

©2018

Mengmeng Zhu

ALL RIGHTS RESERVED

SOFTWARE RELIABILITY MODELING AND ITS APPLICATIONS CONSIDERING

FAULT DEPENDENCY AND ENVIRONMENTAL FACTORS

by

MENGMENG ZHU

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Industrial and Systems Engineering

Written under the direction of

Hoang Pham

And approved by

New Brunswick, New Jersey

OCTOBER 2018

ii

ABSTRACT OF THE DISSERTATION

SOFTWARE RELIABILITY MODELING AND ITS APPLICATIONS CONSIDERING

FAULT DEPENDENCY AND ENVIRONMENTAL FACTORS

By MENGMENG ZHU

Dissertation Director:

Hoang Pham

The increasing dependence of our modern society on software systems has driven the

development of software product to be more competitive and time-consuming. At the same

time, large-scale software development is still considered as a complex, effort consuming,

and expensive activity, given the influence of the transitions in software development,

which are the adoption of software product lines, software development globalization, and

the adoption of software ecosystems. Hence, the consequence of software failures becomes

costly, and even dangerous. Therefore, in this dissertation, we have not only integrated

software practitioners’ opinions from a wide variety of industries, but also developed

software reliability models by addressing different practical problems observed in software

development practices.

We first revisit 32 environmental factors affecting software reliability in single-release

software development and compare with the findings 15 years ago [27, 28]. Later, we

investigate the environmental factors affecting software reliability in multi-release

software development and compare the impact of environmental factors between the

iii

development of multi-release and single-release software to provide a comprehensive

analysis for software development practices.

Software faults are classified into two groups, Type I (independent) faults and Type II

(dependent) faults. Two phases software debugging process are introduced according to

different types of faults. Firstly, a one-phase software reliability model is proposed with

the assumption that there is only Type II faults exist in the program given Type I faults

have been removed in the preliminary testing phase. Later, a two-phase software reliability

model is developed in consideration of Type I and Type II faults, fault dependency, and

imperfect fault removal.

Given software multiple releases are commonly adopted in industry, a software reliability

model for multi-release software product is proposed. The remaining faults from previous

release, and the newly introduced faults, generated from the newly added features, are both

considered into the model development. In addition, the detection of the new fault in the

development of the next release depends on the remaining faults from previous release and

the newly introduced faults from the newly added features.

Finally, given the environment factors studies in the early stage of this dissertation, the

single-environmental-factor software reliability model under the Martingale framework in

consideration of environmental factor, Percentage of Reused Modules, and the randomness

caused by this environmental factor is developed. Later, we propose a generalized multiple-

environmental-factors model framework incorporating multiple environmental factors and

iv

the randomness caused by these environmental factors. We further propose two specific

multiple-environmental-factors models considering two environmental factors, gamma-

distributed Percentage of Reused Modules, and gamma-distributed or beta-distributed

Frequency of Program Specification Change.

In sum, this dissertation firstly investigates 32 environmental factors affecting software

reliability in the development of single-release and multiple-release software and further

compares the findings of these two studies regarding environmental factors and

development phase. Software reliability models are developed in each chapter in

consideration of different problems/applications in practices, such as software fault

dependency, imperfect fault removal, software multiple releases, and the impact of

environmental factors on software reliability during the development process.

v

ACKNOWLEDGEMENT

Throughout the years of my graduate study at Rutgers University, I have received

enormous help and support from advisor, mentors, colleagues, and friends. I would like to

express my sincere gratitude to all of them, without whom this dissertation would not have

been accomplished.

First and foremost, I would like to express my deepest gratitude to my advisor, Dr. Hoang

Pham, for his guidance, encouragement, inspiration, patience, and great support during my

Ph.D. study. He has set a role model of excellence as a researcher, professor, and life

mentor, and led me on the track to discover the unknown in the academic world. I am so

grateful to Dr. Hoang Pham for being my Ph.D. advisor and will always bear his advice in

mind.

My sincere gratitude goes to Dr. Elsayed A. Elsayed, Dr. Myong K. Jeong, Dr. Honggang

Wang, and Dr. Xuemei Zhang for serving on my dissertation committee and providing me

sound and constructive suggestions to complete the work.

My special gratitude goes to Dr. Susan L. Albin. I am grateful for her training on the

scientific presentation and research problem explanation, which was a great learning

experience for me. Through her example, I started understanding what research is all about

and how to explain my research to the audience in an effective way.

vi

I truly appreciate many inspirations that I have received from the research papers and

dissertations written by Dr. Hongzhou Wang, Dr. Xuemei Zhang, and Dr. Xiaolin Teng,

respectively. Dr. Hongzhou Wang, who brought me into Reliability area in the class of

Reliability Engineering II, with his great expertise and knowledge. Dr. Xuemei Zhang’s

research has provided a very solid foundation for Chapter 4 in this dissertation. One of the

papers written by Dr. Xiaolin Teng has provided the great inspiration for solving the

problems in Chapter 7.

My appreciation also goes to the faculty members, Ms. Cindy Ielmini, and other graduate

fellows in the Department of Industrial and Systems Engineering at Rutgers.

Lastly, I would like to thank Drs. Wenke Liu, Xiaoshi Su, Nawei Sun, and Yisi Zhang, for

their friendship, companion, along with the great cooking skill and healthy sarcasm.

vii

DEDICATION

To my parents, and grandmother, for their love and support.

viii

TABLE OF CONTENTS

ABSTRACT OF THE DISSERTATION ... ii

ACKNOWLEDGEMENT .. v

DEDICATION .. vii

TABLE OF CONTENTS ... viii

LIST OF TABLES ... xiii

LIST OF ILLUSTRATIONS ... xvi

CHAPTER 1 INTRODUCTION .. 1

1.1 Importance of Reliable Software .. 1

1.2 Software Reliability Engineering ... 5

1.2.1 Trends in Software Development ... 5

1.2.2 Software Reliability Model ... 7

1.2.3 General Theory of Nonhomogeneous Poisson Process 10

1.3 Importance of Software Testing ... 13

1.4 Transitions of Environmental Factors Affecting Software Reliability 14

1.5 Importance of Multi-Release Software Product ... 16

1.6 Overview of the Dissertation .. 17

CHAPTER 2 LITERATURE REVIEW ... 20

2.1 Environmental Factors in Software Development ... 21

ix

2.2 Software Reliability Model .. 24

2.3 NHPP Software Reliability Model ... 28

2.3.1 Software Reliability Model with Different Fault Classification 32

2.3.2 Multi-Release Software Reliability Model ... 34

2.3.3 Environmental-Factor-Based Software Reliability Model 36

CHAPTER 3 OBJECTIVES OF THE DISSERTATION .. 39

CHAPTER 4 ENVIRONMENTAL FACTORS IN SOFTWARE DEVELOPMENT 42

4.1 Environmental Factors in Single-Release Software Development 42

4.1.1 Research Motivation ... 42

4.1.2 Objectives ... 44

4.1.3 Data Collection ... 45

4.1.4 Findings and Results ... 46

4.1.5 Comparisons ... 62

4.1.6 Conclusions of Comparison Analysis between Current Study and Previous

Findings ... 70

4.2 Environmental Factors in Multi-Release Software Development 72

4.2.1 Research Motivation ... 72

4.2.2 Objectives ... 74

4.2.3 Data Collection ... 75

4.2.4 Findings and Results ... 76

x

4.3 Comparisons between Single-Release and Multi-Release Software 89

4.3.1 Ranking of Environmental Factors ... 89

4.3.2 Principle Components of Environmental Factors 91

4.3.3 Significance Level of Each Development Phase .. 91

4.3.4 Significant Environmental Factors in Each Development Phase 92

4.4 Other Statistical Learning Method to Select Environmental Factors 95

4.5 Conclusions of Environmental Factor Studies in Development of Single-Release

and Multi-Release Software .. 96

CHAPTER 5 SOFTWARE RELIABILITY MODELS CONSIDERING FAULT

DEPENDENCY AND IMPERFECT FAULT REMOVAL ... 99

5.1 Research Motivation .. 99

5.2 Proposed Software Reliability Model for One-Phase Debugging Process 104

5.3 Proposed Software Reliability Model for Two-Phase Debugging Process 107

5.3.1 Phase I Software Reliability Model .. 112

5.3.2 Phase II Software Reliability Model ... 114

5.4 Parameter Estimation and Comparison Criteria ... 115

5.5 Numerical Examples for One-Phase Software Reliability Model 118

5.6 Numerical Examples for Two-Phase Software Reliability Model 127

5.7 Conclusions .. 140

xi

CHAPTER 6 MULTI-RELEASE SOFTWARE RELIABILITY MODELING

INCORPORATING DEPENDENT SOFTWARE FAULT DETECTION PROCESS . 142

6.1 Research Motivation .. 142

6.2 Multi-Release Software Reliability Model Framework 145

6.3 Parameter Estimation and Comparison Criteria ... 151

6.4 Numerical Examples .. 153

6.5 Conclusions .. 160

CHAPTER 7 MARTINGALE-BASED SOFTWARE RELIABILITY MODEL

INCORPORATING SINGLE/MULTIPLE ENVIRONMENTAL FACTOR(S) 161

7.1 Research Motivation .. 161

7.2 Single-Environmental-Factor Software Reliability Model 165

7.3 Multiple-Environmental-Factors Software Reliability Model 180

7.3.1 A Generalized Multiple-Environmental-Factors Software Reliability Model

 ... 181

7.3.2 Specific Multiple-Environmental-Factors Software Reliability Models ... 186

7.4 Numerical Examples for Single-Environmental-Factor Software Reliability

Model .. 193

7.5 Numerical Examples for Multiple-Environmental-Factors Software Reliability

Model .. 202

7.6 Discussion of Impact of Environmental Factor .. 204

7.7 Conclusions .. 205

xii

CHAPTER 8 CONCLUSIONS AND FUTURE RESEARCH 208

8.1 Conclusions .. 208

8.2 Future Research .. 210

REFERENCES ... 212

xiii

LIST OF TABLES

Table 4. 1 Environmental factors ranking based on relative weight method 48

Table 4. 2 Eigenvalue of correlation matrix ... 50

Table 4. 3 Principle components and strongly correlated factors 51

Table 4. 4 Final grouping based on Tukey method .. 53

Table 4. 5 Correlation analysis for single-release software survey data 54

Table 4. 6 Final grouping for development phase .. 60

Table 4. 7 Significant environmental factor in each development phase 62

Table 4. 8 Comparison of new ranking and previous ranking .. 65

Table 4. 9 Comparison of principle components .. 66

Table 4. 10 Final grouping comparison .. 68

Table 4. 11 Comparison of significant factors in each development phase 69

Table 4. 12 Environmental factors ranking by relative weighted method 77

Table 4. 13 Eigenvalue and proportion of the principle components 79

Table 4. 14 Principle component associated with strong-correlated environmental factors

... 80

Table 4. 15 Correlation analysis for multi-release software survey data 81

Table 4. 16 Significant factors in each development phases for multi-release software .. 88

Table 4. 17 Comparison of ranking between multi-release and single-release 89

Table 4. 18 Comparisons of principle components between single-release and multi-release

software ... 92

Table 4. 19 Comparison of final grouping .. 94

xiv

Table 4. 20 Comparison of significant factors in each development phase 94

Table 5. 1 Phase I system test data ... 119

Table 5. 2 Phase II system test data .. 119

Table 5. 3 Mean value function for all compared models .. 120

Table 5. 4 Parameter estimates and model comparison (Phase I system test data) 122

Table 5. 5 Parameter estimates and model comparison (Phase II system test data) 124

Table 5. 6 Comparison of G-O, Zhang-Teng-Pham model and the proposed model 126

Table 5. 7 Dataset 1 (DS 1) ... 128

Table 5. 8 Dataset 2 (DS 2) ... 129

Table 5. 9 Dataset 3 (DS 3) ... 129

Table 5. 10 Parameter estimates and model comparison (DS1) 134

Table 5. 11 Parameter estimates and model comparison (DS2) 136

Table 5. 12 Parameter estimates and model comparison (DS3) 138

Table 6. 1 Failure data of numerical example 1 .. 155

Table 6. 2 Software reliability models .. 155

Table 6. 3 Parameter estimates and model comparison of numerical example 1 156

Table 6. 4 Failure data of numerical example 2 .. 158

Table 6. 5 Parameter estimates and model comparison of numerical example 2 159

Table 7. 1 Log-likelihood value comparison .. 168

Table 7. 2 Some existing NHPP software reliability models .. 170

Table 7. 3 DS1 failure data ... 194

Table 7. 4 Model comparisons .. 195

Table 7. 5 DS1 parameter estimates and model comparison .. 195

xv

Table 7. 6 DS2 failure data ... 198

Table 7. 7 DS2 parameter estimates and model comparison .. 199

Table 7. 8 Parameter estimates and model comparison .. 203

xvi

LIST OF ILLUSTRATIONS

Figure 4. 1 Boxplot for each development phase ... 87

Figure 5. 1 Example of Type I (independent) fault and Type II (dependent) fault 103

Figure 5. 2 One-phase debugging process .. 104

Figure 5. 3 Phase I and Phase II associated with corresponding fault type 108

Figure 5. 4 Comparison of actual predicted failures (Phase I system test data) 123

Figure 5. 5 Comparison of actual predicted failures (Phase II system test data) 125

Figure 5. 6 Software failure increasing rate with respect to different value of ∆𝑡 (DS1)131

Figure 5. 7 Software failure increasing rate with respect to different value of ∆𝑡 (DS2)132

Figure 5. 8 Software failure increasing rate with respect to different value of ∆𝑡 (DS3)133

Figure 5. 9 Comparison of failure data prediction and actual data (DS1) 135

Figure 5. 10 Comparison of failure data prediction and actual data (DS2) 137

Figure 5. 11 Comparison of failure data prediction and actual data (DS3) 139

Figure 5. 12 Reliability prediction .. 140

Figure 6. 1 Illustration of solution – Part I.. 151

Figure 6. 2 Illustration of solution – Part II .. 151

Figure 6. 3 Schematic diagram of Generic Algorithm .. 153

Figure 6. 4 Comparison of proposed model and other models (numerical example 1) .. 157

Figure 6. 5 Comparison of proposed model and other models (numerical example 2) .. 158

Figure 7. 1 Data collection of PoRM .. 168

Figure 7. 2 Data collection of FoPSC ... 187

Figure 7. 3 DS1 comparison of actual failure data and predicted failure data – Part I ... 196

file:///C:/Users/MMTT/Desktop/Disseration/cover%20page%20+%20abstract/Revision%20update%20July%202018/dissertation%20revision%20July%2022%202018.docx%23_Toc523837983
file:///C:/Users/MMTT/Desktop/Disseration/cover%20page%20+%20abstract/Revision%20update%20July%202018/dissertation%20revision%20July%2022%202018.docx%23_Toc523837984
file:///C:/Users/MMTT/Desktop/Disseration/cover%20page%20+%20abstract/Revision%20update%20July%202018/dissertation%20revision%20July%2022%202018.docx%23_Toc523837996

xvii

Figure 7. 4 DS1 comparison of actual failure data and predicted failure data – Part II . 196

Figure 7. 5 DS1 software failure prediction from time unit 25 to 40 197

Figure 7. 6 DS2 comparison of actual failure data and predicted failure data – Part I ... 200

Figure 7. 7 DS2 comparison of actual failure data and predicted failure data – Part II . 200

Figure 7. 8 DS2 software failure prediction for time unit 29 to 44 201

Figure 7. 9 DS 1 reliablity predicton .. 202

Figure 7. 10 DS2 reliablity predicton ... 202

Figure 7. 11 Comparison of failure prediction .. 205

1

CHAPTER 1

INTRODUCTION

1.1 Importance of Reliable Software

In today’s technological world, almost everyone is directly or indirectly in contact with

computer software. Computers have been rapidly expanding to a wide array of complex

machinery and equipment applied in our everyday safety, security, infrastructure,

transportation system, financial management, and so on. Since software product is

extensively involved in various industries and service-based applications, the increasing

dependence of our modern society on software-driven systems has led the development of

software product to be very competitive and time-consuming [1]. Unlike hardware system,

software cannot break down or wear out during its life cycle, but can fail or malfunction

under certain configuration within specific condition [2]. Hence, the development,

measurement and qualifying of software are challenging yet critical in such a fast-growing

technological society.

In 1980, Lehman [3] summarized the Laws of Program Evolution. The first law,

Continuing Change, expressed the universally observed fact that large programs are never

completed. They just continue to evolve until the more cost-effective updated version to

replace the systems. The second law, Increasing Complexity, could also be viewed as an

instance of the second law of thermodynamics. As an evolving program is continually

changed, its complexity, reflecting deteriorating structure, increases as well, unless the

2

mission is done, or maintenance is needed. The third law, The Fundamental Law of

Program Evolution, subjects to dynamics which make the programming process, measures

system attributes and collaborative projects, and self-regulating with statistically-proven

trends and invariances. The fourth law, Conservation of Organizational Stability (Invariant

Work Rate), and the fifth law, Conservation of familiarity, both lead to the third law. The

fourth law more focuses on the steadiness of multiloop self-stabilizing systems. A well-

established organization is good at avoiding the dramatic change and particularly

discontinuities in an increasing growth of an organization. Especially in the past two

decades, the complexity of the task that software system performs has grown dramatically,

faster than hardware due to the fast-paced high technology development [4].

A modern software product is prone to include a large number of modules, system

components and Lines of Code (LOC) [4 – 5, 7 - 9]. The size of software product is no

longer measured in terms of thousands of lines of code, but millions of lines of code. The

latest investigation states that more than 10 Microsoft commercial software products could

have more than 600 million LOC [6]. In view of such a great amount of LOC, complexity

of software product, domain knowledge of programmer/tester, testing methodologies,

testing coverage, and testing environment should be all carefully taken into account in

software development.

Since the inception of electronic computing in the late 1940s, the development race of

computer industry has led to unprecedented process [10]. Powerful, inexpensive computer

workstation replaced the drafting boards of circuit and computer designers. Moreover, an

3

increasing number of design steps was automated. Computer and communication

industries have grown into the largest, amongst the new rising industries in twenty

centuries [11]. Hardware advances have allowed software programmers to create

wonderful coding and develop new features and functionality [11]. However, there is an

existing uneven progress between software and hardware in the computer revolution in the

past few decades. Based on the latest technology review, hardware is leaving software

behind. As a matter of fact, software is relied on less firm foundation, at the same time,

carries a larger burden than hardware in operation. Given the current technology on

manufacturing and electrical engineering, software has more potentials to allow designers

to contemplate more ambitious systems in consideration of a broader multidisciplinary

scope [12, 13].

The nonperformance and failures of software system are inconvenient, sometimes can lead

to severe consequence especially in aerospace engineering and national defense systems.

In March 2015 [14], a software glitch carried in software package of Lockheed Martin F-

35 Joint Strike Fighter aircraft had made the aircraft could not correctly detect the target.

The sensor on the plane cannot distinguish the difference between a singular and multiple

threats. Additionally, different F-35 aircraft provides different detection information even

they are aiming at the same threat, which depends on the angles they are aiming at and

what their sensors have received. The delivery date had to be postponed as well because of

this issue.

4

Software failures can also cause serious consequence in automobile. Toyota had to recall

almost 2 million Prius hybrid vehicles, in order to fix a software glitch along with its engine

control units (ECUs) in February 2014 [14]. A malfunction within the car's hybrid drive

system caused by software glitch could, in certain circumstances, cut the system's power

and cause the car to an unscheduled halt. A software glitch affecting the ECUs controlling

the motor/generator and hybrid system could put extra thermal stress on certain transistors

under certain condition. The same software issue recurred in July 2015, which has resulted

in the recall of 625,000 Prius cars globally.

Software failures have affected healthcare system as well. Emergency services were

unavailable for around six hours across seven U.S. states in April 2014 [14]. The incident

had a major impact on 81 call centers, meaning about 6,000 people made 911 calls that

were unable to connect in these seven states. There is a study announced by Federal

Communications Commission found that the cause of service unavailable was an entirely

preventable software error.

The nonperformance and failures of software are expensive. A study carried by National

Institute of Standards & Technology in 2002 found that inadequate infrastructures for

fixing software bugs cost the U.S economy $59.5 billion every year. What about the global

cost on fixing software bugs every year? This study also estimated that more than a third

of software bugs could be eliminated by improving software testing scheduling and

methodology [15].

