Abstract

We present a new approach that uses compiler-directed fault-injection for coverage testing of recovery code in Internet services, to evaluate their robustness to operating system and I/O hardware faults. We define a set of program-fault coverage metrics that enable quantification of Java catch blocks exercised during fault-injection experiments. We use compiler analyses to instrument application code in two ways: to direct fault injection to occur at appropriate points during execution, and to measure the resulting coverage. As a proof of concept for these ideas, we have applied our techniques manually to Muffin, a proxy server; we obtained a high degree of coverage of catch blocks, with on average 85% of the expected faults per catch being experienced as caught exceptions.

1 Introduction

Internet services are increasingly becoming a part of our everyday life because of their promise to provide information anywhere, at any time. A number of researchers have recently observed, however, that current Internet services typically only achieve from 99% to 99.9% availability [Gra, ABB+02]. In contrast, the public telephone system, a system that we assume works anywhere, at any time, achieves around 99.999% availability [Gra]. This difference is highlighted by the prominence of news articles about failures of Internet services [Ele99, Reu99, Sil00, Swe00].

Currently Internet services are often constructed from Commercial Off The Shelf (COTS) software to meet short time deadlines and cost constraints. These COTS components may have been designed and implemented by diverse organizations using different coding and testing standards and methodologies. Therefore, ensuring the availability of such codes becomes the responsibility of the organization using them to build services. To exacerbate the problem, current tools are typically inadequate for testing fault detection and recovery code. Thus, the software is typically tested for functionality and performance, rather than availability, resulting in the current state of high unavailability.
In this paper, we argue that compiler analysis of application source or bytecode provides a powerful tool that can be applied to the problem of increasing the availability of Internet services. In particular, we explore a systematic technique for using compiler analyses to direct fault injection and measure the resulting coverage of recovery code. Our technique is designed to help testers identify faults to which the software is vulnerable\(^1\), identify the location of the vulnerabilities in the code, and observe how the software handles the faults when they are injected to test vulnerabilities. Our approach is motivated, in part, by the observation that infrequently executed code exhibits a higher failure rate than frequently executed code [HC94].

We focus on analyzing the ability of software to handle hardware and operating system faults; we leave the testing of functionality vs. requirements to traditional testing techniques. We concentrate on I/O hardware faults since they are much more common than CPU or memory faults [TP99, KKI99]. We also focus on resource exhaustion faults and faults due to corruption of operating system data structures by bugs in the operating system. Our approach can be applied to software components as well as entire programs.

While many different approaches to fault injection have been developed and studied [CCH+99, DJM96, HSR95, KKA92, SVS+88], in a software engineering context all these efforts suffer from a fundamental limitation. Specifically, they have led to a probabilistic analysis that describes the likelihood that a program or software component can deliver correct service under specific fault and work loads [ACC+93], treating the application as a black box which only can be tested in terms of its observable behavior in response to inputs. While this probabilistic reasoning is necessary to produce dependable software, it is not sufficient for software designers and testers to understand how programming constructs, such as methods and statements, are affected by faults, nor does it ensure exercise of recovery code. For example, a tester may want to know how many different operations in the code can be affected by the same fault and if all these operations have been exercised through testing. When performing a fault-injection experiment, the system should allow the tester to know if a fault triggered an error and consequently the execution of specific error detection and handling code. In particular, if the program reads the disk in many different places, how can the tester identify all of these vulnerable operations and test them against appropriate disk faults?

We address this issue by using compiler analyses to identify code blocks that are vulnerable to faults, inserting instrumentation that directs the fault-injection infrastructure to inject the appropriate faults at these vulnerable operations, and tabulating coverage according to a metric that will be introduced in Section 2. In essence, we propose the adoption of what the software engineering community calls a white box testing approach [Bin99, Mar95, Mye79], where we use the compiler to look inside of software components to

\(^1\)Software is vulnerable to a fault if it performs some operation that can trigger the fault, leading to an error. For example, an application that uses the network, but does not use the disk, is vulnerable to network faults, but not disk faults.
help the tester use a fault-injection infrastructure to maximal effect. This is similar to a number of software engineering approaches that examine the code to measure test coverage in terms of program constructs such as branches, statements and definitions-uses of variables [RW85, Bin99, Mar95, Mye79]; these measures try to quantify how many of these application constructs have been exercised by the testing process. In our case, we will concentrate on services (and/or components) developed in Java, and so the program constructs of interest are try/catch blocks.

We aim our work at Java-based services for many reasons. First, unlike C where programming convention often overloads the return mechanism to describe errors, Java contains well-defined program-level constructs, exceptions, that respond to error conditions [AG97]. This facilitates both the construction and analysis of error recovery. Second, a Java program which may experience fault-induced errors cannot be written without inclusion of the appropriate code to handle exceptional conditions. Third, Java is used increasingly in building dependable systems, in particular in the context of large-scale servers. Finally, the platform independence of Java, its portable program representation, (i.e., bytecode), and its defined JDK [SM] libraries make software reuse via COTS components easier and more desirable than for languages such as C and C++.

Contributions: In this paper, we define the problem of testing Java-based Internet services to improve availability, using a white box technique. We present our advances over the current state-of-the-art below.

