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ABSTRACT OF THE DISSERTATION

Dynamically Compressed Bayesian Hidden Markov Models using Haar Wavelets

by JOHN WIEDENHOEFT

Dissertation Director:

Alexander Schliep

Hidden Markov models (HMM) have enjoyed a rich history of successes over the past decades.
They have been applied to great effect in almost any conceivable segmentation task, from
speech recognition and part-of-speech tagging, over financial time series analysis, to seismology
and beyond. In bioinformatics, they are widely used for tasks such as gene finding, isochore
classification and, most recently, detection of copy-number variation (CNV) in genomic data.
Advances in biotechnology, such as high-resolution DNA microarrays and next-generation genome
sequencing, have created data sets of millions and billions of values, presenting new challenges to
the application of this classic. CNV detection from large genomic data sets is gaining momentum
in research and diagnostics applications. As it often involves limited computational resources
and time constraints, the importance of fast, accurate and low-memory approaches to HMM
inference is obvious.

As statistical models, HMM depend on a large number of parameters, which have to be either
provided a priori by the user or inferred from the data. Classic frequentist maximum likelihood
(ML) techniques like Baum-Welch (BiLMEs 1998; RABINER 1989; RABINER & JUANG 1986) are
not guaranteed to be globally optimal, i. e. they can converge to the wrong parameter values,
which can limit the accuracy of the segmentation. Furthermore, the Viterbi algorithm (VITERBI
1967) only yields a single maximum a posteriori (MAP) segmentation given a parameter estimate

(ForNEY 1973). Failure to consider the full set of possible parameters precludes alternative
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interpretations of the data, and makes it very difficult to derive p-values or confidence intervals.
Furthermore, these frequentist techniques have come under increased scrutiny in the scientific
community.

Bayesian inference techniques for HMMs, in particular Forward-Backward Gibbs sampling
(CHIB 1996; ScotT 2002), provide an alternative for CNV detection as well (GUHA, L1 & NEUBERG
2006; SHAH, XUAN, et al. 2006; SHAH, LawM, et al. 2007). Most importantly, they yield a complete
probability distribution of copy numbers for each observation. As they are sampling-based,
they are computationally expensive, which is problematic especially for high-resolution data.
Though they are guaranteed to converge to the correct values under very mild assumptions,
they tend to do so slowly, which can lead to over-segmentation and mislabeling if the sampler is
stopped prematurely. The difficulties encountered in Bayesian HMM inference are the reason
most research has focused on the ML approach (GHAHRAMANT 2001).

Another issue in practice is the need to specify hyperparameters for the prior distributions.
Despite the theoretical advantage of making the inductive bias more explicit, this can be a major
source of annoyance for the user. It is also hard to justify any choice of hyperparameters when
insufficient domain knowledge is available.

Recent work by MAHMUD & ScHLIEP (2011) has focused on accelerating Forward-Backward
Gibbs sampling through the introduction of compressed HMMs and approximate sampling. For the
first time, Bayesian inference could be performed at running times on par with classic maximum
likelihood approaches. It was based on a greedy spatial clustering heuristic, which yielded a
static compression of the data into blocks, and block-wise sampling. Despite its success, several
important issues remain to be addressed. The blocks are fixed throughout the sampling and
impose a structure that turns out to be too rigid in the presence of variances differing between
CN states. The clustering heuristic relies on empirically derived parameters not supported by a
theoretical analysis, which can lead to suboptimal clustering or overfitting. Also, the method
cannot easily be generalized for multivariate data. Lastly, the implementation was primarily
aimed at comparative analysis between the frequentist and Bayesian approach, as opposed to
overall speed.

To address these issues and make Bayesian CNV inference feasible even on a laptop, we

propose the combination of HMMSs with another popular signal processing technology: Haar
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wavelets have previously been used in CNV detection (BEN-Yaacov & ELDAR 2008), mostly as a
preprocessing tool for statistical downstream applications (WANG & WaNG 2007; Hsu et al. 2005;
NGUvYEN et al. 2007, 2010; Huang et al. 2008) or simply as a visual aid in GUI applications (WANG,
MEZA-ZEPEDA, et al. 2004; AuTio et al. 2003). A combination of smoothing and segmentation
has been suggested as likely to improve results (LaI et al. 2005), and here we show that this is
indeed the case. Wavelets provide a theoretical foundation for a better, dynamic compression
scheme for faster convergence and accelerated Bayesian sampling. We improve simultaneously
upon the typically conflicting goals of accuracy and speed, because the wavelets allow summary
treatment of “easy” CN calls in segments and focus computational effort on the “difficult” CN calls,
dynamically and adaptively. This is in contrast to other computationally efficient tools, which
often simplify the statistical model or use heuristics. The required data structure can be efficiently
computed, incurs minimal overhead, and has a straightforward generalization for multivariate
data. We further show how the wavelet transform yields a natural way to set hyperparameters
automatically, with little input from the user.

We implemented our method in a highly optimized end-user software, called HaMMLET. Aside
from achieving an acceleration of several orders of magnitude, it exhibits significantly improved
convergence behavior, has excellent precision and recall, and provides Bayesian inference within
seconds even for large data sets. The accuracy and speed of HaMMLET also makes it an excellent
choice for routine diagnostic use and large-scale re-analysis of legacy data.

In Chapter 1, we describe structural genomic variations, the main biological and medical
application that motivates our work, as well as the experimental platforms, the type of data they
create, the computational challenges and previous approaches to solve them. Chapters 2 and
3 review the main ingredients of our method, Hidden Markov Models and the Haar wavelet
transform. Chapter 4 derives our method and investigates its properties, while presenting a
proof-of-concept implementation as well as experimental evaluation. In Chapter 5, an improved
implementation is presented to tackle genome-sized data, along with novel algorithms. In Chapter
6 we apply our method to real-world data. Chapter 7 presents an outlook on promising research

directions.
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Chapter 1

Introduction

The main motivation behind the development of our method is the inference of genomic copy-
number variation (CNV) from experimental data. In this chapter, we provide a short overview of
the biological background, the role of CNV in human health, as well as the experimental and

computational framework for their study.

1.1 Structural variation in genomes

As far as we can tell, all life on Earth, including humans, owes its origin, continued functioning
and long-term survival to its genetic material, called the genome in its totality. This term refers to
both its genetic information, as well as the physical medium of its storage.

On the physical level, the genome consists of four nucleobases, separated into two groups: two
purine bases (adenine and guanine, A and G) and two pyrimidine bases (cytosine and thymine,
C and T). These are linked together in a sequential manner to a backbone of phosphate groups
and the 5-carbon sugar deoxyribose into a single strand of deoxyribonucleic acid, or DNA for short.
Each unit of phosphate, deoxyribose and nucleobase is called a nucleotide. The propensity of
each group of nucleobases to form hydrogen bonds between complementary bases (A with T, C
with G) leads to a phenomenon called hybridization, in which two strands of complementary
base sequences align together, winding around each other in a double-stranded helix. A set of
such helices called chromosomes carries the genetic information in organisms.

On the information level, the genome uses the four-letter code A, C, G, and T (with U for



uracil replacing thymine in RNA molecules). Since the sugar and phosphate in each nucleotide
is identical among nucleotides, the distinction between nucleotides and nucleobases is void
from an information-theoretic standpoint, and both are called a base in general parlance. As
DNA is typically double-stranded, a complementary base-pair is used as the basic unit of genetic
information, similar to bit and byte. It is commonly abbreviated® as b, and used with SI prefixes.
e.g. kilobase (kb) or megabase (Mb). This provides a convenient way to express the size of any
genomic segment.

The genetic information stored in a chromosome is very complex. The term genes typically
refers to so-called protein-coding regions, i. e. sequences that are transcribed into mRNA, which
serves as a template for protein synthesis, a process called gene expression. mRNA transcripts
contain so-called untranslated regions on both ends (5’UTR and 3’UTR), which are involved
in RNA splicing, transcription regulation and translation; though not part of the final protein,
these sequences are genomically encoded and thus subject to changes in the chromosome as
well. In more general terms, genes also include sequences that encode for ncRNAs (non-coding
RNAs), such as transfer-RNA, ribosomal RNA, microRNA et cetera. Regulatory elements, such
as promoters, operators, transcription factor binding sites (TFBS), enhancers and silencers, are
binding sites for proteins which regulate whether and to what extend a gene is expressed at any
given time. Elucidation of information content is still an ongoing endeavor, but the plethora of
functions described here may serve as a glimpse into the intricacy of information encoded in this
simple strand-like molecule.

The human genome is subject to a variety of physical processes which disrupt its architecture,
commonly referred to as structural variants (SV). Chromosomes can be merged or split, have
their parts rearranged, duplicated, deleted, inverted or shuffled (Fig. 1.1); a large variety of
types and mechanisms has been studied, see HasTiNGs et al. (2009). Since genetic information
is encoded in the DNA sequence, any structural variation changes its content. Among the many
types of SV, copy-number variants (CNV) and single-nucleotide polymorphisms (SNP) account for
the majority of observed cases, and are relevant for the remainder of this thesis; other SV such

as inversions and translocations are neither of interest in this study nor can they be inferred by

!Conventions vary, as b is sometimes used instead of nt (for nucleotide) to denotes a single base, whereas bp
denotes a basepair.
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Figure 1.1: Overview of structural variations (SV) relative to a reference genome. Copy-number
variants (CNV) detectable by the method presented in this thesis are indicated by gray background.
Figure modified from Arkan, COE & EicHLER (2011), with permission from Macmillan Publishers
Limited.

the algorithm presented here in its current form.

Copy-number variants (CNV) Copy number variants are defined as segments of DNA for which
the number of occurrences within one individual’s genome differs from that of corresponding
sequences in the reference genome. In genomics, the term copy-number variants is commonly
used to refer to variants found in multiple individuals of a population, and is distinguished from
copy-number aberrations, which are typically associated with germline or somatic changes that
have adverse effects for the health of one specific individual (SHLIEN & MALKIN 2009; VALSESIA
et al. 2013; Navin 2015). Since CNV and CNA are equivalent from a data analysis standpoint,
we refer to both of them as CNV in this thesis. Aside from large-scale changes due to full or
partial aneuploidy, i. e. abnormal counts of entire or partial chromosomes, CNV are comprised of
insertions and deletions (indels, for short), as well as tandem repeats. In the more narrow sense,
CNV refers to intermediate-size copy-number aberrations between 1kb and 5Mb (FREEMAN

2006), which is small compared to the size of the data and thus challenging to find. Likewise,



indel often refers to much smaller events; this terminology historically stems from different
experimental techniques and their resolution capacities. Unless otherwise stated, we shall refer

to CNV as any kind of insertion or deletion of genomic material.

Single-nucleotide polymorphisms (SNP) Single-nucleotide polymorphisms refer to exchanges,
losses or gains of single base pairs. They are important in the study of population genetics and
human ancestry. While not directly a target of our computational method, they play an important
role in the measurement of allelic CNV in the form of SNP arrays (Section 1.3.1).

Structural variations affect the information encoded on the DNA strands in a variety of
ways; for a review, see HURLES, DERMITZAKIS & TYLER-SMITH (2008). Insertions and deletions
can disrupt a protein-coding sequence by introducing a premature stop codon, resulting in a
truncated protein product. It can also create chimeric proteins, i. e. a molecule composed of
two partial proteins. If the inserted sequence is not from a coding region, the resulting product
would partially consist of a random amino acid sequence. Most of these changes will result in a
loss of function for the affected gene, but especially chimeric proteins can result in coupling of
regulatory pathways. Structural variants can also result in a translocation of regulatory elements
such as promoters, which puts the affected gene under regulatory control of a pathway it would
not usually be part of, thus disrupting the functioning of the cell on a systems level. CNV can
also cause dosage effects, i. e. abnormal expression levels of gene products due to an abnormal
number of genes. If SV occur in regions which do not code for genes, regulatory elements or other
information such as ncRNA, and are not important for functions such as chromatin regulation,
they may also have no effect at all.

The resulting changes to the genome can have phenotypic consequences, ranging from
adaptation to environmental factors to severe illness. Studying SV promises to yield important
insights into genome function and causal relationships between the genetic information level on
one side and disease and phenotype on the other. The experimental platforms used in both clinical
diagnostics as well as basic and translational research generate large amounts of high-resolution

data, posing a challenge from the bioinformatics standpoint.



1.2 Implications of SV for human phenotype and health

Structural variations in genomes arise in two different forms. Germinal mutations occur in the
germline, and usually affect all, or, in the case of mosaicism (STURTEVANT 1929), some cells
in an individual’s body. Somatic mutations on the other hand arise within individual cells of
an organism during its lifetime. These can be neutral to cell function, or, in most cases, incur
damage that renders the cell inviable. In rare cases however, the changes can give the cell a
competitive advantage by making it both self-sufficient and independent of internal and external
regulatory and apoptosis-inducing signals, leading to uncontrolled cell proliferation known as
cancer.

Structural variations have important biomedical implications, and are the focus of many
genetic studies to elucidate the etiology of complex diseases, in particular cancer and neuropsy-

chiatric disorders.

1.2.1 Somatic SV and cancer

It has been over a hundred years since an association between chromosome abnormalities and
cancer has been established by Bovert (1914) as one of the most prominent features of cancer
cells, encountered in all major types of tumors (FROHLING & DOHNER 2008). This has lead to
the notion of cancer being a disease of the genome. With cancer causing 1 in 8 deaths globally
(Garcia et al. 2007), it is no exaggeration to say that elucidation of their role can be considered
one of the most important research objectives of our time.

In cancer, somatic changes in copy number are one of the most noticeable changes in the
affected cells (NakaGgawa et al. 2015). Commonly referred to as copy-number aberrations
(CNA), they are the target of diagnostic platforms such as array-based CGH (Section 1.3). While
experimental evidence suggests a causative role for aneuploidy in tumorigenesis (FO1JER, DRavVIAM
& SorRGER 2008; HorLLAND & CLEVELAND 2009), discerning causal CNV (driver mutations) from
those that are mere byproducts of cancer progression (passenger mutations) is still an open
research problem, which requires highly accurate calls of CNV from experimental platforms. For

further details, GARRAWAY & LANDER (2013) has an excellent review of cancer genomics.



1.2.2 Germinal SV and human diversity

With the plethora of evidence for somatic variations, their germinal counterparts have only
recently been determined to occur in abundance in the human population, constituting a major
contributor to human genetic variation. While SNPs were originally thought to account for the
majority of phenotypic variation (THE INTERNATIONAL SNP Mar WORKING GROUP et al. 2001;
THE INTERNATIONAL HaPMAP CoNsorTIUM 2005), a number of recent studies have shown that
CNV show remarkable abundance within the human population, even among healthy individuals
(SEBAT, LaksHMI, TROGE, et al. 2004; IAFRATE et al. 2004; TuzuN et al. 2005; SHARP et al.
2005; FREDMAN et al. 2004; REDON et al. 2006; DE VRIES et al. 2005; SCHOUMANS et al. 2005;
SHARP et al. 2005; TysoN et al. 2005; CoNRAD et al. 2006). FREEMAN (2006) contains an
extensive history of CNV discovery. This discovery has huge implications outside the more obvious
population genetics applications; the prevalence of CNV raises the issue of false negative calls in
biomedical applications. Specifically, an accurate map of copy-number polymorphisms, stratified
by donor ethnicity, is required as a true negative set when investigating disease associations of

CNV.

1.2.3 Neuropsychiatric disorders

CNVs have been implicated in a variety of neuropsychiatric disorders (MALHOTRA & SEBAT 2012;
Cook JrR & SCHERER 2008), in particular in autism (CHUNG, Tao & Tso 2014).

Autism spectrum disorder (ASD) refers to a range of neurodevelopmental disorder traditionally
characterized by the triad of impaired reciprocal social behavior, poor communication skills,
and stereotyped or repetitive patterns of behavior, interests or activities KANNER (1943). It
includes previously distinguished diagnoses of Asperger syndrome, PDD-NOS, and childhood
disintegrative disorder.

While ASD diagnosis is based entirely on behavioral observations due to the complex etiology
of the phenomenon, it has long been recognized as having a strong genetic component (FOLSTEIN
& ROsSEN-SHEIDLEY 2001), but no single cause has yet been established. Early studies already
showed microscopically visible chromosome anomalies in 7-8% of patients (Xu et al. 2004).

With the advent of microarray technology (Section 1.3.1), a wide range of submicroscopic CNV



has been found to be associated with the ASD phenotype, and there is considerable support for
a causative role of CNV. De novo occurrence of CNV has been reported as 3-5 times higher in
affected families vs. control, and multiple de novo CNV have been found to lead to more severe
symptoms. Furthermore, recurring CNV have been found in unrelated ASD patient. Lastly, CNV
are enriched for genes associated with neuronal synaptic disorders, and overlap with those found
in ADHD, SZ and ID; for an extensive review of those studies see SENER (2014). The role of
CNVs in ASD and schizophrenia is reviewed in MERIKANGAS, CORVIN & GALLAGHER (2009).
However, there has been a paradigm shift in recent years towards the notion that there is no
single causative mutation underlying the disease. Instead, the autism spectrum is considered to
be a shared phenotype of multiple rare but highly penetrant genetic risk factors. To elucidate the
role of CNV in this context, accurate CNV calls on high-resolution genomic data are critical.
Tourette syndrome (TS) is another disorder, characterized by motor tics, such as blinking,
grimacing or head jerking, and phonic tics, such as coprolalia, palilalia and echolalia. It is often
associated with obsessive-compulsive disorder (OCD) (PautLs et al. 1986) and attention-deficit
hyperactivity disorder (ADHD). Though there is evidence for a genetic basis of the disease, it is
not fully understood (O’ROURKE et al. 2009). Recently, a role of rare large-scale CNV in TS and
its aetiological overlap has been suggested (Nag et al. 2013), thereby adding to the notion of a

general association of CNV and neuropsychiatric disorders.

1.3 Experimental platforms

A wide range of experimental platforms of increasing resolution has been developed over the
last years (ALkAN, COE & ErcHLER 2011), and analysis of the data they produce is the central

motivation and application area for our method in bioinformatics.

1.3.1 DNA microarrays

A DNA microarray, sometimes called biochip or gene chip, consists of a carrier substrate such
as glass, plastic or silicone. On its surface, probes of single-strand DNA are affixed in a regular
grid, such that each probe consists of DNA material of a different, predefined DNA sequence.

Each probe is capable of capturing single-stranded DNA material of a reverse-complementary



sequence through hybridization, thus forming a short double-stranded helix. In order to assess
the presence and abundance of DNA material in a sample, the sample DNA is fragmented into
short pieces, fluorescently labeled and hybridized to the array. Then, the light emitted from each
fluorescent spot is measured as a proxy of the abundance of DNA bound to each probe.

Probes are designed such that they represent known, preferably unique positions in the
genome, so that the abundance of chromosomal segments can be measured. Microarrays yield
very noisy data, due to the complexity of the biochemical process; furthermore, Gaussian noise
is inevitable due to the quantum nature of photon emissions and its interaction with the light
receptors in the equipment.

Obviously, the resolution of this method is limited by how many positions in the reference
genome are covered by the set of probes. More importantly, microarrays rely on a predefined
set of probes, i. e. they cannot detect sequences for which no probe is used. If, for instance, the
genome contained a novel sequence due to a retrovirus, or the sample was contaminated by
another DNA source, this would go undetected.

While there are many types of microarrays for different purposes, aCGH and SNP arrays are

the most prominent types of platform for CNV detection.

Array-based Comparative Genomic Hybridization (aCGH) As the name suggests, aCGH is
used to compare relative DNA abundance between two genomes, such as cancer tissue versus
control. The two cases are labeled in different colors such as red and green, and then hybridized
to the same microarray. The photo detector is then used to measure the resulting wavelength as
a proxy for relative DNA abundance; for instance, if both genomes have the same amount at a
probe, the resulting color will be yellow, whereas a shift towards red or green would indicate
higher abundance in the respective genome. aCGH thus measures the relative abundance, though
typically the control is assumed to be diploid, so that absolute abundance in the target genome
can be derived. Relative abundance is typically expressed as the log2 ratio of green and red
signals. The process is illustrated in Fig. 1.2.

It is important to note that since the chromosomes are fragmented, the only feasible way to
position the measurements is via the reference genome used to design the probes. This means

that the information obtained from aCGH is abundance of a chromosomal fragment, but not
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Figure 1.2: An overview of array-based comparative genome hybridization (aCGH). Sample and
control DNA are flourescently labeled (1), and hybridized on an array of spotted DNA probes of known
sequence, yielding a differential color signal (2). Measuring those colors and mapping the signal to
the genome positions corresponding to each probe (3) yields a piecewise-constant signal with noise
(4), which can be used to detect CNV. Figure reproduced with kind permission from Cancer Genetics,
Inc. (www.cancergenetics.com).

its location. In the most extreme, hypothetical case that the entire genome had been severely

shuffled and merged into a single chromosome, aCGH would not detect this.

Single-nucleotide polymorphism arrays (SNP arrays) The normal human genome contains
two copies of each autosome. However, those two copies are usually not completely identical, but
carry different alleles of the same locus, a phenomenon called heterozygocity. Most importantly,
they often carry SNPs at many positions. However, some chromosomal segments may lack such
differences; they are homozygous. Especially in somatic mutations, loss of heterozygocity (LOH),
i.e. the loss of one allele coupled with a duplication of the other, is known to be associated
with or even a driver of a wide range of diseases. Since loci which are heterozygous only in
a SNP differ by only one nucleotide, and hence can bind both to the same probe. Therefore,
LOH cannot be detected by aCGH. To alleviate this restriction, SNP arrays contain carefully

designed sets of probes for SNPs known to exist in the human population, which allows to resolve
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allelic copy number. The data from SNP arrays is similar to that from aCGH, with the important
distinction that it is 2-dimensional, with each channel corresponding to one of two alleles. Since
probes for each SNP differ only by one nucleotide, the resulting cross-hybridization yields a lower

signal-to-noise ration than aCGH, thus posing additional challenges for CNV inference.

1.3.2 Next-generation sequencing

DNA sequencing refers to determining the sequence of bases A, C, G and T in a DNA sample. Aside
from more labor-intensive methods such as Sanger sequencing and Maxam-Gilbert sequencing,
next-generation sequencing (NGS) techniques have enabled high-throughput sequencing of DNA
samples, creating several GB of data per sample; for a review, see METZKER (2010).

For NGS, DNA material is amplified and fragmented into short segments of several hundred
bases. These fragments are then sequenced into short strings known as reads, ranging in size
from 75-250 bp, depending on the platform. As the information about the original position of
each read is lost during fragmentation, it has to be reconstructed computationally. In paired-end
sequencing, the fragment is sequenced from both sides, yielding additional information about
the relative distance of two reads. As this distance is limited by the fragment size, mate-pair
sequencing uses an additional experimental step in which the two ends from a fragment originate
from loci further apart in the genome than on the fragment.

When analyzing structural variation, it is important to note that reads essentially provide two
layers of information. The pure sequence information can be used to determine sequence-level
changes such as inversions and rearrangements, and can largely be subsumed under an elaborate
approximate string matching paradigm, where the major source of noise are low-frequency
sequencing errors. SV calls can often be made on a per-read basis, and are thus algorithmically
more “localized”.

On the other hand, abundance of similar genomic sequences carries information about the
number of copies of a genomic locus, which can be used for CNV detection. Two basic approaches
exist: Read-depth (RD), sometimes referred to as depth of coverage (DOC) is determined by using
a read mapper, essentially a highly optimized implementation of approximate string matching,
to map reads to a known reference genome. After several post-processing steps to account for

error sources such as amplification, GC and dinucleotide bias, the coverage at each nucleotide
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Figure 1.3: Illustration of aCGH (left) and read-depth data (right) for CNV detection. Duplication in
the sample genome increases shifts the intensity ratio and the number of reads mapped to the affected
loci in the reference genome, and hence induces an upwards shift in the count signal (blue). Likewise,
a loss incurs a downwards shift in the signal (red).

in the reference is used as a proxy for DNA abundance at each position in the sample; for a
review, see Magt et al. (2012). Read-depth data is illustrated in Fig. 1.3. De novo assembly
(AS) on the other hand tries to merge the reads into contiguous strings called contigs, in which
paired-end/mate-pair information as well as the multiplicity of occurrence of reads again used as
a proxy for DNA abundance, but does not necessary require a reference genome. Both approaches
require a more global look at the data, in that they should model the general noise level, for

instance.

Whole-genome sequencing (WGS) The most straightforward application of NGS is the se-
quencing of the entire genomic material in a sample, known as Whole-genome sequencing (WGS).
For reviews of this technique, see PTRoozN1A, GOES & ZANDI (2015), PABINGER et al. (2014),
and HEHIR-KwA, PFUNDT & VELTMAN (2015). As it is not a targeted tool and yields information
about every genomic locus regardless of the information it carries, it is the method of choice for

fundamental and exploratory research, in particular for cancer (NAkaGawa et al. 2015).

Whole-exome sequencing (WES) Due to the relatively high cost of WGS, targeted sequencing
methods are often used, in which a predefined subset of DNA fragments is selected using
target-enrichment techniques such as PCR, molecular inversion probes, in-solution capture, or
hybridization to a microarray (hybrid capture). This reduces the amount of DNA to be sequenced
significantly, especially in cases where only the protein-coding regions of the genome, the so-
called exome is targeted. This whole-exome sequencing (WES), see KaDALAYIL et al. (2015),

TETREAULT et al. (2015), and HEHIR-KwA, PFUNDT & VELTMAN (2015), leads to a 100-fold
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reduction in sequencing for the human genome. While the reduced cost makes WES attractive
for CNV detection, target enrichment introduces a considerable bias in read depth, which is not
easily corrected computationally (KaparaviL et al. 2015). Though various approaches exist, we
argue that the expected drop in sequencing cost makes it more worthwhile to focus method

development on larger, but statistically more well-behaved data such as WGS.

