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ABSTRACT OF THE DISSERTATION

Two Problems in Noise Tolerant Computing

by Sijian Tang

Dissertation Director: Michael Saks

This thesis consists of 2 main results about computations under random noise. In both

problems we consider the discrete input picked from the hamming cube {0, 1}n. Noise

is introduced by flipping each input bit randomly with some fixed probability.

In Chapter 2 we provide the first polynomial algorithm for noisy population recovery

problem with finite support. This result directly implies a reverse Bonami-Beckner type

inequality for sparse functions.

In Chapter 3 we study the noisy broadcast model and the generalized noisy deci-

sion tree (gnd-tree) model under noise cancellation adversary. Here noise cancellation

adversary is a type of adversary that can correct the random noise. Under the noise

cancellation adversary, we show an Ω(ε5 ·n log n) lower bound for the function OR in the

non-adaptive gnd-tree model. This implies an Ω(log(1/ε)−1 · n log log n) lower bound

for a special kind of noisy broadcast model which we call the 2-Phase noisy broadcast

model.
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Chapter 1

Introduction

In this section we explain a bit more details on the problems and results we get in each

chapter.

In Chapter 2 we study the noisy population recovery problem introduced by Dvir

et al. [14]. The goal is to learn an unknown distribution f on binary strings of length n

from noisy samples. A noisy sample with parameter µ ∈ [0, 1] is generated by selecting

a sample from f , and independently flipping each coordinate of the sample with prob-

ability (1− µ)/2. The goal is to estimate the probability of any string to within some

given error ε. It is known that the algorithmic complexity and sample complexity of

this problem are polynomially related to each other.

In Chapter 2 we consider the special case where the size of the support of the

distribution is upper bounded by a known parameter k. (A recent result [12] shows

that the general problem (without a bound on the size of the support) has a quasi-

exponential lower bound in terms of n) We describe an algorithm that for each µ > 0,

provides the desired estimate of the distribution in time bounded by a polynomial in

k, n and 1/ε improving upon the previous best result of poly(klog log k, n, 1/ε) due to

Lovett and Zhang [31].

Our proof combines ideas from [31] with a noise attenuated version of Möbius in-

version. The latter crucially uses the robust local inverse construction of Moitra and

Saks [32].

Chapter 2 was joint work with Anindya De and Michael Saks.

In Chapter 3 we study the generalized noisy decision tree (gnd-tree) model under

noise cancellation adversary. Where the generalized noisy decision tree model, intro-

duced by [24], is a computation model for boolean functions. In this model, instead of
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getting the true input, the algorithm only gets a collection of noisy copies of the true

input, which is obtained by flipping each coordinate independently with probability ε.

Computation in the model is a decision tree, where at each node the algorithm eval-

uates and branches on the value of an arbitrary 2-valued boolean function of one of

the noisy copies. This generalizes the noisy decision tree model, in which the function

at each node is just the value of a single bit in the noisy copy. The noise cancellation

adversary, which was first raised by Feige and Kilian [20], is a type of adversary that

can correct the random noise.

We proved that if we restrict the gnd-tree to be non-adaptive, then any such tree

that computes the function OR under any noise cancellation adversaries must have

depth Ω(ε5 · n log n). While there is a known O(n) upper bound for this function in

gnd-tree model without adversary [24], our result gives the first separation between the

random noise model and the model under noise cancellation adversary.

This result also implies a similar result in the noisy broadcast model. We prove that

for a special kind of noisy broadcast model which we call the 2-Phase noisy broadcast

model, any protocol that computes OR under any noise cancellation adversaries must

have depth Ω(log(1/ε)−1 · n log log n).

Chapter 3 was joint work with Noga Zewi and Michael Saks.



3

Chapter 2

Polynomial Algorithm for Noisy Population Recovery

Problem

2.1 Introduction

The population recovery problem was first introduced by Dvir, Rao, Wigderson and

Yehudayoff in [14], which related it to the problem of learning DNF from restrictions.

The problem, which can be viewed as a noisy unsupervised learning problem, tries

to learn an unknown distribution from noisy samples. Formally speaking, assume we

have an unknown distribution f over binary strings of length n, and a noise parameter

0 < µ < 1. However, instead of getting samples directly from f , a certain random error

occurs to each coordinate independently. There are two main error models: the lossy

model and the noisy model. In each model, the samples are generated in the following

way:

Lossy Sample:

• Choose a string x according to f .

• Replace each coordinate with a question character ”?” independently with prob-

ability 1− µ.

• output the resulting string x̃.

Noisy Sample:

• Choose a string x according to f .

• Choose a binary stringN according to the distribution ηµ in which each coordinate

is independently set to 1 with probability (1− µ)/2.
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• Output x⊕N , where ⊕ denotes bitwise sum modulo 2.

In both models, given access to these noisy/lossy samples of f and error parameter

ε, the goal of the learner is to output an estimate of the function f (denoted by f̃),

which it does by specifying the set S of strings for which the estimate is nonzero,

and an estimate f̃(x) for each x ∈ S. The algorithm is said to succeed provided that

|f̃(x)− f(x)| ≤ ε for all x ∈ {0, 1}n. If the algorithm succeeds with probability at least

1− δ we say that it is an (ε, δ)-estimation algorithm for f .

It is easy to see the lossy model is easier than the noisy model since the learner can

simulate samples from the noisy model given samples from the lossy model by replacing

each ‘?’ by a random bit. In both models, for µ = 1, there is no noise and the problem

is easy to solve, whereas for µ = 0, the distribution f cannot be recovered with any

number of samples. As µ becomes smaller, the learning problem becomes harder.

The complexity of an algorithm for this problem depends on four parameters,

namely, µ, n, ε, 1δ . As usual, the value of δ is not very significant for the complex-

ity; if we have an algorithm that works for δ = 1/4, we can improve it to an arbitrary δ

by repeating the algorithm log(1/δ) times and assigning to each x ∈ {0, 1}n the median

of the estimates of f(x) from the different runs. We generally think of µ and δ as

constants and focus on expressing the running time as a function of n and 1/ε. An

interesting feature of this problem is that the algorithmic complexity of the problem

is polynomial in the sample complexity of the problem. This seems to have been first

explicitly mentioned in [31] though they refer to [4, 32]. Thus we will only use the

algorithmic complexity as our complexity measure here.

A lot of study have been done for both models. For the lossy model, Dvir et al.

[14] gave an algorithm with run time polynomial in n and 1/ε provided that µ & 0.365.

Their analysis was improved by Batman, et al. [4] who showed that the same algorithm

is polynomial time for any µ > 1− 1/
√

2 ≈ 0.293. Subsequently, Moitra and Saks [32]

gave a polynomial time algorithm for population recovery in the lossy model for any

µ > 0.

For the noisy model, De, et al. [12] gave a quasi-exponential lower bound and they
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also provided an algorithm that meets this bound. However, we may still hope to

find efficient algorithms under some reasonable assumptions. One may assume that

every element in the support has non-trivial weight. Precisely speaking, we define the

following assumption:

Lower Bound Assumption LBA(k): f(x) ≥ 1/k for all x ∈ supp(f).

Here k will be another parameter for the complexity measure. Usually we think of

it as polynomial in n. It is easy to see this assumption directly implies |supp(f)| ≤ |k|.

Formally speaking, we define:

Bounded Support Assumption BSA(k): the size of supp(f) is at most

k.

Then we know LBA(k) implies BSA(k). Also, it is natural to consider the following

assumption:

Known Support Assumption KSA(k): The algorithm knows a set X ⊂

{0, 1}n with |X| ≤ k such that supp(f) ⊆ X.

Clearly KSA(k) is stronger than BSA(k), and therefore solving population recovery

under KSA(k) can be reduced to solving it under BSA(k). Though KSA(k) and

LBA(k) are incomparable, KSA seems like a much stronger assumption. However it

is not known whether solving noisy population recovery under KSA(k) can be reduced

to solving it under LBA(k). Surprisingly, the reverse is known to hold: Dvir, et al.

[14] showed that solving noisy population recovery under LBA(k) can be reduced to

solving it under KSA(k). Precisely speaking, they proved the following lemma:

Lemma 2.1.1. Assume that we have access to a population recovery algorithm A(k)

that operates under the assumption KSA(k). Then there is a population recovery algo-

rithm B that operates under the assumption LBA(k) which on size parameter n, makes

n calls to algorithm A(2k) one for each size parameter i ∈ [n] with error parameter

min(1/3k, ε), such that B is correct provided that all calls to A are correct.
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Actually, in [14] Dvir, et al. claim that the algorithm constructed in Lemma 2.1.1

correctly solves noisy population recovery under assumption BSA(k). However, it turns

out the proof of correctness they gave requires the stronger assumption LSA(k), and

it seems that BSA(k) is not sufficient for the algorithm to work. The correct proof of

Lemma 2.1.1 is given in Section 2.8.

Under KSA(k), a few quasi-polynomial algorithms are known. Wigderson and

Yehudayoff [42] developed a framework called “partial identification” and used this

to give an algorithm that runs in time poly(klog k, n, 1/ε) for any µ > 0. They also

showed that their framework cannot obtain algorithms running in time better than

poly(klog log k).

Lovett and Zhang [31] gave an algorithm under KSA(k) with a better time complex-

ity of poly(klog log k, n, 1/ε) for any µ > 0. Interestingly, while their algorithm matches

the lower bound in [42], their algorithm departs from the framework of [42], and thus

is not subject to the same lower bound.

In this article we will focus on finding an efficient algorithm under KSA(k) (which

directly gives an algorithm under LBA(k) by Lemma 2.1.1). Under KSA(k), it is

easy to see estimating f is equivalent to estimating f(x) for all x in X. We focus on

constructing an algorithm that recovers f on a particular point x. Then we can recover

f by running the algorithm k times, once for each x ∈ X. Also, by shifting the samples

on the hamming cube, without loss of generality we may assume x is the origin 0 = 0n.

In other words, we consider the following problem:

Noisy Population Point Recovery (NPPR(n, ε)) Given access to noise

samples of f in {0, 1}n with noise parameter µ, output an estimate of f(0)

that has additive error at most ε.

By the analysis above, if we find an algorithm for NPPR with running time T (n, k)

under KSA(k), then we can get an algorithm for the original noisy population recovery

problem under KSA(k) with running time T (n, k) ·poly(kn). In particular, if T (n, k) =

poly(k, n), then apply Lemma 2.1.1 we get an algorithm for NPPR under LBA(k) that

runs in time poly(k, n).
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2.1.1 Our result

Here we show that for any µ > 0, the time complexity of noisy population recovery

problem is at most poly(k, n, 1ε , log(1δ ))

Theorem 2.1.2. For any µ > 0, there is an algorithm for NPPR(n, ε) under KSA(k),

with running time O
(
n ·
(
k
ε

)Oµ(1) · log(1/δ)
)
. Here Oµ(1) = Õ(1/µ4).

2.1.2 A reverse Bonami-Beckner Corollary

As with past results on the population recovery problem, our result has interesting

functional analytic consequences. The process we are observing generates observations

that are obtained by taking a sample from {0, 1}n according to the probability dis-

tribution f and applying noise independently to each coordinate. Thus, the observed

samples come from a distribution that is obtained from f by applying a linear operator

Tµ, where for each x ∈ {0, 1}n:

(Tµf)(x) = EN∼ηµ [f(x⊕N)].

The operator Tµ is usually referred to in the literature as the Bonami-Beckner

operator [6, 5, 25, 37]. Intuitively, Tµ “smooths” f by replacing the value of f at x

by a weighted average of values of f near x. One way that this smoothing property

is made precise is via hypercontractive inequalities [6, 5, 25], which have the following

flavor: “(A higher order) norm of Tµf can be upper bounded by (a lower order) norm

of f”, where the bounds are independent of the dimension (number of input variables)

of the function.

Given such smoothing theorems, it is natural to try to establish reverse inequalities

that assert that some norm of Tµf is never much smaller than (the same or different)

norm of f . No such dimension independent inequality can hold for all functions, as

for parity function f = (−1)
∑
i xi , Tµf is exponentially small everywhere. However,

such reverse inequalities are possible for restricted classes of functions. For example,

Borell [7] proved a reverse Bonami-Beckner inequality which roughly states that for
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positive valued functions f : {0, 1}n → R+, the norm of Tµf can’t be too small if the

norm of f is large.

Lovett and Zhang [31] observed that the existence of fast algorithms for population

recovery problem for functions satisfying BSA(k) is equivalent to a reverse Bonami-

Beckner type inequality for sparse functions. In particular, they showed that for f :

{0, 1}n → R, if supp(f) = k, then ‖Tµf‖1 ≥ k−Oµ(log log k)‖f‖1. The results of the

present paper lead to the following improved reverse Bonami-Beckner inequality for

sparse functions:

Corollary 2.1.3. Assume f : {0, 1}n → R with |supp(f)| ≤ k. Then ‖Tµf‖1 ≥

k−Oµ(1)‖f‖1, where Oµ(1) = Õ(1/µ4).

2.2 Preliminaries

2.2.1 Fourier analysis of Boolean Functions

We begin with some definitions. We write 0 for the point 0n in {0, 1}n. For x ∈ {0, 1}n,

|x| is the Hamming weight of x, which is equal to the number of 1’s. For binary strings

x, y ∈ {0, 1}n, x ⊕ y denotes the bitwise sum mod 2, and dH(x, y) = |x ⊕ y| is the

Hamming distance between x and y, which is the number of positions where x and y

differ.

For Y ⊆ {0, 1}n, w(Y ) denotes the maximum Hamming weight of any string in Y .

For a set S ⊆ [n], 2S denotes the set of subsets of S,
(
S
r

)
denotes the set of subsets

of size r and
(
S
≤r
)

denotes the set of subsets of size at most r. For sets S, T , S4T

denotes their symmetric difference (S − T ) ∪ (T − S).

We define the following sets of functions:

• F = Fn is the space of real-valued functions on {0, 1}n

• D = Dn is the set of nonnegative-valued f ∈ F satisfying
∑

x∈{0,1}n f(x) = 1.

• Gη(X): for X ⊆ {0, 1}n and η ≥ 0, Gη(X) is the set of f ∈ F such that f(0) = 1

and |f(x)| ≤ η for x ∈ X − {0}.
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We view F as an inner product space with inner product 〈f, g〉 =
∑

x∈{0,1}n f(x)g(x).

For x ∈ {0, 1}n, the function 1x maps x to 1 and all other points to 0, and for

P ⊆ {0, 1}n, 1P =
∑

x∈P 1x.

Functions in D can be viewed as probability measures on {0, 1}n. For f ∈ D we

write x ∼ f to mean that x is a random string sampled according to f . The set D is a

convex subset of F whose extreme points are the functions {1x : x ∈ {0, 1}n}.

For S ⊆ [n], the character χS ∈ F is defined by χS(x) =
∏
i∈S(−1)xi . The functions

{χS : S ⊆ [n]} form an orthonormal basis, and are all length 2n/2 for F . Thus every

f ∈ F can be written as a linear combination of characters: f = 2−n
∑

S⊆[n]〈f, χS〉χS .

The Fourier coefficient of function f at S ⊆ [n] is defined by1 f̂(S) = 〈f, χS〉 =∑
x∈{0,1}n f(x)χS(x).

For f ∈ D we have:

f̂(S) = E
x∼f

[χS(x)]. (2.1)

The following equation, known as Plancherel’s theorem expresses the inner product

of f and g in terms of their Fourier coefficients.

〈f, g〉 = 2−n
∑
S⊆[n]

f̂(S)ĝ(S). (2.2)

We define:

• The support of f , supp(f) = {x ∈ {0, 1}n : f(x) 6= 0}.

• The Fourier support of f , supp(f̂) = {S ⊆ [n] : f̂(S) 6= 0}

• ‖f‖1 =
∑

x∈{0,1}n |f(x)|

• ‖f̂‖L1 = 2−n
∑

S⊆[n] |f̂(S)|

F has two natural products. For f, g ∈ F , the pointwise product fg is given by

fg(x) = f(x)g(x) for all x and the convolution product f ∗ g is given by f ∗ g(x) =∑
y f(y)g(x⊕ y).

1In some other articles the Fourier coefficient is defined by f̂(S) = 2−n
∑
x∈{0,1}n f(x)χS(x). Our

normalization is chosen so that (2.1) holds.
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If f ∈ D then f ∗ g(x) = Ez∼f [g(x ⊕ z)]. If f and g are both in D then f ∗ g ∈ D

and a sample from f ∗ g can be obtained by taking x⊕ z where z is sampled according

to f and x is sampled according to g.

For S ⊆ [n], we have:

f̂g(S) = 2−n
∑
T⊆[n]

f̂(T )ĝ(T4S)

f̂ ∗ g(S) = f̂(S)ĝ(S).

For a linear operator L on F , and norms ‖ · ‖α and ‖ · ‖β, the α → β norm of L,

denoted by ‖L‖α→β is defined to be the supremum of
‖Lv‖β
‖v‖α over all v ∈ V .

For S ⊆ [n], the operator XS : F → F is defined as XS : f 7→ χS · f .

The Bonami-Beckner noise operator Tµ, defined for any real number µ, is most

easily defined by its action on the character basis:

TµχS = µ|S|χS .

More generally for U ⊆ [n], the operator Tµ,U is defined by:

Tµ,UχS = µ|S∩U |χS .

Thus Tµ = Tµ,[n]. Using linearity, we can extend the action of Tµ to the space of all

functions F . For i ∈ [n] we will adopt the shorthand Tµ,i for Tµ,{i}.

It is easy to see that for any µ 6= 0, Tµ,U is an invertible operator with its inverse

being T1/µ,U . Likewise, for any U, U ′, the operators Tµ,U and Tµ,U ′ commute. In fact,

if U and U ′ are disjoint, then Tµ,U ◦ Tµ,U ′ = Tµ,U∪U ′ . Given the definition of Tµ,U , it is

straightforward to verify that for x ∈ {0, 1}n,

Tµ,Uf(x) =
∑

z∈{0,1}n:zi=0 for i 6∈U

f(x⊕ z)
∏
i∈U

1

2
(1 + (−1)ziµ).

When µ ∈ [−1, 1], Tµ,U has a nice probabilistic description. For µ ∈ [−1, 1], define

νµ to be the probability distribution on {0, 1}n obtained by setting each bit to 1 in-

dependently with probability (1 − µ)/2. More generally, for U ⊆ [n] νµ,U denotes the
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probability distribution on {0, 1}n obtained by setting each of the bits indexed by U

independently to 1 with probability (1−µ)/2 and setting all the bits indexed by [n]\U

to 0. We then have for µ ∈ [−1, 1], that

Tµ,Uf = νµ,U ∗ f,

and thus for x ∈ {0, 1}n

(Tµ,Uf)(x) = Ez∼νµ,U [f(x⊕ z)].

