥∥
F

ζ1
≤ Ez

[∥∥H ′r′
∥∥∥∥v′ − v′′∥∥+

∥∥H ′ −H ′′∥∥
F

∥∥∥r′v′′⊤
∥∥∥
F

+
∥∥H ′′∥∥

F

∥∥r′ − r′′
∥∥ ∥∥v′′∥∥+ ‖z‖

∥∥v′ − v′′∥∥
]

ζ2
≤ Ez

[
(γ1 + γ2 ‖z‖)

∥∥H ′ −H ′′∥∥
F

]

ζ3
≤ γ0

∥∥D′ −D′′∥∥
F
,

where γ0, γ1 and γ2 are all uniform constants. Here, ζ1 holds due to the convexity of ‖·‖F . ζ2 is

derived by using the result that r(H ;z) and v(H ;z) are both Lipschitz and H ′, H ′′, r′, r′′, v′

and v′′ are all uniformly bounded. ζ3 holds because z is uniformly bounded and ‖H ′ −H ′′‖F =

‖D′ −D′′‖F . Thus, we complete the proof.

Proof. (Proof of Theorem 5.10) Since 1
tAt and 1

tBt are uniformly bounded (Proposition 5.3), there

exist sub-sequences of {1tAt} and {1tBt} that converge to A∞ and B∞ respectively. Then Dt will

converge to D∞. Let W be an arbitrary matrix in R
d×r and {hk}k≥1 be any positive sequence that

converges to zero.

As gt(D) is a surrogate function of ft(D), for all t and k, we have

gt(Dt + hkW) ≥ ft(Dt + hkW).

Let t tend to infinity, and note that f(D) = limt→∞ ft(D), we have

g∞(D∞ + hkW) ≥ f(D∞ + hkW).

Note that the Lipschitz property of∇f(D) indicates that the second derivative of f(D) is uniformly

bounded. By a simple calculation, we can also show that it also holds for gt(D). This fact implies

that we can take the first order Taylor expansion for both gt(D) and f(D) even when t tends to

213

infinity (because the second order derivatives of them always exist). That is,

Tr
(
hkW

⊤∇g∞(D∞)
)
+ o(hk ‖W ‖F) ≥ Tr

(
hkW

⊤∇f(D∞)
)
+ o(hk ‖W ‖F).

Above, we use the fact that limt→∞ gt(Dt) − f(Dt) = 0 as implied by Corollary 5.7. By multi-

plying 1
hk‖W ‖F

on both sides and note that {hk}k≥1 is a positive sequence, it follows that

Tr

(
1

‖W ‖F
W⊤∇g∞(D∞)

)
+
o(hk ‖W ‖F)
hk ‖W ‖F

≥ Tr

(
1

‖W ‖F
W⊤∇f(D∞)

)
+
o(hk ‖W ‖F)
hk ‖W ‖F

.

Now let k go to infinity, we obtain

Tr

(
1

‖W ‖F
W⊤∇g∞(D∞)

)
≥ Tr

(
1

‖W ‖F
W⊤∇f(D∞)

)
.

Note that this inequality holds for any matrix W ∈ R
d×r, so we actually have

∇g∞(D∞) = ∇f(D∞).

As D∞ is the minimizer of g∞(D), we have

∇f(D∞) = ∇g∞(D∞) = 0.

The proof is complete.

214

Chapter 6

Estimation from Quantized Data

6.1 Background

Many practical problems can be formulated in principle as recovering an incomplete matrix from

a small portion of its components, known as matrix completion. For instance, in the Netflix Prize

competition, the underlying matrix consists of movie ratings from a variety of users, and the task

is to predict the taste of the users for their unrated movies (i.e., missing entries). This problem

has been studied for a decade, and the matrix factorization framework was proposed as an early

answer [138]. In the seminal work [36], it was shown that if the singular vectors of the matrix to

be recovered are dense enough and the observed entries are sampled uniformly random, then with

high probability, a simple nuclear-norm based minimization program guarantees exact recovery.

Inspired by the elegant work of [36], a plethora of theoretical results exist that study the problem

from different aspects. A partial list of the follow-up work includes: improving the sample com-

plexity (i.e., parameter dependence) [38, 80, 66, 42], addressing structured noise [35, 81, 84, 44],

developing fast provable algorithms [72, 77], mitigating memory cost [133, 11], to name just a few.

Orthogonal to these work where the observed entries are real-valued, [47] considered the problem

in the 1-bit setup. That is, given a target low-rank matrix which is real-valued, one only sees some

sign patterns (+1 or −1) determined by the true matrix. The goal, however, is still to recover the

real-valued matrix by using as few samples as possible.

The 1-bit setting is of broad interest for the machine learning community. From the theoretical

perspective, it immediately raises the challenge that a straightforward observation model makes the

215

problem ill-posed. Suppose that the binary patterns are obtained by taking the sign of the entries of

the true matrix. Then even for a rank-one matrix M = uv⊤ where u and v are column vectors,

one can freely modify the magnitude of the elements of u and v without changing the sign patterns

of M . The second issue coming up with the 1-bit setting is a tractable recovery paradigm. Since

the sign function is not convex, one cannot tailor the nuclear-norm based convex program [36] to

this case. Another concern is the loss of estimation accuracy owing to quantization, and a precise

characterization of the trade-off between bits and sample size. Related to the sign patterns, it is also

interesting to ask if there is a provable algorithm that is tolerant to noise.

In [47], they answered the first two questions by showing that, a nuclear-norm constrained con-

vex program guarantees exact recovery from binary measurements if the observations are generated

from a distribution parameterized by the true matrix. [15] derived the statistical error rate of multi-

bit quantization which gives a partial answer to the third question. We in this chapter tackle the

question of robustness: (a) can we exactly recover the matrix in polynomial time if the observations

are flipped with some probability close to 1/2; (b) if yes, how many samples suffice and is this

sample complexity optimal.

Our motivation is two-fold. For practitioners, realistic data are usually discrete. For instance,

the data matrix of the social network that represents whether two individuals are friends or not is

binary. Sometimes the data are intended to be quantized, due to memory or communication limit.

Additionally, it is easier to get quantized/binary feedback data from users as opposed to real-valued

data. For instance, Netflix recently changed its rating system that only requires the user to say a

“thumbs up” or “thumbs down”. The system then has to process this feedback and predict a real

value (a percentage value that the user will like a new movie) for the missing entry. On the other

hand, there is a large body of work studying the robustness of original matrix completion while little

is known for the 1-bit case. In the 1-bit setting, the sign flipping noise is no longer additive which

poses specific challenges for theoretical analysis.

6.1.1 Contributions

We offer a positive answer to the noisy 1-bit matrix completion problem. In particular, we consider

the following noise model: for each binary observation, it is flipped with probability τ ∈ [0, 1/2)

where τ itself is a random variable. We assume that we have the knowledge of the distribution of τ in

216

order to construct an estimator. Yet, surprisingly we show that τ affects the estimation only through

its mean. Formally, we prove that for any rank-r matrix M ∈ R
d1×d2 that satisfies mild conditions,

a nuclear-norm constrained maximum likelihood estimator exactly recovers M , in the sense that the

estimation error vanishes when the sample size is O
(
poly (1− 2E[τ])−2 r(d1 + d2) log(d1d2)

)
.

We also establish a lower bound on the statistical error, showing that the sample complexity we

obtained is near-optimal in some regimes.

6.1.2 Related Work

Matrix completion is closely related to compressed sensing [50] where the goal is to recover a

sparse vector from its compressed linear measurements. It is now well-understood that if the sens-

ing matrix satisfies the restricted isometry property [37], then either convex programs like basis

pursuit [41] and Lasso [140, 146] or greedy algorithms like orthogonal matching pursuit [115, 142]

or iterative hard thresholding [20] can be used for sparse recovery. Encouraged by the success of

compressed sensing, a large body of work was devoted to the nuclear-norm based convex optimiza-

tion for low-rank matrix recovery, in view of the analogy between the ℓ1 norm and the nuclear

norm [58, 120, 40]. However, the essential difference is that the sampling operator in compressed

sensing is Gaussian, while for matrix completion it is a deterministic zero-one matrix eie
⊤
j , where

ei is the ith canonical basis and likewise for ej . In this light, theoretical results in compressed

sensing cannot be transferred to the matrix completion problem directly [117].

In compressed sensing, the 1-bit setting has received a broad attention due to [25]. There is a

variety of appealing work contributed to this emerging field [67, 70, 65], while recently [116] gave

an optimal sample complexity that ensures exact recovery of the direction of the signal. It is very

interesting to contrast such a result to the matrix completion problem, where we recall that in the

matrix case, even the direction (i.e., uv⊤/(‖u‖ · ‖v‖)) cannot be recovered from the knowledge of

sign
(
uv⊤). This again suggests discrepancy between compressed sensing and matrix completion.

Very recently, the statistical trade-off between the sample size and bit depth of compressed sensing

was investigated in [135], and a guaranteed estimator of the magnitude of the signal was proposed

in [83]. The trade-off of quantized matrix completion was also tackled in [15], but a full picture is

still missing.

Of specific interest to 1-bit setting is the sign flipping noise. Such a kind of noise has been widely

217

studied in the learning theory community for more than a decade [100, 7, 156], in the context of

learning halfspaces and binary classification. However, the target vector therein is a general object,

i.e., without the sparsity structure. A unified analysis was presented recently in [6], showing possible

improvement on noisy 1-bit compressed sensing using tools from learning theory.

Despite these promising results in 1-bit compressed sensing and learning theory, it turns out

that the robustness of 1-bit matrix completion is not well-understood until now. Though these

two problems are inherently linked, it has been recognized that extra efforts have to be made in

the matrix case. In this work, we take a step to study symmetric noise, where the noise has the

same distribution over the observed entries. This is a popular noise model that was also considered

in [116] in the context of 1-bit compressed sensing.

6.1.3 Notation

Suppose d1 and d2 are two positive integers. We write [d1]× [d2] for the index set
{
(i, j) : 1 ≤ i ≤

d1, 1 ≤ j ≤ d2
}

. For a finite set Ω, we slightly abuse the notation to denote its cardinality by |Ω|.

Throughout the chapter, f and g are reserved for particular functions. Hence, f ′ and g′ should be

interpreted as the derivative evaluated at some point. Finally, the sign function sign (x) outputs +1

if x ≥ 0 and outputs −1 otherwise. For a matrixX, sign (X) operates in an entry-wise manner. The

indicator function is denoted by 1{E}, which equals one if the event E is true and zero otherwise.

6.2 Problem Setup

In this section, we formulate the problem. Recall that M ∈ R
d1×d2 is the underlying low-rank

matrix that we aim to recover, and Ω ⊂ [d1]×[d2] is a subset that indexing the observed components.

In conventional matrix completion [36], one observes mij for (i, j) ∈ Ω. Though it seems natural

to consider the 1-bit matrix completion problem as a recovery from sign (MΩ), Davenport et al.

pointed out that it is not possible even when the matrix M has rank one [47]. The good news is that

if we add noise (e.g., Gaussian, logistic) before quantization, it is tractable to solve the problem.

