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ABSTRACT OF THE DISSERTATION

Decomposition of Principal Series Representations and

Clebsch-Gordan Coefficients

by Zhuohui Zhang

Dissertation Director: Stephen D. Miller

In this thesis, following a similar procedure developed by Buttcane and Miller in [BM17]

for SL(3,R), the (g,K)-module structures of the minimal principal series of real reduc-

tive Lie groups SU(2, 1) and Sp(4,R) are described explicitly by realizing the represen-

tations in the space of K-finite functions on U(2). Moreover, by combining combinato-

rial techniques and contour integrations, this thesis introduces a method of calculating

intertwining operators on the principal series. Upon restriction to each K-type, the ma-

trix entries of intertwining operators are represented by Γ-functions and Laurent series

coefficients of hypergeometric series. The calculation of the (g,K)-module structure of

principal series can be generalized to real reductive Lie groups whose maximal compact

subgroup is a product of SU(2)’s and U(1)’s.
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encouragement during my exploration in mathematics. They have always been cheering

me up from the other side of the Pacific. I also thank my girlfriend XIÀNG Liú-fāng
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Chapter 1

Introduction

1.1 Automorphic Forms and (g, K)-Modules

The study of automorphic forms serves as a central topic in representation theory

and number theory. The modular forms and Maaß forms on the upper half plane

H = {x+ iy|x, y ∈ R, y > 0} ⊂ C

under the action of an arithmetic subgroup Γ of SL(2,Z) acting on H by fractional linear

transform
(
a b
c d

)
·z 7→ az+b

cz+d are two classical objects in this area, connecting the study of

algebraic curves, representation theory and number theory. They are defined as certain

eigenfunctions of the weight k ∈ Z≥0 Laplace operator ∆k = −y2(∂2
x +∂2

y) + iky∂x, and

invariant under the action of Γ in the sense

f |k
(
a b
c d

)
(z) :=

(
cz + d

|cz + d|

)−k
f

(
az + b

cz + d

)
= f(z). (1.1)

The study of automorphic forms in general passes the function from the upper

half plane H to the real reductive Lie group G = SL(2,R). G has a maximal compact

subgroup K = SO(2,R) = {
(

cos θ sin θ
− sin θ cos θ

)
|θ ∈ R}, a real split Cartan subgroup A =

{
(√

y 0

0 1/
√
y

)
|y > 0} and a nilpotent subgroup N = {( 1 x

0 1 ) |x ∈ R}. These subgroups

give rise to an Iwasawa decomposition

(
a b
c d

)
=
(

1 ac+bd

c2+d2

0 1

)(
1/
√
c2+d2 0

0
√
c2+d2

)( d√
c2+d2

− c√
c2+d2

c√
c2+d2

d√
c2+d2

)

of any element of G. The Iwasawa decomposition G = NAK parametrizes any element

in G with the coordinates

(x, y, θ) =

(
ac+ bd

c2 + d2
, 1/(c2 + d2), arctan(−c/d)

)
.
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The upper half plane H is thus isomorphic to the hermitian symmetric space G/K, on

which the fractional linear action by N is the translation along x-axis, and the action

by A is the positive scalar multiple of a point.

Thus we can consider the spaces of weight k automorphic functions

C∞(Γ\G, k) =
{
f : G→ C smooth|f(γg

(
cos θ sin θ
− sin θ cos θ

)
) = eikθf(g) for any γ ∈ Γ

}
on which the group G acts by the right regular action π(g)f(x) = f(xg). Any weight

k Maaß form f defines a function F ∈ C∞(Γ\G, k) via the formula F (g) = (f |kg)(i).

Conversely, any function F ∈ C∞(Γ\G, k) defines a function f(x+ iy) = F
(√

y x/
√
y

0 1/
√
y

)
on the upper half plane H, which satisfies the same invariance condition under Γ as

(1.1). This correspondence between weight k automorphic forms on H and the Γ-left

invariant functions on G on which K acts on the right as a character eikθ motivates the

study of irreducible representations of G and their K-types. The concept to study is

the (g,K)-module or Harish-Chandra module introduced by Harish-Chandra and James

Lepowsky in [Lep73].

1.2 Bargmann’s Classification of SL(2,R) and GL(2,R) Irreducible (g, K)-

Modules

We define the principal series to be the set of K-finite smooth functions

I(χδ,λ) =
{
f : G→ C|f

(
(−1)ε ( 1 x

0 1 )
(√

y 0

0 1/
√
y

)
g
)

= y
λ+1

2 (−1)εδf(g)
}

where G acts by translation on the right. Since the group G has an Iwasawa decompo-

sition G = NAK, the value of f is determined by its restriction to K. We can expand

f ∈ I(χδ,λ) into finite Fourier series

I(χδ,λ) =
⊕

k≡δ mod 2

Ceikθ.

The irreducible K-representations Ceikθ contained in the (g,K)-module of I(χε,λ) are

called K-types. A representation of G is called admissible if all K-types occur with

finite multiplicities. According to Bargmann [Bar47], the irreducible (g,K)-modules of

admissible representations of SL(2,R) are classified by the following theorem:
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Theorem 1.1 [Bar47][Kna79][Mui09] The (g,K)-modules of irreducible admissible rep-

resentations of SL(2,R) can be realized as subrepresentations or quotient representa-

tions of the principal series I(χδ,λ) as follows:

1. If λ+ 1 ≡ δ mod 2Z,

(a) If λ > 0, I(χδ,λ) has two irreducible subrepresentations D±λ called the discrete

series representations. The quotient Wλ = I(χδ,λ)/(D+
λ ⊕ D−λ ) has finite

dimension λ.

(b) If λ < 0, I(χδ,λ) has a finite dimensional subrepresentation W−λ of dimen-

sion −λ. The quotient I(χδ,λ)/W−λ ∼= D+
−λ ⊕D

−
−λ splits into a direct sum

of two discrete series representations.

(c) If δ = 1 and λ = 0, then the principal series decomposes into two limits of

discrete series, and I(χ−1,0) = D+
0 ⊕D

−
0 .

2. In all other cases, I(χδ,λ) is irreducible, and I(χδ,λ) is isomorphic to I(χδ,−λ).

For an arbitrary λ ∈ Z, the (limit of) discrete series representations D±|λ| have a de-

composition into K-types

D±|λ| =
⊕

k≥|λ|+1
k≡δ mod 2

Ce±ikθ.

The raising and lowering operators U+ = 1
2

(
1 i
i −1

)
and U− = 1

2

(
1 −i
−i −1

)
, act on the

K-types by the formula

U±e
ikθ =

λ± k + 1

2
ei(k±2)θ.

For example, the decomposition of the principal series I(χ0,1) can be displayed in the

following diagram:

e−ikθ
U+

)). . .
U+ ,,

U−

ll e−2iθ

U−

jj 1
U+ ++

U−

ll e2iθ
U+

((. . .
U+ ++

U−

kk eikθ

U−

jj

In the GL(2,R) case, consider δ1, δ2 ∈ {±1} and λ1, λ2 ∈ C, and define the

character χδ1,λ1 × χδ2,λ2 on the Cartan subgroup

H =
{(

ε1 0
0 ε2

) (
a1 0
0 a2

)
|ε1, ε2 ∈ {±1}, a1, a2 ∈ R>0

}
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by sending the elements
(
ε1 0
0 ε2

) (
a1 0
0 a2

)
to εδ11 ε

δ2
2 a

λ1
1 aλ2

2 . We define the principal series

I(χδ1,λ1 × χδ2,λ2) for GL(2,R) to be the induced representation of χδ1,λ1 × χδ2,λ2 from

the Borel subgroup B =
{(

a b
0 d

)
|ad 6= 0

}
to G:

I(χδ1,λ1 × χδ2,λ2) = {f : G −→ C|f(
(
ε1 0
0 ε2

) (
a1 b
0 a2

)
g) = εδ11 ε

δ2
2 a

λ1+ 1
2

1 a
λ2− 1

2
2 f(g)} (1.2)

The description of the principal series and the classification of GL(2,R) representations

can be summarized as in Theorem 2.4 of [Mui09] as follows:

Theorem 1.2 The (g,K)-modules of irreducible admissible representations for the group

GL(2,R) can be realized as sub- or quotient modules of the principal series I(χδ1,λ1 ×

χδ2,λ2). If we define

s = λ1−λ2+1
2 , µ = λ1+λ2

2 , δ = δ1 + δ2

1. If s /∈ {k2 |k ∈ Z, k ≡ δ mod 2Z}, then I(χδ1,λ1×χδ2,λ2) is irreducible. Moreover, if

we interchange the two induction parameters, I(χδ1,λ1×χδ2,λ2) ∼= I(χδ2,λ2×χδ1,λ1).

2. If λ1 > λ2 and λ1 − λ2 + 1 ≡ δ mod 2Z, then if we set k = λ1 − λ2 + 1, the

character χδ1,λ1 × χδ2,λ2 takes the form (χδ0,µ · χk, k−1
2

) × (χδ0,µ · χ0,− k−1
2

) where

χδ,λ is the character on R× as defined above, sending each a ∈ R× to sgn(a)δ|a|λ,

and δ0 ∈ {±1}, then there exists a composition series for the principal series

I(χδ1,λ1 × χδ2,λ2):

D
χδ0,µ
k ↪→I

(
(χδ0,µ · χk, k−1

2
)× (χδ0,µ · χ0,− k−1

2
)
)
→W

χδ0,µ
k

where D
χδ0,µ
k is a discrete series representations, and W

χδ0,µ
k is a finite dimen-

sional dimension. The superscript χδ0,µ indicates that the center of GL(2,R) acts

by a character χδ0,µ.

3. If λ1 < λ2 and λ1 − λ2 + 1 ≡ δ mod 2Z, then if we set k = λ2 − λ1 + 1, the

character χδ1,λ1 ×χδ2,λ2 takes the form (χδ0,µ ·χk,− k−1
2

)× (χδ0,µ ·χ0, k−1
2

), and the

principal series representation I (χδ1,λ1 × χδ2,λ2) has a composition series:

W
χδ0,µ
k ↪→I

(
(χδ0,µ · χk, k−1

2
)× (χδ0,µ · χ0,− k−1

2
)
)
→ D

χδ0,µ
k .

The notations for specific representations are the same as in λ1 > λ2 case.
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Denote by σl = Ind
O(2)
SO(2)Ce

ilθ the index 2 induction of a character from SO(2) to K =

O(2). Since the element
(

1 0
0 −1

)
∈ O(2), and the conjugation of

(
cos θ sin θ
− sin θ cos θ

)
by this

element sends eilθ to e−ilθ. It is easy to see that σl ∼= σ−l. The K-type decomposition

of the two irreducible (g,K)-modules D
χδ0,µ
k and W

χδ0,µ
k can be described as follows:

1. The module D
χδ0,µ
k has a restriction to the maximal compact subgroup K = O(2)

D
χδ0,µ
k |O(2) =

⊕
l≡k mod 2

l≥k

σl.

2. The module W
χδ0,µ
k has restriction to the maximal compact subgroup

W
χδ0,µ
k |O(2) =


⊕

l≡k mod 2
1≤l≤k−2

σl k ≡ 1 mod 2

χδ0,µ|O(2) ⊕
⊕

l≡k mod 2
2≤l≤k−2

σl k ≡ 0 mod 2

.

1.3 An Introduction to Results in this Thesis

In this thesis, we mainly deal with the groups SU(2, 1) and Sp(4,R). The group

SU(2, 1) is of real rank one, and the decomposition of principal series for SU(2, 1) has

been studied in [BS80], [Joh76] and [JW77] . In this thesis, I discuss the results for

SU(2, 1) and Sp(4,R) by passing to the representation theory of their maximal compact

subgroups.

When the minimal principal series I(δ, λ) of the group SU(2, 1) is not irreducible, we

have classified 6 families of irreducible sub or quotient (g,K)-modules of I(δ, λ) depend-

ing on the induction parameters (δ, λ). In [Kra76],[BSK80] and [V+79], an algorithm to

calculate the composition series and the classification of irreducible (g,K)-modules for

real rank 1 groups like SU(n, 1) and Sp(n, 1) has already been developed. In this the-

sis, I will utilize the Wigner D-functions to perform the calculation explicitly and write

down the K-types of the irreducible (g,K)-modules of SU(2, 1) are parametrized by a

pair of half integers (j, n) satisfying appropriate parity conditions. These irreducible

subquotients are

1. Holomorphic/antiholomorphic discrete series: Vdisc±(δ, λ),
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2. Quaternionic discrete series VH(δ, λ),

3. Finite dimensional representations Vfin(δ, λ),

4. Two other irreducible (g,K)-modules Q±(δ, λ).

Moreover, we can also compute the intertwining operators for the minimal principal

series. This thesis has developed a computational technique based on combinatorics to

calculate the intertwining integrals for SU(2, 1) and Sp(4,R). They will be discussed

in Chapter 5 and 6. For the long intertwining operator of the minimal principal series

of SU(2, 1), we have another proof of the well-known result from [JW77]:

Theorem 1.3 The long intertwining operator A(w0, δ, λ) acts on each W
(j,n)
m1,m2 as a

scalar [A(w, δ, λ)]m1
, with a closed form formula:

[A(w, δ, λ)]m1
=

π22−λ−1Γ(λ)

Γ
(
1− λ−δ

2

)
Γ
(
1− λ+δ

2

) Γ
(
j +m1 − λ+δ

2 + 1
)

Γ
(
j −m1 − λ−δ

2 + 1
)

Γ
(
j +m1 + λ−δ

2 + 1
)

Γ
(
j −m1 + λ+δ

2 + 1
)

(1.3)

We have also shown the following new result for long intertwining operator for the

minimal principal series of Sp(4,R):

Theorem 1.4 If the induction parameter δ of Sp(4,R) principal series satisfies δ ∈

{(0, 0), (1, 1)} and n−m1 ≡ δ1 and n+m2 ≡ δ2 mod 2 for i ∈ {1, 2}, the matrix entries

[A(λ)]j,nm1,m2 for the long intertwining operator is the constant Laurent series coefficient
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of

[A(λ)]j,nm1,m2
(t1, t2) =

(−1)n((2j)!)2

(
λ1+1

2

)(
j+n−εj,n

δ
2

) (
λ1+1

2

)(−
j+n−εj,n

δ
2

) (
λ1−λ2+1

2

)(j) (
λ1+λ2+1

2

)(j)

×

1

cjm1c
j
m2

(
λ1−λ2

2

)(
j+m1−ε

j,n
δ

2
) (

λ1+λ2
2

)(
−j−m2+ε

j,n
δ

2
)

(
λ2+1

2

)m2−n
2
(
λ2+1

2

)−m2−n
2

Γ

(
1−εj,nδ +j−m1

2

)
Γ

(
1−εj,nδ +j−m2

2

)×
(1− t1)

−1+ε
j,n
δ
−j+m1

2 (1− t2)
−1−εj,n

δ
+j−m2

2 t
εj,nδ −2j
2 t

−εj,nδ
1 ×

2F1

(
−j+m1,

λ1−λ2−2j−1
2

−2j
; t1

)
2F1

(
−j−m2,

λ1+λ2−2j−1
2

−2j
; t2

)
×

5F4

(
−j+εj,nδ ,1,

−j+m2+1+ε
j,n
δ

2
,
−j−n−λ1+1+ε

j,n
δ

2
,
−j−m2+λ1+λ2+ε

j,n
δ

2

−j+εj,nδ ,
−j+m1+1+ε

j,n
δ

2
,
−j−n+λ1+1+ε

j,n
δ

2
,
−j−m1−λ1+λ2+ε

j,n
δ

2
+1

;
t22 (1− t1)

t21 (1− t2)

)
. (1.4)

where εj,nδ =
{

0 j−n≡δi mod 2
1 j−n6≡δi mod 2 .
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Chapter 2

Basic Notions

2.1 Notations

The notations used in the thesis, unless otherwise specified, are defined in this

section as follows. See the book [Kna13] as a general reference.

2.1.1 Real Forms and Cartan Decomposition

The study of representations of real reductive Lie groups requires an interplay

between the complex Lie group and its various real forms. The notations are specified

in detail as follows

1. A real reductive Lie group G with Lie algebra g;

2. An anti-holomorphic involution σ on a complex Lie group GC, such that G = GσC,

with gC = g⊗ C the Lie algebra of GC;

3. A Cartan involution θ on g, which defines a Cartan decomposition g = k ⊕ p,

where k, p are the +1 and −1 eigenspaces of θ;

4. A maximal compact subgroup K ⊂ G with Lie algebra k;

5. The complexification kC = k⊗C and pC = p⊗C of the spaces k, p ⊂ g, respectively;

6. A split real form gsplit of gC, and a Cartan subalgebra h ⊂ gsplit. We require that

h be θ-stable. Denote the complexification of h as hC ⊂ gC;

7. Choose a Cartan subalgebra t ⊂ k, with the complexification tC;
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2.1.2 Root Space Decomposition for the Complex Group

We now specify the notation for the root space decomposition of the Lie algebra

gC with respect to the Cartan subalgebra hC. For expositional convenience in this thesis,

we assume rank K = rank G, so that the real reductive Lie group G has a compact

Cartan subgroup T ⊂ K ⊂ G. In this case the complexified Cartan subalgebra tC is

conjugate with hC.The notations for the Cartan subgroups for G and GC, together with

their root systems, are specified as follows:

1. Let h∗C, t
∗
C be the duals of the Cartan subalgebras hC, tC, respectively.

2. Denote by ∆(gC, hC),∆(gC, tC) ⊂ h∗C the root system.

3. The Killing form on g is B(·, ·). We define an element Hα ∈ h as the element such

that α(H) = B(H,Hα) for any H ∈ h.

4. The dual Cartan subalgebras h∗C and t∗C are equipped with an inner product

〈α, β〉 = B(Hα, Hβ).

5. Choose a set of simple roots S = {α1, . . . , αr} where r is the rank of gC. Denote

the set of positive and negative roots as ∆±(gC, hC),∆±(gC, tC) with respect to S.

6. We call the set of all elements β ∈ h∗ satisfying 〈β, αi〉 > 0 for all simple roots αi

the positive Weyl chamber.

7. Denote the simple reflection in the Weyl group W which correspond to a root α

as wα. Choose a representative sα of wα in the normalizer NGC(hC) of the Cartan

subalgebra hC.

8. Let α̌ = 2α
〈α,α〉 be the coroots, and let cαβ = 〈α, β̌〉 be the Cartan integers.

9. Let {$1, ..., $r} ⊂ h∗C be the set of fundamental weights, satisfying the property

that 〈$i, α̌j〉 = δij .

10. The weight lattice X(gC, hC) ⊂ h∗C is the lattice Z$1 + . . . + Z$r generated by

the fundamental weights.
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11. gC has a root space decomposition hC ⊕
⊕

α∈∆ gα, where gα is the subalgebra of

gC on which the restriction of adhC acts by the character α.

12. Let ρC = 1
2

∑
α∈∆+(gC,hC) α denote the half sum of all positive roots

13. Let ρK = 1
2

∑
α∈∆+(kC,tC) α denote the half sum of all positive roots in ∆+(kC, tC).

2.1.3 Chevalley Basis

The Chevalley basis serves as a basis normalized in a universal way for gC. There

exists a Chevalley basis of gC consisting of:

1. Hα1 , . . . ,Hαr for each simple root,

2. Xα ∈ gα for each root α,

Let αi be a simple root and α be an arbitrary root, the Chevalley basis satisfies the

following commutation relations:

1. [Hαi , Hαj ] = 0, [Hαi , Xα] = (α, αi)Xα, [Xαi , X−αi ] = Hαi

2. [Xα, Xβ] = εαβ(pαβ + 1)Xα+β if α + β is a root, and −pαβα + β, . . . , qαβα + β a

maximal string of roots, and εαβ = ±1

3. [Xα, Xβ] = 0 if α+ β is not a root.

On the level of complex matrix groups, for each simple root α, there exists an embedding

φα : sl(2,C) ∼= CHα ⊕ CXα ⊕ CX−α ↪→ gC. (2.1)

Let Φα be the Lie group homomorphism

Φα : SL(2,C) −→ GC

whose differential dΦα = φα. We define the following one parameter elements which

generate GC:

1. χα(t) = Φα(etXα), χ−α(t) = Φα(etX−α)

2. w̃α(t) = χα(t)χ−α(−t−1)χα(t) with w̃α = w̃α(1)
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3. hα(t) = w̃−1
α w̃α(t)

These generators satisfy the following relations:

1. hα(uv) = hα(u)hα(v)

2. w̃αhα(t)w̃−1
α = hα(t−1)

3. χα(u+ v) = χα(u)χα(v)

4. w̃α(t)χα(u)w̃α(t)−1 = χ−α(−t2u)

In general, the simple reflection w̃α acts on each one parameter subgroup χβ(t) by

adjoint action:

w̃αχβ(t)w̃−1
α = χwαβ(ηαβt)

where ηαβ = ±1 depending on the roots α and β, they are called the structure constants

of the group GC.

2.1.4 Universal Enveloping Algebra U(g)

We denote by Z(gC) the center of the universal enveloping algebra U(gC) of the

complex Lie algebra gC. The quadratic Casimir element of U(g) is the image of the

identity homomorphism on gC via the composition of the following homomorphisms :

EndCgC
φ−→ gC ⊗ g∗C

ϕ−→ gC ⊗ gC → U≤2(gC) ⊂ U(gC)

In the diagram above, the first homomorphism is the natural identification between

matrices and tensor product of the vector space with its dual space, and the second

map acts on the second factor of the tensor product as the dual map defined by the

Killing form. In fact, if we choose

1. A basis {Xi} of g;

2. A dual basis {X̃i}, satisfying 〈Xi, X̃j〉 = δij ,

then the quadratic Casimir element Ω ∈ Z(gC) is can be expressed using the dual basis:

Ω =
∑
i,j

Tr(AdXi ◦AdXj)X̃iX̃j
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In general, a generating set of Z(g) consists of elements of the form:

zπ,n =
∑
i1,...,in

Trπ(Xi1 . . . Xin)X̃i1 . . . X̃in

for each irreducible representation π of U(g).

Having chosen a positive direction in the root system, we define the following two ideals

of U(gC):

N+ =
∑

α∈∆+ U(gC)Xα, N− =
∑

α∈∆− U(gC)X−α

Applying the Poincaré-Birkhoff-Witt theorem, there is a direct sum decomposition of

U(gC) as

U(gC) ∼= U(hC)⊕ (N+ +N−)

Define γ′ as the projection of Z(gC) into U(hC), and τ : U(hC) −→ U(hC) the linear

map which acts on the generators of U(hC) in hC by:

τ(H) = H − ρ(H)1

The Harish-Chandra homomorphism γ = τ ◦ γ′ maps the center Z(gC) of U(gC) into

U(hC). Moreover, if we denote U(hC)W as the subalgebra of Weyl group invariants in

U(hC), then γ is an algebra isomorphism independent of the choice of the positive root

system.

2.2 The Real Semisimple Lie Algebras

2.2.1 Real Tori

Every real algebraic torus is isomorphic to a product of copies of R×, S1 and

C∗[Cas06]. Therefore, for any real form G of a complex algebraic group GC and a

Cartan subgroup H ⊂ G, there is a factorization H = H1H2 . . . Hk in which each

factor Hi is isomorphic to either R×, S1 or C∗. The corresponding complex Cartan

subgroup HC ⊂ GC thus has a factorization (H1)C(H2)C . . . (Hk)C, where each (Hi)C

is the complexification of Hi in GC. For each factor Hi of the real Cartan subgroup,

we can consider the values of any algebraic character χ : HC −→ C∗ and its restriction

χ|Hi of χ to each factor Hi:
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1. If Hi
∼= R×, then (Hi)C ∼= C∗ and χ|Hi takes real values.

2. If Hi
∼= S1, then (Hi)C ∼= C∗ and χ|Hi takes values in the unit circle.

3. If Hi
∼= C∗, then (Hi)C ∼= C∗×C∗ and χ|Hi takes complex values. Moreover, there

exists another algebraic character χ′ which satisfies: χ′(t) = χ(t̄) for any t ∈ Hi.

2.2.2 Real and Imaginary Roots

We define the explicit conjugations between the aforementioned Lie algebras hC

and tC. The theory is based on the correspondence between:

1. The antiholomorphic involution σ of a complex semisimple Lie algebra gC;

2. The Cartan involution θ of a real semisimple Lie group g;

3. A maximally noncompact Cartan subalgebra of a real semisimple Lie group g.

The action by the Cartan involution θ on g can be extended naturally to gC. Consider

a θ-stable Cartan subalgebra s ⊂ g and its complexification sC ⊂ gC. The Cartan

subalgebra s has the decomposition s = s0 ⊕ a, where s0 = k ∩ s, a = p ∩ s. The root

system of the complexified Lie algebra ∆(gC, sC) can be decomposed into the union of

the following subsets [Kna13]:

1. Real roots ∆r with θα = −α. In this case, α takes real values on s, and vanishes

on a.

2. Imaginary roots ∆i with θα = α. In this case, α takes imaginary values on

s = k ∩ s, and vanishes on s0 = k ∩ s. An imaginary root is called compact or

noncompact depending on whether gα ⊂ k or gα ⊂ p. We can hence decompose

∆i further into the union of compact roots ∆c and noncompact roots ∆nc.

3. Complex roots ∆c with θα 6= ±α. In this case, α takes complex values on s.

Remark 2.1 [Mat79] If α is a complex root, then the set {α, θα} serves as the simple

roots of a root system of type A1 × A1 or A2. In fact, if we assume that each element
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in the string α+ kθα formed by α and θα is a root, and let the angle between α and θα

be φ, the number:

2
〈α+ kθα, α〉
〈α, α〉

= 2 + 2k cosφ

must be an integer, and cosφ must be either ±1
2 or 0. Therefore,

1. When cosφ = ±1
2 , {±α,±θα,±α± θα} form a root system of type A2,

2. When cosφ = 0, {±α,±θα} form a root system of type A1 ×A1.

We can now define the Cayley transforms, which serve as the explicit conjugations

between different Cartan subalgebras of gC.

Example 2.1 Consider the Cartan subalgebras

hC = C
(

1 0
0 −1

)
, tC = C

(
0 1
−1 0

)
of the complex Lie algebra gC = sl(2,C), the Cartan involution which defines the max-

imal compact subalgebra so(2,R) ⊂ g is θ(X) = −Xt.

1. The real Cartan subalgebra h = R
(

1 0
0 −1

)
is a split Cartan subalgebra in g. Let

α ∈ h∗ be the root satisfying α
(

1 0
0 −1

)
= 2, which takes real values on h, and

satisfies θα = −α. The root vectors with respect to hC are:

Eα = ( 0 1
0 0 ) , E−α = ( 0 0

1 0 ) .

Define the Cayley transform

dα = Ad(exp
πi

4
(−Eα − E−α)) = Ad

(
1√
2

(
1 −i
−i 1

))
The Cayley transform dα carries hC to tC:

dα
(

1 0
0 −1

)
= i
(

0 1
−1 0

)
2. The real Cartan subalgebra t = R

(
0 1
−1 0

)
is the compact Cartan subalgebra in g.

The imaginary root α sends the element
(

0 i
−i 0

)
to 2, and satisfies θα = α. The

root vectors with respect to tC are:

eα =
1

2

(
1 −i
−i −1

)
, ēα =

1

2

(
1 i
i −1

)
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so the root α is noncompact. We define the Cayley transform

cα = Ad(exp
π

4
(ēα − eα)) = Ad

(
1√
2

(
1 i
i 1

))
The Cayley transform cα carries tC to hC:

cαi
(

0 1
−1 0

)
=
(

1 0
0 −1

)
We can see that in this case, cα and dα are inverse to each other.

For a general complex Lie algebra gC with real form g, let s ⊂ g be a real Cartan

subalgebra. For any root α ∈ ∆(gC, sC), there is an embedding

φα : sl(2,C) −→ gC

of sl(2,C) into the complexified Lie algebra gC. If α is a noncompact imaginary root

or a real root, we can use this embedding to define the Cayley transform or the inverse

Cayley transform as follows:

1. If α is imaginary noncompact, let eα, ēα be nonzero root vectors in gα, g−α re-

spectively. We can then normalize eα such that [eα, ēα] = 2
|α|2Hα. In this case,

the images of the generators of sl(2,C) are:

φα
(

0 i
−i 0

)
=

2

|α|2
Hα

φα

(
1
2
− i

2

− i
2
− 1

2

)
= eα

φα

(
1
2

i
2

i
2
− 1

2

)
= ēα

The Cayley transform is defined as

cα = Ad

(
φα

(
1√
2

(
1 i
i 1

)))
= Ad

(
exp

π

4
(ēα − eα)

)
.

2. If α is real, let Eα, E−α = θEα be nonzero root vectors in gα, g−α respectively.

We can then normalize Eα such that [Eα, E−α] = 2
|α|2Hα. In this case, the image

of the generators of sl(2,C) is:

φα
(

1 0
0 −1

)
=

2

|α|2
Hα

φα ( 0 1
0 0 ) = Eα

φα ( 0 0
1 0 ) = E−α
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The inverse Cayley transform is defined as

dα = Ad

(
φα

(
1√
2

(
1 −i
−i 1

)))
= Ad

(
exp

πi

4
(−E−α − Eα)

)
.