One can view this operator as a process to smooth the function by spreading the

value on one point to its neighbours. It is easy to verify that if f ∈ D and µ ∈ [−1, 1]

then Tµ,Uf ∈ D. A sample from Tµ,Uf is generated by taking x ⊕ z where x ∼ f and

z ∼ νµ,U . A µ-noisy sample from f is a sample from Tµf .

2.2.2 Parameter estimation

We consider the general problem of estimating a real-valued parameter P = P (g) of an

unknown probability distribution g ∈ Dn. An estimator Pest is a random variable that

is a function of a collection of independent samples.

• The bias of Pest (as an estimator of P ) is |E[Pest − P ]|.

• The range of Pest is the maximum of |Pest|.

• Pest is an (ε, κ)-estimator of P provided that Pr[|Pest − P | > ε] < κ.

It is well known that one can build (ε, κ)-estimators from independent copies of

estimators wth fairly weak estimation properties. For an estimator Pest and positive

integer k, let Ak(Pest) denote the average of k independent copies of Pest.

Proposition 2.2.1. For any ε, δ ∈ (0, 1), if the estimator Pest of P has bias at most

ε
2 , and range at most M , then the estimator Ak(Pest), with k > 8M

2

ε2
ln( 1

κ) is a (ε, δ)-

estimator.
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Proof. Obviously E[Ak(Pest)] = E[Pest]. By the Chernoff-Hoeffding bound [22],

Pr[|Ak(Pest)− P | ≥ ε] ≤ Pr[|Ak(Pest)−E[Pest]|] ≥ ε/2] ≤ e−ε2k/8M2 ≤ δ.

Möbius transforms

Let (P,�) be a poset. Define function ζP : P × P → R as ζ(x, y) = 1 if and only if

x � y and 0 otherwise. Also define µP : P × P → R recursively as follows:

For x ∈ P, µP (x, x) = 1.

For x, y ∈ P, µP (x, y) = 1x�y ·
( ∑
x�z≺y

−µP (x, z)

)
.

Let FP be the space of real-valued functions on P . We define operators ζP : FP → FP

and µP : FP → FP by:

(ζP f)(x) =
∑
x∈P

ζ(x, y)f(y) =
∑
x�y

f(y) and (µP f)(x) =
∑
x�y

µP (x, y) · f(y).

It is well known (see [41]) that the transforms ζP and µP are inverses of each other.

µP is usually referred to as the Möbius transform of the poset P . The above notions

can be extended to the more general setting of functions from P to a fixed vector space.

Proposition 2.2.2. Let P be a poset and V be an arbitrary vector space over R.

Suppose (fx : x ∈ P ) and (gx : x ∈ P ) are indexed families of vectors in V satisfying

fx =
∑

x�y gy. Then

gx =
∑
x�y

µ(x, y) · fy

Definition 1. For x ∈ P , define x↓ = {y : y � x}. For C ⊆ P , define C↓ = ∪x∈Cx↓.

A subset D of P such that D↓ = D is a “downset”. It is easy to see that C↓ is the

unique minimal subset of P that is a downset and contains C, and is referred to as the

“downset generated by C”.

If C ⊆ P , then we can view C as a poset, which has its own Möbius function µC .

In general it is not true that for all x, y ∈ C, µC(x, y) = µP (x, y) but it is true if C is

a downset of P .



13

Proposition 2.2.3. If D ⊆ P is a downset, then for all x, y ∈ D, µD(x, y) = µP (x, y).

This is easily verified by induction using the above inductive definition of µD and

µP .

We denote by P([n]) the poset on 2[n] ordered by set inclusion. It is well known that

in this poset, for x � y, µP([n])(x, y) = (−1)|y\x|. Combining with Proposition 2.2.3 we

have:

Corollary 2.2.4. If D is a downset of P([n]) then for x � y ∈ D we have µD(x, y) =

(−1)|y\x|.

2.2.3 Technical computational considerations

We now mention a few technical considerations concerning the cost of computation for

our algorithm which will be used repeatedly throughout the paper. In some cases, we

will have known functions b, ` ∈ Fn, given by an nO(1)-time algorithm that on input

S ⊆ [n] evaluates ˆ̀(S) and b̂(S), and we will want to evaluate a function of the form∑
S⊆[n]

ˆ̀(S)b̂(S). The cost of the trivial summation algorithm is 2nnO(1), but if supp(ˆ̀)

is small compared to 2n we can hope to speed this up by enumerating only over sets in

supp(ˆ̀). However, even if we can evaluate ˆ̀(S) for any given S, this does not mean that

we can enumerate over sets in the support without looking at all sets. Technically what

we want is a family of subsets H that contains supp(ˆ̀) together with an efficient listing

algorithm for H which is an algorithm that lists all members of H in time |H|nO(1). We

will say that H is a listable support for ˆ̀.

Further, for the sake of clarity of exposition, throughout the paper, we will as-

sume that we are able to do basic arithmetic operations on real numbers with infinite

precision. In an actual implementation, we will only be working with finite precision

approximations of these numbers. The next simple proposition (stated without a proof)

asserts that basic arithmetic operations on real numbers can be done efficiently to any

finite precision.

Proposition 2.2.5. A sum of the form
∑m

i=1

∏l
j=1Bij that satisfies |Bij | ≤ K for all

i, j can be approximated to within additive error δ in time poly(m, l, log(1/δ), log(K)).
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Proof. In order to approximate the sum within additive error δ, it is enough to approx-

imate each term
∏l
j=1Bij within additive error δ/m. Since |Bij | ≤ K for all i, j, for

each Bij , the additive error for Bij will be scale up by at most K l times in the prod-

uct. Thus it is enough to approximate each Bij within additive error δ/(m ·K l). Thus

the precision we need to represent each Bij is O(log(K) + log((m ·K l)/δ)) bits. This

implies the computation can be done in time O(m · l · (log(K) + log((m ·K l)/δ))2) =

poly(m, l, log(1/δ), log(K)).

2.3 Proof of Theorem 2.1.2

We have an unknown probability distribution f on {0, 1}n together with a subset X that

contains supp(f). We have access to samples from the distribution Tµf . Our goal is to

give a good estimate for f(0n) in time poly(n, |X|, 1ε , log(1δ )). Our algorithm is based

on the approach of [31] (which built on ideas from [42]). We present a framework that

abstracts this approach, and identify a critical improvement. The key ingredient to our

algorithm is a function u that satisfies the conclusions of the following lemma.

Lemma 2.3.1. Given X and ε, there is a function u ∈ Fn such that for all f with

supp(f) ⊆ X:

1. u(0) ∈ [1/2, 1] and there is an algorithm that estimates u(0) to within an additive

ε/10 and runs in time poly
(
nk 1

ε log 1
κ

)
.

2. |〈u, f〉 − u(0)f(0)| ≤ ε/10.

3. There is a real valued function α(x) defined on {0, 1}n computable in time

(k/ε)Õ(1/µ4)nO(1) such that (a) For all x ∈ {0, 1}n, |α(x)| ≤ (k/ε)Õ(1/µ4), and (b)

for z ∼ Tµf , α(z) is an unbiased estimator for 〈u, f〉.

Theorem 2.1.2 follows easily from this lemma.

Proof of Theorem 2.1.2. Let R = (k/ε)Õ(1/µ4) be the range of the estimator α(x).

Applying Proposition 2.2.2, the average of m = poly(R/ε) = (k/ε)Õ(1/µ4) independent
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copies of this estimator yields an estimate A that is within ε/10 of 〈u, f〉 with probability

at least 7/8. Also, let B be the estimate of u(0) given by the third part of the lemma

that is within ε/10 with probability at least 7/8. Our algorithm outputs A/B (or, more

precisely, a floating point approximation C to A/B that is within ε/10 of A/B) as the

estimate of f(0). The bound on the running time of the algorithm follows easily from

the bounds on the running time of the estimator for 〈u, f〉 and computation of u(0).

Next, we claim that with probability at least 3/4, the output C is within ε of f(0).

Note that with probability at least 3/4, |A − 〈u, f〉| ≤ ε/10 and |B − u(0)| ≤ ε/10.

Assuming this is the case, we also have, B ≥ 1/3 since u(0) ≥ 1/2 and we can assume

that ε < 1. Also by hypothesis we have |u(0)f(0)− 〈u, f〉| ≤ ε/10. So with probability

at least 3/4, we have

|f(0)− C| ≤ ε

10
+

∣∣∣∣f(0)− A

B

∣∣∣∣
=

ε

10
+

1

B
· |Bf(0)−A|

≤ ε

10
+ 3|Bf(0)−A|

≤ ε

10
+ 3(|Bf(0)− u(0)f(0)|+ |u(0)f(0)− 〈u, f〉|+ |〈u, f〉 −A|)

≤ ε

10
+ 3

(
ε

10
+

ε

10
+

ε

10

)
≤ ε.

So the main part of the proof of the theorem is the construction of the function u

and the proof of the associated Lemma 2.3.1. It turns out that u is best described as the

pointwise product of two functions ` and q, and in the next section we motivate their

construction and state the essential properties of the functions q and ` (see Lemmas 2.4.2

and 2.4.1). These properties immediately give Lemma 2.3.1. In Section 2.6 we construct

` and show that it satisfies Lemma 2.4.2 and in Section 2.5 we construct q and show

that it satisfies Lemma 2.4.1.
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2.4 Constructing the function u

2.4.1 Estimating f(0) via estimates of Fourier coefficients

Recall we have an unknown function f with supp(f) ⊂ X. We have access to samples

from Tµf and we want to estimate f(0). Suppose ` is any member of F that satisfies

f(0) = 〈`, f〉. (2.3)

By (2.2), this equals
∑

S⊆[n](
ˆ̀(S)/2n)f̂(S). If we can estimate each of the fourier

coefficients f̂(S), we can estimate f(0) by replacing each fourier coefficient in this

summation by its estimate.

Indeed, there is a natural unbiased estimator for f̂(S) using samples of Tµ(f). For

any d ∈ Dn, if z is a sample from d ∈ Dn, then by (2.1), χS(z) is an unbiased estimator

for d̂(S). In particular if z ∼ Tµf then χS(z) is an unbiased estimator of T̂µf(S) =

µ|S|f̂(S). Therefore ( 1
µ)|S|χS(z) is an unbiased estimator for f̂(S). Thus for ` satisfying

(2.3),

W`(z) =
∑
S⊆[n]

(ˆ̀(S)/2n)

(
1

µ

)|S|
χS(z),

is an unbiased estimator of f(0).

We are free to choose any ` satisfying (3). One natural choice for ` is 10. For this

choice we have ˆ̀(S) = 1 for all S, and the resulting estimator of f(0) is
∑

S⊆[n]
1
2n ·

( 1
µ)|S|χS(z). Unfortunately, this estimator seems to require high sample complexity

in order to guarantee small error. To see this, note that W`(z) simplifies to (1 −
1
µ)|z|(1 + 1

µ)n−|z| · 2−n. Thus, the range of this estimator (and in fact, the variance) is

exponentially large in n when µ is small, and we would need exponential in n many

samples to reduce the variance to O(1).

So we look for an alternative ` satisfying (2.3) for which both the cost of evaluating

W`(z), and the range of W`(z) are “small”. To guarantee (2.3), since supp(f) ⊆ X, it

suffices that ` be chosen from G0(X) (recall that G0(X) is the set of functions that map

0 to 1 and all x ∈ X \ {0} to 0). To bound the cost of the induced (ε, δ)-estimator we

need to bound both the cost of computing W`(z) and its range.
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To compute W`(z) we need to sum (ˆ̀(S)/2n)( 1
µ)|S|χS(z) over S ∈ supp(ˆ̀). As

discussed in Section 2.2.3, to evaluate this sum quickly it is not enough to know

that |supp(ˆ̀)| is small; we also need a listable support H for ˆ̀. With this, W`(z) can

be evaluated in time |H|(T + nO(1)) where T is an upper bound on the time needed

to evaluate (ˆ̀(S)/2n) on input S ∈ H. To upper bound the range of W`(z), note

that every term in the sum is bounded (in absolute value) by (ˆ̀(S)/2n)( 1
µ)m(H) where

m(H) is an upper bound on size of the largest set in H. Thus, the range R of this

estimator is bounded by ‖ˆ̀‖L1( 1
µ)m(H). Hence, the running time of the estimator is

poly(|H|, R, 1ε , log(1/δ)).

The algorithm of Wigderson and Yehudayoff [42] can be formulated in this frame-

work: They (implicitly) show how to (efficiently) construct a function `WY ∈ G0(X),

and listable support H for ˆ̀ so that

• All sets in H have size at most O(log |X|).

• |H| ≤ |X|log |X|.

• ‖̂̀WY‖L1 = O(|X|log |X|).

Thus the running time of the induced estimator for f(0) is poly(|X|log |X|, n, 1ε , log(1/δ)).

2.4.2 The Lovett-Zhang approach

The improved running time of Lovett and Zhang [31] involves two steps: (i) Construct-

ing a function `LZ that gives a faster estimator in the case that all of the points in X

have small Hamming weight, i.e., O(log |X|). (ii) A reduction that effectively reduces

the case of general X to the small Hamming weight case.

Recall that for Y ⊆ {0, 1}n, w(Y ) is the maximum Hamming weight of any string in

Y . Lovett and Zhang showed how to construct, for any set Y , a function `YLZ ∈ G0(Y )

and a listable support H for ̂̀YLZ such that

• m(H), the size of the largest set in H, is at most w(Y ).

• |H| ≤ |Y |2w(Y ).
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• ‖ ̂̀YLZ‖L1 = |Y |O(logw(Y )).

(This result is implied by Proposition 3.6 in their paper.) Applying this construction

with Y = X yields an estimator for f(0). Unlike the WY estimator, the running time

of this estimator deteriorates as w(X) increases. For example, for w(X) = O(log |X|)

the derived estimator has running time is |X|O(log log |X|).

Lovett and Zhang present a kind of a reduction of the general case (w(X) ≤ n)

to the case that w(X) = O(log |X| · log log |X|). This reduction combined with the

application of `YLZ yields their O(|X|log log |X|) algorithm for the general case 2.

We now elaborate on the Lovett-Zhang reduction. For some threshold r (which

we eventually set to Oε(log |X|)), let near = nearr(X) = {x ∈ X : |x| ≤ r} and

far = farr(X) = X − near. Consider the construction of the function `YLZ with

Y = near instead of Y = X, Then we have:

f(0) = 〈`YLZ, f〉 −
∑
x∈far

`YLZ(x)f(x). (2.4)

If the sum (error term) being subtracted off is small, then we can still estimate f(0) by

estimating 〈`YLZ, f〉. It turns out that `YLZ(x) ∈ [0, 1] for all x and so the error is bounded

by |X|maxx∈far f(x). Unfortunately, this might be quite large.

To get around this, Lovett and Zhang effectively replaced f by another function g

for which maxx∈far g(x) is very small. To do this, they constructed an explicit function

q (depending on X but otherwise not on f) and set g = q ·f . We have f(0) = g(0)/q(0)

so it suffices to approximate g(0). Replacing f by g in (2.4) we have:

g(0) = 〈`YLZ, g〉 −
∑
x∈far

`YLZ(x)g(x) =
∑
S⊆[n]

( ̂̀YLZ(S)/2n)ĝ(S)−
∑
x∈far

`YLZ(x)g(x) (2.5)

2Actually, the framework we state here slightly oversimplifies their proof. In their paper, they did’t
give an efficient algorithm to compute `YLZ. Instead, their claimed that the existence of such a function
implies the problem can be solved efficiently by the maximum likelihood estimator.
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and so

|g(0)−
∑
S⊆[n]

( ̂̀YLZ(S)/2n) · ĝ(S)| ≤
∑
x∈far

`YLZ(x)g(x)

≤
∑
x∈far

`YLZ(x)q(x)

≤ max
x∈far

q(x)
∑
s∈far

`YLZ(x). (2.6)

The function q will be chosen so that q(x) (and therefore g(x)) is very small for

all x ∈ far, and therefore so is the right hand side of (2.6). Therefore g(0) is well

approximated by
∑

S⊆[n](
̂̀Y
LZ(S)/2n) · ĝ(S). To estimate this sum we need to be able

to estimate ĝ(S) efficiently from samples from Tµ(f), and this imposes additional con-

straints on the function q. The precise properties of the function q are given by the

following lemma.

Lemma 2.4.1. For any X and r ≥ (1/µ2) · log |X|, there is a function qr having the

following properties:

• For all x ∈ far, qr(x) ≤ e−
1
2
µ2r.

• qr(0) ∈ [1/2, 1]

• qr(0) can be (ε, κ) approximated in time poly(n|X|1ε log 1
κ).

• For every S, there is a function αS(z) for z ∈ {0, 1}n such that for z ∼ Tµf , αS(z)

is an unbiased estimator q̂r · f(S) with range at most
(
1
µ

)|S|
and is computable in

time 2|S|nO(1).

Lemma 2.4.1 is implicit in [31]; we prove it in Section 2.5. Using this lemma with r =

O(log |X| · log log |X|), Lovett and Zhang estimate g(0) by estimating
∑

S( ̂̀YLZ(S)/2n) ·

ĝ(S) as outlined above and get an algorithm that runs in time poly(klog log k, n, 1/ε).

2.4.3 Improving `

Let’s summarize the two main results in Lovett and Zhang’s approach:

(1) For any r ≥ (1/µ2) · log |X|, there exist a function qr such that:
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• For all x ∈ far, qr(x) ≤ e−
1
2
µ2r.

(2) Let Y = X
⋂
B(0, r), there exist a function `LZ ∈ G0(Y ) such that:

• |H(`YLZ)| ≤ |Y |2w(Y ) ≤ |Y |2r.

• ‖ ̂̀YLZ‖L1 = |Y |O(logw(Y )) ≤ |Y |O(log r).

Combining these two functions into qr · `LZ lead to an algorithm that runs in time

O(|H(`YLZ)| · ‖ ̂̀YLZ‖L1) = O(2r|X|O(log r)) with error at most Θ(|X| · ‖ ̂̀YLZ‖L1 · qr(x)) =

Θ(|X|O(log r)e−1/2µ
2r). In order to bound the error, r has to be O(log |X| · log log |X|),

which gives a |X|O(log log |X|) running time.