1.4 Algorithmic challenges and prior approaches

Microarray-based methods will continue to play an important role in diagnostic settings due to
their cost-effectiveness. The expected increase in resolution and low concordance among analytical
tools (PInTO et al. 2011) necessitate the development of efficient bioinformatics tools for unbiased
CNV calls on these platforms. However, the complexity of cancer and neuropsychiatric genomes
necessitates even higher resolution that can only reasonably be achieved through sequencing
approaches. In clinical settings, exome sequencing currently provides a compromise between
cost and resolution, but the complex etiology of both classes of disease would require the use of
WGS. It has been suggested that most driver genes, i. e. genes that are causal to tumorigenesis,
have been identified (NAKAGAWA et al. 2015; VOGELSTEIN et al. 2013; LAWRENCE et al. 2014),
while rarer gene mutations and those in non-exomic regions such as promoters, ncRNAs and
introns remain to be investigated (LEISERSON et al. 2014; GARRAWAY & LANDER 2013). For
instance, FREEDMAN et al. (2011) suggests a role for regulatory elements in carcinogenesis. As a
consequence, whole-genome approaches are likely to become more important in fundamental
research (GARRAWAY & LANDER 2013), as the plethora of CNV calling methods for WGS data,
reviewed in PIRO0ZNIA, GOES & ZANDI (2015), ABEL & DUNCAVAGE (2013), ZHAo et al. (2013),
PABINGER et al. (2014), and DuaN et al. (2013), shows. While sequencing cost can be expected
to drop, the computational power required to perform meaningful bioinformatics analysis is still
beyond the capacities of most clinical institutions (CHUNG, Tao & Tso 2014), thus posing a huge
challenge for the computer scientist.

While different platforms generate data of different characteristics, which in turn necessitate
statistical and computational approaches tailored specifically to them (WINEINGER et al. 2008),

any experimental technology has its half-life, and generalized models that can treat data specifics
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under a common framework are more likely to advance the field in the long run. As data
created by microarrays and NGS for CNV detection can adequately be modeled as piecewise
constant with additive noise (see Fig. 1.3), time-proven methods such as Hidden Markov Models
(Baum & PETRIE 1966) have repeatedly been applied in the context of CNV detection (SNIJDERS,
FRIDLYAND, et al. 2003; SEBAT, LAKSHMI, TROGE, et al. 2004; SEBAT, LAKSHMI, MALHOTRA, et al.
2007; FRIDLYAND et al. 2004; ZHAo 2004; DE VRIES et al. 2005; NANNYA et al. 2005; MARIONT,
THORNE & TAVARE 2006; KORrBEL et al. 2007; CAHAN et al. 2008; RUEDA & DiAz-URIARTE 2009).
They are favorable from a modeling standpoint, as they directly express the separate layers of
observed measurements, such as log-ratios in array comparative genomic hybridization (aCGH),
and their corresponding latent copy number (CN) states, as well as the underlying linear structure
of segments. At the same time, advances in experimental technology create ever larger data sets,
implying the need to leverage statistical analysis to handle big data. In this thesis, we shall hence
take a high-level approach to CNV detection, and focus on improving and accelerating the type

of Hidden Markov models suitable for this kind of data.
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Chapter 2

Hidden Markov Models

In this chapter, we review the basics of HMM inference. We use the following notation: boldface
(y) denotes some ordered data type which allows indexing, such as a vector or an array. y[i]
denotes the i-th element of y; all indices are zero-based. y[i][j] denotes the element in the
i-th row and j-th column in a two-dimensional data type. Slices/ranges are denoted as y[i:j]
with the j-th entry included (closed interval). In contrast, y; denotes the i-th element out of an

(unordered) collection {y,y,...}.

2.1 Probability theory

Let the probability space (2, 2, IP) be a measure space, where ( is called the sample space, ¥ is
the set of events, and P is called probability measure. Further, let P (Q) = 1. A random variable is
a function

X: (Q,%,P) - (K, B(K),Py)

where K typically is R,Z,C, .... X is Z-B(K)-measurable, i.e. VB € B(K): X }(B) € &, which
implies

Py (B)=P(X'(B)) =P({w e 2|X(w) €B}).

Further, let Px (x) be a function

Px:R—[0,1], J Px ()u(dx) =1,
K
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called the density of X. The integral is the Lebesgue integral with an appropriate measure y on

K. This function can be used to define the probability measure on (K, B(K), Py ) as the integral

Py (A) = J Py () ().
A

Since we will be dealing almost exclusively with simple densities and probability mass
functions over subsets of R" and Z", we follow the notational convention common in machine
learning to blur the distinction between events (X = x), random variables (X), and their
realizations/variates (x). We denote both the conditional density P (X |Y = y) as well as the
likelihood function P (X = x|y) as P(X|Y), and it is derived from context which of X, Y remain
fixed, whenever such information is necessary. Occasionally, the likelihood is denoted as £ (Y | X).
Consequently, there is no logical distinction between lower- and upper-case notation. Furthermore,
the distinction between parameters and random variables is meaningless in a Bayesian context
due to the inversion principle, see for example RoBERT (2007). We also follow the convention to
denote the fact that a random variable X is distributed according to a distribution P depending

on a parameter 6 as X ~ P (X | 6). We also simplify the integral notation to

JPX(x),u(dx) :=fP(X)dX.
A

In general, since the domain is often clear from context, we will drop it from the integral whenever

possible, especially when integrating out dimensions, e.g.
J PX,Y)dY =P(X).

Let

E[X]:= f XdP = f X(w)P(dw) = JXP(X)dX
Q Q

be the expected value of random variable X, or the expectation for short. For continuous and

discrete univariate random variables, this becomes

E[X]zf XP(X)A(dX):J XP(X)dX, and
R —00
E[X]zfXP(X)#(dX)= > XPX),

Z X=—00
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with Lebesgue measure A and counting measure #, respectively. More generally, for any function

f, we define the expectation
Ex [f(X,Y)]:= Jf(X,Y)P(X,Y)dX,
as well as the conditional expectation
Ex[f(X,Y)|Z] = ff(X,Y)P(X,YlZ)dX.

By the law of total expectation,

E[X]=Ey[Ex [X|Y]].
Random variables X, Y are said to be independent, denoted X 1Y, iff
PX,Y)=PX)P(Y),
and conditionally independent, denoted X 1 Y|Z iff
PX,Y|Z)=PXI|Z)P(Y|Z).

Linearity of expectation holds for any set of random variables X, i. e.

E [ZaiXi] => aE[X].

1

1

Similarly, the variance is defined as
VIX]=E[(X-E[X])?]=E[Xx?*]-E[X]*.

By Bienaymé’s formula, for a sum of uncorrelated (and hence independent) random variables,

V[Z aiXi:| = > a?V[x,].

i i

A Bayes net (BN) is a directed acyclic graph which contains an edge from B to A if A is conditioned

on B, see Fig. 2.2 for an example. For a random variable X, let
pa(X) = {A|P(X |A) #P(X)},

ch(X):={A|P(A|X) # P(A)}, and

co(X):={A|CechX,P(C|A)#P(C),A#X}.
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The quantities pa(X), ch(X) and co(X) are called the parents, children, and coparents of X

respectively, referring to the relationships of notes in a Bayes net. Let
9 X :=pa(X)Uco(X)Uch(X)
be the Markov blanket of X. Then
X1Laox|(xruax)t.

The Markov blanket plays an important role in Gibbs sampling, since sampling of a random
variable only requires conditioning on the Markov blanket as opposed to the entire set of variables
in the model. An undirected graph is called a Markov Random Field (MRF) over a set of random
variables if, for every variables, the set of its adjacent nodes equals the Markov blanket of said

node.

2.2 Bayesian inference and the exponential family
Bayes’ theorem can be easily derived in the following equivalent transformations

P(M,D)=P(D,M),

PM|D)P(D)=P(D|M)P(M), and
P(D|M)P (M)
PM|D)= ————
(M|D)= ==
If D is constant, then P (D) simply serves as a normalization factor for the left side to integrate
to 1. Also, P(D|M) then becomes a function of M, not D, and does not represent a density

since it does not necessarily integrate to 1. To emphasize this fact, P (D | M) is often denoted as

L (M | D), yielding Bayes’ theorem in the form of
P(M|D) o<y, LM |D)P(M).

Here, P (M) is called the prior distribution, £ (M | D) is called the likelihood function, and P (M | D)
is called the posterior distribution; this captures the essence of Bayesian inference. If D represents
some observed data, and M encodes our model of the data, the prior captures our model before

the observation of the data, either from past observation or due to some assumptions (inductive
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bias). The posterior represents the model after observing the data, and is proportional to the
product of the prior and the probability of observing the data under the prior model. This process
can be iterated, i. e. the posterior can become the prior for some new observations, hence the
model gets more refined the more data is incorporated. In other words, the probability of the
observed data under the current model becomes the likelihood of the model in light of the
observed data.

Assume the model consists of a probability distribution fully described by some parameter 9,

and the data consists of some variates x; ~ P (x | 6), so we obtain
PO|x)oc L(O|x)P(O).

Further, assume the prior is fully defined by some hyperparameter 7. For the joint distribution of

data, parameter and hyperparameter, we thus have

PO,x,7)=P(x,0,7)
= PO |x,7)P(x,7)=P(x|0,7)P(0,7)

=P(x]6,7)P(607)P(7).

Assuming the hyperparameter does not influence the data directly, we have x L 7 | @ and hence

P(x|0,7)="P(x|0), sowe obtain
PO |x,7)ocy L(O|x)P(O|7)P (7).

The hyperparameter itself is kept constant, since it encodes our prior belief of the parameter
model, hence

P(O|x,T)oceg L(O]|x)P(O]|7).

Let an exponential family distribution (EFD) be any distribution for which the PDF is of the
form

P(x[0)=exp((0,T (x)) +h(x)—A(0)),

where  is a parameter vector!, A is a scaling factor called the log-partition function, h is called

the carrier measure, and T are the sufficient statistics. A vector T(X) is called a sufficient statistic

!The usual definition uses the more general form n(@) for the parameters, but here we always assume the
canonical form 1(0) = 6 for simplicity, since any EFD can be transformed accordingly.



19

of a random sample X, if it contains all information about a distribution parameter that can be

obtained from the complete sample. Formally,
0 LX|T(X),
or, equivalently,
P(O|T(X),X)="P(6]|T(X)).

By the Neyman-Fisher factorization theorem (FisHER 1922; NEYMAN 1936; HALMOS & SAVAGE

1949), a distribution has sufficient statistics if and only if its density function can be factored as
P(x|0)=H(x)g(T(x,0),

i.e. it depends on x only via T. Obviously, EFD permit this factorization; furthermore, among all
distributions for which the domain does not vary with the parameter, only EFD have sufficient
statistics whose size remains bounded with increasing sample size (Darmo1s 1935; KoopMaN

1936; PrTMAN, WISHART & FISHER 1936).

For a sample of i.i.d. variates {xi}f’: 1» the likelihood function of an EFD becomes
N N
c(o[tx) =] Je@1x)=] Jexp(T(x)),0) + h(x;) - AB)) 2.1)
i=1 i=1

M=

~on( [

N
= exp(<z T(x;), 9> +Zh(xl-)—NA(0)) (2.3)
i=1 i=1

by linearity of the inner product in its first argument. It follows that the likelihood of a sample

(T(x;),0) +h(xi))_NA(0)) (2.2)

I
—

can be computed in a summary fashion, using only a fixed number of values in the sufficient
statistics, independent of sample size N. For each EFD, there exists a conjugate prior distribution

(D1AcONIS & YLVISAKER 1979) of the form
P(0|7,n) ocexp({T,0)—nA(h)).
Dropping normalization constants for simplicity, the posterior can then be derived as

P(O]{x:},, 7)o £(6|{x},)P(8]T)

N
o< exp (<Z T(x;),0 > —NA(B)) exp ({7, 0) —nA(0))
i=1
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O

Figure 2.1: Visualization of a simple 3-state HMM for CNV detection. The hidden state path q is a
Markov chain over the states {+,—, =}, representing a gain, loss, and diploid state, respectively. Upon
visiting a state, a sample from its emission distribution (represented as gray densities next to each
state) is drawn, according to the emission parameters 8 = {0, 0_, 0 _}. In this case, emissions come
from Gaussian distributions with different means and variances.

N
= exp (<Z T(x,), o> +(1,0) —NA(6) —m(@))

i=1

N
- exp(<T + > T(x), 0>—(n+N)A(0)).

i=1
Hence for posterior updates, it holds that

N
P(G T+ZT(xi),n+N) o< £(8]{x ;)P (0] 7,n).

i=1

Conjugacy thus implies that the posterior is of the same analytical form as the prior. Its count
parameter n is updated by simply adding the sample size, and its hyperparameter 7 is updated by
adding the sufficient statistics of the observed sample. Since more observations can be included
iteratively without changing the distribution type of the posterior, we say that a posterior is strong

if its count parameter n is large.

2.3 The model itself

Let T be the length of the observation sequence. An HMM can be represented as a statistical

model (q, A, 8, t|y), with transition matrix A, a latent state sequence
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Figure 2.2: Left: Bayes net representation of an HMM. Arrows indicate conditional relations, e.g.
P(q[0]|m, A). Center: Bayes net representation of the HMM by treating all emissions y[t] and all
latent state variables q[t] as joint probability vectors y and q. Right: Markov Random Field (MRF)
representation of the blocked HMM, obtained by adding the moralizing edges (0,q) and (7, .A). The
Markov blanket of a node corresponds to its direct neighbors in the MRF. Shading indicates that the
variables are observed.

an observed emission sequence y = (y[0], y[1], ..., y[T—1]), emission parameters 6, and an
initial state distribution 7t. The vector 8 = (6,,..., 6,) parametrizes the emission distributions

depending on the underlying state, i.e.
Py[t]10,9) =P (y[t]|O41e1)-
The state sequence is modeled as a first-order Markov process with
P(qlt]=jlqlt-1]=1) = A;

To derive conditional independence relations, the following Markov blankets can be easily read

off (Fig. 2.2):

dyl[t]={q[t] 6}, 2.4)
9q[0]={m,y[0],q[1], 4,6}, (2.5)
9q[t>0]={q[t—1],q[t+1],y[t], A, 6}, (2.6)
dn={q[0], A}, 2.7)

3 A={q,n}, and (2.8)

360 ={y,q}. (2.9)

Collapsing emissions and state sequence into one multivariate random variable each (Fig. 2.2)

by merging nodes while maintaining adjacencies yields

dy=1{q,0},
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Jon=1{q,A}, and

oq={y,0,m,A}.

Note that this operation, while yielding a more convenient notation, induces unnecessary condi-
tional relations, for instance within q, which are understood to be ignored whenever appropriate.

Since we assume the hyperparameters to be constant, we drop dependence on them whenever
appropriate for notational clarity, i. e. we define P (x) := P(x | 7, ). The total distribution of an

HMM then factorizes as

P(,q,0,7,A)=P(y|0,9)P(q|n, A)P(0)P(A)P(n)

T-1

=P(0)P(A)P(n)P(ql0]| ﬂ,A)P(y[O]Iq[O],H)l_[P(y[t] lq[t],0)P(qlt]lq[t—1], A).

t=1

From the MRF representation, it is easy to see

P(yl0,q,A,n)=P(ylq0),

so the likelihood function for an HMM with observed data y is

E(Gly)=J7’(y|q,9)dq-

2.4 Segmentation using HMM

Solving the segmentation task using HMM is based upon q. There are two main approaches.
For a fixed set of parameters, the most likely state sequence can be determined using the Viterbi
decoding algorithm; such a state sequence is known as the Viterbi path. Alternatively, segmentation
by maximum posterior marginals (MPM) chooses the most likely state at each position t. Notice
that these two are not necessarily the same; indeed, a sequence of maximum state margins
can have very low likelihood, or even be an impossible state sequence if it contains transitions
for which A contains zero-entries. It does, however, have the advantage of integrating over all
possible state paths.

The approaches central to our method are described in the following subsections. For

notational clarity, all conditioning on HMM parameters is dropped wherever possible.
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2.4.1 Filtering

Filtering describes the probability of being in a certain state at position t, given all observations
up to this point, i. e.
P(qle]ly[0:t]).

Naively, for k states, that would require the computation of k™!

state sequences, an unreasonably
effort. However, a simple recursion based on the fact that state sequences can share a common
prefix is used to derive a dynamic programming approach called forward algorithm. By Bayes’

formula,

Palelly(dylo:e-1) = ZEI D g y{0:e-1D),

Since
y[t] Ly[0:t—1]]q[t]
by the Markov property, we obtain

a[j]:==P(qlt]=jly[0:t]) oc; P(y[t]lqlt]=j)P(q[t] = jly[0:t—1]).

This term is called the forward variable?. The distribution of the last term,

P(q[t]]y[0:t—1]),

sometimes called the one-step-ahead predictive density (MURPHY 2012), can easily be expressed

as
P(qlt]=jly[0:t—1]) =Z7’(Q[t] =jlqlt=1]1=1)P(qlt-1]=1i[y[0:t—1])

=2 Ayaclil

The forward variables can thus be recursively defined as

a [jloc P(ylel] 6;) D Aaclil

Note that in other derivations, the forward variable refers to the joint density 7 (q[t],¥[0:¢t]) instead. In those
settings, normalization to the conditional version used here is treated as a means to obtain numerical stability instead.
The two versions are equivalent from a theoretical standpoint.
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All forward variables for an HMM with k states can hence be recursively computed using a T x k

dynamic programming matrix 7 called a trellis, using

TLe oc P(yLe] 6) XS Ay TLiLe —1]

with subsequent normalization of columns 7[t] to sum to 1 in order to obtain the conditional

state distribution. The forward recursion can be expressed compactly as
a, < (ATa,,) 04y,
where £, is the vector of emission likelihoods at position t and ® is the Hadamard product. An

implementation of this recursion has time complexity O(k?T).

2.4.2 Smoothing

In order to obtain maximum state marginals, the distributions

re:=P(qlt]ly)

are derived from the forward variables

P(qlt]ly[0:t]).

Using the fact that
P(AB|C)

the marginal state probability decomposes as

P(qlt]ly) o<qrey P(y[t+1:T—1],q[t]|y[0:t]) (2.10)
=P(qt]ly[0:tDP(y[t+1:T—1]|q[t],y[0:t]) (2.11)
=P(qlt]ly[0:tDP(y[t+1:T—-1][q[t]), (2.12)

since y[0:t] L y[t+1:T—1]]q[t]). Let the backward variable

B.lil=P(y[t+1:T-1][q[t]=1),

then

reli]l o< a[i]p [i].
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The backward variable can be recursively defined as

B =Py[t+1:T—1][q[t]) (2.13)

=> P(qlt]=j,yltLy[t+1:T-1]|q[t—1]) 2.14)
j

= ZP(J'[HLT—H lqlt]=J,y[t),q[t=1DP(qlt] =], y[t]Iq[t=1]).  (2.15)
J

Since y[t+1:T—1] L (q[t—1],y[t]) | q[t],

B IZP(}’[Hl:T—l]lq[t] =1)P(qlt]=1iylt]lq[t—1]) (2.16)
J

=Z7’(}’[t+1IT—1]|Q[t] =) Pylellqlt]=j,qlt=1])P(q[t]=jlq[t—1]).
J

(2.17)

Since y[t] L q[t—1]]|q[t],

Beli] =Z7’(J'[f+1iT—1] lq[t]1= )P (ylt]lqlt]=)P(qlt]=jlqlt—1]=1) (2.18)

j
= > Blilei1A; (2.19)
J
The backward recursion can be expressed compactly as

b= A(£t+1 © ﬁt+1)-

2.5 Frequentist inference and its caveats

Smoothing requires the values of the latent HMM parameters to be known; however, in most
practical applications, only y is observed directly. In the usual frequentist approach, the state

sequence q is inferred by first finding a maximum likelihood estimate of the parameters,

(Amp, On, ) = arg max L(A,60,7|y),
(A,0,m)

using the Baum-Welsh algorithm (BiLmEs 1998; RABINER 1989). This is only guaranteed to yield
local optima, as the likelihood function is not convex. Repeated random reinitialization are used
to find “good” local optima, but there are no guarantees for this method. Then, the most likely

state sequence given those parameters,

q= argmqaxP(q | Amp> Oues v, ¥ ) »
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is calculated using the Viterbi algorithm (VITERBI 1967). However, if there are only a few
aberrations, i. e. there is imbalance between classes, the ML parameters tend to overfit the normal
state which is likely to yield incorrect segmentation (MAHMUD & ScHLIEP 2011). Especially
in CNV inference, where the rare, non-diploid states are more informative, this is problematic.
Furthermore, alternative segmentations given those parameters are also ignored, as are the ones

for alternative parameters.

2.6 Bayesian inference
The Bayesian approach does not assume (A, 8, ) to be known. Instead, a joint prior distribution
P(q,A,0,7|7)

parametrized by T = (7 4, Tg, T) captures our subjective believe about the values of the latent
variables (q, A4, 8, ); notice that the distribution of q is solely defined by (A, 7, #), see Fig. 2.2,

and hence does not require a hyperparameter. Upon observing data y, the joint posterior is
P(q, A 0,m|y, 1)< L(q, A 0,m|y)P(q,A0,7[T).

The distribution of state sequences is computed directly by integrating out the emission and

transition variables,

P(qu,r)zJJfP(q,A,O,nly,T) drdf dA. (2.20)

Since this integral is intractable, it has to be approximated using Markov Chain Monte Carlo

techniques, i. e. drawing N samples,
(@®,AD, 00,70y~ P(q,4,6,nly,7), (2.21)
and subsequently approximating marginal state probabilities by their frequency in the sample
1<
Plalt]=sly, D)~ > 1qV[e] =s). (2:22)
i=1

Thus, for each position t, we get a complete probability distribution over the possible states,

solving the smoothing problem in a Bayesian setting. As before, this yields an MPM estimate
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which can be used for segmentation. Notice that MCMC does not allow for the Viterbi path to be
computed.

The method of choice used in this thesis combines Gibbs sampling of the HMM with forward-
backward sampling of the state sequence, yielding an MCMC inference algorithm known as

Forward-Backward Gibbs sampling (FBG).

2.6.1 Gibbs sampling

As the marginals of each variable are explicitly defined by conditioning on the other variables, an
HMM lends itself to Gibbs sampling, i. e. repeatedly sampling from the marginals (A|q,0,y, 7),
Olq,Ay,m),(m|A0,y,q9),and (q | A, 60,y, ), conditioned on the previously sampled values.
Using Bayes’ formula and conditional independence relations in Eq. (2.5)-Eq. (2.9), the sampling

process can be written as

A~P(Alm,q,74) o< L(A|7,q)P(A|T4), (2.23)
0~P(01q,y,79) o<L(0]q,y)P(0]76), (2.24)
n~P(n|Aq,t,.) o<L(n|Aq)P(x|7,), and (2.25)
q~P(qlAy,0,n), (2.26)

where 7, represents hyperparameters to the prior distribution P (x | 7, ). Typically, each prior

will be conjugate, which yields

A~P(A|T4(m,q)), (2.27)
0 ~P(017e(q,¥)), (2.28)
n~P(n|7,(Aq)), and (2.29)
q~P(qlAy,0,m). (2.30)

Notice that the state sequence does not depend on any prior. The sampling of parameters is
straightforward using their conjugate priors.
2.6.2 Forward-Backward sampling

There are several schemes available to sample q | y. A direct Gibbs sampling approach would use

P(qlt]lq—t],y)="P(qlt]lq[t—1],q[t+1],¥[t])
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to sample a state based on its neighbors ([—t] means all positions except t). This, however, yields
high autocorrelation and slow mixing properties; instead, ScotT (2002) has argued strongly
in favor of forward-backward sampling (CHIB 1996), also known as forward filtering, backward
sampling (MurpPHY 2012). Variations of this approach have been implemented for segmentation
of aCGH data before (MAHMUD & ScHLIEP 2011; SHAH, XUAN, et al. 2006). Consider the

following chain rule factorization,

T—1
Pqly)=P@lT-11IN] [P(alt]lqlt+1:T-11y)

t=1
T—1

=7P(q[r-1]1y) [ [P(altllqle+11y)

t=1
T—1

=P (q[T-1]1n) [ [P(alelqlt+1],y[0:¢]),
t=1

where the first step follows from the Markov property of q, and the second step follows from the

conditional independence relation
q[O:t] Ly[t+1:T—1]|q[t+1].
By Bayes’ formula,

P(qlt]lqlt+1],y[0:t]) ocqrry P(qlt+1]1q[t], y[0:t])P(qlt]]y[0:t]),

and, since
qlt+1] L y[0:¢]|q[t],
this becomes

P(qlt]lqlt+1],y[0:t]) o<qrry P(qle+1]1q[e]) P (qlt]]y[0:¢]).

Hence, we can recursively sample g | y in a backward fashion, using a trellis of forward variables

and the backward-sampling recursion

P(qlt]=ilqlt+1]=j,y[0:t]) o<; A; ja,[i],

with subsequent normalization. It can be computed within the trellis by updating the columns as

TUNE] e« THIEA, g6 419
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t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

State +

State =

State -

Figure 2.3: A small trellis for a simple HMM for CNV detection with three states {—,=,+} and T =8,
yielding a 3 x 8 matrix. Entries are represented by circles. After an iteration of forward filtering, it
contains the forward variables for each position and state. Relations used in the forward recursion are
indicated by arrows; here, each forward variable depends on all previous forward variables through the
transition matrix .A. After applying the backward algorithm, it contains the marginal state probabilities.
If instead the backward sampling algorithm is used, it contains the sampling weight to obtain a state
sequence variate q, shown here by filled circles.

and sampling q[t] using the resulting weights, yielding a time complexity of O(k®T). The
algorithm is illustrated in Fig. 2.3. The combination of this algorithm with the Gibbs sampling of

the entire HMM is called Forward-Backward Gibbs sampling (FBG).

