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How can an autonomous bicycle robot system keep balanceasida path? How does a
human rider ride a bicycle? And how can we enhance humargrghfety and efficiency?
Answers of these questions can provide guidance for autonssingle-track vehicle con-
trol system design, understanding human riding skills asloicle assistive design. Fur-
thermore, riding a bicycle is an unstable physical humaghime interaction (upHMI).
Riding skills analysis is a good example about understandiiman control mechanism,
including human body movement control and human neurorebnthe bicycle assisted
balancing system also provides the inspiration for desmgither human-robot coopera-
tion system. This dissertation has three objectives: thedire is to design control system
for autonomous bicycle for balancing and tracking; the sdoone is to model and ana-
lyze the human riding skills of balancing and tracking; amellast one is to design tuning
method for human riding balancing skills.

The first part of this dissertation focuses on the autononiicycle control system

design for balancing and path following. The bikebot, aroaamous bicycle system, is



designed for these control mechanism implementation. Vh&lgalancer control law and

steering motion control law are designed for balancing tkellot system in the stationary
and moving stages, respectively. Using these two contved,la switching control strat-

egy is proposed for a stationary-moving transition proc@$ge control performances are
demonstrated by the experimental results for a completesoaan.

For the trajectory tracking tasks, the external/interoaMertible (EIC) structure-based
control strategies are proposed and implemented. The BS&ebcontrol takes the advan-
tages of the non-minimum phase underactuated dynamiagsteu We first analyze and
demonstrate the EIC-based motion tracking controller. &xilery gyro subsystem con-
trol law is then designed to enhance the tracking performanthe EIC-based controller.
The errors dynamics and control properties are discusskdraalyzed. Finally, the control
strategies are implemented on the bikebot system. The iexgets results confirm and
demonstrate the controllers effectiveness.

The second part of the dissertation focuses on the anali/kisnoan riding skills, in-
cluding the balance control and the tracking skills. Forrtiaion tracking with balancing
motor skills, using the EIC structure, a balance equilirionanifold (BEM) concept is
proposed for analyzing the human trajectory tracking biiiaxand balancing properties.
The contributions of steering and upper-body motion ardyaed quantitatively. Finally,
performance metrics are introduced to quantify the balanowor skills using the BEM
concept. These analysis and discussions are demonstratedlidated by extensive hu-
man riding experiments. Comparison between the EIC-basetlat and human control is
also presented and demonstrated.

For the balance skill studies, we first present the contrallel®oof human steering
angle and upper-body leaning torque. These models arer@adspy the human stance
balance studies and built on several groups of human ridipgrenents. The parameters
sensitivity analyses are also discussed with experimédiatateon. Using the time-delayed
system stability analysis, the quantitative influenceshef inodel parameters on closed-

loop stability are also demonstrated and experimentaliifigd.



Based on aforementioned results, actively tuning the-filebot interaction is the aim
of the last part of the dissertation. First, from the ridéebot interaction dynamics, the
stiffness and damping effect for balancing are analyzede ddntrol of the rider-bikebot
interactions is designed to tune the stiffness and damgfiegte by reshaping the rider
steering motion. From experiments observation, the ridéariring performances are sig-
nificantly improved under the tuned interaction dynamicsrtiiermore, under a special
tuned stiffness and damping effect, the rider-bikebotesystan be balanced autonomously
without considering the rider steering input. This propéstalso theoretically proven and
also verified by the experiments.

The outcomes of this dissertation not only advances therstataling the human rider
balance motor skills but also provides the guidance for thtereomous bicycle control
design, and the human balancing performance tuning metimoadigh rider-bikebot in-
teractions. At the end of this dissertation, future worledions are also discussed and

presented.
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Chapter 1

Introduction

1.1 Motivation

Enhancing the performance and extending the capabilifibsiman-machine interaction
(HMI) systems, and in particular, unstable physical humechine interaction (upHMI)
systems are interesting challenges. Research into thaiss, tespecially in terms of theory
and implementations for the modeling and control of theseractions, is sparse due to
the involvement of human motor skills and the complex dyrami such systems. In this
dissertation, a bicycle system is considered as a new asparadigm for HMI modeling,
autonomous transportation system reinforcement, and hio@aance control performance
tuning.

Despite our highly developed modern transportation sysbecgcles and motorcycles
are still considered important transportation tools thatinelude in our daily routines, due
to their high maneuverability and agile off-road capaiafit Furthermore, these single-
track vehicles provide a perfect platform for recreatiotereises, competitive sports, and
even patients rehabilitation. Therefore, enhancing thetysand efficiency of these sys-
tems is desirable and critical. To achieve this, we must ndt mmodel and analyze the
human motor skills necessary to balance the bicycle whllevfing a path, but we must
also develop an actively controlled bicycle-based robstesy to tune the rider-bicycle
interaction.

When looked at in the framework of HMI systems, a rider-bieysystem presents
many research questions. First, rider motor skills are gromant part of these systems,

however, compared to sitting, standing, and walking, nesean balancing while riding is



limited and must therefore be investigated. Furthermaonégustanding how to sense and
fuse human and machines states, and how to reshape humanve@are both extremely
important steps toward enhancing the capabilities of +ideycle human-in-the-loop sys-
tems. Finally, built on this human control mechanism andots system, the human
motor skills assisting and training system can be developed

The main goals of this dissertation are twofold. The firstigrie develop the balancing
and tracking control of an autonomous bicycle system, aedsdtond one is to better
understand the human rider balancing and path-trackingmsétlls through rider-bicycle
interactions. The work done towards achieving these twdsgags the foundation for the
development of the rider assistive riding system and thegdes the rider motor skills

tuning system. The last part of this dissertation investigéhis topic further.

1.2 Background

A discussion on the state of HMI systems research, and biggcle interaction in par-
ticular, can be divided into two parts: autonomous bicyglstems, and human control

mechanisms.

1.2.1 Autonomous bicycle systems

The history of bicycles dynamics modeling and stabilitylgsia is over one hundred years.
“Whipple Model” in [2] discusses the nhon-minimum phase sgsproperty and the stabil-
ity with the linearized model structure. Based on the peeciglculation of multi-body
dynamics and model linearization, the study in [2] firsthgt®matically demonstrates the
self-stable characteristics for a uncontrolled bicycldemthe influences of bicycle geom-
etry, mass distribution and bicycle velocity. However, do¢he complex geometric and
non-holonominal constraints, it is difficult to get the esgs form of the original nonlin-
ear dynamics in [2]. Thus, that is not a suitable model fatcongontrol. The nonlinear

models in [3, 4] proposed some approximated relationshghwden the steering and the



balancing torques, which can be utilized in the controliesign. Furthermore, the com-
plex tire ground frictional interactions are also consatdkand fused into the whole system
dynamics in [5-9].

For the trajectories tracking by only using the steering\aldcity control inputs, bicy-
cle is a typical non-minimum phase underactuated systeis ploven that no continuous
control exists for exactly tracking with keeping internabsystem stable [10]. Feedback
linearization control methods are designed for balancas.t For example, the sliding
mode control strategy is utilized for the balancing andkirag task in [4]. Considering that
the bicycle dynamics has the external/internal convext{glC) structure [11], a series of
EIC-based control strategies are proposed for implemgithia approximate tracking task.
First, the classic EIC-based controller is utilized for siaplified bicycle model [11]. The
modified EIC-based control laws are designed for the combpieycle/motorcycle mod-
els that include the special steering balancing effect aAedite ground interaction [12].
Additionally, the steering effect is proven to be able todnak a stationary bicycle [12].
However, the experimental results for this control systeeni@adequate comparing with
the theoretical work. The results of Blue Team in the 2005 PARChallenge confirm
these difficulties [13]. The recent experimental resultpicisely trajectories tracking
are mentioned in [14]. In the recent years, Honda companygs®s a motorcycle assist
system [15] that has the excellent balancing capabilitieg®@ or slow velocity.

To enhance the autonomous bicycle balancing and trackipabdéies and consider-
ing human rider operations, auxiliary devices are intreduand equipped on the typical
bicycle system, such as the weight lifting devices and dpat@ncers. These devices can
provide additional control inputs for internal subsysteeeping stable, and improve the
whole system balancing and tracking performances. Thetedfeweight shifting opera-
tion, which can be considered as the rider upper-body Igemistion, is shown to eliminate
the right half-plane zeros of the linearized closed-loogtey [16]. The gyro-balancer is

another control inputs for balancing, such as the developsne [17-19]. The bikebot



system [14, 20] is built for the autonomous bicycle conteat$ implementation and hu-
man riding process observation. In [20], for the stationaigycle, the gyro-balancer is
shown to regulate the bicycle rolling motion on a designeatbpéal orbit. Based on the
EIC structure, in [14], the gyro-balancer is designed asuailiary control for assisting the

bicycle balance and enhancing the trajectories trackingppeances.

1.2.2 Human control mechanisms modeling and analysis

Modeling human control mechanisms is a complete and cluligrtask for several rea-
sons. Models must account for not only a non-rigid human kaay multiple contact in-
teractions, but also complex human sensing, actuationeididn mechanisms. As much,
most research in this area focuses on the control of sitsilagding or walking motions.

For human stance, the whole or upper-body is approximateigidered as an inverted
pendulum. Following the same treatment, the rider uppést@aning motion in cycling is
modeled as an inverted pendulum swing motion [12,21, 22k ifotion is one of the main
balancing sources generated by the rider. The precise dgaanodel including the other
joints motion of the upper-body, arms and legs are also oactstd. The work in [23] pro-
poses a physical-learning model for depicting these msfihich uses a low-dimensional
learning-based model to simulate the complex high dimeidynamics effectively. In
most studies, only the upper-body leaning motion is comeitlan the system stability anal-
ysis. The rider posture estimation is necessary for the ptgsical dynamics validating
and the rider control model construction. In [24, 25], theavadle inertial measurement
units (IMUs), including the accelerometers and gyroscppes used for the body seg-
ments orientation and position estimation. Other sensai) as the magnetic sensor and
the onboard camera, are also introduced to enhance the ragasuision and to eliminate
the IMU drifting effect [26, 27].

It is challenging to capture and model human control motdisskThe motor skills
depict the combination of human sensing, decision and aotueéseveral neuro-balancing

models are constructed for human stance. In [28], a timayeel proportional-derivative



(PD) feedback control model is proposed. In those modetstithe delayed human an-
gular positions and angular velocities are multiplied by tlontrol gains as the balancing
joints torques. The model depicts the human sensory respoialancing states as short-,
medium- and long-latency phasic mechanisms due to pragptan, vestibular and visual
sensory. The muscle stiffness and damping factors of therausculoskeletal system are
also considered in the model. Experiments are conductedised to validate the model
structure and identify the model parameters, the contrivisgand time delay constants.
However, the closed-loop system stability was not analyretincluded in [28]. A similar
simplified control model structure is used for standing olamheng board problem. Prop-
erties of the nonlinear closed-loop dynamics are discugsadtitatively, such as the limit
cycle existence and the bifurcation phenomena. The workRInd0] gives the qualitative
discussion of human riding behaviors, from the dynamice/p@nt and based on the ex-
perimental observation. The balance control model in [88]l§0 used for capturing the
stationary balancing riding in [31] and for riding stakjlanalysis [1].

Besides balancing task, the human motor skills for compleerations are also dis-
cussed in recent years. In [32], the motion planning metsatbhducted on the learned
low-dimensional skill manifolds but not the complex anadgt robotic models. The man-
ifold concepts are utilized for depicting the human motietssand synergies relationships
in [33, 34]. Human motor skills learning process and behafooming process are also
discussed, such as [35] for a kind of simulated non-minimbase system tracking task.
However, these aforementioned works mainly focus on theamumotor skills without
considering the dynamics interactions between human arahimes. Few quantitative

analysis is reported for the rider path tracking with balagenaneuvers.

1.3 Dissertation outline and contributions

This dissertation is divided into eight chapters. Chapterthe introduction of the disser-

tation. Chapter 2 presents the bikebot system dynamicshanibier-bicycle dynamics and



also introduces the experiment setup. In Chapter 3, theaayistem for bikebot balancing
task under different velocities is designed and implengknt@hapter 4 demonstrates the
EIC-based control strategies with and without gyro ausyl@peration. In Chapter 5, based
on the EIC structure dynamics analysis, the human path#olipriding performances are
analyzed. In Chapter 6, the human rider balancing contraetsoare presented and also
experimentally validated. The closed-loop system stghélhalysis is also presented. In
Chapter 7, we present the tuning and control of the intevaactynamics. Finally, Chapter 8
presents the concluding remarks of the current work andidoeislsion of the future work.
The content of each chapter is described as follows.

Chapter 2 is about the physical system dynamics and expetainsetup. First, the
dynamic models of the bikebot and the rider-bicycle systarasntroduced. These models
depict the influence of the steering and bicycle speed chgrai platform balancing. The
balancing torque generated by the gyro-balancer is alswlea¢d for the bikebot. For
the rider-bicycle system, the upper-body leaning torquedkided in the model. Second,
we present the bikebot experimental system. This protatypsed for implementing the
autonomous riding control algorithms.

Chapter 3 provides the design for the autonomous bikebanbadg task under dif-
ferent velocities. For the stationary balancing, the bitab controlled to periodically
swing near the unstable equilibriums by the gyro-balascdyivheel pivoting actuation.
The desired periodical orbits of bicycle rolling motion ahylvheel pivoting motion are
constructed by using the energy shaping technique. A Lyaptased nonlinear control
law is designed to regulate both the bikebot rolling and flgellpivoting motion onto their
desired orbits. For task of balancing in moving stage, thergtg motion is used for bal-
ancing the system. Based on the feedback linearizationadgethe steering control law is
proposed. Considering the closed-loop dynamics with patars and the actuators motion
limitation, the domains of attraction (DOAS) are estimatedier these two control laws.
Furthermore, the largest DOAs are also estimated whichrikpa only the motion lim-

itation, but not on the control law structures. From thesetrab capabilities analysis, a



switching control strategy is proposed for balancing indtationary-moving stages transi-
tion process. The experiments results demonstrate therpeahces of the aforementioned
control methods.

Chapter 4 focuses on the bikebot autonomous tracking t&skst, using the steering
properties of the EIC structure, we present a tracking atehibang control strategy. The
tracking and balancing errors analysis is then discussathsi@ering the non-minimum
phase system property, an auxiliary gyro pivoting contal Is designed for reducing the
path tracking errors. The tracking performance of thesedardrol methods are demon-
strated by both the analysis and the experiments. The E$€ebeontrol with modified
velocity vector field is also implemented.

Chapter 5 presents the analyzing methods and results ddmltiman rider path track-
ing and balancing performance. Based on the EIC structueehdlance equilibrium man-
ifold (BEM) concept is introduced. Based on the BEM concgepts first analyze the
balancing contribution of the steering and the upper-bedwying operations. The analysis
shows that using the steering actuation is much more efeettian the body movement
in term of platform balance task. A balancing metric is algdirled for measuring the
balancing performance along the rider tracking processodisd metric is introduced for
depicting the tracking and balancing results of ridersaiynmultiple riders are asked to
control the bikebot to track the given paths. These rideegrgents results are used to
demonstrate the effectiveness of the proposed analyzitigoae

In Chapter 6, the human balance skills are discussed. Bast#tttwecorded data from
the conducted balance riding experiments, the control tsaofesteering operation and
upper-body leaning torque are constructed and proposedisrchapters. Both control
models share the time delayed PD feedback structures veithi¢ckicle frame and the upper-
body rolling information. We then discuss the stability lgses of the linearized closed-
loop system. For the stability and balancing performantesinfluence of the changing of

the dynamics physical parameters, the control gains areldieays in the human control



models are also discussed. Extensive experiments are cieoaldoy multiple subjects, un-
der different types disturbances, the rolling torque pestion by gyro pivoting, the visual
feedback channel disturbance and the additional time defaye steering actuator. We
analyze these experimental results and present the hurtearcbanotor skill changes.

Using the rider-bikebot interaction to enhance the humderriding performance is
the aim of the work presented in Chapter 7. The interactiodehis rewritten to a strict
feedback form first. From the steering actuation to bikelbding motion, the stiffness
and damping effect of the interaction dynamics are analy2estiffness and damping ef-
fects tuning method is designed by reshaping and implemgiitie rider steering angle.
Several riders are requested to ride the bikebot under tretdifferent interaction mod-
els. Performance comparisons are also presented amongrtiemormal riding and the
proposed rider-bikebot interactions controllers. It hasrbdemonstrated that the balance
performance and the stability of the controlled rider-bieinteractions are significantly
improved comparing to that with only human control. Furthere, from theoretical anal-
ysis, under some special tuned stiffness and damping effint rider-bicycle system can
be balanced autonomously without rider control. This priypis also verified by the ex-
periments.

The main contributions of this dissertation focus on the mewtrol methods of au-
tonomous control system and new modeling and analysis oBhuiding behaviors. The

detailed contributions of this dissertation are listedal®ivs.

1. Novel control methods for bikebot autonomous balancasg in stationary stage and
stationary-moving transition process are designed andemmgnted by experiments,
including the orbital construction, stabilization and ®hing control. These innova-
tive approaches are helpful not only for enhancing the lzittgncapabilities of the
autonomous bicycle system, but also for the human ridinigtasg system design, es-

pecially under small or zero velocity conditions.

2. The autonomous tracking and balancing control systeravis Mo the best knowledge



of the author, no such experiments have been reported iragte p

. The human riding behaviors for balancing and trackingdase systematically col-
lected, observed and analyzed under designed experimemditions with multiple
types of disturbances. Based on this work, the human balgmabtor skills are ana-

lyzed. These experiments and methods are new.

. The human rider control models for balance riding are pseg and validated. This
work provides in-depth understanding of human riding aantrechanism, and a novel
compensation method for general balancing mechanism stndythe human-in-the-

loop system design.

. The rider tracking with balancing control skills are aizad. We present new BEM
concepts and metrics for measuring the rider performardesse metrics are new and
can be used to capture and characterize the motor skills. ET@eébased evaluation
indexes and the analyzing tool give the guidance for the adsisting system design.
Furthermore, these methods can also be extended to oth@mlamnachine interaction

analysis, especially for the unstable control system.

. A novel rider-bikebot interaction tuning method is desid and implemented in experi-
ments. The method can effectively enhance the human ridiegrsafety and balancing
performances. The proposed interaction tuning methogdhag a potential value for
riding training system design. To the best knowledge of thihar, riding balance

tuning design and experiments have not been reported iretste p



10

Chapter 2

System Dynamics and Experiment System

2.1 Introduction

For understanding the rider-bicycle system interactioth @mhancing the autonomous bi-
cycle system capability, the dynamic model constructicemismportant and foundational
work. For validating the rider-bicycle interaction anasysmplementing the autonomous
control system and assisting/perturbing the rider bemayhilding an autonomous bicy-
cle experimental system is necessary and critical.

Lots of works have been done to depict the dynamics of the mgoriotorcycle and
bicycles, including the special geometry structure anditeeroad interaction [12]. Based
on the no-slipping and no-sliding assumption, the non4haoic constraints are intro-
duced, and the Whipple model is constructed for the moviggdbé utilizing multi-body
Lagrangian equations [29]. Some self-stability propsréiee demonstrated under different
geometrical and mass distribution parameters [2, 36].d&@ssithe tire-road friction model
is combined under the slipping and sliding condition [3].n8idlering the lateral motion of
the tire-ground contact point, the stationary motorcygteaimics with an accurate steer-
ing mechanism is proposed in [37]. The bikebot system wittogpalancer dynamics is
also constructed in [14, 37], with the analysis of couplifige from flywheel pivoting
motion with bicycle frame rolling motion. Furthermore, cbiming the bicycle dynamics
with the rider body motion, the rider-bicycle system dynesnis also studied in recent
years. In [21, 22], the rider upper-body is considered asegried pendulum mounted on
the bike seat, and the upper-body leaning motion is corsidas an important motion for

balancing.
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The first part of this chapter demonstrates the rider-b&egghamics, and autonomous
bikebot dynamics, which are mentioned in [21,22] and [14, &pectively. Comparing
with other rider-bicycle dynamic models, the rider uppedy leaning torque, the main
balancing torque generated by riders, are picked up andlasd in the dynamics. For the
bicycle part, some different kinds of balancing torquesiitesy from steering are also in-
cluded. The second part focuses on the experiment systeiot) ishmentioned and utilized
in the works of [14,20-22]. The functions and design detafilsensing, data processing
and actuating are included. It has to be pointed out thatjyh@amics construction works
are from the cooperation of this dissertation author anddsearch group colleague Dr.
Yizhai Zhang, and for the experiment system, the authordeswn the redesign and mod-
ification works about the sensors, programs and actuatdrs.ofiginal bikebot design is
proposed by colleague Dr. Yizhai Zhang [12]. Considerirgwlnole work completeness
and without repeating to mention these backgrounds, thardigs and experimental sys-
tem are proposed in this chapter as the preparing and baskcoivthe entire dissertation
work.

The rest part of this chapter is organized as follows. Thelok dynamics and rider-
bicycle system dynamics are introduced in Section 2.2 aBdr@spectively. Section 2.4

demonstrates the experimental system. The conclusiostésllin Section 2.5.

2.2 Bikebot system dynamics

As shown in Fig. 2.1(a), the bikebot system can be considaseskveral inter-connected
parts: the rear frame with the rear wheel, the gyro-balammemted on the rear frame, and
the front wheel. There are three coordinate frames aredated for motions and attitude
descriptions: the fixed inertial fram¥, the translating and rotating body frarSeand the
translating trajectory fram®&. As shown in Fig. 2.1(b), the origin &® frame is attached
at the rear wheel contact poi@t with x-axis parallel with the wheel bage C5, which is

defined as the straight line connecting the front wheel @bm@intC; and the rear wheel's
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Figure 2.1: (a) The Rutgers bikebot system. (b) A kinematitesatic of the gyro-
balanced bikebot system.

C5. TheC, velocity alongz, is defined as),.. The z-axis of frameR is parallel with the
z-axis of V. Bikebot roll angle, the angle between thaxis of B and z-axis of NV, is
defined as,. The yaw angle) is defined as the angle between thaxis of V" andz-axis
of R. The horizontal and vertical positions of the mass centantg®@ with respect ta3
arel, andh,, respectively. The bicycle mass and mass moment of indsbatd- point in
the direction of the:-axis of B arem,, and.J,, respectively. The length of wheel baSeC,
is denoted as. And the front wheel caster angle is denoted aand the front wheel trail
distance is denoted ds With the steering angle, the projective steering angle on the

ground is¢,, which can be calculated as

t
¢4, = arctan <L¢C§> .
Cop,
As the same treatment in [22], the relationships betweand¢ are
. . t
¢:v an ¢ g 2.1)
lC‘Pb
and
Uy Cg¢ 9 . U, tan ¢ ¢
Uy = (sec(ZS ¢ + tan ¢ tan gobgob) +— (2.2)
lc‘Pb lC‘Pb

with definingu,, = .