We follow the approach outlined above, but replace `YLZ by a better function. Our

first attempt uses the Möbius function (Section 2.2.2), to construct a function `0 = `0,Y

with listable support H0 such that:

• |H0| ≤ |Y |2w(Y ),

• ‖̂̀0‖L1 = |Y |2w(Y ).

Using this choice with Y = X in the basic approach outlined in Section 2.4.1 gives a

polynomial time estimator in the case w(X) = O(log n) since both |H0| and ‖̂̀0‖L1 are

polynomial in |X|.

Using `0 in place of `LZ in the Lovett-Zhang approach with r set to be Θε(log |X|),

we can bound use the above bound on ‖̂̀0‖L1 and the bound on q(x) for x ∈ far in

Lemma 2.4.1 to bound the error term in (2.6) from above by |X|2re−µ2r/2.

Unfortunately, even when µ = 1, 2r overwhelms e−µ
2r/2 and the term is large. In

an earlier version of this paper, we showed how to modify q to get improved bounds

on q(x) for x ∈ far of the form 2−β(µ)r, where β(µ) > 1 for µ > .555. Thus, for such

values of µ the error term can be made arbitrarily small, thereby getting a polynomial

time estimation algorithm for this value of µ. While one might hope to prove this for

even smaller values of µ by improving q further, this approach seems to be incapable

of working for arbitrary µ > 0 since the functions β(µ) that are obtained in this way

tend to 0 as µ tends to 0.
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So instead of changing q, we modify the function ` to reduce ‖̂̀‖L1 from 2rpoly(|X|)

to (1 + δ)rpoly(|X|) for an arbitrary δ > 0. By choosing r = Oδ(log |X|) appropriately,

the error term in (2.6) can be made arbitrarily small. In order for us to accomplish

this, we will relax the condition ` ∈ G0(near) to the condition that ` ∈ Gη(near) for

a suitably small η. (Recall that Gη(Y ) is the set of functions ` such that `(0) = 1 and

|`(x)| ≤ η for all x ∈ Y − {0}.) The next lemma states the several properties that is

achieved by our construction of `.

Lemma 2.4.2. Let C ⊆ {0, 1}n, δ > 0 and η > 0. Let r be an upper bound on w(C).

There is a function ` = `C,δ,η : {0, 1}n → R

• ` ∈ Gη(C↓),

• ‖̂̀‖L1 ≤ |C|2 · (1 + 2δ)r · (2/η)δ
−1·log(2δ−1),

• supp(̂̀) ⊆ C↓,
• For any S ⊆ [n], the Fourier coefficient ˆ̀(S) can be computed in time poly(|C↓|, n).

Lemma 2.4.2 is proved in Section 2.6. With the help of Lemma 2.4.1 and Lemma

2.4.2, we are ready to prove 2.3.1.

2.4.4 Proof of Lemma 2.3.1

Recall in Section 2.3 we show that Lemma 2.3.1 is enough to obtain the main the-

orem. In this section, we will show how Lemma Lemma 2.3.1 follows from Lemmas

Lemmas 2.4.1 and 2.4.2 (which will be proven later).

To do this, apply Lemma 2.4.1 with r = (100/µ4) · log(1/µ) · log(k/ε) to get function

q. We then apply Lemma 2.4.2 with C = X ∩ B(0, r), η = ε
20 and δ = µ2

16 to get

the resulting function `. Define u = ` · q. We will show that this u satisfies all the

properties we need in Lemma 2.3.1. We begin by noting that the third item (i.e. u(0)

can be efficiently approximated and lies in [1/2, 1]) follows by combining that `(0) = 1
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and Lemma 2.4.1. Next, we give an unbiased estimator for 〈u, f〉. We know that:

〈u, f〉 = 〈` · q, f〉 = 〈`, q · f〉

=
∑
S

(̂̀(S)/2n) · q̂f(S)

=
∑
S⊆C↓

(̂̀(S)/2n) · q̂f(S)

Lemma 2.4.1 shows that for any S, there exist an unbiased estimator αS(z) for

q̂f(S), with range at most
(
1
µ

)|S|
that is computable in time 2|S|nO(1). It then follows

that
∑

S⊆C↓(
̂̀(S)/2n) ·αS(z) is an unbiased estimator with range at most ‖̂̀‖L1 ·

(
1
µ

)r ≤
(k/ε)Õ(1/µ4) and it can be computed in time |C↓| ·2rnO(1) = (k/ε)Õ(1/µ4)nO(1). All that

remains is to bound |〈u, f〉 − u(0)f(0)|.

|〈u, f〉 − u(0)f(0)| = |
∑

x∈X\{0}

`(x)q(x)f(x)|

≤ |
∑

x∈near\{0}

`(x)q(x)f(x)|+ |
∑
x∈far

`(x)q(x)f(x)|

≤ η · |
∑

x∈near\{0}

f(x)|+ ‖`‖∞ · e−
1
2
µ2r|

∑
x∈far

f(x)|

≤ η + k2 · (1 + 2δ)r · (2/η)δ
−1·log(2δ−1) · e−

1
2
µ2r

By plugging the values of r, η and δ, we have |〈u, f〉 − u(0)f(0)| ≤ ε/10.

2.5 Proof of Lemma 2.4.1

In this section we prove Lemma 2.4.1. Most of the proof is adapted from Lovett and

Zhang’s paper [31].

Recall that far = farr = {x ∈ X : |x| > r}. Define the set E = {y ∈ {0, 1}n :

dH(0, y) ≤ dH(xi, y) for all xi ∈ far} and q = Tµ1E . Next, we show that q satisfies

the requirements. First we obtain the following lemma, which is essentially identical to

Lemma 3.2 in [31], that proves the first three properties we need.

Lemma 2.5.1. For any X and r ≥ (1/µ2) · log |X|, define set far and E as above, we

have:

• (Tµ1E)(0) ≥ 1/2.
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• For xi ∈ Far, (Tµ1E)(xi) ≤ e−
1
2
·µ2·|xi|.

The function 1E(·) can be computed in time poly(n, |X|). Further, (Tµ1E)(0) can be

computed to additive error ε in time poly(n, |X|, 1/ε) · log(1/κ).

Proof. We first lower bound (Tµ1E)(0). Let |X| = k, define s = log(k)/µ2. By defini-

tion,

(Tµ1E)(0) = Pre∼νµ [0 + e ∈ E] = 1− Pre∼νµ [0 + e 6∈ E]

≥ 1−
( ∑
i:dH(0,xi)≥s

Pry∼νµ [dH(0, y) ≥ dH(xi, y)]

)
The last inequality follows by the definition of E and union bound. To lower bound

the right hand side, let us define Si = {j ∈ [n] : (xi)j = 1}. If |xi| ≥ s, then |Si| ≥ s.

For such a point xi ∈ S,

Pry∼νµ [dH(0, y) ≥ dH(xi, y)] = Pre∼νµ

∑
j∈Si

ej ≥ |Si|/2


To bound the above sum, we recall the Chernoff bound.

Proposition. Let X1, . . . , Xn be n independent {0, 1} random variables such that 1 ≤

i ≤ n, E[Xi] = p. If q > p, then,

Pr

[
X1 + . . .+Xn ≥ n · q

]
≤ exp

(
− n

2
·
(
q

p
− 1

)2)
.

Applying the above proposition, we get that

Pry∼νµ [dH(0, y) ≥ dH(xi, y)] ≤ exp

(
−|Si|

2
· µ2
)
≤ 1

2k
.

This implies that

(Tµ1E)(0) ≥ 1−
( ∑
i:dH(0,xi)≥s

Pry∼νµ [dH(0, y) ≥ dH(xi, y)]

)
≥ 1

2
.

We now upper bound (Tµ1E)(xi) for xi ∈ Far. Note that (Tµ1E)(xi) = Pre∼νµ [xi + e ∈

E]. Note that if xi + e ∈ E, then dH(xi + e,0) ≤ dH(xi + e, xi). This implies that∑
j∈Si ej ≥ |Si|/2. Applying the Chernoff bound, we have

(Tµ1E)(xi) = Pre∼νµ [xi + e ∈ E] ≤ Pre∼νµ

[∑
j∈Si

ej ≥
|Si|
2

]
≤ e−

1
2
·µ2·|xi|.
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The fact that 1E(·) can be computed in time poly(n, k) follows from the definition of

E. Further, since 1E(·) is computable in time poly(n, k) and νµ is samplable in time

poly(n), we immediately get that

(Tµ1E)(0) = Pre∼νµ [0 + e ∈ E],

can be approximated to ε in time poly(n, k, 1/ε) · log(1/κ) with confidence 1− κ.

Finally, we prove the final requirement of Lemma 2.4.1. For this we must construct,

for each S ⊂ [n], a suitable function αS . We first show how to build an unbiased

estimator for q̂ · f(S) using a random sample z ∼ Tµf . Since (q·f)(x) = f(x)·(Tµ1E)(x),

we get that for any S ⊆ {0, 1}n.

q̂ · f(S) = 〈(XSf), (Tµ1E)〉 = 〈(TµXSf),1E〉.

We now make two observations. The first is that for any S ⊆ [n], Tµ,S is a self-adjoint

operator. The second is that if S, S′ ⊆ [n] are disjoint sets, then the operators XS′ and

Tµ,S commute. Decomposing Tµ = Tµ,STµ,S , we have

TµXSf = Tµ,STµ,SXSf = Tµ,SXSTµ,Sf = Tµ,SXST
−1
µ,STµf.

Thus, we get

q̂ · f(S) = 〈Tµ,SXST
−1
µ,STµf,1E〉 = Ez∼Tµf 〈Tµ,SXST

−1
µ,S1z,1E〉 (2.7)

Defining αS(z) = 〈Tµ,SXST
−1
µ,S1z,1E〉, we can see that αS(z) is an unbiased estimator

for q̂ · f(S). We show that αS(z) has the properties we need.

Lemma 2.5.2. For any S ⊆ {0, 1}n, αS(z) can be computed in time 2O(|S|)nO(1).

Proof. We define A = {y : yS = zS}. Then |A| = 2|S|. Define the linear subspace

FA = {f ∈ F : supp(f) ⊂ A} of F . Then we claim that FA is an invariant subspace

under the operator Tµ,SXST
−1
µ,S .

It is easy to see FA is invariant under XS . Also, consider {1y : y ∈ A} being the

basis of FA. For any y ∈ A, we have:

(Tµ,S1y)(x) =
∑

t∈{0,1}n:ti=0 for i 6∈S

1y(x⊕ t)
∏
i∈S

1

2
(1 + (−1)tiµ)
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Then we know:

Tµ,S1y =
∑

t∈{0,1}n:ti=0 for i 6∈S

1y
⊕
t

∏
i∈S

1

2
(1 + (−1)tiµ)

=
∑
x∈A

1x ·
∏
i∈S

1

2
(1 + (−1)yi

⊕
xiµ)

This directly implies FA is invariant under Tµ,S . Also, we can compute the matrix

of FA under this basis in time O(|A|2). This implies Tµ,SXST
−1
µ,S1z can be computed

in time 2O(|S|). Using the fact that 1E(·) can be efficiently evaluated at any point, we

conclude that 〈Tµ,SXST
−1
µ,S1z,1E〉 can be evaluated in time 2O(|S|)nO(1).

Lemma 2.5.3. For any S ⊆ {0, 1}n, |αS(z)| ≤ (1/µ)|S|.

Proof. First we recall the following facts from [31] (Claim 3.5 in [31]).

Claim. ‖Tµ,i‖1→1 = 1 and ‖T−1µ,i ‖1→1 = 1/µ.

Proof of the Claim. The bound ‖Tµ,if‖1 ≤ ‖f‖1 is immediate, and is tight for f = 1. To

derive the bound on T−1µ,i , let x0, x1 be such that (x0)i = 0, (x1)i = 1 and (x0)j = (x1)j

for all j 6= i. If (f(x0), f(x1)) = (a, b) then T−1µ,1f = (1/2µ) · ((1 + µ)a− (1− µ)b,−(1−

µ)a+(1+µ)b). Then |(T−1µ,i f)(x0)|+ |(T−1µ,i f)(x1)| ≤ (1/µ)(|f(x0)|+ |f(x1)|). The claim

follows by summing over all choices for x0, x1, and noting that the bound is tight for

f(x) = (−1)xi .

The above immediately implies

‖Tµ,S‖1→1 ≤ 1, ‖T−1µ,S‖1→1 ≤ (1/µ)|S|. (2.8)

Using ‖XS‖1→1 ≤ 1, we know ‖Tµ,SXST
−1
µ,S‖1→1 ≤ (1/µ)|S|. This implies:

|αS(z)| = |〈Tµ,SXST
−1
µ,S1z,1E〉| ≤ ‖Tµ,SXST

−1
µ,S1z‖1 ≤ ‖Tµ,SXST

−1
µ,S‖1→1 ≤ (1/µ)|S|

Combining Lemma 2.5.1, Lemma 2.5.2 and Lemma 2.5.3, we get the result.
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2.6 Proof of Lemma 2.4.2

In this section, we prove Lemma 2.4.2 which given C ⊆ {0, 1}n and δ, η > 0 constructs

a suitable function `. As a warmup, we construct the function `0 mentioned earlier.

The function `0 is specified by the set X ⊆ {0, 1}n, which we change to C to match the

notation of Lemma 2.4.2. We are given C ⊆ {0, 1}n and want to construct a function

`0 ∈ G0(C) with a listable support H0 for ˆ̀
0 such that:

• |H0| ≤ |C|2w(C).

• ‖̂̀0‖L1 = |C|2w(C)

The function we construct will satisfy the stronger condition that `0 ∈ G0(C↓),

which means that it is 1 at 0 and 0 on every other point of C↓.

We introduce some notation to represent the natural correspondence between strings

in {0, 1}n and subsets of [n]. For z ∈ {0, 1}n, define ones(z) = {i ∈ [n] : zi = 1}. For

A ⊆ {0, 1}n, let H(A) be the collection of subsets {ones(z) : z ∈ A}. We define

H0 = H(C↓). Observe that given C, we can efficiently list all the sets of H0 and

|H0| ≤ |C|2w(C).

Note that the requirement of ̂̀0 being supported on H0 = H(C↓) is the same as

requiring the function `0 to be of the form `0 =
∑

S∈C↓ βS · χS . In order to find the

coefficients {βS}S∈C↓ , we start by defining the family of functions {1�z}z∈{0,1}n as

follows:

1�z(x) = 1x�z

It is easy to verify:

1�z(x) =
∏
i:zi=1

xi =
∏
i:zi=1

1− χi(x)

2
=

1

2|z|

∑
S⊆ones(z)

(−1)|S|χS(x)

This implies that ‖1̂�z‖L1 = 1 and supp(1̂�z) ⊆ H(z↓). Thus, a linear combination

of functions (1�z)z∈C↓ will have Fourier support in H(C↓). We will construct `0 as a

linear combination of (1�z)z∈C↓ . By considering the restriction of the function `0 to

C↓ we can use the Möbius transform to find the linear combination.
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For a function f ∈ F , let fR denote the function obtained by restricting the domain

to C↓. The condition `0 ∈ G0(C↓) is the same as `R0 = 1R0 . Observe that in the poset

C↓ we have 1R�z =
∑

y�z 1Ry for all z ∈ C↓. By Proposition 2.2.2 and Corollary 2.2.4

we have:

1Ry =
∑

y�z∈C↓
(−1)|z\y|1R�z for all z ∈ C↓

This result can also be verified directly without Proposition 2.2.2 and Corollary 2.2.4.

For y ∈ C↓, define the function `y =
∑

y�z∈C↓(−1)|z\y|1�z. We claim that the

function `0 = `0 satisfies the requirements. To see this, note that `Ry = 1Ry (but in

general `y may disagree with 1y outside of C↓). Thus, `0 ∈ G0(C↓). Further,

‖ ̂̀0‖L1 ≤
∑
z∈C↓

|(−1)|z|| · ‖1�z‖L1 ≤
∑
z∈C↓

1 ≤ |C↓| ≤ |C| · 2w(C).

We now turn to the proof of Lemma 2.4.2. We are given C ⊆ {0, 1}n and δ, η > 0, and

an upper bound r on w(C). We want to construct a function ` satisfying the conclusions

of the lemma.

As mentioned in Section 2.4.3, the reason why `0 is not good enough for us is because

the Fourier L1 norm grows too fast. To circumvent this, we start with a modified family

of functions `δ,y =
∑

y�z∈C↓(−1)|z\y| · δ|z| · 1�z. Note that `δ,y generalizes the function

`y (which is obtained by setting δ = 1). We will construct ` as a linear combination of

{`δ,y}y∈C↓ . First we formally prove some properties of (`δ,y : y ∈ C↓).

Proposition 2.6.1. For any δ > 0, y ∈ C↓, the function `δ,y =
∑

y�z∈C↓(−1)|z\y| · δ|z| ·

1�z satisfies the following properties:

• For x ∈ C↓, `δ,y(x) = 1x�y · (1− δ)|x|−|y| · δ|y|.

• supp( ̂̀δ,y) ⊆ C↓.
• ‖ ̂̀δ,y‖L1 ≤ |C| · (1 + δ)w(C)−|y| · δ|y|

Proof. First we can rewrite `δ,y as `δ,y = δ|y|
∑

y�z∈C↓(−δ)|z\y| · 1�z. For any x ∈ C↓,

`δ,y(x) = δ|y|
∑

y�z∈C↓
(−δ)|z\y| · 1�z(x) = δ|y|

∑
y�z�x

(−δ)|z\y| = 1x�y · (1− δ)|x|−|y| · δ|y|
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Since supp(1̂�z) ⊆ C↓, we deduce that supp( ̂̀δ,y) ⊆ C↓. For the last requirement,

‖ ̂̀δ,y‖L1 ≤ δ|y|
∑

y�z∈C↓
|(−δ)|z\y|| · ‖1�z‖L1

≤ δ|y|
∑

y�z∈C↓
δ|z\y|

≤ δ|y|
∑
t∈C

∑
y�z�t

δ|z\y|

≤ |C| · δ|y| · (1 + δ)w(C)−|y|

Note that we have relaxed the requirement on `, namely ` ∈ Gη(C) for some appro-

priately small η as opposed to `0 which was in G0(C). Recall that we will construct ` as

a linear combination of form `δ,y for y ∈ C↓. We now impose the additional requirement

that the coefficient of `δ,y depends only on |y|. This will help us in search of the said

coefficients. With this, let ` =
∑

y∈C↓ v|y| · `δ,y, where v = (v0, ..., vw(C)) is the vector of

coefficients. By Proposition 2.6.1 for any x ∈ C↓:

`(x) =
∑
y�x

v|y| · δ|y| · (1− δ)|x|−|y| =
|x|∑
t=0

vt ·
(
|x|
t

)
· δt · (1− δ)|x|−t

Since the value of ` only depends on the weight of x, we can define a function ˜̀ on

nonnegative integers so that `(x) = ˜̀(|x|). Now we have ˜̀(m) =
∑m

t=0 vt ·
(
m
t

)
· δt · (1−

δ)m−t for 0 ≤ m ≤ w(C), and the condition ` ∈ Gη(C↓) is thus equivalent to ˜̀(0) = 1

and |˜̀(i)| ≤ η for i > 0. Note that these are linear constraints on the entries of the

vector v.