2.7 Compressed Hidden Markov Models

Forward-backward sampling of the state sequence, despite its various advantages over direct
Gibbs (ScorT 2002), is still expensive for genome-sized data. Firstly, notice that the forward
variables need to be available for all states and data positions during Gibbs sampling; though
this memoization in a dynamic programming table, called a trellis in the context of HMM, avoids
exponential running times for the recursions shown above, it can grow to a considerable size.
Secondly, since in each iteration a number of terms quadratic in the number of latent states has
to be calculated at each position to obtain the forward variables, and a state has to be sampled at
each position in the backward step, running times become impractical, especially due to billions
of calls to a random number generator.

To alleviate these problems, MAHMUD & ScHLIEP (2011) have recently introduced compressed
FBG for Gaussian emissions by sampling over a shorter sequence of sufficient statistics of data
segments which are likely to come from the same underlying state, thereby decreasing the

size of the trellis by a constant compression factor, at the cost of approximate sampling. Let
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t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

State + ‘

State =

State - ‘

Figure 2.4: A compressed version of the trellis in Fig. 2.3 into 5 blocks. Notice that the number of
recursive relations (arrows) is reduced, as all emissions within each block are assumed to have been
generated by the same state. Notice that the sampled state sequence cannot change between states
within a block.

B = (BW)V"L1 be a partition of y into W blocks. Each block B, contains n,, elements. Let y[w][k]
the k-th element in B,,. The forward variable a,,(j) for this block needs to take into account the

n,, emissions, the transitions into state j, and the n,, — 1 self-transitions, which yields

nW
. —1 .
a,(j) = A7} E(uj,of-.Bw) > at,,_1(1)A;;, and
i=1

L (,u, o? | BW) = l_wl L (,u, o? | y[w][k]) .

k=1
This compression is illustrated in Fig. 2.4. The ideal block structure would correspond to the actual,

unknown segmentation of the data. Any subdivision thereof would decrease the compression
ratio, and thus the speedup, but still allow for recovery of the true breakpoints. In addition, such
a segmentation would yield sufficient statistics for the likelihood computation that corresponds
to the true parameters of the state generating a segment. Since the block structure is the target of
the inference, the authors use a heuristic motivated by kd-trees to create a static block structure.
The authors showed that the approximation error is small under reasonable state separation
assumptions. In such a setting, the emitting state likelihood dominates the forward variables,
whereas that of other states are close to zero, leading to negligible alternative state paths. This

allows for an approximation of marginal probabilities, and MPM segmentation.
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Chapter 3

Wavelet Transform

Our method uses the Haar wavelet transform to dynamically denoise and compress the input
data, allowing the Gibbs sampler to operate on different resolution levels. In this chapter, we

briefly review wavelet theory, closely following the exposition of MALLAT (2009).

3.1 Multiresolution analysis and wavelets

Let (,A, u) be a measure space, where (Q is the base set, A is a g-algebra over 2, and u is a

measure on A. Let
LP(Q,A,u) = {f Q- K,Ke{R,C} ,fmeasurable,f If (O)IPdu(x) < oo}
Q
be the space of p-integrable functions. Let
L%(R) := L*(R, B(R), )

be the space of square-integrable functions over the reals with Borel algebra B(R) and the

Lebesgue measure A, and likewise for subintervals of R. This is a Hilbert space with inner product

(f,g) ¢=J f(X)g(X)d?\(X)=f Fx)g(x)dx.
R —o0o

We are only concerned with functions over subsets of R, so the inner product commutes without

involving the complex conjugate. The inner product induces the norm

1£1= v/ (f. f).
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Two functions f, g are said to be orthogonal iff (f, g) = 0, and a function f is called normal iff

|If || = 1. In signal processing terms, square-integrability

f FGOPdx = (f, f) < oo

means that f has finite energy. L2(R) is a separable Hilbert space, i. e. it can be spanned by
an orthonormal basis, a set of basis functions v; and a set of coefficients a; such that, for each
feLl}(®),

+00

FO)= D aw(t) with a;=(f,v),

i=—00

Vi#£j: <vl-, vj> =0 (orthogonality), and
Vi:llvjl=1 (normality).

The goal of multiresolution analysis (MRA) (MALLAT 1989; MEYER & SALINGER 1992) is to
provide a sequence of well-behaved, nested subspaces, which allow to approximate a function
f € L%(R) at different levels of resolution. The differences between those resolution levels will
be captured by wavelet functions. An example for the Haar wavelet is shown in Fig. 3.1. Consider
an approximation space V; C L?(R), with resolution 277/, and its inverse 2/, called scale. For any
function f € L%(R), its projection Py, f onto V; provides a lower-resolution approximation. Let

V; be translation-invariant for integer multiples of scale 2 i.e.
feV; e f(t—2k)eV;, j kel

Further, let a family of such spaces V; be nested such that V;,; C V}, so that lim;_,, V; = {0}
and lim;_,_, V; = L?(R). This nesting is done in such a way that the spaces are dilated versions

of each other. More precisely,
t
f)ev,ef (5) EVig.

Each V; is spanned by an orthonormal set of scaling functions ¢; i, which are obtained by

translation and dilation of a certain function ¢ € L2(R) by

1 t—k
e . j,k € Z.
¢],k \/E(ﬁ( 2] )) J’ €

Hence, due to orthonormality, the approximating projection of f is obtained as

+00

Py f = Z (f+#ix) k-

k=—o00
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The nesting of function spaces V; C V;_; means that certain approximation details are lost
between resolution levels, since any function in V; can be expressed as a member of V;_;, but
not the other way round. To capture those details, let W; be the orthogonal complement of V;
with respect to V;_, i.e.

Vi, =V;eWw,
which implies
Py _f =Py f+Pyf.

This allows for the decomposition

i
2 —
LAR)=V;® P W,

j=—o0

for any i € Z, as well as a decomposition free of scaling functions,
(o]
L*R)= P W,
j=—00
The detail spaces W; are spanned by an orthonormal basis of wavelet functions 1) ; i, which
are derived from a mother wavelet 1 € L(R) by translation and dilations,

1 t—2/k
=g (5)

For more details on the properties of ¢ and the derivation of 1) through conjugate mirror filters,
see MALLAT (2009).
Equipped with those definitions, any function f € L?(R) can be expressed as a linear

combination of scaling functions and wavelets,

FO = cpdin()+ Z D dig k(o).
k=—o0 Jj=—00 k=—00

Here, c;  are called scale coefficients, and d;  are called detail coefficients or wavelet coefficients.

They can be expressed as inner products
Cik = <¢j,k:f>, and

djje = (Y f)-

The set of those coefficients is called the discrete wavelet transform (DWT).
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In computational applications, a physical signal f would often require the measurement,
storage and processing of infinitely many values, unless the signal is discrete in nature. Instead,
a vector f is obtained by sampling f at equidistant intervals. Let £? := L?(N, P(N), #) be the L?
space over the natural numbers with counting measure #. It is also a separable Hilbert space,
and can be treated as the discrete analogue of L2, where

(f.8) f<f t],g[t]) d#(t) =Y flt]glt].

teN

Notice that we prefer this notation to f - g to emphasize its connection to the function space.
The discrete versions of the wavelets are then obtained as v; ,[t] := v; x(t) for t €N.

Further, assume finitely many sampling points such that f € RT. For the moment, assume
T is a power of 2; data with T & 2~ can be treated as truncation of longer data, which can be
generated using various padding methods (STRANG & NGUYEN 1997). The wavelet basis is then

finite, and forms the rows of a matrix W € RT*T

, such that Wy yields the vector of wavelet
coefficients. This is called the discrete-time wavelet transform (DTWT), though DWT is often used,
as any software implementation is by necessity discrete. Since the wavelet basis is orthonormal,
W is orthogonal, i.e. W~! = WT. Notice that the order of rows in }V is unspecified, and hence

different permutations of the coefficient vector are possible. Surprisingly, there are linear-time

algorithms to calculate Wy (SWELDENS 1995; MaLLAT 1989).

3.2 Wavelet regression

One of the main applications of the discrete-time wavelet transform is in functional regression,
specifically in a method known as wavelet thresholding or shrinkage. Let the observed signal be a

sampling of a function f corrupted by centered Gaussian noise, i. e.
y=f+e,  €lt]~;q4 N(,0?%).

The goal of regression is to find an estimate jA‘ which approximates f using the available data
y. The quality of regression is usually discussed in the framework of decision theory. Before we
discuss wavelet regression, we review some central concepts and results. The exposition follows
ROBERT (2007) and MarLaT (2009), with terminology following the former. An overview of

relevant concepts is shown in Fig. 3.2.
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loss L(6, f) j

E, [L(5, f)’w/ FIL(S, F)1y]

‘ frequentist posterior ex-
ted loss
risk R(6 ’ pec
o p(5.£1y)
supscrR(6, ) Ef [R(S, f \]\ /l{y[p(c?,f 1¥)]
‘ maximum ’ integrated
risk R(5,F) risk R(8, F) )
arginfs; p(5, f y)
infs R(6,TF) infs R(5, F)
R(F) = R(F)
“least favorable prior”
v \
[minimax risk R(]F)] [ Bayes risk R(F) }

Figure 3.2: An overview of decision theory for regression. Concepts aligned with a frequentist
framework are shown in red, and Bayesian in blue.

3.2.1 Decision theory for regression operators

Let F be a set of functions such that f € F, and F be a distribution over F. Let 6 be a decision
operator, i. e. a regression method for estimating f :=06(y). Let L(6(y), f) be a non-negative
loss function which quantifies the error for estimating f by j/E The frequentist risk, or risk for

short, quantifies the expected loss

R(5,f)=E,[L(6(¥), A f]= f L5, fIP(y|f)dy (GB.1

over all data instances for a given f.
In order to summarize the risk across all instances of f, there are two principle ways. If its
prior distribution F is known, the integrated risk is obtained as the expectation with respect to F

as
R(6,7) :=Ef [R(5,f)]=fR(5,f)P(f)df- (3.2)

The operator & » achieving the Bayes risk!

R(F) :=R(5,F) = infR(5, F) (3.3)

!Naming conventions vary among authors: MaLLaT (2009) calls the posterior risk the Bayes risk, and that achieved
by & 5 is called the minimum Bayes risk.
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is called a Bayes estimator. On the other hand, if such a prior is not known, the maximum risk
R(6,TF) :=supR(5, f).
feF

is the largest risk incurred by any f in F. An operator 65 achieving the minimax risk
R(F) := (6, F) = infR(5,F),

is called a minimax estimator. It is easy to show that the minimax risk is an upper bound to the
Bayes risk, i. e.

R(F) < R(F),

since including prior information on the distribution of f can only improve the estimation. By
the minimax theorem (WALD 1945; Komiva 1988; SioN 1958) minimax estimations are Bayes

estimations for a least favorable prior, i. e. a prior distribution F, achieving the minimax risk,
R(F) = R(F).

Though being a very conservative criterion, minimaxity tries to capture the notion of an optimal
estimator. For instance, the sample mean is minimax for estimating the mean of i.i.d. Gaussian
random variables, and maximum likelihood estimates for parametric settings are asymptotically
locally minimax (see DONOHO, JOHNSTONE, et al. (1995) for a detailed discussion).

The question remains as to how a Bayes estimator can be derived. Notice that the above
definitions are based on a frequentist interpretation of risk, as it is defined for a known f and
integrated over all possible variates y, even though f is latent and only one realization of y is
observed. It is therefore more natural to take the Bayesian approach: the posterior expected loss

or posterior risk
p(6, fly)=Eg[L(5,f)ly]l= f L5, AIP(fly)df (B34

quantifies the expected loss for the given data y across all true functions f ~ F with respect
to a prior distribution F. The Bayes estimator can then be obtained by selecting the optimal

estimator for each y individually as

or(y) = argirb_lfp(&f ly),
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since

R(5,f)=JR(5,f)7’(f)df=fP(5:f|J’)77(}’)dJ’- (3.5)

This is of particular interest if the loss function is quadratic, i. e.

L), =18()— I

In this case, a Bayes estimator for each y corresponds to the mean of the posterior distribution,

the posterior expectation

5;(}’)=]E[f|y]=Jf7’(f|y)df- (3.6

Expectation holds component-wise,

—~

Ve: flt]=E[flt]ly], (3.7

see MALLAT (2009, Theorem 11.1). This fact will be used later in this thesis to connect Hidden
Markov Models to wavelet regression. Other loss functions yield different statistics of the
posterior distribution. For instance, under certain conditions (BASSETT & DERIDE 2018), the

Bayes estimator for the 0-1 loss

0 lIf=fll<e

L(6,f) = ,
ol

€ > 0, converges to the posterior mode, more commonly called the maximum a posteriori (MAP)

estimate, for e — 0.

3.2.2 Minimaxity of wavelet thresholding

In regression settings, it is often impossible in practice to formulate a prior signal distribution F,
and the Bayes estimator (Eq. (3.7)) is generally unattainable. For instance, no practical statistical
model exists to accurately describe photographic images. Therefore, other criteria, such as
minimaxity with respect to a signal class F, are usually employed to select a regression method
(admissibility being another popular criterion). Unfortunately, deriving minimax estimators is
often hard, and they tend to be hard to compute. However, good approximations can sometimes

be obtained. Wavelets in particular allow for a very simple approximation of minimaxity.
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Consider a diagonal estimator 6 in which each detail coefficient d;  is attenuated by a factor

a; x, which depends on d; ;. itself. The risk is then
R(5,£) =E[IIf —50I2] =D E[[{w;x £)—ajx (9,0 V)]
ik

Obviously, this attenuation requires knowledge of f, and is therefore not attainable, unless an
oracle for f is provided. For theoretical purposes, consider the existence of an oracle having

knowledge of f. The oracle attenuator 5£tt minimizes the risk by setting

(0. )] _
(0 £)] + 02

Aj ke =

Restricting the attenuation coefficients to {0,1} yields the oracle projector 51{; for which the best

risk is obtained by

1 s >
| sz e

0 [(juf)l<o
In DoNoHO & JOHNSTONE (1994), this method is referred to as selective wavelet reconstruction. It

can be shown that the oracle projection risk comes close to the optimal attenuation, since
1 f
2R (6 £) <R(80c f) <R (8] 1).
and hence
f
R(8%.f) < 2R(8],.f).
Though the oracle is inaccessible, oracle estimators can be approximated surprisingly well.

Let the universal threshold be

Ayi=V2InTo. (3.9

The hard-thresholding estimator &, is a projector using

1 Ly =2,
ajr = [Wiev] (3.10)

0 [{jey)] <A

which achieves a risk of

R(En.f) < InT +1) (0% +R (8L, f)) (3.11)
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for T = 4; see MaLLAT (2009, Theorem 11.7) for details. 6, is optimal in the sense that the
risk cannot be improved by any other diagonal estimator. It is also asymptotically minimax over
a wide range of smoothness classes (DoNOHO & JOHNSTONE 1995). Most importantly for this
thesis, it is asymptotically minimax over piecewise a-Lipschitz functions, including the case where
F is the set of piecewise-constant functions.

Using universal thresholding for wavelet regression, also called wavelet shrinkage, has a very
intuitive explanation: Following DoNoHO & JOHNSTONE (1994), a wavelet is said to have m
vanishing moments if

<Pi,'¢1> =0, 0<i<m,pscalar.

It follows that v is orthogonal to any polynomial f of degree less than m, since

m—1 m—1

<Zpi,w> =>.(p.y)=0.

i=1 i=1
This property is called polynomial suppression (MarLaT 2009). It follows that the detail coefficients
in any wavelet decomposition of such a polynomial f are all zero, as it can be expressed entirely
in terms of the scaling functions. Furthermore, any function in C™ is well approximated by
a (m — 1)-degree Taylor polynomial p, about point v over a finite interval [v —h,v + h]. Let
f =p,+¢€,. Then

<fﬂPj,k> = <6v>¢j,k>,

so the wavelet coefficient is negligible, as it only measures the Taylor approximation error, which

is bounded by the Lipschitz coefficient of f as
le,()| <K|t—v|*, K>0, andm=|a]<n.

Since the wavelet transform is linear, it acts on the signal and noise component independently,
i.e.
Wy =W(f +€)=Wf + We.
The central idea in wavelet shrinkage is that the detail coefficients d; ; = < £, j,k> are 0 if f is

polynomial over the entire support of v ; ; due to polynomial suppression, or vanishingly small

if f is locally m-times differentiable. Furthermore, due to orthogonality of W, We is again a
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random vector of i.i.d. random variables distributed as N(0, 02), so the noise is maintained under

the wavelet transform. In general, orthogonal maps preserve the L2 norm, so
IWell = llell and |yl =llyll.

It follows that for piecewise polynomial functions with only a few discontinuities, most signal

coefficients < £,y j,k> are zero due to polynomial suppression, hence

(v, 910) = (e %)

for most j,k, i. e. most wavelet coefficients arise entirely from noise. As the noise component of
the data is preserved as a Gaussian vector of variance o2 under the orthogonal transformation
W, most of the T detail coefficients are themselves i.i.d. Gaussian random variables. The idea is
then to find a way to create a vector w by setting a suitable set of coefficients in Wf to zero,
and then use the inverse wavelet transform as a regression )A“ := WTw. Ideally, these would be
those exactly those noise coefficients. As a filtering criterion, the universal threshold can thus be
interpreted as the expected maximum deviation of T such Gaussian random variables, which is
at most A, == V2InTo by Cramér-Chernoff’s method (MassarT 2003). A simple derivation of

this result has appeared multiple times in the mathematical vernacular:

T

Proposition 3.2.1 (Expected maximum of Gaussian random variables). Let (X;);_, a sequence of

T centered i.i.d Gaussian random variables with variance 2. Let Z := max; X; Then,
E[Z]<v2InTo

Proof. Using Jensen’s inequality,
T
exp(tE[Z]) <E[exp(tZ)]=E [exp (t maxXl-)] =E [maxexp(tXi)] < ZIE [exp (tX;)].
' ' i=1

The last term can be expressed a product of Gaussian moment-generating functions
20°
exp| tu+t ?

exp(tE[Z]) < Texp (tz%z)

with u; =0, hence
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and
InT o2
E[Z]S —+t—
t 2
The minimum is attained at t = Y2 and the claim follows. O

(o2

The same upper bound can be shown for Z := max; |X;|, though this expectation will generally
be larger. Furthermore, the maximum noise coefficient is just below A, with high probability

(BERMAN 1992):

. InlnT
i, (0 €[22 1, ]) 1

0<i<T

3.3 The Haar wavelet

The HMM treated in this thesis generate piecewise constant data with noise, albeit with potentially
different noise variances for each state. As the underlying sequence of means is piecewise linear,
we can base our method on the simplest, piecewise constant form of wavelets. This decomposition
goes back over a century to the work of Haar (1910), and is widely recognized as the first example
of a wavelet transform, long before the broader theory was established. Let the Haar scaling

function be

1 0<t<1
P(t) =

0 elsewhere.

The Haar wavelet constructed from that scaling function is

1 0<t<3

Y(O) =11

<t<l1

NI=

0 elsewhere.

As before, the basis elements are defined as

1 t—2/k
=g ()

where 4 ; ;. has non-zero support over the interval [2/k,2/(k 4+ 1)). The Haar wavelet has one

vanishing moment, so in general it is orthogonal only to constant functions.
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The discrete-time Haar wavelet transform WYy for a vector y of size T consists of the scaling
coefficient ¢, o as well as the detail coefficients d; x, j € {1,...,1dT}, k € {O, U s 1}. The

o7

rows of W consist of all 1  as well as ¢. Let
. . 1 .
+ . 9j E Y - — «_9J
bj’k =2k, bj,k =2 (k+ 2), and b].’k =2/(k+1)
be the position after the left, central and right discontinuity, respectively. Let
. + [t —~
Ligi={bl....b5 =1}  Ry={b5,...,b;, —1}

denote the index sets of the left (positive) and right (negative) support interval of ¥ 1, i.e. v ;[t] >
Oforte€ L) and;,;[t] <O fort €R;. Note that v;  is zero outside of these index sets, so
we ignore those entries and only refer to L UR as the support of the wavelet. The wavelet basis is
illustrated in Fig. 3.1.

W.lo.g., letk=0,v;:=1;,, Lj :=L;o, and R; :=R; o. Recall that for X; ~ N(u;, 01.2) and

s; € {—1,1}, the term
ZsiaiXi ~N (Zsi,u,i,Zaizaz),
i i i
hence
1
(e,9;)= —( e[t]— e[t]) ~N(0,02).

As expected, the noise is preserved under the Haar wavelet transform.
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Chapter 4

Haar Wavelet Compression

In this chapter, we introduce the core methodological contribution of this thesis, using the
established theory introduced in the previous chapters. We show that the expectation of posterior
marginal state means in homoscedastic Gaussian Hidden Markov Model (HMM) is a Bayes
estimator under prior parameters 7, and its risk is limited by the minimax risk of Haar wavelet
regression. Using the positions of discontinuities as boundaries, blocks created by Haar wavelet
compression preserve the approximate positions of true state transitions, and the probability
of under-compression decreases with the separation of state means. Furthermore, we derive
a dynamic compression scheme for heteroscedastic HMM, and implement it using a wavelet
tree data structure. We provide an evaluation of our method on simulated and biomedical
data, showing significant improvements in speed and convergence behavior over uncompressed
Forward-Backward Gibbs sampling (FBG). Finally, we derive bounds on the bias incurred on
the forward variables by compression for general HMM, and show that this tends to bias the
forward-backward sampling procedure towards the maximum posterior marginal state within
each compression block. We conjecture that our software HaMMLET produces an approximation
of the maximum posterior margins (MPM) segmentation (see Section 2.4).

The central approach of this thesis is to integrate Haar wavelet regression with Forward-
Backward Gibbs sampling, in order to derive approximate state marginals and Bayesian smoothing
for Hidden Markov models. Significant speedup and memory savings can be obtained by data
compression in which the discontinuities in the piecewise constant function _/f\, obtained from

Haar wavelet regression towards the sequence f of emission means of the true state sequence q,
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are used to define boundaries for data compression blocks:

Definition 4.0.1 (Haar wavelet compression). Let y be a vector of input values, and d some vector
of Haar wavelet coefficients of the same dimensionality (typically the result of some regression method
on Wy, such as wavelet shrinkage). Let y be partitioned into blocks of sufficient statistics such that
a block starts at position t if and only if there exists some j, k such that d;  # 0 and at least one of
b;.tk, bj.fk or bj_,k is equal to t (see p. 43). In other words, the data is compressed into blocks defined

by the discontinuities in WTd.

Notice that only projection operators, i.e. methods which set coefficients to zero, yield
compression into blocks of at least two position, since any non-zero coefficient d;; will introduce
a discontinuity, and hence a compression block boundary bé, and in many cases at is left and
right discontinuities b;’j and bl._]. as well. Therefore, only projectors should be considered in a
compression setting, and among them, thresholding methods achieve the best risk, with the

universal threshold approaching the minimax risk.

4.1 Homoscedastic HMM

This proposal is based on the observation that HMM inference and regression methods deal with
similar input data. Consider our observed data y to consist of a piecewise-constant data vector of
means, f, corrupted by additive noise €, which is typically Gaussian. In a regression setting, the
noise is considered to be homoscedastic, i. e. of uniform variance, while the number of distinct
values in f is not limited a priori. On the other hand, for data generated by a Gaussian HMM,
the number of distinct means is limited by the number of states, while there may be different
noise variances associated with each component. The obvious intersection case is data generated
by an HMM which has the same finite emission variance in each component, which yields a

homoscedastic random vector y:

Definition 4.1.1 (Homoscedastic HMM (o-HMM)). We call a Gaussian Hidden Markov model a
homoscedastic HMM of variance o2, or o-HMM, iff 0; = (u;, 02). State labels can be identified

with the emission means, so that the state sequence q € {1,2,... }T can be written as the discrete
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sampling
f = Wqnaps- - - olqrr) € (b, -}

of a piecewise constant function f € T such that
Veell,...,T}: flt]=f(f), and

Vxelt,t+1): f(x):= f[t].

A o-HMM thus defines a probability distribution over F.

Since we can easily convert between f and f, and minimaxity results for wavelet regression
apply to discrete samplings f of f, we forgo the distinction between R? and F, and we refer
to the vector f as a piecewise-constant function. Hence, on the one hand, data generated by a
o-HMM can be treated as a piecewise constant function with i.i.d. Gaussian noise, where f can
be approximated by regression. On the other hand, f is a hidden Markov chain which has an
explicit distribution given the HMM parameters, allowing for an explicit formulation of Bayes risk.
Thus, the observed data y can be treated both within a regression as well as an HMM framework,
allowing for an integration of wavelets and FBG.

