
PRICING PROBLEMS IN ONLINE MARKETS

by

CHAOLUN XIA

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

S. Muthukrishnan

And approved by

New Brunswick, New Jersey

October, 2018

c© 2018

Chaolun Xia

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

Pricing Problems in Online Markets

By CHAOLUN XIA

Dissertation Director:

S. Muthukrishnan

The Internet Economy includes various online markets with billions of transactions. In this

dissertation, we study pricing-related problems in both advertising markets and labor markets.

In an online advertising market, the advertiser pays for showing the ads to his target users.

Discovered by previous works [1, 2], the prices of showing ads to users with different attributes

vary a lot. Motivated by this observation, we develop two targeting algorithms to help an

advertiser reach more target users when he has a budget. The first algorithm with provable

guarantee is for the case when all the user information is completely revealed, and the second

one is for the case when the user information is partially present. We also crawled LinkedIn

and Facebook price to verify our algorithm. We further point out that these two algorithms

are feasible only if the pricing has arbitrage. As price arbitrage may hurt the market revenue,

we introduce arbitrage-free pricing for such markets, and finally propose three arbitrage-free

pricing algorithms with provable revenue guarantee for the market.

In a labor market with multiple workers and tasks, a worker possibly has several skills and

a task requires a worker with a certain skill. To fairly match workers and tasks, we introduce

the stable pricing mechanism by extending stable matching. We propose three truthful stable

pricing mechanisms with revenue guarantee to ensure the fairness for both workers and tasks.

ii

Acknowledgements

First, I need to give my simple, straightforward but truthful, accumulated and deep-seated grat-

itude to my adviser Prof. Shan Muthukrishnan. Without the luck to be Muthu’s student, it

would be impossible for me to complete this research. During the years in working with him,

I am impressed and influenced by his wisdom and kindness. I am sincerely grateful for all

kinds of supports, academic, mental, financial, etc., that I received from him. Even in our first

hangout conversation, I received much of encouragement from him. All of these constitute my

confidence and determination to finish this research.

I would like to thank Prof. Badri Nath, Prof. Desheng Zhang and Dr. Nitish Korula for

serving on my pre-defense and defense committee and providing me with insightful feedback

on my thesis work and presentation. I would like to thank Prof. Martin Farach-Colton and

Prof. William Steiger for serving on my qualifying committee and providing me with insightful

feedback on my research and presentation.

I would also like to thank Prof. Tina Eliassi-Rad. As my first-year adviser at Rutgers, she

introduced me to Rutgers PhD program, and provided me with valuable guidance at my early

stage of PhD research. Moreover, she also helped me build the connection with industry, i.e.

her recommendation to my first internship. Another warm thank you should go to Prof. Mor

Naaman who provided me, together with advisory, a variety of valuable guidance and support,

at my early stage of PhD research.

I feel honored and thankful to work with all my talented co-authors, including Ke Xie, Raz

Schwartz, Jeremy Ting, Daniela Vianna, Jun Hu, Yan Zhu, Saikat Guhua, etc. Although we did

not publish a paper together, but the discussion with Meng Li and Yan Wang directly inspired

a part of my research. Besides academic discussion, Qiang Ma and Jinyun Yan provided me

with valuable suggestions and help, constitute the success of this research.

I would also like to express my gratitude to my intern mentors, Yongkang Zhu (Google), Xu

iii

Ling (Google) and Jin Ou (Facebook). They not only provided me with professional mentorship

during my internship, but also gave me valuable and unique advice and help after the internship.

The experience of working with these talents indirectly contributes to the success of this thesis.

In the long journey, I am grateful for those who intentionally or unintentionally helped

me out of the hardship that I went through, chronologically including Eddie Xie, Tinglin Liu,

Sai Lv, Hao Shen, Yulong Yang, Lin Zhong, Jiayan Jiang, etc. I am also grateful for those

who provided me with honest opinions and helpful suggestions when I made tough decisions,

chronologically including Ying Zhan, Sai Lv, Jingjing Liu, Darja Kruševskaja, Priya Govindan,

etc. Special thanks should be given to a group of lovely, humorous, sincere and tolerant friends

– LangRenSha in New Jersey, who always cheered me up.

I would also give my gratitude to all the school staff who helped me during my study in

Rutgers.

Finally, I want to give my utmost thanks to my parents, Zhelei Xia and Hong Zhao, for their

unconditional support, and my wife, Yifei Yao, for her unconditional support and persistent

company across these years.

iv

Dedication

To my parents and wife

v

Table of Contents

Abstract . ii

Acknowledgements . iii

Dedication . v

List of Tables . ix

List of Figures . x

1. Introduction . 1

1.1. Overview of Online Markets . 2

1.2. Online Advertising Market . 7

1.2.1. Business Models . 8

1.2.2. Pricing Models . 10

1.2.3. User Targeting . 10

1.3. Online Labor Market . 11

1.4. Research Directions . 14

2. Targeting Algorithms in Online Advertising Markets 16

2.1. Introduction . 16

2.2. Problem Formulation . 18

2.3. The Algorithm for OSN-perspective . 20

2.4. The Algorithm for Advertiser-perspective . 22

2.4.1. Data-driven Heuristics . 23

2.4.2. Revised Greedy Strategies . 26

2.5. Price Data Acquisition . 27

2.5.1. Suggested Bid . 28

vi

2.5.2. Crawling Suggested Bids . 30

2.6. Experiments . 31

2.6.1. Budget Variation . 32

2.6.2. Price Variation . 33

2.7. Related Work . 33

2.8. Conclusions . 34

3. Arbitrage-free Pricing in Online Advertising Markets 36

3.1. Introduction . 36

3.2. Preliminary . 38

3.2.1. Pricing Model . 38

3.2.2. Problem Formulation . 39

3.2.3. Arbitrage-Free Pricing . 40

3.3. Theoretical Results . 41

3.3.1. Uniform Pricing Algorithm . 41

3.3.2. Non-uniform Pricing Algorithm . 44

3.3.3. A Generalized Setting: Minimal Demand 49

3.4. Experiments . 54

3.4.1. Optimal Arbitrage-free Pricing . 55

3.4.2. Approximate Allocation . 56

3.4.3. Uniform and Non-uniform Pricing . 57

3.5. Discussion . 59

3.6. Related Work . 59

3.7. Conclusion . 60

4. Stable Pricing in Online Labor Markets . 62

4.1. Introduction . 62

4.2. Preliminary . 64

4.2.1. Problem Formulation . 64

4.2.2. Stable Pricing Mechanism . 65

vii

4.3. Theoretical Results . 66

4.3.1. Existence of Stable Pricing Mechanism 67

4.3.2. Stable Mechanism with Uniform Pricing 67

4.3.3. Stable Mechanism with Non-uniform Pricing 73

4.3.4. Online Stable Mechanism with Uniform Pricing 82

4.4. Experiments . 85

4.4.1. Crawled AMT Dataset . 85

4.4.2. Evaluation on SMUP and SMNP . 86

4.4.3. Evaluation on OSMUP . 87

4.5. Related Work . 87

4.6. Conclusions . 88

5. Summary and Future Work . 90

References . 93

viii

List of Tables

2.1. Impact of different factors on p̂(S). 29

2.2. Crawled Facebook User Attributes . 30

2.3. Crawled LinkedIn User Attributes . 31

ix

List of Figures

1.1. The banner in the red box is a display ad on New Your Times 8

1.2. The two search results in the red box are the search ads on Google 9

1.3. The job ads on LinkedIn . 9

1.4. The interface of Facebook targeting system 11

1.5. The description of a web development task in Upwork 12

1.6. The description of a work in MTurk . 13

2.1. An example of the suggested bids provided by LinkedIn. 31

2.2. Increment with different amount of budget. 33

2.3. Performance with preferred characteristic sets in different prices. 34

3.1. Uniform pricing vs. Non-uniform pricing (compared with the “optimal” baseline) 55

3.2. Compare the approximate allocation (by Algorithm 3.3) with the optimal allo-

cation (by mincost maxflow) . 56

3.3. Compare the non-uniform pricings by Algorithm 3.2 and Algorithm 2.1 57

3.4. Convergence for non-uniform pricing (Algorithm 2.1) 58

3.5. Compare uniform pricing with non-uniform pricing 58

4.1. Specifying the requirement for a moving task 63

4.2. An augmenting path with 3 edges . 78

4.3. Distribution of task prices . 85

4.4. Distributions of revenue ratios . 87

x

1

Chapter 1

Introduction

A variety of blooming Internet-based markets constitute the great success of Internet Economy,

which has been witnessed worldwide during the past few decades. Individuals, companies,

governments and other organizations or groups are frequently interacting with each other and

completing numerous transactions in such markets. For instance, in online advertising markets,

e.g. Google and Facebook, an advertiser pays for promoting its products or brand to the poten-

tial consumers. In online labor markets, e.g. MTurk and TaskRabbit, an employer pays for a

task that needs to be done by freelancing workers.

The pricing issue is unavoidable for a market. Although plenty of pricing research has been

done in Economics and other fields, these Internet-based markets, which appeared recently, still

face unprecedented challenges to price the transactions or products. One of the most important

reasons is that unlike traditional markets, billions of users with large diversity are involved in

a single Internet-based market, and the products or services provided in such a market inherit

the diversity of users. Under this situation, the market has to tailor its business model to the

diversity of users. For example, in a data market that sells user-authorized information, users

with different privacy leakage should be compensated accordingly [3], otherwise no user would

be willing to share her information. In a crowdsourcing market, a worker, who has many

skills thus capable of many tasks, should be paid and matched fairly, otherwise she might

leave the market [4]. In an advertising market, the same ads may be charged differently to be

shown to different users because different user attributes are valuated differently by a single

advertiser. These business models imply that the products or services provided by different

users are different, thus their prices should depend on involved users. Consequently, although

these Internet-based markets with a variety of users run different business models, most of them

face a similar but distinct research challenge in pricing their transactions or products.

2

In this thesis, we focus on solving novel pricing-related problems in the Internet-based

advertising market and labor market. In the rest of this chapter, we first provide the overview

of online markets. Then we introduce the advertising market and the labor market, followed

by our contributions on the pricing-related problems in these two markets, in Section 1.2 and

1.3 respectively. Then we summarize the potential pricing-related research directions and the

connections between our works with others in Section 1.4.

1.1 Overview of Online Markets

Online market is a term that is used widely, sometimes known as electronic market or digital

market. This term has a broad meaning in its relatively short history, usually meaning differ-

ently to different people, which could be partially explained due to the lack of well-established

research. In this thesis, we refer an online market as a whole market where buyers and sellers

get connected through the Internet to complete online transactions for a specific type of products

or services. Same as traditional markets, online markets can be categorized with the economic

concepts, for instance, existence of competition (e.g. perfect completion and monopoly), the

market size, suppliers and consumers. Based on the provided products or services, online mar-

kets can be also classified into these specific but many categories, e.g. the online exchange

market (where, for example, stocks and Bitcoins are traded for profit), the online labor market,

the online data market, the online advertising market, the cloud market, the e-commerce market

(e.g. Amazon, eBay and Alibaba) and etc.

The major difference between traditional markets and online markets are the marketplaces.

While a traditional market consists of a set of traditional marketplaces, an online market con-

sists of one or more online marketplaces. Different from a traditional marketplace which is

often a location or area, an online marketplace is a system or platform based on the Internet

technologies where individuals and organizations execute commercial transactions. In such

online marketplaces, products and services that are direct or indirect are provided for sale. On-

line marketplaces have their own advantages over traditional marketplaces. For purchasers,

these online marketplaces provide a variety of efficient and economic purchasing options to

numerous products or services, e.g. from buying a book to hiring a worker. For suppliers, such

3

online marketplaces provide easily accessible platforms and opportunities to reach potential

customers, to establish new brands and to reduce sales risks. Besides the efficient access and

worldwide connection, as the techniques of artificial intelligence and big data grow quickly,

online marketplaces usually have a better understanding of their users, therefore can provide

techniques to facilitate the completion of transactions. For example, in Netflix, a well-designed

recommendation system will help users find their preferred movies. In online advertising mar-

kets, precise-targeting techniques are used to help advertisers to reach their potential customers

and improve user experience in watching ads. All these revolutionary techniques cannot be

applied without the support of online marketplaces.

Although online marketplaces (OMs) share many common properties, they are different

from each other in term of, for example, business models. In order to characterize and compare

OMs, we here discuss the classification methods of OMs, aiming to provide a clear view of the

distinctions among these OMs, especially the distinction between the online markets we stud-

ied in this thesis and other online markets. However, as new OMs with novel business models

emerge quickly, the taxonomy of OMs also involes. The methods to build the taxonomy are

studied as a research problem, e.g. [5, 6, 7, 8, 9]. The general criteria to put OMs into dif-

ferent but potentially overlapped categories include the three major components of an OM: (1)

involved sellers and buyers, (2) products or services in trade and (3) adopted pricing mecha-

nisms. Note that a single OM that runs multiple businesses may belong to multiple categories.

In this part, we summarize the mainstream methods to classify OMs. We first summarize three

ways to classify OMs based on the involved sellers and buyers:

• Number. Based on the numbers of involved sellers and buyers, we can classify OMs into

three categories: 1:M, M:1 and M:M. An OM that belongs to the 1:M category consists

only one (or very few) seller but many buyers. In such an OM, the single seller usually is

the platform. For example, in Amazon Cloud, the platform is the only seller to provide

virtual machines to many customers. Similarly, M:1 denotes many sellers and one (or

very few) buyer, and the only buyer is usually the platform. For example, DataCup pays

for collecting personal data from many users. M:M represents many buyers and sellers.

Most online labor marketplaces belong to this category, e.g. Amazon Mechanic Turk and

TaskRabbit. Compared with 1:M and M:1, the M:M marketplaces usually are closer to

4

perfect competition.

• Role. Either a seller or a buyer can be an individual or a business, so based on the roles

of sellers and buyers, we can classify OMs into B2B, B2C and C2C by extending these

concepts from e-commerce. In this thesis, B2B refers to the case where one business

makes a commercial transaction with another. For example, in Alibaba, factories are

trading intermediate goods with each other. B2C denotes the OMs where businesses sell

final products to customers, e.g. Amazon. In C2C marketplaces, customers are trading

with each other, e.g. eBay. In B2B, the buying decisions are more rational and the

relationship between buyers and sellers are usually long-term.

• Distinction. In many markets, there is a clear distinction between sellers and buyers. For

example, in Amazon Mechanical Turk, workers seldom become an employer to publish

tasks. However, a different category is the OMs where sellers and buyers can switch

frequently, e.g. the stock market and the Bitcoin market.

We next summarize the taxonomy of OMs based on what are in trade.

• Goods, Information or Services. In economics, a common distinction between goods

and services are that goods are tangible while services are non-physical. As information

can be also traded, we classify the OMs into three categories based on what are traded:

Normal Goods, Information Goods and Services. Information goods are traded in data

markets, e.g. Infochimps and DataCup. Services are provided by, for example, Uber and

Upwork. There are many OMs selling normal goods, e.g. Amazon and eBay.

• Vertical or Horizontal. [8] classifies OMs based on the type of products. Vertical OMs,

sometimes called industry-specific OMs, focus on aggregating the supply and demand

of products/services in a specific industry, aiming to optimizing the relationship between

buyers and sellers. Horizontal OMs, also known as functional OMs, aim to optimize spe-

cific functions in organizations through facilitating cross-industry transactions. Usually,

products/services that are common among multiple industries are provided in horizontal

OMs.

5

We finally summarize the methods to classify OMs based on how the prices of transactions

are determined as follows:

• Price Control. We can classify the OMs based on the ability to control the prices of

transactions:

– No Control. In online exchange marketplaces, the OM owner has no control over

the prices of transactions. Instead, the prices are fully determined by user bids

thus the supply and demand equilibrium. Usually, these OMs neither produce nor

consume products in trade, and they only provide exchange platforms to manage

transactions. Typical examples include the stock market and the Bitcoin market.

– Full Control. The other extreme category is the OMs which can set the prices for all

the products independent of current user bids which represent supply and demand.

For example, Amazon Cloud (excluding spot business) sets the prices for various

types of reserved virtual machines without asking customers for their bids, and

Uber charges the cost for a ride without asking users for their bids. In this category,

the prices are usually determined based on prior knowledge.

– Partial Control. There are also many OMs in between. For example, many online

advertising marketplaces use different auctions with reserved prices, thus the prices

of transactions, as the outcomes of auctions, are determined by three factors, i.e.

the user bids, the choice of auctions and the choice of reserved prices. Although

prices heavily depend on the user bids, the online advertising marketplaces have

control over the choice of auctions and reserved prices, so they have partial control

over the prices.

• Pricing Mechanism. OMs can be categorized by the pricing mechanisms that are used.

– Fixed Pricing. A fixed pricing mechanism does not adjust prices frequently over

time. This pricing mechanism is ideally used for OMs where the supply and de-

mand relationship is relatively steady, or there is long-term cooperation between

buyers and sellers. Using fixed pricing mechanisms can sometimes help buyers and

sellers to manage the budget.

6

– Auction. As variable pricing, auctions determine the market value of the products

based on supply and/or demand, usually in real time. There are various types of

auctions adopted by different markets, e.g. double auctions in the stock market,

sealed-bid auctions in the online advertising market. Different auctions are de-

signed for different purposes, e.g. maximizing revenue or social efficiency, thus

auctions bring some flexibility to the OMs.

With these classification methods, we are able to compare different OMs. In this thesis,

we focus on the online advertising market and the online labor market, so we compare current

online advertising marketplaces and online labor marketplaces with other OMs, e.g. online

exchange marketplaces and cloud marketplaces.

In term of involved buyers and sellers, there is a clear difference between online labor mar-

ketplaces and online advertising marketplaces. A large proportion of online labor marketplaces

belong to the M:M and C2C categories because current online labor marketplace usually have

many workers and employers, and a significant proportion of employers are individuals or non-

business organizations (e.g. in TabskRabbit, many tasks are like home-moving). By contrast,

most closed-site online advertising marketplaces (e.g. sponsored search advertising and social

network advertising) belong to the 1:M and B2B categories because advertisers as the buyers

are usually companies and the platform (e.g. a search engine or a social network) is the only

seller. From this perspective, many online exchange marketplaces (e.g. stock and Bitcoin ex-

changes) are similar to online labor markets, i.e. M:M and C2C because a large proportion of

stock and Bitcoin accounts are personal. However, in online exchange markets, there is no clear

distinction between buyers and sellers because a buyer (or a seller) can switch to a seller (or a

buyer) easily, which makes online exchange markets significantly different from other online

markets. Cloud marketplaces are similar with online advertising marketplaces, i.e. 1:M and

B2B.

From the perspective of products or services in trade, online labor markets provide labor

services to employers, e.g. tagging an image and moving a home. Online advertising markets

provide the services that lead to successful sales of products for advertisers, and cloud markets

provide virtual machines as the products. Despite of differences, the services or products pro-

vided by these three markets bring a specific and practical function to the buyers, thus directly

7

increase the utility of buyers. However, in online exchange markets, buying any product which

is specific for exchange cannot directly increase buyers’ utility, i.e. a unit of stock or Bitcoin

cannot be used or consumed directly.

When compared through pricing mechanisms, online markets are different from each other.

In most exchange markets, the marketplaces have no control over the prices. For example, any

Bitcoin exchange has no power to set the price of Bitcoin without becoming a buyer or seller.

Therefore, exchange markets have no need to solve pricing problems similar with what are

discussed in this thesis. But many other online markets are different from exchange markets.

In labor markets, the marketplaces have different pricing policy. For example, in Upwork, the

price of a task is usually decided by the negotiation between the worker and the employer, thus

the marketplace has no control over the prices either. Although the price of a task is determined

by the employer, Amazon Mechanical Turk uses fixed pricing to additionally charge a task

requiring workers with specific attributes. For example, the employer needs to pay 25 cents

in addition to hire a worker from age 30 to 35. Thus, AMT has partial control over the task

prices. In TaskRabbit, prices are automatically set for some tasks through a function named

QuickAssign. With this function, the marketplace has full control over the labor prices. In

online advertising markets, many marketplaces have partial control over ads prices by using

auctions with reserved prices. This is similar to the spot business in cloud markets, however,

many cloud marketplaces use fixed pricing to fully control the prices of virtual machines.

1.2 Online Advertising Market

Online advertising is one of the most important industries to the Internet Economy. In 2016, the

global online advertising markets have generated 178 billions of US dollars1, and this number

is estimated to be 204 billions in 2017, i.e. with 14.6% annual growth rate. Even in the US

where the markets and techniques of online advertising are highly developed, the annual growth

rate from 2016 to 2017 is still steady and significant – 15.9%, much larger than the annual GDP

growth rate of the US. Moreover, online advertising markets are still expected to grow quickly

in future.

1https://www.statista.com/statistics/246567/global-online-advertising-revenue/

https://www.statista.com/statistics/246567/global-online-advertising-revenue/

8

1.2.1 Business Models

As the techniques and business are both developing, online advertising markets are now provid-

ing various forms of ads to their customers with different needs. For example, a movie trailer

can be shown on YouTube; a job post may appear on LinkedIn, and a sponsored search may

come up when a user is using a search engine. In general, online advertising can be categorized

into different, but often overlapping businesses:

• Display Advertising. On a website as a publisher, display ads often appear in obvious

sections that are intentionally designed and reserved for paid ads, e.g. a banner, text

box or video box. The advertising companies whose business includes display ads are

Google, Facebook, mMedia, etc. For example, Fig 1.1 shows the display ad placed in the

banner on the website of New York Times.

Figure 1.1: The banner in the red box is a display ad on New Your Times

• Search Advertising. Ads of this type are specifically run by search engines, e.g. Google,

Microsoft and Yahoo. Usually, search ads are placed on the web page that demonstrates

search results for a given search query. Search ads are targeted for those search engine

users who have matched input search terms, e.g. “buy car” in Fig 1.2. One of the rea-

sons to the success of this business model is that many users often use a search engine

to identify and compare purchasing options immediately before making a purchasing de-

cision. As search terms often reflect search engine users’ interests and intentions, spon-

sored search ads are able to offer highly relevant information and purchasing options to

a search engine user based on her search query.

• Social Advertising. In social networks, social ads are often placed between two posts in

9

Figure 1.2: The two search results in the red box are the search ads on Google

the timeline, or other positions, e.g. sidebars. Fig 1.3 shows the ad – a job description

– in the timeline of LinkedIn. Social platforms providing social advertising are able to

collect more user information from user input. For example, LinkedIn knows the past

working experience of its users, and Facebook knows a user’s social relationship. With

such collected or inferred user information, social platforms provide a unique targeting

system for advertisers to reach their audience in a more accurate way.

Figure 1.3: The job ads on LinkedIn

• Video Advertising. A video ad is generally considered as a short video containing spon-

sored information which appears before, during and/or after a video stream. One typical

example of video ads is a movie trailer appearing within a YouTube video.

10

1.2.2 Pricing Models

The major pricing models used by major advertising platforms include:

• CPM (cost per mille) is the cost for every one thousand impressions. An impression,

sometimes known as an ad view, is a term that refers to the case that an ad is viewed once

by a user, or displayed once on a web page.

• CPC (cost per click), as a performance-based metric, is the cost for a user click on the

ad, no matter how many impressions are served trying to get the click.

• CPA (cost per action), as another performance-based metric, is the cost for a customized

user action, no matter how many impressions/clicks are served trying to get the action.

An action could be, for example, the purchase of a product, installment of an app and the

membership registration.

1.2.3 User Targeting

Online advertising platforms provide targeting systems to grant an advertiser with the precise

control over the users who will see his ads. Their targeting languages contain detailed infor-

mation shared directly by users, inferred from user daily activities and social relationship, or

purchased from third-part data providers. This includes detailed educational records about the

user, past and present employment experience, significant life events like changes in marital

status or birth of a baby. For example, in LinkedIn, an Internet company can accurately deliver

its job ads to fresh graduates with machine learning skills; in Facebook, a luxury car dealer can

restrict that only the local and rich users could be exposed to its ads. Fig 1.4 shows the interface

of Facebook targeting system, and the audience are restricted to New Jersey, with 30+ years

old, and with annual income over $500, 000.