Also, applying Proposition 2.6.1, the Fourier L1 norm can be bounded by:

‖̂̀‖L1 ≤
∑
y∈C↓

|v|y|| · ‖ ̂̀δ,y‖L1

≤ ‖v‖∞
∑
y∈C↓

|C| · δ|y| · (1 + δ)w(C)−|y|

≤ ‖v‖∞ · |C| ·
w(C)∑
j=0

δj(1 + δ)w(C)−j · |{y ∈ C↓ : |y| = j}|

≤ ‖v‖∞ · |C| ·
w(C)∑
j=0

δj(1 + δ)w(C)−j · |C| ·
(
w(C)

j

)
= ‖v‖∞ · |C|2 · (1 + 2δ)w(C).
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Thus, we seek to find a vector v = (v0, . . . , vw(C)) such that ‖v‖∞ is as small as possible

while satisfying the linear constraints dictated by the requirement ˜̀(0) = 1 and |˜̀(i)| ≤

η for i > 0. To do this, recall that w(C) ≤ r and define the matrix Aδ,r ∈ R(r+1)×(r+1)

as

Aδ,r(i, j) =

(
i

j

)
· δj · (1− δ)i−j .

Then we have ˜̀(m) = (Aδ,r · vT )m. Now the task of constructing ` is equivalent to

finding a vector v with L∞ norm as small as possible such that (Aδ,r(i, j) · vT )0 = 1

and |(Aδ,r(i, j) · vT )m| ≤ η for m > 0.

We note that this problem is equivalent to problem of finding a “robust local inverse”

for the matrix Aδ,r, which has been studied in [14, 32]. The following theorem is an easy

corollary of the main result of [32]. We provide the reduction and a brief introduction

to their result in Section 2.7.

Theorem 2.6.2. (Moitra-Saks [32]) For any η > 0, there exists v ∈ Rr+1 such that

‖Aδ,r · v− e0‖∞ ≤ η, ‖v‖∞ ≤ (2/η)(1/δ)·log(2/δ) and the zeroth coordinate of Aδ,r · v is 1.

Here e0 ∈ Rr+1 denotes the unit vector with 1 at the zeroth coordinate. Further, v can

be computed in time poly(r).

Applying this theorem directly, we have ` ∈ Gη(C↓) and ‖̂̀‖L1 ≤ |C|2 · (1 + 2δ)r ·

(2/η)δ
−1·log(2δ−1). That finishes the proof of Lemma 2.4.2.

2.7 Robust local inverse from [32]

Here we briefly introduce the main result in Moitra and Saks [32]. Define matrix

Aµ,n ∈ R(n+1)×(n+1) by:

Aµ,n(i, j) =

(
i

j

)
· µj · (1− µ)i−j ,

where
(
i
j

)
= 0 if j > i. Following their paper, we now define an ε-local inverse.

Definition 2. Let v ∈ Rn+1 such that ‖Aµ,n · v − e0‖∞ ≤ ε. Such a vector v is said to

be an ε-local inverse of Aµ,n.
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Further, ‖v‖∞ is defined to be the sensitivity of such a vector. Definition 2.1 from

[32] defines σn(µ, ε) to be

σn(µ, ε) = min
‖Aµ,n·v−e0‖∞≤ε

‖v‖∞.

The next observation states that the v achieving the optimum in the above definition

can be found using linear programming.

Observation 2.7.1. Using linear programming, it is possible to find v ∈ Rn+1 in time

poly(n) such that ‖Aµ,n · v − e0‖∞ ≤ ε, such that ‖v‖∞ = σn(µ, ε).

We now restate Theorem 2.2 from [32] which gives an upper bound on σn(µ, ε).

Theorem. For all positive integers n and µ, ε > 0, σn(µ, ε) = (1/ε)f(µ) where f(µ) =

(1/µ) · log(2/µ).

Theorem 2.6.2 is just an easy corollary of the result.

Proof of Theorem 2.6.2. Apply the above theorem by choosing n to be r, µ to be δ and

ε to be η
1+η . Assume w is the local inverse we get by Observation 2.7.1. Let α0 be the

zeroth coordinate of Aδ,r · v. Note that 1 + η
1+η ≥ α0 ≥ 1− η

1+η .Define v = w/α0. Then

the zeroth coordinate of Aδ,r · v is 1. For the other coordinate i 6= 0, we have:

|(Aδ,r · v)i| = |(Aδ,r · w)i|/α0 ≤
η

1 + η
·
(

1− η

1 + η

)−1
≤ η

Also we have: ‖v‖∞ = (1/α0)·‖w‖∞ ≤ (1− η
1+η )−1((1+η)/η)(2/δ)·log(1/δ) ≤ (2/η)(2/δ)·log(1/δ).

This proves Theorem 2.6.2.

2.8 Reduction from LBA to KSA

In this section we prove Lemma 2.1.1. First we restate the lemma:

Lemma. Assume that we have access to a population recovery algorithm A(k) that

operates under the assumption KSA(k). Then there is a population recovery algorithm

B that operates under the assumption LBA(k) which on size parameter n, makes n

calls to algorithm A(2k) one for each size parameter i ∈ [n] with error parameter

min(1/3k, ε), such that B is correct provided that all calls to A are correct.
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Proof. Let f be the distribution we want to recover; by the assumptions we know

|supp(f)| ≤ k and f(x) ≥ 1/k for all x ∈ supp(f). For all i ∈ [n], define πi : {0, 1}n →

{0, 1}i to be the projection operator that projects a vector to its first i coordinates.

Let πif denote the probability distribution on {0, 1}i where πif(z) =
∑

x:πi(x)=z
f(x).

Let τ = min(1/3k, ε). We claim that, after the i−th oracle call, we can recover πif

correctly with error less than τ .

We prove this claim by induction. First it is easy to see we can recover π1f . Then,

assume we already have an estimate of πif( denoted by f̃i) with error less than τ .

Since f(x) ≥ 1/k for all x ∈ supp(f), we also have: πif(x) ≥ 1/k for all x ∈ supp(πif).

Recall that f̃i is close to πif within error τ ≤ 1/3k. That means f̃i(x) < 1/2k implies

πif(x) = 0. We can simply set the value of f̃i on all those points to 0 so we have:

supp(f̃i) = supp(πif). Let S = supp(f̃i)× {0, 1} be a subset in {0, 1}i+1. It is easy to

see |S| ≤ 2k and supp(πi+1) ⊂ S. So we can make our oracle call using this set S with

parameter i+ 1, 2k, τ to recover πi+1f . That means, after n oracles, we can recover f

within error τ ≤ ε.

2.9 Proof of Corollary 2.1.3

Without loss of generality, assume ‖f‖1 = 1. We may further assume f(0) > 0 and

it maximizes |f(x)|, thus f(0) > 1/k. Define f+ = f · 1>0 and f− = −f · 1<0, thus

f = f+ − f−. Normalizing these two terms we have,

f = ‖f+‖1 ·
f+

‖f+‖1
− ‖f−‖1 ·

f−

‖f−‖1
.

If ‖f−‖1 = 0 then we just omit the second term.

Here g+ = f+

‖f+‖1 and g− = f−

‖f−‖1 can be viewed as distributions supported on supp(f).

Applying Lemma 2.3.1 with parameter ε = 1/k and X = supp(f), we get functions u

and α : {0, 1}n → R satisfying u(0) ∈ [1/2, 1] and |α(z)| ≤ kÕ(1/µ4), such that

|〈u, g+〉 − u(0)g+(0)| ≤ 1

10k
, 〈u, g+〉 = Ez∼Tµg+ [α(z)],

|〈u, g−〉 − u(0)g−(0)| ≤ 1

10k
, 〈u, g−〉 = Ez∼Tµg− [α(z)].

(2.9)
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We will show that

1/2k ≤ 〈u, f〉 ≤ kÕ(1/µ4) · ‖Tµf‖1. (2.10)

For the first part of equation (2.10), since f = ‖f+‖1 · g+ − ‖f−‖1 · g−, the left two

inequalities of (2.9) directly imply

|〈u, f〉 − u(0)f(0)| ≤ 1

10k
(‖f+‖1 + ‖f−‖1) =

1

10k

Thus 〈u, f〉 ≥ u(0)f(0) − 1
10k ≥

1
2k . For the second part of equation (2.10), the right

two equations of (2.9) imply

〈u, f〉 = ‖f+‖1 ·Ez∼Tµg+α(z)− ‖f−‖1 ·Ez∼Tµg−α(z)

=
∑

z∈{0,1}n
α(z) ·

(
‖f+‖1 · Tµ

(
f+

‖f+‖1

)
(z)− ‖f−‖1 · Tµ

(
f−

‖f−‖1

)
(z)

)
=

∑
z∈{0,1}n

α(z) · Tµf(z)

≤ ‖Tµf‖1 · max
z∈{0,1}n

α(z)

≤ kÕ(1/µ4) · ‖Tµf‖1

These two results imply ‖Tµf‖1 ≥ k−Õ(1/µ4), which finishes the proof.
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Chapter 3

Lower Bound for Non-adaptive Generalized Noisy

Decision Trees and Noisy Broadcasts

3.1 Introduction

3.1.1 Problem overview

It has long been an interesting problem to find reliable ways to do communication or

computation against noise. A general goal of this problem, in both theory and practice,

is to minimize the additional resources needed to get reliable results. This problem was

studied in a variety of different models, such as decision trees [19, 39, 17, 18], formulas

and circuits [38, 16], quantum computation [3, 28] and different kind of communication

models [15, 40, 29, 36, 24, 13].

The noisy broadcast model was proposed by El Gamal [15] in 1984, and later popu-

larized by Yao [44], as a model to study the effect of noise in highly distributed systems.

The noisy broadcast model considers n processors P1, ...Pn and one receiver P0. Each

processor Pi has a private input bit xi ∈ {0, 1}, and the goal is for P0 to evaluate

a particular function f(x1, ..., xn). The communication between processors is done as

follows: in each time step, a prespecified processor broadcasts a single bit to all other

processors. For some fixed noise parameter ε < 1/2, each processor receives the broad-

cast bit with probability 1− ε and receives the complement of the bit with probability

ε. At the end of the algorithm, P0 should output the final answer based on all the bits

it has heard. The formal definition of noisy broadcast model will be given in Section

3.7.1.

Let’s consider the identity function ID(x1, ..., xn) = (x1, ..., xn), which means the

receiver P0 needs to learn the entire input correctly. Note that P0 can evaluate any
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function by itself if it gets the correct input (x1, ..., xn), thus the function ID is complete

for the model. It is easy to see ID can be computed using O(n log n) broadcasts: simply

let each processor broadcasts its bit O(log n) times and let P0 output the majority value

for each bit. In 1988, Gallager [23] gave a protocol for ID using only O(n log log n)

broadcasts. Later in 2008, Goyal, et al. [24] showed that this bound is tight up to a

constant factor. The lower bound proof was obtained by introducing a new model called

generalized noisy decision tree (gnd-tree) model. They showed that noisy broadcast

protocols can be simulated efficiently by gnd-trees and then they proved a lower bound

for ID in the gnd-tree model.

The gnd-tree model is a centralized computational model. Again the goal is to

compute some function of the input x ∈ {0, 1}n. However, instead of getting the

true input x, the algorithm only has access to an indexed collection (Xε
γ : γ ∈ Γ) of

noisy copies of x, where each noisy copy Xε
γ is obtained by flipping each coordinate

independently with some fixed probability ε. In each time step, the algorithm can

query an arbitrary boolean function on some noisy copy of x. One noisy copy can be

queried multiple times. This process can be interpreted as a binary tree where each

node is labeled by an arbitrary boolean function and an index γ ∈ Γ specifying one of

the noisy copies. The two outgoing edges of the node indicate the value of the boolean

function on that noisy copy. At the leaf of the tree, the algorithm outputs the answer

based on the answers of all the queries.

Goyal, et al. [24] showed that any gnd-tree with noise parameter ε that computes

the identity function must have depth Ω(ε2 · n log n). They also proved a simulation

theorem that reduces the noisy broadcast model to the gnd-tree model. This theorem

will be discussed in details later.

It remains to be an interesting question that whether we can prove any superlinear

lower bounds for functions with boolean output in the gnd-tree model. If so, we may

also prove superlinear lower bounds in the noisy broadcast model using the simulation

theorem in [24]. It turns out that some interesting functions can be computed by linear

depth gnd-tree.

For example, consider MAJ , the majority function. If we query MAJ on an noisy
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copy of x, we get the correct answer with probability 1/2 + Ω(1/
√
n). By Chebyshev’s

Inequality, the majority of n majority queries on different noisy inputs will output the

correct answer with probability 2/3. (In fact, [24] gives a gnd-tree that can compute

the hamming weight with linear depth using a similar idea) This algorithm can also be

adapted to give an algorithm for the noisy broadcast model that computes MAJ with

O(n) broadcasts.

However, one may criticise this algorithm for the following reason: the correctness

of this algorithm heavily relies on the assumption that the error rate on each coordinate

is known and never changes in the computation. The algorithm may fail if the error

rate on some coordinates are decreased. For example, suppose for each coordinate,

when the true input is 0, we decrease the error to 0; when the true input is 1, the error

rate remains to be ε. Then the algorithm may give the wrong answer. In practice,

an algorithm whose correctness depends on the presence of a predictable noise rate

is unsatisfactory. This restriction on algorithms is formalized by the notion of noise

cancellation adversary. The noise cancellation adversary can be viewed as an evil player

that has full knowledge and has the power to eliminate any noise but can not introduce

additional noise. This type of adversary was introduced by Feige and Kilian [20] for

the noisy broadcast model and they gave a linear time algorithm for OR that is robust

under this kind of adversary.

Gallager’s O(n log logn) algorithm for ID [23] in the broadcast model is still valid

under noise cancellation adversary. However, the algorithm we just described for MAJ

doesn’t work under noise cancellation adversary for either the gnd-tree or the noisy

broadcast and we want to rule out such algorithms. It is an interesting question to ask

how powerful the gnd-tree model is under the noise cancellation adversary.

We propose that the MAJ is hard under the noise cancellation adversary, i.e. it

has an Ω(n log n) lower bound in the gnd-tree model and Ω(n log logn) lower bound

under the noisy broadcast model. We currently don’t know how to prove this, or any

superlinear lower bounds for boolean functions with single bit output under the noise

cancellation adversary. We notice that Ω(n log n) is also the lower bound of MAJ in

noisy decision tree model [19]. In [39], this lower bound was proved by first proving an
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Ω(nlogn) lower bound on the OR function for non-adaptive noisy decision trees, and

then extending the ideas to prove the same bound for MAJ in the adaptive model.

Following this approach, here we will show that the Ω(nlogn) lower bound for OR for

non-adaptive noisy decision trees extends to non-adaptive generalized noisy decision

trees. This result implies an Ω(n log log n) lower bound result for a special kind of noisy

broadcast model which we call the 2-Phase noisy broadcast model.

3.1.2 Our Result

We prove the following theorem:

Theorem 3.1.1. Suppose T is a non-adaptive gnd-tree that can compute OR correctly

with probability > 0.9 under any noise cancellation adversary with noise parameter ε.

Then the depth of T is Ω(ε4 · n log n).

When ε is a constant, this lower bound meets the lower bound for OR under non-

adaptive noisy decision tree model. [19]

This result implies a lower bound result for a special kind of noisy broadcast model

which we call the 2-Phase noisy broadcast model. In this model, all the broadcasts are

made by two phases: in the Phase 1, each processor Pi broadcasts its bit xi some pre-

specified number which may depend on i. Then in the Phase 2, instead of broadcasting

messages to everyone, each processor can only send noisy messages to the receiver P0.

In other words, the broadcasts made by each processors in the 2nd Phase may only

depend on its input and all the broadcasts it received in the 1st Phase. While this

model is weaker than the original noisy broadcast model, some interesting protocols

including the O(n log log n) protocol for ID fit this model.

We will prove the following corollary:

Corollary 3.1.2. Let P be a protocol in 2-Phase noisy broadcast model. Then if P can

compute OR correctly with probability > 0.9 under any noise cancellation adversary with

noise parameter ε, the number of broadcasts in P is at least Ω(log(1/ε)−1 · n log logn).

For now, we will focus on the gnd-tree model and prove Theorem 3.1.1. In Section

3.7.3, we will provide the formal definition of the noisy broadcast model together with
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a simulation theorem similar to one given by Goyal, et al. [24], and use these to prove

Corollary 3.1.2.

3.2 Preliminaries for Gnd-tree and Adversary

In this section we introduce the definition of the noisy decision tree model and general-

ized noisy decision tree model. Also, we give the formal definition of noise cancellation

adversary.

3.2.1 Noisy Bits

Let ε ∈ (0, 1/2). An ε-noisy bit is a random variable N that is 1 with probability ε and

0 otherwise. If b ∈ {0, 1}, an ε-noisy copy of b is b
⊕
N , where N is an ε-noisy bit and⊕

denotes the sum modulo 2.

For n ∈ N, N(n, ε) denotes a vector of n independent ε-noisy bits. For vector

x ∈ {0, 1}n, an ε-noisy copy of x is the random variable x
⊕
N(n, ε). We will omit the

ε when the error parameter is fixed in the context.

3.2.2 Noisy Decision Tree

First let’s recall the definition of decision tree:

Definition 3. A decision tree T for input x = (x1, ..., xn) ∈ {0, 1}n is a binary tree, in

which each internal node is labelled by an index i, together with an output function that

takes all the leaves of the binary tree as input. The 2 out going edges of a non-leaf node

v are labeled by value 0 and 1. The computation starts at the root. At a non-leaf node

with label xi the value of this variable is queried and according to the answer received

the corresponding edge is chosen to the next node. This defines a unique path to a leaf,

the value of the output function on that leaf is the result of the computation.