Notationc,, = cos z(s, = sinz) for variablez is used through the entire dissertation.
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Combining the rolling and the yawing motion, the center maaisit linear velocity

vectorv, w.r.t. A/ expressed iiff is
ve = (Ur — hy) Sgp;,) i + <hb¢b + Iy Ccpg,) 3o — s, ke (2.3)
with 2, 5, andk, as the unit vectors of the,-, y,- andz,-axes of3, respectively.
The height of the center mass is mainly dominated by thengplitnotion by the term
hyc,,. Furthermore, at smalh, case, another height changing factos;, has to be consid-

ered due to the combination of rolling and steering, whiahloa approximated as

Al w M0t O5s, (2.4)

Thus, the potential energdy is

l
V= Mg (hb Cop — tlb Ce¢ tangbs%> .

z (2.5)
The pivoting angle of the spinning flywheels, along they-axis of B, and the spin-
ning angular velocity isv;. Another pivoting coordinate framg is introduced, in which
they- andz-axes are accorded by the definitions,f andw;, respectivelyiy, j, andk;
are the unit vectors of the-, y- andz— axes directions ir. Thus, the angular velocity

vectorw; w.r.tto N expressed itF is
Wy = <c% Py — Sg,, Cyy 1/)) i+ (s% ¥+ gbw> Jit (s% Py + Cyy, Coy o+ ws> ks (2.6)
Let I, be the mass moment of inertia of the flywheel along the spgaxis. Naturally, the
mass momentum of inertia along theandz-axes ofF, I, andl, are approximated a%
The inertia matrixI, expressed itF is I, = diag {Z, %, 1. }.
The total kinematic enerdy is obtained as

1 1 1
T = mevgvg + ijbgpg + §w3§Iwwf. (27)

The balancing dynamics along theaxis of B has the general coordinatges= [¢y, ¢.,|"
under the controlled pivoting torque. After defining the Lagrangiad = 7' — V, the

Lagrangian equation is utilized for the dynamics constounct

d (0L OL .
7 <8Cji) — =1 =1,2, (2.8)
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with u; = 0, us = 7,. From (2.8), we obtain the equation of motion

(mbhg +Jp+ 1, Siw —l—’% Ciw) Py + mphy Cey ’U,n’(/‘) - mbhg Cyy, Sy, ’(/')2

mpglily tan ¢ ce
—M — mbhbg CSOb —mbhblb C<Pb u¢ (29)
_'_Iz Cgow (ws - %@b Sgow _%¢ CAOb CSOw) (Sow - Capb ¢) =0

and
. (2.10)
+Izws <¢ Cgob SAOw _%Spb Cgow> - % Sin Uy = Tp-
The trajectory motion kinematics is calculated as followe2-dimensional position
of rear wheel contact poirdt, is defined as'c, = [X, Y] in V, with velocityvc, = 7¢,.
Under the non-holonomic constraint©f, the lateral velocity is zero and the velocity.,
has the relationship with. and« as
Vx X Cy —S Uy
ve, = | T l=]" . (2.11)
Vy Y S¢ C¢ 0
After taking twice derivatives, under the control input=[u,, u,] with v, = ¥,, the

dynamics extension results in

. 2UT Sep —|"U,n77b Cy . Cy —UrSy
r&) =¥, = — , U+ u. (2.12)
—21)7« Cy +’UT¢ Sep Sy Uy Cy
v R,

2.3 Rider-bicycle system dynamics

For the rider-bicycle system, the kinematics of the trajgctnotion is same as that of the
aforementioned bikebot system. Only the rolling dynamscgiven in this section, which
is also similar as the former system.

As shown in Fig. 2.2(b), the rear frame and steering strestaf the rider-bicycle
system are the same as the bikebot in Fig. 2.1(b). The flywdaeis not considered in the
dynamics. One main difference is that the upper-body masi@onsidered. Naturally, the

upper-body with arms has multiple DoFs. However, only thparghody leaning motion



15

Figure 2.2: (a) Human riding experiment. (b) A kinematicestiatic of the rider-bicycle
system.
is considered since it has the significant influence on tHmgotlynamics. Therefore, the
upper-body is simplified as an inverted pendulum with a magsand mass moment of
inertiaJ;,. The mass center is at distangefrom the seat, and the horizontal and vertical
positions of the seat afg andh, in B, respectively. The swing angle, w.r.t. thez-axis
of B is defined as the human rider upper-body leaning angle. Thmahleaning torque,
is considered as a control input.

Following the same process in the last section, the equabdmotion of the rider-
bicycle system are

M(q)G+C(q,q) + G(q) = 7 + Bu, (2.13)
with the states variable = [¢;, ¢5]7, the control inputas = [u,., uy)?, andT = [0, 7,,]%.

The matrixes and vectors in (2.13) are

| mwhd A+ (RS + Ry 2hshy cp,) + Ty + Tn g (B, + Bl cg,)

mp (h,}% + hshh th) mhh}% + Jh

Cl = (mblb + mhls) C% glt Ce¢ Ur_l’l/'f + (mbhb C% + mhhs C% —I—mhhhc%Jr%) 'UT,??/‘)

—myhyhg Sep, (:bh (2906 + 90h> - (mbhg Sy, Co, +mhh’}2152%% + hshp C2¢b+s0h) ¢27

. . S .
_ 2 2 P2 +2¢), 2
Cy = muhnhy S, 62 + mnhp Copton, Uyt — <mhhshh Sy Coupn TR 20 ) 02,
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G —mphy g Se, —MpNsG Sy, —MRRRG Se, o),
—mahng e+,
and

B_ 0 —mbhblb C% —mhhslh C% —mhhhlh C%_Hoh

0 —mphply Coptpn
2.4 Bikebot experiments system

Fig. 2.3 shows the bikebot experiment system, that can lkédgidhuman rider or controlled
by the onboard computer. The bikebot system is designeduwhidids three aims. The first
aim is recording the rider operation and system states, enérgting disturbances into the
rider’s closed-loop sensorimotor feedback system. Therskone is experimentally val-
idating the designed autonomous bikebot balancing an#litigcontrollers. The last one
is to tune the human behaviors for enhancing the riding paied efficiency and training

the human riders.

Flywheel

Handlebar 6-DoF force ] _..;-— ‘
encoc?er sensor ---~<_"""" | Gyro—balancer

Steering
mechanism

Crank/pedal |
encoders

Figure 2.3: The Rutgers bikebot.

This platform is modified from a mountain bicycle with addethoard sensors and
actuators. As shown in Fig. 2.4(a), a real-time embeddettsy§from NI cRIO model
9082) is used for collecting the sensor measurements aadalsotion control. For the
sensing part, the bicycle velocity is obtained by the encoder mounted on the rear wheel;

the steering angle and the handlebar rotating anglg are measured by two encoders on
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() (b)

Figure 2.5: (a) Gyro-balancer part. (b) Autonomous stegpiart.

the steering structure, and the upper-body relative lgpaingley,, is captured by a rolling
arm equipped with an encoder that is connected to the upmhr. Ho the gyro-balancer
subsystem (Fig. 2.5(a)), the flywheel pitching and spin@aingles are measured by the en-
coders. Besides, the bicycle and upper-body 6-DoFs matimnmation, includingp, ¢y,
andv, are detected by two IMUs attached on them. The bicycle frixee IMU is shown
in Fig. 2.4(b). The bicycle position is measured by the onté@PS system, or calculated
by the measured steering angl@nd bicycle speed,. along the riding trajectory.

For the actuation parts, the pedaling actuation is poweyedl tmotor through the on-

board computer system, while a human rider can still mapwahtrol it. As shown in
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Fig. 2.5(b), the front wheel can be configured either measlyi connected or discon-
nected to the handlebar. On one hand, like a normal bicyaehicycle steering operation
can be carried out directly by the rider through the handleba the other hand, when the
front wheel is mechanically disconnected with the handigba steering motion is driven
by the steering motor directly. This function provides tla@ability that the actual steer-
ing angle can be controlled to follow a designed profile. Iperrolling torque generated
by the gyro-balancer subsystem (Fig. 2.5(a)), the pitchimgle and spinning speed of the

flywheel are independently controlled by two motors.

2.5 Conclusion

The dynamics models of the bikebot system and the riderck@cystem were proposed in
this chapter. The control effects of steering, gyro-balagnt¢orque, and rider upper-body
leaning motion were demonstrated in these models. The leieyperimental system was
also demonstrated, in which the states measuring and iagobntrol processer, and the

actuators were introduced.
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Chapter 3

Bikebot Autonomous Balancing Control

3.1 Introduction

Bicycles and motorcycles provide an excellent platformdtudying human-machine or
human-robot interactions. It has also been reported foiceli diagnosis and rehabilitation
treatment [38—40]. In [20], an actively controlled bicyddased robot, called bikebot, is
designed to study human neuro-control mechanism and @iysiman-robot interactions.
Due to its non-minimum phase dynamics, it is challengingesigh bikebot control sys-
tem. From practice viewpoint, it is desirable to have a catgphutonomous strategy for
the bikebot system from stationary to moving maneuvers. ¢l because of different
bikebot dynamics at stationary and moving speed, the phatfmalance strategies are not
the same. The goals of this chapter are to design the balanteltlaws under stationary
and moving conditions, and to develop an integrated statyoand moving balance control
for autonomous bikebot.

Dynamics and control of bicycles or motorcycles are amoniyacesearch areas for
many years [16]. Autonomous single-track vehicles needamtain both trajectory track-
ing and platform balancing tasks simultaneously. Usingstieering and velocity actua-
tions, several controller designs were developed [11,1-443]. An elegant design in [11]
takes advantage of the EIC dynamics structure of the risleitbécycle to design an au-
tonomous controller. A simplified bicycle model is used i][&nd only simulation results
are presented to illustrate the design methodology. Th& imdfi4] extends the EIC-based
control design and demonstrates the experimental impl&tien and performance using

the bikebot. Other experimental and demonstration worglside those in [14,42,44,45].
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The stationary balance control is also a difficult task fa hkebot system. The ad-
ditional rolling torque generated by the gyro-balancerlbamsed for the balance keeping
task. In recent years, control laws are proposed for balgngimilar systems, such as the
inverted pendulum, Furuta pendulum and acrobat systemT346These controllers can be
divided into two groups: the equilibrium point regulatiomdaorbital regulation. The typ-
ical method of the former is the energy shaping and dissipatijection design [48-51].
The latter design is sophisticated with two parts: the arbitstructing and regulation con-
trol design. The first part is orbits existence, that is, Hrget orbit of the system states
should be related and they are the solutions of the closaul-ttynamics. Virtual con-
straints [52,53], sliding modes [4] or limit-cycle dynammi&4] are introduced, and the sys-
tem dynamic forms are dominated by the conservation of theifitegral. The regulation
control law can then drive the states onto their target 8i{b], such as time varying lin-
ear feedback control methods with transverse dynamics [B620], using gyro-balancer,
an orbital regulation control law is proposed to balancepla¢form at stationary or low
moving velocities.

It is challenging to estimate the maximum roll motion rangeler a certain control
system. The results in [57] show that the bicycle can onlythbikzable within a small
range of roll angles (e.g., 1-2 degs), particularly at lowwing velocities. The simple
analysis in [37] has showed that balancing a stationarycheognly by steering actuation
is extremely difficult because of a small DOA under the cdtdgradesign. Introducing
additional actuators can overcome this limited stabilealange and assist the balance
capability. However, no formal analysis is given to estientite DOA under the control
design in [20].

In this chapter, the gyro-balancer control law is proposesd for the stationary bal-
ance control task. In this task, the orbital regulation issgn as the control method. That
is, the stationary bicycle is expected not only to keep ldmut also to swing near the
equilibrium point periodically controlled by the gyro-lalcer pivoting motion. The en-

ergy shaping techniques is utilized for shaping the deslygdmics as a simple pendulum
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dynamics. The virtual constraint between the bikebotmgliangle and flywheel pivoting
velocity is built to get the desired periodical orbits foethikeobt frame rolling and fly-
wheel pivoting motion. According to the reshaped energy@ogosed virtual constraint,
a Lyapunov-based orbital regulation controller is desihrighe theoretical stability analy-
sis and experimental results demonstrate that the systtasstan converge to the desired
orbits. It has to be pointed out that for the first time the ggatancer stationary balancing
control experiment is carried out by the author and Dr. Yizlieng, and other parts in this
chapter are completed by the author himself. For balandregrooving platform, based
on the feedback linearization structure, the steeringnuatg control law is introduced.

We then present an integrated stationary/moving balancgaiaf autonomous bike-
bots. The control system integrates the balance contralegfies for the stationary and
moving bikebot platform. Due to different dynamics and cohtlesign for stationary and
moving bikebot, we analyze the DOAs for the given contrgli@nd then a switching strat-
egy is used to integrate them for stationary-to-moving angling-to-stop maneuvers. The
integration design guarantees that the transition staseii the DOAs of the closed-loop
dynamics under the targeted control design. To demongtrate OA analysis and integra-
tion design, we use the orbital regulation control law [28)] lbalancing stationary bikebot
and the EIC-based balance control is used for the movingpbiH@2]. Furthermore, a fea-
sible DOA concept is introduced to capture the possiblydargtate variable region under
any balance control laws with consideration of actuatiants. The main contribution of
work lies in the analysis and design of the integrated ba&aamntrol for the autonomous
bikebot in the stationary-moving transition. The switclteatrol design provides guaran-
teed balance performance and could be used for other utdated balance robots.

The rest parts of this chapter are organized as follows.i@e8t2 focuses on the task
of balancing under only gyro pivoting control design, irdilug the orbits construction and
orbital regulation control. Section 3.3 introduces a stepbalancing control for moving

stage. The control capacity analyses, the DOA estimateshenswitching control design
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are presented in Section 3.4. Section 3.5 demonstratexpleeimental results and pro-
vides the control performance analysis. Section 3.6 giwesonclusion of the works in

this chapter.

3.2 Stationary balancing by gyro-balancer

This section focuses on the stationary bicycle balancintpéyyro pivoting control. First,
an orbits constructing method is proposed, and then thé mdulation controller with
stability analysis is demonstrated. Finally, the contysitem performance is shown by the

experiment results.

3.2.1 Orbits construction

Under conditions,, = 0 and¢ = 0, the bikebot dynamics (2.9) and (2.10) reduce to

I, . 1. )
(mbhg +Jh+ 1 Siw +§ Ciw) ©p — Mphpg sy, +1, (ws — 5% Sgow) Cpp Pw =0, (3.1)

and

I, . I . 1 .

Etpw + B Cy Cop @% — §]Zws Cou Pb = Tp- (3.2)
Noticing (3.2) without the coupling term af,, the pivoting angular velocity,, can be
easily controlled to track the desired trajectories thioagower level tracking controller.

Thus, these dynamics can be modified into a 3-dimensiontrsyas

jZ’l = X2 (33a)
&y = f(@)+ (@) (3.3b)
jﬁ'g = Ui, (33C)

with the states = [y, 22, 23]7 = [pp, ¢, S, ) -+ the control inputy; = ¢, ¥, and

. Imx2 S2:v3 +Izws
mphi + Jy + 1.2 +%c2

mbghb Sxq
mphy 4 Jy + 1.2 +12—z 2,

flx) = ,g1(x) =
Due to the mechanical structure constraints, the pivatipgndy,, are bounded as

23] = |Ssow | < Spmax < 1, lur| = |C<pw Pul| < Wy
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with the maximum pivoting angle and angular velocity4%* andw.**, respectively. The
equilibrium of the dynamics (3.3) is;. = x5 = 0 undery,,. = 0.

Furthermore, the rolling dynamics (3.2) satisfies

%Kmﬁ+hﬁruﬂw%4wﬂﬂ:—é%mwm%g (3.4)
with the angular momentum along theaxis as
pa(t) = (mphy + L) 2o (t) + Lypoxo ()23 (1) + Lywsrs(t). (3.5)
By integrating (3.4), the angular momentum is
P2(t) — p2(0) = /Ot myghy Sz, () dT. (3.6)

Thus, the following property is introduced.

Property 3.1. For a given periodic profile:; (¢) with periodT’, the profile for the pivoting

angle is also periodic with the same period.

Proof. Given an arbitrary periodical orbit, (t + 7) = x,(¢t) for anyt, z2(t) = @4(t) is
also periodic with period’, i.e.,z(t + T') = x5(t). And then, the following relationships

are obtained
t+T
pe(t+T)—p.(0) = / myghy Sq, (r) AT
0
and
(t + T / mbghb S:c1(7' T. (37)
Under periodical () andxs(t) fo = (r) dT = 0. Therefore, (3.4) reduces to
[z3(t +T) — 23(t)] [Luwsws + Lz (z3(t +T) + 23(t))] = 0.

Thus,z3(t + T') = xz3(t) andy,, is also periodic with period’. O

In the following, the orbits construction method based oergy shaping mechanism

is demonstrated. First, the rolling dynamics (3.3b) is difieol, considering the facts that

W , Lwg Cpy > | I,9 S9,, | @ndmyh? > I,.. Thus,
. g Lw
~ Ly, 1 =0, 3.8
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withx € D :=S x R x (—1,1). The desired bicycle rolling orb®, is then designed as
the following simple pendulum dynamics profile as
, b
Op: g+ —s5,;, =0 (3.9)
ha

with a gravitationally equivalent constalt> 0 and a given initial valuer;,. When the

rolling statesr; andx, are onO,, the controlledr; has to satisfy the relationship as

b h?
iy = _%@ — _Liy (3.10)
Ly, bws

with constantl, = 5
20Ws

. For obtaining the large control actuator pivoting randgpe, t
desired flywheel pivoting orbiP),, is designed as the integration of (3.10) with zero initial

values. Therefore),, is designed as
Oy : 13 = —Luxo, (3.11)

which can be also considered as a virtual constraint foryhem states; andxs.

In fact, the orbits structures (3.9) and (3.11) provide aiffjaf orbits with the same
dynamics form. To determine the final orbits, the initiatetavalues are needed. Here, the
defined energy function is introduced for choosing a uniqglet an O,, that is, the total

energy under the definégdas
E(z1,10) = %mbhgxg + mphyb (1 — ¢y, ) . (3.12)

When target orbit0, reaches the maximum angt¢ with z, = 0, the total energy is
E; = mphyb(1 — cxtli). Thus, the dynamics (3.9) and (3.11) willy generate a unique
orbits couple®, andO,,.

Remark 3.1. The proposed orbits construction process is similar as flhssic method

in [53,56]. However, there are two main differences compathese two strategies, which
are dominated by the special dynamics form of the bikebaesysFirst, the construction
steps are not the same. In the proposed method, the orbitesla(3.9), is designed

firstly, and the virtual constraint (3.11) is obtained usitige orbit shape. That is, the
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energy shaping progress is to determine the dynamics to ieedderm. Contrary to the
presented approach, the method in [53, 56] takes a reverderdn design. Second, the
virtual constraints are not the same. The proposed methadinear relationship between
the angular velocity>, and the angular position,,, not as that among the position states.
That is due to the dynamics model structure. The coupling teronly in the centripetal-

Coriolis torque, but not in the potential and acceleratienrhs.

3.2.2 Orbital regulation controller design

For regulating the system states on the desired orbitspthteat law is proposed as follows.
The control input:; is designed as

Lb
Uy = h_ (Srl —|—U1) . (313)
b

And the auxiliary control input; defined as
v = ]{72 [AEJIQ + Oék?l (.Tg + Ll’g)] y (314)

with constanta = ﬁ and the energy differencAE = E(x,2,) — E4 under given

desiredE),.

Property 3.2. Starting at a given non-zero statg, statex of dynamics (3.3) and (3.8) can
be asymptotically regulated onto the desired orbits (3r&] €3.11) with desiré~,;, under
the designed controller (3.13) and (3.14).
Proof. The positive defined Lyapunov candidate functigix) is designed as follows
1, ., 1 )
Vi(x) = §AE + 5]{:1 (x3 + Lxs) (3.15)

with the positive constarit;. Its time derivative is

‘/1(53) = AE(mbhgxng + mbhbbsmxg) + ]{31 (l’g + LZL’Q)(ZEg + LIIZ’Q) (316)
Substituting the dynamics (3.3b) and the designed coetr(8l13), (3.16) becomes

Vi(x) = —mphy(g + b) [AExy + aky (x5 4 Lxy)] vy (3.17)
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Consideringy; structure in (3.14){71(m) Is not greater than zero, as
Vi) = —mphy(g + b)ky [AExs + oy (3 4+ Las)]* < 0. (3.18)

Based on (3.18), according to LaSalle theory [38fFan be proven to converge to the

invariant setS(x) asymptotically,

It is obvious that the origin point is in the set,as= 0 € S(x). At this point,& = 0. For
any none zero states pointdf{x), the auxiliary control input; is zero, and the desired
orbit dynamics (3.9) is satisfied. That is, the energy défeeA E is a constant value, and
integrating from (3.10), the virtual constraint valuegf+ Lz, is constant.

If AE # 0, considering non-constant on (3.10), with the constant; + Lx,, the
equationv; = 0 can not be satisfied. It exists a contradiction. Thg, = 0 and the set

O, = S(x) \ {0} also satisfies
Op(x) ={x € D|AE =0, x5+ Lzy = 0}. (3.20)

That is equivalent to the desir€d, andO,, with £ = E,,. O

3.3 Balancing control by steering actuation

We consider to use steering actuation to balance the ptatioder moving velocity, > 0.

From the bikebot dynamics, the balance torgqugenerated by steering is calculated as

Ts = (kpl + kp2¢t) ¢t + kdus (321)

with ¢, := tan ¢, andu, := ¢, as the controlled steering angular velocity, = %(vf—

h2e2 2t ) .
v2), v, = glb,itbcf, hpy = — TR and k= MMt Note that the sign of pa-

rameterk,,; depends on the velocity, andk, > 0. It is straightforward to obtain that
with increasing steering angle and velocityv,, the torquer, value grows as well. It is

noted that when bikebot velocity is small, the value of torque is small. Because of this
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observation, it is extremely challenging to use steerirtgatmn to balance the platform
whenv, is small. Therefore, the following design is for relativega velocityv, > ..

Using the feedback linearization, the steering controlitnp can be designed as same
as the EIC-based control strategy [14] and also in Chaptiéoda given moving trajectory,
we can calculate the balance equilibrium manifold angletdenote the desired roll angle.
The balance errors are denotecegs = ¢, — @i, €y, = Pb — Poe, ANAEL, = Pp — Pie.
Under fixed flywheel pivotingp,, = ¢, = 0 andw, = 0, u,, = 0, (2.9) is approximately
reduced to

Jigp = fs — kqus,

with fs = myghss,, — kp1 tan ¢ — kys tan? ¢, J, = myh + J, + I, and the approximation

of u,, asu,, ~ %us The steering control input, is designed as
b
1 .
us = k_ [fs + Jt<016¢b + C(]e@b>j| 5 (3.22)
d

where constants;, c, > 0. The closed-loop dynamics is thép, + cié,, + coe,, = 0,

which is obviously asymptotically stable.

3.4 Balance switching control laws

In this section, we present the balance capacity and cosgrabetween the gyro-balancer
and the steering actuation first. The main goal of this comparis to explain and jus-
tify the use of each of these two actuators for balance cbntfroom this analysis, it
becomes clear that the gyro-balancer can effectively bd testationary bikebot bal-
ance (small steering-induced torque), while the steeraigrte torque would dominate
the gyro-balance torque at relatively large moving velesit Because of this observation,
we consider that at stationary or low velocity, the balasaaaintained by the gyro-balance
only and at relatively large velocities, only steering Inakais used. For a complete design,
a switching control strategy is needed, that is, the gylaedu®r and steering actuation
are used for balance control at different velocity rangdse 3witching conditions are de-

termined by the control capacity of each actuation. Thereded DOA is an effective
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measure for quantifying control capacity.

3.4.1 Balancing actuation capacity comparison

We consider the following physical actuation limits for flgeel and steering motions:

pw()] < 0B™ < 30 [Gul < W™ [Gu(t)] < 3™ [9()] < 67 < 5, |(t)] < Wi,
|6(t)] < 4™, wherep™, wmax and~y™*, ; = w, s, are the constants of maximum
position, velocity, and acceleration for the flywheel piagtand steering actuations, re-
spectively.

From (2.9), the gyro-balancer torqugis

1

) 1. ) .
Ty =1, ¢y, (ws — 5% S —E@b Cyy C%) (cpw + @bs%) ) (3.23)

Considering thaty, can be neglected comparing with for small ¢, and ¢, the gyro-
balancer torque,(t) is approximated as,(t) ~ I.w;c,, ¥, and the maximum instan-
taneous torque amplitude jig, | = L w,wy™*. Under this approximation, over a time
interval(t,, t5], the impulse ofr, is obtained as
to
I,(t1,ts) = /tl T,(V)dv = Lwgs,, ‘2

It is straightforward that/,|™** = 2/.w,sms. The value ofl,(t,, t,) only depends on the
pivoting anglesp,, (t1) andg,(t2). By @2, wmax and~y™a* we can obtain the smallest

time durationAt = ¢, — ¢, for providing|/,|™** and the average torqug.