The ad market, which provides a variety of user attributes as the targeting options, , faces a

pricing problem to set the optimal price for each user attribute – it is natural to allow that the

costs of showing an ad to users with different attributes should not be always the same. The

price of a targeting option in many advertising markets are usually decided by auctions, e.g.

GSP [10] and VCG [11, 12, 13], or fixed prices. In our work [14], we propose arbitrage-free

11

Figure 1.4: The interface of Facebook targeting system

pricing algorithms to set the ideal price for each user attribute as an targeting option provided

by advertising markets, summarized in Chapter 3.

Provided with a plenty targeting options and their prices, advertisers not only have fine

control over their audience but also face a targeting problem – given a set of users with specific

attributes to target, the optimal strategies to split the budget over targeting options to reach as

many target users as possible. In our work [15], we propose two targeting algorithms to benefit

advertisers, summarized in Chapter 2.

1.3 Online Labor Market

As online labor markets have been continuously growing, we witness a promising alternative, or

even revolution, to traditional employment model for the global economy. These markets pro-

vide a novel method to connect various workers and employers all around the world. Moreover,

where, when and how the work is performed are redefined in such markets. For employers, be-

sides the more flexible and less time-consuming hiring process, they have a more economic

access to workers with a variety of specialized skills. For workers, as long as they have profes-

sional skills, they can start to make money at any time at any location. There are also all sorts of

tasks, simple or complex, short-term or long-term, ranging from recognizing birds from images

12

to building a large business intelligence system.

According to [16], there are two different but sometimes overlapping types of tasks:

• Microwork, where a task can be completed by a single worker within a short time, e.g.

a few minutes. To finish a microwork, usually the workers only need some basic nu-

meracy and literacy skills, e.g. image tagging, data entry and text transcription. Many

unemployed individuals without advanced professional skills are involved in the market

of microworks, e.g. Amazon Mechanical Turk (AMT) and CrowdFlower.

• Macrowork, where the task tends to be a larger project that requires longer time to

perform – days or months. For example, Upwork and Freelancer are providing such

macrowork. A macrowork usually prefers workers with a higher level of professional

skills, e.g. translation, software development and data analysis. For example, the Fig 1.5

shows the description of a web development task in Upwork. The estimated duration and

compensation are in the blue box, and the required skills are in the red box.

Figure 1.5: The description of a web development task in Upwork

The major difference between microwork and macrowork is the complexity and compensa-

tion of the task. As the professional barriers of taking a microwork are very low, the compensa-

tion of a microwork is usually small, making that a worker has to complete as many microworks

as possible to sustain a reasonable salary. Therefore, the quality of microworks are the major

concerns of the employers. There are many research to improve the quality, e.g. to select the

13

workers with some attributes that fit for a given task [17], to learn the true label from multiple

noisy labels [18], and to financially incentivize workers to produce higher quality [19]. In con-

trast, since specific skills are required by a macrowork, the hourly payment is usually higher,

making that macrowork becomes a good choice for many professionals who need part time

jobs. Through data analysis, [20] shows that the hiring probability is highly influenced by the

skillset of the worker. [21] models the expertise level of a worker’s skill.

Figure 1.6: The description of a work in MTurk

In most microwork markets, the payment of a task is set by the employer, e.g. 1 cent to

identify required information from image in AMT as shown in Fig 1.6. The workers can freely

choose to work on microworks of which they satisfy the basic qualifications. This business

model implies that a worker has to spend much time to identify the most profitable and suitable

microworks by herself [22]. Meanwhile, the microwork has very limited control of the workers

who works on it. In contrast, a macrowork often needs interviews before making hiring deci-

sions as shown in the yellow box in Fig 1.5, and the payment is sometimes negotiable rather

than solely decided by the employer.

Between the microwork and macrowork, many tasks belong to the overlap, e.g. translating

a single page of text. For such a task, taking interview might be too costly for the task owner,

but publishing it as a microwork, quality might be a concern. Therefore, the market needs a

pricing and matching system that is able to automatically do the followings:

• Determine the payment of a task

• Assign a proper worker to the task

• Treat both the worker and the task fairly

With such a system, a worker no longer needs to spend time in interviewing for tasks

or identifying profitable tasks by herself because the system is guaranteed to treat her fairly,

and similarly, a task no longer needs to struggle in interviewing candidates or determining (or

14

negotiating) the payment because the system will do all of these automatically. In our work

[4] which summarized in Chapter 4, we address this problem in the following steps. We first

identify the cases that automatic pricing and matching will possibly treat workers and/or tasks

unfairly if the market simply aims to maximize the revenue. After that, we formulate the novel

research problem – revenue-maximizing stable pricing problem. To tackle this problem, we first

propose a truthful, stable mechanism with randomized uniform pricing with revenue guarantee,

then we extend this mechanism with non-uniform pricing. Finally, we design an online stable

mechanism for the case when tasks come online.

1.4 Research Directions

In this thesis, we contribute to the answers to the following three pricing-related research di-

rections that are interested by the Internet-based markets.

The first research direction is analyzing the current prices. According to both theories

and experience, the strategies of entities in the market are highly influenced by the prices.

Therefore, to understand the current prices of a market is one of the most important ways to

understand the status quo of the market. In advertising markets, [2] analyzes the auction prices

of Facebook advertising market by reverse engineering its suggested bids, and [23] explores the

ads prices considering privacy. Beyond advertising, [24] analyzes the spot prices in the Amazon

cloud market, [25] investigates the costs in the Amazon crowdsourcing market, and [26] studies

the patterns of surge prices in Uber ridesharing market. In our work [1], we crawled the prices

data from LinkedIn and Facebook advertising markets, and through analysis, we find that the

prices of showing ads to users with different attributes vary a lot. Our analysis results are used

for verifying the hypotheses, which provides the core insights for the data-driven algorithm in

Chapter 2.4.

The second research direction is the optimal buying strategies when buyers are given some

knowledge of the current prices. Rationally, a smart buyer would explore the optimal buying

strategies to benefit his own business by exploiting the knowledge of the prices in the market.

For example, [27] and [28] study the optimal bidding strategies in the sponsored search ads

market and the cloud market respectively. In our work [15], we formulate and solve a novel

15

targeting problem to find the optimal targeting strategy for advertisers (as the buyers in the

advertising market) given the analysis results of the current prices, which is summarized in

Chapter 2.

The last but not least research direction is the optimal pricing strategy for the market or

sellers. A market owner or sellers are seeking to price the transactions or products properly

to maximize their revenue or other measurable benefits, sometimes in long term. Rich pricing

research has been provided for this issue. [29] studies the revenue maximization problem for

envy-free pricing, which is one representative equilibrium pricing in a variety of economic

settings [30]. In advertising markets, various auction methods are used, e.g. GSP [10] and

VCG [11, 12, 13]. In data markets, price arbitrage occurs among queries when one query

can be determined by a group of other queries, and [31] proposes an arbitrage-free pricing for

queries. In our work [14], we find that a market with a variety of users has similar but distinct

arbitrage problems because a single user may have many attributes, and we propose a revenue-

maximizing arbitrage-free pricing for the market owner, which is summarized in Chapter 3.

Moving to the labor market, we find that the revenue-maximizing pricing may treat workers

and/or employers unfairly. Therefore in our work [4], we propose stable pricing mechanisms

with guarantee of both revenue and fairness for the labor market, which is summarized in

Chapter 4.

16

Chapter 2

Targeting Algorithms in Online Advertising Markets

2.1 Introduction

Online advertising is one of the pillars in the Internet industry. In 2013, the online advertising

markets generated 42.8 billion dollars in revenue in the US alone1. An online advertising

market allows advertisers to pay for targeting (by showing ads to) specific audience through

its targeting language. Google AdWords, the largest online ad network, for instance, allows

advertisers to target users based on search terms from user input, the website (publisher) that the

user is browsing, and simple user demographics (gender, age, location). The cost of reaching a

user from a specific user set is set by auction mechanisms, e.g. second-price auction [32] or by

contracts.

Other online advertising markets, specifically that run by Facebook, LinkedIn and other

OSNs, offer much finer targeting controls. Their targeting languages contain detailed infor-

mation shared directly by users, inferred from user daily activities [33] or purchased from

third-part data providers. This includes detailed educational records about the user, past and

present employment experience, significant life events like changes in marital status or birth of

a baby. LinkedIn, for instance, allows advertisers to target a software engineer in Microsoft, or

a college student whose major is nursing. Obviously, the price to advertise users varies with

their characteristics [2]. For example, in a certain time period, the cost to target any software

engineer in Microsoft could be twice high as the cost to target a nursing student.

This motivates a natural targeting problem. Each user x has a set C(x) of characteristics.

An advertiser has set ST of characteristics of his interest and hence the set U(ST) of users

(for any x ∈ U(ST), ST ⊆ C(x)) is the advertisers’ preferred set of users to reach with

1http://www.statista.com/statistics/275883/online-advertising-revenue-in-the-us-by-half-year/

17

ads. The advertiser has some budget b0 and can split it to reach users with any combination

of characteristics. The optimal strategy is a way to split the budget so that the set T of users

reached has as much of U(ST) as possible, i.e., |T ∩ U(ST)| is maximized. We consider two

settings and our contributions are:

• OSN-perspective. An OSN can take in an advertiser’s preferred set and solve his

targeting problem. This is called proxy-bidding and OSNs (and other ad platforms like

AdWords) provide such a service. In this case, the OSN knows the precise mapping from

x to C(x) for any x. We present a polynomial algorithm that has 1 − 1/e approxima-

tion guarantee. In this algorithm, we first define the marginal increment ratio, and then

iteratively allocate budget to the characteristic sets with the largest ratio.

• Advertiser-perspective. If an advertiser were to solve the targeting problem

on his own with the price estimates provided by the OSNs, then the advertiser does not

know C(x) precisely for each x and only knows the number of users, i.e. |U(S)|, with

a given set S of characteristics. In this case, the advertiser cannot infer the overlap

between U(S1) and U(S2) for two different characteristic sets S1 and S2. We focus on

subset targeting, that is, given ST of interest to the advertiser, he splits budget between

Si’s such that U(Si) ⊆ U(ST) and U(Si)’s are pairwise disjoint. We propose a fast

greedy algorithm using subsets and study its performance empirically using a unique

dataset consisting of more than one million suggested bids from Facebook and LinkedIn

that we crawl.

The rest of this chapter is organized as follows. Section 2.2 introduces the background of

OSN advertising and formulates the problem. In Section 2.3, we describe the approximation

algorithm for OSN-perspective. In Section 2.4, we first propose two heuristics and based on

them we propose the greedy algorithm for Advertiser-perspective. We introduce the non-trivial

work of crawling the datasets in Section 2.5, and evaluate the greedy algorithm for Advertiser-

perspective in Section 2.6. We summarize related works in Section 2.7, and conclude in Section

2.8.

18

2.2 Problem Formulation

In OSN advertising markets considered in this chapter, e.g. Facebook and LinkedIn, an OSN

user x has one or more characteristics,and every characteristic contains exactly one attribute

a ∈ A and one value v ∈ D(a) of the attribute. For example, if a user has the characteristic

(Location:CA), it means that the OSN knows that the user lives (or works) in California. Let

A be the set of all attributes, e.g. A = {Location, Age, ...}, and D(a) be the domain of the

attribute a, e.g. D(Location) = {CA, NY, NJ,...}. Let S denote a set of characteristics and

U(S) denote the set of all the users who have all the characteristics in S. For example, if

c1 = (Location:CA) and c2 = (Gender:Female) and S1 = {c1, c2}, we say that U(S1) is the

set of all the users who are female and live in CA. But any user in U(S) could possibly have

other characteristics, e.g. (Age:18-21). Let A(S) denote the set of attributes involved in S, e.g.

A(S1) = {Location, Gender}.

When an advertiser wants to promote his campaign, we assume that he has a limited budget

b0 and a single preferred characteristic set ST , which means that the advertiser only wants to

target (by showing an ad to) users in U(ST). For example, a luxury car dealer in CA may only

want to target rich people in CA. To be clear, if the characteristic set of a user is a superset of

ST , the user is equivalently preferred by the advertiser, but a user who lacks any characteristic

in ST is not preferred. For example, a rich software engineer in CA, a rich banker in CA and

a rich woman in CA are assumed to be equivalently preferred by this car dealer, but a software

engineer in CA (without knowing s/he is rich) is not preferred by the dealer. For any S, the

number of its users (i.e. |U(S)|) and the price p(S) are public to advertisers. More specifically,

p(S) is the unit cost to target any user in U(S).

It is trivial to see that if an advertiser allocates budget b (≤ |U(S)| · p(S)) to target the

user set U(S), the number of targeted users is b
p(S) . We assume that these b

p(S) users are

uniformly sampled from U(S), i.e. each user x ∈ U(S) has the equal probability b
|U(S)|p(S)

to be targeted. Now we formulate the targeting as a maximization problem in Eq (2.1): given

the preferred characteristic set ST and the budget b0 from the advertiser and the price function

p(S) for any S from the OSN, we want to find an optimal allocation of budget, i.e. a vector

B = (B1, ..., BN) where Bi is the budget allocated to target the user set that corresponds to

19

the i-th characteristic set2 (i.e. U(Si)), to

maximize
B1,...,BN

∑
x∈U(ST)

min{1, f(x)}

subject to 0 ≤ Bi, ∀i ∈ {1, ..., N}
N∑
i=1

Bi ≤ b0

(2.1)

f(x) is the expected (total) number of times that the user x is targeted. In other words, if x is

preferred (i.e. x ∈ U(ST)), we say that the advertiser has reached f(x) unique preferred user

in expectation (by ignoring others). We use min{1, f(x)} to formulate the constraint that even

if any user is targeted more than once, we only count it as one targeted user. Thus, the expected

total number of reached preferred users is
∑

x∈U(ST) min{1, f(x)}. According to the uniform

assumption, f(x) is defined in Eq (2.2) where 1x∈U(Si) is an indicator function, returning 1 if

x ∈ U(Si) and 0 otherwise.

f(x) =
N∑
i=1

1x∈U(Si)
Bi

|U(Si)|p(Si)
(2.2)

However, in many OSN markets, e.g. Facebook, LinkedIn and Twitter, advertisers are

unable to evaluate the indicator function 1x∈U(Si) for any x and Si, because they are not allowed

to know which specific users have which specific characteristics for privacy concerns. Thus,

we consider two settings of the problem. For the first setting where 1x∈U(Si) is computable, we

name it as the OSN-perspective setting since OSNs has the complete knowledge. For the second

setting where 1x∈U(Si) is not computable, we name it as the Advertiser-perspective setting. For

the OSN-perspective setting, we propose a polynomial algorithm with performance guarantee,

and for the Advertiser-perspective setting, we propose a greedy algorithm based on reasonable

heuristics.

2Assuming that we have an ordered indexing, from 1 to N , for every characteristic set, and we will analyze the
size of N in Section 2.4.2.

20

2.3 The Algorithm for OSN-perspective

To present the algorithm, we first formulate Ri as the ratio of marginal increment (of the ob-

jective function in Eq (2.1)) to a small amount of budget allocated to the i-th characteristic set,

i.e. Si. We define that a user set U(S) is full if it is true that ∀x ∈ U(S) ∩ U(ST), f(x) ≥ 1.

In other words, being full means that every user belonging to the intersection U(S) ∩ U(ST)

has already been targeted for at least once in expectation. On the other hand, if U(S) is not

full, there always exists at least one user x such that x ∈ U(S) ∩ U(ST) and f(x) < 1. Thus,

for any U(Si) that is not full, we can always find a small εi ∈ (0, 1] such that f(x) + εi ≤ 1,

∀x ∈ U(Si) ∩ U(ST) and f(x) < 1. Let hi = max{f(x)|x ∈ U(Si) ∩ U(ST), f(x) < 1},

then the largest value of εi is 1 − hi. It is straightforward to see that if the advertiser allo-

cates εi · |U(Si)| · p(Si) dollars to target U(Si), the objective function will be increased by

εi
∑

x∈U(Si)∩U(ST) 1f(x)<1. Dividing the increment by the budget, we have Ri in Eq (2.3).

Ri =

∑
x∈U(Si)∩U(ST) 1f(x)<1

|U(Si)|p(Si)
(2.3)

The essential idea of the algorithm is that for each iteration, we first identify the charac-

teristic set Si∗ with the largest marginal increment, i.e. i∗ = argmaxiRi, and then allocate

budget to U(Si∗) till the budget is exhausted or U(Si∗) is full.

Algorithm 2.1 Approximation Algorithm
Input ST and b0 from the advertiser, pricing and mapping from the OSN.
Output (B1, ..., BN).

1: ∀x, f(x) = 0; ∀i ∈ [N], Bi = 0
2: repeat
3: i∗ ← argmaxiRi
4: ∆b← min{b0, |U(Si∗)|p(Si∗)(1− hi∗)}
5: Bi∗ ← Bi∗ + ∆b
6: for x ∈ U(Si∗) ∩ U(ST) do
7: f(x)← f(x) + ∆b

|U(Si∗)|p(Si∗)
8: end for
9: until b0 =

∑N
i=1Bi or ∀x ∈ ST , f(x) ≥ 1

10: return B

Proposition 2.1. The algorithm will stop after at most m iterations. With a proper prepro-

cessing, the running time for each iteration is O(m + N). Thus the overall time complexity is

21

O(m2 +mN) where3 m = |U(ST)| and N is the total number of characteristic sets.

Proof Sketch: In each iteration, there is at least one user x ∈ U(ST) whose f(x) is in-

creased to 1 (if there is no such a user, it means that the budget runs out and the algorithm

will stop immediately). Thus the algorithm will stop after at most m iterations. We can do

an O(mN) reprocessing (only once before “repeat” in line 2) to build the mapping between

all the users in U(ST) and all the characteristic sets. Moreover, we can maintain the values of∑
x∈U(Si)

1f(x)<1 for all Si and update them after we update f(x) between line 7 and 8, thus

the running time of each iteration becomes O(m+N).

We show that the greedy that maximizes the marginal value in Eq (2.3) yields 1 − 1/e

guarantee in Theorem 2.2. Here we extend the techniques in [34] (for budgeted maximum

coverage problem) to prove Theorem 2.2.

Theorem 2.2. Algorithm 2.1 is a 1− 1/e approximation to the targeting problem in the OSN-

perspective setting.

Proof. W.l.o.g. we assume that by using Algorithm 2.1, b0 is exhausted after exactly T > 0

iterations. Let Bt denote the budget allocation vector after t-th iteration and the allocated

budget is denoted by |Bt| =
∑N

i=1B
t
i . Let ct denote the budget allocated in the t-th iteration,

i.e. ct = |Bt| − |Bt−1|; g(B) is the value of objective function in Eq (2.1) given the allocation

B. It is easy to see that B0 = 0 and g(B0) = 0. We also assume that there exists an optimal

allocation B∗ (not necessarily unique) which maximizes the objective function (note that the

number of iterations to compute the optimal allocation is not necessarily T). Let j(t) ∈ [N]

denote the index of the characteristic set chosen by the algorithm at the t-th iteration (i.e. Sj(t)).

Lemma 2.3. After each iteration t ∈ [T], the following holds:

g(Bt) ≥
ct
b0
g(B∗) + (1− ct

b0
)g(Bt−1) (2.4)

Proof. Let B̂t−1 denote an allocation vector such that B̂t−1 = (max{Bt−1
i , B∗i })Ni=1. It is

trivial to see that |B̂t−1| − |Bt−1| ≤ b0. For any i such that Bt−1
i < B̂t−1

i , we can find

Ri ≤ Rj(t) since the marginal increment ratio Rj(t) chosen by Algorithm 2.1 is the largest at

3This is polynomial because the number of bits to represent the full membership of a user is N .

22

iteration t. Thus we have g(B̂t−1) − g(Bt−1) ≤ b0Rj(t). Noting that g(B∗) ≤ g(B̂t−1) and

Rj(t) = g(Bt)−g(Bt−1)
ct

, we prove the lemma.

Lemma 2.4. After each iteration t ∈ [T], the following holds:

g(Bt) ≥
(

1−
t∏

j=1

(1− cj
b0

)
)
g(B∗) (2.5)

Proof. We prove the lemma by induction on the number of iterations in which the allocation

Bt, t = 1, ..., T are considered. For t = 1, it is true by directly applying Lemma 2.3. Suppose

the statement of the lemma holds for iterations from 1 to t− 1, we show that it is also holds for

the t-th iteration.

g(Bt) ≥ ct
b0
g(B∗) + (1− ct

b0
)
(

1−
t−1∏
j=1

(1− cj
b0

)
)
g(B∗)

=
(

1−
t∏

j=1

(1− cj
b0

)
)
g(B∗)

(2.6)

Note that
∏T
t=1 (1− ct

b0
) ≤ (1− 1

T)T < 1
e , thus we have g(BT) ≥ (1− 1

e)g(B∗), proving

the theorem.

2.4 The Algorithm for Advertiser-perspective

Although the proposed algorithm in Section 2.3 has a desirable performance guarantee, it is not

practical to individual advertisers due to the two challenges as follows.

Huge Search Space. Algorithm 2.1 has a polynomial time complexity w.r.t. the num-

ber of all the characteristic sets, i.e. N , however, in the mainstream OSN advertising mar-

kets, N could be very large since the advertiser can compose a characteristic set by arbitrar-

ily choosing compatible4 characteristics. Even if we only allow that all the characteristics

in a characteristic set have different attributes (thus they are compatible to each other), there

4For example, the two characteristics (Location:CA) and (Age:18-21) are compatible to each other but (Age:18-
21) and (Age:22-24) are not because any user has only one number for her age. Whether any two characteristics
are compatible is decided by the OSNs. It is mostly likely safe to say that if any two characteristics with different
attributes, they are compatible.

23

are up to
∏
a∈A

(
|D(a)|+ 1

)
distinct characteristic sets (in our crawled LinkedIn dataset,

N ≈ 2.4× 1012)! This means that any practical algorithm cannot traverse all the characteristic

set even for once.

Incomplete Information. In the Advertiser-perspective setting, advertisers do not know

the value of the indicator function 1x∈U(Si) for any x and Si. To our best knowledge, in this

setting advertisers cannot even compute the objective function in Eq (2.1) in polynomial time

for a given allocation of budget.

2.4.1 Data-driven Heuristics

We propose two heuristics to address the two challenges respectively. For the huge search

space, we proposed the heuristic of subset targeting and verify it through a dataset of suggested

bids crawled from Facebook and LinkedIn. The detailed description of the dataset is in Sec-

tion 2.5. In short, we have 29420 distinct characteristic sets from Facebook and 8056 from

LinkedIn. For each S, we know p(S) and |U(S)|. To present the heuristics, we first define

cheap characteristic set in Definition 2.1.

Definition 2.1. We say a characteristic set S is cheap to ST iff |U(S)|·p(S) < |U(S)∩U(ST)|·

p(ST).

It implies that |U(S)∩U(ST)| > 0 is a necessary condition for any S to be cheap to ST . If

S is cheap to ST , according to the definition, it means that if the advertiser wants to target only

|U(S) ∩ U(ST)| preferred users, the cost to target U(S) is less than the cost to directly target

U(ST). Finding out cheap characteristic sets to ST is the essential idea to address the targeting

problem. We present the first heuristic as follows.

Heuristic 2.5 (Subset Targeting). For any preferred characteristic set ST , the algorithm only

needs to consider allocating budget to a set S of characteristic sets such that U(S) ⊆ U(ST),

∀S ∈ S.

Instead of directly targeting U(ST), in general, the advertiser could consider three types of

targeting strategies, namely superset targeting (i.e. targeting some S such thatU(S) ⊇ U(ST)),

subset targeting (i.e. U(S) ⊆ U(ST)) and overlap targeting (i.e. U(S)∩U(ST) 6= ∅ but neither

24

superset nor subset). It is trivial to see that targeting any S such that U(S)∩U(ST) = ∅ cannot

increase the objective function, thus the algorithm will never target disjoint characteristic sets.

To be clear, when we mention subset targeting for ST , it means that we find a characteristic set

S such that U(S) ⊆ U(ST) other than S ⊆ ST , similarly for superset and overlap targeting.

Heuristic 2.5 would be reasonable if for any ST and S, when U(S) is the superset of U(ST)

or is partially overlapped with U(ST), S has very low probability to be cheap to ST . If it is

true, we lose only a few cheap characteristic sets by ignoring superset and overlap targeting.