As f is piecewise constant, the Haar wavelet with its one vanishing moment is the obvious

2

candidate for regression. The emission variance o* can be estimated directly using the standard

approach of taking the median absolute value of finest detail coefficients |d1’k , see MALLAT
(2009, p. 565) for details. Having the smallest support of 2, very few wavelets will contain
a discontinuity in f in their support. Since d; ; ~ N(O, 02), this corresponds to the median

absolute deviation from u = 0, and hence

~2 med |d1:k| : i
OMAD = T(%) = (06745 mked |d1’k|) >

where & is the PDF of the standard normal distribution N (0, 1). Using the universal threshold
V2InT oy, (DONOHO & JOHNSTONE 1994), with high probability, the resulting estimate fth
will set to zero all coefficients of wavelets with support over ranges that do not contain state
transitions, and hence have no discontinuity in f. Conversely, it will keep the coefficients of
those wavelets which have state transitions within their support. This creates discontinuities in
the regression result around state transitions. We will develop the connection to HMM in the

sections below.
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4.2 Connection between HMM and wavelets

In this section, we relate wavelet shrinkage to HMM smoothing. Since o-HMM define distributions
over F, we define two Bayes estimators based on the posterior state marginals. Under quadratic
loss, these are obtained by position-wise posterior means, conditioned on the observed data y.
We argue that changes in one of these estimators reflect strong changes in the posterior state
distribution. Since minimax estimators are Bayes estimators for least favorable priors, Haar
wavelet regression appears as a limiting case, and block boundaries can be expected to occur
around changes in the marginal state distribution. We also discuss how wavelet compression

might bias the Gibbs sampler towards the posterior parameters, yielding faster convergence.

Definition 4.2.1 (Smoothing estimator). Let H be a c-HMM with the hidden Markov chain
M(f)=P(fl|A0,m)
over the state space {u;}. Let

ri(t)=P(qlt]=jly,8, A, n)

be the marginal probability to be in state j at position t, as obtained by HMM smoothing via the

forward-backward algorithm (Section 2.4.2). Then we call the estimator f M =0 p(y) with

fultl= ZYi(f)Mi
i
the smoothing estimator for f with respect to H.

An example for this estimator is shown in Fig. 4.1. Notice how f ,, provides a summary of
the behavior of the marginal state distributions, and can therefore be used as an indicator of the

loci at which the marginal state probabilities change:

Proposition 4.2.1. Given data y, the change in the smoothing estimator between positions t and u

is
k—1

Falt]=F aalud = D (r5(0) = 1)) (= ),

j=1

and that difference between any two positions scales linearly with the separation of means.



48

4 T T T T T

3t |

2| m J |
> 1} l———-ﬂ—‘

0 ’—! N
—1F |
_2 I I I I I

0 100 200 300 400 500
>
E
©
QO
o
o
o
©
)
©
£
ol
O
=
0 100 200 300 400 500
t

Figure 4.1: Smoothing estimator f (¥) (top figure, red curve) for a state sequence f (black curve),
and emission values y (gray dots) generated by a 3-state o-HMM with known parameters. Wavelet
thresholding fth (green curve) is the Bayes estimator that minimizes the risk incurred under the least
favorable parametrization of a c-HMM. The bottom figure shows the true marginal state distributions
at each position. White vertical lines indicate the position of discontinuities in ?th and hence the
compression block boundaries.

Proof. Letd; = y;(u)—v;(t) be the change in marginal state probability for state j, and y; :=

. k k
v;(t). Since ijl ri(t) = ijl v;(w) =1, we have

wmlt]=F plul =
k—1 k—1 k—1 k—1 k—1
Dokt 1- Zn —[ 220+ +{1- Zh)— d; | | e
j=1 j=1 j=1 j=1
k—1 1 k—1 k—1
Znul + U ZY]Uk Yju] Zdju] py + Vil |+ d;ux
j=1 j= j=1 j=1
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Further, wl.o.g. let u; < uy < - < . Then w —u; = |uk —uj{ for k > j, and for any scaling

factor a € R of mean separation,

k—1 k—1
Zdja|.uk_Uj| Zazdj|uk—uj| :a(?/\/l[t]_f/\/l[u])-

j=1 j=1

O

Notice that shifts in f ¢ are small if means are not well separated, changes in marginal state
probabilities are small, or in rare cases, the vector of changes d; is orthogonal to that of means
;. Conversely, large mean separation or large state probability changes increase shifts in }‘\ M-

Having obtained a regression operator which captures significant changes in the marginal
state distribution, we now relate it to wavelet regression using the framework of Bayesian decision

theory:

Proposition 4.2.2. §,, is a Bayes estimator for f with respect to prior P(f|A,m,0) under

quadratic loss || f — SM(y)HZ.

Proof. For a quadratic loss function, any Bayes estimator equals the mean of the posterior
distribution given y (Eq. (3.7)). Conditioning the hidden Markov chain M(f) on the observed

data y yields the posterior
MfIY)=P(flA0,7,y),
i. e. the state sequence distribution in the HMM for which M is the latent state process. Then,

Fult1=E[f[t]|A,6,7,y] =ff[t]7’(f|«4,9,ﬂ,y)df[t],

and therefore
Falt]=D uP(qlt]=j1A4,0,my) = > ur;(t)
J j

attains the Bayes risk R(M). O

While a o-HMM plays the role of a prior distribution on F in the decision-theoretic sense, we

can extend the argument to Bayesian o-HMM with a true prior for the model:

Proposition 4.2.3 (HMM estimator). Let 6 .(y) with

flt1:=E[flc]ly,7]
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be called HMM estimator for f. This is a Bayes estimator for a prior distribution F =P (f |y,7)
over the set of piecewise constant functions F under quadratic loss. Its risk under a least favorable
parametrization M, := M(f | %,) is bounded by the minimax risk over F, asymptotically attained
by Haar wavelet regression,

R(M,) < R(F).

Proof. This follows directly from the results in Section 3.2. Since the parameters to M them-
selves are subject to priors of their own, it is obvious that P(f | y,7), analogous to P(q |y,7)
(Eq. (2.20)), defines a prior distribution over F in the decision-theoretic sense, with all prior
information about the HMM encoded in 7. Under quadratic loss, the Bayes estimator for each y

is obtained as
ff[t]P(f[t] ly,2)df[t]=E[f[t]ly,z].

O

Notice that this estimator is hard to compute for the same reasons that we use MCMC to sample
the HMM posterior in the first place. It only serves to justify the use of Haar wavelet compression.
However, in analogy to Eq. (2.22), it could be easily approximated using Forward-Backward
Gibbs sampling, as

= 1 M)
fT[t]NN. 1‘uq[t]'
1=

Since both estimators fth and fT are bounded by the minimax risk, and wavelet thresholding
typically yields a good approximation of f, we expect ||fth _?T || to be small. Consequently, we
expect the discontinuities of the wavelet regression ?th to roughly correspond to changes in the
posterior state distribution of a Bayesian HMM. Hence, by virtue of being a minimax estimator of
f, wavelet shrinkage introduces information about the true posterior state marginals into the
sampling process before the posterior distribution is ever available to the sampler. We believe
this makes for a strong case to use those discontinuities as block boundaries for compression.

FBG samples from P (f | y,7) only once the underlying Markov chain has converged. While
we argue that wavelet compression is compatible with a c-HMM in the sense that changes in its
value correspond to large changes in posterior state distribution, it is worthwhile to investigate

whether a similar statement can be made about the burn-in phase using the smoothing estimator,
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which, by virtue of being Bayes, is bounded by the minimax risk as well. Specifically, one might
be inclined to conclude that we can expect ||fth —f |l to be small, in analogy to ||;‘\t}1 —frll, but
we will argue that this is not the case.

In the usual decision theoretic settings, risk calculations are devices used to rank the quality
of estimators under the different prior assumptions a statistician can make, and the minimax risk
bounds the risk under the least-favorable prior knowledge she might have about the parameter
in question. As such, any risk calculation will not account for any information not included in
the prior. Specifically, the integrated risk (Eq. (3.2)) effectively only integrates over the domain
of the posterior, either by discounting the frequentist risk (Eq. (3.1)) by a factor of 0 whenever
P(f) =0, or, equivalently, by discounting the loss whenever P (f |y) = 0 in the calculation of
the posterior expected loss (Eq. (3.4)). Whenever the true f is outside of the posterior domain,
the loss it incurs is completely removed from consideration. Risk therefore describes the loss the
statistician expects subjectively, as opposed to the loss she is expected to experience objectively for
a true f.

In the context of a Bayesian HMM, the risk of the HMM estimator truly corresponds to the
prior expectations we have about the latent parameters, as encoded by our hyperparameters 7.
The HMM estimator summarizes the posterior distribution of the Bayesian HMM from which we
sample after FBG has converged. The smoothing estimator, on the other hand, summarizes the
posterior distribution

7D(q |y~479;ﬂ7),

from which we sample the state sequence in each FBG iteration, through the position-wise
weighted average of state means. Its risk, too, is bounded by the minimax risk; however, this
distribution does not encode subjective prior knowledge in the Bayesian sense: any state sequence
for which at least one emission mean is not in @ has probability zero in both the prior and the
posterior. It is extremely unlikely for the true state means to be sampled precisely, especially
during burn-in, hence the true loss incurred in sampling is not accounted for in most cases. For
this reason, it would be a fallacy to expect that ||ft}1 —]A‘ I is small, since the assumptions in a
prior M are violated unless all its state means are those of f. Perhaps not surprisingly, the block

boundaries in wavelet compression cannot be expected to follow the most likely state transitions
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for arbitrary HMM parameters for M. While this could be seen as problematic, we would argue
that in fact this might help with convergence behavior of FBG. Wavelet compression changes the
distribution P(q |y,A,0,7) by suppressing state distributions occurring far away from changes

in the true posterior marginals of P(q |y, 7) in the Bayesian HMM during the burn-in phase.

4.3 Heteroscedastic HMM

While we show that Haar wavelet regression can be used as an approximation for the expected
posterior state means in a o-HMM, the squared loss itself is of limited concern when regression
is used for compression, as it is the preservation of discontinuities in f, induced by states with
separated means, that prevents over-compression. This is a concern in particular in that wavelet
shrinkage using the universal threshold has been found to underfit the data (ANTONIADIS &
OpPPENHEIM 1995; FaN et al. 1993). Furthermore, results concerning estimators are not easily
extended to heteroscedastic y, as obtained by an HMM in which emission variances are not the

same for all states.

4.3.1 Preservation of discontinuities

It is well-established that wavelet regression yields high-amplitude coefficients for wavelets
spanning a discontinuity in f. For homoscedastic data, breakpoint preservation at coarser
resolution levels follows directly from oracle projection, for which universal thresholding is
minimax and no better diagonal estimator can be obtained: Assume that, at scale j, all emissions
at t € L; have emission mean u;, and those in R; have ug. If we assume that <f,1/Jj’k> >0

whenever f has a discontinuity at bj.fk, oracle projection (Eq. (3.8)) would set

1 Au
aj’k =
0 else,

2
> =
\/EO-

creating discontinuities at bj.tk in _? Means with sufficiently large separation Au are therefore

unproblematic. However, large noise variance o2 can cause an obvious problem. An oracle
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concerned with breakpoint preservation, however, would set

1 Au>0
a]-’k ==
0 else
Asymptotically, the two are equivalent, as
lim ic =0
]j—0Q ,‘/E ?

meaning that even breakpoints between insufficiently well separated states are indeed preserved
for sufficiently long state durations. Notice that any introduction of additional discontinuities
around that position would only create additional approximate breakpoints, and the number of
spurious discontinuities far away from state transitions is limited, since noise coefficients are
removed with high probability.

For the heteroscedastic Gaussian case with general state emission variances, the probability
of missing a breakpoint can be quantified directly. The inner product of a Haar wavelet with the
data is a sum of Gaussian random variables with means corresponding to the latent parameters
Ugrt for all ¢ in the support interval. It thus follows directly from the additive properties of the

Normal distribution that the coefficients are distributed as

(y.9,;) ~N (g .02 ), with

1
MW:WM%jE:Z%m—Z%m’md

tel; teR;
1
2 oy e\ = & 2
Oq.j = <¢J’ €> 2j Z gLty
tELJ‘URJ‘
Note how the mean is determined by the signal coefficient alone, and that the variance, determined

solely by the noise coefficients, is always the average noise variance across the support, regardless

of j.
Due to the symmetry of the normal distribution, let u; > ug and Ay = (u; —ug) w.l.o.g., so
that <'(/) js q) = gA,u is non-negative. It follows that

2 2
o7 +O'R)

(e} (0.2



54

and hence

ﬁA a%+a§)

.
(i) =L o ) o (o T

For any given threshold A, we can use this density to directly quantify the probability of under-

compressing a state transition as
VY 2
1 (‘Fau—x)
———exp| —————
2 2
V(o +02) 01+ 0k

This integral tends to O for a large shift Ay away from 0, smaller sums of noise variances, or

A
P((y,i/)j>€[—7t,7t])=J dx.
—A

larger scale j. Note that this distribution could also be used directly if a specific mean difference
is to be resolved with a given probability at a given scale. In practice, however, we found that

such measures were unnecessary for the data we analyzed.

4.3.2 Dynamic Haar compression

The homoscedastic case does not typically occur in practice. Even on experimental platforms such
as aCGH, non-diploid states tend to have higher variance. As a result, a direct estimate of emission
variances like the one above is not available. Instead, assume 0 was known. As lower thresholds

remove less wavelet coefficients, thereby retaining a higher number of discontinuities, which

2
min

correspond to potential state transitions, using the minimum variance 0. € 0 is a sensible
way to create compressed data via wavelet shrinkage. Parts of the data generated by states
whose emission variance equals O'Iznin will be compressed as before due to polynomial suppression.
Higher-variance regions will contain wavelets higher than expected for T observations of minimum
variance, thus retaining additional wavelets and discontinuities. As the set of breakpoints for

higher thresholds is a subset of those for lower ones, these regions will be compressed like regions

2
min?

with noise variance o with additional, superfluous block boundaries thrown in. In other
words, high-variance regions will be under-compressed, but no block boundary will be missed
which wouldn’t be missed in the uniform variance case as well.

Unfortunately, 6 is typically latent and has to be inferred. FBG converges to the correct 0
over time, providing increasingly accurate a priori samples at each iteration. Therefore, samples

of 6 can be used to derive approximate noise levels. We hence propose the following simple

2

approach: In each FBG sampling iteration, we use the smallest sampled variance parameter o .
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Algorithm 1 Dynamically adaptive FBG for HMMs

1: procedure HAMMLET(y, T 4, Tg, Tr)
2: T |yl > get data size
3 A—+2InT > constant factor in universal threshold
4 A~P(A|TY) > prior sampling of transition probabilities
5: 0~ P(O]|7y) > prior sampling of emission parameters
6 n~ P(n|t,) > prior sampling of state distribution
7 fori<—1,...,N do > iterate Gibbs sampler
8 O min < Ming {Gyap, T | criz €0} > minimum emission variance
9: Create block sequence B from threshold Ao ;,

10: q ~P(q|AB,0,r) using Forward-Backward sampling

11: Add count of marginal states for q to result

12: A~P(A]7)=P(Aln,q,74) o< Pr,q | APAIT,)

13: 0~P(0|7;)=P(01q,B,7¢) < P(q,B|0)P(0]|7g)

14: n~P(n|7,)=P(r|Aq,t,) ¢ P(Aq|m)P(n|T,)

to create a new block sequence via wavelet thresholding (Algorithm 1). The method is illustrated
in Fig. 4.2.

A potential problem could arise if all sampled variances are too large. In this case, blocks
would be under-segmented, yield wrong posterior variances and hide possible state transitions.
As a safeguard against over-compression, we use UI%A Ap s an estimate of the variance in the
dominant component, and modify the threshold definition to A - min {Gyap, 0; € 0}. If the data
is not i.i.d., 61%/[ ap Will systematically underestimate the true variance (WANG & WaNG 2007). In

this case, the blocks get smaller than necessary, thus decreasing the compression.

4.3.3 The wavelet tree data structure

The necessity to recreate a new block sequence in each iteration based on the most recent estimate
of the smallest variance parameter creates the challenge of doing so with little computational
overhead, specifically without repeatedly computing the inverse wavelet transform or considering
all T elements in other ways. We achieve this by creating a simple tree-based data structure.
The pyramid algorithm yields d sorted according to (j, k). Again, let h:=1d T, and j :=h—]j.
We can map the wavelet 1) ; ;. to a perfect binary tree of height h such that all wavelets for scale j
are nodes on level j, nodes within each level are sorted according to k, and j is increasing from
the leaves to the root (Fig. 4.3). The vector d represents a breadth-first search (BFS) traversal of

that tree, with d; ;. being the entry at position |2/ |+ k. Adding y[i] as the i-th leaf on level j = 0,
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Figure 4.2: Overview of HAMMLET. Instead of individual computations per observation (panel a),
Forward-Backward Gibbs Sampling is performed on a compressed version of the data, using sufficient
statistics for block-wise computations (panel b) to accelerate inference in Bayesian Hidden Markov
Models. During the sampling (panel ¢) parameters and copy number sequences are sampled iteratively.
During each iteration, the sampled variances determine which coefficients of the data’s Haar wavelet
transform are dynamically set to zero. This controls potential break points at finer or coarser resolution
or, equivalently, defines blocks of variable number and size (panel c, bottom).

each non-leaf node represents a wavelet which is non-zero for the n := 2/ data points y[t], for
t in the interval I  := [kn, (k + 1)n — 1] stored in the leaves below; notice that for the leaves,
kn=t.

This implies that the leaves in any subtree all have the same value after wavelet thresholding
if all the wavelets in this subtree are set to zero. We can hence avoid computing the inverse
wavelet transform to create blocks. Instead, each node stores the maximum absolute wavelet
coefficient in the entire subtree, as well as the sufficient statistics required for calculating the
likelihood function. More formally, a node N; . corresponds to wavelet v; , with j =h —j and
t =k2/ (3_1 o is simply constant on the [0, 1) interval and has no effect on block creation, thus
we discard it). Essentially, j numbers the levels beginning at the leaves, and ¢t marks the start
position of the block when pruning the subtree rooted at N; ;. The members stored in each node

are:



57

— DFS array (i+1)
16F (oo, 14
e e wavelet tree
- = pruning jumps (i+2n-1)
8t 13
<
o S
N N
‘w4t 12 §
X
3 9
m
2+ 11
1L 10

Starting position of block (t)

Figure 4.3: Mapping of wavelets v; , and data points y, to tree nodes N; .. Each node is the root of a
subtree with n = 2/ leaves; pruning that subtree yields a block of size n, starting at position t. For
instance, the node N ¢ is located at position 13 of the DFS array (solid line), and corresponds to the
wavelet 15 3. A block of size n = 2 can be created by pruning the subtree, which amounts to advancing
by 2n—1 = 3 positions (dashed line), yielding N, ¢ at position 16, which is the wavelet v, ;. Thus the
number of steps for creating blocks per iteration is at most the number of nodes in the tree, and thus
strictly smaller than 2T.

* The number of leaves, corresponding to the block size:

N;[n]:=2

* The sum of data points stored in the subtree leaves:

Nj[21]:= > yli]

i€l

 Similarly, the sum of squares:

Nj [Zo]:= > ylil?

l‘EIj’k
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* The maximum absolute wavelet coefficient of the subtree, including the current d; ; itself:

}

All these values can be computed recursively from the child nodes in linear time. As some real

No.ld]=0  Njso,[d]:=max { ’dh—jczf’/w
J=]

t<t’'<t+2/

data sets contain salt-and-pepper noise, which manifests as isolated large coefficients on the
lowest level, its is possible to ignore the first level in the maximum computation so that no
information to create a single-element block for outliers is passed up the tree. We refer to this
technique as noise control. Notice that this does not imply that blocks are only created at even ¢,
since true transitions manifest in coefficients on multiple levels.

The block creation algorithm is simple: upon construction, the tree is converted to depth-first
search (DFS) order, which simply amounts to sorting the BFS array according to (kn, j), and
can be performed using linear-time algorithms such as radix sort; internally, we implemented a
different linear-time implementation mimicking tree traversal using a stack. Given a threshold,
the tree is then traversed in DFS order by iterating linearly over the array (Fig. 4.3, solid lines).
Once the maximum coefficient stored in a node is less or equal to the threshold, a block of size
n is created, and the entire subtree is skipped (dashed lines). As the tree is perfect binary and
complete, the next array position in DFS traversal after pruning the subtree rooted at the node at
index i is simply obtained as i +2n—1, so no expensive pointer structure needs to be maintained,
leaving the tree data structure a simple flat array. An example of dynamic block creation is given

in Fig. 4.4.

Proposition 4.3.1. A wavelet tree produces a partition of the data into K blocks in ©(2K—1) = O(K)

time. Thus, each block is created in expected constant time.

Proof. This follows trivially from the fact that DFS with pruning of a perfect binary tree is
equivalent to a DFS traversal on a full binary tree, where each leaf corresponds to a block. By a
standard induction argument, a full binary tree with K leaves has 2K — 1 nodes, each of which is

expanded exactly once during block creation. O

Once the Gibbs sampler converges to a set of variances, the block structure is less likely to

change. To avoid recreating the same block structure over and over again, we employ a technique
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Figure 4.4: Example of dynamic block creation. The data is of size T = 256, so the wavelet tree
contains 512 nodes. Here, only 37 entries had to be checked against the threshold (dark line), 19
of which (round markers) yielded a block (vertical lines on the bottom). Sampling is hence done on
a short array of 19 blocks instead of 256 individual values, thus the compression ratio is 13.5. The
horizontal lines in the bottom subplot are the block means derived from the sufficient statistics in
the nodes. Notice how the algorithm creates small blocks around the breakpoints, e.g. at t ~ 125,
which requires traversing to lower levels and thus induces some additional blocks in other parts of the
tree (left subtree), since all block sizes are powers of 2. This somewhat reduces the compression ratio,
which is unproblematic as it increases the degrees of freedom in the sampler.

called block structure memoization. Given a block structure B; created by threshold any A,, a
second, lower threshold A, < A; creates either the same block structure B;, or a block structure
B, in which some blocks of B; are subdivided into smaller blocks, increasing the number of
total blocks. Therefore, we can partition the set of possible values for A into intervals [A;, A j],
each of which is associated with a particular, unique number of blocks. Thus, for each block
sequence length we register the minimum and maximum variance that creates that sequence.
Upon entering a new iteration, we check if the current variance would create the same number
of blocks as in the previous iteration, which guarantees that we would obtain the same block
sequence, and hence can avoid recomputation.

The wavelet tree data structure can be readily extended to multivariate data of dimensionality
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Figure 4.5: An example of a multivariate wavelet tree. The top figure shows the topology of a wavelet
tree for each of the two data dimensions below. The red and blue paths denote the pruning paths for
the first and second data dimension, respectively. The bottom two subplots show the block boundaries
for each dimension. The joint block boundaries for this bivariate data would consist of the union of
those boundaries. Since they are incurred by entries above the threshold in their respective wavelet
tree, the trees can be merged into one by taking the maximum absolute detail coefficient across
dimensions to create the union of block boundaries. Hence, the runtime for finding block boundaries
does not depend on the dimensionality of the data.

m (Fig. 4.5). Instead of storing m different trees and reconciling m different block patterns in
each iteration, one simply stores m different values for each sufficient statistic in a tree node.
Since we have to traverse into the combined tree if the coefficient of any of the m trees was
below the threshold, we simply store the largest N; ,[d] among the corresponding nodes of
the trees, which means that the block creation can be done in O(T) instead of O(mT), i.e. the
dimensionality of the data only enters into the creation of the data structure, but not the query

during sampling iterations.
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4.3.4 Automatic priors

While Bayesian methods allow for inductive bias such as the expected location of means, it
is desirable to be able to use our method even when little domain knowledge exists, or large
variation is expected, such as the lab and batch effects commonly observed in micro-arrays (Luo
et al. 2010), as well as unknown means due to sample contamination. Since FBG does require a
prior even in that case, we propose the following method to specify hyperparameters of a weak
prior automatically. Posterior samples of means and variances are drawn from a Normal-Inverse
Gamma distribution (u, 02) ~ NIT'(ug, v, @, B), whose marginals simply separate into a Normal

and an Inverse Gamma distribution

2 o?
o NIF(a:ﬁ): MNN(:U’O;7 .

Let 52 be a user-defined variance (or automatically inferred, e.g. from the largest of the finest
detail coefficients, or GI%MD), and p the desired probability to sample a variance not larger than
s2. From the CDF of IT' we obtain
B
r(af) p
=P(0? <52 =— /= (a,—).
p = ) (a) Qa3
IT" has a mean for a > 1, and closed-form solutions for a € N. Furthermore, IT' has positive

skewness for a > 3. We thus let a = 2, which yields

ﬂI—SZ(W_1(_§)+1), 0<p<=<l,

where W_; is the negative branch of the Lambert W-function, which is transcendental. However,
an excellent analytical approximation with a maximum error of 0.025% is given in BARRY et al.

(2000), which yields

B~ s? 2vb +b
M, VD + v2(Mybexp (M;vD) +1) ’

b:=—Inp,

M, :==0.3361, M, :=—0.0042, M, :=—0.0201.

Since the mean of IT is %, the expected variance of u is % for a = 2. To ensure proper mixing,
B

we could simply set uto the sample variance of the data, which can be estimated from the
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sufficient statistics in the root of the wavelet tree (the first entry in the array), provided that u
contained all states in almost equal number. However, due to possible class imbalance, means for
short segments far away from p, can have low sampling probability, as they do not contribute

much to the sample variance of the data. We thus define 6 to be the sample variance of block

2

vaps and take the maximum of those two variances. We

means in the compression obtained by &
thus obtain

-1
pH ny, — %2

Uo == =1 and v=ﬂmax{%,5} .
n n

4.3.5 Numerical issues

To assure numerical stability when working with probabilities, many HMM implementations
resort to log-space computations, which involves a considerable number of expensive function
calls (exp, log, pow); for instance, on Intel’s Nehalem architecture, log (FYL2X) requires 55
operations as opposed to 1 for adding and multiplying floating point numbers (FADD, FMUL)
(FoG 2016). Our implementation, which differs from (MAHMUD & ScHLIEP 2011) greatly reduces
the number of such calls by utilizing the block structure: The term accounting for emissions and
self-transitions within the block can be written as

Ay e, (yIwIlk] - p)?
Ji . j
T oo (-3 = )

k=1

Any constant cancels out during normalization. Furthermore, exponentiation of potentially small
numbers causes underflows. We hence move those terms into the exponent, utilizing the much

stabler logarithm function.