5

Hence, developing reliable software is a major challenge to software industry, technology

industry, and other related industries, and this leads to the fact that Software Reliability

Engineering is popular in both academia and industry.

1.2 Software Reliability Engineering

1.2.1 Trends in Software Development

Large-scale software development is very complex, effort consuming and expensive

activity. Even though many innovations and improvements have been proposed on

software architecting system and development approach, the large-scale software

development is still largely unpredictable and error-prone [51].

Recently, Bosch-Sijtsema [51] discussed three trends in software development, which

further accelerate the complexity of large-scale software development. The first trend is

the increasing adoption of software product lines. A software product line consists of a

software platform shared by a group of products. Each software product can select and

configure components in the platform and extend the platform with desirable functionality.

At the same time, the platform consists of many components with associated team. Each

team takes charge of one product or several products. Software development is taken place

within many teams in the organization. During the development cycle, interactions and

communications between teams are much than traditional software development teams.

Some research identified the adoption of software product lines allows 50 – 75% of

development expenses reduction and decreases the defect density if the adoption is

6

successful [52, 53]. However, the adoption of software product lines also brings new level

of dependency in the organization in software development.

The second trend is software development globalization. Recent years, many companies

have multiple software development sites globally, or partnered with other remote

companies especially located in India and China. There are many advantages in terms of

software development, e.g., cycle time reduction, travel cost reduction, less communication

issues about user experiences, faster response to customers [54]. At the same time, software

development globalization brings challenges given the culture difference, time zone,

software engineering maturity in every country, and technical skills between different

countries.

The third trend is the adoption of software ecosystems. A software ecosystem is defined as

a set of businesses functioning as a unit and interacting with a shared market for software

and services. There are relationships amongst those units which are supported by a

technological platform, operating through the exchange of information, resources, and

artifacts [55, 56]. Software ecosystem takes external developer, domain experts and users,

hence, the community-centric collaboration and coordination are very important, which are

similar to the adoption of software product lines, as discussed in the first trend of software

development. Thus, the dependencies between components will increase and the

complexity of software development will increase accordingly [51].

7

1.2.2 Software Reliability Model

As discussed in Section 1.2.1, given large-scale software development is an increasing-

complexity, effort-consuming, and expensive activity, how can we assure software quality

is one of the challenging problems in industry. One of the fundamental quality

characteristics is reliability. It is generally accepted that reliability is the key factor in

software quality since it quantifies failures and misbehaviors of the product. As recognized

in both industry and academia, reliability is an essential measurement metric for developing

a robust and high-quality software product [1, 12, 13]. According to the definition given

by ANSI, software reliability is defined as the probability that a software system can

perform its designed function without failure during a specified time on a given set of

inputs under defined environments [12].

On the other hand, the increasing complexity and shortened iteration cycle of software

products bring in a decreasing average market life expectancy [15]. Thus, since 2000s,

there is a great attention shift from hardware development and testing to improve software

quality and reliability with the purpose of wining more market share.

Moreover, high reliability is desirable if software company plans to reduce the total cost of

software product upon the economic point of view. It is undoubtedly that lower reliability

software product not only results in the negative impact regarding customer satisfaction,

but also brings in the additional cost occurred during the operation phase because of fixing

a software fault in the operation phase costs more resource compared with in-house testing.

Since the fixing cost for a software fault in the operation phase is much higher than in-

8

house testing phase, most of organizations try to minimize these expenditures occurred in

the operation phase. That is why many high technology organizations need to release

multiple versions for a software product instead of fixing software faults in the operation

phase to improve product reliability and introduce new features to improve the user

experience as well.

Therefore, it is necessary to develop a practical and applicable model which can capture

the software failure growth trend, predict the number of failures, predict software reliability

given a specific period of operation time, propose the optimal release time of new products,

and schedule the delivery time for the next release based on the predetermined level of

reliability. Software reliability models are applied to evaluate software reliability and

capture the failure growth trend in the past few decades. There are several ways to measure

software reliability. A practical and common one is model software reliability by utilizing

the past failure behavior obtained from testing phase.

There are two main types of software reliability models: the deterministic and the

probabilistic. The number of distinct operators and operands, the number of errors, and the

number of machine instructions in the program are investigated in deterministic software

reliability model. Performance measures of the deterministic type are obtained by

analyzing the program texture and do not involve any random event.

Two well-known models are: Halstead’s software metric and McCabe’s cyclomatic

complexity metric. Halstead’s software metric is used to estimate the number of errors in

9

the program [16]. McCabe’s cyclomatic complexity metric is used to determine the upper

bound for estimating the number of remaining software defects [17]. In sum, these models

provide a quantitative way of software measurement, however, they mainly focus on

analyzing program texture and have not considered any random event [18] in the models.

The probabilistic model considers the failure occurrence and the fault removal as

probabilistic events. The probabilistic software reliability models can be classified into

different groups as stated in references [18, 19].

(1) Error seeding

(2) Failure rate

(3) Curve fitting

(4) Reliability growth

(5) Markov structure

(6) Time series

(7) Nonhomogeneous Poisson process

In this dissertation, we firstly focus on investigating the significant environmental factors

affecting software reliability during single-release and multi-release software development,

correlation between environmental factors, significant environmental factors in each

development phase based on the applications of statistical learning methodologies.

Meanwhile, comparisons of the significant environmental factors, correlation between

environmental factors, and principle components between the development of single-

10

release and multi-release software product are discussed. Secondly, we propose a two-

phase software reliability model incorporating software dependency and imperfect fault

removal process. Different types of software faults are defined. A two-phase debugging

process is also proposed according to different types of software faults. Thirdly, we develop

a multi-release software reliability model in consideration of the remaining faults from

previous release and the newly introduced faults, generated from the new-introduced

features for the development of current release. Fourthly, given the significant impact of

environmental factors on software reliability, we incorporate single/multiple

environmental factor(s) in software reliability models. We not only consider environmental

factors in the models but also the randomness caused by these environmental factors under

the Martingale framework. All software reliability models developed in this dissertation

are based on nonhomogeneous Poisson process assumption. Thus, we will provide detailed

discussion of nonhomogeneous Poisson process in the next section.

1.2.3 General Theory of Nonhomogeneous Poisson Process

Nonhomogeneous Poisson Process (NHPP) has been successfully applied to model

software reliability in the past few decades. Let 𝑁(𝑡) denotes the cumulative number of

software failures by time t. The counting process {𝑁(𝑡), 𝑡 ≥ 0} is said to be a NHPP with

intensity function 𝜆(𝑡), 𝑡 ≥ 0. The probability of exactly n failures occurring during the

time interval (0, 𝑡) for the NHPP is given by

 𝑃 {𝑁(𝑡) = 𝑛} =
[𝑚(𝑡)]𝑛

𝑛!
𝑒−𝑚(𝑡) for 𝑛 = 0, 1, 2, … (1.1)

11

 𝑚(𝑡) = 𝐸[𝑁(𝑡)] = ∫𝜆(𝑠)𝑑𝑠

𝑡

0

 (1.2)

where 𝑚(𝑡) is the expected number of failures up to time t, which is also known as the

mean value function.

Note that the forms of mean value function vary with different assumptions. In NHPP, the

stationary assumption is relaxed compared with Poisson process. In other words, 𝑁(𝑡) is

Poisson-distributed with a time-dependent failure intensity function 𝜆(𝑡), while Poisson

process holds the stationary assumption, 𝑚(𝑡) = 𝜆𝑡.

A general NHPP model includes the following assumptions.

(1) The failure process has an independent increment.

(2) The failure rate of the process is given by

𝑃{𝑁(𝑡 + 𝛥𝑡) − 𝑁(𝑡) = 1} = 𝜆(𝑡)𝛥𝑡 + 𝑜(𝛥𝑡)

(3) During a small interval 𝛥𝑡, the probability of more than one failure is negligible,

that is

𝑃{𝑁(𝑡 + 𝛥𝑡) − 𝑁(𝑡) ≥ 2} = 𝑜(𝛥𝑡)

where 𝑜(𝛥𝑡) represents a quantity which tends to be zero for a small 𝛥𝑡. The instantaneous

failure intensity function 𝜆(𝑡) is defined as

12

 𝜆(𝑡) = lim
𝛥𝑡→0

𝑅(𝑡) − 𝑅(𝛥𝑡 + 𝑡)

𝛥𝑡𝑅(𝑡)
=
𝑓(𝑡)

𝑅(𝑡)
 (1.3)

where

𝑅(𝑡) = 𝑃[𝑁(𝑡) = 0] = 𝑒−𝑚(𝑡).

 Given 𝜆(𝑡), the mean value function 𝑚(𝑡) is

𝑚(𝑡) = ∫𝜆(𝑠)𝑑𝑠

𝑡

0

. (1.4)

One of the main objectives of NHPP software reliability model is to derive appropriate

mean value function 𝑚(𝑡). The failure intensity function is equivalent to the derivative of

mean value function, 𝜆(𝑡) = 𝑚′(𝑡). Different assumptions on the fault detection and fault

removal process lead to different failure intensity function, 𝜆(𝑡). Reliability and other

related measurements can be obtained by solving the differential equation, 𝑚′(𝑡). The least

square estimate or maximum likelihood estimate mostly will be utilized to estimate the

unknown parameters.

Software reliability 𝑅(𝑡) is defined as the probability that a software failure does not occur

in (0, 𝑡), that is

13

 𝑅(𝑡) = 𝑃[𝑁(𝑡) = 0] = 𝑒−𝑚(𝑡) (1.5)

In general, during time interval (𝑡, 𝑡 + 𝑥), software reliability can be described as

𝑅(𝑥|𝑡) = 𝑃[𝑁(𝑡 + 𝑥) − 𝑁(𝑡) = 0] = 𝑒−[𝑚(𝑡+𝑥)−𝑚(𝑡)] (1.6)

1.3 Importance of Software Testing

The commonest and easiest way to improve software reliability is focusing on in-house

testing. Myers [20] defined software testing as a process of executing a program with the

intent of finding errors. There are two fundamental rules in software testing. Firstly, it is

intended to detect as many faults as possible during in-house testing phase and remove the

detected faults from software system. Secondly, software failure data will be collected to

predict system reliability, estimate the remaining faults, and schedule the product delivery

date.

Owing to the fact that software debugging, testing and verification are accounted for 50 –

70% of a software product’s development cost. Indeed, software testing is always defined

as a difficult, time-consuming, and expensive section in software development [21, 22].

Software debugging cost even goes higher if debugging is carried out in the operation phase.

In practice, it is unlikely to release bug-free software product owning to its nature limitation.

Post-deployment failures are inevitable in a complex software.

14

It is generally accepted that the longer time spent on software testing, the less faults that

software will carry and the more reliable of software will be. However, this is not a practical

approach. Exhaustive testing to execute all possible inputs unlikely happens since too many

possible combinations result in little improvement on system reliability [23, 24]. Moreover,

full execution tracing is usually impractical for the complex software program due to the

limitation of cost and resource [21]. Furthermore, after software reaches a certain level of

refinement, any further effort on removing faults will cause an exponentially increase in

the total development cost but not much increase in reliability assessment [25, 26]. Thus,

how to test software efficiently and meet the determined reliability is challenging task for

both researchers and practitioners.

1.4 Transitions of Environmental Factors Affecting Software Reliability

In this section, we firstly revisit 32 environmental factors defined in reference [27] fifteen

years ago and analyze their impact on software reliability during software development

based on a current survey distributed to software development practitioners. Secondly,

given the application of agile development and increasing popularity of multi-release

software products in many organizations, we conduct a new study investigating the impact

level of these 32 environmental factors on affecting software reliability in the development

of multi-release software to provide a sound and concise guidance to software practitioners

and researchers [30].

Software development process has gone through a great change during the past one and

half decades. The rise of the Internet had led to a rapid growth in the demand for

15

international information display and email systems on the World Wide Web. Software

programmers are required to handle various illustrations, maps, photographs, and other

images, plus simple animations at a rate we have never seen before. The high technology

has an ever-increasing impact on daily life, which drives the software release cycle

becomes shorter than before, for instance, many companies have shortened their software

release cycle from traditional 18 months to 3 months, in order to respond the fast-changing

and competitive market [31, 32].

Moreover, as the high technology gets more involved in our everyday life, there are a wide

variety of computational devices like mobile phones, tablet PCs, laptops, desktops,

notebooks, and so on [33], which also brings more challenges to software developers such

as application maintenance, device consistency, and dynamic version settings [34].

Customers also have more requirements on the specific design and functionality of the

software product. A user-friendly interface, involved in the interaction amongst users,

designers, hardware system and software systems, has been emphasized to a great extent

nowadays.

Furthermore, for practitioners and researchers, the programming skills, programming

language, domain knowledge, and even the programmer organization and team size are

different compared with fifteen years ago. Finally, software development is distributed

across multiple locations as the development of globalization [35]. Some studies [36 - 38]

stated that the cross-site work takes much longer time and requires much more effort, even

though the work size and complexity is similar.

16

Given a great number of changes stated above, thus, it is time to investigate the transition

of significant environmental factors affecting software reliability, the time distribution in

each phase during software development, the principle components, the significant

environmental factors in each phase, and the correlations between some of the

environmental factors, and compare the findings with previous studies [27, 28] for the

single-release software product and multi-release software product [29, 30].

1.5 Importance of Multi-Release Software Product

As the software development moves further away from the rigid and monolithic model, the

importance of software multiple releases is brought to the vanguard. It is unlikely to deliver

all features that customers wanted in the single release because of the limited budget,

unavailable resource, estimated risk, and constrained working schedules. Staying

competitive in the market and keeping profitable for a software product are difficult with

having only a single release especially when rival releases a new release carrying more

attractive features and satisfying more customer requirements [39]. As a result of multiple

releases planning, software organization has more competitive and overwhelming

advantages to balance the competing stakeholder’s demands and benefits according to the

available resource [40, 41].

On the other hand, large software system continually desires to align with the changing

customer requirements for the sake of market share. In order to obtain the feedback from

the users earlier, figure out what customers really look for, and assign a lower software

17

development cost, a certain portion of increments on the requirements for multi-release

product is essential for the growth of an organization [42 - 44]. Thus, software organization

needs to modify the parts of the existing modules to extend the current functionality,

usability, and understandability by adding new features and correcting the problems from

previous release [45, 46].

Additionally, agile software development is getting more attention in recent years. Agile is

an iterative and team-based approach, which emphasizes the rapid delivery of an

application in complete functional components [203]. The wide adoption of agile

methodology also promotes software multiple releases.

Hence, software multiple releases are critical to keep software company stay competitive

in the market. Only a few researchers proposed multi-release software reliability models

[47 - 50], however, most reliability models only optimized software cost model to obtain

the optimal release time, instead of considering software faults from different releases.

Thus, this section focuses on developing software reliability model in terms of multi-

release software incorporating the remaining faults from previous release and the newly

introduced faults resulting from the newly introduced features in the development of the

next release.

1.6 Overview of the Dissertation

This reminder of this dissertation is stated as follows. In Chapter 1, a general introduction

of research background, current research limitation, and the motivation of this dissertation

18

are discussed. In Chapter 2, literatures that are related to NHPP software reliability model

are reviewed. In Chapter 3, the objectives of this dissertation are presented.

In Chapter 4, a comparison analysis of environmental factors affecting software reliability

is presented for the development of single-release software product and multi-release

software product. This chapter aims to compare what have been changed for the past fifteen

years regarding the environmental factors affecting software reliability in the development

of single-release software product, and compare the environmental factors affecting

software reliability, principles components, and development phase between single-release

and multi-release software development.

In Chapter 5, we firstly develop a software reliability model in consideration of dependent

fault detection process and imperfect fault removal processes. Later, we define a two-phase

software debugging process considering different types of software faults in each phase.

Thus, a two-phase software reliability model is proposed in this chapter addressing two

main topics, software dependency, and imperfect fault removal process.

Most software reliability models in literature focus on single-release software product.

However, nowadays, it is critical to release multiple version software product, given the

increasing adoption of agile methodology in software development and the customer-

oriented market. Thus, in Chapter 6, a multi-release software reliability model is proposed

to capture the remaining faults from previous release and the newly introduced software

faults along with the newly added features.

19

In Chapter 7, due to the significant impacts of environmental factors affecting software

reliability during software development, as discussed in Chapter 4, therefore, we firstly

propose a single-environmental-factor software reliability model under the Martingale

framework to reflect the impact of a significant environmental factor, Percentage of Reused

Modules. Later, we propose a multiple-environmental-factors software reliability model

under the Martingale framework to address more practical and applicable issues in the real

world by incorporating multiple environment factors contributed to the reliability

improvement in the development process.

In Chapter 8, we conclude this dissertation and discuss the future research.

20

CHAPTER 2

LITERATURE REVIEW

In this chapter, we review several research articles with respect to the topics investigated

in this dissertation.

In Section 2.1, we review the literatures defined and discussed different types of factors

and their impact on software quality/reliability in software development process, e.g.,

environmental factors, success factors, situational factors.

There are two main types of software reliability models, the deterministic models and the

probabilistic models. In Section 2.2, we present the review on software reliability models

in terms of the deterministic models and the probabilistic models. The probabilistic models

can be classified into different groups, such as error seeding, failure rate, curve fitting,

reliability growth, Markov structure, time series, and nonhomogeneous Poisson process

(NHPP).

This dissertation mainly focuses on the development of software reliability models based

on NHPP assumption. Thus, Section 2.3 reviews a great number of literatures regarding

NHPP software reliability models in terms of different assumptions on testing effort,

testing coverage, fault removal efficiency, time-delay fault removal, and environmental

factor impact under perfect debugging/imperfect debugging process. Meanwhile, the

21

software reliability models developed in Chapters 5, 6 and 7 consider software fault

classification and fault dependency, multi-release software product, and the impact of

single/multiple environmental factor(s) on software reliability, respectively. Hence,

Sections 2.3.1, 2.3.2, and 2.3.3 review the related literatures along with the research topics

focused in Chapters 5, 6 and 7, respectively.

2.1 Environmental Factors in Software Development

Although no general definition has been given to define what are the environmental factors

affecting software reliability during software development process, there have been many

related works in literature defined different types of factors in software development from

various perspectives.

Zhang and Pham [27] defined 32 environmental factors to characterize the impact of these

environmental factors affecting software reliability during software development process

for single-release software product. 32 environmental factors are defined from the four

phases of software development, general information, and the interaction with hardware

systems. Software development is divided into four phases in this study: Analysis phase,

Design phase, Coding phase and Testing phase. The authors conducted a survey

investigation and obtained empirical quantitative and qualitative data form mangers,

software engineers, designers, programmers, and testers whom participate in software

development practices. This paper identified the importance of factors in software

development and analyzed the correlation between factors. Later, Zhang et al. [28]

22

provided an exploratory analysis to further analyze the detailed relationship of these

environmental factors.

Sawyer and Guinan [113] presented the effects on software development performance

depend on the production method of software development and the social process of how

people work together in software development environment.

Roberts Jr. et al. [114] proposed five factors which are essential to implement a system

development methodology, e.g., organizational system development methodology (SDM)

transition, functional management involvement/support, SDM transition, use of models,

and external support.

Chow and Cao [89] collected the survey data from 109 agile projects from a diverse group

of organizations with different sizes, industries and geographic locations to provide

empirical information for the statistical analysis. Based on the multiple regression analysis,

the critical success factors are identified to be a correct delivery strategy, a proper practice

of agile software engineering techniques, and a high-caliber team. Three other factors that

could be critical to certain success dimensions are identified to be a good agile project

management process, an agile-friendly team environment, and a strong customer

involvement.

Misra et al. [88] conducted a large-scale survey-based study to identify the success factors

from the perspective of agile software development practitioners who have successfully

23

adopted agile software development in their projects. This study identified nine out of the

fourteen hypothesized factors have statistically significant relationship with “success”. The

important success factors are: customer satisfaction, customer collaboration, customer

commitment, decision time, corporate culture, control, personal characteristics, societal

culture, and training and learning.

Clarke and O’Connor [90] conducted the research on the situational factors affecting the

software development process. Rigorous data coding techniques from Grounded Theory

have been applied in this study. They concluded that the resulting reference framework of

situational factors consists of eight classifications and 44 factors that inform the software

process. On the other hand, this framework also provides useful information for

practitioners who are challenged with defining and maintaining software development

process.