Formally, the observation model considered in [47] is as follows: for all (i, j) ∈ Ω, we observe

yij = sign (mij + zij) , (6.1)

218

where {zij} are i.i.d. random noise. With a proper choice of a differentiable function f : R→ [0, 1],

the above is equivalent to the following probabilistic model:

yij =





+1, with probability f(mij),

−1, with probability 1− f(mij).

(6.2)

In fact, we can set f(x) = Pr(z11 + x ≥ 0) for which the model (6.1) reduces to the model (6.2).

Conversely, given the function f(x), we may think of {zij} as i.i.d. random noise with cumulative

distribution function F (x) := Pr(z11 < x) = 1− f(−x). In this way, (6.2) reduces to (6.1).

In this chapter, we will mainly consider the model (6.2), which is viewed as a noiseless proba-

bilistic model. With this in mind, we are in the position to introduce the noisy probabilistic model.

Our central interest is the random sign flipping. That is, in place of observing yij as in (6.2), we

have

y′ij = δijyij, ∀ (i, j) ∈ Ω, (6.3)

where {δij} are i.i.d. random variables such that

δij =





+1, with probability 1− τ,

−1, with probability τ.

(6.4)

Above, τ itself might be a random variable but we impose 0 ≤ τ < 1/2 to prevent model ambiguity.

Note that τ = 0 corresponds to the noiseless model studied in [47, 15]. The model (6.3) together

with (6.4) indicate that for each element belonging to Ω, with probability τ the sign is flipped. Note

that our assumption on τ is more general than [116, 135] which treat τ as a deterministic parameter.

It is worth mentioning that a more general noise model is that each δij is parameterized by τij ,

where {τij} may differ from each other but subject to the constraint 0 ≤ τij ≤ τ < 1/2 for some

parameter τ . This is known as bounded noise (a.k.a. Massart noise) [100] that has received a broad

attention in learning theory [5, 7]. Extension to such kind of noise is an interesting future work.

219

6.2.1 Assumptions

Before presenting our estimator for M , we need a few assumptions.

(A1) Given n > 0, each component (i, j) is included in Ω with probability n
d1d2

. Hence, E |Ω| = n.

(A2) The maximum absolute value of M is upper bounded by a parameter α, i.e., ‖M‖∞ ≤ α.

(A3) M lies in a nuclear-norm ball with radius α
√
rd1d2 where r is the rank of M .

Note that (A1) assumes a Bernoulli sampling scheme for Ω which is more convenient than the

uniform sampling. In fact, the equivalence between these two sampling models was pointed out

in [38, 34]. The second assumption essentially excludes the case that M is too spiky. Otherwise,

the recovery of M is ill-posed [106, 117]. Finally, (A3) acts as a convex surrogate to the exact rank

constraint rank (M) ≤ r. To see this, we note that by algebra, the following holds:

‖M‖∗ ≤
√
r ‖M‖F ≤ α

√
rd1d2.

As we will illustrate later, (A3) also allows us to approximate M by solving a convex program.

Under these assumptions, we propose to solve the following problem in order to approximate

M :

max
X

LΩ,Y ′(X),

s. t. ‖X‖∞ ≤ α, ‖X‖∗ ≤ α
√
rd1d2.

(6.5)

Above, the objective function LΩ,Y ′(X) is given as follows:

LΩ,Y ′(X) =
∑

(i,j)∈Ω

[
1{y′ij=1} log g(xij) + 1{y′ij=−1} log (1− g(xij))

]
, (6.6)

where g(x) is the function such that for every (i, j) ∈ Ω, y′ij equals 1 with probability g(mij). In

this light, it is not hard to see that LΩ,Y ′(X) is the log-likelihood function and the optimum of (6.5)

is a maximum likelihood estimator (MLE). In addition, we remark that the two constraints in (6.5)

are due to our assumptions (A2) and (A3).

It remains to characterize the function g(x) which is a crucial component of (6.5). Note that in

220

view of (6.3) and (6.4), we have the following conditional probability:

Pr
(
y′ij = 1 | τ

)
= (1− τ)f(mij) + τ(1− f(mij)). (6.7)

Thus, depending on the distribution of τ , g(x) is computed in a different manner.

τ is discrete. In this case, let us suppose that the random variable τ takes value in (τ1, τ2, . . . , τs)

with corresponding probability (p1, p2, . . . , ps). It then follows that

Pr
(
y′ij = 1

)
=

s∑

k=1

Pr
(
y′ij = 1, τ = τk

)
=

s∑

k=1

pk Pr
(
y′ij = 1 | τ = τk

)
.

Hence, letting

g(x) =
s∑

k=1

pk ((1− τk)f(x) + τk(1− f(x))) = f(x)E[1− 2τ] + E[τ]. (6.8)

gives Pr(y′ij = 1) = g(mij) as desired.

τ is continuous. Suppose that the probability density function of τ is hτ (·). Then by simple

calculation, it can be shown that

g(x) =

∫

t
hτ (t)

[
(1− t)f(x) + t(1− f(x))

]
dt = f(x)E[1− 2τ] + E[τ], (6.9)

which is identical to the discrete case. Therefore, it turns out that the random flipping noise (6.4)

affects the recovery only through the mean.

6.3 Main Results

Our main results characterize the statistical rate of the MLE produced by (6.6). There are two

important quantities we need in the theoretical analysis, as described below:

ρ+γ = sup
|x|≤γ

|g′(x)|
g(x)(1 − g(x)) , ρ−γ = sup

|x|≤γ

g(x)(1 − g(x))
(g′(x))2

. (6.10)

By some algebra, it is not hard to see that the quantity ρ+γ is essentially the Lipschitz constant of the

likelihood function LΩ,Y ′(X). The other quantity ρ−γ is not associated with the curvature explicitly.

221

However, there is still some intuitive explanation on why this quantity enters our analysis. Indeed,

presume that g(x) is bounded from below in the interval [−γ, γ]. As g′(x) approaches zero, we find

that ρ−γ tends to infinity since

C

(g′(x))2
≤ g(x)(1 − g(x))

(g′(x))2
≤ 1

2(g′(x))2

for some constant C. In view of (6.9), this in turn suggests that either the function f(x) is quite flat

in the interval or E[τ] is close to 1/2, making it difficult to distinguish the entries of M .

6.3.1 Upper Bound

With these notions on hand, we state our first result which upper bounds the error of the solution

of (6.5) for the recovery of M .

Theorem 6.1 (Upper Bound). Assume (A1), (A2) and (A3). Suppose that the observation model

follows (6.3). Denote M̂ the optimum of (6.5). Then, with probability at least 1 − C1/(d1 + d2),

we have

1

d1d2

∥∥∥M̂ −M

∥∥∥
2

F
≤ ψα

√
r(d1 + d2)

n
,

provided that n ≥ (d1 + d2) log(d1d2). Above, ψα = C2ρ
+
αρ

−
α .

The theorem implies that as soon as we randomly sample n ≥ ψ2
αr(d1 + d2) log(d1d2) entries,

the estimation error vanishes and exact recovery is achieved. Note that, the dependence on the

matrix rank r and the dimension (d1, d2) is optimal up to a logarithmic factor.

The theorem also suggests that the random flipping noise τ affects the recovery through the

quantity ψα, which is multiplicative. For concreteness, we give estimates of the quantity ψα for

several prevalent choices of f(x). The connection between g(x) and f(x) (see (6.9)) immediately

indicates the form of ψα. In the following we write a := E[τ] for brevity.

• Logistic regression: f(x) = ex/(1 + ex). We have

ρ+α = 1, ρ−α =
(1 + eα)2

(1− 2a)2e2α
((1− eα)a+ eα) ((eα − 1)a + 1) .

222

Therefore, if we treat the parameter α as a constant, say eα = 2, it follows that

ψα = O
(
(a+ 1)(2 − a)

(1− 2a)2

)
= O

(
1

(1− 2a)2

)
,

where the second equivalence follows by investigating the asymptotic behavior when a approaches

1/2 from below. The above quickly implies that the sample size

n = O
(
(1− 2a)−4r(d1 + d2) log(d1d2)

)

suffices for exact recovery even when nearly half of the entries are flipped (i.e., a = 1/2 − ǫ for

some small quantity ǫ).

• Probit regression: f(x) = Φ(x/σ). This corresponds with the scenario where {zij} in (6.1) are

Gaussian with variance σ2. We have

ρ+α ≤
4

(1− 2a)σ

(α
σ
+ 1
)
, ρ−α ≤

πσ2

(1− 2a)2
exp(α2/(2σ2)).

This gives an upper bound of ψα as follows:

ψα ≤ O
(

α+ σ

(1− 2a)3
exp

(
α2

2σ2

))
.

It is not hard to see that there exists a threshold σ∗ > α that minimizes the right-hand side above,

hence is a heuristically optimal choice. When σ < σ∗, one can increase the variance to obtain a

better error bound. This is not surprising since on one spectrum, if the variance is too small, the

model (6.1) reduces to yij = sign (mij) for which recovery is not possible [47]. On the other

extreme, if σ is too large, then the function f ′(x) (and hence g′(x)) becomes flat, which makes

recovery challenging as we have discussed earlier.

In the regime where the parameter α is a constant, we obtain the sample complexity n =

O
(
(1− 2a)−6r(d1 + d2) log(d1d2)

)
. This is worse than the logistic case. Given that these two

models are quite similar to each other, we conjecture that it might be an artifact of our analysis.

223

• Laplacian: f ′(x) = − 1
2b exp(− |x| /b). We have

ρ+α =
2(1 − 2a)

b
, ρ−α =

b2

(1− 2a)2

(
2(eα/b − 1)a+ 1

)
×
(
2(1− eα/b)a+ 2eα/b − 1

)
,

which yields

ψα = O
(

1

1− 2a

)
,

provided that the parameters α and b are constants, e.g., eα/b = 2. This gives us the sample

complexity n = O
(
(1− 2a)−2r(d1 + d2) log(d1d2)

)
which is better than the logistic case. It is

also worth mentioning that like probit regression, there exists an optimal choice of the parameter

b that minimizes the upper bound of the statistical error, though we do not pursue it here.

6.3.2 Lower Bound

Our second theorem provides a lower bound on the statistical error for the recovery of M . It asserts

that under the observation model (6.3) and sampling scheme (A1), we can always find an instance

M satisfying (A2) and (A3), such that with a non-trivial probability (say, 3/4), any algorithm

requires as many samples as Theorem 6.1 suggests for the sake of recovering M .

Theorem 6.2 (Lower Bound). Fix the parameters α, r d1 and d2 with α ≥ 1 and r ≥ 16. Suppose

that α2rmax{d1, d2} ≥ C0 for some absolute constant C0. Further suppose that g′(x) is non-

increasing for x > 0. Let Ω by an arbitrary index set with |Ω| = n and assume the noisy observation

model (6.3). Then there exists M satisfying (A2) and (A3) such that for any algorithm, with

probability at least 3/4, its output M̂ satisfies

1

d1d2

∥∥∥M̂ −M
∥∥∥
2

F
≥ min

{
C1,C2φα

√
rmax{d1, d2}

n

}
,

provided that the right-hand side is larger than rα2/min{d1, d2}. Above, φα = α(ρ−0.75α)
1/2.