For an arbitrary Cartan subalgebra l of the real Lie algebra g, denote the compact

dimension and noncompact dimension of l as dc = dim l ∩ k, dnc = dim l ∩ p. Then:

1. The Cayley transform cα transforms a Cartan subalgebra with compact and non-

compact dimension (dc, dnc) to a Cartan subalgebra with compact and noncom-

pact dimension (dc − 1, dnc + 1);

2. The Cayley transform dα transforms a Cartan subalgebra with compact and non-

compact dimension (dc, dnc) to a Cartan subalgebra with compact and noncom-

pact dimension (dc + 1, dnc − 1)

Remark 2.2 It is worth mentioning the embeddings of sl(2,C) into gC for a compact

imaginary root. We illustrate this in the following example:

1. Consider a real Lie algebra g = su(2, 1) and its complexification gC = sl(3,C).

The Cartan involution corresponding to this real form is θ : X 7→ −X̄t. Take the

real Cartan subalgebra:

t = RiHα1 ⊕ RiHα2

where Hα1 = diag(1,−1, 0) and Hα2 = diag(0, 1,−1). The root α1 sends iHα1 to

2i and iHα2 to −i, and satisfies θα = α. The root vectors with respect to tC are:

eα =
(

0 i 0
0 0 0
0 0 0

)
, e−α =

(
0 0 0
i 0 0
0 0 0

)
and eα±e−α

2 ∈ kC. Therefore, α is a compact imaginary root, and the embedding

φα : sl(2,C) −→ sl(3,C) corresponds to an embedding Φα : SU(2) −→ SU(2, 1).

2.2.3 Compact Roots and Noncompact Roots

Recall that we are interested in the real reductive groups G such that their max-

imal compact subgroup K has the same rank as G. The roots ∆(kC, tC) can thus be

identified as a subset of ∆(gC, tC). In this situation, since all roots are imaginary, we
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will simply refer to the set of imaginary compact roots and imaginary noncompact

roots introduced in 2.2.2 as the compact roots ∆c(gC, tC) and the noncompact roots

∆nc(gC, tC), respectively. The Lie algebra kC will then have a decomposition:

kC = tC ⊕
⊕

γ∈∆c(gC,tC)

gγ

Similarly, the maximal compact subgroup K acts on pC via the restriction of AdG to

K, so pC can be decomposed into weight spaces:

pC =
⊕

γ∈∆nc(gC,tC)

gγ

Furthermore, define the subspaces p+
C and p−C as:

p+
C =

⊕
γ∈∆+

nc(gC,tC)

gγ

p−C =
⊕

γ∈∆−nc(gC,tC)

gγ

which decomposes pC as the direct sum p+
C ⊕ p−C . The decomposition ∆ = ∆c ∪ ∆nc

can be recorded in the Vogan diagram, which is a decoration of the Dynkin diagram in

which the noncompact roots are colored black.

Example 2.2 1. If G0 is a compact real form of GC, then none of the dots in the

Vogan diagram is colored black.

2. Assume p + q = n + 1, the real form su(p, q) of sl(n + 1,C) corresponds to the

Vogan diagram whose p-th dot from the left colored black.

α1 α2 α3 α4 αp αn−1 αn

3. Assume p + q = n, the real form sp(p, q) of sp(2n,C) corresponds to the Vogan

diagram with p-th dot from the left colored black.

α1 α2 α3 α4 αp αn−1 αn

4. The real form sp(2n,R) corresponds to the Vogan diagram with the last dot in the

Dynkin diagram of Cn colored black.

α1 α2 α3 α4 αp αn−1 αn
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2.2.4 Minimal Parabolic Subgroup and Restricted Roots

For a real reductive Lie algebra g = k⊕ p, consider the following data:

1. Let a be a maximal abelian Lie subalgebra in p;

2. Let A0 = exp a be the connected analytic subgroup of G with Lie algebra a;

3. Let M ⊂ K be the centralizer of a in K;

4. Following the notations from Section VI.4 of [Kna13], if we restrict the adjoint

action adg to a there is a direct sum decomposition of g into restricted root

subspaces

g = m⊕ a⊕
⊕

α∈Σ(g,a)

gα,

where the set of restricted roots Σ(g, a) ⊂ a∗ is the set of nonzero simultaneous

eigenvalues of the adjoint action of elements in a on g, and gα is the simultaneous

eigenspace corresponding to a restricted root α ∈ Σ(g, a). We use the notation

Σ+ and Σ− for the set of positive and negative restricted roots, respectively.

Moreover, for a reduced restricted root α, let vα be the direct sum of all the

gmα’s where m is a positive integer, and for any reduced root α, let

ρ(α) =
1

2

∑
ν∈Σ+(g,a)
ν=mα

m positive integer

ν.

5. Take a Cartan subalgebra s0 ⊂ m, define the real Cartan subalgebra s = s0⊕ a of

g. This Cartan subalgebra is a maximally noncompact Cartan subalgebra of g.

6. The nilpotent subalgebra n+ =
⊕

α∈Σ+(g,a) gα defines an analytic subgroup N+ ⊂

G.

7. The half sum of positive restricted roots ρ = 1
2

∑
α∈Σ+(g,a) α;

8. The subalgebra q = m ⊕ a ⊕ n+ is called a minimal parabolic subalgebra of G.

The subgroup Q = MA0N
+ is called a minimal parabolic subgroup of G;
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9. There is an Iwasawa decomposition for G as the product of subgroups G =

KMA0N
+, with a corresponding decomposition g = k ⊕ m ⊕ a ⊕ n+ on the Lie

algebra;

Remark 2.3 It is important to note that for the minimal parabolic subalgebra q =

m⊕ a⊕ n+

mC = s0C ⊕
⊕
α∈∆i

gα.

The Cartan subalgebra sC = s0C ⊕ aC is a maximally noncompact Cartan subalgebra

of gC, and all the imaginary roots are noncompact. Moreover, for any real roots α,

α|(s0)C = 0, and for any imaginary roots α, α|aC=0.

The reductive group M can be factored as a commuting product M = FM0, where F

is a finite subgroup of M in which every nonidentity element has order 2, and M0 is a

connected compact reductive group. In fact, for any real root α of ∆(gC, sC), consider

the homomorphism φα : sl(2,R) −→ g, which exponentiates to a homomorphism Φα :

SL(2,C) −→ GC. Letting γα be the image of
(−1 0

0 −1

)
, then

γα = exp
2πiHα

|α|2
= expπ(Xα − θXα)

The discrete subgroup F ⊂M is generated by γα for all real roots α [Kna13].
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Chapter 3

Representation of Compact Groups

As was specified in the first chapter, let K ⊂ G be a maximal compact subgroup

of G. Recall that we assume rank K = rank G = r and there is a compact Cartan

subalgebra t for both k and g. As before, we denote the complexification of the Lie

algebra k as kC and the root system as ∆(kC, tC), with a choice of simple roots S =

{α1, . . . , αr}. We introduce the symbol K̂ as the set of all irreducible representations

of K up to equivalence. By indexing an irreducible representation (τ, Vτ ) by its highest

weight µ, we can realize the set K̂ as a subset of the weight lattice

X(kC, tC) = {µ ∈ t∗C|〈µ, α̌i〉 ∈ Z for all αi ∈ S}.

In the rest of this thesis, we will focus on the real reductive groups G whose maximal

compact subgroup K is a product of copies of U(2)’s and SU(2)’s. For that sake, in

this chapter, we will discuss the representation theory of U(2) and SU(2) in detail. In

this whole chapter, we let K = U(2) and k = u(2).

3.1 Structure of SU(2) and U(2)

The Pauli matrices are the generators of the Lie algebra sl(2,C):

σ0 = ( 1 0
0 1 ) , σ1 = ( 0 1

1 0 ) , σ2 =
(

0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
They satisfy the commutation relations

[σ0, σi] = 0 (3.1)

[σi, σj ] =

3∑
k=1

2iεijkσk if i, j 6= 0, (3.2)
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where the Levi-Civita symbol εijk takes value 1 if (ijk) is an even permutation of (123),

−1 if (ijk) is an odd permutation of (123), and 0 if two or more elements in {i, j, k} are

equal. We multiply each Pauli matrix by i/2, and let γi = i
2σi, then γi are generators

of the real Lie algebra u(2) ⊂ sl(2,C):

γ0 =

(
i
2

0

0 i
2

)
, γ1 =

(
0 i

2
i
2

0

)
, γ2 =

(
0 1

2

− 1
2

0

)
, γ3 =

(
i
2

0

0 − i
2

)
.

The Pauli matrices γ0 and γ3 generate a Cartan subalgebra t of u(2), and the

complexified Lie algebra kC = u(2)⊗R C = gl(2,C) has the following decomposition

kC = k−C ⊕ k+C ⊕ tC,

where the positive and negative root spaces are generated by γ1 ∓ iγ2

k−C = C(γ1 + iγ2), k+C = C(γ1 − iγ2).

The commutator subalgebra [kC, kC] is semisimple and is isomorphic to sl(2,C), and

kC = Cγ0 ⊕ [kC, kC]. The Casimir element ΩK in the universal enveloping algebra of

U([kC, kC]) of the commutator subalgebra [kC, kC] takes the form:

ΩK = −2(γ2
1 + γ2

2 + γ2
3).

The compact group SU(2) is defined by

SU(2) = {
(
α −β̄
β ᾱ

)
|α, β ∈ C and |α|2 + |β|2 = 1} ∼= S3.

We consider the quaternions

H = {q0 + q1i + q2j + q3k|qi ∈ R, i2 = j2 = k2 = ijk = −1},

then there exists a group isomorphism between SU(2) and the unit quaternions H∗:

SU(2) −→ H∗ = {q0 + q1i + q2j + q3k|qi ∈ R and
∑
q2
i = 1}(

α −β̄
β ᾱ

)
7→ Reα+ (Imα)i− (Reβ)j + (Imβ)k

.

To obtain a rotational coordinate for SU(2), we need to introduce the two variable

arctan function with range (−π, π]:

arctan(x, y) = Arg(x+ iy)
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where Arg is the principal value of the argument function, taking value in the range

(−π, π]. The multiplication by S1 ∼= {e−φγ3 | − π < ψ ≤ π} on the right defines a Hopf

fibration of the group SU(2):

S1 −→ SU(2) −→ CP1 ∼= S2(
α −β̄
β ᾱ

)
[α : β] z = β/α

,

where we take

φ = arctan(−Im(α)Im(β) + Re(α)Re(β),−Im(β)Re(α)− Im(α)Re(β)). (3.3)

We can use the zyz Euler angles (ψ, θ, φ) to parametrize a generic element of SU(2).

The ranges of these angles are

φ ∈ (−π, π], θ ∈ [0, π], ψ ∈ (−π, 3π].

If we choose the branch for the arccos function such that its value lies in the range

[0, π], and let the other two angles

θ = arccos(1− 2|β|2), (3.4)

ψ = arctan
(
βᾱ+ αβ̄,Re(2αIm(β)− 2βIm(α))

)
+ π(1− ε(α, β)), (3.5)

where

ε(α, β) = exp

(
−1

2
i
(
Arg(ᾱβ)− 2Arg(ᾱ) + Arg

(
αβ
)))

,

then z = β/α = eiψ tan θ
2 , and the matrix

U(ψ, θ, φ) = e−ψγ3e−θγ2e−φγ3 =

(
e−

i
2 (φ+ψ) cos θ

2
−e

i
2 (φ−ψ) sin θ

2

e
i
2 (−φ+ψ) sin θ

2
e

i
2 (φ+ψ) cos θ

2

)
, (3.6)

with ψ, θ, φ given by the formulas above, parametrizes a generic element
(
α −β̄
β ᾱ

)
of the

group SU(2) with the Euler angles (ψ, θ, φ). If we write
(
α −β̄
β ᾱ

)
as a unit quaternion,

then the matrix with entries in α and β corresponds to the unit quaternion q0 + q1i +

q2j + q3k, where

q0 = cos
(
θ
2

)
cos
(
ψ+φ

2

)
, q1 = − cos

(
θ
2

)
sin
(
ψ+φ

2

)
,

q2 = − sin
(
θ
2

)
cos
(
φ−ψ

2

)
, q3 = sin

(
θ
2

)
sin
(
−φ+ψ

2

)
.
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The center of the Lie group U(2) is isomorphic to U(1), which can be parametrized by

the exponentiation e−ζγ0 of the matrix γ0. If we multiply e−ζγ0 to the matrix U(ψ, θ, φ),

we obtain a generic element of the group U(2):

e−ζγ0U(ψ, θ, φ) =

(
e

i
2 (−ζ−φ−ψ) cos θ

2
−e

i
2 (−ζ+φ−ψ) sin θ

2

e
i
2 (−ζ−φ+ψ) sin θ

2
e

i
2 (−ζ+φ+ψ) cos θ

2

)
. (3.7)

3.2 Realization of Irreducible Representations

The standard representation (π,W ) of U(2) can be realized in the space of linear

polynomials in two variables. To be precise, let z be the column vector of two variables

(z1, z2)t, with π acting on any linear polynomial f(z) via:

π(g)f(z) = f(g−1z).

For k ∈ Z, denote by detk the one dimensional representation on which g ∈ U(2)

acts by scalar multiplication with (det g)k. Letting j ∈ 1
2N and n ∈ 1

2Z with j + n ∈

Z, an arbitrary irreducible representation πj,n of U(2) can be realized on the space

Sym2jW ⊗ det(j+n), which is isomorphic to Sym2jW as a vector space. U(2) acts by

right regular action on any degree 2j homogeneous polynomial f ∈ Sym2j(W )⊗det(j+n)

in 2 variables z1, z2:

πj,n(g)f(z) = (det g)j+nf(g−1z).

Let m ∈ 1
2Z such that −j ≤ m ≤ j and j±m are integers, the weight basis {vjm}−j≤m≤j

for Sym2jW ⊗ det(j+n) is defined as:

vjm =
zj−m1 zj+m2√

(j −m)!(j +m)!
.

The Lie algebra u(2) acts on the weight basis {vjm}−j≤m≤j of Sym2jW ⊗ det(j+n) as

linear operators:

γ0v
j
m = invjm (3.8)

(γ1 ± iγ2)vjm = −i
√

(j ∓m)(j ±m+ 1)vjm±1 (3.9)

γ3v
j
m = imvjm. (3.10)

We define a hermitian inner product 〈vjm1 , v
j
m2〉 = δm1,m2 on Sym2jW ⊗ det(j+n), and

we require the inner product to be linear in the first argument, and conjugate linear
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in the second argument. We notice that γ0 and γ3 acts on the weight vectors vjm of

Sym2jW ⊗det(j+n) by multiplication of a purely imaginary number im. Moreover, from

(3.9), we can see that the matrices of γ1 and γ2 actions are unitary under this hermitian

inner product:

〈γ1v
j
m1
, vjm2

〉 =

1

2i

(√
(j −m1)(j +m1 + 1)δm1+1,m2 +

√
(j −m2)(j +m2 + 1)δm1,m2+1

)
(3.11)

〈γ2v
j
m1
, vjm2

〉 =

1

2

(
−
√

(j −m1)(j +m1 + 1)δm1+1,m2 +
√

(j −m2)(j +m2 + 1)δm1,m2+1

)
.

(3.12)

Therefore, the action of the Lie algebra elements γi ∈ u(2) on Sym2jW ⊗det(j+n) is uni-

tary. Using this inner product, we can define the Wigner D-functions W
(j,n)
m1,m2(ζ, ψ, θ, φ)

as the matrix coefficients of the irreducible representation πj,n:

W (j,n)
m1,m2

(ζ, ψ, θ, φ) = 〈vjm1
, e−γ0ζU(ψ, θ, φ)vjm2

〉

= cjm1
cjm2

einζei(m1ψ+m2φ)d(j,n)
m1,m2

(θ), (3.13)

where cjm =
√

(j +m)!(j −m)! is a normalization factor, and the function d
(j,n)
m1,m2(θ) is

given by the trigonometric polynomial

d(j,n)
m1,m2

(θ) =

min(j−m2,j+m1)∑
p=max(0,m1−m2)

(−1)m2−m1+p

(j +m1 − p)!p!(m2 −m1 + p)!(j −m2 − p)!

sinm2−m1+2p

(
θ

2

)
cos2j+m1−m2−2p

(
θ

2

)
. (3.14)

The Wigner D-function W
(j,n)
m1,m2 satisfies the following properties:

1. Jacobi polynomials and d
(j,n)
m1,m2(θ)

The sum d
(j,n)
m1,m2(θ) has an expression in terms of the hypergeometric function
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2F1:

d(j,n)
m1,m2

(θ) =
sinm1−m2( θ2) cos2j−m1+m2( θ2)

(j−m1)!(m1−m2)!(j+m2)! 2F1

(
−j+m1,−j−m2

1+m1−m2
;− tan2

(
θ
2

))
m1 > m2

(−1)−m1+m2 sin−m1+m2( θ2) cos2j+m1−m2( θ2)
(j+m1)!(−m1+m2)!(j−m2)! 2F1

(
−j−m1,−j+m2

1−m1+m2
;− tan2

(
θ
2

))
m1 ≤ m2

(3.15)

For n ≥ 0 and for α, β ∈ R, the Jacobi polynomials P
(α,β)
n (z) are a class of

orthogonal polynomials defined in [AS67] as

P (α,β)
n (z) =

Γ(α+ n+ 1)

n! Γ(α+ β + n+ 1)

n∑
m=0

(
n

m

)
Γ(α+ β + n+m+ 1)

Γ(α+m+ 1)

(
z − 1

2

)m
.

(3.16)

In [Res08], the Jacobi polynomial is also defined as

Pα,βn (x) =

(
n+ α

n

)(
x+ 1

2

)n
2F1

(
−n,−n−β,α+1 ;

x− 1

x+ 1

)
. (3.17)

These two definitions of Jacobi polynomials are equivalent. By the definition of

Jacobi polynomials and the transformation rules of hypergeometric functions, the

function d
(j,n)
m1,m2(θ) can also be expressed in terms of Jacobi polynomials:

d(j,n)
m1,m2

(θ) =

(
sin θ

2

)m1−m2
(
cos θ2

)m1+m2

(j +m2)!(j −m2)!
P

(m1−m2,m1+m2)
j−m1

(cos θ). (3.18)

2. Multiplicativity If an element k of U(2) is expressed in terms of Euler angles as

k = e−γ0ζU(ψ, θ, φ), we can replace the notation W
(j,n)
m1,m2(ζ, ψ, θ, φ) by W

(j,n)
m1,m2(k).

For any k1, k2 ∈ K, since W
(j,n)
m1,m2 are the matrix coefficients of the representa-

tion πj,n, we can use the multiplicative property of matrix coefficients to write

W
(j,n)
m1,m2(k1k2) as a sum:

W (j,n)
m1,m2

(k1k2) = 〈vjm1
, k1k2v

j
m2
〉

=
∑

−j≤m3≤j
j+m3∈Z

〈vjm1
, k1v

j
m3
〉〈vjm3

, k2v
j
m2
〉

=
∑

−j≤m3≤j
j+m3∈Z

W (j,n)
m1,m3

(k1)W (j,n)
m3,m2

(k2).
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3. Inverse Matrix

Recall that the basis {vjm} and the inner product on πj,n are chosen so that the

action of U(2) is unitary. Therefore, the Wigner D-functions satisfies the unitarity

property: ∑
−j≤m3≤j
j+m3∈Z

W (j,n)
m1,m3

(k)W
(j,n)
m2,m3(k) = δm1,m2 . (3.19)

This relation is equivalent to:

W
(j,n)
m2,m1(k) = W (j,n)

m1,m2
(k−1).

To see such transformation rule directly, we can switch m1 and m2 in the ex-

pression (3.15) of d
(j,n)
m1,m2(θ) in terms of hypergeometric functions, and obtain the

formula

d(j,n)
m1,m2

(θ) = (−1)m2−m1d(j,n)
m2,m1

(θ).

It follows from the previous formula and the definition of Wigner D-functions

that

(−1)m2−m1W
(j,−n)
−m1,−m2

(k) = W (j,n)
m2,m1

(k−1). (3.20)

which is equivalent to the formula (3.19) above.

4. Differential Equations

The right and left regular action r(k) and l(k) by K on any function f ∈ C∞(K)

are given by

Right action: (r(k)f)(g) = f(gk)

Left action: (l(k)f)(g) = f(k−1g).

The corresponding action of the Lie algebra u(2) as differential operators are

denoted by dl and dr, and we can extend the action to sl(2,C) = u(2) ⊗ C by

making dl linear and dr linear under multiplication by scalars:

dl(αX) = αdl(X), dr(αX) = αdr(X).
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The differential operators can be written down explicitly using the Euler angle

coordinates. Then by direct calculation, these differential operators are

dr(γ0) = − ∂
∂ζ dl(γ0) = ∂

∂ζ

dr(γ3) = − ∂
∂φ dl(γ3) = ∂

∂ψ

dr(γ1 ± iγ2) = e∓iφ(− cot θ
∂

∂φ
∓ i

∂

∂θ
+ csc θ

∂

∂ψ
)

dl(γ1 ± iγ2) = e±iψ(csc θ
∂

∂φ
± i

∂

∂θ
− cot θ

∂

∂ψ
).

Comparing with the action of γi on the weight basis vjm in (3.8)-(3.10), the action

of the differential operators dr(γi) and dl(γi) on the Wigner D-functions are

dr(γ0)W
(j,n)
m1,m2 = −inW (j,n)

m1,m2 dl(γ0)W
(j,n)
m1,m2 = inW

(j,n)
m1,m2

dr(γ3)W
(j,n)
m1,m2 = −im2W

(j,n)
m1,m2 dl(γ3)W

(j,n)
m1,m2 = im1W

(j,n)
m1,m2

(3.21)

dr(γ1 ± iγ2)W (j,n)
m1,m2

= i
√

(j ±m2)(j ∓m2 + 1)W
(j,n)
m1,m2∓1 (3.22)

dl(γ1 ± iγ2)W (j,n)
m1,m2

= −i
√

(j ∓m1)(j ±m1 + 1)W
(j,n)
m1±1,m2

. (3.23)

5. Basis for L2(K)

By the Peter-Weyl Theorem for K = U(2), as the matrix coefficients for the finite

dimensional representations of U(2), the Wigner D-functions W
(j,n)
m1,m2 provides a

Hilbert space basis for L2(K):

L2(K) =
⊕̂

j∈ 1
2
Z≥0

n∈ 1
2
Z,j+n∈Z

m1,m2∈{−j,−j+1,...,j}

CW (j,n)
m1,m2

. (3.24)

3.3 Tensor products and Clebsch-Gordan coefficients

For any two irreducible representations V j1 ∼= Sym2j1W and V j2 ∼= Sym2j2W

of SU(2), we choose the weight basis {vj1m1} and {vj2m2} of the two spaces, properly

normalized such that γi acts as in (3.8)-(3.10). The tensor product V j1 ⊗ V j2 has

two sets of basis: the pure tensors vj1m1 ⊗ v
j2
m2 , and the weight basis of the irreducible

constituents V J of the tensor product V j1⊗V j2 . In fact, for the compact group SU(2),

each irreducible constituent in the decomposition

V j1 ⊗ V j1 =
⊕
J

(V J)⊕mJ
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has multiplicity mJ = 0 or 1, with mJ = 1 if and only if J satisfies the following two

properties:

1. |j1 − j2| ≤ J ≤ j1 + j2

2. J − |j1 − j2| ∈ Z.

To be more precise about the relationship between the pure tensor basis and the weight

basis, we can expand the pure tensor basis into a linear combination of the weight basis:

vj1m1
⊗ vj2m2

≡
∑

|j1−j2|≤J≤j1+j2
J−|j1−j2|∈Z

(
J,M

j1,m1,j2,m2

)
vJM .

The coefficient
(

J,M
j1,m1,j2,m2

)
in the expression above is called the Clebsch-Gordan coeffi-

cient. It is zero except when M = m1 +m2. Moreover, the Clebsch-Gordan coefficients

can also be used to write the product of Wigner D-functions as a linear combinations of

Wigner D-functions. If we introduce the inner product on the tensor product V j1⊗V j2

such that

〈vj1m12
⊗ vj2m22

, vj1m11
⊗ vj2m21

〉 = 〈vj1m12
, vj1m11

〉〈vj2m22
, vj2m21

〉,

the product W
(j1,n1)
m11,m12W

(j2,n2)
m21,m22 of Wigner D-functions is thus a matrix coefficient of the

representation V j1 ⊗ V j2 :

W (j1,n1)
m11,m12

W (j2,n2)
m21,m22

= 〈vj1m12
, kvj1m11

〉〈vj2m22
, kvj2m21

〉

= 〈vj1m12
⊗ vj2m22

, k(vj1m11
⊗ vj2m21

)〉.

Combining this with the expansion of pure tensors into linear combinations of weight

basis:

vj1m11
⊗ vj2m21

=
∑
J1

(
J1,M1

j1,m11,j2,m21

)
vJ1
M1

vj1m21
⊗ vj2m22

=
∑
J2

(
J2,M2

j1,m12,j2,m22

)
vJ2
M2
,

and since the matrix coefficients of nonisomorphic irreducible representations are or-

thogonal to each other, the product of Wigner D-functions W
(j1,n1)
m11,m12W

(j2,n2)
m21,m22 can be
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written as

W (j1,n1)
m11,m12

W (j2,n2)
m21,m22

=
∑

|j1−j2|≤J≤j1+j2
J−|j1−j2|∈Z
M1=m11+m21
M2=m12+m22

(
J,M1

j1,m11,j2,m21

)(
J,M2

j1,m12,j2,m22

)
W

(J,n1+n2)
M1,M2

. (3.25)

The Clebsch-Gordan coefficient
(

J,M
j1,m1,j2,m2

)
can be related to the Wigner 3j-symbols(

j1 j2 J
m1 m2 −M

)
in the following way:

(
j1 j2 J
m1 m2 −M

)
=

(−1)j2−j1−M√
2J + 1

(
J,M

j1,m1,j2,m2

)
.

The Wigner 3j-symbol
(
j1 j2 j3
m1 m2 m3

)
6= 0 is nonzero if and only if the following conditions

are satisfied:

1. mi = −ji,−ji + 1, . . . , ji − 1, ji;

2. m1 +m2 +m3 = 0;

3. |j1 − j2| ≤ j3 ≤ j1 + j2;

4. j1 + j2 + j3 ∈ Z.

There is also a recursion relation of the Wigner 3j-symbols, written in a symmetric

manner as

√
(j1 ∓m1)(j1 ±m1 + 1)

(
j1 j2 j3

m1±1 m2 m3

)
+
√

(j2 ∓m2)(j2 ±m2 + 1)
(
j1 j2 j3
m1 m2±1 m3

)
+
√

(j3 ∓m3)(j3 ±m3 + 1)
(
j1 j2 j3
m1 m2 m3±1

)
= 0.

The Clebsch-Gordan coefficients
(
j+j0,m1+m2

j,m1,
1
2
,m2

)
and

(
j+j0,m1+m2
j,m1,1,m2

)
are listed in Table

3.1 and Table 3.2.

(
j+j0,m1+m2

j,m1,
1
2
,m2

)
m2 = −1

2 m2 = +1
2

j0 = −1
2

√
j+m1

2j+1 −
√

j−m1

2j+1

j0 = 1
2

√
j−m1+1

2j+1

√
j+m1+1

2j+1

Table 3.1: Table for Clebsch-Gordan coefficients of V j ⊗ V
1
2
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(
j+j0,m1+m2
j,m1,1,m2

)
m2 = −1 m2 = 0 m2 = 1

j0 = −1
√

(j+m1)(j+m1−1)
2j(2j+1) −

√
(j−m1)(j+m1)

j(2j+1)

√
(j−m1)(j−m1−1)

2j(2j+1)

j0 = 0
√

(j+m1)(j−m1+1)
2j(j+1)

m1√
j(j+1)

−
√

(j−m1)(j+m1+1)
2j(j+1)

j0 = 1
√

(j−m1+1)(j−m1+2)
(2j+2)(2j+1)

√
(j−m1+1)(j+m1+1)

(j+1)(2j+1)

√
(j+m1+1)(j+m1+2)

(2j+2)(2j+1)

.

Table 3.2: Table for Clebsch-Gordan coefficients of V j ⊗ V 1
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Chapter 4

Principal Series

In this section, we will define the minimal principal series representations of a

real reductive Lie group G. The Cartan involution θ on G and g has been introduced in

Section 2.2.2. The notion of minimal parabolic subgroup and the restricted root system

Σ(g, a) and the restricted Weyl group W (g, a) has been introduced in Section 2.2.4.

4.1 Cartan Subgroups and Characters

Let s ⊂ g be the Lie algebra of a maximally noncompact Cartan subgroup S ⊂ G.

The Cartan subalgebra s has a Cartan decomposition s = s0 ⊕ a, such that s0 and a

are eigenspaces of θ:

θ|s0 = 1, θ|a = −1.

The two conditions above are equivalent to

s0 = ker(1− θ) ∩ s, a = ker(1 + θ) ∩ s.

For a real reductive Lie group G, the analytic subgroup A0 ⊂ G with Lie algebra a

is a connected real split torus isomorphic to a product of real tori R×. The minimal

parabolic subgroup P ⊂ G has a Langlands decomposition P = MA0N , where M =

ZK(A0) is a reductive Lie group whose Lie algebra m has a Cartan subalgebra s0. The

maximally noncompact Cartan subgroup S containing A0 can be decomposed into a

product S = S0 × A0, where S0 ⊂ K is a Cartan subgroup of M with Lie algebra s0.

Given such a choice of the Cartan subgroup S and minimal parabolic subgroup P , we

introduce the following induction data:

1. Let δ be a character of the Cartan subalgebra s0 ⊂ m, and denote by Vδ a

representation of M with highest weight δ,
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2. Let λ be a complex valued character of A0
∼= (R×)r,

3. Let ρ be the half sum of positive restricted roots Σ+(g, a).

We need a more explicit parametrization of the induction parameters δ and λ. It

is apparent from construction that the Cartan subalgebra sC is fixed by the Cartan

involution θ. Therefore, the Cartan involution θ acts on an element γ in the weight

lattice X(gC, sC) = {
∑
ai$i|ai ∈ Z} by

θγ = γ ◦ θ−1.