In this dissertation, we present a comparison analysis, which has been published in Journal

of Systems and Software [29], to compare the changes of 32 environmental factors affecting

software reliability after Zhang and Pham [27] firstly proposed this idea. The above

research mainly discussed the environmental factors/success factors/situational factors in

the development process of single-release software. As the application of the principles of

agile and lean software development, software multiple releases are very common in the

modern society. Software multiple releases not only make company easily balance the

competing stakeholder’s demand and benefits but also increase reliability and customer

satisfaction level during each release, thus, we conduct another survey study, which has

24

been published in Journal of Systems and Software [30], to investigate the impact of

environmental factors on software reliability in the development of multi-release software

and compare with the findings in reference [29].

2.2 Software Reliability Model

In the past few decades, software failure data, collected mostly in the testing phase, are

applied to study the behavior of software system, including software reliability given a

specific period of time, failure growth rate, the number of remaining faults in the system,

and the optimal release time. Hence, a great number of research have been focused on the

development of software reliability models in the past four decades with various

assumptions regarding testing methodology, testing coverage, fault removal efficiency,

fault dependency, delay debugging, optimal release time, and so on.

The classification of software reliability model was presented by different researchers [57

- 60]. One of the most widely utilized classification methodologies categorizes software

reliability models into two types: the deterministic models and the probabilistic models

[19].

The deterministic models are used to study: (1) the element of a program by counting the

number of distinct operators, operands, errors, and instruction; (2) the control flow of a

program by counting the branches; (3) the data flow of a program (data sharing and

passing). There are two well-known models: Halstead’s software metric [16] and

McCabe’s cyclomatic complexity metric [17]. These models provided an innovative and

25

pioneering quantitative approach to analyze and measure the performance of software

system at that time; however, random event is not involved, hence, these models are not

suitable to apply in the modern software.

The probabilistic models take into account the failure detection and failure removal as

probabilistic events during software development. The classification of probabilistic

software reliability model is given by references [19, 61]: (1) error seeding; (2) failure rate;

(3) curve fitting; (4) reliability growth; (5) Markov structure; (6) time series; (7) NHPP.

In error seeding class, the number of errors in a program is estimated by applying the multi-

stage sampling technique. Mills’ error seeding model [62] proposed an error seeding

method to estimate the number of errors in a program by introducing seeded errors into the

program. Cai [63] modified Mills’ model by diving software into two parts: Part 0 and Part

1. Tohma et al. [64] introduced a reliability model based on the hypergeometric distribution

to estimate the number of errors in the program.

In failure rate class, these studies focused on how failure rates change at the failure time

during the failure intervals. The number of faults in the program is a discrete function, thus,

the failure rate of a program is a discrete function as well. The Jelinski-Moranda model

[65] is one of the earliest software reliability models, which states the program failure rate

at the 𝑖𝑡ℎ failure interval is given by

𝜆(𝑡𝑖) = ∅[𝑁 − (𝑖 − 1)] for 𝑖 = 1, 2, … ,𝑁 (2.1)

26

where ∅ is a proportional constant and represents the contribution of one fault makes to the

overall program, and N is the number of initial faults in the program.

The Schick-Wolverton model [66] modified the Jelinski-Moranda model by assuming the

failure rate at the 𝑖𝑡ℎ time interval increases with time 𝑡𝑖 since last debugging. Later,

Moranda [67] proposed a reliability model considering the program failure rate function as

initially a constant D and decreases geometrically at failure times.

In curve fitting class, the models use statistical regression analysis to illustrate the

relationship amongst software complexity, the number of faults, and failure rate in the

software. Linear regression analysis, nonlinear regression analysis, or time series approach

is applied between the dependent and independent variables. Estimation of errors,

complexity, and failure rate are investigated in the modeling. Belady and Lehman [68]

introduced a model by applying time series approach to estimate software complexity.

Miller and Sofer [69] also proposed a model to estimate software failure rate by assuming

the failure rate is a monotonically non-increasing function.

In reliability growth class, the improvement of program reliability is measured and

predicted via the testing phase by reliability growth models. The failure rate is a function

of time, or the number of testing cases in this group of models. Coutinho [70] pointed out

that the failure rate is a function of the cumulative number of failures and testing time. Wall

27

and Ferguson [71] proposed a model that is similar to Weibull model to predict software

failure rate during testing.

In the group of Markov structure models, the assumption is that the failure of the modules

is independent of each other. Goel and Okumoto [72] proposed a linear Markov model with

imperfect debugging. Meanwhile, the transition probability of the model was stated.

Littlewoods [73] developed a reliability model incorporating the transitions between

modules while operating. Two types of failures are considered: failure from each module,

as a Poisson failure process, and failure from interface between modules. Yamada et al.

[74] performed a software safety model to illustrate software’s time-dependent behavior

using Markov process.

In time series model group, Auto-Regressive Integrated Moving Average (ARIMA)

method is applied to study software reliability. Singpurwalla and Soyer [75] introduced

several ramifications into a random coefficient auto-regressive process of order 1 to

describe software reliability. In addition, several research papers [8, 75 - 78] also used time

series approach to address software reliability prediction in testing phase and operation

phase.

Since this dissertation mainly focuses on the development of software reliability modeling

based on the NHPP assumption. Therefore, the literature review on NHPP software

reliability models will be carried out in the next section.

28

2.3 NHPP Software Reliability Model

NHPP has been successfully applied on modeling software reliability since Goel and

Okumoto [79] firstly proposed their innovative model in 1979 which assumed a constant

fault detection rate and a constant total software fault content. In addition, they made

assumptions that all software faults are mutually independent from the failure detection

point of view. The failure intensity at any time is proportional to the remaining number of

faults in the software program. Based on the fundamental assumptions of Goel-Okumoto

model, a great number of NHPP software reliability models have been proposed in the past

four decades to address different scenarios in software fault detection and fault correction

process.

Ohba [80] proposed the hyper-exponential growth model in consideration of different

clusters of modules in a program. Each module contains different initial number of errors

and different failure rate, which are all assumed as constants in the software reliability

model. It is well-known that the sum of exponential distribution is a hyper-exponential

distribution. Thus, the system software reliability model is more like the summation of

each module’s reliability model.

Yamada and Osaki [81] also proposed a software reliability model which is similar to the

model proposed by Ohba [80]. Software can be divided into K modules. The probability

of faults for each module will be taken into consideration. The fault detection rate is same

within modules, however, various between modules. The total number of errors in the

29

software is assumed as a constant and there are no new errors will be introduced during

fault detection process.

Time-dependent fault detection rate is applied in modeling software reliability growth trend.

The concept of S-shaped model is proposed to describe the behavior of the detected failures.

Ohba et al. [82] discussed a NHPP model with S-shaped mean value function. Ohba and

Yamada [83] also proposed a NHPP model with S-shaped mean value function and

considered the cumulative number of detected faults often seems to perform S-shaped.

They stated that some of the faults are not detectable before some other faults are removed.

In addition, the probability of the failure detection at any time is proportional to the

remaining faults in the software.

Around the same time, Yamada et al. [84 - 86] proposed several software reliability models

considering software fault detection process as a learning process. Specifically, when

software testers get more familiar with testing environment, specifications, and

requirements, software fault detection rate will go higher.

Nakagawa [87] developed the connective NHPP model with S-curve forms. A group of

modules called, main route modules, are tested first, followed by other modules. Even the

failure intensity in the main route modules and other modules are similar, the failure growth

curve performs as S-curve since the detection starts at different time points. Afterwards, S-

shaped reliability models are further developed in many literatures [8, 9, 91 - 93].

30

NHPP perfect debugging model often assumes when a failure occurs, the fault that caused

it can be immediately removed and no new faults are introduced [72, 83, 84, 94]. The

concept of imperfect debugging is based on the assumptions [18, 19]: (1) when detected

errors are removed, it is possible to introduce new errors; (2) the probability of finding an

error in a program is proportional to the number of remaining errors in the program. Many

reliability models are proposed based on NHPP imperfect debugging concept [18, 85, 91 -

93, 98 - 105, 155, 156]. For instance, Yamada et al. [105] developed two software

reliability models incorporating imperfect debugging concept. New faults are sometimes

introduced when faults originally are latent in software system. The test-effort functions

are expressed by exponential and Rayleigh curves in this study.

Since testing phase plays an essential role in software development, a great number of

software reliability models focus on testing coverage, testing efficiency, testing resource

allocation, and so on. Pham and Zhang [97] presented testing coverage is a measure that

enables software developers to evaluate the quality of the tested software and determine

how much additional effort is needed to improve the quality and reliability. They

introduced a generalized model incorporating the measurement of testing coverage into

software reliability assessment. This model indicates that the failure intensity depends on

both the rate at which the remaining faults are covered and the number of remaining faults

at current time t divided by the current fractional population of uncovered faults.

Zhang et al. [106] developed a software reliability model based on imperfect debugging

considering new faults can be introduced while debugging and the detected faults may not

31

be removed completely. They defined the fault removal efficiency in the study, which

presented a new idea for the later research.

Huang and Lyu [107] studied the impact of testing effort and testing efficiency on the

modeling of software reliability and the cost for optimal release time. Inoue and Yamada

[99] developed a software reliability model by formulating the relationship between the

alternative testing-coverage evaluation function and the number of detected faults. Later,

Huang [108] incorporated both a generalized logistic testing-effort function and the

change-point parameter into software reliability model.

Li et al. [109] incorporated logistic testing coverage function to develop software reliability

model. Lin and Huang [110] incorporated the Weibull-type testing effort function with the

multiple change-points into software reliability modeling. Moreover, Chatterjee and Singh

[9] proposed a software reliability model by considering a logistic-exponential testing

coverage function and an imperfect debugging process.

Time-delay fault removal are also discussed in many literatures. Xie and Zhao [111]

generalized Schneidewind’s model by assuming a continuous time-dependent delay

function which quantifies the expected delay in correcting the detected faults. Delay is

treated as an increasing function of time t. The faults are easily to be corrected in the early

state of testing and become difficult to detect as time goes by.

32

Hwang and Pham [112] developed a generalized NHPP software reliability model

considering quasi-renewal time-delay fault removal. The time delay is defined as the

interval between fault detection and fault removal. Time-delay is considered as a time-

dependent function, described by a quasi-renewal process in this study. This model

provides a more relaxed assumption in software testing and debugging, which is very close

to the practical testing and debugging process.

The testing resource allocation during the testing phase, which is usually depicted by the

testing effort function, which is affected not only by the fault detection rate but also the

time to correct a detected fault. In the research paper published by Peng et al. [204], the

authors firstly incorporated testing effort function and fault introduction into the fault

detection process and then developed the model considering fault correction prosses as a

fault detection process with a correction effort. Various specific paired fault detection

process and fault correction process models are obtained based on different assumptions of

fault introduction and correction effort.

2.3.1 Software Reliability Model with Different Fault Classification

Many literatures state that there exists more than one type of software fault in the program

[117 - 126]. Different fault classes are categorized by practitioners and researchers to

describe the characteristics of software faults that cause failures during testing and

operation phase [117, 118, 124 – 126]. The limits and challenges in the dependability of

computer systems in terms of the fault class, such as physical faults, design faults, and

interaction faults, are discussed in references [124, 125] as well.

33

Ohba [80] discussed two types of software faults, mutually independent faults and mutually

dependent faults. Tokuno and Yamada [104] proposed an imperfect debugging software

reliability model with two types of software failures involved. The first type is caused by

the fault latent in the system, which is described by a geometrically decreasing function;

the second type fault is randomly regenerated in testing phase, which has a constant hazard

rate.

Kapur and Younes [127] considered leading error and dependent error in the model

development. Pham [128, 129] also studied multiple failure types with different detection

rate, but it was too simple to address the modern software products.

Goseva-Popstojanova and Trivedi [130] addressed the fault correlation and its impact on

the software reliability assessment. Dai et al. [131] incorporated multiple types of software

failures in software reliability model. Huang and Lin [132] incorporated fault dependence

and delay debugging in the software reliability growth model.

Grottke et al. [117] studied the proportion of the various fault types and their evolvement

with time based on the fault discovered in the on-board software for 18 JPL/NASA space

missions. However, they did not provide a quantitative way to estimate the number of faults.

Thus, an explicit method to quantify the behavior of different fault type, consider software

dependency and imperfect fault removal is needed.

34

Our research, which has been published in Computer Languages, Systems & Structures

[133], proposes a new NHPP software reliability model with a pioneering idea by

considering software fault dependency and imperfect fault removal. In order to clearly

explain software fault dependency, some facts and examples regarding the detection of

different type of faults are discussed in Chapter 5. Two types of software faults are defined,

Type I (independent) fault and Type II (dependent) fault, based on the consideration of

fault dependency. Two phases debugging processes, Phase I and Phase II, are proposed

according to the debugged software fault type. A small portion of software faults that

software testers are not able to remove is also considered in both phases in the proposed

model.

2.3.2 Multi-Release Software Reliability Model

Most software products are not introduced into the market with full capacities at their initial

release. New features will be added, and existing features will be enhanced after launched

software for a while. Extensive studies have been done for the release of single version

software system for the past few decades. Modeling and predicting software failure

behavior are investigated by many researchers as well. However, only a few researchers

studied multi-release software reliability and introduced prediction models to explain

software fault detection process and fault removal process for multi-release software

products.

Garmabaki et al. [115] incorporated different severities level used to describe the difficulty

of correcting faults in the upgrade process to develop a multi up-gradation software

35

reliability model. Faults are classified into two categories, simple fault and hard fault. The

fault removal for the development of the new release depends on the fault from previous

release and fault generated in that release.

Hu et al. [47] considered the effect of multiple releases regarding the fault detection process

in software development. They assumed that there is no gap between the release of previous

version and the development of next version. Moreover, optimal release time for each

version is discussed in this study.

Kapur et al. [48] introduced the combined effect of schedule pressure and resource

limitations by the use of Cobb-Douglas production function in software reliability

modeling. The Cobb-Douglas function illustrates the total production output can be

obtained by the amount of labor input, capital input, and total factor productivity. An

optimal release planning problem is formulated in this study for software with multiple

releases with the solution obtained by applying genetic algorithm method.

Pachauri et al. [50] proposed a software reliability growth model by considering fault

reduction factors (FRFs) and extended this idea to multi-release software systems. FRFs is

defined as the ratio of the total number of reduced faults to the total number of failures.

FRFs is not a constant, which can be affected by other factors, such as resources allocation,

debugging time lag, and imperfect debugging.

36

Yang et al. [49] incorporated fault detection and fault correction process in multi-release

software reliability modeling. They considered there is a time-delay in fault repair after

detecting faults. The time-delay function is explained by an exponential function or a

gamma function. They also assumed the faults in a new version including both the

undetected faults from last version and the newly introduced faults during the development

process of the new version.

However, most literatures aimed to develop multi-release software reliability model only

through optimizing software cost model to determine the optimal software release time

except Yang et al. [49].

Our research, which has been published in Annals of Operations Research [116], focuses

on the development of a multi-release software reliability model considering the remaining

software faults from previous release and the newly introduced faults (from newly added

features). Additionally, dependent fault detection process is taken into account in this

research. In particular, the detection of a new software fault for developing the next release

depends on the detection of the remaining faults from previous release and the detection of

the newly introduced faults.

2.3.3 Environmental-Factor-Based Software Reliability Model

As discussed in Chapter 1, given the current trends of software development process, which

are the adoption of software product lines, software development globalization, and the

establishment of software ecosystems, the complication and human-centered software

37

development process needs to be addressed more appropriately. Meanwhile, environmental

factors play significant impacts on affecting software reliability during development

process [27 – 30, 88 – 90, 113, 114], as discussed in Section 2.1. Thus, how to incorporate

the single/multiple environmental factors which present significant impact on reliability

into software reliability model is critical to address modern software development in

practice.

Only a few literatures incorporated random effect of the environments, or other factors,

e.g., fault reduction factor, into software reliability models.

Teng and Pham [103] presented a new methodology for predicting software reliability in

the field environment. A generalized random field environment (RFE) software reliability

model which can cover both the testing phase and operating phase is proposed in this study

by assuming all the random effect in the field environments can be captured by a unit-free

environmental factor. Two specific RFE reliability models are developed by the use of the

generalized RFE software reliability model, called the γ-RFE model and the β-RFE model,

to describe different random effects in the operation phase.

Hsu et al. [134] integrated fault reduction factor into software reliability models. Fault

reduction factor is proposed by Musa [135], which is generally defined the ratio of net fault

reduction to failures experience, which could be influenced by many environmental factors,

e.g., imperfect debugging or delay debugging. The authors firstly studied the trend of the

fault reduction factor and considered it as a time-variable function, and then incorporated

38

the fault reduction factor in software reliability growth modeling to improve the accuracy

of failure prediction.

Recently, Pham [136] incorporated the uncertainty of the operation environment into a

software Vtub-shaped fault detection rate model. In particular, fault detection rate in this

study is represented by a Vtub-shape function and the uncertainty of the operation

environments is represented by a random variable, modeled as gamma distribution.

The first part of our research in this chapter, which has been published in Annals of

Operations Research, incorporates one of the top 10 significant environmental factors,

Percentage of Reused Modules (PoRM), to be a random variable which has random effect

on fault detection rate. We then introduce the Martingale framework, specifically,

Brownian motion and white noise process in the stochastic fault detection process to reflect

the impact resulting from the randomness of environmental factor and to propose a single-

environmental-factor software reliability model. Moreover, given the significance of these

impact, we further propose a generalized software reliability model with multiple

environmental factors under the Martingale framework.

39

CHAPTER 3

OBJECTIVES OF THE DISSERTATION

Software reliability growth model has been studied for a long time since 1970s. A great

number of software reliability models have been proposed in consideration of different

methodologies, assumptions, and field applications. In order to obtain software metrics

such as the remaining faults in software system, failure growth rate, failure intensity, and

optimal release time, past testing/operation failure data are usually employed to develop

software reliability growth model.

Given the transitions of modern software development, how to predict software failures in

terms of the practical development/application scenarios is critical yet challenging for

researchers. Therefore, in this dissertation, we have not only integrated software

practitioners’ opinions from a wide variety of industries, but also developed software

reliability models by addressing different practical problems observed in software

development practices.

The objectives of this dissertation are stated as follows.

(1) Reinvestigate the environmental factors affecting software reliability in single-release

software development and compare the findings with references [27, 28] to present an

advanced analysis for all 32 environmental factors. Specifically,

40

• Investigate the correlation of some of the environmental factors and identify the

methodology to reduce the dimension of related environmental factors, in order to

apply the significant factors into software reliability model in the later research.

• Reveal the significant factors in each development phase.

• Examine the significance level of each development phase in the whole software

development process.

• Compare the significant factors, principle components, significance levels of

development phases, significant factors of each development phase, and time

allocation of each development phase revealed in this study and previous findings

[27, 28] to investigate the root cause of those differences.

(2) Investigate the environmental factors affecting software reliability in multi-release

software development and compare the findings in Objective (1) to provide a

comprehensive analysis for software development practices.

(3) Develop one-phase and two-phase NHPP software reliability models considering

software fault dependency and imperfect fault removal process. Specifically,

• Define two types of software faults, Type I (independent fault) and Type II

(dependent fault).

• Two phases debugging process are introduced. Each type of software fault will be

detected and removed in different phase according to their own characteristics.

• Compare the descriptive and predictive ability of the proposed models with the

existing NHPP models.

41

(4) Propose a multi-release software reliability model incorporating the remaining faults

from previous release and newly introduced faults (from newly added features) for the

development of the new release. The detection of the new faults depends on the remaining

faults from previous release and the newly introduced faults. We also compare the

predictive ability of the proposed model with other multi-release software reliability

models.

(5) Given the findings from Objectives (1) and (2), incorporate single/multiple

environmental factor(s) and the randomness caused by these environmental factor(s) in

software reliability models under the Martingale framework. We also compare the

predictive power of the software reliability models with and without incorporating

environmental factors(s).

42

CHAPTER 4

ENVIRONMENTAL FACTORS IN SOFTWARE DEVELOPMENT

4.1 Environmental Factors in Single-Release Software Development

4.1.1 Research Motivation

Computer systems are widely applied on various areas to provide fast, reliable, and

effective service to the targeted market nowadays. Software development process has gone

through dramatic changes especially in the past one and half decades. The rise of the

Internet has led to the rapid growths in many industries, such as semiconductor,

pharmaceutical, online retailing, banking, financial service, and computer hardware &

software. The high technology has an ever-increasing impact on our daily life. For example,

the wide applications of computational devices like mobile phones, tablets, and laptops

have brought the increasing conveniences for everyday life.

