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Alexander Schliep

Hidden Markov models (HMM) have enjoyed a rich history of successes over the past decades.

They have been applied to great effect in almost any conceivable segmentation task, from

speech recognition and part-of-speech tagging, over financial time series analysis, to seismology

and beyond. In bioinformatics, they are widely used for tasks such as gene finding, isochore

classification and, most recently, detection of copy-number variation (CNV) in genomic data.

Advances in biotechnology, such as high-resolution DNA microarrays and next-generation genome

sequencing, have created data sets of millions and billions of values, presenting new challenges to

the application of this classic. CNV detection from large genomic data sets is gaining momentum

in research and diagnostics applications. As it often involves limited computational resources

and time constraints, the importance of fast, accurate and low-memory approaches to HMM

inference is obvious.

As statistical models, HMM depend on a large number of parameters, which have to be either

provided a priori by the user or inferred from the data. Classic frequentist maximum likelihood

(ML) techniques like Baum-Welch (Bilmes 1998; Rabiner 1989; Rabiner & Juang 1986) are

not guaranteed to be globally optimal, i. e. they can converge to the wrong parameter values,

which can limit the accuracy of the segmentation. Furthermore, the Viterbi algorithm (Viterbi

1967) only yields a single maximum a posteriori (MAP) segmentation given a parameter estimate

(Forney 1973). Failure to consider the full set of possible parameters precludes alternative
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interpretations of the data, and makes it very difficult to derive p-values or confidence intervals.

Furthermore, these frequentist techniques have come under increased scrutiny in the scientific

community.

Bayesian inference techniques for HMMs, in particular Forward-Backward Gibbs sampling

(Chib 1996; Scott 2002), provide an alternative for CNV detection as well (Guha, Li & Neuberg

2006; Shah, Xuan, et al. 2006; Shah, Lam, et al. 2007). Most importantly, they yield a complete

probability distribution of copy numbers for each observation. As they are sampling-based,

they are computationally expensive, which is problematic especially for high-resolution data.

Though they are guaranteed to converge to the correct values under very mild assumptions,

they tend to do so slowly, which can lead to over-segmentation and mislabeling if the sampler is

stopped prematurely. The difficulties encountered in Bayesian HMM inference are the reason

most research has focused on the ML approach (Ghahramani 2001).

Another issue in practice is the need to specify hyperparameters for the prior distributions.

Despite the theoretical advantage of making the inductive bias more explicit, this can be a major

source of annoyance for the user. It is also hard to justify any choice of hyperparameters when

insufficient domain knowledge is available.

Recent work by Mahmud & Schliep (2011) has focused on accelerating Forward-Backward

Gibbs sampling through the introduction of compressed HMMs and approximate sampling. For the

first time, Bayesian inference could be performed at running times on par with classic maximum

likelihood approaches. It was based on a greedy spatial clustering heuristic, which yielded a

static compression of the data into blocks, and block-wise sampling. Despite its success, several

important issues remain to be addressed. The blocks are fixed throughout the sampling and

impose a structure that turns out to be too rigid in the presence of variances differing between

CN states. The clustering heuristic relies on empirically derived parameters not supported by a

theoretical analysis, which can lead to suboptimal clustering or overfitting. Also, the method

cannot easily be generalized for multivariate data. Lastly, the implementation was primarily

aimed at comparative analysis between the frequentist and Bayesian approach, as opposed to

overall speed.

To address these issues and make Bayesian CNV inference feasible even on a laptop, we

propose the combination of HMMs with another popular signal processing technology: Haar
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wavelets have previously been used in CNV detection (Ben-Yaacov & Eldar 2008), mostly as a

preprocessing tool for statistical downstream applications (Wang & Wang 2007; Hsu et al. 2005;

Nguyen et al. 2007, 2010; Huang et al. 2008) or simply as a visual aid in GUI applications (Wang,

Meza-Zepeda, et al. 2004; Autio et al. 2003). A combination of smoothing and segmentation

has been suggested as likely to improve results (Lai et al. 2005), and here we show that this is

indeed the case. Wavelets provide a theoretical foundation for a better, dynamic compression

scheme for faster convergence and accelerated Bayesian sampling. We improve simultaneously

upon the typically conflicting goals of accuracy and speed, because the wavelets allow summary

treatment of “easy” CN calls in segments and focus computational effort on the “difficult” CN calls,

dynamically and adaptively. This is in contrast to other computationally efficient tools, which

often simplify the statistical model or use heuristics. The required data structure can be efficiently

computed, incurs minimal overhead, and has a straightforward generalization for multivariate

data. We further show how the wavelet transform yields a natural way to set hyperparameters

automatically, with little input from the user.

We implemented our method in a highly optimized end-user software, called HaMMLET. Aside

from achieving an acceleration of several orders of magnitude, it exhibits significantly improved

convergence behavior, has excellent precision and recall, and provides Bayesian inference within

seconds even for large data sets. The accuracy and speed of HaMMLET also makes it an excellent

choice for routine diagnostic use and large-scale re-analysis of legacy data.

In Chapter 1, we describe structural genomic variations, the main biological and medical

application that motivates our work, as well as the experimental platforms, the type of data they

create, the computational challenges and previous approaches to solve them. Chapters 2 and

3 review the main ingredients of our method, Hidden Markov Models and the Haar wavelet

transform. Chapter 4 derives our method and investigates its properties, while presenting a

proof-of-concept implementation as well as experimental evaluation. In Chapter 5, an improved

implementation is presented to tackle genome-sized data, along with novel algorithms. In Chapter

6 we apply our method to real-world data. Chapter 7 presents an outlook on promising research

directions.
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Chapter 1

Introduction

The main motivation behind the development of our method is the inference of genomic copy-

number variation (CNV) from experimental data. In this chapter, we provide a short overview of

the biological background, the role of CNV in human health, as well as the experimental and

computational framework for their study.

1.1 Structural variation in genomes

As far as we can tell, all life on Earth, including humans, owes its origin, continued functioning

and long-term survival to its genetic material, called the genome in its totality. This term refers to

both its genetic information, as well as the physical medium of its storage.

On the physical level, the genome consists of four nucleobases, separated into two groups: two

purine bases (adenine and guanine, A and G) and two pyrimidine bases (cytosine and thymine,

C and T). These are linked together in a sequential manner to a backbone of phosphate groups

and the 5-carbon sugar deoxyribose into a single strand of deoxyribonucleic acid, or DNA for short.

Each unit of phosphate, deoxyribose and nucleobase is called a nucleotide. The propensity of

each group of nucleobases to form hydrogen bonds between complementary bases (A with T, C

with G) leads to a phenomenon called hybridization, in which two strands of complementary

base sequences align together, winding around each other in a double-stranded helix. A set of

such helices called chromosomes carries the genetic information in organisms.

On the information level, the genome uses the four-letter code A, C, G, and T (with U for
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uracil replacing thymine in RNA molecules). Since the sugar and phosphate in each nucleotide

is identical among nucleotides, the distinction between nucleotides and nucleobases is void

from an information-theoretic standpoint, and both are called a base in general parlance. As

DNA is typically double-stranded, a complementary base-pair is used as the basic unit of genetic

information, similar to bit and byte. It is commonly abbreviated1 as b, and used with SI prefixes.

e.g. kilobase (kb) or megabase (Mb). This provides a convenient way to express the size of any

genomic segment.

The genetic information stored in a chromosome is very complex. The term genes typically

refers to so-called protein-coding regions, i. e. sequences that are transcribed into mRNA, which

serves as a template for protein synthesis, a process called gene expression. mRNA transcripts

contain so-called untranslated regions on both ends (5’UTR and 3’UTR), which are involved

in RNA splicing, transcription regulation and translation; though not part of the final protein,

these sequences are genomically encoded and thus subject to changes in the chromosome as

well. In more general terms, genes also include sequences that encode for ncRNAs (non-coding

RNAs), such as transfer-RNA, ribosomal RNA, microRNA et cetera. Regulatory elements, such

as promoters, operators, transcription factor binding sites (TFBS), enhancers and silencers, are

binding sites for proteins which regulate whether and to what extend a gene is expressed at any

given time. Elucidation of information content is still an ongoing endeavor, but the plethora of

functions described here may serve as a glimpse into the intricacy of information encoded in this

simple strand-like molecule.

The human genome is subject to a variety of physical processes which disrupt its architecture,

commonly referred to as structural variants (SV). Chromosomes can be merged or split, have

their parts rearranged, duplicated, deleted, inverted or shuffled (Fig. 1.1); a large variety of

types and mechanisms has been studied, see Hastings et al. (2009). Since genetic information

is encoded in the DNA sequence, any structural variation changes its content. Among the many

types of SV, copy-number variants (CNV) and single-nucleotide polymorphisms (SNP) account for

the majority of observed cases, and are relevant for the remainder of this thesis; other SV such

as inversions and translocations are neither of interest in this study nor can they be inferred by
1Conventions vary, as b is sometimes used instead of nt (for nucleotide) to denotes a single base, whereas bp

denotes a basepair.



3

Ref.

Interspersed duplication

Novel sequence insertion

Ref.

Translocation

Ref.

Ref.

Ref.

Deletion

Ref.

Tandem duplication

Inversion

Ref.

Mobile-element insertion

Mobile
element

Ref.

Figure 1.1: Overview of structural variations (SV) relative to a reference genome. Copy-number
variants (CNV) detectable by the method presented in this thesis are indicated by gray background.
Figure modified from Alkan, Coe & Eichler (2011), with permission from Macmillan Publishers
Limited.

the algorithm presented here in its current form.

Copy-number variants (CNV) Copy number variants are defined as segments of DNA for which

the number of occurrences within one individual’s genome differs from that of corresponding

sequences in the reference genome. In genomics, the term copy-number variants is commonly

used to refer to variants found in multiple individuals of a population, and is distinguished from

copy-number aberrations, which are typically associated with germline or somatic changes that

have adverse effects for the health of one specific individual (Shlien & Malkin 2009; Valsesia

et al. 2013; Navin 2015). Since CNV and CNA are equivalent from a data analysis standpoint,

we refer to both of them as CNV in this thesis. Aside from large-scale changes due to full or

partial aneuploidy, i. e. abnormal counts of entire or partial chromosomes, CNV are comprised of

insertions and deletions (indels, for short), as well as tandem repeats. In the more narrow sense,

CNV refers to intermediate-size copy-number aberrations between 1 kb and 5 Mb (Freeman

2006), which is small compared to the size of the data and thus challenging to find. Likewise,
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indel often refers to much smaller events; this terminology historically stems from different

experimental techniques and their resolution capacities. Unless otherwise stated, we shall refer

to CNV as any kind of insertion or deletion of genomic material.

Single-nucleotide polymorphisms (SNP) Single-nucleotide polymorphisms refer to exchanges,

losses or gains of single base pairs. They are important in the study of population genetics and

human ancestry. While not directly a target of our computational method, they play an important

role in the measurement of allelic CNV in the form of SNP arrays (Section 1.3.1).

Structural variations affect the information encoded on the DNA strands in a variety of

ways; for a review, see Hurles, Dermitzakis & Tyler-Smith (2008). Insertions and deletions

can disrupt a protein-coding sequence by introducing a premature stop codon, resulting in a

truncated protein product. It can also create chimeric proteins, i. e. a molecule composed of

two partial proteins. If the inserted sequence is not from a coding region, the resulting product

would partially consist of a random amino acid sequence. Most of these changes will result in a

loss of function for the affected gene, but especially chimeric proteins can result in coupling of

regulatory pathways. Structural variants can also result in a translocation of regulatory elements

such as promoters, which puts the affected gene under regulatory control of a pathway it would

not usually be part of, thus disrupting the functioning of the cell on a systems level. CNV can

also cause dosage effects, i. e. abnormal expression levels of gene products due to an abnormal

number of genes. If SV occur in regions which do not code for genes, regulatory elements or other

information such as ncRNA, and are not important for functions such as chromatin regulation,

they may also have no effect at all.

The resulting changes to the genome can have phenotypic consequences, ranging from

adaptation to environmental factors to severe illness. Studying SV promises to yield important

insights into genome function and causal relationships between the genetic information level on

one side and disease and phenotype on the other. The experimental platforms used in both clinical

diagnostics as well as basic and translational research generate large amounts of high-resolution

data, posing a challenge from the bioinformatics standpoint.
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1.2 Implications of SV for human phenotype and health

Structural variations in genomes arise in two different forms. Germinal mutations occur in the

germline, and usually affect all, or, in the case of mosaicism (Sturtevant 1929), some cells

in an individual’s body. Somatic mutations on the other hand arise within individual cells of

an organism during its lifetime. These can be neutral to cell function, or, in most cases, incur

damage that renders the cell inviable. In rare cases however, the changes can give the cell a

competitive advantage by making it both self-sufficient and independent of internal and external

regulatory and apoptosis-inducing signals, leading to uncontrolled cell proliferation known as

cancer.

Structural variations have important biomedical implications, and are the focus of many

genetic studies to elucidate the etiology of complex diseases, in particular cancer and neuropsy-

chiatric disorders.

1.2.1 Somatic SV and cancer

It has been over a hundred years since an association between chromosome abnormalities and

cancer has been established by Boveri (1914) as one of the most prominent features of cancer

cells, encountered in all major types of tumors (Fröhling & Döhner 2008). This has lead to

the notion of cancer being a disease of the genome. With cancer causing 1 in 8 deaths globally

(Garcia et al. 2007), it is no exaggeration to say that elucidation of their role can be considered

one of the most important research objectives of our time.

In cancer, somatic changes in copy number are one of the most noticeable changes in the

affected cells (Nakagawa et al. 2015). Commonly referred to as copy-number aberrations

(CNA), they are the target of diagnostic platforms such as array-based CGH (Section 1.3). While

experimental evidence suggests a causative role for aneuploidy in tumorigenesis (Foijer, Draviam

& Sorger 2008; Holland & Cleveland 2009), discerning causal CNV (driver mutations) from

those that are mere byproducts of cancer progression (passenger mutations) is still an open

research problem, which requires highly accurate calls of CNV from experimental platforms. For

further details, Garraway & Lander (2013) has an excellent review of cancer genomics.
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1.2.2 Germinal SV and human diversity

With the plethora of evidence for somatic variations, their germinal counterparts have only

recently been determined to occur in abundance in the human population, constituting a major

contributor to human genetic variation. While SNPs were originally thought to account for the

majority of phenotypic variation (The International SNP Map Working Group et al. 2001;

The International HapMap Consortium 2005), a number of recent studies have shown that

CNV show remarkable abundance within the human population, even among healthy individuals

(Sebat, Lakshmi, Troge, et al. 2004; Iafrate et al. 2004; Tuzun et al. 2005; Sharp et al.

2005; Fredman et al. 2004; Redon et al. 2006; de Vries et al. 2005; Schoumans et al. 2005;

Sharp et al. 2005; Tyson et al. 2005; Conrad et al. 2006). Freeman (2006) contains an

extensive history of CNV discovery. This discovery has huge implications outside the more obvious

population genetics applications; the prevalence of CNV raises the issue of false negative calls in

biomedical applications. Specifically, an accurate map of copy-number polymorphisms, stratified

by donor ethnicity, is required as a true negative set when investigating disease associations of

CNV.

1.2.3 Neuropsychiatric disorders

CNVs have been implicated in a variety of neuropsychiatric disorders (Malhotra & Sebat 2012;

Cook Jr & Scherer 2008), in particular in autism (Chung, Tao & Tso 2014).

Autism spectrum disorder (ASD) refers to a range of neurodevelopmental disorder traditionally

characterized by the triad of impaired reciprocal social behavior, poor communication skills,

and stereotyped or repetitive patterns of behavior, interests or activities Kanner (1943). It

includes previously distinguished diagnoses of Asperger syndrome, PDD-NOS, and childhood

disintegrative disorder.

While ASD diagnosis is based entirely on behavioral observations due to the complex etiology

of the phenomenon, it has long been recognized as having a strong genetic component (Folstein

& Rosen-Sheidley 2001), but no single cause has yet been established. Early studies already

showed microscopically visible chromosome anomalies in 7–8% of patients (Xu et al. 2004).

With the advent of microarray technology (Section 1.3.1), a wide range of submicroscopic CNV
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has been found to be associated with the ASD phenotype, and there is considerable support for

a causative role of CNV. De novo occurrence of CNV has been reported as 3-5 times higher in

affected families vs. control, and multiple de novo CNV have been found to lead to more severe

symptoms. Furthermore, recurring CNV have been found in unrelated ASD patient. Lastly, CNV

are enriched for genes associated with neuronal synaptic disorders, and overlap with those found

in ADHD, SZ and ID; for an extensive review of those studies see Sener (2014). The role of

CNVs in ASD and schizophrenia is reviewed in Merikangas, Corvin & Gallagher (2009).

However, there has been a paradigm shift in recent years towards the notion that there is no

single causative mutation underlying the disease. Instead, the autism spectrum is considered to

be a shared phenotype of multiple rare but highly penetrant genetic risk factors. To elucidate the

role of CNV in this context, accurate CNV calls on high-resolution genomic data are critical.

Tourette syndrome (TS) is another disorder, characterized by motor tics, such as blinking,

grimacing or head jerking, and phonic tics, such as coprolalia, palilalia and echolalia. It is often

associated with obsessive-compulsive disorder (OCD) (Pauls et al. 1986) and attention-deficit

hyperactivity disorder (ADHD). Though there is evidence for a genetic basis of the disease, it is

not fully understood (O’Rourke et al. 2009). Recently, a role of rare large-scale CNV in TS and

its aetiological overlap has been suggested (Nag et al. 2013), thereby adding to the notion of a

general association of CNV and neuropsychiatric disorders.

1.3 Experimental platforms

A wide range of experimental platforms of increasing resolution has been developed over the

last years (Alkan, Coe & Eichler 2011), and analysis of the data they produce is the central

motivation and application area for our method in bioinformatics.

1.3.1 DNA microarrays

A DNA microarray, sometimes called biochip or gene chip, consists of a carrier substrate such

as glass, plastic or silicone. On its surface, probes of single-strand DNA are affixed in a regular

grid, such that each probe consists of DNA material of a different, predefined DNA sequence.

Each probe is capable of capturing single-stranded DNA material of a reverse-complementary



8

sequence through hybridization, thus forming a short double-stranded helix. In order to assess

the presence and abundance of DNA material in a sample, the sample DNA is fragmented into

short pieces, fluorescently labeled and hybridized to the array. Then, the light emitted from each

fluorescent spot is measured as a proxy of the abundance of DNA bound to each probe.

Probes are designed such that they represent known, preferably unique positions in the

genome, so that the abundance of chromosomal segments can be measured. Microarrays yield

very noisy data, due to the complexity of the biochemical process; furthermore, Gaussian noise

is inevitable due to the quantum nature of photon emissions and its interaction with the light

receptors in the equipment.

Obviously, the resolution of this method is limited by how many positions in the reference

genome are covered by the set of probes. More importantly, microarrays rely on a predefined

set of probes, i. e. they cannot detect sequences for which no probe is used. If, for instance, the

genome contained a novel sequence due to a retrovirus, or the sample was contaminated by

another DNA source, this would go undetected.

While there are many types of microarrays for different purposes, aCGH and SNP arrays are

the most prominent types of platform for CNV detection.

Array-based Comparative Genomic Hybridization (aCGH) As the name suggests, aCGH is

used to compare relative DNA abundance between two genomes, such as cancer tissue versus

control. The two cases are labeled in different colors such as red and green, and then hybridized

to the same microarray. The photo detector is then used to measure the resulting wavelength as

a proxy for relative DNA abundance; for instance, if both genomes have the same amount at a

probe, the resulting color will be yellow, whereas a shift towards red or green would indicate

higher abundance in the respective genome. aCGH thus measures the relative abundance, though

typically the control is assumed to be diploid, so that absolute abundance in the target genome

can be derived. Relative abundance is typically expressed as the log2 ratio of green and red

signals. The process is illustrated in Fig. 1.2.

It is important to note that since the chromosomes are fragmented, the only feasible way to

position the measurements is via the reference genome used to design the probes. This means

that the information obtained from aCGH is abundance of a chromosomal fragment, but not
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Figure 1.2: An overview of array-based comparative genome hybridization (aCGH). Sample and
control DNA are flourescently labeled (1), and hybridized on an array of spotted DNA probes of known
sequence, yielding a differential color signal (2). Measuring those colors and mapping the signal to
the genome positions corresponding to each probe (3) yields a piecewise-constant signal with noise
(4), which can be used to detect CNV. Figure reproduced with kind permission from Cancer Genetics,
Inc. (www.cancergenetics.com).

its location. In the most extreme, hypothetical case that the entire genome had been severely

shuffled and merged into a single chromosome, aCGH would not detect this.

Single-nucleotide polymorphism arrays (SNP arrays) The normal human genome contains

two copies of each autosome. However, those two copies are usually not completely identical, but

carry different alleles of the same locus, a phenomenon called heterozygocity. Most importantly,

they often carry SNPs at many positions. However, some chromosomal segments may lack such

differences; they are homozygous. Especially in somatic mutations, loss of heterozygocity (LOH),

i. e. the loss of one allele coupled with a duplication of the other, is known to be associated

with or even a driver of a wide range of diseases. Since loci which are heterozygous only in

a SNP differ by only one nucleotide, and hence can bind both to the same probe. Therefore,

LOH cannot be detected by aCGH. To alleviate this restriction, SNP arrays contain carefully

designed sets of probes for SNPs known to exist in the human population, which allows to resolve

www.cancergenetics.com
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allelic copy number. The data from SNP arrays is similar to that from aCGH, with the important

distinction that it is 2-dimensional, with each channel corresponding to one of two alleles. Since

probes for each SNP differ only by one nucleotide, the resulting cross-hybridization yields a lower

signal-to-noise ration than aCGH, thus posing additional challenges for CNV inference.

1.3.2 Next-generation sequencing

DNA sequencing refers to determining the sequence of bases A, C, G and T in a DNA sample. Aside

from more labor-intensive methods such as Sanger sequencing and Maxam-Gilbert sequencing,

next-generation sequencing (NGS) techniques have enabled high-throughput sequencing of DNA

samples, creating several GB of data per sample; for a review, see Metzker (2010).

For NGS, DNA material is amplified and fragmented into short segments of several hundred

bases. These fragments are then sequenced into short strings known as reads, ranging in size

from 75-250 bp, depending on the platform. As the information about the original position of

each read is lost during fragmentation, it has to be reconstructed computationally. In paired-end

sequencing, the fragment is sequenced from both sides, yielding additional information about

the relative distance of two reads. As this distance is limited by the fragment size, mate-pair

sequencing uses an additional experimental step in which the two ends from a fragment originate

from loci further apart in the genome than on the fragment.

When analyzing structural variation, it is important to note that reads essentially provide two

layers of information. The pure sequence information can be used to determine sequence-level

changes such as inversions and rearrangements, and can largely be subsumed under an elaborate

approximate string matching paradigm, where the major source of noise are low-frequency

sequencing errors. SV calls can often be made on a per-read basis, and are thus algorithmically

more “localized”.

On the other hand, abundance of similar genomic sequences carries information about the

number of copies of a genomic locus, which can be used for CNV detection. Two basic approaches

exist: Read-depth (RD), sometimes referred to as depth of coverage (DOC) is determined by using

a read mapper, essentially a highly optimized implementation of approximate string matching,

to map reads to a known reference genome. After several post-processing steps to account for

error sources such as amplification, GC and dinucleotide bias, the coverage at each nucleotide
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Figure 1.3: Illustration of aCGH (left) and read-depth data (right) for CNV detection. Duplication in
the sample genome increases shifts the intensity ratio and the number of reads mapped to the affected
loci in the reference genome, and hence induces an upwards shift in the count signal (blue). Likewise,
a loss incurs a downwards shift in the signal (red).

in the reference is used as a proxy for DNA abundance at each position in the sample; for a

review, see Magi et al. (2012). Read-depth data is illustrated in Fig. 1.3. De novo assembly

(AS) on the other hand tries to merge the reads into contiguous strings called contigs, in which

paired-end/mate-pair information as well as the multiplicity of occurrence of reads again used as

a proxy for DNA abundance, but does not necessary require a reference genome. Both approaches

require a more global look at the data, in that they should model the general noise level, for

instance.

Whole-genome sequencing (WGS) The most straightforward application of NGS is the se-

quencing of the entire genomic material in a sample, known as Whole-genome sequencing (WGS).

For reviews of this technique, see Pirooznia, Goes & Zandi (2015), Pabinger et al. (2014),

and Hehir-Kwa, Pfundt & Veltman (2015). As it is not a targeted tool and yields information

about every genomic locus regardless of the information it carries, it is the method of choice for

fundamental and exploratory research, in particular for cancer (Nakagawa et al. 2015).

Whole-exome sequencing (WES) Due to the relatively high cost of WGS, targeted sequencing

methods are often used, in which a predefined subset of DNA fragments is selected using

target-enrichment techniques such as PCR, molecular inversion probes, in-solution capture, or

hybridization to a microarray (hybrid capture). This reduces the amount of DNA to be sequenced

significantly, especially in cases where only the protein-coding regions of the genome, the so-

called exome is targeted. This whole-exome sequencing (WES), see Kadalayil et al. (2015),

Tetreault et al. (2015), and Hehir-Kwa, Pfundt & Veltman (2015), leads to a 100-fold
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reduction in sequencing for the human genome. While the reduced cost makes WES attractive

for CNV detection, target enrichment introduces a considerable bias in read depth, which is not

easily corrected computationally (Kadalayil et al. 2015). Though various approaches exist, we

argue that the expected drop in sequencing cost makes it more worthwhile to focus method

development on larger, but statistically more well-behaved data such as WGS.

1.4 Algorithmic challenges and prior approaches

Microarray-based methods will continue to play an important role in diagnostic settings due to

their cost-effectiveness. The expected increase in resolution and low concordance among analytical

tools (Pinto et al. 2011) necessitate the development of efficient bioinformatics tools for unbiased

CNV calls on these platforms. However, the complexity of cancer and neuropsychiatric genomes

necessitates even higher resolution that can only reasonably be achieved through sequencing

approaches. In clinical settings, exome sequencing currently provides a compromise between

cost and resolution, but the complex etiology of both classes of disease would require the use of

WGS. It has been suggested that most driver genes, i. e. genes that are causal to tumorigenesis,

have been identified (Nakagawa et al. 2015; Vogelstein et al. 2013; Lawrence et al. 2014),

while rarer gene mutations and those in non-exomic regions such as promoters, ncRNAs and

introns remain to be investigated (Leiserson et al. 2014; Garraway & Lander 2013). For

instance, Freedman et al. (2011) suggests a role for regulatory elements in carcinogenesis. As a

consequence, whole-genome approaches are likely to become more important in fundamental

research (Garraway & Lander 2013), as the plethora of CNV calling methods for WGS data,

reviewed in Pirooznia, Goes & Zandi (2015), Abel & Duncavage (2013), Zhao et al. (2013),

Pabinger et al. (2014), and Duan et al. (2013), shows. While sequencing cost can be expected

to drop, the computational power required to perform meaningful bioinformatics analysis is still

beyond the capacities of most clinical institutions (Chung, Tao & Tso 2014), thus posing a huge

challenge for the computer scientist.