Undery, = 0 and a constant, from (3.21), the steering-induced balance torguis

mbhb C
T = %(vf —v?) tan ¢.

It is clear from the above result that the value of torguéncreases with increasing ve-
locity v, and steering angle. Moreover, comparing with torque generated by the gyro-
balancer with a short time duratidx (= 0.5 s for the bikebot), the steering-induced torque
7, Is more persistent and can last for long time. Moreover, tagmitude ofr, is also larger

than that ofr** (around 20 Nm) under significant velocity.



29

3.4.2 DOA Estimates

We give an estimation of the DOA estimd®g (x) under the gyro-balancer control (3.13)
and (3.14). From the previous analysis in Section 3.2, umder0, V;(0) = %Eﬁ. With
the non-increasing (x), for converging onto the desired orbifs and®,,, a conservative

estimationD;, (x) is obtained as
1
D (x) = {m € R?|Vi(x) < §E§} : (3.24)

For an given initial pivoting angle,,,, the setD;(x) in the p,-, plane can be calculated
and plotted. We introducP,, C [-7, 7] x R as the projected set @, () onto thep,-¢,
plane, namely,

Dy = {(z1,22) |x € Dy(x) for a givenzs} . (3.25)

The above set indeed covers all trajectoryof(t), »(t)) € D, from a given initial con-
dition ¢,,(0) under the gyro-balancer contra},. We plot the boundary dp,, to illustrate
the controllable range.

Under a given speed,, the DOA estimateD, C [—7, 7] x R of the steering con-
troller (3.22) is dominated by variableg"*, g&bglax and~y™*. 1t is difficult to explicitly
obtain a closed-form calculation under these motion limite use the computational ap-
proach to obtain an estimation &f, by finding the maximum initial stateSpy, ¥u0) t0
maintain a stable trajectory under given control pararseter

The above calculated DOA estimat®s andD, are under specific gyro-balancer and
steering controllers. In the following, we introduce s&s, 2, C [-7, 5] x R for the
gyro-balancer and steering actuations, respectivelyeugaly possible controllers. In other
words, if the initial statéyyg, o) ¢ Q. s, the bikebot cannot be balanced respectively
under any gyro-balancer and steering controllers.

To simplify the analysis, the linearized closed-loop dyramunder the gyro-balancer

and steering actuation controls are given respectively as
Ng: @y — ko + kguy/J =0, (3.26)

et @y — Koy + kpd/J + kqug/J =0, (3.27)
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where constantd = myh? + Jy, k = /J 'mpghy, andk, = Lw,. For a given initial

valuesp,(0) = ¢y andey,(0) = ¢y, the solutions fok, andx, are
©b (t) - [I (@bO? Sbev t) + IC (Ui, [Oyt]) ) 1= S, W. (328)

The initial and input terms in (3.28) are given as

I1(¢00, Pr0s 1) = Kei(t) oo + Kea(t)ro, (3.29)

To(us 0.6) = 5 [ bt = 5)(nons) + (), (3.30)
0

I (U, [0,1]) = %/0 kea(t — 8)kguy(s)ds, (3.31)

kt kt

wherek, (1) = €4 andk,, (1) = <=

5 si— Noting thatg, = us, it is straightforward to

obtain/c(—u;, [0,t]) = —Ic(u4, [0,¢]) fOri = s, w.

We denote inputs*(¢) andu? (¢) profiles as to drives(t) and ¢, (t) from zero their
maximum value** andy** as fast as possible respectively, and then hold them at the
maximum values afterward. Let us denote the times to reaghrteximum values under
uwi(t) andu’ (t) ast* andt’, respectively. In (3.28)k.2(¢) is increasing function with,

kpn > 0, k, > 0, andk, > 0. We present and prove the following property.

Property 3.3. For any givenu,(t), ¢ = s,w, under aforementioned physical actuation

limits, fort > 0, I (u;, [0,%]) is bounded as
| Io(us, [0,t])] < Io(u,[0,t]),7 = s,w. (3.32)

Proof. Considering the similar structures &f(u;, [0, t]) for us andu,,, we only give the
proof of the property (3.32) for,. The ¢;(t) is noted as the control steering angular
position under:*(t), andg,(t) is under a given(t).

From the definition of.%(¢), the signak;(¢) is generated. Compared to any arbitrary

control inputu(t), we have the relationship as

—¢; (ta) < &t (t) < &7 (t) (3.33)
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which is equal to
ty ty ty
—/ us(s)ds < / us (s)ds < / us(s)ds (3.34)
0 0 0
for any time point,.. With k.»(t) > 0, vt > 0, we have the inequality about(t) as

/¢@ﬂt—smx@wm;gjﬁaxt—$¢:@ww. (3.35)
0 0

And then, we focus on the second convolution tqﬁmeg (t — s) us (s) ds of the con-

trol term I (us, [0, t]). We define the signal differenee(s) as
vs(s) = ul(s) — us(s), s > 0. (3.36)

Naturally, considering:*(0) = u,(0), v5(0) = 0. And because of the bounded and
vs, Us(s) is 2-ordered differentiable w.r.ts. For simply expression, we introduced two
integrals as

to
M (tl, tg) = / Vs (8) dS,VO <t <ty <, (337)

t1

and

to
E (b, 1) = / s (£ — ) vy (8)ds, Y0 < t1 < t < t. (3.38)

t1

Natura”y,M (tl, tg) + M (tz, t3) =M (tl, tg) andE (tl, tg) + F (tQ, tg) =F (tl, tg) with

V0 < t; <ty <tz <t.Besides, from (3.34), we have
M (0,t1) > 0,V0 < t; <t. (3.39)

Because of the 2-ordered differentiablés). That s, in the time intervdD, ¢), there exists
a open time interval array, noted @s,b,), (as,bs), - - (ax,by),- -+, with a; > 0. And

any two of these intervals have no intersection. Aset C [0, ¢] is introduced as
S50 = (a1, b1) U (ag,b2) U--- U (ag, by) U -

Whens € S.g, vs(s) > 0. And if s ¢ S.oands € (0,1), vs(s) < 0.
From (3.39),M (0, a;) = 0. Combining withv,(s) < 0,Vs € (0,a4), v5(s) = 0,Vs €
(0,a1). Thatis,E(0,a;) = 0. E(0, az) can be divided as

E (0, 0,2) =F (0, 0,1) + F (al, bl) + F (bl, 0,2) . (340)
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Since the positivé:..,(t — s) is strictly decreasing w.r.ts, vs(s) < 0,s € (b1, az), and

vs(s) > 0,s € (a1, by), we have the following inequality

E (0, a2) > M (0, al) + keo (t — bl) M (CLl, bl)

(3.41)
+k’82 (t — bl) M (bl, 0,2)
Thus,
E (0, ag) > koo (t — bl) M (0, ag) > 0. (342)
Similarly, for the interval 0, a3), we have
E(0,a3) = E(0,a2) + E(a2,b2) + E (b, as) , (3.43)
and
E(0,a3) > kea (t —b1) M (0, a2) +
(0,a3) 2 ( 1) M (0, as) . (3.44)
]{582 (t — bg) M (CLQ, b2) —+ ke2 (t — bg) M (bQ, CL3)
Therefore,
E (0, ag) > k‘eg (t — bg) M (0, ag) > 0. (345)
Supposing
E (0, ak) > ]{?82 (t — bk—l) M (0, ak) ,
we can deduce an inequality abduf0, a,,1) as
E (0, Clk+1) > keo (t — bk) M (0, ak+1) > 0. (346)
Using this process iteratively to the end, we have
E(0,t) > 0.
With (3.38), we have the bounded convolution value as
t t
/ keo (t — s) us (s)ds < / keo (t — s)ul (s)ds. (3.47)
0 0

Symmetrically, we also can conclude

- /t keo (t — s)ul(s)ds < /t keo (t — 8) us () ds. (3.48)
0 0
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Finally, combining the relationships (3.47) and (3.48)uthd (s) and the relationship (3.35)
about¢;(s), we proved the bounded relationship (3.32) abdiit). The (3.32) about,

can be obtained by the similar process. We omit the detaits he O
Then, we give the definitions of tHe, and(2,, as
Qi (v, o6) = {(@0: @) | 1 (0 f6: 1i)| < e (ui, [0,8])} 1= s, w. (3.49)
The defined?; has the following property as

Property 3.4. Given an initial states pointey, ¢u) att = 0, if (w0, Pro) ¢ €2, the system
can not be balanced under any control inpyt If (40, ¢r0) € €, there exist a control

input, noted as:;, under which, the system can be balanced.

Proof. Considering that the balancing task is to¢g{t) — 0 ast — 0, the exponential

converging factoe—** can be neglected. Then the tefty,, 3, t) can be rewritten as

kt kt
I7 (0p0, Pr0, 1) = —0p0 + 6—%0-
1 ) ) 2 2]{3
Naturally, we have
I1 (@0, Pro, t) = €1 (gr0, Pro, i) - (3.50)

Based on the; definitions, we haver;(t) = 0,¢ > t;. Similarly, sinceu}(t) = 0,t > t;,

and neglecting the "' term, I (u}, t) can be approximated as
I (uf, [0,1]) = " [0 (ur [0, 8]) , t > t. (3.51)
Combining with Property 3.3, for any given, /- (u;, [0,t]) is bounded as
—eF U 0 (ur ) [0,1]) < Te (ug, 0,1]) < 9 10 (uf, [0, 1) . (3.52)
If (vw0, Pro) Satisfies the relationship as
I (@e0s Pro, i) > Lo (ug, 0, 4]) (3.53)
combining with (3.52) and (3.27), we have

on (1) > ) (I (v, 10, ti) — Ic (uf, [0, 4:])) > 0.
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That is, withe**=%) ¢, has to diverges, under any arbitrary contepl Symmetrically, If

(o, Yoo ) Satisfies the relationship as
[I (@bO» Sbey tl) < _[C (u;kv [07 tl]) 3 (354)
combining (3.52) with (3.27), we have

on (1) < " (11 (@ro, 10, 1) + Lo (1], 1)) < 0.

Thatis,p, also diverges. Therefore, from the solution under inittaddition (3.53) and (3.54),
with (g0, o) ¢ €2; and any controli;, ¢, has to diverge.

If (40, ¥10) € i, and we note thaB; = I;(y40, ¢10, ;). Naturally, we have
—Ic(uj,t;) < B; < Io(ul,t;).

Besides, the value df-(ku;, t) is continuous about. That is, there existg; € [—1,1] to
satisfy that
]C(k:luf,tz) = _Bz

We noted the desired controf asué = k;u}. Underu, the exponential growing term in

©p Can be eliminated, as
6k(t_ti) ([I (@bO) Sbb()a tz) + IC (uzda tz)) - 0

That is,p(¢) will converge to zero under contraf. O

3.4.3 Switching Strategy

We now discuss the switching control during the statiortaryaoving maneuver for the
bikebot. From stationary to moving conditions, the contes¥s switch by velocityw,
values. The switching velocity is denoted«gs att,; and from the previous analysis, the

velocity vy, has to satisfy the condition

Dy (ta) € Ds(tar).



35

10 T T r r r - - - 200
—Exp
- - Desired
5r 100
w w
F g
% or B or
z
s
Y N~
S5r -100 [~
-10 . : : : : : : : : -200 .
25 -2 15 -1 0.5 0 0.5 1 15 2 2.5 -60 -40 -20 0 20 40 60
vy (deg) pw (deg)
(a) (b)
T T 60 T
2r 4
” 40f
1r 4
20
=) =)
g 8
T ot Z
2 6]
S S
4 -20
40}
2l
: -60 L
100 120 X 140 100 120 i 140
Time (s) Time (s)
(c) (d)

Figure 3.1: Gyro-balancer orbital regulation results.Biebot rolling trajectory onp,-¢;
phase plan. (b) Flywheel pivoting trajectory en-¢,, phase plan. (c) Bikebot roll angle
vy trajectory. (d) Flywheel pivoting angle,, trajectory.

To switch the control fromu, (under the steering balance)uig (under the gyro-balancer),
that is, from moving-to-stationary transition, we consithe switching velocity at,, with
time t,,. The condition that needs to be satisfied is givefi@as$tss), pp(ts2)) € Dy. In
this case, the gyro-balancer controller can balance thersywith a zero steering angfe
However, in practice, this condition is difficult to satisipder zero steering angle, partic-

ularly under possibly disturbances. We will present expental results and discussion in

the next section.

3.5 Experiments results

We first demonstrate the stationary balance control pedoo® under the orbital stabiliza-

tion controlw,,. The values of the major bikebot parametersrage= 37.5 kg, h, = 0.64
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Figure 3.2: The DOA plots of the gyro-balancer and steerialgice controls. (a) The
DOA plots under gyro-balancer orbital regulation contrglwith initial conditiony,,o = 0
and various parameters. Bluey, = 55 kg, w, = 1500 rpm, h;, = 0.64 m; Green:m, = 42
kg, w, = 1500 rpm, h, = 0.64 m; Red:m,;, = 55 kg, ws, = 1200 rpm, h;, = 0.64 m; Black:
my = 55 Kg, w, = 1200 rpm, h, = 0.48 m. (b) The DOA plots of the gyro-balancer control
u,, and steering contral,. (c) Plots ofQ2,, and€2,. Blue: boundary of2, atm;, = 55
kg andw, = 1500 rpm; Green, red and black: boundaries{®f underv, = 0.75 m/s,
v, = 1.00 m/s andv, = 1.50 m/s.

m andw, = 1500 rpm. Figs. 3.1(a) and 3.1(b) show the phase portraits ofthe, and
Vw-Pw, While Figs. 3.1(c) and 3.1(d) show the roll angigand pivoting angle,, profiles.
The desired roll angle orbits reach € deg. The bikebot is released@l, = —1.2 deg
andy, = 0 deg/s withp,,o = 0. From Fig. 3.1(c), after several periods, the bike roll angl
profiles converge to the desired roll orld%. This is clearly shown in Fig. 3.1(a). When
the rolling motion reaches the desired orbit, the flywheebfing motion is also near the
pivoting orbit, as shown in Fig. 3.1(b). The flywheel pitohitnajectory is within the range
of £50 deg as shown in Fig. 3.1(d).
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Figure 3.3: Switched balance control results. (a) Bikebbiiangle, and target roll angle
ope- (Top-figure: blue and red curves undgy and green curve undet,; Bottom-figure:
blue and red curves are the roll anglgt) and the desiregh,.(t), respectively. The solid
and dash lines portion represent the only balancing andbialg-tracking,respectively. (b)
Flywheel pivoting angler,, and steering angle. Blue and red portion under,, control
and the green portion undeg control.) (c) Bikebot planar positiofiX, Y). Purple dash,
blue solid, and black square portions are undgr u,, and EIC-based velocity-steering
control (u,, us), respectively. The red dash line is the target path. (d) Bkeelocityv,
and path following erroep. For the top-figure, blue and red portion are undgrandu
controls, respectively. (e) State variablg (t.2), ©u(ts2)) on thep,-o, plane. Blue squares,
red circles, red crosses marks are for the success, faiitind i+ 1| < I, failure with
|I; + Ip| > Ic cases, respectively. The black lines are the boundafy,of (f) Running
conditions in thel;-1 plane. Blue squares, red circles, and red crosses are feuticess,

failure with |I; + Ip| < I, failure with|I; + Ip| > I cases, respectively. The black line
represents; + Ip = I¢.
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Fig. 3.2(a) shows the sets boundarieqf at various combinations of parametey,
h, andw,. From these plots, we observe that the smaker smallerh,, or largerw,
values, the DOA estimate®,, become larger. Under the outdoor experiment condition
(i.e., my = 55 kg, hy = 0.64 m andw,, = 1500 rpm, the blue curve in Fig. 3.2(a)), the
estimated maximum controllable roll angle by gyro-balarmentrol «,, is less than 1.7
deg. That region is also plotted in Fig. 3.2(b) and is bourtwetlue curve. If the initial
roll states(vw, Yr0) € Dy, controlleru,, can drive the state to converge to ordi (i.e.,
red circle). Fig. 3.2(b) also shows the plot®f under different velocity, values. For
v, = 0.85 (black solid lines) and m/s (black dash lines), the regiof% increases in
size. Ifv, > 0.85 m/s, DOA regionD,, underu,, is covered byD, underu,. Fig. 3.2(c)
shows the boundaries of largest DOfs and 2, under various velocity values. With
increased,, region(2, is enlarged. When, > 0.75 m/s,(2,, C Q,. Comparing withD,
in Fig. 3.2(b), for a given,., 2, is almost at the same size as thafpf

We also run stationary-to-moving-to-stationary expentsaunder the switching con-
trol betweenu,, andu,. During the second moving phase, the bikebot is commanded to
track a straight-line trajectory under the EIC-based stgerontrol u,, and the first and
third transition phases, balancing is the only target ungerFig. 3.3 shows the perfor-
mance of one experimental run results. The stationarydwhng transition are from 66.2
s to 81.6 s and the moving-to-stationary duration is from.3@6to 118.5 s. The path
following portion is therefore from 86.1 s to 95.5 s. The Ioaked roll angle profiles are
plotted in Fig. 3.3(a). In the first and third portions, thkdiot experiences the periodical
swing motions in the range about1, 1] deg under the orbital stabilization contrg). In
the middle portion, under steering conttal roll angle is within the range df-1, 1] deg.
Moreover, the roll angle tracks the desired trajectogy(t) by the EIC design. The gyro-
balancer pivoting and steering angle control inputs arevehia Fig. 3.3(b). Fig. 3.3(c)
shows the bikebot planar position and the position erragsatd within+0.4m as shown
in Fig. 3.3(d). The switching velocities are designedat= 1.2 m/s andv,, = 1.9 m/s

andu,; satisfies the DOA analysis.
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The challenging task in experiments is to keep balancingyséem during moving-
to-stationary transition. Out of ten experimental rundydwo were successful and the
rest eight failed. At the switching momeng, the condition of(y,(ts2), Ps(ts2)) € Dy
is critical. We conduct a similar DOA analysis to find out thendition. Supposing that
o(t) = 0,t > t, = tso + t. Similar to the analysis to obtain the results in (3.49), if
111 (pp(ts2), Po(ts2)) + Lo(us, [ts2, ta])| > Lo(ul, [ts2, ta]), there does not exist@,(t) for

the convergence af,(t), that is, a success balance condition in this case is
[I; + Ip| < I, (3.55)

where initial state ternd; = I;(pp(ts2), o(ts2)), disturbance termdp = o (us, [tse, ta]),
and control terml = I (ul, [ts2, t.]). The calculation of these terms is given by (3.29)-
(3.31).

We take the 10 experimental runs data to check conditiorb)3Fg. 3.3(e) shows the
initial states(yy(s2), Pu(ts2)) in the phase portrait. The region 6, is also plotted in
the figure. We found that 7 runs are@h,, including the two successful runs. Fig. 3.3(f)
further shows the initial state values in thel, plane. In this figure, ifl; + I, < 0,
the point(—1;, —Ip) is instead plotted for the absolute value. The cutve- I, = I¢
is also plotted in the figure. It is clearly shown that only pesment runs satisfy the
condition (3.55) and two of them are successful (marked bybthe squares). The other
two runs withl; + Ip < I still cannot balance (marked by the red circles). The pdessib
explanation for this result could come from two reasons.stFithe regiorf2,, is much
larger tharD,,. Thus, there exists the states which could be balanced tut not by the
orbital stabilization control.,,. Second, the estimation of steering disturbahges not
precise under small. values. In this case, it is possible that some experimeutea fail
even if condition (3.55) is satisfied. Nevertheless, thaltesn Fig. 3.3(f) confirm that the

condition works for most cases.
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3.6 Conclusion

This chapter presented a stationary balance control lawpang balance control law,
and an integrated balance control of autonomous bikebo¢rsygr complete stationary-
to-moving maneuvers. Gyro-balance and steering actuatieriwo main effective con-
trol strategies for stationary and moving cases respédygtiVide analyzed the DOA of the
closed-loop systems under these two control designs amdbilié on the DOA analysis,
a safety control strategy was designed for stationary-0etng maneuvers. We conducted
extensive experiments to illustrate and demonstrate thé/sis and design. The results
validated the effectiveness of the switching control styas.

From theoretical analysis and experiments results, thegsed switching control seems
not robust enough for handling large disturbances in pralcéixperiments. We plan to re-
lax some assumptions in the analysis and develop a combiweebglancer and steering

control strategy to enhance the balance performance ingfutu
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Chapter 4

Bikebot Autonomous Tracking Control

4.1 Introduction

Underactuated balancing systems such as bicycles or mpotescprovide a unique plat-
form to train and treat human with postural balance distdsl[38, 59]. Balancing control
of the bikebot is presented in Chapter 3. To further undedséand tune the characteristics
of human balance motor skills in these unstable physicalamirbot interactions, it is
desirable to design and build an autonomous trajectorkitigand balancing capability
for the bikebot system.

Trajectory tracking control of a riderless autonomous dliey{or motorcycle) has also
been proposed and studied in [11,13,17,41-43,60]. Stead velocity control are
the main two actuations for the autonomous bicycles or nogtbdes designs except that
in [17,60], additional mechanisms such as weight-shifirgused to assist the balance of
the systems. Although many above-mentioned research viscksk the motion control of
autonomous bicycles, few experimental results and denaditst have been reported. The
results of the Blue team in the 2005 DARPA Challenge confirendifficulties to achieve
accurately trajectory tracking and balance control of aatoous single-track vehicles [13].
One of the research goals of this chapter is to demonstratexperiments of trajectory
tracking and balancing of autonomous bikebot using stgennd velocity control.

Understanding the human sensorimotor mechanism in theqathysistable rider-bicycle
interaction is studied in recent work in [12, 29, 30]. Modegliand pose estimation of the
rider-bicycle interactions are reported in [26, 27, 61]. ficher identify the human con-

trol strategies quantitatively, the research work in [2],[Zesent the human upper-body
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movement and steering control models and their influencgdaiform balance. Bikebot

is utilized in the work presented in [21, 22]. The use of theoglyalancer as an additional
actuation helps the balance of the stationary bikebot [d]aso enables the further tun-
ing of human motor skills through the physical rider-bikebaeractions. Another goal of

this work is to integrate the gyro-balancer design into thgttory-tracking and balancing
control.

In this chapter, a trajectory tracking and balance conawlik first presented. With the
steering and velocity control, the bikebot can track a tanhggectory autonomously. The
controller design is built on an extension of the EIC struetf the nonlinear dynamics of
the bikebot system [11,41]. The EIC-based control is madidied implemented to achieve
both trajectory-tracking and platform-balancing taskise Tontrol design is then extended
by incorporating the gyro-balancer actuation to furthdnagrce the control performance.
The use of additional gyro-balancer torque further redticegosition tracking error and
the performance improvement is also guaranteed by desiga.control systems designs
are validated and demonstrated by experiments.

To our best knowledge, there is no reported experimentabdstration for the precise
and successful trajectory tracking and balance controbtdreomous bicycles or motor-
cycles. The experiments in [42,62] and other demonstratty show the balance ca-
pability of controlled bicycle or motorcycle systems anajeéctory tracking is not among
the control tasks. Indeed, from control systems designpogmt, trajectory tracking and
platform balancing are two competing tasks. Other studigs,((11,17,43]) do not include
experimental demonstration and validation. The EIC-basedrol with inclusion of the
gyro-balancer design complements the human rider cortnagkgies developed in litera-
ture [21, 22,29, 30]. The control design in this chapter aisables the use of bikebot for
control of physical human-robot interactions. Although tihapter focuses on the bikebot,
the proposed control systems approach can be applied to atlderactuated balancing
systems, such as pole-cart, Furuta pendulum, or biped veake.

The remainder of this chapter is organized as follows. Th#roblaws are designed
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in Section 4.2. The theoretical analysis for this contralteyn stability and performance is
demonstrated in Section 4.3. The designed experimentgeserged in Section 4.4. The

concluding remarks are discussed in Section 4.5.

4.2 EIC-based controller design

The bikebot dynamics in (2.9) and (2.12) can be convertedantnearly EIC form. The
nearly EIC form of a nonlinear dynamical system is an extamsif the EIC form intro-

duced in [11].