For the sake of simplicity, we denote the weight lattice X(gC, sC) = {
∑
ai$i|ai ∈ Z}

by X, and denote by Xθ and X−θ the subgroups of elements of X fixed by θ and −θ,

respectively. Then the compact and split parts s0 and a of the Cartan subalgebra s are

isomorphic to

s0
∼= HomZ(Xθ, iR), a ∼= HomZ(X−θ,R).

Therefore, as in Proposition 4.3 of [AvLTV12], a character δ on s0 can be identified

with an element in the quotient lattice X/(1 − θ)X, and a character λ on a can be

considered as an element in X−θ ⊗Z C. By Proposition 4.3 in [AvLTV12], the set Ŝ of

characters of S is the direct product

Ŝ ∼= (X/(1− θ)X)×
(
X−θ ⊗Z C

)
.

Example 4.1 We use the following two examples to explicitly demonstrate how the

notations introduced above can be applied to parametrize the characters on the real

torus S explicitly.

1. SU(n, 1)

The real form SU(n, 1) is defined by the antiholomorphic involution

σ : g 7→ Jn,1(ḡt)−1J−1
n,1

where Jn,1 is the diagonal matrix with diagonal entries (1, 1, 1, . . . , 1,−1). The

Cartan involution θ is given by θ : g 7→ (ḡt)−1. We shall take the Cartan subalge-

bra of SU(n, 1) to be

h =

{( ia 0 0 0 b
0 it2 0 0 0
0 0 ... 0 0
0 0 0 itn 0
b 0 0 0 ia

)
|a, b, ti ∈ R

}
,
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and we set the roots to act on the elements Ha,b,t2,...,tn =

( ia 0 0 0 b
0 it2 0 0 0
0 0 ... 0 0
0 0 0 itn 0
b 0 0 0 ia

)
by

α1(Ha,b,t2,...,tn) = i(a− ib)− it2

αn(Ha,b,t2,...,tn) = itn − i(a+ ib)

αi(Ha,b,t2,...,tn) = i(ti − ti+1) for all i ∈ {2, . . . , n− 1}.

Under this specification, the Cartan involution θ acts on the roots by

θ(α1) = α1 − β

θ(αn) = αn − β

and θ(αi) = αi for all other i ∈ {2, . . . , n− 1},

where β = α1 + . . . + αn is the highest root. The matrix of θ under the simple

root basis is

( 0 0 0 0 −1
−1 1 0 0 −1
... 0 ... 0 ...
... 0 0 1 −1
−1 0 0 0 0

)
, and the matrix of θ under the fundamental weight

basis is given by

(
0 −1 ... −1 −1
0 1 0 0 0
0 0 ... 0 0
... 0 0 1 0
−1 −1 ... −1 0

)
. Therefore, the sublattices Xθ and X−θ of the

weight lattice X are given in terms of their generators as

Xθ = Z($1 −$2)⊕ . . .⊕ Z($1 −$n)

X−θ = Z($1 +$n).

Since (1 − θ)X = Z($1 + $n), the character δ can be considered as an element

of the abelian group

X/(1− θ)X ∼= Z($1)⊕ . . .⊕ Z($n−1)

and the continuous character λ is an element of the line C($1 + $n). We can

therefore represent the two induction parameters δ and λ by two vectors:

δ ∼
n−1∑
i=1

δi$i ←→ (δ1, . . . , δn−1) δ1, . . . , δn−1 ∈ Z;

λ ∼ λ($1 +$n)←→ (λ) λ ∈ C.

If λ ∈ Z, then there is an integral character χ =
∑n−1

i=1 δi$i + λ($1 + $n) ∈ X

such that δ is the image of χ in the quotient X/(1− θ)X and λ =
(

1−θ
2

)
χ.
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2. Sp(2n,R)

Consider the Cartan involution θ(g) = (gt)−1 on Sp(2n,R), which acts on the

split Cartan subalgebra

hR =
n⊕
i=1

C(Ei,i − En+i,n+i)

by sending all elements to their negatives. In this case, θ = −id on X. Therefore,

X/(1− θ)X =
n⊕
i=1

Z/2Z$i

and X−θ = X. The discrete character δ and the continuous character λ can thus

be determined by two vectors

δ =
n∑
i=1

δi$i ←→ (δ1, . . . , δn) δi ∈ Z/2Z

λ =
n∑
i=1

λi$i ←→ (λ1, . . . , λn) λ ∈ C.

If all of the λi’s are integers satisfying λi ≡ δi mod 2, then there exists an integral

character χ =
∑n

i=1 λi$i such that δ is the image of χ in the quotient X/(1−θ)X,

and λ =
(

1−θ
2

)
χ.

The exponential map from a to the split torus A0 is a bijection. Every element a ∈ A0

can be written as a = expHa for some Ha ∈ A0. For any ν ∈ X, we introduce the

notation aν = exp ν(Ha). We define the principal series representation IP (δ, λ) induced

from the minimal parabolic subgroup P ⊂ G as the following vector space of functions

on G:

IP (δ, λ) = {f : G −→ Vδ|f(kman) = a−λ−ρδ(m)−1f(k)} (4.1)

The action πP (δ, λ) of G on f ∈ IP (δ, λ) is given by the left regular representation

(πP (δ, λ)(g)f)(h) = f(g−1h).

Note that for expositional reasons, the principal series in this chapter is defined in an

opposite way to Section 1.2, where SL(2,R) was set up to act on the principal series by

the right regular representation. If there is no ambiguity in the choice of the parabolic
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subgroup P , we can also use the notation I(δ, λ), omitting the parabolic subgroup P in

the subscript. Also, if M is abelian, then in fact the induction parameter (δ, λ) defines

a character χδ,λ : MA0 −→ C∗ given by

(χδ,λ+ρ)(ma) = δ(m)aλ+ρ.

In this case, if no other ambiguity arises, we will use the notation I(χδ,λ) or I(χ) for

the principal series induced from a character χδ,λ on MA0:

IP (χδ,λ) = {f : G −→ C|f(gman) = (χδ,λ+ρ)
−1(ma)f(g)}.

If we denote by Cχδ,λ+ρ
the one dimensional representation on which P acts by the

character χδ,λ+ρ of the Levi subgroup MA0, the space IP (χδ,λ) can be considered as

the space of global sections of the line bundle Lχδ,λ = G×P Cχδ,λ+ρ
.

If (π, V ) is a (possibly infinite) dimensional representation of G, the Harish-

Chandra module of V is its subspace consisting of the vectors v ∈ V satisfying the

following two properties:

1. The map φv : g 7→ π(g)v is smooth;

2. The vector v is K-finite, i.e. the subspace generated by the orbit π(K)v is finite

dimensional.

The Harish-Chandra module of V is a (g,K)-module. The g-action comes from the

derivative of the G-action

dπ(X)v =
d

dt
|t=0π(etX)v,

and the K-action is inherited from the G-module structure. In this thesis we will

mainly discuss the Harish-Chandra module of the principal series of G, and we will use

the same notation IP (δ, λ) and IP (χδ,λ) for the Harish-Chandra module of a principal

series representation.

Now we restrict our study to the real reductive Lie groups G with maximal

compact subgroup K = U(2). Since the Lie group G has an Iwasawa decomposition
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G = KMAN , the value of any function f ∈ IP (δ, λ) is completely determined by its

restriction to K. Therefore, as a vector space, the Harish-Chandra module IP (δ, λ) is

isomorphic to the following space of smooth functions on K:

Cδ(K) := C∞(K)⊗M Vδ = {f : K −→ Vδ|f is K-finite and f(km) = δ(m)−1f(k)}.

Compare with the Hilbert space decomposition in (3.24), using the fact that any func-

tion in Cδ(K) is K-finite, we can embed the space Cδ(K) into the space of algebraic

direct sums of Wigner D-functions:

Cδ(K) ⊂
⊕

j∈ 1
2
Z≥0,n∈ 1

2
Z

m1,m2∈{−j,−j+1,...,j}

CW (j,n)
m1,m2

.

consisting of finite linear combinations of Wigner D-functions

f(k) =
∑
(j,n)

∑
m1,m2

a(j,n)
m1,m2

W (j,n)
m1,m2

(k)

satisfying the parity condition f(km) = δ(m)−1f(k).

4.2 Intertwining Operators

We fix a real Cartan subalgebra a, and consider the following two different mini-

mal parabolic subgroups with the same Levi subgroup:

P = MA0N, Pw = MA0N
w

where w is an element of the restricted Weyl group W (g, a), and the unipotent radical

of Pw is Nw = wNw−1. Recalling that each unipotent radical N corresponds to a

choice of positive restrict roots Σ+(g, a), we will use the notation N̄ for the unipotent

radical corresponding to the negative restricted roots Σ−(g, a). From a fixed induction

parameter (δ, λ), we can define two minimal principal series IP (δ, λ) and IPw(δ, λ).

Letting f be a K-finite vector in the principal series representation IP (δ, λ), there

exists a formal intertwining operator A(P |Pw, δ, λ) such that its action on f ∈ IP (δ, λ)

is given by

A(P |Pw, δ, λ)f(g) =

∫
N̄∩Nw

f(gn̄)dn̄.

The continuation and convergence of the intertwining operator defined by this formal

integral will be discussed in the rest of this chapter.
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4.2.1 The Intertwining Property

The integral operator A(P |Pw, δ, λ) formally satisfies the intertwining property

A(P |Pw, δ, λ)πP (δ, λ)(g) = πPw(δ, λ)(g)A(P |Pw, δ, λ). (4.2)

Denote ρn as the half sum of restricted positive roots corresponding to N ; thus the half

sum of restricted positive roots corresponding to Nw is wρn. As described in [Kna16],

the right regular action by elements in M,A0, N
w on the function A(P |Pw, δ, λ)f sat-

isfies the following properties:

1. Right action by m ∈M :

(A(P |Pw, δ, λ)f) f(gm) =

∫
N̄∩Nw

f(gmn̄)dn̄ = δ(m)−1

∫
N̄∩Nw

f(gAd(m)n̄)dn̄.

The measure dn̄ is given by the absolute value of the volume form in
∧dim n n̄∗,

where n̄∗ is the dual vector space of n̄. For any vector X in the restricted root

space gα, since m centralizes A0, we have

Ad(a)Ad(m)X = Ad(am)X = Ad(m)Ad(a)X = aαAd(m)X.

Therefore each restricted root space gα is fixed by the adjoint action of M . Since

the only possible image of a group homomorphism from the compact group M to

GL(1,R) ∼= R× is in {±1}, M acts on the top exterior power
∧dim n n̄∗ by a real

character σ : M −→ {±1}, and the action of M on the measure dn̄ is

d(Ad(m)−1n̄) = |σ(m)−1|dn̄ = dn̄.

Therefore, the original integral becomes

(A(P |Pw, δ, λ)f) f(gm) = δ(m)−1

∫
N̄∩Nw

f(gn̄)dn̄

= δ(m)−1 (A(P |Pw, δ, λ)f) .



38

2. Right action by a ∈ A0:

(A(P |Pw, δ, λ)f) (ga) =

∫
N̄∩Nw

f(gan̄)dn̄ = a−(λ+ρn)

∫
N̄∩Nw

f(gAd(a)n̄)dn̄

= a−(λ+ρn)(det Ad(a)|n̄∩nw)−1

∫
N̄∩Nw

f(gn̄)dn̄

= a−(λ+wρn)

∫
N̄∩Nw

f(gn̄)dn̄

= a−(λ+wρn) (A(P |Pw, δ, λ)f) .

3. Right action by n′ ∈ Nw:

(A(P |Pw, δ, λ)f) (gn′) =

∫
N̄∩Nw

f(gn′n̄)dn̄ =

∫
Nw/(N∩Nw)

f(gn′n̄)dn̄

= (A(P |Pw, δ, λ)f) (g).

Therefore, if the integral converges, the formal integral A(P |Pw, δ, λ)f is a genuine

integral intertwining operator A(P |Pw, δ, λ) : IP (χδ,λ) −→ IPw(χδ,λ).

We can slightly change the definition of the intertwining operator so that the

parabolic subgroup is fixed, and the Weyl group action changes the induction parameter

(δ, λ) to (wδ,wλ). For f ∈ IP (χδ,λ), we define the operator

AP (w, δ, λ)f(g) =

∫
N̄∩Nw

f(gwn̄)dn̄.

The operator AP (w, δ, λ) is an intertwining operator from the minimal principal series

IP (δ, λ) to IP (wδ,wλ), which satisfies the property

AP (w, δ, λ)πP (δ, λ)(g) = πP (wδ,wλ)(g)AP (w, δ, λ). (4.3)

Since the operator AP (w, δ, λ) maps between two principal series induced from the

same parabolic subgroup P , and if there is no further ambiguity in the choice of P ,

we can drop the subscript and simply denote the intertwining operator by A(w, δ, λ).

Also, if the induction parameter is a character χδ,λ on MA0, then we also denote the

intertwining operator by A(w,χδ,λ).
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4.2.2 Meromorphic Continuation

We assume that the induction parameter for the principal series is a character χδ,λ.

We are interested in the long intertwining operators A(P |P̄ , χδ,λ) or A(w0, χδ,λ), corre-

sponding to the longest element of the restricted Weyl group w0 ∈W (g, a). For general

δ and λ, the integral is singular. However, according to [VW90], for any w ∈ W (g, a),

there exists a number cδ > 0 such that for any f ∈ IP (χδ,λ) the map λ 7→ A(w,χδ,λ)f is

holomorphic in the interior of the region {λi ∈ h∗C|Re〈λ, α〉 ≥ cδ, where α ∈ Σ+(g, a)}.

Moreover, according to the following theorem from [VW90], the long intertwining op-

erator A(w0, χδ,λ) depends meromorphically on λ ∈ h∗C:

Theorem 4.1 There exist polynomial maps bδ : a∗C −→ C and Dδ : a∗C −→ U(gC)K ,

such that for f ∈ IP (χδ,λ), if λ satisfies Re〈λ, αi〉 ≥ cδ for α ∈ Σ+(g, a), we have

bδ(λ)A(P |P̄ , χδ,λ)f = A(P |P̄ , χδ,λ+4ρ)πP (χδ,λ+4ρ)(Dδ)f.

The theorem above ensures that there exists a meromorphic continuation of the inter-

twining operator A(P |Pw, δ, λ) to general λ, and the poles of the map λ 7→ A(P |Pw, δ, λ)

occur in the set

{λ ∈ a∗|〈α̌, λ〉 ∈ Z for α ∈ Σ+(g, a) with wα ∈ Σ−(g, a)}

The following example for real rank 1 groups is cited from [KS80]:

Example 4.2 If G has real rank 1, denote the reduced positive restricted root as α.

Then there are two positive integers p and q counting the number of α and 2α’s in the

positive restricted root system, respectively, and ρ = 1
2(p + 2q)α. Then any complex

induction parameter λ can be expressed as λ = zρ for some z ∈ C. Pick any f ∈

I(χδ,zρ), then:

1. If Re(z) > 0, A(w,χδ,zρ) is convergent. The map z 7→ A(w,χδ,zρ) has possible

poles at z = − 1
p+2qZ≥0

2. There exists a meromorphic function ηδ,α(z) such that A(w−1, χwδ,−zρ)A(w,χδ,zρ) =

ηδ,α(z)I.
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4.2.3 Factorization of Intertwining Operators

In order to compute the intertwining operators, we write a Weyl group element

w = si1 . . . sil as a product of simple reflections, and assume that

P −→ P si1 −→ . . . −→ P si1 ...sil−1 −→ Pw

is a chain of parabolic subgroups corresponding to this factorization. For a restricted

root αk, if we denote by vαk the direct sum of all restricted root spaces gmαk for positive

integers m, the nilpotent radicals of the chain of parabolic subgroups above satisfies

θnsi1 ...sik−1 ∩ nsi1 ...sik = θvαk .

We can write the intertwining operator A(P |P̄ , χδ,λ) as a composition of the lower-rank

intertwining operators:

A(P |P̄ , χδ,λ) = A(P si1 ...sil−1 |Pw, χδ,λ) . . . A(P |P si1 , χδ,λ)

which gives rise to a factorization of the corresponding operator A(w,χδ,λ) on IP (χδ,λ)

given in [KS80] and [SV80], which is referred to as the Langlands’ Lemma [Sha10]:

A(w,χδ,λ) = A(w, si1 . . . sil−1
χδ,λ) . . . A(si1si2 , si1χδ,λ)A(si1 , χδ,λ). (4.4)

4.2.4 Normalization

The material in this section is quoted from [KS80], where it is discussed in detail.

There is a scalar valued meromorphic function η(P |P̄ , χδ,λ) on λ such that:

A(w0, χδ,λ)A(w−1
0 , w0χδ,λ) = η(w0, χδ,λ)I. (4.5)

The meromorphic function η(w0, χδ,λ) factor into rank-one factors:

η(w0, χδ,λ) =
∏

α reduced
〈αi,α〉>0 for positive αi

ηδ,α

(
〈λ, ρ(α)〉
〈ρ(α), ρ(α)〉

)
.

Moreover, these ηδ,α(z)’s factor into meromorphic functions γδ,α(z):

ηδ,α(z) = γδ,α(z)γδ,α(−z̄). (4.6)
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In terms of the long intertwining operator A(w0, w0χδ,λ) corresponding to w0; it is

related to the adjoint of the intertwining operator corresponding to w0:

A(w0, w0χδ,λ)∗ = A(w0, χδ,−λ̄).

We can thus normalize the intertwining operator A(w0, χδ,λ) by dividing it by the

meromorphic factor:

γ(w0, χδ,λ) =
∏

α reduced
〈αi,α〉>0 for positive αi

γδ,α

(
〈λ, ρ(α)〉
〈ρ(α), ρ(α)〉

)
.

We denote the new normalized intertwining operator by

A′(w0, χδ,λ) = γ(w0, χδ,λ)−1A(w0, χδ,λ).

4.2.5 Relation to Unitary Representations

Now we assume the induction parameter (δ, λ) satisfies Re〈λ, αi〉 > 0 for all

αi ∈ Σ+(g, a). There is a unique irreducible quotient J(χδ,λ) (see [BCP08]) of I(χδ,λ)

by the kernel of the normalized intertwining operator A′(w0, χδ,λ). The irreducible

quotient J(χδ,λ) is called the Langlands quotient of the principal series I(χδ,λ). By a

well-known result in [BCP08] and [KZ76], the Langlands quotient admits a hermitian

form if and only if the induction parameter (δ, λ) satisfies the following symmetry with

respect to the longest element w0 of the restricted Weyl group:

w0δ ∼= δ, w0λ = −λ̄.

Under this condition, we will use the normalized long intertwining operator A′(w0, χδ,λ)

to construct the hermitian form. Consider the representations (δ, Vδ) and (w0δ, Vw0δ)

on M , we choose an isomorphism τ : Vw0δ
∼= Vδ. Then this isomorphism τ between

the induction parameters induces an isomorphism between the principal series I(δ, λ)

and I(w0δ, w0λ), which is also denoted by τ . There exists a hermitian form on the

Langlands quotient J(χδ,λ)

〈·, ·〉 : J(χδ,λ)× J(χδ,λ) −→ C
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related to the normalized intertwining operator in the following way:

〈v1, v2〉 = 〈v1, τ ◦A′(w0, χδ,λ)v2〉.

Therefore, the normalized intertwining operator A′(w0, χδ,λ) induces a hermitian form

on the Langlands quotient J(χδ,λ).

4.2.6 Calculation of Intertwining Operators

Consider a reductive Lie group G whose maximal compact subgroup is K =

U(2), if an Iwasawa decomposition for n̄ ∈ N̄ is written as n̄ = k(n̄)a(n̄)n(n̄), where

n̄ ∈ N, a(n̄) ∈ A, k(n̄) ∈ K, then since any f ∈ I(δ, λ) satisfies the transformation

property (4.1), we have

f(kn̄) = f(kk(n̄)a(n̄)n(n̄)) = a(n̄)−(λ+ρ)f(kk(n̄)).

Since there is an embedding of the Harish-Chandra module of I(δ, λ) into the space

Cδ(K), we can express f(k) as a linear combination of Wigner D-functions:

f(k) =
∑
(j,n)

∑
(m1,m2)

a(j,n)
m1,m2

W (j,n)
m1,m2

(k).

Therefore, it is sufficient to compute the matrix coefficients of the intertwining operator

on the basis W
(j,n)
m1,m2 of the space Cδ(K):

A(P |Pw, δ, λ)W (j,n)
m1,m2

=

∫
N̄∩Nw

W (j,n)
m1,m2

(kn̄)dn̄

=

∫
N̄∩Nw

a(n̄)−(λ+ρ)W (j,n)
m1,m2

(kk(n̄))dn̄

=
∑
m3

(∫
N̄∩Nw

a(n̄)−(λ+ρ)W (j,n)
m3,m2

(k(n̄))dn̄

)
W (j,n)
m1,m3

(k),

and the matrix coefficients of the intertwining operator A(P |Pw, δ, λ) are given by the

formula

〈W (j,n)
m1,m3

, A(P |Pw, δ, λ)W (j,n)
m1,m2

〉 =

∫
N̄∩Nw

a(n̄)−(λ+ρ)W (j,n)
m3,m2

(k(n̄))dn̄. (4.7)

We will use this formula to compute the intertwining operators explicitly for the group

SU(2, 1) and Sp(4,R) in the next two sections.
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Chapter 5

Toy Case: SU(2, 1)

5.1 The Group SU(2, 1)

The group SU(2, 1) is a real form of SL(3,C). It is the fixed point of the anti-

holomorphic involution σ : g 7→ J(ḡt)−1J−1 in SL(3,C):

SU(2, 1) = {g ∈ SL(3,C)|ḡtJg = J}

where J is the matrix

J = diag(1, 1,−1).

The real Lie algebra g of G = SU(2, 1) is

g = su(2, 1) = {X ∈ sl(3,C)|X̄tJ + JX = 0}.

The structure theory and representation theory of SU(2, 1) has been discussed in

[Sha10].

5.1.1 The structure of SU(2, 1)

First we consider the complex Lie algebra sl(3,C) and choose the following data

1. A Cartan subalgebra hC generated by Hα1 = E11 − E22 and Hα2 = E22 − E33;

2. The fundamental weights $1, $2 in h∗C as dual basis for Hα1 , Hα2 , satisfying

〈$i, Hαj 〉 = δij with i, j ∈ {1, 2};

3. The simple roots α1 = 2$1 −$2, α2 = −$1 + 2$2;

4. The set of positive roots ∆+(gC, hC) = {α1, α2, α1 + α2};

5. ρC = 1
2

∑
α∈∆+(gC,hC) α = α1 + α2;
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6. The generators for the positive root spaces Xα1 =
(

0 1 0
0 0 0
0 0 0

)
, Xα2 =

(
0 0 0
0 0 1
0 0 0

)
,

Xα1+α2 = [Xα1 , Xα2 ] =
(

0 0 1
0 0 0
0 0 0

)
7. Choose the generators of the negative root spaces X−α = Xt

α.

The maximal compact subgroup K is defined as the set of fixed points of the

Cartan involution θ : g 7→ −ḡt on G:

K = Gθ = (U(2)× U(1))/U(1) = {
(
A 0
0 det(A)−1

)
|A ∈ U(2)} ∼= U(2).

The induced isomorphism from the Lie algebra u(2) to k sends the Pauli matrices γi to

the following elements in k:

U0 =
1

2

(
i 0 0
0 i 0
0 0 −2i

)
, U1 =

1

2

(
0 i 0
i 0 0
0 0 0

)
, U2 =

1

2

(
0 1 0
−1 0 0
0 0 0

)
, U3 =

1

2

(
i 0 0
0 −i 0
0 0 0

)
.

Under this isomorphism, the generators of the compact Cartan subalgebra t ⊂ su(2, 1)

are iHα1 = 2U3 and iHα2 = U0 −U3. The complexification of the compact Cartan sub-

algebra tC is thus exactly the same as the Cartan subalgebra hC of sl(3,C) defined above.

The -1 eigenspace p of θ in the Cartan decomposition g = k⊕ p can be described

explicitly as the following space of 3× 3 matrices with complex entries:

p =

{(
0 0 z1
0 0 z2
z̄1 z̄2 0

)
|z1, z2 ∈ C

}
.

The matrix

(
0 0 z1
0 0 z2
z̄1 z̄2 0

)
transforms under the adjoint action by an element eaU0+bU3 in

the Cartan subgroup T ⊂ K,

Ad(eaU0+bU3)

(
0 0 z1
0 0 z2
z̄1 z̄2 0

)
=

 0 0 ei
3a+b

2 z1

0 0 ei
3a−b

2 z2

e−i 3a+b
2 z̄1 e

−i 3a−b2 z̄2 0

 . (5.1)

Therefore, under the adjoint action of K ∼= U(2), we can consider the complexified

space pC = p ⊗ C as a 4-dimensional representation of K. Under the pairing between

tC and t∗C introduced in Chapter 2, the value of any character χ = χ1$1 + χ2$2 ∈ t∗C

on t is given by

χ(aU0 + bU3) = i
a+ b

2
χ1 + iaχ2.
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From this formula, the two simple roots α1, α2 ∈ ∆(gC, tC) act on aU0 + bU3 by

α1(aU0 + bU3) = ib, (5.2)

α2(aU0 + bU3) = i
3a− b

2
(5.3)

and the action of the highest root is

(α1 + α2)(aU0 + bU3) = i
3a+ b

2
. (5.4)

5.1.2 The Cartan Subgroups of SU(2, 1)

There are two conjugacy classes of Cartan subgroups of SU(2, 1): the compact

Cartan subgroup isomorphic to U(1) × U(1), and the maximally noncompact Cartan

subgroup isomorphic to U(1)× R×.

The maximally compact Cartan subgroup

In the root system ∆(gC, tC) with respect to the Cartan subalgebra tC, the Vogan

diagram of SU(2, 1)

α1 α2

specifies an imaginary compact simple root α1 and an imaginary noncompact simple

root α2. Since the root vectors of α1 + α2 can always be written as the commutators

of root vectors of α1 and α2, the root α1 + α2 is a noncompact root. We have thus

obtained the set of positive compact roots ∆+
c and noncompact roots ∆+

nc:

∆+
c (gC, hC) = {α1}

∆+
nc(gC, hC) = {α2, α1 + α2}.

Comparing with the discussion on U(2)-representations in Chapter 3, where a weight

m ∈ 1
2Z of pC is equal to the half integer −iα(U3), and the central U(1)-character n is

equal to −iα(U0). Based (5.2)-(5.4), any noncompact imaginary root

α ∈ {±α2,±α1 ± α2}
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correspond to a pair of half integers denoted by (mα, nα) = (−iα(U3),−iα(U0)). There-

fore, we have established the correspondence between noncompact imaginary roots with

pairs of half integers (mα, nα):

±α2 ←→ ±
(
−1

2
,
3

2

)
(5.5)

±α1 ± α2 ←→ ±
(

1

2
,
3

2

)
. (5.6)

We will use the description (mα, nα) and the corresponding noncompact roots α to refer

to the weights of pC interchangeably. The representation pC of K can be decomposed

into a direct sum of two 2 dimensional irreducible representations V
1
2
, 3
2 ⊕ V

1
2
,− 3

2 of

U(2), where the highest weights are labeled as upper indices, with weights

V
1
2
, 3
2 :

(
−1

2
,
3

2

)
,

(
1

2
,
3

2

)
V

1
2
,− 3

2 :

(
−1

2
,−3

2

)
,

(
1

2
,−3

2

)
.

The representation V
1
2
, 3
2 corresponds to the coordinates z1 and z̄1 in the space of

matrices given in (5.1), and V
1
2
,− 3

2 corresponds to the coordinates z2 and z̄2 in (5.1).

If we use gray for noncompact roots and light gray for compact roots, the direct sum

decomposition gC = kC⊕ V
1
2
, 3
2 ⊕ V

1
2
,− 3

2 can be displayed in the root system of sl(3,C):

α1

α2
α1 + α2

$1

$2

There is a weight basis {vα}α∈∆nc of pC, such vα has weight α when considered as a

vector in gC under the adjoint action. By associating these weight vectors to a pair of

half integers (mα, nα) as above, we can also label each weight vector by writing the pair

(mα, nα) as lower indices. Therefore the two irreducible U(2) subrepresentations of pC

have basis:

V
1
2
, 3
2 = span{vα2 , vα1+α2}

V
1
2
,− 3

2 = span{v−α2 , v−α1−α2}
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where the vectors vα’s are given by

vα2 = v− 1
2
, 3
2

= −Xα2 vα1+α2 = v 1
2
, 3
2

= Xα1+α2

v−α2 = v 1
2
,− 3

2
= X−α2 v−α1−α2 = v− 1

2
,− 3

2
= X−α1−α2 .

The maximally noncompact Cartan subalgebra and the restricted roots

We take the noncompact imaginary root α1 +α2 ∈ ∆nc and define the transform

pα1+α2 = Ad exp(
π

4
(σ(vα1+α2)− vα1+α2)).