While different platforms generate data of different characteristics, which in turn necessitate

statistical and computational approaches tailored specifically to them (Wineinger et al. 2008),

any experimental technology has its half-life, and generalized models that can treat data specifics
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under a common framework are more likely to advance the field in the long run. As data

created by microarrays and NGS for CNV detection can adequately be modeled as piecewise

constant with additive noise (see Fig. 1.3), time-proven methods such as Hidden Markov Models

(Baum & Petrie 1966) have repeatedly been applied in the context of CNV detection (Snijders,

Fridlyand, et al. 2003; Sebat, Lakshmi, Troge, et al. 2004; Sebat, Lakshmi, Malhotra, et al.

2007; Fridlyand et al. 2004; Zhao 2004; de Vries et al. 2005; Nannya et al. 2005; Marioni,

Thorne & Tavaré 2006; Korbel et al. 2007; Cahan et al. 2008; Rueda & Diaz-Uriarte 2009).

They are favorable from a modeling standpoint, as they directly express the separate layers of

observed measurements, such as log-ratios in array comparative genomic hybridization (aCGH),

and their corresponding latent copy number (CN) states, as well as the underlying linear structure

of segments. At the same time, advances in experimental technology create ever larger data sets,

implying the need to leverage statistical analysis to handle big data. In this thesis, we shall hence

take a high-level approach to CNV detection, and focus on improving and accelerating the type

of Hidden Markov models suitable for this kind of data.
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Chapter 2

Hidden Markov Models

In this chapter, we review the basics of HMM inference. We use the following notation: boldface

(y) denotes some ordered data type which allows indexing, such as a vector or an array. y[i]

denotes the i-th element of y; all indices are zero-based. y[i][ j] denotes the element in the

i-th row and j-th column in a two-dimensional data type. Slices/ranges are denoted as y[i : j]

with the j-th entry included (closed interval). In contrast, y i denotes the i-th element out of an

(unordered) collection {y0, y1, . . .}.

2.1 Probability theory

Let the probability space (Ω,Σ,P) be a measure space, where Ω is called the sample space, Σ is

the set of events, and P is called probability measure. Further, let P (Ω) = 1. A random variable is

a function

X : (Ω,Σ,P)→ (K,B(K),PX )

where K typically is R,Z,C, . . . . X is Σ-B(K)-measurable, i. e. ∀B ∈ B(K): X−1(B) ∈ Σ, which

implies

PX (B) = P
�

X−1(B)
�

= P ({ω ∈ Ω |X (ω) ∈ B}) .

Further, let PX (x) be a function

PX : R→ [0,1],

∫

K
PX (x)µ(dx) = 1,
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called the density of X . The integral is the Lebesgue integral with an appropriate measure µ on

K. This function can be used to define the probability measure on (K,B(K),PX ) as the integral

PX (A) :=

∫

A
PX (x)µ(dx).

Since we will be dealing almost exclusively with simple densities and probability mass

functions over subsets of Rn and Zn, we follow the notational convention common in machine

learning to blur the distinction between events (X = x), random variables (X ), and their

realizations/variates (x). We denote both the conditional density P (X |Y = y) as well as the

likelihood function P (X = x | y) as P (X |Y ), and it is derived from context which of X , Y remain

fixed, whenever such information is necessary. Occasionally, the likelihood is denoted as L (Y |X ).

Consequently, there is no logical distinction between lower- and upper-case notation. Furthermore,

the distinction between parameters and random variables is meaningless in a Bayesian context

due to the inversion principle, see for example Robert (2007). We also follow the convention to

denote the fact that a random variable X is distributed according to a distribution P depending

on a parameter θ as X ∼ P (X |θ ). We also simplify the integral notation to
∫

A
PX (x)µ(dx) :=

∫

P (X )dX .

In general, since the domain is often clear from context, we will drop it from the integral whenever

possible, especially when integrating out dimensions, e.g.
∫

P (X , Y )dY = P (X ) .

Let

E [X ] :=

∫

Ω

XdP=
∫

Ω

X (ω)P(dω) =
∫

XP (X )dX

be the expected value of random variable X , or the expectation for short. For continuous and

discrete univariate random variables, this becomes

E [X ] =
∫

R
XP (X )λ(dX ) =

∫ ∞

−∞
XP (X )dX , and

E [X ] =
∫

Z
XP (X )#(dX ) =

∞
∑

X=−∞
XP (X ) ,
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with Lebesgue measure λ and counting measure #, respectively. More generally, for any function

f , we define the expectation

EX [ f (X , Y )] :=

∫

f (X , Y )P (X , Y )dX ,

as well as the conditional expectation

EX [ f (X , Y ) | Z] :=

∫

f (X , Y )P (X ,Y | Z)dX .

By the law of total expectation,

E [X ] = EY [EX [X |Y ]] .

Random variables X , Y are said to be independent, denoted X⊥Y , iff

P (X , Y ) = P (X )P (Y ) ,

and conditionally independent, denoted X⊥Y |Z iff

P (X , Y | Z) = P (X | Z)P (Y | Z) .

Linearity of expectation holds for any set of random variables X i , i. e.

E

�

∑

i

aiX i

�

=
∑

i

aiE [X i] .

Similarly, the variance is defined as

V [X ] := E
�

(X −E [X ])2
�

= E
�

X 2
�

−E [X ]2 .

By Bienaymé’s formula, for a sum of uncorrelated (and hence independent) random variables,

V

�

∑

i

aiX i

�

=
∑

i

a2
i V [X i] .

A Bayes net (BN) is a directed acyclic graph which contains an edge from B to A if A is conditioned

on B, see Fig. 2.2 for an example. For a random variable X , let

pa(X ) := {A |P (X |A) 6= P (X )} ,

ch(X ) := {A |P (A |X ) 6= P (A)} , and

co(X ) := {A |C ∈ ch X ,P (C |A) 6= P (C) , A 6= X } .
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The quantities pa(X ), ch(X ) and co(X ) are called the parents, children, and coparents of X

respectively, referring to the relationships of notes in a Bayes net. Let

∂ X := pa(X )∪ co(X )∪ ch(X )

be the Markov blanket of X . Then

X ⊥ ∂ X | ({X } ∪ ∂ X )û .

The Markov blanket plays an important role in Gibbs sampling, since sampling of a random

variable only requires conditioning on the Markov blanket as opposed to the entire set of variables

in the model. An undirected graph is called a Markov Random Field (MRF) over a set of random

variables if, for every variables, the set of its adjacent nodes equals the Markov blanket of said

node.

2.2 Bayesian inference and the exponential family

Bayes’ theorem can be easily derived in the following equivalent transformations

P (M , D) = P (D, M) ,

P (M |D)P (D) = P (D |M)P (M) , and

P (M |D) =
P (D |M)P (M)

P (D)

If D is constant, then P (D) simply serves as a normalization factor for the left side to integrate

to 1. Also, P (D |M) then becomes a function of M , not D, and does not represent a density

since it does not necessarily integrate to 1. To emphasize this fact, P (D |M) is often denoted as

L (M |D), yielding Bayes’ theorem in the form of

P (M |D)∝M L (M |D)P (M) .

Here, P (M) is called the prior distribution, L (M |D) is called the likelihood function, and P (M |D)

is called the posterior distribution; this captures the essence of Bayesian inference. If D represents

some observed data, and M encodes our model of the data, the prior captures our model before

the observation of the data, either from past observation or due to some assumptions (inductive
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bias). The posterior represents the model after observing the data, and is proportional to the

product of the prior and the probability of observing the data under the prior model. This process

can be iterated, i. e. the posterior can become the prior for some new observations, hence the

model gets more refined the more data is incorporated. In other words, the probability of the

observed data under the current model becomes the likelihood of the model in light of the

observed data.

Assume the model consists of a probability distribution fully described by some parameter θ ,

and the data consists of some variates x i ∼ P (x |θ ), so we obtain

P (θ | x )∝ L (θ | x )P (θ ) .

Further, assume the prior is fully defined by some hyperparameter τ. For the joint distribution of

data, parameter and hyperparameter, we thus have

P (θ , x ,τ) = P (x ,θ ,τ)

⇔ P (θ | x ,τ)P (x ,τ) = P (x |θ ,τ)P (θ ,τ)

= P (x |θ ,τ)P (θ |τ)P (τ) .

Assuming the hyperparameter does not influence the data directly, we have x ⊥ τ | θ and hence

P (x |θ ,τ) = P (x |θ ), so we obtain

P (θ | x ,τ)∝θ L (θ | x )P (θ |τ)P (τ) .

The hyperparameter itself is kept constant, since it encodes our prior belief of the parameter

model, hence

P (θ | x ,τ)∝θ L (θ | x )P (θ |τ) .

Let an exponential family distribution (EFD) be any distribution for which the PDF is of the

form

P (x |θ ) = exp (〈θ , T (x )〉+ h (x )− A(θ )) ,

where θ is a parameter vector1, A is a scaling factor called the log-partition function, h is called

the carrier measure, and T are the sufficient statistics. A vector T(X) is called a sufficient statistic
1The usual definition uses the more general form η(θ ) for the parameters, but here we always assume the

canonical form η(θ ) = θ for simplicity, since any EFD can be transformed accordingly.
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of a random sample X , if it contains all information about a distribution parameter that can be

obtained from the complete sample. Formally,

θ ⊥ X | T(X),

or, equivalently,

P (θ | T(X), X) = P (θ | T(X)) .

By the Neyman-Fisher factorization theorem (Fisher 1922; Neyman 1936; Halmos & Savage

1949), a distribution has sufficient statistics if and only if its density function can be factored as

P (x |θ ) = H(x )g(T(x ,θ ),

i. e. it depends on x only via T . Obviously, EFD permit this factorization; furthermore, among all

distributions for which the domain does not vary with the parameter, only EFD have sufficient

statistics whose size remains bounded with increasing sample size (Darmois 1935; Koopman

1936; Pitman, Wishart & Fisher 1936).

For a sample of i.i.d. variates {x i}
N
i=1, the likelihood function of an EFD becomes

L
�

θ
�

� {x i}
N
i=1

�

=
N
∏

i=1

L (θ | x i) =
N
∏

i=1

exp (〈T(x i),θ 〉+ h(x i)− A(θ )) (2.1)

= exp

�� N
∑

i=1

〈T(x i),θ 〉+ h(x i)

�

− NA(θ )

�

(2.2)

= exp

�® N
∑

i=1

T(x i),θ

¸

+
N
∑

i=1

h(x i)− NA(θ )

�

(2.3)

by linearity of the inner product in its first argument. It follows that the likelihood of a sample

can be computed in a summary fashion, using only a fixed number of values in the sufficient

statistics, independent of sample size N . For each EFD, there exists a conjugate prior distribution

(Diaconis & Ylvisaker 1979) of the form

P (θ |τ, n)∝ exp (〈τ,θ 〉 − nA(θ )) .

Dropping normalization constants for simplicity, the posterior can then be derived as

P
�

θ
�

� {x i}
N
i=1 ,τ

�

∝ L
�

θ
�

� {x i}
N
i=1

�

P (θ |τ)

∝ exp

�® N
∑

i=1

T(x i),θ

¸

− NA(θ )

�

exp (〈τ,θ 〉 − nA(θ ))
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Figure 2.1: Visualization of a simple 3-state HMM for CNV detection. The hidden state path q is a
Markov chain over the states {+,−,=}, representing a gain, loss, and diploid state, respectively. Upon
visiting a state, a sample from its emission distribution (represented as gray densities next to each
state) is drawn, according to the emission parameters θ = {θ+,θ−,θ=}. In this case, emissions come
from Gaussian distributions with different means and variances.

= exp

�® N
∑

i=1

T(x i),θ

¸

+ 〈τ,θ 〉 − NA(θ )− nA(θ )

�

= exp

�®

τ+
N
∑

i=1

T(x i),θ

¸

− (n+ N)A(θ )

�

.

Hence for posterior updates, it holds that

P

�

θ

�

�

�

�

�

τ+
N
∑

i=1

T (x i), n+ N

�

∝ L
�

θ
�

� {x i}
N
i=1

�

P (θ |τ, n) .

Conjugacy thus implies that the posterior is of the same analytical form as the prior. Its count

parameter n is updated by simply adding the sample size, and its hyperparameter τ is updated by

adding the sufficient statistics of the observed sample. Since more observations can be included

iteratively without changing the distribution type of the posterior, we say that a posterior is strong

if its count parameter n is large.

2.3 The model itself

Let T be the length of the observation sequence. An HMM can be represented as a statistical

model (q ,A,θ ,π | y), with transition matrix A, a latent state sequence

q = (q[0],q[1], . . . ,q[T−1]),
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q[0] q[1] q[2] q[3] q[4]

y[0] y[1] y[2] y[3] y[4]

θ

π

A

q

y

θ

π

A

q

y

θπ

A

Figure 2.2: Left: Bayes net representation of an HMM. Arrows indicate conditional relations, e.g.
P (q[0] |π,A). Center: Bayes net representation of the HMM by treating all emissions y[t] and all
latent state variables q[t] as joint probability vectors y and q . Right: Markov Random Field (MRF)
representation of the blocked HMM, obtained by adding the moralizing edges (θ ,q) and (π,A). The
Markov blanket of a node corresponds to its direct neighbors in the MRF. Shading indicates that the
variables are observed.

an observed emission sequence y = (y[0], y[1], . . . , y[T−1]), emission parameters θ , and an

initial state distribution π. The vector θ = (θ1, . . . ,θp) parametrizes the emission distributions

depending on the underlying state, i. e.

P (y[t] |θ ,q) = P
�

y[t]
�

�θq[t]
�

.

The state sequence is modeled as a first-order Markov process with

P (q[t] = j |q[t−1] = i) =: Ai j

To derive conditional independence relations, the following Markov blankets can be easily read

off (Fig. 2.2):

∂ y[t] = {q[t],θ } , (2.4)

∂ q[0] = {π, y[0],q[1],A,θ } , (2.5)

∂ q[t>0] = {q[t−1],q[t+1], y[t],A,θ } , (2.6)

∂ π= {q[0],A} , (2.7)

∂ A= {q ,π} , and (2.8)

∂ θ = {y ,q} . (2.9)

Collapsing emissions and state sequence into one multivariate random variable each (Fig. 2.2)

by merging nodes while maintaining adjacencies yields

∂ y = {q ,θ } ,
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∂ π= {q ,A} , and

∂ q = {y ,θ ,π,A} .

Note that this operation, while yielding a more convenient notation, induces unnecessary condi-

tional relations, for instance within q , which are understood to be ignored whenever appropriate.

Since we assume the hyperparameters to be constant, we drop dependence on them whenever

appropriate for notational clarity, i. e. we define P (x ) := P (x |τx ). The total distribution of an

HMM then factorizes as

P (y ,q ,θ ,π,A) = P (y |θ ,q)P (q |π,A)P (θ )P (A)P (π)

= P (θ )P (A)P (π)P (q[0] |π,A)P (y[0] |q[0],θ )
T−1
∏

t=1

P (y[t] |q[t],θ )P (q[t] |q[t−1],A) .

From the MRF representation, it is easy to see

P (y |θ ,q ,A,π) = P (y |qθ ) ,

so the likelihood function for an HMM with observed data y is

L (θ | y) =
∫

P (y |q ,θ )dq .

2.4 Segmentation using HMM

Solving the segmentation task using HMM is based upon q . There are two main approaches.

For a fixed set of parameters, the most likely state sequence can be determined using the Viterbi

decoding algorithm; such a state sequence is known as the Viterbi path. Alternatively, segmentation

by maximum posterior marginals (MPM) chooses the most likely state at each position t. Notice

that these two are not necessarily the same; indeed, a sequence of maximum state margins

can have very low likelihood, or even be an impossible state sequence if it contains transitions

for which A contains zero-entries. It does, however, have the advantage of integrating over all

possible state paths.

The approaches central to our method are described in the following subsections. For

notational clarity, all conditioning on HMM parameters is dropped wherever possible.
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2.4.1 Filtering

Filtering describes the probability of being in a certain state at position t, given all observations

up to this point, i. e.

P (q[t] | y[0: t]) .

Naïvely, for k states, that would require the computation of kt+1 state sequences, an unreasonably

effort. However, a simple recursion based on the fact that state sequences can share a common

prefix is used to derive a dynamic programming approach called forward algorithm. By Bayes’

formula,

P (q[t] | y[t], y[0: t−1]) =
P (y[t] |q[t], y[0: t−1])

P (y[t] | y[0: t−1])
P (q[t] | y[0: t−1]) .

Since

y[t]⊥ y[0: t−1] | q[t]

by the Markov property, we obtain

αt[ j] := P (q[t] = j | y[0: t])∝ j P (y[t] |q[t] = j)P (q[t] = j | y[0: t−1]) .

This term is called the forward variable2. The distribution of the last term,

P (q[t] | y[0: t−1]) ,

sometimes called the one-step-ahead predictive density (Murphy 2012), can easily be expressed

as

P (q[t] = j | y[0: t−1]) =
∑

i

P (q[t] = j |q[t−1] = i)P (q[t−1] = i | y[0: t−1])

=
∑

i

Ai jαt−1[i].

The forward variables can thus be recursively defined as

αt[ j]∝ P
�

y[t]
�

�θ j

�

∑

i

Ai jαt−1[i].

2Note that in other derivations, the forward variable refers to the joint density P (q[t], y[0: t]) instead. In those
settings, normalization to the conditional version used here is treated as a means to obtain numerical stability instead.
The two versions are equivalent from a theoretical standpoint.
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All forward variables for an HMM with k states can hence be recursively computed using a T × k

dynamic programming matrix T called a trellis, using

T [ j][t]∝ P
�

y[t]
�

�θ j

�

∑

i

Ai jT [i][t − 1]

with subsequent normalization of columns T [t] to sum to 1 in order to obtain the conditional

state distribution. The forward recursion can be expressed compactly as

αt ∝ (Aᵀαt−1)� `t ,

where `t is the vector of emission likelihoods at position t and � is the Hadamard product. An

implementation of this recursion has time complexity O(k2T ).

2.4.2 Smoothing

In order to obtain maximum state marginals, the distributions

γt := P (q[t] | y)

are derived from the forward variables

P (q[t] | y[0: t]) .

Using the fact that

P (A |B, C) =
P (A, B |C)
P (B |C)

∝A P (A, B |C) ,

the marginal state probability decomposes as

P (q[t] | y)∝q[t] P (y[t+1:T−1],q[t] | y[0: t]) (2.10)

= P (q[t] | y[0: t])P (y[t+1:T−1] |q[t],y[0: t]) (2.11)

= P (q[t] | y[0: t])P (y[t+1:T−1] |q[t]) , (2.12)

since y[0: t]⊥ y[t+1:T−1] | q[t]). Let the backward variable

β t[i] := P (y[t+1:T−1] |q[t] = i) ,

then

γt[i]∝ αt[i]β t[i].
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The backward variable can be recursively defined as

β t−1 = P (y[t+1:T−1] |q[t]) (2.13)

=
∑

j

P (q[t] = j, y[t], y[t+1:T−1] |q[t−1]) (2.14)

=
∑

j

P (y[t+1:T−1] |q[t] = j, y[t],q[t−1])P (q[t] = j, y[t] |q[t−1]) . (2.15)

Since y[t+1:T−1]⊥ (q[t−1], y[t]) | q[t],

β t−1 =
∑

j

P (y[t+1:T−1] |q[t] = i)P (q[t] = i, y[t] |q[t−1]) (2.16)

=
∑

j

P (y[t+1:T−1] |q[t] = j)P (y[t] |q[t] = j,q[t−1])P (q[t] = j |q[t−1]) .

(2.17)

Since y[t]⊥ q[t−1] | q[t],

β t−1[i] =
∑

j

P (y[t+1:T−1] |q[t] = j)P (y[t] |q[t] = j)P (q[t] = j |q[t−1] = i) (2.18)

=
∑

j

βt[ j]`t[ j]Ai, j (2.19)

The backward recursion can be expressed compactly as

β t =A(`t+1 �β t+1).

2.5 Frequentist inference and its caveats

Smoothing requires the values of the latent HMM parameters to be known; however, in most

practical applications, only y is observed directly. In the usual frequentist approach, the state

sequence q is inferred by first finding a maximum likelihood estimate of the parameters,

(AML,θML,πML) = arg max
(A,θ ,π)

L (A,θ ,π | y) ,

using the Baum-Welsh algorithm (Bilmes 1998; Rabiner 1989). This is only guaranteed to yield

local optima, as the likelihood function is not convex. Repeated random reinitialization are used

to find “good” local optima, but there are no guarantees for this method. Then, the most likely

state sequence given those parameters,

bq = arg max
q

P (q |AML,θML,πML, y) ,
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is calculated using the Viterbi algorithm (Viterbi 1967). However, if there are only a few

aberrations, i. e. there is imbalance between classes, the ML parameters tend to overfit the normal

state which is likely to yield incorrect segmentation (Mahmud & Schliep 2011). Especially

in CNV inference, where the rare, non-diploid states are more informative, this is problematic.

Furthermore, alternative segmentations given those parameters are also ignored, as are the ones

for alternative parameters.

2.6 Bayesian inference

The Bayesian approach does not assume (A,θ ,π) to be known. Instead, a joint prior distribution

P (q ,A,θ ,π |τ)

parametrized by τ= (τA,τθ ,τπ) captures our subjective believe about the values of the latent

variables (q ,A,θ ,π); notice that the distribution of q is solely defined by (A,π,θ ), see Fig. 2.2,

and hence does not require a hyperparameter. Upon observing data y , the joint posterior is

P (q ,A,θ ,π | y ,τ)∝ L (q ,A,θ ,π | y)P (q ,A,θ ,π |τ) .

The distribution of state sequences is computed directly by integrating out the emission and

transition variables,

P (q | y ,τ) =

∫ ∫ ∫

P (q ,A,θ ,π | y ,τ) dπdθ dA. (2.20)

Since this integral is intractable, it has to be approximated using Markov Chain Monte Carlo

techniques, i. e. drawing N samples,

(q (i),A(i),θ (i),π(i))∼ P (q ,A,θ ,π | y ,τ) , (2.21)

and subsequently approximating marginal state probabilities by their frequency in the sample

P (q[t] = s | y ,τ)≈
1
N

N
∑

i=1

I(q(i)[t] = s). (2.22)

Thus, for each position t, we get a complete probability distribution over the possible states,

solving the smoothing problem in a Bayesian setting. As before, this yields an MPM estimate
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which can be used for segmentation. Notice that MCMC does not allow for the Viterbi path to be

computed.

The method of choice used in this thesis combines Gibbs sampling of the HMM with forward-

backward sampling of the state sequence, yielding an MCMC inference algorithm known as

Forward-Backward Gibbs sampling (FBG).

2.6.1 Gibbs sampling

As the marginals of each variable are explicitly defined by conditioning on the other variables, an

HMM lends itself to Gibbs sampling, i. e. repeatedly sampling from the marginals (A |q ,θ , y ,π),

(θ |q ,A, y ,π), (π |A,θ , y ,q), and (q |A,θ , y ,π), conditioned on the previously sampled values.

Using Bayes’ formula and conditional independence relations in Eq. (2.5)–Eq. (2.9), the sampling

process can be written as

A∼ P (A |π,q ,τA) ∝ L (A |π,q)P (A |τA) , (2.23)

θ ∼ P (θ |q , y ,τθ ) ∝ L (θ |q , y)P (θ |τθ ) , (2.24)

π∼ P (π |A,q ,τπ) ∝ L (π |A,q)P (π |τπ) , and (2.25)

q ∼ P (q |A, y ,θ ,π) , (2.26)

where τx represents hyperparameters to the prior distribution P (x |τx). Typically, each prior

will be conjugate, which yields

A∼ P (A |τA(π,q)) , (2.27)

θ ∼ P (θ |τθ (q , y)) , (2.28)

π∼ P (π |τπ(A,q)) , and (2.29)

q ∼ P (q |A, y ,θ ,π) . (2.30)

Notice that the state sequence does not depend on any prior. The sampling of parameters is

straightforward using their conjugate priors.

2.6.2 Forward-Backward sampling

There are several schemes available to sample q | y . A direct Gibbs sampling approach would use

P (q[t] |q[¬t], y) = P (q[t] |q[t−1],q[t+1], y[t])
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to sample a state based on its neighbors ([¬t] means all positions except t). This, however, yields

high autocorrelation and slow mixing properties; instead, Scott (2002) has argued strongly

in favor of forward-backward sampling (Chib 1996), also known as forward filtering, backward

sampling (Murphy 2012). Variations of this approach have been implemented for segmentation

of aCGH data before (Mahmud & Schliep 2011; Shah, Xuan, et al. 2006). Consider the

following chain rule factorization,

P (q | y) = P (q[T−1] | y)
T−1
∏

t=1

P (q[t] |q[t+1:T−1], y)

= P (q[T−1] | y)
T−1
∏

t=1

P (q[t] |q[t+1], y)

= P (q[T−1] | y)
T−1
∏

t=1

P (q[t] |q[t+1], y[0: t]) ,

where the first step follows from the Markov property of q , and the second step follows from the

conditional independence relation

q[0: t]⊥ y[t+1:T−1] | q[t+1].

By Bayes’ formula,

P (q[t] |q[t+1], y[0: t])∝q[t] P (q[t+1] |q[t], y[0: t])P (q[t] | y[0: t]) ,

and, since

q[t+1]⊥ y[0: t] | q[t],

this becomes

P (q[t] |q[t+1], y[0: t])∝q[t] P (q[t+1] |q[t])P (q[t] | y[0: t]) .

Hence, we can recursively sample q | y in a backward fashion, using a trellis of forward variables

and the backward-sampling recursion

P (q[t] = i |q[t+1] = j, y[0: t])∝i Ai, jαt[i],

with subsequent normalization. It can be computed within the trellis by updating the columns as

T [i][t]← T [i][t]Ai,q[t+1],
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State +

State =

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

State -
Figure 2.3: A small trellis for a simple HMM for CNV detection with three states {−,=,+} and T = 8,
yielding a 3× 8 matrix. Entries are represented by circles. After an iteration of forward filtering, it
contains the forward variables for each position and state. Relations used in the forward recursion are
indicated by arrows; here, each forward variable depends on all previous forward variables through the
transition matrixA. After applying the backward algorithm, it contains the marginal state probabilities.
If instead the backward sampling algorithm is used, it contains the sampling weight to obtain a state
sequence variate q , shown here by filled circles.

and sampling q[t] using the resulting weights, yielding a time complexity of O(k2T ). The

algorithm is illustrated in Fig. 2.3. The combination of this algorithm with the Gibbs sampling of

the entire HMM is called Forward-Backward Gibbs sampling (FBG).

