
COMPUTATIONAL METHODS FOR PREDICTING
BEHAVIOR FROM NEUROIMAGING DATA

BY LI ZHU

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Prof. Laleh Najafizadeh

and approved by

New Brunswick, New Jersey

October, 2018



ABSTRACT OF THE DISSERTATION

Computational Methods for Predicting Behavior from
NeuroImaging Data

by Li Zhu

Dissertation Director: Prof. Laleh Najafizadeh

One of the major goals in neuroscience is to understand the relationship between the brain

function and the behavior. Inferring about the behavior, intent, or the engagement of a particular

cognitive process from neuroimaging data finds applications in several domains including brain

machine interfaces. To date, although a variety of imaging techniques have been developed and

various computational techniques have been suggested, the estimation power has been limited

to distinguishing very distinct classes of motor activities or cognitive processes. To improve the

estimation power, there exist technical challenges that need to be addressed at the three stages

of data acquisition (recording brain activities), data processing (processing brain recordings),

and data analytics (inferring behavior from brain recordings).

The objective of the dissertation is to address technical challenges at the data processing

and the data analytics stages, by leveraging tools from network science, machine learning and

signal processing.

The first part of the dissertation focuses on data processing. In brain imaging experiments,

typically, to reduce noise and to empower the signal strength associated with task-induced

activities, recorded signals (e.g., in response to repeated stimuli or from a group of individu-

als) are averaged through a point-by-point conventional averaging technique. However, due to

the existence of variable latencies in recorded activities, the use of the conventional averaging
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technique can lead to inaccuracies and loss of information in the averaged signal, which may

result in inaccurate conclusions about the functionality of the brain. To improve the averag-

ing accuracy in the presence of variable latencies, we present new averaging framework that

employs dynamic time warping (DTW) algorithm to account for the temporal variation in the

alignment of functional Near-Infrared Spectroscopy (fNIRS). As a proof of concept, we focus

on the problem of localizing task-induced active brain regions. The proposed framework is

extensively tested on experimental data (obtained from both block design and event-related de-

sign experiments) as well as on simulated data. The proposed framework is shown to improve

the accuracy of the averaging operation compared to conventional averaging techniques and

is expected to introduce significant impact in various fNIRS-based neuroscience and clinical

research studies.

The second part of the dissertation focuses on data analytics. We first address the problem

of inferring behavior from neuroimaging data, by extracting new features based on the tem-

poral characteristics of brain recordings. We hypothesize that there exist characteristics in the

time course of cortical activities that are specific to the corresponding behavior. We introduce

a method based on visibility graph (VG) to reliably identify such discriminatory characteristics

in cortical recordings. An extensive study considering different choice of features and ma-

chine learning algorithms is conducted based on recordings obtained via widefield transcranial

calcium imaging under spontaneous whisking condition, and recordings obtained via fNIRS

under resting state and task execution conditions. It is shown, for the first time, that the char-

acteristics of calcium recordings and fNIRS signals identified by the proposed method, carry

discriminatory information that are powerful enough to decode behavior. The proposed method

will have applications in advancing the accuracy of brain machine interfaces, and can open up

new opportunities to study various aspects of brain function and its relationship to behavior.

Next, we propose to use multilayer perceptron (MLP) to perform classification based on

the graph measures of the VGs. We also build a predictive framework using convolutional

neural networks (CNN) to perform classification from the constructed multi-channel VGs di-

rectly. Multi-channel VGs allows the CNN to learn the discriminatory features utilizing the full

temporal information encoded in the VGs, and can, hence, strengthen the inferring power. We

evaluate the performance of both approaches using the widefield transcranial calcium imaging
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data, and demonstrate improvement compared to classical machine learning methods.

Lastly, we investigate the temporal and spectral characteristics of brain function under spon-

taneous activity. By combining the wavelet transform coherence and the multivariate permuta-

tion test, we present a new method for investigating changes in functional connectivity under

spontaneous activity. The proposed method is applied on the widefield transcranial calcium

imaging data. Results on how function connectivity corresponding to two forms of sponta-

neous activity differ across frequency and space are presented.
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Chapter 1

Introduction

1.1 Motivation

The human brain is known as one of the most complex systems in nature. It is a network

containing around 100 billion neurons [9], and is known as one of the most complex systems in

nature. To date, as humans, we still know little about how the neurons interact with each other

in different scales to form networks, and how the brain activities are related to behavior.

The research on the brain helps to decrease the rate of brain-related disorders and to im-

prove the quality of life of patients, their families, and the whole society. The burden of brain-

related disorders is enormous. For example, in the U.S., patients suffering from Alzheimer’s

and Parkinson’s diseases cost about $200 billion annually (see Fig. 1.1) [2]. Therefore, re-

cently, the research and development in the fields of neuroscience, neurotechnology, and the

related infrastructure has been attracting increased attention. The number of grants and filed

patents in neurotechnology is experiencing an explosive growth at unprecedented rates (see Fig.

1.2) [3].

To understand the structure and the functionality of the brain we rely on various neuroimag-

ing techniques. The goal of the proposed work is to develop computational methods to investi-

gate the dynamics of brain activation patterns from functional brain imaging data, and use it to

infer the behavior or brain states. In this chapter, we provide a brief overview of the research

problems targeted in this work, and outline the contributions of the dissertation.

The first part of the dissertation focuses on data processing. In typical brain imaging ex-

periments, to reduce noise and to empower the signal strength associated with task-induced

activities, recorded signals (e.g., in response to repeated stimuli or from a group of individu-

als) are averaged through a point-by-point conventional averaging technique. However, due to



2

Figure 1.1: U.S. Alzheimer’s disease: incidence, cost to Medicare/Medicaid and federal re-
search funding [2].

Figure 1.2: There is an explosion in neurotechnology related patent fillings and grants [3].

the existence of variable latencies in recorded activities, the use of the conventional averaging

technique can lead to inaccuracies and loss of information in the averaged signal, which may

result in inaccurate conclusions about the functionality of the brain. To improve the averaging

accuracy in the presence of variable latencies, we present an averaging framework that em-

ploys dynamic time warping (DTW) to account for the temporal variation in the alignment of
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functional near-infrared spectroscopy (fNIRS) recordings. As a proof of concept, we focus on

the problem of localizing task-induced active brain regions. The proposed framework is exten-

sively tested on experimental data (obtained from both block design and event-related design

experiments) and simulated data.

The second part of the dissertation focuses on data analytics. To date, to infer the cognitive

state of the subject from neuroimaging data, methods based on functional specificity and power

spectral density have been suggested. However, the estimation power of such methods has

been limited to distinguishing very distinct classes of motor activities or cognitive processes.

As such the community has been searching for alternative methods to improve the power of

inference. In this part, we present novel frameworks to infer behavior and the brain states by

capturing characteristics based on the temporal dynamics of the recordings as well as based

on functional connectivity. Various classical machine learning and neural networks models are

utilized to perform the classification. These approaches are validated using brain imaging data

acquired from animals and humans via widefield calcium imaging and fNIRS.

1.2 Outline and Contribution

Chapter 2 reviews the brain imaging techniques, with a special focus on three imaging modal-

ities that have been used for this work (fNIRS, widefield calcium imaging, and the electroen-

cephalography (EEG)). The multi-modal brain imaging and the experimental design techniques

are then presented [10].

Chapter 3 focuses on a major challenge in data preprocessing of fNIRS recordings. The

problem of non-linear misalignment of the repeated recordings during fNIRS experiments is

first reviewed. A novel DTW-based averaging algorithm is then presented. Finally, the pro-

posed method is validated using both experimental and synthetic datasets [11, 12].

Chapter 4, Chapter 5, and Chapter 6 focus on the data analytics based on visibility graph

for data obtained from animal subjects and human subjects, respectively. In Chapter 4, we

demonstrate that the temporal characteristics of calcium dynamics obtained through widefield

imaging can be utilized to infer the corresponding behavior. In Chapter 5, we propose two new

analysis frameworks, which combine visibility graph and neural networks, to further strengthen
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the inferring power. In Chapter 6, the fractality of human fNIRS recordings is studied via both

conventional methods and the VG-based method. We demonstrate that the VG-based measures

can be used to distinguish human brain states (resting-state vs task-execution) [13, 1, 14].

Chapter 7 proposes a framework to study the functional brain connectivity based on the

wavelet transform coherence and the multivariate permutation test. The proposed method is

applied on data obtained from widefield transcranial calcium imaging on mice. Results on

how functional connectivity corresponding to two forms of spontaneous activity differ across

frequency and space are presented [15, 16].

Finally, a summary of the dissertation is given in Chapter 8. Future work are discussed.
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Chapter 2

Review of Functional Brain Imaging Techniques

This chapter reviews brain imaging techniques, and the experimental design procedures con-

ventionally used in functional neuroimaging studies.

2.1 Overview of Neuroimaging Tools

Neuroimaging techniques can be categorized into different classes: structural vs functional,

invasive vs non-invasive, and direct vs indirect.

Structural brain imaging is used to study the anatomical aspects of the brain (providing a

static view of the brain) and is targeted to detect abnormalities in brain structure (e.g. tissue).

Examples of structural brain imaging techniques include magnetic resonance imaging (MRI),

and computed tomography (CT). Functional brain imaging focuses on the investigation of the

functionality of the brain (providing a dynamic view of the brain function). Examples of func-

tional brain imaging techniques include fMRI, Magnetoencephalography (MEG) and fNIRS

[17, 18]. Outcomes of functional brain imaging tools can be used for example to identify re-

gions of the brain that are active during task execution.

Brain imaging techniques can be also categorized into invasive and noninvasive classes.

Invasive brain imaging techniques, such as Electrocorticography (ECoG), require an open-skull

surgery that places electrodes directly on the surface of the brain to record neuronal activity

from the cortex. In contrast, non-invasive brain imaging techniques, including EEG, fMRI, and

fNIRS, do not require surgery, and are therefore more suitable for human studies and have been

widely used in the neuroscience research and clinical practices [18].

Brain imaging techniques, depending on the physiological variable they measure, can be

categorized as direct or indirect. The electrical activity of neurons can be measured directly

by brain imaging tools which are sensitive to electrical potentials or magnetic fields, including
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EEG and MEG. On the other hand, brain activities elicit cerebrovascular changes for supplying

oxygen and nutrients to active neurons. The brain image tools, such as fMRI and fNIRS, which

are sensitive to changes in the oxygenation in the blood, can therefore be used to indirectly

measure the underlying neuronal activities.

Fig. 2.1 compares the various functional brain imaging techniques for humans, with respect

to the invasiveness and spatio-temporal resolution. It reveals that for non-invasive brain imaging

techniques (shown in blue), none of them achieve high resolution in both temporal and spatial

aspects [4].

Figure 2.1: Comparison of various noninvasive (illustrated in blue) and invasive (illustrated
in red) functional brain imaging techniques with respect to the spatio-temporal resolution [4]
(ESI: electromagnetic source imaging, PET: positron emission tomography, SUA: single unit
activity, SPECT: single-photon emission computed tomography).

2.2 Multi-Modal Brain Imaging

Multi-Modal brain imaging is the technique to conduct neuroimaging experiments combining

two or more imaging modalities. While each of existing neuroimaging techniques has the lim-

itation on the resolution from either spatial or temporal aspects, multi-modal brain imaging

provides a possibility of providing the increased spatial-temporal resolution that not any in-

dividual modalities can achieve [4]. Multi-Modal brain imaging, when combining modalities

that record signals related to both neuronal activity and hemodynamic response, allows for in-

vestigating the same brain events from different perspectives and enables us to understand how
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brain functions at different functional levels.

The combination of EEG and fMRI has been used as a multi-modal imaging tool in recent

studies [19]. However, EEG signals acquired through EEG-fMRI experiments suffer from

artifacts induced by the magnetic field during fMRI image acquisition [20]. An alternative

approach is to use the combination of EEG and fNIRS modalities. [21, 22]. Due to minimal

interference between the optical and electrical measurements, the use of fNIRS in combination

with EEG does not impact SNR.

Multi-Modal imaging has been recently used for 1) the investigation of the spatio-temporal

relationship between the vascular/hemodynamic response and the neuronal activity (known as

neurovascular coupling (NVC)) [23], 2) the enhancement of the performance of brain-computer

interfaces (BCIs) [24], 3) the improvement in the accuracy of EEG source localization, by

utilizing statistical maps of paradigm-related hemodynamic signals as a prior [25, 26, 27], and

4) helping in better understanding of brain-related diseases [28].

2.3 Optical Brain Imaging

After the fast growing in the past 30 years, optical brain imaging has become a rich and diverse

field, and found a series of applications in both scientific research and clinical diagnoses [29].

Light can not only be used to imaging function in vivo in exposed animal brain, it can also be

used as non-invasive imaging on human brain. Light provides superior sensitivity to functional

changes through the intrinsic changes in absorption, scatter, fluorescence, or via the use of ex-

trinsic contrast [29]. This section provides an overview of two optical brain imaging techniques

that have been used in the proposed work, fNIRS and widefield calcium imaging.

2.3.1 functional Near-Infrared Spectroscopy

2.3.1.1 Physiological Basis

Brain function is regularized by series of complex mechanisms, including neurometabolic and

neurovascular coupling mechanisms, which control the close interaction among neurons, glia

cells, and cerebral vessels [30]. The consumption in energy substrates (i.e., oxygen and glu-

cose), caused by neuronal activity, increases cerebral metabolic rate of oxygen (CMRO2) on
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one hand, which lowers the blood oxygen saturation (i.e. the fraction of oxygen-saturated

hemoglobin relative to total hemoglobin), and increases the cerebral blood flow (CBF) and the

cerebral blood volume (CBV) on the other hand, which raise the blood oxygen saturation [30].

This competition ends up with the increase in the local concentration of HbO2 and the decrease

in that of HbR in active brain regions [18, 31, 17]. Fig. 2.2 is an overview of the effect of

neuronal activity on the local changes in [HbO2] and [HbR].

Figure 2.2: Overview of the effect of neuronal activity on the changes in hemodynamic signals.

fNIRS is a brain imaging technique used to indirectly measure the neuronal activities by

measuring localized ∆[HbO2] and ∆[HbR]. The biological tissue is relatively transparent to the

light in the NIR range (690− 1000 nm), where HbO2 and HbR are the predominant absorbers.
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In a typical fNIRS experiment, an array of light emitters and detectors are placed on the

surface of the head. The photons that enter the head at the emitter position are either absorbed or

scattered. The detector, located centimeters away from the emitter position, samples a diffuse,

banana-shaped volume along the path that is dependent on the source-detector distance. The
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relative changes in the concentration of both chromophores (HbO2 and HbR), as a function

of time, are estimated by using the modified Beer Lambert law (MBLL) [11] from intensities

measured through two or more wavelengths per emitter-detector pair. Due to the low optical

absorption of the biological tissue at NIR range, the NIR light can penetrate deep enough to

sample the outer 1.5− 2 cm of the head through the skin and skull and reach approximately

5− 10 mm of the brain tissue. Fig. 2.4-a conceptual illustrates the components involved in the

fNIRS measurement [5].
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Figure 2.4: (a) Conceptual illustration of fNIRS emitter-detector pairs and the banana-shaped
light path [5]. (b) Typical hemodynamic signals extracted from fNIRS measurement.

2.3.1.2 Modified Beer-Lambert Law

The Modified Beer-Lambert Law is used to convert the measured optical density to the local-

ized ∆[HbO2] and ∆[HbR], assuming the optical absorption remains homogeneous across the

illuminated area and the scattering loss is constant over time [32, 33]. For a given source-

detector pair (denoted here as channel m), the change in the optical density (∆OD) can be

described as [34]

|∆ODm(λ, n)| = ln
Im,1(λ, n)
Im,0(λ)

= −∆µm(λ, n) · DPF(λ) · Lm, (2.1)

where n is the time index, Im,1(λ, n) and Im,0(λ) are the acquired optical signals at the detec-

tor position during the task period and pre-stimuli-baseline period, respectively, ∆µm(λ, n) is
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the wavelength dependent absorption coefficient variation, DPF(λ) is the unitless differential

pathlength factor, and Lm is the source-detector separation for channel m [35, 34].

Since in the NIR wavelength range, HbO2 and HbR are the major chromophores in the brain

tissue, the change in the absorption coefficient between the task and the baseline conditions can

be described as [34]

∆µm(λ, n) = εHbO2,λ∆CHbO2,m(n) + εHbR,λ∆CHbR,m(n), (2.2)

where εHbO2,λ and εHbR,λ are the extinction coefficients for HbO and HbR, respectively, at

wavelength λ. The ∆CHbO2 and ∆CHbR can be estimated by acquiring the optical attenuation

at two wavelengths λ1 and λ2 simultaneously [34]

∆CHbO,m(n)

∆CHbR,m(n)

 =
1

Lm
·

εHbO,λ1 εHbR,λ1

εHbO,λ2 εHbR,λ2

−1

·

∆ODm(λ1, n)/DPF(λ1)

∆ODm(λ2, n)/DPF(λ2)

 . (2.3)

Fig. 2.4-b illustrates typical hemodynamic signals in response to an external stimulus. The

stimulus-related neuronal activation causes an increase in ∆[HbT] and ∆[HbO2] and a decrease

in ∆[HbR], to supply extra oxygen consumption requested by the neuronal activation. As the

need of the neuronal activation are met, the hemodynamic signals return to the normal level. An

initial dip is visible for ∆[HbT] and ∆[HbO2] signals, which reveals the oxygenation changes

prior to any subsequent blood flow increases [36].

2.3.2 Widefield Calcium Imaging

Widefield fluorescence imaging of genetically encoded calcium indicators (GECIs) is the imag-

ing technique capable of recording large numbers of spatially distributed neurons, with high

temporal resolution [37]. Newly developed GECIs such as GCaMP6 have improved sensitivity

and brightness [38, 39], that, when expressed in transgenic reporter mice, enable imaging of

neuronal activity of genetically defined neuronal populations over large portions of the cerebral

cortex [40]-[43]. Compared to non-linear optical methods such as two-photon laser-scanning

microscopy [44, 45], the use of epifluorescence optical imaging allows for easier implementa-

tion, higher temporal resolution, and much larger fields of view [46, 47]. Two-photon calcium
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Figure 2.5: Illustration of the experimental setup used for widefield imaging of cortical activity
of mice expressing GCaMP6f, and simultaneous recording of whisker movement.

imaging can be used to track individual neurons over time as animals learn [48, 49], but it is dif-

ficult to study neurons in spatially segregated cortical areas. Furthermore, long-term widefield

imaging can be performed through either cranial windows or a minimally invasive intact skull

preparation in living subjects over multiple weeks [50, 51]. These developments in widefield

imaging have opened new possibilities for studying large-scale dynamics of brain activity in

relation to behavior [51, 52], for example, during locomotion and active whisker movements in

mice [40],[53]-[57].

In our experiments, the imaging of GCaMP6f is carried out in head-fixed mice with the

transparent skull covered with glycerol and a glass coverslip. A schematic of the imaging sys-

tem is shown in Fig. 2.5. A custom macroscope [50] allowed for simultaneous visualization of

large area of the brain cortex (as seen in Fig. 2.5). The cortex is illuminated with 460 nm LED

(Aculed VHL) powered by a Prizmatix current controller (BLCC-2). Excitation light is filtered

(479/40; Semrock FF01-479/40-25) and reflected by a dichroic mirror (Linos DC-Blue G38

1323 036) through the objective lens (Navitar 25 mm / f0.95 lens, inverted). GCaMP6f fluo-

rescence is filtered (535/40; Chroma D535/40m emission filter) and acquired using a MiCam

Ultima CMOS camera (Brain vision) fitted with a 50 mm / f0.95 lens (Navitar). Images are

captured on a 100× 100 pixel sensor. The sampling rate is 100 frames per second.
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2.4 Electroencephalography

2.4.1 Physiological Basis

EEG measures the brain scalp field potential (SP) that is generated by millions of neurons firing

synchronously [58]. Since its first introduction, EEG has been widely used in neuroscience

research and clinical studies [58, 18]. In a typical EEG experiment, electrodes are placed on

the subject’s head surface spreading across a cap. The potential difference of each electrode is

measured with respect to a common reference.