To verify this, we test the following three hypotheses through data analysis. Note that, for each

hypothesis we test it over all the data snapshots and report the average results.

Hypothesis 2.6 (Infeasibility of Superset Targeting). For any S and ST such that U(S) ⊇

U(ST), it is true that p(ST) ≤ p(S) |U(S)|
|U(ST)| .

The superset targeting strategy is that, instead of directly targeting U(ST) with the unit cost

p(ST), the advertiser targets a superset U(S) ⊇ U(ST). For example, instead of targeting any

software engineer in Microsoft, we target any employee in Microsoft. One necessary condition

for this strategy to be feasible is that we can reject Hypothesis 2.6. By examining all the

175392 pairs of characteristic sets (one’s user set is the superset of the other’s user set) from

Facebook, there is only 1.3 (< 0.01%) pair violating the hypothesis. Similarly in LinkedIn,

only 17 (≈ 0.07%) out of the 24420 pairs violate the hypothesis. These observations support

that if U(S) ⊇ U(ST), S is unlikely to be cheap to ST for any S and ST . Thus the hypothesis

is verified.

Hypothesis 2.7 (Infeasibility of Overlap Targeting). For any S and ST such that U(ST) 6⊆

U(S), U(S) 6⊆ U(ST) and U(ST) ∩ U(S) 6= ∅, it is true that p(ST) ≤ p(S) |U(S)|
|U(ST)∩U(S)| .

With this strategy, for instance, instead of targeting software engineers in Microsoft, we

target male employees in Microsoft. One necessary condition for this strategy to be feasible is

that we can reject Hypothesis 2.7. However, as we verify all the 326758 pairs of characteristic

sets (one’s user set is partially overlapped with the other’s user set) from Facebook, there are

only 56 (≈ 0.02%) pairs violating the hypothesis. Similarly, out of all the 16112 pairs of char-

acteristic sets from LinkedIn, there are only 15 (≈ 0.09%) violating pairs. These observations

confirm Hypothesis 2.7, thus the overlap targeting is infeasible.

25

Hypothesis 2.8 (Infeasibility of Subset Targeting). For any S and ST such that U(S) ⊆

U(ST), it is true that p(ST) ≤ p(S).

With this strategy, the advertiser can alternatively target a subset of U(ST). For example,

instead of targeting any software engineer in Microsoft, the advertiser only targets entry-level

software engineers in Microsoft. One necessary condition for this strategy to be feasible is that

we can reject Hypothesis 2.8. Surprisingly, we find that among all the 175392 pairs (one’s user

set is the subset of the other’s user set) of characteristic sets from Facebook, there are 93165

(≈ 53.1%) pairs violating the hypothesis. Similarly, out of all the 24420 pairs from LinkedIn,

we find 9430 (≈ 38.6%) violating pairs. These observations show that, both in Facebook and

LinkedIn, subset targeting are potentially feasible strategies to solve the targeting problem.

Through hypotheses testing, we show that for more than 99.9% cases, there is no cheap

characteristic set for superset or overlap targeting. Thus we conclude that the Heuristic 2.5 is

reasonable. Note that, any combination of the three targeting strategies still belongs to one of

them. For example, assuming U(S) is a subset of U(S′) and U(S′) is partially overlapped with

U(ST), it is easy to see that U(S) must be either a subset or an overlapped set of U(ST). This

means that although we only verify the three “simple” strategies, the verification indeed covers

all possible “paths”, i.e. any combination of the three strategies.

Next, the critical reason for the second challenge is that a user with multiple characteristics

appear in multiple (say k) user sets. If an allocation targets all the k user sets, we do not find any

polynomial method (w.r.t. N) to compute f(x) because we do not know the indicator function

1x∈U(S) for any x and S. However, if an allocation only targets k pairwise-disjoint subsets of

U(ST), this would not be a problem because once we allocate budget Bi to U(Si), the value

of objective function will be increased by |U(Si) ∩ U(ST)| · min{1, Bi
p(Si)|U(Si)|}. Thus, we

propose Heuristic 2.9.

Heuristic 2.9 (Disjoint Targeting). We only consider to allocate budget to a set of characteristic

sets whose corresponding user sets are pairwise disjoint.

Remark 2.10. Applying Heuristic 2.5 and 2.9 together, we consider to allocate budget to only

a set S of characteristic sets such that:

• ∀S ∈ S, U(S) ⊆ U(ST).

26

• ∀S 6= S′ ∈ S, U(S) ∩ U(S′) = ∅;

2.4.2 Revised Greedy Strategies

Based on the two heuristics, we propose a top-down greedy algorithm presented in 3 sub-

routines in Procedure 2.2, 2.3 and 2.4. Given ST and b0, by calling FINDSUBSETS(ST , b0)

it outputs the budget allocation in sparse representation. The result is a set L of pairs, i.e.

L = {(S, b)|b > 0}. Each pair (S, b) stands for the algorithmic decision that the advertiser

should allocate b dollars to targetU(S), and the advertiser is expected to reach unique b
p(S) users

in U(ST). By following the allocation L, the advertiser is expected to target
∑

(S,b)∈L
b

p(S)

users in U(ST).

Starting with the initial preferred characteristic set ST and initial budget b0, the algorithm

iteratively selects and adds the locally optimal characteristic to the current preferred charac-

teristic set (denoted by S(t); note that t, the iteration number, starts from 0 and S(0) = ST) to

construct a new preferred characteristic set S(t+1). It is easy to see thatU(S(t+1)) ⊆ U(S(t)) ⊆

... ⊆ U(ST) since the algorithm only adds characteristics. If the remaining budget b(t) (note

that b(0) = b0) is not enough to target all the users in U(S(t+1)), then we recursively call the

algorithm to solve another targeting problem with S(t+1) as the initial preferred characteris-

tic and b(t) as the total budget. Otherwise, by calling Procedure 2.4, the algorithm allocates

p(S(t+1)) · |U(S(t+1))| budget to fully target U(S(t+1)), and after this, the algorithm will select

and add another characteristic to S(t) to form a new current preferred characteristic set S′(t+1),

and repeats this process until all the users in U(ST) are targeted or the budget is exhausted.

Algorithm 2.2 Find Subsets
1: procedure FINDSUBSETS(S, b)
2: n← min{|U(S)|, b

p(S)}
3: a∗ ← argmax

a∈A\A(s)
EVALUATEATTRIBUTE(S, b, a)

4: if EVALUATEATTRIBUTE(S, b, a∗) > n then
5: return ALLOCATEBUDGET(S, b, a∗)
6: else
7: return {(S, b)}
8: end if
9: end procedure

Proposition 2.11. The time complexity of the algorithm is O(|A|2 + |A|
∑

a∈A |D(a)|2).

27

Algorithm 2.3 Evaluate Attribute
1: procedure EVALUATEATTRIBUTE(S, b, a)
2: D′ ← D(a), n← 0, V ← ∅
3: while b > 0 and D′ 6= ∅ do
4: v∗ ← argmin

v∈D′
p(S ∪ {(a : v)})

5: D′ ← D′ − {v∗}
6: if ∀v ∈ V , u({(a : v∗)}) ∩ u({(a : v)}) = ∅ then
7: S∗ ← S ∪ {(a : v∗)}
8: ∆n← min{|U(S∗)|, b

p(S∗)}
9: n← n+ ∆n

10: b← b− p(S∗)∆n
11: V ← V ∪ {v∗}
12: end if
13: end while
14: return n
15: end procedure

Proof Sketch: for any input pair (ST , b0), Procedure 2.2 and 2.4 will be called at most

|A| times each in total, and Procedure 2.3 will be called at most |A|2 times. The amor-

tized running time of the non-recursive operations in Procedure 2.2, 2.3 and 2.4 are O(|A|),

O(1
|A|
∑

a∈A |D(a)|2) and O(1
|A|
∑

a∈A |D(a)|2) respectively.

Note that, the time complexity is significantly lower than that of Algorithm 2.1 because this

algorithm does not enumerate all the characteristic sets as Algorithm 2.1 does, instead, it goes

through all the characteristics. Incorporating data-driven heuristics, it is not expected to have

performance guarantee. Thus we evaluate its effectiveness through experiments in Section 2.6.

2.5 Price Data Acquisition

In this section, we introduce the dataset we use to test the hypotheses in Section 2.4.1 and

evaluate the algorithm in Section 2.4.2, and the method that we crawl it. We need real price

data from OSN advertising markets. However, to our best knowledge, there is no such large

dataset available yet.

Fortunately, in order to guide advertisers who face a variety of targeting characteristic sets,

both Facebook and LinkedIn advertising markets provide Suggested Bid which is a function

that, for each characteristic set S, shows the suggested bid to win an action to show an ad to

28

Algorithm 2.4 Allocate Budget

1: procedure ALLOCATEBUDGET(S, b, a)
2: D′ ← D(a), n← 0, V ← ∅
3: while b > 0 and D′ 6= ∅ do
4: v∗ ← argmin

v∈D′
p(S ∧ 〈a : v〉)

5: D′ ← D′ − {v∗}
6: if ∀v ∈ V , u({(a : v∗)}) ∩ u({(a : v)}) = ∅ then
7: S∗ ← S ∪ {(a : v∗)}
8: if b ≥ |U(S∗)|p(S∗) then
9: R← R ∪ {(S∗, |U(S∗)| · p(S∗))}

10: b← b− |U(S∗)| · p(S∗)
11: else if A(s∗) 6= A then
12: return R ∪ FINDSUBSETS(S∗, b)
13: end if
14: V ← V + {v∗}
15: end if
16: end while
17: return R
18: end procedure

one user in U(S) and the number of users in U(S), i.e. |U(S)|. Moreover, through reverse-

engineering, the recent work in [2] finds that in Facebook, the suggested bids are sampled from

recent winning bids. This means that the suggested bid of a characteristic set S is the best

estimate, that we are able to get from real OSN advertising markets so far, of the cost, i.e. p(S),

of showing an ad to one user in U(S). Therefore, for any S, we use the suggested bid p̂(S) of

S to estimate p(S) for all the experiments in this chapter. Although there is no literature about

how LinkedIn generates suggested bids, we also include them for experiments.

2.5.1 Suggested Bid

We first introduce suggested bids. In the advertising systems of Facebook and LinkedIn, once

an advertiser creates an ad with a characteristic set S at time t, a suggested bid p̂(S) and the

number of users in U(S) are provided. It can be formulated as the function SB in Eq (2.7).

SB : (S, t)→ (p̂(S), |U(S)|) (2.7)

29

Factor
Impact on p̂(S)?

LinkedIn Facebook
Advertising History 7 3

OSN Activity 7 7

Profile 3 7

Budget 7 7

Ad Content 7 7

Table 2.1: Impact of different factors on p̂(S).

Verification. Besides S and t, there are many other factors, for example, ad content, adver-

tising history of the advertiser, social activities5 of the advertiser, profiles of the advertiser, and

total amount of budget, that we speculate that they might influence the suggested bid p̂(S). To

test existence of their influence, for each factor we conduct a simple A/B testing. Due to the

limited space, we omit the detail and summarize the testing results in Table 2.1. In LinkedIn,

if the advertiser’s profile shows that he is not in the US, p̂(S) will be slightly different. If an

advertiser has advertising records, Facebook might slightly adjust the suggested bid shown to

him. Since we want to use p̂(S) to approximate p(S) as close as possible, when we crawl

suggested bids, we try to fix all other factors as follows.

Take A Snapshot. We follow the method in [35] to take a snapshot of suggested bids.

Since suggested bids (and true costs) in Facebook are sensitive [2] to time, for a large number

of characteristic sets, we have to crawl their suggested bids simultaneously.

New Advertiser Accounts. We follow the setting in [1]. For crawling, we create and use

new advertiser accounts without any adverting history or social interaction. Each account’s

location is set to US. We choose Feed Ads (text ads shown in Timeline) which is a common

ads type in both Facebook and LinkedIn.

We create two crawlers interacting with Facebook [36] and LinkedIn [37] advertising sys-

tems respectively. Each interaction consists of two steps. First, a crawler logs in an advertiser

account, composes a characteristic set S and sends it to the OSN. The OSN returns the query

result (p̂(S), |U(S)|) to the crawler. Since the crawlers do not create or run real campaigns, the

advertising history of accounts remains empty during the entire crawling period. Besides, the

5The advertiser account of Facebook (or LinkedIn) is based on the normal Facebook (or LinkedIn) account.

30

Attribute
Domain

Size
Explanation
or Examples

Location 51 50 states and D.C.
Gender 2 Male, Famale

Age 8 Grouped in 5, e.g. 25-29
Income 10 Annual income interval

Education Level 13 Bachelor, Master
Ethnic Affinity 3 Hispanic, Asian, Africa

Table 2.2: Crawled Facebook User Attributes

crawling process neither costs money nor participates real auctions in the markets.

2.5.2 Crawling Suggested Bids

Facebook Ads Market. We first manually select 6 common targeting attributes and their 87

frequent values listed in Table 2.2 from Facebook advertising system. Thus we have 87 char-

acteristics. We enumerate all the characteristic sets with up to 3 distinct characteristics. As a

result, we get 29420 characteristic sets, among which there are 1, 87, 2311 and 27021 charac-

teristic sets with exactly 06, 1, 2 and 3 characteristics, respectively. The crawler simultaneously

issues the 29420 queries, each of which is for a characteristic set, as a snapshot. We take one

snapshot per day from July 2015 to Aug 2015. As a result, we have 35 such snapshots, i.e.

1029700 data in total. We test hypotheses or evaluate algorithms in Sec 2.4 on each snapshot

and report the average results over all the 35 snapshots. We use Facebook Ads APIs7 to build

the crawler.

LinkedIn Ads Market. Similarly for LinkedIn, we consider 8 common attributes and 449

of their frequent values in Table 2.3, thus we have 449 characteristics. We enumerate all the

characteristic sets with up to 2 distinct characteristics. As a result, we have 8311 characteristic

sets, among which there are 1, 449 and 8056 characteristic sets with exactly 0, 1 and 2 charac-

teristics, respectively. The crawler simultaneously issues the 8311 queries as a snapshot. We

harvest 4 snapshots, i.e. 33244 data in total from LinkedIn. Since LinkedIn does not release

6For any characteristic set, if we do not specify the location, it is the US by default. Thus, the empty characteristic
set corresponds to all the users in the US. It is similar for crawling LinkedIn data.

7https://developers.facebook.com/docs/graph-api

31

Attribute
Domain

Size
Explanation
or Examples

Location 51 50 states and D.C.
Industry 17 Agriculture, Medical

Skill 39 Programming, Cooking
Company Size 9 Number of employees

Company Name 171 Top US companies
Job Title 126 Sampled Job positions

Job Seniority 10 CXO, Director, Entry-level
Job Function 26 Sales, Support, Research

Table 2.3: Crawled LinkedIn User Attributes

open APIs for suggested bids, we use Python and Selenium (a web automation package) to

mimic real advertisers to harvest data from LinkedIn advertising interface. Fig 2.1 is an exam-

ple of the web page showing the suggested bid as 4.58$ and the number of qualifying users as

140950 for the characteristic set {(Location:CA),(Skill:C++)}.

(a) (b)

Figure 2.1: An example of the suggested bids provided by LinkedIn.

2.6 Experiments

In this section, we evaluate the greedy algorithm proposed for Advertiser-perspective setting

in Sec 2.4.2 with both Facebook and LinkedIn datasets that are introduced respectively in Sec

2.5.2. In short, we have 4 snapshots of suggested bids from LinkedIn and 35 snapshots from

Facebook, i.e. more than 1 million data in total. Since the algorithm follows subset targeting,

we do not consider any characteristic set already with 2 characteristics in LinkedIn or with 3

characteristics in Facebook as ST (because their user sets have no subset in the crawled data).

We also do not consider any characteristic set whose user set size is too small. For each of

32

the remaining characteristic sets, we consider it as ST in turn, i.e. the input for Procedure 2.2

(together with a budget). For each snapshot, we calculate the average results over all ST , and

then report the final average results over all snapshots.

2.6.1 Budget Variation

We first evaluate the algorithm for different budgets. We define the measurement budget-

increment curve as follows. The baseline algorithm that we consider is to target U(ST) directly,

which means the baseline can reach b0
p(ST) preferred users with the budget b0. A single evalu-

ation point (x, y) on the budget-increment curve, shown in Fig 2.2 and 2.3, denotes that if the

advertiser is given the budget enough to exactly target x (∈ (0, 1]) proportion of preferred users

by the baseline, our greedy algorithm can increase the number of reached preferred users by y

proportion, i.e. reach x(1 + y) proportion. In Facebook, we compute the curve for each of the

2399 characteristic sets (as ST). The overall budget-increment curve is presented by the blue

solid line in Fig 2.2. Similarly, we plot the overall budget-increment curve for 253 characteristic

sets from LinkedIn with the red solid line. The green dashed line is for the baseline.

We have the following observations. First, the less budget the advertiser has, the more ef-

fective the algorithm is. As shown in Fig 2.2, when the advertiser has very limited budget, e.g.

the budget is enough to target only a small portion x ∈ (0, 0.05] of the preferred users, by our

algorithm, he is able to target 40.8% more users on Facebook and 37.6% more on LinkedIn.

When the advertiser has enough budget to target 20% of the total preferred users by the base-

line, he is still able to target 24.9% more users in Facebook and 19.3% more in LinkedIn.

Second, when the budget is approaching to monopoly the entire user set, the effectiveness of

the algorithm is closed to 0, but it is guaranteed that the advertiser can target at least as many

users as the baseline does. The reason that the effectiveness appears to be decreasing is that

the user supplies of cheap characteristic sets are limited, and as the budget gradually increases,

the user supplies of those cheap characteristic sets gradually run out. Then the algorithm has

to allocate remaining budget to characteristic sets that are not cheap to ST . Third, although

Facebook and LinkedIn run different advertising markets, we find that our algorithm produces

budget-increment curves in a similar shape, which shows its generalizability.

33

Figure 2.2: Increment with different amount of budget.

2.6.2 Price Variation

We then evaluate the algorithm’s effectiveness when the cost of ST , i.e. p(ST), varies. For

LinkedIn, we create 5 price intervals, namely (0, 4.00], (4.00, 5.00], (5.00, 6.00], (6.00, 7.00]

and (7.00,+∞] (all prices are in the US dollar). Then we map all the 253 characteristic sets

into one of the 5 price intervals based on their prices. As a result, the 5 intervals get 5.4%,

27.2%, 28.5%, 17.5% and 21.4% of the total characteristic sets respectively. For each price

interval, we compute its individual budget-increment curve for each characteristic set assigned

to this interval, and then average them to get the interval-average curve. We process 2399 char-

acteristic sets from Facebook in the similar way. The results are shown in Fig 2.3(a) and 2.3(b).

We find that no matter how large p(ST) is, the proposed algorithm consistently outperforms

the baseline. As shown in Fig 2.3(b), the area under each budget-increment curve decreases as

the interval price decreases. This indicates that the larger p(ST) is, the larger effectiveness the

algorithm has, both on LinkedIn and Facebook.

2.7 Related Work

The knowledge of the price distributions can help advertisers make better decisions. If prices

are not known, advertisers can learn them with potential penalty during exploration [38]. In-

stead we focus on the case when the prices are known to advertisers. In sponsored search

markets, budget optimization (BO) is a well studied problem in [27][39][40][41]. When given

the landscapes of keywords, as pointed out by [42][43], the degenerated BO problem is an

34

(a) Facebook (b) LinkedIn

Figure 2.3: Performance with preferred characteristic sets in different prices.

instance of the Multiple-Choice Knapsack problem [44]. [39] proves that a simple random

strategy has the 1− 1/e guarantee.

However, instead of maximizing the profit, our problem has new challenges when the ad-

vertisers want to target a specific user segment in OSNs and to maximize the number of reached

unique preferred users. [45] proposes algorithms to identify a set of alternative topics [46] that

have (approximately) the same audience on a micro-blogging platforms for a targeting topic.

We point out that their algorithm is not applicable in our setting for the two following rea-

sons. First, they assume that advertisers have to purchase all the users in a set which is not

true in practice. Second, they only consider the setting where the complete user information is

available (similar to the OSN-perspective setting in this chapter).

Although our problem is related to the Allocation problem [47][48][49], they are essentially

different, since our problem aims to benefit individual advertisers rather than the market owners.

2.8 Conclusions

We study the targeting problem for advertisers. For the OSN’s perspective, we present a polyno-

mial time algorithm and prove that it has 1−1/e guarantee. For the advertiser’s perspective, we

show through data analysis that the strategy of targeting subsets of audience sets is viable and

propose a greedy algorithm based on subset targeting. For evaluation, we crawl a large unique

dataset which contains more than one million suggested bids from Facebook and LinkedIn,

35

and we show that the proposed algorithm makes advertisers reach more target audience than

directly targeting the users.

Our work suggests that smart advertisers can utilize the “arbitrage” to target more users

for the given budget, but we do not know how these strategies influence the revenue of OSNs.

Therefore, it will be of interest to study pricing mechanisms for OSNs that prevent any potential

arbitrage available for advertisers. Moreover, with the large dataset of suggested bids crawled

from Facebook and LinkedIn, an open problem is to predict the prices of various characteristic

sets.

36

Chapter 3

Arbitrage-free Pricing in Online Advertising Markets

3.1 Introduction

User-based markets are a central part of the Internet Economy. In user data markets, many

companies are selling opt-in email addresses. In online advertising markets, advertisers want

to buy the impressions of users with specific sets of attributes, e.g. a luxury car company may

prefer to show ads to rich users.

In such user-based markets, the core value of a user arises from her attributes. In Tower-

Data, buyers can purchase the emails of users with specific demographics. Google AdWords,

for example, the largest online ad network, allows advertisers to target users based on demo-

graphics and search terms. Ad markets run by online social networks, including Facebook,

LinkedIn and Twitter, offer much finer targeting controls over user attributes with detailed in-

formation which is shared directly by users, inferred from user daily activities or purchased

from third parties. This includes users’ educational records, past and present employment ex-

perience, significant life events like changes in marital status or birth of a baby, etc. Twitter

allows advertisers to target users by topics that the users are interested in.

In such markets, buyers can purchase their target users1 through the query system provided

by the market. Let qi denote a simple selection query with conditions over user attributes, e.g.

qi =“Gender:1” returns all the male users. Let Ui be the set of all the users satisfying query qi.

A buyer can specify the users with a query and purchase them. Therefore, the market owner

needs to solve a pricing problem – how to price all the queries from buyers that return users

with different attributes? In this chapter, we consider the following posted pricing model. Let

pi denote the price of query qi, i.e. the price of any user u satisfying query qi (i.e. u ∈ Ui).

1“Buying a user” is short for buying, for example, the impression of a user in advertising markets.

37

A buyer needs to pay n · pi if he purchases n ∈ {1, . . . , |Ui|} users in Ui. The practical need

behind this pricing model is that a single target user can provide positive utility to the buyer.

Moreover, we assume that it would not cause much trouble to the buyer if he gets additional

users who do not satisfy his target query2.

The above pricing model benefits from the versioning theory for pricing information goods

[50]. This theory proposes that different buyers may use an information product in different

ways, and the market should provide different versions for such a product at different prices.

In user-based markets, a user with multiple attributes can potentially have different versions.

For example, a user who is a programmer interested in cars, can be priced and sold as at least

two versions, including as a user interested in cars as one version for car dealers and as a

programmer as another version for IT companies on hiring. Versioning theory is needed in

such user-based markets because a user may be retrieved by multiple queries if she has more

than one attribute.

We point out that such a pricing model, however, may suffer version-arbitrage (see Def-

inition 3.6). In user-based markets, version-arbitrage occurs if two queries qi and qi′ return

similar user sets but pi and pi′ differ a lot. If version-arbitrage exists, a buyer who really wants

qi (or qi′) might purchase qi′ (or qi) instead. Version-arbitrage is caused by the fact that a user

with multiple attributes potentially satisfies many queries. We use an example to illustrate the

version-arbitrage and its difference from determinancy arbitrage in [51].

Example 3.1. Let q1 =“Income >100” and q2 =“Income >101” be two queries, i.e. q1 (or

q2) returns all the users with income higher than 100 (or 101). If p2 < p1, the version-arbitrage

exists: a savvy buyer who wants to buy a user satisfying q1 will buy a user satisfying q2 instead

(assuming U2 6= ∅) because any user satisfying q2 satisfies q1 with probability 1. However, in

non-trivial databases, q1 (or q2) does not determine q2 (or q1) [51].