2.7 Compressed Hidden Markov Models

Forward-backward sampling of the state sequence, despite its various advantages over direct

Gibbs (Scott 2002), is still expensive for genome-sized data. Firstly, notice that the forward

variables need to be available for all states and data positions during Gibbs sampling; though

this memoization in a dynamic programming table, called a trellis in the context of HMM, avoids

exponential running times for the recursions shown above, it can grow to a considerable size.

Secondly, since in each iteration a number of terms quadratic in the number of latent states has

to be calculated at each position to obtain the forward variables, and a state has to be sampled at

each position in the backward step, running times become impractical, especially due to billions

of calls to a random number generator.

To alleviate these problems, Mahmud & Schliep (2011) have recently introduced compressed

FBG for Gaussian emissions by sampling over a shorter sequence of sufficient statistics of data

segments which are likely to come from the same underlying state, thereby decreasing the

size of the trellis by a constant compression factor, at the cost of approximate sampling. Let
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State +

State =

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

State -

Figure 2.4: A compressed version of the trellis in Fig. 2.3 into 5 blocks. Notice that the number of
recursive relations (arrows) is reduced, as all emissions within each block are assumed to have been
generated by the same state. Notice that the sampled state sequence cannot change between states
within a block.

B := (Bw)Ww=1 be a partition of y into W blocks. Each block Bw contains nw elements. Let y[w][k]

the k-th element in Bw. The forward variable αw( j) for this block needs to take into account the

nw emissions, the transitions into state j, and the nw − 1 self-transitions, which yields

αw( j) := Anw−1
j j L

�

µ j ,σ
2
j

�

�

�Bw

�

nw
∑

i=1

αw−1(i)Ai j , and

L
�

µ,σ2
�

�Bw

�

=
nw
∏

k=1

L
�

µ,σ2
�

� y[w][k]
�

.

This compression is illustrated in Fig. 2.4. The ideal block structure would correspond to the actual,

unknown segmentation of the data. Any subdivision thereof would decrease the compression

ratio, and thus the speedup, but still allow for recovery of the true breakpoints. In addition, such

a segmentation would yield sufficient statistics for the likelihood computation that corresponds

to the true parameters of the state generating a segment. Since the block structure is the target of

the inference, the authors use a heuristic motivated by kd-trees to create a static block structure.

The authors showed that the approximation error is small under reasonable state separation

assumptions. In such a setting, the emitting state likelihood dominates the forward variables,

whereas that of other states are close to zero, leading to negligible alternative state paths. This

allows for an approximation of marginal probabilities, and MPM segmentation.
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Chapter 3

Wavelet Transform

Our method uses the Haar wavelet transform to dynamically denoise and compress the input

data, allowing the Gibbs sampler to operate on different resolution levels. In this chapter, we

briefly review wavelet theory, closely following the exposition of Mallat (2009).

3.1 Multiresolution analysis and wavelets

Let (Ω, A,µ) be a measure space, where Ω is the base set, A is a σ-algebra over Ω, and µ is a

measure on A. Let

Lp(Ω, A,µ) :=

�

f : Ω→K,K ∈ {R,C} , f measurable,

∫

Ω

| f (x)|pdµ(x)<∞
�

be the space of p-integrable functions. Let

L2(R) := L2(R,B(R),λ)

be the space of square-integrable functions over the reals with Borel algebra B(R) and the

Lebesgue measure λ, and likewise for subintervals of R. This is a Hilbert space with inner product

〈 f , g〉 :=

∫

R
f (x)g(x)dλ(x) =

∫ ∞

−∞
f (x)g(x)d x .

We are only concerned with functions over subsets of R, so the inner product commutes without

involving the complex conjugate. The inner product induces the norm

‖ f ‖ :=
Æ

〈 f , f 〉.
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Two functions f , g are said to be orthogonal iff 〈 f , g〉= 0, and a function f is called normal iff

‖ f ‖= 1. In signal processing terms, square-integrability
∫ ∞

−∞
| f (x)|2d x = 〈 f , f 〉<∞

means that f has finite energy. L2(R) is a separable Hilbert space, i. e. it can be spanned by

an orthonormal basis, a set of basis functions vi and a set of coefficients ai such that, for each

f ∈ L2(R),

f (t) =
+∞
∑

i=−∞
ai vi(t) with ai = 〈 f , vi〉 ,

∀i 6= j :



vi , v j

�

= 0 (orthogonality), and

∀i : ‖vi‖= 1 (normality).

The goal of multiresolution analysis (MRA) (Mallat 1989; Meyer & Salinger 1992) is to

provide a sequence of well-behaved, nested subspaces, which allow to approximate a function

f ∈ L2(R) at different levels of resolution. The differences between those resolution levels will

be captured by wavelet functions. An example for the Haar wavelet is shown in Fig. 3.1. Consider

an approximation space V j ⊂ L2(R), with resolution 2− j , and its inverse 2 j , called scale. For any

function f ∈ L2(R), its projection PV j
f onto V j provides a lower-resolution approximation. Let

V j be translation-invariant for integer multiples of scale 2 j , i. e.

f (t) ∈ V j ⇔ f (t − 2 jk) ∈ V j , j, k ∈ Z.

Further, let a family of such spaces V j be nested such that V j+1 ⊂ V j, so that lim j→∞V j = {0}

and lim j→−∞V j = L2(R). This nesting is done in such a way that the spaces are dilated versions

of each other. More precisely,

f (t) ∈ V j ⇔ f
� t

2

�

∈ V j+1.

Each V j is spanned by an orthonormal set of scaling functions φ j,k, which are obtained by

translation and dilation of a certain function φ ∈ L2(R) by

φ j,k :=
1
p

2 j
φ

�

t − k
2 j

�

, j,k ∈ Z.

Hence, due to orthonormality, the approximating projection of f is obtained as

PV j
f =

+∞
∑

k=−∞




f ,φ j,k

�

φ j,k.
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The nesting of function spaces V j ⊂ V j−1 means that certain approximation details are lost

between resolution levels, since any function in V j can be expressed as a member of V j−1, but

not the other way round. To capture those details, letW j be the orthogonal complement of V j

with respect to V j−1, i. e.

V j−1 = V j ⊕W j ,

which implies

PV j−1
f = PV j

f + PW j
f .

This allows for the decomposition

L2(R) = Vi ⊕
i
⊕

j=−∞
W j

for any i ∈ Z, as well as a decomposition free of scaling functions,

L2(R) =
∞
⊕

j=−∞
W j .

The detail spacesW j are spanned by an orthonormal basis of wavelet functions ψ j,k, which

are derived from a mother wavelet ψ ∈ L2(R) by translation and dilations,

ψ j.k :=
1
p

2 j
ψ

�

t − 2 jk
2 j

�

.

For more details on the properties of φ and the derivation of ψ through conjugate mirror filters,

see Mallat (2009).

Equipped with those definitions, any function f ∈ L2(R) can be expressed as a linear

combination of scaling functions and wavelets,

f (t) =
∞
∑

k=−∞
ci,kφi,k(t) +

i
∑

j=−∞

∞
∑

k=−∞
d j,kψ j,k(t).

Here, ci,k are called scale coefficients, and d j,k are called detail coefficients or wavelet coefficients.

They can be expressed as inner products

c j,k =



φ j,k, f
�

, and

d j,k =



ψ j,k, f
�

.

The set of those coefficients is called the discrete wavelet transform (DWT).
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In computational applications, a physical signal f would often require the measurement,

storage and processing of infinitely many values, unless the signal is discrete in nature. Instead,

a vector f is obtained by sampling f at equidistant intervals. Let `2 := L2(N,P(N),#) be the L2

space over the natural numbers with counting measure #. It is also a separable Hilbert space,

and can be treated as the discrete analogue of L2, where

〈 f , g 〉=
∫

N
〈 f [t], g [t]〉 d#(t) =

∑

t∈N
f [t] g [t].

Notice that we prefer this notation to f · g to emphasize its connection to the function space.

The discrete versions of the wavelets are then obtained as ψ j,k[t] :=ψ j,k(t) for t ∈ N.

Further, assume finitely many sampling points such that f ∈ RT . For the moment, assume

T is a power of 2; data with T 6∈ 2N can be treated as truncation of longer data, which can be

generated using various padding methods (Strang & Nguyen 1997). The wavelet basis is then

finite, and forms the rows of a matrix W ∈ RT×T , such that W y yields the vector of wavelet

coefficients. This is called the discrete-time wavelet transform (DTWT), though DWT is often used,

as any software implementation is by necessity discrete. Since the wavelet basis is orthonormal,

W is orthogonal, i. e. W−1 =Wᵀ. Notice that the order of rows in W is unspecified, and hence

different permutations of the coefficient vector are possible. Surprisingly, there are linear-time

algorithms to calculate W y (Sweldens 1995; Mallat 1989).

3.2 Wavelet regression

One of the main applications of the discrete-time wavelet transform is in functional regression,

specifically in a method known as wavelet thresholding or shrinkage. Let the observed signal be a

sampling of a function f corrupted by centered Gaussian noise, i. e.

y = f + ε, ε[t]∼i.i.d. N(0,σ2).

The goal of regression is to find an estimate bf which approximates f using the available data

y . The quality of regression is usually discussed in the framework of decision theory. Before we

discuss wavelet regression, we review some central concepts and results. The exposition follows

Robert (2007) and Mallat (2009), with terminology following the former. An overview of

relevant concepts is shown in Fig. 3.2.
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loss L(δ, f )

frequentist
risk R(δ, f )

Ey [L(δ, f ) | f ]

maximum
risk R(δ,F)

sup f∈F R(δ, f )

minimax risk R(F)

infδ R(δ,F)

posterior ex-
pected loss
ρ(δ, f | y)

E f [L(δ, f ) | y]

integrated
risk R(δ,F)

E f [R(δ, f )] Ey [ρ(δ, f | y)]

Bayes risk R(F)

infδ R(δ,F)
R(F) ≥ R(F)

“least favorable prior”

arg infδρ(δ, f | y)

Figure 3.2: An overview of decision theory for regression. Concepts aligned with a frequentist
framework are shown in red, and Bayesian in blue.

3.2.1 Decision theory for regression operators

Let F be a set of functions such that f ∈ F, and F be a distribution over F. Let δ be a decision

operator, i. e. a regression method for estimating bf := δ(y). Let L(δ(y), f ) be a non-negative

loss function which quantifies the error for estimating f by bf . The frequentist risk, or risk for

short, quantifies the expected loss

R(δ, f ) := Ey [L(δ(y), f ) | f ] =
∫

L(δ, f )P (y | f )dy (3.1)

over all data instances for a given f .

In order to summarize the risk across all instances of f , there are two principle ways. If its

prior distribution F is known, the integrated risk is obtained as the expectation with respect to F

as

R(δ,F) := E f [R(δ, f )] =

∫

R(δ, f )P ( f )d f . (3.2)

The operator δF achieving the Bayes risk1

R(F) := R(δF ,F) = inf
δ

R(δ,F) (3.3)
1Naming conventions vary among authors: Mallat (2009) calls the posterior risk the Bayes risk, and that achieved

by δF is called the minimum Bayes risk.
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is called a Bayes estimator. On the other hand, if such a prior is not known, the maximum risk

R(δ,F) := sup
f∈F

R(δ, f ).

is the largest risk incurred by any f in F. An operator δF achieving the minimax risk

R(F) := R(δF,F) = inf
δ

R(δ,F),

is called a minimax estimator. It is easy to show that the minimax risk is an upper bound to the

Bayes risk, i. e.

R(F)≤ R(F),

since including prior information on the distribution of f can only improve the estimation. By

the minimax theorem (Wald 1945; Komiya 1988; Sion 1958) minimax estimations are Bayes

estimations for a least favorable prior, i. e. a prior distribution F◦ achieving the minimax risk,

R(F) = R(F◦).

Though being a very conservative criterion, minimaxity tries to capture the notion of an optimal

estimator. For instance, the sample mean is minimax for estimating the mean of i.i.d. Gaussian

random variables, and maximum likelihood estimates for parametric settings are asymptotically

locally minimax (see Donoho, Johnstone, et al. (1995) for a detailed discussion).

The question remains as to how a Bayes estimator can be derived. Notice that the above

definitions are based on a frequentist interpretation of risk, as it is defined for a known f and

integrated over all possible variates y , even though f is latent and only one realization of y is

observed. It is therefore more natural to take the Bayesian approach: the posterior expected loss

or posterior risk

ρ(δ, f | y) := E f [L(δ, f ) | y] =
∫

L(δ, f )P ( f | y)d f (3.4)

quantifies the expected loss for the given data y across all true functions f ∼ F with respect

to a prior distribution F . The Bayes estimator can then be obtained by selecting the optimal

estimator for each y individually as

δF (y) := arg inf
δ
ρ(δ, f | y),
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since

R(δ,F) =
∫

R(δ, f )P ( f )d f =

∫

ρ(δ, f | y)P (y)dy . (3.5)

This is of particular interest if the loss function is quadratic, i. e.

L(δ(y), f ) = ‖δ(y)− f ‖2.

In this case, a Bayes estimator for each y corresponds to the mean of the posterior distribution,

the posterior expectation

δF (y) = E [ f | y] =
∫

f P ( f | y)d f . (3.6)

Expectation holds component-wise,

∀t : bf [t] = E [ f [t] | y] , (3.7)

see Mallat (2009, Theorem 11.1). This fact will be used later in this thesis to connect Hidden

Markov Models to wavelet regression. Other loss functions yield different statistics of the

posterior distribution. For instance, under certain conditions (Bassett & Deride 2018), the

Bayes estimator for the 0-1 loss

Lε(δ, f ) :=











0 ‖ f − f ‖< ε

1









bf − f







≥ ε
,

ε > 0, converges to the posterior mode, more commonly called the maximum a posteriori (MAP)

estimate, for ε→ 0.

3.2.2 Minimaxity of wavelet thresholding

In regression settings, it is often impossible in practice to formulate a prior signal distribution F ,

and the Bayes estimator (Eq. (3.7)) is generally unattainable. For instance, no practical statistical

model exists to accurately describe photographic images. Therefore, other criteria, such as

minimaxity with respect to a signal class F, are usually employed to select a regression method

(admissibility being another popular criterion). Unfortunately, deriving minimax estimators is

often hard, and they tend to be hard to compute. However, good approximations can sometimes

be obtained. Wavelets in particular allow for a very simple approximation of minimaxity.
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Consider a diagonal estimator δ in which each detail coefficient d j,k is attenuated by a factor

a j,k, which depends on d j,k itself. The risk is then

R(δ, f ) = E
�

‖ f −δ(y)‖2
�

=
∑

j,k

E
�
�

�




ψ j,k, f
�

− a j,k




ψ j,k, Y
��

�

2�

Obviously, this attenuation requires knowledge of f , and is therefore not attainable, unless an

oracle for f is provided. For theoretical purposes, consider the existence of an oracle having

knowledge of f . The oracle attenuator δ f
att minimizes the risk by setting

a j,k =

�

�




ψ j,k, f
��

�

2

�

�




ψ j,k, f
��

�

2
+σ2

.

Restricting the attenuation coefficients to {0,1} yields the oracle projector δ f
pr for which the best

risk is obtained by

a j,k =











1
�

�




ψ j,k, f
��

�≥ σ

0
�

�




ψ j,k, f
��

�< σ

. (3.8)

In Donoho & Johnstone (1994), this method is referred to as selective wavelet reconstruction. It

can be shown that the oracle projection risk comes close to the optimal attenuation, since

1
2

R
�

δ f
pr, f

�

≤ R
�

δ
f
att, f

�

≤ R
�

δ f
pr, f

�

,

and hence

R
�

δ f
pr, f

�

≤ 2R
�

δ
f
att, f

�

.

Though the oracle is inaccessible, oracle estimators can be approximated surprisingly well.

Let the universal threshold be

λu :=
p

2 ln Tσ. (3.9)

The hard-thresholding estimator δth is a projector using

a j,k =











1
�

�




ψ j,k, y
��

�≥ λu

0
�

�




ψ j,k, y
��

�< λu

(3.10)

which achieves a risk of

R(δth, f )≤ (2 ln T + 1)
�

σ2 + R
�

δ f
pr, f

��

(3.11)
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for T ≥ 4; see Mallat (2009, Theorem 11.7) for details. δth is optimal in the sense that the

risk cannot be improved by any other diagonal estimator. It is also asymptotically minimax over

a wide range of smoothness classes (Donoho & Johnstone 1995). Most importantly for this

thesis, it is asymptotically minimax over piecewise α-Lipschitz functions, including the case where

F is the set of piecewise-constant functions.

Using universal thresholding for wavelet regression, also called wavelet shrinkage, has a very

intuitive explanation: Following Donoho & Johnstone (1994), a wavelet is said to have m

vanishing moments if



pi ,ψ
�

= 0, 0≤ i < m, p scalar.

It follows that ψ is orthogonal to any polynomial f of degree less than m, since
®m−1
∑

i=1

pi ,ψ

¸

=
m−1
∑

i=1




pi ,ψ
�

= 0.

This property is called polynomial suppression (Mallat 2009). It follows that the detail coefficients

in any wavelet decomposition of such a polynomial f are all zero, as it can be expressed entirely

in terms of the scaling functions. Furthermore, any function in Cm is well approximated by

a (m− 1)-degree Taylor polynomial pv about point v over a finite interval [v − h, v + h]. Let

f = pv + εv . Then



f ,ψ j,k

�

=



εv ,ψ j,k

�

,

so the wavelet coefficient is negligible, as it only measures the Taylor approximation error, which

is bounded by the Lipschitz coefficient of f as

|εv(t)| ≤ K |t − v|α, K > 0, and m= bαc< n.

Since the wavelet transform is linear, it acts on the signal and noise component independently,

i. e.

W y =W( f + ε) =W f +Wε.

The central idea in wavelet shrinkage is that the detail coefficients d j,k =



f ,ψ j,k

�

are 0 if f is

polynomial over the entire support of ψ j,k due to polynomial suppression, or vanishingly small

if f is locally m-times differentiable. Furthermore, due to orthogonality of W, Wε is again a
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random vector of i.i.d. random variables distributed as N(0,σ2), so the noise is maintained under

the wavelet transform. In general, orthogonal maps preserve the L2 norm, so

‖Wε‖= ‖ε‖ and ‖W y‖= ‖y‖.

It follows that for piecewise polynomial functions with only a few discontinuities, most signal

coefficients



f ,ψ j,k

�

are zero due to polynomial suppression, hence




y ,ψ j,k

�

=



ε,ψ j,k

�

for most j,k, i. e. most wavelet coefficients arise entirely from noise. As the noise component of

the data is preserved as a Gaussian vector of variance σ2 under the orthogonal transformation

W, most of the T detail coefficients are themselves i.i.d. Gaussian random variables. The idea is

then to find a way to create a vector w by setting a suitable set of coefficients in W f to zero,

and then use the inverse wavelet transform as a regression bf :=Wᵀw . Ideally, these would be

those exactly those noise coefficients. As a filtering criterion, the universal threshold can thus be

interpreted as the expected maximum deviation of T such Gaussian random variables, which is

at most λu :=
p

2 ln Tσ by Cramér-Chernoff’s method (Massart 2003). A simple derivation of

this result has appeared multiple times in the mathematical vernacular:

Proposition 3.2.1 (Expected maximum of Gaussian random variables). Let (X i)Ti=1 a sequence of

T centered i.i.d Gaussian random variables with variance σ2. Let Z :=maxi X i Then,

E [Z]≤
p

2 ln Tσ

Proof. Using Jensen’s inequality,

exp (tE [Z])≤ E [exp (tZ)] = E
h

exp
�

t max
i

X i

�i

= E
h

max
i

exp (tX i)
i

≤
T
∑

i=1

E [exp (tX i)] .

The last term can be expressed a product of Gaussian moment-generating functions

exp

�

tµ+ t2σ
2

2

�

with µi = 0, hence

exp (tE [Z])≤ T exp

�

t2σ
2

2

�
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and

E [Z]≤
ln T

t
+ t
σ2

2

The minimum is attained at t =
p

2 ln T
σ , and the claim follows.

The same upper bound can be shown for Z :=maxi |X i|, though this expectation will generally

be larger. Furthermore, the maximum noise coefficient is just below λu with high probability

(Berman 1992):

lim
T→∞
P
�

max
0≤i<T

�

�




ψ j,k,ε
��

� ∈
�

λu −σ
ln ln T
ln T

,λu

��

= 1.

3.3 The Haar wavelet

The HMM treated in this thesis generate piecewise constant data with noise, albeit with potentially

different noise variances for each state. As the underlying sequence of means is piecewise linear,

we can base our method on the simplest, piecewise constant form of wavelets. This decomposition

goes back over a century to the work of Haar (1910), and is widely recognized as the first example

of a wavelet transform, long before the broader theory was established. Let the Haar scaling

function be

φ(t) :=











1 0≤ t < 1

0 elsewhere.

The Haar wavelet constructed from that scaling function is

ψ(t) :=



























1 0≤ t < 1
2

−1 1
2 ≤ t < 1

0 elsewhere.

As before, the basis elements are defined as

ψ j,k :=
1
p

2 j
ψ

�

t − 2 jk
2 j

�

,

where ψ j,k has non-zero support over the interval [2 jk, 2 j(k+ 1)). The Haar wavelet has one

vanishing moment, so in general it is orthogonal only to constant functions.
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The discrete-time Haar wavelet transform W y for a vector y of size T consists of the scaling

coefficient c0,0 as well as the detail coefficients d j,k, j ∈ {1, . . . , ld T}, k ∈
�

0, . . . , T
2 j − 1

	

. The

rows of W consist of all ψ j,k as well as φ. Let

b+j,k := 2 jk, b±j,k := 2 j
�

k+
1
2

�

, and b−j,k := 2 j(k+ 1)

be the position after the left, central and right discontinuity, respectively. Let

L j,k :=
¦

b+j,k, . . . , b±j,k − 1
©

R j,k :=
¦

b±j,k, . . . , b−j,k − 1
©

denote the index sets of the left (positive) and right (negative) support interval ofψ j,k, i. e. ψ j,k[t]>

0 for t ∈ L j,k and ψ j,k[t]< 0 for t ∈ R j,k. Note that ψ j,k is zero outside of these index sets, so

we ignore those entries and only refer to L ∪R as the support of the wavelet. The wavelet basis is

illustrated in Fig. 3.1.

W.l.o.g., let k = 0, ψ j :=ψ j,0, L j := L j,0, and R j := R j,0. Recall that for X i ∼ N(µi ,σ
2
i ) and

si ∈ {−1,1}, the term
∑

i

siaiX i ∼ N

�

∑

i

siµi ,
∑

i

a2
i σ

2

�

,

hence



ε,ψ j

�

=
1
p

2 j

 

∑

t∈L j

ε[t]−
∑

t∈R j

ε[t]

!

∼ N
�

0,σ2
�

.

As expected, the noise is preserved under the Haar wavelet transform.
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Chapter 4

Haar Wavelet Compression

In this chapter, we introduce the core methodological contribution of this thesis, using the

established theory introduced in the previous chapters. We show that the expectation of posterior

marginal state means in homoscedastic Gaussian Hidden Markov Model (HMM) is a Bayes

estimator under prior parameters τ, and its risk is limited by the minimax risk of Haar wavelet

regression. Using the positions of discontinuities as boundaries, blocks created by Haar wavelet

compression preserve the approximate positions of true state transitions, and the probability

of under-compression decreases with the separation of state means. Furthermore, we derive

a dynamic compression scheme for heteroscedastic HMM, and implement it using a wavelet

tree data structure. We provide an evaluation of our method on simulated and biomedical

data, showing significant improvements in speed and convergence behavior over uncompressed

Forward-Backward Gibbs sampling (FBG). Finally, we derive bounds on the bias incurred on

the forward variables by compression for general HMM, and show that this tends to bias the

forward-backward sampling procedure towards the maximum posterior marginal state within

each compression block. We conjecture that our software HaMMLET produces an approximation

of the maximum posterior margins (MPM) segmentation (see Section 2.4).

The central approach of this thesis is to integrate Haar wavelet regression with Forward-

Backward Gibbs sampling, in order to derive approximate state marginals and Bayesian smoothing

for Hidden Markov models. Significant speedup and memory savings can be obtained by data

compression in which the discontinuities in the piecewise constant function bf , obtained from

Haar wavelet regression towards the sequence f of emission means of the true state sequence q ,
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are used to define boundaries for data compression blocks:

Definition 4.0.1 (Haar wavelet compression). Let y be a vector of input values, and d some vector

of Haar wavelet coefficients of the same dimensionality (typically the result of some regression method

on W y , such as wavelet shrinkage). Let y be partitioned into blocks of sufficient statistics such that

a block starts at position t if and only if there exists some j, k such that d j,k 6= 0 and at least one of

b+j,k, b±j,k or b−j,k is equal to t (see p. 43). In other words, the data is compressed into blocks defined

by the discontinuities in Wᵀd.

Notice that only projection operators, i. e. methods which set coefficients to zero, yield

compression into blocks of at least two position, since any non-zero coefficient di j will introduce

a discontinuity, and hence a compression block boundary b±i j, and in many cases at is left and

right discontinuities b+i j and b−i j as well. Therefore, only projectors should be considered in a

compression setting, and among them, thresholding methods achieve the best risk, with the

universal threshold approaching the minimax risk.

4.1 Homoscedastic HMM

This proposal is based on the observation that HMM inference and regression methods deal with

similar input data. Consider our observed data y to consist of a piecewise-constant data vector of

means, f , corrupted by additive noise ε, which is typically Gaussian. In a regression setting, the

noise is considered to be homoscedastic, i. e. of uniform variance, while the number of distinct

values in f is not limited a priori. On the other hand, for data generated by a Gaussian HMM,

the number of distinct means is limited by the number of states, while there may be different

noise variances associated with each component. The obvious intersection case is data generated

by an HMM which has the same finite emission variance in each component, which yields a

homoscedastic random vector y:

Definition 4.1.1 (Homoscedastic HMM (σ-HMM)). We call a Gaussian Hidden Markov model a

homoscedastic HMM of variance σ2, or σ-HMM, iff θ i = (µi ,σ
2). State labels can be identified

with the emission means, so that the state sequence q ∈ {1,2, . . . }T can be written as the discrete
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sampling

f := (µq[1], . . . ,µq[T]) ∈ {µ1,µ2, . . . }T

of a piecewise constant function f ∈ F such that

∀t ∈ {1, . . . , T} : f [t] = f ( f ), and

∀x ∈ [t, t + 1) : f (x) := f [t].

A σ-HMM thus defines a probability distribution over F.