Due to the volume conduction effect, the SP signal measured at one electrode location is

the summation of contributions from a wide range of distinct brain regions, which could be

characterized by the EEG linear forward model [59]. At each time point, modeling the finite

number (K) of focal neuronal activity on the cortex as current dipoles j = [j1, j2, · · · , jK]T ∈

RK, the SPs picked up by M electrodes placed on the scalp, y = [y1, y2, · · · , yM]T ∈ RM,

could be expressed as

y =
K

∑
k=1

gk · jk + e = G · j + e, (2.4)

where gk = [g1k, g2k, · · · , gMk]
T ∈ RM(k = 1, 2, · · · , K) is the column vector representing

the weight with which the source activity at dipole k (jk) contributes to SPs acquired at each

electrode (ym), G = [g1, g2, · · · , gK] ∈ RM×K is the so-called lead-field matrix (or gain

matrix) with dimensions equal to the number of EEG electrodes (M) by the number of cortical

nodes (K), and e(t) represents the noise. The lead-field matrix G describes the relationship

between the brain activity in the source space and the measurements obtained in the sensor

space, and is dependent on the physical and geometrical properties of the head [60].

2.5 Experimental Design

In a task-based functional neuroimaging experiment, the participant is engaged in a task. The

task is designed to evoke specific brain function such as motor movement, working memory,

and visual/auditory identification. The most common types are “block-design” and “event-

related design.”
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2.5.1 Block-Design Experiments

Studies which target localizing the brain regions related to a specific activity (i.e. “detection"

studies), generally involve block-design experiments (illustrated in Fig. 2.6-a). In such exper-

iments, to increase the detection power, the general idea is to closely present multiple trials,

with the same type of stimuli, to the subject within each block, and repeat the experiment

across multiple blocks. Blocks of different experimental conditions are often interleaved to re-

duce subject’s prediction of the coming stimuli. Recorded signals across blocks of experimental

conditions of the same nature are then averaged, using conventional averaging techniques, and

the related active areas are identified [11].

By conducting block-design experiments, adequate SNR can be attained from the recorded

signals. But block-design paradigms have some disadvantages. Brain activities in response to

individual trials cannot be distinguished.

2.5.2 Event-Related Experiments

In contrast to presenting multiple trials of the same type sequentially within each block, “event-

related” experiments separate each trial in time by a randomized, but with sufficient length in

time, inter-trial interval (ITI). Trials with different conditions can be interleaved. Depending

on the research question of interest, the number of trials across conditions could be different

(illustrated in Fig. 2.6-b).

While event-related experiments deliver decreased SNR, as compared to the block design

experiments, they provide the possibility of estimating the time-course of the hemodynamic

response [61].

2.6 Summary

In this chapter, brain imaging techniques and the experimental design procedures in functional

neuroimaging studies were reviewed. Multi-modal brain imaging, details of fNIRS, widefield

calcium imaging, and EEG were described. Conventional procedures for designing paradigms

were discussed.
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Time

= Stimulus 1

= Stimulus 2

(a)

(b)

Figure 2.6: (a) Illustration of a block-design experimental paradigm. (b) Illustration of the an
event-related experimental paradigm.
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Chapter 3

Data Processing: Dynamic Time Warping-Based Averaging
Framework

In this chapter, we first describe the problem with conventional averaging approaches used in

fNIRS experiments. We then introduce a novel averaging method based on the DTW algorithm

which helps to improve the accuracy of the averaged signal across multiple blocks, hence in-

creasing the detection power. The technique is validated using both real experimental fNIRS

data and synthetic data.

3.1 Introduction

In fNIRS brain imaging studies, the averaging operation is performed at different stages of

analysis (e.g. across trials, blocks, subjects, channels), with the objective of enhancing the

signal strength associated with task-induced brain activities and reducing noise and random-

ness. For example, in task-based fNIRS studies, the averaging operation is used at the early

stages of analysis. Task-based experimental paradigms are categorized as “block design” and

“event-related design.” In block design experiments, to increase the detection power for esti-

mating the location of task-induced active regions, the general idea is to present multiple trials

of the same type for the subject within each block, and repeat the experiment across multiple

blocks. Blocks of different experimental conditions are often interleaved. Recorded fNIRS sig-

nals across blocks of similar conditions are averaged through the conventional point-by-point

averaging technique [62, 34, 63, 64, 65, 66, 67]. In event-related design studies, brain activities

associated with individual trials are recorded, allowing for estimating the brain’s hemodyamic

response related to the stimulus. This hemodyamic response can be obtained through averaging

recorded activities in response to several discrete events of the same type. In both categories, to
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Figure 3.1: Visual illustration of using point-by-point conventional averaging technique for
three scenarios: a) when three signals are temporally aligned, b) when there exist linear tem-
poral variation in the alignment of three signals, and c) when there exist nonlinear temporal
variation in the alignment of three signals.

estimate the location of brain regions associated with the task, the stimulus or the event of inter-

est, various statistical tests (e.g. student’s t-test) are used to evaluate the statistical significance

of features (e.g. amplitude) of the averaged signals [68].

As the averaging operation is conducted at the early stages of the analysis [62, 69, 70, 71,

63, 64], inaccuracies in the averaged signal could lead to type I (incorrectly detecting a region

as active) or type II (incorrectly detecting a region as inactive) errors in the statistical analysis,

resulting in inaccurate conclusions about the functionality of the brain. As stated before, to

perform the averaging operation, typically conventional point-by-point averaging technique is

used in fNIRS studies. Previous work however, have shown that there exist variability (e.g.
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latency differences) in the brain response to trials of the same type (e.g. trial-to-trial variabil-

ity) due to for example differences or delays in neural responses, or individual’s performance

[72, 73, 74, 75]. Furthermore, in patient populations (e.g. patients with Autistic Spectrum

Disorders (ASD)) several studies have reported variable latencies in their responses to stimuli

[76, 77]. While preserving information related to variability would be important in identifying

parameters related to behavioral variability (e.g. understanding neural mechanisms related to

variability in response time) [72, 75, 78], in several neuroimaging studies (e.g. those interested

in functional specificity) conclusions are made based on an “aggregate-then-analyze” approach.

These types of studies, that use conventional point-by-point averaging approach and does not

take temporal variation of signals into account, can result in inaccuracies (e.g. blurring the

peaks and valleys) in the averaged signal. Examples of three scenarios are conceptually visu-

alized in Fig. 3.1. In the scenario shown in Fig. 3.1-a (left column), no temporal variation

exists in the alignment of the three signals to be averaged. In the scenario shown in Fig. 3.1-b

(middle column), a linear temporal variation exists among the three signals. In the scenario

shown in Fig. 3.1-c (right column), a nonlinear temporal variation exists among the three

signals. The averaged signals obtained through point-by-point averaging technique for each

scenario are shown in the last row. It can be seen that, compared to Fig. 3.1-a, the presence of

linear temporal variation for signals in Fig. 3.1-b has resulted in attenuation of the amplitude of

the averaged signal. The presence of nonlinear temporal alignment for signals in Fig. 3.1-c has

caused nonlinear distortion in the averaged signal obtained through conventional point-by-point

technique. In reality, such inaccuracies in the averaged signal can lead to misunderstandings

about the brain function. We had also briefly previously discussed this problem in [11].

To address the problem of temporal variation across fNIRS signals, in this chapter, a dy-

namic time warping (DTW)-based averaging technique is presented for fNIRS-recorded time

series. DTW algorithm was originally introduced in speech processing [79], and has been

widely used for measuring the similarity of two time series in various fields of research, such

as biometric, data mining, gene expression analysis, human motion recognition, and EEG sig-

nal analysis [80, 81, 82, 83, 73, 84]. Various forms of DTW-based averaging approaches have

also been proposed for applications such as EEG [73] and satellite image time series [85].

To extensively examine the performance of the proposed DTW-based averaging technique
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in fNIRS-based detection studies, experiments and simulation are performed. For the experi-

mental part, both block design and event-related design experiments are considered. For the

simulation study, a dataset is generated based on the standard model of hemodynamic response

function, and operating characteristic curves (ROC) are used to compare the performance of

conventional- and DTW-based averaging techniques. Both experimental and simulation stud-

ies show that DTW-based averaging technique outperforms the conventional averaging tech-

nique in terms of accurately estimating the location of task-induced brain regions. While for

the proof of concept, in this chapter, we focus on the problem of localizing task-induced active

brain regions, the presented averaging technique can be used in other averaging stages of fNIRS

neuroimaging studies (e.g. computing grand averages).

The remainder of this chapter is organized as follows. In Section 3.2 the DTW-based av-

eraging technique is described. In Section 3.3 the experimental and simulation studies are

presented and results are discussed. Finally, the chapter is summarized in Section 3.4.

3.2 DTW-Based Averaging

Let bk = [bk(1), · · · , bk(N)] represents the kth time series of a group of K time series, each

with N time points. In fNIRS neuroimaging experiments, each of these time-series corresponds

to the signal from a channel associated with a given block (in a block design experiment, K

being total number of blocks) or associated with a given trial (in an event-related design ex-

periment, K being total number of events), recorded from a channel. The aim is to obtain the

averaged representation of these K time-series using DTW [85].

To obtain the DTW-based averaged representation of K signals, first, the best alignment

between each signal and a “reference” signal c = [c(1), · · · , c(N)] is found. The reference

signal could be for example the conventional averaged signal of all K time-series. To optimally

align signal bk and the reference signal c, a cost matrix Dk needs to be determined. Dk is

a N × N matrix in which its elements are obtained through a cost function representing the

discrepancy between the ith and jth samples (i = 1, · · ·N, j = 1, · · ·N) of signals c and bk.

Measures of the Euclidean distance, or the square of difference between normalized samples,

can be used as the cost function [73].
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Next, from the cost matrix, an optimal alignment path, Wk
opt = [w1, · · · , wL]

T, N ≤ L ≤

2N − 1, where wl = (i(l), j(l)), 1 ≤ l ≤ L, 1 ≤ i(l), j(l) ≤ N, must be determined so that

the overall similarity between the two signals is maximized. The optimal alignment path Wk
opt

shows how the mapping between the indices of the two time series c and bk must be made to

achieve the best alignment. For example, if Wk
opt = [(1, 1), (2, 3), (2, 4), ..., (N, N)]T, then

the sample c(1) is aligned with bk(1), c(2) is aligned with bk(3) and bk(4), etc. To obtain

Wk
opt the solution to the following optimization problem [73]

min
L

∑
l=1

Dk(i(l), j(l)), (3.1)

subject to the following constraints should be found [73]:

• Monotonicity Alignment: The search for the alignment path must be monotonic, so that

the natural time ordering in the sequence is preserved, i.e.,

i(l) ≥ i(l − 1), and j(l) ≥ j(l − 1), (3.2)

• Continuity: The alignment function does not skip any samples in two sequences, i.e.,

i(l)− i(l − 1) ≤ 1, and j(l)− j(l − 1) ≤ 1, (3.3)

• End-point Alignment: The first and the last points of the sequences must be aligned, i.e.,

i(1) = j(1) = 1, and i(L) = j(L) = N.

Once Wk
opt is obtained, a new N-points time series, bk(aligned) = [bk(aligned)(1), · · · , bk(aligned)(N)],

is formed as follows

• if the index represented by i(l) in Wk
opt is unique, bk(aligned)(m) = bk(j(l)), (m =

1, · · · , N),

• if the index represented by i(l) in Wk
opt is not unique, bk(aligned)(m) = average of all

bk(j(l))’s corresponding to i(l).
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(
M

)
 

Figure 3.2: Illustration of the alignment process for an exemplary signal b1 and a reference
signal c through DTW, a) time series b1 and c where their aligned points are connected, and b)
color-coded cost matrix, representing the distance between the two time series. The warping
path is shown in blue. Plots are created using R programming package [6].

As an example, if

Wk
opt = [(1, 1), (2, 2), (2, 3), (2, 4), (3, 5), · · · , (N − 1, N − 1), (N, N)]T, (3.4)

then, bk(aligned) is obtained as

bk(aligned) = [bk(1),
bk(2) + bk(3) + bk(4)

3
, · · · , bk(N)]. (3.5)

This procedure will be performed for all K signals. Once all signals are aligned with the refer-

ence signal c and their aligned representations are determined, the DTW-based averaged signal

is obtained as

bDTWaveraged =
∑K

k=1 bk(aligned)

K
. (3.6)

Fig. 3.2 illustrates an example of aligning signal b1 with a reference signal c. The color-

coded cost matrix and the obtained optimal warping paths (in blue) are shown in Fig. 3.2-b.

It can be observed that when a sample in b1 is aligned with several samples in c the warping

path has a vertical direction, while when a sample in c is aligned with several points in b1,

the warping path follows a horizontal direction. Note that the optimal warping path is mostly

along the anti-diagonal elements of the cost matrices, illustrating that the two signals experi-

ence temporally variable latencies. Table 3.1 summarizes the steps involved in the DTW-based

averaging procedure using a reference signal.

The DTW-based averaging technique can be realized in various forms [85]. For example,

in [73], instead of using a reference signal, the average is obtained sequentially in a pair-wise
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Table 3.1: Summary of steps involved in DTW-based averaging procedure using a reference signal.

Step Operation
1 Define a reference signal c.

2
For each signal bk, k = 1, 2, · · · , K, generate the cost matrix
representing the discrepancy between bk and c.

3
Based on the cost matrix, for each signal, find the optimal alignment path
such that the overall similarity between the corresponding signal and
the reference signal is maximized.

4 Find the average of aligned signals.

manner. As such, errors at early stages of computation could propagate throughout the aver-

aging process, resulting in loss of information [85]. To address the problems associated with

pair-wise averaging, a global averaging strategy was introduced in [85], in which the aver-

aged signal is obtained considering all signals and is updated through an iterative process. The

method presented here also computes the average considering all signals and therefore, will not

be sensitive to ordering effects.

3.3 Evaluation

The performance of the proposed averaging framework for analyzing fNIRS-recorded time

series was evaluated through both experimental and simulated data. On the experimental end,

two experiments, one block design and one event-related design, are considered. The recorded

time series are analyzed through both conventional and DTW-based averaging techniques. As

it will be shown, compared to conventional point-by-point averaging, when DTW-averaging is

used, increase in the detection power for the block-design task and decrease in false positive

rate for the event-related task are observed. For the simulation study, data using a widely-used

equation of the hemodynamic response is generated, and ROC curves for the conventional and

the DTW-based averaging are obtained and compared. Furthermore, the impact of choice of

reference signal on the performance of DTW-based averaging technique is investigated.

3.3.1 Experimental Studies

Two experiments, one block design (Experiment I), and one event-related design (Experiment

II) are performed. We first describe the experimental setup for each case, and then present and
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discuss the results.

3.3.1.1 Experimental Setup

• Experiment I: Block Design Paradigm

Five right-handed healthy volunteers (one female) participated in Experiment I. All vol-

unteers gave their informed consent approved by the Rutgers University Institutional

Review Board (IRB) prior to the experiment [11]. The paradigm for this experiment was

the 2-back task (see Fig. 3.3-a), which has been widely used in determining brain activi-

ties related to working memory [86, 66, 67]. Three blocks were presented to participants.

Each block lasted for 32 s, and consisted of 16 letters (computerized in a pseudorandom

order with four being target stimuli) with inter-trial interval (ITI) of 2 s. The order of

presentation of target stimulus was different across blocks. Participants were asked to

respond, by pressing the right button on the mouse, when the presented letter matched

the letter shown two stimuli back.

It is worth to note that the block design experiments are performed with the goal of

continuously engaging the brain in the cognitive process of interest over the duration of

the block, in order to increase the detection power for localizing the related activities

in the brain. Here, the cognitive process of interest is “working memory”. The process

of memorizing and recovering letters is done on a continuous basis over the duration of

the block for each letter (target or non-target). For letters that satisfy the 2-back con-

dition, other additional processes and functions, such as pressing the button (activating

the somatosensory region), will become involved. Through the averaging process across

blocks, the SNR related to these additional functions would be small, because of the

variations in the timing of the target stimulus from one block to other. But information

related to “working memory”, which is the main objective of the n-back task, should be

preserved over the duration of the block.

fNIRS data were collected using a 52-channel (Hitachi ETG-4000, 17 sources (lasers,

695 nm and 830 nm) and 16 detectors) at a sampling rate of 10 Hz. The source-detector
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separation was 3 cm. The headband optode holder was placed on the forehead of volun-

teers to cover the prefrontal cortex, as shown in Fig. 3.3-b.

Figure 3.3: a) Experimental paradigm, and b) Optode setup (Red: light emitter, Green: detector,
Blue: fNIRS channel), for the 2-back task (Experiment I).

• Experiment II: Event-Related Paradigm

Six right-handed healthy volunteers (all males) participated after giving their informed

consent. An event-related modified visual oddball task [84, 87] consisting of three graph-

ical stimuli (plus, square, circle), presented in random order, was used as the paradigm

(see Fig. 3.4-a). A total of 220 stimuli (30 target stimuli (“plus”), and 190 non-target

stimuli) were presented. Each stimulus was presented for 50 ms, with ITI of 10− 12 s.

To minimize the periodic systemic effects [88], the ITIs were randomized to prevent the

subjects from predicting the presentation time. Participants were asked to press the left

button of the mouse once the target stimulus was shown on the screen.

fNIRS data were measured by a NIRx System (NIRx NIRScout, 16 sources (LEDs, 760

nm and 830 nm) and 16 detectors) at the sampling rate of 10.42 Hz. Measured signals

from source-detector pairs with a separation distance of 3 cm were considered, resulting

in a total of 38 channels. Optodes were placed over the prefrontal and visual regions of

the cortex, as shown in Fig. 3.4-b.

3.3.1.2 Preprocessing

Recorded signals were visually inspected. Bad channels (for example due to loose contact to

skin) were excluded from further analysis. In Experiment II, the response to the first trial for

majority of participants included traces of subject’s movement, and so it was also excluded
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Figure 3.4: a) Experimental paradigm, and b) Optode setup (Dark blue: fNIRS channels in
prefrontal cortex, Light blue: fNIRS channels in visual cortex), for the modified visual oddball
task (Experiment II). Locations of optodes are visualized using MATLAB, BrainNet Viewer
[7].

from the analysis, for all subjects. Signals were then segmented. For Experiment I, signals

were segmented by blocks. For each block, the segmentation time window began at 5 s prior

to the onset of the first stimulus in the block and ended 15 s after the end of the block. For

Experiment II, signals associated with “target" trials and “non-target” trials were segmented

separately. Trials associated with missed response (i.e. target trials without subject’s response)

were excluded from further analysis. The segmentation window began at 1.9 s prior to the onset

of the stimulus and had a duration of 13.9 s.

Next, signals related to ∆[HbO2] and ∆[HbR] with respect to the baseline were extracted

using the modified Beer Lambert law (MBLL) [89].

Band-pass filters (0.01 − 0.2 Hz) were then implemented to remove artifacts and low-

frequency drift. Furthermore, following [90] a procedure for the automatic detection of fast

changes in signals was implemented and applied to signals from Experiment II, through which

signals that showed sudden fast changes where excluded from further analysis.