- We explore the connection between fault injection and coverage of program-recovery code in a layered system, defining the problems that must be addressed;
- We define a white box coverage metric for testing fault-recovery code in Java applications;
- We describe compile-time techniques to automatically instrument Java code to
 - direct a fault-injection infrastructure to inject faults at appropriate points in the execution of the program to exercise specific pieces of fault-recovery code, and
 - measure the faults and corresponding recovery code covered by a given test;

This work includes the definition of an API for communication between the compiler-inserted instrumentation and a fault-injection engine;

- We present a feasibility study in which we have manually instrumented a sample benchmark to test for recovery from a set of faults. We achieve 100% coverage of four of the seven catch blocks where faults were injected, with an on average fraction per catch of approximately 85% of the expected faults actually being experienced as caught exceptions.

Overview: In Section 2, we present several possible white box definitions of fault coverage and give our reasons for selecting the metric we use in this work. In Section 3 we present our analyses used to instrument
Java applications to measure coverage and direct fault injection. We describe the API we have defined for communication between the compiler and Mendosus [LMN+02], the specific fault-injection engine that we use for this study. In Section 4, we give the results of our initial test of our approach on a single benchmark, Muffin, a proxy server. Our study was accomplished through manual application of our compiler algorithms and use of the modified version of Mendosus. Finally, in Sections 5 and 6, we discuss related work and give our conclusions.

2 Defining Coverage for Fault-recovery Code in Java Programs

Before giving our definition of coverage for fault-recovery code of Java programs, we first review prior uses of the term coverage and discuss the relation between operating system/hardware faults, Java exceptions, and exception handlers in the application. After this background, we discuss possible coverage metric choices and give our reasons for selecting the one we use in our experiments. We conclude this section with a discussion of some issues related to the measurement of coverage.

2.1 Comparing Definitions of Coverage

Both the dependability and software engineering communities have precise definitions for the term coverage; however, they use this term in very different ways. In the dependability context, coverage is defined as the conditional probability that the system properly processes a fault, given that the specific fault occurs [BCS69]. Later work included the assumption that the fault was activated in the probabilistic definition [ACC+93]. A number of modeling and analysis strategies naturally arise from this definition. First, coverage can be mathematically represented as probability density and cumulative density functions (PDF and CDFs). Second, these functions can be transformed into probability density over time and cumulative density over time, leading to a range of analyses using stochastic process models (e.g., [DT89]). These models can describe the impact that coverage has on the expected time to enter a failure state under a given fault load, and the amount of redundancy necessary to achieve targeted levels of availability and performance.

By contrast, the software engineering community uses a fundamentally different definition of coverage. In this context, coverage is defined as the fraction of the application that has been exercised by a given test in terms of specific programming constructs including statements and branches. For example, all-branch coverage ensures that every branch in a program (e.g., exits from an if statement) is traversed at least once during testing. Similarly, all-statement coverage guarantees that every statement in the program has been executed at least once during testing. Another set of constructs, based on dataflow, traces values from their
definition point to their subsequent usage, that is, *def-use* coverage [RW85]. The *all-defs* coverage metric requires that tests cover one path between each value-setting operation and a use of that value [RW85]; this is to ensure that errors due to incorrect flow of data values are handled properly. The all-defs metric is the traditional dataflow metric most closely related to the new metric we define for fault coverage in Section 2.3. A hierarchy of def-use coverage metrics has been defined; these vary in power, in the sense that one has more confidence in the correctness of a program tested using a higher coverage metric than a lower one.

For the remainder of this paper, we call the definitions based on conditional probability *fault coverage* and the software engineering definitions, *program coverage*. One of our primary goals in this work is to define a metric for program coverage as it relates to faults and fault-recovery code. This will be called a *program-fault coverage* metric because it measures the fraction of the program run in response to a fault load. Some of the program-fault metrics we define for complete applications (see Section 2.4) are reminiscent of the conditional probability definitions used in the dependability community, but our metrics describe the coverage of combinations of recovery-code blocks and fault types, not the fraction of actual faults that were handled.

2.2 Relating Faults to Exceptions

The software engineering program-coverage metrics are motivated by a desire to know what parts of the application have been explored by the testing process. Since we are measuring the response of a Java application to faults that are returned by the operating system or I/O hardware (e.g., disk errors or bad data from the network), we focus our attention on Java exception handling code. The challenge is to map lower-level faults to program-level exceptions and find their corresponding program-level exception handlers. In the rest of this paper we use the terms *exception* and *exception handler* to refer to these program-level constructs.

In order to explore the relations between faults, exceptions and exception handlers, we present the following simplified discussion of Java exception handling. For details, see [AG97]. In Java, operations and method calls generally indicate the presence of errors by throwing an exception instead of returning a value. Code that can throw an exception may be enclosed within a *try* block with one or more associated *catch* blocks, each of which identifies the type of exception it can handle. If an operation in the *try* block throws an exception, program control is transferred directly to a *catch* block with matching exception type. Java’s subtyping rules can be used to write *catch* blocks that will be triggered by multiple types of exceptions; a *catch (Exception e)* matches any type of thrown exception.