Since we can easily convert between f and f , and minimaxity results for wavelet regression

apply to discrete samplings f of f , we forgo the distinction between RT and F, and we refer

to the vector f as a piecewise-constant function. Hence, on the one hand, data generated by a

σ-HMM can be treated as a piecewise constant function with i.i.d. Gaussian noise, where f can

be approximated by regression. On the other hand, f is a hidden Markov chain which has an

explicit distribution given the HMM parameters, allowing for an explicit formulation of Bayes risk.

Thus, the observed data y can be treated both within a regression as well as an HMM framework,

allowing for an integration of wavelets and FBG.

As f is piecewise constant, the Haar wavelet with its one vanishing moment is the obvious

candidate for regression. The emission variance σ2 can be estimated directly using the standard

approach of taking the median absolute value of finest detail coefficients
�

�d1,k

�

� , see Mallat

(2009, p. 565) for details. Having the smallest support of 2, very few wavelets will contain

a discontinuity in f in their support. Since d1,k ∼ N(0,σ2), this corresponds to the median

absolute deviation from µ= 0, and hence

bσ2
MAD :=

�

medk

�

�d1,k

�

�

Φ−1
�3

4

�

�2

=
�

0.6745med
k

�

�d1,k

�

�

�2
,

where Φ is the PDF of the standard normal distribution N(0, 1). Using the universal threshold
p

2 ln TσMAD (Donoho & Johnstone 1994), with high probability, the resulting estimate bf th

will set to zero all coefficients of wavelets with support over ranges that do not contain state

transitions, and hence have no discontinuity in f . Conversely, it will keep the coefficients of

those wavelets which have state transitions within their support. This creates discontinuities in

the regression result around state transitions. We will develop the connection to HMM in the

sections below.
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4.2 Connection between HMM and wavelets

In this section, we relate wavelet shrinkage to HMM smoothing. Sinceσ-HMM define distributions

over F, we define two Bayes estimators based on the posterior state marginals. Under quadratic

loss, these are obtained by position-wise posterior means, conditioned on the observed data y .

We argue that changes in one of these estimators reflect strong changes in the posterior state

distribution. Since minimax estimators are Bayes estimators for least favorable priors, Haar

wavelet regression appears as a limiting case, and block boundaries can be expected to occur

around changes in the marginal state distribution. We also discuss how wavelet compression

might bias the Gibbs sampler towards the posterior parameters, yielding faster convergence.

Definition 4.2.1 (Smoothing estimator). Let H be a σ-HMM with the hidden Markov chain

M( f ) := P ( f |A,θ ,π)

over the state space {µi}. Let

γ j(t) := P (q[t] = j | y ,θ ,A,π)

be the marginal probability to be in state j at position t, as obtained by HMM smoothing via the

forward-backward algorithm (Section 2.4.2). Then we call the estimator bf M := δM(y) with

bf M[t] :=
∑

i

γi(t)µi

the smoothing estimator for f with respect to H.

An example for this estimator is shown in Fig. 4.1. Notice how bf M provides a summary of

the behavior of the marginal state distributions, and can therefore be used as an indicator of the

loci at which the marginal state probabilities change:

Proposition 4.2.1. Given data y , the change in the smoothing estimator between positions t and u

is

bf M[t]− bf M[u] =
k−1
∑

j=1

�

γ j(t)− γ j(u)
�

(µ j −µk),

and that difference between any two positions scales linearly with the separation of means.
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Figure 4.1: Smoothing estimator bf M(y) (top figure, red curve) for a state sequence f (black curve),
and emission values y (gray dots) generated by a 3-state σ-HMM with known parameters. Wavelet
thresholding bf th (green curve) is the Bayes estimator that minimizes the risk incurred under the least
favorable parametrization of a σ-HMM. The bottom figure shows the true marginal state distributions
at each position. White vertical lines indicate the position of discontinuities in bf th and hence the
compression block boundaries.

Proof. Let d j = γ j(u)− γ j(t) be the change in marginal state probability for state j, and γ j :=

γ j(t). Since
∑k

j=1 γ j(t) =
∑k

j=1 γ j(u) = 1, we have

bf M[t]− bf M[u] =
 

k−1
∑

j=1

γ jµ j +

 

1−
k−1
∑

j=1

γ j

!

µk

!

−

 

k−1
∑

j=1

�

γ j + d j

�

µ j +

 

1−

 

k−1
∑

j=1

γ j

!

−

 

k−1
∑
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d j

!!

µk

!
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γ jµ j
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+µk −
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γ jµk
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−
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d jµ j

!

−µk +

 

k−1
∑

j=1

γ jµk

!

+

 

k−1
∑

j=1

d jµk

!

=

 

k−1
∑

j=1

d jµk

!

−

 

k−1
∑

j=1

d jµ j

!

=
k−1
∑

j=1

d j

�

µk −µ j

�

.



49

Further, w.l.o.g. let µ1 ≤ µ2 ≤ · · · ≤ µk. Then µk −µ j =
�

�µk −µ j

�

� for k > j, and for any scaling

factor a ∈ R of mean separation,

k−1
∑

j=1

d ja
�

�µk −µ j

�

�= a
k−1
∑

j=1

d j

�

�µk −µ j

�

�= a
�

bf M[t]− bf M[u]
�

.

Notice that shifts in bf M are small if means are not well separated, changes in marginal state

probabilities are small, or in rare cases, the vector of changes d j is orthogonal to that of means

µ j . Conversely, large mean separation or large state probability changes increase shifts in bf M.

Having obtained a regression operator which captures significant changes in the marginal

state distribution, we now relate it to wavelet regression using the framework of Bayesian decision

theory:

Proposition 4.2.2. δM is a Bayes estimator for f with respect to prior P ( f |A,π,θ ) under

quadratic loss ‖ f −δM(y)‖
2.

Proof. For a quadratic loss function, any Bayes estimator equals the mean of the posterior

distribution given y (Eq. (3.7)). Conditioning the hidden Markov chain M( f ) on the observed

data y yields the posterior

M( f | y) = P ( f |A,θ ,π, y) ,

i. e. the state sequence distribution in the HMM for which M is the latent state process. Then,

bf M[t] = E [ f [t] |A,θ ,π, y] =

∫

f [t]P ( f |A,θ ,π, y)d f [t],

and therefore

bf M[t] =
∑

j

µ jP (q[t] = j |A,θ ,π, y) =
∑

j

µ jγ j(t)

attains the Bayes risk R(M).

While a σ-HMM plays the role of a prior distribution on F in the decision-theoretic sense, we

can extend the argument to Bayesian σ-HMM with a true prior for the model:

Proposition 4.2.3 (HMM estimator). Let δτ(y) with

bf τ[t] := E [ f [t] | y ,τ]
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be called HMM estimator for f . This is a Bayes estimator for a prior distribution F = P ( f | y ,τ)

over the set of piecewise constant functions F under quadratic loss. Its risk under a least favorable

parametrization M◦ :=M( f |τ◦) is bounded by the minimax risk over F, asymptotically attained

by Haar wavelet regression,

R(M◦)≤ R(F).

Proof. This follows directly from the results in Section 3.2. Since the parameters to M them-

selves are subject to priors of their own, it is obvious that P ( f | y ,τ), analogous to P (q | y ,τ)

(Eq. (2.20)), defines a prior distribution over F in the decision-theoretic sense, with all prior

information about the HMM encoded in τ. Under quadratic loss, the Bayes estimator for each y

is obtained as
∫

f [t]P ( f [t] | y ,τ)d f [t] = E [ f [t] | y ,τ] .

Notice that this estimator is hard to compute for the same reasons that we useMCMC to sample

the HMM posterior in the first place. It only serves to justify the use of Haar wavelet compression.

However, in analogy to Eq. (2.22), it could be easily approximated using Forward-Backward

Gibbs sampling, as

bf τ[t]≈
1
N

N
∑

i=1

µ
(i)
q[t].

Since both estimators bf th and bf τ are bounded by the minimax risk, and wavelet thresholding

typically yields a good approximation of f , we expect ‖bf th − bf τ‖ to be small. Consequently, we

expect the discontinuities of the wavelet regression bf th to roughly correspond to changes in the

posterior state distribution of a Bayesian HMM. Hence, by virtue of being a minimax estimator of

f , wavelet shrinkage introduces information about the true posterior state marginals into the

sampling process before the posterior distribution is ever available to the sampler. We believe

this makes for a strong case to use those discontinuities as block boundaries for compression.

FBG samples from P ( f | y ,τ) only once the underlying Markov chain has converged. While

we argue that wavelet compression is compatible with a σ-HMM in the sense that changes in its

value correspond to large changes in posterior state distribution, it is worthwhile to investigate

whether a similar statement can be made about the burn-in phase using the smoothing estimator,
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which, by virtue of being Bayes, is bounded by the minimax risk as well. Specifically, one might

be inclined to conclude that we can expect ‖bf th− bf M‖ to be small, in analogy to ‖bf th− bf τ‖, but

we will argue that this is not the case.

In the usual decision theoretic settings, risk calculations are devices used to rank the quality

of estimators under the different prior assumptions a statistician can make, and the minimax risk

bounds the risk under the least-favorable prior knowledge she might have about the parameter

in question. As such, any risk calculation will not account for any information not included in

the prior. Specifically, the integrated risk (Eq. (3.2)) effectively only integrates over the domain

of the posterior, either by discounting the frequentist risk (Eq. (3.1)) by a factor of 0 whenever

P ( f ) = 0, or, equivalently, by discounting the loss whenever P ( f | y) = 0 in the calculation of

the posterior expected loss (Eq. (3.4)). Whenever the true f is outside of the posterior domain,

the loss it incurs is completely removed from consideration. Risk therefore describes the loss the

statistician expects subjectively, as opposed to the loss she is expected to experience objectively for

a true f .

In the context of a Bayesian HMM, the risk of the HMM estimator truly corresponds to the

prior expectations we have about the latent parameters, as encoded by our hyperparameters τ.

The HMM estimator summarizes the posterior distribution of the Bayesian HMM from which we

sample after FBG has converged. The smoothing estimator, on the other hand, summarizes the

posterior distribution

P (q | y ,A,θ ,π) ,

from which we sample the state sequence in each FBG iteration, through the position-wise

weighted average of state means. Its risk, too, is bounded by the minimax risk; however, this

distribution does not encode subjective prior knowledge in the Bayesian sense: any state sequence

for which at least one emission mean is not in θ has probability zero in both the prior and the

posterior. It is extremely unlikely for the true state means to be sampled precisely, especially

during burn-in, hence the true loss incurred in sampling is not accounted for in most cases. For

this reason, it would be a fallacy to expect that ‖bf th − bf M‖ is small, since the assumptions in a

prior M are violated unless all its state means are those of f . Perhaps not surprisingly, the block

boundaries in wavelet compression cannot be expected to follow the most likely state transitions
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for arbitrary HMM parameters for M. While this could be seen as problematic, we would argue

that in fact this might help with convergence behavior of FBG. Wavelet compression changes the

distribution P (q | y ,A,θ ,π) by suppressing state distributions occurring far away from changes

in the true posterior marginals of P (q | y ,τ) in the Bayesian HMM during the burn-in phase.

4.3 Heteroscedastic HMM

While we show that Haar wavelet regression can be used as an approximation for the expected

posterior state means in a σ-HMM, the squared loss itself is of limited concern when regression

is used for compression, as it is the preservation of discontinuities in f , induced by states with

separated means, that prevents over-compression. This is a concern in particular in that wavelet

shrinkage using the universal threshold has been found to underfit the data (Antoniadis &

Oppenheim 1995; Fan et al. 1993). Furthermore, results concerning estimators are not easily

extended to heteroscedastic y , as obtained by an HMM in which emission variances are not the

same for all states.

4.3.1 Preservation of discontinuities

It is well-established that wavelet regression yields high-amplitude coefficients for wavelets

spanning a discontinuity in f . For homoscedastic data, breakpoint preservation at coarser

resolution levels follows directly from oracle projection, for which universal thresholding is

minimax and no better diagonal estimator can be obtained: Assume that, at scale j, all emissions

at t ∈ L j have emission mean µL, and those in R j have µR. If we assume that



f ,ψ j,k

�

≥ σ

whenever f has a discontinuity at b±j,k, oracle projection (Eq. (3.8)) would set

a j,k =











1 ∆µ≥ 2p
2 jσ

0 else,

creating discontinuities at b±j,k in bf . Means with sufficiently large separation ∆µ are therefore

unproblematic. However, large noise variance σ2 can cause an obvious problem. An oracle
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concerned with breakpoint preservation, however, would set

a j,k =











1 ∆µ≥ 0

0 else.

Asymptotically, the two are equivalent, as

lim
j→∞

2
p

2 j
σ = 0,

meaning that even breakpoints between insufficiently well separated states are indeed preserved

for sufficiently long state durations. Notice that any introduction of additional discontinuities

around that position would only create additional approximate breakpoints, and the number of

spurious discontinuities far away from state transitions is limited, since noise coefficients are

removed with high probability.

For the heteroscedastic Gaussian case with general state emission variances, the probability

of missing a breakpoint can be quantified directly. The inner product of a Haar wavelet with the

data is a sum of Gaussian random variables with means corresponding to the latent parameters

µq[t] for all t in the support interval. It thus follows directly from the additive properties of the

Normal distribution that the coefficients are distributed as




y ,ψ j

�

∼ N
�

µq , j ,σ
2
q , j

�

, with

µq , j :=



ψ j ,q
�

=
1
p

2 j

 

∑

t∈L j

µq[t] −
∑

t∈R j

µq[t]

!

, and

σ2
q , j :=




ψ j ,ε
�

=
1
2 j

∑

t∈L j∪R j

σ2
q[t].

Note how themean is determined by the signal coefficient alone, and that the variance, determined

solely by the noise coefficients, is always the average noise variance across the support, regardless

of j.

Due to the symmetry of the normal distribution, let µL ≥ µR and ∆µ := (µL −µR) w.l.o.g., so

that



ψ j ,q
�

=
p

2 j

2 ∆µ is non-negative. It follows that




ψ j ,ε
�

∼ N

�

0,
σ2

L +σ
2
R

2

�
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and hence



ψ j , y
�

=

p
2 j

2
∆µ+




ψ j ,ε
�

∼ N

�p
2 j

2
∆µ,

σ2
L +σ

2
R

2

�

.

For any given threshold λ, we can use this density to directly quantify the probability of under-

compressing a state transition as

P
�


y ,ψ j

�

∈ [−λ,λ]
�

=

∫ λ

−λ

1
q

π(σ2
L +σ

2
R)

exp



−

�p
2 j

2 ∆µ− x
�2

σ2
L +σ

2
R



dx .

This integral tends to 0 for a large shift ∆µ away from 0, smaller sums of noise variances, or

larger scale j. Note that this distribution could also be used directly if a specific mean difference

is to be resolved with a given probability at a given scale. In practice, however, we found that

such measures were unnecessary for the data we analyzed.

4.3.2 Dynamic Haar compression

The homoscedastic case does not typically occur in practice. Even on experimental platforms such

as aCGH, non-diploid states tend to have higher variance. As a result, a direct estimate of emission

variances like the one above is not available. Instead, assume θ was known. As lower thresholds

remove less wavelet coefficients, thereby retaining a higher number of discontinuities, which

correspond to potential state transitions, using the minimum variance σ2
min ∈ θ is a sensible

way to create compressed data via wavelet shrinkage. Parts of the data generated by states

whose emission variance equals σ2
min will be compressed as before due to polynomial suppression.

Higher-variance regions will contain wavelets higher than expected for T observations of minimum

variance, thus retaining additional wavelets and discontinuities. As the set of breakpoints for

higher thresholds is a subset of those for lower ones, these regions will be compressed like regions

with noise variance σ2
min, with additional, superfluous block boundaries thrown in. In other

words, high-variance regions will be under-compressed, but no block boundary will be missed

which wouldn’t be missed in the uniform variance case as well.

Unfortunately, θ is typically latent and has to be inferred. FBG converges to the correct θ

over time, providing increasingly accurate a priori samples at each iteration. Therefore, samples

of θ can be used to derive approximate noise levels. We hence propose the following simple

approach: In each FBG sampling iteration, we use the smallest sampled variance parameter σ2
min
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Algorithm 1 Dynamically adaptive FBG for HMMs
1: procedure HaMMLET(y , τA, τθ ,τπ)
2: T ← | y | . get data size
3: λ←

p
2 ln T . constant factor in universal threshold

4: A∼ P (A |τA) . prior sampling of transition probabilities
5: θ ∼ P (θ |τθ ) . prior sampling of emission parameters
6: π∼ P (π |τπ) . prior sampling of state distribution
7: for i← 1, . . . , N do . iterate Gibbs sampler
8: σmin←minσi

{bσMAD,σi |σ2
i ∈ θ} . minimum emission variance

9: Create block sequence B from threshold λσmin
10: q ∼ P (q |A, B,θ ,π) using Forward-Backward sampling
11: Add count of marginal states for q to result
12: A∼ P

�

A
�

�τ?A
�

= P (A |π,q ,τA)∝ P (π,q |A)P (A |τA)
13: θ ∼ P

�

θ
�

�τ?
θ

�

= P (θ |q , B,τθ )∝ P (q , B |θ )P (θ |τθ )
14: π∼ P

�

π
�

�τ?π
�

= P (π |A,q ,τπ)∝ P (A,q |π)P (π |τπ)

to create a new block sequence via wavelet thresholding (Algorithm 1). The method is illustrated

in Fig. 4.2.

A potential problem could arise if all sampled variances are too large. In this case, blocks

would be under-segmented, yield wrong posterior variances and hide possible state transitions.

As a safeguard against over-compression, we use σ2
MAD as an estimate of the variance in the

dominant component, and modify the threshold definition to λ ·min {bσMAD,σi ∈ θ}. If the data

is not i.i.d., bσ2
MAD will systematically underestimate the true variance (Wang & Wang 2007). In

this case, the blocks get smaller than necessary, thus decreasing the compression.

4.3.3 The wavelet tree data structure

The necessity to recreate a new block sequence in each iteration based on the most recent estimate

of the smallest variance parameter creates the challenge of doing so with little computational

overhead, specifically without repeatedly computing the inverse wavelet transform or considering

all T elements in other ways. We achieve this by creating a simple tree-based data structure.

The pyramid algorithm yields d sorted according to ( j, k). Again, let h := ld T , and j := h− j.

We can map the wavelet ψ j,k to a perfect binary tree of height h such that all wavelets for scale j

are nodes on level j, nodes within each level are sorted according to k, and j is increasing from

the leaves to the root (Fig. 4.3). The vector d represents a breadth-first search (BFS) traversal of

that tree, with d j,k being the entry at position b2 jc+ k. Adding y[i] as the i-th leaf on level j = 0,
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Figure 4.2: Overview of HaMMLET. Instead of individual computations per observation (panel a),
Forward-Backward Gibbs Sampling is performed on a compressed version of the data, using sufficient
statistics for block-wise computations (panel b) to accelerate inference in Bayesian Hidden Markov
Models. During the sampling (panel c) parameters and copy number sequences are sampled iteratively.
During each iteration, the sampled variances determine which coefficients of the data’s Haar wavelet
transform are dynamically set to zero. This controls potential break points at finer or coarser resolution
or, equivalently, defines blocks of variable number and size (panel c, bottom).

each non-leaf node represents a wavelet which is non-zero for the n := 2 j data points y[t], for

t in the interval I j,k := [kn, (k+ 1)n− 1] stored in the leaves below; notice that for the leaves,

kn= t.

This implies that the leaves in any subtree all have the same value after wavelet thresholding

if all the wavelets in this subtree are set to zero. We can hence avoid computing the inverse

wavelet transform to create blocks. Instead, each node stores the maximum absolute wavelet

coefficient in the entire subtree, as well as the sufficient statistics required for calculating the

likelihood function. More formally, a node N j,t corresponds to wavelet ψ j,k, with j = h− j and

t = k2 j (ψ−1,0 is simply constant on the [0,1) interval and has no effect on block creation, thus

we discard it). Essentially, j numbers the levels beginning at the leaves, and t marks the start

position of the block when pruning the subtree rooted at N j,t . The members stored in each node

are:
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Figure 4.3: Mapping of wavelets ψ j,k and data points yt to tree nodes N j,t . Each node is the root of a
subtree with n = 2 j leaves; pruning that subtree yields a block of size n, starting at position t. For
instance, the node N1,6 is located at position 13 of the DFS array (solid line), and corresponds to the
waveletψ3,3. A block of size n= 2 can be created by pruning the subtree, which amounts to advancing
by 2n− 1= 3 positions (dashed line), yielding N3,8 at position 16, which is the wavelet ψ1,1. Thus the
number of steps for creating blocks per iteration is at most the number of nodes in the tree, and thus
strictly smaller than 2T .

• The number of leaves, corresponding to the block size:

N j,t[n] := 2 j

• The sum of data points stored in the subtree leaves:

N j,t[Σ1] :=
∑

i∈I j,k

y[i]

• Similarly, the sum of squares:

N j,t[Σ2] :=
∑

i∈I j,k

y[i]2
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• The maximum absolute wavelet coefficient of the subtree, including the current d j,k itself:

N0,t[d] := 0 N j>0,t[d] :=max
j′≤ j

t≤t ′<t+2 j

n
�

�

�dh− j′,2 j′/t ′

�

�

�

o

All these values can be computed recursively from the child nodes in linear time. As some real

data sets contain salt-and-pepper noise, which manifests as isolated large coefficients on the

lowest level, its is possible to ignore the first level in the maximum computation so that no

information to create a single-element block for outliers is passed up the tree. We refer to this

technique as noise control. Notice that this does not imply that blocks are only created at even t,

since true transitions manifest in coefficients on multiple levels.

The block creation algorithm is simple: upon construction, the tree is converted to depth-first

search (DFS) order, which simply amounts to sorting the BFS array according to (kn, j), and

can be performed using linear-time algorithms such as radix sort; internally, we implemented a

different linear-time implementation mimicking tree traversal using a stack. Given a threshold,

the tree is then traversed in DFS order by iterating linearly over the array (Fig. 4.3, solid lines).

Once the maximum coefficient stored in a node is less or equal to the threshold, a block of size

n is created, and the entire subtree is skipped (dashed lines). As the tree is perfect binary and

complete, the next array position in DFS traversal after pruning the subtree rooted at the node at

index i is simply obtained as i+2n−1, so no expensive pointer structure needs to be maintained,

leaving the tree data structure a simple flat array. An example of dynamic block creation is given

in Fig. 4.4.

Proposition 4.3.1. A wavelet tree produces a partition of the data into K blocks inΘ(2K−1) = O(K)

time. Thus, each block is created in expected constant time.

Proof. This follows trivially from the fact that DFS with pruning of a perfect binary tree is

equivalent to a DFS traversal on a full binary tree, where each leaf corresponds to a block. By a

standard induction argument, a full binary tree with K leaves has 2K − 1 nodes, each of which is

expanded exactly once during block creation.

Once the Gibbs sampler converges to a set of variances, the block structure is less likely to

change. To avoid recreating the same block structure over and over again, we employ a technique
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Figure 4.4: Example of dynamic block creation. The data is of size T = 256, so the wavelet tree
contains 512 nodes. Here, only 37 entries had to be checked against the threshold (dark line), 19
of which (round markers) yielded a block (vertical lines on the bottom). Sampling is hence done on
a short array of 19 blocks instead of 256 individual values, thus the compression ratio is 13.5. The
horizontal lines in the bottom subplot are the block means derived from the sufficient statistics in
the nodes. Notice how the algorithm creates small blocks around the breakpoints, e. g. at t ≈ 125,
which requires traversing to lower levels and thus induces some additional blocks in other parts of the
tree (left subtree), since all block sizes are powers of 2. This somewhat reduces the compression ratio,
which is unproblematic as it increases the degrees of freedom in the sampler.

called block structure memoization. Given a block structure B1 created by threshold any λ1, a

second, lower threshold λ2 < λ1 creates either the same block structure B1, or a block structure

B2 in which some blocks of B1 are subdivided into smaller blocks, increasing the number of

total blocks. Therefore, we can partition the set of possible values for λ into intervals [λi ,λ j],

each of which is associated with a particular, unique number of blocks. Thus, for each block

sequence length we register the minimum and maximum variance that creates that sequence.

Upon entering a new iteration, we check if the current variance would create the same number

of blocks as in the previous iteration, which guarantees that we would obtain the same block

sequence, and hence can avoid recomputation.

The wavelet tree data structure can be readily extended to multivariate data of dimensionality



60

1
2
4
8

16
32
64

128
256
512

1024

Bl
oc

k 
Si

ze

1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5

D
im

en
si

on
 1

0 200 400 600 800 1000
Position along Chromosome

2.5
2.0
1.5
1.0
0.5
0.0
0.5
1.0

D
im

en
si

on
 2

Figure 4.5: An example of a multivariate wavelet tree. The top figure shows the topology of a wavelet
tree for each of the two data dimensions below. The red and blue paths denote the pruning paths for
the first and second data dimension, respectively. The bottom two subplots show the block boundaries
for each dimension. The joint block boundaries for this bivariate data would consist of the union of
those boundaries. Since they are incurred by entries above the threshold in their respective wavelet
tree, the trees can be merged into one by taking the maximum absolute detail coefficient across
dimensions to create the union of block boundaries. Hence, the runtime for finding block boundaries
does not depend on the dimensionality of the data.

m (Fig. 4.5). Instead of storing m different trees and reconciling m different block patterns in

each iteration, one simply stores m different values for each sufficient statistic in a tree node.

Since we have to traverse into the combined tree if the coefficient of any of the m trees was

below the threshold, we simply store the largest N j,t[d] among the corresponding nodes of

the trees, which means that the block creation can be done in O(T ) instead of O(mT ), i. e. the

dimensionality of the data only enters into the creation of the data structure, but not the query

during sampling iterations.
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4.3.4 Automatic priors

While Bayesian methods allow for inductive bias such as the expected location of means, it

is desirable to be able to use our method even when little domain knowledge exists, or large

variation is expected, such as the lab and batch effects commonly observed in micro-arrays (Luo

et al. 2010), as well as unknown means due to sample contamination. Since FBG does require a

prior even in that case, we propose the following method to specify hyperparameters of a weak

prior automatically. Posterior samples of means and variances are drawn from a Normal-Inverse

Gamma distribution (µ,σ2)∼ NIΓ(µ0,ν,α,β), whose marginals simply separate into a Normal

and an Inverse Gamma distribution

σ2 ∼ IΓ(α,β), µ∼ N

�

µ0,
σ2

ν

�

.

Let s2 be a user-defined variance (or automatically inferred, e. g. from the largest of the finest

detail coefficients, or bσ2
MAD), and p the desired probability to sample a variance not larger than

s2. From the CDF of IΓ we obtain

p := P(σ2 ≤ s2) =
Γ
�

α, βs2

�

Γ (α)
=Q

�

α,
β

s2

�

.