In an ε-noisy decision tree (nd-tree) , when the tree queries xi, instead of getting

the true value of xi, the tree only gets an ε-noisy copy of xi. If xi is queried multiple

times, each time the tree will get an independent fresh ε-noisy copy of xi. Then instead

of reaching a particular leaf, the computation procedure will end up with a random
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variable supported on all the leaves that depends on the noise. The final output will be

a random variable as well. For x ∈ {0, 1}n, we use T (x) to represent the distribution of

the output when the input is x. Similarly, for any distribution σ supported on {0, 1}n,

we define T (σ) to be the output distribution when the input is picked with respect to

σ.

We say a noisy decision tree computes a function f with success probability 1− δ if

for all x ∈ {0, 1}n

Py∼T (x)(y = f(x)) ≥ 1− δ

For two trees T1 and T2, we define the composition of T1 and T2 to be a new tree

that links a copy of T2 to each leaf of T1. i.e. the tree runs T1 and then runs T2. We

use T = T1 ◦ T2, or simply T = T1, T2, to represent the composition.

We allow the decision tree to be randomized, which means we can have a family

of trees and pick one to run under an arbitrary distribution independent to all the

noise. An alternative way to define randomized decision tree is to allow the tree to

have random nodes, which generate independent random bits to decide to go left or

right. Random nodes are not counted in the depth of the computation. It is well known

and easy to see both two definitions are equivalent. For convenience, we also allow the

output function to be randomized.

The complexity of an nd-tree can be measured by the expected number of queries

it made. We define DE(T, x) to be the expected number of queries made by T when

the input is x. Note that random nodes don’t count as queries here. Also we define

DE(T ) = DE(x,0), where 0 denotes the all zero vector.

A decision tree is called non-adaptive if the sequence of coordinates it queries does

not depend on the results of previous queries (but may depend on random bits). In-

tuitively, the adaptive decision tree should have more power than the non-adaptive

decision tree. This is indeed the case for some problems. For example the function OR

has a O(n log n) lower bound in non-adaptive nd-tree model [39], however, it can be

computed by an adaptive nd-tree with linear depth [19].
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In the proof of the main result we will use the following special nd-tree model

which is called the semi-adaptive nd-tree model. Intuitively, a semi-adaptive nd-tree is

a composition of several adaptive nd-trees which query each coordinate at most once.

Formally speaking:

Definition 4. A semi-adaptive noisy decision tree T is the composition of a family of

adaptive noisy decision trees (Ti)i∈[l], where each tree Ti queries each variable at most

once. Thus T = T1, T2, ..., Tl.

We will later show that semi-adaptive nd-tree is essentially as powerful as non-

adaptive nd-tree in computing function OR.

3.2.3 Generalized Noisy Decision Tree

The notation of generalized noisy decision tree (gnd-tree) is introduced by [24]. In a

generalized noisy decision tree T , each non-leaf node v is associated with a boolean func-

tion qv. For each input x ∈ {0, 1}n, the algorithm gets a collection {x
⊕
N i(n, ε)}1≤i≤l

of independent ε-noisy copies of x. Usually we view collections of noisy vectors as an l

by n matrix NT ; similarly we use x
⊕
NT to refer to the matrix, called the noisy input

matrix, whose rows are the distinct noisy copies of x During the computation, at each

non-leaf node v, the tree is allowed to chose a noisy copy x
⊕
N i(n, ε) and compute

qv(x
⊕
N i(n, ε)), then it chooses an edge to go based on the answer of this query. One

noisy copy can be used multiple times in a single path.

As with nd-trees, we allow gnd-trees to be randomized. Similarly we can define

adaptivity, depth and composition for gnd-trees. When we do composition of two gnd-

trees, we assume the noisy bits they use are independent of each other.

The notation of the noisy input matrix gives us an alternative way to evaluation

process of an nd-tree, which will be used later in our proof. Recall the noisy input

matrix of a gnd-tree is a matrix such that each row is an independent noisy copy of the

true input x. Thus the i-th column of the matrix is a sequence of noisy copies of xi.

Then those bits can be used as answers of the queries to xi in the nd-tree.

Formally speaking, we say an nd-tree T runs on the noisy input matrix M = x
⊕
N
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if: for each non-leaf node v of T , assume v queries xi, then the answer of the query is

given by Mj,i for some index j that depends on v; in each root-to-leaf path of T , no

position in M is used more than once. It is easy to see this evaluation process will get

the exact same result as the one in the original definition of nd-tree

3.2.4 Noise Cancellation Adversary

Intuitively speaking, a noise cancellation adversary is an evil player who wants to fool

the algorithm. It has full knowledge of the true input and all the noise and the random-

ness. However, it is allowed to cancel noise but not introduce new noise. This means,

while executing the algorithm, whenever there is an error caused by noise of the input

or noise in the communication, the noise cancellation adversary can correct this noise.

Formally speaking:

Definition 5. Suppose P is a computational model that has noise in its computation.

Let N ∈ {0, 1}k be the noisy bits it gets during the computation, σ ∈ {0, 1}l be the

internal random bits it used. Then a noise cancellation adversary is defined by a func-

tion A(x,N, σ) = N ′. The image N ′ is a random variable that takes values in {0, 1}k

that satisfies N ′ � N . To run P under noise cancellation adversary A means run P

using random bits σ and with noise vector N ′. The output distribution of T with input

x under adversary A is represented by T (x,A).

We will simply use the word adversary to refer to the noise cancellation adversary.

In this definition, the adversary knows all the internal randomness of the protocol

and its decision may depend on that. However, it may not change those random bits.

We use the word ”noisy bits” to be those random bits that can be corrected by the

adversary and the word ”random bits” to be those internal random bits that cannot be

change by the adversary.

Under the above notation, we say a gnd tree T can compute function f under

adversary with success probability 1 − δ if Py∼T (x,A)(y = f(x)) ≥ 1 − δ holds for any

input x and adversary A.
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3.3 Proof Overview of the Main Theorem

Assume T is a non-adaptive gnd-tree that computes OR. In order to prove a lower

bound for the depth of T , we will analyze the behaviours of T under the following

two types of input: µ0 is the distribution concentrated on 0 and µ1 is the uniform

distribution on {ei : i ∈ [n]}, where ei is the unit vector on the i-th direction. We will

construct two adversaries A0 and A1 together with an non-adaptive nd-tree T ′ with

depth O(1/ε4 · D(T )) such that, the distributions T (µ0,A0) and T (µ1,A1) are close

to T ′(µ0) and T ′(µ1). Thus T ′ can compute OR as well. The result in [39] shows

that any non-adaptive nd-tree that separates this two distributions must have depth

Ω(log(1/ε)−1 · n log n), which proves our result.

More precisely, we will prove the following lemma:

Lemma 3.3.1. Let µ0 and µ1 be distributions defined above. For any non-adaptive

gnd-tree T , there exist adversaries A0 and A1 and a non-adaptive nd-tree T ′, such that:

• D(T ′) = O(1/ε3 ·D(T ))

• ‖T (µ0,A0)− T ′(µ0)‖1 = 0

• ‖T (µ1,A1)− T ′(µ1)‖1 ≤ 0.01

Where ‖ · ‖1 is the L1 distance between two distributions.

This lemma directly implies the main theorem:

Proof of Theorem 3.1.1. If T can compute OR correctly with probability at least 0.9

under any adversary, then Lemma 3.3.1 implies there exist an nd-tree T ′ such that T ′

can compute OR correctly with probability at least 2/3 when the input distribution is

µ0 or µ1.

Theorem 3.6.1, which is adapted from [39] and proved in Section 3.6, shows that any

non-adaptive nd-tree that computes OR must have depth at least Ω(log(1/ε)−1 ·n log n).

This implies D(T ) = Ω(ε4 · n log n).

We say an nd-tree T ′ simulates a gnd-tree T for some particular distribution σ if

there exist an adversary A for T such that T (σ,A) = T (σ). Then one possible way to
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prove Lemma 3.3.1 is to construct an nd-tree T ′ that simulates T for both µ0 and µ1.

Before we go further, we will state this property in an alternative way which is easier

for us to work on.

First we make the following definition:

Definition 6. Let T be a gnd-tree. We say T is confusable for distributions σ0 and σ1

if there exist adversaries A0 and A1 such that T (σ0,A0) = T (σ1,A1)

If a gnd-tree T is confusable for σ0 and σ1, then we can use an empty nd-tree to

simulate it for both σ0 and σ1. The empty nd-tree consists of a single node, which is

labeled by a random variable with distribution T (σ0,A0) = T (σ1,A1).

It is natural to consider the property of confusability conditioned on some informa-

tion we know about the input matrix.

Definition 7. Let T be a gnd-tree with input matrix M = X
⊕
NT ∈ {0, 1}l×n, σ0 and

σ1 be two input distributions. Let K ⊂ l × n be a subset of positions in M , we define

MK ∈ {0, 1}K to be the boolean vector representing the values of M on those positions

in K.

For any partial assignment ρ ∈ {0, 1}K , we say T is confusable for µ0 and µ1

conditioned on ρ if there exist adversaries A0 and A1 such that:

T (σ0,A0)|(MK = ρ) = T (σ1,A1)|(MK = ρ)

Suppose a partial assignment fixes all bits, i.e. K = l × n. Then for any gnd-tree

T that runs on M , the output of T is determined by ρ and the adversary, regardless of

what the true input is. Thus T is confusable conditioned on ρ for any two distributions.

More generally, if the partial assignment ρ satisfies σ0|(MK = ρ) = σ1|(MK = ρ), then

T is confusable conditioned on ρ for σ0 and σ1.

As we mentioned earlier, the ordinary nd-tree model can be viewed as a special case

of the generalized nd-tree model, whose queries are all single bit queries to the noisy

input matrix. This viewpoint allows us to make the following definition:

Definition 8. Suppose we have a gnd-tree T and an nd-tree T ′ that run on the same

noisy input matrix M . We say T is confusable conditioned on T ′ for distributions σ0
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and σ1 if: for any leaf v in T ′, let ρv be the partial assignment determined by the bits

in M that get queried by the path to v, then T is confusable for σ0 and σ1 conditioned

on ρv.

Proposition 3.3.2. Suppose T is a gnd-tree and T ′ an nd-tree defined on the same

noisy input matrix. Suppose that σ0 and σ1 are two input distributions such that T

conditioned on T ′ is confusable for σ0, σ1. Then there is a labeling of the leaves of T ′

by distributions over output values such that T ′ with this leaf labeling simulates T for

both input distributions σ0 and σ1.

Proof. We need to (1) assign to each leaf v of T ′ a probability distribution ψ(v) over

output values, and (2) define adversaries B0 and B1 such that on input distribution

σ0, T
′(σ0) = T (σ0, B0) and T ′(σ1) = T (σ1, B1). Under the hypothesis, for every leaf

v of T , there are adversaries A0(v) and A1(v) such that the two conditional output

distributions T (σ0, A0)|(T ′(x) = v) and T (σ1, A1)|(T ′(x) = v) are the same. We define

ψ(v) to be this output distribution. We define the adversary B0 (for T ) as follows:

given input x, simulate T ′ on x (without an adversary) to determine a leaf v of T ′.

Then apply adversary A0(v) to the noisy input matrix. We define B1 similarly. Now it

follows that T ′(σ0) = T (σ0, B0) since both can be written as the average of ψ(v) over

leaves v of T ′ selected by applying T ′ to input chosen according to σ0. Similarly we

have T ′(σ1) = T (σ1, B1). This finishes the proof.

Recall µ0 is the distribution concentrated on 0 and µ1 is the uniform distribution

on {ei : i ∈ [n]}. The above analysis shows that if we can find a non-adaptive nd-tree

T ′ such that D(T ′) = O(1/ε3 ·D(T )) and T is confusable conditioned on T ′, we can use

this T ′ to prove Lemma 3.3.1. However, we don’t know how to achieve that. Instead,

we can construct an nd-tree T ′′ with small expected depth such that T is confusable

conditioned on T ′′. Though T ′′ is adaptive, it turns out this adaptive nd-tree satisfies

the semi-adaptive property defined in Section 3.2.2. We will further show that semi-

adaptive decision trees is not much more powerful than non-adaptive decision trees. In

conclusion, we will prove Lemma 3.3.1 by two steps:
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Lemma 3.3.3. For any gnd-tree T , there exist a semi-adaptive nd-tree T ′ with expected

depth DE(T ′) = O(1/ε3 ·D(T )) such that T is confusable conditioned on T ′ for µ0 and

µ1.

Lemma 3.3.4. Let T be a semi-adaptive nd-tree, then there exist a non-adaptive nd-tree

T ′ with depth D(T ′) = O(DE(T )) such that:

• ‖T (µ0)− T ′(µ0)‖1 = 0

• ‖T (µ1)− T ′(µ1)‖1 ≤ 0.01

We will prove Lemma 3.3.3 in Section 3.4 and Lemma 3.3.4 in Section 3.5. With

the help of these two lemma, the proof of 3.3.1 is straightforward:

Proof of Lemma 3.3.1. Suppose T is a non-adaptive gnd-tree that computes OR cor-

rectly under adversary with probably at least 2/3. Let T1 be the semi-adaptive nd-tree

we get by applying Lemma 3.3.3. By Proposition 3.3.2 we know that there exist a

way to label the leaves of T1 such that T1 can simulate T for distributions µ0 and µ1,

i.e.‖T (µ0)− T1(µ0)‖1 = 0 and ‖T (µ1)− T1(µ1)‖1 = 0.

Apply Lemma 3.3.4 to T1 we get an non-adaptive nd-tree T2 with ‖T1(µ0)−T2(µ0)‖1 =

0 and ‖T1(µ1)− T2(µ1)‖1 = 0.

Combining these together we have:

• ‖T (µ0)− T2(µ0)‖1 = 0

• ‖T (µ1)− T2(µ1)‖1 ≤ 0.01

Also we know DE(T1) = O(1/ε3 · D(T )) from Lemma 3.3.3. From Lemma 3.3.4

we know D(T2) = O(DE(T1)). That gives D(T2) = O(1/ε3 ·D(T )), which finishes the

proof.

3.4 From non-adaptive gnd-tree to semi-adaptive nd-tree

In this section we prove Lemma 3.3.3.
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3.4.1 Proof Outline

Let T be the non-adaptive nd-tree we are working on. Since T is non-adaptive, it can

be viewed as a sequence of queries. Thus, we may change the order of the queries to

put the queries on the same noisy copy together. In other words, we can always assume

T has the following property: it makes a few queries to the first noisy copy, then goes

to the second copy and never comes back. Under this setting, assuming T made d

queries to a particular noisy copy, we can represent all these queries as a function

Q : {0, 1}n → {0, 1}d, where each coordinate of the output represents the output of the

corresponding query. We call such a query Q composite query and call d the depth of

Q.

Under this definition we can view T as a sequence of composite queries. Assume

T = Q1, Q2, ..., Ql, the first natural idea to try is to construct nd-tree T ′j for each Qj

such that Qj is confusable conditioned on T ′j . Then we can compose all T ′j together

to construct T ′. We claim that Q conditioned on T is confusable for µ0 and µ1. This

is not immediate, and requires some care. Let Qj be the composition of Q1....Qj and

let T j be the tree obtained by composing T1, ...., Tj . We will prove by induction on j,

that Qj is confusable conditioned on T j for µ0 and µ1. We would like to do this using

that each Qj is confusable conditioned on Tj for µ0 and µ1. When we try to show that

confusability for µ0 and µ1 is preserved under composition we see that it does not work

as one might hope. What does work is that confusability for two distribution α and

β composes nicely provided that both α and β are concentrated on a single input. In

our case µ0 is concentrated on a single input but µ1 is not. But µ1 is the average of n

distributions σi, where σi is concentrated on ei. So the property that µ0 is confusable

with σi does behave well under composition. So we will prove by induction on j that

for each i, that Qj conditioned on T j is confusable for µ0 and σi. This motivates the

following definition:

Definition 9. For i ∈ [n], let σi be the distribution concentrated on ei. Suppose we have

a gnd-tree T and an nd-tree T ′ that run on the same noisy input matrix M . We say T

is strongly confusable conditioned on T ′ if for any i ∈ [n], T is confusable conditioned
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on T ′ for µ0 and σi.

It is easy to see if T is strongly confusable conditioned on T ′, then T is confusable

conditioned on T ′ for µ0 and µ1. Thus it is enough to construct a semi-adaptive nd-tree

T ′ such that T is strongly confusable conditioned on T .

In the Section 3.4.2, we will show for any composite query Q, how we can construct

an nd-tree T with small depth such that Q is strongly confusable conditioned on T .

Then we will apply this result and prove Lemma 3.3.3 in Section 3.4.3.

3.4.2 Simulate a Single Composite Query

In this section we will show how to simulate a single composite query by a (possibly

adaptive) nd-tree whose depth is at most a constant factor larger. Precisely speaking,

we will prove the following lemma:

Lemma 3.4.1. Let Q : {0, 1}n → {0, 1}d be a composite query. Then there exist an

nd-tree T such that: DE(T ) = O(1/ε3 · d) and Q is strongly confusable conditioned on

T .

Proof. For input x ∈ {0, 1}n, let y = x
⊕
N be the noisy input. Recall σi is the

distribution that is concentrated on ei. We will construct T in the following way:

• Let r be the root of the tree and mark it as an undetermined node.

• If there exist an undetermined node v, let K ⊂ [n] be the set of coordinates

queried from root to v and ρ ∈ {0, 1}K be the answers. Define Q|v to be the

function generated by restricting Q on ρ.

– If Q|v is strongly confusable, mark v as a leaf node.

– Else, pick i ∈ [n] such that Q|v is not confusable for µ0 and σi. Let v query

the i-th coordinate. Then mark two children of v as undetermined nodes.

• Keep running until there is no undetermined node.

This procedure will stop because if T ′ queries all the coordinates, the restricted

function will be a constant, thus D(T ) ≤ n. Also, we know that if T queries the i-th



47

bit, then consider input distributions µ0 and σi, the corresponding distributions of the

noisy input matrix will be the same conditioned on the result of the query. Thus Q

is confusable conditioned on T for µ0 and σi. Together with the stopping condition it

is easy to see Q is strongly confusable conditioned on T . Now we will try to give an

upper bound for the depth of T .

First of all, we introduce some preliminaries about information theory.

For a discrete random variable X with probability mass function p(x), the entropy

of X is define by: H(X) = −
∑

x p(x) log p(x). It is easy to verify that H(X) ≤ log n.

Also, we use H(p) = −p log p− (1−p) log(1−p), p ∈ [0, 1] to denote the binary entropy

function, which is the entropy of a biased coin that is 0 with probability p.