Motivated by the discussion above, we study pricing queries with conditions over user at-

tributes, and seek revenue-maximizing pricing for a given demand. In particular, we formulate

arbitrage-free pricing problem in user-based markets and our contributions are:

2This assumption is obviously true in advertising markets, i.e. showing an ad to a non-target user will not
decrease the sale. In data markets, it is true if the buyer does not want aggregate results.

38

• Any uniform pricing where all the queries have identical price is arbitrage-free. We show

that the optimal uniform pricing can be computed in polynomial time. We also show that

this is an O(logmin{U ,
∑B

j=1 dj}) approximation to the optimal, possibly non-uniform

arbitrage-free pricing, where U is the total number of users and
∑B

j=1 dj is total number

of users requested by the buyers. Besides, we show that this approximation bound is tight

for uniform pricing solutions.

• We design a different, efficient greedy algorithm to compute the arbitrage-free non-

uniform pricing with the sameO(log min{U ,
∑B

j=1 dj}) guarantee. But by experiments,

we show that its revenue is significantly larger than that of the optimal uniform pricing.

• We consider a generalized setting where a buyer has a minimal demand on his target

users. In previous setting, the allocation problem (given a pricing) is polynomial time

solvable. In this setting, we prove that both the allocation problem and pricing problem

are not only NP-hard, but also hard to approximate. We present an O(D) approximate

allocation algorithm where D is the largest minimal demand. Turning to the pricing

problem, we present a polynomial algorithm, that – based on the approximate allocation

– computes a uniform pricing and we show that it is an O(D log min{U ,
∑B

j=1 dj})

approximation to the optimal arbitrage-free pricing.

Our research begins the study of the pricing that is free of version-arbitrage in user-based

markets, which is new (despite many versions of envy-free, truthful and other variants of pricing

in the literature) and highly needed (online marketing crucially relying on buying users based

on multiple attributes). Our algorithmic results use various maxflow optimization methods.

3.2 Preliminary

3.2.1 Pricing Model

The market provides N queries for buyers. Let qi be a query where i ∈ {1, . . . , N}. For

example, qi=“Income>100k ∧Gender:Female” returns all the female users with income higher

than 100k. Different from a general database query, the notion query in this chapter can be

viewed as a simplified selection rule over user attributes. A user is said to satisfy qi if she can

39

be retrieved by qi. For a buyer, we assume that there exists a query that represents his true

target. The pricing is over queries, and the price pi of query qi is the unit price, i.e. the price

per user retrieved by qi. For example, if pi = $2, a buyer needs to pay $10 for 5 users satisfying

qi.

3.2.2 Problem Formulation

[n] denotes the integer set {1, . . . , n}. Let U be the set of all the users, and we define that

U , |U |. Let u ∈ U be a user. ui = 1 if u satisfies qi where i ∈ [N], otherwise ui = 0. Let

M be the quantity that M ,
∑N

i=1 |{u|ui = 1,u ∈ U}|. Let B be the set of buyers, and we

define that B , |B|. Buyer j ∈ [B] is denoted by a triplet (tj , dj , cj) indicating that he wants to

buy at most dj ∈ Z+ users (as demand) satisfying qtj (as target) where tj ∈ [N], and cj ∈ R+

is the maximum cost that he is willing to pay for each target user. cj · dj can be viewed as the

budget constraint of buyer j.

Let A = (A1, . . . , AB) be an allocation of (indivisible) users to buyers where Aj is the

set of users allocated to buyer j. We assume that any user can be either sold to one3 buyer or

unsold.

Definition 3.2. An allocation A is feasible if the three constraints are all satisfied ∀j ∈ [B]:

• Target Constraint: ∀u ∈ Aj , utj = 1;

• Demand Constraint: |Aj | ≤ dj;

• Uniqueness Constraint: ∀j′ 6= j, Aj′ ∩Aj = ∅.

Let P = (p1, . . . , pN) be the pricing function over the N queries.

Definition 3.3. (P, A) is feasible if A is feasible and ∀Aj 6= ∅, ptj ≤ cj .

Given (P, A)4, the revenue is R(P, A) ,
∑B

j=1 |Aj | · ptj . In this chapter, we define and

solve the following pricing problem.

3In Section 3.5, we will discuss a more general setting where a user can be sold to multiple buyers with limited
times. The algorithms for that setting are almost the same, so are the corresponding analyses.

4By default, we require (P, A) to be feasible and we will not explicitly mention this requirement later.

40

Definition 3.4 (Pricing Problem). Given (N,U,B) as the input, compute P and A such that P

is arbitrage-free (see Definition 3.7) and R(P, A) is maximized.

To solve the pricing problem, we need to define and solve the allocation problem.

Definition 3.5 (Allocation Problem). Given (N,U,B,P) as the input, computeA = argmaxA′ R(P, A′).

Let R(P) , maxAR(P, A) be the optimal revenue of P (when the allocation is optimal).

3.2.3 Arbitrage-Free Pricing

In this part, we first formally introduce version-arbitrage and then define the arbitrage-free

pricing. Note that, our arbitrage-free pricing is free of version-arbitrage, different from the

arbitrage-free pricing in Koutris et al. [51] which is free of determinancy-arbitrage.

In user markets, version-arbitrage is the opportunity that a buyer is able to get a lower unit

price (in expectation) of his target users by strategically choosing a substitute target (i.e. query)

other than his true target. Assuming that any query is satisfied by at least one user, let π(i|i′)

be the conditional probability that a user satisfies qi if she satisfies qi′ :

π(i|i′) =
|{u|ui = 1, ui

′
= 1,u ∈ U}|

|{u|ui′ = 1,u ∈ U}|

We assume that a buyer, whose true target is qi, has the prior belief that buying a user

satisfying qi′ is equivalent (in expectation) to buying a fraction π(i|i′) of a user satisfying

qi. Although this assumption is not necessarily practical in all the user-based markets due

to unpredictable allocation rules, strategies based on this assumption (or similar ones) were

studied for advertisers in online advertising markets [52, 53, 15]. Based on this assumption, we

define the version-arbitrage as follows.

Definition 3.6 (Version-Arbitrage). In a market withU , the pricing P contains version-arbitrage

if ∃i, i′ ∈ [N], pi′ < π(i|i′) · pi.

It is easy to see that Example 3.1 is a special case where π(1|2) = 1 and p2 < p1, so

arbitrage exists. Next, we define the arbitrage-free pricing.

Definition 3.7 (Arbitrage-free). In a market with U , the pricing P is said to be arbitrage-free

if ∀i, i′ ∈ [N], pi′ ≥ π(i|i′) · pi.

41

Notably, the arbitrage-free constraints are independent of buyers B, but only depends on U

in the market. This is a desirable property that no matter whether buyers report their parameters

truthfully [54] or not, the market can always make the pricing arbitrage-free.

3.3 Theoretical Results

3.3.1 Uniform Pricing Algorithm

In this section, we first show that any uniform pricing is arbitrage-free. Then we show the

optimal uniform pricing can be computed in polynomial time. Finally we prove that the optimal

uniform pricing provides an O(logmin{U ,
∑B

j=1 dj}) guarantee to the optimal arbitrage-free

pricing. A pricing is uniform if all its entries are identical, otherwise non-uniform. Let pξ

denote the uniform pricing that ∀i ∈ [N], pi = ξ.

Proposition 3.1. Any uniform pricing is arbitrage-free.

It is easy to verify Proposition 3.1. Although we do not know whether to find the optimal

arbitrage-free pricing is NP-hard or has polynomial time solutions, Proposition 3.1 provides a

class of feasible solutions.

Theorem 3.2. The optimal uniform pricing pξ∗ can be computed in polynomial timeO(UBM+

UB2).

To prove this theorem, it is enough to prove Lemma 3.3 and Corollary 3.5. Basically,

Lemma 3.3 states that given any uniform pricing pξ, the optimal allocation can be computed in

polynomial time. Following Lemma 3.4, Corollary 3.5 shows that the optimal uniform price ξ∗

must be one of the maximum costs of buyers.

Lemma 3.3. The allocation problem for uniform pricing can be solved in polynomial time

O(UM + UB).

Proof. We model the allocation problem when the pricing is pξ as a maxflow problem as fol-

lows. We introduce s and t as the source and sink respectively. We then introduce N nodes

y1, . . . , yN . Assuming all the users are indexed from 1 to U and uk denotes the k-th user. For

each k ∈ [U]: (1) we introduce a node xk and a directed edge from s to xk with capacity 1;

42

and (2) ∀i ∈ [N], we introduce a directed edge from xk to yi with capacity 1 if uik = 1. For

each buyer j that cj ≥ ξ, introduce a node zj , a directed edge from ytj to zj and a directed

edge from zj to t with capacity dj . It is easy to verify that the amount of the maximum flow

f∗ is the maximum number of sold users when the pricing is pξ, thus producing the revenue

R(pξ) = ξ · f∗. The allocation can also be easily inferred from the residual graph after the

maxflow algorithm completes. We use the Ford-Fulkerson algorithm that runs in O(|E| · f∗).

Since f∗ ≤ U and |E| ≤M + 2B, the time complexity is O(UM + UB).

Next we show that it only needs to solve at most B allocation problems to compute the

optimal uniform price ξ∗ in Corollary 3.5. Before showing Corollary 3.5 that is specific to

uniform pricing, we show a general result for any pricing in Lemma 3.4, which immediately

implies Corollary 3.5 and will be used for proving Lemma 3.8 later.

Lemma 3.4. C , {cj |j ∈ [B]}. For any P that ∃pi /∈ C, there exists P′ (not necessarily

arbitrage-free) that R(P′) ≥ R(P) and ∀i ∈ [N], p′i ∈ C.

Proof. W.l.o.g., we assume that the distinct values θ1, . . . , θC in C are: θ0 < θ1 < . . . < θC

where θ0 = 0 is a dummy variable. Given such a P, we construct the corresponding P′ as

follows. ∀pi ∈ C, we still set p′i = pi; ∀pi > θC , we set p′i to θC , and clearly no revenue is lost

since no user can be sold at the price higher than θC ; ∀pi ∈ (θk−1, θk), we set p′i to θk, and no

revenue is lost because any user who can be sold at pi can be sold at θk. It is easy to verify that

R(P′) ≥ R(P) and ∀i ∈ [N], p′i ∈ C.

Lemma 3.4 implies the fact that there exists a pricing (not necessarily arbitrage-free) with

the optimal revenue and every entry in C. With similar proof (omitted), we have Corollary 3.5.

Corollary 3.5. The optimal uniform price ξ∗ ∈ {cj |j ∈ [B]}.

Based on Lemma 3.3 and Corollary 3.5, the optimal uniform price ξ∗ can be computed by

Algorithm 3.1 that solves at most B allocation problems, which proves Theorem 3.2.

Theorem 3.6. The optimal uniform pricing computed by Algorithm 3.1 is anO(logmin{U ,
∑B

j=1 dj})

approximation to the optimal arbitrage-free pricing.

43

Algorithm 3.1 Optimal Uniform Pricing
Input: N , U and B
Output: ξ∗

1: C ← {cj |j ∈ [B]}
2: ξ∗ ← argmaxξ∈C R(pξ)
3: return ξ∗

Proof. Let C , {cj |j ∈ [B]}. W.l.o.g., we assume that the distinct values θ1, . . . , θC in C are

θ1 < . . . < θC . Let Ok denote the maximum number of sold users when the uniform price

is θk. It is true that ∀k ∈ [C], R(pθk) = θkOk. Besides, it is true that O1 ≥ . . . ≥ OC , but

the sequence of revenues θ1O1, . . . , θCOC is not necessarily monotone. Let P∗ be the optimal

pricing without the arbitrage-free constraint. R(P∗) is a trivial upper bound of the revenue of

the optimal arbitrage-free pricing. To prove the theorem, we first prove Lemma 3.7 and Lemma

3.8.

Lemma 3.7. In any feasible allocation for a pricing, the number of users sold at the price no

less than θk is bounded by Ok, ∀k ∈ [C].

Proof. Assume there exists P for which we can find a feasible allocation A such that ∃k ∈ [C],

the number of sold users at prices no less than θk is larger than Ok. We can create an allocation

A′ from A as follows. For the users sold at the price no less than θk in A, we allocate them

to the same buyers in A′ at the price θk. For other users, we discard them. It is easy to verify

that A′ is feasible for the uniform price θk and |A′| > Ok, contradicting with that Ok is the

maximum number of sold users for the uniform price θk.

Lemma 3.8. R(P∗) ≤ θCOC +
∑C−1

k=1 θk(Ok −Ok+1).

Proof. Let ok denote the number of users sold at the price no less than θk in the optimal allo-

cation for P∗. Thus, ok − ok+1 is the number of users sold at the exact price θk. From Lemma

3.4, we know that every entry of P∗ is in C, so its revenue can be formulated as:

R(P∗) = θCoC +

C−1∑
k=1

θk(ok − ok+1) =

C∑
k=2

ok(θk − θk−1) + o1θ1

≤
C∑
k=2

Ok(θk − θk−1) +O1θ1 (a)

44

= θCOC +

C−1∑
k=1

θk(Ok −Ok+1)

Inequality (a) is because (1) from Lemma 3.7, ∀l ∈ [N], ok ≤ Ok and (2) ∀k ∈ {2, . . . , C},

θk ≥ θk−1.

Now we can prove Theorem 3.6. Since R(pξ∗) = max {θ1O1, . . . , θCOC}, it is true that

∀k ∈ [C], θk ≤
R(pξ∗)

Ok
. Replacing θk by R(pξ∗)

Ok
in Lemma 3.8, we complete the proof as

follows:

R(P∗) ≤ R(pξ∗)
(

1 +
C−1∑
k=1

Ok −Ok+1

Ok

)
≤ R(pξ∗)

(
1 +

C−1∑
k=1

(
1

1 +Ok+1
+ . . .+

1

Ok
)
)

= R(pξ∗)
(

1 +

O1∑
i=OC+1

1

i

)

≤ R(pξ∗)
(OC∑
i=1

1

i
+

O1∑
i=OC+1

1

i

)
= R(pξ∗) ·HO1

≤ R(pξ∗)(lnO1 + 1)

≤ R(pξ∗)(lnmin{U ,
∑B
j=1 dj}+ 1)

Proposition 3.9. TheO(logmin{U ,
∑B

j=1 dj}) revenue guarantee is tight for uniform pricing

solutions.

Proof. We show one of the worst cases. ∀i ∈ [N]: (1) there are 2i users that only satisfy qi,

and (2) exists buyer i represented as (i, 2i, 2−i). Thus U =
∑B

j=1 dj = 2N+1 − 1. It is easy

to see that the revenue of any uniform pricing is less than 2, but the revenue of the optimal

arbitrage-free pricing is N (any pricing is arbitrage-free in this case).

3.3.2 Non-uniform Pricing Algorithm

Based on uniform pricing, in this section we study arbitrage-free non-uniform pricing, which

is more practical for real markets. We first devise a greedy algorithm to produce an arbitrage-

free non-uniform pricing of which the revenue is guaranteed to be no less than the revenue

45

of the optimal uniform pricing. In order to speed up the algorithm for large markets, we pro-

pose an approximate algorithm to solve the allocation problem efficiently for any pricing while

preserving the same performance guarantee.

Definition 3.8. Given P, αi , max{π(i′|i) · pi′ |i′ ∈ [N], i′ 6= i} and βi , min{ pi′
π(i|i′) |i

′ ∈

[N], i′ 6= i}. We call [αi, βi] the arbitrage-free interval5 of pi.

Proposition 3.10. If P is arbitrage-free and only one entry is varied within its arbitrage-free

interval, i.e. updating pi into any value in [αi, βi], the resulting pricing is still arbitrage-free.

Although Proposition 3.10 is straightforward to verify, it connects uniform pricing which is

naturally arbitrage-free with arbitrage-free non-uniform pricing. Most importantly, Proposition

3.10 provides valid operations to update the pricing while keeping it arbitrage-free. It is easy

to see that with proper preprocessing, αi and βi can be computed in O(N) time. Based on

Lemma 3.4 and Proposition 3.10, we have Corollary 3.11.

Corollary 3.11. Ci(P) , {αi, βi} ∪ {cj |j ∈ [B], tj = i, cj ∈ [αi, βi]}. For any arbitrage-free

pricing P that ∃i ∈ [N], pi /∈ Ci(P), there exists an arbitrage-free pricing P′ that R(P′) ≥

R(P) and ∀i ∈ [N], p′i ∈ Ci(P′).

With Proposition 3.10, the proof of Corollary 3.11 is similar to the proof of Lemma 3.4, thus

omitted. Corollary 3.11 reveals the desirable property of the optimal arbitrage-free non-uniform

pricing, which implies that any algorithm only needs to search over O(B) values (because

|Ci(P)| ≤ B + 2) other than the entire real interval [αi, βi] for pi. Based on this, we propose

Algorithm 3.2 that iteratively updates the optimal uniform pricing to arbitrage-free non-uniform

pricing. First, we show a polynomial subroutine to solve the allocation problem for a non-

uniform pricing as follows.

Lemma 3.12. For any non-uniform pricing, the optimal allocation can be computed in poly-

nomial time O(UM + UB + B logB).

Proof. We model the allocation problem for non-uniform pricing as a minimum cost maximum

flow problem. The network is constructed as follows. We introduce s and t as the source and

5W.l.o.g. we assume that βi always exists, i.e. {i′|i′ ∈ [N], i′ 6= i, π(i|i′) > 0} 6= ∅ , otherwise, the arbitrage-
free interval of pi becomes [αi,∞).

46

sink respectively. We introduceN nodes y1, . . . , yN . Assuming all the users are indexed from 1

to U and uk denotes the k-th user. For each k ∈ [U]: (1) we introduce a node xk and a directed

edge from s to xk with capacity 1 and cost 0; and (2) ∀i ∈ [N], we introduce a directed edge

from xk to yi with capacity 1 and cost 0 if uik = 1. For each buyer j that cj ≥ ptj , introduce a

node zj , a directed edge from ytj to zj with cost 0 and a directed edge from zj to twith capacity

dj and a negative cost −ptj . We can verify that there is no directed cycle with negative cost.

Let w(f) > 0 be the absolute value of the minimum cost when the amount of the required

s-t flow is f . Clearly, it is true that w(f) is the maximum revenue when exactly f users are

sold. Since the costs are all negative, w(f) is maximized when f = f∗ where f∗ is the amount

of the maximum s-t flow.

Since only the edges from zj to t are associated with non-zero costs, to find the augmenting

path with the smallest cost is O(|E|) (after sorting buyers by cj) where |E| ≤ M + 2B. Since

f∗ ≤ U , the overall complexity is O(UM + UB+ B logB).

Now we present Algorithm 3.2. It starts with the optimal uniform pricing, then iteratively

and greedily updates the pricing and finally outputs an arbitrage-free non-uniform pricing. In

each iteration, the algorithm greedily updates the price of a query if the update increases the

revenue. To update pi, it picks up the new price from Ci(P) that greedily maximizes the

revenue. Let P−i,p denote the resulting pricing when we only change the i-th entry of P to p.

Algorithm 3.2 Arbitrage-free Non-uniform Pricing
Input: N , U , B and pξ∗

Output: An arbitrage-free non-uniform pricing P
1: P← pξ∗

2: ∀i ∈ [N], compute αi and βi
3: repeat
4: for i ∈ [N] do
5: p∗ = argmaxp∈Ci(P)R(P−i,p)
6: if R(P−i,p∗) > R(P) then
7: P← P−i,p
8: ∀i′ ∈ [N], re-compute αi′ and βi′
9: end if

10: end for
11: until no price changes
12: return P.

47

Proposition 3.13. Algorithm 3.2 always converges; in each iteration of Repeat-Loop (lines

4-10), it solves at most B + 2N allocation problems for non-uniform pricing.

Proof. Since the revenue of any pricing is trivially bounded by
∑B

j=1 cjdj and after each itera-

tion except the last one the revenue always increases, the algorithm will always converge. Since

|
⋃N
i=1Ci(P)| ≤ B + 2N , there will be at most B + 2N allocation problems of non-uniform

pricing in each iteration.

Let T be the number of iterations, the overall complexity is O(T (B + N)(UM + UB +

B logB)). We leave the theoretical analysis of T for future work, however, we will see in

experiments that Algorithm 3.2 converges very quickly, i.e. T < 4 on average. We next

analyze its performance in Proposition 3.14. Experiments show that the arbitrage-free non-

uniform pricing has significantly larger revenue in practice, however, the fact that the arbitrage-

free interval of any entry is dynamic in each iteration makes it difficult to analyze the theoretical

improvement of the arbitrage-free non-uniform pricing.

Proposition 3.14. Assume that Algorithm 3.2 converges after T ≥ 1 iterations (of Repeat-

Loop, i.e. lines 4-10). Let Pt be the pricing computed after t ∈ [T] iterations. The following

statements are true:

(a) ∀t ∈ [T], Pt is arbitrage-free.

(b) ∀t ∈ [T], R(Pt) has O(logmin{U ,
∑B

j=1 dj}) performance guarantee to the optimal

arbitrage-free pricing;

(c) If T > 1, Pt is non-uniform, ∀t ∈ [T].

(d) Unless breaking the arbitrage-free constraints, changing any entry of PT alone cannot

increase the revenue.

Proof. Since the update of any price is within its arbitrage-free interval, according to Propo-

sition 3.10, (a) is true. The algorithm starts with the optimal uniform pricing pξ∗ , and every

price update increases the revenue, thus we have ∀t ∈ [T], R(Pt) ≥ R(pξ∗), which immedi-

ately implies (b). To prove (c), we only need to show that any update (in line 7) never makes

48

the resulting pricing P back to uniform. Since R(P) > R(pξ∗) and pξ∗ is the optimal uni-

form pricing, P cannot be uniform, proving (c). According to the convergence criteria, (d) is

true.

In Algorithm 3.2, the minimum cost maximum flow solver (described in the proof for

Lemma 3.12) that computes the optimal allocation for a non-uniform pricing is called fre-

quently, i.e. up to B + 2N times in each iteration. Although to our best knowledge, it is faster

than most of general mincost maxflow solvers for integral flows and non-unit capacity (see

details in the survey [55]), it still does not scale for large inputs. By generalizing the online bi-

partite matching [56], we propose an approximation as Algorithm 3.3 to the allocation problem.

Algorithm 3.3 greedily sells users satisfying queries with the highest price.

Algorithm 3.3 Efficient Approximate Allocation
Input: N , U , B and P
Output: Â

1: ∀j ∈ [B], Âj ← ∅
2: Re-order all the buyers such that pt1 ≥ . . . ≥ ptB
3: for j ∈ [B] do
4: if cj ≥ ptj then
5: while |Âj | < dj and ∃u ∈ U , utj = 1 do
6: Âj ← Âj ∪ {u}
7: U ← U − {u}
8: end while
9: end if

10: end for
11: return Â.

Proposition 3.15. For any pricing, Algorithm 3.3 produces an allocation in polynomial time

O(M + B logB).

Algorithm 3.3 is much faster than the mincost maxflow solver in Lemma 3.12, i.e. by at

least a factor U
logB . In real user markets, the number of users to sell is significantly larger than

the number of buyers, i.e. U � B, and U could be billions, so the improvement is significant.

We next show the performance guarantee of Algorithm 3.3 in Lemma 3.16, which will be also

used for proving Theorem 3.21 later.

Lemma 3.16. Algorithm 3.3 is a 2-approximation to the allocation problem for any pricing.

49

Proof. Let A∗ be the optimal allocation for P. Consider some u who is allocated to buyer

j in A∗ (i.e. u ∈ A∗j) by the mincost maxflow solver, but is allocated to a different buyer

j′ in Â (i.e. u ∈ Âj′) or not allocated to any buyer in Â. There are three cases. Case 1:

if u is finally unallocated in Â, it is true that |Âj | = dj ≥ |A∗j | because if |Âj | was less

than dj , u must have been allocated to buyer j. Consider that u is allocated to buyer j′ in

Â. Case 2: if ptj > ptj′ , it must be true that |Âj | = dj ≥ |A∗j | for the same reason as Case

1. In Case 1 and 2, the revenue contributed by Âj is no less than A∗j . Case 3: if ptj ≤ ptj′ ,

it is true that we might lose the revenue ptj because u is not allocated to j. In this case,

however an equal or higher revenue ptj′ is produced. This implies that the total revenue loss

R(P, A∗)− R(P, Â) is bounded by the total revenue produced R(P, Â). Therefore we prove

the lemma that 2R(P, Â) ≥ R(P, A∗) = R(P).