IΓ has a mean for α > 1, and closed-form solutions for α ∈ N. Furthermore, IΓ has positive

skewness for α > 3. We thus let α= 2, which yields

β = −s2
�

W−1

�

−
p
e

�

+ 1
�

, 0< p ≤ 1,

where W−1 is the negative branch of the Lambert W -function, which is transcendental. However,

an excellent analytical approximation with a maximum error of 0.025% is given in Barry et al.

(2000), which yields

β ≈ s2

�

2
p

b

M1
p

b+
p

2
�

M2 b exp
�

M3
p

b
�

+ 1
� + b

�

,

b := − ln p,

M1 := 0.3361, M2 := −0.0042, M3 := −0.0201.

Since the mean of IΓ is β
α−1 , the expected variance of µ is βν for α= 2. To ensure proper mixing,

we could simply set βµ to the sample variance of the data, which can be estimated from the
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sufficient statistics in the root of the wavelet tree (the first entry in the array), provided that µ

contained all states in almost equal number. However, due to possible class imbalance, means for

short segments far away from µ0 can have low sampling probability, as they do not contribute

much to the sample variance of the data. We thus define δ to be the sample variance of block

means in the compression obtained by bσ2
MAD, and take the maximum of those two variances. We

thus obtain

µ0 :=
Σ1

n
, and ν= βmax

�

nΣ2 −Σ2
1

n2
,δ

�−1

.

4.3.5 Numerical issues

To assure numerical stability when working with probabilities, many HMM implementations

resort to log-space computations, which involves a considerable number of expensive function

calls (exp, log, pow); for instance, on Intel’s Nehalem architecture, log (FYL2X) requires 55

operations as opposed to 1 for adding and multiplying floating point numbers (FADD, FMUL)

(Fog 2016). Our implementation, which differs from (Mahmud & Schliep 2011) greatly reduces

the number of such calls by utilizing the block structure: The term accounting for emissions and

self-transitions within the block can be written as

Anw−1
j j

(2π)nw/2σ
nw
j

exp

�

−
nw
∑

k=1

(y[w][k]−µ j)2

2σ2
j

�

.

Any constant cancels out during normalization. Furthermore, exponentiation of potentially small

numbers causes underflows. We hence move those terms into the exponent, utilizing the much

stabler logarithm function.

exp

�

−
nw
∑

k=1

(y[w][k]−µ j)2

2σ2
j

+ (nw − 1) log A j j − nw logσ j

�

.

Using the block’s sufficient statistics

nw, Σ1 :=
nw
∑

k=1

y[w][k], Σ2 :=
nw
∑

k=1

y[w][k]2

the exponent can be rewritten as

Ew( j) :=
2µ jΣ1 −Σ2

2σ2
j

+ K(nw, j),

K(nw, j) := (nw − 1) log A j j − nw

�

logσ j +
µ2

j

2σ2
j

�

.
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K(nw, j) can be precomputed for each iteration, thus greatly reducing the number of expensive

function calls. Notice that the expressions above correspond to the canonical exponential family

form exp(〈t(x),θ 〉 − F(θ ) + k(x)) of a product of Gaussian distributions. Hence, equivalent

terms can easily be derived for non-Gaussian emissions, implying that the same optimizations

can be used in the general case of exponential family distributions: Only the dot product of the

sufficient statistics t(x) and the parameters θ has to be computed in each iteration and for each

block, while the log-normalizer F(θ ) can be precomputed for each iteration, and the carrier

measure k(x) (which is 0 for Gaussian emissions) only has to be computed once.

To avoid overflow of the exponential function, we subtract the largest such exponents among

all states, hence Ew( j)≤ 0. This is equivalent to dividing the forward variables by

exp
�

max
k

Ew(k)
�

,

which cancels out during normalization. Hence we obtain

α̃w( j) := exp
�

Ew( j)−max
k

Ew(k)
�

nw
∑

i=1

αw−1(i)Ai j ,

which are then normalized to

bαw( j) =
α̃w( j)

∑

k α̃w(k)
.

4.4 Evaluation

4.4.1 Simulated aCGH data

A previous survey (Lai et al. 2005) of eleven CNV calling methods for aCGH has established

that segmentation-focused methods such as DNAcopy (Olshen & Venkatraman 2002; Olshen,

Venkatraman, et al. 2004), an implementation of circular binary segmentation (CBS), as well

as CGHseg (Picard et al. 2005) perform consistently well. DNAcopy performs a number of

t-tests to detect break-point candidates. The result is typically over-segmented and requires a

merging step in post-processing, especially to reduce the number of segment means. To this

end MergeLevels was introduced by Willenbrock & Fridlyand (2005). They compare the

combination DNAcopy+MergeLevels to their own HMM implementation (Fridlyand et al. 2004)

as well as GLAD (Hupé et al. 2004), showing its superior performance over both methods.
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Figure 4.6: HaMMLET’s speedup as a function of the average compression during sampling. As
expected, higher compression leads to greater speedup. The non-linear characteristic is due to the fact
that some overhead is incurred by the dynamic compression, as well as parts of the implementation
that do not depend on the compression, such as tallying marginal counts.

This established DNAcopy+MergeLevels as the de facto standard in CNV detection, despite the

comparatively long running time.

The paper also includes aCGH simulations deemed to be reasonably realistic by the community.

DNACopy was used to segment 145 unpublished samples of breast cancer data, and subsequently

labeled as copy numbers 0 to 5 by sorting them into bins with boundaries

(−∞,−0.4,−0.2, 0.2,0.4, 0.6,∞),

based on the sample mean in each segment (the last bin appears to not be used). Empirical length

distributions were derived, from which the sizes of CN aberrations are drawn. The data itself

is modeled to include Gaussian noise, which has been established as sufficient for aCGH data

(Hodgson et al. 2001). Means were generated such as to mimic random tumor cell proportions,

and random variances were chosen to simulate experimenter bias often observed in real data; this

emphasizes the importance of having automatic priors available when using Bayesian methods, as

the means and variances might be unknown a priori. The data comprises three sets of simulations:

“breakpoint detection and merging” (BD&M), “spatial resolution study” (SRS), and “testing” (T)
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(see their paper for details). We used the MergeLevels implementation as provided on their

website. It should be noted that the superiority of DNAcopy+MergeLevels was established using

a simulation based upon segmentation results of DNAcopy itself.

We used the Bioconductor package DNAcopy (version 1.24.0), and followed the procedure

suggested therein, including outlier smoothing. This version uses the linear-time variety of CBS

(Venkatraman & Olshen 2007); note that other authors such as Tsourakakis et al. (2011)

compare against a quadratic-time version of CBS (Olshen, Venkatraman, et al. 2004), which

is significantly slower. For HaMMLET, we use a 5-state model with automatic hyperparameters

P(σ2 ≤ 0.01) = 0.9 (see Section 4.3.4), and all Dirichlet hyperparameters set to 1.

Following Mahmud & Schliep (2011), we report F-measures (F1 scores) for binary classi-

fication into normal and aberrant segments (Fig. 4.10), using the usual definition of F = 2πρ
π+ρ

being the harmonic mean of precision π= TP
TP+FP and recall ρ = TP

TP+FN , where TP, FP, TN and FN

denote true/false positives/negatives, respectively. On datasets T and BD&M, both methods have

similar medians, but HaMMLET has a much better interquartile range (IQR) and range, about

half of CBS’s. On the spatial resolution data set (SRS), HaMMLET performs much better on very

small aberrations. This might seem somewhat surprising, as short segments could easily get lost

under compression. However, Lai et al. (2005) have noted that smoothing-based methods such

as quantile smoothing (quantreg) (Eilers & de Menezes 2005), lowess (Cleveland 1979),

and wavelet smoothing (Hsu et al. 2005) perform particularly well in the presence of high noise

and small CN aberrations, suggesting that “an optimal combination of the smoothing step and

the segmentation step may result in improved performance”. Our wavelet-based compression

inherits those properties. For CNVs of sizes between 5 and 10, CBS and HaMMLET have sim-

ilar ranges, with CBS being skewed towards better values; CBS has a slightly higher median

for 10–20, with IQR and range being about the same. However, while HaMMLET’s F-measure

consistently approaches 1 for larger aberrations, CBS does not appear to significantly improve

after size 10. The plots for all individual samples can be found in Web Supplement S1–S3, which

can be viewed online at http://schlieplab.org/Supplements/HaMMLET/, or downloaded from

https://zenodo.org/record/46263 (DOI: 10.5281/zenodo.46263).

http://schlieplab.org/Supplements/HaMMLET/
https://zenodo.org/record/46263
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Figure 4.7: F-measures of CBS (light) and HaMMLET (dark) for calling aberrant copy numbers on
simulated aCGH data (Willenbrock & Fridlyand 2005). Boxes represent the interquartile range
(IQR = Q3−Q1), with a horizontal line showing the median (Q2), whiskers representing the range
( 3

2 IQR beyond Q1 and Q3), and the bullet representing the mean. HaMMLET has the same or better
F-measures in most cases, and on the SRS simulation converges to 1 for larger segments, whereas CBS
plateaus for aberrations greater than 10.

4.4.2 High-density CGH array

In this section, we demonstrate HaMMLET’s performance on biological data. Due to the lack

of a gold standard for high-resolution platforms, we assess the CNV calls qualitatively. We use

raw aCGH data (GEO:GSE23949) (Edgren et al. 2011) of genomic DNA from breast cancer

cell line BT-474 (invasive ductal carcinoma, GEO:GSM590105), on an Agilent-021529 Human

CGH Whole Genome Microarray 1x1M platform (GEO:GPL8736). We excluded gonosomes,

mitochondrial and random chromosomes from the data, leaving 966,432 probes in total.

HaMMLET allows for using automatic emission priors (see Section 4.3.4) by specifying a noise

variance, and a probability to sample a variance not exceeding this value. We compare HaMMLET’s

performance against CBS, using a 20-state model with automatic priors, P
�

σ2 ≤ 0.1
�

= 0.8, 10

prior self-transitions and 1 for all other hyperparameters. CBS took over 2 h 9min to process the

entire array, whereas HaMMLET took 27.1 s for 100 iterations, a speedup of 288. The compression
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ratio (see Section 4.4.3) was 220.3. CBS yielded a massive over-segmentation into 1,548 different

copy number levels; cf. Supplement S4 at https://zenodo.org/record/46263. As the data is

derived from a relatively homogeneous cell line as opposed to a biopsy, we do not expect the

presence of subclonal populations to be a contributing factor (Burdall et al. 2003; Holliday &

Speirs 2011). Instead, measurements on aCGH are known to be spatially correlated, resulting

in a wave pattern which has to be removed in a preprocessing step; notice that the internal

compression mechanism of HaMMLET is derived from a spatially adaptive regression method, so

smoothing is inherent to our method. CBS performs such a smoothing, yet an unrealistically large

number of different levels remains, likely due to residuals of said wave pattern. Furthermore,

repeated runs of CBS yielded different numbers of levels, suggesting that indeed the merging

was incomplete. This can cause considerable problems downstream, as many methods operate

on labeled data. A common approach is to consider a small number of classes, typically 3 to 4,

and associate them semantically with CN labels like loss, neutral, gain, and amplification, e.g.

van Wieringen, van ve Wiel & Ylstra (2008), Liu et al. (2006), González et al. (2009),

van de Wiel & van Wieringen (2007), Shah, Lam, et al. (2007), Guha, Li & Neuberg (2006),

Yin & Li (2009), Hodgson et al. (2001), and Hupé et al. (2004). In inference models that contain

latent categorical state variables, like HMM, such an association is readily achieved by sorting

classes according to their means. In contrast, methods like CBS typically yield a large, often

unbounded number of classes, and reducing it is the declared purpose of merging algorithms,

see Willenbrock & Fridlyand (2005). Consider, for instance, CGHregions (van de Wiel &

van Wieringen 2007), which uses a 3-label matrix to define regions of shared CNV events across

multiple samples by requiring a maximum L1 distance of label signatures between all probes in

that region. If the domain of class labels was unrestricted and potentially different in size for

each sample, such a measure would not be meaningful, since the i-th out of n classes cannot

be readily identified with the i-th out of m classes for n 6= m, hence no two classes can be said

to represent the same CN label. Similar arguments hold true for clustering based on Hamming

distance (Liu et al. 2006) or ordinal similarity measures (van Wieringen, van ve Wiel & Ylstra

2008). Furthermore, even CGHregions’ optimized computation of medoids takes several minutes

to compute. As the time depends multiplicatively on the number of labels, increasing it by three

orders of magnitude would increase downstream running times to many hours.

https://zenodo.org/record/46263
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For a more comprehensive analysis, we restricted our evaluation to chromosome 20 (21,687

probes), which we assessed to be the most complicated to infer, as it appears to have the highest

number of different CN states and breakpoints. CBS yields a 19-state result after 15.78 s (Fig. 4.8,

top). We have then used a 19-state model with automated priors (P
�

σ2 ≤ 0.04) = 0.9
�

, 10

prior self-transitions, all other Dirichlet parameters set to 1) to reproduce this result. Using

noise control (see Section 4.3.3), our method took 1.61 s for 600 iterations. The solution we

obtained is consistent with CBS (Fig. 4.8, middle and bottom). However, only 11 states were

part of the final solution, i. e. 8 states yielded no significant likelihood above that of other states.

We observe superfluous states being ignored in our simulations as well. In light of the results

on the entire array, we suggest that the segmentation by DNAcopy has not sufficiently been

merged by MergeLevels. Most strikingly, HaMMLET does not show any marginal support for

a segment called by CBS around probe number 4,500. We have confirmed that this is not due

to data compression, as the segment is broken up into multiple blocks in each iteration (cf.

Supplement S5 at https://zenodo.org/record/46263). On the other hand, two much smaller

segments called by CBS in the 17,000–20,000 range do have marginal support of about 40% in

HaMMLET, suggesting that the lack of support for the larger segment is correct. It should be

noted that inference differs between the entire array and chromosome 20 in both methods, since

long-range effects have higher impact in larger data.

We also demonstrate another feature of HaMMLET called noise control. While Gaussian

emissions have been deemed a sufficiently accurate noise model for aCGH (Hodgson et al.

2001), microarray data is prone to outliers, for example due to damages on the chip. While it is

possible to model outliers directly (Shah, Xuan, et al. 2006), the characteristics of the wavelet

transform allow us to largely suppress them during the construction of our data structure. Notice

that due to noise control most outliers are correctly labeled according to the segment they occur

in, while the short gain segment close to the beginning is called correctly.

4.4.3 Effects of wavelet compression on speed and convergence

The speedup gained by compression depends on how well the data can be compressed. Poor

compression is expected when the means are not well separated, or short segments have small

variance, which necessitates the creation of smaller blocks for the rest of the data to expose

https://zenodo.org/record/46263
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potential low-variance segments to the sampler. On the other hand, data must not be over-

compressed to avoid merging small aberrations with normal segments, which would decrease

the F-measure. Due to the dynamic changes to the block structure, we measure the level of

compression as the average compression ratio, defined as the product of the number of data

points T and the number of iterations N , divided by the total number of blocks in all iterations.

As usual a compression ratio of one indicates no compression.

To evaluate the impact of dynamic wavelet compression on speed and convergence properties

of an HMM, we created 129,600 different data sets with T = 32,768 many probes. In each

data set, we randomly distributed 1 to 6 gains of a total length of {100,250, 500,750, 1000}

uniformly among the data, and do the same for losses. Mean combinations

(µloss,µneutral,µgain)

were chosen from (ld 1
2 , ld1, ld 3

2), (−1, 0,1), (−2,0, 2), and (−10, 0, 10), and variances

(σ2
loss,σ

2
neutral,σ

2
gain)

where chosen from (0.05,0.05, 0.05), (0.5,0.1, 0.9), (0.3,0.2, 0.1), (0.2, 0.1,0.3), (0.1, 0.3,0.2),

and (0.1,0.1, 0.1). These values have been selected to yield a wide range of easy and hard cases,

both well separated, low-variance data with large aberrant segments as well as cases in which

small aberrations overlap significantly with the tail samples of high-variance neutral segments;

an example of a hard inference task is shown in Fig. 4.9. Consequently, compression ratios

range from ∼1 to ∼2,100. We use automatic priors P(σ2 ≤ 0.2) = 0.9, self-transition priors

αii ∈ {10, 100,1000}, non-self transition priors αi j = 1, and initial state priors α ∈ {1,10}. Using

all possible combinations of the above yields 129,600 different simulated data sets, a total of 4.2

billion values.

We achieve speedups per iteration of up to 350 compared to an uncompressed HMM (Fig. 4.6).

In contrast, Mahmud & Schliep (2011) have reported ratios of 10–60, with one instance of 90.

Notice that the speedup is not linear in the compression ratio. While sampling itself is expected

to yield linear speedup, the marginal counts still have to be tallied individually for each position,

and dynamic block creation causes some overhead. The quantization artifacts observed for larger

speedup are likely due to the limited resolution of the Linux time command (10 ms). Compressed
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HaMMLET took about 11.2 CPU hours for all 129,600 simulations, whereas the uncompressed

version took over 3 weeks and 5 days. All running times reported are CPU time measured on a

single core of a AMD Opteron 6174 Processor, clocked at 2.2 GHz.

We evaluate the convergence of the F-measure of compressed and uncompressed inference

for each simulation. Since we are dealing with multi-class classification, we use the micro- and

macro-averaged F-measures (Fmi, Fma) proposed by Özgür, Özgür & Güngör (2005):

Fmi =
2πρ
π+ρ

with π=

∑M
i=1 TPi

∑M
i=1(TPi + FPi)

, ρ =

∑M
i=1 TPi

∑M
i=1(TPi + FNi)

and

Fma =

∑M
i=1 Fi

M
with πi =

TPi

TPi + FPi
, ρi =

TPi

TPi + FNi
, Fi =

2πiρi

πi +ρi
.

Here, TPi denotes a true positive call for the i-th out of M states, π and ρ denote precision and

recall. These F-measures tend to be dominated by the classifier’s performance on common and

rare categories, respectively. Since all state labels are sampled from the same prior and hence

their relative order is random, we used the label permutation which yielded the highest sum of

micro- and macro-averaged F-measures. Instead of finding this permutation by brute force, which

requires K! computations for k states, we solve a combinatorial assignment problem: Let C be the

confusion matrix of the segmentation, i. e. Ct p is the number of true observations of state t which

have been predicted as state p. Notice that TPi + FPi is just the sum Ci of the i-th column of C,

and likewise TPi + FNi is the sum Ri of the i-th row. Hence, Fmi can be computed as trC
∑

t p Ct p
. The

best Fmi is thus obtained by the column permutation which maximizes the trace. Likewise, let

πt p :=
Ct p

Cp
, ρt p :=

Ct p

Rt
, Ft p :=

2πt pρt p

πt p +ρt p
.

Then

Fmi + Fma = trM

for

Mt p :=
2πt pρt p

K(πt p +ρt p)
+

Ct p
∑

i, j Ct p
,

and the maximum sum is attained by the column permutation which maximizes the trace. This

is the maximum weighted bipartite matching problem, which can easily be transformed into

the assignment problem and solved in O(K3) time using the Hungarian method due to Kőnig,
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Egerváry and Munkres (Kuhn 1955). The simulation results are included in Supplement S6 at

https://zenodo.org/record/46263.

In Fig. 4.10, we show that the compressed version of the Gibbs sampler converges almost

instantly, whereas the uncompressed version converges much slower, with about 5% of the cases

failing to yield an F-measure > 0.6 within 1,000 iterations. Wavelet compression is likely to yield

reasonably large blocks for the majority class early on, which leads to a strong posterior estimate

of its parameters and self-transition probabilities. As expected, Fma are generally worse, since

any misclassification in a rare class has a larger impact. Especially in the uncompressed version,

we observe that Fma tends to plateau until Fmi approaches 1.0. Since any misclassification in the

majority (neutral) class adds false positives to the minority classes, this effect is expected. It

implies that correct labeling of the majority class is a necessary condition for correct labeling of

minority classes, in other words, correct identification of the rare, interesting segments requires

the sampler to properly converge, which is much harder to achieve without compression. It

should be noted that running compressed HaMMLET for 1,000 iterations is unnecessary on the

simulated data, as in all cases it converges between 25 and 50 iterations. Thus, for all practical

purposes, further speedup by a factor of 40–80 can be achieved by reducing the number of

iterations, which yields convergence up to 3 orders of magnitude faster than standard FBG.

4.4.4 Coriell, ATCC and breast carcinoma

The data provided by Snijders, Nowak, et al. (2001) includes 15 aCGH samples for the Coriell

cell line. At about 2,000 probes, the data is small compared to modern high-density arrays.

Nevertheless, these data sets have become a common standard to evaluate CNV calling methods,

as they contain few and simple aberrations. The data also contains 6 ATCC cell lines as well as

4 breast carcinoma, all of which are substantially more complicated, and typically not used in

software evaluations. In Fig. 4.11, we demonstrate our ability to infer the correct segments on

the most complex example, a T47D breast ductal carcinoma sample of a 54 year old female. We

used 6-state automatic priors with P
�

σ2 ≤ 0.1
�

= 0.85, and all Dirichlet hyperparameters set to

1. On a standard laptop, HaMMLET took 0.09 seconds for 1,000 iterations; running times for the

other samples were similar. Our results for all 25 data sets have been included in Supplement S7

at https://zenodo.org/record/46263.

https://zenodo.org/record/46263
https://zenodo.org/record/46263
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4.5 Forward bias and convergence behavior

We have shown that, compared to uncompressed FBG, state sequences sampled from HaMMLET

very quickly approach the ground truth. If initial iterations are treated as burn-in, tallying the

maximum marginals approaches the MPM segmentation. Since this behavior is measured in the

number of iterations, not CPU time, the qualitative differences must be due to features of wavelet

compression other than the mere reduction in data size.

Compressing the data into blocks assumes that all emissions within the block were generated

by the same latent HMM state. However, this ignores the contribution of state paths that switch

states within the block, and raise the question of bias in the sampler. A typical assumption is

that the overall contribution of such paths is small, since non-generating states will yield low

emission likelihoods for the observed data, and off-diagonal probabilities in A are often small

in practice. Mahmud & Schliep (2011) showed that this weak path assumption holds for a

homoscedastic Gaussian HMM with well-separated means if all emissions within a block are

closer to the mean of their generating state than to those of any other state. The proof does not

distinguish between the parameters of the generating HMM and the ones used in the forward

recursion, meaning that, for the proof to hold, we have to assume strong emission posteriors

right from the beginning. Of course, a Gibbs sampler might not necessarily yield some µx

for which these assumptions hold, especially during the burn-in phase. We therefore derive

the multiplicative error of normalized forward variables under arbitrary compression and for

general—not necessarily EFD, homoscedastic or univariate—HMM:

Definition 4.5.1 (Forward bias). Let H be a K-state Hidden Markov Model states, such that all

emission likelihoods are positive. Let αt[s] be the normalized forward variable of state s at position t.

Let bαt[s] be the normalized approximate forward variable calculated from αt by ignoring transitions

between different states. Let 0≤ i, j,s < K , and

αx := αt−1[x] α := αt−1

`x := P (y[t] |q[t] = x) ` := P (y[t] |q[t])

x i j := αiAi j` j ,
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so that

αt[s] =

∑

i x is
∑

i, j x i j
,

bαt[s] =
xss

∑

j x j j
.

Then we define the forward bias of state s at position t as

Ct :=
bαt[s]
αt[s]

=
xss
∑

i, j x i j
∑

i, j x j j x is

Proposition 4.5.1 (Upper bound on forward bias). The forward bias is bounded as

Ct ≤

∑

i, j x i j
∑

j x j j
= 1+

∑

i 6= j x i j
∑

j x j j
.

In particular, if the transition probabilities are bounded as

∀ j : A j j ≥ δ,

∀i 6= j : Ai j ≤ ε,

the forward error is bounded as

Ct ≤ 1+
ε

δ

�

1 · `
α · `

− 1
�

.

Proof.

Ct =
xss
∑

i, j x i j
∑

i, j x j j x is
=

xss

�

∑

j x j j +
∑

i 6= j x i j

�

∑

(i=s)
j

x j j xss +
∑

i 6=s
j

x j j x is
(4.1)

≤
xss

�

∑

j x j j +
∑

i 6= j x i j

�

xss
∑

j x j j
=

∑

i, j x i j
∑

j x j j
(4.2)

=

∑

j x j j
∑

j x j j
+

∑

i 6= j x i j
∑

j x j j
= 1+

∑

i 6= j x i j
∑

j x j j
(4.3)

Furthermore,

Ct ≤ 1+

∑

i 6= j x i j
∑

j x j j
(4.4)

= 1+

∑

i 6= j αiAi j` j
∑

j α jA j j` j
(4.5)

≤ 1+
ε
∑

i 6= j αi` j

δ
∑

j α j` j
(4.6)
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= 1+
ε

δ

�
∑

i, j αi` j −
∑

j α j` j
∑

j α j` j

�

(4.7)

= 1+
ε

δ

�
∑

i, j αi` j
∑

j α j` j
− 1

�

(4.8)

= 1+
ε

δ





�∑

i αi

�

�

∑

j ` j

�

∑

j α j` j
− 1



 (4.9)

= 1+
ε

δ

�
∑

j ` j
∑

j α j` j
− 1

�

(4.10)

Obviously, the bias is small for HMMwith strong self-transitions, as well as αs and `s approach-

ing 1. For Gaussian HMM, these criteria are typically met for emissions with low variance and

well-separated means whenever the sampled θ (i) approaches the true emitting θ , confirming the

result of Mahmud & Schliep (2011) in those special cases. In general, due to the rearrangement

inequality, the bound is tightest whenever the entries of α and ` are in the same order.

We conjecture that the forward bias is the reason for the observed fast convergence towards

MPM segmentation. Consider the case of uniform self-transition and transition probabilities:

Proposition 4.5.2 (Bias towards largest forward variable). Let

s = arg max
i
αi

be the state with the largest forward variable at t − 1. Let ∀i : Aii = δ and ∀i 6= j : Ai j = ε. Then

Ct ≥ 1.

Proof. The forward bias of state s is

Ct =
xss
∑

i, j x i j
∑

i, j x j j x is
=

xss
∑

i, j x i j
�

∑

j x j j

�

�∑

i x is

�

=
xss

�

∑

j x j j +
∑

i 6= j x i j

�

�

∑

j x j j

�

�

xss +
∑

i 6=s x is

�

=
xss
∑

j x j j + xss
∑

i 6= j x i j

xss
∑

j x j j +
�

∑

j x j j

�

�∑

i 6=s x is

�

=

∑

j x j j +
∑

i 6= j x i j
∑

j x j j +
∑

j
i 6=s

x j j x is
xss

=

∑

j x j j +
∑

i 6= j αiε` j
∑

j x j j +
∑

j
i 6=s

α jδ` jαiε`s

αsδ`s

=

∑

j x j j + ε
∑

i 6= j αi` j
∑

j x j j + ε
∑

j
i 6=s
αi` j

α j
αs
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=

δ
∑

j α j` j + ε

�

∑

j 6=s αs` j +
∑

i 6= j
i 6=s
αi` j

�

δ
∑

j α j` j + ε

�

∑

j 6=s
α2

j
αs
` j +

∑

i 6= j
i 6=s
αi` j

α j
αs

�

The claim follows since ∀ j : αs ≥ α j , so
α j
αs
≤ 1 and αs =

α2
s
αs
≥
α2

j
αs
.