It is easy to verify the following properties of the binary entropy function. H ′(p) =

log(1−pp ). H ′′(p) = −1
p −

1
1−p ≤ −4. H ′′′(p) = 1

p2
− 1

(1−p)2 . H ′′′(p) ≥ 0, ∀p ∈ (0, 1/2];

H ′′′(p) ≤ 0,∀p ∈ [1/2, 1)

For two random variables X,Y with probability mass function p(x, y), the con-

ditional entropy of X given Y is defined by: H(X|Y ) = −
∑

x,y p(x, y) log p(x|y) =

Ey∼YH(X|Y = y). The mutual information of X and Y is defined by: I(X;Y ) =

H(X)−H(X|Y ) = H(Y )−H(Y |X). Intuitively, mutual information measures the in-

formation that X and Y share. We will need the follow result about mutual information

known as data processing inequality(Theorem 2.8.1 in [9]):

Theorem. Suppose we have random variables X,Y, Z such that X and Z are indepen-

dent conditioned on Y . Then we have:

I(Y ;X) ≥ I(Z;X)

Now we are ready to prove the upper bound of DE(T ). We introduce the following

lemma:

Lemma 3.4.2. Let Q : {0, 1}n → Σ be any composite query. Suppose Q is not confus-

able for µ0 and σi. Let X be the random variable that represents an ε-noisy copy of 0

and Y = Q(X), then:

I(Y ;Xi) ≥ C · ε3
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Where C is a constant that doesn’t depends on n.

Before we prove this lemma, let first see how this lemma implies the desired upper

bound on the expected depth of T . Let Tk be the tree T restrict on depth k, i.e. Tk is

obtained by deleting all the nodes in T with depth more than k. Let X be the random

variable that represents an ε-noisy copy of 0. Let T (X) (Tk(X)) be the random variable

that represents the output leaf of T (Tk) when the input is X. Define the potential

function Φ by:

Φ(k) = C · ε3 ·DE(Tk) +H (Q(X)|Tk(X))−H(Q).

We claim that Φ(k) ≤ 0 for all k ∈ [n]. First it is easy to see Φ(0) = 0. Now

let’s consider the change of Φ when we increase k by 1. Let Lk be the set of non-leaf

nodes in T at level k. For a non-leaf node v in T , let P(v|0) be the probability that

the evaluation process passes through v when the input is 0. Let vi be the index of the

coordinate queried by v. By the definition of T we know Q|v is not confusable for µ0

and σvi . Then we have: ∀k ∈ [n],

Φ(k − 1)− Φ(k) = C · ε3 · (DE(Tk−1)−DE(Tk))

+H[Q(X)|Tk−1(X)]−H[Q(X)|Tk(X)]

= C · ε3 · (DE(Tk−1)−DE(Tk))

+H[Q(X)|Tk−1(X)]−H[Q(X)|Tk−1(X), Xvi ]

=
∑
v∈Lk

P(v|0) ·
(
−C · ε3 +H[Q|v(X)]−H[Q|v(X)|Xvi ]

)
=

∑
v∈Lk

P(v|0) ·
(
−C · ε3 + I[Q|v(X);Xvi ]

)
≥ 0

The last inequality follows from Lemma 3.4.2. So we have 0 ≥ Φ(n) = C · ε3 ·

DE(T ) + 0 −H(Q̃), that implies DE(T ) ≤ H(Q̃)/(C · ε3) = O(1/ε3 · d). This finishes

the proof.

Proof of Lemma 3.4.2. Without loss of generality assume Σ = [k] and i = 1. Define

Q−1(i) = {x ∈ {0, 1}n : Q(x) = i}.
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Let τ0 and τ1 be the noisy distribution on {0, 1}n centered at 0 and e1. By hypothe-

sis, Q is not confusable for µ0 and σ1. This means that for any choice of adversaries A0

for µ0 and A1 for σ1, the output distribution of Q(µ0, A0) And Q(µ1, A1) are different.

To understand the implications of this, we first need to carefully describe the possible

behaviors of adversaries A0 and A1. For τ0, for x ∈ {0, 1}n, the probability of getting x

as the noisy copy of 0 before adversary is τ0(x). The adversary may cancel noise on some

coordinates and output y � x as the noisy copy. Let wxy be the probability that the

original noisy copy is x and the adversary changes it to y. Note that the adversary A0

is completely specified by the numbers wxy. Then we know
∑

y:y�xwxy = τ0(x). Also,

the probability of getting y as the noisy copy after adversary is given by:
∑

x:x�y wxy.

Similarly, we define txy to be the probability that the original noisy copy is x and the

adversary change it to y when the true input is e1. Note that in this case the adversary

can change x to y only when x
⊕
e1 � y

⊕
e1. Thus we define �1 such that x �1 y if

x
⊕
e1 � y

⊕
e1.

Now we have represent the behaviours of adversaries for inputs 0 and e1, thus

the confusability of Q for µ0 and σ1 can be viewed as linear programming problem.

Formally speaking, Q is not confusable for µ0 and σ1 if and only if the following linear

programming doesn’t have a feasible solution:

max 0

s.t.
∑

y∈Q−1(i)

∑
x:x�y

wxy −
∑

y∈Q−1(i)

∑
x:x�1y

txy = 0, ∀i ∈ [k]

∑
y:y�x

wxy = τ0(x), ∀x ∈ {0, 1}n

∑
y:y�1x

txy = τ1(x), ∀x ∈ {0, 1}n

wxy ≥ 0, ∀y � x

txy ≥ 0, ∀y �1 x

The first group of k equations represents the requirement that for each i, Q−1(i)

has the same probability under the two distributions as modified by the adversaries.

Consider the dual of this linear programming, let αi be the dual variable for each

equation with respect to Q−1(i), βx be the dual variable for equation with respect to
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τ0(x), γx be the dual variable for equation with respect to τ1(x). By linear programming

duality we know the original linear programming has no feasible solution is equivalent

to the following dual programming having a negative minimum:

min
∑
x

βxτ0(x) +
∑
x

γxτ1(x)

s.t. αQ(y) + βx ≥ 0, ∀y � x

−αQ(y) + γx ≥ 0, ∀y �1 x

For convenience we impose the additional condition that |αi| ≤ 1 for each αi, which

does not change whether the minimum is negative.

min
∑
x

βxτ0(x) +
∑
x

γxτ1(x)

s.t. αQ(y) + βx ≥ 0, ∀y � x

−αQ(y) + γx ≥ 0, ∀y �1 x

|αi| ≤ 1, ∀i ∈ [k]

It is easy too see when the objective function reaches minimum, βx = −miny:y�x αQ(y)

and γx = maxy:y�1x αQ(y). Then the objective function becomes a function of αi’s. We

claim that the minimum is achieved when every αi is at the boundary, i.e. αi = ±1, ∀i ∈

[k]. We establish the following lemma:

Lemma 3.4.3. We say a function f : Rk → R is almost linear if there exist A,B ⊂ 2[k]

which are two collections of subsets of [k], such that f can be written as:

f(x1, ..., xk) =
∑
a∈A

ca max
i∈a

xi +
∑
b∈B

db min
i∈b

xi

Where (ca)a∈A’s and (db)b∈B’s are constants. If f is almost linear, then for any domain

with form [a, b]k ⊂ Rk, the minimum of f can be achieved when every xi is at the

boundary, i.e.

min
(x1,...,xk)∈[a,b]k

f(x1, .., xk) = min
(x1,...,xk)∈{a,b}k

f(x1, .., xk)
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Proof. Assume the minimum of f on [a, b]k is achieved at (y1, ..., yk), we will show that

we can ”move” all variables to the boundary without increasing the value of f .

Suppose the order of those variables is a ≤ yσ(1) ≤ yσ(2) ≤ ... ≤ yσ(k) ≤ b. If every

variable equals to either a or b then we are done, else assume a < yσ(i) < b. Further

more we may assume yσ(i−1) < yσ(i) = yσ(i+1) = ... = yσ(j) < yσ(j+1). (Here we let

a = yσ(0) and b = yσ(k+1) for convenience.)

Consider the following function f̃(y) = f(z1, ..., zk) where zl = y if i ≤ l ≤ j and

zl = yl otherwise. Then it is easy to see f̃ is linear on [yσ(i−1), yσ(j+1)] and f̃(yσ(i)) =

f(y1, ..., yk). That means we can move y to one of the end points without increasing

the value of f̃ . This is equivalent to saying we change the value of yσ(i), yσ(i+1), ..., yσ(j)

together to yσ(i−1) or yσ(j+1) without increasing the value of f .

By repeating this procedure we can move every yi to the boundary, i.e. yi = a or b

for every i ∈ [k].

Applying this lemma directly we have αi = ±1, ∀i ∈ [k] when the objective function

achieves the minimum. Then we know:

βx =

 −1 if αQ(y) = 1 ∀y � x,

1 otherwise.

γx =

 −1 if αQ(y) = −1 ∀y �1 x,

1 otherwise.

Let E0 = {x ∈ {0, 1}n : βx = −1} and E1 = {x ∈ {0, 1}n : γx = −1}. Then the

minimum of the objective function is:∑
x

βxτ0(x) +
∑
x

γxτ1(x) =
∑
x∈E0

−τ0(x) +
∑
x 6∈E0

τ0(x) +
∑
x∈E1

−τ1(x) +
∑
x 6∈E1

τ1(x)

= −τ0(E0) + τ0(E0)− τ1(E1) + τ1(E1)

= 1− 2τ0(E0) + 1− 2τ1(E1)

= 2 · (1− (τ0(E0) + τ1(E1)))

Recall that Q is not confusable for µ0 and σ1 if and only if this minimum is negative,

which is equivalent to τ0(E0) + τ1(E1) > 1.
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Now we will deduce some properties of E0 and E1. Then we use those properties to

prove Lemma 3.4.2.

First, for any x ∈ E0, we know αQ(y) = 1 ∀y � x. This implies for any z � x,

βz = −1, thus z ∈ E0. In an other word, E0 is a downset of �. Similarly, we can

conclude that E1 is a downset of �1. For any x0 ∈ E0, x1 ∈ E1, we have: αQ(x0) = 1

and αQ(x1) = −1. This means Q(x0) 6= Q(x1). That means for any i ∈ Σ, Q−1(i)

cannot intersect both E0 and E1. This also implies E0 ∩ E1 = ∅.

Also, we know both E0 and E1 are non-empty since τ0(E0) + τ1(E1) > 1. This

implies E0 and E1 are subsets of the half spaces, i.e. E0 ⊂ H0 = {x ∈ {0, 1}n : x1 = 0},

E1 ⊂ H1 = {x ∈ {0, 1}n : x1 = 1}.

Now we are ready to prove the lemma. We define function g : Σ → {0, 1} such

that g(i) = 0 if Q−1(i) ∩ E0 6= ∅. Then we know ∀x ∈ E0, g(Q(x)) = 0, ∀x ∈ E1,

g(Q(x)) = 1.

Recall X represents the random variable 0 plus noise, X1 is the first coordinate of X,

Y = Q(X). Apply the data processing inequality on X1, Y, g(Y ) we have: I(Y ;X1) ≥

I(g(Y );X1). Thus it is enough to prove I(g(Y );X1) ≥ C · ε3 for some constant C > 0.

Now we try to compute I(g(Y );X1), we have:

Pr(g(Y ) = 0|X1 = 0) ≥ τ0(E0)

1− ε

Pr(g(Y ) = 0|X1 = 1) ≤ 1− τ1(E1)

1− ε

Let a = Pr(g(Y ) = 0|X1 = 0) and b = Pr(g(Y ) = 0|X1 = 1), we have: a − b =

τ0(E0)+τ1(E1)
1−ε − 1 ≥ ε. Now we can compute the mutual information of g(Y ) and Xi as

a function of ε, a, b which we denote by h(ε, a, b).

h(ε, a, b) = I(g(Y );X1)

= H(g(Y ))−H(g(Y )|X1)

= H((1− ε)a+ εb)− [(1− ε)H(a) + εH(b)]

Now it is enough to prove there exist a constant C > 0 such that for all ε > 0:

min
a,b∈[0,1],a−b≥ε

h(ε, a, b) ≥ C · ε3 (3.1)
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Recall H(p) = −p log p− (1− p) log(1− p) is the binary entropy function, this is a

pure calculus problem. First we make the following observation:

Claim 3.4.4. If there exists a constant ε0 > 0 such that (3.1) holds for all ε < ε0

with constant C > 0. Then there exists a constant C ′ > 0 such that (3.1) holds for all

ε ∈ (0, 1/2] with constant C ′

Proof. Since h(ε, a, b) = H((1−ε)a+εb)−[(1−ε)H(a)+εH(b)] and H is strictly concave

down, we know h(a, b, ε) > 0. Define w(ε0) = min{a,b∈[0,1],ε∈[ε0,1/2]:a−b≥ε} h(ε, a, b)

we have w(ε0) > 0. Then we have: h(ε, a, b) ≥ w(ε0), ∀ε ∈ [ε0, 1/2]. Let C ′ =

min(C,w(ε0)) we have: h(ε, a, b) ≥ C ′ · ε3, ∀ε ∈ (0, 1/2].

Fix ε > 0, we further show h(ε, a, b) achieves minimum when a = b + ε and b ∈

[1/3, 1/2]. In other words:

min
a,b∈[0,1],a−b≥ε

h(ε, a, b) = min
b∈[1/3,1/2]

h(ε, b+ ε, b)

To see this, first take partial derivative in term of a we get:

∂

∂a
h(ε, a, b) = (1− ε)

(
H ′((1− ε)a+ εb)−H ′(a)

)
Since H ′(·) is strictly decreasing and a − b ≥ ε, we have ∂

∂ah(ε, a, b) > 0. Thus we

know a = b+ ε when h(ε, a, b) achieves minimum. Plug it in we have:

h(ε, b+ ε, b) = H(b+ ε− ε2)− [(1− ε)H(b+ ε) + εH(b)]

Take partial derivative in term of b we get:

∂

∂b
h(ε, b+ ε, b) = H ′(b+ ε− ε2)− [(1− ε)H ′(b+ ε) + εH ′(b)]

Recall H ′′′(p) = 1
p2
− 1

(1−p)2 . We know H ′ is concave up on (0, 1/2) and concave down

on (1/2, 1). Thus ∂
∂bh(ε, b + ε, b) ≤ 0 when b ≤ 1/2 − ε and ∂

∂bh(ε, b + ε, b) ≥ 0

when b ≥ 1/2. Thus when ε < 1/6 we may assume b ∈ [1/3, 1/2] when the function

h(ε, b+ ε, b) achieves minimum.

In conclusion, we have: mina,b∈[0,1],a−b≥ε h(ε, a, b) = minb∈[1/3,1/2] h(ε, b+ ε, b). Now

it is enough to prove there exist C > 0 such that h(ε, b+ ε, b) ≥ C · ε3 for all ε > 0 and

b ∈ [1/3, 1/2].
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Let’s first consider the Taylor expansion of H at b up to the third term, define

fb(η) = H(b+η)−
[
H(b) +H ′(b) · η + 1

2H
′′(b) · η2 + 1

6H
′′′(b) · η3

]
. Then it is easy to see

f ′b(0) = 0, f ′′b (0) = 0 and f ′′′b (0) = 0. Also we have f
(4)
b (η) = H(4)(b+ η) = −2( 1

(b+η)3
+

1
(1−b−η)3 ). When b ∈ [1/3, 1/2] and η ∈ [0, 1/6], we have: |f (4)b (η)| ≤ 2(33 + 33) = 108.

That implies |fb(η)| ≤ 108
4 ! · η

4 ≤ 5 · η4 for all b ∈ [1/3, 1/2] and η ∈ [0, 1/6].

Now we have:

h(ε, b+ ε, b)

= H(b+ ε− ε2)− [(1− ε)H(b+ ε) + εH(b)]

= H(b) +H ′(b) · (ε− ε2) +
1

2
H ′′(b) · (ε− ε2)2 +

1

6
H ′′′(b) · (ε− ε2)3 + fb(ε− ε2)

−(1− ε) ·
[
H(b) +H ′(b) · ε+

1

2
H ′′(b) · ε2 +

1

6
H ′′′(b) · ε3 + fb(ε)

]
−εH(b)

= H(b) +H ′(b) · (ε− ε2) +
1

2
H ′′(b) · (ε− ε2)2 +

1

6
H ′′′(b) · (ε− ε2)3 +O(ε4)

−(1− ε) ·
[
H(b) +H ′(b) · ε+

1

2
H ′′(b) · ε2 +

1

6
H ′′′(b) · ε3 +O(ε4)

]
−εH(b)

= −1

2
H ′′(b)ε3 +O(ε4)

The last inequality follows from the fact that H ′(b), H ′′(b) and H ′′′(b) are bounded

by a constant when b ∈ [1/3, 1/2]. Since H ′′(b) < −4, we know there exists a constant

C such that: ∀b ∈ [1/3, 1/2], η ∈ [0, 1/6].

h(ε, b+ ε, b) ≥ −1

2
H ′′(b)ε3 − C · ε4

≥ 2ε3 − C · ε4

Thus when ε < 1/C, h(ε, b+ ε, b) > ε3.

Since 1/C is a constant that does not depend on b, by Claim 3.4.4 there exist C ′ > 0

such that for all ε > 0, a, b ∈ [0, 1] that satisfy a − b ≥ ε, h(ε, a, b) ≥ C ′ · ε3. Thus

I(g(Y );X1) ≥ C ′ · ε3, which finishes the proof.
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3.4.3 Proof of Lemma 3.3.3

Recall we may assume T = Q1, Q2, ..., Ql where each Qj is a composite query that

queries the j-th noisy copy. Applying Lemma 3.4.1 to every Qj we get a sequence of

nd-trees {Tj}j such that DE(Tj) = O(1/ε3 · dj), ∀j ∈ [l], where dj is the depth of Qj .

Also we known Qj is strongly confusable conditioned on Tj for all j.

Define T ′ = T1, T2, ..., Tl, then it is easy to see T ′ is a semi-adaptive decision tree

with DE(T ′) = O(1/ε3 ·D(T )). It is enough to show the strongly confusable property

is preserved under composition. We state it as the following lemma:

Lemma 3.4.5. Let T1, T2 be gnd-trees, T ′1, T ′2 be nd-trees such that T1 (T2) is strongly

confusable conditioned on T ′1 (T ′2). Then T1 ◦ T2 is strongly confusable conditioned on

T ′1 ◦ T ′2.

Proof. For any i ∈ [n], since T1 is confusable conditioned on T ′1 for µ0 and σi, let A0
1

and Ai1 be the adversaries for µ0 and σi that achieves confusability. Similarly for T2

and T ′2, let the two adversaries be A0
2 and Ai2. Then we know T1(µ0,A0

1) = T1(σi,Ai1)

and T2(µ0,A0
2) = T2(σi,Ai2).