We next show that the above analysis for Algorithm 3.3 is tight. Consider the following

example. N = 2. There are 2 users, u1 = (1, 1) and u2 = (1, 0). There are 2 buyers

(1, 1, w+ ε) and (2, 1, w). The pricing P = (w+ ε, w) where ε > 0. The optimal allocation is

A1 = {u2} andA2 = {u1}, thus the total revenue is 2w+ε. However Algorithm 3.3 generates

Â1 = {u1} and Â2 = ∅, thus the total revenue is w + ε only.

We construct Algorithm 2.1 with the faster allocation in Algorithm 3.3, to compute an

arbitrage-free non-uniform pricing. Algorithm 2.1 is the same with Algorithm 3.2 except that

we replace the optimal allocation (mincost maxflow solverR(P−i,p) in line 5) with the approx-

imate allocation computed by Algorithm 3.3.

Theorem 3.17. Let T be the number of iterations that Algorithm 2.1 needs to converge. Algo-

rithm 2.1 runs in O(T (B + N)(M + B logB)) and has all the properties (a)-(d) claimed for

Algorithm 3.2 in Proposition 3.14.

3.3.3 A Generalized Setting: Minimal Demand

Previously, we assumed that any buyer only restricts the maximum number dj of target users

he will buy. In this section, we consider a general setting where a buyer also has a minimum

demand. That is, buyer j now becomes (tj , dj , dj , cj) where dj and dj (dj ≤ dj) are the

minimum and maximum number of target users that buyer j will buy respectively. In this

50

setting, the Demand Constraint in Definition 3.2 for a feasible allocation A becomes: |Aj | ∈

{0, dj , . . . , dj}. This means that, for buyer j, we either allocate 0 or at least dj users to him.

Note that, the pricing problem in previous setting is indeed a special case that ∀j, dj = 1 of

this setting.

This generalized setting is also practical in many user markets. For example, a business

wants to trigger a cascade of promotion for its product in an online community. If the initial

seed size is too small, the growth of cascade would be very slow or even not triggered [57, 58]

at all. Therefore the business needs some guarantee of the seed size by specifying a large

enough dj . Another example is that, a buyer wants to purchase the contacts of users with

certain attributes for survey. If he is not able to reach enough number of target users, the survey

results lack statistical significance. Therefore, he is not willing to buy any data set with size

less than his minimum demand.

However, the minimum demand constraint makes the allocation problem and the pricing

problem harder to solve, which can be seen in Theorem 3.18 and Corollary 3.19.

Theorem 3.18. In the generalized setting, the allocation problem (even if the pricing is uniform

at 1) is (1) NP-hard and (2) hard to approximate (unless P=NP) within U
1
2
−ε or B1−ε, ∀ε > 0.

Proof. For (1), we reduce Maximum Independent Set (MIS) to the allocation problem. For

an undirected graph G = {V,E}. MIS finds a subset V ′ ⊆ V with the maximum cardinality

that ∀v, v′ ∈ V ′, the edge (v, v′) /∈ E. The reduction is as follows. Given an MIS instance

(V , E), we first introduce |V | queries. Then we introduce |V |2 users indexed from 1 to |V |2,

i.e. (u1, . . . ,u|V |2), and each of these users satisfies no query. For each node vj ∈ V : (1) we

introduce a buyer j as (j, |V |, |V |, 1); and (2) ∀k ∈ {|V | · (j − 1) + 1, . . . , |V | · j}, we set

ujk = 1. For each edge (vj , vj′) ∈ E of the MIS instance (assuming j < j′), we make the user

with index |V | · (j′ − 1) + j no longer satisfy qj′ , i.e. set uj
′

|V |·(j′−1)+j = 0, but make the user

with index |V | · (j−1)+j′ satisfy qj′ , i.e. set uj
′

|V |·(j−1)+j′ = 1. After these operations, we can

allocate |V | users to either buyer j or j′, but not to both of them since they have a common user

with index |V | · (j − 1) + j′. It is true that (1) for any qj where j ∈ [|V |], there are exactly |V |

users satisfying it; (2) let U be the set of users who satisfy at least one query, U = |V |2 − |E|.

It is easy to verify that the solution for the MIS instance is n if and only if the number of sold

51

users in the allocation problem is n · |V | when the pricing is uniform at 1.

For (2), we have shown that an MIS with |V | nodes corresponds to the allocation problem

where |V |
2

2 ≤ U ≤ |V |
2 and B = |V |, and if the number of sold users in the allocation problem

is n · |V |, the solution of the corresponding MIS is n. Since MIS is hard to approximate

within |V |1−ε, ∀ε > 0, the allocation problem is hard to approximate within U
1
2
−ε or B1−ε,

∀ε > 0.

Corollary 3.19. In the generalized setting, the pricing problem is both NP-hard and hard to

approximate (unless P=NP) within U
1
2
−ε or B1−ε, ∀ε > 0.

Proof. Theorem 3.18 shows that in the generalized setting, the allocation problem is NP-hard

even when the pricing is uniform. We reduce the allocation problem with uniform pricing to

the pricing problem. For each instance of the allocation problem with input B′, U ′ and the

uniform price ξ, we create an instance of pricing problem with input B and U as follows. For

each buyer j in B′, if cj ≥ ξ, we create a buyer (tj , dj , ξ) in B. We simply set U = U ′. It

is easy to see that the optimal arbitrage-free pricing of the pricing problem is (ξ, . . . , ξ), and

the optimal revenue of the pricing problem is ξ · k if and only if the allocation problem has the

optimal allocation of size k.

Next, we first propose an approximate algorithm for the allocation problem, and then based

on this approximation, we propose another approximate algorithm for the pricing problem.

Algorithm 3.4 computes the approximate allocation in two steps, each of which produces a

partial allocation. The first partial allocation process (lines 1-9), first re-orders all the buyers

so that pt1d1 ≥ . . . ≥ ptBdB. Then starting from j = 1, it allocates dj target users (if enough)

to buyer j, in sequence. After that, the second partial allocation process (lines 10-16) discards

buyers who received no user in the first partial allocation. For each of the remaining buyers,

it creates a dummy buyer without the minimum demand as (tj , dj − dj , cj). Then it calls

Algorithm 3.3 with the remaining users, the dummy buyers and the same pricing as the input.

Finally, the two partial allocations are merged as the whole approximate allocation.

Proposition 3.20. In the generalized setting, Algorithm 3.4 computes an approximate alloca-

tion Â for any pricing in polynomial time O(M + B logB).

52

Algorithm 3.4 Approximate Allocation With Minimal Demand
Input: N , U , B and P
Output: An approximate allocation Â

1: Re-order B buyers so that pt1d1 ≥ . . . ≥ ptBdB
2: Let Â1 and Â2 be two empty allocations
3: for j ∈ [B] do
4: Uj ← {u|utj = 1,u ∈ U}
5: if cj ≥ ptj and |Uj | ≥ dj then
6: Â1

j ← arbitrary dj users from Uj

7: U ← U − Â1
j

8: end if
9: end for

10: B′ ← ∅
11: for j ∈ [B] do
12: if |Â1

j | = dj and dj 6= dj then
13: B′ ← B′ ∪ {(tj , dj − dj , cj)}
14: end if
15: end for
16: Â2 ← Call Algorithm 3.3 with N , U , B′ and P as input
17: ∀j ∈ [B], Âj ← Â1

j ∪ Â2
j

18: return Â

Theorem 3.21. Let D , max{dj |j ∈ [B]}. The approximate allocation Â produced by

Algorithm 3.4 is an O(D)-approximation to the optimal allocation.

Proof. LetA∗ be the optimal allocation. W.l.o.g. we assume that ∀j ∈ [B], the number of users

satisfying qtj is no less than dj , otherwise we can remove buyer j. This theorem is implied by

Lemma 3.22 and Lemma 3.16. In short, Lemma 3.22 implies that for every unit of revenue

generated by the first partial allocation (lines 1-9), A∗ can generate at most D + 1 units of

revenue. According to Lemma 3.16, it is true that for every unit of revenue generated by the

second partial allocation (lines 10-16), A∗ can generate at most 2 units of revenue. Therefore,

we have R(P, Â) ≥ R(P,A∗)
max{D+1,2} , which implies the theorem. We only need to prove Lemma

3.22.

Lemma 3.22. If buyer j is allocated with dj target users in the first partial allocation, the loss

of revenue (compared to A∗) is bounded by ptj (dj)
2.

Proof. If buyer j is allocated with dj target users in the first partial allocation, the revenue

ptjdj is produced. It is true that the removal of dj users satisfying qtj will prevent at most

53

dj of buyers (with index larger than j) from being allocated with any target user, because the

numbers of available target users become smaller than their minimum demands. Let n ∈ [dj]

be the number of buyers who cannot be allocated with users due to allocating dj users to buyer

j. Clearly, there is no loss if n = 0. W.lo.g., we assume that these n buyers are indexed from

j+1 to j+n. It is true that ∀j′ ∈ {j+1, . . . , j+n}, the largest possible revenue loss caused by

losing buyer j′ is bounded by ptj′ (dj′−1+kj′). kj′ is the number of such users: (1) they satisfy

both qtj and qtj′ ; and (2) if we did not allocate any of the kj′ users to buyer j, buyer j′ could

have been allocated with dj′ users – but we actually have allocated all the kj′ users to buyer j.

Thus the total lossLj of allocating dj users to buyer j is bounded by
∑j+n

j′=j+1 ptj′ (dj′−1+kj′).

It is obviously true that
∑j+n

j′=j+1 kj′ ≤ dj and ∀j′ ∈ {j + 1, .., j + n}, kj′ ≥ 1. Therefore,

∀n ∈ [dj], we have:

Lj ≤
j+n∑

j′=j+1

ptj′dj′ +

j+n∑
j′=j+1

ptj′ (kj′ − 1)

≤ n max
j′∈{j+1,...,j+n}

{ptj′dj′}+

j+n∑
j′=j+1

ptj′ (kj′ − 1)

≤ nptjdj +

j+n∑
j′=j+1

ptj′ (kj′ − 1)

≤ nptjdj + max
j′∈{j+1,...,j+n}

{ptj′}
j+n∑

j′=j+1

(kj′ − 1)

≤ nptjdj + max
j′∈{j+1,...,j+n}

{ptj′}(dj − n)

≤ nptjdj + ptjdj(dj − n)

= ptj (dj)
2

We next show that the O(D)-approximation is tight for Algorithm 3.4. Consider the fol-

lowing example. There are d + 1 queries and d2 users. ∀i ∈ [d], all the d − 1 users indexed

between (d − 1) · (i − 1) + 1 and (d − 1) · i (both inclusive) only satisfy qi. The last d users,

indexed between d2 − d + 1 and d2, satisfy all the queries. There are d + 1 buyers, and buyer

j is (j, d, d,∞). Let the pricing be: ∀i ∈ [d], pi = 1 and pd+1 = 1 + ε. Algorithm 3.4 will

54

only allocate d users to buyer d + 1 while all the other buyers are allocated with 0 user, thus

the revenue is d · (1 + ε). However, the optimal solution that ∀i ∈ [d], allocates buyer i with d

users has revenue d2.

With Theorem 3.21, we propose Algorithm 5 to produce a uniform pricing in this setting.

Let Âξ be the approximate allocation output by Algorithm 3.3 when the input uniform price is

ξ. Similar to Algorithm 3.1, Algorithm 5 outputs the uniform price ξ̂ = argmaxξ∈C R(pξ, Âξ)

where C = {cj |j ∈ [B]}. We analyze it as follows.

Theorem 3.23. Algorithm 5 runs in O(BM + B2 logB) to compute a uniform pricing which

is an O(D log min{U ,
∑B

j=1 dj}) approximation to the optimal arbitrage-free pricing in the

generalized setting.

Proof. According to Proposition 3.20, it is easy to see that the time complexity of Algorithm 5

is O(BM + B2 logB) since |C| ≤ B. Similarly with the proof for Theorem 3.6, we can derive

the O(D log min{U ,
∑B

j=1 dj}) guarantee for Algorithm 5 based on Theorem 3.21, since Âξ

is an O(D) approximation to the allocation problem in the generalized setting.

Compared with the previous setting where buyers have no minimum demand, we do not

find a polynomial time solution to compute the optimal uniform pricing in this setting. Because

the allocation problem is NP-hard, the guarantee of the uniform pricing drops. However, as

Algorithm 5 does not call any maxflow optimization, its time complexity is lower than that of

Algorithm 3.1. We leave the arbitrage-free non-uniform pricing in this setting as future work.

3.4 Experiments

In this section, we use synthetic data to evaluate Algorithms 3.1, 3.2, 2.1 and 3.3. To randomly

generate instances of the pricing problem, we first set the values of U , B, N , m and c where m

is the maximal number of queries that any user can satisfy and c is the upper bound of buyers’

maximum costs. For each buyer j ∈ [B], tj , dj and cj are independently and uniformly sampled

from the integer sets [N], [b4U
B c] and [c] respectively. For each user ui ∈ U ,mi is independently

and uniformly sampled from the integer set [m], and we randomly make her satisfy mi distinct

queries. We generate instances of the pricing problem of three different sizes: small size where

55

(U ,B, N,m, c) = (100, 20, 10, 4, 5), medium size where (U ,B, N,m, c) = (1000, 100, 50, 20,

1000) and large size where (U ,B, N, m, c) = (106, 1000, 500, 200, 1000).

3.4.1 Optimal Arbitrage-free Pricing

In this part, we compare the optimal arbitrage-free pricing, the optimal uniform pricing com-

puted by Algorithm 3.1 and the arbitrage-free non-uniform pricing by Algorithm 3.2. Since

we haven’t found any (even pseudo) polynomial algorithm to compute the optimal arbitrage-

free pricing, we use an exponential algorithm with grid search and backtracking to compute

the numerically optimal arbitrage-free pricing. Thus the experiment can be only conducted on

instances of small size, and we randomly generate 1000 such instances.

Figure 3.1: Uniform pricing vs. Non-uniform pricing (compared with the “optimal” baseline)

Let P∗ be the optimal arbitrage-free pricing. For each test case, we record two revenue

ratios r1 =
R(pξ∗)

R(P∗) and r2 = R(P)
R(P∗) where pξ∗ is the optimal uniform pricing computed by

Algorithm 3.1 and P is the arbitrage-free non-uniform pricing by Algorithm 3.2. The results

are shown in Fig 3.1 where the x-axis denotes the interval of revenue ratios and y-axis denotes

the proportion of the test cases of which the revenue ratios fall into the interval denoted by

x. The red bar is for r1 and the blue bar is for r2. Among all the cases, r1 ∈ [0.732, 0.983]

and r2 ∈ [0.796, 0.997]. The mean values of r1 and r2 are 0.849 and 0.948 respectively.

We observe that the actual revenue ratios of the optimal arbitrage-free uniform pricing and

the non-uniform pricing are both significantly larger than the theoretical guarantee which is

56

1/(1 + log min{U ,
∑B

j=1 dj}) ≈ 0.18. In particular, the arbitrage-free non-uniform pricing is

remarkably close to the optimal arbitrage-free pricing.

3.4.2 Approximate Allocation

In this part, we compare the approximation in Algorithm 3.3 with the optimal one (i.e. the min-

cost maxflow solver in Lemma 3.12) for the allocation problem. Note that in line 6, Algorithm

3.3 selects any user u satisfying qtj . For experiments, we use a heuristic to select such a user:

among all the users satisfying qtj , we select the one with the least number of other queries that

she satisfies. With proper preprocessing, this heuristic does not increase the asymptotic time

complexity of Algorithm 3.3.

Figure 3.2: Compare the approximate allocation (by Algorithm 3.3) with the optimal allocation
(by mincost maxflow)

The experiments are conducted on the instances of medium size. We first randomly generate

1000 cases of medium size and for each case we randomly generate a pricing vector P where

∀i ∈ [N], pi is independently and uniformly sampled from [c]. We define the revenue ratio

as R(P,Â)
R(P,A∗) where Â is the approximate allocation computed by Algorithm 3.3 and A∗ is the

optimal allocation computed by the mincost maxflow solver in Lemma 3.12. We plot the results

in Fig 3.2 where x-axis denotes the ratio and y-axis denotes the accumulated proportion of

cases of which the revenue ratios are less than or equal to x. Among all the 1000 cases, the

least revenue ratio is 0.79; the ratios of 76.6% cases are at least 0.95; 16% cases reach the

optimum, i.e. with ratio as 1. The average ratio is 0.968, much larger than the theoretical

57

guarantee 0.5.

Figure 3.3: Compare the non-uniform pricings by Algorithm 3.2 and Algorithm 2.1

Next, we randomly generate 1000 cases of medium size, for each of which, we compute its

arbitrage-free non-uniform pricing. Let P and P′ be the pricing output by Algorithm 3.2 and

2.1 respectively. In order to compareR(P) andR(P′), we still call the mincost maxflow solver

after P and P′ are produced. We plot the results in Fig 3.3 where x-axis denotes the revenue

ratio R(P′)
R(P) and y-axis denotes the accumulated proportion of cases of which the revenue ratios

are less than or equal to x. With the mean value 0.988, the ratios are in [0.717, 1.023]. Among

the 1000 cases, we find that in 94.1% cases, the ratio is at least 0.95 and in 4.1% cases, the

ratio is larger than 1 (because Algorithm 3.2 does not guarantee global optimum). Notably,

Algorithm 2.1 is faster than Algorithm 3.2 by at least a factor U
logB .

3.4.3 Uniform and Non-uniform Pricing

In this part, we first measure the convergence of Algorithm 2.1, and then compare the arbitrage-

free non-uniform pricing by Algorithm 2.1 with the optimal uniform pricing by Algorithm 3.1.

We randomly generate two datasets, 1000 cases of large size and 5000 cases of medium size.

Convergence. We observe that Algorithm 2.1 converges very quickly, as shown in Fig 3.4.

Among all the all the 1000 instances of large size, it converges after 3.77 iterations on average,

and in the worst case, 14 iterations. Among all the 5000 instances of medium size, it converges

after 2.96 iterations on average, and in the worst case, 7 iterations.

58

Figure 3.4: Convergence for non-uniform pricing (Algorithm 2.1)

Figure 3.5: Compare uniform pricing with non-uniform pricing

Let R be the (approximate) revenue of the arbitrage-free non-uniform pricing output by

Algorithm 2.1, and the relative revenue increment is calculated as R
R(pξ∗) − 1. We observe that

R is significantly larger than R(pξ∗), shown in Fig 3.5. For each curve, x-axis is the relative

revenue increment and y-axis is the accumulated case proportion of which the relative revenue

increment is less than or equal to x. For all the 1000 instances of large size, the increment is

in [0.25, 0.43], with 0.394 as the mean and 0.046 as the standard deviation. For all the 5000

instances of medium size, the increment is in [0, 0.596], with 0.281 as the mean and 0.112 as

the standard deviation. We conclude that the arbitrage-free non-uniform pricing significantly

outperforms the optimal uniform pricing, typically in large markets.

59

3.5 Discussion

In the previous sections, we constrain that each user can be sold at most once. In this part, we

discuss when the constraint becomes that a user uk where k ∈ [U] can be sold up towk different

buyers. Note that, we require that any user cannot be sold to one buyer more than once because

we assume that the buyers need to buy distinct users. Moreover, the definition of arbitrage

and arbitrage-free pricing remain the same. Next, we brief the differences of algorithms and

analyses.

The optimal uniform pricing becomes anO(log min{
∑U

k=1wk,
∑B

j=1 dj}) approximation,

which was O(log min{U ,
∑B

j=1 dj}) in Section 3.3.1. The algorithm to compute the optimal

uniform pricing is the same as Algorithm 3.1 except two differences in solving the allocation

problem (in Lemma 3.3). First, when we construct the network flow problem (in the proof of

Lemma 3.3), the step that “For each user uk ∈ U : (1) we introduce a node xk and a directed

edge from s to xk with capacity 1; and (2) ...” becomes “For each user uk ∈ U : (1) we

introduce a node xk and a directed edge from s to xk with capacity wk; and (2) ...”. Second,

to compute the maximum flow, we cannot use Ford-Fulkerson algorithm, of which the time

complexity depends on the amount of flow. Instead, we use the max flow solver in [59] with

time complexity O(|V ||E|). Thus, we now need O((U + N + B)(M + B)) time to solve the

allocation problem for uniform pricing, which was O(U(M + B)) previously in Lemma 3.3.

The modification for non-uniform pricing algorithm is similar, thus omitted.

3.6 Related Work

Revenue maximizing and envy-free pricing. Pricing is a well-studied area in Economics. In

particular, the envy-free pricing [29, 60, 61] in Walrasian Equilibrium [54] is relevant to our

work. In recent years, envy-free pricing is studied in various settings [62, 63, 64, 65, 66, 67].

[29] first addresses the computational issue of envy-free pricing. They show that the problem

is NP-hard even for the two special cases where the buyers are either unit-demand or single-

minded. For the latter case, the uniform pricing provides a logarithmic approximation in terms

of the number of buyers and the number of items. In the unlimited supply setting, [68] uses

a randomized single price to achieve expected revenue within a logarithmic factor of the total

60

social welfare for buyers with general valuation functions. [69] proves that the envy-free pric-

ing problem in a graph where items are edges is NP-hard, and provides a better approximation

algorithm than [29] for sparse instances. [70] claims some equivalency between envy-free pric-

ing and a pricing free of determinancy-arbitrage in data markets. However, envy-free pricing is

essentially different from the arbitrage-free pricing in the user markets we considered, because

not every (revenue-maximizing) envy-free pricing is a pricing free of version-arbitrage, and it

is unclear how to convert an envy-free pricing to an arbitrage-free pricing while maximizing

the revenue.

Arbitrage-free pricing in data markets. The issue of query-based price arbitrage has

gained much attention in data markets [51, 71, 72, 73, 74, 70]. [51] introduces the notion

arbitrage-freeness to query pricing. They define that a query q is determined by a set Q of

queries on database instance D if the answer of q can be inferred from the answer of Q on

D. Determinancy-arbitrage occurs if q is determined by Q and the price of q is less than the

total price of all the queries inQ. However, determinancy-arbitrage is foundamentally different

from version-arbitrage, which can be easily seen in Example 3.1 and Definition 3.6.

Price arbitrage in OSN advertising markets. Price arbitrage has been discovered and

exploited in OSN advertising markets. [52] first exploits price arbitrage in topic targeting, and

[53] proposes a more complex arbitrage strategy through path combination. [15] shows through

data analysis that arbitrage exists in both Facebook and LinkedIn ad markets, and proposes

strategies to exploit arbitrage to benefit advertisers. Our work is partially motivated by these

arbitrage strategies, and our arbitrage-free pricing can make these strategies infeasible in online

advertising markets.

3.7 Conclusion

In this chapter, we addressed the pricing problem, in particular, revenue maximizing arbitrage-

free pricing in user-based markets. We presented a variety of efficient algorithms for arbitrage-

free pricing with provable approximation guarantees on their revenue, and hardness results for

certain variations. We believe that there is a real need to study mechanisms for allocation and

pricing of users based on multiple attributes as much of online user-based markets rely on such

61

systems.

62

Chapter 4

Stable Pricing in Online Labor Markets

4.1 Introduction

Online labor markets contribute significantly to Internet Economy. For example, in Amazon

Mechanical Turk (AMT)1 and CrowdFlower2, agents are employed for human intelligence

tasks. Workers in TaskRabbit3 perform daily-life tasks, e.g. moving, cleaning. In Upwork4,

specialists are hired for more professional tasks, e.g. software development, translation.

For such markets, it is essential to price transactions and match tasks with workers suitably.

In AMT, tasks are priced by owners. In Upwork, besides pricing the task, an employer needs

to interview applicants which is burdensome. Recently, automatic pricing and matching is

adopted in some online labor markets. For example, TaskRabbit provides an option called

Quick Assign5. With this option, once the employer finishes defining the task by specifying

requirements (e.g. in Fig 4.1), date and location, the system automatically charges a price 6 and

allocates a qualified worker to the task.