Definition 4.1. Ann(= m+ p)-dimensional nonlinear control system is called inregarly

external/internal convertible forihthe system is of the form

(
Ti = Tit1, Tm=uU,0=1,--- m—1,

Qj = Qjt1,

¥ (4.1)
dp = f(a:,a) +g($, a)u + gi<w7 a)“i,

\y:flfl,j:l,"‘,p—l,

with inputsu, u; € R, outputy € R, state variablegz, o), withx = [z - - - z,,]T € R™
anda = [a; -+ o,]T € RP. Functionsf(z, @), g(x, a) and g;(xz, ) are smooth and
g(x,a) # 0forall (z,a) € B, C R*" is an open ball. Moreover, we refer to tegternal

subsystenof X as
Yext © Ty = Tiy1, T =u, 0 =1,--- . m—1, (4.2)
and theinternal subsysteraf X as
Ying 1 G = qiy1, & = f(z, @) + g(@, )u + gi(z, a)u;, (4.3)
fori=1,---,p— 1.

Fig. 4.1 shows the structure of the nearly EIC system. Thelyn&iC system is

convertiblebecauses;,; is nearly converted t&.,; (with an addition internal contral;
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External subsystem

Internal subsystem

sl

Figure 4.1: A nearly external/internal convertible system

term), and®.; is nearly converted t&;,; (again with an addition internal contra] term)
under a simple transformation = g(z,a)™' [v — f(z, «)]. To see this dual-structure

property, definingg = «; as the dual output and applying the above transformation to
¥ (4.1), we obtain thelual of X(u).

)
i = T, = —g Nz, ) f(z, ) + g7z, a)v,

G = Qjp1,0p =0V + gz, a)gi(x, a)u;, (4.4)

\é-:al?i:lu"'7m_17.j:17”'7p_1'

The bikebot rolling dynamics (2.9) can be rewritten as

Jipy = f(on) + gy () Uy + Guli, (4.5)

with J, = mph? + J, + L(1 + siw)/Q, flop) = —mphycy, v, + Myl Cypp, Sy V? +
Mg S0, L oy S, (W5 — G185, 2= g, Cp, [2) + TEREREE g — ] (w, —
@S /2= Cuy Co /2) Conr @NAgy () = —myhyly ¢y - The equivalent control inputs for
rolling arew,, andu,, = ¢,,. Combining with (2.12) and (4.5), the EIC form of this system

is

Sext @ To) = un, (4.6a)

Sie 1 @ =J7 [Fe) + 9u(0n)us + Guti) - (4.6b)
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For a given desired trajectof:(X,(t), Y,(t)), we design a linear feedback controller
for Yex [22]

u$t =) — e, —bie, — boey, 4.7)

andu® = R (¥ + u$"), wherer, = [Xy(t), Yq(t)]”, errore,(t) = [ex, ey]” = re, —
4, andrf’) denotes the third derivative @f,. The control gaing;, i = 0, 1, 2, are chosen
to guarantee that + bys% + bys + by = 0 is Hurwitz. Under (4.7), the external vector field

N..: is defined as

T
X (1)
Next = X! B el | (4.8)
Y (t)
Y (1)
Vi = Shobiey) |

Using control design (4.7), the BEM is defined as

£ = {(flf, Dve) |96 = P (W, vp, u™, SDw) b = Py = 0} , (4.9)

wherex = [rl 7(, #5,]T anda = [p, )7, In (4.9), the roll angle equilibriunp,, =

©pe (1, vr, U, 0,,) is the solution of the following equation (undef = ug andu,, = 0)

F(gpbm ¢7 Ur, U, gpw) = f(gpb) =+ ng(gpb)u?pXt = 0. (410)

The derivatives>,. and,. can be approximated by the directional derivatives aldig;
with v, = 0 as

_ Oone - o
LNext ()Obe = LNext (pe + %7 L%ext (pbe = LNext LNext (pbe

If the gyro-balancer is not actuated, thatis, = 0, the internal system controller is
designed as
up' = g, (00) (= f () + o)) (4.11)

where

int

vy = [_/?Vmgpbe — 1€y, — Aoy, (4.12)
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with the tracking errors definitions,, = v, — @ie, €, = Pb — Pre = Pb — ENextgpbe, and
ap,a; > 0. Under thiSuiL“, the closed-loop error dynamics ik, is €, + a1é, + ape, =

0 and asymptotically stable. Therefore, without using theogyalancer actuation, the
controller is

C: u, =u uy = uiﬂt, Uy = 0. (4.13)

The gyro-balancer pivoting contral, and the modifiedii[p‘t are designed in the follow-
ing. According to the EIC control structure, under contrgbut u®™* = [u$ u$ ", the
bikebot position(X (), Y'(t)) converges to the desired trajectafyexponentially. How-
ever, for the balancing task, the steering irrw';gftis different fromugXt and thus introduces
position tracking errorg,. On the other hancui;}“ has to tune roll angle, to follow equi-
librium ¢;.. The goal of the gyro-balancer contrg), is to assist platform balancing under
a‘gt. We consider that under the combined anda‘&]t, the balancing capability is the same

asu)' in (4.11) and thus

Jot = flep) + gulen)u! = f(o) + gu(@n) W) + Gutiw. (4.14)

Underu®™ (4.7) andu®™' = R (¥ + u%"), the position tracking closed-loop dynam-

icsis
ext

) —be, —be, —bye, = ¥ + R, ;Xt . (4.15)

u
¥
On the other hand, from (4.6a) and control (4.7),

U ext

r® =T+ R, | (4.16)
int

U

and subtracting (4.15) from (4.16), the real closed loogkiray system is

0
el + b€, + bie, + boe, = d, == Ry : (4.17)

int __ _ ext
Uy = Uy

Using the BEM definition (4.9)1,@Xt can be rewritten in terms of,. as

Ut = =gy (re) (9oe). (4.18)
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Substitutinguigt in (4.6) andug in (4.18) into (4.17), the error disturbandg becomes
d, = R, , (4.19)

whered, = uiﬂt —ugt = —g;l(cpb)f(gpb) +g1;1(<pbe)f(<pbe) +g;1(gpb)Jtviﬂt. Under the new

control inputﬂiﬂt andu®, the error disturbancé, can be obtained as

] 0 0
d,=R,| |=R,| , (4.20)
dy i — u

wheredy = —g." (1) f(9) + 95" (9re) f(0re) + 95 (00) TV} = 957 (95) Gutias-

From (4.20), if the steering control is designedi§s= uS", thend,, = 0 and therefore
the position errorg,, converge to zero exponentially by (4.17). However, becatité. 14)
and the restrictively pivoting motion of the gyro-balandee magnitude otzigt cannot be
arbitrarily chosen. In the following, the controller foy, andﬂij}t is proposed by considering
the physical constraints of the gyro-balancer actuator.m&sitioned in Chapter 3, the
gyro-balancer pivoting motion is constrained by the hamwanitation. According to
these constraints, the upper- and lower-boundary funetign(y.,) and f,_(¢.) for wu,

are designed, that ig,.(vw) < w, < fi.(pw), Where

wce

max
+ Yo

wc((pw) =
29 VPR — Pu Pul < Puw < PR

(wmax)2
w

andfl;c(@'w) = - 1:}"_6<_()0w)' Wlth SO'LUI = (pﬁax - 27'{11)1&)( .

If |do| > b, for a given boundary,, > 0, we design the rolling torque,,u,, in the

—00 < Y < Yyt

direction ofg, (u})' — u*) and given constraintg/.(x.,) andf,.(x.), thatis,

Uy = 50 () min (g5, gy (|do] — by) |, | fre (2)]) (4.21)

wheresgn(u,,) = sign (g, g4do). For the case af, < b,, we chooser,, = 0. From (4.14),

the steering control inpl:ItZ]t is obtained as

@t = g5 (o) [Tt = F(96) = Guta] (4.22)
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Remark 4.1. Because of physical limitation of the gyro-balancer pingteffects, the bal-
ancing actuation,, itself might not be powerful enough to fully balance thefplah. That
is the main reason why utilizing,, as an auxiliary control wheid,| is large. A practi-
cal scenario is that the desired trajectory has a sharp tagnor the balancing platform
faces strong disturbances in a short time interval. Becadisiee limited actuation, in most
parts of the tracking process, the balancing performancenpalepends on the steering

actuation.

4.3 Stability analysis

Under the EIC-based contr6l: (u, u}}', 0), the position tracking error is denotedgs
With the additional gyro-balancer actuation, the contnguts and the position tracking
error are denoted a&: (u®, a‘gt, u,,) ande,, respectively. It can be shown that under the
new controlC, the magnitude of the tracking errors is reduced. To shosvgtoperty, the

following results are first demonstrated.

Property 4.1. The magnitude of error disturbanég under controllerC is not greater than

that ofd,, under controllerC.

Proof. From (4.19) and (4.20), this property is equivalent to shéWw< |d,|. For the case
of |do| < by, u, = 0 is utilized, thusdy| = |dy|. Therefore||d,||, = ||d,||,. For the case
|do| > |do|, we have

—int __

dy — dy = ui?t — Uy = g;l(gp)gwuw. (4.23)

Form the sign and amplitude definition of,, we conclude the following relationships:
sgn (do) = sgn (g guww) and|g, ' guuw| < |do| — by < |do|. Therefore, under taking
the absolute value of (4.23) without changing the form, thlationship|d,| — |do| =

|9, | > 0is obtained. 0

Under controllelC, the EIC structure and property are still held. Therefosestzown

in [11, 22], the closed-loop erroks, ande, asymptotically converge to a bounded region
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near origin. Similar to (4.17), the obtained dynamicsdpis

el + bye, + bie, + boe, = d,. (4.24)

Defininge, = [el, é], €] ande,, = [e,,, ¢,,]", similar to [11], the magnitudes of the

disturbanced,, andd,, are assumed to be affine functioneafande,, respectively,

1yl < Ko+ ki [lexll,

‘Elsz < ko + ky el (4.25)

wheree, = [e], el el]" and ko, ki, ko, k1 > 0 are positive constants. Because of the

results in Property 4.1, it is assumed that
ko < ko, k1 < ky. (4.26)
The following results about erroes, ande, are based on the following property.

Property 4.2. Under controllersC and C, the position tracking errore,(t) and e,(t)
exponentially converge to regions near the origin. Moreoweere exist error boundi(t)

andél(t), that s,

e,(t)]| < eb(t) and e, (t)]| < e (t), theneb(t) < et (t), for vt > 0.

Proof. We prove the property through the Lyapunov stability theofg8] and the results

by Property 4.1. Using state varialdg, we re-write the error dynamics (4.17) as

0 1 0
éx:Aex+dpaA:AO®I27AO: 0 0 1 5 (427)
—by —b1 —by

where operator represents the Kronecker product ahde R"*" is then-dimensional
identity matrix.

The Lyapunov functiod/ = eI Pe, is introduced, where positive definition matrix
P = P" ¢ RY%6 js the solution of Lyapunov equatioA”’ P + PA = —I,. Note that
P always exists sincél is Hurwitz. Following the stability of the perturbed syste{B8]

and (4.25), the time derivative &f = el Pe, is

. 1 2
V< (——klﬁ>v+202km/z, (4.28)
(&) C1 C1
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wherec; = A\pin(P) > 0 andey = A\pax(P) > 0 are the minimum and maximum eigen-

values ofP, respectively. Defining? = v/V, we write (4.28) as

: 202]{70
W < —alW + , 4.29
G (4.29)
wherea = %(é —kﬂf) > 0, namely,k; < 3%. ConsideringW(t) = \/V(t) >
Veillex(t)|| and by comparison lemma [58], from (4.29) it is obtained that
a 2¢2k
lesOl < cre™[le(O)]| + =22 =: e5(2), (4.30)

wherec, = ¢, /c;. For the error dynamics under controlt&rthe inequality is obtained as

_ Cati— 20,2”]2; _
e (t)]| < cre™*[[@(0)]| + —== =: & (t), (4.31)

a p

with @ = 3 (é - El%) > 0 andk; < 2071% From (4.30) and (4.31), it is straightforward
to obtain that both errors exponentially converge to theregnear the origin with bounds
2‘3?7'60 and 20%’” respectively. Considerinfje.(0)|] = ||€.(0)|| anda > «, e™* < e~

for any ¢ and% < k. and thuse) (t) < eb(t) for anyt > 0 because of relationships

in (4.26). 0

From (4.14), unde€, the balancing control effect is the same as that.dfhe internal

system closed-loop error dynamics is still as
€y, + 1€y, + agey, = dy,, (4.32)

where disturbance,, = ¢ — L%, ¥re + a1 (¥pe — Lieaore) is also bounded by the
norms of the desired trajectory, ande,, [11]. Because of the unchanged internal error
dynamics (4.32) undet andC, the stability and tracking performance for the BEM are the
same for these two controllers. Note that this property isioled by the particular gyro-
balancer control,, given by (4.14). Other alternative control @f can be also designed
to achieve different properties and to obtain the perforeamnade-off between position

tracking errore, and balancing errog,,, .
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4.4 Experiments

Three kinds of experiments are conducted for the path fatigwtrajectory tracking and

gyro-balancer assistive control, respectively.

4.4.1 Path following control

These experiments are the autonomous path following withoman rider and under the
EIC-based control law. Unlike the trajectories trackirtgg fim of path following is only
reducing the distance between the current position anddsiesd! path. That s, the bikebot
rear wheel velocity, is controlled and regulated at a constant value. Only therisig
control is used for reducing position error. The positiooee,, is defined as the directed
minimum distance between bikebot current position and #inget path. Five paths are
introduced for the testing: the straight line, the two typésircluar trajectories with 6-m
and 4-m radii, and the two types of ‘8’-figure trajectorieattare formed by circles with
6-m and 4-m radii. For every target path, three differenberlesv, are set, about 1.7 m/s,
2.1 m/sand 2.6 m/s.

In experiments, at the starting time, the bicycle is helddydand its velocity increases
to the desired value before fully released. After releasing balancing autonomously, the
autonomous path following control starts to work. The tinaeying ¢y (t) is tracked for
both the balancing and path following tasks. This processpeated for several trials under
different experimental conditions. In one trail, the sitdiline is followed once; the circles
are followed twice or three times; and the ‘8’-figures arddi@kd by once or twice.

Three typical riding performances of straight line, ciraled ‘8’-figure are plotted in
Fig. 4.2. In Figs. 4.2(a), 4.2(b) and 4.2(c), the red linesthe target paths. In Fig. 4.2(a),
the target straight line is followed by the bikebot over 25 nderv, = 2.1 m/s. The
position error is held less thah0.15 m. In Fig. 4.2(b), the target circle with radius= 6
m and centered &0, 12) is tracked by the bikebot in the counter-clockwise diratfiom

the point(6, 12) underv, = 2.1 m/s. A portion of the ‘8’-figure path following process
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Figure 4.2: Bikebot path following results. (a), (b) and K&rizontal position results of
Straight line, circle and ‘8’-figure. (Blue lines are the &éltot horizontal position, Red lines
are the target paths.) (d), (e) and (f) Roll angle trackirsyits of Straight line, circle and
‘8’-figure. (Blue lines are the measured bikebot roll angle Red lines are the target,.
trajectories.)

is also plotted in Fig. 4.2(c). The target path includes twoles with a 6-m radius and
centered a0, 12) and(12, 12), respectively. Under, = 2.1 m/s, the bikebot starts near the
circle-connection point6, 12), and follows the entire left circle in the counter-clockevis
direction and then the entire right circle in the clockwiseection. The blue line is the
actual position trajectory. The roll anglg,. tracking results in these three processes are
also included in Fig. 4.2. From straight line to ‘8’-figurbettarget path becomes complex,
and the position error also increases.

In Figs. 4.2(d), 4.2(e), and 4.2(f), the roll angle trajeids are displayed along the path
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arc-lengthS(t) rather than time. For the straight line, thAecoordinate of the position is
used to represent the arc-length. For the circle and ‘8 rigilne angular positiofy is used

to represent the arc-length. Andlgis calculated from the vector direction from centers
of the circles to the current position. Thus, for the circdétp an entire circle corresponds
to 0, € [0, 360] deg, the ‘8'-figured, € [0, 720] deg, with the second circk, € [360, 720]
deg. From Fig. 4.2, the actual roll anglg (blue line) can track the desired,. (red line)
closely. ¢, of the circle following is shown in Fig. 4.2(e). The most deabing case for
roll angle following is for the ‘8’-figure trajectory, whicban be considered as following
two circles sequentially from two opposite directions. Aswn in Fig. 4.2(f), after passing
the connection points, 12) (i.e., 6, = 360 deg),y,. experiences a dramatic change from a
negative to positive value.

Fig. 4.2 only demonstrates some examples out of all expetsnender different riding
conditions. Statistical analysis is required in order teesd the performance differences
among conditions. As previously mentioned, 15 experimaataditions (5 different paths
and 3 different velocities) were conducted. Under each itimmg 4 completed trails (simi-
lar as Fig. 4.2) are gathered. In every single process, thieage of absolute position error
le,|ave @Nd balancing errde, |, are calculated. For every riding condition, the mean val-
ues and standard derivations|ef|... and|e,|... are calculated and shown in Table 4.1.
‘S, ‘'C6’, ‘C4’, ‘E6’ and ‘E4’ represent the straight linejrcle with 6m radius, circle with
4m radius, ‘8’-figure with 6m radius and ‘8’-figure with 4m iad, respectively. ‘L, ‘M’

and ‘H’ means the low, middle and high bikebot veloaity respectively.

Table 4.1: The mean and standard deviationegf,..(m) and |e,|...(deg) for the path
following performances.

Path

|6p|ave(|-)

|6Ol|ave(|-)

|6p|ave(M)

|606|ave(M)

|6p|ave(H)

|6Ol|ave(H)

S

0.13£0.03

0.28+£0.02

0.11£0.05

0.22+0.02

0.18+0.04

0.34+0.03

C6

0.28+0.04

0.54+0.03

0.31£0.04

0.38+0.03

0.39£0.05

0.48+0.03

C4

0.35+0.05

0.81+0.02

0.3740.06

0.82+0.05

0.43+0.10

1.09+0.09

E6

0.33+0.10

0.61+0.06

0.38+0.10

0.73+0.08

0.49+0.11

0.84+0.11

E4

0.41+0.13

0.98+0.06

0.56+0.25

1.45+0.14

0.69+0.30

1.75£0.17
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From Table 4.1, under the same velocity, the results of tiagyit line following always
have the smallest position error and tracking errors. Tilodas’ results are better than those
of ‘8'-figures’ trajectories. The results of big radius pa#re better than those of the small
radius paths. When the velocity is increased, both the ipasérrors and the balancing
tracking errors are enlarged. From the controller desigm path-following performance
is highly related to the roll angle tracking results. df cannot converge te,. quickly,
the current position also cannot follow the target path itaristime. Due to the model
uncertainty, actuation errors and other factors, trackivegnear zera,.(t) (Fig. 4.2(d))
is easier than tracking the non-zero target profiles (F&(e)). Compared to the fast and

dramatically changing.(t) profile (Fig. 4.2(f)), the slow varying,.(t) is easier to track.

4.4.2 Trajectory tracking control

We apply the EIC-based controller to track the moving pomtiee horizontal plane for the
bikebot system. The tracking errep is the distance between the bikebot and the target
moving point, asp = (€% + €2)%5, whereex, ey € R are the errors in th&'- andY -
directions, respectively. In the trajectory tracking cohtlesign, both the steer angleand
the velocityv, are considered as control inputs.

To improve the trajectory tracking performance, the reg@bC-based controller is
modified by a velocity vector design method [12]. In this expent, both the regular
EIC-based controller and the enhanced EIC-based contaniéetested for tracking the
same target trajectory. The performances of these two atertiare compared. For this
comparison, the experimental conditions, the targetdtajees and the control parameters
of these two controllers are the same. The only differen¢basthe modified controller
has a new modified vector field in the external subsystem albetr A moving point on a

cosine wave is designed as the target with the time-paraagotn,

t
xq(t) = 2t,yq (t) = —3 cos <%) +9.
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Figure 4.3: Tracking results comparison between the redtli@ controller and modified
EIC controller. (a) Position trajectories. (black dashyebbolid and red solid lines are
the target trajectory, real trajectory under modified El@toal and real trajectory under
regular EIC control.) (b) Position tracking error. (c) Rmsi Tracking errors inX- andY -
directions. (d) Bikebot real velocities under these twotaaters. (e) time suspension rate
in modified EIC control. (f) Roll angle tracking results. (fgr figure is for the modified
EIC control, lower figure is for the original EIC control))

The results are shown in Fig. 4.3. From Fig. 4.3(a), both tif@eced EIC-based con-
troller and the regular one can track the target trajecfbing enhanced controller has better
performance than that under the regular EIC-based coatrdlhe position tracking errors
are plotted in Fig. 4.3(b). After a few seconds from startthg position tracking errors of
the enhanced controller are smaller than those of the negoitdrol. The error element,

is reduced significantly in Fig. 4.3(c). In Fig. 4.3(d), luk=s the EIC controller, the velocity
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vector field also changes the bikebot velocity. At the peaktsmf the target trajectory, the
velocity under enhanced controller is smaller than thahefregular one. In the modified
EIC control, the time coordinate of the target trajectoryuised according to the current
position errors, and the new time coordinatis introduced. The time suspension rates
plotted in Fig. 4.3(e). In Fig. 4.3(f), the roll anglg. tracking results of these two test are

similar under these two controllers.

4.4.3 Gyro-balancer assistive control

In this experiment, the gyro-balancer control is used tcaeoh performance. A straight
line and a circular path are used as the desired paths forkéledi to follow. Figs. 4.4, 4.5
and 4.6 show the straight line tracking experimental resutter both controller§ andC.
The trajectory is designed such that the bikebot is comitiaib track a straight-line with
a constant velocity. Figs. 4.4 and 4.5(a) show the trackimjg@dtories and tracking errors,
respectively. Under both controllers, the bikebot sudcdlgsfollows the straight-line.
However, undel, the bikebot reaches to the desired trajectory in a smogathida and
without overshoot compared to that underThis observation is also clearly reflected by
the controlled inputs shown in Figs. 4.6(a) and 4.6(b). Athusing the gyro-balancer, af-
ter crossing the desired trajectory, the bikebot continoiésrn (around 86 s in Fig. 4.6(b)).
In contrast, the gyro-balancer helps to generate addittongues to assist balancing task
(e.g., around 103 s in Fig. 4.6(a)). This actuation enhaecéns also observed from
the reduced tracking errors in Fig. 4.5(a). The roll anglesas in Fig. 4.5(b) demon-
strate the tracking performance to follow the BEMs and tliere significantly difference
between these two controllers. The circle trajectory tiragkesults are demonstrated in
Figs. 4.7, 4.8 and 4.9. The differences between the two albers are similar to those in
the straight line results. By using the gyro-balancer ainthe balancing angle tracking

performance is enhanced, and the position error is als@eedu
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4.5 Conclusion

A trajectory tracking and balancing control design for astimous bikebot was presented
in this chapter. The control systems were built on the ditr@&IC property of the bike-
bot dynamics. Two controller designs were proposed: ong uwsed velocity and steering
actuation as the control inputs and the other used the gglamber as an additional actu-
ation besides the aforementioned two inputs. Under botlrakers, the position tracking
error and the roll angle tracking error were guaranteed tvege exponentially to regions
near the origin. Moreover, the use of the gyro-balancer Wagva to guarantee a smaller
position tracking error bound than that by only using stegand velocity inputs. Exten-
sive outdoor bikebot experiments were conducted to vaidad demonstrate the control

design performance.
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Chapter 5

Control Analysis for Human Tracking Riding

5.1 Introduction

Human with trained motor skills can fluidly and flexibly indet with machines and these
machines can also provide augmented and enhanced actt@atamilitate human’s motor
skills. Postural balance is a critical human motor skill iamg human daily activities, such
as standing, walking, riding a bicycle, and other humaninrecor human-robot interac-
tions. Understanding and capturing the characteristidsuaian balance control in these
human activities are important to design human assistivieeee and rehabilitation robots.
In this chapter, the rider-bikebot (i.e., bicycle-baseblot) interactions are utilized as an
example to study human balance skills and characteristicgeractions with machines.
As mentioned in Chapter 2, bikebot is an actively controbexycle-based robot that
was developed for studying human balance motor skills [Bi{ebot riding is used as the
example to study human balance motor skills primarily foresal considerations. First,
balancing the unstable platform (e.g., bicycle) requitesdoordinated control of multi-
limb and body movements and thus, this riding activity eexithe human whole-body
movements and dynamics. Multiple actuations such as hurppertbody movement,
steering or speed control are used individually or comipnally for balance task. There-
fore, it provides attractive venues to study how human nigeer and choose multiple actu-
ation options for the balance and path-following tasks.o8d¢ as a single-track vehicle,
a rider must also steer the platform to follow a desired pdtiienmaintaining a balance
without falling. This multi-task feature in bicycle ridingpresents two complementary

and sometimes competing aspects of human motor chargéiceiis human-machine or
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human-robot interactions. Understanding how human deiifstiae trade-off or compro-
mise between the path-following and the platform balanskstas another motivation to
study rider-bikebot interactions. Finally, as a directlaggtion, bicycle riding is also re-
ported as a diagnosis and rehabilitation tool for postusatlities [40, 63].