At the same time, software development process has become more critical and complicated,

which also brings major effects on the growth of a company, including market share and

position, customer loyalty, and the new product development. One of the main challenges

for the software development team is to provide on-time, reliable, and high-quality

software within budget [28]. On the other hand, software development is a complex and

human-centric activity that is subject to many pitfalls if not appropriately organized [90].

Hence, improving software reliability has turned out to be one of the essential concerns for

software practitioners and researchers.

43

Many software reliability models have been proposed during the past few decades, most of

which focus on analyzing the software fault detection process as a function of time. Yet,

most software reliability models are developed without considering other attributes during

this complicated and human-centered software development process, testing process, and

field operation.

Only a few literatures considered the impact of random environments and predicted the

software reliability incorporating the random environmental factors. Teng and Pham [103]

presented a new methodology for predicting software reliability in the field environment.

A generalized random field environment (RFE) software reliability model which can cover

both the testing phase and operating phase is proposed in this study by assuming all the

random effect in the field environments can be captured by a unit-free environmental factor.

Later, Hsu et al. [134] integrated fault reduction factor into software reliability models.

Zhang and Pham [27] defined 32 environmental factors in the software development

process fifteen years ago. These factors not only included each phase of software

development practice, but considered human nature, teamwork, and interactions of

hardware system. They also provided a survey study to investigate the ranking based on

the influence of the factors on software reliability and correlations between some of the

factors. Moreover, Zhang et al. [28] presented another exploratory analysis to reduce the

dimension of the factor space by applying factor analysis, analyze the relation between the

years of experience, positions, and the opinions on software reliability improvement for 32

44

environmental factors. But, is there any changes of the findings after fifteen years? If there

is any change, how can we quantify those changes?

4.1.2 Objectives

This study aims to reinvestigate the environmental factors and compare the findings with

the references [27, 28] to provide an up-to-date ranking for all 32 environmental factors.

The investigation is carried out by conducting a survey of environmental factors regarding

their impact on software reliability from the perspective of managers, software engineers,

programmers, and testers. We are going to investigate the correlation of some of the factors,

identify methods to reduce the dimension of some related environmental factors, and

identify the significant environmental factors in each development phase to provide a

practical reference for software practitioners.

Statistical method such as principle component analysis (PCA) can be employed to perform

the dimension deduction and correlation analysis. In addition, analysis of development life

cycle is discussed in this study. The significant environmental factors are revealed in each

development phase. Examination of the significance level of each development phase is

included in the study as well. Finally, by comparing the ranking for the environmental

factors, principle components of the environmental factors, significance levels of

development phases, significant factors and time allocation of each development phase

with previous findings, this study enables us to understand the root causes of these

differences. The future software reliability models may also incorporate the significant

factors defined from this study to improve the power of prediction.

45

4.1.3 Data Collection

We use the same survey from Zhang and Pham [27] included 32 environmental factors,

which are defined from software development process and the information of software

developer background. This study aims to investigate whether the significance levels of

environmental factors during software development have changed after one and half

decades. Thus, it is desired to maintain the homogeneity of the organization type and

choose similar organizations to conduct the survey. Twenty organizations from diverse

industries are selected to participate in the survey investigation.

Thirty-five survey forms are collected from 20 companies in various industries including

semiconductor, pharmaceutical, online retailing, banking, financial service, computer

hardware & software, IT service & consulting, and oil field service & equipment.

Participants were asked to rank the environmental factors in terms of its impact on software

reliability. Software developers in the participating organizations mainly focus on safety-

critical, commercial, and inside users-oriented applications. To obtain a wide-ranging

investigation, the years of experience and experience type on software development for the

investigated participants are different. For instance, the software development experience

type includes database, operation system, communication control, and language processor.

In addition, participants have different positions, such as manager, software engineer,

programmer, tester, and system administrator.

46

4.1.4 Findings and Results

Environmental Factor Analysis

Relative Weighted Method

The ranking for each environmental factor is from 0 to 7 in terms of its impact level on

affecting software reliability. For example, if participants think one environmental factor

is an extremely important factor based on its significance impact on software reliability,

they should rank 7; if participants think the one environmental factor will not have impact

on software reliability at all, then the rank for this environmental factor should be 0. Hence,

the ranking summations for all 32 environmental factors are ranging from 0 to 224 in this

study.

Relative weighted method is applied firstly to investigate the ranking proportion of each

environmental factor in one survey form and all survey forms. First, summarize the original

ranking provided by participants for all 32 environmental factors in each survey form. 31

out of 35 complete survey forms are used to calculate the ranking for the 32 environmental

factors. The summations for all 32 environmental factors of our original ranking range from

64 to 196. Let 𝑟𝑖𝑗 be the score of the ith factor in the jth survey. Normalize 𝑟𝑖𝑗 for each survey

by using

𝑤𝑖𝑗 =
𝑟𝑖𝑗

∑ 𝑟𝑖𝑗
𝑁
𝑖=1

 (4.1)

where N is the number of factors which are filled up by the jth participant in the jth survey.

47

The range of ∑ 𝑟𝑖𝑗
𝑁
𝑖=1 is from 64 to 196 as described earlier. Thus, by averaging 𝑤𝑖𝑗, we

obtain the final weight for the ith factor by

𝑤𝑖 =
∑ 𝑤𝑖𝑗
𝑙
𝑗=1

𝑙
 (4.2)

where 𝑙 is the number of complete survey forms.

Table 4.1 presents the final normalized weight for each environmental factor and the

ranking of all 32 environmental factors. Generally, the environmental factor that has a

higher normalized weight plays a more significant impact on the software reliability than

the factor that has a lower weight; thereby, software developer should pay more attention

to the environmental factors with higher normalized weight.

Principle Component Analysis of Environmental Factors

From Table 4.1, we notice that the environmental factors cover many aspects in the

software development, and the majority of these factors have similarly impact on software

reliability. A question one might ask now is whether some of these factors are correlated.

If some of these factors are correlated, is it possible to reduce the dimension of these

correlated factors?

48

PCA is a statistical analysis that can be used to reduce the dimensionality of a data set

consisting of a large number of interrelated variables, while retaining as much of the

variation present in the data set as possible [137].

Table 4. 1 Environmental factors ranking based on relative weight method

Rank Factor Factor name Normalized weight

1 f8 frequency of program specification change 0.039283972

2 f22 testing effort 0.038359377

3 f21 testing environment 0.038250613

4 f25 testing coverage 0.037435855

5 f1 program complexity 0.036961340

6 f15 programmer skill 0.036862675

7 f6 percentage of reused modules 0.036405410

8 f12 relationship of detailed design to requirement 0.035234326

9 f24 testing methodologies 0.035101487

10 f19 domain knowledge 0.035036992

11 f16 programmer organization 0.034724575

12 f18 program workload(stress) 0.034271335

13 f23 testing resource allocation 0.034194468

14 f13 work standards 0.034183421

15 f11 requirements analysis 0.034042553

16 f20 human nature 0.033593929

17 f14 development management 0.033003212

18 f3 difficulty of programming 0.032899502

19 f4 amount of programming effort 0.032852885

20 f5 level of programming technologies 0.032745404

21 f26 testing tools 0.032457656

22 f27 documentation 0.032236361

23 f9 volume of program design documents 0.032076971

24 f10 design methodology 0.031998207

25 f17 development team size 0.030222175

26 f7 programming language 0.029878290

27 f2 program categories 0.028608644

28 f28 processors 0.027675094

29 f31 telecommunication devices 0.027071145

30 f32 system software 0.026832350

31 f30 input/output devices 0.026788903

32 f29 storage devices 0.026773022

49

The idea is that smaller dimension set of principle components can be used to capture the

characteristics of the larger data set and provide a concise yet critical principle components

for software developers. The top 10 most important environmental factors are selected

based on the ranking results present by relative weight method in Table 4.1. The top 10

important environmental factors are f8, f22, f21, f25, f1, f15, f6, f12, f24, f19; four of them

come from the Testing phase, two of them in the Analysis and Design phase, two of them

in the Coding phase, and two of them in the General phase.

The original data set is ten-dimensional. PCA method will find the covariance matrix first,

and then calculate the eigenvector and eigenvalue from this 10 by 10 covariance matrix.

Eigenvectors enable us to capture the characteristics of the data set. Eigenvalue is ranked

from the highest to the lowest in terms of the order of significance level of principle

components. The eigenvalue of components, proportion, and cumulative proportion are

illustrated in Table 4.2.

About 40% of the data variation can be explained by the first principle component, 16.7%

of the data variation can be explained by the second principle component, and 11.8% of

the data variation can be interpreted by the third principle component. Thus, about 69% of

the data variation can be explained by the first three principle components. On the other

hand, by subtracting the second eigenvalue 1.679 from the first eigenvalue 4.008, we obtain

a difference is 2.329; by subtracting the third eigenvalue 1.175 from the second eigenvalue

1.679, we have a difference is 0.504; however, if we subtract the fourth eigenvalue 0.843

50

from the third eigenvalue, the difference is 0.332, which is smaller compared with the first

two differences. Hence, the first three principle components are retained.

Table 4. 2 Eigenvalue of correlation matrix

Component Eigenvalue Proportion
Cumulative

proportion

PC1 4.008 0.401 0.401

PC2 1.679 0.167 0.568

PC3 1.175 0.118 0.686

PC4 0.843 0.084 0.770

PC5 0.737 0.074 0.844

PC6 0.608 0.061 0.905

PC7 0.442 0.044 0.949

PC8 0.241 0.024 0.973

PC9 0.165 0.016 0.989

PC10 0.106 0.011 1.000

As seen from Table 4.2, three principle components are retained, PC1, PC2, and PC3. The

loading coefficient, measures the contribution to the data variance between the principle

components and related environmental factors, is also determined. If the loading coefficient

is very small, or only strongly-correlated with less-significant principle components, such

as PC4, PC5, PC6, PC7, PC8, PC9, PC10, these environmental factors have little or no

contribution to the variation of the data set. Table 4.3 describes the environmental factors

which are strongly correlated with the first three principle components. For example,

testing coverage has the highest correlation with the first principle component compared

with other environmental factors. Frequency of specification change and programmer skills

have high correlation with the second principle component and the third principle

component, respectively.

51

Table 4. 3 Principle components and strongly correlated factors

Component Factor Description Loading coefficient

PC1 f25 testing coverage 0.400

 f21 testing environment 0.385

 f22 testing effort 0.379

 f24 testing methodologies 0.368

 f12 relationship of detailed design and requirement 0.359

 f6 percentage of reused code 0.269

PC2 f8 frequency of Specification change 0.559

 f19 domain knowledge 0.482

PC3 f15 programmer skills 0.664

 f1 program complexity 0.408

Hypothesis Testing

This study aims to investigate whether those environmental factors have the same

significance impact on software reliability. Analysis of Variance (ANOVA) is a statistical

method used to compare the mean of two or more samples set [138]. ANOVA is applied

in this study to compare the significance level for these environmental factors. In order to

compare all pairwise difference between factors and control the error rate within a level

that you specify [139], Tukey method, a single-step multiple comparison procedure, is used

to group environmental factors in terms of their mean values.

Table 4.4 depicts the final grouping using Tukey’s method. Table 4.4 lists the

environmental factors based on the significance impact on software reliability from the

greatest to the least. Factors of the same numeric values are considered as of the same

significant level. For example, based on the final grouping, the most impactful factor is

52

testing coverage; frequency of specification change is the second significant factor

followed by testing environment and testing effort as the third and fourth critical factors.

Factors listed from testing methodologies to processors belong to one significance level

based on the Tukey method.

Correlation Analysis

The purpose of performing correlation analysis is to observe the relationship between

variables and investigate the strength and direction of this relationship. Having the

knowledge of the correlation of the environmental factors will provide a better

understanding for software developers on resource allocation and testing efficiency during

software development, in particular, Testing phase. The Pearson product-moment

correlation coefficient, also called Pearson's r, is a measure of the linear correlation

between two variables. The range for Pearson's r is from -1 to 1. If r is 0, meaning there is

no relationship between variables; if r is 1, indicating a total positive correlation; if r is -1,

referring a total negative correlation. For the output from Minitab, the absolute value of r

is larger than 0.5 is chosen as the correlation factors for each environmental factor. Table

4.5 presents the correlation of the environmental factors.

53

Table 4. 4 Final grouping based on Tukey method

Factor Description N Mean Final grouping

f25 testing coverage 29 5.586 1

f8 frequency of program specification change 31 5.516 2

f21 testing environment 30 5.500 3

f22 testing effort 30 5.433 4

f24 testing methodologies 29 5.276 5

f15 programmer skill 31 5.226 5

f23 testing resource allocation 28 5.214 5

f12 relationship of detailed design to requirement 28 5.214 5

f1 program complexity 29 5.172 5

f16 programmer organization 30 5.100 5

f6 percentage of reused modules 30 5.067 5

f19 domain knowledge 30 5.033 5

f11 requirements analysis 30 5.000 5

f13 work standards 30 4.967 5

f18 program workload(stress) 29 4.966 5

f27 documentation 29 4.931 5

f4 amount of programming effort 29 4.897 5

f10 design methodology 29 4.862 5

f9 volume of program design documents 29 4.862 5

f3 difficulty of programming 28 4.857 5

f14 development management 28 4.786 5

f20 human nature 31 4.774 5

f5 level of programming technologies 30 4.733 5

f26 testing tools 29 4.621 5

f17 development team size 29 4.483 5

f7 programming language 30 4.233 5

f28 processors 28 4.179 5

f2 program categories 29 4.103 6

f32 system software 28 4.071 6

f30 input/output devices 29 4.043 7

f29 storage devices 29 3.966 8

f31 telecommunication devices 28 3.964 9

54

Table 4. 5 Correlation analysis for single-release software survey data

Factor Description Correlated factors
Pearson's

r

f25 testing coverage f18 program workload(stress) 0.773

f24 testing methodologies 0.729

f26 testing tools 0.661

f27 documentation 0.660

f12 relationship of detailed design to requirement 0.648

f17 development team size 0.568

f9 volume of program design documents 0.566

f3 difficulty of programming 0.537

f4 amount of programming effort 0.528

f14 development management 0.528

f22 testing effort 0.506

f8 frequency of program

specification change
f31 telecommunication devices -0.519

f21 testing environment f22 testing effort 0.749

f19 domain knowledge 0.719

f16 programmer organization 0.668

f13 work standards 0.576

f4 amount of programming effort 0.526

f22 testing effort f21 testing environment 0.749

f13 work standards 0.651

f18 program workload(stress) 0.610

f16 programmer organization 0.564

f25 testing coverage 0.506

f24 testing methodologies f4 amount of programming effort 0.574

f9 volume of program design documents 0.549

f10 design methodology 0.506

f12 relationship of detailed design to requirement 0.555

f17 development team size 0.612

f18 program workload(stress) 0.666

f25 testing coverage 0.729

f26 testing tools 0.540

f27 documentation 0.533

f31 telecommunication devices 0.527

f32 system software 0.526

f15 programmer skill f20 human nature 0.431

f23 testing resource allocation f12 relationship of detailed design to requirement 0.766

f14 development management 0.712

f4 amount of programming effort 0.625

55

f10 design methodology 0.618

f3 difficulty of programming 0.579

f27 documentation 0.556

f1 program complexity 0.547

f32 system software 0.536

f9 volume of program design documents 0.533

f26 testing tools 0.504

f12 relationship of detailed

design to requirement
f23 testing resource allocation 0.766

f32 system software 0.734

f28 processors 0.659

f25 testing coverage 0.648

f31 telecommunication devices 0.641

f14 development management 0.626

f3 difficulty of programming 0.610

f9 volume of program design documents 0.593

f27 documentation 0.578

f30 input/output devices 0.562

f10 design methodology 0.555

f24 testing methodologies 0.555

f1 program complexity 0.552

f4 amount of programming effort 0.536

f1 program complexity f12 relationship of detailed design to requirement 0.552

f23 testing resource allocation 0.547

f29 storage devices 0.510

f16 programmer organization f21 testing environment 0.668

f22 testing effort 0.564

f19 domain knowledge 0.536

f6 percentage of reused

modules
f5 level of programming technologies 0.578

f19 domain knowledge f21 testing environment 0.719

f10 design methodology 0.544

f16 programmer organization 0.536

f4 amount of programming effort 0.524

f11 requirements analysis f2 program categories 0.637

f13 work standards f22 testing effort 0.651

f21 testing environment 0.576

f18 program workload(stress) 0.526

f18 program workload(stress) f25 testing coverage 0.773

f4 amount of programming effort 0.673

f24 testing methodologies 0.666

f27 documentation 0.628

f22 testing effort 0.610

56

f26 testing tools 0.572

f9 volume of program design documents 0.557

f3 difficulty of programming 0.550

f13 work standards 0.526

f27 documentation f9 volume of program design documents 0.731

f18 program workload(stress) 0.628

f10 design methodology 0.624

f12 relationship of detailed design to requirement 0.578

f14 development management 0.559

f23 testing resource allocation 0.556

f4 amount of programming effort 0.541

f30 input/output devices 0.527

f4 amount of programming

effort
f3 difficulty of programming 0.753

f10 design methodology 0.697

f9 volume of program design documents 0.677

f18 program workload(stress) 0.673

f23 testing resource allocation 0.625

f14 development management 0.575

f24 testing methodologies 0.574

f27 documentation 0.541

f12 relationship of detailed design to requirement 0.536

f25 testing coverage 0.528

f21 testing environment 0.526

f19 domain knowledge 0.524

f10 design methodology f9 volume of program design documents 0.840

f4 amount of programming effort 0.697

f27 documentation 0.624

f23 testing resource allocation 0.618

f14 development management 0.591

f3 difficulty of programming 0.570

f12 relationship of detailed design to requirement 0.555

f32 system software 0.547

f19 domain knowledge 0.544

f24 testing methodologies 0.506

f9 volume of program design

documents
f10 design methodology 0.840

f27 documentation 0.731

f4 amount of programming effort 0.677

f12 relationship of detailed design to requirement 0.593

f25 testing coverage 0.566

f32 system software 0.559

f18 program workload(stress) 0.557

57

f24 testing methodologies 0.549

f26 testing tools 0.546

f14 development management 0.533

f23 testing resource allocation 0.533

f30 input/output devices 0.529

f28 processors 0.525

f3 difficulty of programming f4 amount of programming effort 0.753

f14 development management 0.613

f12 relationship of detailed design to requirement 0.610

f23 testing resource allocation 0.579

f10 design methodology 0.570

f18 program workload(stress) 0.550

f25 testing coverage 0.537

f14 development management f23 testing resource allocation 0.712

f12 relationship of detailed design to requirement 0.626

f3 difficulty of programming 0.613

f10 design methodology 0.591

f4 amount of programming effort 0.575

f27 documentation 0.559

f9 volume of program design documents 0.533

f25 testing coverage 0.528

f20 human nature f32 system software 0.434

f15 programmer skill 0.431

f5 level of programming

technologies
f6 percentage of reused modules 0.578

f26 testing tools f27 documentation 0.610

f28 processors 0.610

f30 input/output devices 0.609

f18 program workload(stress) 0.572

f25 testing coverage 0.561

f9 volume of program design documents 0.546

f24 testing methodologies 0.540

f23 testing resource allocation 0.504

f17 development team size f24 testing methodologies 0.612

f25 testing coverage 0.568

f7 programming language f30 input/output devices 0.525

f28 processors f32 system software 0.871

f30 input/output devices 0.806

f31 telecommunication devices 0.795

f12 relationship of detailed design to requirement 0.659

f9 volume of program design documents 0.525

f2 program categories f11 requirements analysis 0.637

58

f32 system software f28 processors 0.871

f31 telecommunication devices 0.826

f30 input/output devices 0.799

f9 volume of program design documents 0.559

f10 design methodology 0.547

f23 testing resource allocation 0.536

f24 testing methodologies 0.526

f30 input/output devices f28 processors 0.806

f32 system software 0.799

f31 telecommunication devices 0.748

f26 testing tools 0.609

f12 relationship of detailed design to requirement 0.562

f9 volume of program design documents 0.529

f27 documentation 0.527

f7 programming language 0.525

f29 storage devices f1 program complexity 0.510

f31 telecommunication

devices
f32 system software 0.826

f32 system software 0.799

f28 processors 0.795

f30 input/output devices 0.748

f12 relationship of detailed design to requirement 0.641

f24 testing methodologies 0.527

f8 frequency of program specification change -0.519

59

Development Life Cycle Phase Analysis

Do First Four Environmental Factor Groups have Same Impact?