A few remarks are in order. First and foremost, it is shown that n = O
(
φ2αrd2

)
samples are

necessary for exact recovery where we assume d1 ≤ d2 without loss of generality. The dependence

on the rank r and matrix dimension (d1, d2) matches the upper bound of Theorem 6.1 (up to a

224

logarithmic factor), justifying the optimality (provided that α is a constant). Regarding the noise

parameter E[τ] contained in φα, it is not hard to see that for all the choices of f(x) (i.e., logistic,

probit, laplacian), our lower bound implies that n should be proportional to (1−2E[τ])−2, indicating

a room for improvement of the upper bound in the logistic and probit cases (the upper bound for the

laplacian case we established is optimal).

Table 6.1: Upper and lower bounds on the sample complexity in the regime where α is a

constant.

f(x) Upper bound Lower bound

Logistic O
(
(1− 2E[τ])−4 r(d1 + d2) log(d1d2)

)
O
(
(1− 2E[τ])−2 rmax{d1, d2}

)

Probit O
(
(1− 2E[τ])−6 r(d1 + d2) log(d1d2)

)
O
(
(1− 2E[τ])−2 rmax{d1, d2}

)

Laplacian O
(
(1− 2E[τ])−2 r(d1 + d2) log(d1d2)

)
O
(
(1− 2E[τ])−2 rmax{d1, d2}

)

Now let us investigate the conditions in Theorem 6.2. Note that we did not optimize the con-

stants. For example, the condition r ≥ 16 can be relaxed to, e.g., r ≥ 4. The condition α2rd2 ≥ C0

is easy to satisfy, especially in the high-dimensional regime where r, d2 → ∞. In fact, this condi-

tion is invoked only for a proof technique. We also point out that it is very mild to assume g′(x) is

decreasing in R
+. Such a requirement amounts to impose that the probability density function has

a non-increasing tail, which holds for the popular statistical models in Section 6.3.1. Finally, when

the rank r ≤ O
(
d1/α

2
)
, the right-hand side of the inequality in the theorem is always larger than

rα2/d1. It turns out that under the setting α = O (1), the lower bound holds even when the matrix

rank is of the same order of the dimension. We summarize the established bounds in Table 6.1.

6.4 Proof Sketch

Our proof technique follows from [47] but tailored to the noisy situation. We will consider the

following centralized loss function:

L̄Ω,Y ′(X) := LΩ,Y ′(X)− LΩ,Y ′(0).

To prove Theorem 6.1, we show the following crucial lemma.

225

Lemma 6.3. Let the set S be

S =
{
X ∈ R

d1×d2 : ‖X‖∗ ≤ α
√
rd1d2

}
.

Write

GΩ,Y ′ = sup
X∈S

∣∣L̄Ω,Y ′(X)− EL̄Ω,Y ′(X)
∣∣ , Ḡ = αρ+α

√
r
√
n(d1 + d2) + d1d2 log(d1d2).

Then it follows that

Pr
(
GΩ,Y ′ ≥ C0Ḡ

)
≤ C1

d1 + d2
,

for some absolute constants C0 and C1.

Recall that the likelihood function we defined in (6.6), which is not averaged by n. Hence, the

above lemma suggests that for n large enough, the shifted loss 1
n L̄Ω,Y ′(X) concentrates around its

expectation with the rate O (1/
√
n).

On the other hand, by algebra we can show that

D(g(M)||g(M̂)) ≤ 2

n
GΩ,Y ′ ,

where the left-hand side is the KL divergence, which is bounded from below by the averaged least-

squares loss:

1

d1d2

∥∥∥M̂ −M

∥∥∥
2

F
≤ 8ρ+αD(g(M)||g(M̂)).

This immediately implies Theorem 6.1 after some rearrangements.

The lower bound follows from standard information theoretic arguments. To be more detailed,

we construct a set of matrices that satisfying (A2) and (A3) but the discrepancy between the mem-

bers of this set is large in terms of Frobenius norm. We then show that for any true matrix M

coming from this set, it is not easy for any recovery algorithm to output a solution that is quite close

to it. This suggests a lower bound as stated in Theorem 6.2. See Appendix 6.B for the full proof.

226

6.5 Numerical Study

We complement our theoretical findings by performing a comprehensive set of simulations. In

particular, our focus is on how the estimation error changes with the sample size n and the random

sign flipping noise. We first elaborate the experimental settings.

Data. For simplicity, we set d1 = d2 = d, where d = 200 if not specified. We randomly

generate the true real-valued matrix M ∈ R
d×d such that it has rank r and ‖M‖∞ ≤ 1. To be

more concrete, we construct two matrices U, V ∈ R
d×r where the entries are drawn i.i.d. from a

uniform distribution on the interval [−1, 1]. The low-rank matrix M is then given by the product

UV ⊤ followed by a normalization (that is, M ←M/ ‖M‖∞). Given a sample size n, the index

set Ω is picked uniformly random such that |Ω| = n. The noisy observation Y ′
Ω depends on the

choice of f(x) and the flipping parameter τ (see (6.3)). Here, we choose the probit regression for

f(x), i.e., f(x) = Φ(x/σ), the cumulative density function of Gaussian distribution. We further

use the default value σ = 0.3 as suggested by [47].

Evaluation. We measure the discrepancy between the recovered matrix M̂ and the true matrix

M by the mean squared error (MSE). We will also report the relative error, which normalizes the

MSE with ‖M‖2F /d2.

Other settings. The solver for the convex program (6.5) is publicly available at Davenport’s

homepage. We follow their default settings of the solver. Each experiment to be showed are con-

ducted for 5 trials, and we report the averaged MSE and relative error over these trials.

6.5.1 Deterministic τ

Our first empirical study focuses on the error curve against sample size when τ is fixed as a scalar (so

there is no randomness in τ). We point out that though τ is a deterministic quantity, the flipping noise

is still random. Such a noise model was studied in the context of 1-bit compressed sensing [116,

135]. We set τ = 0.2 which means for all (i, j) ∈ Ω, the component yij is flipped with probability

0.2. We plot the curves of MSE and relative error in Figure 6.1 where we also vary the rank r from

1 to 10. Note that a larger rank indicates a more complicated problem, hence we need to draw more

observations to achieve a low error, as illustrated in this figure. Also note that in the right panels,

the x-axis is 1/
√
n (n is the sample size), and we find that the statistical error scales approximately

227

linear with it, which matches our theoretical prediction.

5 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

n / d2 (%)

M
S

E

r = 1
r = 3
r = 5
r = 10

τ = 0.2

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

d / n1/2

M
S

E

r = 1
r = 3
r = 5
r = 10

τ = 0.2

5 20 40 60 80 100
0

2

4

6

8

10

n / d2 (%)

R
el

at
iv

e
E

rr
or

r = 1
r = 3
r = 5
r = 10

τ = 0.2

1 2 3 4
0

2

4

6

8

10

d / n1/2

R
el

at
iv

e
E

rr
or

r = 1
r = 3
r = 5
r = 10

τ = 0.2

Figure 6.1: Estimation error against sample size under fixed τ . The x-axis is properly normalized
by a constant for a better view. The statistical error is approximately linear with 1/

√
n.

Then we fix the rank r = 3, and tune the parameter τ from 0 to 0.4. Note that τ is still a

deterministic quantity. For each value of τ , we plot the error curves in Figure 6.2. It is not hard to

see that the recovery becomes challenging when the data are grossly corrupted. For example, from

the bottom-left panel, we observe that when 40 percents of the entries are observed, the relative

error increases from 0.25 to 1 as τ changes from 0 to 0.3. Another notable aspect of Figure 6.2 is

that, though the sample size is nearly linear with 1/
√
n, the slopes of these lines are different from

each other. This is actually implied by our theorems, which state that the error is proportional to

n−1/2 poly
(
1/(1 − 2τ)2

)
.

5 20 40 60 80 100
0

0.05

0.1

0.15

0.2

n / d2 (%)

M
S

E

τ = 0
τ = 0.1
τ = 0.2
τ = 0.3
τ = 0.4

r = 3

1 2 3 4
0

0.05

0.1

0.15

0.2

d / n1/2

M
S

E

τ = 0
τ = 0.1
τ = 0.2
τ = 0.3
τ = 0.4

r = 3

5 20 40 60 80 100
0

0.5

1

1.5

2

2.5

n / d2 (%)

R
el

at
iv

e
E

rr
or

τ = 0
τ = 0.1
τ = 0.2
τ = 0.3
τ = 0.4

r = 3

1 2 3 4
0

0.5

1

1.5

2

2.5

d / n1/2

R
el

at
iv

e
E

rr
or

τ = 0
τ = 0.1
τ = 0.2
τ = 0.3
τ = 0.4

r = 3

Figure 6.2: Estimation error against sample size under fixed rank.

6.5.2 Random τ

Now we investigate the situation where τ itself is a random variable. A remarkable implication of

our theoretical analysis is that the random variable τ affects the recovery only through its mean.

We verify this by randomly generating 3 different distributions for τ , say D1, D2 and D3. For

each distribution Di, τ takes value from {τik}4k=1 with corresponding probability {pik}4k=1. The

configuration {τik, pik}4k=1 is generated randomly, but subject to the constraints that (i) each τik

lies in the interval [0, 1/2); (ii) E[τ] = 0.2; and (iii)
∑4

k=1 pik = 1 for a given i. Then for each

distribution Di, we manually corrupt the clean data Y Ω and run the solver to obtain an estimate.

228

The results are recorded in Figure 6.3 where we use the logarithmic scale for the y-axis to magnify

the difference for the curves of these distributions. Even by doing so, we find that the three curves

are almost lying on top of each other, which verifies our theoretical finding that the statistical error

only depends on the mean of τ .

5 20 40 60 80 100
−4

−3.5

−3

−2.5

−2

n / d2 (%)

M
S

E
 (

lo
g)

E[τ] = 0.2

5 20 40 60 80 100
−1

−0.5

0

0.5

1

n / d2 (%)

R
el

at
iv

e
E

rr
or

 (
lo

g) E[τ] = 0.2

5 20 40 60 80 100
0

0.05

0.1

0.15

n / d2 (%)

M
S

E

E[τ] = 0.1
E[τ] = 0.2
E[τ] = 0.3
E[τ] = 0.4

5 20 40 60 80 100
0

0.5

1

1.5

2

2.5

n / d2 (%)

R
el

at
iv

e
E

rr
or

E[τ] = 0.1
E[τ] = 0.2
E[τ] = 0.3
E[τ] = 0.4

Figure 6.3: Estimation error against sample size under the same and different noise expecta-

tion. We observe that the statistical error depends on τ only through its mean.

Finally, we generate 4 distributions with different mean values using the same scheme just

discussed. We illustrate the results in the last two panels of Figure 6.3. These curves again show

that the sign flipping noise poses challenges for exact recovery. Careful readers may also compare it

with Figure 6.2, in particular the right panels therein. It is not hard to see that for each configuration

of the mean of τ , the curves in these two figures are quite similar.