The existing work on bicycle dynamics and models can be drbeek more than one
hundred years ago [16, 64]. However, understanding the'sidensorimotor mechanism
and its interaction with the unstable platform is only reépdrin recent years [12, 29, 30].
The work in [29] uses a multi-body dynamics approach and gutioutput viewpoint
to understand how the physical parameters affect the hibgcle interactions. In [30],
extensive human experiments are conducted to presentléti®nship between the bicy-
cle riding and the postural balance motor skill enhancemenhhe work in [12] focus on
the sensing, modeling and control of the rider-bicycler@mment interactions. Inspired
by the human stance control [65], the work in [21] proposeseaallback control model for
the rider’s upper-body movement and the steering mechanibalancing the bicycle plat-
form. The human control models in [21,65] capture the huneaisgrimotor characteristics
such as latencies. The stability conditions are presewntetthé rider-bicycle system using
the time-delayed analysis [21].

Capturing and quantifying the human motor skills is an @rajing task due to the com-
plexity and high dimensions of human motion and locomotMachine learning technique
is one approach to capture the human motor skills on the loimeensional skill mani-
folds. For example, in [32], motion planning is conductedtioa learned skill manifolds
without need to build the analytical robotic models. Embatidkill manifolds are also
presented in [33, 34] to represent human hand motion. HawaNef the aforementioned
work mainly discuss the human motor skills without consadien their interactions with
machines or robots. In many applications, the interactimigeen the human and the ma-
chines or robots provide assistance and enhancementditafaenotor skills learning [66]
and therefore, it is critical to capture and characterieséhnteractions.

Many bicycle dynamics and control work mainly consider taéahce task rather than
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focus on the competing trajectory-following task at the esaime. The work presented
in this chapter fills such a knowledge gap through the BEM ephclt is shown that the
rider-bikebot dynamics that can be written as a nearly Eiéhffi1] and is similar as the
autonomous bikebot dynamics discussed in Chapter 4. Thenetsubsystem of the rider-
bicycle dynamics deals with the trajectory tracking andititernal subsystem captures the
rolling motion of the rider upper-body and the bikebot phath. The attractive property of
the EIC structure enables to treat the trajectory-tracking balance performance in two
interconnected subsystems such that we can qualify ea€lctasithe performance under
one modeling and control framework. The BEM is then used w@yae and compare
the contributions of the human upper-body movement andistpactuations for balance
task. Finally, taking advantage of the EIC structure, sesta¢dback controller is proposed
for rider tracking and balancing. The control performarsalso compared with human
control. The new metrics are introduced to define the hundingiand balance motor
skills. The extensive experiments are conducted to ibtstand demonstrate the BEM and
balancing skill metrics. Furthermore, the control resaftauman rider are also compared
with those of autonomous control in Chapter 4. The contidlounf the work lies in the new
BEM concept and the BEM-based metrics for human motor skills applications to the
rider-bikebot interactions. This work also complementl#ened skill manifold approach
by providing an analytical method to quantify the human bedéamotor skills in physical
human-robot interactions.

The rest of the chapter is organized as follows. In Secti@n the BEM analysis is
presented. The analysis of the steering and body movemerattian for the balance task
is presented in Section 5.3. The control stability analgsid balance skill metrics are
discussed in Section 5.4. Experimental results are predentSection 5.5. Finally, the

concluding remarks are summarized in Section 5.6.
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5.2 Dynamics structure and BEM

Based on the same EIC structure mentioned in Fig. 4.1 of @hdptand the rider-bicycle
dynamics (2.13) and (2.12), it is straightforward to seenf®.1) that the rider-bikebot

system is indeed in nearly EIC form, as

Yo 1 7O = uy, (5.1a)
St : G=M'(q) [B(q9)R,' (¥ +uy)—C(q,4) — G(q)+u;] (5.1b)
with u; = 7.
In the rider tracking task, the desired traject@ry (X,(¢), Y4(¢)) in AV is tracked by
the rider-bikebot system. According to the nearly EIC g (5.1), the external dynam-

ICS Yext determine the tracking df. The rider’s control inputs for external systerg,; is

denoted as” = [u], u])|" (i.e., velocity and yaw angle controls) amgd =  (i.e., trunk

T

torque control) with bikebot trajectoryX (¢), Y'(¢)) and rider-bicycle roll angleg(¢). Un-

deru” andu!, dynamics (5.1) become
Sext 1 o = uly = — 0 + Ryu”, (5.2a)
Y : § =M (q) (B(g)u" + 71 - C(q,q) - G(q)) . (5.2b)

The internal (roll angles) equilibria are denotedzasby settingg = g = 0 in (5.2b). The

implicit function F(q, v, v,, u, ) of g is defined as
F(q,¢,v,u,7) = B(q)u+ 1 — C,(q) — G(q) (5.3)

with C,(q) := C,(q,0). The roll angle equilibriay, = q.(«, v,, u, T) are the solutions

of the algebraic equation
F(q,, v, v, u,T) =0. (5.4)

The BEM under rider controf (u”, 7) is then defined as ag-dimensional(X, Y)-

subspace ifR® of X, underu” andr.

E(u", 1) = {(:c,a) ‘qe = qe(¢,vr,uh,7),q = 0} (5.5)
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with z = [rl,,7{,, 75, ]" anda = [¢7, ¢"]". The design follows the similar approach

in [67] and first step is to design a controller fog,, disregarding, for the moment, the

evolution of;,; (5.1b) as

uSt = vl —be, —bié, — bye,, (5.6)

wherer, = [X,(t), Ya(t)]T, errore, (t) = [ex, ey]” = 7¢, —r4, andr™ denotes then-th
derivative ofr,. The constants;, i = 0, 1, 2, are chosen such that the polynomial equation
s3 4+ bys? + by s + by = 0 is Hurwitz. Under such a control, a nominal external vecteldfi

N.x is defined as

e
()
Naw = [X0 7 Db 5.7)
V(1)
(1)
REREDY IV

By (5.6), the input®** is defined as
u™ = Ry (¥ +ug'). (5.8)
Similar to (5.5), the BEME (u®™*, ) is defined as

£, 1) = {(m,a) g, = q.(d, v, u™, ), g = o} . (5.9)

The BEME(u™t, 1) can be viewed as a time-dependent grapRimof Y, that is evolved
with the external nominal vector fiell¥.,; under controlu*** and . The roll anglesg
need to be controlled arour u™*, 7) while trackingZ underu®*. Note thatg, # 0
andqg, # 0 in general and the derivativés andg, are approximated by using directional
derivatives [68] alongN,,; due to their dependency on the external subsystemsignd

namely,

dq,
ot

LNext qe = LNext qe + ? L2 q = LNextENext qe‘

Next 1€
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Combining the inputs:; andu,, in (2.13), (5.1Db) is rewritten as

g=M"(q)[B,(q)u™ - C(q,q) — G(q)], (5.10)
where
uim = U?Zt = v y B’T - 312 !
Ul,pt T ng 1

and B;; is element of B at theith row andjth column. The stabilizing control of;,,

in (5.10) around (u™*, ) is then given by
u™ = B' (C+ G+ Mv™) o™ =L q.— ae, — apey, (5.11)

wheree, = q —q,,e,=q—q. ~ ¢ — Ln,,.q., constants,, anda, are chosen such that
s? 4+ a1s + ag = 0 is Hurwitz.
The final control system design of the rider-bikebot systérth)(combines the above

developmentin (5.8) and (5.11) as

= ul uy = ui}}t, T = u™, (5.12)

Notice that the internal subsystem design has no influen¢leeimput channel, because
only u,, gets involved into the internal subsystem (5.1b). The dogdletween the external
and internal subsystem control design is through the intttdn of the BEME (u™*, 7).

By BEM, the external and internal subsystems can be decd@pleroximately due to the

nearly EIC dual structural properties.

5.3 Balancing by body movement and steering

In this section, the effects of two control actuations, tider upper-body movement and
the bikebot steering actuation on balancing the platfonma,discussed. The analysis is
primarily built on the BEM development in the previous seuti

To quantify the influence of the upper-body movement and therg actuation on
balance task, the rider-bikebot systems is perturbed drtium BEM, and then the sen-

sitivity near the perturbed BEM is computed. Noting that finst element of function
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F(q, 0, vy, u, 7) in (5.3), denoted a8 !, is not a function of-. The total derivative of,
is

dFy, = =—dpy + =——dop, + ——dip + ——duy. (5.13)

©n (0 Uy

Around BEM, changes of rider upper-body roll angtgf) and the bikebot roll angle
(dpyp) are not independent. The relationship betwéep anddy, around€ (u, ) is first
calculated. From the BEM relationship given in (5.3) and ititernal dynamics (2.13),
it is noted that functior¥'(q, 0, v, u, 7) indeed is the right hand side of internal dynam-

ics (2.13) evaluated @t = 0, that is,

M(q)d|, o= F(g, ¢, v, u, 7).

The first equation from above is

d¢ d
(Mn ©b 4 My 906)

A A = F, (5.14)

wherel;; is the element oMM (g) at theith row andjth column. Noting that around BEM,

F; =0(gq = 0), from (5.14), it is obtained that
(My1dpy + Myadpy) )q:o = Fdt = 0,
and thus by integration,
dop _ M
don Mn
Using (5.15), the first two terms in (5.13) reduce to

0F1 M12 8F1>
— + dop, = Ny, dop, 5.16
( Oy My~ Opp ’ oh on ( )

(5.15)

A‘Ph

where),, is the sensitivity factor of the upper-body roll anglg. It is straightforward to
calculate and obtain
Now = (“ 82 A1+ mahn Sy, ) 00+ (=32 A0 — i 10, ) 9
+ [%m (muhwly S, +mnhsls (Sg, +Seyten)) = mnhinls S%ﬂoh] i (5.17)

+ [ M12 A3 — mhh (hh Copp+on +h C24Pb+24ph>:| ¢27

The arguments of functioR'(q, U, vy, u, 7) are dropped for notation concise. Also, inpiit(as part of
u does not appear ifi' (g, ¥, v, u, T).
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with A, = M, Sep +mphy, Spp+on Ay = My, Cop +mphy, Coopton s andA; = J,, Copp —l—mhhg
Co(ppten) T2mphphg cap, 1o, . FOr the steering actuation (i.e., steering anglethe sensi-

tivity factor can be calculated similarly as

8F1 U2 Ce¢ Ce Sy
Ao = — = —— A+ A 5.18
* 7 9¢ lcg, € 2+ 9l Cyy Co ) ( )

with A4 =Jn S20y, —l—mhhg S20p+2¢s +2mphphg S20p+on -

Although the closed-forms for sensitivity factors, and), are obtained, it is not obvi-
ous to obtain the conclusive comparison of their magnitetsionship directly from (5.17)
and (5.18). Instead, using the typical parameter valudseofitler-bicycle system\,, and
A4 are plotted under variations of kinematic parameters sagfaw rate and bikebot ve-
locity as shown in Fig. 5.1. From Fig. 5.1(a), it is clearlysebved that near the zero,
magnitude of\,, becomes larger than that with other rider upper-body rajles: More-
over, at higher bikebot yaw rate, the magnitude gf is larger as well. These results imply
that it is more effective to turn upper-body at the up-stnagpsition and with fast turning
of bikebot. For steering actuation effect, it is clearly whan (5.18) that the value of,
highly depends on the bikebot velocity (e.g., proportional ta?). The influence of the
yaw rate on\, is minimal. It is also clearly shown that it is much more effee to use
steering actuation at small steering angles (i.e., higbigeity).
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Figure 5.1: (a) Sensitivity facto,, with varying yaw rate). (b) Sensitivity facton\, with
varying bikebot velocity,.

Comparing the results in Figs. 5.1(a) and 5.1(b), it is edg&ng to note that for the same
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amount of change of steering angleand upper-body roll anglg;, the value of\, is about
five times of that of\,, . This comparison result implies that the torque generayeaiie
unit of steering angle is more than five times than that by avieofithe upper-body leaning
angle. This observation partially explains the pertudraéxperiments reported in [20] that
the rider primarily uses the steering actuation than theylmodvement to compensate for

the disturbance for keeping balance of the bikebot platform

5.4 Riding balance performance metrics

5.4.1 Stability analysis for EIC design
From (5.10), the closed-loop dynamics oy, is obtained as
M (q)d+C,y(q,9) + G (q) = B, (q)u™ (5.19)

Meanwhile, from the BEM (5.9) and (5.4), the equilibrium piaj, relationship is obtained

as
ext
Uy

B.(q.) - Cy(q.) — G(g.) = 0. (5.20)

Te

Combining the first equation in (5.19) and (5.20), the retathip between andu‘;b1t is

int ___ ext

wy = u +pl, (5.21)
with the difference term
P, = p(a0,4,4,q9.) = (B7'(q.)[Cylq.) — G(q.)]),
— (B;'(q) [M(q)q + Cy(q,q) + G(q)]), -

In the above equation, notatidm); denotes théth element of vectoz. Substitutingu‘&]t
andu,. into the external control (5.6), (5.8) and external dynan(fcla), the error dynamics
for ey IS given by

Py
0

e?) + by, + b1é, + e, = Ry, =:p,. (5.22)
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Similarly, from (5.11), the closed-loop error dynamics Iy is obtained as
éq + Cl,léq + 2€q = pq’ (523)

wherep, = q,— L%, g.+a1(q.— Ln..q.)- Similarto thatin [11], itis assumed that vector
p, andp, are affine with errors, namely, there exist positive cortstan> 0, = 1, - - - , 6,

such that
[Ppll2 < 1+ callerl|z + csllezllz, [[pyll2 < s+ csllerl]z + csllezl]2-

The error vectore, ande, are defined ag, = ey, éx, éx, ey, éy, éy]! ande, =

ew, €, en, €n)T. For error dynamics (5.22) and (5.23), the matridgsand A, are

0 1 0
0 1
A, =10 0 1].A= . (5.24)
—ap —ao
—by —bi —bs

For given positive definite symmetric matrio®s and@,,, it is straightforward to solve the
following Lyapunov equations to obtain positive definitersyetric matriced\f,, € R**3

andM , € R**? such that
M,A,+AM,=-Q, M,A,+ Al M, =-Q,.
The Lyapunov functiorV’ is chosen as
V =el Me, + el Me,,

with M, = diag(M,, M,) and M, = diag(M ,, M ,). With error dynamics, the time

derivative ofV is
V=—-elQe —elQ.e,+2 (el M1D; + e M,D5),

whereD; = (0,0, (p,)1,0,0,(p,)2]" and D, = [0, (p,)1,0, (p,)2]". Let the spectrum
radii for matricesM ,, M, Q,,, andQ,, be,, oy, 5, andj,, respectively. The inequality

of V is obtained as

. 2 2
V< -m ||el||2 — T2 ||62||2 + 2a,01 ||el||2 + 2a4¢4 ||e2||2 )
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with n, = 38, — 2a,c0 — a3 — ages andny = B, — 20,06 — ayc3 — aycs. Then, for any

given positived;, d, > 0, V is bounded as
. a202 04202
V<—(m- 22 ||€1||§— mny — —2 ||€2||§+d1+d2-
dy ds

For a givenc > 0, Qy(c), Qv (c) = {(e1,e2) : V(e1,es) < ¢}, is a bounded closed set.

The set?* is also introduced as
0 = {(er.e2) : (m —alel/y) eally + (2 — a2c/ds) lleall} = o + da .
Therefore, if there exists the positive constattsand d, such that); > ozf,c%/dl, Ny >
azcy/ds, the errorgey, e;) will converge into the bounded s, (b), with
b= arg,.osup {k = V(ey, e2), (e1,e2) € Q"}.

In other words, ag — oo, V = el (t)M e, (t) + el (t) Myes(t) < b

5.4.2 Riding performance metrics

Based on the aforementioned stability analysis, the nsetiie introduced for evaluating
the subjects riding skill. The first metric is given by the BEMom the analysis in the BEM
section, the BEM indeed captures the relationship betweemider trunk roll angle and
the bikebot roll angle. It captures both the cases when tleg tries to track any particular
path or freely balances the platform. Since its calculatioes not needt, the first balance

metric BM, is defined as the first componentbfq, 0, vy, u, T) under controk:, namely,
BM, = Fy(q, ¥, v,, u, T). (5.25)

Metric BM,; does not take the consideration of the path-following pentnce. Con-
sidering both the trajectory-tracking and balance tasksel on the above stability analysis

results and define the second balancing-tracking perfazenaretricB M, is designed as
BM, = E, (e)) + E,(e;) = el Me; + el Mse,. (5.26)

Clearly, BM; uses the both the path-following and the balance performarrors to quan-
tify the riding motor skills. FromBM,, BMy, = el M e, and BM,, = el M e, are

introduced for the position errors and balancing erroispeetively.
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5.5 Experiments

In this section, under human rider control, several targghgare followed by the rider-
bicycle system. According to the collected rider-bicyglstem states, the proposed rider
controller outputs are calculated and compared with ther adtual operations.

Five subjects (all males with age26.4 + 2.2, heights1.75 + 0.06 m, and weights
65.2 + 9.6 kg) were recruited for the experiments. All of the particifawere chosen
from students at Rutgers University and were reported tankse good health condition.
All subjects were reported by themselves to have at leasyéaes’ bicycle riding history
and were considered as experienced riders. The five tartfet pad following velocities
were chosen as the same as those of the path following exgaisnn Section 4.4. The
paths were marked on the ground. These five subjects weresteglto follow the trajec-
tories under the three different velocities as in ChapteBdfore collecting the data, the
riders were allowed to exercise and be familiar with the bikeand target path. For each
experiments condition, one subject repeated three tingtalhdata were recorded.

For each trail, based on the states of the dynamics and thetoperation of the riders,
the BEM (5. (%), ¢re(t)) is calculated. The position errey(¢) and the balancing tracking
error (e,, (1), e,, (t)) are also obtained. Combining with the rider operationg), 7,(t)),
the rider EIC-based control lawj* () andui™ (t) are estimated. The balancing metrics can
also be calculated for the riding performance evaluation.

Unlike autonomous controls, under the same experimentaditon, different rider
has different performance. To observe the averages andsating errors mean values and
standard derivation of all trails are calculated. The ermfrseveral paths are shown in
Fig. 5.2. Similar to Fig. 4.2, the arc-length coordinate sgd to plot the Fig. 5.2. The
position errors:p(t) and balancing errors,, (¢) are plotted. Fig. 5.3 further illustrates the
path-following performances on the horizontal plane.

Fig. 5.4 shows an example of one trail result for an ‘8’-figtnagectory (with 6-m

radius) riding experiment. The balancing equilibrium pgdiacking result is plotted in
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Figure 5.2: Position errors and balancing errors (meanstamdlard derivations) for rider
performance: (a) Straight line, middle speed; flb= 6 m circle, middle speed; (¢ = 6
m '8’-figure, middle speed.

Fig. 5.4(a), and the control outputs are shown in Fig. 5.4@)r effective comparison,
we here use the steering angle as the output of the EIC-basecbiter, rather thami}}t
in (5.11). The controller output steering angle is denogetl. and also plotted in Fig. 5.4(b).
¢. is compared to the actual steering angleFrom this figurep(t) follows closely with
é.(t). The leaning torque output™ is also near the actual measurementFrom these
observations, the actual control by the riders can be cersidas to regulate the balanc-
ing states near the equilibrium point. Finally, the balagametricsBM; and BM,; are
calculated and plotted in Figs. 5.4(c) and 5.4(d), respelsti

Furthermore, the path-following results under rider coldire also compared with the
autonomous path-following results in Chapter 4. An exangpihown in Fig. 5.5. From
Fig. 5.5(a), the path-following performances are similader the autonomous control and
human riding experiments. The rider performance is shgbéitter than that under the au-
tonomous controller. Fig. 5.5(b) shows the balancing statnd the steering angles. From

the figure, the autonomous control has the smootherofile, which results a smoother
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Figure 5.3: Horizontal positions (means and standard atons) for rider performance:(a)
Circle, middle speed; (b = 6m '8-figure, middle speed; (ck = 4m '8-figure, middle
speed.

roll motion than those under the human control. This hasemites on the position control
performance. The high frequency and large amplitude stgeyperation can adjust the
balancing and position errors quickly.

Fig. 5.6 shows performances metrics of both autonomousaoand rider control.
The balancing metri¢BM;| under autonomous control and rider control are plotted in
Figs. 5.6(a) and 5.6(d), respectively. In these figures, sesthe normalizedB M| to
represent the balance metf{i8 M/ |. |BM| is obtained by usingB M, | divided bym;h;,
for autonomous control, and divided by,h, + my,(hs + hy) for rider control. Under the
same condition, the mean value|@&f)/;| under bikebot control is smaller than that under
the rider control. Under a given velocity3 M| for the straight line has the smallest mean
values, and théB /]| values for the circular trajectories are smaller than tHfoség'-

figure trajectories. ThEB M| values under larger radius trajectories are smaller thaseth
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Figure 5.4: Balancing Metrics (means and standard deonslifor rider performance: (a)
Balancing stateg, andyy; (b) Control outputs steering angteand leaning torque,; (c)
BM;; (d) BM,. (For (a) and (b), Blue solid lines are real measurements,Red dash
lines are calculation results based on EIC-based contraitste. For (d), Blue, green and
red lines areB M, BMsy, and B M, respectively.)
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Figure 5.5: Path following comparison of bikebot and humiderr (an example of ‘8-
figure path): (a) horizontal position, (b) steering anglend rolling anglep,,.
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Figure 5.6: Means and standard derivations of performanegica: (a,d)BM;, (b,e)
BMs, and (c,f)BM,,. ((a-c): bikebot autonomous riding, (d-f): human rideiimg blue:
straight line; red: 6 m radius circle; green: 4 m radius eirglurple: 6 m radius '8’-figure;
black: 4 m radius '8’-figure.)

with small radius. Under autonomous control, for a givegeapath, the metric value is
large when the moving velocity is large. However, undermricientrol, the mean values
of | BM;| are slightly smaller in the conditions of middle speed, tinaight line, and the
circular trajectory with 6-m radius than other experiméontanditions.

The balancing-tracking metrids/, are calculated under the same parameters for each
case.B Mo, is for the position errors (Fig. 5.6(b) and 5.6(e)), @i/, is for the balancing

errors (Fig. 5.6(c) and 5.6(f)). Similar {&1/;|, the mean values a8/, are increased
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when the speed is increased or the path radius is reduced.pfiBhomenon is observed
in both autonomous control and rider control conditions.démrider control, theB /5,
values are smaller than those under autonomous controlridéreposition control results
are better than those of autonomous control, especiallthiof8’-figure paths with high
speed. The changing trend Bf\,, under various conditions is similar as thati®f/,;.