3.3.1.3 Results-Experiment I

For each subject and each channel, averaged signals, using both the conventional-based and

DTW-based averaging techniques, were first obtained. Next, for each averaged signal, the time

point at which the signal reaches its maximum value following the onset of stimuli was identi-

fied. A temporal window with a duration of 2.1 s [91] around this time point was considered,

and the mean of the averaged signal within this window was calculated. This number, to which

we refer to as Activation Index (AI), was used in subsequent statistical tests to determine if the

region associated with the channel was active in response to the external stimuli.
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Detected through both averaging approaches

Detected only through DTW-based averaging approach

Figure 3.5: a) Statistical activation map for 2-back task based on the averaged signal obtained
from the conventional-based averaging technique and the DTW-based averaging technique.
Blue-colored circles indicate channels with significant increase in ∆[HbO2] identified based
on averaged signal obtained thorough both averaging techniques. Red-colored circles indicate
channels with significant increase in ∆[HbO2] that were only detected from the averaged signal
obtained through the DTW-based averaging. The statistical significance level is p < 0.05.
b) Statistical map illustrating the difference between the DTW-based and conventional-based
averaged signals.

Table 3.2: Mean and standard deviation (SD) of AIs across subjects (units in µM) as well
as results of t-test for channels showing statistically more significant activation when DTW-
based averaging technique is used as compared to when conventional point-by-point averaging
technique is used (d.f.= 4).

Channel Conventional averaging technique DTW-based averaging technique
Mean (S.D.) p-value t-value Mean (S.D.) p-value t-value

1 0.65 (0.59) 0.068 2.48 0.84 (0.67) 0.048 2.82
4 0.45 (0.40) 0.068 2.49 0.61 (0.41) 0.035 3.14
9 0.50 (0.48) 0.081 2.32 0.73 (0.49) 0.029 3.34
14 0.44 (0.42) 0.082 2.31 0.61 (0.49) 0.048 2.83
19 0.98 (0.95) 0.082 2.31 1.30 (0.97) 0.040 3.00

To determine active regions, one-sample t-test (with p < 0.05) was performed on AIs

(obtained through each averaging technique), with the null hypothesis being the region is not

active [91]. Fig. 3.5 illustrates the result of the statistical test. As can be seen five channels

(channels 1, 4, 9, 14, and 19) were identified as being significantly active in response to the task

when DTW-based averaging technique is used to obtain the averaged signal. Table 3.2 sum-

marizes the result of the statistical test for these channels and each averaging technique. These

channels were not detected as active channels when conventional-based averaging technique is

used. The activation pattern obtained through DTW-based averaging technique appears to be

more consistent with the results reported in previous fMRI studies where activation in bilateral

prefrontal cortex was observed in response to working memory tasks [92, 93].

While Fig. 3.5-a illustrates the statistical activation map by employing a fixed threshold
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(p < 0.05), it would be informative to also investigate the statistical significance of the dif-

ference of the outcomes of the two analysis approaches. To achieve this, for each channel and

each subject, we subtracted the conventional-based averaged signals from their DTW-based

averaged counterparts and conducted statistical test on the difference signals, with the null-

hypothesis that there are no significant differences. Fig. 3.5-b presents the t-map obtained

from the one-sample right-tailed students’ t-test. For almost all regions, the obtained t-values

are significantly larger than zero, indicating that there are statistically significant differences

between the averaged signals obtained from the two techniques. Next, we used the metric

of contrast-to-noise-ratio (CNR) [94, 95] to quantify the signal to noise ratio (SNR) for the

averaged signals obtained from each averaging technique. We considered both ∆[HbR] and

∆[HbO2] signals. Only channels that were identified as active through both averaging tech-

niques (shown in blue in Fig. 3.5) were considered in this analysis. Denoting mean(DUR)

and var(DUR) as the mean and variance of the signal amplitude during 5− 15 s after the on-

set of the first stimulus of the block (considering the delay in the hemodynamic signals), and

mean(ITI) and var(ITI) as the mean and variance of the signal amplitude corresponding to

10− 15 s after the presentation of the last stimulus of the block, the CNR is computed as

CNR =
|mean(DUR)−mean(ITI)|√

var(DUR) + var(ITI)
. (3.7)

Results are shown in Fig. 3.6. It is shown that for ∆[HbO2], mean CNR across subjects is

significantly higher when DTW-based averaging technique is used, as compared to when con-

ventional averaging technique is used (p < 0.05, paired t-test, d.f. = 15). Since ∆[HbR]

signals are generally weaker than ∆[HbO2] signals, we observe less significant difference be-

tween the CNR in ∆[HbR] signals obtained from the two approaches, though the mean CNR

obtained through the DTW-based averaging technique is still higher than that obtained through

the conventional-based approach. These results show that the DTW-based averaging technique

has increased the SNR in the averaged signals, and can enhance the detection power in studies

that aim to identify active brain regions associated to external stimuli.
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DTW-based averaging

Conventional averaging

Figure 3.6: Comparison of mean CNR values in averaged ∆[HbO2] and ∆[HbR] signals, for
Experiment I, obtained through conventional- and DTW-based averaging techniques, respec-
tively.

3.3.1.4 Results-Experiment II

Experiment II is an event-related experiment. The histogram of response time for the “target”

stimuli for each subject is shown in Fig. 3.7. Variability in response time across trials is ob-

served for all individuals. This variability can also be an indication of the presence of temporal

variation in the timing of the occurrence of task-induced events in the recorded fNIRS signals,

and if not addressed, would affect the accuracy of the averaged signal.

For each subject, ∆[HbO2] signals from each channel were averaged for each condition

(target and non-target), using the conventional and the DTW-based averaging techniques, sepa-

rately. Fig. 3.8 shows examples of ∆[HbO2] signals and their averaged signals obtained through

both averaging techniques, under the “target” condition (shown in left) and “non-target” con-

dition (shown in right) for channel 1, for a representative subject. It is observed that in both

cases, the peak amplitude of the conventional-based averaged signal is lower than that of the

DTW-based averaged signal. Furthermore, comparing the two conditions, the peak amplitude

of the conventional-based averaged signal for the non-target condition is lower than the peak

amplitude of the conventional-based averaged signal for the target condition, which may indi-

cate that the brain region under channel 1, has been active for the target response (and hence

sensitive to the oddball effect). However, caution should be taken when making inference from

this observation to avoid false alarm. Indeed, when the averaging process is conducted using

DTW-based averaging technique, the difference in the peak amplitude of the two conditions is

minimized, and such conclusion can not be made.
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Figure 3.7: Histogram of the response time for “target” stimuli for individual subjects in Ex-
periment II.

[ [
]]

DTW-Based averaging

Conventional averaging

DTW-Based averaging

Conventional averaging

Figure 3.8: Exemplary recorded ∆[HbO2] signals from one channel (Channel 1) under “target”
condition (shown in left) and “non-target” condition (shown in right) in Experiment II. Each
trace represents a signal associated with a trial. The averaged signals obtained through conven-
tional (shown in blue) and DTW-based (shown in red) averaging techniques are also shown.
The vertical bar represents the timing of the onset of the experimental stimulus.

Next, for each subject and each channel, the AIs under the target and non-target conditions,

denoted as AIta and AInt, respectively, were estimated using the window length of 21 samples
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(2.02 s). The difference in AIs across two conditions, defined as AIdi f f = AIta−AInt, was then

computed. For each channel, AIdi f f obtained from all subjects, were pooled and tested using

one-sample right-tail student’s t-test, to determine whether the channel is active in response

to the oddball effect, with the null-hypothesis of mean(AIdi f f ) = 0. With a threshold of

p < 0.05, the identified active channels, using the conventional-based averaging technique and

the DTW-based averaging technique are shown in Figs. 3.9-a and 3.9-b, respectively. One can

observe that compared to the patterns obtained through the conventional averaging, the active

regions identified through the DTW-based averaging are located mostly in the prefrontal and

occipital cortices, which appears to be consistent with previous fMRI studies [96].

(a)

(b)

Figure 3.9: Location of channels (shown in red) that are specifically sensitive to the target
condition compared to the non-target condition (sensitive to the oddball effect) in Experiment
II, using the conventional-based averaging (shown in (a)) and the DTW-based averaging (shown
in (b)), respectively.

3.3.2 Simulation Studies

Given that in simulations, the “ground truth” in terms of the location of brain activation is

known, simulations are performed to compare the performance of the conventional averaging

and the DTW-based averaging techniques. Furthermore, we also investigate the impact of

choice of reference signal on the performance of DTW-based averaging procedure.
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3.3.2.1 Simulation Platform

We considered a scenario similar to Experiment II where there are 50 fNIRS channels, and the

task is an oddball task, with 20 target trials, and 150 non-target trials. The designed “ground

truth” was that 10 channels are sensitive to the oddball effect (target>non-target).

Simulated signals were generated based on the widely-used equation that is typically used

to model the hemodynamic response function (HRF) [97]

HRF(t) = A1(
t− d

τ1
)δ1 e(−(δ1/τ1)(t−τ1)) − A2(

t− d
τ2

)δ2 e(−(δ2/τ2)(t−τ2)), (3.8)

where parameters A1, A2, τ1 and τ2 determine the amplitude of the peak and the undershoot, d

represents the time delay, and δ1 and δ2 form the general shape of the peak and the undershoot.

Through fitting this model to a typical measured oxygenation response from fNIRS recording,

we used A1 = 1, A2 = 0.4, δ1 = 10, and δ2 = 20 for signals under target and non-target

conditions. The amplitude of the signals for the target condition was set to be 3% larger than

that of the non-target condition.

To simulate the nonlinear variability in the latency, parameters τ1, τ2, and d were desig-

nated as normally distributed random variables. Their variance was set as 20, 25, and 10,

respectively. Using this model, 20 target trials, and 150 non-target trials were created 40 times

(corresponding to 40 participants). Additive white Gaussian noise was added to each of the

simulated signals so that the SNR of the obtained signals equals 10 dB.

3.3.3 Performance Comparison

The analysis procedure for the simulated dataset followed the one we used for Experiment

II. First, the signals associated with each channel, each condition, and each subject were av-

eraged separately using the conventional and the DTW-based averaging techniques. Next,

AIdi f f values were computed for each channel and each subject. One-sample right-tail stu-

dent’s t-tests were conducted across subjects for each channel, with the null-hypothesis being

mean(AIdi f f ) = 0. As the “ground truth” is known, we expected that for the 10 “true” active

channels, the estimated AIdi f f be significantly larger than zero.
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Conventional-based averaging
DTW-based averaging (Ref.: HRF)

(a) (b)

Conventional-based averaging
DTW-based averaging (Ref.: mean)

Figure 3.10: ROC curves for the Conventional and the DTW-based averaging techniques. For
the right figure, a standard HRF is used as the reference signal for the DTW-based averaging
technique.

We computed the receiver operating characteristic (ROC) curves for each of the averag-

ing techniques to evaluate their performance. Here, the ROC curve illustrates the fraction of

detected active channels and the associated false positive rate, when the threshold (given as

t-values) varies. Fig. 3.10-a shows the resultant ROC curves for the conventional (shown in

blue) and DTW-based (shown in red) averaging techniques using the simulation dataset. It is

clearly shown that the DTW-based averaging technique outperforms the conventional one.

Furthermore, to examine the effects of the choice of the reference signal on the outcome

of the DTW-based averaging technique, we repeated the simulation study where instead of the

point-by-point averaged signal, we used the standard hemodynamic response as the reference

signal. The result is shown in Fig. 3.10-b. It illustrates that the performance of the DTW-based

averaging, with the standard HRF as reference, is still better than that of the conventional-

based averaging. This result shows that regardless of the choice of the reference signal, the

DTW-based averaging technique outperforms the conventional-based averaging technique in

fNIRS-based detection studies.

3.4 Discussion

The averaging operation is performed at different stages of a wide range of fNIRS brain imaging

studies (e.g. across trials, blocks, subjects), with the objective of enhancing the signal strength
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associated with task-induced activities, and reducing noise and randomness. The commonly

used averaging approach used for fNIRS signals is the point-by-point averaging technique. As

shown in this chapter, due to the existence of variable latencies across fNIRS signals, the use

of conventional point-by-point averaging technique can lead to inaccuracies in the averaged

signal, and consequently, incorrect conclusions about the functionality of the brain. To address

this problem, we presented a DTW-based averaging technique for fNIRS signals that takes into

account that their alignment properties may vary in time. The technique optimally aligns each

fNIRS signal with a reference signal such that their similarity is maximized. Once all fNIRS

signals are optimally aligned, the averaged signal is computed.

To compare the performance of the DTW-based and conventional point-by-point averaging

techniques for fNIRS signals, we focused on the problem of localizing task-induced active re-

gions in the brain. Results from both block design and event-related design experiments showed

that the location of task-induced active regions estimated based on the DTW-based averaged

signals are better aligned with the results reported from prior fMRI studies. Furthermore, since

in the presented algorithm, fNIRS signals are individually aligned with a reference signal, we

also investigated the question of whether choosing a different signal as the reference would

impact the performance of the algorithm. With a reference signal modeled based on a standard

HRF, the DTW-based averaging technique continued to show improved performance compared

to the conventional point-by-point averaging technique, in localizing active brain regions. The

results also show that the performance of the DTW-based averaging can be further improved

with a proper choice of reference signal. In our simulation setup, all generated fNIRS signals

were created based on the HRF model (with randomized parameters and added noise), hence

the choice of the standard HRF as the reference signal resulted in an improved performance,

compare to the scenario where point-by-point averaged signal was chosen as the reference sig-

nal.

Improvement in the accuracy of the average of fNIRS signals is expected to introduce sig-

nificant impact in various fNIRS-based neuroscience and clinical research studies. For exam-

ple, in multi-modal EEG-fNIRS experiments [98, 99, 64], the location of active regions esti-

mated from fNIRS signals, has been used as constraint for the EEG source localization problem
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[64]. Errors in localizing active brain regions due to inaccuracies in the average signal can nega-

tively influence the outcome of the EEG source localization problem, and therefore, the method

presented here can be employed to avoid such impact. While for the proof of concept, in this

chapter, we focused on the problem of localizing task-induced active brain regions, DTW-based

averaging framework can be employed in other steps of the analysis of fNIRS signals, to avoid

loss of information. For example, several studies report grand averages of the hemodynamic

response across subjects [100, 101, 102, 103, 104, 105]. We suggest DTW-based averaging be

used in these averaging steps, instead of the commonly used point-by-point technique, since

variations in latencies for signals recorded from different individuals are inevitable. This issue

is of particular importance when the study focuses on patient population, as several investiga-

tions have confirmed the existence of variable latencies in responses of patients (e.g. those with

ASD) to stimuli [76, 77].

3.5 Summary

In this chapter, we presented a novel averaging framework based on DTW algorithm. Our

results suggest that the conventional point-by-point averaging technique, commonly used in

fNIRS brain imaging studies, can result in inaccurate conclusions about the brain function,

and therefore, use of advanced averaging techniques, such as DTW-based averaging, that take

into account the temporal variations in the alignment of recorded fNIRS signals, is highly

recommended. Simulation results showed that the performance of the DTW-based averaging

technique can be further improved based on the choice of reference signal. Future work involve

investigating this issue in depth and developing quantitative statistical measures and iterative

procedures to obtain an optimum choice for a reference signal, that maximizes the accuracy of

the averaged signal.
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Chapter 4

Data Analytics: Decoding Cortical Brain States from Widefield
Calcium Imaging Data Using Visibility Graph

In this chapter, we focus on the problem of inferring behavior from widefield calcium imaging

data. We introduce a method based on visibility graph to reliably identify temporal characteris-

tics of brain recordings which carry discriminative information across behaviors. The presented

method is validated using widefield calcium imaging under spontaneous whisking condition.

4.1 Introduction

It had been shown that the brain states is highly related to the functions of sensory percep-

tion, sensorimotor coordination and learning [106]. Decoding the cortical brain states and

inferring about the behavior, intent, or the engagement of a particular cognitive process, from

neuroimaging data, finds applications in several domains including brain machine interfaces

(BMIs) [107, 108, 109]. Depending on the type of physiological activity that is monitored, var-

ious computational techniques have been suggested to infer or decode the intent or the cogni-

tive state of the subject from recorded brain activities. Methods based on functional specificity

[110, 111], brain connectivity patterns [112, 113, 114], and power spectral density [115], to

name a few, have been suggested. However, the estimation power of such methods has been

limited to distinguishing very distinct classes of motor activities or cognitive processes [116].

As such the community has been searching for alternative methods to improve the power of

inference.

Given the time-varying nature of the brain function, in this work, we focus on the time

domain information. We hypothesize that there exist “characteristics" in the time course of cor-

tical activities that are specific to the corresponding behavior. The key challenge is to develop

methods that can reliably identify such discriminatory characteristics in cortical recordings. To
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test the hypothesis, we use transgenic calcium reporter mice expressing GCaMP6f specifically

in neocortical pyramidal neurons to image neural activity in nearly the entire left hemisphere

and medial portions of the right hemisphere in head-fixed mice, including sensory and motor

areas of the neocortex. For behavior, we focus on active whisking (AW) and no whisking (NW).

In many rodent cortical neurophysiological studies, whisking behavior has been associated with

brain state changes on different levels of cell and systems function [55]. Quiet wakefulness, in

the absence of locomotion or whisking, is associated with low frequency synchronized cortical

activity, while locomotion and whisking are associated with higher frequency desynchronized

activity in primary sensory areas of the cortex [53], [106], [117], [118], [119]. Recent studies

indicate that active, arousal-related behaviors such as locomotion and whisking are associated

with widespread modulation of cortical activation [40], [57]. Therefore, AW and NW behav-

ioral states could be a good proxy for distinct brain states.

To identify features in calcium imaging data that would be unique to behavior (here AW or

NW), we propose to use visibility graph (VG) [120]. As will be discussed, VG provides a means

to “quantify” various properties of a given time series, enabling a path to extract temporal-

based features that are unique to the characteristics of the time series. We construct the VG

representation of the recordings for each region of interest (ROI), extract the graph measures,

and build features based on the graph measures for all ROIs. We conduct an extensive study

to identify the best model capable of inferring AW and NW for each subject, from cortical

recordings. Fig. 4.1 provides a summary of the procedure.

The novelty of our work is the introduction of the visibility graph for extracting features

that are related to the temporal characteristics of recorded calcium time series. It is shown

that the temporal features of calcium recordings extracted through VG, carry discriminatory

information for inferring the corresponding behavior. While in this study, we consider cortical

signals from the entire left hemisphere and medial part of the right hemisphere, and focus on

whisking condition, given the data-driven nature of the proposed approach, we expect that it

would be also applicable to recorded activity from other areas of the brain, such as the thalamus

and deep layers of motor cortex, for inferring other forms of behavior or cognitive states.
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Figure 4.1: Summary of the proposed analysis procedure.

4.2 Materials and Methods

Before discussing details of data collection and the analysis procedure, we provide clarification

about some terminologies used throughout the paper. Note that in this study we use the term

“decode” and “infer” interchangeably.

The imaged area here refers to the optically accessible cortical area. The imaged area in this

study covers the entire left hemisphere, and medial part of the right hemisphere of the cortex.

Behavior in this study is related to whisking condition. Two classes of behavior, active

whisking (AW) and no whisking (NW), are considered here. We use the term “brain state” and

“behavior” interchangeably.

Features are measures extracted from cortical recordings. To examine how well the pro-

posed features from recorded calcium transients can discriminate the two classes of AW and

NW, classification experiments are performed. In these experiments, a classifer refers to the

algorithm that is used to perform classification.