We define A0 (Ai) for tree T1 ◦T2 in the follow way: apply A0
1 (Ai1) to the first noisy

copy of the input and apply A0
2 (Ai2) to the second noisy copy.

Since the noise on the two noisy copies are independent, we have: T1 ◦T2(µ0,A0) =

T1(µ0,A0
1)× T2(µ0,A0

2) = T1(σi,Ai1)× T2(σi,Ai2) = T1 ◦ T2(σi,Ai) This implies T1 ◦ T2

is strongly confusable conditioned on T ′1 ◦ T ′2.

The above lemma directly implies T is strongly confusable conditioned on T ′, and

thus confusable for µ0 and µ1. That finishes the proof.

3.5 From semi-adaptive nd-tree to non-adaptive nd-tree

In this section we will prove Lemma 3.3.4. First we restate the lemma here:

Lemma. Let T be a semi-adaptive nd-tree, then there exists a non-adaptive nd-tree T ′

with depth D(T ′) = O(DE(T )) such that:
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• ‖T (µ0)− T ′(µ0)‖1 = 0

• ‖T (µ1)− T ′(µ1)‖1 ≤ 0.01

Recall µ0 is the distribution concentrated on 0 and µ1 is the uniform distribution

on {ei : i ∈ [n]}.

Proof. Assume DE(T ) = d, recall DE(T ) = DE(T,0) is the expected number of queries

made by T when the input is 0. Define di to be the expected number of queries on

the i-th coordinate when the input is 0. Thus we have
∑

i di = d. Define nd-tree T ′

to be the following: query the i-th coordinate 100di times. The depth of T ′ will be

D(T ′) =
∑

i 100di = 100d = O(DE(T )).

The output of T ′ is determined by the following: At each leaf of T ′, let vi ∈ {0, 1}100di

be the result we get from T ′ by querying xi. We will use this vector to simulate T .

When T queries xi, we use bits in vi to answer those queries. If we run out of bits, i.e.

T queries a coordinate xi which has been queried more than 100di times, then we just

generate a new random bit y which equals 1 with probability ε and 0 other wise, and

use y as the answer. Finally we will reach some leaf of T , we will use the output with

respect to that leaf as the output for T ′.

When the input is 0, this simulation works perfectly since y is always equivalent to

the noisy copy of xi for all i. Thus T (µ0) = T ′(µ0). When the input is picked from

µ1, let X1 be the random variable representing the input, the simulation only deviates

when X1 = ei and T queries xi more than 100di times for some i ∈ [n]. We can define

the bad event B to be:

B =
⋃
i∈[n]

Bi =
⋃
i∈[n]

{X1 = ei ∧ T queries xi more than 100di times}

Then we have: ‖T (µ1)− T ′(µ1)‖1 ≤ P(B). So it is enough to show B happens with

small probability.

For any i ∈ [n], recall Di(T, x) is the expectation of the number of times that

coordinate xi gets queried by tree T when the input is x. Thus Di(T,0) = di. We have

the following important observation:
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Lemma 3.5.1. For any semi-adaptive decision tree T ,

Di(T, ei) = Di(T,0) ∀i ∈ [n]

Proof. Recall the definition of semi-adaptive decision tree we may assume T = T1, ..., Tl,

where each Tj queries every coordinate at most once. So it is enough to proveDi(Tj , ei) =

Di(Tj ,0) for all i, j.

For any Tj , since 0 and ei only differs on the i-th coordinate, they will behave

exactly the same until the i-th coordinate gets queried. However, since Tj only queries

the i-th coordinate at most once, the rest of the tree does not affect Di at all, so

Di(Tj , ei) = Di(Tj ,0).

With the help of Lemma 3.5.1 we know Di(T, ei) = di ∀i ∈ [n]. By Markov inequal-

ity,

P(B) =
∑
i∈[n]

P(Bi)

≤
∑
i∈[n]

1

n
· Di(T, ei)

100di

≤
∑
i∈[n]

1

n
· di

100di

= 0.01

That implies ‖T (µ1)− T ′(µ1)‖1 ≤ 0.01, which finishes the proof.

3.6 Lower bound for non-adaptive nd-tree

In this section we will provide the proof of the lower bound result given in [39]. The

statement of the theorem will be modified for convenience.

Theorem 3.6.1. Recall µ0 is the distribution concentrated on 0 and µ1 is the uniform

distribution on {ei : i ∈ [n]}. If T is a non-adaptive nd-tree that gives correct answer

for µ0 and µ1 with probability at least 2/3, then D(T ) = Ω(log(1/ε)−1 · n log n).



58

Proof. Define set S = {i ∈ [n] : T queries coordinate i more than 20D(T )/n times }.

Then since T is non-adaptive it is easy to see |S| ≤ 0.05 · n.

Let T ′ be the decision tree that queries each coordinate k = D(20D(T )/n) times.

Then we can use T ′ to simulate T in the following way:

• If T queries xi s.t. i /∈ S, use the answer in T ′ as answer.

• If T queries xi s.t. i ∈ S. use an independent ε noise as answer.

This simulation works perfectly for input 0 and ej when j /∈ S. That’s because for

any i ∈ S, an independent ε noise is indeed an ε-noisy copy for the i-th coordinate.

That result implies: ‖T (µ0) − T ′(µ0)‖1 = 0 and ‖T (µ1) − T ′(µ1)‖1 ≤ |S|/n ≤ 0.05.

Since T can give correct answer for µ0 and µ1 with probability at least 2/3, We know:

‖T ′(µ0)− T ′(µ1)‖1 ≥ 2/3− 2 · 0.05 ≥ 1/2

Now we will bound this difference from above in term of n and k.

Lemma 3.6.2. Let γ = (4ε(1− ε))−1 and suppose k ≤ log n/2 log γ. Then:

‖T ′(µ0)− T ′(µ1)‖1 ≤ O(

√
log n

n
k2/3γ4k)

Proof. First, we claim that it is enough to prove this inequality for deterministic nd-

trees, since a randomized nd-tree is just a distribution over deterministic nd-trees. We

represent each leaf u by the k×n matrix where uij is the value of xi in copy j along the

path to the leaf. Let ki(u) =
∑

j∈[k] uij to be the number of ”1” answer for xi. and let

zi(u) = |{i : ki(u) = l}| be the number of variables with exactly l ”1”’s in the answer.

Let K0
i (K1

i ) and Z0
i (Z1

i ) be the random variable for the value of ki and zi when the

input is picked from µ0 (µ1). Furthermore, let

pl = P({K0
i = l}) =

(
k

l

)
εl(1− ε)k−l.

Then we have:
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‖T ′(µ0)− T ′(µ1)‖1

=
∑

u∈{0,1}kn
|
∏
i∈[n]

εki(1− ε)k−ki − 1

n

∑
j∈[n]

(1− ε)kjεk−kj
∏
i 6=j

εki(1− ε)k−ki |

=
∑

u∈{0,1}kn

∏
i∈[n]

εki(1− ε)k−ki |1− 1

n

∑
j∈[n]

(
1− ε
ε

)2kj−k
|

=
∑
z

P(Z0 = z)|1− 1

n

k∑
l=0

zl

(
1− ε
ε

)2l−k
|

= E

(∣∣∣∣∣1− 1

n

k∑
l=0

Z0
l

(
1− ε
ε

)2l−k
∣∣∣∣∣
)

= E

(∣∣∣∣∣
k∑
l=0

(pl −
1

n
Z0
l )

(
1− ε
ε

)2l−k
∣∣∣∣∣
)

≤
k∑
l=0

E

(∣∣∣∣(pl − 1

n
Z0
l )

∣∣∣∣ (1− ε
ε

)2l−k
)

≤

(
k∑
l=0

P
(∣∣Z0

l − pln
∣∣ ≥√3pln log

n

pl

)

+
k∑
l=0

P
(∣∣Z0

l − pln
∣∣ ≤√3pln log

n

pl

)√
3pl log(n/pl)

n

)(
1− ε
ε

)2l−k
.

Note that Z0
l ≤ n and

k∑
l=0

pl

(
1− ε
ε

)2l−k
=

k∑
l=0

(
k

l

)
εk−l(1− ε)l = 1.

Since Z0
l is binomially distributed with parameters n and pl, using Chernoff bound

we have for β ≤
√
pln/3

P
(
|Z0
l − plm| ≥ β

√
3pln

)
≤ 2e−β

2
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Pick β =
√

log(n/pl) we have:

‖T ′(µ0)− T ′(µ1)‖1

≤
k∑
l=0

2pl
n

(
1− ε
ε

)2l−k
+

k∑
l=0

√
3pl log(n/pl)

n

(
1− ε
ε

)2l−k

≤ 2

n
+

√
3 log n

n

k∑
l=0

√
pl

(
1− ε
ε

)2l−k
+

√
3

n

k∑
l=0

√
pl log

1

pl

(
1− ε
ε

)2l−k

≤ 2

m
+

√
3k log n

n
γ2k +

6

e

√
3

n
k2/3γ4k

≤ O(

√
log n

n
k2/3γ4k)

Applying this result directly we have:

1/2 ≤ O(

√
log n

n
k2/3γ4k)

Solving this inequality we have: k = O(log(1/ε)−1 · log n). Thus D(T ) = k · n =

O(log(1/ε)−1 · n log n), which finishes the proof.

3.7 Noisy Broadcast Model and It’s Relation to the Gnd-Tree Model

Now we have finished proving Theorem 3.1.1. In this section we provide the formal

definition of the noisy broadcast model. Goyal, et al. [24] Showed how to reduce the

noisy broadcast model to the gnd-tree model. We show how to adapt their reduction

so that it applies when we introduce the noise cancellation into both models. At the

end of this section, we will provide the proof of Corollary 3.1.2.

3.7.1 The Noisy Broadcast Model

Here we provide the definition given in [24]:

The noisy broadcast model considers one receiver P0 and n processors P1, ..., Pn. For

input x ∈ {0, 1}n, the i-th coordinate xi is given to processor Pi. The goal is for P0 to
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evaluate a function f at x. The receiver and the processors are allowed to communicate

under a noisy broadcast protocol.

The specification of a noisy broadcast protocol consists of:

• The total number s of broadcast used in the protocol.

• A sequence of indices i1, ..., is that indicate the processor that make the broadcast

in each round.

• A sequence of boolean functions g1, ..., gs that are used to compute the message

of each broadcast. Here gj : {0, 1}j → {0, 1}.

• An output function h for P0 to compute the final output.

Running the protocol. For a fixed noisy parameter ε, let N be a s by n + 1

matrix of independent ε-noisy bits and let N j denotes the j-th row of N . In the j-

th round of the execution, the processor Pij broadcast bj and each other processor

Ph receives a noisy copy of bj given by bjh = bj
⊕
N j
h. The bit bj is computed by

the function gj using Pij ’s input bit and all the previous noisy bits received by Pij ,

i.e. bj = gj(xij , b
1
ij
, ..., bj−1

ij
). Finally, the receiver P0 will evaluate the output of the

protocol h(b01, ..., b
0
s).

We allow the protocol to be randomized. This means that each processor has access

to a source that generates independent random bits. The function gj may depend on

the random bits generated by Pij .

The receiver P0 is not essential for this model. In some other definitions, there is

no P0 and the goal is for all the processors to learn the correct value of f(x). It is easy

to see these definitions are essentially the same.

This model enforces certain properties typically required of communication protocols

in noisy environments. First, protocols must be oblivious in the sense that the sequence

of processors who broadcast is fixed in advance and does not depend on the execution.

Without this requirement, noise could lead to several processors speaking at the same

time. Second, it rules out communication by silence: when it is the turn of a processor

to speak, it must speak.
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3.7.2 Reduction from the Noisy Broadcast Model to the Gnd-tree

Model

In this section we give the formal statement of the simulation theorem with adversaries

in both models. Also, we will discuss the behaviours of the result when the original

protocol is in the 2-Phase noisy broadcast model. For convenience, we will restate their

result in a slightly different but more general way.

For the gnd-tree model, recall the noisy copies are obtained by adding noise to every

coordinate of the true input x with fixed probability ε. It will be convenient to consider

the possibility of different noise rates for different input bits. For any vector (ε1, ..., εn)

satisfying εi ∈ (0, 1/2),∀i, we can generate noisy copies using εi as the noise rate on

the i-th coordinate. We call this vector the noise vector of the noisy copy.

We define the following special kind of gnd-tree called flexible noise gnd-tree . A

flexible noise gnd-tree T is a gnd-tree with a flexible noise parameter ε ∈ (0, 1/2). We

will use the word uniform noise parameter to refer to the fixed noise parameter used in

the normal gnd-tree model. The algorithm starts by choosing any vector (ε1, ..., εn) ∈

(0, 1/2)n such that the geometric mean of εi’s is at least ε, which means (
∏
i εi)

1/n ≥ ε.

Then this vector is used as the noise vector to generate all the noisy copies. The rest

of the evaluation is the same as the normal gnd-tree. Clearly, the algorithm can always

choose εi = ε,∀i, so the flexible noise gnd-tree model is at least as powerful as the

original model.

Under this definition, we can state the reduction theorem as follow:

Theorem 3.7.1. Suppose P is a noisy broadcast protocol that uses k broadcasts. If P

can compute function f with error at most δ under any adversary, then there exists a

flexible noise gnd-tree T of depth 2k+n with flexible noise parameter εk/n such that, T

can compute f with error at most δ under any adversary. What’s more, if P is in the

2-Phase noisy broadcast model, then T is non-adaptive.

The proof of this theorem is given in Section 3.7.4.

Remark: It is natural to ask whether we can replace the flexible noise gnd-tree by a

normal gnd-tree in the above theorem. Unfortunately, this is not achievable even for the
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uniform noise parameter being (εk/n)O(1). For example, consider the identity function

on a subset of size n/ log logn, using Gallager’s algorithm [23] it can be computed in

O(n) broadcasts in the noisy broadcast model. However, it has a Ω(n · log n/ log log n)

lower bound by the result of [24] in the gnd-tree model when the error rate is constant.

The remark above implies that it is not possible to reduce a flexible noise gnd-tree

with flexible noise parameter ε to a normal gnd-tree with uniform noise parameter εO(1).

The main reason is the noise parameter on some coordinate might be much smaller than

εO(1). What we can still hope for is once we fix the bits on those positions we can get

a reduction result for the restricted function.

Before we state the reduction result we first introduce some definitions. For K ⊂ [n],

we refer to a point in {0, 1}K as a partial assignment to K. Let ρ be a partial assignment

to K and let x be a partial assignment to [n] −K we write xρ as the point in {0, 1}n

that agrees with ρ on K and with x on [n]−K. For any function f that takes input on

[n], we define f |ρ to be the restriction of f on ρ, i.e. f |ρ(x) = f(xρ) for x ∈ {0, 1}[n]−K .

Theorem 3.7.2. Let C > 1 be any constant. Suppose T is a flexible noise gnd-tree of

depth k and flexible noise parameter ε. Suppose T can compute function f with error

at most δ under any adversary. Then there is a subset K ⊂ [n] of size at most n/C

such that for any partial assignment ρ to K, there is a gnd-tree Tρ of depth k that takes

input in [n]−K with uniform noise parameter εC , such that Tρ can compute f |ρ with

error at most δ under any adversary.

The idea of the proof is pretty simple: we choose K to be the set of coordinate that

has noise parameter smaller than εC , then once we fixed a partially assignment on K,

T becomes a flexible noise gnd-tree such that the noise parameters on every coordinates

is greater than εC . The details of the proof is given in Section 3.7.5.

We now explain how Theorem 3.7.1 and Theorem 3.7.2 can be used to obtain lower

bound results for the noisy broadcast model. If f is a function such that for any K ⊂ [n]

with |K| ≤ n/C, there exist a partial assignment ρ to K such that f |ρ is hard in the

gnd-tree model, then combine these two theorems we can obtain a hardness result for

the noisy broadcast model.
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For example, let f be the identity function IDn, P be a protocol in the noisy

broadcast model that can compute IDn with k broadcasts. Applying theorems above

it is easy to see for any set K ⊂ [n] with |K| ≤ n/C, we can pick any partial assignment

ρ and the restricted function will become: ID(1−1/C)n, which is almost as hard as the

original function. As we mentioned before, [24] shows that any gnd-tree that computes

IDn with noise parameter ε must have depth Ω(ε2 · n log n). Applying this result

together with the two reduction theorems above we have:

2k + n = Ω((εC·k/n)2 · (1− 1/C)n · log((1− 1/C)n))

Pick C = 4, we get k = Ω(log(1/ε)−1 · n · log log n).

3.7.3 Preliminaries of the Proof

In this section we introduce some notation we are going to use in the proofs of Theorem

3.7.1 and Theorem 3.7.2.

For two randomized computational models P and Q, we say P can be reduced to Q

(or Q can simulate P) if for any input x, the output distributions for the two models

are the same. Then any function that can be computed by P can also be computed by

Q. We need to extend this definition to models with adversary.

Definition 10. Assume P and Q are noisy computation models under noise cancella-

tion adversary. We say P can be reduced to Q under noise cancellation adversary, or

Q can simulate P under noise cancellation adversary if the following property holds:

For any adversary A1 for Q, there exists an adversary A0 for P such that for any

input x, the output distributions P(x,A0) and Q(x,A1) are exactly the same.

This definition implies that if P can be reduced to Q and Q can compute some

function f with error at most δ under any adversary, then P can compute f with error

at most δ under any adversary as well.

Now let’s set up a few computational models we are going to use in the proofs.

The semi-noisy broadcast model SNB(ε) is similar to the noisy broadcast model.

In this model there are n input processors Q1, ..., Qn, a receiver P0 and a collection of
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auxiliary processors {Pi : i ∈ E ⊂ {0, 1}n}. EachQi initially has input xi and it can only

broadcast xi with noise. An auxiliary processor Pi can broadcast any boolean function

of the bits it heard previously, and this broadcast is noise-free. We say a protocol in

SNB model is non-adaptive if for every auxiliary processor Pi, i ∈ [n], the broadcasts

it makes does not depend on broadcasts received from other auxiliary processors. In

other words, they only depend on broadcasts received from input processors Q1, ..., Qn.

The flexible noisy-copy broadcast model NCB(ε) has one receiver P0 and a collec-

tion of auxiliary processors {Pi : i ∈ E ⊂ {0, 1}n}. Before the evaluation starts, the

algorithm picks a vector (ε1, ..., εn) ∈ (0, 1/2)n satisfying the condition (
∏
i εi)

1/n ≥ ε.