In these calculations, the metrics’ standard derivatidiioan rider are much larger than

those of autonomous control.

5.6 Conclusion

This chapter presented the BEM concept to capture the hurmlamde motor skills in

interactions with machines and robots. The bikebot platfaias used as a paradigm to il-
lustrate the balance skill and the BEM calculation. The BE&&Wwuilt on the rider-bicycle

dynamics that satisfied the nearly EIC structure. Using tia donvertible property of the

EIC system, a feedback linearization controller was desigand its stability was proven.
Two BEM-based performance metrics were also proposed aditascapture the balance
and path-following skills. The experiments of path-foliogyunder rider control were con-
ducted. The rider control operations were compared withptioposed EIC-based rider
controller, and the riding performances were evaluateddiyguseveral metrics. Further-
more, the riders control results were compared with theraartwus control results those

were presented in Chapter 4.
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Chapter 6

Control Analysis for Human Balancing Riding

6.1 Introduction

Human balance capability is crucial for many motor skills;ts as standing, walking and
running, etc. Human physiological delays in sensorimatedback increases complexity
in analyzing human balancing system. Although many adwwahese been withessed in
recent years towards understanding human balancing taskss stick balancing [69, 70],
quiet stance [28, 71, 72], balancing board [73], etc., fewdists have been reported in
human-machine interactions where human full-body movesngiay an important role in
balancing the entire systems. In this chapter, we take amggbesof rider-bicycle systems
to present stability and control analysis of these humathéaloop systems.

Recent clinical studies report that some Parkinsons desgatsents who cannot main-
tain a stance balance and walking balance are able to frielelyicycles [39, 74]. Bicycle
is also considered to be used as a potential postural batahasilitation device [38, 40].
Intrinsically unstable bicycles offer a unique platformstnidy fundamental principles of
coupled physical human-machine interactions. Althouglydde dynamics and stability
have been studied for a long time (e.g., [16, 75-77]), fewlistiand experiments are re-
ported to quantify the human balance mechanisms and pefar@78]. The goal of this
work is to present the stability and control analysis andeexpents of the rider-bicycle
system under human steering and upper-body balance motemen

Riders balance control mechanism is a combination of péargplecision and manip-

ulation. Neuro-balance control models are reported irditere for human quiet stance. For
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example, the model in [28, 79] describes a human feedbackanéan of upper-body up-
right stance with the identified proprioception, vestilbaad visual sensory contributions.
The model captures the human sensory responses to envinbasshort-, medium- and
long latency phasic mechanisms due to proprioceptionjbtdat and visual sensory, re-
spectively. Using this neuro-control model, balance aargtability analysis is conducted
for riding stationary bicycles [1, 31]. Built on the work i8(Q], a rider steering model
is presented in [81] for bicycle balancing and path-follogvtasks. Comparing with the
human structural model [80, 81], the neuro-balance modE8n79] has attractive com-
plementary features for studying rider-bicycle interat. The model in [28, 79] captures
the human neuro-musculoskeletal characteristics sucph@erdody movements and time
delays, which are important for bicycle riding. This modkscacaptures various human
sensorimotor properties and has been further validatedigfr various stance balance ex-
periments. A similar modeling structure and a simplifiedtoc@inrmechanism are proposed
in [72] for analyzing a balancing board problem. Althouglabifative discussions about
balance mechanism are presented in [82, 83], no detailethtijative stability results of
the rider-bicycle system are reported and demonstrated.

The work presented in this chapter complements and extdredaliove-mentioned
human-bicycle balance control analysis and experimenesd&elop new models for the
rider steering and upper-body movement control stratedilsing these models, we then
analyze stability and performance of the rider-bicycletays The rider-bicycle dynamic
model in this chapter is built on and extended by the work df.[8A PD feedback con-
trol law is proposed to describe the riders steering mesharor balance tasks. Such a
neuro-musculoskeletal model is inspired by the work of stdmalance strategy in [28, 73].
For validating and understanding these control modelgnsite riding experiments are
designed using the newly developed bikebot platform. Thkeblmt is an instrumented bi-
cycle that was designed and built primarily to help underdtdne human balance motor

skills and study physical human-robot interactions [20].
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With the above-mentioned models, the closed-loop dynaofitise rider-bicycle sys-
tems is captured by nonlinear differential equations watlr time delays. We take advan-
tages of the recent advances in analysis tools for the tiefeydlynamical systems [85—-89]
and apply to the linearized dynamics around the equilibiuoints. The quasi-polynomial
mapping-based root finder (QPMR) [90] is used to compute it most roots of the
closed-loop characteristic equation. The stability rssate compared and validated with
the experiments.

Besides normal riding condition, we also conduct riderebiit riding experiments un-
der three types of disturbances. The external torque tatwe is first introduced by the
bikebot’s gyro-balancer, the second type of the disturbas¢he visual feedback block-
ing and distortion, and the last type of the disturbance esstieering actuation time de-
lay. One of the motivations to introduce these disturbamtesperiments is to excite the
rider-bicycle interactions such that the human balancérobmodel can be identified and
estimated. The other goals include sensitivity analyste®@imodel parameters of the iden-
tified human sensorimotor balance models. We present thiststa analysis and use the
bicycle balance metric developed in [22] and the previowsptdr to quantify the human
motor skills and performance.

The main contribution of the work are twofold. First, the nesnsorimotor models for
human steering and upper-body movements extend and compiehe existing methods
to capture human balance and control strategies. Theserhtong&rol models are validated
through experiments and provide enabling tools to analyreamn-in-the-loop dynamic
systems and their performance. Second, the stability aisabf the rider-bicycle system
is new and can be directly used for designing the bicyclethashabilitation devices. The
perturbed human riding experiments provide a methodologyniderstand and estimate
the sensitivity of the model parameters on human balandempeance. The approaches
can also be potentially extended to other types of physigaldn-machine or human-robot
interactions.

The rest of the chapter is organized as follows. In Secti@) the human balance
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control strategy is discussed and stability analysis is edsluded. Section 6.3 describes
the experiments and the methods. Experimental resultsrasemted in Section 6.4 and
discussions of the results are included in Section 6.5. W#aidilly, the control model

and stability in the special stationary condition is disagin Section 6.6. Finally, we

summarize the concluding remarks in Section 6.7.

6.2 Human balance control models and stability analysis

In this section, we first present mathematical models fohtiaan steering and the upper-
body movement control. These control models are used t@®sept the rider balance
behaviors. We then analyze the stability of the rider-dieyaystem using these control

models.

6.2.1 Human balance control models

In [1], a human balance model is presented to capture thesergor mechanisms to
ride a stationary bicycle. The model was adopted and extefiden human stance model
in [28]. Fig. 6.1 illustrates the block diagram of the humatamce control model in [1].
The model captures the body intrinsic stiffness, short-dioma- and long-term phasic
mechanisms due to proprioception, vestibular and visuasa@y, respectively. For ex-
ample, the intrinsic stiffness mechanism provides a pitogaal torque (i.e., stiffness co-
efficient K;,,) to the (relative) roll angley,. The short-latency phasic mechanism (with
coefficientB,; and delayr,;) captures the upper-body tilting velocity,. The short-latency
phasic mechanism is based on the proprioception sensatipdek. The medium-latency
phasic mechanism (with time delay, and coefficientB,) generates a torque that is pro-
portional to the upper-body angular velocity,. Finally, the long-latency sensory inte-
gration mechanism generates the torque through a neunabpianal-integral-derivative

(PID) controller with long latency;;.
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Figure 6.1: A rider’s upper-body balance control model [1].

Following the above model for stationary bicycle riding,[Gliet stance [28], and un-
stable board standing [73], we propose the following modetlie upper-body movement

balance torque,(t)

Th(t) = known(t) + knios(t — 1) + kno@u(t — 72) + knzon(t — 71) + kpapn(t — 12), (6.1)

wherek;;, i = 0,---,4, are the control gains and, » > 0 are time-delay constants.
The control model (6.1) is considered as a similar but sifeplistructure as the model
shown in Fig. 6.1. The first term represents the passive éopgoportional top,(¢) with
intrinsic stiffnessk,,. The rest four terms in model (6.1) contain the time-delayhef
bikebot roll anglep, and the upper-body lean anglg and their derivatives. These terms
are considered as an alternative and simplified represemtatt the short-, medium- and
long-term phasic mechanisms due to proprioception, vastiland visual sensory shown
in Fig. 6.1. For example, the PD control structure with gdipsandk;; for position and
ke andky, for velocity are used to capture the resultant effects offiments B, B,,, and
the PID-gain in the model described in Fig. 6.1. The moddl)(6ses only two time delays

71 andr, rather than three in [1, 28] to simplify the analysis. The eld6.1) is validated
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by the experimental results in Section 6.3.

For human steering control, we propose a similar PD straeatuwdel with two time

delays as follows.

o(t) = % [km%(t — 73) + kpapp(t — Ta) + kpson(t — 73) + kpapn(t — 7'4)]7 (6.2)

wherer; andr, are the time delays constants dngd: = 0, - - - , 4, are the constant control
gains. Given the double inverted-pendulum model, the hueoatrolled steering angle is
related to both the bikebot and the upper-body roll angles.tire upright equilibria, that
iS, wpe(t) = wne(t) = 0, each termin (6.2) is indeed the errers— . Or @, — @re and
their derivatives with the time delays. Similar to the mof@el), the PD feedback structure
is used. In [75], the steering angle is also reported to beeteddas the PD structure of
the bicycle roll angle and the angular rate for stabilitylgsia. Similar to (6.1) and for
simplicity, the time delays in the bikebot and upper-body aogles terms are the same
and also the same time delay for the roll angular velocities.

In the rider-bicycle dynamics, one dominating term is thatdfigal torque that is
proportional tov,7). Given the steering model, the centrifugal torque is propoal to
v? and therefore, the steering model in (6.2) contains thefact? to compensate for it
by the rolling torque. Moreover, we also observe in expenta¢hat with faster moving
speedv,, the steering control is less aggressive and significantlisdnatches with the
mathematical relationship in (6.2). We will also show th@emental validation of the

model (6.2) in Section 6.3.

Remark 6.1. Comparing with the model in [81] with five model parameterddoth plat-
form balancing and path-following tasks, the proposed neof&1) and (6.2) provide ad-
ditional important features. For example, the proposed et®dxplicitly capture the upper-
body leaning motion, which is important for the platformdmating task. The models also
explicitly consider the sensorimotor time delays. Theteri®e of time delays in human
sensorimotor are observed and considered in various batgnsystems [28, 69—73] and

we shall consider these delays in bicycle riding task. Tlderricontrol models enable
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the stability analysis of the closed-loop systems. Finally also conduct the sensitivity
study of the model parameters under various sensory fe&dtiaturbances. These are
complementary to the results in [81]. Finally, the rider ¢ard models are validated by
multiple-subject experiments and the results confirm thedrriding performance and

the models.

Remark 6.2. We focus on the platform balancing task in this paper and itherrcontrol
models are proposed by this consideration. Although theynat extensively validated by
path-following experiments, the rider control models iisthaper might be possibly mod-
ified for path-following task [78]. Indeed, we have preséngenonlinear control design
(i.e., EIC-based control) for an autonomous bicycle forrptdllowing task [22]. The rider
control outputs (i.e., steering angle) are similar to theCEbased controller outputs. Ex-
tensive validation of the rider control models for pathlid@ling performance is out of the

scope of this study.

Remark 6.3. The steering control model (6.2) takes the steering anglier than steer-
ing torque, as its output for several reasons. First, dueh® geometry parameters and
mass distributions, the combination of the bicycle rollmgtion and the forward motion
generates the steering torque with self-stability propér7]. However in practical rider
control scenarios, this torque is not large comparing witle steering friction and rider
control torque. The steering dynamics from the rider stagtorque input to the steering
angle output has the fast responses. For a conventionatlacyhe steering torque due
to self-stability has negligible influence for the rider ¢ah The rider can easily control
the steering close to the desired motion. Second, the empetal results in Section 6.4 of
this chapter and [21] confirm that the steering angle proffiesvell with the output of the
proposed steering control model. Indeed, besides our wather reported control design
and experiments such as those in [21, 42] also neglect theistedynamics and use the
steering angle (rather than the steering torque) as the iripwbtain satisfactory results.
Finally, inclusion of the steering dynamics would incredéise complexity of the closed-

loop stability analysis and might even prevent from obtagrthe stability and parameter
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sensitivity results, which is one of the main goals of thiskwo

6.2.2 Rider-bicycle system stability

Since the rider-bicycle dynamic model is nonlinear and theé&n balance models (6.1)
and (6.2) contain time-delay terms, the stability analysisonducted by the linearized
dynamics with time delays. The equilibria of the systemestaire zeros and the linearized
dynamics approximately capture the nonlinear stabiligperties [1, 31].

After plugging (6.1) and (6.2) into the rider-bikebot proadidynamics (2.13), the lin-

earized dynamic models around the equilibria are

4
q+Toq(t —74) + Z [Biq(t —7;) + Kiq(t — ;)] + Kog = 0, (6.3)
i1

where gain matrixl’, € R**? is introduced by the derivative terms in the steering model,
B, K, c R**?2 i =0,---,4, are the damping and stiffness matrices, respectively. Ve d

not list the detailed lengthy formulation for these matsice

Definingz = [¢”, ¢"]" € R**!, the closed-loop system dynamics (6.3) becomes

4
&+ Dyd(t — 1) + Aoz + Y Aim(t —7;) =0, (6.4)
=1
where
D2 _ 02 02 ’ AO _ 02 _I2 ’ AZ. _ 02 02
0, T% Kl o, K BY
fori = 1,---,4, andI, and0, are then x n identity and zero matrices, respectively.

Taking the Laplace transformation, the characteristi@équn of (6.4) is obtained as

4
det | (I, + Dae ™) s+ Ag+ > Aje ™| =0, (6.5)

=1
where the time delays are introduced in the exponentialderRor presentation conve-
nience, we denote the right most root of (6.5)\gsand we use\, to determine the time-
delayed system stability. If the value of the real parigfs negative, that iske()g) < 0,
the closed-loop system is stable. A system with smaller peal valuesRe()\,) is con-

sidered to be more robustly stable. A quasi-polynomial nrappased root finder [91] is
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used to compute the stability region given by (6.5). We wibauseRe()\,) to illustrate

the stability property in later sections.

6.3 Experiments

In this section, we present the experimental setup, desmmipnd performance evaluation.
The experiments in this study serve for several purposes.eXperiments are used to test
and validate the rider-bikebot dynamic models and the hupatamce control models dis-
cussed in the previous two sections. Moreover, we condyeraxents to understand and
reveal how the parameters of the human steering and upplgrdmmtrol models change
under various riding conditions. Finally, we use the expernts to quantify and evaluate

the human riding performance and the stability results.

6.3.1 Riding experiments design

Five subjects were recruited for the experiments. In alstebhe subjects were required
to ride the bikebot only for keeping balance on an open pgrkeid without considering
the bikebot trajectory. Therefore, path-following was aotong the riding objectives. The
bikebot was controlled at a constant speed (ranging frar2.3 m/s and speed variation is
less thar).2 m/s in each test).

The riding experiments were conducted by three groupviatig three types of dis-
turbances. The first group was the normal riding with peddnlling torques. The rolling
torque disturbance was introduced by the gyro-balancee slibjects were informed the
possible rolling disturbance but they did not know when tistudbance was applied. The
generated disturbance was an impulse torque by sudderdyirgvof the spinning fly-
wheel. In the second group of experiments, the riders weneally perturbed as well as
the external torque disturbances by the gyro-balancerememte the visual disturbances,
two types of eye glasses were wore by the riders separatgly6R2(b) shows these two

types of eye glasses. The viewed images of the first pair sbgka(called Glasses ) were
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partially blocked by translucent tapes. The subjects casee the environment objects
completely and the sensing images were blocked partialig iflhages of the second pair
of glasses (called Glasses Il) were distorted by a set ofriatenirrors. The visual hori-
zontal references were also distorted by Glasses Il. Whesithjects wore Glasses I, they
felt dizzy with the distorted images and it took a few hourgéd used to it but still with
misjudgement sometimes. It is generally considered thas€gis Il generate much more
visual and perception distortion and disturbance thandah&asses I.

The third set of experiments were conducted with time-ddiaturbances in steering
actuation. In these tests, the handlebar and the front wWresek were mechanically dis-
connected. The rider rotated the handlebar and the acaeirsg angle was controlled by
the steering motor to track the human input angle with a desigime delay, as shown in
Fig. 6.2(a). The goal of this set of experiments is to unaagthow the steering distur-
bance and delay affect the riding performance and stablllig time-delay was set initially
from 80 ms and incremental delay in each experiment was 50 ms uatdubjects cannot
maintain balancing properly. These time-delay values itkeasame range of the human
neuro-controller delays reported in [28].

We label five subjects as A to E. Each subject was asked torédeikebot according to
the above-mentioned three groups of experiments. Befdiregridata was collected, each
subject was asked to ride the bikebot for about 15 to 30 ménldeder each experimental
condition, the subject was asked to repeat the tests twaee times and all experimental
data were recorded and processed. All subjects completditshgroup of normal riding
experiments and the second group of visual disturbancesiexgnts with wearing Glasses
|. However, subject E cannot ride the bikebot while wearirgsSes II. For the third group
of riding experiments, subject A can ride and keep balantenatdelay<30, 130, 180, and
230 ms, subjects B and C finished successfully with 130, and180 ms, and subjects D

and E can only ride successfully&t and130 ms.
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(b)

Figure 6.2: (a) Handlebar and front wheel steering angle@srand front wheel steering
actuator. (b) Visual blocking glasses and mirror glasses.

6.3.2 Riding Performance Metrics

We use the value oRe()) of (6.5) as an indicator to quantify the system stability. To
guantify the riding balance skills, we use the BEM concept thas introduced previously
as a performance metric. The basic idea of the BEM is to catleihe balanced bicycle
and rider upper-body roll angles under the human control.

For given rider steering and pedaling inputs, we computadhaired balance torque
by the upper-body motion and these torques due to the bicgtlenotion (due to mass
center position changes). From the first dynamics equaBdiB], if the difference of the
calculated required torque and rider-bicycle rolling teeds zero, the bicycle roll angle,
and the rider upper-body roll angle, will maintain their equilibria. The calculation of
F(q, ¢, ¢) captures the net balancing torque for the rider upper-boolyement under the

equilibrium conditions,

_ 2 1,2 2 /2 12
F (q> u¢) - _mbhb Sey, Coy, ¢ - mhhh Sep+en Copteon w — mphphs Copp+pn ¢

+myphply Cyy ’QD + mphgls Cyy ’QD + mphpls Cop+pe ’l/f + myphy, Cyy 'UHL (6 6)

_'_mhhs Cey /U7‘¢ + mhhh Cop+eon Ur¢ - mbghb Sep, _mhghs Sy
—mpghy, Sopt+en ~Ugs

glt Ce

with Uy = (mblb + mhls) 7

tan ¢ c,, .
The smaller value ofF'(q, ¢, ¢)|, the closer of the roll angles to their equilibria. Con-

sidering the metrid”(q, ¢, ¢) over a time intervalt,, t,], we use the following balance
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metric (BM) index by averaging over the time duration

pu =t [ G, o0, 60t 6.7)

Cta—t1 )y,

We computeB M for each subject’'s experiments. A smallgd/ value implies more close

to the balance equilibria and therefore, more graceful &ildius in bikebot riding.

6.4 Results

6.4.1 Model validation results

Fig. 6.3 shows the experimental validation for rider-bieimodel. In the figure, we plot
the comparison values of the gravitational and the othendan both equations. Rather
than comparing the sums of all the terms with zero in thesatamns, we here separately
consider the gravitational related torque and compare thigimthe sums of the rest terms
because the former is relatively large and therefore, it aseneffective to use this com-
parison for model validation. Fig. 6.3(a) shows the congmariof the first equation and
Fig. 6.3(b) for the second equation. The data in these figaresaken from subject A
riding experiment and the human torque datare calculated from the (seat) force sen-
sor measurements [92]. It is clear from these figures thadynamic model captures the
motion and interactions between the rider and the bikebot.

To identify the human steering and upper-body movement tedéel) and (6.2), we
use the collected sensor data in each riding experimentl@ma least square method
was used to fit the data. For the time delay parameters, theytappear as the linear
terms in the model and therefore, it is difficult to use thestesmjuare method to estimate
and obtain their values. We first treat and fix these time delajues in their feasible
ranges. For example, time delay is estimated to be in the range [6f 500] ms and we
then search time delay, at7,; = kAT s, wherek = 0,--- ,50,k € N, andAT is the
sampling period (in the experiments/” = 10 ms). We extend such searching for other

time delays. With a fixed time delay in each search iteratiba,least square method is
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Figure 6.3: Experimental results for rider-bikebot dynesmodels validation. (a) Balanc-
ing torques in the first equation of rider-bikebot dynami@is) Balancing torques in the
second equation of rider-bikebot dynamics.

then used for estimating and obtaining the values of therobgtins. For each set of
estimated time delays and control gains, we compute thedidrrors. Finally, the set of
the parameters that gives the smallest fitting error is ahaseéhe estimates of the control
model parameters.

Fig. 6.4 shows the validation results in one experimenthigstubject A. The model
parameters were obtained by using the data collected im efperimental runs. The rider
operated the bikebot in a straight line like trajectory amel lbikebot roll angle was within
0.1 rad; see Fig. 6.4(a). The model predictions of the stgeaingley and upper-body
movement torque;, follow the sensor measurements in experiments. Thesesezn-
firm the human steering and upper-body movement modelsl&itaithe dynamic model
validation, we also calculated the aggregated relativeretretween the model prediction
and experiments shown in Fig. 6.4. For most of the riding arpents, the relative errors
for the steering angle and upper-body leaning torque aeethes 350 and 10%, respec-
tively, for a 10 s time duration as shown in the figure.

We estimate the model parameters in (6.1) and (6.2) for ealgject. The parameter
values are listed in Table 6.1 for the gains and Table 6. h#otime delays. In the tables, we
include the mean values and standard deviations of eachlipadeneter and time delay.

From the magnitudes of these parameters in the tables, vaendhat for the upper-body
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movement torque (6.1), the values of passive stiffnesswpetex k5, are slightly smaller
than these of active controlléd;. Both ko andky,s are larger than the control gain;.
Model parametek;,, is also smaller thak,,,. Therefore, the rider leaning torque is much
more sensitive for the upper-body attitude than the bikaekittide. The time delay of the
steering control has an overall much larger value than thdteoupper-body movement,
similar to the previously reported results [93] in which fleemer and latter delays are

around 200 and 100 ms, respectively.
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Figure 6.4: Rider steering and upper-body movement modelateon results. (a) Rider
upper-body and bikebot roll angle profiles (top plot) andebiét position trajectory (bottom
plot). (b) Validation results for the rider steering comtrmdel¢ in (6.2) (top plot) and the
upper-body movement torque modglin (6.1) (bottom plot).
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Table 6.1: The mean and standard deviation of the humanrsgesanrd upper-body move-
ment model parameters.

Gains A B C D E
ko | —96.3£6.03| —-97.7+7.50]—-99.5+12.0|—-81.0 £3.82|—80.0 £+ 3.54
kpi | —66.24+£8.37| —71.5 £8.03|—74.6 £9.88| —84.0 = 8.78 | —81.9 £ 5.51
kpa | —823+085|—-7.134+6.03|—-10.3+1.56| —4.2+1.84 | —9.04+0.95
kps | —1394+6.55 | —135+£3.51 | —111 £22.6 | —85.0 £5.66 | —75.7 = 4.96
kpa | —19.6 £0.75]| —-13.0£2.27| 17.7+5.87 |—11.7+240|-16.9+1.31
kyy 110.15+£0.54|10.53£0.51 | 9.134+0.28 | 10.06 =0.15| 10.10 £ 0.64
ko 1.244+0.85 | 1.134+0.06 | 1.62£0.269 | 1.07 £0.028 | 1.61 £ 0.48
ks 0.90+0.20 | 0.83+0.06 | 1.33+0.42 | 0.794+0.23 | 1.30£0.28
kpa 092+0.36 | 1.18£0.13 | 1.01 £0.25 | 1.00£0.28 | 1.18 £0.32
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Figure 6.5: Model parameter and time delay variations ineexpents with five subjects
under different visual conditions. (a) Parameétgr (c) Time delayr;. (c) Time delayr;.