Ny kl— )2
exp(—z Olwllkl =) +(nW—1)logA]~j—nW10gaj).

2
= 2(7j

Using the block’s sufficient statistics

n, = yIwlk], Bpi= ) y[wlk]?

k=1 k=1

the exponent can be rewritten as

. 2u; 2 2 i
Eu() = = 4 Ky ),
9;

2
‘U,.

K(n,j) = (n,—1)logA;; —n, (logcrj + 27']2) .

J
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K(n,,, j) can be precomputed for each iteration, thus greatly reducing the number of expensive
function calls. Notice that the expressions above correspond to the canonical exponential family
form exp({t(x),0) —F(0) + k(x)) of a product of Gaussian distributions. Hence, equivalent
terms can easily be derived for non-Gaussian emissions, implying that the same optimizations
can be used in the general case of exponential family distributions: Only the dot product of the
sufficient statistics t(x) and the parameters 6 has to be computed in each iteration and for each
block, while the log-normalizer F(6) can be precomputed for each iteration, and the carrier
measure k(x) (which is 0 for Gaussian emissions) only has to be computed once.

To avoid overflow of the exponential function, we subtract the largest such exponents among

all states, hence E,, (j) < 0. This is equivalent to dividing the forward variables by

exp (ml?xEW(k)) ,

which cancels out during normalization. Hence we obtain
y
(/) 1= exp (B (1)~ max B, (k) D @ a (DA,
i=1

which are then normalized to
a,(j)

aw(]) = Zk dw(k) .

4.4 Evaluation

4.4.1 Simulated aCGH data

A previous survey (LAI et al. 2005) of eleven CNV calling methods for aCGH has established
that segmentation-focused methods such as DNAcopy (OLSHEN & VENKATRAMAN 2002; OLSHEN,
VENKATRAMAN, et al. 2004), an implementation of circular binary segmentation (CBS), as well
as CGHseg (PicarD et al. 2005) perform consistently well. DNAcopy performs a number of
t-tests to detect break-point candidates. The result is typically over-segmented and requires a
merging step in post-processing, especially to reduce the number of segment means. To this
end MergeLevels was introduced by WILLENBROCK & FRIDLYAND (2005). They compare the
combination DNAcopy+MergeLevels to their own HMM implementation (FRIDLYAND et al. 2004)

as well as GLAD (HupE et al. 2004), showing its superior performance over both methods.
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Figure 4.6: HaMMLET’s speedup as a function of the average compression during sampling. As
expected, higher compression leads to greater speedup. The non-linear characteristic is due to the fact

that some overhead is incurred by the dynamic compression, as well as parts of the implementation
that do not depend on the compression, such as tallying marginal counts.

This established DNAcopy+MergeLevels as the de facto standard in CNV detection, despite the
comparatively long running time.

The paper also includes aCGH simulations deemed to be reasonably realistic by the community:.
DNACopy was used to segment 145 unpublished samples of breast cancer data, and subsequently

labeled as copy numbers O to 5 by sorting them into bins with boundaries
(—00,—0.4,—0.2,0.2,0.4, 0.6, 00),

based on the sample mean in each segment (the last bin appears to not be used). Empirical length
distributions were derived, from which the sizes of CN aberrations are drawn. The data itself
is modeled to include Gaussian noise, which has been established as sufficient for aCGH data
(HopgsonN et al. 2001). Means were generated such as to mimic random tumor cell proportions,
and random variances were chosen to simulate experimenter bias often observed in real data; this
emphasizes the importance of having automatic priors available when using Bayesian methods, as
the means and variances might be unknown a priori. The data comprises three sets of simulations:

“breakpoint detection and merging” (BD&M), “spatial resolution study” (SRS), and “testing” (T)
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(see their paper for details). We used the MergeLevels implementation as provided on their
website. It should be noted that the superiority of DNAcopy+MergeLevels was established using
a simulation based upon segmentation results of DNAcopy itself.

We used the Bioconductor package DNAcopy (version 1.24.0), and followed the procedure
suggested therein, including outlier smoothing. This version uses the linear-time variety of CBS
(VENKATRAMAN & OLSHEN 2007); note that other authors such as TsourRAKkakis et al. (2011)
compare against a quadratic-time version of CBS (OLSHEN, VENKATRAMAN, et al. 2004), which
is significantly slower. For HaMMLET, we use a 5-state model with automatic hyperparameters
P(0? <0.01) = 0.9 (see Section 4.3.4), and all Dirichlet hyperparameters set to 1.

Following MAHMUD & ScHLIEP (2011), we report F-measures (F; scores) for binary classi-

2np

fication into normal and aberrant segments (Fig. 4.10), using the usual definition of F = o

being the harmonic mean of precision T = % and recall p = %, where TP, FP, TN and FN
denote true/false positives/negatives, respectively. On datasets T and BD&M, both methods have
similar medians, but HAMMLET has a much better interquartile range (IQR) and range, about
half of CBS’s. On the spatial resolution data set (SRS), HaMMLET performs much better on very
small aberrations. This might seem somewhat surprising, as short segments could easily get lost
under compression. However, LAt et al. (2005) have noted that smoothing-based methods such
as quantile smoothing (quantreg) (FILERS & DE MENEZES 2005), lowess (CLEVELAND 1979),
and wavelet smoothing (Hsu et al. 2005) perform particularly well in the presence of high noise
and small CN aberrations, suggesting that “an optimal combination of the smoothing step and
the segmentation step may result in improved performance”. Our wavelet-based compression
inherits those properties. For CNVs of sizes between 5 and 10, CBS and HaMMLET have sim-
ilar ranges, with CBS being skewed towards better values; CBS has a slightly higher median
for 10-20, with IQR and range being about the same. However, while HaMMLET’s F-measure
consistently approaches 1 for larger aberrations, CBS does not appear to significantly improve
after size 10. The plots for all individual samples can be found in Web Supplement S1-S3, which
can be viewed online at http://schlieplab.org/Supplements/HaMMLET/, or downloaded from
https://zenodo.org/record/46263 (DOI: 10.5281/zenodo0.46263).
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Figure 4.7: F-measures of CBS (light) and HaMMLET (dark) for calling aberrant copy numbers on
simulated aCGH data (WILLENBROCK & FRIDLYAND 2005). Boxes represent the interquartile range
(IQR = Q3—Q1), with a horizontal line showing the median (Q2), whiskers representing the range
(%IQR beyond Q1 and Q3), and the bullet representing the mean. HaMMLET has the same or better

F-measures in most cases, and on the SRS simulation converges to 1 for larger segments, whereas CBS
plateaus for aberrations greater than 10.

4.4.2 High-density CGH array

In this section, we demonstrate HaMMLET’s performance on biological data. Due to the lack
of a gold standard for high-resolution platforms, we assess the CNV calls qualitatively. We use
raw aCGH data (GEO:GSE23949) (EDGREN et al. 2011) of genomic DNA from breast cancer
cell line BT-474 (invasive ductal carcinoma, GEO:GSM590105), on an Agilent-021529 Human
CGH Whole Genome Microarray 1x1M platform (GEO:GPL8736). We excluded gonosomes,
mitochondrial and random chromosomes from the data, leaving 966,432 probes in total.
HaMMLET allows for using automatic emission priors (see Section 4.3.4) by specifying a noise
variance, and a probability to sample a variance not exceeding this value. We compare HaMMLET’s
performance against CBS, using a 20-state model with automatic priors, P (02 < 0.1) =0.8, 10
prior self-transitions and 1 for all other hyperparameters. CBS took over 2 h 9 min to process the

entire array, whereas HaMMLET took 27.1 s for 100 iterations, a speedup of 288. The compression
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ratio (see Section 4.4.3) was 220.3. CBS yielded a massive over-segmentation into 1,548 different
copy number levels; cf. Supplement S4 at https://zenodo.org/record/46263. As the data is
derived from a relatively homogeneous cell line as opposed to a biopsy, we do not expect the
presence of subclonal populations to be a contributing factor (BURDALL et al. 2003; HOLLIDAY &
SpEIRs 2011). Instead, measurements on aCGH are known to be spatially correlated, resulting
in a wave pattern which has to be removed in a preprocessing step; notice that the internal
compression mechanism of HAMMLET is derived from a spatially adaptive regression method, so
smoothing is inherent to our method. CBS performs such a smoothing, yet an unrealistically large
number of different levels remains, likely due to residuals of said wave pattern. Furthermore,
repeated runs of CBS yielded different numbers of levels, suggesting that indeed the merging
was incomplete. This can cause considerable problems downstream, as many methods operate
on labeled data. A common approach is to consider a small number of classes, typically 3 to 4,
and associate them semantically with CN labels like loss, neutral, gain, and amplification, e.g.
VAN WIERINGEN, VAN VE WIEL & YLSTRA (2008), Liu et al. (2006), GoNzALEzZ et al. (2009),
VAN DE WIEL & VAN WIERINGEN (2007), SHAH, LAM, et al. (2007), GUHA, L1 & NEUBERG (2006),
YIN & L1 (2009), HobGsoN et al. (2001), and HupE et al. (2004). In inference models that contain
latent categorical state variables, like HMM, such an association is readily achieved by sorting
classes according to their means. In contrast, methods like CBS typically yield a large, often
unbounded number of classes, and reducing it is the declared purpose of merging algorithms,
see WILLENBROCK & FRIDLYAND (2005). Consider, for instance, CGHregions (VAN DE WIEL &
VAN WIERINGEN 2007), which uses a 3-label matrix to define regions of shared CNV events across
multiple samples by requiring a maximum L, distance of label signatures between all probes in
that region. If the domain of class labels was unrestricted and potentially different in size for
each sample, such a measure would not be meaningful, since the i-th out of n classes cannot
be readily identified with the i-th out of m classes for n # m, hence no two classes can be said
to represent the same CN label. Similar arguments hold true for clustering based on Hamming
distance (L1u et al. 2006) or ordinal similarity measures (VAN WIERINGEN, VAN VE WIEL & YLSTRA
2008). Furthermore, even CGHregions’ optimized computation of medoids takes several minutes
to compute. As the time depends multiplicatively on the number of labels, increasing it by three

orders of magnitude would increase downstream running times to many hours.
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For a more comprehensive analysis, we restricted our evaluation to chromosome 20 (21,687
probes), which we assessed to be the most complicated to infer, as it appears to have the highest
number of different CN states and breakpoints. CBS yields a 19-state result after 15.78 s (Fig. 4.8,
top). We have then used a 19-state model with automated priors (P (02 <0.04) = 0.9), 10
prior self-transitions, all other Dirichlet parameters set to 1) to reproduce this result. Using
noise control (see Section 4.3.3), our method took 1.61 s for 600 iterations. The solution we
obtained is consistent with CBS (Fig. 4.8, middle and bottom). However, only 11 states were
part of the final solution, i. e. 8 states yielded no significant likelihood above that of other states.
We observe superfluous states being ignored in our simulations as well. In light of the results
on the entire array, we suggest that the segmentation by DNAcopy has not sufficiently been
merged by MergeLevels. Most strikingly, HaMMLET does not show any marginal support for
a segment called by CBS around probe number 4,500. We have confirmed that this is not due
to data compression, as the segment is broken up into multiple blocks in each iteration (cf.
Supplement S5 at https://zenodo.org/record/46263). On the other hand, two much smaller
segments called by CBS in the 17,000-20,000 range do have marginal support of about 40% in
HaMMLET, suggesting that the lack of support for the larger segment is correct. It should be
noted that inference differs between the entire array and chromosome 20 in both methods, since
long-range effects have higher impact in larger data.

We also demonstrate another feature of HAMMLET called noise control. While Gaussian
emissions have been deemed a sufficiently accurate noise model for aCGH (HopGson et al.
2001), microarray data is prone to outliers, for example due to damages on the chip. While it is
possible to model outliers directly (SHAH, XUAN, et al. 2006), the characteristics of the wavelet
transform allow us to largely suppress them during the construction of our data structure. Notice
that due to noise control most outliers are correctly labeled according to the segment they occur

in, while the short gain segment close to the beginning is called correctly.

4.4.3 Effects of wavelet compression on speed and convergence

The speedup gained by compression depends on how well the data can be compressed. Poor
compression is expected when the means are not well separated, or short segments have small

variance, which necessitates the creation of smaller blocks for the rest of the data to expose
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potential low-variance segments to the sampler. On the other hand, data must not be over-
compressed to avoid merging small aberrations with normal segments, which would decrease
the F-measure. Due to the dynamic changes to the block structure, we measure the level of
compression as the average compression ratio, defined as the product of the number of data
points T and the number of iterations N, divided by the total number of blocks in all iterations.
As usual a compression ratio of one indicates no compression.

To evaluate the impact of dynamic wavelet compression on speed and convergence properties
of an HMM, we created 129,600 different data sets with T = 32,768 many probes. In each
data set, we randomly distributed 1 to 6 gains of a total length of {100, 250,500, 750, 1000}

uniformly among the data, and do the same for losses. Mean combinations

(:U'loss: Uneutrals :ugain)
were chosen from (1d %, 1d1, 1d %), (-1,0,1), (—2,0,2), and (—10, 0, 10), and variances

2 2 )

2
(Uloss’ O neutral’ gain

where chosen from (0.05,0.05,0.05), (0.5,0.1,0.9), (0.3,0.2,0.1), (0.2,0.1,0.3), (0.1,0.3,0.2),
and (0.1,0.1,0.1). These values have been selected to yield a wide range of easy and hard cases,
both well separated, low-variance data with large aberrant segments as well as cases in which
small aberrations overlap significantly with the tail samples of high-variance neutral segments;
an example of a hard inference task is shown in Fig. 4.9. Consequently, compression ratios
range from ~1 to ~2,100. We use automatic priors P(c? < 0.2) = 0.9, self-transition priors
a;; € {10,100, 1000}, non-self transition priors a;; = 1, and initial state priors @ € {1, 10}. Using
all possible combinations of the above yields 129,600 different simulated data sets, a total of 4.2
billion values.

We achieve speedups per iteration of up to 350 compared to an uncompressed HMM (Fig. 4.6).
In contrast, MAHMUD & ScHLIEP (2011) have reported ratios of 10-60, with one instance of 90.
Notice that the speedup is not linear in the compression ratio. While sampling itself is expected
to yield linear speedup, the marginal counts still have to be tallied individually for each position,
and dynamic block creation causes some overhead. The quantization artifacts observed for larger

speedup are likely due to the limited resolution of the Linux time command (10 ms). Compressed
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HaMMLET took about 11.2 CPU hours for all 129,600 simulations, whereas the uncompressed
version took over 3 weeks and 5 days. All running times reported are CPU time measured on a
single core of a AMD Opteron 6174 Processor, clocked at 2.2 GHz.

We evaluate the convergence of the F-measure of compressed and uncompressed inference
for each simulation. Since we are dealing with multi-class classification, we use the micro- and

macro-averaged F-measures (F,;, F.,,) proposed by OzGUR, OzGUR & GUNGOR (2005):

M M
_ 2mp with 7= Zizl TP p= Zi:l TP; and
mi - M > - M
T+p > (TP; +FP)) S (TP; +FN;)
M

P i Fio _ TP _ TP _ 2mip;
= —— with m;=—— pi=——, F=—H—.

TP, + FP, TP, + FN, i+ p;

Here, TP; denotes a true positive call for the i-th out of M states, 7 and p denote precision and
recall. These F-measures tend to be dominated by the classifier’s performance on common and
rare categories, respectively. Since all state labels are sampled from the same prior and hence
their relative order is random, we used the label permutation which yielded the highest sum of
micro- and macro-averaged F-measures. Instead of finding this permutation by brute force, which
requires K! computations for k states, we solve a combinatorial assignment problem: Let C be the
confusion matrix of the segmentation, i. e. C,, is the number of true observations of state t which
have been predicted as state p. Notice that TP; + FP; is just the sum C; of the i-th column of C,
and likewise TP; 4+ FN; is the sum R; of the i-th row. Hence, F,,; can be computed as ﬁ. The

best F,; is thus obtained by the column permutation which maximizes the trace. Likewise, let

. Ctp . Ctp ) zntpptp
Tp =" » P~ 7 Frp=—"—.
p t Tep T Pep
Then
Fmi + Fma =tr M
for
27 pPrp Cep
Myp -

= + ,
K(ntp+ptp) Zi,jctp
and the maximum sum is attained by the column permutation which maximizes the trace. This

is the maximum weighted bipartite matching problem, which can easily be transformed into

the assignment problem and solved in O(K®) time using the Hungarian method due to Kénig,
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Egervary and Munkres (KunN 1955). The simulation results are included in Supplement S6 at
https://zenodo.org/record/46263.

In Fig. 4.10, we show that the compressed version of the Gibbs sampler converges almost
instantly, whereas the uncompressed version converges much slower, with about 5% of the cases
failing to yield an F-measure > 0.6 within 1,000 iterations. Wavelet compression is likely to yield
reasonably large blocks for the majority class early on, which leads to a strong posterior estimate
of its parameters and self-transition probabilities. As expected, F,,, are generally worse, since
any misclassification in a rare class has a larger impact. Especially in the uncompressed version,
we observe that F, tends to plateau until F,; approaches 1.0. Since any misclassification in the
majority (neutral) class adds false positives to the minority classes, this effect is expected. It
implies that correct labeling of the majority class is a necessary condition for correct labeling of
minority classes, in other words, correct identification of the rare, interesting segments requires
the sampler to properly converge, which is much harder to achieve without compression. It
should be noted that running compressed HaMMLET for 1,000 iterations is unnecessary on the
simulated data, as in all cases it converges between 25 and 50 iterations. Thus, for all practical
purposes, further speedup by a factor of 40-80 can be achieved by reducing the number of

iterations, which yields convergence up to 3 orders of magnitude faster than standard FBG.

4.4.4 Coriell, ATCC and breast carcinoma

The data provided by SN1JDERS, Nowak, et al. (2001) includes 15 aCGH samples for the Coriell
cell line. At about 2,000 probes, the data is small compared to modern high-density arrays.
Nevertheless, these data sets have become a common standard to evaluate CNV calling methods,
as they contain few and simple aberrations. The data also contains 6 ATCC cell lines as well as
4 breast carcinoma, all of which are substantially more complicated, and typically not used in
software evaluations. In Fig. 4.11, we demonstrate our ability to infer the correct segments on
the most complex example, a T47D breast ductal carcinoma sample of a 54 year old female. We
used 6-state automatic priors with P (02 < 0.1) = 0.85, and all Dirichlet hyperparameters set to
1. On a standard laptop, HaMMLET took 0.09 seconds for 1,000 iterations; running times for the
other samples were similar. Our results for all 25 data sets have been included in Supplement S7

at https://zenodo.org/record/46263.
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4.5 Forward bias and convergence behavior

We have shown that, compared to uncompressed FBG, state sequences sampled from HaMMLET
very quickly approach the ground truth. If initial iterations are treated as burn-in, tallying the
maximum marginals approaches the MPM segmentation. Since this behavior is measured in the
number of iterations, not CPU time, the qualitative differences must be due to features of wavelet
compression other than the mere reduction in data size.

Compressing the data into blocks assumes that all emissions within the block were generated
by the same latent HMM state. However, this ignores the contribution of state paths that switch
states within the block, and raise the question of bias in the sampler. A typical assumption is
that the overall contribution of such paths is small, since non-generating states will yield low
emission likelihoods for the observed data, and off-diagonal probabilities in .A are often small
in practice. MAHMUD & ScHLIEP (2011) showed that this weak path assumption holds for a
homoscedastic Gaussian HMM with well-separated means if all emissions within a block are
closer to the mean of their generating state than to those of any other state. The proof does not
distinguish between the parameters of the generating HMM and the ones used in the forward
recursion, meaning that, for the proof to hold, we have to assume strong emission posteriors
right from the beginning. Of course, a Gibbs sampler might not necessarily yield some u,
for which these assumptions hold, especially during the burn-in phase. We therefore derive
the multiplicative error of normalized forward variables under arbitrary compression and for

general—not necessarily EFD, homoscedastic or univariate—HMM:

Definition 4.5.1 (Forward bias). Let H be a K-state Hidden Markov Model states, such that all
emission likelihoods are positive. Let a,[s] be the normalized forward variable of state s at position t.
Let @,[s] be the normalized approximate forward variable calculated from a, by ignoring transitions

between different states. Let 0 < i,j,s <K, and
ay =a,4[x] a=a,,
o =Pyltllqlt]=x) £:=P(y[t]llq[t])

Xij = al-Aijﬂj,
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so that
%,
at[s] = i 1)
21.%;
- X
as]=="—.
j Xii

Then we define the forward bias of state s at position t as
&t[s] N Xss Zi,j Xij

Ct = =
sl Xy xj%is

Proposition 4.5.1 (Upper bound on forward bias). The forward bias is bounded as
Xij Doz Xij

i,

C, < =
25 Xjj i Xij

In particular, if the transition probabilities are bounded as

Vl#]AUSG,

the forward error is bounded as
C, <1+ (1-( 1)
t= a-l '
Proof.
s T %o (X + By xi)
Zi’j XjiXs Z(i:;) XjjXss + Zi#s XjjXis
j J
. Xss (Zj Xjj + Qi xif) _ i Xij (4.2)
Xss 245 Xjj j Xii
2N 2N 4 Liigs Xij (4.3)
X 2% 3 Xii
Furthermore,
Sk i
C <1+ i#j i (4.4)
j X
> siai Al
s R A (4.5)
2 AL
> ail;
i#j i (4.6)

<1421
625 a4l
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_ 1+£(Zi,j aléj_Zj ajfj) “.7)
6 2 i)
€ Zi,j aiej )

=1+—= — (4.8)
e 14

L ((zl )(Z6) o)

A
2t —1) (4.10)

O

Obviously, the bias is small for HMM with strong self-transitions, as well as a, and £, approach-
ing 1. For Gaussian HMM, these criteria are typically met for emissions with low variance and
well-separated means whenever the sampled 8® approaches the true emitting 8, confirming the
result of MAHMUD & ScHLIEP (2011) in those special cases. In general, due to the rearrangement
inequality, the bound is tightest whenever the entries of @ and £ are in the same order.

We conjecture that the forward bias is the reason for the observed fast convergence towards

MPM segmentation. Consider the case of uniform self-transition and transition probabilities:

Proposition 4.5.2 (Bias towards largest forward variable). Let
§ = argmaxa;
be the state with the largest forward variable at t —1. Let Vi : A;; = 6 and Vi # j : A;; = €. Then
C,=1.

Proof. The forward bias of state s is

¢ = ssZijxij: Xos Do j Xij B ss(Z] JJ+Zi7éjxij)
21, %X (Z‘ij)(zixis) (ijjj)(xss+2i7ésxis)
XSSZ]XJJ+X i Xij Z] Xjj+ 2i Xij
xSS j Xjj+ (Z] JJ)( l#xw) ZJ JJ+ZJ XJ;;C”
B 20 X5+ Dz i€l pN ]J+ezl7é]a£
ZJ 11+2i;s% 2 JJ+EZJ ail;z
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62 a5t +e (Z#s b+ Zl’_;;j aifja—j)
LFS

O

EIES

2
The claim follows since Vj : a; > a; so - < 1and a, = a—s >

In fact, a sufficient criterion can be established for the direction of the forward bias which

does not involve the emission likelihoods.

Proposition 4.5.3 (Direction of forward bias). Let the number of states K > 3. Then for any

relation < € {<, =, >}, the forward bias of state s

if and only if

SAS] a; -A]s
E l; (aAss(aAU+ ) aAJ](aAls+ ))VO.
K—2 -2
i#s
j#s
i#]
In particular, the relation holds if

Vi ;é S,j 3’é s, 1 #] : asAssAij = ajAjins (4.11)

V] 75 S: aSZASSASj = (1]2-/1]‘]'./4]'5. (4.12)

Proof. We rewrite C, < 1 as a comparison of numerator and denominator:
szsxij = ijjxis (4.13)
Ay ¥
szsxls +szsx1] ’\szsxls +Zx]]xls (4-14)
7é J#s

j#s
szsxij = ijjxis (4.15)
s i

szsxjj+2xssxij Xijjxss+ijjxis (4.16)

7 % % %
i#j i#s
szsxij XZijxis (417)
% i7s

i is
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szsxij+zxssxsjszjjxis"‘zxjjxjs (4.18)

i#s j#s i#s j#s
s s
i#j i#j

On each side, there are (K —1)?> — (K — 1) = K2 — 3K + 2 terms in the left and K — 1 in the right
sum. In order to match the index set, we replace each summand on the right by K —2 normalized

copies, one for each j # i # s on the left, yielding (K — 1)(K — 2) = K? — 3K + 2 summands:

xSSxS] 2 : XjjXjs
szsxl] +Z = XjjXis +Z

is 1;&3 i#s lgés
J#s J#s Jj#s Jj#s
i#] i#] i#] i#]
We then get
X X;
Z(X“ (x” - Kijz)_xff (x"s - Kisz)) =0
i#s
j#s
i#]
Dividing by ¢, yields
-As_] aj.A]-s _
ZZ o Ags | @Ay t o —a;Aj; aiAis+K_2 =0
i#s
J#s
i#j

In particular, the proposition holds if

szsxij xejjxis (4.19)

i#s i#s
J#s J#s
i#j i#j
Z xSSxS] - Z X“ js» (420)
J#s j#s

which in turn holds especially if =< holds for all matching summands,

ViFgsjEs,i#] XeXij =< XjjX;s (4.21)
Vj#s: X Xsj = XjiXjs, (4.22)
hence
Vi#gsj#s,i#j:  aA b Al < aj Al a; Al (4.23)
Vj#s: as A lsas Al < ajAjila;Ajls, (4.24)

and by canceling terms,

Vi 7é S,j # s, 1 75] : aSASSAij = ajAjins (4.25)
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Vi#s: @l A As; = aF A Ays. (4.26)
O

Let s be the state with the largest forward variable at t, i.e. Vj : a,[s] = a,[j]. As shown
before, for uniform 6 and ¢, those relations hold. However, the result also suggests a general
tendency for @,[s] > a,[s] if self-transitions and other transitions are each on the same orders.
Since :2—;; > “%‘; and j—; > j—z imply C; > 1, approximate equality A, ~ A;j; ~ 6 and Vi # j :
Aj; ~ € imply that the forward bias will be C, Z 1.