In fact, a sufficient criterion can be established for the direction of the forward bias which

does not involve the emission likelihoods.

Proposition 4.5.3 (Direction of forward bias). Let the number of states K ≥ 3. Then for any

relation � ∈ {< ,= ,>}, the forward bias of state s

Ct :=
bαt[s]
αt[s]

� 1

if and only if

∑

i 6=s
j 6=s
i 6= j

` j

�

αsAss

�

αiAi j +
αsAs j

K − 2

�

−α jA j j

�

αiAis +
α jA js

K − 2

��

� 0.

In particular, the relation holds if

∀i 6= s, j 6= s, i 6= j : αsAssAi j � α jA j jAis (4.11)

∀ j 6= s : α2
s AssAs j � α2

jA j jA js. (4.12)

Proof. We rewrite Ct � 1 as a comparison of numerator and denominator:

∑

i, j

xss x i j �
∑

i, j

x j j x is (4.13)

∑

i

xss x is +
∑

i
j 6=s

xss x i j �
∑

i

xss x is +
∑

i
j 6=s

x j j x is (4.14)

∑

i
j 6=s

xss x i j �
∑

i
j 6=s

x j j x is (4.15)

∑

j 6=s

xss x j j +
∑

j 6=s
i 6= j

xss x i j �
∑

j 6=s

x j j xss +
∑

j 6=s
i 6=s

x j j x is (4.16)

∑

j 6=s
i 6= j

xss x i j �
∑

j 6=s
i 6=s

x j j x is (4.17)
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∑

i 6=s
j 6=s
i 6= j

xss x i j +
∑

j 6=s

xss xs j �
∑

i 6=s
j 6=s
i 6= j

x j j x is +
∑

j 6=s

x j j x js (4.18)

On each side, there are (K − 1)2 − (K − 1) = K2 − 3K + 2 terms in the left and K − 1 in the right

sum. In order to match the index set, we replace each summand on the right by K−2 normalized

copies, one for each j 6= i 6= s on the left, yielding (K − 1)(K − 2) = K2 − 3K + 2 summands:

∑

i 6=s
j 6=s
i 6= j

xss x i j +
∑

i 6=s
j 6=s
i 6= j

xss xs j

K − 2
�
∑

i 6=s
j 6=s
i 6= j

x j j x is +
∑

i 6=s
j 6=s
i 6= j

x j j x js

K − 2

We then get
∑

i 6=s
j 6=s
i 6= j

�

xss

�

x i j +
xs j

K − 2

�

− x j j

�

x is +
x js

K − 2

��

� 0

Dividing by `s yields

∑

i 6=s
j 6=s
i 6= j

` j

�

αsAss

�

αiAi j +
αsAs j

K − 2

�

−α jA j j

�

αiAis +
α jA js

K − 2

��

� 0

In particular, the proposition holds if

∑

i 6=s
j 6=s
i 6= j

xss x i j �
∑

i 6=s
j 6=s
i 6= j

x j j x is (4.19)

∑

j 6=s

xss xs j �
∑

j 6=s

x j j x js, (4.20)

which in turn holds especially if � holds for all matching summands,

∀i 6= s, j 6= s, i 6= j : xss x i j � x j j x is (4.21)

∀ j 6= s : xss xs j � x j j x js, (4.22)

hence

∀i 6= s, j 6= s, i 6= j : αsAss`sαiAi j` j � α jA j j` jαiAis`s (4.23)

∀ j 6= s : αssAss`sαsAs j` j � α jA j j` jα jA js`s, (4.24)

and by canceling terms,

∀i 6= s, j 6= s, i 6= j : αsAssAi j � α jA j jAis (4.25)
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∀ j 6= s : α2
s AssAs j � α2

jA j jA js. (4.26)

Let s be the state with the largest forward variable at t, i. e. ∀ j : αt[s] ≥ αt[ j]. As shown

before, for uniform δ and ε, those relations hold. However, the result also suggests a general

tendency for bαt[s]≥ αt[s] if self-transitions and other transitions are each on the same orders.

Since Ass
A j j
≥ Ais

A j
and Ass

A j j
≥ As j

A js
imply Ct ≥ 1, approximate equality Ass ≈ A j j ≈ δ and ∀i 6= j :

Ai j ≈ ε imply that the forward bias will be Ct ¦ 1.

We demonstrate this effect in Fig. 4.12: For 4 states, we simulated α and ` as random

variates from a Dirichlet distribution Dir(10,1, 1,1), and the rows of A as a Dirichlet variate with

parameter 100 for the diagonal entries and τ ∈ {1, 25,50,100} for the off-diagonal entries. We

plot the elements of α against those of bα, where the data point is shown in red for the maximal

entry αs and blue for the others. Clearly, there is a tendency for αs to yield bαt[s] ≥ αt[s]. As

expected, the effect is less pronounced for lower τ, since those A have higher self-transition

probabilities.

Since we have shown before that wavelet compression creates a block structure which is

consistent with the locations of state transition in MPM segmentation, s is likely to indicate

the maximum posterior margin state for the entire block starting at t. Having a forward bias

greater than 1 means that s will be sampled with higher probability than under unbiased forward

filtering. Also, due to the recursive nature of forward-variable computation, the error is expected

to grow within a block, with the other forward variables approaching 0; this effect is illustrated

in Fig. 4.13. Therefore, a wavelet compressed block is sampled as the MPM state under the

parametrization of the current iteration, with a probability approaching 1 for large blocks.
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Figure 4.8: Copy number inference for chromosome 20 in invasive ductal carcinoma (21,687 probes).
CBS creates a 19-state solution (top), however, a compressed 19-state HMM only supports an 11-state
solution (bottom), suggesting insufficient level merging in CBS.
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Figure 4.9: An example of a hard inference task from the simulations. Notice that the minority
components have been correctly identified (green, dark blue), despite being very short and their means
being contained well within the tails of the dominant emission distribution (light blue).
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Figure 4.10: F-measures for simulation results. The median value (black) and quantile ranges (in 5%
steps) of the micro- (top) and macro-averaged (bottom) F-measures (Fmi, Fma) for uncompressed (left)
and compressed (right) FBG inference, on the same 129,600 simulated data sets, using automatic
priors. The x-axis represents the number of iterations alone, and does not reflect the additional speedup
obtained through compression. Notice that the compressed HMM converges no later than 50 iterations
(inset figures, right).
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1

Figure 4.11: HaMMLET’s inference of copy-number segments on T47D breast ductal carcinoma.
Notice that the data is much more complex than the simple structure of a diploid majority class with
some small aberrations typically observed for Coriell data.
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Figure 4.12: Demonstration of the tendency of compressed forward variables to be biased towards
the state with the largest marginal probability (red), and away from the others (blue). Variables on
the diagonal are unbiased. Subplots are shown for different Dirichlet distributions Dir(100,τ,τ,τ).
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Figure 4.13: A demonstration of the increasing forward bias due to recursive computation of forward
variables, for different Dirichlet weights τ. Regardless of the actual size of forward variables (upper
subplots in each subfigure), the compressed forward variables quickly converge to 1 for the maximum
state (blue).
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Chapter 5

Algorithm engineering for big data

applications

Having demonstrated the properties and theoretical background of HaMMLET in the previous

chapters, we now address the issue of implementation beyond the prototype stage. While

convergence and speed have been addressed, memory consumption remains problematic for

genome-sized data. In this chapter, we describe our design decisions to scale HaMMLET to

big-data applications. The main contributions in this chapter are as follows:

1. We show that the wavelet tree data structure yields under-compression, resulting in trellises

which are too large.

2. The wavelet tree is also memory-inefficient: For a given T , it stores 2T − 1 sufficient

statistics and as many maximum coefficients. This is the exact number of distinct statistics

required for arbitrary thresholds; however, the statistics stored are not the ones that are

queried.

3. The wavelet tree was a monolithic data structure in which each node was used to store

marginal state counts as well as a data point (leaves) or sufficient statistics (inner nodes).

This implementation proved to be very wasteful, and did not scale to genomic data sizes.

4. To alleviate those issues, we designed specialized data structures for different functionalities

previously contained in the wavelet tree: block boundaries are stored in a breakpoint array,
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statistics for arbitrary blocks of size N are queried in O(ln N) time from a modified integral

array of size T , and a queue-based implementation of marginal records is used to store and

update run-length encoded counts for marginal state counts.

5. We show that for univariate data, the breakpoint array for Haar weights can be computed

in-place in linear time.

6. For multivariate data, we show that the query time for each block is independent of

dimensionality; once the block boundaries have been determined in ln N time, the statistics

at dimension d can be queried in constant time, so iterating through all d dimensions of a

block can be done in d + ln N time.

7. For multivariate data, a breakpoint array with Haar weights would require two arrays of

size T to store the results of several Haar transforms in order to compute maxima across

dimensions. Instead, we modify the lifting scheme for the Haar transform to process the

input in a different order, allowing the data to be processed as an input stream without

storing O(T ) temporary values. This yields a computation of coefficient maxima across

dimensions in dT time and T + d ld T space.

5.1 Wavelet tree revisited

To motivate the need for a different implementation, let Thg := 3,500,000,000, the approximate

number of base pairs in the human genome. If wavelet weights and sufficient statistics are stored

as IEEE-754 32-bit floating point numbers, then for Gaussian HMM we require a total of 5 · 8Thg

bytes, or more than 130 GB RAM. It is possible to create optimal compression, i. e. one that does

not introduce more breakpoints than there are discontinuities in the wavelet regression, but that

would require storing both the absolute as well as the maximum subtree coefficients, adding

another 26 GB.

Additionally, our original implementation stored the block sizes with the sufficient statistics,

as the number of subtree leaves is not easily obtained from the BFS nor DFS pre-order index of a

node in constant time, especially not if the number of leaves is not a power of 2 and the tree is

truncated. For general implementations, the safe way to implement this is using an unsigned
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integer type the size of a pointer on the target platform, and typically incurs at least another 8

byte twice per input position. Furthermore, using the pyramid algorithm, we require padding

of the data to a power of two, and an auxiliary array for calculating the wavelet coefficients,

which in the worst-case scenario almost quadruples the input size. In that case, the memory

requirement increases to 80T , or 26 GB for Thg . These requirements can be avoided by using a

modified version of an in-place Haar wavelet transform.

In addition, we previously used a tree-like layout to record the marginal counts for each block,

which was wasteful and, in the worst case, could incur another 2T K unsigned integer variables

large enough to count the number of iterations. Even for 2-byte integers, a 20-state HMM would

incur another 131 GB for the human genome. In total, our original implementation of HaMMLET

would require close to 400 GB RAM for a realistic model. Several implementation details such as

suboptimal use of STL vectors, each adding 20 byte overhead, pushed the memory load to the

terabyte range, resulting in excessive swapping, rendering the implementation useless for WGS

data.

5.2 Dynamic block creation

Consider the following abstract data structure:

Definition 5.2.1 (Block generator). Let b be a vector of breakpoint weights. For a threshold

λ, let Yλ be a partition of y into blocks such that there is a block boundary between positions

t − 1 and t if b[t] ≥ λ. We call a data structure a block generator if it can, for any threshold λ,

generate an ordered sequence of sufficient statistics that represents Yλ. A block generator is called

compressive if, for all λ, b[t]< λ implies that no breakpoint is created between t − 1 and t. It is

called subcompressive if for some λ such a superfluous block boundary is created. A block generator

is called space-efficient if it stores no more than T sufficient statistics.

This definition of a block generator implies that Yλ1
is a subdivision of Yλ2

if λ1 ≤ λ2. For

sufficiently small thresholds, we require sufficient statistics for each data point, hence any block

generator implementation will have to store a minimum of T sufficient statistics. On the other

hand, if all entries in b are unique, each breakpoint subdivides a block defined by a higher
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threshold, and a simple induction argument shows that a block generator has to be able to

generate 2T − 1 different blocks and their sufficient statistics: starting with a single block of

size T and a sorted sequence of threshold values in b, each threshold creates two new blocks by

subdividing one block in the previous partition.

Proposition 5.2.1. The wavelet tree is a subcompressive and memory-inefficient block generator.

Proof. The wavelet tree is memory-inefficient as it stores 2T − 1 sufficient statistics. Wavelet

compression is based on the fact that if all coefficients in a subtree are below the threshold,

then so is the maximum coefficient in that subtree. The converse however is not true; if the

maximum coefficient is above the threshold, then not all coefficients in the subtree have to be

above threshold. Whenever the DFS traverses into a subtree, three breakpoints are introduced into

the block structure, corresponding to the three discontinuities in the Haar wavelet represented by

the subtree’s root. This happens whenever the subtree contains any coefficient above threshold,

regardless of whether the coefficient at the root itself is above threshold. Fig. 5.1 illustrates a

simple counterexample to compressivity.

It should be noted that, while the wavelet tree stores as many sufficient statistics as needed

for T data points, the fact that it is subcompressive implies that the block structures it creates

differ from those of a compressive block generator, and hence these are not the same 2T − 1

statistics that would occur in accross all block structures a compressive block generator would

yield. Compressivity could be restored by keeping copies of the wavelet coefficients overwritten by

the subtree maxima, which would potentially double the memory requirements for the coefficient

array, and is thus not preferred for big data applications.

In order to provide an efficient implementation, we separate a block generator into two

sub-structures: a breakpoint array to derive a sequence of start and end positions for blocks, and

an integral array to query the sufficient statistics for each block.

5.2.1 Integral array for block statistics

Let a data structure D(y) support the following query: given a start index s and an end index

e, with s < e, return the sufficient statistics in the half-open interval [s, e), i. e.
∑e−1

i=s T(y[i]).
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Figure 5.1: The wavelet tree data structure is subcompressive, as it induces additional breakpoints. In
this example, coefficients with an absolute value above the threshold are denoted as black boxes. In
the tree layout induces by the lifting scheme, the position of a coefficient equals that of the central
discontinuity of its associated Haar wavelet. For instance, ψ2,0 has positive support on y[0], y[1], and
negative support on y[2], y[3], with its position 2 being the lowest position of its negative support.
The positions of the block boundaries are indicated by thin solid vertical lines, connected to their
respective tree node by vertical lines. In this example,

�

�d1,0

�

� > λ, inducing block boundaries at 0, 1
and 2, and

�

�d1,7

�

�> λ, inducing block boundaries at 14, 15 and 16, creating 5 blocks in total. By taking
the maximum subtree coefficient, additional inner nodes contain values above threshold, indicated
here by gray boxes, Traversing into subtrees below those nodes induces additional block boundaries,
indicated here by dotted lines, at 2, 4, 8, 12 an 14. This yields a total of 8 blocks.

A trivial implementation of such a data structure would be to store the statistics of each input

position, and then iterate through the array and calculate their cumulative sums between

breakpoints. This is obviously costly for huge data, as it incurs Θ(N) time complexity for a block

of size N . Constant-time queries could be made by pre-computing all T2 statistics, which is

obviously prohibitive for large data.

The basic idea for querying sufficient statistics comes from a simple data structure in image

processing called a summed-area table or integral image (Lewis 1995), which is used to query

the sum of a rectangular region in constant time. As its one-dimensional equivalent, let v be an

integral array such that

v[t] =











T(0) t = 0

∑t−1
i=0 T(y[t]) t > 0.
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3 7 11 15
2 3 6 7 10 11 14 15
1 2 3 5 6 7 9 10 11 13 14 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 5.2: An illustration of an integral array v , using cell size c = 4. Columns represent data
positions, and contain all positions i which are added up and stored at v[t]; for instance, v[9] =
∑11

i=9 T(y[i]). The statistics of a block [s, e) are obtained by adding v[s], v[m] for all s < m < e,
m ≡ 0 mod c, and subtracting v[e] iff e 6≡ 0 mod c. For instance, block [3,10) is obtained as
v[3] + v[4] + v[8]− v[10], yielding

∑9
t=3 T(y[t]).

For any arbitrary start and end positions s, e, the sufficient statistics of the block [s, e) can be

calculated in constant time as

e−1
∑

t=s

T(y[t]) =

� s−1
∑

t=0

T(y[t])

�

−

�e−1
∑

i=0

T(y[t])

�

= v[e]− v[s].

In contrast to image processing, where integral arrays are constructed over integer data,

sufficient statistics require floating-point values for most distributions. Unfortunately, this incurs

numeric problems at large data sizes. An IEEE 754 single-precision float has between 6 and 9

significant digits. Assuming that values for sufficient statistics are on the order of 1, the further

back a data point is in v , the more of its significant digits is used to store the sum. Neighboring

entries will be similar or even equal, leading to catastrophic cancellation or even 0 for short

segments. For instance, values above ∼ 17 million are rounded to multiples of 2, so that even if

each entry was 1.0, blocks of size 1 would be queried as 0.

To alleviate this, we subdivide v into non-overlapping cells of size c, and compute partial

cumulative sums of sufficient statistics within each cell; for convenience, we compute these sums

from high to low indices, see Fig. 5.2. It is then easy to see that

e−1
∑

t=s

T(y[t]) =

 

∑

j

v[ j]

!

− v[e], j ∈ {s} ∪ {i | s < i ≤ e, i ≡ 0 (mod c)}

In our implementation, we used c = 216 = 65,536.

Numerical issues Regardless of the data structure being used, an approach relying of sufficient

statistics raises a general issue of numerical stability. In particular, for Gaussian emissions,

updating the Normal-Inverse Gamma hyperparameter

β ← β +
1
2

�

Σ2 −
Σ2

1

N
+

Nν
N + ν

�

Σ1

N
−µ

�2
�
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contains a numerically unstable term,

Σ2 −
Σ2

1

N

akin to naive computation of the sample variance. As a safeguard, our implementation uses

max

�

0,Σ2 −
Σ2

1

N

�

instead, in order to avoid non-positive values of β .

One advantage of using the wavelet tree was that the sufficient statistics were computed

recursively bottom-up in a binary tree, an order which corresponds to a technique called pairwise

summation. This is known to yield a relatively stable sum with at most O(ε
p

log T ) roundoff-error,

where ε is machine precision (Higham 1993).

Changing from a wavelet tree to an integral array trades this stability for a reduction in

memory from 2T − 1 to T statistics. To counteract this effect, we use Kahan’s summation

algorithm (Kahan 1965) for cumulative sums within each cell, so that the expected summation

error remains bounded independent of c.

5.2.2 Breakpoint array for block boundaries

In order to create a block generator, the integral array has to be supplemented with a data structure

which yields start and end positions sk(λ), ek(λ) for subsequent blocks k. Since ek(λ) = sk+1(λ),

it suffices to implement an iterator over sk for increasing k, where

s0 = 0 sk = ek(λ) = sk+1(λ)

We use a simple array of pointers to facilitate these queries:

Definition 5.2.2 (Breakpoint array). Let b ∈ RT be a vector of breakpoint weights, and p ∈ ZT
+ be

a vector of pointers. A data structure (b, p) is called a breakpoint array of input data y if and only if

∀t < i < t + p[t] : b[t]> b[i] (5.1)

We call each interval [t, . . . , p[t]− 1] a stretch at t. A breakpoint array is called maximal if

for all T there exist no n> p[t] such that setting p[t] to n would still result in a valid breakpoint

array.
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Figure 5.3: An example of generating blocks following pointers in a breakpoint array. The top figure
represents the input data y , the bottom figure represents the absolute wavelet coefficients, as well as
the pointers (grey lines) and the path taken by the query (red). Whenever a value above the threshold
(horizontal blue line) is found, a breakpoint is returned (vertical blue lines).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t

b[t]

Figure 5.4: An example of a breakpoint array. Horizontal black lines represent the jumps indicated by
the pointers, red lines represent stacks, and gray lines are for visual clarity. Upon processing index t,
the index stack contains those elements obtained by following the red lines to the top left, starting at
b[t]. Notice how this creates a sequence of right-to-left maxima.
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Algorithm 2 Constructor of a maximal breakpoint array for a vector b of breakpoint weights,
pointer array p and a maximum jump size m. St is a deque (double-ended queue).
1: procedure BreakpointArrayConstructor(b, v , m)
2: pushback(St , 0) . make first position pending
3: for t ← 1, . . . , T − 1 do
4: if |St |> 0 then
5: if t − St[front] = m then . check distance of farthest element
6: p[St[front]]← m . set farthest jump pointer
7: popfront(St) . mark as processed
8: while |St |> 0 do . go through stack to find pending elements
9: if b[St[back]]≤ b[t] then . pending elements with smaller weights

10: reduceStack() . set pending pointers and statistics
11: else
12: break . rest of stack has larger weights
13: push(St , t) . make current position pending
14: t← T
15: while |St |> 0 do . all remaining elements point to one-past-the-end
16: reduceStacks()
17:
18: function reduceStack()
19: i← St[back] . get closest pending index i
20: p[i]← t − i . set its pointer to the distance to current index
21: popback(St) . remove index from stack

Proposition 5.2.2. Algorithm 2 constructs a breakpoint array in linear time O(T ).

Proof. A linear-time algorithm to calculate the pointers to the next element at least as large as

the current one is well established in algorithmic folklore. It is modified here to use the distance

to that element instead of a direct pointer (line 20, which would normally read p[i]← t). The

stack is changed to a deque to accommodate the inclusion of a maximum jump size m. The front

of the deque is popped and its pointer set whenever it is m positions away, which happens at

most T times.

For each t, p[t] points to the beginning of next stretch. Within each stretch, the highest

breakpoint weight is located at its first position; when searching for weights below a given

threshold λ, once the first weight is found to be below λ, all others can be safely ignored, leading

to a simple query (Algorithm 3, demonstrated in Fig. 5.3). Given a position ek(λ) of block k

under threshold λ, the next position ek+1(λ) can be found in O(ln N) expected time, where

N = ek(λ)− sk(λ). In order to derive the query complexity, we require the following result:
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Algorithm 3 Given a breakpoint weight threshold λ, and a breakpoint position si this method
computes the next breakpoint position si+1 where b[si+1] > λ It returns true if such a signal
exists, and false otherwise to indicate that the iterator is finished.
1: procedure BreakpointIterator(si , λ)
2: if si ≥ T then . no more blocks left
3: return false
4: si+1← si + 1 . set potential end to next position
5: while si+1 < T do . determine the end of the current block
6: if b[si+1]< λ then . current weight below threshold
7: si+1← si+1 + p[si+1] . skip the following lower weights
8: else
9: break . higher weight than at block start determines block end

10: N ← si+1 − si . set current block size
11: return true

Proposition 5.2.3 (Left-to-right maxima (Lovász 1993; Knuth 1997)). For a vector x , let x [t]

be called a left-to-right maximum of x iff ∀i < t : x [i] < x [t]. Let mx count the number of

left-to-right maximal elements in x . For a random permutation of x with |x |= N elements,

E [mx ] =
N
∑

i=1

1
N
→ ln N as N →∞. (5.2)

Due to symmetry, the same result holds for minima and right-to-left extrema.

Proposition 5.2.4. For a block of size N , the expected query complexity of Algorithm 3 is O(log N)

in a maximal breakpoint array.

Proof. Since the breakpoint array is maximal, following pointers in p to find the block end creates

a sequence of left-to-right maxima. For a block of size N , starting at t, there are M := N − 2

elements in I := [t +1, . . . , t +N −1] which can appear in any order, and the claim follows from

Eq. (5.2).

Proposition 5.2.5. Assume all elements in b have different values. Then the maximum expected

stack size in Algorithm 2 is at most ln T .

Proof. Assume m=∞. An element at t is pushed whenever there exists an index j on the stack

such that ∀i = j, . . . , top : w [i]< w [t]. Given the smallest such j, the stacks are popped until

top = j − 1, and w [ j − 1] > w [t]. Therefore, the stack contains the right-to-left minima of

w [1: t] after pushing index t, and the claim follows from Eq. (5.2) for t = T . For any m<∞,

the front of the deque gets popped, thus only decreasing the stack size.
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For Thg , the expected maximum stack size is < 22, a negligible overhead. We noticed that, for

noisy data, most entries in p are much smaller than T , and using pointer-sized integers such as

size_t in C++ (typically 8 byte on 64-bit systems), would be wasteful. Instead, we use a 2-byte

unsigned integer type to accommodate jumps up to m= 65,536. The resulting breakpoint array

is not maximal anymore, but maintains its space-efficiency and compressivity, as Algorithm 3

does not require maximality. The query overhead is minimal in practice; even in case of a single

block for genome sized data,
Thg

65,536 < 54.

Proposition 5.2.6. Using a breakpoint array to iterate over block boundaries, which are then used

to query sufficient statistics from an integral array yields a compressive and space-efficient block

generator.

Proof. To prove that the breakpoint array is indeed a valid iterator over block boundaries,

Algorithm 3 provides a constructive description of how a block is created for an arbitrary threshold

λ. Its correctness is shown by induction: Assume that the start position si is a valid block boundary,

so b[si]≥ λ or si = 0. The block is determined by finding the next start position si+1, which can

be found by setting si+1 := si +1, and incrementing until b[si+1]≥ λ. Instead of incrementing by

1, Eq. (5.1) guarantees we can increment si+1 by p[si+1]without missing a breakpoint (lines 4–9).

The block size N = si+1 − si is then easily calculated (line 10). Since no superfluous breakpoint

is introduced, the data structure is compressive, provided that the sufficient statistics can be

generated correctly. Since the first block starts at s0 = 0, the claim follow by induction. As the

number of sufficient statistics in a breakpoint array is T , it is also space-efficient.

On first sight, the query complexity of O(log N) appears to be suboptimal compared to

the constant-time queries in the original wavelet tree. This, however, is misleading. We have

shown that the wavelet tree implements a suboptimal compression in the sense that it introduces

additional block boundaries which do not correspond to discontinuities in the Haar transform.

For a true block of size N , it creates on the order of ln N different blocks. Hence, not only does

it take ln N such queries to cover the entire block, it also increases the size of the trellis and

hence both space and runtime requirements. The breakpoint array thus has the same amortized

complexity as the wavelet tree, while creating better compression.
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5.2.2.1 Haar breakpoint weights

Having established a data structure to iterate over blocks for any given compression level, we now

define a vector bH of breakpoint weights for the Haar wavelet transform, and derive a simple

algorithm to calculate it from y . We need the following definitions:

Definition 5.2.3 (Maxlet arrays). For b±j,k ∈ [0, T ), let

bM

�

b±j,k
�

=











∞ t = 0∨ b−j,k ≥ T

�

�




ψ j,k, y
��

� t > 0∨ b−j,k < T

be a vector of absolute Haar wavelet coefficients, called a univariate maxlet array. For multivariate

data, the multivariate maxlet array is the pointwise maximum of the univariate maxlet arrays for

each data dimension.