Since Zhang and Pham [27] categorized these 32 environmental factors into five groups,

General, Analysis and Design, Coding, Testing, Hardware Systems, we intend to

investigate whether the first four groups have the same impact on software reliability or

not in this study and compare with the results from Zhang et al. [28].

Table 4.6 describes the final grouping for each phase in software development process. The

ranging of the mean score from participants for each development phase is from 4.722 to

5.225. Tukey grouping is applied here to group different development phases based on the

mean value of participants’ score. Finally, three final groups are present in Table 4.6.

Testing phase, including testing effort, testing methodologies, testing coverage, etc., are in

the Group 1. Analysis and Design phase and Coding phase are in the Group 2. General

phase, including program complexity, program categories, amount of programming effort,

etc., are in the Group 3.

The final grouping table exhibits the Testing phase has higher mean value compared with

other development phases, which also implies that the Testing phase has higher significant

impact level on affecting software reliability from the survey feedback. On the other hand,

40% of the environmental factors on the top 10 ranking environmental factors in Table 4.1

is from the Testing phase; in particular, there are four environmental factors from the

Testing phase stay on the top 10 ranking. These comparisons provide the same conclusion

60

that Testing phase is the most critical phase on affecting software reliability during the

software development process in this study.

Table 4. 6 Final grouping for development phase

Development phase N Mean Tukey grouping Final grouping

Testing 204 5.225 A 1

Analysis and Design 205 5.034 A B 2

Coding 180 4.933 A B 2

General 205 4.722 B 3

Significant Factors in Each Development Phase

As mentioned in the last section, General phase, Analysis and Design phase, Coding phase,

and Testing phase are included in software development. Software projects are often

considered as long-term projects [140]. Communication, coordination, and knowledge

sharing with other team members are very common amongst software developers, as the

software project grows larger [141]. However, an individual still has his/her own job

responsibility. Thus, it is very helpful to provide the significant environmental factors in

each development phase to software developers based on their impact on software

reliability.

Backward elimination method is applied in this study to eliminate the non-significant

environmental factors in each development phase. The variables of the backward

elimination for each development phase are the environmental factors in this phase. The

responses of the backward elimination are the improvement of the accuracy on software

61

reliability, which are collected from the participants as well and the value may vary from

0 to 100. Table 4.7 presents the significant factors, parameter estimate, and p-value for

each phase.

Backward elimination starts with all the predictors, all environmental factors in each

development phase in the model, eliminates the predictor based on the p-value as compared

with Alpha-to-Remove value and stops when the p-value for all left predictors are less than

or equal to Alpha-to-remove value [139]. Parameters are also calculated in the backward

elimination for the predicators in the final linear model. Hence, the parameter estimate can

be positive or negative, which depends on this environmental factor is positively or

negatively correlated with the improvement of software reliability. As seen from the results,

f24, testing methodologies is negatively correlated with the improvement of software

reliability. In practice, as the testing methodology becomes more complicated, it becomes

easier for the software testers to make mistakes during testing. As a result, the improvement

of software reliability will decrease, which explains the coefficient of testing

methodologies in the backward elimination method is negative.

In the General phase, f6, percentage of reused code, is one of the significant factors, which

is also on the top 10 ranking environmental factors by relative weighted method from Table

4.1. f8, frequency of program specification change, and f12, relationship of detailed design

to requirement, are significant factors in the Analysis and Design phase, which are ranked

1 and 8 on top 10 ranking environmental factors, respectively. It is noticeable that

significant environmental factors identified by using the backward elimination method for

62

each development phase are also have high rankings based on the relative weighted method

described in Table 4.1.

Table 4. 7 Significant environmental factor in each development phase

Development

phase

Significant

factor
Description

Parameter

estimate
p-value

General f4 amount of programming effort 8.2 0.0001

 f6 percentage of reused code 4.7 0.0130

Analysis and

Design

f8 frequency of program specification

change

5.9 0.0060

f12 relationship of detailed design to

requirement

5.7 0.0140

Coding f15 programmer skill 6.5 0.0320

 f18 program workload (stress) 8.9 0.0001

Testing f23 testing resource allocation 8.3 0.0010

 f24 testing methodologies -7.8 0.0170

 f25 testing coverage 10.8 0.0020

4.1.5 Comparisons

The above sections have discussed the environmental factor analysis and development life

cycle phase analysis based on the survey we conducted. What is left for this study is to

investigate whether the significance rankings of 32 environmental factors on affecting

software reliability have changed after fifteen years; if they have changed, what are the

reasons that caused these changes.

In this section, results comparisons between the analysis in this study and those in the

references [27, 28] will be discussed in the following section. These comparisons will be

helpful for software developers to identify up-to-date significant environmental factors in

software development and improve working efficiency on software reliability

63

improvement. Moreover, incorporating these up-to-date significant environmental factors

into software reliability modeling will enhance prediction for the software reliability

analysis [103].

Ranking of Environmental Factors

Since the participants and the time of the two investigations are not identical, and thus the

ranking results are different. What is interesting is that most of the top 10 ranking

environmental factors from fifteen years ago still stay on the top 10 ranking nowadays

except f11 falls to rank 15 based on the relative weight method. Additionally, the order of

importance for each environmental factor has changed compared with the previous analysis

[27]. The comparison of the top 10 ranking between the new analysis and the findings from

Zhang and Pham [27] are illustrated in Table 4.8.

As described in Table 4.8, f11, requirement analysis, are replaced by f19, domain

knowledge. F11, requirement analysis, usually, analyzes the requirements from current or

potential customers. Software developer will generate the updated specifications for the

new product in consideration of the customer specifications. f19, domain knowledge, refers

to the developer's knowledge of the input space and output target. Since the wide

application of computing operation systems and a great amount of sales data analysis,

software development team has better understanding in terms of customer requirement

compared with 15 years ago. Domain knowledge is critical nowadays because of

insufficient domain knowledge not only causes problems for coding and testing procedures,

but also delays the software delivery date and affect software reliability in the field

64

operation. Domain knowledge has more influence for the entire development process than

requirement analysis in terms of software reliability improvement. Therefore, domain

knowledge is listed in the top 10 most important factors in this study.

F8, frequency of program specification change, takes the place of f1, program complexity,

is the most important environmental factors in this study. Program specifications are

generated by software developers based on the customer requirements. First of all, if the

frequency of changing program specification is very high, it will certainly lower the

software developer’s working efficiency. Moreover, frequently changed specifications lead

to more code changes and testing, in most cases, will delay software release and affect

software robustness and reliability.

There are other reasons that cause frequent specification changes. 1. Different software

development crew may understand customer requirements differently. The employee

turnover rates nowadays can be as high as 40%, or even higher [144]. The newly hired

developers may need to change specifications based on their understanding of customer

requirement, which is different with the old employees. At the same time, there is a time

lag between the new employees receiving training and they are able to perform as well as

the experienced employee. This gap will reduce productivity and service quality [144]. 2.

Time-to-market (TTM) has driven the needs to speed up the development process starting

from the specification generation to the final product. Sometimes, marketing department

promises some features to the customers, however the development team is not able to

65

deliver. The discrepancy between marketing team and developers would inevitably cause

specification changes.

Nowadays, many companies intend to shorten the software release cycle. Beck and Andres

[143] claims shorter release cycle can bring more benefits for both the companies and users.

However, there is some literatures reported the shorter release cycle makes it impossible

to test the adequate configurations for software product [142]. Hence, if the frequency of

changing specifications is high in such a short inter-release time, it will lead to a severe

software reliability issue for the released product.

Therefore, the impact of the frequency of program specification change on affecting

software reliability is the highest amongst all the other environmental factors in this study.

Table 4. 8 Comparison of new ranking and previous ranking

 New ranking Ranking from Zhang and Pham [27]

Rank Factor Description Factor Description

1 f8 frequency of program specification

change

f1 program complexity

2 f22 testing effort f15 programmer skill

3 f21 testing environment f25 testing coverage

4 f25 testing coverage f22 testing effort

5 f1 program complexity f21 testing environment

6 f15 programmer skill f8 frequency of program specification

change

7 f6 percentage of reused modules f24 testing methodologies

8 f12 relationship of detailed design to

requirement

f11 requirements analysis

9 f24 testing methodologies f6 percentage of reused modules

10 f19 domain knowledge f12 relationship of detailed design to

requirement

66

Principle Components of Environmental Factors

PCA is applied to determine the principle components which are able to capture the

characteristics of the survey data as provided in Section 4.1.4. Zhang et al. [28] applied

factor analysis to investigate common factors which can represent most of the variation of

the data. This study selects the top 10 important environmental factors for principle

component analysis, f11, requirement analysis, and f5, level of programming technologies,

are not included in this study, while Zhang et al. [28] selected the top 11 environmental

factors for factor analysis.

Table 4. 9 Comparison of principle components

Principle components Common factors from Zhang et al. [28]

Principle

Component
Factor Description

Common

factor
Factor Description

PC1

f25 testing coverage

C1

f21 testing environment

f21 testing environment f22 testing effort

f22 testing effort f5

level of programming

technologies

f24 testing methodologies f12
relationship of detailed

design and requirements

f12
relationship of detailed

design and requirements

C2

f24 testing methodologies

f6 percentage of reused code f25 testing coverage

PC2
f8

frequency of specification

change f6 percentage of reused code

f19 domain knowledge

PC3

f15

programmer skills
C3

f11 requirements analysis

f8
frequency of specification

change

f1

program complexity

C4

f15 programmer skills

f1 program complexity

Generally speaking, three principle components are retained in this study, while four

common factors are revealed in Zhang et al. [28], as described in Table 4.9. The first

67

principle component is the combination of the first common factor and the second common

factor, but f5, level of programming technologies is not included. PCA provides less

number of principle components compared with the number of common factors. The

principle components in this study also deliver a clear and comprehensive interpretation in

terms of investigating strong correlated factors.

Significance Level of Each Development Phase based on Tukey Grouping and SNK

Grouping

Tukey method is used in this study to group the four development phases in terms of their

mean scores. SNK multiple comparison test was applied in Zhang et al. [28]. The

hypothesis for these two methods is that all development phases have the same significant

level.

As seen in the left side of Table 4.10, there are three final groups based on Tukey method,

yet the previous study [28] only has one final group. Testing phase and General phase are

not staying in one group. It is reasonable to be separated into different groups, due to the

fact that the environmental factors from the Testing phase have higher occupancies on the

top 10 ranking, compared with the factors from other phases from the above analysis. These

changes can also be interpreted as the shift of attention of modern software development.

Analysis and Design play more important roles in software development than fifteen years

ago.

68

Table 4. 10 Final grouping comparison

New grouping Grouping from Zhang et al. [28]

Development phase Mean Final grouping Development phase SNK grouping Mean

Testing 5.225 1 Testing A 5.430

Analysis and Design 5.034 2 Coding A 5.350

Coding 4.933 2 General A 5.240

General 4.722 3 Analysis and Design A 5.030

Significant Environmental Factors in Each Development Phase

Linear regression backward elimination method is employed in both survey studies. Due

to the participants are not the same, each survey feedback may provide different answer

for each environmental factor. The response for the linear regression backward elimination

method are the improvement of software reliability, which may vary from 0 to 100.

The significant environmental factors comparison is present in Table 4.11. In the General

phase, f6, percent of reused modules, is the most significant factor in both analyses, which

is also on the top 10 ranking environmental factors. In the Analysis and Design phase, f8,

frequency of program specification change, has high significant level in both studies. f12,

relationship of detailed design to requirement, is another significant factor. Detailed design

will be compared with customer requirements at the end of design phase, inspections will

be performed, and misunderstanding part will be removed. Customer satisfaction has

gained more attention in such a competitive and fast-changing technology environment and

this is ultimately one of the key attributes to the company growth. Hence, f12, relationship

69

of detailed design to requirement, is the significant environmental factor in the Analysis

and Design phase.

The time spent on coding in software development largely depends on programmers’ skills

since software programming is a complex exercise nowadays. Moreover, how to handle

stress is another important issue addressed in this competitive society. The software

development is still considered as a complicated yet resource-limited activity; at the same

time, customers demand more reliable and safer software products. Thus, testing resource

allocation, testing methodologies, and testing coverage are undoubtedly the most

significant factors in the Testing phase.

Table 4. 11 Comparison of significant factors in each development phase

New significant factors Results from Zhang et al. [28]

Phase Factor Description p-value Phase Factor Description p-value

General

f4

amount of

programming

effort

0.0001

General

f1
program

complexity
0.0001

f6
percentage of

reused code
0.0130 f6

percentage of

reused code
0.0907

Analysis

and

Design

f8

frequency of

program

specification

change

0.0060

Analysis

and

Design

f8

frequency of

program

specification

change

0.0635

f12

relationship of

detailed design to

requirement

0.0140 f10
design

methodology
0.0063

Coding

f15 programmer skill 0.0320 f13 work standards 0.0068

f18
program workload

(stress)
0.0001

Coding

f17
development team

size
0.0192

Testing

f23
testing resource

allocation
0.0010 f19 domain knowledge 0.0341

f24
testing

methodologies
0.0170

Testing

f21

testing

environment

0.0001

f25 testing coverage 0.0020

70

Again, the surveys are conducted from the perspective of the improvement and the impact

on software reliability. The ranking of these environmental factors could have a wide

variation depends on the opinion of participants. Compared with the studies conducted

fifteen years ago [27, 28], most of the significant factors still stay on the top 10 lists, even

though the importance orders are slightly different. This confirms that both analyses

provide valuable information about what software developers shall focus on during

different development stages.

Time Allocation of Each Development Phase in Software Development

The percentages of the time allocation of each development phase in this study are: 22%

on the Analysis phase, 20% on the Design phase, 34% on the Coding phase, 24% on the

Testing phase. Zhang and Pham’s [27] analysis concluded that the percentages of time

spent on Analysis, Design, Coding and Testing phase are 25%, 18%, 36%, and 21%,

respectively. The time allocation for each development only has slight difference, but also

reflect the current emphasis of software development on the Analysis phase with the

increasing customer involvement, less coding, and more testing.

4.1.6 Conclusions of Comparison Analysis between Current Study and Previous

Findings

We revisit the 32 environmental factors defined in Zhang and Pham [27], reinvestigate

their impact on software reliability to provide an up-to-date environmental factors analysis

71

and development life cycle phase analysis, and compare the results with the previous

findings [27, 28] to analyze the difference of the impact of environmental factors on

software reliability and each development phase in software development process.

Conclusions can be drawn as follows.

1. Most environmental factors listed on the top 10 lists in the previous study also stay

on the top 10 lists in this study. However, the order of importance for environmental

factors has changed. In this study, the frequency of program specification change

is the most significant environmental factor amongst all 32 environmental factors

in terms of the impact on affecting software reliability. Additionally, the frequency

of program specification change can also be considered in the future software

reliability modeling development.

2. Three principle components, PC1, PC2, and PC3, as presented in Table 4.9, are

able to represent 69% of the data variation of the collected survey of environmental

factors. The three principle components, determined by PCA, are slightly different

with the previous findings.

3. The impacts of four development phases on software reliability are different in this

study compared with what was discussed in Zhang et al. [28]. The earlier study

indicated that four development phase shared equal importance in terms of

improving software reliability. In our study, though, Testing phase still has the

highest impact on software reliability, Analysis and Design phase has moved up as

72

the second significant phase. This reflects an emphasis on the front-end analysis

and design which will help to straighten the development of software while making

a more stringent TTM requirement.

4. In response to the improvement on software reliability, the significant factors in

each development phase have different orderings as compared with the previous

study based on the backward elimination method.

5. The time allocation for each development phase, Analysis, Design, Coding, and

Testing are slightly different as compared with the previous study.

4.2 Environmental Factors in Multi-Release Software Development

4.2.1 Research Motivation

As software systems are more deeply embedded in our everyday life, the dependence of

our modern society on complex, intelligent and reliable large-scale software systems is

rapidly growing than ever [145]. Meanwhile, the possibility of carrying more faults in the

large-scale software systems is higher than decades ago. Software failures are increasingly

common in the filed environment given the increasing complexity of software products

[146].

To continually align with the fast-changing customer’s requirements and provide reliable

products to the market, most companies will release multiple versions of the software

73

product since it is unlikely to deliver all the features in a single release and satisfy all the

constraints within the limited resources [1, 46, 48, 147].

The principles of multi-release software are: adding new features in the next release and

fixing the remaining faults from previous release due to the fact that bug-free software

product is not likely to be delivered in any release [42]. Software multiple releases not only

make company easily balance the competing stakeholder’s demand and benefits, but also

increase reliability and customer satisfaction level during each release [40, 41].

The resources and constraints for the development of multi-release software are different.

Software development team needs to select the corresponding features included in the next

release with respect to customers’ feedback and market requirements. Since software will

be released in increments for multi-release software, thus, coupling this concept with other

principles such as continuous unit testing and pair programming will better arrange the cost

distribution [148].

During the past decades, software version planning and release has been studied by many

researchers. Szoke [149] developed a staged-delivery global optimized model for agile

release planning. Li et al. [150] proposed a multi-objective optimization technique to

optimize three main objectives with respect to cost, revenue, and uncertainty for robust

next release problem. Etgar et al. [151] explored several optimization approaches to

determine the content and release date for each release to provide optimal net present value.

74

However, all the past research related to release planning or multi-release software

reliability modeling did not investigate the impact of environmental factors on software

reliability in the development of multi-release software. It is very pragmatic yet interesting

to investigate what are the impact of environmental factors affecting software reliability in

the development of multi-release software.

Therefore, it is plausible to conduct a new study to investigate the impact of these

environmental factors on software reliability for multi-release software development and

compare the differences between single-release software and multi-release software.

4.2.2 Objectives

As discussed in the previous section, the emphasis of the development process for multi-

release software is different with single-release software. For example, how to select the

desirable features in which release, and how to determine the removal percentage of the

detected software faults in each release. This study aims to revisit the environmental factors

in terms of their impact on software reliability for multi-release software development.

This study is carried out by conducting a survey of environmental factors affecting software

reliability for the next release’s development.

Firstly, we need to investigate the significant environmental factors affecting reliability in

the development of multi-release software. Secondly, the correlation between

environmental factors. Is it possible to reduce the dimension of those variables to provide

concise and sound information for software researchers and practitioners?

75

Moreover, the significant environmental factors in each development phase and the

significance level of each development phase are investigated to provide a helpful

time/resource allocation matrix for software development team. Thirdly, we also compare

the significant environmental factors during the whole development process, principle

components, significant environmental factors in each development phase, and

significance level of each development phase between the development of single-release

software and multi-release software.

At the end of this study, other statistical methods in terms of variable selection is also

applied in this dissertation to provide an insightful matrix for readers according to their

selection priority. Software practitioners can choose the results coming from different

methodologies based on their requirements for the reference of multi-release software

development.

4.2.3 Data Collection

To align with the latest survey data analysis focused on the significant environmental

factors on affecting software reliability during the development of single-release software

[29] and maintain the similarity for the comparison of environmental factors, we still use

the same 32 environmental factors firstly defined in Zhang and Pham [27].

Forty-five survey responses are collected from various industries including computer

software, internet, banking, semiconductor, online retailing, financial service, IT service &

76

consulting and research institution. Participants ranked the environmental factors based on

the impact of each environmental factor on software reliability during the development of

multi-release software. The software development experiences, software applications,

years of experience, and job title are also provided from the participants. All the

participants are currently working in IT Department in different industries or working on

software development in high technology companies in favor of the validity and reliability

of the survey response. Hence, we are expecting the survey response data is sound, valid,

and reliable.

4.2.4 Findings and Results

Environmental Factor Analysis

Relative Weighted Method

We are using the same method as described in Section 4.1.4.1.1, the summation for all

survey responses ranges from 87 to 191. Equations (4.1) and (4.2) are used for the

normalization of each score in the original survey and final weight calculation, respectively.

Note that L is the number of complete form, which is 45 in this multi-release study.