Then each of the Pi gets an independent noisy copy of the entire input. The noise

parameters for the i-th coordinate is εi. Here ε is called the flexible noise parameter

of the protocol. All broadcasts are noise-free. Similarly, for a protocol in NCB model,

we say it is non-adaptive if for every auxiliary processor Pi, i ∈ [n], the broadcasts it

makes does not depend on previous broadcasts. Note that the final output broadcast

made by the receiver P0 will depend on both the noisy copy it gets and all the previous

broadcasts.

We consider a sequence of protocols:

• P1 := P is the original broadcast model.

• P2 in the model SNB(ε).

• P3 in the model NCB(εk/n).

• P4 := T is a flexible noise gnd-tree with flexible noise parameter εk/n.

We will prove Theorem 3.7.1 by sequence of reductions from P1 to P4.

3.7.4 Proof of Theorem 3.7.1

Recall the notation we defined in Section 3.7.1, for the noisy broadcast protocol P, we

make the following definitions: for any j ∈ [k].

• ij is the index of the processor broadcasting at step j.
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• bj is the bit broadcast at step j.

• gj is the boolean function that computes bj .

• For h ∈ [n], bjh = bj
⊕
N j
h is the noisy copy received by Ph.

From P1 to P2. We will show that P1 can be simulated by P2 under adversary.

That means in addition to the normal simulation, we need to show that any adversary

behaviour in P2 can be simulated by some adversary in P1.

We will assume that both models are using the same noisy bits N . Assume P2

already finished the simulation for the first j − 1 rounds of P1. i.e. Each Ph in P2

knows the values b1h, ...b
j−1
h .

Then to simulate the j-th round of P1, Qij broadcasts xij , and Pij evaluates both

gj(0, bi
j

1 , ..., b
ij
j−1) and gj(1, bi

j

1 , ..., b
ij
j−1) and broadcasts both of them with no noise.

Now each Pi must generate bji by the three bits (x, a0, a1) received in this round,

where x is the noisy broadcast and a0 and a1 are the bits sent by Pij . If a0 = a1, then

Pi uses its private randomness to generate an ε biased bit and add it to bji to simulate

the noise. If a0 6= a1, Pi simply sets bij to ax. In this case, if the adversary for P2

decides to cancel the noise, i.e. correct x back to the true value, xij , then the adversary

for P1 will also correct bjh back to bj , which guarantees both model will end up with

same bjh in the end.

The total number of broadcast in P2 is 3k, of which k are by input processors and

2k are by auxiliary processors.

It remains to show if P1 is also a 2-Phase noisy broadcast model, then P2 is non-

adaptive. We known when P2 is simulating Phase 1, when some processor Pi in P1

broadcasts xi, P2 will simulate it by 3 broadcasts, 2 by Pi and 1 by Qi. It is easy to

see the 2 broadcasts made by Pi are fixed be 0 and 1, and can be ignored. This implies

that when P2 is simulating Phase 2, each broadcast made by {Pi}i∈[n] only depends on

broadcasts made by {Qi}i∈[n]. Thus P2 is non-adaptive in SNB model.

From P2 to P3. Here we will build a protocol P3 in the NCB(εk/n) model that

simulates P2.
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In P2, for any i ∈ [n], let ki be the number of times that Qi broadcasts xi. Then

each processor will receive ki bits of ε-noisy copies of xi. In P3, set εi = εki to be

the noise parameter for coordinate i, this is allowed because (
∏
i εi)

1/n = (
∏
i ε
ki)1/n =

ε
∑
i ki/n = εk/n. Then at the start of P3, each processor Pj will get an εi-noisy copy

of xi, it is enough to show that we can use this noisy bit to construct a sequence of ki

ε-noisy bits of xi. Then we can use this sequence to simulate all the broadcasts made

by Qi and thus simulate protocol P3.

First, we will review the proof in [24], where there is no adversary in both protocols.

Let t = ki and γ = εt. Then our goal is to generate t independent ε noisy copies of

xi using one γ-noisy copy of xi. Let p0 (resp. p1) be the distribution on {0, 1}t be

of t independent ε-noisy copies of 0 (reps. 1). Those are the distributions we want

to get when xi is 0 and 1 respectively. Let b be the γ-noisy copy of xi given to the

algorithm. We may describe the algorithm by: If b = 0, output s ∈ {0, 1}t with respect

to distribution q0; if b = 1, output s ∈ {0, 1}t with respect to distribution q1. q0 and q1

need to satisfies the following requirement: when xi = 0, (1−γ)q0 +γq1 = p0; similarly

when xi = 1, (1− γ)q1 + γq0 = p1. Solve these equations we have:

q0(s) =
(1− γ)p0(s)− γp1(s)

1− 2γ
,

q1(s) =
(1− γ)p1(s)− γp0(s)

1− 2γ
.

It is easy to show both of them are indeed distributions.

Now consider the reduction under adversary. Again we focus on simulating the ε-

noisy broadcasts of length t using one γ-noisy copy of xi. Assume xi = 0, let Nγ be the

noise used in P3, then the above algorithm will sample a string according to q0 if Nγ = 0

and according to q1 if Nγ = 1. One thing the adversary can do is to cancel the noise

with some fixed probability, then the final output distribution will be (1− γ′)q0 + γ′q1

for some γ′ < γ. However, the adversary can do more than this. Recall the adversary

can see all the random bits, even random bits in the future! The adversary can decide

to cancel the noise only when the algorithm is about to get some specific string from

the sampling.

In order to control what the adversary can do and better analyze the output, we
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will carefully design a sampling process. First we have the following observation:

Lemma 3.7.3. Let q0 and q1 be the distributions defined above. Then there exist two

joint random variables X,Y in {0, 1}t with the following properties:

1. The distribution of X is q0.

2. The distribution of Y is q1.

3. P (X � Y ) = 1.

Here � is the partial order in {0, 1}t, x � y if and only if xi ≤ yi for all i ∈ [t].

Proof. We claim that we can sample (X,Y ) that satisfies the properties we need by the

following process:

1. Sample X according to q0

2. If |X| ≥ t/2, set Y = X.

3. If |X| < t/2,

(a) with probability q1(X)/q0(X), set Y = X.

(b) with probability 1 − q1(X)/q0(X), sample Y from set {Y ∈ {0, 1}t : |Y | =

t− |X|, X � Y } uniformly at random.

Property 1 and 3 are obvious from the definition of this algorithm. Then it is enough

to prove property 2.

Recall the definition of p0 and p1. We know that p0(x) = ε|x|(1 − ε)t−|x| and

p1(x) = εt−|x|(1− ε)|x|. This implies they are symmetric, the value only depend on the

hamming weight, we denote pb(|x|) = pb(x), b ∈ {0, 1}. Thus the following properties

are straightforward: p1(l) = p0(t−l); p0 is monotone decreasing in term of the hamming

weight.

From the definition of q0 and q1 it is easy to see they also follow the same properties,

i.e. q1(l) = q0(t− l); q0 is monotone decreasing in term of the hamming weight.
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The above properties imply q1(X) ≤ q0(X) when |X| ≤ t/2, so the algorithm we

just described is well defined. Now we prove the distribution of Y is q1.

For any y ∈ {0, 1}t, |y| < t/2, P(Y = y) = P(X = y) · q1(y)/q0(y) = q1(y). For

any y ∈ {0, 1}t, |y| ≥ t/2, let l = |y|. Consider the size of the set {x ∈ {0, 1}t :

|x| = t− l, x � y}, it is easy to see this number only depends on the hamming weight

of y. We use C(t − l, l) to refer this number. Then we have: P(Y = y) = P(X =

y) +
∑

x�y,|x|=t−|y| P(X = x) · (1− q1(x)/q0(x)) · (1/C(n− l, l)) = q0(l) + q0(t− l) · (1−

q1(t− l)/q0(t− l)) = q1(l) = q1(y). This finishes the proof.

Then in protocol P3, for each Pj , let N(εki) be the noisy bit Pj gets for xi. Then it

sample (x, y) according to the joint distribution in Theorem 3.7.3. If xi
⊕
N(εki) = 0,

it outputs x, if xi
⊕
N(εki) = 1, it outputs y. From the argument above we know the

output distribution of this string is an ε-noisy copy of xi with length t. We will choose

the coupling such that this string is the noisy copy used in protocol P2.

Now consider what the adversary in P3 can do. Here we will only show the case

when xi = 0. (The discussion for xi = 1 is very similar.) If N(εki) = 1, let (x, y) be

the string we get from the sampling. Then the adversary may cancel this noise, which

means output x instead of y. Then in protocol P2, it is easy to the adversary can do

the same thing. When the noisy vector is y, the adversary changes it to x, that follows

from the fact that x � y.

Applying the above result for all i ∈ [n] we get a protocol P3 in NCB(ε). The total

number of broadcasts in P3 is 2k.

It remains to show if P2 is non-adaptive, then P3 is non-adaptive. Recall for each

auxiliary processor Pi, i ∈ [n], all the broadcasts it received from {Qi}i∈[n] in P2 are

simulated in P3 using the noisy copy of x given to Pi at the beginning of the algorithm.

Thus if P2 is non-adaptive, all broadcasts made by Pi only depend on its own noisy

copy. This implies P3 is non-adaptive.

From P3 to P4.

Recall P4 = T is in the gnd-tree model. Here T will first simulate all the random
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choices of all the processors in P3. Then we can view P4 as a deterministic protocol.

Also since all the broadcasts in P3 are noise free, it suffices for T to evaluate all the

broadcasts b1, ..., b2k. We will simulate all the broadcasts except the last one made by

the receiver P0 in the following way: In the j-th round, given the previous broadcasts

b1, ..., bj−1, we know bj should be broadcast by processor Pij . Once b1, ..., bj−1 are fixed,

it can be computed by a boolean function that only depends on the noisy copy of x

given to Pij at the beginning of the protocol. So T will just query this boolean function

on this copy and get the right bj . For the last broadcast, T makes n queries, one for

each coordinate of the noisy copy given to P0. Then T can use this vector together

with all previous broadcasts to output the final broadcast.

It is easy to see any adversary in T can be used in P3 that gives the same output.

The depth of T will be 2k + n.

Now we show if P3 is non-adaptive, then T is non-adaptive. We know that in P3,

every broadcast except the last one only depends on the processor’s own noisy copy.

Thus all these gnd-queries in T are non-adaptive. Also we know the last broadcast

made by P0 is simulated by n non-adaptive queries. This implies T is non-adaptive.

(This is why we simulate the last broadcast differently.)

Combine all those reductions we complete the proof of Theorem 3.7.1.

3.7.5 Proof of Theorem 3.7.2

Let (ε1, ...εn) be the noise parameters used by T to compute f , then we have (
∏
i εi)

1/n ≥

ε. Define K = {i ∈ [n] : εi ≤ εC}, we have: |K| ≤ n/C. For any partial assignment ρ

to K, by using this partial assignment in T we get a gnd-tree T |ρ with noise parameters

(εi)i∈[n]\K such that T |ρ can compute f |ρ under any adversary. By the definition of K

we know the error rate on every coordinates of T |ρ is greater than εC .

Let Tρ be the same tree as T |ρ but run with uniform noise parameter εC . Then

it is enough to show Tρ can simulate T |ρ under noise cancellation adversary. For any

adversaryA for Tρ, we can define adversaryA′ for T |ρ such thatA′ will first decrease the

noise rate to εC for every coordinate independently and then apply the same behaviour

as A. Then it is easy to see Tρ and T |ρ are equivalent under these adversaries, which
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finishes the proof.

3.7.6 Proof of Corollary 3.1.2

Recall P is a protocol in 2-Phase broadcast model. Apply Theorem 3.7.1 we get a

non-adaptive flexible noise gnd-tree T with depth 2k + n and flexible noise parameter

εk/n. Then apply Theorem 3.7.2 with C = 4 and the ρ being the all zero vector, we

conclude that there exist a subset K ⊂ [n] of size at most n/4 such that there exist a

gnd-tree T ′ of depth 2k+n and fixed noise parameter ε4·k/n such that, T ′ can compute

OR on [n] −K under any adversary. Also it is easy to see from the prove that if T is

non-adaptive, so does T ′. Then apply Theorem 3.1.1 we get:

2k + n = Ω((ε4·k/n)4 · 3/4 · n log(3/4 · n))

Solve this equality we get k = Ω(log(1/ε)−1 · n · log logn).

3.8 Towards Lower Bounds for General gnd-trees

We have proved an Ω(n log n) lower bound of function OR for non-adaptive gnd-trees

and an Ω(n log logn) lower bound for 2-Phase noisy broadcast protocols. It remains

open whether the framework can be extended from to prove lower bounds for unre-

stricted gnd-trees, thus lower bounds for noisy broadcast protcols.

First we notice that in the general gnd-tree model, OR can be solved using an

adaptive gnd-tree of depth O(log(1/ε)−1 · n) [19]. It is easy to see that the algorithm

also works under adversary. The majority function MAJ is a natural candidate of

hard function for general gnd-trees under adversary. i.e. we believe any gnd-tree that

computes MAJ under any adversary must have depth at least Ω(poly(ε) · n log n).

Without loss of generality we assume n is odd and n = 2k + 1. We also define µ̃0,

µ̃1 to be the uniform distributions over all points in {0, 1}n with hamming weight k

and k+ 1. In analogy with the proof we have in the non-adaptive case, we propose the

following conjecture:

Conjecture 3.8.1. For any gnd-tree T , there exist an nd-tree T ′ with depth at most

O(poly(1/ε) ·D(T )) such that: T is confusable conditioned on T ′ for µ̃0 and µ̃1.
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If this conjecture is true, then it directly gives a Ω(poly(ε) ·n log n) lower bound for

the gnd-tree model under adversary, which by Theorem 3.7.1 and Theorem 3.7.2 would

imply a Ω(log(1/ε)−1 · n log logn) lower bound for the noisy broadcast model under

adversary.

There are two main reasons why the proof framework for non-adaptive gnd-tree

does not work directly here.

The first barrier is that since the tree can be adaptive, we can no longer reorganize

the tree into a tree of composite queries. In other words, the gnd-tree may make some

queries on the first noisy copy, then make some queries on other noisy copies to decide

which query it want to ask again on the first noisy copy.

Assume we only consider gnd-trees that have the following property: the tree first

makes queries to the first noisy copy, then it will never query the first noisy copy again

Instead, depends on the answers it gets so far, it makes queries to the second noisy copy.

And then it follows the same rule in the rest of the noisy copies. Under this assumption,

we can reform such a gnd-tree into a tree made by composite queries. Then we may able

to construct the nd-tree we want using the same framework: simulate each composite

query by a small depth nd-tree separately and then compose them together.

However, since we are working on the majority function with distributions µ̃0 and

µ̃1, the definition of strongly confusable does not apply here directly. Recall in the

proof we have for OR, a gnd-tree T is strongly confusable if for any i ∈ [n], it is

confusable for µ0 and σi, where σi is the distribution that concentrated on ei. This

definition guarantees that the composition of two strongly confusable queries is strongly

confusable. Thus, one naive generalization of strongly confusability for a query q in this

case would be: for all x0 ∈ supp(µ̃0), x1 ∈ supp(µ̃1), q is confusable for x0 and x1. This

definition also guarantees that the composition of two strongly confusable queries is

strongly confusable. However, on the other hand, it is impossible to make a single gnd

query confusable using a small depth nd-tree. The distance between x0 and x1 can be

n. That means the nd-tree needs to query all the coordinates in the worst case.

That means we need to make a weaker definition of strongly confusable here. Recall

the reason why we need strongly confusable is to guarantees that any two distributions
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that have same support as µ̃0 and µ̃1 are confusable. We may replace this requirement

by a weaker one: Let D ⊂ {(σ0, σ1) : supp(σ0) ⊂ supp(µ̃0), supp(σ1) ⊂ supp(µ̃1)} be a

family of pairs of distributions such that (µ̃0, µ̃1) ∈ D. We say a gnd-tree T is strongly

confusable for D if for any (σ0, σ1) ∈ D:

• T is confusable for σ0 and σ1.

• For any leaf v in T , (σ0|(T (σ0) = v), σ1|(T (σ1) = v)) ∈ D.

The second condition guarantees that the composition of two strongly confusable

trees is also strongly confusable. Furthermore, we can conclude that if a tree is generated

by strongly confusable composite queries, then this tree is strongly confusable. In order

to preserve this property we define the conditional confusability by: T is confusable for

D conditioned on T ′ if for any (σ0, σ1) ∈ D:

• T is confusable for σ0 and σ1 conditioned on T ′.

• For any leaf v in T , (σ0|(T (σ0) = v), σ1|(T (σ1) = v)) ∈ D.

Then the proof of the conjecture might be done by constructing a family D such

that: For any composite query q : {0, 1}n → {0, 1}d, there exist an nd-tree T ′ of depth

O(poly(1/ε) · d) such that q is strongly confusable for D conditioned on T ′. Then apply

this theorem to every composite query in T we can get the nd-tree we want.

Note that the proof we have for non-adaptive gnd-tree is also in this framework

with D = D0 × D1 where D0 is the set that only contains µ0 and D1 is the set of all

distributions that support on {ei : i ∈ [n]}.

Here we propose one natural candidate for D. Consider all edges between points

with hamming weight k and k + 1, i.e. E = {(x, y) ∈ {0, 1}n × {0, 1}n : |x| = k, |y| =

k + 1, |x
⊕
y| = 1}. Since all the pairs in E have distance 1, they are more likely to

be able to confuse by adversary. It is natural to ask whether for any composite query

q, there exist a small depth nd-tree T ′ such that q is conditionally confusable for every

pair in E. Assume this statement is true, then for two distributions σ0, σ1, we claim q

is confusable conditioned on T ′ if there exist a weighted perfect matching between σ0
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and σ1, which means: there exists (pxy){(x,y)∈E}, pxy ≥ 0, ∀(x, y) such that
∑

y pxy =

σ0(x),∀x and
∑

x pxy = σ1(y), ∀y. Note that we can use (pxy){(x,y)∈E} as coefficients

to combine adversaries linearly to achieve confusable. The above property defines a set

D = {(σ0, σ1) : there exists a weighted perfect matching between σ0 and σ1}. Then it

is sufficient to prove: for any composite query q : {0, 1}n → {0, 1}d, there exist an nd-

tree T ′ of depth O(poly(1/ε) · d) such that: q is strongly confusable for D conditioned

on T ′.

• For any pair (x, y) ∈ E, q is confusable for x and y conditioned on T ′.

• For any output w ∈ {0, 1}d, (σ0|(q(σ0) = w), σ1|(q(σ1) = w)) ∈ D.

We leave the question of whether these are true to a future investigation.
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