The transform pα1+α2 is motivated by the Cayley transform in Section 2.2.2 of Chapter

2. The action by pα1+α2 sends the complexified maximally compact Cartan subalgebra

tC to the maximally noncompact Cartan subalgebra sC = mC ⊕ aC, where a is the

subspace C(Xα1+α2 +X−α1−α2) of pC, and m is the centralizer of a in k. The analytic

subgroup M ⊂ G with Lie algebra m is

M = {e−tU0e3tU3 =

(
eit 0 0
0 e−2it 0
0 0 eit

)
|t ∈ R}

The action of the Cayley transform qα1+α2 = p−1
α1+α2

sends aC to a subspace of tC

generated by

qα1+α2(Xα1+α2 +X−α1−α2) = Hα1 +Hα2

Since αi(Hα1 + Hα2) = 2 for i = 1, 2, the two simple roots α1, α2 have the same

restriction to the line qα1+α2aC ⊂ tC. We denote this restriction by α0. The set of

positive restricted roots ∆+(g, a) consists of a character α0 = α1|qα1+α2a
= α2|qα1+α2a

with multiplicity 2, and 2α0 = (α1 + α2)|qα1+α2a
with multiplicity 1. The half sum of

positive restricted roots is:

ρ0 =
1

2

∑
α∈∆+(g,a)

α = 2α0

The restricted Weyl group W (g, a) = NK(a)/ZK(a) is an order 2 group generated by

the single element

w0 = exp(2πU3) = diag(−1,−1, 1)
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The adjoint action of a on g decomposes the real Lie algebra into restricted root spaces

g±α0 and g±2α0 :

gα0 = {pα1+α2(zXα1 + z̄Xα2) =
1√
2

(
0 z 0
−z̄ 0 z̄
0 z 0

)
|z ∈ C}

g2α0 = {pα1+α2(iwXα1+α2) = −1

2

(
iw 0 −iw
0 0 0
iw 0 −iw

)
|w ∈ R}

g−α0 = {pα1+α2(z̄X−α1 + zX−α2) = − 1√
2

(
0 z 0
−z̄ 0 −z̄
0 −z 0

)
|z ∈ C}

g−2α0 = {pα1+α2(iwX−α1−α2) =
1

2

(−iw 0 −iw
0 0 0
iw 0 iw

)
|w ∈ R}

A general element in positive restricted root space n+ = gα0 ⊕ g2α0 can be denoted by

nz,w =
( iw z −iw
−z̄ 0 z̄
iw z −iw

)
, z ∈ C, w ∈ R

Using the restricted root spaces and the nz,w’s, we can compute the Iwasawa decom-

position (as defined in Section 2.2.4) of the vα’s in the complexified Lie algebra gC:

vα1+α2 = − i

2
(U0 + U3) +

1

2
(Xα1+α2 +X−α1−α2) +

i

2
n0,1 (5.7)

v−α1−α2 =
i

2
(U0 + U3) +

1

2
(Xα1+α2 +X−α1−α2)− i

2
n0,1 (5.8)

vα2 = i(U1 − iU2)− 1

2
n1,0 −

i

2
ni,0 (5.9)

v−α2 = i(U1 + iU2) +
1

2
n1,0 −

i

2
ni,0 (5.10)

Moreover, the adjoint action of the raising-lowering operators U1 ± iU2 on the vα’s

satisfies:

ad(U1 ± iU2)vα = −ivα1±α

if α1 ± α is a root.

5.2 The Principal Series Representations

Consider the minimal parabolic subgroup P = MA0N , where A0 is the analytic

subgroup of G with Lie algebra a = R(Xα1+α2 +X−α1−α2). We introduce the following

parameters:

1. A character a −→ C sending Xα1+α2 +X−α1−α2 to a complex number λ;
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2. A character M −→ C sending e−t(U0−3U3) to eiδt, where δ is an integer.

Applying the Cayley transform on s = m ⊕ a, q−1
α1+α2

(s) is the real Lie algebra h =

Ri(Hα1 − Hα2) ⊕ R(Hα1 + Hα2), on which the induction parameter (δ, λ) defines a

complex valued character χδ,λ : h −→ C such that

χδ,λ(Hα1 −Hα2) = δ, χδ,λ(Hα1 +Hα2) = λ

and therefore the action of χδ,λ on Hαi ’s gives:

χδ,λ(Hα1) = λ+δ
2 , χδ,λ(Hα2) = λ−δ

2 .

The character χδ,λ lives in the weight lattice if and only if λ± δ ∈ 2Z.

There are two Casimir elements Ω2 and Ω3 of the universal enveloping algebra

U(gC), having degree 2 and 3 respectively. Following the same notation in Section 2.1.4,

denote {Xi} to be an indexed basis of gC and {X̃i} the indexed dual basis under the

Killing form. If we take πstd to be the standard representation of gC = sl(3,C) on a

3 dimensional complex vector space, the quadratic Casimir element can be computed

using the formula:

Ω2 =
∑
i,j

Tr(πstd(Xi)πstd(Xj))X̃iX̃j

=
1

54
(H2

α1
+Hα1Hα2 +H2

α2
) +

1

36

∑
α∈∆+

{Xα, X−α}

=
1

9
(H2

α1
+Hα1Hα2 +H2

α2
+ 3(Hα1 +Hα2)) +

1

18

∑
α∈∆+

X−αXα

where for X,Y ∈ U(gC), we denote by {X,Y } = XY + Y X ∈ U(gC). Under the

Harish-Chandra isomorphism γ′ : Z(gC) −→ S(h)W , the image of Ω2 is

γ′(Ω2) =
1

9
(H2

α1
+Hα1Hα2 +H2

α2
− 3)
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The cubic Casimir element Ω3 is:

Ω3 =
∑
i,j,k

Tr(πstd(Xi)πstd(Xj)πstd(Xk))X̃iX̃jX̃k

=
1

1944
(3−Hα1 +Hα2)(6 + 2Hα1 +Hα2)(Hα1 + 2Hα2)

+
1

216
(6X−α1−α2Xα1+α2 + 6X−α2Xα2 −X−α1(H1 + 2H2)Xα1

+X−α2(2H1 +H2)Xα2 −X−α1−α2(H1 −H2)Xα1+α2

− 3X−α2X−α1Xα1+α2 − 3X−α1−α2Xα1Xα2)

The image of Ω3 under the Harish-Chandra homomorphism is:

γ′(Ω3) = − 1

2335
(Hα1 + 2Hα2 − 3)(2Hα1 +Hα2 + 3)(Hα1 −Hα2 − 3) (5.11)

After applying the character χδ,λ on S(hC)W , we see that

χδ,λ(γ′(Ω2)) =
1

36
(3(λ2 − 4) + δ2) (5.12)

χδ,λ(γ′(Ω3)) =
1

2535
(δ − 3)(δ − 3(λ− 2))(δ + 3(λ− 2)) (5.13)

We can induce the character χδ,λ from the Levi subgroup L = MA0 of the minimal

parabolic subgroup P = MA0N to get the minimal principal series representation:

I(χδ,λ) = {f : G→ C|f(ge−t(U0−3U3)es(Xα1+α2+X−α1−α2 )n) = e−iδt−(λ+2)sf(g)}

The value of the functions in the principal series is determined by their restriction to

the maximal compact subgroup K = U(2), and the Lie algebra g acts as differential

operators on the left. The functions on K can be expanded into Fourier series with

respect to the basis W
(j,n)
m1,m2 . We can apply the Iwasawa decomposition of the Lie

algebra g = k⊕m⊕ a⊕ n in (5.7)-(5.10) and the differential operators dl(γi) and dr(γi)

on K introduced in Section 3.2 to write down the action of g on C∞(K). Moreover,

we can apply the product formula (3.25) to express the product of Wigner D-functions

as linear combinations of Wigner D-functions. We will use the machinery developed

before to prove the following proposition describing the g-action on I(χδ,λ) explicitly in

the next two sections:



51

Proposition 5.1 Let vα be the weight vectors of pC as an U(2) representation, such

that α ∈ ∆nc as listed in (5.5)-(5.6). If α ∈ ∆±nc, the action of the weight vectors vα in

pC satisfies:

dl(vα)W (j,n)
m1,m2

=
1

2
√

2j + 1

∑
j0∈{± 1

2
}

(
j+j0,m1+mα
J,m1,

1
2
,mα

)
qj0,±κj0,±(j, n,m1;λ)W

(j+j0,n± 3
2

)

m1+mα,m2± 1
2

,

(5.14)

with the coefficients as shown in the following tables:

qj0,± - +

j0 = −1
2

√
j −m2

√
j +m2

j0 = 1
2

√
j +m2 + 1

√
j −m2 + 1

κj0,± - +

j0 = −1
2 −2j −m2 + n+ λ 2j −m2 + n− λ

j0 = 1
2 2j −m2 + n+ λ+ 2 2j +m2 − n+ λ+ 2

5.3 Embedding of Principal Series in C∞(K)

The (g,K) module of I(χδ,λ) can be embedded into the space L2(K) as the

subspace consisting of K-finite functions f satisfying:

f(ke−t(U0−3U3)) = e−iδtf(k), for all t ∈ R.

This requires that f is a finite linear combination of Wigner D-functions W
(j,n)
m1,m2 sat-

isfying the condition

ei(n−3m2)t = e−iδt, for all t ∈ R

which is equivalent to the condition:

−n+ 3m2 = δ (5.15)

Therefore as a vector space, the (g,K) module of the principal series I(χδ,λ) can be

embedded into Cδ(K) ⊂ C∞(K) as an algebraic direct sum:

I(χδ,λ) ⊂ Cδ(K) :=
⊕

−n+3m2=δ

CW (j,n)
m1,m2

⊂ C∞(K).
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Since m2 always satisfies −j ≤ m2 ≤ j, n can only take half integer values in the

interval −3j−δ ≤ n ≤ 3j−δ. Denote the set of the pairs (j, n) satisfying this condition

as

KTypes(δ) = {(j, n) ∈ 1

2
Z× 1

2
Z : −3j − δ ≤ n ≤ 3j − δ}. (5.16)

The set KTypes(δ) parametrizes all the K-isotypic components of the principal series

I(χδ,λ):

I(χδ,λ) =
⊕

(j,n)∈KTypes(δ)

τ (j,n),

where τ (j,n) is a direct sum of copies of irreducible representations of U(2) with highest

weight (j, n). The K-isotypic subspaces τ (j,n) can be decomposed into the direct sum:

τ (j,n) =
⊕

m1∈{−j,−j+1,...,j}
m2∈M(j,n,δ)

CW (j,n)
m1,m2

(5.17)

where the set M(j, n, δ) is defined as:

M(j, n, δ) = {m2 ∈ {−j,−j + 1, . . . , j} : m2 =
n+ δ

3
}. (5.18)

Since for each (j, n) ∈ KTypes(δ) we have |M(j, n, δ)| = 1 or 0, each K-type of the

SU(2, 1) principal series I(χδ,λ) has multiplicity at most 1. The K-types of I(χδ,λ),

with their multiplicities taken into account, can be displayed on the cone in a subset of

(1
2Z)3 with coordinates (j, n,m2) such that (j, n) ∈ KTypes(δ) and m2 ∈ M(j, n, δ).

From this embedding of I(χδ,λ) into C∞(K), the action by the Lie algebra ele-

ments of gC can be realized as differential operators on K. For any f ∈ C∞δ (K), we can

extend the domain of f to a vector in I(χδ,λ) by applying the Iwasawa decomposition

G = KMA0N and the transformation rule of the principal series. More precisely, the

actions dl(X) and dr(X) of X ∈ g on f ∈ C∞δ (K) ⊂ I(χδ,λ) are given by

(dl(X)f)(k) = d
dt |t=0f(e−tXk), (dr(X)f)(k) = d

dt |t=0f(ketX)

We recall that in Section 3.2, the extension of dr to kC = k⊗C is linear. We can follow

the same rule and extend dl and dr further to gC by setting dl(zX) = zdl(X) and
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dr(zX) = zdr(X) for any z ∈ C. Under such extension, the right action dr(nz,w) by

elements nz,w ∈ n+ in the nilpotent radical sends any f ∈ I(χδ,λ) to 0. The element

Xα1+α2 +X−α1−α2 ∈ a acts by scalar multiplication:

dr(Xα1+α2 +X−α1−α2)W (j,n)
m1,m2

= −(λ+ 2)W (j,n)
m1,m2

. (5.19)

Combining (5.19), the action of the Lie algebra k on the Wigner D-functions (3.21)-

(3.23), and the Iwasawa decomposition (5.7)-(5.10) for the basis vectors vα in pC, the

formulae of the right action of vα on L2(K) are given by

dr(v±(α1+α2))W
(j,n)
m1,m2

=

(
∓1

2
dr(i(U0 + U3))− 1

2
(λ+ 2)

)
W (j,n)
m1,m2

=
1

2
(∓n∓m2 − λ− 2)W (j,n)

m1,m2
(5.20)

dr(v±α2)W (j,n)
m1,m2

= dr(i(U1 ∓ iU2))W (j,n)
m1,m2

= −
√

(j ∓m2)(j ±m2 + 1)W
(j,n)
m1,m2±1.

(5.21)

We can express the left action dl(X) by any Lie algebra element X ∈ g in terms of dr

using the adjoint action of K:

dl(X) = dr(−Ad−1(k)X).

Then for any α ∈ ∆±nc = {±α2,±α1±α2}, recalling the correspondence (5.5)-(5.6) of α

with the pair of integers (mα, nα) and the definition of Wigner D-functions as matrix

coefficients in (3.13), the left action of vα on the functions in C∞(K) can be expressed

as a linear combination of right actions by vectors vα with α ∈ ∆±nc, having Wigner

D-functions −W ( 1
2
,nα)

mβ ,mα(k−1) as coefficients:

dl(vα) = dr(−Ad(k−1)vα) =
∑

β∈
{

∆+
nc if α∈∆+

nc

∆−nc if α∈∆−nc

dr(−W ( 1
2
,nα)

mβ ,mα(k−1)vβ).

The same method for SL(3,R) has been provided in [BM17]. By the unitarity of Wigner

D-function matrices (3.19) and (3.20), we can change the argument from k−1 to k and

rearrange the upper and lower indices of Wigner D-functions:

dl(vα) = −
∑

β∈
{

∆+
nc if α∈∆+

nc

∆−nc if α∈∆−nc

W
( 1

2
,nα)

mα,mβ (k)dr(vβ).
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After listing all the β′s in ∆±nc, the sum over β above has only two terms. For α ∈ ∆±nc,

we have

dl(vα) =−
(
W

( 1
2
,± 3

2
)

mα,∓ 1
2

(k)dr(v±α2) +W
( 1

2
,± 3

2
)

mα,± 1
2

(k)dr(v±(α1+α2))

)
.

Applying the formulas for the right action (5.20) and (5.21), the left action of vα on

W
(j,n)
m1,m2 can be written in terms of products of Wigner D-functions:

dl(vα)W (j,n)
m1,m2

=

−
(
−
√

(j ∓m2)(j ±m2 + 1)W
( 1

2
,± 3

2
)

mα,∓ 1
2

W
(j,n)
m1,m2±1+

1

2
(∓n∓m2 − λ− 2)W

( 1
2
,± 3

2
)

mα,± 1
2

W (j,n)
m1,m2

)
Recall from (3.25) that the product of Wigner D-functions is in fact the linear combina-

tion of Wigner D-functions for the constituents of the tensor product representations,

and the coefficients of this linear combination are products of the Clebsch-Gordan co-

efficients:

W (j1,n1)
m1,m2

W (j2,n2)
m3,m4

=
∑

J∈{j+ 1
2
,j− 1

2
}

(
J,m1+m3
j1,m1,j2,m3

)(
J,m2+m4
j1,m2,j2,m4

)
W

(J,n1+n2)
m1+m3,m2+m4

We can thus combine all the matrix coefficients belonging to the same J in the formula

for the left action of any vα with α ∈ ∆±nc:

dl(vα)W (j,n)
m1,m2

=

−
∑

j0∈{ 1
2
,− 1

2
}

(
−
√

(j ∓m2)(j ±m2 + 1)

(
j+j0,m2± 1

2

j,m2±1, 1
2
,∓ 1

2

)
+

1

2
(∓n∓m2 − λ− 2)

(
j+j0,m2± 1

2

j,m2,
1
2
,± 1

2

))
(
j+j0,m1+mα
j,m1,

1
2
,mα

)
W

(j+j0,n± 3
2

)

m1+mα,m2± 1
2

. (5.22)

Ifm2 6= ±j, recall from Table 3.1 that the table of Clebsch-Gordan coefficients
(
j+j0,m2+m0

j,m2,
1
2
,m0

)
for j0 and m0 taking the values ±1

2 is(
j+j0,m2+m0

j,m2,
1
2
,m0

)
m0 = −1

2 m0 = +1
2

j0 = −1
2

√
j+m2

2j+1 −
√

j−m2

2j+1

j0 = 1
2

√
j−m2+1

2j+1

√
j+m2+1

2j+1

.
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Plugging these Clebsch-Gordan coefficients into the formula (5.22) for dl(vα), for each

α ∈ ∆±nc, the action of weight vectors vα in pC satisfies:

dl(vα)W (j,n)
m1,m2

=
1

2
√

2j + 1

∑
j0∈{± 1

2
}

(
j+j0,m1+mα
j,m1,

1
2
,mα

)
qj0,±(j,m2)κj0,±(j, n,m2;λ)W

(j+j0,n± 3
2

)

m1+mα,m2± 1
2

,

which is the formula (5.14). The expressions of the coefficients qj0,± and κj0,± are shown

in the following tables:

qj0,±(j,m2) - +

j0 = −1
2

√
j +m2

√
j −m2

j0 = 1
2

√
j −m2 + 1

√
j +m2 + 1

κj0,±(j, n,m2;λ) - +

j0 = −1
2 −(2j −m2 + n− λ) 2j +m2 − n− λ

j0 = 1
2 2j +m2 − n+ λ+ 2 2j −m2 + n+ λ+ 2

We have thus finished the proof of the Proposition 5.1.

5.4 Decomposition of I(χδ,λ)

In this section, we assume the character χδ,λ satisfies χδ,λ(Hαi) ∈ Z\{0} for

i = 1, 2. In this case, we are assuming λ and δ will satisfy the condition

λ± δ ∈ 2Z and |λ− δ| ≥ 2.

Under such assumption, would like to discuss the reducibility and compute the full

composition series of the principal series I(χδ,λ) with χδ,λ lying in different open Weyl

chambers. The set M(j, n; δ) consists of at most one element m2 = n+δ
3 , hence the

parameter m2 is completely determined by n and δ in the expression of dl(vα). It

should be pointed out that the same result can be obtained from understanding the

order of zeros of the intertwining operator A(χδ,λ) from the next section, at those points

where λ± δ ∈ 2Z.

The formulas for the coefficients κj0,± of the pC action on I(χδ,λ) are displayed

in the following table:
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κj0,± - +

j0 = −1
2 −2

3(3j + n− δ
2) + λ 2

3(3j − n+ δ
2)− λ

j0 = 1
2

2
3(3j − n+ δ

2) + (2 + λ) 2
3(3j + n− δ

2) + (2 + λ)

Recall from the description of the representations of U(2) that j + n ∈ Z and j ±

m2 = j ± n+δ
3 ∈ Z in Section 3.2, let (k, l) be the unique pair of integers such that

n = −δ + 3
2 l, j = k

2 . They live in the following cone LatticeCond of the lattice Z2:

(k, l) ∈ LatticeCond = {(k, l) ∈ Z≥0 × Z| − k ≤ l ≤ k and k ≡ l mod 2}.

The coefficients κj0,± can thus be expressed in terms of k, l, λ, δ:

κj0,± - +

j0 = −1
2 −(k + l − λ− δ) k − l − λ+ δ

j0 = 1
2 k − l + λ+ δ + 2 k + l + λ− δ + 2

.

I1

III1
III2

I2 II1
II2

λ + δ

λ− δ

(a) Weyl chambers in the straight co-
ordinate

α1

α2

I1III1

III2 II1

I2 II2

(b) Open Weyl chambers on the root
space

Figure 5.1: Weyl chambers in different coordinates

Based on the signs of λ±δ
2 and λ, which are the values of χδ,λ on coroots, the dual

of Cartan subalgebra h∗C is divided into 6 Weyl chambers as shown in the Figure 5.1.

The Weyl group W acts on the characters χδ,λ, sending it to different Weyl chambers.

The action by the simple reflections wα1 , wα2 on the pair of parameters (δ, λ) and the
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corresponding χδ,λ is:

wα1χδ,λ = χ− 3λ+δ
2

,λ−δ
2

wα2χδ,λ = χ 3λ−δ
2

,λ+δ
2
.

Modules

There are 6 families of irreducible (g,K)-modules for the group SU(2, 1) depend-

ing on the parameters (δ, λ). They can be decomposed into direct sums of τ (j,n)’s as

defined in (5.17). We are going to display these modules in diagrams of lattice points

and shaded regions in (k, l)-coordinates. In these diagrams, the lattice points stand for

K-types τ (j,n) represented in (k, l) coordinates. The horizontal and vertical axes stand

for k and l, respectively. The dashed arrows stand for a possible action that maps one

K-type to another by the Lie algebra action. The irreducible subquotients are depicted

by regions of different shades of gray, the darkest gray is for the finite dimensional rep-

resentation Vfin or the holomorphic/antiholomorphic discrete series Vdisc±, the medium

gray is for Q± and the lightest gray is for the quaternionic discrete series VH. In these

pictures, the lowest K-types are labeled by (j, n) instead of (k, l).

The Weyl chamber I1

The character χδ,λ in the Weyl chamber I1 satisfies

λ− δ ≥ 2, λ+ δ ≥ 2.

There exists (g,K)-submodules of I(χδ,λ) generated by finitely many K-types:

VH(χδ,λ) = U(g)τ (λ
2
, δ
2

)

V1(χδ,λ) = U(g)τ (λ+δ
4
, 3λ−δ

4
) + U(g)τ (λ−δ

4
,−3λ−δ

4
)

that form a composition series of I(χδ,λ):

VH
ι2

↪−−−−−−−−−−→
V1/VH=Q−⊕Q+

V1
ι1

↪−−−−−−−→
V0/V1=Vfin

V0 = I(χδ,λ).

The quaternionic discrete series VH, a finite dimensional representation Vfin and the

Q±’s are irreducible (g,K) modules, which decompose into a direct sum of K-isotypic
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spaces:

VH(χδ,λ) =
⊕

(k,l)∈LatticeCond
k−l≥λ−δ
k+l≥λ+δ

τ ( k
2
,−δ+ 3l

2
)

Q±(χδ,λ) =
⊕

(k,l)∈LatticeCond
k∓l<λ∓δ
k±l≥λ±δ

2

τ ( k
2
,−δ+ 3l

2
)

Vfin(χδ,λ) =
⊕

(k,l)∈LatticeCond
k+l<λ+δ
k−l<λ−δ

τ ( k
2
,−δ+ 3l

2
)

An example when (δ, λ) = (0, 4) is displayed in the figure below.

Figure 5.2: Weyl chamber I1

dark gray : Vfin medium gray : Q± light gray : VH
lowest (j, n) (0,−δ) (λ±δ4 , ±3λ−δ

4 ) (λ2 ,
δ
2)

(0,−δ)

(λ+δ
4
, 3λ−δ

4
)

(λ−δ
4
, −3λ−δ

4
)

(λ
2
, δ
2

) k

l

The Weyl chamber II1

The character χδ,λ in the Weyl chamber II1 satisfies

λ > 0, λ− δ ≤ −2.

The two (g,K)-submodules of I(χδ,λ) in the composition series are:

VH(wα2χδ,λ) = U(g)τ (λ+δ
4
, 3λ−δ

4
)

Vdisc−(wα2χδ,λ) = U(g)τ (0,−δ),

where VH is the quaternionic discrete series, and Vdisc− is the antiholomorphic discrete

series. Quotienting out the direct sum of these two modules from I(χδ,λ), we can get

VH ⊕ Vdisc−
ι

↪−−−−−−−−−−−−−→
V0/(VH⊕Vdisc−)=Q−

V0 = I(χδ,λ).
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The spaces Vdisc−, VH and Q− are irreducible (g,K) modules, which are the direct sum

of K-types:

VH(wα2χδ,λ) =
⊕

(k,l)∈LatticeCond
k+l≥λ+δ

τ ( k
2
,−δ+ 3l

2
)

Q−(wα2χδ,λ) =
⊕

(k,l)∈LatticeCond
k+l<λ+δ
k+l≥−λ+δ

τ ( k
2
,−δ+ 3l

2
)

Vdisc−(wα2χδ,λ) =
⊕

(k,l)∈LatticeCond
k+l<−λ+δ

τ ( k
2
,−δ+ 3l

2
)

For (δ, λ) = (6, 2), the regions representing the K-types of these modules are shown in

the picture below:

Figure 5.3: Weyl chamber II1

dark gray : Vdisc− medium gray : Q− light gray : VH
lowest (j, n) (0,−δ) (−λ+δ

4 , −3λ−δ
4 ) (λ+δ

4 , 3λ−δ
4 )

(0,−δ)

( −λ+δ
4

, −3λ−δ
4

)

(λ+δ
4
, 3λ−δ

4
)

k

l

The Weyl chamber II2

The character χδ,λ lying in the Weyl chamber II2 satisfies the inequality:

λ < 0, λ+ δ ≥ 2.

There exists a (g,K)-submodule

Q−(wα1wα2χδ,λ) = U(g)τ (λ+δ
4
, 3λ−δ

4
)

of I(χδ,λ) that forms a composition series of I(χδ,λ):

Q−
ι

↪−−−−−−−−−−−−→
V0/Q−=VH⊕Vdisc−

V0 = I(χδ,λ).
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The spaces Vdisc−, VH and Q− are irreducible (g,K) modules, which are direct

sums of K-types:

VH(wα1wα2χδ,λ) =
⊕

(k,l)∈LatticeCond
k+l≥−λ+δ

τ ( k
2
,−δ+ 3l

2
)

Q−(wα1wα2χδ,λ) =
⊕

(k,l)∈LatticeCond
k+l<−λ+δ
k+l≥λ+δ

τ ( k
2
,−δ+ 3l

2
)

Vdisc−(wα1wα2χδ,λ) =
⊕

(k,l)∈LatticeCond
k+l<λ+δ

τ ( k
2
,−δ+ 3l

2
)

For (δ, λ) = (6,−2), the regions representing the K-types of these modules are shown

in the picture below:

Figure 5.4: Weyl chamber II2

dark gray : Vdisc− medium gray : Q− light gray : VH
lowest (j, n) (0,−δ) (λ+δ

4 , 3λ−δ
4 ) (−λ+δ

4 , −3λ−δ
4 )

(0,−δ)

( −λ+δ
4

, −3λ−δ
4

)

(λ+δ
4
, 3λ−δ

4
)

k

l

The Weyl chamber I2

When the character χδ,λ lies in the Weyl chamber I2,

λ− δ ≤ −2, λ+ δ ≤ −2.

There exists (g,K)-submodules

V1(wα1wα2wα1χδ,λ) = U(g)τ (−λ+δ
4

,−3λ−δ
4

) + U(g)τ (−λ−δ
4

, 3λ−δ
4

)

Vfin(wα1wα2wα1χδ,λ) = U(g)τ (0,−δ)

of I(χδ,λ) that forms a composition series of I(χδ,λ):

Vfin
ι2

↪−−−−−−−−−−→
V1/Vfin=Q−⊕Q+

V1
ι1

↪−−−−−−→
V0/V1=VH

V0 = I(χδ,λ).
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The spaces Vfin, Q± and VH are irreducible (g,K) modules, which are direct sums

of K-types:

VH(wα1wα2wα1χδ,λ) =
⊕

(k,l)∈LatticeCond
k−l≥−λ+δ
k+l≥−λ−δ

τ ( k
2
,−δ+ 3l

2
)

Q±(wα1wα2wα1χδ,λ) =
⊕

(k,l)∈LatticeCond
k∓l<−λ±δ
k±l≥−λ∓δ

τ ( k
2
,−δ+ 3l

2
)

Vfin(wα1wα2wα1χδ,λ) =
⊕

(k,l)∈LatticeCond
k−l<−λ+δ
k+l<−λ−δ

τ ( k
2
,−δ+ 3l

2
).

For (δ, λ) = (0,−4), the regions representing the K-types of these modules are shown

in the picture below:

Figure 5.5: Weyl chamber I2

dark gray : Vfin medium gray : Q± light gray : VH
lowest (j, n) (0,−δ) (−λ±δ

4 ,−±3λ+δ
4 ) (−λ

2 ,
δ
2)

(0,−δ)

( −λ+δ
4

, −3λ−δ
4

)

( −λ−δ
4

, 3λ−δ
4

)

(−λ
2
, δ
2

) k

l

The Weyl chamber III1

When the character χδ,λ lies in the Weyl chamber III1:

λ+ δ ≤ −2, λ > 0.

Define the submodule V2 of I(χδ,λ) as a direct sum of the two spaces:

Vdisc+(wα1χδ,λ) = U(g)τ (0,−δ)

VH(wα1χδ,λ) = U(g)τ (λ−δ
4
,−3λ−δ

4
).
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These subspaces form a composition series of I(χδ,λ):

VH ⊕ Vdisc+
ι

↪−−−−−−−−−−−−−→
V0/(VH⊕Vdisc+)=Q+

V0 = I(χδ,λ)

where

VH(wα1χδ,λ) =
⊕

(k,l)∈LatticeCond
k−l≥λ−δ

τ ( k
2
,−δ+ 3l

2
)

Q+(wα1χδ,λ) =
⊕

(k,l)∈LatticeCond
k−l<λ−δ
k−l≥−λ−δ

τ ( k
2
,−δ+ 3l

2
)

Vdisc+(wα1χδ,λ) =
⊕

(k,l)∈LatticeCond
k−l<−λ−δ

τ ( k
2
,−δ+ 3l

2
).