6.6 Conclusion

In this chapter, we have introduced the noisy 1-bit matrix completion model, where each observed

entry is flipped with some probability controlled by a random variable τ ∈ [0, 1/2). It has been

shown that under rather mild conditions on the sampling scheme and the true matrix, a simple max-

imum likelihood estimator guarantees exact recovery. Along with our analysis, we have established

a somewhat surprising result that the random variable τ enters the sample complexity only through

its mean. When the binary data are generated from a Laplacian distribution, we have demonstrated

that the upper bound matches the lower bound (up to a logarithmic factor). For logistic and Gaussian

distributions, the lower bound implies potential room for improvements.

229

6.A Technical Lemmas

Lemma 6.4 (Theorem 1.1 in [127]). There exists a constant K such that, for any n, m any h ≤

2 logmax{m,n} and any m×nmatrix A = (aij) where aij are i.i.d. symmetric random variables,

the following inequality holds:

max
{
E max

1≤i≤m
‖ai·‖h ,E max

1≤j≤n

∥∥∥ah·j
∥∥∥
}
≤ E ‖A‖h ≤ K

(
E max

1≤i≤m
‖ai·‖h + E max

1≤j≤n

∥∥∥ah·j
∥∥∥
)
.

Lemma 6.5 (Symmetrization, Lemma 6.3 in [86]). Let F : R+ → R+ be convex. Then, for

any finite sequence {ti} of independent mean zero random variables in B such that for every i

E
[
F (‖ti‖)

]
<∞, then

E

[
F

(
1

2

∥∥∥
∑

ξiti

∥∥∥
)]
≤ E

[
F
(∥∥∥
∑

ti

∥∥∥
)]
≤ E

[
F
(
2
∥∥∥
∑

ξiti

∥∥∥
)]
,

where {ξi} are i.i.d. Rademacher random variables.

Lemma 6.6 (Contraction, Theorem 4.12 in [86]). Let F : R+ → R+ be convex and increasing. Let

ψi : R→ R be contraction such that ψi(0) = 0. Then it holds that

E

[
F

(
1

2
sup

t1,...tN

∣∣∣∣∣
N∑

i=1

ξiψi(ti)

∣∣∣∣∣

)]
≤ E

[
F

(
sup

t1,...tN

∣∣∣∣∣
N∑

i=1

ξiti

∣∣∣∣∣

)]
,

where {ξi} are i.i.d. Rademacher random variables.

Lemma 6.7 (Lemma 2 in [47]). Let f be a differentiable function and assume that

max
{
‖M‖∞ ,

∥∥∥M̂
∥∥∥
∞

}
≤ α.

Then

d2H

(
f(M), f(M̂)

)
≥ inf

|x|≤α

(f ′(x))2

8f(x)(1− f(x))

∥∥∥M − M̂
∥∥∥
2

F

d1d2
.

230

Lemma 6.8 (Lemma 4 in [47]). Suppose that x, y ∈ (0, 1). Then

D(x||y) ≤ (x− y)2
y(1− y) .

Lemma 6.9 (Lemma 3 in [47]). Let K be the set of matrices that satisfy (A2) and (A3). Let

0 < ν ≤ 1 be a scalar such that r(ν)−2 is an integer that is not larger than d1. Then there exists a

subset X ⊂ K with the following properties:

1. |X | ≥ exp
(

rd2
16ν2

)
.

2. ∀X ∈ X , |xij| = αν.

3. ∀X, X̃ ∈ X with X 6= X̃ ,

∥∥∥X − X̃
∥∥∥
2

F
> 1

2α
2ν2d1d2.

6.B Proofs

Recall the observation model: M ∈ R
d1×d2 is the true low-rank matrix and Ω ⊂ [d1] × [d2] is the

entries we observed. Y ∈ R
d1×d2 is the binary matrix determined by M : for all (i, j) ∈ Ω,

yij =





+1, with probability f(mij),

−1, with probability 1− f(mij).

In the setting of symmetric noise, the observation y′ij = δijyij where δij are i.i.d. and

δij =





+1, with probability 1− τ,

−1, with probability τ,

where τ ∈ (0, 1/2) itself can be a random variable. Therefore, conditioning on τ , we observe

Pr
(
y′ij = 1 | τ

)
= (1− τ)f(mij) + τ(1− f(mij)).

231

Case 1. If τ is a discrete random variable, say

Pr (τ = τk) = pk, 1 ≤ k ≤ s,

then it is easy to see that

Pr
(
y′ij = 1

)
=

s∑

k=1

Pr
(
y′ij = 1, τ = τk

)

=

s∑

k=1

Pr
(
y′ij = 1 | τ = τk

)
· Pr (τ = τk)

=

s∑

k=1

pk

[
(1− τk)f(mij) + τk(1− f(mij))

]
.

Denote

g(x) =

s∑

k=1

pk

[
(1− τk)f(x) + τk(1− f(x))

]
= (1− 2E[τ])f(x) + E[τ].

We have

y′ij =





+1, with probability g(mij),

−1, with probability 1− g(mij).

Case 2. If τ is a continuous random variable with probability density function (pdf) hτ (t), then

we have

Pr
(
y′ij = 1

)
=

∫

t
hY ,τ (y

′
ij = 1, t)dt

=

∫

t
hY |τ (y

′
ij = 1 | t)hτ (t)dt

=

∫

t
hτ (t)

[
(1− t)f(mij) + t(1− f(mij))

]
dt,

where hY ,τ (y, t) is the joint pdf of yij and τ , and hY |τ (y | t) is the conditional pdf. Thus, define

g(x) =

∫

t
hτ (t)

[
(1− t)f(x) + t(1− f(x))

]
dt = (1− 2E[τ])f(x) + E[τ].

232

We again have

y′ij =





+1, with probability g(mij),

−1, with probability 1− g(mij).

Hence, the maximum likelihood estimator is given as follows:

M̂ = argmax
X

LΩ,Y ′(X), s. t. ‖X‖∗ ≤ α
√
rd1d2, ‖X‖∞ ≤ γ,

where

LΩ,Y ′(X) :=
∑

(i,j)∈Ω

(
1{yij=1} log g(xij) + 1{yij=−1} log(1− g(xij))

)
.

For the sake of a principled analysis, we will treat g(x) as a general function at this point. Associated

with the function g(x) are two quantities:

ρ+γ := sup
|x|≤γ

|g′(x)|
g(x)(1 − g(x)) , ρ−γ := sup

|x|≤γ

g(x)(1 − g(x))
(g′(x))2

.

We will use several kinds of distances in the proof. The first one is Hellinger distance that is

given by

d2H(p, q) := (
√
p−√q)2 + (

√
1− p+

√
1− q)2, ∀ 0 ≤ p, q ≤ 1.

Extending it to the matrix, we write

d2H(P,Q) :=
1

d1d2

∑

i,j

d2H(pij , qij),

where P ,Q ∈ R
d1×d2 and the entries therein are between 0 and 1.

For two probability distributions P and Q on a finite set A, the Kullback-Leibler (KL) diver-

233

gence is defined as

D(P||Q) =
∑

x∈A
P(x) log P(x)Q(x) .

With a slight abuse, we write for two scalars p, q ∈ [0, 1]

D(p||q) = p log
p

q
+ (1− p) log 1− p

1− q ,

and for two matrices P ,Q ∈ [0, 1]d1×d2 ,

D(P ||Q) =
1

d1d2

∑

i,j

D(pij ||qij).

Throughout the proof, we will work with a shifted MLE, i.e.

L̄Ω,Y ′(X) := LΩ,Y ′(X)− LΩ,Y ′(0) (6.11)

=
∑

(i,j)∈Ω

(
1{yij=1} log

g(xij)

g(0)
+ 1{yij=−1} log

1− g(xij)
1− g(0)

)

=
∑

i,j

1{(i,j)∈Ω}

(
1{yij=1} log

g(xij)

g(0)
+ 1{yij=−1} log

1− g(xij)
1− g(0)

)
. (6.12)

6.B.1 Proof of Lemma 6.3

Proof. Using the Markov’s inequality, we have for any θ > 0,

Pr

(
sup
X∈S

∣∣L̄Ω,Y ′(X)− EL̄Ω,Y ′(X)
∣∣ ≥ C0αρ

+
γ

√
r
√
n(d1 + d2) + d1d2 log(d1d2)

)

≤
E

[
supX∈S

∣∣L̄Ω,Y ′(X)− EL̄Ω,Y ′(X)
∣∣θ
]

(
C0αρ

+
γ
√
r
√
n(d1 + d2) + d1d2 log(d1d2)

)θ . (6.13)

We bound the numerator above. Recall that

L̄Ω,Y ′(X) =
∑

i,j

1{(i,j)∈Ω}

(
1{y′ij=1} log

g(xij)

g(0)
+ 1{y′ij=−1} log

1− g(xij)
1− g(0)

)
.

234

Let the random variable

t̃ij = 1{(i,j)∈Ω}

(
1{y′ij=1} log

g(xij)

g(0)
+ 1{y′ij=−1} log

1− g(xij)
1− g(0)

)
,

and let

tij = t̃ij − Et̃ij.

Then

L̄Ω,Y ′(X)− EL̄Ω,Y ′(X) =
∑

i,j

tij.

Note that {tij} are i.i.d. random variables with zero mean. The function F (t) = sup tθ is convex

for θ ≥ 1, and EF (|tij|) is finite for all (i, j) ∈ [d1] × [d2]. Hence, we can apply Lemma 6.5 to

obtain

E

[
sup
X∈S

∣∣L̄Ω,Y ′(X)− EL̄Ω,Y ′(X)
∣∣θ
]

≤ 2θE

[
sup
X∈S

∣∣∣∣∣∣
∑

i,j

ξij1{(i,j)∈Ω}

(
1{y′ij=1} log

g(xij)

g(0)
+ 1{y′ij=−1} log

1− g(xij)
1− g(0)

)∣∣∣∣∣∣

θ]
,

where {ξij} are i.i.d. Rademacher random variables. Now observe that due to the construction

of ρ+γ , both 1
ρ+γ

log g(x)
g(0) and 1

ρ+γ
log 1−g(x)

1−g(0) are contractions and vanish at x = 0. Thereby, using

Lemma 6.6 we have

E

[
sup
X∈S

∣∣L̄Ω,Y ′(X)− EL̄Ω,Y ′(X)
∣∣θ
]

≤ (4ρ+γ)
θ
E

[
sup
X∈S

∣∣∣∣∣∣
∑

i,j

ξij1{(i,j)∈Ω}
(
1{y′ij=1}xij − 1{y′ij=−1}xij

)
∣∣∣∣∣∣

θ]

= (4ρ+γ)
θ
E

[
sup
X∈S

∣∣∣∣∣∣
∑

i,j

ξij1{(i,j)∈Ω}y
′
ijxij

∣∣∣∣∣∣

θ]
.

235

With a simple algebra, we have

Pr(ξijy
′
ij = 1) = Pr(ξij = 1, y′ij = 1) + Pr(ξij = −1, y′ij = −1)

=
1

2

(
Pr(y′ij = 1) + Pr(y′ij = −1)

)
=

1

2
,

which implies that the distribution of ξijy′ij is the same as that of ξij for all (i, j) ∈ [d1] × [d2].