For example, a programmer may enclose a sequence of operations that read from a file within a *try*
block that has an associated catch of IOException (or a more general catch of Exception) containing code to recover from file read errors. If any of the read operations encounters an error and throws IOException, the program will go directly to that catch block.

Exception handling code may be located either in the method performing a vulnerable operation or in some method which directly (or indirectly) calls this method. When an exception is thrown, the JVM searches for an appropriate catch, beginning in the method performing the throw, and, if necessary, working “backwards” to a caller method containing the handling code. All of the exceptions we discuss are classified by Java as checked exceptions, meaning that methods which contain vulnerable operations that may trigger these exceptions, need either to handle them or to pass them explicitly “backwards” to a caller to handle [AG97].

A Java operation may be vulnerable to a variety of faults, and the exception generated may depend on both the fault and the operation. For example, reads and writes exposed to faults that produce the operating system error code NET_EAGAIN may cause different exceptions (namely, IOException and SocketException). In contrast, the error codes NET_EPIPE and NET_EFAULT can both result in SocketException. (See Section 4 for more details on specific faults.) So the relation between faults and exceptions can be one-to-many or many-to-one. There is generally a unique Java exception for any specific fault-operation pair, but our approach does not rely on this fact.

Our techniques make use of a table mapping fault-operation pairs to (one or more) exceptions. Unfortunately, the construction and use of this table are both complicated by the layers of software between the hardware and the application being tested (such as device drivers, the operating system, and the Java Virtual Machine (JVM)). These layers can have a dramatic impact the way in which low-level faults translate into exceptions at the program level.

In the simplest case, a fault can cause an immediate exception, and thus direct control to the appropriate catch block for a vulnerable operation that was executed while the fault was activated.

In some cases, recovery strategies at a lower level of the system can entirely prevent a higher-level layer from observing a fault activation. For example, at the operating system level, the time out and retry of a TCP socket can easily mask transient hardware link errors, and thus no application-level SocketException is ever thrown. Likewise, a mirrored file system can hide many types of SCSI disk errors from the JVM. This effect must be considered in the construction of our mapping of fault-operation pairs to exceptions, and our coverage metric (defined in Section 2.3) accounts for this kind of lower-level fault handling.

Additionally, layering may cause latent errors. For example, input buffering can allow numerous disk

2Java also has unchecked exceptions such as NullPointerException that do not need explicit handling.
reads to succeed after a fault, until all buffered data have been consumed; at that point, if the fault is still active, a later read may throw an exception. Likewise, the JVM may not observe socket exceptions for minutes, even in the face of total link failure, because TCP attempts numerous retries in the face of lost packets. In this case, data that was written during the time of the fault may be lost, without causing any exception (there may not be any more I/O operations by the time TCP gives up). The potential for latent errors influences the interpretation of our run-time collection of coverage data, in that we cannot assume that exceptions caused by a fault that occurs during the execution of a given try block will necessarily appear in the expected catch of that particular try.

2.3 Fault-Catch Coverage

Given the complex relationship between faults and exceptions, we envision that any given testing effort would begin by defining an explicit universe of faults to be studied, which we call F. Each catch block in the program can potentially be triggered by some subset 3 of F that we call f. On a given test run, some subset of f, which we call e, will actually trigger this catch.

The program-fault coverage metric we have chosen for our work is somewhat analogous to the all-defs metric, but with faults playing the role of potentially defining error states, and catch blocks “using” the error states to perform a recovery action. We first define a metric for a single catch, and leave discussion of metrics for larger regions of code for Section 2.4.

Definition (Fault-catch Coverage Metric): Given a single catch block c that can potentially be triggered by a subset f of the fault universe F, and a set of test runs t in which fault set $e \subseteq f$ trigger exceptions that reach c, the Fault-catch Coverage of c by t is $\frac{|e|}{|f|}$.

We chose this definition over several other possibilities for a variety of reasons. Perhaps the simplest definition of coverage would be to see if all catch blocks, or all statements of all catch blocks, have been executed by a test; these definitions are basically analogous to the traditional all-statement program-coverage metric. However, a single catch can be triggered by many different faults or exceptions, and under this definition we might obtain a high coverage measure without actually testing the response of the application to a large set of faults.

This same problem of failing to test the response to a particular fault could occur if we measure the

3This subset will exclude any faults that are not related to the operations in the associated try (i.e. the subset for a catch corresponding to a try with no I/O operations would not include IOException). Furthermore, we also exclude faults that will be handled by lower layers of software (or hardware). The tester may also choose to exclude faults that are not relevant due to program usage.
coverage of pairings of exceptions and catch blocks. Furthermore, if the code must respond differently to various exceptions, the programmer will typically write several catch blocks, and our definition will identify some of these as not covered if the corresponding exceptions have not been raised.

We could also define coverage in terms of pairings of catch blocks and program points at which faults (or exceptions) can occur. Under this definition, a catch block following a try block containing eight statements that read from a file would need to be executed at least eight times (or, perhaps, $8f$ times) to be considered fully tested. If we require each statement in the try to be tested for each of the f faults, this definition is stricter than ours (in that the software must be tested at least as much to be considered fully tested). However, we believe it would focus attention on issues that are typically irrelevant (i.e., testing a fault in each read statement) rather than fundamental issues (i.e., testing each kind of fault).