We study this automatic pricing and allocation problem. The natural goal is to optimize

the revenue, but we require additional properties. In online labor markets, no worker or task

should be treated unfairly by the pricing and allocation. We formulate this as a form of stability

(similar to [75]), which is illustrated as follows:

1https://www.mturk.com

2https://www.crowdflower.com

3https://www.taskrabbit.com

4https://www.upwork.com

5https://support.taskrabbit.com/hc/en-us/articles/205313120-What-is-Quick-Assign-

6To our best knowledge, the price only depends on the requirements and other facts like time and location. In
other words, the task owner needs to pay the given price for any qualified worker. For example, $33/hr for any
worker with a car, and $71/hr for any worker with a car.

https://www.mturk.com
https://www.crowdflower.com
https://www.taskrabbit.com
https://www.upwork.com
https://support.taskrabbit.com/hc/en-us/articles/205313120-What-is-Quick-Assign-

63

Figure 4.1: Specifying the requirement for a moving task

Example 4.1. We assume that any worker prefers a task with a higher price 7. There are two

workers, w1 and w2, and two tasks, t1 and t2. Only w1 is qualified for t1. w1 and w2 are both

qualified for t2, but the owner of t2 prefers w1 to w2. Regardless of the pricing, the matching

that {(w1, t1), (w2, t2)} maximizes the revenue. However, this matching is unfair to w1 when

t1 is priced less than t2: if we announce the pricing and allow workers and tasks to match

independently at their will, the matching will be {(w1,t2)}.

In this chapter, we solve the stable pricing problem. Our contributions are:

• We design a truthful, stable mechanism with randomized uniform pricing (SMUP), and

prove that it has (1 + log h) factor approximation guarantee on revenue in expectation,

where h is the maximum price for a task. In uniform pricing, all the tasks are priced

equally. Given any uniform pricing, we show that one can compute the optimal allocation

in polynomial time while preserving the truthfulness.

• We design a truthful stable mechanism with randomized non-uniform pricing (SMNP).

Given an arbitrary non-uniform pricing, the allocation problem is NP-hard. We propose

a 3
2 -approximation for the allocation problem by generalizing the (unweighted) maxi-

mum stable matching in [76, 77]. Therefore we show that SMUP is (3 + 3 log h) factor

appoximation of the optimal revenue, which is slightly worse than SMUP above, but our

experiments show that they have similar performance in practice, and SMNP is more

robust.

• We consider online scenario where tasks arrive over time, and present a truthful online

7For example, the price of a task is the hourly payment from the task owner, and a worker’s hourly wage is a
fixed fraction of the price of the task assigned to her.

64

stable mechanism with randomized uniform pricing. Combined with a greedy match-

ing strategy, we show that this mechanism is (2 + 2 log h) factor approximation for the

optimal revenue.

Our results are obtained by using combinatorial optimization techniques suitably with ran-

dom choice of prices. The rest of the chapter is organized as follows. We first formulate the

pricing problem. We then analyze the stable mechanism with uniform pricing and with non-

uniform pricing respectively. Furthermore, we analyze the online stable mechanism. Finally we

compare different mechanisms by experiments, followed by the related work and conclusion.

4.2 Preliminary

4.2.1 Problem Formulation

[k] denotes the integer set {1, . . . , k}. There are {1, . . . , S} skills, a set W of workers and

a set T of tasks. We define W , |W | and T , |T |. A worker is denoted by a vector

w = (w1, . . . , wS) where ws ∈ N is her level of skill s ∈ [S]. For example, when S = 3,

w = (4, 5, 0) denotes that this worker has skill 1 at level 4 and skill 2 at level 5. We use

superscript to denote the index of a worker, e.g. wi is the i-th worker where i ∈ [W]. Task j

is denoted by a triplet (sj , lj , cj) where sj ∈ [S] is the required skill, lj ∈ Z+ is the minimum

level of the required skill, and cj ∈ R+ is the maximum cost that the task is willing to pay. For

example, (1, 2, $5) denotes a task that is willing to pay at most $5 for hiring a worker whose

level of skill 1 is at least 2. We assume that 0 is the lowest level and a larger integer denotes a

higher level, so worker w is said to be qualified for task j if wsj ≥ lj .

An allocation (or matching) A is the set of worker-task pairs. For any (w, j) ∈ W × T , w

and j8 are said to be matched with each other if (w, j) ∈ A. |A| denotes the matching size.

Definition 4.2. A is feasible if (1) ∀(w, j) ∈ A, w is qualified for j, i.e. wsj ≥ lj and (2) any

task (or worker) can be matched up to one worker (or task).

P is the pricing function where p(s, l) ∈ R+ is the price of any task that requires skill s

with minimum level l. Given s, it is natural to require the pricing to be non-decreasing over

8When the context is clear, we use j to denote task j.

65

levels, i.e. p(s, l) ≥ p(s, l′), ∀l ≥ l′. Note that, the payment of a task only depends on what

the task reports, i.e. task j pays p(sj , lj) if it is matched with any qualified worker, otherwise

0. When the context is clear, we use pj to denote p(sj , lj). By default, the pricing-allocation

pair (P, A) is required to be feasible that A is feasible and ∀(w, j) ∈ A, pj ≤ cj .

We assume that any worker prefers a task with the higher price, and any task prefers a

qualified worker with the higher level of the required skill. Based on this assumption, we can

formulate unfairness as the existence of blocking pairs.

Definition 4.3 (Blocking Pair). Given W , T , P and A, a pair (w, j) ∈ W × T is blocking if

both are true:

• w is unmatched or matched with j′ that pj′ < pj

• j is unmatched or matched with w′ that w′sj < wsj .

In other words, (w, j) is blocking if w and j both prefer each other. We next define stability

in our market.

Definition 4.4 (Stability). (P, A) is stable9 w.r.t. W and T if ∀(w, j) ∈ W × T , (w, j) is not

blocking.

Let R(P, A) ,
∑

(w,j)∈A pj be the revenue. We next define the pricing problem and

allocation problem.

Definition 4.5 (Stable Pricing Problem). Given W and T , to compute the revenue-maximizing

pricing-allocation pair (P, A) subject to that (P, A) is stable.

Definition 4.6 (Allocation Problem). Given W , T and P, to compute the revenue-maximizing

allocation A subject to that (P, A) is stable.

4.2.2 Stable Pricing Mechanism

We focus on the stable pricing problem, and in particular, we consider mechanism design ap-

proaches. A mechanism consists of a pricing and an allocation, but will have additional truth-

fulness as we describe below.

9The stability in this thesis is equivalent to the weak stability in [78].

66

Definition 4.7 (Stable Mechanism). Let Φ(P, A) be a mechanism with P and A. Φ(P, A) is a

stable mechanism if (P, A) is stable.

A randomized (offline or online) mechanism Φ(P, A) is said to have α-guarantee on rev-

enue if α · E[R(P, A)] ≥ R(P∗, A∗). (P∗, A∗) is the optimal solution to the offline stable

pricing problem in Definition 4.5 where the true information of all the workers and tasks is

assumed to be known by the market. In mechanism design, any task may not necessarily report

its true information to the market if misreporting can increase its utility. Therefore, we con-

sider truthful mechanisms, in which the dominant strategy of any task is to report all its private

parameters truthfully10 regardless whether other tasks report their parameters truthfully [54].

A mechanism is individual-rational (IR) if the utility of every task is non-negative. Next, we

define the utility of a task.

Let φ = (sj , lj , cj) be the parameters reported by j, while φ = (sj , lj , vj ,) be the private

parameters owned by j, where vj is the true valuation if j is matched with any qualified worker

w that wsj ≥ lj . Given A and P, we consider the following utility function uj for j:

uj =

 0 j is unmatched

vj · 1(wsj ≥ lj)− p(sj , lj) j is matched with w

1(wsj ≥ lj) is the indicator function returning 1 if wsj ≥ lj , otherwise 0.

4.3 Theoretical Results

In this section, we design two offline truthful stable mechanisms where the information of all

the workers and tasks are known to the market in advance. Then we design an online truthful

stable mechanisms where the tasks come online and only the information of all the users are

known to the market in advance.

10We do not consider truthfulness from the side of workers, i.e. whether workers report their skill/levels truthfully,
because in many online labor markets, workers’ proficiency in skills is publicly accessible, e.g. in term of ratings,
reviews, certificates or experience.

67

4.3.1 Existence of Stable Pricing Mechanism

To warm up, we show the existence of feasible stable mechanisms. We first define monotone

allocation.

Definition 4.8 (Monotone Allocation). A is monotone if: @(w′,w, j) ∈ W × W × T that

(w, j) ∈ A, w′ is unmatched and w′sj > wsj . A monotone allocation is maximal if @(w, j) ∈

W × T that w and j could be matched but not.

A pricing is called uniform if all its entries are equal, otherwise non-uniform. When the

context is clear, we use p to denote a uniform pricing.

Proposition 4.1. If A is not monotone, @P that (P, A) is stable. For any uniform pricing p,

(p, A) is stable if A is a maximal monotone allocation.

Proof. The first claim is obvious, so we only prove the second one. Given a uniform pricing p

and a maximal monotone allocation A, suppose (w, j) is a blocking pair. First, it is impossible

that w is matched because of the uniform pricing. w and j cannot be both unmatched because

A is maximal. The remaining case is that w is unmatched but j is matched with some w′ that

w′sj < wsj , contradicting to Definition 4.8.

Since it is straightforward to construct a maximal monotone allocation and generate a uni-

form pricing, we omit the proof for Corollary 4.2.

Corollary 4.2. A stable mechanism always exists.

4.3.2 Stable Mechanism with Uniform Pricing

In this part, we present a truthful stable mechanism with (1+log h)-guarantee on revenue based

on randomized uniform pricing where h is the maximum price we can set for a task. We first

solve the allocation problem for uniform pricing.

Theorem 4.3. Given a uniform pricing, the allocation problem can be solved in polynomial

time O(S2W + min{W, T }(SW + T)).

To prove Theorem 4.3, we first prove Lemma 4.4 and 4.5. Lemma 4.4 shows that for any

uniform pricing p, we can compute its revenue-maximizing allocation Ã∗p (but (p, Ã∗p) is not

68

necessarily stable) in polynomial time. Lemma 4.5 shows that given Ã∗p, we can construct the

optimal allocation A∗p in polynomial time that (p, A∗p) is stable and |Ã∗p| = |A∗p|.

Lemma 4.4. Given uniform pricing p, the revenue maximizing allocation Ã∗p (but (p, Ã∗p) is

not necessarily stable) can be computed in polynomial time O(min{W, T }(SW + T)).

Proof. Let p be the uniform price. After removing any task j that cj < p, we model this

problem as a maxflow instance. Besides the source and sink, we create three types of nodes,

corresponding to workers (x-type), skills/levels (y-type) and tasks (z-type) respectively. For

each remaining task j, we introduce two nodes zj and ysj ,lj (do not introduce ysj ,lj again if it

exists); then introduce two directed edges with capacity 1, from ysj ,lj to zj and from zj to the

sink. For each pair ys,l and ys,l′ , if l′ < l and @ ys,l̂ such that l′ < l̂ < l, introduce a directed

edge from ys,l to ys,l′ with infinite capacity. This means that a skill at level l can be used as the

same skill at a lower level l′. Finally, for each worker wi, introduce a node xi and a directed

edge with capacity 1 from the source to xi. For every skill wis > 0 that she has, introduce a

directed edge with capacity 1 from xi to ys,l if all the three conditions are true: (1) l ≤ wis, (2)

ys,l exists and (3) any node ys,l′ such that l < l′ ≤ wis does not exist. We remove any xi from

the network if she has no edge incident to y-type nodes.

Let f∗ denote the maximum flow from the source to sink. It is easy to verify that |Ã∗p| =

f∗. Thus the optimal revenue is f∗ · p. The number of nodes corresponding to workers is

O(W), to skills/levels is O(T), and to tasks is O(T). Therefore, the total number of nodes

is O(W + T). The number of edges from x-type nodes to y-type nodes is O(SW), among

y-type nodes is O(T), and from y-type nodes to z-type nodes is O(T). Thus, the total

number of edges is O(SW + T). Since Ford-Fulkerson algorithm is O(|E| · f∗) and we

have f∗ = O(min{W, T }), the time complexity to run Ford-Fulkerson on this network is

O(min{W, T }(SW + T)).

If we directly compute Ã∗p as maximum bipartite matching, i.e. without the y-type nodes,

the time complexity increases to O(W2T +WT 2) because the total number of nodes is still

O(W + T) while the total number of edges is up to O(WT). It is much worse because in

practice, S � min{W, T }.

69

However, Ã∗p is not necessarily monotone. For example, it is possible that the maxflow

algorithm assigns a worker with skill s at level 1 to the task requiring s at level 1 but leaves

a worker with s at level 2 unmatched. Thus, according to Proposition 4.1, (p, Ã∗p) is not

necessarily stable. In order to guarantee stability, intuitively, one may model the allocation

problem as a minimum cost maxflow rather than the maxflow by additionally introducing costs

on the edges from x-type nodes to y-type nodes. However, solving a mincost maxflow is much

more expensive (see the survey [55]) than the efficient maxflow we proposed in Lemma 4.4.

Algorithm 4.1 Stability Adjustment

Input: W , T and Ã
Output: a monotone allocation A

1: W ′ ← the set of all the unmatched workers
2: A← Ã
3: Let g(A, s) be the index of any s-marginal worker in A
4: while W ′ 6= ∅ do
5: Arbitrarily select and remove w from W ′

6: for s ∈ [S] do
7: if g(A, s) exists and ws > w

g(A,s)
s then

8: Update A by matching w with the task assigned to wg(A,s)

9: W ′ ←W ′ ∪ {wg(A,s)}
10: break
11: end if
12: end for
13: end while
14: return A.

Therefore, we propose stable-adjustment in Algorithm 4.1, and prove in Lemma 4.5 that it

can construct A∗p from Ã∗p efficiently. To present it, we first define skill-marginal.

Definition 4.9 (s-Marginal). In an allocation, we call a worker s-marginal if she is matched

with a task requiring skill s and her level of s is no higher than all the other workers matched

with tasks requiring s. If w is s-marginal, we call ws the marginal-level of s.

Lemma 4.5. Given Ã which is not necessarily monotone, Algorithm 4.1 computes a monotone

allocation A in polynomial time O(S2W + SW log min{W, T }) that |A| = |Ã|.

Proof. It is obvious that the adjustment will finally converge. W.l.o.g., we assume that after

M > 0 iterations, the while-loop (lines 4-13) stops. Let Am be the allocation at iteration

m ∈ {0, . . . ,M}, e.g. A0 = Ã and AM = A. Let g(Am, s) be the index of any s-marginal

70

worker in Am. Let Ls = (w
g(A0,s)
s , . . . , w

g(AM ,s)
s) be the sequence of the marginal-levels of

skill s during the while-loop (lines 4-13). It true that ∀s, Ls is non-decreasing because the

while-loop keeps replacing the s-marginal worker wg(A,s) with a worker w that ws > w
g(A,s)
s .

So once an s-marginal worker becomes unmatched, she will never be matched with any

task requiring skill s because her level of s cannot exceed the marginal level of s. This

means, for any skill s, every worker can be matched and unmatched with a task requiring

s at most once respectively. So a worker will get matched and unmatched for at most S

times, implying M = O(SW). In each iteration (lines 5-12), the algorithm sends at most

S queries to get the marginal workers of all the skills, and makes at most one update in

g(A, s) for some s. If we implement g(A, s) by a min-heap, a single query is O(1) and a

single update is O(log |A|) = O(log min{W, T }). Therefore, the overall time complexity is

O(S2W+SW log min{W, T }). Note that, the time complexity for preprocessing S min-heaps

is dominated.

After the algorithm stops, it is true that for any unmatched w and skill s, ws ≤ w
g(A,s)
s .

Therefore, A is monotone according to Definition 4.8. From the algorithm, it is true that

|A|=|Ã|, thus proving the Lemma.

To compute A∗p, we run the stable-adjustment with Ã∗p as the input allocation, which is

output by the maxflow in Lemma 4.4. The stable-adjustment only introduces an extra additive

term O(S2W) to the time complexity of the maxflow. In practice, S � min(W, T), so it is

efficient.

We next present the Stable Mechanism with Uniform Pricing (SMUP) as follows.

71

Stable Mechanism with Uniform Pricing (SMUP)

Input T , W and h

1. Randomly pick up an integer k from {0, . . . , blog hc}, and set every entry of p to 2k;

2. Run the maxflow algorithm in Lemma 4.4 to get Ã∗p;

3. Run the stable-adjustment in Algorithm 4.1 to get A∗p.

Output: p and A∗p;

Theorem 4.6. SMUP is polynomial, truthful and IR. SMUP has (1 + log h)-guarantee on

revenue if vj ∈ [1, h], ∀j ∈ [T].

Proof. It is trivial to verify individual rationality (IR) because any task j that cj < 2k is re-

moved according to Lemma 4.4. From Theorem 4.3, we know that the mechanism is polyno-

mial time, and (p, A∗p) is stable. We will prove truthfulness in Lemma 4.7 and the (1 + log h)-

guarantee on revenue in Lemma 4.8.

Lemma 4.7. Reporting (sj , lj , vj) truthfully is the dominant strategy of task j.

Proof. We will show that j can never improve its utility by reporting some parameters (sj , lj , cj)

other than its private parameters (sj , lj , vj). First, it is obvious that reporting sj 6= sj cannot

help, so the task will always report sj . We assume that j will only consider to report lj > lj

because matching with w that wsj < lj yields negative utility.

We next show that, for any v > 0, reporting (sj , lj , v) cannot derive more utility than

reporting (sj , lj , v) when lj > lj . There are two cases. First, if reporting lj and lj both

make j matched, it is obvious that reporting lj derives no more utility than reporting lj because

p(sj , lj) = p(sj , lj). Next, we only need to prove that if reporting lj fails to make j matched,

reporting lj also fails. There are two cases when reporting (sj , lj , v) fails. First, v < 2k, so

reporting (sj , lj , v) fails too. Second, v ≥ 2k but there is no more qualified worker w that

wsj ≥ lj . So there is no w that wsj ≥ lj , and reporting (sj , lj , v) also fails in the second case.

We finally show that reporting (sj , lj , cj) derives no more utility than reporting (sj , lj , vj)

for any cj 6= vj . There are two cases. First, if reporting cj and vj both make j matched, it is

72

true that these two strategies derive the same utility for j because p(sj , lj) = 2k is independent

of cj . Next, we only need to prove that if reporting vj fails to make j matched, reporting

cj also fails. There are two cases when reporting vj fails. First, vj < 2k. In such cases,

if reporting cj ∈ (0, 2k), j still fails to match; if reporting cj ≥ 2k, j might be matched,

however, uj = vj − 2k < 0. The second case is when vj ≥ 2k. In such cases, j participates

the allocation algorithm without being precluded. However, the allocation algorithm, i.e. the

maxflow described in Lemma 4.4 and the stable-adjustment in Algorithm 4.1, is independent

of cj , so reporting any cj will not change the final allocation.

Lemma 4.8. SMUP has (1 + log h)-guarantee on revenue if vj ∈ [1, h], ∀j ∈ [T].

Proof. Let P∗ and A∗ be the optimal solution to the pricing problem, and n(s, l) be the num-

ber of matched tasks requiring skill s at minimum level l in A∗. Thus, the optimal revenue

R(P∗, A∗) =
∑S

s=1

∑L
l=1 p

∗(s, l) · n(s, l) where L , max{lj |j ∈ [T]}. Let p be the uniform

pricing with every entry as 2k where k is sampled from {0, . . . , blog hc}. From P∗ and A∗

(but in fact we do not know P∗ or A∗), we could construct an allocation Ã such that (p, Ã) is

feasible as follows: (1) discard any task j that cj < 2k; (2) for all the remaining matched tasks

in A∗, match them with the same workers as A∗ does. Next, we show the lower bound of the

expectation of R(p, Ã):

E[R(p, Ã)] =

blog hc∑
k=0

1

1 + blog hc

S∑
s=1

2k ·ms(2
k)

=
1

1 + blog hc

S∑
s=1

blog hc∑
k=0

2k ·
L∑

l=l(s,k)

n(s, l)

=
1

1 + blog hc

S∑
s=1

L∑
l=1

n(s, l) · (2k(s,l)+1 − 1)

≥ 1

1 + blog hc

S∑
s=1

L∑
l=1

n(s, l) · p∗(s, l) =
R(P∗, A∗)

1 + blog hc

ms(2
k) is the total number of matched tasks (in A∗) that requires skill s and is priced no

less than 2k. l(s, k) is the lowest level satisfying p∗(s, l(s, k)) ≥ 2k. Similarly, k(s, l) is the

integer satisfying 2k(s,l) ≤ p∗(s, l) < 2k(s,l)+1.

73

However, (p, Ã) is not necessarily stable. We observe that if (w, j) is a blocking pair, w

must be unmatched due to the uniform pricing. Therefore, there exists A′ such that |A′| ≥ |Ã|

and (p, A′) is stable and feasible. Let A∗p be the optimal allocation given uniform pricing p. It

is obvious that E[R(p, A∗p)] ≥ E[R(p, A′)]. Although we cannot compute A′ because we do

not know P∗ or A∗, we can compute A∗p in polynomial time according to Theorem 4.3, thus

completing the proof.

4.3.3 Stable Mechanism with Non-uniform Pricing

Although SMUP provides an efficient solution with revenue guarantee, non-uniform pricing

is usually more desirable to real markets. Therefore in this part, we consider a truthful stable

mechanism with non-uniform pricing. For truthfulness, we still use randomized techniques to

generate a non-uniform pricing. The allocation problem for non-uniform pricing has a close

connection to the generalized stable matching where the preference lists not only contain ties

but are also incomplete [79]. Although the existence of a generalized stable matching is NP-

complete [80], later we will show that it is polynomial to find an allocation A for any non-

uniform pricing P that (P, A) is stable. Maximum generalized stable matching (Max SMTI) is

NP-hard [79], and our allocation problem can be viewed as a weighted version of a special case

(where the preferences lists of all the workers are the same) of Max SMTI. So the NP-hardness

of Max SMTI cannot imply the NP-hardness of our allocation problem for non-uniform pricing,

which we independently prove in Theorem 4.9.

Theorem 4.9. The allocation problem is NP-hard even if the pricing only contains two distinct

values.

Proof. Because Minimum Maximal Matching for subdivision graph is NP-complete [81], Ex-

act Maximal Matching (EMM) for subdivision graph is NP-complete. k-EMM is to find a max-

imal matching of size k. LetG = (V,E) be the subdivision graph of some graphG′ = (V ′, E′)

that V = V ′ ∪ E′ and E = {(e, v) : v ∈ V ′ ∧ e ∈ E′ ∧ v is incident to e}. G also has a

bipartition (V ′, E′). W.l.o.g., we assume |V ′| = |E′| = n. Given G and k ∈ {1, . . . , n − 1},

we reduce k-EMM of G to our allocation problem as follows.

Introduce n+1 skills, indexed from 1 to n+1. For each node vj ∈ V ′, introduce a task j as

74

(j, 1,∞). Introduce n−k tasks indexed from n+1 to 2n−k, and ∀j ∈ {n+1, . . . , 2n−k}, task

j is (n + 1, 1,∞). For each node ei ∈ E′, introduce a worker wi such that (1) ∀(ei, vj) ∈ E,

wij = 2; (2) win+1 = 1; and (3) for any other j, wij = 0. Note that, ∀i ∈ [n], since ei has degree

2 in G, wi has exactly 3 skills. Introduce n − k workers indexed from n + 1 to 2n − k, and

∀i ∈ {n + 1, . . . , 2n − k}, set wi such that (1) win+1 = 0 and (2) wij = 1, ∀j ∈ [n]. Overall,

we have 2n− k tasks and workers respectively.

Next, pick up any ε ∈ (0, 1
n), and create a pricing P such that (1) ∀j ∈ [n], p(j, 1) = 1 + ε

and (2) p(n+ 1, 1) = 1. Clearly, for any feasible A, the revenue R(P, A) ≤ 2n− k + εn. We

claim that R(P, A) = 2n− k + εn if and only if G has a maximal matching M of size k.