We demonstrate this effect in Fig. 4.12: For 4 states, we simulated a and ¢ as random
variates from a Dirichlet distribution Dir(10, 1,1, 1), and the rows of A as a Dirichlet variate with
parameter 100 for the diagonal entries and 7 € {1, 25,50, 100} for the off-diagonal entries. We
plot the elements of @ against those of @, where the data point is shown in red for the maximal
entry a, and blue for the others. Clearly, there is a tendency for a; to yield @,[s] > a,[s]. As
expected, the effect is less pronounced for lower 7, since those A have higher self-transition
probabilities.

Since we have shown before that wavelet compression creates a block structure which is
consistent with the locations of state transition in MPM segmentation, s is likely to indicate
the maximum posterior margin state for the entire block starting at t. Having a forward bias
greater than 1 means that s will be sampled with higher probability than under unbiased forward
filtering. Also, due to the recursive nature of forward-variable computation, the error is expected
to grow within a block, with the other forward variables approaching 0; this effect is illustrated
in Fig. 4.13. Therefore, a wavelet compressed block is sampled as the MPM state under the

parametrization of the current iteration, with a probability approaching 1 for large blocks.
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Figure 4.8: Copy number inference for chromosome 20 in invasive ductal carcinoma (21,687 probes).
CBS creates a 19-state solution (top), however, a compressed 19-state HMM only supports an 11-state
solution (bottom), suggesting insufficient level merging in CBS.
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Figure 4.9: An example of a hard inference task from the simulations. Notice that the minority
components have been correctly identified (green, dark blue), despite being very short and their means
being contained well within the tails of the dominant emission distribution (light blue).
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Figure 4.10: F-measures for simulation results. The median value (black) and quantile ranges (in 5%
steps) of the micro- (top) and macro-averaged (bottom) F-measures (F,;, F,,,) for uncompressed (left)
and compressed (right) FBG inference, on the same 129,600 simulated data sets, using automatic
priors. The x-axis represents the number of iterations alone, and does not reflect the additional speedup
obtained through compression. Notice that the compressed HMM converges no later than 50 iterations

(inset figures, right).
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Figure 4.11: HaMMLET’s inference of copy-number segments on T47D breast ductal carcinoma.
Notice that the data is much more complex than the simple structure of a diploid majority class with
some small aberrations typically observed for Coriell data.
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Figure 4.12: Demonstration of the tendency of compressed forward variables to be biased towards
the state with the largest marginal probability (red), and away from the others (blue). Variables on
the diagonal are unbiased. Subplots are shown for different Dirichlet distributions Dir(100, 7, T, 7).

1.0



Forward variables

Compressed forward variables

Forward variables

Compressed forward variables

Forward variables

Compressed forward variables

40 40
Position within block Position within block

(a) T =100 (b) T=25

Forward variables

Compressed forward variables

40
Position within block Position within block

(cdr=10 @r=1

40

Figure 4.13: A demonstration of the increasing forward bias due to recursive computation of forward
variables, for different Dirichlet weights 7. Regardless of the actual size of forward variables (upper
subplots in each subfigure), the compressed forward variables quickly converge to 1 for the maximum
state (blue).
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Chapter 5

Algorithm engineering for big data

applications

Having demonstrated the properties and theoretical background of HaMMLET in the previous
chapters, we now address the issue of implementation beyond the prototype stage. While
convergence and speed have been addressed, memory consumption remains problematic for
genome-sized data. In this chapter, we describe our design decisions to scale HaMMLET to

big-data applications. The main contributions in this chapter are as follows:

1. We show that the wavelet tree data structure yields under-compression, resulting in trellises

which are too large.

2. The wavelet tree is also memory-inefficient: For a given T, it stores 2T — 1 sufficient
statistics and as many maximum coefficients. This is the exact number of distinct statistics
required for arbitrary thresholds; however, the statistics stored are not the ones that are

queried.

3. The wavelet tree was a monolithic data structure in which each node was used to store
marginal state counts as well as a data point (leaves) or sufficient statistics (inner nodes).

This implementation proved to be very wasteful, and did not scale to genomic data sizes.

4. To alleviate those issues, we designed specialized data structures for different functionalities

previously contained in the wavelet tree: block boundaries are stored in a breakpoint array,
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statistics for arbitrary blocks of size N are queried in O(InN) time from a modified integral
array of size T, and a queue-based implementation of marginal records is used to store and

update run-length encoded counts for marginal state counts.

5. We show that for univariate data, the breakpoint array for Haar weights can be computed

in-place in linear time.

6. For multivariate data, we show that the query time for each block is independent of
dimensionality; once the block boundaries have been determined in In N time, the statistics
at dimension d can be queried in constant time, so iterating through all d dimensions of a

block can be done in d +InN time.

7. For multivariate data, a breakpoint array with Haar weights would require two arrays of
size T to store the results of several Haar transforms in order to compute maxima across
dimensions. Instead, we modify the lifting scheme for the Haar transform to process the
input in a different order, allowing the data to be processed as an input stream without
storing O(T) temporary values. This yields a computation of coefficient maxima across

dimensions in dT time and T +d1d T space.

5.1 Wavelet tree revisited

To motivate the need for a different implementation, let T4 == 3,500,000,000, the approximate
number of base pairs in the human genome. If wavelet weights and sufficient statistics are stored
as IEEE-754 32-bit floating point numbers, then for Gaussian HMM we require a total of 5 - 8Ty,
bytes, or more than 130 GB RAM. It is possible to create optimal compression, i. e. one that does
not introduce more breakpoints than there are discontinuities in the wavelet regression, but that
would require storing both the absolute as well as the maximum subtree coefficients, adding
another 26 GB.

Additionally, our original implementation stored the block sizes with the sufficient statistics,
as the number of subtree leaves is not easily obtained from the BFS nor DFS pre-order index of a
node in constant time, especially not if the number of leaves is not a power of 2 and the tree is

truncated. For general implementations, the safe way to implement this is using an unsigned
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integer type the size of a pointer on the target platform, and typically incurs at least another 8
byte twice per input position. Furthermore, using the pyramid algorithm, we require padding
of the data to a power of two, and an auxiliary array for calculating the wavelet coefficients,
which in the worst-case scenario almost quadruples the input size. In that case, the memory
requirement increases to 80T, or 26 GB for Tj,,. These requirements can be avoided by using a
modified version of an in-place Haar wavelet transform.

In addition, we previously used a tree-like layout to record the marginal counts for each block,
which was wasteful and, in the worst case, could incur another 2TK unsigned integer variables
large enough to count the number of iterations. Even for 2-byte integers, a 20-state HMM would
incur another 131 GB for the human genome. In total, our original implementation of HaMMLET
would require close to 400 GB RAM for a realistic model. Several implementation details such as
suboptimal use of STL vectors, each adding 20 byte overhead, pushed the memory load to the
terabyte range, resulting in excessive swapping, rendering the implementation useless for WGS

data.

5.2 Dynamic block creation

Consider the following abstract data structure:

Definition 5.2.1 (Block generator). Let b be a vector of breakpoint weights. For a threshold
A, let Y, be a partition of y into blocks such that there is a block boundary between positions
t—1and tif b[t] > A. We call a data structure a block generator if it can, for any threshold A,
generate an ordered sequence of sufficient statistics that represents Y,. A block generator is called
compressive if, for all A, b[t] < A implies that no breakpoint is created between t — 1 and t. It is
called subcompressive if for some A such a superfluous block boundary is created. A block generator

is called space-efficient if it stores no more than T sufficient statistics.

This definition of a block generator implies that Y, is a subdivision of Y, if 1; < A,. For
sufficiently small thresholds, we require sufficient statistics for each data point, hence any block
generator implementation will have to store a minimum of T sufficient statistics. On the other

hand, if all entries in b are unique, each breakpoint subdivides a block defined by a higher
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threshold, and a simple induction argument shows that a block generator has to be able to
generate 2T — 1 different blocks and their sufficient statistics: starting with a single block of
size T and a sorted sequence of threshold values in b, each threshold creates two new blocks by

subdividing one block in the previous partition.
Proposition 5.2.1. The wavelet tree is a subcompressive and memory-inefficient block generator.

Proof. The wavelet tree is memory-inefficient as it stores 2T — 1 sufficient statistics. Wavelet
compression is based on the fact that if all coefficients in a subtree are below the threshold,
then so is the maximum coefficient in that subtree. The converse however is not true; if the
maximum coefficient is above the threshold, then not all coefficients in the subtree have to be
above threshold. Whenever the DFS traverses into a subtree, three breakpoints are introduced into
the block structure, corresponding to the three discontinuities in the Haar wavelet represented by
the subtree’s root. This happens whenever the subtree contains any coefficient above threshold,
regardless of whether the coefficient at the root itself is above threshold. Fig. 5.1 illustrates a

simple counterexample to compressivity. O

It should be noted that, while the wavelet tree stores as many sufficient statistics as needed
for T data points, the fact that it is subcompressive implies that the block structures it creates
differ from those of a compressive block generator, and hence these are not the same 2T — 1
statistics that would occur in accross all block structures a compressive block generator would
yield. Compressivity could be restored by keeping copies of the wavelet coefficients overwritten by
the subtree maxima, which would potentially double the memory requirements for the coefficient
array, and is thus not preferred for big data applications.

In order to provide an efficient implementation, we separate a block generator into two
sub-structures: a breakpoint array to derive a sequence of start and end positions for blocks, and

an integral array to query the sufficient statistics for each block.

5.2.1 Integral array for block statistics

Let a data structure D(y) support the following query: given a start index s and an end index

e, with s < e, return the sufficient statistics in the half-open interval [s,e), i.e. Z:Sl T(y[i]).
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Figure 5.1: The wavelet tree data structure is subcompressive, as it induces additional breakpoints. In
this example, coefficients with an absolute value above the threshold are denoted as black boxes. In
the tree layout induces by the lifting scheme, the position of a coefficient equals that of the central
discontinuity of its associated Haar wavelet. For instance, 4, , has positive support on y[0],y[1], and
negative support on y[2], ¥[3], with its position 2 being the lowest position of its negative support.
The positions of the block boundaries are indicated by thin solid vertical lines, connected to their
respective tree node by vertical lines. In this example, d1’0| > A, inducing block boundaries at 0, 1
and 2, and |d1’7| > A, inducing block boundaries at 14, 15 and 16, creating 5 blocks in total. By taking
the maximum subtree coefficient, additional inner nodes contain values above threshold, indicated
here by gray boxes, Traversing into subtrees below those nodes induces additional block boundaries,
indicated here by dotted lines, at 2, 4, 8, 12 an 14. This yields a total of 8 blocks.

A trivial implementation of such a data structure would be to store the statistics of each input
position, and then iterate through the array and calculate their cumulative sums between
breakpoints. This is obviously costly for huge data, as it incurs ©(N) time complexity for a block
of size N. Constant-time queries could be made by pre-computing all T2 statistics, which is
obviously prohibitive for large data.

The basic idea for querying sufficient statistics comes from a simple data structure in image
processing called a summed-area table or integral image (LEwis 1995), which is used to query
the sum of a rectangular region in constant time. As its one-dimensional equivalent, let v be an
integral array such that

T(0) t=0
vit]=

ST Tyt >0,
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Figure 5.2: An illustration of an integral array v, using cell size ¢ = 4. Columns represent data
positions, and contain all positions i which are added up and stored at v[¢]; for instance, v[9] =
Zilig T(y[i]). The statistics of a block [s,e) are obtained by adding v[s], v[m] for alls < m < e,
m = 0 mod ¢, and subtracting v[e] iff e Z 0 mod c. For instance, block [3,10) is obtained as
v[3]+v[4] +v[8]—v[10], yielding >,_, T(y[t]).

For any arbitrary start and end positions s, e, the sufficient statistics of the block [s,e) can be

calculated in constant time as

e—1 s—1 e—1
DTl = (Z T(y[t])) - (Z T(y[t])) =v[e]—v[s].
t=s t=0 i=0

In contrast to image processing, where integral arrays are constructed over integer data,
sufficient statistics require floating-point values for most distributions. Unfortunately, this incurs
numeric problems at large data sizes. An IEEE 754 single-precision float has between 6 and 9
significant digits. Assuming that values for sufficient statistics are on the order of 1, the further
back a data point is in v, the more of its significant digits is used to store the sum. Neighboring
entries will be similar or even equal, leading to catastrophic cancellation or even O for short
segments. For instance, values above ~ 17 million are rounded to multiples of 2, so that even if
each entry was 1.0, blocks of size 1 would be queried as 0.

To alleviate this, we subdivide v into non-overlapping cells of size ¢, and compute partial
cumulative sums of sufficient statistics within each cell; for convenience, we compute these sums
from high to low indices, see Fig. 5.2. It is then easy to see that

e—1
DTN = D vlil |-vlel, jef{s}ufils<i<e,i=0 (modc)}

t=s Jj

In our implementation, we used ¢ = 216 = 65,536.

Numerical issues Regardless of the data structure being used, an approach relying of sufficient
statistics raises a general issue of numerical stability. In particular, for Gaussian emissions,

updating the Normal-Inverse Gamma hyperparameter

1 2 Ny (% 2
e I ——
peb 2( Y N+v(N “)




90

contains a numerically unstable term,
52
Sy — —
N

akin to naive computation of the sample variance. As a safeguard, our implementation uses

i
max 4 0,25 — N

instead, in order to avoid non-positive values of f3.

One advantage of using the wavelet tree was that the sufficient statistics were computed
recursively bottom-up in a binary tree, an order which corresponds to a technique called pairwise
summation. This is known to yield a relatively stable sum with at most O(e /log T ) roundoff-error,
where € is machine precision (HigHAM 1993).

Changing from a wavelet tree to an integral array trades this stability for a reduction in
memory from 2T — 1 to T statistics. To counteract this effect, we use Kahan’s summation
algorithm (KaHaN 1965) for cumulative sums within each cell, so that the expected summation

error remains bounded independent of c.

5.2.2 Breakpoint array for block boundaries

In order to create a block generator, the integral array has to be supplemented with a data structure
which yields start and end positions s;(A), ex(A) for subsequent blocks k. Since e; (1) = sz41(4),

it suffices to implement an iterator over s, for increasing k, where
$0=0 sp=ex(A) =sr11(A)
We use a simple array of pointers to facilitate these queries:

Definition 5.2.2 (Breakpoint array). Let b € RT be a vector of breakpoint weights, and p € Zi be

a vector of pointers. A data structure (b, p) is called a breakpoint array of input data y if and only if
Ve<i<t+p[t]:b[t]> b[i] (5.1)

We call each interval [t,...,p[t]— 1] a stretch at t. A breakpoint array is called maximal if
for all T there exist no n > p[t] such that setting p[t] to n would still result in a valid breakpoint

array.
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Figure 5.3: An example of generating blocks following pointers in a breakpoint array. The top figure
represents the input data y, the bottom figure represents the absolute wavelet coefficients, as well as
the pointers (grey lines) and the path taken by the query (red). Whenever a value above the threshold

(horizontal blue line) is found, a breakpoint is returned (vertical blue lines).
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Figure 5.4: An example of a breakpoint array. Horizontal black lines represent the jumps indicated by
the pointers, red lines represent stacks, and gray lines are for visual clarity. Upon processing index t,
the index stack contains those elements obtained by following the red lines to the top left, starting at
b[t]. Notice how this creates a sequence of right-to-left maxima.
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Algorithm 2 Constructor of a maximal breakpoint array for a vector b of breakpoint weights,
pointer array p and a maximum jump size m. S, is a deque (double-ended queue).

1: procedure BREAKPOINTARRAYCONSTRUCTOR (b, v, m)

2: pushback(S;, 0) > make first position pending
3: fort<—1,...,T—1do
4 if |S,| > O then
5: if t —S,[front] = m then > check distance of farthest element
6: p[S:[front]] < m > set farthest jump pointer
7: popfront(S,) > mark as processed
8: while [S,| > 0 do > go through stack to find pending elements
9: if b[S,[back]] < b[t] then > pending elements with smaller weights
10: REDUCESTACK() > set pending pointers and statistics
11: else
12: break > rest of stack has larger weights
13: push(S,, t) > make current position pending
14: te—T
15: while |S,| > 0 do > all remaining elements point to one-past-the-end
16: REDUCESTACKS()
17:
18: function REDUCESTACK()
19: i « S,[back] > get closest pending index i
20: plile—t—i > set its pointer to the distance to current index
21: popback(S,) > remove index from stack

Proposition 5.2.2. Algorithm 2 constructs a breakpoint array in linear time O(T).

Proof. A linear-time algorithm to calculate the pointers to the next element at least as large as
the current one is well established in algorithmic folklore. It is modified here to use the distance
to that element instead of a direct pointer (line 20, which would normally read p[i] « t). The
stack is changed to a deque to accommodate the inclusion of a maximum jump size m. The front
of the deque is popped and its pointer set whenever it is m positions away, which happens at

most T times. O

For each t, p[t] points to the beginning of next stretch. Within each stretch, the highest
breakpoint weight is located at its first position; when searching for weights below a given
threshold A, once the first weight is found to be below A, all others can be safely ignored, leading
to a simple query (Algorithm 3, demonstrated in Fig. 5.3). Given a position e;(A) of block k
under threshold A, the next position e; (1) can be found in O(InN) expected time, where

N =e;(A) —si(A). In order to derive the query complexity, we require the following result:
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Algorithm 3 Given a breakpoint weight threshold A, and a breakpoint position s; this method
computes the next breakpoint position s;,; where b[s;,;] > A It returns true if such a signal
exists, and false otherwise to indicate that the iterator is finished.

1: procedure BREAKPOINTITERATOR(s;, A)

2: if s; > T then > no more blocks left

3: return false

4 Sizp <S5 +1 > set potential end to next position

5: whiles; ; < T do > determine the end of the current block

6: if b[s;;1] < A then > current weight below threshold

7: Siv1 < Siz1 +Psis1] > skip the following lower weights

8: else

9: break > higher weight than at block start determines block end
10: N «—s;01—5; > set current block size
11: return true

Proposition 5.2.3 (Left-to-right maxima (LovAsz 1993; KNuTH 1997)). For a vector x, let x[t]
be called a left-to-right maximum of x iff Vi < t : x[i] < x[t]. Let m, count the number of

left-to-right maximal elements in x. For a random permutation of x with |x| = N elements,

N
]E[mx]=zllv—>lnN as N — oo. (5.2)
i=1

Due to symmetry, the same result holds for minima and right-to-left extrema.

Proposition 5.2.4. For a block of size N, the expected query complexity of Algorithm 3 is O(log N)

in a maximal breakpoint array.

Proof. Since the breakpoint array is maximal, following pointers in p to find the block end creates
a sequence of left-to-right maxima. For a block of size N, starting at ¢, there are M := N — 2
elementsin I :=[t+1,...,t +N —1] which can appear in any order, and the claim follows from

Eq. (5.2). O

Proposition 5.2.5. Assume all elements in b have different values. Then the maximum expected

stack size in Algorithm 2 is at most InT.

Proof. Assume m = 00. An element at t is pushed whenever there exists an index j on the stack
such that Vi =j,...,top : w[i] < w[t]. Given the smallest such j, the stacks are popped until
top =j—1, and w[j — 1] > w([t]. Therefore, the stack contains the right-to-left minima of
w[1:t] after pushing index t, and the claim follows from Eq. (5.2) for t = T. For any m < 00,

the front of the deque gets popped, thus only decreasing the stack size. O
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For Tj,, the expected maximum stack size is < 22, a negligible overhead. We noticed that, for
noisy data, most entries in p are much smaller than T, and using pointer-sized integers such as
size_t in C++ (typically 8 byte on 64-bit systems), would be wasteful. Instead, we use a 2-byte
unsigned integer type to accommodate jumps up to m = 65,536. The resulting breakpoint array
is not maximal anymore, but maintains its space-efficiency and compressivity, as Algorithm 3
does not require maximality. The query overhead is minimal in practice; even in case of a single

. Thg
block for genome sized data, t5a5 < o4

Proposition 5.2.6. Using a breakpoint array to iterate over block boundaries, which are then used
to query sufficient statistics from an integral array yields a compressive and space-efficient block

generator.

Proof. To prove that the breakpoint array is indeed a valid iterator over block boundaries,
Algorithm 3 provides a constructive description of how a block is created for an arbitrary threshold
A. Its correctness is shown by induction: Assume that the start position s; is a valid block boundary,
so b[s;] > A ors; = 0. The block is determined by finding the next start position s;_;, which can
be found by setting s;,; :=s; + 1, and incrementing until b[s;, ;] > A. Instead of incrementing by
1, Eq. (5.1) guarantees we can increment s; . ; by p[s;,;] without missing a breakpoint (lines 4-9).
The block size N =s;,; —s; is then easily calculated (line 10). Since no superfluous breakpoint
is introduced, the data structure is compressive, provided that the sufficient statistics can be
generated correctly. Since the first block starts at s, = 0, the claim follow by induction. As the

number of sufficient statistics in a breakpoint array is T, it is also space-efficient. O

On first sight, the query complexity of O(logN) appears to be suboptimal compared to
the constant-time queries in the original wavelet tree. This, however, is misleading. We have
shown that the wavelet tree implements a suboptimal compression in the sense that it introduces
additional block boundaries which do not correspond to discontinuities in the Haar transform.
For a true block of size N, it creates on the order of In N different blocks. Hence, not only does
it take In N such queries to cover the entire block, it also increases the size of the trellis and
hence both space and runtime requirements. The breakpoint array thus has the same amortized

complexity as the wavelet tree, while creating better compression.
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5.2.2.1 Haar breakpoint weights

Having established a data structure to iterate over blocks for any given compression level, we now
define a vector by of breakpoint weights for the Haar wavelet transform, and derive a simple

algorithm to calculate it from y. We need the following definitions:

Definition 5.2.3 (Maxlet arrays). For bj.tk €[0,T), let

oo t=0Vvb,, >T
by [ b7 ] = J’k
(¥ 0¥)] t>0Vby, <T

be a vector of absolute Haar wavelet coefficients, called a univariate maxlet array. For multivariate
data, the multivariate maxlet array is the pointwise maximum of the univariate maxlet arrays for

each data dimension.

Notice that the univariate maxlet array corresponds to the absolute values of Haar wavelet
transforms, generalized for arbitrary T: If T is a power of 2, it contains the absolute values
of detail coefficient of the Haar wavelet transform with its first entry (the scaling coefficient)
replaced by co. For other T, it consists of a concatenation of such segments of decreasing size.
For instance, if T = 22, the transform concatenates 3 arrays whose sizes are powers of two

(22 =16+ 4+ 2). Later in this chapter, we provide two algorithms:

1. The univariate maxlet transform computes the maxlet array for arbitrary data sizes T
in-place and in linear time. In Fig. 5.5, the dashed lines and circular markers in the
upper subplot illustrate the necessary updates, and the white markers in the lower subplot

correspond to the result.

2. The multivariate maxlet transform computes the multivariate maxlet array; instead of
computing d univariate maxlet transforms separately, using a space of 2T (one array of size
T for calculating the transform at the current dimension, another for storing the maxima),
we show that this transform can be computed using only T +d1d T space and O(d T) time.

For d = 1, the result is the same as the univariate maxlet transform.

In a maxlet array, each value at t corresponds to the (maximum of d) detail coefficients for

which the central discontinuity b].ik = t. In order to decide whether or not a wavelet regression
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under a threshold A has a discontinuity at t, all wavelets with b;rk =t and b]._k =t have to be

taken into account. The breakpoint weights are thus computed as follows:

Definition 5.2.4 (Haar breakpoint array). For bj.ck €[0,T), let

[e%e) t=0Vb?k2T
J>

by [ b] =

+ _ 1t + _ 13— -
b =b%, VbE =b, } t>0Vb <T

may o {[(50, )|

be a vector of breakpoint weights. A breakpoint array initialized with these weights is called a Haar

breakpoint array.

Here, the entry at each position t is set to the largest absolute coefficient for all wavelets
which have their left, central or right discontinuity at t, as long as the wavelet for which bji’k =t
has full support in [0, T). The reasoning behind this definition is that if T is a power of 2, then
this breakpoint array introduces the same breakpoints as wavelet compression for the same
threshold, with probability 1; a breakpoint is only potentially hidden in cases where bj_’k = b;fk 0
on R, this has probability measure 0. For other data sizes, there are wavelets which have their
central discontinuity within the data, but have incomplete support. Instead of using one of several
padding schemes, we assume those breakpoints to have infinite weight, which introduces up to
1d T additional breakpoints.

If the emissions are multivariate with dimension d, the set of block boundaries is the union
of block boundaries across all dimensions. In other words, the corresponding weights for the
Haar breakpoint array can easily be calculated as the per-position maxima of across the d such
weight vectors, as given by the multivariate maxlet array.

To derive Haar breakpoint weight from any maxlet transform, we introduce the Haar boundary
transform, which performs the necessary maximum computations in-place and in linear time
O(T). In Fig. 5.5, the solid lines in the upper subplot illustrate the computation of maxima, and

the black markers in the lower subplot correspond to the result.