There are several intermediate points between our fault-catch definition and the extremely strong definition suggested above. We could require a test involving each fault and a test involving each source statement ($\max(|S|, |f|)$ tests in the previous example). Another possible middle ground is an object-oriented definition: require a test for each fault for each object that could be involved (if three of the eight reads use one file, and the remaining five a second file, this would require $2|\mathcal{S}|$ tests). We leave investigation of these options for future work.

In all of these discussions, our knowledge of which exceptions can possibly be handled by which catch blocks is derived from a static representation of the Java source or bytecodes, rather than data from the executing program. Therefore, we are making the usual assumption of compile-time program analysis, namely, that every static path in the program representation is actually executable. This may not be the case, so that if we use a def-use type coverage metric from exception occurrence site to catch block, then we may include some infeasible def-use relations, which can never be covered. This is a common problem in software testing as well; it is addressed by using as precise as possible program analysis to eliminate infeasible paths where possible and by human examination.

2.4 Aggregating and Reporting Coverage Results

There are several ways to produce aggregate information about code that contains many catch blocks, such as an entire application, a library, or a new unit of code that is being added to a working application. Consider code with n catch blocks c_1, c_2, \ldots, c_n, in which c_i can be triggered by fault set f_i, and a test t in which faults in set e_i have each produced an exception that reaches c_i.

Definition (Average Fault-catch Coverage): The average of all the ratios $\frac{|e_i|}{|f_i|}$.
Definition (Overall Fault-catch Coverage): The ratio of the total numbers of tested and possible faults,
\[\frac{\sum_{i=1}^{n} |e_i|}{\sum_{i=1}^{n} |f_i|} \]

Definition (Fraction of Covered Catches): The fraction of the catches for which \(|e_i| = |f_i|\).

We leave as an open question under what circumstances different aggregate measures are best, because we strongly suspect that no single aggregate will capture all user needs. We therefore envision the use of a language-aware software tool (such as the Eclipse IDE [ecl]) that could maintain the raw data about vulnerable operations, faults injected, thrown exceptions and covered catches. This tool could then present whatever metric is chosen by the tester, or even help the tester identify inadequately tested catch blocks or faults for which little testing has been done.

2.5 Measuring Fault-catch Coverage

The set of faults that may be associated with each catch does not vary from test to test, and can thus be computed statically. Unfortunately, an analysis based on the type of exception declared in the catch could produce a dramatic overestimate of \(f_i\) for many catches, since the declared type may be a supertype that subsumes many exceptions that cannot actually be thrown. This same effect applies to the exception types declared by methods called in the try block. Thus, to overestimate as little as possible, we perform an interprocedural analysis of the code in the try block. Intuitively, using the calling structure of the program, we find a primitive operation that actually throws an exception and then propagate it backwards on the calling structure to find its list of callers, stopping at the “nearest” try block. Details of this analysis are left for Section 3.

Information about the faults that actually trigger each catch must be collected separately for each run. We do this by instrumenting each catch block to record its identifier, the class of exception that reached it, and the fault associated with the exception. We do not currently record the source (e.g., throw) of the exception, but we could in principle do so using the JDK method `Throwable.printStackTrace()`.

Note that our current experimental system simply records the fault that is currently being injected. This requires communication with the fault-injection engine (see Section 3.2), and is most easily accomplished if there is never more than one (simultaneous) fault injected (as in the experiment in Section 4). Furthermore, our current system cannot actually guarantee that the injected fault caused the exception. For example, if we inject a disk fault in one block, but the disk fails (or produces an IOException) in some other way, we will record that the injected fault reached the catch block. If this proves to be a problem, we will explore systems for tracking information about injected faults across the program/system boundary.
3 Injecting Faults to Improve Coverage

We now consider how the compiler can instrument application code to communicate with a fault-injection engine at run-time, in order to direct the fault-injection process to obtain high program-fault coverage as measured by our metric. Specifically, we use Mendosus as our fault-injection infrastructure, but our approach is generally applicable to a wide variety of fault-injection systems. We choose Mendosus because it can produce error conditions returned by the operating system as well as I/O hardware faults. Mendosus can also emulate different network configurations (i.e., different target platforms) and generate system-wide faults such as a switch failure.

For this work, we have extended Mendosus with an API for dynamic external direction as to when specific faults should be injected. Previously, Mendosus injected faults according to a pre-determined script comprised of traces and/or random distributions. Our basic approach currently is to identify a statement inside a try block, where the software has committed to the execution of some vulnerable operation (such as a read from a file), but before the operation itself is performed. At this program point, we insert instrumentation to select an appropriate fault and to direct Mendosus to inject this fault, using the API described in Section 3.2. Once execution reaches the corresponding catch block, or the end of the try block, we direct Mendosus to cancel the injected fault.

In many cases, our fault-injection instrumentation can be placed immediately before the vulnerable operation, just as a fault could be emulated by throwing an exception in (or instead of) the operation itself. In general, however, Mendosus may require advanced warning of the fault to be injected, in case it impacts multiple nodes in a distributed application. For this reason, we move the instrumentation backward in the code as far as we can, possibly all the way to the beginning of the try block, although no farther because we want to plant the fault only when it has a chance of exercising the specific catch block of interest to obtain coverage. In the future, we may investigate the use of profiling techniques to provide an estimate, for specific program points, of the amount of time until the vulnerable operation will be triggered; it is not clear that accurate timing information will be needed.