For (δ, λ) = (−6, 2), the regions representing the K-types of these modules are shown

in the picture below:

Figure 5.6: Weyl chamber III1

dark gray : Vdisc+ medium gray : Q+ light gray : VH
lowest (j, n) (0,−δ) (−λ−δ4 , 3λ−δ

4 ) (λ−δ4 , −3λ−δ
4 )

(0,−δ)

(λ−δ
4
, −3λ−δ

4
)

( −λ−δ
4

, 3λ−δ
4

)

k
l

The Weyl chamber III2

The character χδ,λ lying in Weyl chamber III2 satisfies the inequality:

λ < 0, λ− δ ≥ 2.

There exists a (g,K)-submodule submodule Q+ of I(χδ,λ) defined as:

Q+(wα2wα1χδ,λ) = U(g)τ (λ−δ
4
,−3λ−δ

4
).
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This subspace form a composition series of I(χδ,λ):

Q+
ι

↪−−−−−−−−−−−−→
V1/Q+=VH⊕Vdisc+

V0 = I(χδ,λ)

where

VH(wα2wα1χδ,λ) =
⊕

(k,l)∈LatticeCond
k−l≥−λ−δ

τ ( k
2
,−δ+ 3l

2
)

Q+(wα2wα1χδ,λ) =
⊕

(k,l)∈LatticeCond
k−l<−λ−δ
k−l≥λ−δ

τ ( k
2
,−δ+ 3l

2
)

Vdisc+(wα2wα1χδ,λ) =
⊕

(k,l)∈LatticeCond
k−l<λ−δ

τ ( k
2
,−δ+ 3l

2
).

For (δ, λ) = (−6,−2), the regions representing the K-types of these modules are shown

in the picture below:

Figure 5.7: Weyl chamber III2

dark gray : Vdisc+ medium gray : Q+ light gray : VH
lowest (j, n) (0,−δ) (λ−δ4 , −3λ−δ

4 ) (−λ−δ4 , 3λ−δ
4 )

(0,−δ)

( −λ−δ
4

, 3λ−δ
4

)

(λ−δ
4
, −3λ−δ

4
)

k
l

5.5 The Intertwining Operator

We will prove the Theorem 1.3 in this section. The long intertwining operator of

the principal series I(χδ,λ)

A(w0, χδ,λ)f(g) =

∫
N∩w−1Nw

f(gw0n)dn

maps each vector f ∈ I(χδ,λ) to A(w0, w0χδ,λ)f ∈ I(w0χδ,λ). We are going to show that

this operator acts diagonally on the basis elements W
(j,n)
m1,m2 with a closed-form matrix
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coefficient

[A(w, δ, λ)]m1
=

π22−λ−1Γ(λ)

Γ
(
1− λ−δ

2

)
Γ
(
1− λ+δ

2

) Γ
(
j +m1 − λ+δ

2 + 1
)

Γ
(
j −m1 − λ−δ

2 + 1
)

Γ
(
j +m1 + λ−δ

2 + 1
)

Γ
(
j −m1 + λ+δ

2 + 1
) .

We will start by calculating the Iwasawa decomposition of an element of w0n̄. Since the

group SU(2, 1) has rank 1, there is only one Weyl group element w0 = diag(−1,−1, 1)

as the reflection of the restricted root system W (g, a). The intersection N ∩ w−1
0 Nw0

is the set of matrices

N ∩ w−1
0 Nw0 = N = {pα1+α2

(
1 0 0√
2z 1 0

|z|2−2iw
√

2z̄ 1

)
|z ∈ C, w ∈ R}. (5.23)

The matrix pα1+α2

(
1 0 0√
2z 1 0

|z|2−2iw
√

2z̄ 1

)
has an Iwasawa decomposition in the Lie group

SU(2, 1):

pα1+α2

(
1 0 0√
2z 1 0

|z|2−2iw
√

2z̄ 1

)
=


− |z|2−2iw−1√

(|z|2+1)2+4w2
− 2z̄
|z|2−2iw+1

0

2z√
(|z|2+1)2+4w2

− |z|
2+2iw−1

|z|2−2iw+1
0

0 0
|z|2−2iw+1√

(|z|2+1)2+4w2


pα1+α2

(
diag

(√
(|z|2 + 1)2 + 4w2, 1,

1√
(|z|2 + 1)2 + 4w2

)
× 1

√
2z̄

|z|2−2iw+1

|z|2+2iw

(|z|2+1)2+4w2

0 1
√

2z

|z|2+2iw+1

0 0 1

 , (5.24)

where the image of pα1+α2 on the diagonal matrix lies in a, and the image of pα1+α2 on

the upper triangular matrix lies in N . Consider a vector W
(j,n)
m1,m2 in I(χδ,λ). According

to the Iwasawa decomposition of an element n̄ ∈ N̄ in (5.24), the right translation of

w0n̄ on this vector can be simplified to

W (j,n)
m1,m2

(kw0n̄) =
(
(|z|2 + 1)2 + 4w2

)−λ+2
2

W (j,n)
m1,m2

kw0


− |z|2−2iw−1√

(|z|2+1)2+4w2
− 2z̄
|z|2−2iw+1

0

2z√
(|z|2+1)2+4w2

− |z|
2+2iw−1

|z|2−2iw+1
0

0 0
|z|2−2iw+1√

(|z|2+1)2+4w2


 . (5.25)

Since w0 = diag(−1,−1, 1) ∈ K, we can absorb w0 by writing

w0


− |z|2−2iw−1√

(|z|2+1)2+4w2
− 2z̄
|z|2−2iw+1

0

2z√
(|z|2+1)2+4w2

− |z|
2+2iw−1

|z|2−2iw+1
0

0 0
|z|2−2iw+1√

(|z|2+1)2+4w2

 =


|z|2−2iw−1√

(|z|2+1)2+4w2
2z̄

|z|2−2iw+1
0

− 2z√
(|z|2+1)2+4w2

|z|2+2iw−1

|z|2−2iw+1
0

0 0
|z|2−2iw+1√

(|z|2+1)2+4w2

 .
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If we set z = x + iy, the Haar measure on N is given by dxdydw. Therefore, to

understand the intertwining operator A(w, δ, λ), it suffices to compute the singular

integral

∫
C×R

(
(|z|2 + 1)2 + 4w2

)−λ+2
2 W (j,n)

m1,m2


|z|2−2iw−1√

(|z|2+1)2+4w2
2z̄

|z|2−2iw+1
0

− 2z√
(|z|2+1)2+4w2

|z|2+2iw−1

|z|2−2iw+1
0

0 0
|z|2−2iw+1√

(|z|2+1)2+4w2

 dxdydw

(5.26)

for everyK-type (j, n) and all indices in−j ≤ m1,m2 ≤ j. We will calculate the integral

in the domain of λ where it converges, and deduce the validity of the formula in Theorem

1.3 by analytic continuation. We recall from Section 4.2.2 that there exists a number

cδ > 0, such that the integral (5.26) converges if Reλ > cδ. Based on the definition of

Wigner D-functions (3.13), the integrand can be expressed as a hypergeometric sum

(
(|z|2 + 1)2 + 4w2

)−λ+2
2 W (j,n)

m1,m2


|z|2−2iw−1√

(|z|2+1)2+4w2
2z̄

|z|2−2iw+1
0

− 2z√
(|z|2+1)2+4w2

|z|2+2iw−1

|z|2−2iw+1
0

0 0
|z|2−2iw+1√

(|z|2+1)2+4w2


=cjm1

cjm2

min(j−m2,j+m1)∑
p=max(0,m1−m2)

(−1)p2−m1+m2+2p

(j +m1 − p)!p!(m2 −m1 + p)!(j −m2 − p)!
ω(j,n)
m1,m2

(p; z, w)

(5.27)

where the function ω
(j,n)
m1,m2(p; z, w) is defined as a function in z ∈ C, w ∈ R

ω(j,n)
m1,m2

(p; z, w) = zpz̄−m1+m2+p(−1 + |z|2 + 2iw)j+m1−p(−1 + |z|2 − 2iw)j−m2−p

(1 + |z|2 − 2iw)
−2j−m2+n−λ−2

2 (1 + |z|2 + 2iw)
−2j+m2−n−λ−2

2 (5.28)

which can be factored into polynomial functions in z and w. Noting that since 1 +

|z|2 > 0, the complex number 1 + |z|2 ± 2iw lies in the right half plane, we can

always take a branch cut of the power functions in (5.28) such that the value of

(1 + |z|2 ∓ 2iw)
−2j∓m2±n−λ−2

2 when z = 0, w = 0 is 1.

In order to compute the integral (5.26), it suffices to integrate on each summand

ω
(j,n)
m1,m2(p; z, w) over C×R. We can change the rectangular coordinate z = x+ iy to the
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polar coordinate z = reiθ, and by (5.28), we have∫
C×R

ω(j,n)
m1,m2

(p; z, w)dxdydw

=

∫ ∞
0

r−m1+m2+2p+1dr

∫ ∞
−∞

(−1 + r2 + 2iw)j+m1−p(−1 + r2 − 2iw)j−m2−p

(1 + r2 − 2iw)
−2j−m2+n−λ−2

2 (1 + r2 + 2iw)
−2j+m2−n−λ−2

2 dw

∫ 2π

0
ei(m1−m2)θdθ

= 2πδm1,m2

∫ ∞
0

r−m1+m2+2p+1

(∫ ∞
−∞

(−1 + r2 + 2iw)j+m1−p(−1 + r2 − 2iw)j−m2−p

(1 + r2 − 2iw)
−2j−m2+n−λ−2

2 (1 + r2 + 2iw)
−2j+m2−n−λ−2

2 dw
)
dr (5.29)

From the last line of the calculation above, we notice that the matrix

(

∫
C×R

ω(j,n)
m1,m2

(p; z, w)dxdydw)−j≤m1,m2≤j

is diagonal due to the appearance of δm1,m2 , i.e. its entries are nonzero if and only

if m1 = m2. Therefore, the intertwining operator A(w, δ, λ) acts diagonally on each

K-type, and write the diagonal entries as [A(w, δ, λ)]m1
= 〈W (j,n)

m1,∗ , A(w, δ, λ)W
(j,n)
m1,∗ 〉.

We define ω̃
(j,n)
m1 (r, w) as the inner integrand of the integral above:

ω̃(j,n)
m1

(r, w) =(−1 + r2 + 2iw)j+m1−p(−1 + r2 − 2iw)j−m1−p(1 + r2 − 2iw)
−2j−m1+n−λ−2

2

(1 + r2 + 2iw)
−2j+m1−n−λ−2

2 ,

so that∫
C×R

ω(j,n)
m1,m2

(p; z, w)dxdydw = 2πδm1,m2

∫ ∞
0

r−m1+m2+2p+1

(∫ ∞
−∞

ω̃(j,n)
m1

(r, w)dw

)
dr.

Using the notation which we have just introduced, the diagonal elements of the inter-

twining operator can be expressed as

[A(w, δ, λ)]m1
= 2π

min(j−m1,j+m1)∑
p=0

(
j+m1
p

) (
j−m1
p

)
(−4)p

∫ ∞
0

r2p+1

(∫ ∞
−∞

ω̃(j,n)
m1

(r, w)dw

)
dr

(5.30)

Apply the change of variables

m1 = n+δ
3 , j = k

2 , n = −δ + 3
2 l
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as we used when describing the structure of SU(2, 1) principal series in Section 5.4, the

integrand ω̃
(j,n)
m1 (r, w) inside can be replaced by another function labelled by k, l

ω̃k,l(r, w) =(−1 + r2 + 2iw)
k+l

2
−p(−1 + r2 − 2iw)

k−l
2
−p(1 + r2 − 2iw)−

k−l+λ+δ+2
2

(1 + r2 + 2iw)−
k+l+λ−δ+2

2 . (5.31)

The integral
∫∞
−∞ ω̃k,l(r, w)dw converges for λ > 0. In order to calculate the integral,

we need to reorganize the factors for ω̃k,l(r, w) to a simpler form. By applying the

change of variable from w to 1
2(1 + r2)w, the integral

∫∞
−∞ ω̃k,l(r, w)dw can be rewritten

as follows:∫ ∞
−∞

(−1 + r2 + 2iw)
k+l
2
−p(−1 + r2 − 2iw)

k−l
2
−p(1 + r2 − 2iw)−

k−l+λ+δ+2
2

(1 + r2 + 2iw)−
k+l+λ−δ+2

2 dw

=
1

2
(1 + r2)−1−2p−λ

∫ ∞
−∞

(
−1 + r2

1 + r2
+ iw

) k+l
2
−p(−1 + r2

1 + r2
− iw

) k−l
2
−p

(1− iw)−
k−l+λ+δ+2

2 (1 + iw)−
k+l+λ−δ+2

2 dw. (5.32)

Since in the original summation of Wigner D-functions, when m1 = m2 = m, 0 ≤ p ≤

min(j −m, j +m) = min(k−l2 , k+l
2 ), the exponents of the first two factors

(
−1 + r2

1 + r2
+ iw

) k+l
2
−p(−1 + r2

1 + r2
− iw

) k−l
2
−p

in the integrand (5.32) are non-negative integers, we can thus reorganize the terms

inside of the parenthesis and expand using binomial theorem:(
−1 + r2

1 + r2
+ iw

) k+l
2
−p(−1 + r2

1 + r2
− iw

) k−l
2
−p

=

((
−1 + r2

1 + r2
+ 1

)
− 1 + iw

) k+l
2
−p((−1 + r2

1 + r2
− 1

)
+ 1− iw

) k−l
2
−p

=
∑
K1,K2

(−1)
k+l

2
−p−K2

(
k−l

2
−p

K1

)(
k+l
2
−p

K2

)(−1 + r2

1 + r2
− 1

)K1
(
−1 + r2

1 + r2
+ 1

)K2

(1− iw)k−2p−K1−K2 . (5.33)

Combining the factor (1 − iw)k−2p−K1−K2 with (5.32), the integral in (5.30) which
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depends on w becomes∫ ∞
−∞

(1− iw)−
k−l+(λ+δ+2)

2
+k−2p−K1−K2(1 + iw)−

k+l+(λ−δ+2)
2 dw

=
2−K1−K2−2p−λπΓ(1 +K1 +K2 + 2p+ λ)

Γ
(
k+l+λ−δ

2 + 1
)

Γ
(
−k+l−λ−δ

2 + 1 +K1 +K2 + 2p
) . (5.34)

Then we can take care of the integral which depends on r in (5.30):∫ ∞
0

(1 + r2)−1−2p−λ
(
−1 + r2

1 + r2
− 1

)K1
(
−1 + r2

1 + r2
+ 1

)K2

r2p+1dr

=(−1)K12K1+K2−1 Γ(1 +K2 + p)Γ(K1 + p+ λ)

Γ(1 +K1 +K2 + 2p+ λ)
(5.35)

Putting (5.31)-(5.32) back into the intertwining operator [A(w, δ, λ)]m1
integral (5.30)

and applying the change of indices in j,m1 to k, l, the summation in (5.30) becomes a

sum over Γ-functions and binomial coefficients. We can utilize a trick by changing all

the binomial coefficients into their Γ function expressions, and group the Γ-factors in

the following way:

[A(w, δ, λ)]m1
= 2−λ−1(−1)

k+l
2 π2 Γ

(
k+l+2

2

)
Γ
(
k−l+2

2

)
Γ
(
k+l+λ−δ

2 + 1
)

∑
K1,K2≥0
p≥0

(−1)K1+K2

Γ (K1 + 1) Γ (K2 + 1) Γ
(
K1 +K2 + 2p− k+l−λ−δ

2 + 1
)

Γ (p+ λ+K1) Γ (1 +K2 + p)

Γ(p+ 1)2Γ
(
k−l

2 − p−K1 + 1
)

Γ
(
k+l

2 − p−K2 + 1
)

Reorganizing the Γ-functions into multinomial coefficients

( n
n1,...,nr ) =

n!

n1! · · ·nr!

and adding auxiliary Γ factors as required, we get:

[A(w, δ, λ)]m1
= 2−λ−1(−1)

k+l
2 π2 Γ

(
k+l+2

2

)
Γ
(
k−l+2

2

)
Γ(λ)

Γ
(
k+l−δ+λ

2 + 1
)

Γ
(
k−l+δ+λ

2 + 1
)

∑
K1,K2≥0
p≥0

(−1)K1+K2

(
K1+p+λ−1
λ−1,K1,p

) (
K2+p
p

)( k−l+λ+δ
2

k−l
2
−p−K1,

k+l
2
−p−K2,− k+l−λ−δ

2
+K1+K2+2p

)
.

(5.36)

Noticing that the yK1+pzK2+p-th multinomial coefficient of the following function in

y, z:

y
k−l

2 z
k+l

2

(
1− 1

y
− 1

z

) k−l+λ+δ
2
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is the multinomial coefficient (−1)k+K1+K2

(
k−l+λ+δ

2
k−l

2
−p−K1,

k+l
2
−p−K2,− k+l−λ−δ

2
+K1+K2+2p

)
in the third factor of each summand, we can further take y = (1 + s)(1 + t) and

z = 1 + 1/t. We consider the multinomial expansion of the function

(1 + s)
k−l

2
+λ−1(1 + t)

k−l
2 (1 + 1/t)

k+l
2

(
1− 1

(1 + s)(1 + t)
− 1

(1 + 1/t)

) k−l+λ+δ
2

=
∑

κ1,κ2∈Z
(−1)k+κ1+κ2

(
k−l+λ+δ

2
k−l

2
−κ1,

k+l
2
−κ2,− k+l−λ−δ

2
+κ1+κ2

)
(1 + s)κ1+λ−1

(1 + t)κ1(1 + 1/t)κ2 , (5.37)

its coefficient of the term sλ−1t0 is given by

∑
κ1,κ2∈Z

(−1)k+κ1+κ2

(
k−l+λ+δ

2
k−l

2
−κ1,

k+l
2
−κ2,− k+l−λ−δ

2
+κ1+κ2

)(
κ1+λ−1

κ1

)
∑
p∈Z

( κ1
p ) ( κ2

p ) (5.38)

which is (−1)k times the sum in (5.36) if one changes Ki + p to κi. The sums in (5.36)

are over non-negative integers, which is guaranteed by the non-vanishing of binomial

coefficients. Putting these binomial coefficients all together, it is clear that the sum in

(5.36) is the constant term coefficient of the function

(−1)−ks1+ 1
2

(k−l−λ+δ)(1 + s)
λ−δ

2
−1t−

k+l
2 (1 + t)

k+l−δ−λ
2 (5.39)

which by the binomial theorem is equal to

(−1)−k
Γ
(
1 + k+l

2 −
λ+δ

2

)
Γ
(
λ−δ

2

)
Γ
(
k+l

2 + 1
)

Γ
(
k−l

2 + 1
)

Γ
(
1− λ+δ

2

)
Γ
(
−1

2(k − l) + λ−δ
2

) . (5.40)

The matrix entries [A(w, δ, λ)]m1
for the intertwining operator simplifies to the function

[A(w, δ, λ)]m1
=

(−1)
k−l

2 π2

2λ+1

Γ(λ)Γ
(
λ−δ

2

)
Γ
(
1− λ+δ

2

) Γ
(
k+l−λ−δ+2

2

)
Γ
(
−k−l−λ+δ

2

)
Γ
(
k+l+λ−δ+2

2

)
Γ
(
k−l+λ+δ+2

2

) .
(5.41)

If we change the indices (k, l) back to j,m1, we have:

[A(w, δ, λ)]m1
=
π22−λ−1(−1)j−m1Γ(λ)Γ

(
λ−δ

2

)
Γ
(
1− λ+δ

2

)
Γ
(
j +m1 − λ+δ

2 + 1
)

Γ
(
−j +m1 + λ−δ

2

)
Γ
(
j +m1 + λ−δ

2 + 1
)

Γ
(
j −m1 + λ+δ

2 + 1
)
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We can apply the formula

Γ(z)Γ(1− z) =
π

sin(πz)

we can move one of the Γ-factors from the denominator to the numerator and vice

versa, which gives the final formula for the long intertwining operator entries:

[A(w, δ, λ)]m1
=

π22−λ−1Γ(λ)

Γ
(
1− λ−δ

2

)
Γ
(
1− λ+δ

2

) Γ
(
j +m1 − λ+δ

2 + 1
)

Γ
(
j −m1 − λ−δ

2 + 1
)

Γ
(
j +m1 + λ−δ

2 + 1
)

Γ
(
j −m1 + λ+δ

2 + 1
)

(5.42)

Thus we have proven Theorem 1.3.
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Chapter 6

Example: Sp(4,R)

6.1 The Lie Group Sp(4,R)

6.1.1 The Structure of the Group Sp(4,R)

The real symplectic group G = Sp(4,R) is the subgroup of SL(4,R) consisting

of all elements g ∈ SL(4,R) such that gtJg = J , where

J =

(
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

)
.

The real Lie algebra of the symplectic group is

g = sp(4,R) = {X ∈ sl(4,R)|XtJ + JX = 0}.

A root space decomposition for the complexified Lie algebra gC and its Chevalley basis

are determined by the following choice of data:

1. A Cartan subalgebra hC generated by H1 = E1,1 − E3,3, H2 = E2,2 − E4,4;

2. The simple roots α1 and α2 sending t1H1 + t2H2 to

α1(t1H1 + t2H2) = t1 − t2, α2(t1H1 + t2H2) = 2t2

3. The simple coroots α̌1 and α̌2 sending t1H1 + t2H2 to

α̌1(t1H1 + t2H2) = t1 − t2, α̌2(t1H1 + t2H2) = t2

4. The fundamental weights $1 and $2 in h∗C satisfying 〈$i, α̌j〉 = δij ;

5. The set of positive roots ∆+(gC, hC) = {α1, α2, α1 + α2, 2α1 + α2};

6. ρC = 1
2

∑
α∈∆+(gC,hC) α = 4α1+3α2

2 = $1 +$2;
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7. A basis for positive root spaces gα for α ∈ ∆+(gC, hC)

Xα1 = E1,2 − E4,3 Xα2 = E2,4

Xα1+α2 = E2,3 + E1,4 X2α1+α2 = E1,3

with the corresponding negative root vector given by X−α = Xt
α;

We will also represent an element λ ∈ h∗C by a pair of complex numbers (λ1, λ2) where

λi = λ(Hi). In this coordinate, ρC is represented by (2, 1).

On the real Lie group Sp(4,R), there is a Cartan involution θ(g) = (gt)−1 which

determines a subgroup of fixed points K = Gθ. The Lie algebra k ⊂ g of the maximal

compact subgroup K ⊂ G is:

k = {
(
A B
−B A

)
|A antisymmetric, B ∈ sym(2)}

The map
(
A B
−B A

)
7→ A + iB from k to 2 × 2 matrices identifies the Lie algebra k with

u(2). The 4-dimensional Lie algebra k have generators U0, U1, U2, U3 corresponding to

the 4 infinitesimal generators γ0, γ1, γ2, γ3 of u(2):

U0= 1
2

 0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

, U1= 1
2

 0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0


U2= 1

2

 0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

, U3= 1
2

 0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0


They satisfy a commutation relation:

[U0, Ui] = 0, [Ui, Uj ] = −εijkUk

where εijk is the Levi-Civita symbol as was defined in the formula (3.2).

6.1.2 The Cartan Subgroups of Sp(4,R)

The Maximally Compact Cartan Subalgebra

A Cartan subalgebra ofK ∼= U(2) is t = R(U0+U3)⊕R(U0−U3). The basis vectors

U0 ±U3 are deliberately chosen so that they can be related to Hα1 and Hα2 by Cayley
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transforms. Let the the simple roots β1, β2 act on an element t1(U0+U3)+t2(U0−U3) ∈

tC by

β1(t1(U0 + U3) + t2(U0 − U3)) = i(t1 − t2),

β2(t1(U0 + U3) + t2(U0 − U3)) = 2it2.

In the Vogan diagram (see Example 2.2), the shorter root is named to be the compact

root. In this situation, all roots are imaginary:

β1 β2

We can decompose the set of positive roots ∆+(gC, tC) into the union of the set of

compact roots and noncompact roots:

∆+
c (gC, tC) = {β1}

∆+
nc(gC, tC) = {β2, β1 + β2, 2β1 + β2};

The compact root vectors are

v±β1 =
1

i
(U1 ± iU2).

These roots are displayed in the following picture, where the gray color stands for

noncompact roots, and the light gray color stands for compact roots:

β1

β2

β1 + β2

2β1 + β2

$c1

$c2

The subspace tC⊕gβ1⊕g−β1of gC generated by the vectors {vβ1 , v−β1 , U0 +U3, U0−U3}

is isomorphic to gl(2,C). The embedding of this Lie subalgebra into gC corresponds to

the embedding of U(2) into G as K.
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The -1 eigenspace pC for θ is generated by the following noncompact root vectors:

v±(2β1+β2) =
1

2
(H1 ± i(X2α1+α2 +X−2α1−α2)) (6.1)

v±β2 =
1

2
(H2 ± i(Xα2 +X−α2)) (6.2)

v±(β1+β2) =
1

2
(Xα1+α2 +X−α1−α2 ∓ i(Xα1 +X−α1)). (6.3)

A Cayley transform and the maximal noncompact Cartan subalgebra

There are 4 conjugacy classes of Cartan subgroups of Sp(4,R) displayed in the

diagram below, connected by Cayley transforms corresponding to the roots β2 and

2β1 + β2:

S1 × S1

cβ2

xx

c2β1+β2

&&
R× × S1

c2β1+β2 &&

S1 × R×

cβ2xx
R× × R×

(6.4)

Consider the Cayley transforms cβ = Ad exp(π4 (vβ − vβ)) for a noncompact root β,

when β = β2 or 2β1 + β2, the Cayley transform is nontrivial:

cβ2 = Ad exp(
π

4
(vβ2 − vβ2))

c2β1+β2 = Ad exp(
π

4
(v2β1+β2 − v2β1+β2)).

The two Cayley transforms cβ2 and c2β1+β2 commute with each other. If we start from

the real Cartan subalgebra t, the other real Cartan subalgebras of Sp(4,R) can be

obtained by applying the Cayley transforms cβ2 and c2β1+β2 :

R(U0 + U3)⊕ R(U0 − U3)
cβ2

tt

c2β1+β2

**
R(U0 + U3)⊕ RiH2

c2β1+β2 **

RiH1 ⊕ R(U0 − U3)

cβ2tt
RiH1 ⊕ RiH2

This diagram shows how the generators of the Cartan subalgebras are mapped to each

other by the Cayley transforms shown in the diagram (6.4). We define the maximally
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noncompact Cartan subalgebra a = RH1⊕RH2 ⊂ p. The roots αi acts on hC = a⊗RC,

and they can be related to the roots βi on the compact Cartan subgroup by

αi ◦ (cβ2c2β1+β2) = βi.

Moreover, we can apply the composite Cayley transform on the root vectors vβ:

cβ2c2β1+β2vβ = c2β1+β2cβ2vβ =


iXβ◦(cβ2

c2β1+β2
)−1 if β ∈ {β2, 2β1 + β2}

Xβ◦(cβ2
c2β1+β2

)−1 if β ∈ {β1 + β2}
.

Weyl Group

From the embeddings Φα1 ,Φα2 of SL(2,R) into Sp(4,R) given by the simple roots

α1, α2, the simple Weyl reflections corresponding to these two roots are:

wαi = Φαi

(
0 1
−1 0

)
= exp

(π
2

(Xαi −X−αi)
)
.

The Lie algebra k has basis {Xα −X−α}α∈∆+ , and the relationship between this basis

and the basis {Ui} is:

U0 + U3 = X2α1+α2 −X−2α1−α2 2U1 = Xα1+α2 −X−α1−α2

2U2 = Xα1 −X−α1 U0 − U3 = Xα2 −X−α2 .

Therefore, the simple reflections wαi can be expressed as

wα1 = exp(πU2), wα2 = exp
(π

2
(U0 − U3)

)
. (6.5)

Under the basis {α1, α2}, the actions of the simple reflections on an element n1α1 +

n2α2 ∈ h∗C are:

wα1(n1α1 + n2α2) = (2n2 − n1)α1 + n2α2

wα2(n1α1 + n2α2) = n1α1 + (n1 − n2)α2.

If we represent λ ∈ h∗C by (λ1, λ2), the actions of wαi on (λ1, λ2) where λi = λ(Hi) is

wα1(λ1, λ2) = (λ2, λ1)

wα2(λ1, λ2) = (λ1,−λ2).

The action of the simple reflections on the nilpotent radical satisfies:

n ∩Ad(wαi)
−1n = RX−αi .
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Harish-Chandra isomorphism

Since sp(4,C) is rank 2, there are two Casimir elements Ω2 and Ω4 with de-

gree 2 and degree 4 respectively. They generate the center Z(gC) of the complexified

universal enveloping algebra. Consider the adjoint representation ad on gC, then the

corresponding element in the center is [Yan11]:

Ω2 =
∑
i,j

Tr(ad(Xi)ad(Xj))X̃iX̃j =
∑
i,j

B(Xi, Xj)X̃iX̃j

=
1

12
(H2

1 +H2
2 + 4H1 + 2H2 + 2(X−α1Xα1 + 2X−α2Xα2

+X−α1−α2Xα1+α2 + 2X−2α1−α2X2α1+α2))

where {X̃i} is a dual basis of the basis {Xi} of gC as in Section 2.1.4. The central

element Ω4 corresponding to the standard representation is a quartic element in U(gC)

which we will only write down the U(hC) part explicitly:

Ω4 =
1

5184
((H1 +H2 + 3)4 − 2(2H1H2 + 2H1 + 4H2 + 7)((H1 + 2)2 + (H2 + 1)2)− 11)

+ other terms

Since ρ = $1 +$2, the Harish-Chandra homomorphism γ′ will map each Hi to:

γ′(H1) = H1 − 2, γ′(H2) = H2 − 1

The image of Ω2 and Ω4 under the Harish-Chandra isomorphism γ′ are:

γ′(Ω2) =
1

12
(H2

1 +H2
2 − 5)

γ′(Ω4) =
1

5184
(H4

1 +H4
2 + 6H2

1H
2
2 − 6(H2

1 +H2
2 )− 11).