A predictive model refers to a trained classifier. The ability of the model to correctly infer

(or predict) the whisking condition (AW or NW) from features extracted from cortical record-

ings, is tested using k-fold cross validation.
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We now discuss the widefield imaging experiments, and the methods used in the analysis.

4.2.1 Animals and Surgery

Six mice expressing GCaMP6f in cortical excitatory neurons were used for widefield transcra-

nial imaging [40, 13]. All procedures were carried out with the approval of the Rutgers Univer-

sity Institutional Animal Care and Use Committee. Triple transgenic mice expressed Cre re-

combinase in Emx1-positive excitatory pyramidal neurons (The Jackson Laboratory; 005628),

tTA under the control of the Camk2a promoter (The Jackson Laboratory; 007004) or ZtTA (3/6

mice) under the control of the CAG promoter into the ROSA26 locus (The Jackson Laboratory;

012266) and TITL-GCaMP6f (The Jackson Laborotory; Ai93; 024103). At 7 to 11 weeks of

age, mice were outfitted with a transparent skull and an attached fixation post using methods

similar to those described previously [51, 40, 121]. Mice were anesthetized with isoflurane (3%

induction and 1.5% maintenance) in 100% oxygen, and placed in a stereotaxic frame (Stoelt-

ing) with temperature maintained at 36 ◦C with a thermostatically controlled heating blanket

(FHC). The scalp was sterilized with betadine scrub and infiltrated with bupivacaine (0.25%)

prior to incision. The skull was lightly scraped to detach muscle and periosteum and irrigated

with sterile 0.9% saline. The skull was made transparent using a light-curable bonding agent

(iBond Total Etch, Heraeus Kulzer International) followed by a transparent dental composite

(Tetric Evoflow, Ivoclar Vivadent). A custom aluminum headpost was affixed to the right side

of the skull and the transparent window was surrounded by a raised border constructed using

another dental composite (Charisma, Heraeus Kulzer International). Carprofen (5 mg/kg) was

administered postoperatively. Following a recovery period of one to two weeks, mice were

acclimated to handling and head fixation for an additional week prior to imaging. Mice were

housed on a reversed light cycle and all handling and imaging took place during the dark phase

of the cycle.

4.2.2 Widefield Calcium Imaging and Whisker Movement Recording

Imaging of GCaMP6f was carried out in head-fixed mice with the transparent skull covered

with glycerol and a glass coverslip. A schematic of the imaging system is shown in Fig. 4.2. A
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Figure 4.2: Left: Illustration of the experimental setup used for widefield imaging of corti-
cal activity of mice expressing GCaMP6f and simultaneous recording of whisker movement.
Right, top: raw image of neocortical surface through transparent skull preparation. M1, S1,
and V1 are schematically labeled. Asterisk indicates position of Bregma. Right, bottom: ROIs
are superimposed on a map based on the Allen Institute common coordinate framework v3 of
mouse cortex (brain-map.org; adapted from [8]). ROI: 1, Retrosplenial area, lateral agranular
part (RSPagl); 2, Retrosplenial area, dorsal (RSPd); 3, 4, 9, Secondary motor area (MOs); 5,
7, 8, 10, Primary motor area (MOp); 6, Primary somatosensory area, mouth (SSp-m) / upper
limb (SSp-ul); 11, 16, Primary somatosensory area, lower limb (SSp-ll); 12, SS-ul; 13, Primary
somatosensory area, nose (SSp-n); 14, 20, Primary somatosensory area, barrel field (SSp-bfd);
15, SSp-bfd / Primary somatosensory area, unassigned (SSp-un); 17, Retrosplenial area, lateral
agranular part (RSPagl); 18, Anterior visual area (VISa) / Primary somatosensory area, trunk
(SSp-tr); 19, VISa / SSp-tr / SSp-bfd; 21, Supplementary somatosensory area (SSs); 22, Audi-
tory area (AUD); 23, Temporal association areas (TEa); 24, SSp-bfd / Rostrolateral visual area
(VISrl); 25, 29, 30, Primary visual area (VISp); 26, Anteromedial visual area (VISam); 27,
RSPagl / RSPd; 28, Posteromedial visual area (VISpm).
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Recording

Resting

Figure 4.3: Experimental protocol that was followed for each subject. Each subject participated
in two sessions per day. In each session, spontaneous activity was acquired for sixteen 20.47 s
blocks, with 20 s of rest between blocks.

custom macroscope [50] allowed for simultaneous visualization of nearly the entire left hemi-

sphere and medial portions of the right hemisphere (as seen in Fig. 4.2. The cortex was illumi-

nated with 460 nm LED (Aculed VHL) powered by a Prizmatix current controller (BLCC-2).

Excitation light was filtered (479/40; Semrock FF01-479/40-25) and reflected by a dichroic

mirror (Linos DC-Blue G38 1323 036) through the objective lens (Navitar 25 mm / f0.95 lens,

inverted). GCaMP6f fluorescence was filtered (535/40; Chroma D535/40m emission filter)

and acquired using a MiCam Ultima CMOS camera (Brain vision) fitted with a 50 mm / f0.95

lens (Navitar). Images were captured on a 100× 100 pixel sensor. Spontaneous cortical ac-

tivity was acquired in 20.47 s blocks at 100 frames per second with 20 s between blocks (Fig.

4.3). Sixteen blocks were acquired in each session and mice were imaged in two sessions in a

day.

In addition, all whiskers contralateral to the imaged cortical hemisphere were monitored

with high-speed video at 500 frames/s using a Photonfocus DR1 camera triggered by a Master-

9 pulse generator (AMPI) and Streampix (Norpix) software. Whiskers were illuminated from

below with 850 nm infrared light. The mean whisker position was tracked and measured as the

changes in angle (in degree) using a well-established, automated whisker-tracking algorithm,

freely available in MATLAB [122], that computes the frame-by-frame center of mass of all

whiskers in the camera’s field of view. The angle of the center of mass of all whiskers is similar

to the average angle of all whiskers tracked individually, because the whiskers do not move

independently.
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4.2.2.1 Preprocessing of Calcium Signals

Changes in GCaMP6f relative fluorescence (∆F/F0) for each frame within a recording were

calculated by subtracting and then dividing by the baseline. The baseline was defined as the

average intensity of the first 49 frames. Two blocks (one from subject #2 and one from subject

#3) were excluded from further analysis due to loss of whisker movement data. The length of

blocks were shortened to 20 s from 20.47 s for the remaining parts of analysis.

Thirty 5× 5 pixel regions of interest (ROIs) distributed over the cortex (see Fig. 4.2) in each

frame were defined based on location relative to the bregma point on the skull. In 5/6 mice,

whisker stimulation by piezo bending element was used to map the location of S1 barrel cortex.

The 30 ROIs were positioned to cover and fill space between areas including somatosensory,

visual and motor areas of the cortex (S1, V1, M1) (see Fig. 4.2). Each pixel is 65 µm side

length, and 5 × 5 pixel ROI is 325x325 µm. This size ROI is the approximate dimension

of a cortical column in sensory cortex, and is consistent with the standard practices in the

field [41, 123]. These studies, which examined sensory mapping, spontaneous activity, and

task-related activation, have shown that widefield calcium signals do not display signals with

resolution better than these dimensions, and therefore, smaller ROIs are not beneficial. The

choice of ROI size is therefore, suitable and standard for comparison across different existing

datasets. ROI locations were kept the same across subjects. Time series associated with each

ROI were obtained by finding the average of pixel intensities within the corresponding ROI.

4.2.2.2 Labeling Data Related to Active Whisking and No Whisking Conditions

In order to investigate the relationship between behavior and the cortical activity, it is necessary

to identify the duration in the recordings that are related to “active whisking” (AW) and “no

whisking” (NW) conditions. Here we developed a method to automatically label the duration

related to each condition, according to the whisker movement recordings.

The whisker movement time series was segmented using a sliding window. For a given seg-

ment i, the standard deviation (SD) of the signal (σwi ) is computed as σwi = ∑N
j=1(xj − µi)

2,

where µi represents the mean and N denotes the number of samples within the segment. This

procedure generates a new time series of σwi s, representing the extent to which the whisker
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is in motion over the course of observation. A threshold was then set to identify whether the

recordings correspond to active whisking (above the threshold) or no whisking (below thresh-

old) conditions. After testing different threshold values and visually inspecting the raw whisker

movement signals, a threshold value of 10 was used.

As an example, sample images and time series corresponding to two ROIs (6 and 27) along

with whisking movement signal, recorded in block #1 from subject #1, are shown in Fig. 4.4.

The top row illustrates a series of baseline-corrected images. Shown also are the averaged

image for the duration of (6.01− 6.20) s (labeled in red in Fig. 4.4(c)), where no clear calcium

transients are present, and the averaged image for the duration of (13.21− 13.40) s (labeled in

blue in Fig. 4.4(c)), where calcium transients are present.

The measured angle corresponding to whisker movement recordings of the same block is

shown in Fig. 4.4(d), and in Fig. 4.4(e) the time series obtained based on the standard deviation

calculation of sliding window approach discussed in Section 4.2.2.2 is plotted. The threshold

level for determining AW and NW conditions over time, is visualized by a red horizontal line.

4.2.3 Visibility Graph

Here, we first describe the procedure used to construct the visibility graph for a given time

series and extracting graph measures.

4.2.3.1 VG Construction

Visibility graph is an effective tool that can be employed to reveal the temporal structure of

the time series at different time scales [120, 124, 125, 126]. Recently, VG has been receiving

increased attention in various studies related to human brain function such as those involving

sleep [127], epilepsy [128, 129], Alzheimer’s disease [130], and differentiating resting-state

and task-execution states [14]. In these studies, VG has been applied to time series obtained

from various imaging modalities such as electroencephalography (EEG) [127, 128, 129, 130,

131], functional near-infrared spectroscopy (fNIRS) [14], and functional magnetic resonance

imaging (fMRI) [132].

VG maps a time series to a graph, thereby, providing a tool to “visually” investigate different

properties of the time series [120, 126]. The VG associated with a given time series x =
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Figure 4.4: Sample images and time series recorded from block #1 of subject #1. (a)-(b)
baseline-corrected images, (c) time series corresponding to ROI-6 and ROI-27, (d) measured
angle corresponding to whisker movement signal recorded from the same block, and (e) stan-
dard deviation-based time series of the signal, (d) where the threshold level used for labeling
AW and NW conditions is shown as a red line.

[x(1), · · · , x(N)] of N points is constructed as follows. Each point in x is considered as a

node in the graph (i.e. for an N-point time series, the graph will have N nodes). The link

between node pairs is formed only if the nodes are considered to be naturally visible. That is,

in the graph, there will be an undirected and unweighted link between nodes i and j, if and only

if, for any point p (i < p < j) in the time series, the following condition holds

x(p) < x(j) + [x(i)− x(j)][
t(j)− t(p)
t(j)− t(i)

], (4.1)

where t(j), t(p) and t(i) are the time corresponding to points j, p, and i [120]. That is, two
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nodes i and j are connected, if the straight line connecting two data points (t(i), x(i)) and

(t(j), x(j)), does not intersect the height of any data point (t(p), x(p)) that exists between

them. Accordingly, in the adjacency matrix Ax = {ai,j} (i, j = 1, · · · , N), the element ai,j

will be set to 1 if the nodes i and j are connected given the definition above, and 0 if otherwise.

4.2.3.2 Graph Measures as Features

Once the time series x of N points is mapped to a graph with adjacency matrix Ax = {ai,j}

(i, j = 1, · · · , N) via VG, the topological measures of the graph can be utilized to investigate

different properties of the time series. Here, we consider three of such measures: Edge Density

(D), Averaged Clustering Coefficient (C), and Characteristic Pathlength (L), as defined below.

• Edge Density (D) measures the fraction of existing edges in the graph with respect to the

maximum possible number of edges [133]. The edge density is obtained as

D =
1

N(N − 1) ∑
i,j

ai,j. (4.2)

It can be shown that for a globally convex time series, the value of D would be 1, and for

a time series with large number of fluctuations, the value of D would be small. Therefore,

the edge density can be considered as a measure of irregularity of fluctuations in the time

series [134].

• Averaged Clustering Coefficient (C) is obtained as the average of local clustering co-

efficients of all nodes in the graph. The local clustering coefficient of the node i (Ci)

is defined as the fraction of its connected neighboring nodes to the maximum number

of possible connections among the neighboring nodes [133]. The averaged clustering

coefficient is computed as

C =
1
N

N

∑
i=1

Ci =
1
N ∑

i,j,l

aijailajl

Ki(Ki − 1)
, (4.3)

where Ki represents the degree of node i (the number of edges connected to node i). A

large value of C indicates dominant convexity of the time series [134].
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• Characteristic Pathlength (L) is found as the average of the shortest pathlength between

all node pairs in the graph. The characteristic pathlength is obtained as

L =
1

N(N − 1) ∑
i,j

lij, (4.4)

where lij denotes the shortest pathlengh between nodes i and j.

4.2.4 Classification

To learn models of inferring behavior (as measured by AW and NW) from recordings obtained

via widefield calcium imaging of cortical activity, classification experiments are performed.

Specifically, we wish to learn classifiers in the following form:

f : VG Measures (t0, t0 + w)→ {AW, NW}, (4.5)

where VG Measures (t0, t0 + w) represents graph measures that are extracted from VGs asso-

ciated with calcium signals within the segment [t0, t0 + w], and w denotes the window length

used for segmentation 4.3.1.

Here, we briefly describe the feature extraction process, the classifiers, and the measures

used to evaluate the classification performance. Classification experiments were executed using

GraphLab [135].

4.2.4.1 Feature Extraction

Three graph measures were extracted from the VG associated with each segment (identified by

the sliding window) of recordings obtained from individual ROIs. To extensively investigate

which measures will result in a better model, seven types of feature vectors were formed. These

were D, C, L, D + C, D + L, C + L, and D + C + L. In all cases, feature vectors were

constructed using measures from all the ROIs. For example, when considering D as features,

for each segment, a feature vector of 30× 1 is constructed (where 30 represents the number of

ROIs).
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Table 4.1: Number of blocks and number of AW/NW segments for each subject, when the
window length of 2 s with a step size of 0.5 s is used.

Subject ID 1 2 3 4 5 6 Total % Total Segments
# Blocks 32 31 31 32 32 32 190

# AW Segments 238 360 240 416 227 153 1634 23.24
# NW Segments 946 787 907 768 957 1031 5396 76.76

Five different sliding window duration (1, 1.5, 2, 2.5, and 3 s) were considered for seg-

mentation. As such, the number of segments per recording block varies based on the sliding

window duration (39 for 1 s window, 38 for 1.5 s window, 37 for 2 s window, 36 for 2.5 s

window, and 35 for 3 s window). There are 32 blocks for subject #1, 4, 5, 6, and 31 blocks

for subject #2 and 3. Table 4.1 summarizes the number of blocks, and the number of AW/NW

segments for each subject, when the window duration of 2 s, and window step of 0.5 s are used.

4.2.4.2 Classifiers and Evaluation Measures

Three commonly-used classifiers were used to perform classification: 1) k-nearest neighbor

(kNN), 2) regularized logistic regression (LR), and 3) random forest (RF). These classifiers

have been shown to offer good performance with neuroimaging data in several studies [136,

137, 138, 139, 140, 141, 142, 143, 144]. Here, for kNN, k in the range of 1 and 10 is used, for

LR, `2-norm regularization is used, and the weight of the regularization was set between 10−2

and 101.5, and for RF, the subsampling ratio is selected to be 40%, 70% or 100%.

To evaluate the classification performance, three measures, accuracy (AC), sensitivity (SE),

and specificity (SP), were used [145].

First, separate classifiers were trained for each subject. A ten-fold cross-validation was used

to test the performance of the models. For each subject, the data were randomly partitioned into

ten subsamples. Classification experiments were repeated ten times, where during each, one

subsample was assigned as the testing dataset, and the remaining subsamples were assigned

as training dataset. For every subject, the classification performance was evaluated using the

measures described above, and then results were averaged across the ten repetitions.
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4.3 Results

4.3.1 VG Construction from Calcium Signals

The preprocessed calcium signals were segmented using sliding windows with the fixed step of

50 time points (0.5 s). Five different window lengths were used: 100, 150, 200, 250, and 300

time points (corresponding to 1, 1.5, 2, 2.5, and 3 s, respectively). The VG was constructed for

each segment of the time series obtained from each ROI. For each VG, three graph measures,

D, C, and L were extracted. As a result, for a given sliding window length, recordings from

each ROI of each recording block, result in three time series for D, C and L. Our objective is

to use these information and develop models to predict the behavior of active whisking and no

whisking, from recorded calcium signals.
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Figure 4.5: Preprocessed calcium signals of recording block #1 from subject #1 from ROI-6
(a), ROI-8 (f), ROI-30 (k) and ROI-19 (p). For each case, 2 s segments of signals corresponding
to AW (shown in red in (b), (g), (l) and (q)) and NW (shown in blue in (c), (h), (m) and (r))
conditions as determined from whisker movement recordings. For each ROI, the adjacency
matrices for 2 s AW are shown in (d), (i), (n), and (s), and for 2 s NW are shown in (e), (j),
(o), and (t). Measures extracted from VG of 2 s duration of AW time series (shown in red) and
from VG of 2 s NW time series (shown in blue) are also shown in (u) for each ROI.
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Figure 4.6: Color-coded graph measures for all ROIs as a function of time during a recording
block. (a) Edge density (D), (b) Averaged clustering coefficient (C), and (c) Characteristic
pathlength (L). (d) Whisker movement recording obtained simultaneously in the same block.

Representative preprocessed calcium signals from four ROIs (6, 8, 19 and 30) of the record-

ing block #1 from subject #1 are shown in Fig. 4.5. For signals from each ROI, two segments

of 2 s duration, corresponding to AW and NW, are also shown. For each of these segments,

the VG is constructed and their corresponding adjacency matrices are presented. As segments

have the same duration (2 s or 200 time points), the number of nodes in all graphs will be the

same. In these matrices, the dark color represents no connection, and the light color represents

the existence of an edge. For each ROI, the distinctions between the patterns of the matrices

related to AW and NW can be revealed via the three graph measures D, C and L. The values

for these measures are compared for AW and NW and each ROI in Fig. 4.5(u).

As can be seen, distinct patterns (e.g. in terms of amplitude and width of calcium tran-

sients), for the same whisking condition (AW or NW) are observed in signals obtained from
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different ROIs distributed over the cortex, suggesting that different cortical regions have poten-

tially different relationships with behavior. For example, for ROIs in or close to M1 (ROI-6 and

ROI-8) the measure D is larger during NW compared to AW, suggesting that there are more

number of edges in the VG representation of recordings from this region for NW as compared

to AW. For ROIs close to S1 (ROI-19) the measure L appears to be smaller during NW com-

pared to AW, suggesting that there are less connections in the VG representation of recordings

from this region for NW as compared to AW. In V1 (e.g. ROI-30), the measure C is larger

during NW as compared to AW, indicating the presence of smaller clusters in the VG repre-

sentation of recordings from this region during AW as compared to NW. These results suggest

that different regions of the brain follow different temporal dynamics during behavior, and such

differences can be revealed and quantitatively described via VG measures D, C and L.

The graph measures shown in Fig. 4.5(u) correspond to two segments of the time series

for each of the four ROIs. Using the sliding window of length 2 s, VGs can be constructed

for each segment of the time series, and from each VG, the three mentioned graph measures

can be extracted. Figs. 4.6(a) to (c) show the results of such analysis for all ROIs, illustrating

the temporal evolution of D, C and L, respectively. The simultaneously obtained whisker

movement recording is also shown in Fig. 4.6(d). It can be clearly seen that different patterns

are observed for VG measures for duration corresponding to AW and NW across all ROIs.