3.1 Compiler Analyses

Two dataflow analyses allow us to accomplish both the communication with Mendosus and the recording of the fault-catch coverage achieved. Both are performed on Java bytecodes, so we can apply them whether or not source code is available. The first analysis, exception handler analysis, essentially traces backwards from an excepting operation (or call) in the Java code to its handler which will be on the call stack when
the exception occurs. The second analysis, *resource points-to analysis*, finds all objects reachable from the (fields of) actual arguments in a method call; this analysis is necessary to give access to objects such as file descriptors, which may result in excepting computations during the lifetime of this method call.

Exception handler analysis uses a compile-time representation of the program *call tree* [Set96] to guide the backwards search from an exception occurrence point to a handler. The *call tree* records the sequence of method calls that may occur during execution in a tree structure. Its nodes are methods and its edges connect the calling method with the called method (annotated by the call site). The call tree can be approximated by compile-time class analysis [TP00, BS96, DGC95, GC01] or reference points-to analysis [RMR01, LPH01, MRR02]. The exception occurrence point may be either a Java library call whose JNI routines generate the exception or a specific Java method call which throws the exception (and does not handle it). By searching backwards on the call tree, we can find the closest exception handler for the exception, according to Java exception semantics[AG97]. The backwards search on the call tree requires us to examine each method call to ascertain whether or not it is included in a *try* block that handles the exception type whose handler we seek.

Once we find the handler, the associated method call in the *try* block becomes the focus of our placement of communication with Mendosus; the type of fault requested depends on the operation(s) at the exception occurrence. In the actual implementation of our prototype, we will use an approximation of the call tree, a potentially exponential-sized structure; possible choices to be investigated include a calling context tree [AS00] or a call graph with annotations about call site locations within its nodes (i.e., methods). We plan to experiment with these different program representations in order to balance analysis cost with accuracy.

Resource points-to analysis allows us to find the specific object on which the excepting computation occurs; this is necessary to determine the set of possible faults to be injected. *Points-to analysis* enables approximation at compile-time of the set of objects to which some reference variable can point at runtime. When the solutions at distinct method call sites are differentiated by the analysis so that different points-to information can be associated with them, then the analysis is termed *context-sensitive*. We will use a context-sensitive reference points-to analysis to ascertain those objects necessary for the vulnerable operation, even if references to them are stored in fields of other objects. We need the type of the object to select appropriate faults to inject; however, it may not be possible to determine the appropriate set of faults to inject until run-time, because they are determined by the run-time type of an object. For example, an open *InputStream* may correspond to a *FileInputStream*, in which case disk faults are appropriate, or it may correspond to an input stream from a socket, in which case network faults are appropriate. We
will use the reflection library in the JDK to determine these types at run-time. This library allows run-time examination of object properties such as type and value. We need values for some of the object’s fields to provide to Mendosus (e.g., the file descriptor for an input stream).

These two analyses, described above, pinpoint the constructs in the application that we must instrument. The first identifies both the try blocks into which we insert fault-injection and cancellation code and the associated catch blocks that we instrument to measure coverage. The second analysis provides information about the objects involved, which is needed to select appropriate fault types and parameters for communicating with Mendosus, as well as information that is needed to analyze method calls in order to construct the call tree.

The above analyses do not address all latent errors – we plan to explore this important issue in future work.

3.2 An API for Instrumentation-Driven Fault Injection

In the instrumented application code, we need to inform Mendosus to inject a fault or to cancel a previously injected fault. The kind of fault determines the appropriate parameters needed. To facilitate the communication with Mendosus, we implemented a user-level client Java library exporting the following methods:

public static boolean inject(int faultType, int interval, SomeList parameters)

This method requests an injection of a fault of type faultType, which will expire after interval number of seconds. The faultType is determined using the run-time type of the object (e.g., file descriptor or a communication socket), as a key into a list of fault types provided by Mendosus. The parameter list parameters contains additional information to guide Mendosus in the injection of the fault, such as the file descriptor. The boolean return value specifies whether Mendosus successfully injected the requested fault.

public static boolean cancel(int faultType, int interval, SomeList parameters)

This method asks Mendosus to cancel an on-going fault of type faultType. The boolean return value specifies whether Mendosus was able to locate and cancel the fault.

Instrumented application code and Mendosus currently communicate synchronously: on successful return of the inject method, the fault has been injected, and any subsequent use of the affected resource

4The tuple (faultType, interval, parameters) serves as unique identifier of an injected fault in Mendosus.
(within interval seconds) will produce an error. Similarly, on a successful return of cancel, the previously injected fault already has been canceled. For our tests, described in Section 4, we used an interval large enough to ensure that faults remained in effect until explicitly canceled. Our preliminary experiment suggests that this synchronous approach is sufficient except in the presence of latent errors.