5.2.2.2 In-place univariate maxlet transform

In-place calculation of by, requires an in-place generalization of the Haar wavelet transform

for arbitrary-size data. The pyramid algorithm used in our original approach was obviously not
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in-place, as it required padding of the input array to a power of two, as well as an additional
array of size T for temporary storage. In order to derive an in-place algorithm to calculate b,,,
we use a more recent in-place calculation of the Haar wavelet transform based on the lifting
scheme (Algorithm 4), due to SWELDENS (1995, 1998). It is based on the following recursions:

ylk] j=0

b7 —1 b1 b7 1 )
Zt:bfk ylt] =Zt_b_+ky[t]+ t:b#kY[t] =Cj—12k +Cjm1,2k41 ] >0
Js Js I

cj,k =

b —1 b —1
LSyt 3 e | =L )
di i =— t]— t] | = —Ic; +c;
7.k . Yy y = \Cj—1,2k T Cj—1,2k+1
2] t:b}“f,k t:b}*k 2)

These relations are illustrated in Fig. 5.5 using dotted edges, with d; = w; ; and ¢y, = y; = y[k].
By storing c; . at index b;’tk and d; ;. at index b].i,k, they derive an in-place algorithm which never
overwrites d; once it is calculated (Algorithm 4). Notice that each detail coefficient d;  is
stored at the position bji’k corresponding to the central discontinuity in their corresponding
wavelet, and that this corresponds to an in-order DFS layout of the wavelet tree without the
leaves corresponding to the input data, with the leftmost leaf at index 1 (Fig. 5.5, bold lines);

the tree is created from the leaves up, and from left to right.

Algorithm 4 In-place Haar wavelet transform for power-of-2 data sizes (SWELDENS 1995, modi-
fied for expositional purposes).

1: procedure HAARTRANSFORM(Y)

2: T « |y| > number of data points
3 forj«—1,...,1dT do > iterate over levels, bottom-up
4 N« 2/ > support size of 9 i
5 S \/l—ﬁ > normalization constant
6: fork < 0,...,+ —1do > process elements on level j from left to right
7 L« Nk > left index
8 R« N(k+ %) > right index
9: y[L] < yl[L] > COPY Cj_1,2k
10: Y[R] < y[R] > COPY Cj—1,2k+1
11: v[L]<—y[L]+y[R] > calculate cj i
12: Y [R] < s(y[L]—y[R]) > calculate d; i
13: return y

We first provide a generalization of the in-place Haar wavelet transform to arbitrary data

sizes (Algorithm 7).

Proposition 5.2.7. by, can be computed in-place and in linear time O(T).
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Algorithm 5 Given emission data y, compute the univariate maxlet transform, i. e. the absolute
detail coefficients of the Haar wavelet transform for arbitrary data sizes T.

1: procedure MAXLETTRANSFORM/(Y)
2 T « |y| > number of data points
3 forj<—1,...,[ldT] do > iterate over levels, bottom-up
4 N« 2/ > support size of 9 i
5: S «— ‘%ﬁ > normalization constant
6 fork <0,..., [%] —1do > process elements on level j from left to right
7 L« Nk > left index
8 R« N(k+ %) > right index
9: if R < T then
10: YIL]<yl[L] > COPY Cj—1,2k
11: YIR] < y[R] > COPY Cj—1,2k+1
12: y[L]—y[L]+y[R] > calculate cj i
13: y[R] < s|ly[L]—y[R] > calculate |dj,k|
14: else
15: y[L] < oo > force breakpoint for incomplete support
16: return y

Proof. by, can be considered as the concatenation of a minimum number of maxlet transforms
bﬁd of decreasing sizes which are all powers of 2. Note that b,,;[t] = oo whenever bﬁ,[[o]. Since
the support size for any Haar wavelet is a power of two, an infinite value indicates that the value
associated with this position has incomplete support across the data. Assume w.l.0.g. that T is a
power of two and hence the tree is complete. The Haar wavelet transform can be implemented
in-place in linear time (SWELDENS 1995), yielding a DFS in-order layout of the wavelet tree, with
the first entry representing the sum of all data points. The first element can be set to oo and the
other values can be set to their absolute value in a second pass. Alternatively, the transform can
be calculated for arbitrary data sizes in one pass (Algorithm 7, which is a modification of the

lifting scheme with checks for incomplete support intervals). O

5.2.2.3 Multivariate maxlet transform

Naively, the maxlet transform for multivariate data can be computed using 2T space, by succes-
sively computing the univariate maxlet transform for each dimension d in an array of size T,
and continuously updating the maxima across dimensions in a second array of the same size.
Here, we derive an alternative version requiring only an array of size T as well as a stack of size

O(d1d T). Essentially, it is an adaptation of the lifting scheme, which changes the order of com-
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putation (Algorithm 6). For an inner node in the tree of detail coefficients to be computed, all its
descendants have to be known. In a streaming setting, the leaves arrive ordered by t. Therefore,
the lifting scheme has to be changed from bottom-up BFS to DFS post-order, necessitating the
use of a stack.

The algorithm maintains the following invariant: when processing the detail coefficient d; at
position p, the stack S contains the unnormalized scaling coefficients (i. e. sums of data segments
of size 2/) Cj—1,2k+1 for all dimensions at the top D elements, followed by the set of unnormalized
scaling coefficients for ¢;_; x4 at the D positions below. Using a stack that allows random access,
such as the vector class in C++, detail coefficients the maximum d ;. across all data dimensions
can be computed from the 2D top elements of the stack, using the lifting recursions and the
level-specific normalization factor n (Algorithm 6, Line 16-Line 25). Afterwards, by adding the
top D entries in the stack to the next D entries element-wise and popping the top D elements,
the stack contains the dimension-wise sums for the joint support ranges, i. e. the unnormalized
scaling coefficients to compute the left parent of the current node (the parent index and checks
whether such a parent exist for the current position is maintained in the index p and a bitmask
m reflecting the structure of the tree). For instance, if the stack contains c, ; and c, 3, replacing
€92 by 59 + ¢33 and popping c;, 5 yields c3 ; on top of the stack, so d4 ; can be calculated, since
the elements below the stack top are the scaling coefficients c5 ;, see Fig. 5.5. Since the behavior

of the stack mimics that of a DFS traversal, it never gets larger than d1d T.

5.2.2.4 Haar boundary transform

For each central discontinuity b;tk, there are j — 1 wavelets at lower levels j* < j, which have

+

their left discontinuity at that position (bj, »

= b;.tk). The same is true for right discontinuities,
so that each position is the maximum of 2j — 1 absolute wavelet coefficients. In Fig. 5.5, these
relations are indicated in that each node in the tree is transformed into the maximum of itself as
well as direct descendants in lower levels indicated by solid lines (including tree edges).

We will later show that despite those dependencies, the Haar breakpoint array can be
calculated in-place in linear time for arbitrary-sized input data y.

The linear running time for maximum calculation can be established non-constructively:

The central discontinuity of a wavelet at level j is shared with j wavelets for which it is the left
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Algorithm 6 Computes the univariate or multivariate maxlet transform, i. e. for each position t
and D Haar wavelet transforms of size T the maximum of the D absolute wavelet coefficients at
position t is computed. The input is assumed to come from a data stream F, sorted by (t,d),
0<t<T,0<d<D. The algorithm requires T + D1d T space and time.

procedure STREAMINGMAXLETTRANSFORM(F, D)

Allocate empty vector b
Allocate empty stack S
t<0

while F not empty do

> Contains resulting maxlet transform
> Contains unprocessed data sums

> Current data index

> Current dimension index at position t

Get next element from F and push it to S

1:
2
3
4:
5: d<0
6
7
8
9

d++
if d = D then
10: d<0
11: Append oo to b
12: pet >
13: me«—1
14: n<«— %
15: while (p ®m) > 0 do
16: c<0
17: L« |S|—2D
18: R«—L+D
19: for D iterations do
20: ¢ « max{c,n|S[L]—
21: S[L] « S[L]+ S[R]
22: L++
23: R++
24: b[p]«c
25: ne -
26: Pop D elements from S
27: pep—m
28: m « 2m
29: t++

> Dimension index of next element
> Finished reading all dimensions for this position

> Coefficients are oo for incomplete support

Index of detail coefficient in upward-left path (DFS)
> Bit mask for accessing left parent node, if it exists
> Wavelet normalizer

> p is a left parent in tree

> Maximum detail coefficient across dimensions

> Lower stack index

> Upper stack index

S[R]|} > Update maximum at j
> Store sum for next level

> Next dimension for lower stack elements

> Next dimension for upper stack elements

> Store maximum absolute detail coefficient
> Update normalizer for next level

> Top now contains subtree sum

> Move to potential left parent

> Shift bit mask

discontinuity, and likewise for the right, hence each wavelet coefficient at level j needs to be

updated by 2j coefficients at lower levels.

number of updates is
dT

2.

j=1

since the infinite series

There are 2% coefficients at level j, hence the total

S S2T

dT i
hm — =2
1dT—>oo; 27

is monotonically increasing.
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Algorithm 7 Given a maxlet transform d, for each position t compute the maximum absolute
coefficient of all wavelets which have a discontinuity at t, in-place and in linear time.

1: procedure HAARBOUNDARYTRANSFORM (d)
2 d[0] « oo > force breakpoint before first element
3 for j—|1dT],...,1do > iterate over levels, top-down
4 N« 2/ > support size of wavelet t level j
5: fork < o0,..., [%] —1do > process elements on level j from left to right
6 t —N(k+ %) > index of central discontinuity b].i’k of ;i
7 n« % > distance to left and right discontinuity
8 if t < T then
9: Let—n > index of left discontinuity
10: d[L] < max{d[L],d[t]} > consider left discontinuity
11: Re—t+n > index of right discontinuity
12: if R < T then
13: d[R] <« max{d[R],d[t]} > consider right discontinuity
14: return d

At each position, left and right discontinuities of multiple wavelets have to be taken into
account to calculate the maximum, except for positions between trees, which are already co.
Two versions of this approach can be used: one can traverse through the tree in a BFS fashion,

and update beik from the b}, ,, and b}, ,, at lower levels ¢’ < {. Alternatively, the same updates

oK ok
can be performed traversing top-down through levels £’, updating weights at higher levels for
left and write discontinuities. Each wavelet is considered at most twice for updating a wavelet

on a higher level. Since higher-level weights are updated from lower levels, and the traversal is

top-down, no weights are overwritten prematurely and the algorithm is in-place.

5.3 Compressed marginal records

Definition 5.3.1 (Marginal records). Let t € [0,..., T), spax the largest state sampled during FBG,
and s € [0,...,S1.x])- A marginal record is a data structure which allows to store and query the

number of times state s was observed at data index t.

Our previous solution to recording marginal state counts was closely tied to the wavelet tree
data structure in that it stored count vectors in the nodes of the tree. This was inefficient for
a number of reasons: firstly, as discussed earlier, the number of nodes is larger than necessary.

Secondly, the memory for each of these nodes has to be allocated. If the tree is implemented
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as a flat array of size 2T, the allocation requirements for k states are 2Tk, even though a lot of
nodes will potentially not contain any counts, and even those that do will contain zeros for many
states. Such a preallocation approach also requires the number of states to be known in advance,
and precludes further extensions to priors on the state number such as the Dirichlet Process.

We had therefore opted for a second approach, in which counts are dynamically allocated
in each wavelet tree node using C++ vectors, such that the i-th position contains the count
of state i. Vectors were dynamically increased in size to accommodate counts for the highest
numbered state in each iteration. However, even with this approach, there was considerable
overhead for enabling such dynamic allocation, in this case 20 B per node for holding start, end,
and reserved memory size for vectors. For a billion data points, this alone results in 40 GB of
additional RAM.

This could be somewhat alleviated by using a run-length encoding (RLE) approach, in which
state counts are recorded for each compression segment and stored along with the segment
length, illustrated by the right column of Fig. 5.6.

Dynamic compression however complicates the use of run-length encoding for marginals. At
each new iteration, a different block structure is created, which requires existing RLE segments
to be split into multiple parts, each of which will have counts for a different state added. This
could be solved trivially using a linked list implementation, in which new segments are inserted
with the appropriate updates of its neighbors size. This approach however has two disadvantages.
Firstly, maintaining the pointers in the list is wasteful in terms of memory. Second, in order
to hold the state count record, either a fixed array needs to be allocated, which is wasteful if
the number of states is large, as it will contain mostly zero-entries, or some kind of dynamic
data structure which encodes a compressed version of the state counts is required, which incurs
additional memory due to additional householding variables. On the other hand, states could
be stored in a resizable array like C+ +’s vector. It could be increased in size to hold the new
number of run-length segments, and move existing items so as to free the necessary insertion
positions. While this would only incur linear-time overhead, it requires the insert positions to
be known with random-access. However, we do not explicitly store the block sizes for a state
sample, as this incurs large memory usage, and obtain them by iterating over the breakpoint

array instead. In this case, every entry after a new segment position would have to be moved
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Figure 5.6: A small three-step example of recording marginal counts using Algorithm 8. Starting
at position t = 0, 7 observations of state 5 are inserted. In the count queue, black boxes indicate
that state counts of zero have been skipped; those numbers encode the next higher state that has a
non-zero count. White boxes indicate the counts for the state. For instance, the right-most part of
the count queue in the top subfigure is stored as (0,—1,—2,4,—7), indicating that there is 1 count
for state 0, 2 counts for state 1, and 7 counts for state 4. The segment starts at position t =9, and
has a length of 1. Note that 0 is used to mark the start of a new segment. Each segment has a total
of 10 counts already recorded. Arrows indicate contiguous elements in the count queue. With every
iteration, a segment is moved to the back with the new state count included. Note that in the last
iteration, the segment t =6, ..., 8 is split. After finishing this step, the next count would be recorded
starting at position t = 7. Notice how each run of zeros in the state queue is represented by a single
number, thus allowing for arbitrarily large state indices without much overhead.
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further back in the vector, so that the reallocation complexity for vector size n is on the order
of O(n?) in each FBG iteration. Furthermore, this approach requires the marginals to be stored
as individual data structures with the same memory overhead described above. If, on the other
hand, the encoding was sequential so as to fit into a single array, determining the positions of the
segments to be moved is challenging.

We developed an encoding for marginal records that stores counts sequentially in a vector
of integers in a highly compressed fashion with small overhead. Adding records for run-length
encoded state sequences is performed using a queue with iterator access to its front elements,
such as implemented by deque, and requires a single pass over the state records and is therefore
linear. The memory overhead is 2 bytes per segment, plus one bit for every 32 integers.

Encoding for marginal counts for a single position is performed using a sequence ¢ of signed
integers. A negative number is used to store the counts for a state. The state s(i) of a position i
is recursively defined as

s(0)=0,

s(i—1) c[i—1]<0
s(i) == .
c[i—1] c[i—1]>0
Positive entries are called index values. We further require that all index values must be in strictly

increasing order, and that no unnecessary index is used, i. e. we require
Vel[i]>0:s(i—1)+1 < c[i].

In other words, runs of states having observed counts are represented as runs of negative numbers,
and runs of zero-counts are represented as a single number indicating the state label of the next

higher state with non-zero counts. For instance, the count vector
(2’ 0) 0’ 8) 1’ 4) 0’ 0) OJ 0) 57 07 OJ 07 O) 07 O) 07 O)

would be encoded as

(_25 37 _85 _1’ _49 9: _5)9

and the corresponding states are

(07 ]‘7 3) 47 5) 67 9)7
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Figure 5.7: Micro- (left) and macro-averaged F-measures for the improved implementation of HaMM-
LET, using integral array, breakpoint array and the streaming maxlet transform. For comparison with
the previous implementation results, see Fig. 4.10 on page 80.

though 1 and 6 are somewhat inconsequential as they have no counts associated with them; note
that the decision to use negative signs for counts instead of index values is arbitrary in principle,
but leads to using fewer negations in the implementation. In settings where quick convergence
is expected, the number of zeros is expected to be high, leading to good compression under
this scheme. In general, assume that the marginals contain M distinct segments after running
FBG, and the HMM has S states. Then, the queue can contain no more than (2S + 1)M entries:
for each segment, one zero to mark the beginning of a segment, and up to one positive and
negative value per state. If the number of latent HMM states is limited to S, then there can be
no more than S non-zero entries per segment. Hence, for reasonably high compression ratios,
this amounts to small memory usage. For instance, at a compression ratio of 300 for a human
genome at base-level resolution and 10 latent HMM states, marginal records using 2-byte signed
integers require less than 234 MB. In practice, not every segment will contain 11 values, due to
fast convergence, and the numbers get even smaller. Compared to the storage requirements of

the block generator, this is negligible.
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5.4 Evaluation

Changing the compression scheme raises the question of its effects on the inference quality. In
particular, a stronger compression allowing for fewer path changes might have two competing
effects. On the one hand, the decreased freedom in sampling the state sequence might result
in slower mixing. On the other hand, assigning a state other than the MPM state to a block
might yield posteriors which could prolong the convergence of said state parameters to their
MPM value. In order to evaluate which of these effects is stronger, we rerun our previous
simulations, using the exact same files created earlier and deposited on Zenodo. Fig. 5.7 shows
the micro- and macro-averaged F-measures for our new implementation. Results are virtually
identical, thought the macro-averaged F-measure appears to converge slightly slower for the lower
quantiles. The slower mixing effect appears to be slightly stronger, yet negligible. Benchmarking
results comparing the prototype and improved implementations of HaMMLET can be found in

Section 6.4



108

Algorithm 8 Append N observations of state s to the marginal records.

1: procedure ADDMARGINALRECORD(N, STATE)

2:

AR

©

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:

47:

bool DONE «false
s <0
while N > 0 do
s <0
done «false
for t <0t < counTQ.size() ++t do
ENTRY «—COUNTQ [t]
if ENTRY = O then
if - DONE then
if s < sTATE then
couNTQ.push( STATE )
coUNTQ.push( —COUNT )
counTQ.push(0)
break
if poNE then
couNTQ.push( ENTRyY )
continue
if ENTRY > O then
if STATE < ENTRY then
if s < sTATE then
couNTQ.push( STATE )
coUNTQ.push( -COUNT )
if STATE + 1 < ENTRY then
couNTQ.push( ENTRY )
DONE «—true
else
coUNTQ.push( ENTRY )
S «—ENTRY
else
if s = STATE then

couNTQ.push( ENTRY — COUNT )

DONE «true
else
couNTQ.push( ENTRY )
s++
if N < s1zeQ.front() then
s1zeQ.push( N )

s1zeQ.front() «sizeQ.front()—N

break

else
s1zeQ.push( s1zeQ.front() )
N «N- s1zeQ.front()
s1ZEQ.pop()
while counTQ.f ront() # 0 do

couNTQ.pop()

couNTQ.pop()

> State at current index

> Consume entire length of insert block
> Assume lowest state

> Remember if insert was successful

> Entry at current position

> All entries for this segment have been consumed
> Count not registered yet

> Skipped over states?

> Add state index

> Append count as negative number

> Append 0 to mark end of this segment

> Count was successfully registered
> Keep appending all entries for this segment

> Entry denotes state of next entry
> Count must be inserted here

> Skipped over states?

> Add state index

> Append count as negative number
> Skipping states until next count?
> Add state index

> Mark count insertion as successful

> Update state for next entry

> Entry is negative count or current state
> Reached target state to be counted

> Add count

> Mark count insertion as successful

> Append entry without further action
> Update current state

> Residual front segment remains

> Assign its size to new segment

> Decrease size to remainder

> Front segment was completely absorbed
> Associate its size with new segment

> Set insert size to its remainder

> Remove empty segment’s size

> Remove all entries for mpty segment

> Remove segment separator
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Chapter 6

Application to WGS data

In this chapter, we demonstrate the applicability of HAMMLET to a real-world research question.
We show that CNV candidates inferred using our methods are enriched for gene annotations

consistent with a working hypothesis that CNVs play a role in the domestication syndrome.

6.1 CNV as a genetic basis for domestication effects in rats

The domestication of a handful of animal species, starting in the early Holocene, has played a
crucial role in the development of complex human societies (DiaMoND 1998). While we have
learned a great deal about when and where animal domestication occurred, the genetic changes
that underlie the phenotypic differences between domestic animals and their wild progenitors
remain relatively unknown. It has been observed that domestic animal species tend to share a
suite of behavioral, physiological and morphological traits that are absent or rarely observed in
their wild progenitors (DARWIN 1868; WILKINS, WRANGHAM & F1TcH 2014). These traits include
changes in pigmentation, craniofacial anatomy, hormonal levels, seasonal reproduction cycles
and increased docility (SANCHEZ-VILLAGRA, GEIGER & SCHNEIDER 2016). This suite of changes is
referred to as the “domestication syndrome”. A long-standing question in evolutionary biology is
whether these convergent changes are the result of genetic drift, artificial selection by humans for
each individual trait, or pleiotropic effects of selection for a few or even a single trait. A proponent
of the pleiotropy hypothesis, i.e. that genes under selection for behavioral traits of tameness

and aggression influence other, seemingly unrelated phenotypes, was the Academician Dmitry K.
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Belyaev. He hypothesized that selection for tameness at the start of the domestication process
had pleiotropic effects that explained many of the features of the domestication syndrome. To
test his hypothesis, he began a program of experimental domestication of the silver fox (Vulpes
vulpes) in 1959 in Novosibirsk, Siberia. Foxes obtained for fur farms were selectively bred for
their behavioral response to an approaching human. One line of foxes was bred for tame behavior
towards humans, while a control line was selected for a fearful and aggressive response towards
humans, to maintain the wild-type behavior despite being maintained in captive conditions.
After just a few generations of selective breeding, the tame line began to show many of the traits
associated with the domestication syndrome, including changes in pigmentation, morphology
and behavior (BELYAEV 1969; TRUT, PLYUSNINA & OSKINA 2004; TRUT, OSKINA & KHARLAMOVA
2009).

The same experimental setup of artificially selecting two lines, one for tame and one for
fearful and aggressive behavior towards humans, was also repeated by the same research group
in the brown Norway rat (Rattus norvegicus) with similar results (ALBERT et al. 2008). These
results seem to confirm Belyaev’s hypothesis that selection for tameness alone could explain
many of the features of the domestication syndrome. However, the specific genetic changes that
underlie these changes remain unknown. Knowledge of the genetic variants that have been
selected in these lines could lead to mechanistic insights into the domestication process. Genomic
structural variants are of particular interest, as they are known to have played a role in the
adaptation of other domestic animals (AXELSSON et al. 2013), and structural variants that affect
multiple functional genomic loci are one possible explanation for the rapid response to selection
observed in these lines. To address this issue we analyzed whole-genome data that was generated
from multiple individuals from the tame and aggressive lines of rats. For an overview of the

experimental process described below, see Fig. 6.1.

6.2 Sample origins and data generation

DNA samples were obtained from two rat lines originating from a shared wild source population,
subsequently maintained in isolation and divergently selected for ~70 generations for their

behavioral response to humans. 20 samples were obtained from the tame line, which has been
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selected for a reduced fear response towards an approaching human hand. 20 samples were
obtained from the aggressive line, which has been selected for an increase in fearful and aggressive
behavior towards an approaching human hand. DNA extraction was carried out at the Institute
of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk
and at the Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Germany.

For all samples, sequencing libraries were generated consisting of 125 bp double-indexed
paired-end reads. Samples were pooled into a single library in order to avoid any batch effects
during sequencing. Sequencing was performed on a combination of the [llumina Genome Analyzer
IT and High-Seq platforms. Library preparation and sequencing was carried out at the MPI-EVA.
The rats have a mean coverage of ~4X per individual, meaning that each genomic position is
expected to be covered by 4 reads. Base calling was done using freelbis (RENAUD, KIRCHER, et al.
2013). Adapters were removed and potentially chimeric sequences flagged using the software
leeHom using default parameters (RENAUD, STENZEL & KELs0o 2014). Reads were demultiplexed
using deML using default quality thresholds (RENAUD, STENZEL, MARICIC, et al. 2015). Reads
were then mapped to the Rattus norvegicus reference assembly rno5, using the Burrows-Wheeler
Aligner (BWA) with default parameters (L1 & DURBIN 2009). Duplicate read removal was
performed with Picard (http://broadinstitute.github.io/picard/). Local indel realignment was
performed using the Genome Analysis Toolkit (GATK) (McKENNA et al. 2010; DEPRisTO et al.

2011; VAN DER AUWERA et al. 2013).

6.3 Data prepocessing

We used SAMtools to process the BAM files resulting from the read mapping procedure. Lowest
mapping positions were recorded for each read, and their counts were accumulated. Start counts
for the tame population were subtracted from their counterparts in the aggressive population,
yielding 1,880,703,547 data points. Note that, due to the multiplexed sequencing, any additive
bias cancels out during subtraction. We used lowest mapped positions per read instead of per-base
coverage (pileup data) for two reasons. Hidden Markov Models assume conditional independence
of the observed data points given the state sequence. However, using pileup creates statistical

dependence between neighboring positions due to reads covering multiple bases. Secondly,
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pileup data tends to produce smooth curves. Since the Haar wavelet only has one vanishing
moment, the local curvature of the data tends to produce large coefficients which severely reduces
the compression. Additionally, sufficient statistics of blocks that are being created are hard to
interpret, and the noise violates the Gaussian assumption. Instead, using only one position for
each read decorrelates neighboring data points.

Due to the low coverage and the integer nature of the counts, the data showed highly
discrete noise, and hence the data was averaged over non-overlapping windows of 20 positions
to approximate Gaussian noise, resulting in 94,035,178 input positions. We then ran HaMMLET
with 8 CNV states and automatic priors, see WIEDENHOEFT, BRUGEL & ScHLIEP 2016c. An

example plot from this study showing complex CNV can be found in Fig. 6.2.