As a result, we are able to calculate the normalized weight for each environmental factor

and find their ranking, as presented in Table 4.12. Program complexity is the most

important factor, which has higher impact on affecting software reliability for the

development of next release than other environmental factors. In general, the higher

77

ranking of an environmental factor in Table 4.12, the higher impact of this environmental

factor on software reliability in the development of multi-release software.

Table 4. 12 Environmental factors ranking by relative weighted method

Rank Factor Description
Normalized

weight

1 f1 program complexity 0.0390879087

2 f11 requirement analysis 0.0384558837

3 f8 frequency of program specification change 0.0368853086

4 f22 testing effort 0.0361218996

5 f12 relationship of detailed design to requirement 0.0355715603

6 f4 amount of programming effort 0.0353399281

7 f25 testing coverage 0.0342799173

8 f18 program workload (stress) 0.0342002348

9 f6 percentage of reused modules 0.0341796701

10 f5 level of programming technologies 0.0340814368

11 f15 programmer skills 0.0337374978

12 f21 testing environment 0.0337126257

13 f23 testing resource allocation 0.0330611582

14 f10 design methodology 0.0329230683

15 f24 testing methodologies 0.0328771780

16 f19 domain knowledge 0.0327225665

17 f27 documentation 0.0322377808

18 f3 difficulty of programming 0.0320263075

19 f26 testing tools 0.0312195731

20 f14 development management 0.0311128846

21 f16 programmer organization 0.0306560899

22 f2 program categories 0.0303179007

23 f20 human nature 0.0300672895

24 f17 development team size 0.0293613617

25 f9 volume of program design documents 0.0291258278

26 f13 work standards 0.0286965882

27 f28 processors 0.0248516495

28 f32 system software 0.0247222791

29 f29 storage devices 0.0246144443

30 f7 programming language 0.0226114305

31 f30 input/output devices 0.0211775686

32 f31 telecommunication devices 0.0199631816

78

Principle Component Analysis of Environmental Factors

In order to keep the similarity of this study with the previous study, described in Section

4.1, and compare what are differences between these two studies regarding single/multi

release software, we are using the same methodology to analyze environmental factors.

PCA is applied to reduce the dimension of the environmental factors for multi-release

software survey study. The top 10 most important environmental factors based on the

relative weighted method are selected to perform PCA.

The top 10 environmental factors are f1, f11, f8, f22, f12, f4, f25, f18, f6, and f5. We notice

that the ranking is quite different compared with the findings from Section 4.1.4.1.2. The

group of significant environmental factors affecting software reliability is also different

between the development of multi-release software and single-release software. The

covariance matrix of 10 × 10 will be calculated to obtain the eigenvalues and eigenvectors.

Eigenvalues, from the highest to the lowest, are listed in Table 4.13 in terms of their impact

level on the principle components.

As seen from Table 4.13, four principle components will be retained, which are PC1, PC2,

PC3, and PC4. The first four principle components are able to address over 75% of the data

variation. 38.2% of the data variation is explained by the first principle component; about

13% of the data variation is explained by the second principle component. Likewise, the

third and the fourth principle component are able to represent 12.7% and 11.1% of the data

79

variation, respectively. All other principle components only represent less than 10% of the

variation, respectively. For the principle components PC5, PC6, PC7, PC8, PC9, and PC10,

the compensation of adding one more principle component is considerately high according

to the contributions that they bring in.

Table 4. 13 Eigenvalue and proportion of the principle components

Component Eigenvalue Proportion Cumulative proportion

PC1 3.9836 0.3821 0.3821

PC2 1.2567 0.1303 0.5124

PC3 1.1596 0.1273 0.6397

PC4 1.0539 0.1113 0.751

PC5 0.8239 0.0832 0.8342

PC6 0.6142 0.0654 0.8996

PC7 0.4195 0.0429 0.9425

PC8 0.2871 0.0241 0.9666

PC9 0.2418 0.0192 0.9858

PC10 0.1596 0.0141 1.0000

After retaining the principles components of environmental factors in the development of

multi-release software product. The next question we want to discuss is the contribution of

each environmental factor to each principle component. Specifically, each principle

component is the linear combination of the environmental factors.

Table 4.14 presents the environmental factors which are strongly-correlated with the

principle components. The loading coefficient is utilized to measure the contribution of

each environmental factor to the principle components. Relationship of detailed design to

requirement is highly correlated with the first principle component; amount of

80

programming effort is highly correlated with the second principle component; program

complexity and frequency of specification change are highly correlated with the third and

fourth principle component, respectively.

Table 4. 14 Principle component associated with strong-correlated environmental factors

Component Factor Description
Loading

coefficient

PC1 f12 relationship of detailed design to requirement -0.399

 f25 testing coverage -0.383

 f22 testing effort -0.383

 f11 requirement analysis -0.323

 f5 level of programming technologies -0.294

PC2 f18 program workload (stress) 0.520

 f4 amount of programming effort -0.308

PC3 f6 percentage of reused modules -0.526

 f1 program complexity 0.509

PC4 f8 frequency of program specification change 0.629

Hypothesis Testing

There is a common question that software practitioners often bring up: do these 32

environmental factors have the same impact on software reliability in the development of

multi-release software? In this section, one-way ANOVA is applied to compare the

significance level of those environmental factors. From the R output, F-statistics for the

environmental factors analysis is 8.342 with a p-value less than 2𝑒−16; while the value of

𝐹31,1408 is 1.459. Statistically, the null hypothesis is rejected when F value is larger than F

critical value of 1.459. Therefore, the significance level of each environmental factor on

81

software reliability assessment is different during the development of multi-release

software.

Correlation Analysis

Table 4.15 presents the Pearson’s r associated with each pair of environmental factors in

the development of multi-release software. Due to the limitation of the page, we only

choose the absolute value of Pearson’s r is larger than 0.45 to present.

Table 4. 15 Correlation analysis for multi-release software survey data

Factor Description Correlated factors
Pearson's

r

f1 program complexity f5 level of programming technologies 0.452

f11 requirement analysis f22 testing effort 0.574

 f29 storage devices -0.565

 f5 level of programming technologies 0.561

 f12 relationship of detailed design to requirement 0.553

 f28 processors -0.539

 f23 testing resource allocation 0.485

 f25 testing coverage 0.477

f22 testing effort f25 testing coverage 0.764

 f23 testing resource allocation 0.684

 f26 testing tools 0.679

 f21 testing environment 0.671

 f27 documentation 0.632

 f5 level of programming technologies 0.627

 f17 development team size 0.584

 f14 development management 0.573

f12

relationship of detailed

design to requirement

f10 design methodology 0.554

 f11 requirement analysis 0.553

 f6 percentage of reused modules 0.496

f4

amount of programming

effort

f3 difficulty of programming 0.646

82

 f15 programmer skills 0.524

 f7 programming language 0.476

f25 testing coverage f24 testing methodologies 0.801

 f22 testing effort 0.764

 f21 testing environment 0.712

 f26 testing tools 0.704

 f23 testing resource allocation 0.690

 f17 development team size 0.624

 f14 development management 0.570

 f13 work standards 0.550

 f27 documentation 0.539

 f5 level of programming technologies 0.534

 f11 requirement analysis 0.477

 f2 program categories 0.463

 f32 system software 0.451

f18

program workload

(stress)

f20 human nature 0.497

 f19 domain knowledge 0.491

 f17 development team size 0.467

f6

percentage of reused

modules

f12 relationship of detailed design to requirement 0.496

 f5 level of programming technologies 0.484

f5

level of programming

technologies

f22 testing effort 0.627

 f11 requirement analysis 0.561

 f25 testing coverage 0.534

 f26 testing tools 0.510

 f6 percentage of reused modules 0.484

 f23 testing resource allocation 0.474

 f1 program complexity 0.452

f15 programmer skills f7 programming language 0.647

 f19 domain knowledge 0.603

 f16 programmer organization 0.591

 f4 amount of programming effort 0.524

f21 testing environment f25 testing coverage 0.711

 f22 testing effort 0.671

 f23 testing resource allocation 0.643

 f17 development team size 0.627

 f26 testing tools 0.570

 f20 human nature 0.538

 f24 testing methodologies 0.475

f23

testing resource

allocation

f26 testing tools 0.842

83

 f25 testing coverage 0.690

 f22 testing effort 0.685

 f24 testing methodologies 0.668

 f21 testing environment 0.643

 f17 development team size 0.558

 f14 development management 0.555

 f9 volume of program design documents 0.492

 f11 requirement analysis 0.485

 f13 work standards 0.479

 f5 level of programming technologies 0.474

f10 design methodology f14 development management 0.604

 f9 volume of program design documents 0.563

 f12 relationship of detailed design to requirement 0.554

f24 testing methodologies f25 testing coverage 0.800

 f13 work standards 0.715

 f14 development management 0.694

 f23 testing resource allocation 0.668

 f22 testing effort 0.625

 f26 testing tools 0.621

 f9 volume of program design documents 0.613

 f17 development team size 0.599

 f27 documentation 0.564

 f32 system software 0.508

 f31 telecommunication devices 0.470

f19 domain knowledge f29 storage devices 0.741

 f7 programming language 0.653

 f16 programmer organization 0.631

 f15 programmer skills 0.603

 f20 human nature 0.564

 f17 development team size 0.513

 f18 program workload (stress) 0.491

f27 documentation f14 development management 0.642

 f22 testing effort 0.632

 f24 testing methodologies 0.564

 f13 work standards 0.551

 f25 testing coverage 0.539

 f31 telecommunication devices 0.512

 f17 development team size 0.493

f3

difficulty of

programming

f4 amount of programming effort 0.646

 f7 programming language 0.538

f26 testing tools f23 testing resource allocation 0.843

 f25 testing coverage 0.703

 f22 testing effort 0.679

84

 f24 testing methodologies 0.621

 f21 testing environment 0.570

 f5 level of programming technologies 0.510

 f32 system software 0.492

 f17 development team size 0.459

 f2 program categories 0.451

f14

development

management

f24 testing methodologies 0.694

 f27 documentation 0.642

 f10 design methodology 0.604

 f22 testing effort 0.573

 f23 testing resource allocation 0.554

 f13 work standards 0.498

f16

programmer organization
f19 domain knowledge 0.631

 f31 telecommunication devices 0.611

 f29 storage devices 0.596

 f15 programmer skills 0.592

 f17 development team size 0.522

 f28 processors 0.504

f2 program categories f13 work standards 0.715

 f9 volume of program design documents 0.472

 f25 testing coverage 0.463

 f26 testing tools 0.451

f20 human nature f19 domain knowledge 0.564

 f7 programming language 0.563

 f21 testing environment 0.538

 f18 program workload (stress) 0.497

f17 development team size f32 system software 0.663

 f21 testing environment 0.627

 f24 testing methodologies 0.599

 f22 testing effort 0.584

 f31 telecommunication devices 0.572

 f23 testing resource allocation 0.560

 f30 input/output devices 0.560

 f15 programmer skills 0.550

 f16 programmer organization 0.522

 f19 domain knowledge 0.513

 f27 documentation 0.493

 f14 development management 0.483

 f7 programming language 0.477

 f18 program workload (stress) 0.467

 f26 testing tools 0.459

85

f9

volume of program

design documents

f2 program categories 0.472

 f10 design methodology 0.563

 f13 work standards 0.584

 f14 development management 0.500

 f23 testing resource allocation 0.492

 f24 testing methodologies 0.613

f13 work standards f2 program categories 0.715

 f24 testing methodologies 0.715

 f9 volume of program design documents 0.584

 f27 documentation 0.551

 f25 testing coverage 0.550

 f14 development management 0.498

 f23 testing resource allocation 0.479

f28 processors f29 storage devices 0.887

 f30 input/output devices 0.668

 f31 telecommunication devices 0.561

 f16 programmer organization 0.506

 f19 domain knowledge 0.469

 f7 programming language 0.459

 f11 requirement analysis -0.539

f32 system software f17 development team size 0.663

 f30 input/output devices 0.654

 f31 telecommunication devices 0.650

 f25 testing coverage 0.571

 f24 testing methodologies 0.508

 f26 testing tools 0.492

 f14 development management 0.474

 f22 testing effort 0.467

f29 storage devices f28 processors 0.886

 f30 input/output devices 0.683

 f31 telecommunication devices 0.619

 f16 programmer organization 0.596

 f7 programming language 0.503

 f19 domain knowledge 0.471

 f11 requirement analysis -0.565

f7 programming language f4 amount of programming effort 0.476

 f15 programmer skills 0.647

 f17 development team size 0.477

 f19 domain knowledge 0.653

 f20 human nature 0.563

 f28 processors 0.459

 f29 storage devices 0.503

 f30 input/output devices 0.467

86

f30 input/output devices f31 telecommunication devices 0.829

 f29 storage devices 0.683

 f28 processors 0.668

 f32 system software 0.654

 f17 development team size 0.560

 f16 programmer organization 0.497

 f7 programming language 0.468

f31

telecommunication

devices

f30 input/output devices 0.839

 f32 system software 0.650

 f29 storage devices 0.619

 f16 programmer organization 0.612

 f17 development team size 0.572

 f28 processors 0.561

 f14 development management 0.488

Development Phase Analysis

Significance Level of Each Development Phase

We are interested in whether these five development phases have the same impact on

software reliability during the development of multi-release software. Thereafter the

comparison between the development of single-release software and multi-release software

in terms of the significance level of each development phase will be drawn later. One-way

ANOVA method is utilized to compare the significance level. The hypothesis is presented

as follows.

𝐻0: µ𝐺𝑒𝑛𝑒𝑟𝑎𝑙 = µ𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠&𝑑𝑒𝑠𝑖𝑔𝑛 = µ𝐶𝑜𝑑𝑖𝑛𝑔 = µ𝑇𝑒𝑠𝑡𝑖𝑛𝑔 = µ𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝑠𝑦𝑠𝑡𝑒𝑚

𝐻𝑎: 𝑛𝑜𝑡 𝑎𝑙𝑙 𝑒𝑞𝑢𝑎𝑙

87

From the R output, the F-statistic for the development phase is 35.98 with p-value less than

2𝑒−16. The F critical value, 𝐹4,1435, is 2.378 from F table, which is much less than 35.98.

Therefore, during the development of multi-release software, the impact of each

development phase on software reliability is different.

Figure 4.1 illustrates the boxplot of each development phase. General phase, Analysis and

Design phase, Coding phase, and Testing phase have the similar mean value. From the

output of Tukey multiple comparison of mean, we consider the General, Analysis and

Design, Coding and Testing as a group. The grouping distribution is different with the

previous findings from Section 4.1, for which, we will discuss later.

Figure 4. 1 Boxplot for each development phase

Significant Environmental Factors in Each Development Phase

88

We also use the backward elimination to identify the significant environmental factors in

each phase during multi-release software development. For the variable selection process,

we use Reliability obtained from survey as response variable and the environmental factors

in each phase as explanatory variables. For instance, in the General phase, f1, f2, f3, f4, f5,

f6, and f7 are explanatory variable, the Reliability value is obtained from survey.

Table 4.16 reveals the significant environmental factors in each development phase for

multi-release software. Most significant factors in the General, Analysis and Design phase

also stay on top 10 ranking environmental factors calculated by relative weighted method.

It is very interesting to see human nature is one of the significant factors in the Coding

phase. Human nature refers to the characteristics of software developer, such as the ability

to avoid making mistakes. As the software release cycle becomes shorter, the software

development cycle is also getting shorter accordingly. In such a scenario, the consequence

of human nature on affecting software reliability is getting more attention in the

development of multi-release software.

Table 4. 16 Significant factors in each development phases for multi-release software

Development phase
Significant

factor
Description

Parameter

estimate
p-value

General f4 amount of programming effort -0.074 0.017500

 f5 level of programming technologies 0.090 0.006600

 f7 programming language 0.049 0.023000

Analysis and Design f11 requirement analysis 0.080 0.002600

Coding f20 human nature 0.092 0.000006

Testing f23 testing resource allocation 0.099 0.002500

89

4.3 Comparisons between Single-Release and Multi-Release Software

4.3.1 Ranking of Environmental Factors

There are 60% environmental factors on the top 10 ranking for single-release software still

stay on the top 10 ranking for multi-release software, however, the order of importance has

changed. The detailed comparison of the top 10 ranking between single-release software

and multi-release software is presented in Table 4.17.

Table 4. 17 Comparison of ranking between multi-release and single-release

 Multi-release software Single-release software

Rank Factor Description Factor Description

1 f1 program complexity f8 frequency of program specification

change

2 f11 requirement analysis f22 testing effort

3 f8 frequency of program specification

change

f21 testing environment

4 f22 testing effort f25 testing coverage

5 f12 relationship of detailed design to

requirement

f1 program complexity

6 f4 amount of programming effort f15 programmer skills

7 f25 testing coverage f6 percentage of reused modules

8 f18 program workload (stress) f12 relationship of detailed design to

requirement

9 f6 percentage of reused modules f24 testing methodologies

10 f5 level of programming technologies f19 domain knowledge

Most software companies frequently release new updated versions to stay competitive in

the market. Depending on the purpose of the new release, some version may be released

on a frequent basis, for instance, fix urgent faults in the previous software release; some

version may be released on a long-term basis since it will bring in major updates [152].

90

Additionally, large software companies like Ericsson increasingly apply the principles of

agile and lean software development in an iterative manner to quickly respond to customers’

feedback [153]. It is understood that the requirements analysis and design and have the

customers involved take longer time for the multi-release software development. The

testing is relatively on a smaller scope and takes shorter time compared with single-release

software. Likewise, this study also supports this point of view. For example, as seen in

Table 4.17, there are four environmental factors are coming from the Testing phase for

single-release software, while only two environmental factors are coming from the Testing

phase for multi-release software.

Environmental factors, f11, f4, f18, and f5, are revealed in the top 10 ranking for the first

time. f11, f4, f18, f5 refers to requirement analysis, amount of programming effort,

program workload (stress), and level of programming technologies, respectively.

Environmental factor, f11, requirement analysis, usually comes from customers, is the

fundamental factor for the following design and coding work. The specifications that

software developers generate mostly based on the requirements from customers. It is also

known that continuous delivery of customer requirement is critical for software

development company in this very market-driven environment [153], thus, it is reasonable

that requirement analysis has significant impact on affecting software reliability in the

development of multi-release software. f4 and f5 are coming from the General phase and

both stay in the top 10 ranking in this study. f4, amount of programming effort, which may

directly improve the efficiency and reliability of the product. f5 refers to the level of

programming technologies. The programming technologies are classified into four

91

categories: design techniques, documentation techniques, programming techniques and

development techniques. f5 represents a comprehensive consideration for software

development team. Due to the short release of the software and the quick response to

customer requirements, programming technologies have more significant impact on

affecting the quality and reliability of multi-release software.

4.3.2 Principle Components of Environmental Factors

Four principle components are obtained in multi-release software survey study, represented

over 75% variation for the collected data; three principle components were generated in

the previous findings for single-release software, explained 69% variation of the collected

data. The detailed comparisons are explained in Table 4.18. In sum, software developers

need to choose the corresponding results according to the product requirements.

4.3.3 Significance Level of Each Development Phase

Tukey method is utilized on both studies to compare the four development phases. The

comparison of significance level of each development phase is illustrated in Table 4.19.

The null hypothesis for both studies is all development phases have the same significance

level in terms of their impact on software reliability. Three groups are categorized for

single-release software development. Testing phase is the most important phase on

affecting software reliability; Analysis, Design, and Coding phases have the same

significance level; General phase has the least significance level. However, in the

development of multi-release software, all of four development phases have the equal

92

impact on affecting software reliability. As we discussed earlier, the application of agile

and lean software development method results in short iteration and short release to quickly

respond customers’ feedback. Thus, the significance level of the Testing phase in the

development of multi-release software is not as significant as it in the development of

single-release software.

Table 4. 18 Comparisons of principle components between single-release and multi-

release software

Principle components for multi-release software
Principle components for single-release

software

Principle

components

Factor Description Principle

components

Factor Description

PC1

f12
relationship of detailed

design to requirement

PC1

f25 testing coverage

f25 testing coverage f21 testing environment

f22 testing effort f22 testing effort

f11 requirement analysis f24 testing methodologies

f5
level of programming

technologies
f12

relationship of detailed

design to requirement

PC2
f18

program workload

(stress)
f6

percentage of reused

modules

f4
amount of programming

effort
PC2 f8

frequency of program

specification change

PC3

f6
percentage of reused

modules

f19 domain knowledge

f1 program complexity

PC3

f15 programmer skills

PC4 f8
frequency of program

specification change
f1 program complexity

4.3.4 Significant Environmental Factors in Each Development Phase

Backward elimination method is applied in both studies to extract the significant

environment factors of each development phase for single/multi release software. The

comparisons are illustrated in Table 4.20.