Notice that the univariate maxlet array corresponds to the absolute values of Haar wavelet

transforms, generalized for arbitrary T : If T is a power of 2, it contains the absolute values

of detail coefficient of the Haar wavelet transform with its first entry (the scaling coefficient)

replaced by∞. For other T , it consists of a concatenation of such segments of decreasing size.

For instance, if T = 22, the transform concatenates 3 arrays whose sizes are powers of two

(22= 16+ 4+ 2). Later in this chapter, we provide two algorithms:

1. The univariate maxlet transform computes the maxlet array for arbitrary data sizes T

in-place and in linear time. In Fig. 5.5, the dashed lines and circular markers in the

upper subplot illustrate the necessary updates, and the white markers in the lower subplot

correspond to the result.

2. The multivariate maxlet transform computes the multivariate maxlet array; instead of

computing d univariate maxlet transforms separately, using a space of 2T (one array of size

T for calculating the transform at the current dimension, another for storing the maxima),

we show that this transform can be computed using only T + d ld T space and O(dT ) time.

For d = 1, the result is the same as the univariate maxlet transform.

In a maxlet array, each value at t corresponds to the (maximum of d) detail coefficients for

which the central discontinuity b±j,k = t. In order to decide whether or not a wavelet regression
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under a threshold λ has a discontinuity at t, all wavelets with b+j,k = t and b−j,k = t have to be

taken into account. The breakpoint weights are thus computed as follows:

Definition 5.2.4 (Haar breakpoint array). For b±j,k ∈ [0, T ), let

bH

�

b±j,k
�

=











∞ t = 0∨ b−j,k ≥ T

max j′,k′
¦
�

�




ψ j′,k′ , y
��

�

�

�

� b±j,k = b+j′,k′ ∨ b±j,k = b−j′,k′
©

t > 0∨ b−j,k < T

be a vector of breakpoint weights. A breakpoint array initialized with these weights is called a Haar

breakpoint array.

Here, the entry at each position t is set to the largest absolute coefficient for all wavelets

which have their left, central or right discontinuity at t, as long as the wavelet for which b±j,k = t

has full support in [0, T ). The reasoning behind this definition is that if T is a power of 2, then

this breakpoint array introduces the same breakpoints as wavelet compression for the same

threshold, with probability 1; a breakpoint is only potentially hidden in cases where b−j,k = b+j,k+1;

on R, this has probability measure 0. For other data sizes, there are wavelets which have their

central discontinuity within the data, but have incomplete support. Instead of using one of several

padding schemes, we assume those breakpoints to have infinite weight, which introduces up to

ld T additional breakpoints.

If the emissions are multivariate with dimension d, the set of block boundaries is the union

of block boundaries across all dimensions. In other words, the corresponding weights for the

Haar breakpoint array can easily be calculated as the per-position maxima of across the d such

weight vectors, as given by the multivariate maxlet array.

To derive Haar breakpoint weight from any maxlet transform, we introduce theHaar boundary

transform, which performs the necessary maximum computations in-place and in linear time

O(T ). In Fig. 5.5, the solid lines in the upper subplot illustrate the computation of maxima, and

the black markers in the lower subplot correspond to the result.

5.2.2.2 In-place univariate maxlet transform

In-place calculation of bM requires an in-place generalization of the Haar wavelet transform

for arbitrary-size data. The pyramid algorithm used in our original approach was obviously not
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in-place, as it required padding of the input array to a power of two, as well as an additional

array of size T for temporary storage. In order to derive an in-place algorithm to calculate bM ,

we use a more recent in-place calculation of the Haar wavelet transform based on the lifting

scheme (Algorithm 4), due to Sweldens (1995, 1998). It is based on the following recursions:

c j,k :=











y[k] j = 0

∑b−j,k−1

t=b+j,k
y[t] =

∑b±j,k−1

t=b+j,k
y[t] +

∑b−j,k−1

t=b±j,k
y[t] = c j−1,2k + c j−1,2k+1 j > 0

d j,k :=
1
p

2 j





b±j,k−1
∑

t=b+j,k

y[t]−
b−j,k−1
∑

t=b±j,k

y[t]



=
1
p

2 j

�

c j−1,2k + c j−1,2k+1

�

These relations are illustrated in Fig. 5.5 using dotted edges, with d j,k = w j,k and c0,k = yk = y[k].

By storing c j,k at index b+j,k and d j,k at index b±j,k, they derive an in-place algorithm which never

overwrites d j,k once it is calculated (Algorithm 4). Notice that each detail coefficient d j,k is

stored at the position b±j,k corresponding to the central discontinuity in their corresponding

wavelet, and that this corresponds to an in-order DFS layout of the wavelet tree without the

leaves corresponding to the input data, with the leftmost leaf at index 1 (Fig. 5.5, bold lines);

the tree is created from the leaves up, and from left to right.

Algorithm 4 In-place Haar wavelet transform for power-of-2 data sizes (Sweldens 1995, modi-
fied for expositional purposes).
1: procedure HaarTransform(y)
2: T ← |y | . number of data points
3: for j← 1, . . . , ld T do . iterate over levels, bottom-up
4: N ← 2 j . support size of ψ j,k

5: s← 1p
N

. normalization constant
6: for k← 0, . . . , T

N − 1 do . process elements on level j from left to right
7: L← Nk . left index
8: R← N(k+ 1

2) . right index
9: y[L]← y [L] . copy c j−1,2k

10: y[R]← y [R] . copy c j−1,2k+1
11: y [L]← y[L] + y[R] . calculate c j,k
12: y [R]← s(y[L]− y[R]) . calculate d j,k

13: return y

We first provide a generalization of the in-place Haar wavelet transform to arbitrary data

sizes (Algorithm 7).

Proposition 5.2.7. bM can be computed in-place and in linear time O(T ).
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Algorithm 5 Given emission data y , compute the univariate maxlet transform, i. e. the absolute
detail coefficients of the Haar wavelet transform for arbitrary data sizes T .
1: procedure MaxletTransform(y)
2: T ← |y | . number of data points
3: for j← 1, . . . , d ld T e do . iterate over levels, bottom-up
4: N ← 2 j . support size of ψ j,k

5: s← 1p
N

. normalization constant
6: for k← 0, . . . ,

� T
N

�

− 1 do . process elements on level j from left to right
7: L← Nk . left index
8: R← N(k+ 1

2) . right index
9: if R< T then

10: y[L]← y [L] . copy c j−1,2k
11: y[R]← y [R] . copy c j−1,2k+1
12: y [L]← y[L] + y[R] . calculate c j,k

13: y [R]← s|y[L]− y[R]| . calculate
�

�d j,k

�

�

14: else
15: y[L]←∞ . force breakpoint for incomplete support
16: return y

Proof. bM can be considered as the concatenation of a minimum number of maxlet transforms

bp
M of decreasing sizes which are all powers of 2. Note that bM [t] =∞ whenever bp

M [0]. Since

the support size for any Haar wavelet is a power of two, an infinite value indicates that the value

associated with this position has incomplete support across the data. Assume w.l.o.g. that T is a

power of two and hence the tree is complete. The Haar wavelet transform can be implemented

in-place in linear time (Sweldens 1995), yielding a DFS in-order layout of the wavelet tree, with

the first entry representing the sum of all data points. The first element can be set to∞ and the

other values can be set to their absolute value in a second pass. Alternatively, the transform can

be calculated for arbitrary data sizes in one pass (Algorithm 7, which is a modification of the

lifting scheme with checks for incomplete support intervals).

5.2.2.3 Multivariate maxlet transform

Naively, the maxlet transform for multivariate data can be computed using 2T space, by succes-

sively computing the univariate maxlet transform for each dimension d in an array of size T ,

and continuously updating the maxima across dimensions in a second array of the same size.

Here, we derive an alternative version requiring only an array of size T as well as a stack of size

O(d ld T ). Essentially, it is an adaptation of the lifting scheme, which changes the order of com-
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putation (Algorithm 6). For an inner node in the tree of detail coefficients to be computed, all its

descendants have to be known. In a streaming setting, the leaves arrive ordered by t. Therefore,

the lifting scheme has to be changed from bottom-up BFS to DFS post-order, necessitating the

use of a stack.

The algorithm maintains the following invariant: when processing the detail coefficient d jk at

position p, the stack S contains the unnormalized scaling coefficients (i. e. sums of data segments

of size 2 j) c j−1,2k+1 for all dimensions at the top D elements, followed by the set of unnormalized

scaling coefficients for c j−1,2k+1 at the D positions below. Using a stack that allows random access,

such as the vector class in C++, detail coefficients the maximum d jk across all data dimensions

can be computed from the 2D top elements of the stack, using the lifting recursions and the

level-specific normalization factor n (Algorithm 6, Line 16–Line 25). Afterwards, by adding the

top D entries in the stack to the next D entries element-wise and popping the top D elements,

the stack contains the dimension-wise sums for the joint support ranges, i. e. the unnormalized

scaling coefficients to compute the left parent of the current node (the parent index and checks

whether such a parent exist for the current position is maintained in the index p and a bitmask

m reflecting the structure of the tree). For instance, if the stack contains c2,2 and c2,3, replacing

c2,2 by c2,2 + c2,3 and popping c2,3 yields c3,1 on top of the stack, so d4,0 can be calculated, since

the elements below the stack top are the scaling coefficients c3,0, see Fig. 5.5. Since the behavior

of the stack mimics that of a DFS traversal, it never gets larger than d ld T .

5.2.2.4 Haar boundary transform

For each central discontinuity b±j,k, there are j − 1 wavelets at lower levels j′ < j, which have

their left discontinuity at that position (b+j′,k′ = b+j,k). The same is true for right discontinuities,

so that each position is the maximum of 2 j − 1 absolute wavelet coefficients. In Fig. 5.5, these

relations are indicated in that each node in the tree is transformed into the maximum of itself as

well as direct descendants in lower levels indicated by solid lines (including tree edges).

We will later show that despite those dependencies, the Haar breakpoint array can be

calculated in-place in linear time for arbitrary-sized input data y .

The linear running time for maximum calculation can be established non-constructively:

The central discontinuity of a wavelet at level j is shared with j wavelets for which it is the left
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Algorithm 6 Computes the univariate or multivariate maxlet transform, i. e. for each position t
and D Haar wavelet transforms of size T the maximum of the D absolute wavelet coefficients at
position t is computed. The input is assumed to come from a data stream F , sorted by (t, d),
0≤ t < T , 0≤ d < D. The algorithm requires T + D ld T space and time.
1: procedure StreamingMaxletTransform(F , D)
2: Allocate empty vector b . Contains resulting maxlet transform
3: Allocate empty stack S . Contains unprocessed data sums
4: t ← 0 . Current data index
5: d ← 0 . Current dimension index at position t
6: while F not empty do
7: Get next element from F and push it to S
8: d ++ . Dimension index of next element
9: if d = D then . Finished reading all dimensions for this position

10: d ← 0
11: Append∞ to b . Coefficients are∞ for incomplete support
12: p← t . Index of detail coefficient in upward-left path (DFS)
13: m← 1 . Bit mask for accessing left parent node, if it exists
14: n← 1p

2
.Wavelet normalizer

15: while (p ? m)> 0 do . p is a left parent in tree
16: c← 0 . Maximum detail coefficient across dimensions
17: L← |S| − 2D . Lower stack index
18: R← L + D . Upper stack index
19: for D iterations do
20: c←max {c, n|S[L]− S[R]|} . Update maximum at j
21: S[L]← S[L] + S[R] . Store sum for next level
22: L ++ . Next dimension for lower stack elements
23: R++ . Next dimension for upper stack elements
24: b[p]← c . Store maximum absolute detail coefficient
25: n← np

2
. Update normalizer for next level

26: Pop D elements from S . Top now contains subtree sum
27: p← p−m . Move to potential left parent
28: m← 2m . Shift bit mask
29: t ++

discontinuity, and likewise for the right, hence each wavelet coefficient at level j needs to be

updated by 2 j coefficients at lower levels. There are T
2 j+1 coefficients at level j, hence the total

number of updates is
ld T
∑

j=1

T
2 j+1

2 j ≤ 2T

since the infinite series

lim
ld T→∞

ld T
∑

j=1

j
2 j
= 2

is monotonically increasing.
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Algorithm 7 Given a maxlet transform d, for each position t compute the maximum absolute
coefficient of all wavelets which have a discontinuity at t, in-place and in linear time.
1: procedure HaarBoundaryTransform(d)
2: d[0]←∞ . force breakpoint before first element
3: for j← b ld T c , . . . , 1 do . iterate over levels, top-down
4: N ← 2 j . support size of wavelet t level j
5: for k← 0, . . . ,

� T
N

�

− 1 do . process elements on level j from left to right
6: t ← N(k+ 1

2) . index of central discontinuity b±j,k of ψ j,k

7: n← N
2 . distance to left and right discontinuity

8: if t < T then
9: L← t − n . index of left discontinuity

10: d[L]←max {d[L],d[t]} . consider left discontinuity
11: R← t + n . index of right discontinuity
12: if R< T then
13: d[R]←max {d[R],d[t]} . consider right discontinuity
14: return d

At each position, left and right discontinuities of multiple wavelets have to be taken into

account to calculate the maximum, except for positions between trees, which are already∞.

Two versions of this approach can be used: one can traverse through the tree in a BFS fashion,

and update b±
`,k from the b+

`′,k′ and bi
`′,k′ at lower levels `

′ < `. Alternatively, the same updates

can be performed traversing top-down through levels `′, updating weights at higher levels for

left and write discontinuities. Each wavelet is considered at most twice for updating a wavelet

on a higher level. Since higher-level weights are updated from lower levels, and the traversal is

top-down, no weights are overwritten prematurely and the algorithm is in-place.

5.3 Compressed marginal records

Definition 5.3.1 (Marginal records). Let t ∈ [0, . . . , T ), smax the largest state sampled during FBG,

and s ∈ [0, . . . , smax]. A marginal record is a data structure which allows to store and query the

number of times state s was observed at data index t.

Our previous solution to recording marginal state counts was closely tied to the wavelet tree

data structure in that it stored count vectors in the nodes of the tree. This was inefficient for

a number of reasons: firstly, as discussed earlier, the number of nodes is larger than necessary.

Secondly, the memory for each of these nodes has to be allocated. If the tree is implemented
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as a flat array of size 2T , the allocation requirements for k states are 2T k, even though a lot of

nodes will potentially not contain any counts, and even those that do will contain zeros for many

states. Such a preallocation approach also requires the number of states to be known in advance,

and precludes further extensions to priors on the state number such as the Dirichlet Process.

We had therefore opted for a second approach, in which counts are dynamically allocated

in each wavelet tree node using C++ vectors, such that the i-th position contains the count

of state i. Vectors were dynamically increased in size to accommodate counts for the highest

numbered state in each iteration. However, even with this approach, there was considerable

overhead for enabling such dynamic allocation, in this case 20B per node for holding start, end,

and reserved memory size for vectors. For a billion data points, this alone results in 40 GB of

additional RAM.

This could be somewhat alleviated by using a run-length encoding (RLE) approach, in which

state counts are recorded for each compression segment and stored along with the segment

length, illustrated by the right column of Fig. 5.6.

Dynamic compression however complicates the use of run-length encoding for marginals. At

each new iteration, a different block structure is created, which requires existing RLE segments

to be split into multiple parts, each of which will have counts for a different state added. This

could be solved trivially using a linked list implementation, in which new segments are inserted

with the appropriate updates of its neighbors size. This approach however has two disadvantages.

Firstly, maintaining the pointers in the list is wasteful in terms of memory. Second, in order

to hold the state count record, either a fixed array needs to be allocated, which is wasteful if

the number of states is large, as it will contain mostly zero-entries, or some kind of dynamic

data structure which encodes a compressed version of the state counts is required, which incurs

additional memory due to additional householding variables. On the other hand, states could

be stored in a resizable array like C++’s vector. It could be increased in size to hold the new

number of run-length segments, and move existing items so as to free the necessary insertion

positions. While this would only incur linear-time overhead, it requires the insert positions to

be known with random-access. However, we do not explicitly store the block sizes for a state

sample, as this incurs large memory usage, and obtain them by iterating over the breakpoint

array instead. In this case, every entry after a new segment position would have to be moved
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Figure 5.6: A small three-step example of recording marginal counts using Algorithm 8. Starting
at position t = 0, 7 observations of state 5 are inserted. In the count queue, black boxes indicate
that state counts of zero have been skipped; those numbers encode the next higher state that has a
non-zero count. White boxes indicate the counts for the state. For instance, the right-most part of
the count queue in the top subfigure is stored as (0,−1,−2, 4,−7), indicating that there is 1 count
for state 0, 2 counts for state 1, and 7 counts for state 4. The segment starts at position t = 9, and
has a length of 1. Note that 0 is used to mark the start of a new segment. Each segment has a total
of 10 counts already recorded. Arrows indicate contiguous elements in the count queue. With every
iteration, a segment is moved to the back with the new state count included. Note that in the last
iteration, the segment t = 6, . . . , 8 is split. After finishing this step, the next count would be recorded
starting at position t = 7. Notice how each run of zeros in the state queue is represented by a single
number, thus allowing for arbitrarily large state indices without much overhead.
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further back in the vector, so that the reallocation complexity for vector size n is on the order

of O(n2) in each FBG iteration. Furthermore, this approach requires the marginals to be stored

as individual data structures with the same memory overhead described above. If, on the other

hand, the encoding was sequential so as to fit into a single array, determining the positions of the

segments to be moved is challenging.

We developed an encoding for marginal records that stores counts sequentially in a vector

of integers in a highly compressed fashion with small overhead. Adding records for run-length

encoded state sequences is performed using a queue with iterator access to its front elements,

such as implemented by deque, and requires a single pass over the state records and is therefore

linear. The memory overhead is 2 bytes per segment, plus one bit for every 32 integers.

Encoding for marginal counts for a single position is performed using a sequence c of signed

integers. A negative number is used to store the counts for a state. The state s(i) of a position i

is recursively defined as

s(0) = 0,

s(i) :=











s(i − 1) c[i − 1]< 0

c[i − 1] c[i − 1]> 0
.

Positive entries are called index values. We further require that all index values must be in strictly

increasing order, and that no unnecessary index is used, i. e. we require

∀c[i]> 0 : s(i − 1) + 1< c[i].

In other words, runs of states having observed counts are represented as runs of negative numbers,

and runs of zero-counts are represented as a single number indicating the state label of the next

higher state with non-zero counts. For instance, the count vector

(2, 0,0, 8,1, 4,0, 0,0, 0,5,0, 0,0, 0,0, 0,0, 0)

would be encoded as

(−2, 3,−8,−1,−4, 9,−5),

and the corresponding states are

(0,1, 3,4, 5,6, 9),
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Figure 5.7: Micro- (left) and macro-averaged F-measures for the improved implementation of HaMM-
LET, using integral array, breakpoint array and the streaming maxlet transform. For comparison with
the previous implementation results, see Fig. 4.10 on page 80.

though 1 and 6 are somewhat inconsequential as they have no counts associated with them; note

that the decision to use negative signs for counts instead of index values is arbitrary in principle,

but leads to using fewer negations in the implementation. In settings where quick convergence

is expected, the number of zeros is expected to be high, leading to good compression under

this scheme. In general, assume that the marginals contain M distinct segments after running

FBG, and the HMM has S states. Then, the queue can contain no more than (2S + 1)M entries:

for each segment, one zero to mark the beginning of a segment, and up to one positive and

negative value per state. If the number of latent HMM states is limited to S, then there can be

no more than S non-zero entries per segment. Hence, for reasonably high compression ratios,

this amounts to small memory usage. For instance, at a compression ratio of 300 for a human

genome at base-level resolution and 10 latent HMM states, marginal records using 2-byte signed

integers require less than 234MB. In practice, not every segment will contain 11 values, due to

fast convergence, and the numbers get even smaller. Compared to the storage requirements of

the block generator, this is negligible.
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5.4 Evaluation

Changing the compression scheme raises the question of its effects on the inference quality. In

particular, a stronger compression allowing for fewer path changes might have two competing

effects. On the one hand, the decreased freedom in sampling the state sequence might result

in slower mixing. On the other hand, assigning a state other than the MPM state to a block

might yield posteriors which could prolong the convergence of said state parameters to their

MPM value. In order to evaluate which of these effects is stronger, we rerun our previous

simulations, using the exact same files created earlier and deposited on Zenodo. Fig. 5.7 shows

the micro- and macro-averaged F-measures for our new implementation. Results are virtually

identical, thought the macro-averaged F-measure appears to converge slightly slower for the lower

quantiles. The slower mixing effect appears to be slightly stronger, yet negligible. Benchmarking

results comparing the prototype and improved implementations of HaMMLET can be found in

Section 6.4
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Algorithm 8 Append N observations of state s to the marginal records.
1: procedure AddMarginalRecord(N, state)
2: bool done←false
3: s←0 . State at current index
4: while N > 0 do . Consume entire length of insert block
5: s←0 . Assume lowest state
6: done←false . Remember if insert was successful
7: for t←0 t < countQ.size() ++t do
8: entry←countQ [t] . Entry at current position
9: if entry= 0 then . All entries for this segment have been consumed
10: if ¬ done then . Count not registered yet
11: if s < state then . Skipped over states?
12: countQ.push( state ) . Add state index
13: countQ.push( −count ) . Append count as negative number
14: countQ.push( 0 ) . Append 0 to mark end of this segment
15: break
16: if done then . Count was successfully registered
17: countQ.push( entry ) . Keep appending all entries for this segment
18: continue
19: if entry> 0 then . Entry denotes state of next entry
20: if state< entry then . Count must be inserted here
21: if s < state then . Skipped over states?
22: countQ.push( state ) . Add state index
23: countQ.push( -count ) . Append count as negative number
24: if state+ 1< entry then . Skipping states until next count?
25: countQ.push( entry ) . Add state index
26: done←true . Mark count insertion as successful
27: else
28: countQ.push( entry )
29: s←entry . Update state for next entry
30: else . Entry is negative count or current state
31: if s = state then . Reached target state to be counted
32: countQ.push( entry− count ) . Add count
33: done←true . Mark count insertion as successful
34: else
35: countQ.push( entry ) . Append entry without further action
36: s++ . Update current state
37: if N < sizeQ. f ront() then . Residual front segment remains
38: sizeQ.push( N ) . Assign its size to new segment
39: sizeQ.front()←sizeQ. f ront()− N . Decrease size to remainder
40: break
41: else . Front segment was completely absorbed
42: sizeQ.push( sizeQ.front() ) . Associate its size with new segment
43: N←N- sizeQ.front() . Set insert size to its remainder
44: sizeQ.pop() . Remove empty segment’s size
45: while countQ. f ront() 6= 0 do . Remove all entries for mpty segment
46: countQ.pop()
47: countQ.pop() . Remove segment separator
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Chapter 6

Application to WGS data

In this chapter, we demonstrate the applicability of HaMMLET to a real-world research question.

We show that CNV candidates inferred using our methods are enriched for gene annotations

consistent with a working hypothesis that CNVs play a role in the domestication syndrome.

6.1 CNV as a genetic basis for domestication effects in rats

The domestication of a handful of animal species, starting in the early Holocene, has played a

crucial role in the development of complex human societies (Diamond 1998). While we have

learned a great deal about when and where animal domestication occurred, the genetic changes

that underlie the phenotypic differences between domestic animals and their wild progenitors

remain relatively unknown. It has been observed that domestic animal species tend to share a

suite of behavioral, physiological and morphological traits that are absent or rarely observed in

their wild progenitors (Darwin 1868; Wilkins, Wrangham & Fitch 2014). These traits include

changes in pigmentation, craniofacial anatomy, hormonal levels, seasonal reproduction cycles

and increased docility (Sánchez-Villagra, Geiger & Schneider 2016). This suite of changes is

referred to as the “domestication syndrome”. A long-standing question in evolutionary biology is

whether these convergent changes are the result of genetic drift, artificial selection by humans for

each individual trait, or pleiotropic effects of selection for a few or even a single trait. A proponent

of the pleiotropy hypothesis, i.e. that genes under selection for behavioral traits of tameness

and aggression influence other, seemingly unrelated phenotypes, was the Academician Dmitry K.
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Belyaev. He hypothesized that selection for tameness at the start of the domestication process

had pleiotropic effects that explained many of the features of the domestication syndrome. To

test his hypothesis, he began a program of experimental domestication of the silver fox (Vulpes

vulpes) in 1959 in Novosibirsk, Siberia. Foxes obtained for fur farms were selectively bred for

their behavioral response to an approaching human. One line of foxes was bred for tame behavior

towards humans, while a control line was selected for a fearful and aggressive response towards

humans, to maintain the wild-type behavior despite being maintained in captive conditions.

After just a few generations of selective breeding, the tame line began to show many of the traits

associated with the domestication syndrome, including changes in pigmentation, morphology

and behavior (Belyaev 1969; Trut, Plyusnina & Oskina 2004; Trut, Oskina & Kharlamova

2009).

The same experimental setup of artificially selecting two lines, one for tame and one for

fearful and aggressive behavior towards humans, was also repeated by the same research group

in the brown Norway rat (Rattus norvegicus) with similar results (Albert et al. 2008). These

results seem to confirm Belyaev’s hypothesis that selection for tameness alone could explain

many of the features of the domestication syndrome. However, the specific genetic changes that

underlie these changes remain unknown. Knowledge of the genetic variants that have been

selected in these lines could lead to mechanistic insights into the domestication process. Genomic

structural variants are of particular interest, as they are known to have played a role in the

adaptation of other domestic animals (Axelsson et al. 2013), and structural variants that affect

multiple functional genomic loci are one possible explanation for the rapid response to selection

observed in these lines. To address this issue we analyzed whole-genome data that was generated

from multiple individuals from the tame and aggressive lines of rats. For an overview of the

experimental process described below, see Fig. 6.1.

6.2 Sample origins and data generation

DNA samples were obtained from two rat lines originating from a shared wild source population,

subsequently maintained in isolation and divergently selected for ∼70 generations for their

behavioral response to humans. 20 samples were obtained from the tame line, which has been
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selected for a reduced fear response towards an approaching human hand. 20 samples were

obtained from the aggressive line, which has been selected for an increase in fearful and aggressive

behavior towards an approaching human hand. DNA extraction was carried out at the Institute

of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk

and at the Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Germany.

For all samples, sequencing libraries were generated consisting of 125 bp double-indexed

paired-end reads. Samples were pooled into a single library in order to avoid any batch effects

during sequencing. Sequencing was performed on a combination of the Illumina Genome Analyzer

II and High-Seq platforms. Library preparation and sequencing was carried out at the MPI-EVA.

The rats have a mean coverage of ∼4X per individual, meaning that each genomic position is

expected to be covered by 4 reads. Base calling was done using freeIbis (Renaud, Kircher, et al.