4.3.2 Classification Results

For each subject, we performed comprehensive investigation on how the selection of various

parameters (e.g. various window sizes for extracting VG measures, and performing classifi-

cation based on different selection of feature types) will impact the classification results. For

each choice of window size, features were constructed based on individual or a combination of

measures from the corresponding VG. Figs. 4.7, 4.8 and 4.9 illustrate the evaluation measures

obtained for each subject when kNN, LR, and RF were used as the classifier, respectively.

It was found out that while the performance is subject dependent (due to individual vari-

ability as well as variability in whisking behavior across subjects (see Table 1)), with a proper

choice for features and window length, all classifiers result in high levels of accuracy and speci-

ficity for all subjects. The sensitivity remains to be relatively modest, however, considering the



49

Subject 01

Subject 04

Subject 02

(Time Point)

Window Length

Subject 05

Subject 03

Subject 06

(Time Point)

Window Length
(Time Point)

Window Length

(Time Point)

Window Length
(Time Point)

Window Length
(Time Point)

Window Length

D

C

L

D+C

D+L

C+L

D+C+L

100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Accuracy

Sensitivity

Specificity

Figure 4.7: Classification results when using kNN as classifier.

imbalanced dataset between AW and NW (e.g. only 23% of the samples belonged to the AW

condition for 2 s window duration), the obtained significantly better accuracy than naive clas-

sifier (in which all the testing samples are assigned the label associated to the majority class

in the training set), demonstrating the effectiveness of the VG measures in providing features

that carry discriminatory information for AW and NW. In majority of scenarios, classification

based on either C or L did not result in good performance, while classification based on feature

D + C or D led to the best sensitivity results for majority of the subjects.

For each classifier, information about the choice of window length (w), features, and param-

eters that have resulted in the best sensitivity among all the explored options, are summarized

in Table 4.2. Consistent with the observation made from Figs. 4.7, 4.8, and 4.9, it can be

seen that, in all cases, the graph measure D, either individually or jointly with others, has been

identified as the optimum feature. For classifiers kNN and LR, the feature D + C across most

subjects has resulted in the best sensitivity results, while for the RF classifier, the measure D

by itself has worked as the optimum feature. In terms of duration of segments for constructing

VGs, window duration of equal or larger than 2 s has resulted in the optimum performance.

In addition, for most cases, the sensitivity measure dropped as the window size for extracting

features goes below 150 points.
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Figure 4.8: Classification results when using regularized logistic regression (LR) as classifier.

Overall, kNN and LR deliver almost always slightly better performance than RF, but using

the right features, all classifiers are able to successfully differentiate the whisking conditions,

demonstrating that features based on visibility graph carry discriminatory information. To sum-

marize the performance of the classifiers, we repeated the classification across subjects by using

unified parameters that led to the best classification performance in majority of the subjects in

Table 4.2. We used D + C as the feature, and 2 s as the window length. The results are pre-

sented in Table 4.3, where as can be seen, on average, an accuracy larger than 86% is achieved

across all subjects.

4.4 Discussion

Measuring brain states over wide areas of cortex is of central importance for understanding

sensory processing and sensorimotor integration. Changes in brain states influence the pro-

cessing of incoming sensory information. For example, data from several sensory modalities

including somatosensation, vision, and audition, indicate that the cortical representations of

stimuli vary depending on the neocortical state when the stimulus arrives [146, 147, 148, 149].

In mice, natural spontaneous behaviors such as locomotion and self-generated whisker move-

ments influence brain states through increased behavioral arousal and activation of ascending
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Figure 4.9: Classification results when using random forest (RF) as classifier.

neuromodulator systems [118, 150]. Studies in mice using widefield imaging of voltage and

calcium sensors during whisking or locomotion have provided important information on the

spatiotemporal modulations of brain states [40, 57], and relating these dynamic optical signals

to behavior is an area of great interest. This line of research will be advanced by the develop-

ment of several new transgenic calcium reporter mice [151, 152] and cranial window methods

[42].

Studies from several sensory modalities including somatosensation, vision, and audition

have reported changes in the cortical representation of stimuli that vary depending on the neo-

cortical state when the stimulus arrives.

The VGs constructed here corresponded to segments of recordings as identified by the mov-

ing window of length w. We performed a comprehensive study (five different window lengths,

seven types of features per choice of window length, and three classifiers) to find the model

that can be used to infer the behavior (AW or NW) from calcium imaging data. All classifiers

delivered high accuracy and specificity and moderate sensitivity, with kNN and LR offering

better performances than RF. Considering the imbalanced dataset between AW and NW (e.g.

only 23% of the samples belonged to the AW condition for 2 s window length), the obtained

significantly better-than-naive-classifier demonstrates the effectiveness of the VG measures in
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Table 4.2: Classification results for best sensitivity obtained for each subject when using kNN,
regularized logistic regression (LR), and random forest (RF) as classifier. Features, window
lengths (w), and related parameters from which the optimum results have been obtained are
also listed (SS is short for subsample). Note that “+” in the “Feature” rows represent using
multiparametric approach for performing the classification.

Classifier Performance Measure 1 2 3 4 5 6

kNN

AC (%) 89.84 91.52 89.78 85.72 86.74 90.09
SE (%) 64.33 83.64 78.01 72.18 67.42 69.66
SP (%) 96.08 95.15 93.03 93.01 91.20 93.47
Feature D D + C D + C D + C D D + C

w (points) 250 300 300 200 200 300
k 7 3 1 5 1 1

LR

AC (%) 89.66 88.75 88.14 84.70 88.39 91.83
SE (%) 72.36 89.54 67.53 75.89 68.30 55.58
SP (%) 94.02 88.37 93.64 89.43 93.89 97.49
Feature D D + C D + C + L D + C D + C D + C

w (points) 250 100 200 150 300 100
`2 0.01 0.5623 0.01 0.0178 0.010 0.0316

RF

AC (%) 88.93 91.94 87.00 84.37 88.77 88.21
SE (%) 67.57 87.80 62.03 72.82 65.81 55.48
SP (%) 94.15 93.73 93.91 90.68 94.20 93.74
Feature D D D D D + L D + L

w (points) 200 250 250 200 200 300
Row SS Ratio 0.7 1.0 1.0 0.7 0.7 0.7
Col. SS Ratio 1.0 0.4 0.7 1.0 0.4 1.0

providing features that carry discriminatory information for AW and NW. Other techniques for

learning from imbalanced data, such as [153], can also be incorporated to achieve an even bet-

ter performance. Regardless, as it was shown, the obtained performance was comparable to the

scenario in which the number of spikes, inferred from calcium signals, are used as features.

Additionally, among the three considered visibility graph measures (D, C and L), it was ob-

served that the measure D, was identified as the feature providing the best sensitivity results, for

all subjects and all choice of classifiers, either individually or jointly with other measures (e.g.

D + C)). This observation indicates that the measure D carries the strongest discriminatory in-

formation among the three considered VG measures. Given that D is related to the number of

edges in the graph that are associated with the fluctuations in the time series, this result shows

that variations in the patterns, and in the relative timing of the fluctuations with respect to one

another, play key roles in differentiating the two states. Furthermore, it was demonstrated that

the proposed method is capable of providing features common across subjects, which result in

successful classification performance.

It is worth noting that, the three different classifiers were implemented independently, to
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Table 4.3: Classification performance using unified parameters across subjects and classifiers.
D + C is used as the feature, and w = 200 points is used as the window length for extracting
features in all cases.

Classifier Performance Measure Mean SD

kNN
AC (%) 86.54 2.86
SE (%) 66.42 11.68
SP (%) 91.67 2.82
AUC 0.774 0.057

LR
AC (%) 88.76 2.67
SE (%) 68.65 11.93
SP (%) 93.81 2.34
AUC 0.927 0.025

RF
AC (%) 87.48 2.16
SE (%) 64.37 13.07
SP (%) 93.31 1.78
AUC 0.912 0.026

demonstrate the robustness of the VG measures as features. The logistic regression classifier is

robust to noise and can avoid overfitting by using regularization. The random forest classifier

can handle nonlinear and very high dimensional features. The kNN classifier is considered

computationally expensive but it is simple to implement and supports incremental learning in

data stream. As presented, all classifiers were able to successfully differentiate the whisking

conditions demonstrating the robustness of the VG metrics in capturing the temporal character-

istic of optical imaging data.

Comparison with spike rate inference-based feature extraction approach

The proposed approach was applied directly to the recorded calcium signals, without using

methods such as template matching [154, 155], deconvolution [156, 157], Bayseian inference

[158, 159], supervised learning [160], or independent component analysis [161]. Here, we

compare the classification performance of the proposed approach with the scenario in which

the number of spikes are used as features for each condition.

To infer the spiking events from calcium recordings, we used the FluoroSNNAP [155]

toolbox in MATLAB, which utilizes a commonly-used template-matching algorithm. The same

window sizes that were considered in VG-based analysis, were also considered for spike-based

analysis. For each segment, feature vectors were constructed by concatenating the number of

detected spikes from all ROIs. The regularized logistic regression was used as the classifier,

with the same `2 penalty weights as was set before. Similar to the VG-based feature extraction
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Table 4.4: Performance comparison of classification experiments based on i) VG-based feature
extraction from all ROIs, ii) Spike-based feature extraction from all ROIs, iii) Variance-based
feature extraction from all ROIs, iv) VG-based feature extraction only from ROI-20, and v)
VG-based feature extraction from ROIs 25-30.

Window Size (s) 1 1.5 2 2.5 3
AUC (All ROIs VG-based) 0.916 0.923 0.927 0.923 0.923

AUC (Spike-based) 0.849 0.882 0.868 0.894 0.896
AUC (Variance-based) 0.914 0.919 0.920 0.915 0.916

AUC (ROI-20, VG-based) 0.841 0.856 0.860 0.857 0.857
AUC (ROIs 25-30, VG-based) 0.825 0.846 0.853 0.857 0.854

technique, the performance was evaluated using the same cross-validation procedure described

earlier.

Results for the area-under-the-ROC-curve (AUC) are presented in Table 4.4 for each win-

dow size. It is shown that the VG-based approach provides a better performance. This result

further confirms the capabilities of VG-based measures in identifying discriminatory features

related to different behavior from calcium recordings.

Comparison with signal variance-based feature extraction approach

We carried out another analysis to compare the classification performance of the proposed ap-

proach with the scenario in which the variance of the signal is used as features for all candidate

window sizes. For each segment, feature vectors were constructed by concatenating the vari-

ance from all ROIs. The same classifier and regularization optimization process similar to

VG-based approach was used. The AUC values based on 10-fold cross validation was used

to compare the classification performance. The results are summarized in Table 4.4 for each

window size, which shows the VG-based method provides a better performance regardless of

the selection of window sizes.

Comparison with VG-based features from the somatosensory cortex

We carried out an additional analysis to examine whether the classification results will be dif-

ferent if only signals recorded from the ROIs located in the primary somatosensory cortex are

considered, since layer 4 “barrels” in primary somatosensory cortex receive sensory input from

the whiskers. Among the ROI locations, the ROI-20 was in close proximity of the primary so-

matosensory cortex, according to the location of bregma and functional mapping experiments
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in a subset of mice. Using the same parameter settings used earlier, classification was per-

formed based on VG measures extracted from ROI-20 signals. Results for AUC are shown in

Table 4.4. It can be seen that when features from all ROIs (covering large area of the cortex) are

used, the classification performance is significantly better. This result is consistent with pre-

vious work [40, 56, 57, 162], which suggest that brain state modulation is widespread across

many cortical regions.

In a related analysis, we further used VG-based features extracted from ROIs 25-30, which

did not show the epileptiform-like events during NW (as seen in signals obtained from ROI

6). Results are summarized in Table 4.4, suggesting that VG is capable of decoding behavior

from ROIs with various dynamic properties. It should be noted that VG analysis in this pa-

per, uses a relatively fast time scale (2 s) compared to the blood-flow related signals that can

reduce fluorescent calcium signals. Contamination is particularly strong for sensory-evoked

signals [37, 152], but less of a concern here for signals related to spontaneous behavioral state

transitions.

4.5 Summary

In this chapter, we presented a novel method for predicting behavior based on VG.To the best

of our knowledge, this work is the first study demonstrating that it is possible to infer behavior

from the temporal characteristics of calcium recordings, extracted through visibility graph.

As such the proposed method could have applications in BMIs involving human [107], or in

rodents and primates [108, 109], where from brain recordings subject’s intention should be

inferred. Due to differences in the nature of recorded signals or experimental conditions, a

direct and fair comparison with these studies and the results shown here cannot be made, but

the classification results for accuracy presented here are comparable to the results that have

been reported in [107, 163, 164]. Additionally, the proposed methodology in combination

with widefield optical imaging of ensembles of neurons in awake behaving animals, can open

up several new opportunities to study various aspects of brain function and its relationship to

behavior. It could also be employed to develop quantitative biomarkers based on VG measures.

While here we considered three VG measures (D, L and C), a wide range of other graph

measures [165] could also be used to possibly improve the classification performance. It can
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be concluded that VG is very effective in providing “quantitative” measures that can reveal

differences in recorded calcium time series.
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Chapter 5

Data Analytics: Inferring Behavior from Brain Activity Using
Visibility Graph and Neural Networks

In this chapter, we extend the work of Chapter 4 by presenting two new analysis frameworks

that combine visibility graph and neural networks (NN). We evaluate the frameworks using

widefield calcium imaging data and present their strengthened inferring power as compared to

using conventional machine learning method.

5.1 Introduction

As discussed earlier, understanding the relation between brain states and behavior is one of

the major goals in cognitive neuroscience [56]. Widefield calcium imaging allows detecting

excitatory neurons over large area of cortex with relatively high time resolution. It has been

shown in rodent cortical neurophysiological studies that, whisking behavior is associated with

brain state changes on different levels of cell and systems function [55]. Hence, using widefield

calcium imaging to record large-scale dynamics of brain activity, with “active whisking” (AW)

and “no whisking” (NW) behavioral states as the proxy of ground truth, opens new windows to

investigate the relationship between brain functions and behavior [1, 13].

In Chapter 4, we introduced a method based on VG [166]. The spatial properties of the VG

inherit the temporal dynamics of the underlying time series [120]. After the construction of

VG, a series of graph measures can be extracted to encode the different aspects of the temporal

dynamics of the calcium transient [134]. In [1], classical machine learning algorithms were

employed to predict the whisking behavior based on the selected VG measures.

The recent advancement in neural networks has resulted in revolutionary development in

many research domains [167]. The main stream of the NN family can be categorized into

several architectures, among which the multilayer perceptron (MLP) is the most traditional
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one. It can be viewed as an expanded version of the classical logistical regression (LR). MLP

has the capability to learn representative characteristics of the data with different levels of

abstraction and allows for modeling of complex nonlinear problems [168]. On the other hand,

MLP lacks the capability of scaling to various computer vision problems, partially because, as

the complexity of the input data becomes higher, the number of parameters and the hardness of

the training increase exponentially. The convolutional neural networks (CNN) is another NN

architecture which solves this problem by using a detector, known as kernel or filter bank, to

convolve the input signal, and thus largely decreases the number of parameters. Meanwhile, this

strategy allows the networks to be sensitive to certain features that could be located everywhere

on the input image, which is specially favorable in object detection problems. What’s more,

while the classical machine learning approaches require considerable domain-specific expertise

to design good feature extractors, the CNN performs automatic feature extraction [167].

In this chapter, we present two new analysis frameworks that combine VG and NN.

• With the hypothesis that compared to the classical LR, the MLP will be providing better

discrimination power, we build a predictive model using MLP, along with the VG mea-

sures that are the same as the ones used in Chapter 4 and [1]. We refer to this approach as

VGm-MLP. We expect that by using VGm-MLP, the nonlinear properties of the dataset

could be better identified and thus the classification accuracy will be improved.

• With the aim of eliminating the information loss during the VG metric extraction process,

we build a CNN model to learn the topological properties from the VGs directly. We

refer to this approach as VGi-CNN. Based on previous studies [1, 166], demonstrating

that the VG encodes the temporal dynamics of the underlying time series, we expect

that the CNN could be successfully capture additional information over the ones that

being extracted by the graph measures, and thus will deliver better inferring power, and

improved accuracy.
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5.2 Methods

We use the same dataset used in Chapter 4 to evaluate the new frameworks. In this section,

we first briefly recap the data acquisition and preprocessing procedures. Next, the two frame-

works, the VGm-MLP and the VGi-CNN, are introduced. For details about data acquisition,

preprocessing, visibility graph, and graph measures, please refer to Section 4.2 in Chapter 4.

5.2.1 VG Metrics-Based Multilayer Perceptron (VGm-MLP)

The Multiple Perceptron is a computational model which is built by cascading a series of per-

ceptron layers, each of which is formed by a set of perceptron units known nodes. The classical

LR can be considered as one perceptron unit. A perceptron assigns one weight to each input

feature, and calculates the weighted sum for the feature vector. This weighted sum is fed into an

activation function (sigmoid function in this study) and is converted to a number between 0 and

1. With a threshold, the perceptron generates a binarized output. In order to fit more complex

nonlinear boundaries, a series of perceptron units are organized and cascaded to form a MLP.

In MLP, the final layer of perceptrons that creates the predicted labels, is called the “output

layer”, and those perceptrons are called “output nodes”. The layers of perceptrons between the

input features and the output layer, are called “hidden layers”, and the nodes are called “hidden

nodes” accordingly. In the proposed VGm-MLP framework, the stacked VG metrics D, C, L

from 30 ROIs are used as the 1-D input feature vector. Two hidden layers are used for the MLP

model.

5.2.2 VG Image-Based Convolutional Neural Networks (VGi-CNN)

The convolutional neural networks are designed to process data with multiple arrays, for in-

stance, colored pictures which are composed of three 2-D arrays, and videos which are com-

posed of three 3-D arrays. While there are many variants of CNN, the principle of the CNN

is based on four operation stages: convolution, nonlinear activation, pooling, and classification

based on full-connected layer. Typically, the convolution, non-linearity and pooling are stacked

together to form basic building blocks. Several blocks are cascaded and followed by fully-

connected layers to generate the single or multiple binary outputs. In the proposed VGi-CNN
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Figure 5.1: Visual illustration for the proposed VG metrics-based multilayer perceptron (VGm-
MLP) and the VG image-based convolutional neural networks (VGi-CNN) frameworks, for
behavior classification from calcium recordings. The calcium time series are first converted into
VGs. To perform the classification using VGm-MLP, several graph metrics are extracted from
the VGs (D: Edge Density, C: Averaged Clustering Coefficient, L: Characteristic Pathlength).
The stacked graph metrics across ROIs are used as the input vector, to a two-hidden-layer
MLP. To perform the classification using VGi-CNN, the VGs are used directly as 30-channel
2-D images to a CNN model.

framework, our task is to use CNN to capture the topological patterns of the VGs directly, which

are known as associated with the temporal characteristics of the underlying calcium recordings.

To do so, the VGs constructed across 30 ROIs are stacked together to form the 30-channel input

images (in contrast to 3-channel (R, G, B) colored images as normally used in computer vision

problems). To accommodate the computation complexity, the VG images are re-sampled to

40× 40. Two convolutional blocks are used in the CNN model. Fig. 5.1 visually describes the

VGm-MLP and VGi-CNN frameworks.