While our algorithms are not sufficient to handle the general problem of latent errors, we can use several simple variations on our approach to improve fault-catch coverage in the presence of latent errors. First, we can use the approach described above, which we label fault-cancel mode, though this may cause faults to be canceled before latent errors are observed. Second, we can use fault-not-cancel mode, in which we never cancel a fault once injected. Finally, we can use fault-reinject mode, in which faults are canceled, but then injected again at a later execution of the try (in a separate run of the program).

3.3 Testing Multi-Threaded and Distributed Applications

Internet services are generally built as multi-threaded or distributed applications. Several additional issues must be addressed when testing a multi-threaded application running one or multiple nodes.

For a multi-threaded application running on a single node, as is the case for our initial benchmark, the question arises: What happens when the thread that requested a fault injection is context-switched out before the fault has been canceled? Three scenarios are possible:

1. the fault does not affect other threads that run before the original thread is allowed to run again,
2. some other thread is affected by the fault and crashes the application, or
3. one or more other threads are affected by the fault, but they recover sufficiently to not crash the application, eventually allowing the original thread to run again with the fault still activated. If more than one thread executes the same try block and experiences the error caused by the injected fault, we will count the catch block as covered, regardless of which thread actually executed it.

The first case clearly does not raise any concern. The second case is a successful test that requires bug fixing in the application before this particular fault-catch pair can be exercised. In the third case, our current instrumentation will count the coverage of the fault-catch pair in the original thread, as expected, but not any other catch block that was exercised “incidentally”. This is not a problem, as a failure to notice the incidental coverage will simply cause our system to perform an unnecessary test.

Testing of distributed applications running on multiple nodes raises at least two additional challenges. First, we may wish to inject a fault that affects several nodes as soon as one thread reaches a particular try. Our current system can insert instrumentation to do this, but we have not yet investigated how best to perform fault injection. For example, we may or may not wish to allow the thread injecting the fault to
continue before the entire distributed fault injection is complete. If the thread is not blocked, we must make sure that the fault is injected far enough in advance of the vulnerable operation – we believe this goal will produce the greatest challenge for our instrumentation algorithms.

Second, the question of how to inject faults at the time when some system-wide condition has been achieved in a distributed application raises even more interesting issues. Simply blocking the thread that is communicating with Mendosus is not sufficient; other threads on other nodes may be progressing past the vulnerable point of interest. This has been partially studied before [CCH+99] although not in the context of compiler-directed fault injection. We leave this as an important issue for future work.

4 Feasibility Case Study

To offer proof-of-concept for our methodology we performed a small case study using a http proxy server called Muffin [muf]. In this experiment, we hand simulated our compiler-directed analyses to determine where to inject faults and inserted by hand instrumentation for communication with Mendosus and recording of coverage. We studied all faults using fault-cancel mode, and additionally used fault-not-cancel mode for latent errors; we have not yet implemented fault-reinject mode in our test system.

4.1 Muffin and its Possible Faults

Muffin is a single-node, multi-threaded application whose interactions with the operating system are mainly receiving and sending data over the network (i.e., relaying requests and web pages). The disk access is essentially to log fulfilled requests without ever trying to read them back in; this data is easily stored in cache, so the footprint is too small for meaningful experiments. Instead, we concentrated on introducing faults related to network I/O.

Table 1 gives the faults used in our study (i.e., our universe of faults F, as mentioned in Section 2.3). These faults are divided into two classes. The first class is network hardware failures such as NIC, link, and switch failures. For a single-node application, these all have the same effect (i.e., the inability to read or write data), so we experiment with only one entry from this class, namely NIC_DOWN. In addition, we do not consider transient packet loss because Muffin depends only on TCP, which completely hides such faults from the application unless its seriousness approaches that of a NIC_DOWN. The second class is made up of faults resulting from the operating system such as exhaustion of resources or a corruption of essential data structures. The complete set of network operations used in Muffin is: bind, connect, accept, read, write.
Table 1: Faults Used in the Experiment

<table>
<thead>
<tr>
<th>Fault Class</th>
<th>Fault Type</th>
<th>Operations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td>NIC_DOWN</td>
<td>All except bind</td>
<td>Drop all the packets coming from or to a given IP for a certain amount of time to simulate some network hardware failure</td>
</tr>
<tr>
<td>OS error code</td>
<td>NET_EBADF</td>
<td>bind, read, write</td>
<td>Bad socket number</td>
</tr>
<tr>
<td></td>
<td>NET_EFAULT</td>
<td>read, write</td>
<td>Buffer space unavailable</td>
</tr>
<tr>
<td></td>
<td>NET_EPIPE</td>
<td>read, write</td>
<td>Socket with only one end open</td>
</tr>
<tr>
<td></td>
<td>NET_EAGAIN</td>
<td>connect, read, write</td>
<td>Necessary resource temporarily unavailable</td>
</tr>
<tr>
<td></td>
<td>NET_ENOMEM</td>
<td>bind, accept</td>
<td>Not enough system memory</td>
</tr>
<tr>
<td></td>
<td>NET_ECONNREFUSED</td>
<td>connect</td>
<td>Connection refused (e.g., remote node crashed and not yet recovered)</td>
</tr>
</tbody>
</table>