Thus, by denoting ∆Ω the matrix such that its (i, j)-th element is 1 if (i, j) ∈ Ω and 0 otherwise,

and Ξ = (ξij), it follows that

E

[
sup
X∈S

∣∣L̄Ω,Y ′(X)− EL̄Ω,Y ′(X)
∣∣θ
]
≤ (4ρ+γ)

θ
E

[
sup
X∈S

∣∣∣∣∣∣
∑

i,j

ξij1{(i,j)∈Ω}xij

∣∣∣∣∣∣

θ]

= (4ρ+γ)
θ
E

[
sup
X∈S

|〈∆Ω ◦ Ξ,X〉|θ
]

≤ (4ρ+γ)
θ
E

[
sup
X∈S

‖∆Ω ◦ Ξ‖θ ‖X‖θ∗
]

≤ (α
√
rd1d2)

θ
E

[
‖∆Ω ◦ Ξ‖θ

]
. (6.14)

Above, the last inequality follows from the nuclear norm constraint we imposed in the MLE esti-

mator. Note that the (i, j)-th entry of the matrix ∆Ω ◦ Ξ is given by 1{(i,j)∈Ω}ξij , which are i.i.d.

symmetric random variables. Thus, Lemma 6.4 implies that

E

[
‖∆Ω ◦ Ξ‖θ

]
≤ C


E max

1≤i≤d1




d2∑

j=1

(ξij∆ij)
2




θ/2

+ E max
1≤j≤d2

(
d1∑

i=1

(ξij∆ij)
2

)θ/2



= C


E max

1≤i≤d1




d2∑

j=1

∆ij




θ/2

+ E max
1≤j≤d2

(
d1∑

i=1

∆ij

)θ/2

 . (6.15)

Fix i. By Bernstein’s inequality, for all t > 0,

Pr



∣∣∣∣∣∣

d2∑

j=1

(
∆ij −

n

d1d2

)∣∣∣∣∣∣
> t


 ≤ 2 exp

(−t2/2
n/d1 + t/3

)
.

236

When t ≥ 6n
d1

, the above reduces to

Pr



∣∣∣∣∣∣

d2∑

j=1

(
∆ij −

n

d1d2

)∣∣∣∣∣∣
> t


 ≤ 2 exp(−t).

Suppose thatW1, . . . ,Wd1 are i.i.d. exponential random variables with probability density exp(−t).

Then it follows that

Pr



∣∣∣∣∣∣

d2∑

j=1

(
∆ij −

n

d1d2

)∣∣∣∣∣∣
> t


 ≤ 2Pr(Wi ≥ t).

On the other hand, we have


E max

1≤i≤d1




d2∑

j=1

∆ij




θ/2



1/θ

≤
√
n

d1
+


E max

1≤i≤d1

∣∣∣∣∣∣

d2∑

j=1

(∆ij −
n

d1d2
)

∣∣∣∣∣∣

θ/2



1/θ

ζ1
=

√
n

d1
+



∫ +∞

0
Pr


 max

1≤i≤d1

∣∣∣∣∣∣

d2∑

j=1

(∆ij −
n

d1d2
)

∣∣∣∣∣∣

θ/2

≥ t


 dt




1/θ

≤
√
n

d1
+



(
6n

d1

)θ/2

+

∫ +∞

(6n/d1)θ/2
Pr


 max

1≤i≤d1

∣∣∣∣∣∣

d2∑

j=1

(∆ij −
n

d1d2
)

∣∣∣∣∣∣

θ/2

≥ t


 dt




1/θ

≤
√
n

d1
+

((
6n

d1

)θ/2

+ 2

∫ +∞

(6n/d1)θ/2
Pr

(
max

1≤i≤d1
W

θ/2
i ≥ t

)
dt

)1/θ

ζ2
≤
√
n

d1
+

((
6n

d1

)θ/2

+ 2E max
1≤i≤d1

W
θ/2
i

)1/θ

≤ (1 +
√
6)

√
n

d1
+ 21/θ

(
E max

1≤i≤d1
W

θ/2
i

)1/θ

.

237

Here, ζ1 and ζ2 use the identity Ex =
∫ +∞
0 Pr(x ≥ t)dt for any positive random variable x. It

remains to bound Emax1≤i≤d1 W
θ/2
i . Using the fact that Wi is exponential, we have

E max
1≤i≤d1

W
θ/2
i ≤

∣∣∣∣ max
1≤i≤d1

Wi − log d1

∣∣∣∣
θ/2

+ logθ/2 d1

≤ 2((θ/2)!) + logθ/2 d1 ≤ 2(θ/2)θ/2 + logθ/2 d1,

where we apply Stirling’s approximation in the last inequality. Thus,

21/θ
(
E max

1≤i≤d1
W

θ/2
i

)1/θ

≤ 21/θ
(√

log d1 + 21/θ
√
θ/2
)
.

Picking θ = 2 log(d1 + d2) gives

21/θ
(
E max

1≤i≤d1
W

θ/2
i

)1/θ

≤ (2 +
√
2)
√

log(d1 + d2).

Putting pieces together, we obtain


E max

1≤i≤d1




d2∑

j=1

∆ij




θ/2



1/θ

≤ (1 +
√
6)

√
n

d1
+ (2 +

√
2)
√

log(d1 + d2).

Likewise, we can show that


E max

1≤j≤d2

(
d1∑

i=1

∆ij

)θ/2



1/θ

≤ (1 +
√
6)

√
n

d2
+ (2 +

√
2)
√

log(d1 + d2).

Note that
√
x is a concave function. Hence, Jensen’s inequality implies that (6.15) can be bounded

as follows:

(
E

[
‖∆Ω ◦ Ξ‖θ

])1/θ
≤ C1/θ


(1 +

√
6)

√
2n(d1 + d2)

d1d2
+ (2 +

√
2)
√

log(d1 + d2)




≤ C1/θ2(1 +
√
6)

√
n(d1 + d2) + d1d2 log(d1 + d2)

d1d2
.

238

Plugging this back to (6.14), we have

(
E

[
sup
X∈S

∣∣L̄Ω,Y ′(X)− EL̄Ω,Y ′(X)
∣∣θ
])1/θ

≤ C1/θ8(1 +
√
6)αρ+γ

√
r
√
n(d1 + d2) + d1d2 log(d1 + d2).

Therefore, (6.13) is upper bounded by

C

(
8(1 +

√
6)

C0

)2 log(d1+d2)

≤ C

d1 + d2
,

as soon as we choose C0 ≥ 8(1 +
√
6)
√
e.

Proposition 6.10. Assume same conditions as in Theorem 6.1 but with a slightly more general

assumption that ‖M‖∞ ≤ γ in place of ‖M‖∞ ≤ α. Then, with probability at least 1−C1/(d1 +

d2), the follows holds:

d2H(g(M̂), g(M)) ≤ C2ρ
+
γ α

√
r(d1 + d2)

n

√
1 +

(d1 + d2) log(d1d2)

n
,

where C1 and C2 are absolute constants.

Proof. For any matrix X ∈ R
d1×d2 , we have

E
[
L̄Ω,Y ′(X)− L̄Ω,Y ′(M)

]
(6.16)

= E
[
LΩ,Y ′(X)− LΩ,Y ′(M)

]

= E

[∑

i,j

1{(i,j)∈Ω}

(
1{y′ij=1} log

g(xij)

g(mij)
+ 1{y′ij=−1} log

1− g(xij)
1− g(mij)

)]

= E

[∑

i,j

n

d1d2

(
g(mij) log

g(xij)

g(mij)
+ (1− g(mij)) log

1− g(xij)
1− g(mij)

)]

= − nD(g(M)||g(X)). (6.17)

239

On the other hand, for the optimum M̂ , it holds that

L̄Ω,Y ′(M̂)− L̄Ω,Y ′(M) = E
[
L̄Ω,Y ′(M̂)− L̄Ω,Y ′(M)

]
+
(
L̄Ω,Y ′(M̂)− E

[
L̄Ω,Y ′(M̂)

])

+
(
E
[
L̄Ω,Y ′(M)− L̄Ω,Y ′(M)

)

≤ E
[
L̄Ω,Y ′(X)− L̄Ω,Y ′(M)

]
+ 2 sup

X∈S

∣∣L̄Ω,Y ′(X)− E
[
L̄Ω,Y ′(X)

]∣∣ ,

where we recall that S was defined in Lemma 6.3. Since M̂ also maximizes L̄Ω,Y ′(X), we obtain

−E
[
L̄Ω,Y ′(X)− L̄Ω,Y ′(M)

]
≤ 2 sup

X∈S

∣∣L̄Ω,Y ′(X)− E
[
L̄Ω,Y ′(X)

]∣∣ .

This together with (6.16) and Lemma 6.3 imply that

D(g(M)||g(M̂)) ≤ 2C0α0ρ
+
γ

√
r(d1 + d2)

n

√
1 +

(d1 + d2) log(d1d2)

n

holds with probability at least 1−C1/(d1 + d2). Since the Hellinger distance is upper bounded by

the KL divergence, we complete the proof.

6.B.2 Proof of Theorem 6.1

Proof. Theorem 6.1 follows immediately from Prop. 6.10 and Lemma 6.7.

6.B.3 Proof of Theorem 6.2

Proof. Without loss of generality, suppose that d1 ≤ d2. Let

ǫ2 = min

{
1

1024
,Cα

√
ρ−0.75αrd2

n

}
.

Pick

4
√
2ǫ

α
≤ ν ≤ 8ǫ

α
.

240

It is easy to see that

rα2

64ǫ2
≤ r

ν2
≤ rα2

32ǫ2
.

The length of this interval is rα2

64ǫ , which is larger than 1 since α ≥ 1, r ≥ 16 and ǫ2 ≤ 1/1024.

Hence, it is possible to pick a proper ν such that r
ν2

is an integer. Also, the assumption that ǫ2 ≥

O(rα2/d1) suggests r/ν2 ≤ d1. Hence we have found an appropriate ν for Lemma 6.9.

Let X ′
α/2,ν be a set that satisfies all the properties in Lemma 6.9 with parameter α/2. Let

X =
{
X ′ + α

(
1− ν

2

)
U : X ′ ∈ X ′

α/2,ν

}
,

where all the entries of U equal one.

First, we verify that each component in X satisfies (A2) and (A3). It is easy to see that for any

X ∈ X , |xij | either equals α or (1− ν)α, i.e., ‖X‖∞ ≤ α since ν < 1. In addition,

∥∥∥X ′ + α
(
1− ν

2

)
U
∥∥∥
∗
≤
∥∥X ′∥∥

∗ + α
(
1− ν

2

)
‖U‖∗ ≤

α

2

√
rd1d2 + α

(
1− ν

2

)
‖U‖F .

Since ν ∈ (0, 1) and r ≥ 16, we have 2− ν ≤ √r, which together with ‖U‖F =
√
d1d2 imply that

‖X‖∗ ≤ α
√
rd1d2 for all X ∈ X .

We prove the theorem by showing that its converse is false. That is, suppose that there exists an

algorithm such that for any M ∈ X (which satisfies (A2) and (A3)), with probability at least 1/4,

its output X̂ satisfies

1

d1d2

∥∥∥X̂ −M

∥∥∥
2

F
< ǫ2. (6.18)

Let X∗ ∈ X be the closest member to X̂ . For any X̃ 6= M ∈ X , it follows that

∥∥∥X̃ − X̂

∥∥∥
F
≥
∥∥∥X̃ −M

∥∥∥
F
−
∥∥∥X̂ −M

∥∥∥
F
> 2ǫ

√
d1d2 − ǫ

√
d1d2 = ǫ

√
d1d2, (6.19)

241

where the last inequality follows from (6.18) and the fact that for any X , X̃ ∈ X ,

∥∥∥X − X̃
∥∥∥
2

F
≥ α2ν2d1d2

8
≥ 4d1d2ǫ

2.