5.3 Results

The preprocessed calcium time series recorded from the six mice were used to perform the

behavior decoding process based on VGm-MLP and VGi-CNN frameworks. To improve the

generalization capability and to prevent overfitting, the dropout technique [169] was used for

both frameworks. We employed the backpropagation and Adam algorithm [170] to train the

models. The optimal hyperparameters (learning rate, batch size, and dropout ratio) were iden-

tified using grid search. To evaluate the classification performance, a five-fold cross validation

is employed. We computed the accuracy, sensitivity, and specificity as measures to evaluate

the performance. Using the classical logistical regression as a baseline [1], we evaluated the
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Table 5.1: Classification results for the proposed VGm-MLP and VGi-CNN frameworks for
each subject, along with their mean (standard deviation) across subjects. Their improvement
in the performance are evaluated with respect to the classical logistical regression (LR) model
reported in [1], using paired-sample one-tail student’s t-tests (df=5). A positive t-value means
that the proposed framework delivers higher values for the respective evaluation metric com-
pared to LR model. * and *** represent p < 0.05 and p < 0.005, respectively.

Classifier Performance 1 2 3 4 5 6 mean (std) Comp. to LR

VGm-MLP
AC (%) 89.41 92.23 88.56 85.42 89.15 90.93 89.28 (2.32) t = 1.15
SE (%) 73.14 87.28 70.23 73.06 71.02 68.72 73.91 (6.77) t = 1.01
SP (%) 93.41 94.57 93.22 92.03 93.33 94.36 93.49 (0.91) t = 1.15

VGi-CNN
AC (%) 91.27 91.44 90.04 85.08 89.15 91.02 89.67 (2.41) t = 2.15, ∗
SE (%) 84.62 93.73 73.35 79.01 75.46 69.64 79.30 (8.72) t = 4.29, ∗ ∗ ∗
SP (%) 93.00 90.65 94.50 88.36 92.42 94.27 92.20 (2.34) t = −0.77

improvement in three classification performance metris when using VGm-MLP and VGi-CNN,

using paired-sample one-tail student’s t-test. The results are presented in Table 5.1. A positive

t-value means that the proposed framework improves the performance as compared to the LR

model. It is shown that compared to LR, the VGm-MLP framework provides a better classi-

fication performance, and the VGi-CNN model provides additional significant improvement,

especially for accuracy (p < 0.05) and sensitivity (p < 0.005).

5.4 Summary

In this chapter, we proposed two analysis frameworks for predicting behavior from calcium

imaging data. Both frameworks are based on the temporal dynamics of the calcium recordings,

obtained via the VG technique. These frameworks were evaluated by the same dataset described

in Chapter 4. Compared to classical machine learning techniques, the proposed frameworks

delivered improved performance.

The contribution of these two frameworks is significant. Through the VGm-MLP frame-

work we presented that by using the VG technique, the nonlinear complexity in the temporal

dynamics of calcium recordings could be characterized such that a neural networks with rel-

atively simple architecture can discriminate the brain states. A simple model is favorable in

the neuroscience field, because the size of experimental data is usually small. By cascading

multiple layers of perceptrons, MLP is extremely flexible to fit complex nonlinear data. It is

worth to note that while on the presented dataset, VGm-MLP only raises the performance to a

small amount, we expect that, compared to LR, it could be more successful when dealing with
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dataset with more nonlinear complexity.

The the VGi-CNN framework by taking the advantage of the CNN’s capability of automat-

ically discovering the representations needed for classification, the required domain specific

knowledge could be minimized. Moreover, instead of using limited number of graph measures

to characterize the topological properties, VGi-CNN is able to learn the discriminant features

utilizing the full information encoded in the VGs. Another advantage of VGi-CNN comes

from the translation invariant property of CNN. As described earlier, VG encodes the temporal

dynamics of brain recordings. It is well known that the brain activity exhibits variability in

time domain, due to for example differences or delays in neural responses, individuals perfor-

mance, or brain-related diseases [12]. This temporal variation on the time series would lead

to the spatial shift in motif patterns in VG. While this phenomenon may negatively affect the

performance of a traditional machine learning method, it wouldn’t affect the performance of

VGi-CNN due to its translation invariance property. Results showed that the VGi-CNN frame-

work has improved classification accuracy compared to using traditional LR. To the best of our

knowledge, this work is the first utilizing CNN and VG to solve the classification problem on

the time series data.

While in this study the proposed frameworks are evaluated using the calcium imaging data,

we expect that they can find their application outside of the neuroscience domain.
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Chapter 6

Data Analytics: On the Fractality of fNIRS Time Series Using
Visibility Graph

In this chapter, we present a novel approach, based on visibility graph, for revealing nonlin-

ear features in signals recorded via fNIRS corresponding to brain activities. The technique is

demonstrated to differentiating brain states using experimental fNIRS data.

6.1 Introduction

Most existing functional brain imaging studies can be classified into two general categories:

localization studies, which aim to identify brain’s activation patterns in response to specific

stimuli [91, 171, 172, 173, 174, 175, 176], and connectivity studies (functional or effective)

which focus on investigating the functional interactions among brain regions, either when the

brain is at rest or engaged in performing a particular task [71, 90, 177, 178, 179, 180, 181].

In exception of a few [107, 182], the majority of these studies investigate the brain function in

the spatial domain and typically ignore changes that occur in the temporal domain [14, 180,

183, 184, 185]. However, it is now well known that the brain is highly dynamic [84, 107,

182, 186, 187, 188], and therefore, to gain a more comprehensive picture about its function,

methods capable of extracting information about its non-stationarity function are required. In

this study, using visibility graph (VG), we present a new approach for revealing the non-linear

physical characteristics of fNIRS time series, which has been rarely examined in the literature

[189, 190].

Fractal analysis of time series provides an interesting opportunity to study their tempo-

ral structure in terms of self similarity, power law scaling relationship, and scale-invariance

[191]. Since its introduction, fractal analysis has been used in several fields such as physics,

geography, biology, and psychology [192] to reveal such properties in time series, that will
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not be visible through conventional analysis. Recently, fractal analysis has also been applied

to recordings obtained through functional brain imaging studies [193, 194, 195, 196] to bet-

ter characterize the observed temporal fluctuations of the signals, or to differentiate a diseased

group from a healthy population with an improved accuracy. For instance, using fractal analysis

of fMRI data, Sokunbi et al. showed that the hemodynamic response measured from patients

with Schizophrenia presented larger complexity, compared to that measured from healthy con-

trols [197]. He, B. showed that the fractal properties of the fMRI signal altered with the changes

of brain functional state [198]. Using fNIRS, Khoa and Nakagawa showed that the complex

characteristics of the signals recorded during physical motion and imaginary motion of the

right arm were different, which can be potentially used for BCI [189]. Lei et al. showed that

the power spectra of both EEG and fMRI signals follow the power-law distribution, and scale

free brain activity can be characterized by robust temporal structures [199].

There exist several methods to estimate the fractality of a time series [191]. VG is a recently

introduced method, which maps a time series into a graph (called a visibility graph), such

that its topological properties are related to the fractality and complexity of the time series

[196, 120]. VG is computationally less complex compared to conventional fractal analysis

approaches [196], and has been successfully used in different studies [200, 201].

For example, using Electrocardiogram (ECG), Jiang et al. showed that employing VG anal-

ysis can reveal the dynamic changes caused by mediation training, manifested as regular heart-

beat, which is closely related to the adjustment of the autonomous neural system [202]. Zhu

et al. applied a VG based approach for alcoholism identification, showing that this approach

is promising in separating alcoholic subjects from controlled drinkers [131]. A VG-based ap-

proach was used successfully in distinguishing children with Autism Spectrum Disorder from

non-autistic children [203].

It is important to note here the difference between VG and the graph theoretical-based meth-

ods used commonly in functional connectivity studies [204, 165]. In functional connectivity

studies, graphs are constructed in the spatial domain, i.e. nodes in the graph correspond to the

location of channels or voxels, and links between two given nodes are formed based on the

statistical similarity of the time series associated with the two nodes, quantified by measures

such as correlation. In VG, on the other hand, which is formed for a given time series (see Fig.
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Figure 6.1: Conceptual illustration of constructing visibility graph from a time series. Nodes
in the graph correspond to the time points in the time series, and links are formed based on the
visibility condition.

6.1), the nodes correspond to the time points of the time series, and the links are formed based

on natural visibility between the time points (discussed in Chapter 4). Once the graph is formed

for each time series, graph metrics can be extracted to represent different properties of the time

series.

This chapter presents a VG-based framework for analyzing the fractality of fNIRS time-

series, and demonstrates its potential in detecting whether the brain is at rest or is engaged

in executing tasks. fNIRS time series are recorded from nine healthy male subjects at two

resting-state conditions and two task conditions. Artifact removal procedure is performed to

reduce the interference related to motion [205]. VGs are constructed for each channel and each

condition, from which the power of scale-freeness of visibility graph (PSVG) is extracted and

compared across conditions. The PSVG values estimated during resting-states and task sessions

are then used to form features to feed into different classifiers, including k-Nearest Neighbors

(kNN), linear and non-linear Support Vector Machine (SVM), and Linear (LDA) and Quadratic

Discriminant Analysis (QDA), to verify the efficacy of using the VG-based metric to infer brain

states. To the best of our knowledge, this is the first study to employ VG to reveal temporal

features of fNIRS-recorded time series and demonstrate its feasibility in identifying features in

fNIRS recordings that can be used to distinguish different brain states.

The rest of this chapter is organized as follows. Section 6.2 describes the methods used for
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analysis in this study. The details of the experimental setup are given in Section 6.3. Section

6.4 presents the experimental results using VG, and finally the summary is provided in Section

6.5.

6.2 Methods

In this section, theoretical basis of the methods used in the analysis are described. The fractal

properties of fNIRS time series will be evaluated using two approaches, Scaled Windowed

Variance (SWV) analysis and VG. These methods are described here. Furthermore, modalities

used for classification are briefly reviewed. In the following, we denote an N-point time series

(e.g. recorded by a given fNIRS channel) with x = {xi}N
i=1.

6.2.1 Scaled Windowed Variance Analysis

We first evaluate the fractal dimension of fNIRS time series using conventional methods. Frac-

tal dimension can be estimated in time domain, frequency domain, or time-frequency domain,

using various methods [191]. The choice of the proper method has to be made based on the

properties of the time series, and whether it is stationary or non-stationary. As it is well known

that physiological signals and brain activities are non-stationary [191, 206], Scaled Windowed

Variance Analysis method [191, 207] is used here to estimate the fractal dimension (defined

below) of fNIRS-recorded time series.

To estimate the fractal dimension of a time series using SWV, the time series is partitioned

into non-overlapping segments of size n. If µ̂ represents the mean of the segment, the standard

deviation for each segment, σ̂n, is computed as [191]

σ̂n =

√
1

n− 1

n

∑
i=1

(xi − µ̂)2. (6.1)

This measure is computed for all segments, and then is averaged to obtain σ̄n. The procedure

is repeated for different window sizes.

For non-stationary fractal time series, the windowed mean standard deviation, σ̄n, and its
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Figure 6.2: a) Illustration of the experimental setup, and b) map of fNIRS optode locations.

corresponding window size n, follow a power law relation given by [191]

σ̄n
d
= p · nH, (6.2)

where d
= represents equal in distribution, H is the Hurst coefficient that can be obtained by

calculating the slope of the least-squares linear regression line of log(σ̄n) versus log(n), and

p is a proper prefactor [191]. The fractal dimension, D, is linearly related to H as D = 2− H

[208].

6.2.2 Power of Scale-freeness from Visibility Graph

The construction of visibility graph is described in Chapter 4. The constructed VG reveals

the dynamic properties of the time series in unique ways. For example, periodic signals result

in regular graphs, and fractal time series result in scale-free networks [196, 120, 200, 134].

Scale-free corresponds to the property of the graph that, independent of the number of nodes,

its degree distribution P(k), has a power-law tail where the tail exponent obeys the power law,

i.e.,

P(k) ∼ k−γ. (6.3)

In (6.3), k represents the degree of the node (i.e., the number of links connected to a node),

P(k) denotes the degree distribution (i.e., the fraction of nodes with degree k), and γ denotes

the power of scale-freeness (PSVG). It has been proved that the PSVG is indicative of the

fractality of the time series [166].
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6.2.3 Classification

The feasibility of VG-based metrics in distinguishing different brain states will be evaluated via

classification. kNN, linear and non-linear SVM, and LDA and QDA classification techniques

are employed. A brief description of each techniques follows.

kNN is a widely used classification technique in brain studies [141, 142, 143, 209, 210], in

which the label of a testing data is determined by the labels of the k neighbors in the training

dataset that are nearest to the testing data, according to some distance measures (in this chapter,

the Euclidean distance is used) [144]. In kNN, the best value of k can be determined by cross-

validation [143], and in this study the values of k in the range of 1 to 6 are used.

SVM is another supervised classification algorithm, which tries to maximize the distance

between the separating hyperplane and the nearest training points [5, 211]. Although regular

SVM is a linear classifier, it can make non-linear decision boundaries by using kernel functions

such as radial basis functions (RBF) or polynomial kernels. Non-linear SVM might provide

increased classification accuracy, with the expense of extensive computation load and the risk

of overfitting. SVM have been shown to offer good performance with hemodynamic activity

data in recent studies [5, 32, 212, 213, 214]. In this study both linear and non-linear SVMs are

used.

Discriminant Analysis has been frequently used in fNIRS studies [215, 216, 217, 218, 219].

Discriminant Analysis looks for a boundary by which the samples are well separated from each

other. The boundary can be linear for LDA, or quadratic for QDA, both of which maximize

the between-class variance and minimize within-class variance [216, 215]. In this study we

implement both LDA and QDA.

The classification performance is evaluated by a leave-two-out-cross-validation procedure

[220, 221], which is an exhaustive cross-validation method and when compared to the tradi-

tional leave-one-out method, helps to improve the evaluation confidence for small sample-sized

data. The classification results are measured using the following metrics,

Accuracy =
TP + TN

TP + TN + FP + FN
, Sensitivity =

TP
TP + FN

, Specificity =
TN

TN + FP
.

(6.4)



69

In (6.4), TP, FP, TN and FN refer to true positive, false positive, true negative, and false nega-

tive, respectively.

Accuracy represents how successful the classifier is in correctly classifying the samples.

Sensitivity indicates how well the classifier detects a test data from group 1 (here resting-state),

while specificity suggests how good the classifier is at identifying a test data from group 2 (here

task execution).

6.3 Experimental Procedure

In this section, we describe the experimental setup and the preprocessing steps used to remove

artifacts from fNIRS data. Fig. 6.3 shows the pipeline of the data analysis.

6.3.1 Experimental Paradigm and Data Acquisition Procedure

Nine healthy male subjects (age mean: 25, age SD: 4.8) participated in our experiments, after

providing their written informed consents, approved by the Rutgers Institutional Review Board

(IRB). The experiments included two resting-state sessions (eyes-closed (EC) and eyes-opened

(EO)), and two block-designed (number of blocks = 3) tasks. Each resting-state session lasted

for 10 minutes. The tasks were the Response Time (RT) task, and the modified Go No-Go

(GNG) task. Each block in RT task consisted of 50 left and 50 right arrows presented to partici-

pants in random order with inter-trial interval (ITI) of [800− 1200] ms. Participants were asked

to press right/left mouse button depending on the direction of presented arrow. Each block in

the modified GNG task consisted of 60 Go and 30 No-Go symbols with ITI of [800− 1200]

ms [222]. Participants were asked to click only when the Go symbol is presented. Recordings

for the two resting-state and the two tasks sessions were all completed in one setting.

Changes in the optical signals were recorded at two wavelengths (685 nm and 830 nm) at

the sampling rate of 12.5 Hz, using NIRScout system (NIRx Medical Technologies, LLC). Note

that although the maximum sampling rate of NIRScout system is 62.5 Hz, in this experiment,

12.5 Hz was used as the practical sampling rate due to the time-division multiplexing on the

illuminated light sources to avoid crosstalk. A total of 14 channels were used (8 light sources

and 8 detectors arrangement). Optodes were placed to cover the prefrontal and motor cortices,
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Figure 6.3: The data analysis pipeline.

where brain activities are expected according to the nature of tasks. Fig. 6.2 shows the location

of optodes.

6.3.2 Data Preprocessing

In this section, we describe the artifact rejection, bandpass filtering and hemodynamic signal

conversion process.

Motion-related artifacts inevitably exist in fNIRS-recorded time series, and if not removed,

can negatively impact the outcome of VG analysis. Therefore, artifact rejection procedure was

first performed [205]. Two types of artifacts, “spikes” and “discontinuities” (jumps), were con-

sidered. For each channel, short intervals containing spikes were identified by visual inspection,

and then replaced by the average of the signals of the same interval from two neighboring chan-

nels. Discontinuities were detected by examining the difference in signal values at each two

successive time point. A time point pair with discontinuity was identified when this differences

becomes larger than four times of the standard deviation of the time series, and was eliminated

by subtracting the difference from the values for points after the jump [223].

Next, optical signals were band-pass filtered in the range of 0.01 Hz and 0.2 Hz to ex-

clude the low-frequency drift, and the interference caused by physiological sources such as

eye-blinking, heart beaten, and respiration [224, 225]. The filtered signals were converted into

∆[HbO2] and ∆[HbR] according to the modified Beer-Lambert law [226]. The artifact rejec-

tion, bandpass filtering, and data conversion procedures were performed using the nirsLAB

toolbox [223, 32]. For the RT and GNG tasks, time series were segmented according to the

border of the blocks (170 s for each block). The same duration was used to segment the signals

from the resting-state recordings, into three non-overlapping blocks. This procedure for all

subjects resulted in a total of 108 14-channel time series, each with 2125 data points.
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Figure 6.4: Results from SWV analysis. a) Calculated windowed mean standard deviation as a
function of the window size in a double logarithmic plot for a given time series. The slope of the
fitted least square trend is related to the fractal dimension of the time series, and b) distribution
of the estimated fractal dimension for all fNIRS time series.

6.4 Results

In this section, we present the results of fractal analysis and classification experiments.

6.4.1 Results from Scaled Windowed Variance Analysis

Fractality of fNIRS recordings, for each channel, subject, condition, and block, was first ex-

amined using SWV analysis, which is an appropriate method for non-stationary fractal time

series [191]. Fig. 6.4-a shows the obtained mean standard deviation (σ̄x(n)) as a function of

the window size (n) in a double logarithmic plot, for a given time series. As can be seen, for the

window size ranging from 22 to 27, the data follows a linear trend. By definition, the slope of

this trend equals the Hurst exponent, H, from which the fractal dimension D can be estimated

from D = 2− H [191]. As a metric related to the self-similarity of the time series, the value

of D ranges between 1.0 and 2.0. D for a random time series is 1.5. For a time series with high

correlation or memory over time, the extracted D value is near 1 [208].

The distribution of estimated D values for all preprocessed time series (resting-state and

task) is shown in Fig. 6.4-b. As it can be seen, the estimated D value for all time series is less

than 1.3. This result confirms the existence of high degree of fractality (positive correlation) in

fNIRS time series.
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Figure 6.5: Comparison of the PSVG, estimated for a representative resting-state block of
fNIRS time series, and its randomly shuffled version. a) The time course of a representa-
tive fNIRS recording and its power-law tail of the degree distribution, b) the time course of
randomly shuffled version of the same time series, and its power-law tail of the degree distribu-
tion, and c) comparison between the PSVG of the original time series, and the distribution of
PSVGs for 100 randomly shuffled versions of the original time series.