93

Most of the significant factors in each development phase are also on the top 10 ranking

environmental factors in these two studies. The significant factors in each development

phase are different between single-release software and multi-release software. For multi-

release software, the significant factors in the General phase are f4, amount of

programming effort, f5, level of programming technologies, and f7, programming language;

while the significant factors in the General phase for single-release software are f4, amount

of programming effort and f6, percentage of reused modules. Only f4, amount of

programming effort, is the significant factor in the General phase in both studies. Analysis

and Design phase have the similar choice of significant factors in these two studies since

f11, requirement analysis, and f12, relationship of detailed design to requirement, both

focus on the alignment of customer requirements.

In the Coding phase, the interesting finding is that multi-release software development

more focuses on human nature. Human nature refers to the developers’ characteristics,

including the ability to avoid making working mistakes, careless work omission. Given the

short-release cycle of multi-release software, on-time project delivery is very critical thus

any working mistake could affect the coding efficiency and delay the product release.

In the Testing phase, testing resource allocation is the significant factor in both studies.

Technical-related environmental factors like testing methodology and coverage are more

emphasized in the development of single-release software. In sum, the selection of the

94

significant factors in these two studies reflects the difference of the development

methodology.

Table 4. 19 Comparison of final grouping

Grouping (multi-release software) Grouping (single-release software)

Development phase Mean Final grouping Development phase Mean Final grouping

General 4.540 1 General 5.225 1

Analysis and Design 4.641 1 Analysis and Design 5.034 2

Coding 4.470 1 Coding 4.933 2

Testing 4.707 1 Testing 4.722 3

Table 4. 20 Comparison of significant factors in each development phase

Significant factors for multi-release software Significant factors for single-release software

Phase
Sig.

factor
Description p-value Phase

Sig.

factor
Description p-value

General

f4

amount of

programming

effort

0.01750

General

f4
amount of programming

effort
0.0001

f5

level of

programming

technologies

0.00660 f6
percentage of reused

module
0.0130

f7
programming

language
0.02300

Analysis

and

Design

f8
frequency of program

specification change
0.0060

Analysis

and

Design

f11
requirement

analysis
0.00260 f12

relationship of detailed

design to requirement
0.0140

Coding f20 human nature 0.00001
Coding

f15 programmer skills 0.0320

 f18 program workload (stress) 0.0001

 testing

Testing
f23 testing resource allocation 0.0010

Testing f23 resource 0.00250 f24 testing methodologies 0.0170

 allocation f25 testing coverage 0.0020

95

4.4 Other Statistical Learning Method to Select Environmental Factors

We apply lasso regression in this section and compare with the results from other variable

selection methods for multi-release survey data. Why do we choose lasso regression to fit

the model instead of least squares? It is the trade-off between the variance and bias for the

sake of the model prediction accuracy and interpretability [154]. The least squares

estimates tend to have low bias if the relationship between the response and the predictors

is linear. If 𝑛 ≫ 𝑝, that is, if the number of observations, n, is much larger that the number

of variables, p, the least squares tends to have low variance and performs well on the test

observations. However, if n is not larger than p, then variability can be occurred in the least

squares estimates. Overfitting and poor prediction may also appear in the future

observation, which are not used in the model training [154]. We have 45 survey responses

while 32 environmental factors are presented for multi-release survey data. The number of

observations is not much larger than the number of variables. To reduce the variance at the

cost of increasing bias, we often shrink the estimated coefficients. Therefore, lasso

regression, a shrinkage regression method, in which some coefficients will be estimated

towards zero, hence, is applied to perform variable selection.

As the tuning parameter λ is sufficiently large, some coefficients can be exactly equal to

zero in lasso regression. By applying lasso regression, the non-zero-coefficient variables

are f11, f20, f23, represent requirement analysis, human nature, and testing resource

allocation, respectively. They are considered as the significant predictors on affecting

reliability in the development of multi-release software from lasso regression.

96

Different variable selection methods may provide different sets of significant factors, but

similarity could still exist in these sets. For instance, relative weighted method applied in

all 32 environmental factors and the backward elimination method applied in each

development phase both conclude f11, requirement analysis, is an important environmental

factor. Moreover, f20, human nature, and f23, testing resource allocation, are selected as

significant factor in each development phase addressed in Section 4.2. There are also some

drawbacks on selecting variables using lasso regression. We understand that other variables

which are highly-correlated with the selected variables may be eliminated in the selection

process based on the mathematical theory, however, some of them may possess more

practical meaning than the selected variables. From this point of view, Table 4.15 provides

detailed explanation on their correlations.

4.5 Conclusions of Environmental Factor Studies in Development of Single-

Release and Multi-Release Software

This chapter aims to investigate and compare the impact of environmental factors on

affecting software reliability in the development of single-release and multi-release

software. Comparisons are concluded as follows.

1. 60% similarity of environmental factors listed on the top 10 ranking in these two

studies. However, the order of importance has changed. The importance level of

the Testing phase in the development of multi-release software is not as significant

as in single-release software because of the increasing application of agile software

development method. Correspondingly, factors related to the Testing phase are not

97

important as before, while factors related to customer requirement/feedback

analysis are getting more attention in the development of multi-release software.

2. Given the emphasis of multi-release software development is shifting more to the

Analysis and Design phase, all four development phases in multi-release software

are categorized as one group, while three groups are retained for single-release

software.

3. Significant factors in each development phase are not the same for single and multi-

release software. The weight of testing-related and programmer-skill-related

factors decreases, as the weight of customer-related factors increases.

4. Other statistical learning method, e.g., lasso regression, is applied to analyze thee

multi-release survey data. Requirement analysis, human nature, and testing

resource allocation are considered as the significant predictors on predicting

reliability for the development of multi-release software. Different variable

selection method has its own limitation, researchers and practitioners will choose

the corresponding results depends on their applications.

In this chapter, survey responses from different industries/projects/regions are considered

as one group to investigate the significance level of environmental factors on affecting

software reliability in the development of single-release and multi-release software.

Several research directions can be addressed in the future research. For example, the

98

comparison of the findings amongst industries, projects, or even regions can be further

discussed since the variance exists in those groups are considerably worthy to be

investigated. Incorporating single/multiple significant environmental factor(s) in software

reliability modeling is also plausible.

99

CHAPTER 5

SOFTWARE RELIABILITY MODELS CONSIDERING FAULT DEPENDENCY

AND IMPERFECT FAULT REMOVAL

5.1 Research Motivation

Software technologies have been greatly adopted in many critical applications, such as air

traffic control system, national security defend system, network/grid system, and consumer

appliance [157]. Given such an increasing expectation on the performance of software-

related product, the reliability and quality of software product have been studied by many

practitioners and researchers since 1970s. Thus, a great number of attempts and approaches

are proposed to measure software reliability and reliability improvement during the

testing/operation phase in the past four decades, as reviewed in Chapter 2. NHPP is

considered as one of the most effective mathematical tools to model software fault growth

process since software faults come on a discrete-time scale.

The common assumptions for the existing software reliability growth models are

summarized as follows. (1) Software faults are mutually independent. (2) The program

only has one type of software fault; hence, the difficulty level of detecting software faults

is the same. In other words, software detection rate is always the same without considering

different fault type. (3) The detected software faults are perfectly removed during the

testing phase. It is unlikely to remove all the faults during the testing phase for the modern

software product in consideration of the limited resource, estimated risk, constrained

schedules, and multi-release consideration [39]. The above assumptions are proposed

100

mainly because of the simplicity consideration of the mathematical modeling for fault

detection process. However, it may not be realistic.

As discussed in Chapter 2, a typical software program usually suffers from more than one

type of software fault [117 - 123]. Different fault classes are categorized by practitioners

and researchers to describe the characteristics of software faults that cause failures during

testing and operation phase [117, 124]. Some fault classes are discussed as follows.

First, solid (hard) faults, often corresponding to Bohrbugs, and soft (elusive) faults,

referring to Mandelbugs. Even Bohrbug and Mandelbug are discussed by many

practitioners. we still do not have consistent definitions given in the literature for Bohrbug

and Mandelbug [120 - 121]. The definitions given in this dissertation are referred from

Grottke et al. [117]. Bohrbug is defined as an easily isolated fault that manifests

consistently under a well-defined set of condition due to its activation is lack of complexity,

while Mandelbug is associated with complex activation and/or error propagation behavior.

The “Complexity” in Mandelbug may be triggered by the interaction of software

application and its system environment (hardware, operation system, and other

applications), the influence of the operation sequences, the influence of inputs, and the time

lag between fault activation and failure occurrence [122, 123].

Secondly, related faults and independent faults. Laprie et al. [118] stated that software

faults are either related or independent. Related faults manifest themselves as similar errors

and lead to the common-mode failures, while independents faults usually cause distinct

101

errors and separate failures. In other words, the failure mode of related faults is similar, but

the failure mode of independent faults is distinct.

Thirdly, Lapire [126] also identified and discussed the limits and challenges in the

dependability of computer systems in terms of the fault class, such as physical faults,

design faults, and interaction faults.

Given the practical consideration of different types of software faults discussed above, and

the lack of software reliability models incorporating both software fault dependency and

imperfect fault removal, therefore, we include both software fault dependency and

imperfect fault removal in a NHPP software reliability model in this chapter.

Two main concerns: Software Fault Dependency and Software Imperfect Fault Removal,

are included in this chapter. A brief discussion regarding these two topics are presented

below.

Software Fault Dependency

As discussed above, different types of software faults are defined in the literature based on

different criteria. For example, solid faults and soft faults are defined with respect to the

existence of “complexity”. “Complexity” is caused by a time lag between the fault

activation and failure occurrence, or the influence of interaction between software and

application environment [117]. Independent faults and related faults are also defined

according to the independence of fault manifestation. Those literatures are commonly

102

known in software engineering area. But when it comes to develop software reliability

growth model, software fault dependency is often neglected for the sake of model

simplicity. Only a few literatures address fault dependence/different types of software

faults in the modeling, as discussed in Chapter 2.

In order to explain the fault dependency, we adopt an example of correct and faulty

program from Huang and Lin [132], as revealed in Figure 5.1. The left side of Figure 5.1

is the correct program, while the right side of Figure 5.1 is the faulty program.

There are two misusing operators in the faulty program, located in line 30 and line 105,

respectively. The fault located in line 30 in the faulty program is caused by a misusing

operator. After executing line 30, it will lead to the wrong input for line 42. It is expected

that line 105 will not print out the right output since another fault exists in line 105. Besides

removing the fault in line 105, the fault existing in line 30 still needs to be corrected. Thus,

in the segment discussed below, fault located in line 30 is Type I (independent) fault, while

fault located in line 105 is Type II (dependent) fault based on the definition given in this

study.

The detailed discussion for Type I and Type II fault will be described in Section 5.3. Note

that in the proposed software reliability model for one-phase debugging process, we

assume Type I (independent) faults have been removed in the preliminary testing, thus,

only consider Type II (dependent) faults in the program for the sake of simplification. The

103

proposed software reliability model for two-phase debugging process consider both types

of faults in the program.

 Correct program Faulty program

Line

number
Code

Line

number
Code Remarks

: : : :

30 key = key % 5 30 key = key / 5 #misusing operator

: :

42 while (key < 5) 42 while (key < 5)

43 { 43 {

: : : :

70 count = count * 2 70 count = count * 2

: : : :

80 } 80 }

: :

105 print (count % 5) 105 print (count / 5) #misusing operator

106 print ("end") 106 print ("end")

Figure 5. 1 Example of Type I (independent) fault and Type II (dependent) fault

Software Imperfect Removal

In practice, it is unlikely to remove all the detected faults in software testing phase due to

the limited resource, estimated risk, constrained schedules, and multi-release consideration.

These literatures [106, 158 – 161] incorporated fault removal efficiency in the software

reliability models. We also consider imperfect fault removal in this chapter. Specifically,

detected faults cannot be perfectly removed in software testing phase.

104

5.2 Proposed Software Reliability Model for One-Phase Debugging Process

As discussed in Figure 5.1, we define two types of software faults, Type I (independent)

fault and Type II (dependent) fault. For the sake of model simplification, we first consider

one-phase debugging process to model the failure growth. We only consider Type II faults

in one-phase debugging process and assume all Type I faults have been removed in the

preliminary testing phase. Thus, as seen in Figure 5.2, we assume at 𝑡 = 0, the detection

of Type II faults starts.

The assumptions for the proposed one-phase software reliability model are described as

follows.

(1) Software detection follows a NHPP process.

(2) This is a fault-dependent detection process.

(3) Fault detection is a process of a learning curve phenomenon.

(4) Fault is not removed perfectly upon detection.

(5) The debugging process may introduce new errors into software. This is an imperfect

debugging process, but the maximum faults contained in the software is 𝐿.

Type II (depend) faults

0 𝑡

Figure 5. 2 One-phase debugging process

105

(6) The software failure intensity 𝜆(𝑡) is explained as the percentage of the removed

errors in the software product.

(7) The non-removed software error rate is assumed to be a constant.

The notations for this section are given as follows.

L Maximum number of software faults in the program

b Asymptotic unit of software fault detection rate

𝛽 Shape parameter of the learning curve

c Non-removable error rate per unit of time

𝑚0 Expected number of software failures at time t = 0

𝑚(𝑡) Expected number of software failures by time 𝑡

𝑏(𝑡) Fault detection rate function

𝑐(𝑡) Non-removable fault rate function due to the limitation of testing resource,

the skill and experience of the programmer, and multi-release consideration

for software organization

A NHPP software reliability model with fault-dependent detection, imperfect fault removal,

and the maximum number of faults is formulated as follows

𝑑𝑚(𝑡)

𝑑𝑡
= 𝑏(𝑡)𝑚(𝑡) [1 −

𝑚(𝑡)

𝐿
] − 𝑐(𝑡)𝑚(𝑡) (5.1)

106

where 𝑚(𝑡) represents the expected number of software failures detected by time 𝑡. 𝐿

denotes the maximum number of software faults in the program. 𝑏(𝑡) is the fault detection

rate per individual fault per unit of time. 𝑐(𝑡) represents the non-removed error rate per

unit of time.

(1 −
𝑚(𝑡)

𝐿
) indicates the proportion of software faults are going to detect in every

debugging effort. 𝑏(𝑡)𝑚(𝑡) [1 −
𝑚(𝑡)

𝐿
] is the percentage of detected dependent errors by

time 𝑡 . 𝑐(𝑡)𝑚(𝑡) represents the non-removed errors by time 𝑡 . Hence, 𝑏(𝑡)𝑚(𝑡) [1 −

𝑚(𝑡)

𝐿
] − 𝑐𝑚(𝑡) represents the proportion of the removed errors in the software by time 𝑡.

𝜆(𝑡) =
𝑑𝑚(𝑡)

𝑑𝑡
 is the failure intensity function for the whole software system by time 𝑡.

The marginal condition for the above equation is given as

𝑚(𝑡0) = 𝑚0, 𝑚0 > 0 (5.2)

Given software testers perform a preliminary testing to remove the Type I software faults

before officially starting this one-phase debugging process. Thus, in this chapter, we

assume 𝑚0 > 0 by taking into consideration of those errors. The general solution for (5.1)

is easily obtained as

𝑚(𝑡) =
𝑒
∫ (𝑏(𝜏)− 𝑐(𝜏))𝑑𝜏
𝑡
𝑡0

1
𝐿 ∫

𝑒
∫ (𝑏(𝑠)− 𝑐(𝑠))𝑑𝑠
𝜏
𝑡0 𝑏(𝜏)𝑑𝜏 +

1
𝑚0

𝑡

𝑡0

 (5.3)

107

We assume fault detection is a process of a learning curve phenomenon, which is addressed

in equation (5.4). Non-removed rate 𝑐(𝑡) is a constant, given in equation (5.5).

𝑏(𝑡) =
𝑏

1 + 𝛽𝑒−𝑏𝑡
, 𝑏 > 0, 𝛽 > 0 (5.4)

𝑐(𝑡) = 𝑐, 𝑐 > 0 (5.5)

Substituting equations (5.4) – (5.5) into equation (5.3), we obtain

𝑚(𝑡) =
𝛽 + 𝑒𝑏𝑡

𝑏
𝐿(𝑏 − 𝑐)

[𝑒𝑏𝑡 − 𝑒𝑐𝑡] +
1 + 𝛽
𝑚0

𝑒𝑐𝑡
 (5.6)

5.3 Proposed Software Reliability Model for Two-Phase Debugging Process

In the last section, we discuss one-phase debugging process with dependent fault detection

process and imperfect fault removal along with the maximum number of software faults

exists in the program. We also assume Type I software faults have been eliminated in the

pre-analysis testing phase.

In this section, we propose a two-phase software reliability model in consideration of

software fault dependency and imperfect fault removal process to model software failure

growth.

108

Firstly, two types of software faults are defined, Type I and Type II. Type I software fault

is defined as an independent and easy-detected fault, which is detected and corrected in

Phase I. Type II software fault is defined as a dependent and difficult-detected fault, which

is detected and corrected in Phase II. In particular, the detection of Type II faults depends

on the faults that have already detected. Hence, two-phase debugging process is proposed

accordingly.

Figure 5.3 describes two-phase debugging process and their corresponding fault type.

Secondly, there exists a small portion of software faults in both phases that software

programmer is not able to remove owing to the fact that programmer’s domain knowledge

and limited testing resources.

Thirdly, new software faults will be introduced to detect the existing software faults. In

this study, we assume that no new Type I fault will be introduced in Phase II and left-over

Type I faults from Phase I are still not able to be detected in Phase II. In the future research,

 Type I faults Type II faults

Phase I Phase II
𝑡0 𝑡

0

Figure 5. 3 Phase I and Phase II associated with corresponding fault type

109

we will consider the new-introduced Type I faults and the left-over Type I faults from

Phase I could both be detected in Phase II.

The assumptions for the proposed two-phase software reliability model are given as

follows.

(1) Software detection follows a NHPP process.

(2) Software debugging is imperfect. New software faults will be introduced into the

program to detect the existing faults.

(3) Type I fault is detected and removed in Phase I; Type II fault is detected and

removed in Phase II. In this section, we do not consider Type I fault detection in

Phase II and the left-over Type I faults from Phase I are still not able to be detected

in Phase II.

(4) In both phases, there exists a certain portion of software faults that software

development team are not able to remove.

(5) The fault detection rate and non-removable fault rate are different in Phase I and

Phase II due to different software fault type.

(6) Debugging time is negligible.

The notations for this section are given as follows.

𝑎 The number of initial fault in the program

𝛼 Fault introduction rate per detected fault

110

𝑏1 Asymptotic unit of software fault detection rate in Phase I

𝛽 Shape parameter of the learning curve in Phase I

𝑐1 Non-removable software fault in Phase I

𝑏2 Asymptotic unit software fault detection rate in Phase II

𝛾 Shape parameter of the learning curve in Phase II

𝑐2 Non-removable software fault rate in Phase II

𝑚1(𝑡) Expected number of software failures in Phase I by time 𝑡, 𝑡 ∈ [0, 𝑡0]

𝑚2(𝑡) Expected number of software failures in Phase II by time 𝑡, 𝑡 ∈ (𝑡0, ∞)

𝑚1(𝑡0) Expected number of software failures in Phase I by time 𝑡0

𝑚2(𝑡0) Expected number of software failures in Phase II by time 𝑡0

𝑎1(𝑡) Total fault content function in Phase I

𝑎2(𝑡) Total fault content function in Phase II

𝑏1(𝑡) Fault detection rate function in Phase I

𝑏2(𝑡) Fault detection rate function in Phase II

𝑐1(𝑡) Non-removable fault rate function in Phase I due to the limitation of testing

resource, the skill and experience of the programmer, and multi-release

consideration for software organization

𝑐2(𝑡) Non-removable fault rate function in Phase II due to the limitation of testing

resource, the skill and experience of the programmer, and multi-release

consideration for software organization

𝑦′(𝑡) Failure increasing rate during time interval (𝑡, 𝑡 + ∆𝑡)

𝑦(𝑡) Observed cumulative number of failures by time 𝑡

𝑦(𝑡 + ∆𝑡) Observed cumulative number of failures by time 𝑡 + ∆𝑡

111

The proposed two-phase software reliability model considering software fault dependency

and imperfect fault removal is formulated as follows

𝑑𝑚1(𝑡)

𝑑𝑡
= 𝑏1(𝑡)[𝑎1(𝑡)−𝑚1(𝑡)] − 𝑐1(𝑡)𝑚1(𝑡), 𝑡 ≤ 𝑡0 (5.7)

𝑑𝑚2(𝑡)

𝑑𝑡
 =

𝑏2(𝑡)

𝑎2(𝑡)
𝑚2(𝑡)[𝑎2(𝑡)−𝑚2(𝑡)] − 𝑐2(𝑡)𝑚2(𝑡), 𝑡 > 𝑡0 (5.8)

where 𝑚1(𝑡) is the expected number of software failures in Phase I by time 𝑡 ,

𝑡 ∈ [0, 𝑡0] . 𝑚2(𝑡) is the expected number of software failures in Phase II by time

𝑡, 𝑡 ∈ (𝑡0, ∞). 𝑎1(𝑡) and 𝑎2(𝑡) represent the total fault content function in Phase I and

Phase II, respectively. 𝑏1(𝑡) and 𝑏2(𝑡) denote the fault detection rate function in Phase I

and Phase II, respectively. 𝑐1(𝑡) and 𝑐2(𝑡) describe non-removable fault rate function in

Phase I and Phase II, respectively, due to the limitation of testing resource, the skill and

experience of the programmer, and multi-release consideration of software organization.