First, we assume that M is a maximal matching of size k. We construct A from M as

follows. For (ei, vj) ∈ M , we match worker wi and task j in A. For the remaining n − k

unmatched tasks, each of which is indexed no more than n, we arbitrarily match them with

wn+1, . . . ,w2n−k respectively. For the rest n−k unmatched workers, each of which is indexed

no more than n, we arbitrarily match them with tasks n+ 1, . . . , 2n− k respectively. Thus,

all the tasks and workers are matched in A, implying R(P, A) = 2n− k + εn. We then show

that A is stable. For this, there is only one non-trivial case requiring a proof: ∀i, j ∈ [n] and

(ei, vj) /∈ M , wi and task j cannot be a blocking pair. If they form a blocking pair in A, it is

true that ei and vj could be matched with each other in M but in fact they are both unmatched

in M , contradicting with that M is a maximal matching.

Next, if R(P, A) = 2n− k + εn, it is true that all the tasks and workers are matched in A.

This means that there are exactly k tasks, each of which is indexed no more than n and matched

with a worker indexed no more than n in A. We can construct M with all these k pairs. Next,

we show that M is a maximal matching of G. If M ∪ {(ei, vj)} is also a feasible matching, it

is true that (1) wij = 2 and pj = 1 + ε; (2) task j is matched with some wi′ where i′ > n and

wi
′
j = 1; and (3) wi is matched with some task j′ where j′ > n and pj′ = 1. These together

indicate that (wi, j) is a blocking pair, contradicting with the stability of (P, A).

We then propropose a 3
2 -approximation, in Algorithm 4.2, to the allocation problem by

generalizing the state-of-arts [76, 77] which both provide a 3
2 -approximation for (unweighted)

maximum general stable matching. We first define the notion of substitutable.

75

Definition 4.10 (Substitutable). A matched (e.g. with task j) worker w is substitutable if there

exists an unmatched worker w′ that wsj = w′sj .

Then we define select(j,Ψ), a function returning the worker in the worker set Ψ who is most

preferred by task j. Let w be the worker returned by select(j,Ψ), so w = argmaxw′∈Ψw
′
sj .

We define how select(j,Ψ) deals with ties as follows: (1) it prefers the worker with the highest

level of sj ; (2) among workers with the same level, it prefers unmatched to matched workers;

(3) among matched workers with the same level, it prefers substitutable workers. In other cases,

select(j,Ψ) breaks the tie arbitrarily.

Ψj is initialized as the set of all the workers qualified for task j. We present the approxi-

mation in Algorithm 4.2. In each iteration, it picks an unmatched task j∗ with the highest price

(breaking ties arbitrarily), and tries to match j∗ with workers in Ψj∗ . For every selected worker

w returned by select(j∗,Ψj∗), it will match w with j∗ if one of the three cases is true: (1)

w is unmatched; or (2) w is substitutable; or (3) j∗ has the same price with j (which is now

matched with w), and j∗ has selected all its qualified workers once (i.e. rj∗ = 1) but j has not

(i.e. rj = 0). Otherwise the algorithm will not match w with j∗. If a task has selected all its

qualified workers but remains unmatched, we give it one more chance, i.e. set rj from 0 to 1.

If the task fails to match again, i.e. rj = 1, it will never be considered. We will show that if we

combine all these design together, this approximation will have 3
2 -guarantee, and with any one

missing, the guarantee drops to 2.

We first prove the stability and analyze time complexity in Lemma 4.10, and then show its

performance guarantee in Theorem 4.12.

Lemma 4.10. Given any P, Algorithm 4.2 outputs Â in polynomial time O(W2T + T log T)

that (P, Â) is stable.

Proof. First we prove the time complexity. Either |T ′| or some |Ψj | decreases by 1 during

each iteration of the inner while-loop (lines 9-26), except when j selects a substitutable worker

(lines 15-17). According to Claim 4.11, the total number of such exception during the entire

algorithm is O(W). Since Ψj will be reset at most once (lines 29-30), the total number of any

operation within the outer while-loop (lines 6-35) is bounded by T +
∑T

j=1 |Ψj | = O(WT).

If we implement select() naively, it is O(W), so the total complexity of the outer while-loop is

76

Algorithm 4.2 Allocation for Non-uniform Pricing
Input: T , W and P
Output: Â

1: T ′ ← {j|cj ≥ p(sj , lj), j ∈ [T]}
2: ∀j ∈ T ′, Ψj ← {w|wsj ≥ lj ,w ∈W}
3: ∀j ∈ T ′, rj ← 0
4: Â← ∅
5: t← 0 . Only for indexing iterations
6: while T ′ 6= ∅ do
7: t← t+ 1
8: j∗ ← argmaxj∈T ′ p(sj , lj)
9: while Ψj∗ 6= ∅ and task j∗ is unmatched do

10: w← select(j∗,Ψj∗)
11: if w is unmatched then
12: Let w match with task j∗ in Â
13: T ′ ← T ′ − {j∗}
14: else . Assuming w is matched with task j
15: if w is substitutable then
16: Let w re-match with task j∗ in Â
17: T ′ ← T ′ ∪ {j} − {j∗}
18: else if pj∗ = pj and rj∗ > rj then
19: Let w re-match with task j∗ in Â
20: T ′ ← T ′ ∪ {j} − {j∗}
21: Ψj ← Ψj − {w}
22: else
23: Ψj∗ ← Ψj∗ − {w}
24: end if
25: end if
26: end while
27: if task j∗ is unmatched then
28: if rj∗ = 0 then
29: rj∗ = 1
30: Ψj∗ ← {w|wsj∗ ≥ lj∗ ,w ∈W}
31: else
32: T ′ ← T ′ − {j∗}
33: end if
34: end if
35: end while
36: return Â.

77

O(W2T). Additionally, we need O(T log T) to maintain a priority queue for all the tasks. So

the overall time complexity is O(W2T + T log T).

Next we prove the stability. Assume that w and task j form a blocking pair. We first prove

that w cannot be unmatched when the algorithm finishes. According to the algorithm, once w

is selected (line 10) by any j at some iteration, she is matched till the end of the algorithm. No

matter whether task j is unmatched or matched with a less preferred worker w′ that wsj > w′sj

, it must be true that j once selected w, which is a contradiction.

Claim 4.11. A worker is not substitutable after she is selected (line 10) twice by the algorithm.

Proof of Claim. w is always matched after the first selection. If she is substitutable after some

later selection (e.g. by task j), it is true that ∃w′ such that wsj = w′sj and w′ is unmatched.

However, this contradicts with the fact that j selected w other than w′ according to the select()

function.

Next, we prove that it is impossible for task j to be finally unmatched. Assuming j is finally

unmatched. It is obvious that j fails to match with w twice, and according to Claim 4.11, w

cannot be substitutable after the second selection from j. j fails to match with w for the second

time because at that moment, w is matched with some different task j1 that pj1 ≥ pj . So she

cannot finally match with some task j2 that pj2 < pj , contradicting with that w prefers j2 to j.

Finally, we show that (w, j) cannot be a blocking pair when j and w are both finally

matched. If w ∈ Ψj after the algorithm ends, j must be matched with some w′ that w′sj ≥ wsj ,

which is a contradiction. If w 6∈ Ψj at last, it is true that w has been selected at least twice

(at least once by j). So after the algorithm removes w from Ψj for the first time, w is never

substitutable and w is matched with some task j′ that pj′ ≥ pj . So it is impossible that w is

finally matched with a task priced less than pj .

Theorem 4.12. Algorithm 4.2 is a 3
2 -approximation to the allocation problem.

Proof. The proof contains two parts, Lemma 4.13 as the first part and the remaining part based

on Lemma 4.13.

Lemma 4.13. For any pricing P, Algorithm 4.2 outputs Â such that 3
2 |Â| ≥ |A

∗| where A∗ is

the optimal allocation.

78

Proof. Assuming we know A∗. Construct a graph as follows. For each task that is matched in

either A∗ or Â, create a task node, and similarly for each worker who is matched in either A∗

or Â, create a worker node. For any pair of a task node and a worker node, if they are matched

in A∗, introduce an undirected edge between them, and similarly, if they are matched in Â, also

introduce an undirected edge between them. In the graph, there are at most two edges between

two nodes. If we consider a component with exactly two nodes and two edges as a 2-cycle,

each connected component in the graph is either a cycle or path.

It is obvious that in any cycle, any task matched in A∗ is also matched in Â, so there is

no revenue loss in cycles. Also, in any path with even number of edges, the number of tasks

matched in A∗ is the same with the number of tasks matched in A (but there might be some

revenue loss). We call a path with odd number of edges as an augmenting path. It is obvious that

in any augmenting path, there is at least one task matched in A∗ but not matched in Â. Clearly,

in an augmenting path with 2k + 1 edges (k ∈ N), the number of task nodes and worker nodes

are both k + 1, and there are exactly k tasks matched in Â and k + 1 tasks matched in A∗. It is

enough to prove this lemma by showing that the graph does not contain any augmenting path

with 1 or 3 edges.

First, it is obvious that an augmenting path with 1 edge cannot exist. If there was, the

worker node and task node would have formed a blocking pair in Â, contradicting with that

(P, Â) is stable.

Suppose that there is an augmenting path with 3 edges. As shown in Fig 4.2, the solid line

denotes that w and j are matched in Â, while (w, j′) and (w′, j), represented by dashed lines,

are matched respectively in A∗ (but neither w′ nor j′ is matched in Â).

Figure 4.2: An augmenting path with 3 edges

We first show wsj > w′sj . If wsj < w′sj , (w′, j) is a blocking pair in Â, which is a

contradiction. If wsj = w′sj , w is finally substitutable. However, j′ has selected w twice,

according to Claim 4.11, which is a contradiction. We next show pj > pj′ . It is trivial to see

that pj < pj′ is impossible. If pj = p′j , it is true that rj = 1, otherwise j′ would have been

79

matched with w. However, this contradicts with Claim 4.14 because w′ is finally unmatched.

Since we havewsj > w′sj and pj > pj′ , (w, j) is a blocking pair inA∗, which is a contradiction.

Therefore, any augmenting path with 3 edges cannot exist.

Claim 4.14. ∀j, if ∃w such that (1) w is substitutable or unmatched and (2) wsj ≥ lj , we have

rj = 0.

Now we show the second part based on Lemma 4.13. Suppose there are K ≤ T unique

values (i.e. prices) in P, namely π1 ≥ . . . ≥ πK . Let Âk (or A∗k) be the partial approximate

(or optimal) allocation which only includes all the matched worker-task pairs (w, j) that pj ≥

πk. Let Â(k) (or A∗(k)) be the approximate (or optimal) allocation if the input task set only

includes all the tasks priced no less than πk in T . Since the order for each task being chosen

(line 8) for the first time depends on its price, it is true that |Âk| = |Â(k)|, according to Claim

4.15.

Claim 4.15. ∀pj′ > pj , if task j′ is matched (or unmatched) at the moment when task j is

chosen by the algorithm (line 8) for the first time, task j′ will still be matched (or unmatched)

when the algorithm finishes.

Proof of Claim. It is easy to see that task j cannot affect j′ if pj′ > pj , except that w who is

matched with j′ is substitutable. In such a case, w will be re-matched with j, however, there is

at least one unmatched worker available for j′, so j′ will still be matched.

With Lemma 4.13, it is true that ∀k ∈ [K], 3
2 |Âk| =

3
2 |Â(k)| ≥ |A∗(k)| ≥ |A∗k|. Introduc-

ing a dummy price πK+1 = 0, we have that ∀k ∈ [K],

3

2
(πk − πk+1) · |Âk| ≥ (πk − πk+1) · |A∗k|

Summing over all the K inequalities, we have:

R(P, Â) = π1 · |Â1|+
K∑
k=2

πk · (|Âk| − |Âk−1|)

≥ 2

3

(
π1 · |A∗1|+

K∑
k=2

πk · (|A∗k| − |A∗k−1|)
)

=
2

3
R(P, A∗)

80

Proposition 4.16. The ratio 3
2 is tight for Algorithm 4.2.

Proof. We prove this by an example: there are 3 tasks, (1, 1, +∞), (2, 1, +∞) and (3, 1, +∞),

and they are priced at p+ 2ε, p+ ε and p respectively where ε > 0; 3 workers, w1 = (1, 0, 0),

w2 = (1, 1, 0) and w3 = (0, 1, 1). A feasible approximate allocation by Algorithm 4.2 is (w2,

1) and (w3, 2) but w1 and task 3 are both left unmatched (the algorithm first matches task 1

with w2, then task 2 with w3), with revenue 2p + 3ε. However, the optimal allocation is (w1,

1), (w2, 2) and (w3, 3), with revenue 3p + 3ε. So the 3
2 -approximation is tight for Algorithm

4.2.

Based on the approximation, we present the Stable Mechanism with Nnon-uniform Pricing

(SMNP) as follows.

Stable Mechanism with Non-uniform Pricing (SMNP)

Input T , W and h

1. ∀s ∈ [S]: (1) pick up an integer ks uniformly and independently sampled from

{0, . . . , blog hc}, and (2) ∀l: p(s, l)← 2ks ;

2. Run Algorithm 4.2 to compute Â;

Output: P and Â.

Theorem 4.17. SMNP is polynomial, truthful and IR. SMNP has (3 + 3 log h)-guarantee on

revenue if vj ∈ [1, h], ∀j ∈ [T].

Proof. According to Lemma 4.10, (P, Â) is stable, and Â can be computed in polynomial time.

SMNP is IR since task j will never be charged more than cj (line 1 in Algorithm 4.2). The proof

of truthfulness is similar to the proof that SMUP is truthful in Lemma 4.7, thus we omit it.

We next prove the (3 + 3 log h)-guarantee on revenue in two steps. In the first step, we

show that if we knew (but in fact we do not know) the optimal stable pricing-allocation pair

(P∗, A∗), we could have constructed Ã satisfying that: given any P chosen at random (as

81

SMNP does), (1) (P, Ã) is feasible but not necessarily stable and (2) E[R(P, Ã)] ≥ R(P∗,A∗)
2+2 log h .

In the second step, we show that we could construct A′ from Ã such that (P, A′) is stable and

R(P, A′) ≥ R(P,Ã)
2 . Let A∗P be the optimal solution to the allocation problem given P, so we

have R(P, A∗P) ≥ R(P, A′). According to Theorem 4.12, we have 3
2R(P, Â) ≥ R(P, A∗P),

so we have E[R(P, Â)] ≥ R(P∗,A∗)
3+3 log h . Since according to Lemma 4.10, we can compute Â in

polynomial time, the proof is completed. Next, we show the proof for the two steps.

In the first step, we show that given P, we could construct Ã fromA∗ as follows: (1) discard

any task j that cj < pj ; (2) for all the remaining matched tasks in A∗, match them with the

same workers as A∗ does.

Claim 4.18. E[R(P, Ã)] ≥ R(P∗,A∗)
1+log h .

Proof of Claim. LetRs(P, Ã) denote the revenue contributed by all the tasks requiring skill s,

i.e. R(P, Ã) =
∑S

s=1Rs(P, Ã). Since for any s, ks is sampled independently, E[R(P, Ã)] =∑S
s=1 E[Rs(P, Ã)]. The proof that ∀s, E[Rs(P, Ã)] ≥ Rs(P∗,A∗)

1+log h is similar to the proof for

the lower bound of expected revenue of the randomized uniform pricing in Lemma 4.8, thus

omitted.

However, (P, Ã) is not necessarily stable because Ã is not necessarily monotone. In the

second step, we show that Algorithm 4.3 uses a simple greedy method to construct A′ from Ã

and P such that (1) (P, A′) is stable; and (2) R(P, A′) ≥ R(P,Ã)
2 . Note that, this method is

merely for proving the existence of A′, so instead of analyzing time complexity, we only need

to prove that it will always halt in Claim 4.19.

Algorithm 4.3 Stability Adjustment 2

Input: T , W , P and Ã
Output: A′

1: A′ ← Ã
2: while there is a blocking pair (w, j) in (P, A′) do
3: Update A′ by matching w with j
4: end while
5: return A′.

Claim 4.19. Algorithm 4.3 always halts in finite iterations.

Proof of Claim. If (w, j) is a blocking pair, through matching them with each other, w and j

82

are not blocking, and they will never be blocking. It is because (1) if w is later re-matched with

j′, it must be true that pj′ > pj; and (2) if j is later re-matched with w′, it must be true that

w′sj > wsj . Since the total number of blocking pairs is bounded byWT , Algorithm 4.3 always

halts in finite iterations.

Claim 4.20. R(P, A′) ≥ R(P,Ã)
2 , and (P, A′) is stable

Proof of Claim. Since the algorithm always halts according to Claim 4.19, (P, A′) is stable.

We next show thatR(P, A′) > R(P,Ã))
2 . The loss of revenue might occur only when we re-match

w and j (line 3) in A′ if w and j were both matched (with others) before this re-match. In the

worst case, w was matched with j′ and j was matched with w′ in Ã, but after the re-match, j′

is finally matched in A′. In such a case, we lose the revenue pj′ but guarantee the revenue pj .

Since pj′ < pj , the total loss of revenue is less than R(P,Ã))
2 , thus proving the claim.

In this section, we presented SMUP and SMNP. Due to the NP-hardness of allocation prob-

lem for non-uniform pricing, the revenue guarantee of SMNP is slightly worse than SMUP. As

we show through experiments, SMNP and SMUP generate nearly the same revenue but SMNP

is more robust. We also tried to assign different prices over different levels of a skill, however,

this strategy makes the guarantee worse, which is omitted here.

4.3.4 Online Stable Mechanism with Uniform Pricing

In this section, we present an online truthful stable mechanism. We assume that the market runs

in M rounds, and the pricing and the allocation are static. That is, if we fix the price p(s, l) in

round m, we cannot change it in later rounds. Similarly, if we match a worker and a task in

round m, we cannot re-match or unmatch them in later rounds. We require global stability. Let

P be the pricing. Let Am be the allocation in round m and A be the global allocation during

all the M rounds, i.e. A =
⋃M
m=1Am. We require not only (P, Am) to be stable ∀m ∈ [M],

but also (P, A) to be stable.

Under these constraints, it is easy to see that if workers arrive online, there is no stable

mechanism. So we study the case where all the workers are present in the first round but tasks

83

arrive online. In this setting, task j needs to report two additional parameters aj and dj where

aj ≤ dj ∈ [M] to the market. They denote the arrival and departure time respectively, i.e.

the market can match j in any round m ∈ {aj , . . . , dj}. Let mj be the round that j gets

matched, aj and dj be the private time parameters owned by j. The utility function becomes:

uj = vj · 1(wsj ≥ lj ∧ mj ∈ {aj , . . . , dj}) − p(sj , lj) if j is matched with w; otherwise

uj = 0. Besides misreporting sj , lj and vj , task j can strategically choose the time to appear

in the market. As it is natural in online mechanism design, we adopt a restricted misreporting

model where we assume no early arrival but unrestricted departure, i.e. j may report any

aj ≥ aj . This assumption is practical because aj can be viewed as the earliest time that the

employer realizes he needs to solve a task.

We have not found any mechanism with non-uniform pricing that is simultaneously stable,

truthful and with non-trivial revenue guarantee. So we present the Online Stable Mechanism

with Uniform Pricing (OSMUP) as follows. Let MaxFlow(W , T , p) denote the maxflow algo-

rithm in Lemma 4.4 with inputs W as the worker set, T as the task set and p as the uniform

pricing respectively. Let StableAdjustment(W , T , Ã) denote the stable-adjustment in Algo-

rithm 4.1 with W , T and Ã as input. Let Tm be the set of tasks that arrive in round m (i.e.

aj = m).

Algorithm 4.4 OSMUP
Input: W and T1, . . . , TM in sequence
Output: p and A1, . . . , AM

1: W1 ←W
2: Sample k from {0, . . . , blog hc} and ∀s, l, p(s, l)← 2k

3: for m ∈ [M] do
4: Ãm ← MaxFlow(Wm, Tm, p)
5: Am ← StableAdjustment(Wm, Tm, Ãm)
6: Wm+1 ←Wm − {w|w is matched in Am}
7: end for
8: return p and A1, . . . , AM

Theorem 4.21. OSMUP is polynomial, truthful and IR. OSMUP has (2 + 2 log h)-guarantee

on revenue if ∀j ∈ [T], vj ∈ [1, h].

OSMUP is obviously polynomial and IR. We prove the stability in Lemma 4.22, the (2 +

2 log h)-guarantee on revenue in Lemma 4.23 and the truthfulness in Lemma 4.25 respectively.

84

Lemma 4.22. (p, A) is stable where p is the uniform pricing of 2k where k is sampled from

{0, . . . , blog hc}.

Proof. Let T (m) be the set of all the tasks that aj ∈ [m], i.e. T (m) =
⋃m
i=1 Ti. Let A(m) be

the union of allocations for the first m rounds, i.e. A(m) =
⋃m
i=1Ai.

To prove the lemma, it is enough to prove the claim that ∀m ∈ [M], (p, A(m)) is stable

w.r.t. W and T (m). According to Theorem 4.3, it is true that ∀m ∈ [M], (p, Am) is stable

w.r.t. Wm and Tm, which immediately implies the case when m = 1, i.e. (p, A(1)) is stable

w.r.t. W and T (1) . We next prove that for any m = 1, . . . ,M − 1, if (p, A(m)) is stable w.r.t.

W and T (m), (p, A(m+ 1)) is also stable w.r.t. W and T (m+ 1). For any (w, j) that w ∈W

and aj ≤ m, it cannot be a blocking pair. For any (w, j) that w ∈ Wm+1 and aj = m + 1,

it cannot be a blocking pair. It is only possible that there exists a blocking pair (w, j) that

w ∈ W \Wm+1 and aj = m + 1. However, ∀w ∈ W \Wm+1, w is matched in Am, so she

cannot prefer a different task because of the uniform pricing, thus completing the proof.

Lemma 4.23. OSMUP has (2 + 2 log h)-guarantee on revenue if ∀j ∈ [T], vj ∈ [1, h].

Proof. Assuming that we have randomly generated the uniform pricing p. Let A∗p be the

optimal allocatio given p if all the tasks are present in the first round. So (p, A∗p) is exactly the

offline mechanism (SMUP), which has (1 + log h)-gurantee on revenue according to Lemma

4.8. It is enough to prove this lemma by showing that |A| ≥ 1
2 |A
∗
p| where A =

⋃M
m=1Am,

which is implied by the following claim (which is proved as Theorem 2.5 in [79]).

Claim 4.24. [79] For any stable matching problem, the size of the largest matching is at most

twice the size of the smallest.

Since (p, A) and (p, A∗p) are both stable w.r.t. W and T , according to Claim 4.24, we have

|A| ≥ 1
2 |A
∗
p|.

Lemma 4.25. Reporting (aj , dj , sj , lj , vj) truthfully is the dominant strategy for task j.

Proof. The proof of the truthfulness of sj , lj and vj is similar to the proof for Lemma 4.7, thus

omitted here. We show the proof of the truthfulness of aj and dj . First, reporting dj truthfully

cannot make the task worse off because the pricing and allocation are independent of dj . Due to

85

the assumption of no early arrival, we only consider reporting aj ∈ {aj + 1, . . . , dj}. Since the

pricing is uniform, we only need to show that if reporting aj cannot make j matched, reporting

aj cannot either, which is proved by the following arguments. Since j is not matched in round

aj , it is true that in Waj , there is no worker qualified for j. Since Wm is non-increasing over all

the M rounds, there is no qualified worker in Waj+1, . . . ,WM either. So reporting aj cannot

make j matched if reporting aj cannot.

4.4 Experiments

In this section, we use real price data from Amazon Mechanical Turk and synthetic skill data to

evaluate the two offline stable mechanisms SMUP and SMNP, and the online stable mechanism

OSMUP.

4.4.1 Crawled AMT Dataset

We use the API[82] to crawl 46309 tasks from Amazon Mechanical Turk (HIT) and their prices.

We discard the long tail (< 5%), i.e. any task priced no less than 1000 cents. Let D be the

price pool containing all the remaining 44043 tasks priced between 1 and 999 cents. We plot

the price distribution of D in Fig 4.3 where (x, y) denotes that y is the accumulated percentage

of tasks priced no more than x cents.