6.4.2 Results from Visibility Graph Analysis

To evaluate the effectiveness of VG in capturing the temporal structure of time series, first, the

VG was constructed for two cases: a representative preprocessed fNIRS time series, and its

randomly shuffled version (i.e. the order of appearance of data points in time was randomly

shuffled). The PSVG was then estimated for each case. The time series and their associated

power-law tail of the degree distribution, for a representative original time series (a ∆[HbO2]

signal associated with one EC block) and its shuffled version, are shown in Figs. 6.5-a and

6.5-b, respectively. It is shown that the degree distribution in the two cases decay at different

rates.

The estimated PSVG for the original time series, PSVGorig, is 3.512. For the shuffled

version, random shuffling was performed for 100 rounds, and for each round the power of scale-

freeness, PSVGshu f , was estimated. The averaged PSVGshu f is obtained as 3.996 (standard

deviation is 0.120, range [3.787 − 4.283], refer to Fig. 6.5-c). It is observed that although

both the original time series and its randomly shuffled version have the same distribution in

terms of amplitude of data points, they have different PSVG values. This result implies that the

temporal structure of the time series, rather than the distribution of amplitude of data points,

can be characterized from the PSVG values.
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Figure 6.6: The post-preprocessed ∆[HbO2] time series recorded from one representative sub-
ject under EC condition (shown in a)) and GNG condition (shown in b)). The waveforms with
different colors represent the time series recorded from different channels. c) and d) represent
adjacent matrices of VGs associated with channel 1 under the two conditions shown in a) and
b), respectively. The dark color represents that there is no connection (no visibility), and the
light color represents the existence of an link (visibility).

The visibility graphs were then constructed for the time series associated with each channel,

subject, condition, and block, separately. As an example, Figs. 6.6-a and 6.6-b show two repre-

sentative ∆[HbO2] signals recorded from one subject under EC and GNG blocks, respectively.

The waveforms with different colors represent the ∆[HbO2] time series recorded from different

channels. Figs. 6.6-c and 6.6-d illustrate two adjacent matrices of VGs associated with channel

1 under the two conditions (EC and GNG) as shown in Figs. 6.6-a and b, respectively. In

the following analysis steps, we extract the graph metrics to infer whether the subject is under

resting-state or is executing a task.

Figs. 6.7-a and 6.7-b present the degree distribution patterns averaged across subjects for

each of the 14 channels, and their zoomed in power-law tail, respectively. The colors corre-

spond to different conditions (EC, EO, RT, and GNG). A least-square regression line was fitted

to the power-law tail and from it, the PSVG (equal to the negative of the slope) was calculated

(γ = − log[P(k)]
log(k) ). Fig. 6.7-b shows that for most channels, the PSVG are different across con-

ditions. The mean and standard deviation of the estimated PSVG values, associated with each
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Figure 6.7: a) Degree distribution results averaged across subjects for 14 channels. b) The linear
range of the averaged degree distribution for 14 channels. c) The mean and standard deviation
of estimated PSVG for each condition across subjects. The pairs of conditions presenting
statistical significant difference are labeled using ∗ notations. * p < 0.05, ** p < 0.01, *** p
< 0.001.
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condition, and each channel, are presented as bar plots in Fig. 6.7-c. Paired-sample student’s

t-tests were performed for each channel across each pair of conditions (EO - EC, EO - RT, EO

- GNG, EC - RT, EC - GNG, RT - GNG). For each channel, the pairs of conditions presenting

statistical significant difference were labeled using “star” notations. It is shown clearly that for

all subjects, the PSVG values associated with resting-states (EC and EO) are larger than those

associated with task-execution (RT and GNG) conditions. Using this result, we hypothesize

that the PSVG values of VGs can be used to distinguish brain states. In the following, we

perform classification to test this hypothesis.

6.4.3 Classification Results

Binary classification was performed to evaluate the feasibility of using PSVG in distinguishing

brain states. The individual multi-channel PSVG values associated with EC and EO conditions

were pooled to form the resting-state sample data, and those PSVG values associated with RT

and GNG conditions were pooled to form the task-execution sample data. Before pooling, the

individual PSVG values were normalized across conditions, so their `2-norm were equal to 1

for each channel. This procedure left 18 data for each binary condition.

Two main components are necessary for performing classification: feature selector and clas-

sifier [227]. The objective of the feature selector is to identify channels that are most relevant

for the subsequent classification task. Considering the small number of samples in the study,

reducing features from all channels to a small group of, but highly relevant channels would help

to prevent the curse of dimensionality problem [228, 229]. To achieve this, a two-sample t-test

was performed across resting-state and task-execution data for each channel. Fig. 6.8 shows the

t-values of all channels in descending order where the t-values associated with significant levels

of p = 0.01 and p = 0.001 are also shown (t = 2.750 and 3.646 corresponding to p = 0.01

and 0.001, respectively). While Fig. 6.8 shows that the PSVG values for most channels are

significantly different (for p = 0.01), it is expected that the amount of information related to

differentiating between resting-state and task-execution conditions is mostly contained in the

top-ranked channels (Channels 2, 13 and 4 corresponding to a p = 0.001). To confirm this,

classification experiments were performed where an increasing number of top-ranked channels

were selected to form the feature vector (starting with the top-ranked channel, i.e., Channel 2,
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Figure 6.8: The results of two-sample t-tests between two brain-states (resting-states vs. task-
execution) across subjects for each channel. The channels are ranked in descending order
according to their t-values. The red horizontal lines represent t-values associated with p =
0.001 and p = 0.01, respectively.

and sequentially adding more channels with the largest t-values). For the classifiers, we chose

kNN, linear and non-linear SVM, LDA, and QDA. We note that previous studies have used ar-

tificial neural networks (ANN) for classification of fNIRS data [216], but considering the small

sample size in this study, we did not implement ANN.

Leave-two-out-cross-validation procedure was used, in which the classification was re-

peated (36
2 ) = 630 times, where each time two samples were assigned to the testing dataset

and the remaining samples were assigned to the training dataset. The classification results were

evaluated using the measures of accuracy, sensitivity, and specificity. Next the results were

averaged across all repetitions for a given selected number of channels. For kNN, k was se-

lected in the range of 1 to 6. For SVM, different kernels (linear, RBF, quadratic, 3rd and 4th

polynomial) were implemented. For Discriminant Analysis, LDA and QDA were used.

The accuracy of classification results as a function of the number of top-ranked channels

are illustrated in Figs. 6.9-a, 6.9-b, and 6.9-c. It can be seen that all classifiers achieved

significantly better accuracy than that of naive classifier (50%) and better results are obtained

when only top-ranked channels are used. The performance of kNN generally improved with

increasing values of k. For example, when using the two top-ranked channels and when k = 5,

kNN achieved the best result. Similarly, LDA and SVM achieved their best results when the

top two or three ranked channels were used, respectively. The linear and non-linear SVM

(using RBF kernel) worked equally well and slightly better than that of kNN and Discriminant

Analysis. For Discriminant Analysis, the performance of LDA is better than QDA. Overall,
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Figure 6.9: The classification accuracy using kNN with different values of k (shown in (a)),
SVM with different kernels (shown in (b)), and Discriminant Analysis with different discrimi-
nant types (shown in (c)).

Table 6.1: Classification performance using different classifiers.

Classification Performance
Classification Algorithm Accuracy (%) Sensitivity (%) Specificity (%) Parameters

kNN 83.33 88.89 77.78 k = 5, Channels 2 and 13
SVM 83.73 87.46 77.78 kernel: linear, Channels 2, 4, and 13

Discriminant Analysis 82.62 87.46 77.78 model: LDA, Channels 2 and 13

it is observed that the non-linear classifiers ( QDA and non-linear SVM) did not improve the

accuracy of classification due to the relatively small sample size.

Table 6.1 is a summary for the best classification performance for kNN, SVM, and Dis-

criminant Analysis evaluated by accuracy, sensitivity, and specificity. Channels 2, 4, and 13

contributed most to the accuracy of classification. The results revealed that the PSVGs of

hemodynamic signals measured from both prefrontal (Channels 2 and 4) and motor ( Channel

13) cortices had contributed to the success in differentiating resting-state and task-execution

conditions. It is worth to note that in our previous study using EEG-fNIRS multimodal imag-

ing, the location of channel 2 was detected as the most sensitive channel to GNG tasks, which

is consistent with the present study [10].

6.5 Summary

The human brain is a highly complex system with non-linear dynamical behavior [230]. As

such, methods such as fractal analysis, that can reveal non-linearities in the recordings asso-

ciated with brain activities, can serve as an important complimentary approach to commonly

used methods (e.g. used for functional localization or functional connectivity), to gain a more

comprehensive knowledge about how the brain functions.

In this study, we investigated the fractality of fNIRS recorded time series obtained during



78

task execution or when the brain is at rest using visibility graph. Fractal dimension for all

conditions and recordings were first estimated through SWV analysis. It was shown that fNIRS

recordings, regardless of the experimental conditions, exhibit high fractality. This result is in

line with previous studies that used EEG or fMRI to monitor brain function [196, 231, 232].

Next, VGs were constructed for all fNIRS time series recordings, and the corresponding

PSVG were calculated. Results showed that for most channels, the difference in PSVG values

for cases when the brain is at rest and when the brain is engaged in executing tasks is statistically

significant. To the best of our knowledge, this is the first study that explores the possibility of

employing VG in differentiating brain states.

The capability of VG-based metrics in differentiating brain states was further examined

by performing classification using the PSVG values estimated during rest or task execution as

features to the classifier. A wide range of classifiers were used, and although the number of

training and testing samples in this study was small, a reasonably good accuracy is obtained

using each classification technique.

Our results indicate that for various classification modalities, the top-ranked channels corre-

sponding to the prefrontal and motor cortices are the most relevant in identifying the brain state.

This reveals that both cortical regions have committed to the execution of the experimental task.

Note that this result does not imply that other channels are not relevant to the task-execution.

Rather, the result suggests that the top-ranked channels have brought adequate information for

distinguishing experimental conditions, and the information brought by lower-ranked channels

might be overlapped by those brought by top-ranked channels. A larger sample size will be

needed to further examine the capability of VG-based metrics in distinguishing different brain

states.

One application of VG-based metrics being used as features would be to use them as

biomarkers for diagnosing brain-related disorders. Due to the instrumental advantages of

fNIRS technology (e.g. portability and low-cost), fNIRS has great potential for clinical set-

tings. As such, finding features in fNIRS recordings that can serve as biomarkers for diagnosis

is of great interest to clinicians. Based on the initial results presented in this study and given

that VG-based metrics can reveal non-linear properties of the brain recordings, VG-based met-

rics could be potentially used as biomarkers for brain-related diseases for cases where there are
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disease-related information hidden in the non-linear properties of the recordings.
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Chapter 7

Data Analytics: Probing the Dynamics of Spontaneous Cortical
Activities

In this chapter, we present a novel framework, based on wavelet transform coherence and mul-

tivariate permutation test, for evaluating spatial and spectral changes in functional connectivity

as related to spontaneous activity. This method is validated using data obtained from widefield

calcium imaging of GCaMP6 transgenic mice.

7.1 Introduction

Over the past decade an increased number of studies have investigated functional connec-

tivity under various conditions using imaging modalities such as fMRI [233, 234], fNIRS

[78, 185, 15, 235, 236], and EEG [84, 237, 238, 239]. Many of these studies have suggested

that functional connectivity varies in time, even without the presence of external stimulus

[240, 233, 84, 241, 242, 243, 244, 245, 246, 247]. Accordingly, different methods, such as

short time Fourier transform, and wavelet coherence [244, 245, 246, 247], have been utilized

to capture the dynamic nature of functional connectivity across time, space and frequency.

Frequency-based methods, however, mostly require a prior knowledge on which frequency

bands are involved in the activity.

In this study, the cortical brain activity are recorded using widefield calcium imaging, and

spontaneous activity are differentiated by monitoring whisking activity. Two conditions are

considered: no whisking (NW) and active whisking (AW). The proposed method is used to

identify differences in functional connectivity (across space and frequency) when the mouse is

involved in AW and NW.

The rest of this chapter is organized as follows: the proposed methods are described in

Section 7.2, results are presented in Section 7.3, and discussed in Section 7.4. For the details
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of experiments and preprocessing steps please refer to Chapter 4.

7.2 Methods

7.2.1 Wavelet Transform Coherence

Wavelet transform coherence (WTC) enables finding the coherence between two time series

across time and frequency [233, 248, 249, 250, 15, 251]. When applied to time series obtained

from two ROIs, WTC can be used as a measure of functional connectivity of the two regions.

For a time series xn of length N, its continuous wavelet transform, Wxn(n, s), sampled at

equal time steps of size ∆t is obtained as [233]

Wxn(n, s) =

√
∆t
s

N

∑
m=1

xnψ∗0 [(m− n)
∆t
s
], (7.1)

where the parameter n denotes the time index, s represents the wavelet scale, and ψ0 is the

wavelet function (here we used Morlet). The WTC (R2
xn,yn

(n, s)) of two time series xn and yn

is find as [233]

R2
xn,yn

(n, s) =
| < s−1Wxn,yn(n, s) > |2

| < s−1|Wxn(n, s)| > |2· < |s−1|Wyn(n, s)| > |2 , (7.2)

where < . > represents smoothing in both time and scale.

7.2.2 Multivariate Permutation Test

Permutation test was developed based on the reasoning that if two datasets were drawn from

the same population, the labels of the data from the datasets are exchangeable [252, 15]. The

conventional univariate permutation test starts by computing a statistic, t-value for instance, for

the observed data across two conditions. Then the data observed from the two conditions are

randomly permuted, and a new t-value is computed. This permutation procedure is repeated for

many times (repeated exhaustively for all possible arrangements or by randomly re-sampling a

large number of data). For each case, a new t-value is computed. These set of t-values form a

distribution under the null hypothesis that the data from two conditions can be swapped. The

permutation test does not rely on assumptions about the distribution of the data [253, 254].
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The framework of multivariate permutation test was generalized based on the procedure

described above, in which multiple measures under different conditions can be considered si-

multaneously [252, 255]. Multivariate permutation test had been applied previously in assess-

ing the statistical significance of waveform difference across conditions in EEG studies [255].

In this study, we use multivariate permutation test to evaluate statistical changes in functional

connectivity, as measured by WTC. For each permutation, a set of observed WTC values is

permuted across sessions. This results in a set of statistics (here t-values) for each frequency

bins. The most extreme statistic is reserved as an element for the null hypothesis distribution.

The statistical significance (p-value) of WTC values associated with individual frequency bins

are then obtained by being referenced on that null hypothesis distribution.

This procedure has been automatically adjusted for multiple comparisons because of the

outwardly extended null hypothesis distribution which is constructed by the extreme statistics

across variables. As more multiple comparisons (more frequency bins are involved) are per-

formed, more conservative p-values would be obtained [252].

7.3 Results

There were a total of 11 recording sessions for six mice, with each session consisting of 15 or

16 blocks. Fig. 7.1 illustrates an example for the post-preprocessed signals from all ROIs, as

well as the corresponding spontaneous whisker movement recordings, obtained from subject 1

in block 5 of the recording session 1.

For every possible ROI-pair, the WTC scalogram was first computed for signals obtained

in a session. Segments corresponding to AW and NW conditions (as identified based on the

whisker movement recordings) were then identified on the scalogram. Fig. 7.2 shows a rep-

resentative WTC scalogram obtained for recordings from ROI-3 and ROI-23 in block 5, and

recording session 1. The WTC values (columns of the scalogram) associated with similar con-

dition were pooled and averaged across recording blocks, respectively. This procedure was

done for recordings from each session, resulting in 11 109× 1 vectors for each ROI-pair per

experimental condition, where 109 refers to the number of frequency bins, ranging from 0− 50

Hz.
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Figure 7.1: Example of post-preprocessed calcium signals and the corresponding spontaneous
whisker movement recordings obtained from subject 1 in block 5 of recording session 1. Right
from top to bottom: signals from all ROIs; signal from ROI-3; signal from ROI-23; sponta-
neous whisker movement recording. The blue vertical bars represent the starting points of NW
periods, and the red vertical bars represent the ending points of NW periods. Left: Locations
of ROI-3 and ROI-23 have been highlighted.

Multivariate permutation tests were then performed on data from two conditions obtained

for each ROI-pair. The procedure is summarized below for a given ROI-pair.

• forming the sample sets: The sample sets for each condition (AW and NW) consists of

the corresponding mean WTC values obtained from each session. That is, for a given

ROI, each sample set consists of 11 109× 1 vectors.

• constructing the null hypothesis distribution: The basis of permutation test is that if

the null hypothesis (no difference across conditions) is true, exchanging the WTC values

across conditions would have no effect on the statistical measures (here the t-value). For

each permutation run, the vectors are shuffled between samples, and the t-value for each

frequency bin is computed. The maximum absolute t-value, tmax, across all frequency

bins of the permutation run as an element of the null hypothesis distribution is identified.

The null-hypothesis distribution is constructed by pooling tmax from all permutations. A

total of 211 permutation runs were performed.

• evaluating statistical significance: For each frequency bin, the t-value based on the

original observed WTC values is computed. This t-value is referenced to the null hy-

pothesis distribution to evaluate the p-value.
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Figure 7.2: Representative WTC scalogram for recordings obtained from ROI-3 and ROI-23 in
block 5 of recording session 1 for subject 1. The colored vertical bars carry the same informa-
tion as those in Fig. 7.1.

The computed t-values for all frequency bins and ROI-pairs are presented in Fig. 7.3. It

can be seen that large t-values are obtained for many ROI-pairs. They can be clustered into two

groups: one for those with positive t-values, and the other for those with negative t-values.

By referencing these t-values on the constructed null hypothesis distribution, along with the

location of the ROIs on the cortex, we obtained a topological map for ROI-pairs revealing sig-

nificant changes across spontaneous whisking conditions for each frequency bin, with an α level

of 0.001, corrected for multiple comparison. Fig. 7.4 presents the ROI-pairs that reveal signifi-

cant differences in functional connectivity, as measured by WTC, across spontaneous whisking

conditions. The ROI-pairs showing larger WTC values in NW condition are presented in the

left panel. The ROI-pairs showing larger WTC values in AW condition are presented in the

right panel. Results demonstrate that frequencies between 4− 8 Hz correspond to NW condi-

tion (shown in the left graph) and the frequencies around 15 Hz correspond to AW condition

(shown in the right graph). This result is consistent with previous study [106] which showed

that passive brain states (NW) are associated with slower, larger amplitude oscillatory activity,
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Figure 7.3: Raster diagram illustrating t-values for all frequency bins and ROI-pairs computed
from the WTC values.

where the neighboring neurons show synchronized activity. The slow oscillations are reduced

during active brain states (AW), and neighboring neurons become more desynchronized.
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Figure 7.4: The ROI-pairs that reveal significant changes (with an α level of 0.001, corrected
for multiple comparison) in the functional connectivity, as measured by wavelet transform co-
herence, across spontaneous whisking conditions. Left: ROI-pairs that reveal stronger syn-
chronization in NW condition. Right: ROI-pairs that reveal stronger synchronization in AW
condition.

7.4 Summary

Characterizing the dynamics of brain function under spontaneous conditions has drawn in-

creased attention in recent years. Widefield transcranial imaging allows measuring calcium

transients in neurons across large areas of the cortex with high temporal resolution. Captur-

ing brain activity using widefield imaging in combination with the capability of recording
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spontaneous whisker movement activity, provides an interesting opportunity to evaluate how

functional connectivity between distributed regions of the brain vary according to spontaneous

conditions.