6.2 Iwasawa decomposition on the group level

We would like to compute the Iwasawa decomposition kman of an element n̄ ∈ N .

For a root α with χ−α(t) = exp(tX−α) ∈ N , the corresponding Lie group SL(2,C)

embedded into GC has generators:

χα(t) = exp(tXα), χ−α(t) = exp(tX−α), hα(t) = exp(tHα)
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In terms of these matrix generators of SL(2,C), the Iwasawa decomposition of χ−α(t)

is

χ−α(t) = κα(t)hα

(√
1 + t2

)
χα

(
t

1 + t2

)
(6.6)

where

κα(t) = exp (arctan(−t)(Xα −X−α))

is an element in the maximal compact subgroup K0
∼= SO(2,R). In general, for any

simple real root α for G = Sp(4,R), we would like to study at the embedding φα

of a Lie algebra sl(2,R) into g, and the corresponding homomorphism of a Lie group

Φα : SL(2,R) −→ G. The image of Φα is fixed by θ, and the embedding for the Lie

algebra satisfies:

1. φα ( 0 1
0 0 ) = Xα, φα ( 0 0

1 0 ) = X−α, φα
(

1 0
0 −1

)
= Hα,

2. Φα ( 1 t
0 1 ) = χα(t),Φα ( 1 0

t 1 ) = χ−α(t),Φα

(
t 0
0 1/t

)
= hα(t).

We can see that the homomorphisms Φα and φα respect the Cartan involution: if we

denote θ′ as the Cartan involution on SL(2,R) and sl(2,R), we can see that Φα ◦ θ′ =

θ ◦Φα and φα ◦ θ′ = θ ◦φα. Therefore, Im(Φα)∩K = Φα(K0) where K0 is the maximal

compact subgroup SO(2,R) in SL(2,R).

Recall that under any simple reflection wαi , there is a root vector X−αi such that

n̄ ∩ w−1
αi nwαi = RX−αi . We can factor the nilpotent group w−1

αi Nwαi into

w−1
αi Nwαi = N−αN

′ where N ′ ⊂ N and N−α = {etX−αi |t ∈ R}.

Using this factorization of the group w−1
αi Nwαi , we can find a coordinate system on

w−1
αi Nwαi which is consistent with the Iwasawa decomposition. Namely, for any n ∈ N ,

there is a t ∈ R and n′ ∈ N ′ such that

w−1
αi nwαi = κα(t)hα

(√
1 + t2

)
χα

(
t

1 + t2

)
n′.
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6.3 Parabolic Subgroups of Sp(4,R)

Denote P0 as the minimal parabolic subgroup of Sp(4,R), with the Lie algebra

having a Levi decomposition:

p0 = a⊕ n0, where n0 =
⊕
α∈∆+

gα.

The parabolic subgroup P0 has a Levi decomposition:

P0 = MA0N0, where M = {γε1α2
γε22α1+α2

|εi = 0 or 1} ∼= Z2 × Z2,

where recalling the statements in the end of Section 2.2.4, the generators γα2 , γ2α1+α2

of M are defined as:

γα2 = exp(π(U0 − U3)), γ2α1+α2 = exp(π(U0 + U3)).

M is the centralizer of a in K, and A0 and N0 are the analytic subgroups formed

by exponentiating a and n0, respectively. There are two proper standard parabolic

subgroups that contain P0. The parabolic subgroup P1 with an abelian nilpotent radical

is called a Siegel subgroup. The Levi decomposition P1 = M1N1 has the form:

M1 = {
(
A 0
0 (At)−1

)
, A ∈ GL(2,R)} ∼= GL(2,R)

N1 = {
(

1 0 x4 x3
0 1 x3 x2
0 0 1 0
0 0 0 1

)
, xi ∈ R} ∼= R3.

Their Lie algebras have restricted root space decompositions:

m1 = a⊕ gα1 ⊕ g−α1

n1 =
⊕

α∈{α2,α1+α2,2α1+α2}

gα.

There is another class of parabolic subgroup called the Jacobi (or Heisenberg and in

some literature also called Klingen) parabolic subgroup P2 = M2N2, having a Levi

decomposition:

M2 = {

(
h1 0 0 0
0 a 0 b
0 0 1/h1 0
0 c 0 d

)
,
(
a b
c d

)
∈ SL(2,R), h1 ∈ R×} ∼= SL(2,R)× R×

N2 = {
( 1 x1 x4 x3

0 1 x3 0
0 0 1 0
0 0 −x1 1

)
, xi ∈ R}.
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The Lie algebras of each subgroup have restricted root space decompositions:

m2 = a⊕ gα2 ⊕ g−α2

n2 =
⊕

α∈{α1,α1+α2,2α1+α2}

gα.

Thus n2 =
⊕

α∈{α1,α1+α2,2α1+α2}RXα. Since the root vectors Xα satisfy the commuta-

tion relations

[Xα, X2α1+α2 ] = 0 for α ∈ {α1, α1 + α2}

[Xα1 , Xα1+α2 ] = 2X2α1+α2 ,

the group N2 is isomorphic to the Heisenberg group H3.

Induction from the Minimal Parabolic

In this section consider the minimal principal series obtained by induction from

the minimal parabolic subgroup P0. A minimal principal series representation IP0(χδ,λ)

of Sp(4,R) is determined by the following data:

1. A continuous character λ : a −→ C represented by the pair (λ1, λ2) with λi =

λ(Hi). This character can be extended linearly to a character on a⊗ C = h, also

denoted by λ;

2. A character δ : M −→ {±1} represented by a pair (δ1, δ2) where δi ∈ {0, 1} such

that δ(γε1α2
γε22α1+α2

) = (−1)δ1ε1+δ2ε2 .

If the numbers λi are integers, with δi ≡ λi mod 2, as in the second example of Ex-

ample 4.1, the parameters defined above combine to an algebraic character χδ,λ on the

complex Cartan subalgebra aC = CH1⊕CH2. The (g,K)-module of the principal series

representation IP0(χδ,λ) embeds into the space

Cδ(K) = {f : K −→ C|f smooth and f(km) = δ(m)−1f(k)}.

This space is isomorphic to the space of smooth global sections of the line bundle

K ⊗M Cδ, where Cδ is the vector space on which M acts by δ−1. To get a basis for the
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space Cδ(K) from the Wigner D-functions, we consider the right action by m ∈M on

an arbitrary function f ∈ Cδ(K). f can be written as the finite linear combination of

Wigner D-functions with coefficients a
(j,n)
m1,m2 :

f(k) =
∑
j,n

−j≤mi≤j

a(j,n)
m1,m2

W (j,n)
m1,m2

(k).

The action by m ∈M on the right gives

f(km) =
∑
j,n

−j≤mi≤j

a(j,n)
m1,m2

W (j,n)
m1,m2

(km).

Recall that the Wigner D-functions are matrix coefficients of U(2)-representations.

Their values on the product of two elements km come from the multiplication of two

matrices:

W (j,n)
m1,m2

(km) =
∑
m3

W (j,n)
m1,m3

(k)W (j,n)
m3,m2

(m).

The action of a general element

m = γε1α2
γε22α1+α2

= eπ(ε1+ε2)U0eπ(−ε1+ε2)U3 ∈M

on the Wigner D-functions is diagonal:

W (j,n)
m3,m2

(eπ(ε1+ε2)U0eπ(−ε1+ε2)U3) = (−1)−(n−m2)ε1−(n+m2)ε2δm3,m2 .

Therefore, f(km) can be written as

f(km) =
∑
j,n

−j≤mi≤j

a(j,n)
m1,m2

(−1)−(n−m2)ε1−(n+m2)ε2W (j,n)
m1,m2

(k).

Because of the linear independence of different WignerD-functions, the equality f(km) =

δ(m)−1f(k) = (−1)−δ1ε1−δ2ε2f(k) holds for all k ∈ K if and only if j, n,m1,m2 satisfy

the compatibility condition

(−1)(n−m2)ε1+(n+m2)ε2 = (−1)δ1ε1+δ2ε2 .

Therefore, the space Cδ(K) can be written as the direct sum

Cδ(K) =
⊕

(j,n)∈KTypes(δ1,δ2)

⊕
m1∈{−j,−j+1,...,j}
m2∈M(j,n;δ1,δ2)

CW (j,n)
m1,m2

(6.7)
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in which the two sets of admissible j, n,m1,m2 are defined as:

KTypes(δ1, δ2) = {(j, n) ∈ 1

2
Z≥0 ×

1

2
Z|2j ≡ 2n ≡ δ1 + δ2 mod 2} (6.8)

M(j, n; δ1, δ2) = {m2 ∈ {−j,−j + 1, . . . , j}|n−m2 ≡ δ1 and n+m2 ≡ δ2 mod 2}.

(6.9)

Similarly to the case of SU(2, 1), for each (j, n) ∈ KTypes(δ1, δ2), we can denote

τ (j,n) =
⊕

m1∈{−j,−j+1,...,j}
m2∈M(j,n;δ1,δ2)

CW (j,n)
m1,m2

(6.10)

as the K-isotypic subspace of IP0(δ, λ) which decomposes into copies of irreducible K-

representations of highest weight (j, n). The restriction of the (g,K)-module of the

principal series IP0(δ, λ) to K can be decomposed as a direct sum of the K-isotypic

spaces τ (j,n):

IP0(δ, λ) =
⊕

(j,n)∈KTypes(δ1,δ2)

τ (j,n). (6.11)

The different copies of irreducible K-representations are distinguished by the index m2,

and the action of u(2) raising and lowering operators U1± iU2 moves each m1 to m1±1.

For each K-isotypic space τ (j,n), the cardinality of the set M(j, n; δ1, δ2) is equal to the

multiplicity of K-types with highest weight (j, n). In fact, if we assume

(δ1, δ2) ∈ {(0, 0), (1, 1)},

the set M(j, n; δ1, δ2) is

M(j, n; δ1, δ2) =
{
{...j−4,j−2,j} j−n+δ1≡0 mod 2
{...j−5,j−3,j−1} j−n+δ1≡1 mod 2

(6.12)

and its cardinality is

|M(j, n; δ1, δ2)| =
{

j+1 j−n+δ1≡0 mod 2

bj− 1
2
c+1 j−n+δ1≡1 mod 2 . (6.13)

We will make use of these facts to calculate the long intertwining operator for the

principal series of Sp(4,R).
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6.4 The (g, K)-Module Structure

Normalization of basis and the Iwasawa decomposition

The set of positive and negative noncompact roots are

∆+
nc = {β2, β1 + β2, 2β1 + β2} ∆−nc = {−β2,−β1 − β2,−2β1 − β2}.

We define the vectors uβ ∈ pC by multiplying the vβ defined in (6.1)-(6.3) by a factor:

uβ =


√

2ivβ β ∈ {β2, 2β1 + β2,−β2,−2β1 − β2}

vβ otherwise

.

Under this normalization, the Lie algebra Iwasawa decomposition of the basis vectors

uβ is:

u±(2β1+β2) =
1√
2

(±(U0 + U3) + iH1 ∓ 2X2α1+α2) (6.14)

u±β2 =
1√
2

(±(U0 − U3) + iH2 ∓ 2Xα2) (6.15)

u±(β1+β2) = −(U1 ∓ iU2) +Xα1+α2 ∓ iXα1 (6.16)

The representation of K = U(2) on pC decomposes into two irreducible subrepresenta-

tions

p+
C = ⊕β∈∆+

nc
Cuβ p−C = ⊕β∈∆−nc

Cuβ.

The uβ’s are the normalized weight vectors on which the adjoint action by U1 ± iU2

acts as

ad(U1 ± iU2)uβ = qβ,β±β1uβ±β1 ,

where the coefficient qβ,β±β1 turns out to be

qβ,β±β1 =


−i
√

2 if β ± β1 ∈ ∆(gC, tC)

0 otherwise

.

Left Action of pC

For any noncompact root β, define two integers:

mβ = −iβ(U3) ∈ {−1, 0, 1} (6.17)

nβ = −iβ(U0) ∈ {−1, 1} (6.18)
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Each weight β is uniquely determined by the pair of integers (mβ, nβ) specified in the

following chart:

mβ = −1 mβ = 0 mβ = 1

nβ = −1 −2β1 − β2 −β1 − β2 −β2

nβ = 1 β2 β1 + β2 2β1 + β2

Table 6.1: Correspondence between (mβ, nβ) and noncompact roots

By embedding the principal series representation I(χδ,λ) into Cδ(K) (compare to the

identical method in [BM17] and the SU(2, 1) case in Section 5), we would like to

understand the action of

dl(uβ) = dr(−Ad(k−1)uβ)

on any basis vector W
(j,n)
m1,m2(k) in Cδ(K). By the definition of the principal series in

(4.1), the right action on any vector f ∈ I(χδ,λ) by Hi is always a scalar multiplication

by λi + ρ(Hi)

dr(Hi)f = −(λi + ρ(Hi))f, (6.19)

and the right action by any element from N annihilates f . We can therefore use the

decomposition (6.14)-(6.16) and the differential operators (3.21)-(3.23) in gC of uβ to

calculate the right action of uβ on the basis vectors W
(j,n)
m1,m2 of I(χδ,λ). Also, recall from

6.1.1 that ρ(H1) = 2, ρ(H2) = 1, we have

dr(u±(2β1+β2))W
(j,n)
m1,m2

=
i√
2

(∓n∓m2 − (λ1 + ρ(H1)))W (j,n)
m1,m2

=
i(∓n∓m2 − (λ1 + 2))√

2
W (j,n)
m1,m2

(6.20)

dr(u±β2)W (j,n)
m1,m2

=
i√
2

(∓n±m2 − (λ2 + ρ(H2)))W (j,n)
m1,m2

=
i(∓n±m2 − (λ2 + 1))√

2
W (j,n)
m1,m2

(6.21)

dr(u±(β1+β2
))W (j,n)

m1,m2
= −i

√
(j ±m2)(j ∓m2 + 1)W

(j,n)
m1,m2∓1. (6.22)

Recalling the correspondence between the weight β and (mβ, nβ) discussed in (6.17)-

(6.18) and Table 6.1, since the irreducible constituents of p±C have highest weights
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(j, n) = (1,±1) respectively, the right action of uβ with β ∈ ∆±nc can be transferred to

the left by observing

Ad(k−1)uβ =
∑
ν∈∆±nc

W
(1,±1)
mν ,mβ (k−1)uν =

∑
ν∈∆±nc

W (1,±1)
mβ ,mν

(k)uν .

Based on the correspondence in Table 6.1 between the weights of uβ and the pair of

integers (mβ, nβ), it is clear that the left action of uβ for β ∈ ∆±nc on the Wigner

D-functions W
(j,n)
m1,m2 ∈ Cδ(K) can be written explicitly as follows,

dl(uβ)W (j,n)
m1,m2

=(
W

(1,±1)
mβ ,∓1dr(u±β2) +W

(1,±1)
mβ ,0

dr(u±(β1+β2)) +W
(1,±1)
mβ ,±1dr(u±(2β1+β2))

)
W (j,n)
m1,m2

. (6.23)

According to (6.20)-(6.22), we apply the right action dr(uβ) to W
(j,n)
m1,m2 and get

dl(uβ)W (j,n)
m1,m2

=

i

(
∓n±m2 − (λ2 + ρ(H2))√

2
W

(1,±1)
mβ ,∓1 +

∓n∓m2 − (λ1 + ρ(H1))√
2

W
(1,±1)
mβ ,±1

)
W (j,n)
m1,m2

− i
√

(j ±m2)(j ∓m2 + 1)W
(1,±1)
mβ ,0

W
(j,n)
m1,m2∓1. (6.24)

We can replace the products of Wigner D-functions by a linear combination of

Wigner D-functions with Clebsch-Gordan coefficients as described in formula (3.25) of

Section 3.3. The left action of uβ for β ∈ ∆±nc on Wigner D-functions can thus be

expressed as

dl(uβ)W (j,n)
m1,m2

=i
∑

j0∈{j−1,j,j+1}

(
j+j0,m1+mβ
j,m1,1,mβ

)(∓n∓m2 − (λ1 + ρ(H1))√
2

(
j+j0,m2±1
j,m2,1,±1

)
W

(j+j0,n±1)
m1+mβ ,m2±1+

(
−
√

(j ±m2)(j ∓m2 + 1)
(
j+j0,m2∓1
j,m2∓1,1,0

)
+
∓n±m2 − (λ2 + ρ(H2))√

2

(
j+j0,m2∓1
j,m2,1,∓1

))
W

(j+j0,n±1)
m1+mβ ,m2∓1

)
(6.25)

After computing all the Clebsch-Gordan coefficients using the formulas listed in Table

3.2, the action of weight vectors uβ of pC on the left when β ∈ ∆±nc can be expressed as
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the following linear combination:

dl(uβ)W (j,n)
m1,m2

=
i

2

∑
j0∈{−1,0,1}

ε=±1

(
j+j0,m1+mβ
j,m1,1,mβ

)
Cj+j0qj0,εκ±,j0,ε(j, n,m1;λ)W

(j+j0,n±1)
m1+mβ ,m2+ε

(6.26)

with the coefficients given in the tables:

Cj+j0

j0 = −1 j−
1
2 (2j + 1)−

1
2

j0 = 0 j−
1
2 (j + 1)−

1
2

j0 = 1 (j + 1)−
1
2 (2j + 1)−

1
2

qj0,ε ε = −1 ε = 1

j0 = −1
√

(j +m2 − 1)(j +m2)
√

(j −m2 − 1)(j −m2)

j0 = 0
√

(j +m2)(j −m2 + 1)
√

(j −m2)(j +m2 + 1)

j0 = 1
√

(j −m2 + 1)(j −m2 + 2)
√

(j +m2 + 1)(j +m2 + 2)

κ+,j0,ε ε = −1 ε = 1

j0 = −1 2 + 2j −m2 − n− (λ2 + ρ(H2)) −n−m2 − (λ1 + ρ(H1))

j0 = 0 2− n−m2 − (λ2 + ρ(H2)) n+m2 + (λ1 + ρ(H1))

j0 = 1 −2j −m2 − n− (λ2 + ρ(H2)) −n−m2 − (λ1 + ρ(H1))

κ−,j0,ε ε = −1 ε = 1

j0 = −1 n+m2 − (λ1 + ρ(H1)) 2 + 2j +m2 + n− (λ2 + ρ(H2))

j0 = 0 n+m2 − (λ1 + ρ(H1)) −2− n−m2 + (λ2 + ρ(H2))

j0 = 1 n+m2 − (λ1 + ρ(H1)) −2j +m2 + n− (λ2 + ρ(H2))

.

The (g,K)-action on Sp(4,R) principal series I(χδ,λ) is completely determined by for-

mula (6.26) and the four tables above.

6.5 Intertwining Operators

The longest element w0 = wα2wα1wα2wα1 in the Weyl group of Sp(4,R) corre-

sponds to the long intertwining operator:

A(w0, λ)f(k) =

∫
N∩w−1Nw

f(kwn)dn.
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Applying Langlands’ Lemma (4.4), A(w0, λ) can be factored into 4 intertwining opera-

tors corresponding to simple reflections:

A(w0, λ) = A(wα2 , wα1wα2wα1λ)A(wα1 , wα2wα1λ)A(wα2 , wα1λ)A(wα1 , λ).

Proposition 6.1 Let w0 = wα2wα1wα2wα1 be the longest element in the Weyl group

W of Sp(4,R). The matrix for the long intertwining operator A(w0, χδ,λ) under the

basis W
(j,n)
m1,m2 of Cδ(K) has a factorization:

A(w0, χδ,λ)|j,n = A4(ν) ·A3(λ) ·A2(λ) ·A1(λ)

If we define

Q(z, n) =
π22−2zΓ(2z − 1)

Γ(z + n)Γ(z − n)
, (6.27)

and let

Sj,nm3,m2
(z) =

∑
−j≤m4≤j

i−2m4M j,n
m3,m4

N j,n
m4,m2

Q(z,m4)

Tnm1
(z) = i−n+m1Q

(
z,
m1 − n

2

)
where N j,n

m1,m3 is the inverse matrix of M j,n
m1,m3, with

M j,n
m3,m4

=cjm3
cjm4


im3−m4 (−1)2j2−j

(j−m3)!(m3−m4)!(j+m4)! 2F1(−j+m3,−j−m4
1+m3−m4

;−1) m3 > m4

im4−m3 (−1)2j2−j

(j+m3)!(m4−m3)!(j−m4)! 2F1(−j−m3,−j+m4
1−m3+m4

,−1) m3 ≤ m4

then the operators Ai(λ) act as

A1(λ)W (j,n)
m1,m2

=
∑

m3∈M(j,n;δ2,δ1)

Sj,nm3,m2

(
λ1 − λ2 + 1

2

)
W (j,n)
m1,m3

(6.28)

A2(λ)W (j,n)
m1,m2

= Tnm2

(
λ1 + 1

2

)
W (j,n)
m1,m2

(6.29)

A3(λ)W (j,n)
m1,m2

=
∑

m3∈M(j,n;δ2,δ1)

Sj,nm3,m2

(
λ1 + λ2 + 1

2

)
W (j,n)
m1,m3

(6.30)

A4(λ)W (j,n)
m1,m2

= Tnm2

(
λ2 + 1

2

)
W (j,n)
m1,m2

. (6.31)

We will prove the Proposition 6.1 in the following two sections 6.5.1 and 6.5.2.

Remark 6.1 The simple reflection wα1 sends the character δ = (δ1, δ2) on M to

(δ2, δ1). For the wα1 intertwining operator, it is important to recall that the par-

ity condition M(j, n; δ2, δ1) of m3 restricts the allowed Wigner D-functions W
(j,n)
m1,m3 in

IP0(wα1χδ,λ) as in (6.10) and (6.11).
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6.5.1 Rank 1 Intertwining Operators

Starting from any character λ on aC, the rank 1 intertwining operator A(wα, µ)

associated to a simple reflection wα can be written as

A(wα, λ)f(k) =

∫
N∩w−1

α Nwα

f(kwαn̄)dn =

∫ ∞
−∞

f(kwα exp(tX−α))dt.

By the Iwasawa decomposition of exp(tX−α) given in (6.6),

exp(tX−α) = κα(t)hα(
√

1 + t2)χα

(
t

1 + t2

)
,

where κα(t) = exp (arctan(−t)(Xα −X−α)). If f is any vector in the principal series

representation I(χδ,λ), the action of exp(tX−α) on the right is

f(kwα exp(tX−α)) = f

(
kwακα(t)hα(

√
1 + t2)χα

(
t

1 + t2

))
= (1 + t2)−

〈α̌,λ+ρ〉
2 f

(
kwαe

arctan(−t)(Xα−X−α)
)
.

Denoting by θ(t) = arctan(−t), since Xα1 −X−α1 = 2U2, Xα2 −X−α2 = U0 − U3, and

recalling from (6.5) the expressions of simple reflections wαi in terms of Euler angles,

the action of exp(tX−α1) and exp(tX−α2) on a Wigner D-function f = W
(j,n)
m1,m2 is thus

W (j,n)
m1,m2

(kwα1e
θ(t)(Xα1−X−α1 ))

=
∑

−j≤m3≤j
W (j,n)
m1,m3

(k)W (j,n)
m3,m2

(0, 0,−π − 2θ(t), 0) (6.32)

W (j,n)
m1,m2

(kwα2e
θ(t)(Xα2−X−α2 ))

=
∑

−j≤m3≤j
W (j,n)
m1,m3

(k)W (j,n)
m3,m2

(
−π

2
− θ(t), π

2
+ θ(t), 0, 0

)
. (6.33)

Therefore, the simple intertwining operators A(wα1 , λ)W
(j,n)
m1,m2 and A(wα2 , λ)W

(j,n)
m1,m2

can be expressed in terms of integrals involving Wigner D-functions:(
A(wα1 , λ)W (j,n)

m1,m2

)
(k) =∑

−j≤m3≤j
W (j,n)
m1,m3

(k)

∫ ∞
−∞

(1 + t2)−
〈α̌1,λ+ρ〉

2 W (j,n)
m3,m2

(0, 0,−π − 2θ(t), 0)dt (6.34)

(
A(wα2 , λ)W (j,n)

m1,m2

)
(k) =∑

−j≤m3≤j
W (j,n)
m1,m3

(k)

∫ ∞
−∞

(1 + t2)−
〈α̌2,λ+ρ〉

2 W (j,n)
m3,m2

(
−π

2
− θ(t), π

2
+ θ(t), 0, 0

)
dt (6.35)
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Observe that θ(t) is an odd function. It is important to mention that, from the formula

of the Wigner D-function (3.14), we have

d(j,n)
m3,m2

(−π − 2θ(t)) =

min(j−m2,j+m3)∑
p=max(0,m3−m2)

(−1)2j+m2−m3+p

(j +m3 − p)!p!(m2 −m3 + p)!(j −m2 − p)!

cosm2−m3+2p (θ(t)) sin2j+m3−m2−2p (θ(t)) .

If 2j + m3 −m2 ≡ 1 mod 2, the integrand of (6.34) is an odd function, which makes

the integral (6.34) zero. If W
(j,n)
m1,m2 ∈ IP0(χδ,λ), we must have

2j ≡ δ1 + δ2 mod 2

and

m2 ∈ M(j, n; δ1, δ2).

The set M(j, n; δ1, δ2) has been defined in (6.9). In order to make the integral (6.34)

nonzero, the function d
(j,n)
m3,m2(−π − 2θ(t)) must be an even function. In this case, the

exponent 2j +m3 −m2 ≡ 0 mod 2. Therefore,

2j +m3 −m2 ≡ δ1 + δ2 +m3 −m2 ≡ 0 mod 2. (6.36)

Thus, if m2 satisfies n −m2 ≡ δ1 mod 2 and n + m2 ≡ δ2 mod 2, by (6.36), we must

have

n−m3 ≡ n−m2 + δ1 + δ2 ≡ δ2 mod 2

n+m3 ≡ n+m2 + δ1 + δ2 ≡ δ1 mod 2.

Thus the parity condition m3 is given by the set M(j, n; δ2, δ1), with δ1 and δ2 flipped

from the parity condition of m2. In particular, A(wα1 , λ)W
(j,n)
m1,m2 lies in the space

IP0(wα1χδ,λ). Hence the sum in (6.34) is in fact a sum over m3 ∈ M(j, n; δ2, δ1):(
A(wα1 , λ)W (j,n)

m1,m2

)
(k) =∑

m3∈M(j,n;δ2,δ1)

W (j,n)
m1,m3

(k)

∫ ∞
−∞

(1 + t2)−
〈α̌1,λ+ρ〉

2 W (j,n)
m3,m2

(0, 0,−π − 2θ(t), 0)dt. (6.37)

Note that the Wigner D-function W
(j,n)
m3,m2(0, 0,−π − 2θ(t), 0) in (6.32) and (6.37) has

a nonzero U2−Euler angle. In the following section, we will diagonalize the matrix of
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Wigner D-functions and transform the U2−Euler angle to a U3− Euler angle in order

to compute the intertwining operators more easily.