Table 6.2: Identified human upper-body movement and sigenntrol time delays.

Subject | 71 (Ms) 75 (MS) 73 (MS) 74 (MS)
A 163 4+ 6 53 + 12 200 £ 15 160 £+ 11
B 147+ 12 47+ 12 190 £+ 18 150 £ 13
C 1404+ 0 454+ 7 190 + 17 140 + 17
D 145+ 7 4040 170 + 16 120 +£ 12
E 1354+ 14 454+ 7 130 £ 10 100 =6

6.4.2 Control models parameters analysis

The visual disturbances affect the human riding motor bieinsavOut of all control model

gains listed in Table 6.1, bikebot roll angle gain has the most significant variation under

visual disturbance. Fig. 6.5(a) shows the value changk,otinder normal riding and

riding with wearing Glasses | and Il respectively for five gdbs. It is clearly shown in
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Figure 6.6: Control model parameters and human steerirgdtays under varying steer-
ing actuation delay,. (a) Human steering control gaky,. (b) Total steering delay,s.
(c) Total steering delay,,. (d) Human upper-body control gakj;. () Human steering
control delayrs. (f) Human steering control delay.

these plots that after blocking the visual feedback, theegbf gaink;; increase about 0.5-

2 consistently for each subject. Moreover, when the subjeeiar Glasses Il that distort

the visual feedback information, the valueskgf increase further about additional 0.5-2

for four out of five subjects. (The fifth subject E cannot ritkddy.) Figs. 6.5(b) and 6.5(c)

further show the values of time delaysandr; under visual disturbances.
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We ran theF'-test (with null hypothesis rejection probability)5) of &, variation under
visual disturbances to determine whether the visual camditchanging is the main cause
for the parameters variations. The results confirm that theaV conditions significantly
influence subjects A, B and C, while the effect was not clealigerved for subject D
(subject E failed to ride when wearing Glasses II). We do mat tatistically significant
changes of other control gains or time delays under vissalidhances.

For the last group of experiments with delayed steeringadict, we denote the steer-
ing actuation time delay as,.. With human control delays; and 7, in (6.2), the total

steering time delays are defined as

Ts3 = T3+ Tsy Tea = T4+ Ts.

Under varyingr, (i.e., 7,3 and r;), we have observed the changing values of steering
control gaink,; and leaning control gaiky,, and time delays; andr,. These observations
are illustrated in Fig. 6.6. We patrticularly illustrate siegparameters because their changes
are the most significant.

Fig. 6.6(a) shows a seemingly decreasing trend of the huteanirsg control gairk;,;
with increasingr,. This could imply that the riders enforce the dominatingestey gain
slightly by noticing the total time delays. However, thicoeEasing trend is not statistically
significant. We have obtained that only subject B shows thrifsitant decrease and all
other subjects do not. The absolute values of the humanatayam £, in Fig. 6.6(c)
instead show an increasing trend with Comparing with the values in normal riding
case, the values df;,;| at 7, = 230 ms increase about 20 percent. It seems that with
an increased, the riders tried to use their upper-body movement aggrelsysio keep
balancing the platform.

It is interesting to observe the decreasing trends of timaydes and 7, shown in
Figs. 6.6(b) and 6.6(c), respectively. We verified this sy hypothesis by conducting
an F'-test. For example, fors, the F'-test results for subjects A and B are positive. But

the results for subjects C, D and E are negative. This reslikely due to the fact that
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subjects D and E cannot even ride the bikebot once- 130 ms. Similarly, forr,, the
F-test results show that subjects A, B, and C are significaim@uD and E. A large value
of 7, implies an increased difficulty of riding bikebot. Only sabj A can ride on the
bikebot atr, = 230 ms. Subjects B and C can still ride the bikebot up.te= 180 ms and

D and E atr, = 130 ms. Although all subjects have different handling captbdi it is
interesting to note in Figs. 6.6(e) and 6.6(f) that the maxmotal time delays,; andr,,

of all subjects are about the same, that is, arotiitdms and400 ms, respectively. These
limits are probably the hard capability of the longest stegdelay for experienced human
riders. Itis also interesting to note that during thencreasing process, the values of delay
T3 are consistently larger than thosempfaround 20 ms.

To analyze the trend across all subjects, Fig. 6.7 shows danmalues and standard
deviations of the above-mentioned parameters under \@ryiand visual conditions. We
used the analysis of variance method to compute the meanarahee values for each
variable in the figure. We clearly see a decreasing trenddmnsg,, , k1, and time delays
73 andr, with increasingr, as shown in the top three plots in Fig. 6.7. Under increasing
severity of the visual conditions, the values of gajnalso increase as shown in the bottom
plot in Fig. 6.7. We conduct af'-test for the above-mentioned tendency hypotheses and
statistically only gairk,; and delayr, show significantly changes under visual disturbance
and increasings,, respectively.

We calculate the balance metri¢)M under different riding conditions and Fig. 6.8
shows the mean and standard deviation values. Fig. 6.8@yssBM calculations for
all subjects with increasing,. The values ofBM clearly increase with,. The BM
values are aroun2l) Nm for most riders (except subject E) at normal riding caoditi.e.,

7, = 0. Whenr, = 230 ms, theBM values increase to aroud-60 Nm. Similarly, the
BM values also reach to aroud-50 Nm when the subject wears Glasses Il as shown
in Fig. 6.8(b). The deteriorated balance performance,ishatcreased3 M values, under
varying riding conditions (either large delay or severaugisdistortion) match the riding

difficulty reported by the subjects.
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Figure 6.8: Balance metriBM (mean and standard deviation) for five subjects under (a)
varying steering actuation delayand (b) visual conditions.

6.4.3 Stability results

From experiment observations, time delaysandr,, are critical to system stability. We
here choose gains; andk;,, of the human steering control model (6.2) as an example to
illustrate the stability analysis. Fig. 6.9 shows the dighiegion in thek,,-k;, plane under
delay 7,3 = 200,300 and350 ms. The stability region is defined @& ()\¢) < 0 for the
roots of (6.5) under changing model parameters, in this,dgs@ndk;,. The values of

all other model parameters and delays are listed in Tablear@ 6.2. From Note that by

Fig. 6.6(e), the range af,; € [200,350] ms corresponds to steering detaye [0, 230]
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ms. Besides the plotted regions (as solid red lines) by usiagnean values of all model
parameters and delays, we also include the stability regising the sets of the model
parameters one standard deviation smaller (green dof) larek larger (blue dash lines)
than the mean values.

Fig. 6.9(a) shows the stability region whep = 200 ms, that is, zero delay, =
0, while Figs. 6.9(b) and 6.9(c) for,s = 300 ms andr,; = 350 ms, respectively. By
comparing these figures, we clearly observe that: (1) witiheasingr,, the size of the
stability region reduces as shown frogn= 0 (i.e., 7,3 = 200 ms) in Fig. 6.9(a) to, = 230
ms (i.e.,7,3 = 350 ms) in Fig. 6.9(c). This is reasonable since it is more diffifor a
rider to balance a bikebot with a long steering delay thanlidn a short delay; (2) It is
interesting to see the identifidd,,, k;,) locations for each individual subject are relative
to the boundaries of the stability regions in the figure: vinitreasing delays, the subjects’
balance performance became deteriorated and in the case-02230 ms in Fig. 6.9(c),
all subjects performed closely around the stability reddoandary. This is not surprised
since as shown in Fig. 6.6(e)z = 350 ms (3 = 230 ms) is the maximum total (actuation)
delay that all subjects can handle without loss of balantkdniding experiments.

Similar to Fig. 6.9 to show the stable regions under diffevatues of the control gains,
Fig. 6.10 illustrates the stable region in the — 7,4 plane along with all the subject time
delays. The plots are split into three groups according éarttroduced three,; ranges
between 160 and 400 ms. The figures give an estimation of tigeesaof the time delays
T3 andry, for system stability and also the observed subjects timeydeM/e also see that
for almost all experiments, the subject time delays aretémtwithin but close to the stable
region boundaries.

The values ofRe(\) with varying 7,3 and 7,4 are shown in Fig. 6.11(a). From this
figure, the values oRRe()\) are much more sensitive with; (73) rather thanr, (74).
Variable Re()\g) has the minimum value at aroungs = 330 ms. The stability region is
plotted in Fig. 6.11(d) and from the figure, the maximal vadfie; for a stable closed-

loop system is abowt75-380 ms. This result is consistent with the experiment obsevwati
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shown in Fig. 6.6(d). In the experiments, no subject canroband balance the bikebot
whent,; > 400 ms and the maximum total delay; for all subjects is about50 ms.

To clearly see the dependency of control gainon delayr,s, Fig. 6.11(b) shows the
Re()\p) values as varying,; andr,; and Fig. 6.11(e) illustrates the stability region in the
ky1-7s3 plane. The stability region clearly confirms that the valfié;p is reduced when
delay 7,3 increases. Figs. 6.11(c) and 6.11(f) show & )\y) and the stability regions
under varying, andr, with zero delayr,. For the pailr;, 7») by which the system is stable
as shown in Fig. 6.11(f), the values B&()\y) have no significant change. This implies that
system stability is not sensitive f¢ry, 7») in these ranges. The values Bé()\,) and the
stability regions of varying gaink,; and k;, are demonstrated in Figs. 6.12(a)-6.12(b)
respectively forr,s = 200 and350 ms. The stability regions are highly influenced tyy
andr,,. With large time delays, the control gaif), is bounded and the absolute values of

ky1 from the experiments in Fig. 6.6(d) show an increasing anahtded trend as well.

6.5 Discussions

The human upper-body movement model (6.1) includes onlhdépendency on bikebot
and upper-body roll angles and their derivatives. Somerattiliencing factors are ne-
glected in this model. For instance, different from the gsiance, the moving bikebot
is a non-inertial frame and thus, the Coriolis and centafuagcelerations have influences
on the applied balance torques. At low moving velocitiesy yamgle) does not change
dramatically and the term#? can be neglected. We also neglect the possible influence of
the steering action on the upper-body movement torgue the model.

We compare the human model parameters in bikebot riding thélstationary riding
experiments in [31] and the stance experiments in [28]. tFire observed time delays
are not the same values as these in [28, 31]. In [28, 31], ttmee delays, i.e., short-,
medium- and long-latency processes, are introduced in thgdehwith the mean values

around21, 131 and 288 ms, respectively. The short- and medium-latency procemsses
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Figure 6.9: Stable region in the,-k;; plane at different steering actuation delays. (a)
Te3 = 200 ms. (b)7s3 = 300 ms. (c)7,3 = 350 ms. Red solid curve indicates the
stable region calculated by the mean values of the contraleinparameters, green dot
and blue dash curves indicate the stable regions calcutgtélde one standard deviation
below and above the mean values of all model parametereatsggly. The different area
generated by lower and upper boundary are the bright grg@m.eThe pointin grey region
belongs to one of the areas generated by mean, lower and lippedaries. Individual dot
represents each subject experiment test, “0",“ x”, “ o” and “o” marks indicate subjects
A to E, respectively. Blue and red marks indicate the stabteumstable parameters point
respectively.

based on the angular velocity feedback, while the longataterocess combines the PID
feedbacks. In the model given by (6.1), only two time delaysnd , are used. The
feedback signals with, can be considered as the combination of the short- and medium
latency and the derivative part of the long-latency proc@dse estimated value af, is
around 40 ms, which is between the short- and medium-latiemeydelays values in [28].

The estimated value of, as the long-latency proportional part, is abdéd@ ms, which is
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Figure 6.10: Stable region in the,-7,3 plane at different steering actuation delays. (a)
Ts3 € [160,240) ms. (b)1,3 € [240,320) ms. (C)7s3 € [320,400] ms. Grey area indicates
the stable region calculated by the mean values of the domwdel parameters. (All
experiments trails are divided into 3 sets correspondiegeh; intervals. In every group,
the average value of the upper-body time delays and all thieaaains generate the grey
areas.) In the figures, individual dot represents each sugj@eriment test.X”, “ 0",“ x”

o” and “o” marks indicate subjects A to E, respectively. Blue and reatk®s indicate the
stable and unstable parameters point respectively.

smaller than that of long-latency ting88 ms in [28]. The estimated value of the upper-
body passive stiffnesls,, (see Table 6.1) in the bikebot riding experiments is larant
that of K;,, = 73.5 Nm/rad in [28], where the proportional control gdigy is close to the
value of K;;, = 149 Nm/rad in [28]. The value of the upper-body angular velociytrol
gaink;, is smaller than that oB,; + B, = 45.6 Nm/rad in the stance model.

From Table 6.1, the value of gakp, for bikebot roll anglep, is much larger than that
of gain k3 for the upper-body roll angle,. The angular velocity gaink,, andk,, are
within a similar range. Considering the magnitudesygf ©;, and their derivatives, the
dominating term of (6.2) is the first one, that is;¢,. This implies that the roll angle
©p plays a more important role for balancing the platform thgrdoes. From Table 6.2,
the values of time delays; (angular feedback) and (angular velocity feedback) in the

human steering control are about (arouitdand 100 ms) larger respectively than those
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of 71 andr, in the human upper-body movement model. A possible explamaf these
differences is that the human sensorimotor mechanism éeriglg actuation has a slower
response than that of the upper-body movement. This is mah$®since the upper-body

movement is directly controlled by the neuromuscular sydiee., controlled torques) and
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the steering actuation is through the limb movements @antrolled angles) with possible

longer time delays.
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Figure 6.12:Re()\) values under varying,, andk;,. with (a) 7,3 = 200 ms andrs, = 160
ms and (b)r,; = 350 ms andr,, = 310 ms.

To observe the influence of steering delays-pandr,, Fig. 6.13 illustrates the stability
regions in ther;-m» plane under four different pairs @fs, 7.4): (200, 160), (250, 210),
(300,260), and (350, 310) ms, respectively. We choose these pairqd«f, 7.4) values
because the adjacent pairs are 50-ms incremental eacheoithéne starting pair is around
7, = 0. From the figure, the stability region is enlarged for th@éavalues of 7,3, 7).
The maximum value of; has increased almost arous@ms for each incremental pair of
(Ts3, Ts4) but the maximum values of do not change significantly under varyitgs, 7s4)-
The identified values for; and; listed in Table 6.2 all fall into the stability regions and
indeed these values do not change much when the steering delgas introduced in
experiments. This could imply that the human riders preferse and adopt faster steering
actions, rather than upper-body movement, to respond the dielays produced by the
actuator. This observation is consistent with the sentsitanalysis reported in [22].

Comparing with other sensing modality, the visual feedbiaaknportant for bikebot
balance control. The visual sensing is critical for the rieobtain the bikebot roll angle
©p estimation. Proprioception sensing is used by the rideeteal the body joints angles
and then to estimate the upper-body roll angle The vestibular feedback allows subjects

to obtain the absolute roll movements. It is possible thaéohuman sensing capabilities
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(e.g., force) can also provide indirect attitude or poseresgton [92]. However, these per-
ceptions sensory feedbacks cannot be used to completdhceeine visual feedback. As
shown in Fig. 6.5, one subject cannot ride the bikebot afeemning Glasses Il. This ob-
servation confirms that visual feedback plays a critica rolbikebot riding. On the other
hand, all five subjects can balance the bikebot even withgligirvisual blocking or distor-
tion and four of them can ride with wearing Glasses Il. Thiplies that other perceptions
capabilities aforementioned can partially substitutevisaal feedback to achieve balance
motor skills. Meanwhile, as an evidence, the value of uggoely movement control gain
ky increases when the visual feedback information is paytiafit (by Glasses I) and then
further grows when wearing Glasses Il. The trend of the swed upper-body movement
control gain complements the visual feedback loss. Thisnda to the experiments ob-
servation reported in [28].

The work in this study has several limitations. First, weyordcruited experienced
bicycle riders as the subjects and it is not clear whetheptksented results can be ex-
tended and applied to other types of bicycle riders. Sectmalresults do not include

detailed stability analysis of the influence of bikebot w#tpv,. Finally, this paper does
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not consider and discuss how to tune and adapt the human skilterthrough the physi-
cal rider-bikebot interactions. Indeed, all these limaas are among the ongoing research

directions and we will report the new developments in fupublications.

6.6 Balancing stability under zero speed

For the stationary balancing, the upper-body leaning t®rgontrol modelr;, is same

as (6.1) in the moving case. Modified from (6.2), the steenuglel is considered as
B(t) = kprop(t — 73) + kopu(t — 71) + Kpson(t — 73) + Kpadn(t — 7a). (6.8)

Plugging (6.1) and (6.8) into the rider-bicycle balanceatyits, we have the linearized

closed-loop dynamic models around the equilibria as

4
G+ [Big(t—m)+K;q(t—7)+Kjq=0. (6.9)

=1
B! K; K| € R?? i =1,--- 4, are the damping and stiffness matrices, respectively.

Introducingz = [¢”, ¢"]7, (6.9) becomes

4
T+ Ajx+ Y Ajm(t—7) =0, (6.10)
=1
where
Ar - 02T -1, A 02T 02T
(K5)™ 0y (K7)" (B7)

fori = 1,---,4. Taking the Laplace transformation, the characteristicagiqn of (6.10)

is obtained as
4
det <I4s +AG+HY A;fe—ﬂ8> =0. (6.11)
i=1

The QPMR tool is also used to compute the stability regione @bntrol gains and time
delays of the control models (6.8) and (6.1) are estimatddisted in the following:k;,, =
—228.6 N/rad, k;,; = —2482.1 N/rad, k2 = —305.5 Ns/rad,k;,3 = —2253.5 N/rad, k4, =
—108.7 Ns/rad,ky; = —523.0, ko = —81.5 S, ky3 = —202.6, kpy = —24.4 s,77 = 60 ms,

o = 10 ms, 73 = 180 ms, andry, = 90 ms.
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We here briefly analyze the system stability around thesanpeter values. First, under
zero time delays; = 0,7 = 1,--- , 4, the closed-loop system is controllable under (6.8)
and (6.1) with these gains values listed above. By using tARMR method, the stable
regions for time delays parameters are calculated. We alspuateRe()\,) under varying
model parameters. Moreover, under the given control gaidstiane delays, the closed-
loop system is stable at the upright position. Comparingpwie moving bicycle experi-
ments, the control gain values are much larger and the tidagslare smaller. This could
be explained by several factors. Without yaw motion, theibehg torque generated by
steering motion is given only by,. For a given steering angle, the valuewgfis much
smaller than the balancing torque generated by yaw motitimeofinder moving platform.
For the stationary case, the upper-body movement congsbubre for balancing the plat-
form than the steering actuation. Therefore, the controt galues of the steering and
upper-body movement torque models have large values iy case. Moreover, the
system is much more sensitive for the time delays in statjocase than the moving plat-
form because the balance response needs to be faster thandeathe moving platform.

Fig. 6.14 illustrates the control parameters sensitivatydtability and stable regions.
Figs. 6.14(a) and 6.14(b) show the change&ef)\,) values with time delay pairgs, 74)
and(m, 7»), respectively, while Figs. 6.14(e) and 6.14(f) illustréte stable regions over
time delays in models (6.8) and (6.1), respectively. Cle#hnese figures show th&te(\)
values change dramatically near the stable boundariesrsimoiigs. 6.14(e) and 6.14(f).
This implies that the system stability is sensitive with tinee delays near the boundaries.
Comparing with the regions in the moving bicycle case, tablstregions are smaller in
size. For example, the maximum valuemfis less than 10 ms. For the steering control,
under a givernr; the stable interval of, values is small. Figs. 6.14(c) and 6.14(d) show
the Re()\o) values under pairS,;, kiy2) and(kn1, kno), respectively, and their stable regions
are demonstrated in Figs. 6.14(g) and 6.14(h) accordiiNnggr the boundaries, thee(\)
value does not change significantly rapid with these cogiaais as those for time delays

in Figs. 6.14(a) and 6.14(b).
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6.7 Conclusion

This chapter presented the human balance control andistamialysis of the rider-bicycle

systems. We first presented a rider-bikebot dynamic modspitled by the experimental

observation and the postural stance balance model, we ggdpew PD feedback feedback
models with time delays for the human upper-body movemedtsteering control for

bicycle riding. The riding experiments with visual feedband actuation disturbances
were then conducted. We discussed the stability analydiseofider-bicycle system and
presented the influence of the model parameters, inclubeghysical parameters, control
gains and time delays, on the system stability. The reswdte &lso used to interpret the
human balance capability and to compare with stance balandebalancing stationary
bicycles that were reported previously. Additionally, tieer-bikebot system balancing

stability in stationary case was also discussed.
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Chapter 7

Balance Performance Tuning of Rider-Bikebot
Interactions

7.1 Introduction

Human balance control plays a central role not only in humatonskills, such as stand-
ing or walking, but also in other human-machine or humarstabteractions. In recent
years, bicycle was used as a diagnosis and treatment todiriar applications [63]. This
motivates us to use the bicycle-based platform as a toolystuman-machine interac-
tions. Human motor skill tuning or adaptation is anotheriwadton for studying physical
rider-bikebot interactions [66].

Rider motor skills analysis and bicycle self-balance aairdre two important tasks for
designing balance tuning of rider-bikebot interactiongyBle dynamic models are exten-
sively studied (e.qg., [16]), and the rider-bicycle dynammodels and balance analysis are
also reported in [12, 29, 30]. Several researchers focus@muantitative modeling and
analysis of riding motor skills. In [21], the rider balancentrol is modeled as the time
delayed PD feedback for steering and upper-body leaningpmothe work in Chapter 6
extends these control models with sensory and actuatidarpation to analyze the in-
fluence of the models parameters on systems stability. Thikswo [22] and Chapter 5
propose a rider path-following control strategy using th& Etructure of the rider-bicycle
dynamics [11]. From the EIC structure and BEM concepts, Hiaring-tracking metrics
are designed for the riding performances evaluation. Hub&ravioral models are also
developed for both balance riding and path following bets/|80, 81].

Tuning rider motor skills or controlling rider-bikebot araction is a different process
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comparing with the above-mentioned works. The actuatioeh sis steering and pedal-
ing are not controlled by only human rider or onboard comphig by their interactions.
Few researches are reported about the interaction tunsh@daptation. Balance tuning
of rider-bikebot interactions is also challenging for saveeasons. First, the range of bal-
anceable bicycle roll angle is limited and precise consakquired for the unstable plat-
form [57], particularly under low velocity or stationaryq{B Second, the torque control of
the unstable rider-bikebot interactions is challenging tlutheir highly dynamic interac-
tions and complex human multi-sensory, multiple time delagsorimotor feedback [94].
Additional complication comes from adaptation of human enatontrol under external
interference [95].

We present a balance performance tuning of rider-bikehetactions. Unlike a typical
bicycle, the bikebot front wheel is not rigidly connectedhtmdlebar and is controlled by an
onboard computer. Based on the rider handlebar steeriagrntboard computer regulates
the actual steering angle to achieve desired rider-bikefetaction dynamics. To reach
the design goal, we first convert the rider-bikebot dynamadet [21] into a new strict
feedback form. In this form, the rider steering and uppeahbleaning balancing effects
become clear. A steering reshaping algorithm is designedhfanging the control gains,
stiffness and damping ratio coefficients. The rider-bikedystem is guaranteed to be bal-
anced autonomously even without knowing rider steeringrmftion. Extensive human
subject experiments are conducted under only human sgeeding (as the benchmark),
the interaction tuning riding and autonomous steeringrobnRider control models and
stability analysis techniques in [21, 22] are used to ilaist the motor skills changing and
performance comparison. The main contribution of the wiak iih the design and demon-
stration of the steering balance control of the rider-bdtahteractions. The outcome of
this work enables the use of the bikebot control to changetiaiad human motor skills
through the human-robot interactions.