Wavelet coherence is an important computational tool for measuring similarity of time se-

ries, and has been used as a measure of functional connectivity in several neuroscience studies

[233, 15, 251]. One standard practice in frequency-based approaches is to predefine frequency

bands that are known to be specifically sensitive to the experimental paradigm. However, in

many scenarios, this prior knowledge is not known. This problem motivated the development

of the framework presented in this chapter, in which several frequency bins can be considered.

Performing large number of statistical tests on multiple frequency bins raises the necessity

for running multiple comparisons. In this study, we adapted the multivariate permutation test,

which strongly controls the family-wise error rate, and does not rely on the distribution of the

underlying structure of sample data [252, 255]. As demonstrated in Section 7.3, by combin-

ing wavelet transform coherence and the multivariate permutation test, NW-specified functional

connectivity was detected in lower frequency band, while AW-specified functional connectivity

was observed in higher frequency bands.

The advantages of the presented framework include i) by considering all frequency bands,

there is no need to have a prior knowledge about the frequency bands that are involved in

the activity, and ii) the proposed approach has no requirement on the sample distribution and

its parameters. It should be noted that although we demonstrated the presented approach on

spontaneous data obtained through widefield imaging, it can be also extended to studies with

task-based experimental paradigms and other imaging modalities, for instance, EEG, fNIRS,

and fMRI with applications in brain-computer interfaces, as well as, for identifying the mech-

anisms underlying human brain-related diseases.
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Chapter 8

Conclusions and Future Work

The theme of this dissertation is to present novel computation solutions for challenges on data

processing and analytics of functional brain imaging data for predicting behavior/brain state.

The first part of the dissertation focused on data processing and proposed an advanced DTW-

based averaging technique which considered the temporal non-linear variations in the alignment

of recorded fNIRS signals. The second part of the dissertation focused on data analytics in

which various computational methods, based on signal processing and machine learning tech-

niques, were presented, for capturing temporal and spectral characteristics of the recordings

and building predictive models.

8.1 Contributions

The contributions of this work are summarized as follows:

• A new averaging strategy for improving the detection power of fNIRS experiments based

on the dynamic time warping was presented. By taking consideration of the non-linear

alignment across the repeated fNIRS recordings, it was shown that the proposed method

outperforms the conventional point-by-point averaging technique in terms of the averag-

ing accuracy.

• A data-driven framework for inferring behavior/brain states based on visibility graph

was proposed, in which the temporal characteristics of brain recordings were quantified

and utilized. It was demonstrated that the temporal dynamics of calcium imaging and

fNIRS recordings carry discriminatory information and are powerful enough for inferring

behavior and brain state.

• Two novel analysis frameworks combining visibility graph and neural networks were
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presented, towards investigating relationship between the brain activity and behavior.

These frameworks open new window to utilize the knowledge from both well-developed

network science and neural networks techniques, to investigate the temporal dynamics of

time series.

• A novel computational framework for studying the changes in the functional connectivity

of calcium imaging was proposed by combining wavelet transform coherence and mul-

tivariate permutation test. The proposed method does not impose any prior assumption

about the frequency bands that are involved in the activity, nor on the distribution of the

data.

8.2 Future Work

This research establishes several interesting research directions for future work:

• With the focus on data acquisition stage, one can investigate the optimal sensors con-

figurations for the EEG-fNIRS multimodal experiments in terms of capturing the brain

activity originated from the same location from different modalities.

• Explore the spatio-temporal characteristics of the brain imaging data using multilayer

visibility graph.

• Develop quantitative statistical measures and iterative procedures for DTW-based aver-

aging to obtain an optimum choice for a reference signal that maximizes the accuracy of

the averaged signal.

• Extend the methods combining VG and NN to predict behavior from neuroimaging data

by using recurrence neural networks and the transfer learning techniques.



89

References

[1] L. Zhu, C. R. Lee, D. J. Margolis, and L. Najafizadeh, “Decoding cortical brain states
from widefield calcium imaging data using visibility graph,” Biomedical Optics Express,
vol. 9, no. 7, pp. 3017–3036, 2018.

[2] “The cost of dementia,” https://ind.ucsf.edu/supporting-our-work/cost-dementia, ac-
cessed: 2018-06-23.

[3] “Neruotechnology report,” https://sharpbrains.com/blog/2015/05/06/first-ever-
pervasive-neurotechnology-report-finds-10000-patent-filings-transforming-medicine-
entertainment-and-business/, accessed: 2018-06-23.

[4] B. He and Z. Liu, “Multimodal functional neuroimaging: integrating functional mri and
eeg/meg,” Biomedical Engineering, IEEE Reviews in, vol. 1, pp. 23–40, 2008.

[5] N. Naseer and K.-S. Hong, “fNIRS-based brain-computer interfaces: a review,” Fron-
tiers in Human Neuroscience, vol. 9, p. 3, 2015.

[6] T. Giorgino, “Computing and visualizing dynamic time warping alignments in R: the
dtw package,” Journal of statistical Software, vol. 31, no. 7, pp. 1–24, 2009.

[7] M. Xia, J. Wang, and Y. He, “BrainNet Viewer: a network visualization tool for human
brain connectomics,” PLoS One, vol. 8, no. 7, p. e68910, 2013.

[8] S. Musall, M. T. Kaufman, S. Gluf, and A. Churchland, “Movement-related activity
dominates cortex during sensory-guided decision making,” bioRxiv, p. 308288, 2018,
doi: 10.1101/308288.

[9] S. Herculano-Houzel, “The human brain in numbers: a linearly scaled-up primate brain,”
Frontiers in human neuroscience, vol. 3, 2009.

[10] L. Zhu, A. E. Haddad, T. Zeng, Y. Wang, and L. Najafizadeh, “Assessing Optimal
Electrode/Optode Arrangement in EEG-fNIRS Multi-Modal Imaging,” in Clinical and
Translational Biophotonics. Optical Society of America, 2016, pp. JW3A–39.

[11] L. Zhu, M. Peifer, and L. Najafizadeh, “Towards Improving the “Detection" Power of
Brain Imaging Experiments Using fNIRS,” in Biomedical Optics Meeting. Optical
Society of America, 2014, pp. BM3A–29.

[12] L. Zhu and L. Najafizadeh, “Dynamic time warping-based averaging framework for
functional near-infrared spectroscopy brain imaging studies,” Journal of biomedical op-
tics, vol. 22, no. 6, p. 066011, 2017.

[13] L. Zhu, C. R. Lee, D. J. Margolis, and L. Najafizadeh, “Predicting Behavior from Corti-
cal Activity Recorded through Widefield Transcranial Imaging,” in CLEO: Applications
and Technology. Optical Society of America, 2017, pp. ATu3B–1.



90

[14] L. Zhu and L. Najafizadeh, “Temporal Dynamics of fNIRS-Recorded Signals Revealed
Via Visibility Graph,” in Cancer Imaging and Therapy. Optical Society of America,
2016, pp. JW3A–53.

[15] ——, “Does brain functional connectivity alter across similar trials during imaging ex-
periments?” in Signal Processing in Medicine and Biology Symposium (SPMB). IEEE,
2014, pp. 1–4.

[16] L. Zhu, C. R. Lee, D. J. Margolis, and L. Najafizadeh, “Probing the dynamics of spon-
taneous cortical activities via widefield ca+ 2 imaging in gcamp6 transgenic mice,” in
Wavelets and Sparsity XVII, vol. 10394. International Society for Optics and Photonics,
2017, p. 103940C.

[17] M. Peifer, “Decoding brain states using functional brain imaging techniques,” Ph.D.
dissertation, Rutgers University-Graduate School-New Brunswick, 2015.

[18] W. Ou, “Spatio-temporal analysis in functional brain imaging,” Ph.D. dissertation, Cite-
seer, 2010.

[19] J. Jorge, W. Van Der Zwaag, and P. Figueiredo, “EEG–fMRI integration for the study of
human brain function,” NeuroImage, vol. 102, pp. 24–34, 2014.

[20] P. J. Allen, O. Josephs, and R. Turner, “A method for removing imaging artifact from
continuous EEG recorded during functional MRI,” Neuroimage, vol. 12, no. 2, pp. 230–
239, 2000.

[21] M. T. Talukdar, H. R. Frost, and S. G. Diamond, “Modeling Neurovascular Coupling
from Clustered Parameter Sets for Multimodal EEG-NIRS,” Computational and Mathe-
matical Methods in Medicine, 2015.

[22] A. Dutta, A. Jacob, S. R. Chowdhury, A. Das, and M. A. Nitsche, “EEG-NIRS
based assessment of neurovascular coupling during anodal transcranial direct current
stimulation-a stroke case series,” Journal of medical systems, vol. 39, no. 4, pp. 1–9,
2015.

[23] H. Girouard and C. Iadecola, “Neurovascular coupling in the normal brain and in hyper-
tension, stroke, and Alzheimer disease,” Journal of Applied Physiology, vol. 100, no. 1,
pp. 328–335, 2006.

[24] S. Fazli, J. Mehnert, J. Steinbrink, G. Curio, A. Villringer, K.-R. Müller, and
B. Blankertz, “Enhanced performance by a hybrid NIRS–EEG brain computer inter-
face,” Neuroimage, vol. 59, no. 1, pp. 519–529, 2012.

[25] W. Ou, A. Nummenmaa, J. Ahveninen, J. W. Belliveau, M. S. Hämäläinen, and P. Gol-
land, “Multimodal functional imaging using fMRI-informed regional EEG/MEG source
estimation,” Neuroimage, vol. 52, no. 1, pp. 97–108, 2010.

[26] L. Meyer, J. Obleser, S. J. Kiebel, and A. D. Friederici, “Spatiotemporal dynamics of
argument retrieval and reordering: an fMRI and EEG study on sentence processing,”
Frontiers in psychology, vol. 3, 2012.



91

[27] M. Brass, M. Ullsperger, T. R. Knoesche, D. Y. Von Cramon, and N. A. Phillips, “Who
comes first? The role of the prefrontal and parietal cortex in cognitive control,” Journal
of cognitive neuroscience, vol. 17, no. 9, pp. 1367–1375, 2005.

[28] C. Gerloff, K. Bushara, A. Sailer, E. M. Wassermann, R. Chen, T. Matsuoka, D. Wald-
vogel, G. F. Wittenberg, K. Ishii, L. G. Cohen et al., “Multimodal imaging of brain re-
organization in motor areas of the contralesional hemisphere of well recovered patients
after capsular stroke,” Brain, vol. 129, no. 3, pp. 791–808, 2006.

[29] E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal
to man,” Journal of biomedical optics, vol. 12, no. 5, p. 051402, 2007.

[30] P. A. Jackson and D. O. Kennedy, “The application of near infrared spectroscopy in
nutritional intervention studies,” Frontiers in human neuroscience, vol. 7, p. 473, 2013.

[31] F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. M. Pavia, U. Wolf, and
M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imag-
ing instrumentation and methodology,” Neuroimage, vol. 85, pp. 6–27, 2014.

[32] M. Peifer, L. Zhu, and L. Najafizadeh, “Real-time classification of actual vs imagery fin-
ger tapping using functional near-infrared spectroscopy,” in Biomedical Optics. Optical
Society of America, 2014, pp. BM3A–34.

[33] L. Kocsis, P. Herman, and A. Eke, “The modified Beer–Lambert law revisited,” Physics
in medicine and biology, vol. 51, no. 5, p. N91, 2006.

[34] S. Tak and J. C. Ye, “Statistical analysis of fnirs data: A comprehensive review,” Neu-
roImage, vol. 85, pp. 72–91, 2014.

[35] L. Ji, J. Zhou, R. Zafar, S. Kantorovich, R. Jiang, P. R. Carney, and H. Jiang, “Cortical
neurovascular coupling driven by stimulation of channelrhodopsin-2,” PloS one, vol. 7,
no. 9, p. e46607, 2012.

[36] X. Hu and E. Yacoub, “The story of the initial dip in fmri,” Neuroimage, vol. 62, no. 2,
pp. 1103–1108, 2012.

[37] Y. Ma, M. A. Shaik, S. H. Kim, M. G. Kozberg, D. N. Thibodeaux, H. T. Zhao, H. Yu,
and E. M. Hillman, “Wide-field optical mapping of neural activity and brain haemody-
namics: considerations and novel approaches,” Phil. Trans. R. Soc. B, vol. 371, no. 1705,
p. 20150360, 2016.

[38] L. Madisen, A. R. Garner, D. Shimaoka, A. S. Chuong, N. C. Klapoetke, L. Li, A. van der
Bourg, Y. Niino, L. Egolf, C. Monetti, H. Gu, M. Mills, A. Cheng, B. Tasic, T. N.
Nguyen, S. M. Sunkin, A. Benucci, A. Nagy, A. Miyawaki, F. Helmchen, R. M. Emp-
son, T. Knopfel, E. S. Boyden, R. C. Reid, M. Carandini, and H. Zeng, “Transgenic
mice for intersectional targeting of neural sensors and effectors with high specificity and
performance,” Neuron, vol. 85, no. 5, pp. 942–58, 2015.

[39] T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R.
Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S.
Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature, vol.
499, no. 7458, pp. 295–300, 2013.



92

[40] N. A. Steinmetz, C. Buetfering, J. Lecoq, C. R. Lee, A. J. Peters, E. A. Jacobs,
P. Coen, D. R. Ollerenshaw, M. T. Valley, S. E. de Vries et al., “Aberrant cortical ac-
tivity in multiple GCaMP6-expressing transgenic mouse lines,” eNeuro, vol. 4(5), pp.
ENEURO.0207–17, Sep 2017.

[41] M. P. Vanni and T. H. Murphy, “Mesoscale transcranial spontaneous activity mapping
in GCaMP3 transgenic mice reveals extensive reciprocal connections between areas of
somatomotor cortex,” Journal of Neuroscience, vol. 34, no. 48, pp. 15 931–15 946, 2014.

[42] T. H. Kim, Y. Zhang, J. Lecoq, J. C. Jung, J. Li, H. Zeng, C. M. Niell, and M. J. Schnitzer,
“Long-term optical access to an estimated One million neurons in the live mouse cortex,”
Cell Rep, vol. 17, no. 12, pp. 3385–3394, 2016.

[43] D. Xiao, M. P. Vanni, C. C. Mitelut, A. W. Chan, J. M. LeDue, Y. Xie, A. C. Chen, N. V.
Swindale, and T. H. Murphy, “Mapping cortical mesoscopic networks of single spiking
cortical or sub-cortical neurons,” Elife, vol. 6, p. e19976, 2017.

[44] W. Denk and K. Svoboda, “Photon upmanship: why multiphoton imaging is more than
a gimmick,” Neuron, vol. 18, no. 3, pp. 351–357, 1997.

[45] F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nature methods,
vol. 2, no. 12, pp. 932–940, 2005.

[46] A. Grinvald, D. Omer, S. Naaman, and D. Sharon, “Imaging the dynamics of mammalian
neocortical population activity in-vivo,” in Membrane Potential Imaging in the Nervous
System and Heart, 2015, pp. 243–271.

[47] B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J.
Schnitzer, “Advances in light microscopy for neuroscience,” Annual review of neuro-
science, vol. 32, pp. 435–506, 2009.

[48] M. L. Andermann, A. M. Kerlin, and R. Reid, “Chronic cellular imaging of mouse visual
cortex during operant behavior and passive viewing,” Frontiers in cellular neuroscience,
vol. 4, 2010.

[49] J. L. Chen, D. J. Margolis, A. Stankov, L. T. Sumanovski, B. L. Schneider, and F. Helm-
chen, “Pathway-specific reorganization of projection neurons in somatosensory cortex
during learning,” Nature Neuroscience, vol. 18, no. 8, pp. 1101–1108, 2015.

[50] M. Minderer, W. R. Liu, L. T. Sumanovski, S. Kugler, F. Helmchen, and D. J. Margolis,
“Chronic imaging of cortical sensory map dynamics using a genetically encoded calcium
indicator,” Journal of Physiology-London, vol. 590, no. 1, pp. 99–107, 2012.

[51] G. Silasi, D. Xiao, M. P. Vanni, A. C. Chen, and T. H. Murphy, “Intact skull chronic
windows for mesoscopic wide-field imaging in awake mice,” Journal of neuroscience
methods, vol. 267, pp. 141–149, 2016.

[52] T. Murakami, T. Yoshida, T. Matsui, and K. Ohki, “Wide-field Ca2+ imaging reveals
visually evoked activity in the retrosplenial area,” Frontiers in molecular neuroscience,
vol. 8, 2015.



93

[53] M. J. McGinley, M. Vinck, J. Reimer, R. Batista-Brito, E. Zagha, C. R. Cadwell, A. S.
Tolias, J. A. Cardin, and D. A. McCormick, “Waking state: rapid variations modulate
neural and behavioral responses,” Neuron, vol. 87, no. 6, pp. 1143–61, 2015.

[54] M. Vinck, R. Batista-Brito, U. Knoblich, and J. A. Cardin, “Arousal and locomotion
make distinct contributions to cortical activity patterns and visual encoding,” Neuron,
vol. 86, no. 3, pp. 740–754, 2015.

[55] J. Reimer, E. Froudarakis, C. R. Cadwell, D. Yatsenko, G. H. Denfield, and A. S. To-
lias, “Pupil fluctuations track fast switching of cortical states during quiet wakefulness,”
Neuron, vol. 84, no. 2, pp. 355–62, 2014.

[56] M. J. McGinley, S. V. David, and D. A. McCormick, “Cortical membrane potential
signature of optimal states for sensory signal detection,” Neuron, vol. 87, pp. 179–92,
2015.

[57] D. Shimaoka, K. D. Harris, and M. Carandini, “Effects of Arousal on Mouse Sensory
Cortex Depend on Modality,” Cell reports, vol. 22, no. 12, pp. 3160–3167, 2018.

[58] H. Hallez, B. Vanrumste, R. Grech, J. Muscat, W. De Clercq, A. Vergult, Y. D’Asseler,
K. P. Camilleri, S. G. Fabri, S. Van Huffel et al., “Review on solving the forward problem
in eeg source analysis,” Journal of neuroengineering and rehabilitation, vol. 4, no. 1,
p. 46, 2007.

[59] O. Hauk, A. Keil, T. Elbert, and M. M. Müller, “Comparison of data transformation pro-
cedures to enhance topographical accuracy in time-series analysis of the human EEG,”
Journal of neuroscience methods, vol. 113, no. 2, pp. 111–122, 2002.

[60] S. Dähne, F. Bießmann, W. Samek, S. Haufe, D. Goltz, C. Gundlach, A. Villringer,
S. Fazli, and K.-R. Müller, “Multivariate machine learning methods for fusing multi-
modal functional neuroimaging data,” Proceedings of the IEEE, vol. 103, no. 9, pp.
1507–1530, 2015.

[61] S. E. Petersen and J. W. Dubis, “The mixed block/event-related design,” Neuroimage,
vol. 62, no. 2, pp. 1177–1184, 2012.

[62] L. Pollonini, C. Olds, H. Abaya, H. Bortfeld, M. S. Beauchamp, and J. S. Oghalai,
“Auditory cortex activation to natural speech and simulated cochlear implant speech
measured with functional near-infrared spectroscopy,” Hearing research, vol. 309, pp.
84–93, 2014.

[63] T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, J. Armstrong, and D. Boas, “Hemody-
namic changes in the infant cortex during the processing of featural and spatiotemporal
information,” Neuropsychologia, vol. 47, no. 3, pp. 657–662, 2009.

[64] N. Roche-Labarbe, F. Wallois, E. Ponchel, G. Kongolo, and R. Grebe, “Coupled oxy-
genation oscillation measured by NIRS and intermittent cerebral activation on EEG in
premature infants,” Neuroimage, vol. 36, no. 3, pp. 718–727, 2007.
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