6.5.2 Diagonalization of the intertwining operators

From the commutation relation of Pauli matrices, U2 and U3 can be related in

the following way:

U2 = Ad(e−
3π
2
U1)U3. (6.38)

We can use this relation to diagonalize the action of

e(π+2θ(t))U2 = Ad(e−
3π
2
U1)e(π+2θ(t))U3

appearing in the Iwasawa decomposition of exp(tX−α1) of the Wigner D-functions. By

the multiplicativity of the Wigner D-function, we have

W (j,n)
m1,m2

(kwα1e
2θ(t)U2) = W (j,n)

m1,m2
(ke(π+2θ(t))U2)

=
∑

m3∈M(j,n;δ2,δ1)

W (j,n)
m1,m3

(k)W (j,n)
m3,m2

(e−
3π
2
U1e(π+2θ(t))U3 exp

3π
2
U1)

=
∑

m3∈M(j,n;δ2,δ1)

W (j,n)
m1,m3

(k)
∑
m4,m5

W (j,n)
m3,m4

(e−
3π
2
U1)W (j,n)

m5,m2
(e

3π
2
U1)W (j,n)

m4,m5
(e(π+2θ(t))U3)

=
∑

m3∈M(j,n;δ2,δ1)

W (j,n)
m1,m3

(k)
∑
m4,m5

W (j,n)
m3,m4

(e−
3π
2
U1)W (j,n)

m5,m2
(e

3π
2
U1)×

W (j,n)
m4,m5

(0,−π − 2θ(t), 0, 0). (6.39)

We define the function S
′(j,n)
m3,m2(z) by

S′(j,n)
m3,m2

(z) =
∑
m4,m5

W (j,n)
m3,m4

(e−
3π
2
U1)W (j,n)

m5,m2
(e

3π
2
U1)∫ ∞

−∞
(1 + t2)−zW (j,n)

m4,m5
(0,−π − 2θ(t), 0, 0). (6.40)

Change-of-basis matrix

Similarly to the relation (6.38) between U2 and U3, we can relate U1 and U2 by

conjugating a multiple of U3:

U1 = Ad(e
π
2
U3)U2. (6.41)
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Recalling the notation from from (3.13) and (3.14) that cjm =
√

(j +m)!(j −m)!, the

change-of-basis matrices W
(j,n)
m3,m4(e−

3π
2
U1) and W

(j,n)
m5,m2(e

3π
2
U1) can be expressed in terms

of the value of a Wigner D-function:

W (j,n)
m3,m4

(e−
3π
2
U1) = W (j,n)

m3,m4
(e

π
2
U3e−

3π
2
U2e−

π
2
U3) = W (j,n)

m3,m4

(
−π

2
,
3π

2
,
π

2

)

= cjm3
cjm4


im3−m4 (−1)2j2−j

(j−m3)!(m3−m4)!(j+m4)! 2F1(−j+m3,−j−m4
1+m3−m4

;−1) m3 > m4

im4−m3 (−1)2j2−j

(j+m3)!(m4−m3)!(j−m4)! 2F1(−j−m3,−j+m4
1−m3+m4

,−1) m3 ≤ m4

. (6.42)

We define

M j
m3,m4

= W (j,n)
m3,m4

(e−
3π
2
U1) (6.43)

N j
m5,m2

= W (j,n)
m5,m2

(e
3π
2
U1). (6.44)

As we have seen in (3.18), the entries of M j
m3,m4 and N j

m3,m4 are related to values

Pm1−m4,m1+m4
j−m1

(0) of Jacobi polynomials Pα,βn (x):

M j
m3,m4

=
cjm4

cjm3

(−1)2j i−m3+m42−m4P−m3+m4,m3+m4
j−m4

(0) (6.45)

N j
m5,m2

=
cjm2

cjm5

(−1)2j im5−m22−m2P−m5+m2,m5+m2
j−m2

(0). (6.46)

After introducing these notations, the function S
′(j,n)
m3,m2(z) defined in (6.40) becomes

S′(j,n)
m3,m2

(z) =
∑
m4,m5

M (j,n)
m3,m4

N (j,n)
m5,m2

∫ ∞
−∞

(1 + t2)−zW (j,n)
m4,m5

(0,−π − 2θ(t), 0, 0). (6.47)

Among the two equivalent definitions (3.16) from [AS67] and (3.17) in [Res08], for the

sake of simplicity in expressions we choose the definition (3.17) using hypergeometric

functions

Pα,βn (x) =

(
n+ α

n

)(
x+ 1

2

)n
2F1

(
−n,−n−β
α+1 ;

x− 1

x+ 1

)
.

These Jacobi polynomials have a generating function [SM84]

∞∑
n=0

P (α−n,β−n)
n (x)tn =

(
1 +

1

2
(x+ 1)t

)α(
1 +

1

2
(x− 1)t

)β
(6.48)

for |x| < 1. The series on the left hand side converges absolutely for |t| < 1. For any

meromorphic function f(t), we denote [f(t)]0 as the zeroth Laurent series coefficient
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of f(t). The change-of-basis matrices M j
m3,m4 , N

j
m5,m2 can thus be expressed as the

constant term in Laurent series,

M j
m3,m4

=

[
(−1)2j c

j
m4

cjm3

i−m3+m42−m4tm4−j
(

1 +
t

2

)j−m3
(

1− t

2

)j+m3
]

0

(6.49)

N j
m5,m2

=

[
(−1)2j c

j
m2

cjm5

im5−m22−m2tm2−j
(

1 +
t

2

)j−m5
(

1− t

2

)j+m5
]

0

. (6.50)

The Singular Integrals

In (4.7), we have described the procedure of calculating the matrix entries

[A(w, λ)](j,n)
m3,m2

= 〈W (j,n)
m1,m3

, A(w, λ)W (j,n)
m1,m2

〉 (6.51)

of the intertwining operator A(w, λ). The right hand side of (6.51) is independent

of m1. The calculation of simple intertwining operators reduces to the calculation of

integrals (6.37) and (6.35). Combining the diagonalized operator (6.39) with (6.34) and

(6.35), the problem of the calculation of the intertwining operators A(w, λ) reduces to

the following two integrals:∫ ∞
−∞

(1 + t2)−
〈α̌1,λ+ρ〉

2 W (j,n)
m4,m5

(0,−π − 2θ(t), 0, 0) dt (6.52)∫ ∞
−∞

(1 + t2)−
〈α̌2,λ+ρ〉

2 W (j,n)
m3,m2

(
−π

2
− θ(t), π

2
+ θ(t), 0, 0

)
dt (6.53)

Recall from the definition of Wigner D-functions and their values on Euler angles that

W (j,n)
m1,m2

(ζ, ψ, 0, 0) = einζ+im1ψδm1,m2 .

The Wigner D-function part of the integrands of the above two integrals (6.52) and

(6.53) are

W (j,n)
m4,m5

(0,−π − 2θ(t), 0, 0) = i−2m4(1 + it)m4(1− it)−m4δm4,m5

W (j,n)
m3,m2

(
−π

2
− θ(t), π

2
+ θ(t), 0, 0

)
= i−n+m2(1 + it)

n−m2
2 (1− it)−

n−m2
2 δm3,m2

The integral
∫∞
−∞(1 + it)s1(1 − it)s2dt is convergent for Re(s1 + s2) < −1, and can be

meromorphically continued to the whole complex plane as∫ ∞
−∞

(1 + it)s1(1− it)s2dt = π2s1+s2+2 Γ(−s1 − s2 − 1)

Γ(−s1)Γ(−s2)
. (6.54)
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We can use (6.54) to express the two integrals (6.52) and (6.53) in terms of Γ-functions.

Thus the integral (6.52) becomes∫ ∞
−∞

(1 + t2)−
〈α̌1,λ+ρ〉

2 W (j,n)
m4,m5

(0,−π − 2θ(t), 0, 0)dt

=i−2m4δm4,m5

∫ ∞
−∞

(1− it)−
〈α̌1,λ+ρ〉

2
−m4(1 + it)−

〈α̌1,λ+ρ〉
2

+m4dt

=i−2m4π2−〈α̌1,λ+ρ〉+2 Γ(〈α̌1, λ+ ρ〉 − 1)

Γ
(
〈α̌1,λ+ρ〉

2 −m4

)
Γ
(
〈α̌1,λ+ρ〉

2 +m4

)δm4,m5

and the integral (6.53) is∫ ∞
−∞

(1 + t2)−
〈α̌2,λ+ρ〉

2 W (j,n)
m3,m2

(
−π

2
− θ(t), π

2
+ θ(t), 0, 0

)
dt

=i−n+m2δm3,m2

∫ ∞
−∞

(1− it)−
〈α̌2,λ+ρ〉

2
−n−m2

2 (1 + it)−
〈α̌2,λ+ρ〉

2
+
n−m2

2 dt

=i−n+m2π2−〈α̌2,λ+ρ〉+2 Γ(〈α̌2, λ+ ρ〉 − 1)

Γ
(
〈α̌2,λ+ρ〉

2 − n−m2
2

)
Γ
(
〈α̌2,λ+ρ〉

2 + n−m2
2

)δm3,m2 .

We have defined the function Q(z, n) = π22−2zΓ(2z−1)
Γ(z+n)Γ(z−n) in (6.27), so the integrals (6.52)

and (6.53) can be expressed as:∫ ∞
−∞

(1 + t2)−
〈α̌1,λ+ρ〉

2 W (j,n)
m4,m5

(0,−π − 2θ(t), 0, 0) dt

= i−2m4Q

(
〈α̌1, λ+ ρ〉

2
,m4

)
δm4,m5 (6.55)∫ ∞

−∞
(1 + t2)−

〈α̌2,λ+ρ〉
2 W (j,n)

m3,m2

(
−π

2
− θ(t), π

2
+ θ(t), 0, 0

)
dt

= i−n+m2Q

(
〈α̌2, λ+ ρ〉

2
,
m2 − n

2

)
δm3,m2 . (6.56)

If we denote by Tnm2
(z) = i−n+m2Q

(
z, m2−n

2

)
, the result of the integral in (6.56) is equal

to Tnm2
( 〈α̌2,λ+ρ〉

2 ) = i−n+m2Q
(
〈α̌2,λ+ρ〉

2 , m2−n
2

)
. By collecting the results from (6.42) and

(6.55), it turns out that the S
′(j,n)
m3,m2(z) defined in (6.40) and (6.47) is exactly the same

as the S
(j,n)
m3,m2(z) in Proposition 6.1:

S(j,n)
m3,m2

(
〈α̌1, λ+ ρ〉

2

)
= S′(j,n)

m3,m2

(
〈α̌1, λ+ ρ〉

2

)
=
∑
m4

M (j,n)
m3,m4

N (j,n)
m4,m2

i−2m4Q

(
〈α̌1, λ+ ρ〉

2
,m4

)
.
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Therefore, by (6.37), the simple intertwining operator A(wα1 , λ) acts on Wigner D-

functions by

A(wα1 , λ)W (j,n)
m1,m2

=
∑

−j≤m3≤j
S(j,n)
m3,m2

(
〈α̌1, λ+ ρ〉

2

)
W (j,n)
m1,m3

From (6.35) and (6.56), we can see that the simple intertwining operator A(wα2 , λ) acts

by

A(wα2 , λ)W (j,n)
m1,m2

= Tnm2

(
〈α̌2, λ+ ρ〉

2

)
W (j,n)
m1,m2

.

By the Langlands’ lemma (4.4)

A(w0, λ) = A(wα2 , wα1wα2wα1λ)A(wα1 , wα2wα1λ)A(wα2 , wα1λ)A(wα1 , λ),

we can replace λ in the formula above by wα1λ, wα2wα1λ and wα1wα2wα1λ to calculate

the other stages in the composition of simple intertwining operators. Recall that if we

express λ by the pair (λ1, λ2) as in Section 6.1.1, where λi = λ(Hi), the composition of

actions by the Weyl group action will send the pair (λ1, λ2) to:

(λ1, λ2)
wα1−−→ (λ2, λ1)

wα2−−→ (λ2,−λ1)
wα1−−→ (−λ1, λ2)

wα2−−→ (−λ1,−λ2).

The pairing of λ+ ρ with the coroots α̌1 and α̌2 are given by

〈α̌1, λ+ ρ〉 = λ1 − λ2 + 1

〈α̌2, λ+ ρ〉 = λ2 + 1

Therefore, we can conclude that the matrix coefficients for the simple intertwining

operators are

A(wα1 , λ)W (j,n)
m1,m2

=
∑

m3∈M(j,n;δ2,δ1)

S(j,n)
m3,m2

(
〈α̌1, λ+ ρ〉

2

)
W (j,n)
m1,m3

A(wα2 , wα1λ)W (j,n)
m1,m2

= Tnm2

(
〈α̌2, wα1λ+ ρ〉

2

)
W (j,n)
m1,m2

A(wα1 , wα2wα1λ)W (j,n)
m1,m2

=
∑

m3∈M(j,n;δ2,δ1)

S(j,n)
m3,m2

(
〈α̌1, wα2wα1λ+ ρ〉

2

)
W (j,n)
m1,m3

A(wα2 , wα1wα2wα1λ)W (j,n)
m1,m2

= Tnm2

(
〈α̌2, wα1wα2wα1λ+ ρ〉

2

)
W (j,n)
m1,m2

Collecting the above result with the change-of-basis matrix defined in (6.42), we have

finished the proof of the Proposition 6.1.
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6.5.3 Expression of Sj,nm1,m4
(z) as Hypergeometric Functions

In this section, we assume

(δ1, δ2) = (0, 0) or (1, 1),

in which case j, n are integers. We also introduce the rising factorial or the Pochhammer

symbol

(a)(n) =
Γ(a+ n)

Γ(a)
(6.57)

Definition 6.1 Part I of [Obe12].

1. The Mellin transform of a function f(x) is formally defined as

M(f(x))(z) =

∫ ∞
0

f(x)xz−1dx. (6.58)

2. Consider a function F (z) of one complex variable z = σ + iτ , such that

(a) F (z) is holomorphic on the strip S = {z ∈ C|a < σ < b}, such that F (z)→ 0

uniformly in the strip Sε = {z ∈ C|a + ε < σ < b − ε} for arbitrarily small

ε > 0, and

(b)
∫∞
−∞ |F (σ + iτ)|dτ <∞ for all σ ∈ (a, b).

We define the inverse Mellin transform of the function F (z) as

M−1(F (z))(x) =
1

2πi

∫ γ+i∞

γ−i∞
F (z)x−zdz, (6.59)

for x > 0 and some fixed γ ∈ (a, b). It satisfies the property that

M(M−1(F ))(z) = F (z). (6.60)

The function F (z) to our interest is the ratio of Γ-functions Γ(z)

Γ( 1+z−ν
2 )Γ( 1+z+ν

2 )
. We

would like to calculate the integral

1

2πi

∫ γ+i∞

γ−i∞

Γ(z)

Γ
(

1+z−ν
2

)
Γ
(

1+z+ν
2

)x−zdz (6.61)

along some well chosen contour on which the integral converges. Though this integral

doesn’t satisfy the assumption on F (z) above, we still can take the inverse Mellin
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transform of this function, resulting in a M−1(F (z))(x) with discontinuities. We refer

to [Bat55, Page 49, Section 1.19] for a general Mellin-Barnes integral

1

2πi

∫ γ+i∞

γ−i∞

∏m
i=1 Γ(ai +Aiz)

∏n
j=1 Γ(bj −Bjz)∏p

s=1 Γ(cs + Csz)
∏q
t=1 Γ(dt −Dtz)

x−zdz, (6.62)

where γ ∈ R and Ai, Bj , Cs, Dt > 0. If x ∈ R, the integrand is asymptotically

e−
1
2
απ|y||y|βγ+λ|xρ |

−γ , where the numbers α, β, λ, ρ are defined by

α =

m∑
i=1

Ai +

n∑
j=1

Bj −
p∑
s=1

Cs −
q∑
t=1

Dt

β =
m∑
i=1

Ai −
n∑
j=1

Bj −
p∑
s=1

Cs +

q∑
t=1

Dt

λ = Re(
m∑
i=1

ai +
n∑
j=1

bj −
p∑
s=1

cs −
q∑
t=1

dj)−
m+ n− p− q

2

ρ =
m∏
i=1

AAii

n∏
j=1

Bj
−Bj

p∏
s=1

Cs
−Cs

q∏
t=1

DDt
t ,

and y = Im(z). Our integral (6.61) satisfies α = β = 0 and λ = −1
2 , ρ = 2, falling

into the fourth type in the description on the convergence of the Mellin-Barnes integral

in [Bat55], which states that the integral (6.61) conditionally converges to an analytic

function in x on the intervals |x| < 2 and |x| > 2, with points of discontinuity at

x = ±2. In [Obe12, Section II, (5.21)], for Re(z) > 0, we have an explicit formula for

(6.61):

M−1

(
Γ(z)

Γ
(

1+z−ν
2

)
Γ
(

1+z+ν
2

)) (x) =
{

2π−1(4−x2)−1/2 cos(ν arccos(x/2)) |x|<2
0 |x|>2

(6.63)

In the rest of this chapter, we will only interchange finite sums with this condition-

ally convergent integral, and thus there are no analytic issues justifying the calcu-

lation in the remaining portion of this thesis. In (6.27) we have defined the func-

tion Q(z, n) = π22−2zΓ(2z−1)
Γ(z+n)Γ(z−n) . We would like to compute the inverse Mellin transform
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M−1(Q(z,m3))(x) of Q(z,m3):

M−1

(
π22−2zΓ(2z − 1)

Γ(z +m3)Γ(z −m3)

)
(x) =

4π

2πi

∫ γ+i∞

γ−i∞

Γ(2z − 1)

Γ(z +m3)Γ(z −m3)
(4x)−zdz

=
2π

2πi

∫ 2γ−1+i∞

2γ−1−i∞

Γ(z)

Γ( z+1+2m3
2 )Γ( z+1−2m3

2 )
(4x)−

z+1
2 dz

=
π

2πi
√
x

∫ 2γ−1+i∞

2γ−1−i∞

Γ(z)

Γ( z+1+2m3
2 )Γ( z+1−2m3

2 )
(2
√
x)−zdz

=
π√
x
M−1

(
Γ(z)

Γ
(

1+z−2m3
2

)
Γ
(

1+z+2m3
2

)) (2
√
x)

=
π√
x

{
π−1(1−x)−1/2 cos(2m3 arccos(

√
x)) 0<x<1

0 x>1

=
1√

x(1− x)

{
cos(2m3 arcsin(

√
1−x)) |x|<1

0 |x|>1
. (6.64)

If we define the Heaviside step function θ(x) =
{

0 x<0
1 x>0 , the result above can be written

as

M−1(Q(z,m3))(x) =
1− θ(|x| − 1)√

(1− x)x
cos
(
2m3 arcsin

(√
1− x

))
=

1− θ(|x| − 1)√
(1− x)x

(
1

2

(√
x+ i

√
1− x

)−2m3
+

1

2

(√
x+ i

√
1− x

)2m3

)
(6.65)

Therefore, the inverse Mellin transform M−1(Sj,nm1,m4(z))(x) of the matrix entries of

intertwining operators Sj,nm3,m2(z) is

M−1(Sj,nm1,m4
(z))(x) =

1− θ(|x| − 1)

2
√

(1− x)x

j∑
m3=−j

M j
m1,m3

N j
m3,m4

i−2m3

((√
x+ i

√
1− x

)−2m3
+
(√
x+ i

√
1− x

)2m3
)
. (6.66)

By (6.49) and (6.50), the change-of-basis matrixM j
m1,m3 andN j

m1,m3 are the zeroth Lau-

rent coefficient of some analytic functions. By substituting the matrix entries M j
m1,m3

and N j
m1,m3 in (6.66) with the corresponding Laurent series (6.49) and (6.50), the sum

over m3 from −j to j as in (6.66) actually gives rise to a geometric series. Recalling

formulas (6.49) and (6.50) and defining

M j
m1,m3

(t) = (−1)2j c
j
m3

cjm1

i−m1+m32−m3tm3−j
(

1 +
t

2

)j−m1
(

1− t

2

)j+m1

N j
m3,m4

(s) = (−1)2j c
j
m4

cjm3

im3−m42−m4sm4−j
(

1 +
s

2

)j−m3
(

1− s

2

)j+m3

,
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where s, t are formal variables, we define

σ1(s, t) =

j∑
m3=−j

M j
m1,m3

(t)N j
m3,m4

(s)i−2m3
(√
x+ i

√
1− x

)−2m3

=
cjm4

cjm1

i−m1−m42−m4

(
1− t

2

)j+m1
(

1 +
t

2

)j−m1

sm4−jt−j
(

1 +
s

2

)j (
1− s

2

)j
×

j∑
m3=−j

(
t
(
1− s

2

)
2
(
1 + s

2

))m3 (√
x+ i

√
1− x

)−2m3

=
cjm4

cjm1

i−m1−m42−m4

(
1− t

2

)j+m1
(

1 +
t

2

)j−m1

sm4−jt−j
(

1 +
s

2

)j (
1− s

2

)j
×(

(1−s/2)t

2(1+s/2)(i
√

1−x+
√
x)2

)−j
−
(

(1−s/2)t

2(1+s/2)(i
√

1−x+
√
x)2

)j+1

1− (1−s/2)t

2(1+s/2)(i
√

1−x+
√
x)2

(6.67)

and

σ2(s, t) =

j∑
m3=−j

M j
m1,m3

(t)N j
m3,m4

(s)i−2m3
(√
x+ i

√
1− x

)2m3

=
cjm4

cjm1

i−m1−m42−m4

(
1− t

2

)j+m1
(

1 +
t

2

)j−m1

sm4−jt−j
(

1 +
s

2

)j (
1− s

2

)j
×

j∑
m3=−j

(
t
(
1− s

2

)
2
(
1 + s

2

))m3 (√
x+ i

√
1− x

)2m3

=
cjm4

cjm1

i−m1−m42−m4

(
1− t

2

)j+m1
(

1 +
t

2

)j−m1

sm4−jt−j
(

1 +
s

2

)j (
1− s

2

)j
×(

(1−s/2)t(i
√

1−x+
√
x)2

2(1+s/2)

)−j
−
(

(1−s/2)t(i
√

1−x+
√
x)2

2(1+s/2)

)j+1

1− (1−s/2)t(i
√

1−x+
√
x)2

2(1+s/2)

. (6.68)

If we denote by [σi(s, t)]0,0 for the constant term in the Laurent series expansion of

σi(s, t), then (6.66) can be expressed as

M−1(Sj,nm1,m4
(z))(x) =

1− θ(|x| − 1)

2
√

(1− x)x
([σ1(s, t) + σ2(s, t)]0,0). (6.69)

To make the calculation simpler, and since we only care about the constant term of the

Laurent series σi(s, t), we can feel free to make change of variables so that σ1(s, t) and
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σ2(s, t) have the same denominators. Two such choices are

σ1(−s, 2/t)

=
cjm4

cjm1

i−m1−m42−j−m4(−1)m4−j
(

1− 1

t

)j+m1
(

1 +
1

t

)j−m1

sm4−jtj
(

1 +
s

2

)j (
1− s

2

)j
×(

(1+s/2)

t(1−s/2)(i
√

1−x+
√
x)2

)−j
−
(

(1+s/2)

t(1−s/2)(i
√

1−x+
√
x)2

)j+1

1− (1+s/2)

t(1−s/2)(i
√

1−x+
√
x)2

=
cjm4

cjm1

i−m1−m42−j−m4(−1)m4−j (t− 1)j+m1 (t+ 1)j−m1 sm4−jt−j
(

1 +
s

2

)j (
1− s

2

)j
×(

(1−s/2)t(i
√

1−x+
√
x)2

(1+s/2)

)−j
−
(

(1−s/2)t(i
√

1−x+
√
x)2

(1+s/2)

)j+1

1− (1−s/2)t(i
√

1−x+
√
x)2

(1+s/2)

(6.70)

and

σ2(s, 2t)

=
cjm4

cjm1

i−m1−m42−j−m4(−1)j+m1 (t− 1)j+m1 (1 + t)j−m1 sm4−jt−j
(

1 +
s

2

)j (
1− s

2

)j
×(

(1−s/2)t(i
√

1−x+
√
x)2

(1+s/2)

)−j
−
(

(1−s/2)t(i
√

1−x+
√
x)2

(1+s/2)

)j+1

1− (1−s/2)t(i
√

1−x+
√
x)2

(1+s/2)

(6.71)

After taking the constant Laurent series coefficient of the function σ1(−s, 2/t)+σ2(s, 2t),

we will get the following expression for M−1(Sj,nm1,m4(z)):

M−1(Sj,nm1,m4
(z))(x) =

cjm4

cjm1

i−m1−m42−j−m4
(−1)j+m1 + (−1)m4−j

2

1− θ(|x| − 1)√
(1− x)x

 1

1− (i
√

1− x+
√
x)2 (1− s

2
)t

1+ s
2((

1 +
s

2

)2j
(1− t)j+m1 (1 + t)j−m1 sm4−jt−2j

(
i
√

1− x+
√
x
)−2j

−
(

1− s

2

)2j+1
(1− t)j+m1 (1 + t)j−m1

(
1 +

s

2

)−1
sm4−jt(

i
√

1− x+
√
x
)2j+2

)]
0,0

(6.72)

Notice that in the Laurent series expansion of the function in s, t in (6.72), the exponent

of t in the Laurent expansion of the second term(
1− s

2

)2j+1
(

1− t

2

)j+m1
(

1 +
t

2

)j−m1 (
1 +

s

2

)−1
sm4−jt



99

in the parentheses is always strictly greater than 0. Therefore it does not contribute to

the zeroth Laurent series coefficient in the expansion of (6.72):

M−1(Sj,nm1,m4
(z))(x) =

cjm4

cjm1

i−m1−m42−j−m4
(−1)j+m1 + (−1)m4−j

2

1− θ(|x| − 1)√
(1− x)x

 1

1− (i
√

1− x+
√
x)2 (1− s

2
)t

1+ s
2((

1 +
s

2

)2j
(1− t)j+m1 (1 + t)j−m1 sm4−jt−2j

(
i
√

1− x+
√
x
)−2j

]
0,0

=
cjm4

cjm1

i−m1−m42−j−m4
(−1)j+m1 + (−1)m4−j

2

1− θ(|x| − 1)√
(1− x)x ∑

q≥0,q∈Z

((
1 +

s

2

)2j−q (
1− s

2

)q
(1− t)j+m1 (1 + t)j−m1 ×

sm4−jtq−2j
(
i
√

1− x+
√
x
)2(q−j))]

0,0
, (6.73)

which expands to

M−1(Sj,nm1,m4
(z))(x) =

cjm4

cjm1

i−m1−m4
(−1)2j+m1−m4 + 1

2

1− θ(|x| − 1)√
(1− x)x

×

∑
q,κ1,κ2∈Z

(
2j−q

j−m4−κ1

)
( q
κ1 )
(
j+m1
κ2

) ( j−m1
2j−q−κ2

)
(−1)κ1+κ2

(
i
√

1− x+
√
x
)2(q−j)

. (6.74)

The summations over κ1 and κ2 can be expressed as hypergeometric values∑
κ1∈Z

(
2j−q
κ1

) ( q
j+m4−κ1

)
(−1)κ1 =

(
2j−q
j−m4

)
2F1( −q,−j+m4

1+j−q+m4
;−1) (6.75)

∑
κ2∈Z

(
j+m1
κ2

) ( j−m1
2j−q−κ2

)
(−1)κ2 =

(
j−m1
2j−q

)
2F1(−2j+q,−j−m1

1−j+q−m1
;−1). (6.76)

The sum in (6.74) becomes∑
0≤q≤2j,q∈Z

(
2j−q
j−m4

)(
j−m1
2j−q

)
2F1( −q,−j+m4

1+j−q+m4
;−1)2F1(−2j+q,−j−m1

1−j+q−m1
;−1)

(
i
√

1− x+
√
x
)2(q−j)

.

(6.77)

Again, by writing the values of hypergeometric function 2F1 at -1 in terms of Jacobi

polynomials, we have

2F1( −q,−j+m4
1+j−q+m4

;−1) = 2j−m4
(j −m4)!(j +m4 − q)!

(2j − q)!
P j+m4−q,−j+m4+q
j−m4

(0) (6.78)

2F1(−2j+q,−j−m1
1−j+q−m1

;−1) = 2j+m1
(j +m1)!(−j −m1 + q)!

q!
P j−m1−q,−j−m1+q
j+m1

(0), (6.79)
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the sum (6.74) is equal to∑
0≤q≤2j,q∈Z

22j+m1−m4
(j −m1)!(j +m1)!

q!(2j − q)!
P j+m4−q,−j+m4+q
j−m4

(0)P j−m1−q,−j−m1+q
j+m1

(0)×

(
i
√

1− x+
√
x
)2(q−j)

. (6.80)

Again by (6.48), (6.74) is the constant term of the Laurent seris expansion of the

following function in s and t

sm4−jt−j−m1
∑

0≤q≤2j,q∈Z

(j −m1)!(j +m1)!

q!(2j − q)!
(1 + s)2j−q(1− s)q(1− t)2j−q×

(1 + t)q
(
i
√

1− x+
√
x
)2(q−j)

=sm4−jt−j−m1
(j −m1)!(j +m1)!

(2j)!
×((

i
√

1− x+
√
x
)−1

(1 + s)(1− t) +
(
i
√

1− x+
√
x
)

(1− s)(1 + t)
)2j

. (6.81)

For simplicity of notations, we set ξ = i
√

1− x+
√
x. The parenthesis of (6.81) can be

reorganized as(
ξ−1(1 + s)(1− t) + ξ(1− s)(1 + t)

)2j
=
(
ξ + ξ−1) + (ξ−1 − ξ)s− (ξ−1 − ξ)t− st(ξ + ξ−1

)2j
=

∑
ν1,ν2,ν3,ν4∑

νi=2j

(2j)!

ν1!ν3!ν2!ν4!
(ξ + ξ−1)ν1+ν4(ξ−1 − ξ)ν3+ν2(−1)ν2+ν4sν3+ν4tν2+ν4 . (6.82)

Therefore, the constant term of (6.81) can be rewritten into a sum involving multinomial

coefficients, noting that 2j +m1 −m4 + ν1 − ν4 = 2j:

(−1)j+m1
∑
ν1,ν4

(j −m1)!(j +m1)!

ν1!(j −m4 − ν4)!ν4!(j +m1 − ν4)!
(ξ + ξ−1)ν1+ν4(ξ−1 − ξ)2j+m1−m4−2ν4

=(−1)j+m1
∑
ν1,ν4

(j −m1)!(j +m1)!

ν1!(j −m4 − ν4)!ν4!(j +m1 − ν4)!
(ξ + ξ−1)ν1+ν4(ξ−1 − ξ)2j−ν1−ν4 .

(6.83)

Reorganizing,(
cjm1

cjm4

)2

(−1)j+m1
∑
ν1,ν4

(j −m4)!(j +m4)!

ν1!(j −m4 − ν4)!ν4!(j +m4 − ν1)!
(ξ + ξ−1)ν1+ν4(ξ−1 − ξ)2j−ν1−ν4

=

(
cjm1

cjm4

)2

(−1)j+m1
∑
ν1,ν4

(j −m4)!(j +m4)!

ν1!(j −m4 − ν4)!ν4!(j +m4 − ν1)!
(
√
x)ν1+ν4(−i

√
1− x)2j−ν1−ν4

(6.84)
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We can observe that the function in the summation above can be simplified to the

zeroth Laurent coefficient of a function in one variable u:

∑
ν1,ν4

(j −m4)!(j +m4)!