The first inequality above uses the third property in Lemma 6.9 and the second inequality follows

from our choice of ν.

On the other hand, since X∗ is the closest one to X̂ , we have

∥∥∥X∗ − X̂
∥∥∥
F
≤
∥∥∥M − X̂

∥∥∥
F
≤ ǫ
√
d1d2. (6.20)

Combining (6.19) and (6.20), we obtain

∥∥∥X∗ − X̂
∥∥∥
F
<
∥∥∥X̃ − X̂

∥∥∥
F
, ∀ X̃ 6= M ,

which implies X∗ = M . Since (6.18) holds with probability at least 1/4,

Pr (X∗ 6= M) ≤ 3

4
. (6.21)

From a variant of Fano’s inequality,

Pr(X∗ 6= M) ≥ 1−
1 + d1d2 max

X 6=X̃
D(Y ′

Ω|X || Y ′
Ω|X̃)

log |X | (6.22)

Denote

D = d1d2D(Y ′
Ω|X || Y ′

Ω|X̃) =
∑

(i,j)∈Ω
D(y′ij |xij || y′ij |x̃ij).

For each (i, j) ∈ Ω, D(y′ij|xij || y′ij |x̃ij) is either 0, D(g(α)||g(α′)) or D(g(α)||g(α′)), where

α′ = (1 − ν)α and we recall that xij , x̃ij can only take value from {α,α′}. It thus follows from

Lemma 6.8 that

D(y′ij|xij || y′ij|x̃ij) ≤
(g(α) − g(α′))2

g(α′)(1− g(α′))
,

242

since α′ < α. Now using the mean value theorem, we obtain

D ≤ n(g′(θ))2 (α− α′)2

g(α′)(1 − g(α′))
, for some θ ∈ [α′, α].

As we assumed that g′(x) is decreasing in (0,+∞), we get

D ≤ n(να)2

ρ−α′

≤ 64nǫ2

ρ−α′

.

Due to the construction, the cardinality of X equals to that of X ′
α/2,ν . Hence, combining (6.21)

and (6.22), we can show

1

4
≤ D + 1

log |X | ≤
16ν2

rd2

(
64nǫ2

ρ−α′

+ 1

)
≤ 1024ǫ2

α2rd2

(
64nǫ2

ρ−α′

+ 1

)
. (6.23)

Note that when 64nǫ2 ≤ ρ−α′ , we have

1

4
≤ 1024

2048ǫ2

α2rd2
,

implying α2rd2 ≤ 8 due to the definition of ǫ. This contradicts our assumption that α2rd2 ≥ C0 if

we specify C0 > 8.

When 64nǫ2 > ρ−α′ , then (6.23) suggests

1

4
≤ 1024 × 128 × nǫ4

ρ−α′α2rd2
,

which gives

ǫ2 >
α
√
ρ−α′

1024

√
rd2
n
.

Picking C2 = 1/1024 in the definition of ǫ and noting ρ−α′ ≥ ρ−0.75α yields a contradiction. There-

fore, (6.18) fails to hold with probability at least 3/4.

243

Bibliography

[1] Radosław Adamczak, Alexander E. Litvak, Alain Pajor, and Nicole Tomczak-Jaegermann.
Restricted isometry property of matrices with independent columns and neighborly polytopes
by random sampling. Constructive Approximation, 34(1):61–88, 2011.

[2] Alekh Agarwal, Sahand Negahban, and Martin J. Wainwright. Fast global convergence
of gradient methods for high-dimensional statistical recovery. The Annals of Statistics,
40(5):2452–2482, 2012.

[3] Matej Artač, Matjaž Jogan, and Aleš Leonardis. Incremental pca for on-line visual learning
and recognition. In Proceedings of the 16th International Conference on Pattern Recognition,
volume 3, pages 781–784, 2002.

[4] Haim Avron, Satyen Kale, Shiva Prasad Kasiviswanathan, and Vikas Sindhwani. Efficient
and practical stochastic subgradient descent for nuclear norm regularization. In Proceedings

of the 29th International Conference on Machine Learning, 2012.

[5] Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, and Ruth Urner. Efficient learning
of linear separators under bounded noise. In Proceedings of the 28th Conference on Learning

Theory, pages 167–190, 2015.

[6] Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, and Hongyang Zhang. Learning and
1-bit compressed sensing under asymmetric noise. In Proceedings of the 29th Conference on

Learning Theory, pages 152–192, 2016.

[7] Pranjal Awasthi, Maria-Florina Balcan, and Philip M. Long. The power of localization for
efficiently learning linear separators with noise. Journal of the ACM, 63(6):50:1–50:27, 2017.

[8] Bubacarr Bah and Jared Tanner. Improved bounds on restricted isometry constants for gaus-
sian matrices. SIAM Journal on Matrix Analysis Applications, 31(5):2882–2898, 2010.

[9] Bubacarr Bah and Jared Tanner. Bounds of restricted isometry constants in extreme asymp-
totics: Formulae for Gaussian matrices. Linear Algebra and its Applications, 441:88–109,
2014.

[10] Sohail Bahmani, Bhiksha Raj, and Petros T. Boufounos. Greedy sparsity-constrained opti-
mization. Journal of Machine Learning Research, 14(1):807–841, 2013.

[11] Maria-Florina Balcan and Hongyang Zhang. Noise-tolerant life-long matrix completion via
adaptive sampling. In Proceedings of the 30th Annual Conference on Neural Information

Processing Systems, pages 2955–2963, 2016.

244

[12] Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael B. Wakin. A simple
proof of the restricted isometry property for random matrices. Constructive Approximation,
28(3):253–263, 2008.

[13] Pierre C. Bellec, Guillaume Lecué, and Alexandre B. Tsybakov. Slope meets lasso: improved
oracle bounds and optimality. CoRR, abs/1605.08651, 2016.

[14] Dimitri P. Bertsekas. Nonlinear Programming. Massachusetts: Athena Scientific, 1999.

[15] Sonia A. Bhaskar. Probabilistic low-rank matrix completion from quantized measurements.
Journal of Machine Learning Research, 17(60):1–34, 2016.

[16] Srinadh Bhojanapalli, Anastasios Kyrillidis, and Sujay Sanghavi. Dropping convexity for
faster semi-definite optimization. In Proceedings of the 29th Conference on Learning Theory,
pages 530–582, 2016.

[17] Peter J. Bickel, Ya’acov Ritov, and Alexandre B. Tsybakov. Simultaneous analysis of lasso
and dantzig selector. The Annals of Statistics, pages 1705–1732, 2009.

[18] Jeffrey D. Blanchard and Jared Tanner. Performance comparisons of greedy algorithms in
compressed sensing. Numerical Linear Algebra with Applications, 22(2):254–282, 2015.

[19] Thomas Blumensath and Mike E. Davies. Iterative thresholding for sparse approximations.
Journal of Fourier Analysis and Applications, 14(5-6):629–654, 2008.

[20] Thomas Blumensath and Mike E. Davies. Iterative hard thresholding for compressed sensing.
Applied and Computational Harmonic Analysis, 27(3):265–274, 2009.

[21] J. Frédéric Bonnans and Alexander Shapiro. Optimization problems with perturbations: A
guided tour. SIAM Review, 40(2):228–264, 1998.

[22] Léon Bottou. Online learning and stochastic approximations. On-line learning in neural

networks, 17(9), 1998.

[23] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In Proceedings

of the 21st Annual Conference on Neural Information Processing Systems, pages 161–168,
2007.

[24] Jean-Luc Bouchot, Simon Foucart, and Pawel Hitczenko. Hard thresholding pursuit algo-
rithms: number of iterations. Applied and Computational Harmonic Analysis, 41(2):412–
435, 2016.

[25] Petros Boufounos and Richard G. Baraniuk. 1-bit compressive sensing. In Proceedings of

the 42nd Annual Conference on Information Sciences and Systems, pages 16–21, 2008.

[26] Samuel Burer and Renato D. C. Monteiro. Local minima and convergence in low-rank
semidefinite programming. Mathematical Programming, 103(3):427–444, 2005.

[27] Jian-Feng Cai, Emmanuel J. Candès, and Zuowei Shen. A singular value thresholding algo-
rithm for matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.

[28] T. Tony Cai and Lie Wang. Orthogonal matching pursuit for sparse signal recovery with
noise. IEEE Transactions on Information Theory, 57(7):4680–4688, 2011.

245

[29] Tony T. Cai, Lie Wang, and Guangwu Xu. New bounds for restricted isometry constants.
IEEE Transactions on Information Theory, 56(9):4388–4394, 2010.

[30] Tony T. Cai and Anru Zhang. Sharp RIP bound for sparse signal and low-rank matrix recov-
ery. Applied and Computational Harmonic Analysis, 35(1):74–93, 2013.

[31] Tony T. Cai and Wen-Xin Zhou. A max-norm constrained minimization approach to 1-bit
matrix completion. Journal of Machine Learning Research, 14(1):3619–3647, 2013.

[32] Tony T. Cai and Wen-Xin Zhou. Matrix completion via max-norm constrained optimization.
Electronic Journal of Statistics, 10(1):1493–1525, 2016.

[33] Emmanuel J. Candès. The restricted isometry property and its implications for compressed
sensing. Comptes Rendus Mathematique, 346(9):589–592, 2008.

[34] Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component
analysis? Journal of the ACM, 58(3):11:1–11:37, 2011.

[35] Emmanuel J. Candès and Yaniv Plan. Matrix completion with noise. Proceedings of the

IEEE, 98(6):925–936, 2010.

[36] Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex optimization.
Foundations of Computational Mathematics, 9(6):717–772, 2009.

[37] Emmanuel J. Candès and Terence Tao. Decoding by linear programming. IEEE Transactions

on Information Theory, 51(12):4203–4215, 2005.

[38] Emmanuel J. Candès and Terence Tao. The power of convex relaxation: near-optimal matrix
completion. IEEE Transactions on Information Theory, 56(5):2053–2080, 2010.

[39] Emmanuel J. Candès and Michael B. Wakin. An introduction to compressive sampling. IEEE

Signal Processing Magazine, 25(2):21–30, 2008.

[40] Venkat Chandrasekaran, Benjamin Recht, Pablo A. Parrilo, and Alan S. Willsky. The
convex geometry of linear inverse problems. Foundations of Computational Mathematics,
12(6):805–849, 2012.

[41] Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic decomposition
by basis pursuit. SIAM Journal on Scientific Computing, 20(1):33–61, 1998.

[42] Yudong Chen. Incoherence-optimal matrix completion. IEEE Transactions on Information

Theory, 61(5):2909–2923, 2015.

[43] Yudong Chen, Ali Jalali, Sujay Sanghavi, and Huan Xu. Clustering partially observed graphs
via convex optimization. Journal of Machine Learning Research, 15(1):2213–2238, 2014.