Figure 4.3: Distribution of task prices

However, the tasks from AMT do not contain skill or level information. So we create

86

synthetic skills and levels. To randomly generate input instances of the pricing problem, we set

h to 999, S to 100, and L to 10 where L is the maximum level of a skill. For each task j, we

uniformly and independently sample sj from [S], lj from [L] and cj from the price poolD with

replacement. For each worker, we randomly assign her k ∈ {1, . . . , 5} skills, each of which is

at the level sampled independently from [L]. We generate two types of instances, the instance

of small size whereW = T = 1000, and the instance of large size whereW = T = 100000.

4.4.2 Evaluation on SMUP and SMNP

In this part, we evaluate how the choice of pricing, i.e. uniform and non-uniform, impacts the

revenue. In fact, we have not found any polynomial time solution to the pricing problem (i.e.

the offline optimization problem without truthfulness). But we find that computing the opti-

mal uniform pricing and its corresponding allocation is an O(log min{W, T })-approximation.

Clearly, it is not truthful, but produces a revenue no less than the revenue of SMUP which uses

randomized uniform pricing. However, this method, as an approximately optimal baseline,

needs to run the maxflow in Lemma 4.4 and the stable-adjustment in Algorithm 4.1 by O(T)

times. So we generate 10000 instances of small size for evaluations.

For each case, we use R∗, Ru and Rn to denote the revenue generated by the baseline,

SMUP and SMNP respectively. Let ru = Ru
R∗ , and rn = Rn

R∗ be the revenue ratios of SMUP

and SMNP respectively. We plot the CDFs of the two revenue ratios in Fig 4.4 where (x, y)

denotes that there are y percentages of instances that ru ≤ x (or rn ≤ x). The mean values of

ru and rn over the 10000 cases are very close, i.e. µ(ru) = 0.435 and µ(rn) = 0.431, while

their standard deviations differ significantly, i.e. σ(ru) = 0.31 and σ(rn) = 0.06. This means

that, although theoretically SMUP has (1 + log h)-guarantee on revenue while SMNP only has

(3 + 3 log h)-guarantee, in practice, they produce nearly the same revenue. However, SMNP is

more robust than SMUP. So we recommend SMNP.

Besides revenues, we also analyze matching size, i.e. the number of matched worker-

tasks pairs. We have highly similar observations. Let mu and mn be the number of matched

worker-task pairs in SMUP and SMNP respectively. We have µ(mu) = 457, µ(mn) = 445,

σ(mu) = 382.3 and σ(mn) = 39.2, which again shows that they have similar performance in

practice, but SMNP is more robust.

87

Figure 4.4: Distributions of revenue ratios

We also analyze the revenue and matching size over 1000 input instances of large size. In

such cases, R∗ is not able to compute, so we directly compare Ru and Rn. We observe nearly

the same patterns: (1) the mean of revenue of SMNP, i.e. µ(Rn), is slightly (≈ 0.8%) higher

than that of SMUP, i.e. µ(Ru); and (2) the standard deviation of Ru is 9.7 times as the standard

deviation of Rn.

4.4.3 Evaluation on OSMUP

In this part, we evaluate the online stable mechanism OSMUP. We use SMUP as the baseline.

We consider 1000 instances of large size. Within each instance: we randomly generate the same

uniform pricing for both OSMUP and SMUP; we assume that the market runs in 100 rounds,

and randomly assign the arrival time aj ∈ [100] to each task j. Let Ro denote the revenue

produced by OSMUP, and we are particularly interested in the relative ratio Ro
Ru

where Ru is

revenue of SMUP. Among all the 1000 cases, the least revenue ratio is 0.733; there are 75.0%

cases with the ratio at least 0.95; the average ratio is 0.948, much larger than the theoretical

guarantee which is 0.5 according to Claim 4.24.

4.5 Related Work

Stable Matching. The stable matching problem was first introduced in the seminal paper

[75], and has received much attention, e.g. [83, 78]. Among many variants [79, 84], finding

88

a maximum stable matching with ties and incomplete preference lists (MAX SMTI) [80] is

closely related to our work. This problem is known to be APX-hard [85]. [86] gives a 1.875-

approximation, and [76, 77] improve the ratio to 1.5. Our allocation problem, which can be

viewed as a weighted version of a special case of MAX SMTI, has not been addressed yet,

despite many weighted variants were studied [83, 84].

In two-sided markets, [87] shows the equivalence of stable matching and core. In hetero-

geneous and competitive job markets, [88, 89, 90] consider the matching between workers and

firms. In these pricing (and matching) problems, the wages are determined by equilibrium [91].

Their results apply for labor markets where the prices and matching are determined freely by

employers and workers, but not for the market, considered in this chapter, where a monopoly

pricing and compelling matching are needed to maximize the revenue.

Envy-free Pricing Mechanisms. Pricing is a well-studied area in Economics. In particular,

the envy-free pricing [29, 60, 61] in Walrasian Equilibrium [54] is relevant to our work. In

recent years, envy-free pricing is studied in various settings [68, 62, 64, 67]. [29] first addresses

the computational issue of envy-free pricing. They show that the problem is NP-hard even for

the two special cases where the buyers are either unit-demand or single-minded. However, the

envy-free pricing they discussed is different from our stable pricing because in our market, not

only the buyer, i.e. the task, will envy, but the item, i.e. the worker, will also envy.

Crowdsourcing Markets. In crowdsourcing markets, [92, 93, 94] consider online budget

feasible mechanisms for a single employer with a budget and multiple workers. When the skill

levels of workers are unknown, [95, 96] provide learning methods for online task assignment.

[97] discusses that during a work session, additional rewards lead to higher effort of workers.

[19] presents an algorithm to decide when to offer bonuses to workers to improve the overall

utility of the employer.

4.6 Conclusions

We addressed the pricing problem, in particular, revenue maximizing stable pricing in online

labor markets. We presented three efficient truthful stable mechanism with provable guarantees

on revenue. We believe that there is a real need to further study and improve mechanisms for

89

pricing and allocation of workers and tasks based on fairness since many online labor markets

rely on such mechanisms.

90

Chapter 5

Summary and Future Work

In this thesis, we solve three pricing-related research problems in online markets. The first

problem we study is the targeting problem for advertisers. For the OSN’s perspective setting

where the user information is completely accessible, we present a polynomial time algorithm

and prove that it has 1 − 1/e guarantee. For the advertiser’s perspective setting where the

user information is only partially accessible, we show through data analysis that the strategy

of targeting subsets of audience sets is viable and propose a greedy algorithm based on subset

targeting. For evaluation, we crawl a large unique dataset which contains more than one million

suggested bids from Facebook and LinkedIn, and we show that the proposed algorithm makes

advertisers reach more target audience than directly targeting the users.

The second pricing problem we address is the revenue maximizing arbitrage-free pricing

in user-based markets, e.g. advertising markets. We first point out that the version-arbitrage

potentially exists in the pricing for a set of user attributes, and define the arbitrage-free pric-

ing. Then we presented a variety of efficient algorithms for arbitrage-free pricing with provable

approximation guarantees on the revenue, and hardness results for certain variations. We be-

lieve that there is a real need to study mechanisms for allocation and pricing of users based on

multiple attributes as much of online advertising markets rely on such systems.

The last pricing problem we address is revenue maximizing stable pricing problem in online

labor markets. As online markets start to use automatic pricing and allocation system, we

point out such a system may treat workers or tasks unfairly. To prevent this, we define the

stable pricing mechanism, in which every worker and task will be treated fairly. We presented

two efficient truthful stable mechanisms with provable guarantees on revenue for the offline

case. For the case where tasks arrive online, we also present an online efficient truthful stable

mechanism with provable guarantees on revenue.

91

The following pricing-related problems/directions would be interesting to markets:

• Fairness in Pricing. Our stable pricing mechanism is guaranteed that every entity on

the market, i.e. all the workers and tasks, will be treated fairly. This constraint is very

strong, sometimes hard to implement for a real market – for example, we cannot find

a stable pricing mechanism when we allow workers arrive online as we discussed in

Chapter 4. One interesting direction would be that, if we slack the absolute stability to

ε-stability where ε is a parameter to control the balance between fairness and unfairness

– in other words, if we allow that some proportion of entities are treated unfairly, whether

the revenue guarantee will be improved correspondingly? It is interesting to mathemati-

cally analyze the tradeoff between revenue and fairness. Another direction of designing

fair/stable pricing mechanism in ride-sharing markets. In some ride-sharing markets, the

matching between drivers and passengers are automatically determined by algorithms as

well as the charge, so either a driver or a passenger would have the risk to be treated un-

fairly. Besides, the pool pricing also has the potential to unfairly split the fees over all the

pool passengers. As the pricing model and business model in ride-sharing markets are

quite different from those in labor markets, we cannot directly apply our stable pricing

mechanisms, thus we have new challenges.

• Group Pricing. We previously assume that a task only requires one worker. However in

practice, a task may require a group of workers to cooperate, thus pricing the task, form-

ing a group and distributing the income over the groups become a new pricing problem.

Given our stable pricing mechanisms, one straightforward solution is that, the employer

manually breaks down the tasks into a set of sub-tasks with corresponding skills and util-

ities, and submit these sub-tasks independently to the labor market running stable pricing

mechanisms. Although this is a feasible solution, it does require the employer to be quite

familiar with the task decomposition and the utility of each sub-task – which contradicts

with the fact that many customers only know how much they are willing to pay and what

they need. Therefore, a fair pricing and grouping mechanism is urgently needed by a

labor market which aims to provide advanced freelancing solutions to customers.

• Price Prediction. As the targeting problem relies on the knowledge of prices which

92

change over time, accurately predicting the future prices of different but highly correlated

user attributes, will significantly help advertisers make decisions.

93

References

[1] C. Xia, S. Guha, and S. Muthukrishnan, “How much is your attention worth? analysis of
prices in linkedin advertising network,” in NetEcon, 2016.

[2] Y. Liu, C. Kliman-Silver, R. Bell, B. Krishnamurthy, and A. Mislove, “Measurement and
analysis of osn ad auctions,” in COSN, 2014.

[3] C. Li, D. Y. Li, G. Miklau, and D. Suciu, “A theory of pricing private data,” ACM Trans.
Database Syst., 2014.

[4] C. Xia and S. Muthukrishnan, “Revenue-maximizing stable pricing in online labor mar-
kets,” in HCOMP, 2017.

[5] G. Hodge and C. Cagle, “Business-to-business e-business models: classification and tex-
tile industry implications,” AUTEX Research Journal, 2004.

[6] R. Clarke, “Towards a taxonomy of b2b e-commerce schemes,” BLED, 2001.

[7] S. Kaplan and M. Sawhney, “B2b e-commerce hubs: towards a taxonomy of business
models,” Harvard Business Review, 2000.

[8] B. M. Movahedi, K. M. Lavassani, and V. Kumar, “E-marketplace emergence: Evolu-
tion, developments and classification,” Journal of Electronic Commerce in Organizations,
2012.

[9] S. Wang and N. P. Archer, “Electronic marketplace definition and classification: Literature
review and clarifications,” Enterp. Inf. Syst., 2007.

[10] B. Edelman, M. Ostrovsky, and M. Schwarz, “Internet advertising and the generalized
second-price auction: Selling billions of dollars worth of keywords,” American economic
review, 2007.

[11] W. Vickrey, “Counterspeculation, auctions, and competitive sealed tenders,” The Journal
of Finance, 1961.

[12] E. H. Clarke, “Multipart pricing of public goods,” Public Choice, 1971.

[13] T. Groves, “Incentives in teams,” Econometrica: Journal of the Econometric Society,
1973.

[14] C. Xia and S. Muthukrishnan, “Arbitrage-free pricing in user-based markets,” in AAMAS,
2018.

[15] C. Xia, S. Guha, and S. Muthukrishnan, “Targeting algorithms for online social advertis-
ing markets,” in ASONAM, 2016.

94

[16] S. C. Kuek, C. Paradi-Guilford, T. Fayomi, S. Imaizumi, P. Ipeirotis, P. Pina, M. Singh
et al., “The global opportunity in online outsourcing,” The World Bank, Tech. Rep., 2015.

[17] H. Li, B. Zhao, and A. Fuxman, “The wisdom of minority: Discovering and targeting the
right group of workers for crowdsourcing,” in WWW, 2014.

[18] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni, and L. Moy, “Learn-
ing from crowds,” Journal of Machine Learning Research, 2010.

[19] M. Yin and Y. Chen, “Bonus or not? learn to reward in crowdsourcing.” in IJCAI, 2015.

[20] M. Kokkodis, P. Papadimitriou, and P. G. Ipeirotis, “Hiring behavior models for online
labor markets,” in WSDM, 2015.

[21] M. Kokkodis and P. Ipeirotis, “The utility of skills in online labor markets,” 2014.

[22] D. Martin, B. V. Hanrahan, J. O’Neill, and N. Gupta, “Being a turker,” in CSCW, 2014.

[23] L. Olejnik, T. Minh-Dung, C. Castelluccia et al., “Selling off privacy at auction,” in NDSS,
2014.

[24] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir, “Deconstructing
amazon ec2 spot instance pricing,” ACM Trans. Econ. Comput., 2013.

[25] P. G. Ipeirotis, “Analyzing the amazon mechanical turk marketplace,” XRDS, 2010.

[26] L. Chen, A. Mislove, and C. Wilson, “Peeking beneath the hood of uber,” in IMC, 2015.

[27] P. Rusmevichientong and D. P. Williamson, “An adaptive algorithm for selecting prof-
itable keywords for search-based advertising services,” in EC, 2006.

[28] L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang, “How to bid the cloud,” in
SIGCOMM, 2015.

[29] V. Guruswami, J. D. Hartline, A. R. Karlin, D. Kempe, C. Kenyon, and F. McSherry, “On
profit-maximizing envy-free pricing,” in SODA, 2005.

[30] L. Walras, Elements of Pure Economics, 1954.

[31] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and D. Suciu, “Query-based data
pricing,” J. ACM, 2015.

[32] B. Edelman, M. Ostrovsky, and M. Schwarz, “Internet advertising and the generalized
second price auction: Selling billions of dollars worth of keywords,” 2005.

[33] B. Bi, M. Shokouhi, M. Kosinski, and T. Graepel, “Inferring the demographics of search
users: Social data meets search queries,” in WWW, 2013.

[34] S. Khuller, A. Moss, and J. S. Naor, “The budgeted maximum coverage problem,” Infor-
mation Processing Letters, 1999.

[35] S. Guha, B. Cheng, and P. Francis, “Challenges in measuring online advertising systems,”
in IMC, 2010.

[36] “Facebook Online Advertising System,” https://www.facebook.com/advertising.

https://www.facebook.com/advertising

95

[37] “LinkedIn Online Advertising System,” https://www.linkedin.com/ads/.

[38] A. Ghosh, B. I. Rubinstein, S. Vassilvitskii, and M. Zinkevich, “Adaptive bidding for
display advertising,” in WWW, 2009.

[39] J. Feldman, S. Muthukrishnan, M. Pal, and C. Stein, “Budget optimization in search-based
advertising auctions,” in EC, 2007.

[40] E. Even Dar, V. S. Mirrokni, S. Muthukrishnan, Y. Mansour, and U. Nadav, “Bid opti-
mization for broad match ad auctions,” in WWW, 2009.

[41] S. Muthukrishnan, M. Pál, and Z. Svitkina, “Stochastic models for budget optimization in
search-based advertising,” Algorithmica, 2010.

[42] C. Borgs, J. Chayes, N. Immorlica, K. Jain, O. Etesami, and M. Mahdian, “Dynamics of
bid optimization in online advertisement auctions,” in WWW, 2007.

[43] Y. Zhou, D. Chakrabarty, and R. Lukose, “Budget constrained bidding in keyword auc-
tions and online knapsack problems,” in WINE, 2008.

[44] P. Sinha and A. A. Zoltners, “The multiple-choice knapsack problem,” Operations Re-
search, 1979.

[45] M. Eftekhar, S. Thirumuruganathan, G. Das, and N. Koudas, “Price trade-offs in social
media advertising,” in COSN, 2014.

[46] M. Eftekhar, N. Koudas, and Y. Ganjali, “Reaching a desired set of users via different
paths: an online advertising technique on micro-blogging platforms.” in EDBT, 2015.

[47] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani, “Adwords and generalized online
matching,” Journal of the ACM, 2007.

[48] G. Goel and A. Mehta, “Online budgeted matching in random input models with applica-
tions to adwords,” in SODA, 2008.

[49] N. R. Devanur and T. P. Hayes, “The adwords problem: online keyword matching with
budgeted bidders under random permutations,” in EC, 2009.

[50] C. Shapiro and H. R. Varian, “Versioning: the smart way to sell information,” Harvard
Business Review, 1998.

[51] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and D. Suciu, “Query-based data
pricing,” in PODS, 2012.

[52] M. Eftekhar, S. Thirumuruganathan, G. Das, and N. Koudas, “Price trade-offs in social
media advertising,” in COSN, 2014.

[53] M. Eftekhar, N. Koudas, and Y. Ganjali, “Reaching a desired set of users via different
paths: an online advertising technique on micro-blogging platforms.” in EDBT, 2015.

[54] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic game theory. Cam-
bridge University Press, 2007.

[55] P. Kovács, “Minimum-cost flow algorithms: an experimental evaluation,” Optimization
Methods and Software, 2015.

https://www.linkedin.com/ads/

96

[56] R. M. Karp, U. V. Vazirani, and V. V. Vazirani, “An optimal algorithm for on-line bipartite
matching,” in STOC, 1990.

[57] M. Cha, A. Mislove, B. Adams, and K. P. Gummadi, “Characterizing social cascades in
flickr,” in WOSN, 2008.

[58] A. Guille, H. Hacid, C. Favre, and D. A. Zighed, “Information diffusion in online social
networks: A survey,” SIGMOD Rec., 2013.

[59] J. B. Orlin, “Max flows in O(nm) time, or better,” in STOC, 2013.

[60] F. Gul and E. Stacchetti, “Walrasian equilibrium with gross substitutes,” Journal of Eco-
nomic theory, 1999.

[61] H. B. Leonard, “Elicitation of honest preferences for the assignment of individuals to
positions,” The Journal of Political Economy, 1983.

[62] M. Cheung and C. Swamy, “Approximation algorithms for single-minded envy-free
profit-maximization problems with limited supply,” in FOCS, 2008.

[63] S. Im, P. Lu, and Y. Wang, “Envy-free pricing with general supply constraints,” in WINE,
2010.

[64] M. Feldman, A. Fiat, S. Leonardi, and P. Sankowski, “Revenue maximizing envy-free
multi-unit auctions with budgets,” in EC, 2012.

[65] A. Fiat and A. Wingarten, “Envy, multi envy, and revenue maximization,” in WINE, 2009.

[66] N. Chen, A. Ghosh, and S. Vassilvitskii, “Optimal envy-free pricing with metric substi-
tutability,” in EC, 2008.

[67] J. Hartline and Q. Yan, “Envy, truth, and profit,” in EC, 2011.

[68] M.-F. Balcan, A. Blum, and Y. Mansour, “Item pricing for revenue maximization,” in EC,
2008.

[69] P. Briest and P. Krysta, “Single-minded unlimited supply pricing on sparse instances,” in
SODA, 2006.

[70] V. Syrgkanis and J. Gehrke, “Pricing queries approximately optimally,” in CoRR, 2015.

[71] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and D. Suciu, “Toward practical query
pricing with querymarket,” in SIGMOD, 2013.

[72] S. Deep and P. Koutris, “The design of arbitrage-free data pricing schemes,” in ICDT,
2017.

[73] B.-R. Lin and D. Kifer, “On arbitrage-free pricing for general data queries,” VLDB En-
dow., 2014.

[74] C. Li and G. Miklau, “Pricing aggregate queries in a data marketplace.” in WebDB, 2012.

[75] D. Gale and L. S. Shapley, “College admissions and the stability of marriage,” The Amer-
ican Mathematical Monthly, 1962.

97

[76] E. Mcdermid, “A 3/2-approximation algorithm for general stable marriage,” in ICALP,
2009.

[77] Z. Király, “Linear time local approximation algorithm for maximum stable marriage,”
Algorithms, 2013.

[78] R. W. Irving, “Stable marriage and indifference,” Discrete Applied Mathematics, 1994.

[79] D. F. Manlove, R. W. Irving, K. Iwama, S. Miyazaki, and Y. Morita, “Hard variants of
stable marriage,” Theoretical Computer Science, 2002.

[80] K. Iwama, S. Miyazaki, Y. Morita, and D. Manlove, “Stable marriage with incomplete
lists and ties,” in ICALP, 1999.

[81] J. D. Horton and K. Kilakos, “Minimum edge dominating sets,” SIAM Journal on Discrete
Mathematics, 1993.

[82] P. G. Ipeirotis, “Analyzing the amazon mechanical turk marketplace,” XRDS: Crossroads,
The ACM Magazine for Students, 2010.

[83] D. Gusfield and R. W. Irving, The Stable Marriage Problem: Structure and Algorithms,
1989.

[84] K. Iwama and S. Miyazaki, “A survey of the stable marriage problem and its variants,” in
ICKS, 2008.

[85] M. M. Halldórsson, R. W. Irving, K. Iwama, D. F. Manlove, S. Miyazaki, Y. Morita, and
S. Scott, “Approximability results for stable marriage problems with ties,” Theoretical
Computer Science, 2003.

[86] K. Iwama, S. Miyazaki, and N. Yamauchi, “A 1.875: approximation algorithm for the
stable marriage problem,” in SODA, 2007.

[87] L. S. Shapley and M. Shubik, “The assignment game i: The core,” International Journal
of game theory, 1971.

[88] V. P. Crawford and E. M. Knoer, “Job matching with heterogeneous firms and workers,”
Econometrica, 1981.

[89] A. S. Kelso Jr and V. P. Crawford, “Job matching, coalition formation, and gross substi-
tutes,” Econometrica, 1982.

[90] J. W. Hatfield and P. R. Milgrom, “Matching with contracts,” The American Economic
Review, 2005.

[91] G. Demange and D. Gale, “The strategy structure of two-sided matching markets,” Econo-
metrica, 1985.

[92] Y. Singer and M. Mittal, “Pricing tasks in online labor markets.” in HCOMP, 2011.

[93] ——, “Pricing mechanisms for crowdsourcing markets,” in WWW, 2013.

[94] G. Goel, A. Nikzad, and A. Singla, “Mechanism design for crowdsourcing markets with
heterogeneous tasks,” in HCOMP, 2014.

98

[95] C.-J. Ho and J. W. Vaughan, “Online task assignment in crowdsourcing markets.” in AAAI,
2012.

[96] C.-J. Ho, S. Jabbari, and J. W. Vaughan, “Adaptive task assignment for crowdsourced
classification,” in ICML, 2013.

[97] M. Yin, Y. Chen, and Y.-A. Sun, “The effects of performance-contingent financial incen-
tives in online labor markets,” in AAAI, 2013.

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Overview of Online Markets
	Online Advertising Market
	Business Models
	Pricing Models
	User Targeting

	Online Labor Market
	Research Directions

	Targeting Algorithms in Online Advertising Markets
	Introduction
	Problem Formulation
	The Algorithm for OSN-perspective
	The Algorithm for Advertiser-perspective
	Data-driven Heuristics
	Revised Greedy Strategies

	Price Data Acquisition
	Suggested Bid
	Crawling Suggested Bids

	Experiments
	Budget Variation
	Price Variation

	Related Work
	Conclusions

	Arbitrage-free Pricing in Online Advertising Markets
	Introduction
	Preliminary
	Pricing Model
	Problem Formulation
	Arbitrage-Free Pricing

	Theoretical Results
	Uniform Pricing Algorithm
	Non-uniform Pricing Algorithm
	A Generalized Setting: Minimal Demand

	Experiments
	Optimal Arbitrage-free Pricing
	Approximate Allocation
	Uniform and Non-uniform Pricing

	Discussion
	Related Work
	Conclusion

	Stable Pricing in Online Labor Markets
	Introduction
	Preliminary
	Problem Formulation
	Stable Pricing Mechanism

	Theoretical Results
	Existence of Stable Pricing Mechanism
	Stable Mechanism with Uniform Pricing
	Stable Mechanism with Non-uniform Pricing
	Online Stable Mechanism with Uniform Pricing

	Experiments
	Crawled AMT Dataset
	Evaluation on SMUP and SMNP
	Evaluation on OSMUP

	Related Work
	Conclusions

	Summary and Future Work
	References