ν1!(j −m4 − ν4)!ν4!(j +m4 − ν1)!
(
√
x)ν1+ν4(−i

√
1− x)2j−ν1−ν4

=

[
u−j−m1

∑
ν1,ν4

(
j+m4
ν1

) (
j−m4
ν4

)
(−i
√

1− xu)j+m4−ν1(−i
√

1− x)j−m4−ν2uν4(
√
x)ν1+ν4

]
0

=
[
u−j−m1(

√
x− iu

√
1− x)j+m4(u

√
x− i

√
1− x)j−m4

]
0

(6.85)

Plugging the formula above back into (6.74),

M−1(Sj,nm1,m4
(z))(x) =

cjm1

cjm4

i−m1−m4
(−1)2j+m1−m4 + 1

2

1− θ(|x| − 1)√
(1− x)x

×

(−i)2j(−1)j+m1
[
u−j−m1(

√
x+ u

√
1− x)j+m4(iu

√
x+
√

1− x)j−m4
]
0
, (6.86)

and recall that j,m1,m4 ∈ Z and m1 −m4 is even, we finally have

M−1(Sj,nm1,m4
(z))(x) =

cjm1

cjm4

((−1)2j+m1−m4 + 1)(−1)
m1−m4

2 (1− θ(|x| − 1))

2
√

(1− x)x[
(u
√

1− x+ i
√
x)j+m4(

√
1− x+ iu

√
x)j−m4

uj+m1

]
0

. (6.87)

From the generating function of Jacobi polynomials which we introduced in (6.48), this

inverse Mellin transform is in fact

M−1(Sj,nm1,m4
(z))(x)

=
cjm1

cjm4

((−1)2j+m1 i2j + (−1)j+m4)(1− θ(|x| − 1))

2(1− x)
m1+m4+1

2 x−
2j+m1+m4−1

2

P
(−m1−m4,−2j−1)
j+m1

(
2

x
− 1

)
. (6.88)

We refer to formulas 05.06.26.0002.01 and 07.23.17.0055.01 of [Res08],

P (a,b)
n (z) =

Γ(a+ n+ 1)

Γ(a+ 1)Γ(n+ 1)
2F1

(
−n,a+b+n+1

a+1 ;
1− z

2

)
(6.89)

2F1(a, b; c; z) = (1− z)−a 2F1

(
a,c−b
c ;

z

z − 1

)
. (6.90)

Applying these two formulas to (6.88), we get

M−1(Sj,nm1,m4
(z))(x)

=
cjm1

cjm4

((−1)2j + (−1)m4−m1)(1− θ(|x| − 1))

2(1− x)
m1+m4+1

2 x
m1−m4+1

2

P
(m4−m1,−m1−m4)
j+m1

(1− 2x) (6.91)
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According to formula 9.43 in [Obe12], we can apply the Mellin transform M on the

Jacobi polynomials,

M
({

(b−x)µ−1P
(α,β)
n (1−γx) x<b
0 x>b

)
(z)

=
Γ(α+ n+ 1)Γ(µ)Γ(z)bz+µ−1

n!Γ(1 + α)Γ(µ+ z)
3F2(−n,1+n+α+β,z

1+α,µ+z ;
1

2
γb) (6.92)

After applying the Mellin transform, the matrix entries Sj,nm1,m4(z) can be transformed

to

Sj,nm1,m4
(z) =

(−1)2j + (−1)m4−m1

2

cjm1

cjm4

Γ
(−m1−m4+1

2

)
Γ
(
z + −m1+m4−1

2

)
Γ (−m1 +m4 + 1) Γ (z −m1)

3F2

(
−j−m1,j−m1+1,z−m1

2
+
m4
2
− 1

2
z−m1,−m1+m4+1

; 1
)
. (6.93)

According to 07.27.17.0042.01 of [Res08], we have the following transformation property

of 3F2 value at 1:

3F2(−n, b, c; d, e; 1) =
(b)(n)(−b− c+ d+ e)(n)

(d)(n)(e)(n) 3F2( d−b,e−b,−n
−b−c+d+e,−b−n+1 ; 1). (6.94)

Apply this transform to the formula for Sj,nm1,m4(z),

Sj,nm1,m4
(z)

=
((−1)2j + (−1)m4−m1)π(2j)!

2cjm1c
j
m4

sec
(
m1+m4

2 π
)

Γ
(

2z−m1+m4−1
2

)
Γ
(
−2j−m1+m4+1

2

)
Γ(j + z)

3F2

(−j+z−1,−j−m1,m4−j
−2j,−j−m1

2
+
m4
2

+ 1
2

; 1
)
.

We also need to consider that m1 and m4 satisfy the same parity condition, that

m1,m4 ∈ M(j, n; δ2, δ1), and therefore m1+m4
2 is an integer. Hence Sj,nm1,m4 can be ex-

pressed in a simpler form in terms of hypergeometric function 3F2:

Sj,nm1,m4
(z) =

(−1)
m1+m4

2 (2j)!π

cjm1c
j
m4

Γ
(

2z−m1+m4−1
2

)
Γ
(
−2j−m1+m4+1

2

)
Γ(j + z)

3F2

(−j+z−1,−j−m1,m4−j
−2j,−j−m1

2
+
m4
2

+ 1
2

; 1
)

(6.95)
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6.5.4 Normalizations

According to (4.5) and (4.6), there is a normalization factor γ(wα1 , λ) of the inter-

twining operator entries Sj,nm1,m4(z), such that the operator A(wα1 , λ) has the property

A(wα1 , wα1λ)A(wα1 , λ) = γ(wα1 , λ)γ(wα1 , wα1λ)I.

We define the normalized intertwining operator as A′(wα1 , λ) = 1
γ(wα1 ,λ)A(wα1 , λ).

Since we have assumed that (δ1, δ2) ∈ {(0, 0), (1, 1)}, the j and n are integers. We

can check that for m1,m3 ∈ M(j, n; δ2, δ1),

∑
m2∈M(j,n;δ2,δ1)

Sj,nm1,m2
(z)Sj,nm2,m3

(1− z)

=
∑

m2∈M(j,n;δ2,δ1)
−j≤m4,m5≤j

(−1)m4+m5M j,n
m1,m4

N j,n
m4,m2

M j,n
m2,m5

N j,n
m5,m3

Q(z,m4)Q(1− z,m5). (6.96)

Since 1+(−1)k

2 is 0 for k ≡ 1 mod 2, and is 1 for k ≡ 0 mod 2, the sum on m2 can be

reduced to

∑
m2∈M(j,n;δ2,δ1)

N j,n
m4,m2

M j,n
m2,m5

=
∑

−j≤m2≤j
N j,n
m4,m2

M j,n
m2,m5

1 + (−1)n−m2−δ1

2

1 + (−1)n+m2−δ2

2

(6.97)

Taking into account the condition δ1 = δ2 ∈ {0, 1} and and its consequence that

m3, n ∈ Z, we can expand the terms

1 + (−1)n−m2−δ1

2

1 + (−1)n+m2−δ2

2
=

1

2
+

(−1)n−δ1

2

(−1)m2 + (−1)−m2

2

=
1

2
+

(−1)n−δ1

2
(−1)m2

=
1

2
+

(−1)n−δ1

2
eim2π.

Since W
(j,n)
m2,m2(0,−π, 0, 0) = eim2π, by (6.38) and the definition (6.43) and (6.44) of

M j,n
m2,m5 and N j,n

m4,m2 , we have

∑
m2∈M(j,n;δ2,δ1)

N j,n
m4,m2

M j,n
m2,m5

W (j,n)
m2,m2

(0,−π, 0, 0) = W (j,n)
m4,m5

(0, 0,−π, 0).
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The sum (6.97) can thus be written as∑
m2∈M(j,n;δ2,δ1)

N j,n
m4,m2

M j,n
m2,m5

=
1

2
δm4,m5 +

(−1)n−δ1

2
W (j,n)
m4,m5

(eπU2)

=
1

2
δm4,m5 +

(−1)j−m4−δ1+n

2
δ−m4,m5 ,

and the sum (6.96) becomes∑
m2∈M(j,n;δ2,δ1)

Sj,nm1,m2
(z)Sj,nm2,m3

(1− z)

=
∑

−j≤m4,m5≤j
(−1)m4+m5M j,n

m1,m4
N j,n
m5,m3

Q(z,m4)Q(1− z,m5)
δm4,m5

2
+

∑
−j≤m4,m5≤j

(−1)m4+m5M j,n
m1,m4

N j,n
m5,m3

Q(z,m4)Q(1− z,m5)
(−1)j−m4−δ1+n

2
δ−m4,m5

=
1

2

∑
−j≤m4≤j

M j,n
m1,m4

N j,n
m4,m3

Q(z,m4)Q(1− z,m4) +
1

2

∑
−j≤m4≤j

M j,n
m1,m4

N j,n
−m4,m3

(−1)j−m4−δ1+nQ(z,m4)Q(1− z,−m4). (6.98)

We observe that the product of the Q-functions are simply products of Γ-functions:

Q(z, n)Q(1− z, n) = Q(z, n)Q(1− z,−n) = π
Γ(z − 1/2)

Γ(z)

Γ(−z + 1/2)

Γ(1− z)
, (6.99)

hence the formula (6.98) is in fact∑
m2∈M(j,n;δ2,δ1)

Sj,nm1,m2
(z)Sj,nm2,m3

(1− z)

=
π

2

Γ(z − 1/2)

Γ(z)

Γ(−z + 1/2)

Γ(1− z)
∑

−j≤m4≤j

(
M j,n
m1,m4

N j,n
m4,m3

+ (−1)j−m4−δ1+nM j,n
m1,m4

N j,n
−m4,m3

)
=
π

2

Γ(z − 1/2)

Γ(z)

Γ(−z + 1/2)

Γ(1− z)
(δm1,m3 + (−1)−m1−δ1+nδm1,m3)

=π
Γ(z − 1/2)

Γ(z)

Γ(−z + 1/2)

Γ(1− z)
1 + (−1)−m1−δ1+n

2
δm1,m3 . (6.100)

Therefore, it is natural to consider be the action of the intertwining operators on the

K-types with j = 0:

S
(0,n)
0,0 (z) =

√
πΓ (z − 1/2)

Γ(z)
(6.101)

and set the normalization factor γ(wα, λ) to be

γ(wα, λ) = S
(0,n)
0,0 (

〈α̌, λ+ ρ〉
2

).
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The matrix entries of the normalized intertwining operator A′(wα1 , λ) are given by the

function

Sj,nm1,m2
(z) :=

Sj,nm1,m2(z)

S
(0,n)
0,0 (z)

=

(√
πΓ (z − 1/2)

Γ(z)

)−1

Sj,nm1,m2
(z), (6.102)

and by (6.95) we can further simplify the expression of the matrix entries in terms of

Pochhammer symbols:

Sj,nm1,m2
(z) =

(−1)
m1+m2

2 (2j)!
√
π

cjm1c
j
m2Γ

(
1−2j−m1+m2

2

) (z − 1/2)(−m1−m2
2

)

(z)(j) 3F2

(−j+z−1,−j−m1,−j+m2

−2j,−j−m1−m2
2

+ 1
2

; 1
)
.

(6.103)

According to (6.100), if m1,m3 ∈ M(j, n; δ1, δ2), the normalized intertwining operator

entries Sj,nm1,m2(z) satisfy the property

∑
m2∈M(j,n;δ2,δ1)

Sj,nm1,m2
(z)Sj,nm2,m3

(1− z) = δm1,m3 . (6.104)

If n ≥ 0, the n-th Laurent series coefficient of the function in terms of t is the 3F2

hypergeometric function (see [SM84, Page 94]):[
(1− t)−λ2F1 ( a,bc ; zt)

]
n

=
Γ(λ+ n)

Γ(n+ 1)Γ(λ)
3F2

(
−n,a,b
c,1−n−λ ; z

)
. (6.105)

Therefore, Sj,nm1,m2(z) is the constant Laurent series coefficient of either of the following

two functions:

Hj
m1,m2

(z; t) =
(2j)!(j +m1)!

cjm1c
j
m2

√
π

Γ

(
1−m1 −m2

2

)
(z − 1/2)(−m1−m2

2
)

(z)(j)
×

(1− t)
−1+m1+m2

2

(−t)j+m1
2F1

(
−j+m2,−1−j+z

−2j ; t
)

(6.106)

Gjm1,m2
(z; t) =

(2j)!(j −m2)!

cjm1c
j
m2

√
π

Γ

(
1 +m1 +m2

2

)
(z − 1/2)(−m1−m2

2
)

(z)(j)
×

(1− t)
−1−m1−m2

2

(−t)j−m2
2F1

(
−j−m1,−1−j+z

−2j ; t
)
. (6.107)

6.5.5 Computing the Product Matrix

In this section we compute the product of the four matrices:

A′(w0, χδ,λ) = A4(λ) ·A3(λ) ·A2(λ) ·A1(λ)
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when δ = (0, 0) or (1, 1). We would also like to normalize each individual matrices

Ai(λ) such that they satisfy the condition:

Ai(−λ)Ai(λ) = I.

Recalling the parity conditions (6.8) and (6.9) satisfied by j, n,m1,m2, since (δ1, δ2) ∈

{(0, 0), (1, 1)}, the pair (j, n) are integers, and m1,m2 satisfy

n−mi+δ1≡0
n+mi+δ2≡0 mod 2.

Despite the difficulty of calculating the product of the 4 matrices, a lot of terms in the

sum can be reduced using the parity condition. We replace the function Tnm1
(z) by the

normalized function defined by

T nm1
(z) =

i−n+m1

(z)(
m1−n

2
)(z)(

−m1+n
2

)
.

The matrix entry [A′(λ)]j,nm1,m2 of the normalized intertwining operator can be expressed

as the constant term of the Laurent series in t1, t2 of the sum:

[A(λ)]j,nm1,m2
(t1, t2) = T nm2

(
λ2 + 1

2
)×∑

m3∈M(j,n;δ1,δ2)

Gjm2,m3
(
λ1 + λ2 + 1

2
, t2)T nm3

(
λ1 + 1

2
)Hj

m3,m1
(
λ1 − λ2 + 1

2
; t1).

(6.108)

Plugging (6.106) and (6.107) into (6.108), we have

[A(λ)]j,nm1,m2
(t1, t2)

=
((2j)!)2

cjm1c
j
m2π

i−n+m2(
λ2+1

2

)(
m2−n

2
) (

λ2+1
2

)(
−m2+n

2
)

1

(λ1−λ2+1
2 )(j)(λ1+λ2+1

2 )(j)
×

2F1

(
−j+m1,−1−j+λ1−λ2+1

2
−2j

; t1

)
2F1

(
−j−m2,−1−j+λ1+λ2+1

2
−2j

; t2

)
×∑

m3∈M(j,n;δ1,δ2)

i−n+m3(
λ1+1

2

)(
m3−n

2
) (

λ1+1
2

)(
−m3+n

2
)
Γ

(
1 +m3 +m2

2

)
Γ

(
1−m1 −m3

2

)
×

(
λ1 − λ2

2

)(
m1−m3

2
)(λ1 + λ2

2

)(
m3−m2

2
) (1− t2)

−1−m3−m2
2

(−t2)j−m3

(1− t1)
−1+m1+m3

2

(−t1)j+m3
.

Based on the parity of j −m3, we can separate the calculation into two cases:



107

Summation when j − n ≡ δi mod 2

In the situation that j − n ≡ δi mod 2, the set of m3 ∈ M(j, n; δ2, δ1)’s are:

m3 = j − 2p where p ∈ {0, 1, 2, . . . , j}.

Thus we can replace m3 by j − 2p, and the sum reduces to a sum of finitely many

Pochhammer symbols:

[A(λ)]j,nm1,m2
(t1, t2) =

((2j)!)2

cjm1c
j
m2π

i−n+m2(
λ2+1

2

)(
m2−n

2
) (

λ2+1
2

)(−m2−n
2

)
×

2F1

(
−j+m1,−j+λ1−λ−1

2
−2j

; t1

)
2F1

(
−j−m2,−j+λ1+λ−1

2
−2j

; t2

)
×

j∑
p=0

i−n+j−2p(
λ1+1

2

)( j−n−2p
2

) (
λ1+1

2

)(− j−n−2p
2

)
Γ

(
1 + j +m2

2
− p
)

Γ

(
1− j −m1

2
+ p

)
×

(
λ1 − λ2

2

)(
−j+m1

2
+p)(λ1 + λ2

2

)(
j−m2

2
−p)

(1− t1)
−1+j+m1

2
−p(1− t2)

−1−j−m2
2

+pt−2j+2p
1 t−2p

2 .

(6.109)

By definition of Pochhammer symbols, we have the formula

(x)(l±p) = (x)(l)(x+ l)(±p) (6.110)

which we can apply to the Pochhammer symbols in the summation (6.109) to single

out the ±p’s in the Pochhammer exponents. Also, by applying the formula

(x)(−p)(1− x)(p) = (−1)p for p ∈ Z (6.111)

to the Pochhammer symbols with −p as exponent, we can manage to change all the

exponents of the Pochhammer symbols in (6.109) to (p). The explicit set of rules is the

following(
λ1 + 1

2

)( j−n−2p
2

)

→
(
λ1 + 1

2

)( j−n
2

)(λ1 + 1 + j − n
2

)(−p)

→ (−1)p
(
λ1 + 1

2

)( j−n
2

)(
1− λ1 + 1 + j − n

2

)(p)

(6.112)(
λ1 + 1

2

)(− j−n−2p
2

)

→
(
λ1 + 1

2

)(− j−n
2

)(λ1 + 1− j + n

2

)(p)

(6.113)
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Γ

(
1 + j +m2

2
− p
)
→ Γ

(
1 + j +m2

2

)(
1 + j +m2

2

)(−p)

→ (−1)pΓ

(
1 + j +m2

2

)(
1− 1 + j +m2

2

)(p)

(6.114)

Γ

(
1− j −m1

2
+ p

)
→ Γ

(
1− j −m1

2

)(
1− j −m1

2

)(p)

(6.115)

(
λ1 − λ2

2

)(− j−m1−2p
2

)

→
(
λ1 − λ2

2

)(− j−m1
2

)(λ1 − λ2

2
− j −m1

2

)(p)

(6.116)(
λ1 + λ2

2

)(
j−m2−2p

2
)

→
(
λ1 + λ2

2

)(
j−m2

2
)(λ1 + λ2

2
+
j −m2

2

)(−p)

→ (−1)p
(
λ1 + λ2

2

)(
j−m2

2
)(

1− λ1 + λ2

2
+
j −m2

2

)(p)

.

(6.117)

After applying (6.112)-(6.117) and bringing out the factors not involved in the summa-

tion, we have

[A(λ)]j,nm1,m2
(t1, t2) =

ij+m2−2n((2j)!)2

πcjm1c
j
m2

(
λ1−λ2

2

)(
−j+m1

2
) (

λ1+λ2
2

)(
j−m2

2
)

(
λ1+1

2

)(−j+n
2

) (
λ1+1

2

)( j−n
2

)
×

Γ
(

1+j+m2

2

)
Γ
(

1−j−m1

2

)
(
λ1+λ2+1

2

)(j) (
λ1−λ2+1

2

)(j) (
λ2+1

2

)(
n−m2

2
) (

λ2+1
2

)(
−n+m2

2
)
×

2F1

(
−j+m1,

λ1−λ2−2j−1
2

−2j
; t1

)
2F1

(
−j−m2,

λ1+λ2−2j−1
2

−2j
; t2

)
×

γ′j,nm1,m2
(λ; t1, t2), (6.118)

where the function γ′j,nm1,m2(λ; t1, t2) in two variables t1, t2 is defined as the hypergeo-

metric sum

γ′j,nm1,m2
(λ; t1, t2) = (1− t1)

−1+j+m1
2 (−t1)−2j(1− t2)

−1−j−m2
2 ×

j∑
p=0

(
1−j−m1

2

)(p) (−j+m1+λ1−λ2

2

)(p) (
1−j+n−λ1

2

)(p)
(1)(p)(

1−j−m2

2

)(p) (
1− j−m2+λ1+λ2

2

)(p) (
1−j+n+λ1

2

)(p)

1

p!

(
t21(1− t2)

t22(1− t1)

)p
.

(6.119)
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We can use a partial sum formula for hypergeometric series from 16.2.4 of [OLBC10]:

m∑
k=0

(a)(k)

(b)(k)

zk

k!
=

(a)(m)zm

(b)(m)m!
q+2Fp

(
−m,1,1−m−b

1−m−a ;
(−1)p+q+1

z

)
, (6.120)

where a = (a1, . . . , ap) and b = (b1, . . . , bq) are p and q dimensional vectors of com-

plex numbers, and the Pochhammer symbol (a)(k) and (b)(k) for these two vectors are

defined as the product (a)(k) = (a1)(k) . . . (ap)
(k) and (b)(k) = (b1)(k) . . . (bq)

(k). Then

the summation term in γ′j,nm1,m2(λ; t1, t2) can be simplified into a single compact form

hypergeometric function 5F4:

j∑
p=0

(
1−j−m1

2

)(p) (−j+m1+λ1−λ2

2

)(p) (
1−j+n−λ1

2

)(p)
(1)(p)(

1−j−m2

2

)(p) (
1− j−m2+λ1+λ2

2

)(p) (
1−j+n+λ1

2

)(p)

1

p!

(
t21(1− t2)

t22(1− t1)

)p

=

(
1−j−m1

2

)(j) (−j+m1+λ1−λ2

2

)(j) (−j+n−λ1+1
2

)(j)

(
1−j−m2

2

)(j) (−j+m2−λ1−λ2

2 + 1
)(j) (−j+n+λ1+1

2

)(j)

(
t21 (1− t2)

t22 (1− t1)

)j
×

5F4

−j, 1, 1−j+m2

2 , −j−n−λ1+1
2 , −j−m2+λ1+λ2

2

1−j+m1

2 , 1−j−n+λ1

2 , −j−m1−λ1+λ2

2 + 1,−j
;
t22 (1− t1)

t21 (1− t2)


and if we replace the sum in (6.124) by the expression above involving 5F4, also we

recover the Pochhammer symbols from the transforms (6.112)-(6.117) based on (6.110)

and (6.111), the original function (6.109) can be expressed as

[A(λ)]j,nm1,m2
(t1, t2) =

(−1)n((2j)!)2(
λ1+1

2

)( j+n
2

) (
λ1+1

2

)(− j+n
2

) (
λ1−λ2+1

2

)(j) (
λ1+λ2+1

2

)(j)
×

1

cjm1c
j
m2

(
λ1−λ2

2

)(
j+m1

2
) (

λ1+λ2
2

)(
−j−m2

2
)

(
λ2+1

2

)(
m2−n

2
) (

λ2+1
2

)(−m2−n
2

)

Γ
(

1+j−m1

2

)
Γ
(

1+j−m2

2

)×
(1− t1)

−1−j+m1
2 (1− t2)

−1+j−m2
2 t−2j

2 ×

2F1

(
−j+m1,

λ1−λ2−2j−1
2

−2j
; t1

)
2F1

(
−j−m2,

λ1+λ2−2j−1
2

−2j
; t2

)
×

5F4

(
−j,1,−j+m2+1

2
,
−j−n−λ1+1

2
,
−j−m2+λ1+λ2

2

−j,−j+m1+1
2

,
−j−n+λ1+1

2
,
−j−m1−λ1+λ2

2
+1

;
t22 (1− t1)

t21 (1− t2)

)
. (6.121)

The −j’s as parameters to the function 5F4 don’t necessarily cancel since they are

non-positive. They play an important role in making the function 5F4 rational.
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Summation when j − n 6≡ δi mod 2

On the other hand, if j − n 6≡ δi mod 2,

m = j − 2p− 1 where p ∈ {0, 1, . . . , j − 1},

we have

[A(λ)]j,nm1,m2
(t1, t2) =

((2j)!)2

cjm1c
j
m2π

i−n+m2(
λ2+1

2

)(
m2−n

2
) (

λ2+1
2

)(−m2−n
2

)
×

2F1

(
−j+m1,−j+λ1−λ−1

2
−2j

; t1

)
2F1

(
−j−m2,−j+λ1+λ−1

2
−2j

; t2

)
×

j−1∑
p=0

i−n+j−2p−1(
λ1+1

2

)( j−n−2p−1
2

) (
λ1+1

2

)(− j−n−2p−1
2

)
Γ

(
j +m2

2
− p
)

Γ

(
2− j −m1

2
+ p

)
×

(
λ1 − λ2

2

)(
1−j+m1

2
+p)(λ1 + λ2

2

)(
j−m2−1

2
−p)

(1− t1)
−2+j+m1

2
−p×

(1− t2)
−j−m2

2
+pt−2j+2p+1

1 t−2p−1
2 . (6.122)

Comparing with the even case, after applying (6.110) and (6.111), the summation will

change to

[A(λ)]j,nm1,m2
(t1, t2) =

ij+m2−2n((2j)!)2

πcjm1c
j
m2

(
λ1−λ2

2

)(
−j+m1+1

2
) (

λ1+λ2
2

)(
j−m2−1

2
)

(
λ1+1

2

)(−j+n+1
2

) (
λ1+1

2

)( j−n−1
2

)
×

Γ
(
j+m2

2

)
Γ
(

2−j−m1

2

)
(
λ1+λ2+1

2

)(j) (
λ1−λ2+1

2

)(j) (
λ2+1

2

)(
n−m2

2
) (

λ2+1
2

)(
−n+m2

2
)
×

2F1

(
−j+m1,

λ1−λ2−2j−1
2

−2j
; t1

)
2F1

(
−j−m2,

λ1+λ2−2j−1
2

−2j
; t2

)
×

γ′j,nm1,m2
(λ; t1, t2), (6.123)

where

γ′′j,nm1,m2
(λ; t1, t2) = (1− t1)

j+m1−2
2 t−2j+1

2 t−1
1 (1− t2)

−j−m2
2 ×

2F1

(
−j+m1,

λ1−λ2−2j−1
2

−2j
; t1

)
2F1

(
−j−m2,

λ1+λ2−2j−1
2

−2j
; t2

)
×

j−1∑
p=0

(
2−j−m1

2

)(p) (−j+m2+λ1−λ2

2

)(p) (
1− j−n+λ1

2

)(p)
(1)(p)(

2−j−m2

2

)(p) (
3
2 −

j−m2−λ1−λ2

2

)(p) (
2−j+n+λ1

2

)(p)

1

p!

(
t21(1− t2)

t22(1− t1)

)p
. (6.124)
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By the same formula (6.120) and using the relation between Pochhammer symbols and

Γ-functions (a)(n) = Γ(a+ n)/Γ(a) to absorb the extra Γ factors in γ′′j,nm1,m2 , the matrix

entries for the long intertwining operator has an expression

[A(λ)]j,nm1,m2
(t1, t2) =

(−1)n((2j)!)2(
λ1+1

2

)( j+n−1
2

) (
λ1+1

2

)(− j+n−1
2

) (
λ1−λ2+1

2

)(j) (
λ1+λ2+1

2

)(j)
×

1

cjm1c
j
m2

(
λ1−λ2

2

)(
j+m1−1

2
) (

λ1+λ2
2

)(
−j−m2+1

2
)

(
λ2+1

2

)m2−n
2
(
λ2+1

2

)−m2−n
2

Γ
(
j−m1

2

)
Γ
(
j−m2

2

)×
(1− t1)

−j+m1
2 (1− t2)

j−m2−2
2 t1−2j

2 t−1
1 ×

2F1

(
−j+m1,

λ1−λ2−2j−1
2

−2j
; t1

)
2F1

(
−j−m2,

λ1+λ2−2j−1
2

−2j
; t2

)
×

5F4

(
−j+1,1,

−j+m2+2
2

,
−j−n−λ1+2

2
,
−j−m2+λ1+λ2+1

2

−j+1,
−j+m1+2

2
,
−j−n+λ1+2

2
,
−j−m1−λ1+λ2+1

2
+1

;
t22 (1− t1)

t21 (1− t2)

)
. (6.125)

Therefore, if we set εj,nδ =
{

0 j−n≡δi mod 2
1 j−n 6≡δi mod 2 , we can summarize the above two cases

(6.121),(6.125) into one single formula:

[A(λ)]j,nm1,m2
(t1, t2) =

(−1)n((2j)!)2

(
λ1+1

2

)(
j+n−εj,n

δ
2

) (
λ1+1

2

)(−
j+n−εj,n

δ
2

) (
λ1−λ2+1

2

)(j) (
λ1+λ2+1

2

)(j)

×

1

cjm1c
j
m2

(
λ1−λ2

2

)(
j+m1−ε

j,n
δ

2
) (

λ1+λ2
2

)(
−j−m2+ε

j,n
δ

2
)

(
λ2+1

2

)m2−n
2
(
λ2+1

2

)−m2−n
2

Γ

(
1−εj,nδ +j−m1

2

)
Γ

(
1−εj,nδ +j−m2

2

)×
(1− t1)

−1+ε
j,n
δ
−j+m1

2 (1− t2)
−1−εj,n

δ
+j−m2

2 t
εj,nδ −2j
2 t

−εj,nδ
1 ×

2F1

(
−j+m1,

λ1−λ2−2j−1
2

−2j
; t1

)
2F1

(
−j−m2,

λ1+λ2−2j−1
2

−2j
; t2

)
×

5F4

(
−j+εj,nδ ,1,

−j+m2+1+ε
j,n
δ

2
,
−j−n−λ1+1+ε

j,n
δ

2
,
−j−m2+λ1+λ2+ε

j,n
δ

2

−j+εj,nδ ,
−j+m1+1+ε

j,n
δ

2
,
−j−n+λ1+1+ε

j,n
δ

2
,
−j−m1−λ1+λ2+ε

j,n
δ

2
+1

;
t22 (1− t1)

t21 (1− t2)

)
. (6.126)

Thus we have finished the proof of Theorem 1.4.
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