[44] Yudong Chen, Huan Xu, Constantine Caramanis, and Sujay Sanghavi. Matrix completion
with column manipulation: Near-optimal sample-robustness-rank tradeoffs. IEEE Transac-

tions on Information Theory, 62(1):503–526, 2016.

[45] Wei Dai and Olgica Milenkovic. Subspace pursuit for compressive sensing signal reconstruc-
tion. IEEE Transactions on Information Theory, 55(5):2230–2249, 2009.

246

[46] Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding algo-
rithm for linear inverse problems with a sparsity constraint. Communications on Pure and

Applied Mathematics, 57(11):1413–1457, 2004.

[47] Mark A. Davenport, Yaniv Plan, Ewout van den Berg, and Mary Wootters. 1-bit matrix
completion. Information and Inference, 3(3):189–223, 2014.

[48] Aaron Defazio, Francis R. Bach, and Simon Lacoste-Julien. SAGA: a fast incremental gra-
dient method with support for non-strongly convex composite objectives. In Proceedings of

the 28th Annual Conference on Neural Information Processing Systems, pages 1646–1654,
2014.

[49] David L. Donoho. De-noising by soft-thresholding. IEEE Transactions on Information The-

ory, 41(3):613–627, 1995.

[50] David L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306, 2006.

[51] David L. Donoho, Michael Elad, and Vladimir N. Temlyakov. Stable recovery of sparse
overcomplete representations in the presence of noise. IEEE Transactions on Information

Theory, 52(1):6–18, 2006.

[52] David L. Donoho, Iain Johnstone, and Andrea Montanari. Accurate prediction of phase
transitions in compressed sensing via a connection to minimax denoising. IEEE Transactions

on Information Theory, 59(6):3396–3433, 2013.

[53] David L. Donoho and Jared Tanner. Precise undersampling theorems. Proceedings of the

IEEE, 98(6):913–924, 2010.

[54] John C. Duchi and Yoram Singer. Efficient online and batch learning using forward backward
splitting. Journal of Machine Learning Research, 10:2899–2934, 2009.

[55] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression.
The Annals of statistics, 32(2):407–499, 2004.

[56] Ehsan Elhamifar and René Vidal. Sparse subspace clustering. In IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 2790–2797, 2009.

[57] Brian Eriksson, Laura Balzano, and Robert D. Nowak. High-rank matrix completion and
subspace clustering with missing data. CoRR, abs/1112.5629, 2011.

[58] Maryam Fazel, Haitham Hindi, and Stephen P. Boyd. A rank minimization heuristic with ap-
plication to minimum order system approximation. In Proceedings of the American Control

Conference, volume 6, pages 4734–4739, 2001.

[59] Jiashi Feng, Huan Xu, and Shuicheng Yan. Online robust PCA via stochastic optimization.
In Proceedings of the 27th Annual Conference on Neural Information Processing Systems,
pages 404–412, 2013.

[60] Simon Foucart. Hard thresholding pursuit: An algorithm for compressive sensing. SIAM

Journal on Numerical Analysis, 49(6):2543–2563, 2011.

247

[61] Simon Foucart. Sparse recovery algorithms: Sufficient conditions in terms of restricted isom-
etry constants. In Approximation Theory XIII: San Antonio 2010, pages 65–77. Springer, New
York, NY, 2012.

[62] Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive Sensing.
Applied and Numerical Harmonic Analysis. Birkhäuser, 2013.

[63] Rina Foygel, Nathan Srebro, and Ruslan Salakhutdinov. Matrix reconstruction with the local
max norm. In Proceedings of the 26th Annual Conference on Neural Information Processing

Systems, pages 944–952, 2012.

[64] Rong Ge, Jason D. Lee, and Tengyu Ma. Matrix completion has no spurious local minimum.
In Proceedings of the 30th Annual Conference on Neural Information Processing Systems,
pages 2973–2981, 2016.

[65] Sivakant Gopi, Praneeth Netrapalli, Prateek Jain, and Aditya V. Nori. One-bit compressed
sensing: Provable support and vector recovery. In Proceedings of the 30th International

Conference on Machine Learning, pages 154–162, 2013.

[66] David Gross. Recovering low-rank matrices from few coefficients in any basis. IEEE Trans-

actions on Information Theory, 57(3):1548–1566, 2011.

[67] Ankit Gupta, Robert D. Nowak, and Benjamin Recht. Sample complexity for 1-bit com-
pressed sensing and sparse classification. In Proceedings of the IEEE International Sympo-

sium on Information Theory, pages 1553–1557, 2010.

[68] Benjamin D. Haeffele, Eric Young, and René Vidal. Structured low-rank matrix factorization:
Optimality, algorithm, and applications to image processing. In Proceedings of the 31st

International Conference on Machine Learning, pages 2007–2015, 2014.

[69] Cho-Jui Hsieh and Peder A. Olsen. Nuclear norm minimization via active subspace selection.
In Proceedings of the 31st International Conference on Machine Learning, pages 575–583,
2014.

[70] Laurent Jacques, Jason N. Laska, Petros T. Boufounos, and Richard G. Baraniuk. Robust 1-
bit compressive sensing via binary stable embeddings of sparse vectors. IEEE Transactions

on Information Theory, 59(4):2082–2102, 2013.

[71] Martin Jaggi and Marek Sulovský. A simple algorithm for nuclear norm regularized prob-
lems. In Proceedings of the 27th International Conference on Machine Learning, pages
471–478, 2010.

[72] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using
alternating minimization. In Proceedings of the 45th Annual Symposium on the Theory of

Computing, pages 665–674, 2013.

[73] Prateek Jain, Ambuj Tewari, and Inderjit S. Dhillon. Orthogonal matching pursuit with re-
placement. In Proceedings of the 25th Annual Conference on Neural Information Processing

Systems, pages 1215–1223, 2011.

[74] Prateek Jain, Ambuj Tewari, and Inderjit S. Dhillon. Partial hard thresholding. IEEE Trans-

actions on Information Theory, 63(5):3029–3038, 2017.

248

[75] Prateek Jain, Ambuj Tewari, and Purushottam Kar. On iterative hard thresholding methods
for high-dimensional M-estimation. In Proceedings of the 28th Annual Conference on Neural

Information Processing Systems, pages 685–693, 2014.

[76] Ali Jalali and Nathan Srebro. Clustering using max-norm constrained optimization. In Pro-

ceedings of the 29th International Conference on Machine Learning, 2012.

[77] Chi Jin, Sham M. Kakade, and Praneeth Netrapalli. Provable efficient online matrix comple-
tion via non-convex stochastic gradient descent. In Proceedings of the 30th Annual Confer-

ence on Neural Information Processing Systems, pages 4520–4528, 2016.

[78] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive vari-
ance reduction. In Proceedings of the 27th Annual Conference on Neural Information Pro-

cessing Systems, pages 315–323, 2013.

[79] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2005.

[80] Raghunandan H. Keshavan, Andrea Montanari, and Sewoong Oh. Matrix completion from a
few entries. IEEE Transactions on Information Theory, 56(6):2980–2998, 2010.

[81] Raghunandan H. Keshavan, Andrea Montanari, and Sewoong Oh. Matrix completion from
noisy entries. Journal of Machine Learning Research, 11:2057–2078, 2010.

[82] Olga Klopp. Noisy low-rank matrix completion with general sampling distribution.
Bernoulli, 20(1):282–303, 2014.

[83] Karin Knudson, Rayan Saab, and Rachel Ward. One-bit compressive sensing with norm
estimation. IEEE Transactions on Information Theory, 62(5):2748–2758, 2016.

[84] Jean Lafond. Low rank matrix completion with exponential family noise. In Proceedings of

the 28th Conference on Learning Theory, pages 1224–1243, 2015.

[85] John Langford, Lihong Li, and Tong Zhang. Sparse online learning via truncated gradient.
Journal of Machine Learning Research, 10:777–801, 2009.

[86] Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: Isoperimetry and

Processes. Springer-Verlag Berlin Heidelberg, 1991.

[87] Jason D. Lee, Ben Recht, Ruslan Salakhutdinov, Nathan Srebro, and Joel A. Tropp. Practical
large-scale optimization for max-norm regularization. In Proceedings of the 24th Annual

Conference on Neural Information Processing Systems, pages 1297–1305, 2010.

[88] Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. Gradient descent
only converges to minimizers. In Proceedings of the 29th Conference on Learning Theory,
pages 1246–1257, 2016.

[89] Ping Li, Cun-Hui Zhang, and Tong Zhang. Compressed counting meets compressed sensing.
In Proceedings of The 27th Conference on Learning Theory, pages 1058–1077, 2014.

[90] Zhouchen Lin, Minming Chen, and Yi Ma. The augmented lagrange multiplier method for
exact recovery of corrupted low-rank matrices. CoRR, abs/1009.5055, 2010.

249

[91] Guangcan Liu and Ping Li. Recovery of coherent data via low-rank dictionary pursuit. In
Proceedings of the 28th Annual Conference on Neural Information Processing Systems, pages
1206–1214, 2014.

[92] Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi Ma. Robust recovery
of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 35(1):171–184, 2013.

[93] Guangcan Liu, Zhouchen Lin, and Yong Yu. Robust subspace segmentation by low-rank
representation. In Proceedings of the 27th International Conference on Machine Learning,
pages 663–670, 2010.

[94] Po-Ling Loh and Martin J. Wainwright. High-dimensional regression with noisy and missing
data: Provable guarantees with non-convexity. The Annals of Statistics, 40(3):1637–1664,
2012.

[95] Po-Ling Loh and Martin J. Wainwright. Regularized m-estimators with nonconvexity: sta-
tistical and algorithmic theory for local optima. Journal of Machine Learning Research,
16:559–616, 2015.

[96] Po-Ling Loh and Martin J. Wainwright. Support recovery without incoherence: A case for
nonconvex regularization. The Annals of Statistics, 45(6):2455–2482, 2017.

[97] Zongming Ma. Sparse principal component analysis and iterative thresholding. The Annals

of Statistics, 41(2):772–801, 2013.

[98] Julien Mairal. Stochastic majorization-minimization algorithms for large-scale optimization.
In Proceedings of the 27th Annual Conference on Neural Information Processing Systems,
pages 2283–2291, 2013.

[99] Julien Mairal, Francis R. Bach, Jean Ponce, and Guillermo Sapiro. Online learning for matrix
factorization and sparse coding. Journal of Machine Learning Research, 11:19–60, 2010.

[100] Pascal Massart and Élodie Nédélec. Risk bounds for statistical learning. The Annals of

Statistics, pages 2326–2366, 2006.

[101] Qun Mo. A sharp restricted isometry constant bound of orthogonal matching pursuit. CoRR,
abs/1501.01708, 2015.

[102] Qun Mo and Yi Shen. A remark on the restricted isometry property in orthogonal matching
pursuit. IEEE Transactions on Information Theory, 58(6):3654–3656, 2012.

[103] Deanna Needell and Joel A. Tropp. CoSaMP: Iterative signal recovery from incomplete and
inaccurate samples. Applied and Computational Harmonic Analysis, 26(3):301–321, 2009.