Table 2: Vulnerable Operations in try Blocks

<table>
<thead>
<tr>
<th>try</th>
<th>Operations</th>
<th>Possible Faults</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>read</td>
<td>NIC_DOWN, NET_EBADF, NET_EFAULT, NET_EPIPE, NET_EAGAIN</td>
</tr>
<tr>
<td>1</td>
<td>read/write</td>
<td>NIC_DOWN, NET_EBADF, NET_EFAULT, NET_EPIPE, NET_EAGAIN</td>
</tr>
<tr>
<td>2</td>
<td>write</td>
<td>NIC_DOWN, NET_EBADF, NET_EFAULT, NET_EPIPE, NET_EAGAIN</td>
</tr>
<tr>
<td>3</td>
<td>read</td>
<td>NIC_DOWN, NET_EBADF, NET_EFAULT, NET_EPIPE, NET_EAGAIN</td>
</tr>
<tr>
<td>6</td>
<td>accept</td>
<td>NIC_DOWN, NET_ENOMEM</td>
</tr>
<tr>
<td>7</td>
<td>connect</td>
<td>NIC_DOWN, NET_EAGAIN, NET_ECONNREFUSED</td>
</tr>
<tr>
<td>8</td>
<td>bind</td>
<td>NET_EBADF, NET_ENOMEM</td>
</tr>
</tbody>
</table>

In Muffin, we found seven catch blocks that can catch IOExceptions due to the faults in Table 1. Figure 1 shows a high-level view of the control flow in Muffin and the location of the try blocks associated with these catches. Each try block has only one associated catch; the numbers shown in Figure 1 serve as identifiers of each try block or the associated catch. We manually instrumented the try and catch blocks as per the algorithms of Section 3.

Table 2 lists the vulnerable operations in each try and the corresponding faults which can cause exceptions reaching the associated catch; in the terms defined in Section 2.3, these comprise the relevant fault sets f_i for each catch i. Note that try blocks 0-3 are all vulnerable to the same set of faults, as they all send or receive data, but different sets of faults may affect try blocks 6-8, which involve the establishment of network connections.

4.2 Experiment Specifics

In our experiment, the proxy server (Muffin version 0.9.3a), the actual http server (Apache), and a synthetic client that generates http requests are running separately, each on one of three 800 MHz PIII PCs under Linux 2.2.14-5.0. We used the IBM Java 2.13 Virtual Machine for Linux.
For each test run of Muffin, we injected a single fault into one instrumented try block in fault-cancel mode. One run was performed for each valid fault-try combination (see Table 2) and data recorded for all these test runs. Table 3 shows the results of our experiment. The Faults column gives the e_i sets discussed in Section 2.3.

In all the tests, all faults except NIC_DOWN are recorded in all appropriate catch blocks, showing that our methodology can drive the application through all of its responses to these faults, obtaining good test coverage for them. However, NIC_DOWN often causes latent errors, and its injection into the six vulnerable try blocks yielded only two covered catches. We re-ran our tests for NIC_DOWN in fault-not-cancel mode and were able to also cover catch 3 with this fault.

Figure 2 summarizes the $\frac{|e_i|}{|e|}$ values for each catch graphically, and Table 4 gives our aggregate coverage metrics for the tested code. Our (fraction of) covered catches metric is the most stringent, drawing attention to the fact that about half of the catches have not been fully tested. The other two metrics take into account the amount of coverage of the partially covered catches. In this experiment, we obtained slightly higher values for overall fault-catch coverage than average fault-catch coverage, as the former effectively weighs the individual catch average ratios by the number of associated faults and our lowest percentage
Table 3: Faults and Exceptions Recorded For Each Catch Block

<table>
<thead>
<tr>
<th>Catch</th>
<th>Faults</th>
<th>Exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NET_EBADF</td>
<td>java.net.SocketException: socket closed: Bad file descriptor</td>
</tr>
<tr>
<td></td>
<td>NET_EFAULT</td>
<td>java.net.SocketException: Bad address: Bad address</td>
</tr>
<tr>
<td></td>
<td>NET_EPIPE</td>
<td>java.net.SocketException: Broken pipe: Broken pipe</td>
</tr>
<tr>
<td></td>
<td>NET_EAGAIN</td>
<td>java.net.SocketException: Resource temporarily unavailable</td>
</tr>
<tr>
<td>1</td>
<td>NIC_DOWN</td>
<td>java.io.InterruptedIOException: Read timed out</td>
</tr>
<tr>
<td></td>
<td>NET_EBAD</td>
<td>java.io.IOException: Bad file descriptor</td>
</tr>
<tr>
<td></td>
<td>NET_EFAULT</td>
<td>java.io.IOException: Bad address</td>
</tr>
<tr>
<td></td>
<td>NET_EPIPE</td>
<td>java.io.IOException: Broken pipe</td>
</tr>
<tr>
<td></td>
<td>NET_EAGAIN</td>
<td>java.io.IOException: Resource temporarily unavailable</td>
</tr>
<tr>
<td>2</td>
<td>NET_EBAD</td>
<td>java.net.SocketException: socket closed: Bad file descriptor</td>
</tr>
<tr>
<td></td>
<td>NET_EFAULT</td>
<td>java.net.SocketException: Bad address: Bad address</td>
</tr>
<tr>
<td></td>
<td>NET_EPIPE</td>
<td>java.net.SocketException: Broken pipe: Broken pipe</td>
</tr>
<tr>
<td></td>
<td>NET_EAGAIN</td>
<td>java.net.SocketException: Resource temporarily unavailable</td>
</tr>
<tr>
<td>6</td>
<td>NET_ENOMEM</td>
<td>java.net.SocketException: Cannot allocate memory</td>
</tr>
<tr>
<td>7</td>
<td>NIC_DOWN</td>
<td>java.net.NoRouteToHostException: Connection timed out</td>
</tr>
<tr>
<td></td>
<td>NET_EAGAIN</td>
<td>java.net.SocketException: Resource temporarily unavailable</td>
</tr>
<tr>
<td></td>
<td>NET_CONNREFUSED</td>
<td>java.net.ConnectException: Connection refused</td>
</tr>
<tr>
<td>8</td>
<td>NET_EBADF</td>
<td>java.net.SocketException: Bad file descriptor</td>
</tr>
<tr>
<td></td>
<td>NET_ENOMEM</td>
<td>java.net.SocketException: Cannot allocate memory</td>
</tr>
</tbody>
</table>