The remainder of the chapter is organized as follows. Se@tid presents the dynamic
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model of rider-bikebot interactions. We discuss and aretiiez control design and evalua-
tion of the rider-bikebot interactions in Section 7.3. Evipeental results are presented in

Section 7.4. Concluding summary is presented in Section 7.5

7.2 Rider-bikebot interactions model

As shown in Chapter 2. Defining = [, ¢1|T, we obtain the rider-bikebot dynamics by

the Lagrangian equations
M(q)g+C(q.q) + G(q) = u, (7.1)

whereu = [0, 7,]7, 7, is the rider leaning torque. We write the motion equatiod)(ito

a different form. We introduce two state variables

qr = Op + 7y (SOh) y Pr = mu(sﬁh)sbb + m12(90h>9bh> (7-2)

where termsm;; (@) and mio(py) are given asmyi(¢n) = mph? + my(h? + hi +
2hshp cp,) + Jp + Jn andmae(pn) = mpu(hi + hshycy,, ), respectively. State variable
g is the combination of the cyclic coordinatg and the shape coordinate, while p, is
the weighted angular momentum. In (7.2), variable,,) is given as

Ph mio (S)

o mu(s)

V(o) ds. (7.3)

Using the state variables, under the control inputs andu,, the dynamic model (7.1) is

rewritten as

Gr = m1_21(90h>pr7 (74a)
Pr = k1) + kpoth? + kgth + kyg, (7.4Db)

()bh = Uq, (74C)
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where the terms in (7.4b) are given as

k’d = —mbhblb CSOb —mhhsls CSOb —mhhhlh C@b'ﬁ‘@h’

gli ce
v

kfﬂl = _(mbhb Coy +mph Cop +mphy, C¢b+s0h)v7" + (mblb Cop +mpls C@b)
_ 2 2

kp2 = muhy Sy, Co, TMRNG Spyt0, Copton TMRNSIR Cogy v,

k’g = mphy, S +myp b S +mphy, Sep+on -

The relationship between the control inputsandw in (7.1) is obtained as
u, = e; M~ (q) [u—C(q,q) — G(q)]

with €y = [0, 1]T
The bikebot yaw rate and yaw acceleration are approximatdtulated as [22]

C U Ce

. urtangce i
e R
Lcg

(4

(7.5)

lcy,
It is clear from (7.5) that the yaw rate and acceleration aecty related to the steering
angleg and angular ratg, and those are considered as the inputs to (7.4). The ricémoto
is considered as balancing a two-link acrobot system. Thé&adinputs are not only the
upper link (body) swing motion but also the steering motidhe introduction of the new
stateqq,, p,) puts the system into a strict feedback form (7.4). It becootesr to see the
direct influences by different control inputs, and the diglkanalysis is also conveniently
obtained by this form. Based on the strict feedback form st dynamics ofq., p,) is
not directly influenced by the upper-body swing angular e#jo,,,, angular acceleration

¢y, and the leaning torqus,.

7.3 Control of rider-bikebot interactions

7.3.1 Controller design

We consider the control design of the rider-bikebot inteoas given by (7.4). The rider
steering angle and actually controlled steering angle enetd as,,(t) and¢(t), respec-

tively. For givengy,(t), the control goal is to desigm(t) to tune the interaction model from
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on(t) to (g, pr). From (7.4b), the desired interaction model is
Br = Ky n + KggtOjy + K§on + ki, + kg g, (7.6)

where virtual yaw angle),, angular ratej;, and acceleration, are calculated by (7.5)

with ¢;. In order to obtain the samg profile in (7.4b) and (7.6), the controlled yaw rate

¥ (t) must satisfy the following differential equation

vk o ko [ k2, ke .. ko keg® — ]{;gg
C - p ps 2 P bz 2 vd Vs - g ] 7.7
¢+—kd¢+—kd¢ —kd¢h+—kd¢h+kd¢h+kdp +7kd (7.7)

The above calculation is denoted as contrdfler

It is possible to show that the solution of (7.7) would geteera bounded steering
angleo(t) for a given bounded human rider roll anglg(t). In (7.7), the termk?p, adds
damping-like effect to the interaction. The tekf) can be considered as the control gain
of the rider steering input. Control gak§ is concerned with the steering veloci;iiy{(t).
Termkgg® acts similarly to the gravitational effect on balancing phetform.

Wheny,(t) andyp,(t) are near zerap,(t) is also small, and parametérs, k7, andky
share the same functional forms/as, k,» andk,;. ControllerC in (7.7) is linearized and
has the relationship in Laplace domain as
kspr + k39" — kg

kpy + ks

k(l* _|_ kCL*
Qy(s) = 21 °

= ) (7.8)
kpy + ks

wh(s) +

whereQ,(s) = L£() andQy, (s) = L(¢) are the Laplace transformations fnd ¢y,
respectively. The superscript “*” is used in (7.8) to inde#he linearized constants. It
is clear from (7.8) that the steering outpiiit) is a combination of the filtered, (¢), roll
angle and roll angular velocity.

In Chapter 6, the human rider steering control is modeledRB #éeedback structure
with time delays. The tuning controller (7.8) shares theilainPD structure. Therefore,
the interaction tuning can be viewed similarly to the humanrn-steering mechanism.
Indeed, this observation is confirmed by the experimensallte presented in Section 7.4.

We now consider a special case when control gajps= k., = kj = 0. In this case,

the acutual steering angle is not a function of the riderstgénput. The goal of the tuning
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design is to maintain balancing under any feasihlé). We denote this control design as
autonomous steering,.
ControllerC, can be considered as a special case by setting §gins;, andk; to zero

in (7.7). Therefore, we obtain

Y0 G =miy (On)prs Br = KDy + ky(qr, 1) 9%, (7.9)

where we choose constarit$ < 0, g* < 0, andk§(q, n) = ky(q-, pn). Defining state
variablex = [q.,p,|”, we introduce the following property. Given (7.9) with thieoze

parameterse,., = 0 € R? is an exponentially stable equilibrium for the system
550 Gr =mip (0)pr, pr = kipr + K (gr, 0)g". (7.10)

Note that:{ in (7.10) is obtained fronX* in (7.9) under zero disturbange,(t) = 0. The

right-hand function ok} in (7.10) is continuously differentiable and its Jacobiaatmmx is

-1
- 0 my; (0)
9g°k (gr,0) j.a ’
oqr s qr=0

which is bounded and Lipschitz far. € (—7/2,7/2). Therefore, the origin is an expo-
nentially stable equilibrium of the linearized systém= Ax. By the linearization stability
theorem [58], nonlinear systelRf has the exponentially stable equilibriugg, = 0.

From the above property and converse Lyapunov functionrémepwe obtain the fol-
lowing input-state stability relationship: fat?, there exist a disturbance boufd;, (t)||

and an initial bound|z(0)|| ., to guarantee that? € L., namely,

[2(@)lleo <% llon()lloo + Bo (7.11)

for non-negative constantg > 0 andj, > 0.

From the definition ofy(y;,) andg, in (7.3) and (7.2), the bounded (¢) andg,(t) result
in a boundedy,(t). The above analysis implies that if the rider roll angjgt) is bounded
and relatively small, the rider-bikebot interactions carstabilized by autonomous steering
C.. Note that controlle€, has an attractive property with few parameters and doesaaat n

the measurement of rider upper-body leaning torque.
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7.3.2 Performance metrics and evaluation

Tuning interaction model affects the rider behavior, beilag performance and systems
stability, and we ought to analyze these effects.
The rider steeringy, (¢) and upper-body,(t) control models in Chapter 6 are intro-

duced as
Th(t) = k’hog@h(t) + k‘hltpb(t — 7'1) + k‘hggbb(t — 7'2) + k’hgg@h(t — 7'1) + kh4gbh(t — 7’2) (712)
and

On(t) = i[k?bﬂﬂb(t —73) + Kooy (t — Ta) + kson(t — 73) + kpapn(t — 74)],  (7.13)

v}
where constantsy;, : = 0,--- .4, andk,;, j = 1,--- ,4, are the control gainsr; > 0,
1=1,---,4, are the constant time delays of human sensorimotor sy$tentonvenience

of stability analysis, we assume that the actual steeripgtin(¢) shares the same structure

asoy(t) but with additional delay; > 0, namely,

on(t) = Uig[/fﬂ%(t—ﬁ —Ts) + oy (t — 74— Ts) + k3 on(t — 73 — ) + keapn (t — 74 — 7))

(7.14)
where control gaing;;, [ = 1, --- , 4, are constants. Note that under human control, gains
ky = ky;, l,j = 1,---,4 and difference between(t) and ¢,(t) is the additional time
delay, of the steering mechanism. As shown in Chapter 6, with comuoulels¢(¢) and
7,(t), the real part of right most roots of the closed-loop chaméstic equation, denoted as
Re()), is used as an index for the system stability. To quantifyblence performance,
the average absolute balancing torque, denotég|'ads introduced as a metric index [22].
The second metri3}! is the average gravity torque in the riding time interival,], that

is,

1 t2
B / ey (2, on) gldt. (7.15)

ot —t1 )y,
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7.4 Experimental results

7.4.1 Experiment setup

The bikebot system is shown in Fig. 2.1(a). The bikebot roljla ¢, and upper-body
leaningy,, are measured by the onboard IMU and a rolling arm, respéygtiVee bicycle
velocityv,, front wheel steering and handlebar steering are measured by the encoders.
An onboard computer is connected to sensors and actuatsbensy. The system details
are included in Chapter 2. The linkage between the bikebudleadar and the front steering
frame can be reconfigured and disconnected. The handleeaingjo, (¢) is controlled by
the rider. The front wheel steeringt) is controlled by the onboard computer and driven
by the steering motor.

Three subjects were recruited for the bikebot riding andnmiexperiments. All of
the participants were reported to be in a good health caménd they were considered
as experienced riders (i.e., at least five-year bicyclengdiistory). Three sets of riding
experiments were conducted in this study. The first set okexpEnts was the normal
bikebot (bicycle) riding. The subjects ride the bikebot aggular bicycle and steering
angleo(t) = ¢x(t). In the second and third sets of experiments, the handlehamaot
rigidly connected to the front wheel frame and the steeringl@awas regulated by the
onboard controller€ andC, as described in the previous section.

The subjects were asked to ride the bikebot for only keepaigrize (about 10-12 s)
at an open parking lot. Disturbed torques were generatetidogyro-balancer to perturb
the riding for about two to four times (each time lasts for @b@.5 s with a peak torque
around35 Nm) in each run. The subjects were not informed when the geation torques
were applied so that the collected data can be used to igéméiinatural human responses.
In each set of experiments, the subjects were requestegeaatrthe riding for three times.
Before the formal experiments, each subject was askedadh@lbikebot for 10 to 15 mins
to get familiar with the platform. The subjects were askeddntrol the bikebot at a fixed

velocity aroundv, = 1.8-2.2 m/s.
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7.4.2 Experimental results

The values of the control parameters of three sets of coatsare listed in Table 7.1. The
human riding is considered as the benchmark for the othecontrollers. For controllers
andC,, from several tests, the damping and the stiffness coefteme chosen respectively
ask® = —1.2,¢g% = 0.5g andk? = —2.5,¢* = —0.5g, g = 9.8 m/s? is the gravitational

constant.

Table 7.1: Parameters configuration of interaction model
Parameters k7, /kp1 | kgy/kpa | k§/ka | k& | 9%/g | kg
Human 1.0 1.0 1.0 | 0.0 | 1.0 | &,
C 1.0 1.0 1.0 | -1.2| 0.5 |k,

Ca 0.0 0.0 0.0 | —25| =05 | ky

Fig. 7.1 shows the comparison results of various performander rider normal riding,
controllersC andC, from one subject. For the benchmark results shown in Figdy,.1
the gyro-balancer generates disturbance peak torquesdine instances. Right after
the disturbance torques; andy, profiles show clear reactive responses. Looking into
¢ and T, profiles shown in Fig. 7.1(a), the rider does not seemingbwsthe consistent
responses. For the first disturbance, the rider seems torrespvith a large steering angle
¢ but for the second one, it is not obvious to see a large stgangle profile change. One
reason for such results comes from that for the second dastee, steering anglgis in
a negative value range, which already provides correcéspanse to the disturbance. We
also observe a large leaning torgteprofile at the time of these disturbances.

Under controlleC, Figs. 7.1(b) and 7.1(e) show the experimental performé&ocethe
same subject. Under the same disturbance torques as thosemal riding experiments,
the human responses, both the steering anglend leaning torques,, show different re-
sponses; see Fig. 7.1(b). Rider responses show oscillatirides of¢;, andr;,, while both

the bikebot and human roll angles show more oscillationdsg ignificant (in magnitude)
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Figure 7.1: Comparison of experimental results under tboa¢rollers for one subject. The
first column is under normal riding control, the second ardhiird column plots are under
C and(C,, respectively. In (a)-(c), the top plots are the handlebeering angley; and
actual steering angle. The bottom plots are the human upper-body torgudn (d)-(f),
the top plots are the bikebot roll anglg and rider upper-body roll angle,. The bottom
plots are the applied disturbance toraqye

than these in normal riding; see Fig. 7.1(d). Comparing @jttontrollerC, generates even
more extremely responses as illustrated in Figs. 7.1(cydl(®). For example, both, and
oy, profiles occur fast and small magnitude oscillations; sgeFiL(e). It is not surprising
to notice that steering anglesand¢;, also show the faster oscillations than these udder
It is interesting to observe that undérandC,, the actual steering angle)(profile

shares a similar trend as the rider steering angle profileThis observation can also be
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confirmed by the models in (7.13) and (7.14) and the companiseults of the model
prediction and actual profiles in Figs. 7.1(b) and 7.1(c).e Trput differences of and
C, lie in their magnitudes. One of the main reasons for suchtsesuthat the calculated
steering angle> by controller (7.7) is highly related to the human steerimgut and this
observation is also validated by the approximation give[ifl). Even foiC,, the influence
of human steering control still exists because of the dagpifect feedback term?p,..

To evaluate the control performance, Fig. 7.2(a) shows Hieeg of the mean and
standard derivations of metrié¢g” and B3 for three subjects under various runs. Itis clear
that underC, the mean value oB? is smallest among three controllers. If we consider
metric B, controllerC, demonstrates the smallest value. However, from Figs. }.1(d
7.1(f), underC,, the rolling anglesy,(t) andyy,(t) change fastest, that is, the fast response
needs large torques and results in laiRjé. As listed in Table 7.2, thé'-test results show
that both theB and B3 values unde€ are significantly different from the human riding.
The difference ofB)! underC and(, is statistically significant. These results imply that

the proposed control designs enhance the closed-loopdeagsrformance significantly.

Table 7.2:F-test for the balancing metrics under controllérandC, (Fo.os5(1,4) = 7.71)
Subject A B C
BM underC 10.73 | 14.46 | 25.78
BMunderC, | 3.01 | 031 | 0.01
B} underC | 20.91 | 8.07 | 10.57
B} underC, | 36.45 | 25.57 | 19.97

Using the experimental data, we also identify and estimagesteering and human
upper-body leaning torque models given by (7.12) and (7ah8) controllerC by (7.14).
As demonstrated in Figs. 7.1(a)-7.1(c) for one subjecteahdentified models fit the ex-
perimental data closely and therefore, the PD structurie tivite delays captures the actual

human motor skills. We also look into the changes of the patara values for controllers
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Figure 7.2: Mean values and standard variance across gdcsiwith respect to experi-
ments conditions: (a). Balancing metit\/; and BM,. (b). Control gaing:;; andk,;.

C andC,. For each subject, the model parameters values of the pamiquer,(t), in-
cluding control gains and time delays, do not show significhkiange undef or C,. This
implies that, even with the changing rider-bikebot intéicats, the riders’ leaning balance
mechanism has no significant change. For steering contrgland ¢,(¢), the control
model gains vary as shown in Fig. 7.2(b) with estimated tiglaylr, = 8-10 ms. The val-
ues of the most influential control gaikg andk,; are changed under controll€r With
the increasing rider-bikebot interaction stiffness caedfit, the steering control gar,
grows as well and undét,, it has the largest value. On the other hand, the values of the
human steering control gaig; do not change much between human riding and u@der
Finally, we consider the stability indeRe(\,) changes under different control gains.
Fig. 7.3 shows the values &fe(\o) with gainsk;; andk,,. From this figure, under a typical

derivative control gairk,, € [1.0,3.0], the values ofRe()\,) reduce with the increasing
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Figure 7.3: Values ofRe()\q) with different gainst;; andk, under controllerg’.

value ofk;;. Combining the results in Fig. 7.2(b), if the value of thdfs@ss coefficient
is reduced, say;;, from 10 to 16.5, the values dRe()\y) reduce as well. This implies
enhanced stability performance, and the result is comgistigh the balance performance

in experiments.

7.5 Conclusion

This chapter presented the tuning control of rider-bikebtractions to enhance the bal-
ance performance. The design was built on the strict feédfmam of the rider-bikebot
interactions model. The control of the rider-bikebot iatgfons was designed to tune the
model stiffness and damping effects. We presented two tgpésning control design.
One design used the rider steering information and balgrstates, and second one used
only balancing states. We conducted extensive multi-stlgeperiments to demonstrate
the control performance. Performance comparisons wecepakssented among the hu-
man normal riding and the proposed rider-bikebot intecasicontrollers. It has been
demonstrated that the balance performance and the statfithe controlled rider-bikebot

interactions were significantly improved than that withyomliman control.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This dissertation contains three different works: corggatem design for the autonomous
bikebot system, human riding motor skills and mechanisntyarsafor balancing and path
tracking, and the tuning control of rider-bikebot interans. Additionally, rider-bicycle
systems dynamics and bikebot experimental system arerailkmled.

The balancing control problems for the autonomous bikeystesns were solved. For
the stationary balancing task, a gyro-balancer pivotingtrod law was designed. The
balancing torque generated by the flywheel pivoting moti@s wsed to both balance a
stationary bicycle and drive the system onto periodicalterbrhe desired periodical or-
bits of bicycle rolling motion and flywheel pivoting were aeed via energy shaping and
the introduction of virtual constraints. For this undetuated system, a Lyapunov-based
nonlinear control law was designed to regulate both thelukeolling and flywheel piv-
oting motion onto their desired orbits. For the task of beiag during motion, a steering
balancing control law design was introduced using the faekitinearization. The control
capabilities of these two control laws were analyzed. Qiarsig the closed-loop dynam-
ics with parameters and the actuators’ motion limitati@®As of these two control laws
were estimated. Furthermore, the largest DOAs were alsoa@&std and these DOASs de-
pended on only the motion limitation, but not on the contawl ktructures. Based on these
control capabilities analyses, a switching control sggpt@as proposed for the transition
from stationary balancing to balancing during motion. Expental results demonstrated

the performances of the aforementioned control methods.
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The position tracking tasks were implemented by severattid€ed controllers. An
ElC-based bikebot position trajectory tracking contnoll@s introduced, and a gyro-balancer
auxiliary control law was proposed. The gyro-balancer wsedufor generating the auxil-
iary balancing torque for the equilibrium roll angle trajey tracking. In the control pro-
cess, this gyro-balancer motion could partly replace the ebsteering for balancing. In
the theoretical analysis, for this under-actuated systetputb tracking problem, the gyro-
balancer and steering combination control could reducedtiséion tracking errors. The
path following performance of the regular EIC-based cdriie was tested experimen-
tally. Five types of paths were followed by the bikebot sgst&he moving point tracking
function was implemented by the regular EIC-based contrdithe enhanced EIC-based
control with integrated velocity vector field design. By therformance comparison, the
latter control strategy was determined to have superioitipngstracking result than the
former one. Finally, the gyro-balancer auxiliary contelwas implemented for the path-
following task. Comparing with the typical EIC-based cohtthe performance under the
gyro-balancer assistant was enhanced.

For the rider-bikebot system, rider position tracking aathhcing control were mod-
eled, analyzed and discussed. In the position trackingysisalthe BEM concept was
introduced to capture the rider balance motor skills inraxtgons with the bicycle. The
BEM was built on the rider-bicycle dynamics that satisfiegl tiearly EIC structure. Using
the dual convertible property of the EIC system, a feedbawalization controller was
designed and its stability was proven. Two BEM-based perémce metrics were also
proposed and used to capture the balance and path-foll@kiligy Extensive experiments
were conducted with several riders riding the bikebot ttofeldifferent paths at different
velocities. Based on the collected rider-bikebot systeatest the proposed rider control
structure output was compared with the actual rider opmratiThe recorded rider control
processes also illustrated the proposed BEM concept arelwged to compare the balance
performance between the rider control and the bikebot amaus control.

For the rider balancing control, inspired by other humarabeihg models, a new PD



122

feedback feedback structure with time delays for the ujjoely movement and steering
control models was proposed for depicting the rider batejmonaneuvers. Several kinds
of experiments with riders were conducted. Besides the abriaing conditions, visual
feedback disturbances, external torque disturbance aadrsg operation time delays were
injected into the system to vary the rider motor skills. Thepgmsed control models were
verified by the experiments. Changes to the control parasetaler different disturbances
were observed. A time-delayed linear system stability Wdaton tool was introduced
for the closed-loop stability analysis. According to thgdretical stability analysis and
experimental observations, the influence of the physicalcamtrol models parameters on
stability and balancing performances were presented audisked.

For the final problem of actively tuning the rider-bikebotdractions, the interaction
model was rewritten in strict feedback form. For the stegtarolling motion relationship,
the stiffness and damping effect were analyzed. The coaofrtile rider-bikebot interac-
tions was designed to tune the stiffness and damping effigcteshaping the rider han-
dlebar steering angle. Several rider were asked to rideikeddt under different changed
interaction models. Performance comparisons were alsepted for the human normal
riding and the proposed rider-bikebot interactions cdlgrs. It had been demonstrated
that the balance performance and the stability of the ctetroider-bikebot interactions
were significantly improved than those with only human colntFurthermore, based on
theoretical analysis, under special tuned stiffness antpday effect conditions, the rider-
bicycle system could be balanced autonomously without kdetrol. This property was
also verified experimentally.

The dynamics models of the autonomous bikebot system aedbilebot system play
a central role for the aforementioned analysis and desidnres& dynamics models were
constructed and verified experimentally. For implementtighese mentioned experi-
ments, the bikebot system mechanics, hardware and sofiweageconstructed and modi-

fied throughout the whole research process.
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8.2 Future work

Although the autonomous control system design, the ridigngimechanism analysis and
the interaction dynamics tuning for the rider-bikebot systare discussed systematically
in this dissertation, a lot of open problems still exist ttveand a lot of functions still have
to implement in the future.

Enhancing the autonomous balancing capability of the lwkébthe stationary and
low-velocity regions is still an open problem. Due to theapalancer limited balanc-
ing torque, it is necessary to design the combination cbfgvto use the gyro-balancer
and steering motion for balancing at same time. As a fundéhemrk, the front wheel
and rear wheel contact points motion mechanism under loacitgland different steering
motion have to be modeled precisely. In the tracking task tthcking performance still
has room for improvement. As an non-minimum phase underassd system, the output
tracking laws can be modified and implemented. In the tracgnocess, the gyro-balancer
auxiliary capability can be enlarged by other control lawdso, the dynamics under the
large rolling angle and steering angle condition has to bdetsal precisely for the agile
motion control.

In terms of the human rider control mechanism analysis, ither tracking behavior
and control principle can be analyzed in depth. The uppdsbootion function in the
bicycle/motorcycle riding maneuver can be discussed dfasimely. The balancing control
models also can be modified and extended to depict the ridetffplbowing operation.

For the active interaction control and tuning, the authansoders this dissertation
serves as a cornerstone to further explore more topics. Uirert rider-bikebot inter-
action tuning methods are preliminary. Many control sgags and training methodologies
still remain to be developed or implemented for rider tnagnor assistance. The proposed
method changes the stability and balancing states speamhe¢igency of the interaction
model. With the tuned interaction model, the rider motofiskind control behaviors are

also changed passively. How to tune the rider operatiorctfdy and actively is still an
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open and challenging question.
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