6.4 Benchmarks

On a computer with Intel Xeon CPU E7-8890 v4 (2.20 GHz) and 1 TB RAM, running Ubuntu
14.04.5 LTS, full Bayesian inference with HaMMLET for 200 iterations with a burn-in of 1,800 for
an 8-state-model required 3 min 41 s and 1.3 GB RAM. By comparison, the previously published
version of HaMMLET took 1h 5min 27 s, using 40 GB RAM (cf. Figure 6.3).

For a broader evaluation, we have created 100 replicates of the data by splitting it into 2500
chunks of equal sizes, which we then permuted randomly. We measured the memory usage
(maximum resident set size), running time as well as cache behavior (minor page faults), see
Fig. 6.4. The smaller savings in runtime compared to the original data can be attributed to the
fact that permutation of the data is likely to disrupt long, highly compressible sections of the
data. Also, with smaller blocks created under optimal compression, the undercompression effects
in the wavelet tree might be less pronounced, hence its lower average runtime compared to the
original data.

While the RAM usage remains almost constant among replicates within each implementa-
tion, we noticed that runtime and cache behavior varied widely in the old, but not the new
implementation. We attribute this to the fact that the old compression scheme is suboptimal,
yielding smaller blocks and hence more randomized assignment to states, leading to slower

mixing properties of the Gibbs sampler. The data wavelet tree data contains outliers not shown
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Figure 6.3: Comparison of benchmarks for running time, memory usage and cache behavior between
the old and new versions of HaMMLET on the rat population WGS data set. The new approach yields
a 17.8-fold speedup and 32.2-fold memory reduction. Notice that the number of minor page faults
decreases by five orders of magnitude, indicating much better cache behavior due to the use of new
data structures and an improved implementation. The number of major page faults is zero in both

implementations.
User CPU time [min] Maximum resident set size [GB] 1e8  Minor page faults
40
3
40 30
2
20
20
10 1
0 _ 0 — 0 NI
Wavelet tree  Breakpoint array Wavelet tree  Breakpoint array Wavelet tree  Breakpoint array

Figure 6.4: Comparison of benchmarks for running time, memory usage and cache behavior between
the old and new versions of HaMMLET on 100 permutations of the rat population WGS data set.
Notice the decrease in variance for both page faults and running time.

in the figure, most notably a runtime instance of 6.4 h, which is likely to result from sampling

small emission variances due to short compression blocks.

6.5 Results

We consider all genomic segments with an absolute state mean > 1 as containing putative
structural variation segregating between the tame and aggressive rat lines. This results in
10,083,374 regions with a mean size of 407 base pairs. We identify all genes that are within or
overlap these regions by > 1 base pair using Ensembl’s Variant Effect Predictor (McLARE et al.
2016). We find 1,036 genes with at least partial overlap with these regions.

To investigate the potential phenotypic consequences of these structural variants we performed
a gene enrichment analysis using the software Webgestalt (ZHANG, KIRov & SNODDY 2005; WANG,

DuncaN, et al. 2013). We tested for enrichment of gene ontology (GO term) categories for all
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genes overlapping these structural variants using all genes in the rat genome as background. We
consider as significantly enriched all pathways with p-value <0.05 after using the Benjamini and
Hochberg procedure to correct for multiple hypothesis testing (BENJAMINT & HOCHBERG 1995).
We identify many significantly enriched pathways, see Appendix A. We now briefly discuss some
of these pathways and the genes within them and how they may inform us about the genetic
changes underlying the phenotypic differences between these lines.

The most significantly enriched pathway is “Synapse assembly” (p-value = 0.0028), with
five genes that are in putative structural variants segregating between the tame and aggressive
rat lines. Some of these genes are associated with phenotypes that may be involved in the
behavioral differences observed between the tame and aggressive rat lines. For example, one of
the genes is the neuronal cadherin gene Cdh2. Missense mutations in this gene are associated
with obsessive-compulsive behavior and Tourette disorder phenotypes in humans (Mova et al.
2013) and this gene has been associated with anxiety in mice (DONNER et al. 2008). Another
gene encodes the ephrin receptor Ephbl. The ephrin receptor-ligand system is involved in the
regulation of several developmental processes in the nervous system. Notably, mice with null
mutations for this gene exhibit neuronal loss in the substantia nigra and display spontaneous
locomotor hyperactivity (RicHARDSs et al. 2007). This is interesting given that the tame and
aggressive rats have differences in their activity in an open-field test (ALBERT et al. 2008).

We also observe multiple additional enriched pathways involved in neuronal development
and function, e.g. “transmission of nerve impulse”, “regulation of neurological system process”,
“dendrite morphogenesis”. Therefore, we suspect that many of these segregating structural
variants may have been targeted by selection and are contributing the phenotypic differences
between these lines. Pending experimental validation, future study of the variants identified

here may lead to insights into the domestication process.
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Chapter 7

Conclusion

In this thesis, we have presented a novel approach for HMM-based Bayesian segmentation of
large-scale data for the inference of genomic copy-number variants. Using a decision-theoretic
framework, we have shown that for homoscedastic Gaussian emissions the discontinuities in a
Haar wavelet regression based on the universal threshold capture strong changes in the posterior
state distribution. This allows for a compression of the data into blocks of sufficient statistics within
which the data is likely to be emitted from the same latent state. We derived the bias incurred
in the forward-variables by ignoring between-state transitions for general HMM, generalizing
earlier results based on the weak path assumption. The tendency of this forward bias to favor the
state with the highest marginal likelihood within each block made us conjecture that Forward-
Backward Gibbs sampling would result in a maximum posterior margins (MPM) segmentation of
the data.

For heteroscedastic Gaussian HMM, we developed a Forward-Backward Gibbs sampling
scheme based on dynamic Haar wavelet compression, in which the universal threshold is derived
from the smallest emission variance sampled in each iteration. We developed the wavelet tree as
a data structure to facilitate this sampling, and used extensive simulation studies to demonstrate
the performance of our method. We show that compression greatly improves convergence, in
terms of the number of sampling iterations, towards the true latent state sequence compared
to uncompressed sampling, thus providing experimental support for our MPM segmentation
conjecture. This faster convergence is achieved while also improving overall running time by two

orders of magnitude. We also demonstrated the performance on biological gold-standard data
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sets, improving upon the state of the art methods while running substantially faster.

We then showed that the wavelet tree yields a suboptimal compression, and derived a new
compression scheme. We replaced the wavelet tree by more efficient and less memory-consuming
data structures called breakpoint array and integral array to facilitate fast dynamic queries of the
block sufficient statistics under arbitrary thresholds, without recomputing the Haar transform at
every iteration. For an efficient constructor of these data structures, we developed a linear-time,
in-place algorithm called maxlet transform to compute the maximum absolute detail coefficients,
as well as an equivalent algorithm for multivariate data which incurs only logarithmic overhead in
a streaming setting. We also developed a linear-time, in-place algorithm called the Haar boundary
transform to compute the maximum of all detail coefficients affecting the discontinuities in the
Haar wavelet regression at each position given arbitrary thresholds. Furthermore, we provided
an efficient, queue-based data structure to store and update posterior state marginals during
Gibbs sampling. Beyond a proof of concept, we have released our implementation in a software
called HaMMLET under an open-source license at https://github.com/wiedenhoeft/HaMMLET.
We have demonstrated that large-scale HMM inference can be performed on consumer hardware
within a few minutes. We have demonstrated that plausible CNV candidates can be found using
large-scale whole-genome sequencing data, and derived new scientific hypotheses about the role
of CNV in the domestication syndrome. We are confident that HaMMLET is widely applicable to
experimental data from current and future CNV technologies.

While we conjecture that HaMMLET achieves an approximation of MPM segmentation based
on theoretical considerations and experimental results, the approximation of true posterior state
margins remains an open challenge. Corrections for forward bias are not straightforward under
constantly changing emission parameters during Gibbs sampling. Such a correction would also
lead to the paradoxical situation that compression assumes exchangeability within each block,
yet one of the fundamental properties of HMM is the ability to capture non-exchangeability of
consecutive observations. We have ignored this question in the scope of this thesis, since real-life
applications of CNV detection are often consistent with the weak path assumption. For more

general applications, careful consideration should be given to those questions.


https://github.com/wiedenhoeft/HaMMLET
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Appendix A

Significant pathways in rat populations

In this appendix, we report the genes affected by CNV segregating between tame and aggressive
rat populations, as inferred by HaMMLET. Tables represent GO term enrichment for the “biological
process” sub-root of the gene ontology. Tables are sorted according to the most significant p-value
corrected for multiple testing. The columns are: Gene symbol, Description, Entrez Gene ID, and
the Ensembl ID with the leading “ENSRNOG” (Ensembl prefix for Rattus norvegicus) as well as

the padding zeros removed.



120

GO0:0007416: synapse assembly (p = 0.0028)

Cacnala  calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Cdh2 cadherin 2 83501 15602
Ephbl Eph receptor B1 24338 7865
Nrgl neuregulin 1 112400 10392
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
G0:0010646: regulation of cell communication (p = 0.0064)
Cacnala calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Cdh2 cadherin 2 83501 15602
Ephbl Eph receptor B1 24338 7865
Myo9b myosin IXb 25486 16256
Gria4 glutamate receptor, ionotropic, AMPA 4 29629 6957
Camk2g  calcium/calmodulin-dependent protein kinase II gamma 171140 9783
Plau plasminogen activator, urokinase 25619 10516
Salll sal-like 1 (Drosophila) 307740 -
Cythl cytohesin 1 116691 43381
Epha4 Eph receptor A4 316539 13213
Ppp3cb protein phosphatase 3, catalytic subunit, beta isozyme 24675 7757
Scoc short coiled-coil protein 364981 3853
Egfr epidermal growth factor receptor 24329 4332
Nrgl neuregulin 1 112400 10392
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Rheb Ras homolog enriched in brain 26954 -
Uaca uveal autoantigen with coiled-coil domains and ankyrin repeats 315732 -
G0:0051674: localization of cell (p = 0.0064)
Cdh2 cadherin 2 83501 15602
Ddr2 discoidin domain receptor tyrosine kinase 2 685781 2881
Ephbl  Eph receptor Bl 24338 7865
Epha4  Eph receptor A4 316539 13213
Myo9b  myosin IXb 25486 16256
Egfr epidermal growth factor receptor 24329 4332
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Nrgl neuregulin 1 112400 10392
Plau plasminogen activator, urokinase 25619 10516
Dcde2  doublecortin domain containing 2 291130 17511
Vel vinculin 305679 10765
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G0:0030010: establishment of cell polarity (p = 0.0064)

Sdccag8  serologically defined colon cancer antigen 8 305002 4181
Ephbl Eph receptor B1 24338 7865
Cythl cytohesin 1 116691 43381
Myo9b myosin IXb 25486 16256
GO:0050808: synapse organization (p = 0.0064)
Cacnala calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Cdh2 cadherin 2 83501 15602
Ephbl Eph receptor B1 24338 7865
Nrgl neuregulin 1 112400 10392
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
GO0:0051969: regulation of transmission of nerve impulse (p = 0.0064)
Cacnala calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Egfr epidermal growth factor receptor 24329 4332
Cdh2 cadherin 2 83501 15602
Gria4 glutamate receptor, ionotropic, AMPA 4 29629 6957
Camk2g  calcium/calmodulin-dependent protein kinase II gamma 171140 9783
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Rheb Ras homolog enriched in brain 26954 -
GO0:0016477: cell migration (p = 0.0064)
Cdh2 cadherin 2 83501 15602
Ddr2 discoidin domain receptor tyrosine kinase 2 685781 2881
Ephbl  Eph receptor B1 24338 7865
Epha4  Eph receptor A4 316539 13213
Myo9b  myosin IXb 25486 16256
Egfr epidermal growth factor receptor 24329 4332
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Nrgl neuregulin 1 112400 10392
Plau plasminogen activator, urokinase 25619 10516
Dcdc2  doublecortin domain containing 2 291130 17511
Vel vinculin 305679 10765




122

G0:0031644: regulation of neurological system process (p = 0.0064)

Cacnala  calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Egfr epidermal growth factor receptor 24329 4332
Cdh2 cadherin 2 83501 15602
Gria4 glutamate receptor, ionotropic, AMPA 4 29629 6957
Camk2g  calcium/calmodulin-dependent protein kinase II gamma 171140 9783
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Rheb Ras homolog enriched in brain 26954 -
GO0:0046777: protein autophosphorylation (p = 0.0064)
Egfr epidermal growth factor receptor 24329 4332
Ddr2 discoidin domain receptor tyrosine kinase 2 685781 2881
Ephbl Eph receptor Bl 24338 7865
Epha4 Eph receptor A4 316539 13213
Camk2g  calcium/calmodulin-dependent protein kinase II gamma 171140 9783
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
G0:0048870: cell motility (p = 0.0064)
Cdh2 cadherin 2 83501 15602
Ddr2 discoidin domain receptor tyrosine kinase 2 685781 2881
Ephbl  Eph receptor Bl 24338 7865
Epha4  Eph receptor A4 316539 13213
Myo9b  myosin IXb 25486 16256
Egfr epidermal growth factor receptor 24329 4332
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Nrgl neuregulin 1 112400 10392
Plau plasminogen activator, urokinase 25619 10516
Dcdc2  doublecortin domain containing 2 291130 17511
Vel vinculin 305679 10765
G0:0021955: central nervous system neuron axonogenesis (p = 0.0064)
Ephbl  Eph receptor B1 24338 7865
Epha4  Eph receptor A4 316539 13213
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
GO0:0050804: regulation of synaptic transmission (p = 0.0068)
Cacnala calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Egfr epidermal growth factor receptor 24329 4332
Gria4 glutamate receptor, ionotropic, AMPA 4 29629 6957
Camk2g  calcium/calmodulin-dependent protein kinase II gamma 171140 9783
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Rheb Ras homolog enriched in brain 26954 -




123

G0:0048813: dendrite morphogenesis (p = 0.0068)

Cacnala  calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Ephbl Eph receptor B1 24338 7865
Epha4 Eph receptor A4 316539 13213
Dcdc2 doublecortin domain containing 2 291130 17511
G0:0019226: transmission of nerve impulse (p = 0.0068)
Cacnala calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Cdh2 cadherin 2 83501 15602
Ephbl Eph receptor B1 24338 7865
Egfr epidermal growth factor receptor 24329 4332
Gria4 glutamate receptor, ionotropic, AMPA 4 29629 6957
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Nrgl neuregulin 1 112400 10392
Camk2g  calcium/calmodulin-dependent protein kinase II gamma 171140 9783
Rheb Ras homolog enriched in brain 26954 -
GO0:0055083: monovalent inorganic anion homeostasis (p = 0.0068)

Cacnala calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
GO0:0055064: chloride ion homeostasis (p = 0.0068)

Cacnala  calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
GO:0030644: cellular chloride ion homeostasis (p = 0.0068)

Cacnala  calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
GO0:0030320: cellular monovalent inorganic anion homeostasis (p = 0.0068)

Stab2 stabilin 2 282580 -
Cdh2 cadherin 2 83501 15602
Ephbl Eph receptor B1 24338 7865
Cyth1l cytohesin 1 116691 43381
Egfr epidermal growth factor receptor 24329 4332
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Nrgl neuregulin 1 112400 10392
Plau plasminogen activator, urokinase 25619 10516
Vel vinculin 305679 10765
Cdh19 cadherin 19, type 2 360835 29841
Cacnala calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
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GO0:0007155: cell adhesion (p = 0.0068)

Stab2 stabilin 2 282580 -
Cdh2 cadherin 2 83501 15602
Ephbl  Eph receptor B1 24338 7865
Cythl  cytohesin 1 116691 43381
Egfr epidermal growth factor receptor 24329 4332
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Nrgl neuregulin 1 112400 10392
Plau plasminogen activator, urokinase 25619 10516
Vel vinculin 305679 10765
Cdh19  cadherin 19, type 2 360835 29841
GO0:0006928: cellular component movement (p = 0.0068)
Cdh2 cadherin 2 83501 15602
Ddr2 discoidin domain receptor tyrosine kinase 2 685781 2881
Ephbl  Eph receptor Bl 24338 7865
Epha4  Eph receptor A4 316539 13213
Myo9b  myosin IXb 25486 16256
Elmol  engulfment and cell motility 1 361251 18726
Egfr epidermal growth factor receptor 24329 4332
Plau plasminogen activator, urokinase 25619 10516
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Nrgl neuregulin 1 112400 10392
Dcdc2 doublecortin domain containing 2 291130 17511
Vel vinculin 305679 10765
G0:0035637: multicellular organismal signaling (p = 0.0089)
Cacnala  calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Cdh2 cadherin 2 83501 15602
Ephbl Eph receptor B1 24338 7865
Egfr epidermal growth factor receptor 24329 4332
Gria4 glutamate receptor, ionotropic, AMPA 4 29629 6957
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Nrgl neuregulin 1 112400 10392
Camk2g  calcium/calmodulin-dependent protein kinase II gamma 171140 9783
Rheb Ras homolog enriched in brain 26954 -
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GO0:0007268: synaptic transmission (p = 0.0089)

Cacnala  calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Ephbl Eph receptor B1 24338 7865
Egfr epidermal growth factor receptor 24329 4332
Gria4 glutamate receptor, ionotropic, AMPA 4 29629 6957
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Nrgl neuregulin 1 112400 10392
Camk2g  calcium/calmodulin-dependent protein kinase II gamma 171140 9783
Rheb Ras homolog enriched in brain 26954 -
GO0:0007267: cell-cell signaling (p = 0.0089)
Cacnala  calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Ephbl Eph receptor Bl 24338 7865
Ppp3cb protein phosphatase 3, catalytic subunit, beta isozyme 24675 7757
Egfr epidermal growth factor receptor 24329 4332
Gria4 glutamate receptor, ionotropic, AMPA 4 29629 6957
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Nrgl neuregulin 1 112400 10392
Camk2g  calcium/calmodulin-dependent protein kinase II gamma 171140 9783
Rheb Ras homolog enriched in brain 26954 -
Salll sal-like 1 (Drosophila) 307740 -
GO0:0048858: cell projection morphogenesis (p = 0.0105)
Cacnala calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Cdh2 cadherin 2 83501 15602
Ephbl Eph receptor B1 24338 7865
Epha4 Eph receptor A4 316539 13213
Myo9b myosin IXb 25486 16256
Egfr epidermal growth factor receptor 24329 4332
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Dcdc2 doublecortin domain containing 2 291130 17511
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G0:0000902: cell morphogenesis (p = 0.0105)

Cacnala  calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Cdh2 cadherin 2 83501 15602
Ephbl Eph receptor B1 24338 7865
Epha4 Eph receptor A4 316539 13213
Myo9b myosin IXb 25486 16256
Egfr epidermal growth factor receptor 24329 4332
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Nrgl neuregulin 1 112400 10392
Dcdc2 doublecortin domain containing 2 291130 17511
Salll sal-like 1 (Drosophila) 307740 -
G0:0007163: establishment or maintenance of cell polarity (p = 0.0105)
Sdccag8  serologically defined colon cancer antigen 8 305002 4181
Ephbl Eph receptor B1 24338 7865
Cythl cytohesin 1 116691 43381
Myo9b myosin IXb 25486 16256
G0:0032990: cell part morphogenesis (p = 0.0114)
Cacnala calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Cdh2 cadherin 2 83501 15602
Ephbl Eph receptor B1 24338 7865
Epha4 Eph receptor A4 316539 13213
Myo9b myosin IXb 25486 16256
Egfr epidermal growth factor receptor 24329 4332
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Dcdc2 doublecortin domain containing 2 291130 17511
G0:0040011: locomotion (p =0.0114)
Cdh2 cadherin 2 83501 15602
Ddr2 discoidin domain receptor tyrosine kinase 2 685781 2881
Ephbl  Eph receptor Bl 24338 7865
Epha4  Eph receptor A4 316539 13213
Myo9b  myosin IXb 25486 16256
Egfr epidermal growth factor receptor 24329 4332
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Nrgl neuregulin 1 112400 10392
Plau plasminogen activator, urokinase 25619 10516
Dcdc2 doublecortin domain containing 2 291130 17511
Vel vinculin 305679 10765
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GO0:0050770: regulation of axonogenesis (p = 0.0114)

Cacnala  calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Cdh2 cadherin 2 83501 15602
Epha4 Eph receptor A4 316539 13213
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
G0:0023051: regulation of signaling (p = 0.0114)
Cacnala calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Cdh2 cadherin 2 83501 15602
Ephbl Eph receptor B1 24338 7865
Myo9b myosin IXb 25486 16256
Gria4 glutamate receptor, ionotropic, AMPA 4 29629 6957
Camk2g  calcium/calmodulin-dependent protein kinase II gamma 171140 9783
Plau plasminogen activator, urokinase 25619 10516
Salll sal-like 1 (Drosophila) 307740 -
Cythl cytohesin 1 116691 43381
Epha4 Eph receptor A4 316539 13213
Ppp3cb protein phosphatase 3, catalytic subunit, beta isozyme 24675 7757
Egfr epidermal growth factor receptor 24329 4332
Nrgl neuregulin 1 112400 10392
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Rheb Ras homolog enriched in brain 26954 -
Uaca uveal autoantigen with coiled-coil domains and ankyrin repeats 315732 -
GO0:0048812: neuron projection morphogenesis (p = 0.0129)
Cacnala  calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Egfr epidermal growth factor receptor 24329 4332
Cdh2 cadherin 2 83501 15602
Ephbl Eph receptor B1 24338 7865
Epha4 Eph receptor A4 316539 13213
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Dcdc2 doublecortin domain containing 2 291130 17511
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G0:0051179: localization (p = 0.0129)

Cacnala  calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Cdh2 cadherin 2 83501 15602
Ddr2 discoidin domain receptor tyrosine kinase 2 685781 2881
Ephbl Eph receptor B1 24338 7865
Sec24c SEC24 family, member C (S. cerevisiae) 685144 9042
Brca2 breast cancer 2 360254 1111
Myo9b myosin IXb 25486 16256
Elmol engulfment and cell motility 1 361251 18726
Camk2g  calcium/calmodulin-dependent protein kinase II gamma 171140 9783
Plau plasminogen activator, urokinase 25619 10516
Dcdc2 doublecortin domain containing 2 291130 17511
Vel vinculin 305679 10765
Tbcldl TBC1 (tre-2/USP6, BUB2, cdc16) domain family, member 1 360937 2180
Kent2 potassium channel, subfamily T, member 2 304827 13312
Stab2 stabilin 2 282580 -
Itlnl intelectin 1 (galactofuranose binding) 498284 4678
Ppp3cb protein phosphatase 3, catalytic subunit, beta isozyme 24675 7757
Epha4 Eph receptor A4 316539 13213
Cythl cytohesin 1 116691 43381
Ccdc91 coiled-coil domain containing 91 312863 -
Egfr epidermal growth factor receptor 24329 4332
Nrgl neuregulin 1 112400 10392
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Uaca uveal autoantigen with coiled-coil domains and ankyrin repeats 315732 -
GO0:0007265: Ras protein signal transduction (p = 0.0142)
Elmol  engulfment and cell motility 1 361251 18726
Cdh2 cadherin 2 83501 15602
Epha4  Eph receptor A4 316539 13213
Nrgl neuregulin 1 112400 10392
Cythl cytohesin 1 116691 43381
Myo9b  myosin IXb 25486 16256
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G0:0032989: cellular component morphogenesis (p = 0.0142)

Cacnala  calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Cdh2 cadherin 2 83501 15602
Ephbl Eph receptor B1 24338 7865
Epha4 Eph receptor A4 316539 13213
Myo9b myosin IXb 25486 16256
Egfr epidermal growth factor receptor 24329 4332
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Nrgl neuregulin 1 112400 10392
Dcdc2 doublecortin domain containing 2 291130 17511
Salll sal-like 1 (Drosophila) 307740 -
GO0:0030002: cellular anion homeostasis (p = 0.0177)

Cacnala calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
G0:0018212: peptidyl-tyrosine modification (p = 0.0187)

Egfr epidermal growth factor receptor 24329 4332
Ddr2 discoidin domain receptor tyrosine kinase 2 685781 2881
Epha4  Eph receptor A4 316539 13213
Nrgl neuregulin 1 112400 10392
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
G0:0018108: peptidyl-tyrosine phosphorylation (p = 0.0187)

Egfr epidermal growth factor receptor 24329 4332
Ddr2 discoidin domain receptor tyrosine kinase 2 685781 2881
Epha4  Eph receptor A4 316539 13213
Nrgl neuregulin 1 112400 10392
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
G0:0009894: regulation of catabolic process (p = 0.0195)

Egfr epidermal growth factor receptor 24329 4332
Epha4  Eph receptor A4 316539 13213
Nrgl neuregulin 1 112400 10392
Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
Myo9b  myosin IXb 25486 16256
Uaca uveal autoantigen with coiled-coil domains and ankyrin repeats 315732 -
Scoc short coiled-coil protein 364981 3853
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G0:0030182: neuron differentiation (p = 0.0195)

Cacnala
Cdh2
Ephbl
Epha4
Egfr

Ptk2
Nrgl
Cdk5rapl
Dcdc2
Salll

calcium channel, voltage-dependent, P/Q type, alpha 1A subunit
cadherin 2

Eph receptor B1

Eph receptor A4

epidermal growth factor receptor

PTK2 protein tyrosine kinase 2

neuregulin 1

CDKS5 regulatory subunit associated protein 1

doublecortin domain containing 2

sal-like 1 (Drosophila)

25398
83501
24338
316539
24329
25614
112400
252827
291130
307740

2559
15602
7865
13213
4332
7916
10392
15696
17511
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