Table 4: Aggregated Report of Coverage

<table>
<thead>
<tr>
<th>Cancel fault at end of try</th>
<th>Average Fault-catch</th>
<th>Overall Fault-catch</th>
<th>Covered Catches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel fault at end of try</td>
<td>84.3%</td>
<td>85.2%</td>
<td>42.9%</td>
</tr>
<tr>
<td>Without the cancel</td>
<td>87.1%</td>
<td>88.9%</td>
<td>57.1%</td>
</tr>
</tbody>
</table>
coverage occurred on a catch with only two faults.

Our data show that we can inject faults, instrument programs to measure fault-catch coverage, and achieve significant levels of fault-catch coverage for Muffin. For faults that do not produce latent errors, we produced 100\% fault-catch coverage, suggesting that our techniques are valuable. We were less successful with faults that do produce latent errors, covering four of the seven NIC_DOWN/catch combinations in fault-not-cancel mode. While these coverage results are valuable in that they guide the tester to those fault-recovery codes that are not fully tested, as discussed before it is very important to improve our coverage for these faults resulting in latent errors.

5 Related Work

Researchers in the dependability and software engineering communities have studied the problems of program coverage and fault coverage extensively. Given the limited space, we will focus here on a comparison of our work with previous research on fault injection using program-coverage metrics. An understanding of probabilistic fault coverage [BCS69], its relationship to system dependability [DT89], and fault-injection [ACC+93] also is essential to understand the context of our work. Our program-coverage metrics are most similar to those used in dataflow testing [RW85]. These references have been discussed in Section 2.1.

Our fault-injection experiments most closely resemble those measuring responses to errors using tra-
ditional program-coverage metrics. Tsai et. al [THZ+99] placed breakpoints at key program points along
known execution paths and injected faults at each point, (e.g., by corrupting a value in a register). Their
work differs from ours in its goal, the kinds of faults injected, and their definition of coverage. The primary
goal of their approach was to increase fault activations and fault coverage, not to increase program cover-
age. They injected a set of hardware-centric faults such as corrupting registers and memory; these faults
primarily affected program state, not communication with the operating system or I/O hardware. They used
a basic-block definition of program coverage, rather than measuring coverage of a program-level construct
such as a catch block. Bieman et. al [BDL96] explored an alternative approach where a fault is injected
by violating a set of pre- or post-conditions in the code, which are required to be expressed explicitly in the
program by the programmer. This approach used branch coverage, a program-coverage metric.

In the terminology of Hamlet’s summary paper reconciling traditional program-coverage metrics and
probabilistic fault analysis [Ham94], our work can be classified as a probabilistic input sequence gen-
erator, exploring the low-frequency inputs to a program. Using the terminology presented by Tang and
Hecht [TH97], which surveyed the entire software dependability process, our method can be classified as a
stress-test, because it generates unlikely inputs to the program.

6 Conclusions

We have posed what we believe to be a new challenge in the field of techniques for development of highly
available systems: to determine whether all of the fault-recovery code in a Web services application has
been exercised on an appropriate set of faults. We have presented our fault-catch coverage metric, which
formalizes what it means to meet this challenge successfully, and have shown that it is possible to instrument
programs to collect coverage information at run-time. Our metric combines ideas of testing software in
response to injected faults, developed by the dependability community, with ideas of testing for coverage of
specific program constructs, developed by the software engineering community.

We also have developed an API that allows the program being tested to direct a fault-injection engine and
have extended Mendosusto respond to this API. We have described compiler analyses that can be applied
to Java source or bytecodes in order to instrument codes to direct fault injection to produce high fault-catch
coverage.

Our preliminary case study results with Muffin indicate that our approach is highly effective for faults
that do not create latent errors (i.e., 100% coverage), and somewhat effective for faults that do (i.e., covering
4 of the 7 NIC_DOWN/catch combinations). Next we plan to enhance our approach to achieve better
coverage in the presence of latent errors and to study issues of testing of distributed applications.

References

[Swe00] T. Sweeney. No time for downtime – it managers feel the heat to prevent outages that can cost millions of dollars. *InternetWeek*, (807), April 2000.