2013). Adapters were removed and potentially chimeric sequences flagged using the software

leeHom using default parameters (Renaud, Stenzel & Kelso 2014). Reads were demultiplexed

using deML using default quality thresholds (Renaud, Stenzel, Maricic, et al. 2015). Reads

were then mapped to the Rattus norvegicus reference assembly rno5, using the Burrows-Wheeler

Aligner (BWA) with default parameters (Li & Durbin 2009). Duplicate read removal was

performed with Picard (http://broadinstitute.github.io/picard/). Local indel realignment was

performed using the Genome Analysis Toolkit (GATK) (McKenna et al. 2010; DePristo et al.

2011; Van der Auwera et al. 2013).

6.3 Data prepocessing

We used SAMtools to process the BAM files resulting from the read mapping procedure. Lowest

mapping positions were recorded for each read, and their counts were accumulated. Start counts

for the tame population were subtracted from their counterparts in the aggressive population,

yielding 1,880,703,547 data points. Note that, due to the multiplexed sequencing, any additive

bias cancels out during subtraction. We used lowest mapped positions per read instead of per-base

coverage (pileup data) for two reasons. Hidden Markov Models assume conditional independence

of the observed data points given the state sequence. However, using pileup creates statistical

dependence between neighboring positions due to reads covering multiple bases. Secondly,
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pileup data tends to produce smooth curves. Since the Haar wavelet only has one vanishing

moment, the local curvature of the data tends to produce large coefficients which severely reduces

the compression. Additionally, sufficient statistics of blocks that are being created are hard to

interpret, and the noise violates the Gaussian assumption. Instead, using only one position for

each read decorrelates neighboring data points.

Due to the low coverage and the integer nature of the counts, the data showed highly

discrete noise, and hence the data was averaged over non-overlapping windows of 20 positions

to approximate Gaussian noise, resulting in 94,035,178 input positions. We then ran HaMMLET

with 8 CNV states and automatic priors, see Wiedenhoeft, Brugel & Schliep 2016c. An

example plot from this study showing complex CNV can be found in Fig. 6.2.

6.4 Benchmarks

On a computer with Intel Xeon CPU E7-8890 v4 (2.20 GHz) and 1 TB RAM, running Ubuntu

14.04.5 LTS, full Bayesian inference with HaMMLET for 200 iterations with a burn-in of 1,800 for

an 8-state-model required 3 min 41 s and 1.3 GB RAM. By comparison, the previously published

version of HaMMLET took 1 h 5 min 27 s, using 40 GB RAM (cf. Figure 6.3).

For a broader evaluation, we have created 100 replicates of the data by splitting it into 2500

chunks of equal sizes, which we then permuted randomly. We measured the memory usage

(maximum resident set size), running time as well as cache behavior (minor page faults), see

Fig. 6.4. The smaller savings in runtime compared to the original data can be attributed to the

fact that permutation of the data is likely to disrupt long, highly compressible sections of the

data. Also, with smaller blocks created under optimal compression, the undercompression effects

in the wavelet tree might be less pronounced, hence its lower average runtime compared to the

original data.

While the RAM usage remains almost constant among replicates within each implementa-

tion, we noticed that runtime and cache behavior varied widely in the old, but not the new

implementation. We attribute this to the fact that the old compression scheme is suboptimal,

yielding smaller blocks and hence more randomized assignment to states, leading to slower

mixing properties of the Gibbs sampler. The data wavelet tree data contains outliers not shown
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Figure 6.3: Comparison of benchmarks for running time, memory usage and cache behavior between
the old and new versions of HaMMLET on the rat population WGS data set. The new approach yields
a 17.8-fold speedup and 32.2-fold memory reduction. Notice that the number of minor page faults
decreases by five orders of magnitude, indicating much better cache behavior due to the use of new
data structures and an improved implementation. The number of major page faults is zero in both
implementations.
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Figure 6.4: Comparison of benchmarks for running time, memory usage and cache behavior between
the old and new versions of HaMMLET on 100 permutations of the rat population WGS data set.
Notice the decrease in variance for both page faults and running time.

in the figure, most notably a runtime instance of 6.4 h, which is likely to result from sampling

small emission variances due to short compression blocks.

6.5 Results

We consider all genomic segments with an absolute state mean ≥ 1 as containing putative

structural variation segregating between the tame and aggressive rat lines. This results in

10,083,374 regions with a mean size of 407 base pairs. We identify all genes that are within or

overlap these regions by ≥ 1 base pair using Ensembl’s Variant Effect Predictor (McLare et al.

2016). We find 1,036 genes with at least partial overlap with these regions.

To investigate the potential phenotypic consequences of these structural variants we performed

a gene enrichment analysis using the software Webgestalt (Zhang, Kirov & Snoddy 2005; Wang,

Duncan, et al. 2013). We tested for enrichment of gene ontology (GO term) categories for all
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genes overlapping these structural variants using all genes in the rat genome as background. We

consider as significantly enriched all pathways with p-value <0.05 after using the Benjamini and

Hochberg procedure to correct for multiple hypothesis testing (Benjamini & Hochberg 1995).

We identify many significantly enriched pathways, see Appendix A. We now briefly discuss some

of these pathways and the genes within them and how they may inform us about the genetic

changes underlying the phenotypic differences between these lines.

The most significantly enriched pathway is “Synapse assembly” (p-value = 0.0028), with

five genes that are in putative structural variants segregating between the tame and aggressive

rat lines. Some of these genes are associated with phenotypes that may be involved in the

behavioral differences observed between the tame and aggressive rat lines. For example, one of

the genes is the neuronal cadherin gene Cdh2. Missense mutations in this gene are associated

with obsessive-compulsive behavior and Tourette disorder phenotypes in humans (Moya et al.

2013) and this gene has been associated with anxiety in mice (Donner et al. 2008). Another

gene encodes the ephrin receptor Ephb1. The ephrin receptor-ligand system is involved in the

regulation of several developmental processes in the nervous system. Notably, mice with null

mutations for this gene exhibit neuronal loss in the substantia nigra and display spontaneous

locomotor hyperactivity (Richards et al. 2007). This is interesting given that the tame and

aggressive rats have differences in their activity in an open-field test (Albert et al. 2008).

We also observe multiple additional enriched pathways involved in neuronal development

and function, e.g. “transmission of nerve impulse”, “regulation of neurological system process”,

“dendrite morphogenesis”. Therefore, we suspect that many of these segregating structural

variants may have been targeted by selection and are contributing the phenotypic differences

between these lines. Pending experimental validation, future study of the variants identified

here may lead to insights into the domestication process.
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Chapter 7

Conclusion

In this thesis, we have presented a novel approach for HMM-based Bayesian segmentation of

large-scale data for the inference of genomic copy-number variants. Using a decision-theoretic

framework, we have shown that for homoscedastic Gaussian emissions the discontinuities in a

Haar wavelet regression based on the universal threshold capture strong changes in the posterior

state distribution. This allows for a compression of the data into blocks of sufficient statistics within

which the data is likely to be emitted from the same latent state. We derived the bias incurred

in the forward-variables by ignoring between-state transitions for general HMM, generalizing

earlier results based on the weak path assumption. The tendency of this forward bias to favor the

state with the highest marginal likelihood within each block made us conjecture that Forward-

Backward Gibbs sampling would result in a maximum posterior margins (MPM) segmentation of

the data.

For heteroscedastic Gaussian HMM, we developed a Forward-Backward Gibbs sampling

scheme based on dynamic Haar wavelet compression, in which the universal threshold is derived

from the smallest emission variance sampled in each iteration. We developed the wavelet tree as

a data structure to facilitate this sampling, and used extensive simulation studies to demonstrate

the performance of our method. We show that compression greatly improves convergence, in

terms of the number of sampling iterations, towards the true latent state sequence compared

to uncompressed sampling, thus providing experimental support for our MPM segmentation

conjecture. This faster convergence is achieved while also improving overall running time by two

orders of magnitude. We also demonstrated the performance on biological gold-standard data
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sets, improving upon the state of the art methods while running substantially faster.

We then showed that the wavelet tree yields a suboptimal compression, and derived a new

compression scheme. We replaced the wavelet tree by more efficient and less memory-consuming

data structures called breakpoint array and integral array to facilitate fast dynamic queries of the

block sufficient statistics under arbitrary thresholds, without recomputing the Haar transform at

every iteration. For an efficient constructor of these data structures, we developed a linear-time,

in-place algorithm called maxlet transform to compute the maximum absolute detail coefficients,

as well as an equivalent algorithm for multivariate data which incurs only logarithmic overhead in

a streaming setting. We also developed a linear-time, in-place algorithm called the Haar boundary

transform to compute the maximum of all detail coefficients affecting the discontinuities in the

Haar wavelet regression at each position given arbitrary thresholds. Furthermore, we provided

an efficient, queue-based data structure to store and update posterior state marginals during

Gibbs sampling. Beyond a proof of concept, we have released our implementation in a software

called HaMMLET under an open-source license at https://github.com/wiedenhoeft/HaMMLET.

We have demonstrated that large-scale HMM inference can be performed on consumer hardware

within a few minutes. We have demonstrated that plausible CNV candidates can be found using

large-scale whole-genome sequencing data, and derived new scientific hypotheses about the role

of CNV in the domestication syndrome. We are confident that HaMMLET is widely applicable to

experimental data from current and future CNV technologies.

While we conjecture that HaMMLET achieves an approximation of MPM segmentation based

on theoretical considerations and experimental results, the approximation of true posterior state

margins remains an open challenge. Corrections for forward bias are not straightforward under

constantly changing emission parameters during Gibbs sampling. Such a correction would also

lead to the paradoxical situation that compression assumes exchangeability within each block,

yet one of the fundamental properties of HMM is the ability to capture non-exchangeability of

consecutive observations. We have ignored this question in the scope of this thesis, since real-life

applications of CNV detection are often consistent with the weak path assumption. For more

general applications, careful consideration should be given to those questions.

https://github.com/wiedenhoeft/HaMMLET
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Appendix A

Significant pathways in rat populations

In this appendix, we report the genes affected by CNV segregating between tame and aggressive

rat populations, as inferred by HaMMLET. Tables represent GO term enrichment for the “biological

process” sub-root of the gene ontology. Tables are sorted according to the most significant p-value

corrected for multiple testing. The columns are: Gene symbol, Description, Entrez Gene ID, and

the Ensembl ID with the leading “ENSRNOG” (Ensembl prefix for Rattus norvegicus) as well as

the padding zeros removed.
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GO:0007416: synapse assembly (p = 0.0028)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Cdh2 cadherin 2 83501 15602

Ephb1 Eph receptor B1 24338 7865

Nrg1 neuregulin 1 112400 10392

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

GO:0010646: regulation of cell communication (p = 0.0064)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Cdh2 cadherin 2 83501 15602

Ephb1 Eph receptor B1 24338 7865

Myo9b myosin IXb 25486 16256

Gria4 glutamate receptor, ionotropic, AMPA 4 29629 6957

Camk2g calcium/calmodulin-dependent protein kinase II gamma 171140 9783

Plau plasminogen activator, urokinase 25619 10516

Sall1 sal-like 1 (Drosophila) 307740 –

Cyth1 cytohesin 1 116691 43381

Epha4 Eph receptor A4 316539 13213

Ppp3cb protein phosphatase 3, catalytic subunit, beta isozyme 24675 7757

Scoc short coiled-coil protein 364981 3853

Egfr epidermal growth factor receptor 24329 4332

Nrg1 neuregulin 1 112400 10392

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Rheb Ras homolog enriched in brain 26954 –

Uaca uveal autoantigen with coiled-coil domains and ankyrin repeats 315732 –

GO:0051674: localization of cell (p = 0.0064)

Cdh2 cadherin 2 83501 15602

Ddr2 discoidin domain receptor tyrosine kinase 2 685781 2881

Ephb1 Eph receptor B1 24338 7865

Epha4 Eph receptor A4 316539 13213

Myo9b myosin IXb 25486 16256

Egfr epidermal growth factor receptor 24329 4332

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Nrg1 neuregulin 1 112400 10392

Plau plasminogen activator, urokinase 25619 10516

Dcdc2 doublecortin domain containing 2 291130 17511

Vcl vinculin 305679 10765
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GO:0030010: establishment of cell polarity (p = 0.0064)

Sdccag8 serologically defined colon cancer antigen 8 305002 4181

Ephb1 Eph receptor B1 24338 7865

Cyth1 cytohesin 1 116691 43381

Myo9b myosin IXb 25486 16256

GO:0050808: synapse organization (p = 0.0064)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Cdh2 cadherin 2 83501 15602

Ephb1 Eph receptor B1 24338 7865

Nrg1 neuregulin 1 112400 10392

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

GO:0051969: regulation of transmission of nerve impulse (p = 0.0064)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Egfr epidermal growth factor receptor 24329 4332

Cdh2 cadherin 2 83501 15602

Gria4 glutamate receptor, ionotropic, AMPA 4 29629 6957

Camk2g calcium/calmodulin-dependent protein kinase II gamma 171140 9783

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Rheb Ras homolog enriched in brain 26954 –

GO:0016477: cell migration (p = 0.0064)

Cdh2 cadherin 2 83501 15602

Ddr2 discoidin domain receptor tyrosine kinase 2 685781 2881

Ephb1 Eph receptor B1 24338 7865

Epha4 Eph receptor A4 316539 13213

Myo9b myosin IXb 25486 16256

Egfr epidermal growth factor receptor 24329 4332

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Nrg1 neuregulin 1 112400 10392

Plau plasminogen activator, urokinase 25619 10516

Dcdc2 doublecortin domain containing 2 291130 17511

Vcl vinculin 305679 10765
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GO:0031644: regulation of neurological system process (p = 0.0064)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Egfr epidermal growth factor receptor 24329 4332

Cdh2 cadherin 2 83501 15602

Gria4 glutamate receptor, ionotropic, AMPA 4 29629 6957

Camk2g calcium/calmodulin-dependent protein kinase II gamma 171140 9783

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Rheb Ras homolog enriched in brain 26954 –

GO:0046777: protein autophosphorylation (p = 0.0064)

Egfr epidermal growth factor receptor 24329 4332

Ddr2 discoidin domain receptor tyrosine kinase 2 685781 2881

Ephb1 Eph receptor B1 24338 7865

Epha4 Eph receptor A4 316539 13213

Camk2g calcium/calmodulin-dependent protein kinase II gamma 171140 9783

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

GO:0048870: cell motility (p = 0.0064)

Cdh2 cadherin 2 83501 15602

Ddr2 discoidin domain receptor tyrosine kinase 2 685781 2881

Ephb1 Eph receptor B1 24338 7865

Epha4 Eph receptor A4 316539 13213

Myo9b myosin IXb 25486 16256

Egfr epidermal growth factor receptor 24329 4332

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Nrg1 neuregulin 1 112400 10392

Plau plasminogen activator, urokinase 25619 10516

Dcdc2 doublecortin domain containing 2 291130 17511

Vcl vinculin 305679 10765

GO:0021955: central nervous system neuron axonogenesis (p = 0.0064)

Ephb1 Eph receptor B1 24338 7865

Epha4 Eph receptor A4 316539 13213

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

GO:0050804: regulation of synaptic transmission (p = 0.0068)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Egfr epidermal growth factor receptor 24329 4332

Gria4 glutamate receptor, ionotropic, AMPA 4 29629 6957

Camk2g calcium/calmodulin-dependent protein kinase II gamma 171140 9783

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Rheb Ras homolog enriched in brain 26954 –
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GO:0048813: dendrite morphogenesis (p = 0.0068)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Ephb1 Eph receptor B1 24338 7865

Epha4 Eph receptor A4 316539 13213

Dcdc2 doublecortin domain containing 2 291130 17511

GO:0019226: transmission of nerve impulse (p = 0.0068)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Cdh2 cadherin 2 83501 15602

Ephb1 Eph receptor B1 24338 7865

Egfr epidermal growth factor receptor 24329 4332

Gria4 glutamate receptor, ionotropic, AMPA 4 29629 6957

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Nrg1 neuregulin 1 112400 10392

Camk2g calcium/calmodulin-dependent protein kinase II gamma 171140 9783

Rheb Ras homolog enriched in brain 26954 –

GO:0055083: monovalent inorganic anion homeostasis (p = 0.0068)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

GO:0055064: chloride ion homeostasis (p = 0.0068)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

GO:0030644: cellular chloride ion homeostasis (p = 0.0068)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

GO:0030320: cellular monovalent inorganic anion homeostasis (p = 0.0068)

Stab2 stabilin 2 282580 –

Cdh2 cadherin 2 83501 15602

Ephb1 Eph receptor B1 24338 7865

Cyth1 cytohesin 1 116691 43381

Egfr epidermal growth factor receptor 24329 4332

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Nrg1 neuregulin 1 112400 10392

Plau plasminogen activator, urokinase 25619 10516

Vcl vinculin 305679 10765

Cdh19 cadherin 19, type 2 360835 29841

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916
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GO:0007155: cell adhesion (p = 0.0068)

Stab2 stabilin 2 282580 –

Cdh2 cadherin 2 83501 15602

Ephb1 Eph receptor B1 24338 7865

Cyth1 cytohesin 1 116691 43381

Egfr epidermal growth factor receptor 24329 4332

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Nrg1 neuregulin 1 112400 10392

Plau plasminogen activator, urokinase 25619 10516

Vcl vinculin 305679 10765

Cdh19 cadherin 19, type 2 360835 29841

GO:0006928: cellular component movement (p = 0.0068)

Cdh2 cadherin 2 83501 15602

Ddr2 discoidin domain receptor tyrosine kinase 2 685781 2881

Ephb1 Eph receptor B1 24338 7865

Epha4 Eph receptor A4 316539 13213

Myo9b myosin IXb 25486 16256

Elmo1 engulfment and cell motility 1 361251 18726

Egfr epidermal growth factor receptor 24329 4332

Plau plasminogen activator, urokinase 25619 10516

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Nrg1 neuregulin 1 112400 10392

Dcdc2 doublecortin domain containing 2 291130 17511

Vcl vinculin 305679 10765

GO:0035637: multicellular organismal signaling (p = 0.0089)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Cdh2 cadherin 2 83501 15602

Ephb1 Eph receptor B1 24338 7865

Egfr epidermal growth factor receptor 24329 4332

Gria4 glutamate receptor, ionotropic, AMPA 4 29629 6957

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Nrg1 neuregulin 1 112400 10392

Camk2g calcium/calmodulin-dependent protein kinase II gamma 171140 9783

Rheb Ras homolog enriched in brain 26954 –
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GO:0007268: synaptic transmission (p = 0.0089)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Ephb1 Eph receptor B1 24338 7865

Egfr epidermal growth factor receptor 24329 4332

Gria4 glutamate receptor, ionotropic, AMPA 4 29629 6957

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Nrg1 neuregulin 1 112400 10392

Camk2g calcium/calmodulin-dependent protein kinase II gamma 171140 9783

Rheb Ras homolog enriched in brain 26954 –

GO:0007267: cell-cell signaling (p = 0.0089)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Ephb1 Eph receptor B1 24338 7865

Ppp3cb protein phosphatase 3, catalytic subunit, beta isozyme 24675 7757

Egfr epidermal growth factor receptor 24329 4332

Gria4 glutamate receptor, ionotropic, AMPA 4 29629 6957

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Nrg1 neuregulin 1 112400 10392

Camk2g calcium/calmodulin-dependent protein kinase II gamma 171140 9783

Rheb Ras homolog enriched in brain 26954 –

Sall1 sal-like 1 (Drosophila) 307740 –

GO:0048858: cell projection morphogenesis (p = 0.0105)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Cdh2 cadherin 2 83501 15602

Ephb1 Eph receptor B1 24338 7865

Epha4 Eph receptor A4 316539 13213

Myo9b myosin IXb 25486 16256

Egfr epidermal growth factor receptor 24329 4332

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Dcdc2 doublecortin domain containing 2 291130 17511
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GO:0000902: cell morphogenesis (p = 0.0105)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Cdh2 cadherin 2 83501 15602

Ephb1 Eph receptor B1 24338 7865

Epha4 Eph receptor A4 316539 13213

Myo9b myosin IXb 25486 16256

Egfr epidermal growth factor receptor 24329 4332

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Nrg1 neuregulin 1 112400 10392

Dcdc2 doublecortin domain containing 2 291130 17511

Sall1 sal-like 1 (Drosophila) 307740 –

GO:0007163: establishment or maintenance of cell polarity (p = 0.0105)

Sdccag8 serologically defined colon cancer antigen 8 305002 4181

Ephb1 Eph receptor B1 24338 7865

Cyth1 cytohesin 1 116691 43381

Myo9b myosin IXb 25486 16256

GO:0032990: cell part morphogenesis (p = 0.0114)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Cdh2 cadherin 2 83501 15602

Ephb1 Eph receptor B1 24338 7865

Epha4 Eph receptor A4 316539 13213

Myo9b myosin IXb 25486 16256

Egfr epidermal growth factor receptor 24329 4332

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Dcdc2 doublecortin domain containing 2 291130 17511

GO:0040011: locomotion (p = 0.0114)

Cdh2 cadherin 2 83501 15602

Ddr2 discoidin domain receptor tyrosine kinase 2 685781 2881

Ephb1 Eph receptor B1 24338 7865

Epha4 Eph receptor A4 316539 13213

Myo9b myosin IXb 25486 16256

Egfr epidermal growth factor receptor 24329 4332

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Nrg1 neuregulin 1 112400 10392

Plau plasminogen activator, urokinase 25619 10516

Dcdc2 doublecortin domain containing 2 291130 17511

Vcl vinculin 305679 10765



127

GO:0050770: regulation of axonogenesis (p = 0.0114)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Cdh2 cadherin 2 83501 15602

Epha4 Eph receptor A4 316539 13213

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

GO:0023051: regulation of signaling (p = 0.0114)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Cdh2 cadherin 2 83501 15602

Ephb1 Eph receptor B1 24338 7865

Myo9b myosin IXb 25486 16256

Gria4 glutamate receptor, ionotropic, AMPA 4 29629 6957

Camk2g calcium/calmodulin-dependent protein kinase II gamma 171140 9783

Plau plasminogen activator, urokinase 25619 10516

Sall1 sal-like 1 (Drosophila) 307740 –

Cyth1 cytohesin 1 116691 43381

Epha4 Eph receptor A4 316539 13213

Ppp3cb protein phosphatase 3, catalytic subunit, beta isozyme 24675 7757

Egfr epidermal growth factor receptor 24329 4332

Nrg1 neuregulin 1 112400 10392

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Rheb Ras homolog enriched in brain 26954 –

Uaca uveal autoantigen with coiled-coil domains and ankyrin repeats 315732 –

GO:0048812: neuron projection morphogenesis (p = 0.0129)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Egfr epidermal growth factor receptor 24329 4332

Cdh2 cadherin 2 83501 15602

Ephb1 Eph receptor B1 24338 7865

Epha4 Eph receptor A4 316539 13213

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Dcdc2 doublecortin domain containing 2 291130 17511



128

GO:0051179: localization (p = 0.0129)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Cdh2 cadherin 2 83501 15602

Ddr2 discoidin domain receptor tyrosine kinase 2 685781 2881

Ephb1 Eph receptor B1 24338 7865

Sec24c SEC24 family, member C (S. cerevisiae) 685144 9042

Brca2 breast cancer 2 360254 1111

Myo9b myosin IXb 25486 16256

Elmo1 engulfment and cell motility 1 361251 18726

Camk2g calcium/calmodulin-dependent protein kinase II gamma 171140 9783

Plau plasminogen activator, urokinase 25619 10516

Dcdc2 doublecortin domain containing 2 291130 17511

Vcl vinculin 305679 10765

Tbc1d1 TBC1 (tre-2/USP6, BUB2, cdc16) domain family, member 1 360937 2180

Kcnt2 potassium channel, subfamily T, member 2 304827 13312

Stab2 stabilin 2 282580 –

Itln1 intelectin 1 (galactofuranose binding) 498284 4678

Ppp3cb protein phosphatase 3, catalytic subunit, beta isozyme 24675 7757

Epha4 Eph receptor A4 316539 13213

Cyth1 cytohesin 1 116691 43381

Ccdc91 coiled-coil domain containing 91 312863 –

Egfr epidermal growth factor receptor 24329 4332

Nrg1 neuregulin 1 112400 10392

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Uaca uveal autoantigen with coiled-coil domains and ankyrin repeats 315732 –

GO:0007265: Ras protein signal transduction (p = 0.0142)

Elmo1 engulfment and cell motility 1 361251 18726

Cdh2 cadherin 2 83501 15602

Epha4 Eph receptor A4 316539 13213

Nrg1 neuregulin 1 112400 10392

Cyth1 cytohesin 1 116691 43381

Myo9b myosin IXb 25486 16256
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GO:0032989: cellular component morphogenesis (p = 0.0142)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Cdh2 cadherin 2 83501 15602

Ephb1 Eph receptor B1 24338 7865

Epha4 Eph receptor A4 316539 13213

Myo9b myosin IXb 25486 16256

Egfr epidermal growth factor receptor 24329 4332

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Nrg1 neuregulin 1 112400 10392

Dcdc2 doublecortin domain containing 2 291130 17511

Sall1 sal-like 1 (Drosophila) 307740 –

GO:0030002: cellular anion homeostasis (p = 0.0177)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

GO:0018212: peptidyl-tyrosine modification (p = 0.0187)

Egfr epidermal growth factor receptor 24329 4332

Ddr2 discoidin domain receptor tyrosine kinase 2 685781 2881

Epha4 Eph receptor A4 316539 13213

Nrg1 neuregulin 1 112400 10392

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

GO:0018108: peptidyl-tyrosine phosphorylation (p = 0.0187)

Egfr epidermal growth factor receptor 24329 4332

Ddr2 discoidin domain receptor tyrosine kinase 2 685781 2881

Epha4 Eph receptor A4 316539 13213

Nrg1 neuregulin 1 112400 10392

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

GO:0009894: regulation of catabolic process (p = 0.0195)

Egfr epidermal growth factor receptor 24329 4332

Epha4 Eph receptor A4 316539 13213

Nrg1 neuregulin 1 112400 10392

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Myo9b myosin IXb 25486 16256

Uaca uveal autoantigen with coiled-coil domains and ankyrin repeats 315732 –

Scoc short coiled-coil protein 364981 3853
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GO:0030182: neuron differentiation (p = 0.0195)

Cacna1a calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 25398 2559

Cdh2 cadherin 2 83501 15602

Ephb1 Eph receptor B1 24338 7865

Epha4 Eph receptor A4 316539 13213

Egfr epidermal growth factor receptor 24329 4332

Ptk2 PTK2 protein tyrosine kinase 2 25614 7916

Nrg1 neuregulin 1 112400 10392

Cdk5rap1 CDK5 regulatory subunit associated protein 1 252827 15696

Dcdc2 doublecortin domain containing 2 291130 17511

Sall1 sal-like 1 (Drosophila) 307740 –
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