[104] Deanna Needell and Roman Vershynin. Signal recovery from incomplete and inaccurate
measurements via regularized orthogonal matching pursuit. IEEE Journal of Selected Topics

in Signal Processing, 4(2):310–316, 2010.

[105] Sahand Negahban, Pradeep Ravikumar, Martin J. Wainwright, and Bin Yu. A unified frame-
work for high-dimensional analysis ofM -estimators with decomposable regularizers. In Pro-

ceedings of the 23rd Annual Conference on Neural Information Processing Systems, pages
1348–1356, 2009.

250

[106] Sahand Negahban and Martin J. Wainwright. Restricted strong convexity and weighted
matrix completion: Optimal bounds with noise. Journal of Machine Learning Research,
13:1665–1697, 2012.

[107] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, volume 87
of Applied Optimization. Springer US, 2004.

[108] Behnam Neyshabur, Yury Makarychev, and Nathan Srebro. Clustering, hamming embedding,
generalized LSH and the max norm. In Proceedings of the 25th International Conference on

Algorithmic Learning Theory, pages 306–320, 2014.

[109] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an
algorithm. In Proceedings of the 15th Annual Conference on Neural Information Processing

Systems, pages 849–856, 2001.

[110] Nam H. Nguyen, Deanna Needell, and Tina Woolf. Linear convergence of stochastic iterative
greedy algorithms with sparse constraints. CoRR, abs/1407.0088, 2014.

[111] Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete basis set: A
strategy employed by V1? Vision research, 37(23):3311–3325, 1997.

[112] Francesco Orabona, Andreas Argyriou, and Nathan Srebro. PRISMA: PRoximal Iterative
SMoothing Algorithm. CoRR, abs/1206.2372, 2012.

[113] Stanley Osher, Feng Ruan, Jiechao Xiong, Yuan Yao, and Wotao Yin. Sparse recovery via dif-
ferential inclusions. Applied and Computational Harmonic Analysis, 41(2):436–469, 2016.

[114] Art Owen and Yi Zhou. Safe and effective importance sampling. Journal of the American

Statistical Association, 95(449):135–143, 2000.

[115] Yagyensh C. Pati, Ramin Rezaiifar, and Perinkulam S. Krishnaprasad. Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet decomposition. In
Conference Record of The 27th Asilomar Conference on Signals, Systems and Computers,
pages 40–44, 1993.

[116] Yaniv Plan and Roman Vershynin. Robust 1-bit compressed sensing and sparse logistic re-
gression: A convex programming approach. IEEE Transactions on Information Theory,
59(1):482–494, 2013.

[117] Yaniv Plan, Roman Vershynin, and Elena Yudovina. High-dimensional estimation with geo-
metric constraints. Information and Inference, 6(1):1–40, 2017.

[118] Garvesh Raskutti, Martin J. Wainwright, and Bin Yu. Restricted eigenvalue properties for
correlated gaussian designs. Journal of Machine Learning Research, 11:2241–2259, 2010.

[119] Garvesh Raskutti, Martin J. Wainwright, and Bin Yu. Minimax rates of estimation for
high-dimensional linear regression over ℓq-balls. IEEE Transactions on Information The-

ory, 57(10):6976–6994, 2011.

[120] Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed minimum-rank solutions
of linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471–501,
2010.

251

[121] Jason D. M. Rennie and Nathan Srebro. Fast maximum margin matrix factorization for
collaborative prediction. In Proceedings of the 22nd International Conference on Machine

Learning, pages 713–719, 2005.

[122] Peter Richtárik and Martin Takác. Iteration complexity of randomized block-coordinate de-
scent methods for minimizing a composite function. Mathematical Programming, 144(1-
2):1–38, 2014.

[123] Frank Rosenblatt. The perceptron: A probabilistic model for information storage and orga-
nization in the brain. Psychological review, 65(6):386–408, 1958.

[124] Nicolas Le Roux, Mark W. Schmidt, and Francis R. Bach. A stochastic gradient method with
an exponential convergence rate for finite training sets. In Proceedings of the 26th Annual

Conference on Neural Information Processing Systems, pages 2672–2680, 2012.

[125] Mark Rudelson and Shuheng Zhou. Reconstruction from anisotropic random measurements.
IEEE Transactions on Information Theory, 59(6):3434–3447, 2013.

[126] Ruslan Salakhutdinov and Nathan Srebro. Collaborative filtering in a non-uniform world:
Learning with the weighted trace norm. In Proceedings of the 24th Annual Conference on

Neural Information Processing Systems, pages 2056–2064, 2010.

[127] Yoav Seginer. The expected norm of random matrices. Combinatorics, Probability & Com-

puting, 9(2):149–166, 2000.

[128] Jie Shen and Ping Li. Learning structured low-rank representation via matrix factorization.
In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics,
pages 500–509, 2016.

[129] Jie Shen and Ping Li. On the iteration complexity of support recovery via hard thresholding
pursuit. In Proceedings of the 34th International Conference on Machine Learning, pages
3115–3124, 2017.

[130] Jie Shen and Ping Li. Partial hard thresholding: Towards a principled analysis of support
recovery. In Proceedings of the 31st Annual Conference on Neural Information Processing

Systems, pages 3127–3137, 2017.

[131] Jie Shen and Ping Li. A tight bound of hard thresholding. Journal of Machine Learning

Research, 18(208):1–42, 2018.

[132] Jie Shen, Ping Li, and Huan Xu. Online low-rank subspace clustering by basis dictionary
pursuit. In Proceedings of the 33rd International Conference on Machine Learning, pages
622–631, 2016.

[133] Jie Shen, Huan Xu, and Ping Li. Online optimization for max-norm regularization. In Pro-

ceedings of the 28th Annual Conference on Neural Information Processing Systems, pages
1718–1726, 2014.

[134] Jie Shen, Huan Xu, and Ping Li. Online optimization for max-norm regularization. Machine

Learning, 106(3):419–457, 2017.

[135] Martin Slawski and Ping Li. Linear signal recovery from b-bit-quantized linear measure-
ments: precise analysis of the trade-off between bit depth and number of measurements.
CoRR, abs/1607.02649, 2016.

252

[136] Mahdi Soltanolkotabi and Emmanuel J. Candès. A geometric analysis of subspace clustering
with outliers. The Annals of Statistics, 40:2195–2238, 2012.

[137] Mahdi Soltanolkotabi, Ehsan Elhamifar, and Emmanuel J. Candès. Robust subspace cluster-
ing. The Annals of Statistics, 42(2):669–699, 2014.

[138] Nathan Srebro, Jason D. M. Rennie, and Tommi S. Jaakkola. Maximum-margin matrix fac-
torization. In Proceedings of the 18th Annual Conference on Neural Information Processing

Systems, pages 1329–1336, 2004.

[139] Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In Proceedings of the

18th Annual Conference on Learning Theory, pages 545–560, 2005.

[140] Robert Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal

Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[141] Joel A. Tropp. Greed is good: algorithmic results for sparse approximation. IEEE Transac-

tions on Information Theory, 50(10):2231–2242, 2004.

[142] Joel A. Tropp and Anna C. Gilbert. Signal recovery from random measurements via or-
thogonal matching pursuit. IEEE Transactions on Information Theory, 53(12):4655–4666,
2007.

[143] Joel A. Tropp and Stephen J. Wright. Computational methods for sparse solution of linear
inverse problems. Proceedings of the IEEE, 98(6):948–958, 2010.

[144] Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge University Press, 2000.

[145] René Vidal. A tutorial on subspace clustering. IEEE Signal Processing Magazine, 28(2):52–
68, 2010.

[146] Martin J. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery
using ℓ1-constrained quadratic programming (Lasso). IEEE Transactions on Information

Theory, 55(5):2183–2202, 2009.

[147] Huahua Wang and Arindam Banerjee. Randomized block coordinate descent for online and
stochastic optimization. CoRR, abs/1407.0107, 2014.

[148] Jian Wang, Suhyuk Kwon, Ping Li, and Byonghyo Shim. Recovery of sparse signals via
generalized orthogonal matching pursuit: A new analysis. IEEE Transactions on Signal

Processing, 64(4):1076–1089, 2016.

[149] Jian Wang and Byonghyo Shim. On the recovery limit of sparse signals using orthogonal
matching pursuit. IEEE Transactions on Signal Processing, 60(9):4973–4976, 2012.

[150] Yu-Xiang Wang, Huan Xu, and Chenlei Leng. Provable subspace clustering: When LRR
meets SSC. In Proceedings of 27th Annual Conference on Neural Information Processing

Systems, pages 64–72, 2013.

[151] Lin Xiao. Dual averaging methods for regularized stochastic learning and online optimiza-
tion. Journal of Machine Learning Research, 11:2543–2596, 2010.

[152] Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance
reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

253

[153] Huan Xu, Constantine Caramanis, and Shie Mannor. Principal component analysis with
contaminated data: The high dimensional case. In Proceedings of the 23rd Conference on

Learning Theory, pages 490–502, 2010.

[154] Huan Xu, Constantine Caramanis, and Shie Mannor. Outlier-robust PCA: the high-
dimensional case. IEEE Transactions on Information Theory, 59(1):546–572, 2013.

[155] Huan Xu, Constantine Caramanis, and Sujay Sanghavi. Robust PCA via outlier pursuit. IEEE

Transactions on Information Theory, 58(5):3047–3064, 2012.

[156] Songbai Yan and Chicheng Zhang. Revisiting perceptron: Efficient and label-optimal learn-
ing of halfspaces. In Proceedings of the 31st Annual Conference on Neural Information

Processing Systems, pages 1056–1066, 2017.

[157] Ming Yuan and Yi Lin. On the non-negative garrotte estimator. Journal of the Royal Statis-

tical Society: Series B (Statistical Methodology), 69(2):143–161, 2007.

[158] Xiao-Tong Yuan, Ping Li, and Tong Zhang. Exact recovery of hard thresholding pursuit.
In Proceedings of the 30th Annual Conference on Neural Information Processing Systems,
pages 3558–3566, 2016.

[159] Xiao-Tong Yuan, Ping Li, and Tong Zhang. Gradient hard thresholding pursuit. Journal of

Machine Learning Research, 18(166):1–43, 2018.

[160] Xiao-Tong Yuan and Tong Zhang. Truncated power method for sparse eigenvalue problems.
Journal of Machine Learning Research, 14(1):899–925, 2013.

[161] Tong Zhang. On the consistency of feature selection using greedy least squares regression.
Journal of Machine Learning Research, 10:555–568, 2009.

[162] Tong Zhang. Some sharp performance bounds for least squares regression with L1 regular-
ization. The Annals of Statistics, 37(5A):2109–2144, 2009.

[163] Tong Zhang. Sparse recovery with orthogonal matching pursuit under RIP. IEEE Transac-

tions on Information Theory, 57(9):6215–6221, 2011.

[164] Peng Zhao and Bin Yu. On model selection consistency of lasso. Journal of Machine Learn-

ing Research, 7:2541–2563, 2006.

[165] Zihan Zhou, Xiaodong Li, John Wright, Emmanuel J. Candès, and Yi Ma. Stable principal
component pursuit. In Proceedings of the 2010 IEEE International Symposium on Informa-

tion Theory, pages 1518–1522, 2010.