The connection between Phase I and II is given as follows

 𝑚1(𝑡0) = 𝑚2(𝑡0) (5.9)

where 𝑚1(𝑡0) represents the expected number of software failures in Phase I by time 𝑡0

and 𝑚2(𝑡0) represents the expected number of software failures in Phase II by time 𝑡0.

112

Note that we consider time 𝑡0 belongs to Phase I for the latter parameter estimation. The

fault content in Phase II is obtained by

 𝑎2(𝑡) = 𝑎1(𝑡0) − 𝑚1(𝑡0) (5.10)

where 𝑎1(𝑡0) is the total fault content function in Phase I at time 𝑡0.

5.3.1 Phase I Software Reliability Model

As illustrated in Figure 5.3, software testers only detect and remove Type I fault, which is

the independent and easy-detected software fault in Phase I. New software faults will be

introduced into system while executing debugging, therefore, this is an imperfect

debugging process and the total software faults content in Phase I is

 𝑎1(𝑡) = 𝑎(1 + 𝛼𝑡), 𝑎 > 0, 𝛼 > 0 (5.11)

where 𝑎 is the number of initial fault in the program and 𝛼 is the fault introduction rate per

detected fault.

The fault detection rate in Phase I is given by

 𝑏1(𝑡) =
𝑏1

1 + 𝛽𝑒−𝑏1𝑡
, 𝑏1 > 0, 𝛽 > 0 (5.12)

113

where 𝑏1 is the asymptotic unit of software fault detection rate in Phase I and 𝛽 is the

parameter applied to determine the shape of the learning curve in Phase I.

The non-removable fault rate in Phase I is given by

 𝑐1(𝑡) = 𝑐1, 𝑐1 > 0 (5.13)

where 𝑐1 denotes the non-removable software fault in Phase I. The initial condition for

Phase I is given as

 𝑚1(𝑡 = 0) = 0 (5.14)

Substituting equations (5.11) - (5.14) into equation (5.7), we obtain the mean value function

𝑚1(𝑡) given as follows

𝑚1(𝑡) =
𝑎𝑏1[(𝑏1 + 𝑐1)(1 + 𝛼𝑡)𝑒

(𝑏1+𝑐1)𝑡 − 𝛼𝑒(𝑏1+𝑐1)𝑡 + 𝛼 − 𝑏1 − 𝑐1]

(𝑏1 + 𝑐1)
2(𝛽 + 𝑒𝑏1𝑡)𝑒𝑐1𝑡

, 𝑡 ∈ [0, 𝑡0]

(5.15)

114

5.3.2 Phase II Software Reliability Model

Software testers are going to detect and remove Type II fault in Phase II. Note that we do

not consider the detection of Type I fault in Phase II in this study and the left-over Type I

faults from Phase I are still not able to be detected in Phase II.

The fault content function 𝑎2(𝑡) is obtained from equations (5.9) and (5.10)

 𝑎2(𝑡) = 𝑎1(𝑡0) − 𝑚1(𝑡0) = 𝑎(1 + 𝛼𝑡0) − 𝑚1(𝑡0) (5.16)

The fault detection rate function 𝑏2(𝑡) in Phase II is described as

 𝑏2(𝑡) =
𝑏2

1 + 𝛾𝑒−𝑏2𝑡
, 𝑏2 > 0, 𝛾 > 0 (5.17)

where 𝑏2 is the asymptotic unit software fault detection rate in Phase II and 𝛾 determines

the shape of the learning curve in Phase II.

The non-removable fault rate in Phase II is given by

 𝑐2(𝑡) = 𝑐2, 𝑐2 > 0 (5.18)

where 𝑐2 represents the non-removable software fault rate in Phase II.

115

Substituting equations (5.9) - (5.10), (5.15) - (5.18) into equation (5.8), the mean value

function 𝑚2(𝑡) is obtained as follows

𝑚2(𝑡)

=
𝛾 + 𝑒𝑏2𝑡

𝑏2𝑒
𝑐2𝑡

[𝑎(1 + 𝛼𝑡0) − 𝑚1(𝑡0)](𝑏2 − 𝑐2)
[𝑒(𝑏2−𝑐2)𝑡 − 𝑒(𝑏2−𝑐2)𝑡0] +

𝛾 + 𝑒𝑏2𝑡0

𝑚1(𝑡0)

, 𝑡 ∈ (𝑡0, ∞)

(5.19)

where 𝑚1(𝑡0) =
𝑎𝑏1[(𝑏1 + 𝑐1)(1 + 𝛼𝑡0)𝑒

(𝑏1+𝑐1)𝑡0 − 𝛼𝑒(𝑏1+𝑐1)𝑡0 + 𝛼 − 𝑏1 − 𝑐1]

(𝑏1 + 𝑐1)
2(𝛽 + 𝑒𝑏1𝑡0)𝑒𝑐1𝑡0

.

5.4 Parameter Estimation and Comparison Criteria

Parameter Estimation

In practice, parameter estimation will be achieved by applying least square estimate (LSE)

and maximum likelihood estimation. For example, minimizing the equation (5.20) or

maximizing the equation (5.21).

 𝑆 =∑[𝑚(𝑡𝑖) − 𝑦𝑖]
2

𝑛

𝑖=1

 (5.20)

 𝐿𝐿𝐹 = ∑(𝑦𝑖 − 𝑦𝑖−1)log [𝑚(𝑡𝑖) − 𝑚(𝑡𝑖−1)]

𝑛

𝑖=1

−𝑚(𝑡𝑛) −∑log(𝑦𝑖 − 𝑦𝑖−1)!

𝑛

𝑖=1

 (5.21)

116

where 𝑦𝑖 is the observed number of failures at time 𝑡𝑖 . 𝑚(𝑡𝑖) is the predicted data. We

apply LSE to minimize the equation (5.20) to estimate the parameters. 𝑡0 has already

determined in last section. Thus, we have eight unknown parameters from equations (5.15)

and (5.19) that need to be estimated. The Genetic Algorithm (GA) is employed to solve the

optimization function. MATLAB and R software are used to solve the optimization

function and estimate parameters.

Comparison Criteria

(1) Mean Squared Error (MSE)

𝑀𝑆𝐸 =
∑ [𝑚(𝑡𝑖) − 𝑦𝑖]

2𝑛
𝑖=1

𝑛 − 𝑁
 (5.22)

where n is the total number of observations. 𝑦𝑖 is the observed failure data at 𝑡𝑖. 𝑚(𝑡𝑖) is

the predicted failure data at 𝑡𝑖. N represents the number of unknown parameters in each

model. The MSE measures the distance of a model estimate from the observed data.

(2) Predictive-Ratio Risk (PRR) and Predictive Power (PP) [18]

 𝑃𝑅𝑅 =∑[
𝑚(𝑡𝑖) − 𝑦𝑖
𝑚(𝑡𝑖)

]

2𝑛

𝑖=1

 (5.23)

117

 𝑃𝑃 =∑[
𝑚(𝑡𝑖) − 𝑦𝑖

𝑦𝑖
]

2𝑛

𝑖=1

 (5.24)

The PRR and PP are calculated to compare the power of different models. The PRR

measures the distance of the model estimates from the actual data against the model

estimates; while the PP measures the distance of the model estimates from the actual data

against the actual data.

(3) Variation

The Variation is defined as [162]

 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = √
1

𝑛 − 1
∑ [𝑦𝑖 −𝑚(𝑡𝑖) − 𝐵𝑖𝑎𝑠]

2
𝑛

𝑖=1
 (5.25)

where

𝐵𝑖𝑎𝑠 =
1

𝑛
∑ [𝑚(𝑡𝑖) − 𝑦𝑖]

𝑛

𝑖=1
.

 (4) The Akaike information criterion (AIC) not only measures the ability of a model to

maximize its likelihood function, but also assigns the penalty for increasing the number of

estimated parameters.

 𝐴𝐼𝐶 = −2 ∗ 𝑙𝑜𝑔(𝐿𝐹) + 2 ∗ 𝑁 (5.26)

118

where LF is the maximum value of the likelihood function. N is the number of estimated

parameters.

For all the criteria discussed above, the smaller of the criteria, the better fit of the model.

5.5 Numerical Examples for One-Phase Software Reliability Model

Numerical Example 1

Telecommunication system data, reported by Zhang et al. [163], are applied to validate the

proposed one-phase software reliability model. System test data consists of two phases of

test data. In each phase, the system records the cumulative number of faults by each week.

356 system test hours were observed in each week for Phase I data, as seen in Table 5.1.

416 system test hours were observed in each week for Phase II data, as seen in Table 5.2.

Parameter estimate was carried out by the GA method.

To provide a better comparison of our proposed one-phase software reliability model with

the other existing models, described in Table 5.3, we have analyzed Phase I as well as

Phase II system test data in this section.

119

Table 5. 1 Phase I system test data

Week

index

Exposure time

(System test

hours)

Failures
Cumulative

failures

Week

index

Exposure time

(System test

hours)

Failures
Cumulative

failures

1 356 1 1 12 4272 2 15

2 712 0 1 13 4628 4 19

3 1068 1 2 14 4984 0 19

4 1424 1 3 15 5340 3 22

5 1780 2 5 16 5696 0 22

6 2136 0 5 17 6052 1 23

7 2492 0 5 18 6408 1 24

8 2848 3 8 19 6764 0 24

9 3204 1 9 20 7120 0 24

10 3560 2 11 21 7476 2 26

11 3916 2 13 - - - -

Table 5. 2 Phase II system test data

Week

index

Exposure time

(System test

hours)

Failures
Cumulative

failures

Week

index

Exposure time

(System test

hours)

Failures
Cumulative

failures

1 416 3 3 12 4992 2 25

2 832 1 4 13 5408 5 30

3 1248 0 4 14 5824 2 32

4 1664 3 7 15 6240 4 36

5 2080 2 9 16 6656 1 37

6 2496 0 9 17 7072 2 39

7 2912 1 10 18 7488 0 39

8 3328 3 13 19 7904 0 39

9 3744 4 17 20 8320 3 42

10 4160 2 19 21 8736 1 43

11 4576 4 23 - - - -

120

Table 5. 3 Mean value function for all compared models

Model Mean Value Function

Goel-Okumoto (G-O) 𝑚(𝑡) = 𝑎(1 − 𝑒𝑏𝑡)

Delayed S-shaped 𝑚(𝑡) = 𝑎[1 − (1 + 𝑏𝑡)𝑒−𝑏𝑡]

Inflection S-shaped 𝑚(𝑡) =
𝑎(1 − 𝑒−𝑏𝑡)

1 + 𝛽𝑒−𝑏𝑡

Yamada imperfect debugging 𝑚(𝑡) = 𝑎(1 − 𝑒−𝑏𝑡) (1 −
𝛼

𝑏
) + 𝛼𝑎𝑡

PNZ Model 𝑚(𝑡) =
𝑎[(1 − 𝑒−𝑏𝑡) (1 −

𝛼
𝑏
) + 𝛼𝑡]

1 + 𝛽𝑒−𝑏𝑡

Pham-Zhang model 𝑚(𝑡) =
1

1 + 𝛽𝑒−𝑏𝑡
[(𝑐 + 𝑎)(1 − 𝑒−𝑏𝑡) −

𝑎𝑏

𝑏 − 𝛼
(𝑒−𝛼𝑡 − 𝑒−𝑏𝑡)]

Dependent-parameter model 𝑚(𝑡) = 𝛼(1 + 𝛾𝑡)(𝛾𝑡 + 𝑒−𝛾𝑡 − 1)

Dependent-parameter model

with 𝑚0 ≠ 0, 𝑡0 ≠ 0,

𝑚(𝑡) = 𝑚0 (
𝛾𝑡 + 1

𝑟𝑡0 + 1
)𝑒−𝛾(𝑡−𝑡0)

+ 𝛼(𝛾𝑡 + 1)[𝛾𝑡 − 1 + (1 − 𝛾𝑡0)𝑒
−𝛾(𝑡−𝑡0)]

Loglog fault-detection rate model 𝑚(𝑡) = 𝑁(1 − 𝑒−(𝑎
𝑡𝑏−1))

Proposed model 𝑚(𝑡) =
𝛽 + 𝑒𝑏𝑡

𝑏
𝐿(𝑏 − 𝑐)

[𝑒𝑏𝑡 − 𝑒𝑐𝑡] +
1 + 𝛽
𝑚0

𝑒𝑐𝑡

In the proposed one-phase software model, when 𝑡 = 0, the initial number of faults in the

software satisfies 0 < 𝑚0 ≤ 𝑦1, where 𝑦1 is the number of observed failures at time 𝑡 =

1. At the same time, 𝑚0 must be an integer. The interpretation of this constraint is that the

software tester often completes preliminary testing to eliminate trivial errors, Type I faults

in this study, before officially starting testing. The cause of these trivial errors could be

human mistakes or other simple settings. Since we consider the maximum number of faults

that the software to contain in the modeling, these eliminated trivial errors will be counted

into the total number of software faults.

121

Tables 5.4 and 5.5 summarize the results of the estimated parameters and corresponding

criteria value (MSE, PRR, PP, AIC) for the proposed one-phase software reliability model

and other existing models. Both system test data present as an S-shaped curve. Thus, the

existing models such as Goel-Okumoto model is not able to perfectly capture the

characteristic of the two system test datasets.

For Phase I system test data, the estimated parameters are �̂�0 = 1, �̂� = 49.7429, �̂� =

0.2925, �̂� = 0.6151, �̂� = 0.292 . As seen in Table 5.4, MSE and PRR values for the

proposed model are 0.630 and 0.408, which are the smallest among all ten models listed

here. Inflection S-shaped model has the smallest PP value. However, the PP value for the

proposed model is 0.526, which is only slightly higher than 0.512.

Moreover, the PRR value for the inflection S-shaped model is much higher than that of the

proposed model. The AIC value for the proposed model is 65.777, which is just slightly

higher than the smallest AIC value, 63.938. Thus, we conclude that the proposed model is

the best fit for Phase I system test data compared with the other nine models. Figure 5.4

presents the comparison of actual cumulative failures and cumulative failures predicted the

proposed model.

122

Table 5. 4 Parameter estimates and model comparison (Phase I system test data)

Model MSE PRR PP AIC
Parameter

Estimates

Goel-Okumoto (G-O) 5.944 1.818 8.165 66.211
�̂� = 62.040

�̂� = 0.024

Delayed S-shaped 1.609 14.546 0.981 64.230
�̂� = 44.221

�̂� = 0.101

Inflection S-shaped 0.709 1.714 0.512 63.938

�̂� = 27.247

�̂� = 0.269

�̂� = 17.255

Yamada imperfect

debugging
2.602 0.840 0.757 66.710

�̂� = 1.864

�̂� = 0.250

�̂� = 0.842

PNZ Model 2.479 2.954 0.690 68.611

�̂� = 1.556

�̂� = 0.324

�̂� = 0.969

�̂� = 0.999

Pham-Zhang model 3.429 1.982 1.187 70.617

�̂� = 13.394

�̂� = 0.267

�̂� = 0.511

�̂� = 9.013

�̂� = 12.034

Dependent-parameter

model
15.741 287.191 3.768 77.541

�̂� = 0.087

�̂� = 0.952

Dependent-parameter

model with 𝑚0 ≠ 0,

𝑡0 ≠ 0

13.477 2.136 1.189 77.621

�̂� = 6206.000

�̂� = 0.005

𝑡0 = 1.000

𝑚0 = 1.000

Loglog fault-detection

rate model
71.241 11.736 15.475 93.592

�̂� = 15.403

�̂� = 1.181

�̂� = 0.567

Proposed model 0.630 0.408 0.526 65.777

�̂�0 = 1.000

�̂� = 49.743

�̂� = 0.293

�̂� = 0.615

�̂� = 0.292

123

Figure 5. 4 Comparison of actual predicted failures (Phase I system test data)

For Phase II system test data, the estimated parameters are �̂�0 = 3, �̂� = 59.997, �̂� =

0.843, �̂� = 0.409, �̂� = 0.108. The proposed model presents the smallest MSE, PRR, PP

and AIC value in Table 5.5. Thus, we conclude that the proposed model is the best fitting

for Phase II test data among all other models. Figure 5.5 plots the comparison of the actual

cumulative failures and cumulative failures predicted the proposed model.

Moreover, the proposed model provides the maximum number of faults contained in

software, for instance, 𝐿 = 60 for Phase II test data. Assume that the company releases

software at week 21, 43 faults will be detected upon this time based on the actual

observations; however, the fault may not be perfectly removed upon detection as discussed

in Section 5.1. The remaining faults revealed in the operation field, mostly, are Mandelbugs

[164]. Given the maximum number of faults in the software, it is very helpful for the

124

software developer to better predict the remaining errors and decide the release time for

the next version.

Table 5. 5 Parameter estimates and model comparison (Phase II system test data)

Model MSE PRR PP AIC
Parameter

Estimates

Goel-Okumoto (G-O) 6.607 0.687 1.099 74.752
�̂� = 98295.000

�̂� = 5.2𝐸 − 8

Delayed S-shaped 3.273 44.267 1.429 77.502
�̂� = 62.300

�̂� = 2.85𝐸 − 4

Inflection S-shaped 1.871 5.938 0.895 73.359

�̂� = 46.600

�̂� = 5.78𝐸 − 4

�̂� = 12.200

Yamada imperfect

debugging
4.982 4.296 0.809 78.054

�̂� = 1.500

�̂� = 0.001

�̂� = 0.004

PNZ Model 1.994 6.834 0.957 75.501

�̂� = 45.990

�̂� = 6.0𝐸 − 4

�̂� = 0

�̂� = 13.240

Pham-Zhang model 2.119 6.762 0.952 77.502

�̂� = 0.060

�̂� = 6.0𝐸 − 4

�̂� = 1.0𝐸 − 4

�̂� = 13.200

�̂� = 45.900

Dependent-parameter

model
43.689 601.336 4.530 101.386

�̂� = 3.0𝐸 − 6

�̂� = 0.490

Dependent-parameter

model with 𝑚0 ≠ 0,

𝑡0 ≠ 0

35.398 2.250 1.167 87.667

�̂�

= 890996.000

�̂� = 1.2𝐸 − 6

𝑡0 = 832.000

𝑚0 = 4.000

Loglog fault-detection

rate model
219.687 13.655 4.383 114.807

�̂� = 231.920

�̂� = 1.019

�̂� = 0.489

Proposed model 1.058 0.163 0.144 68.316

�̂�0 = 3.000

�̂� = 59.997

�̂� = 0.843

�̂� = 0.409

�̂� = 0.108

125

Figure 5. 5 Comparison of actual predicted failures (Phase II system test data)

Numerical Example 2

Wood [165] provides software failure data including four major releases of software

products at Tandem Computers. Eight NHPP models were studied in Wood [165] and it

was found that the G-O models provided the best performance in terms of goodness of fit.

By fitting our model into the same subset of data, from week 1 to week 9, we predict the

cumulative number of faults from week 10 to week 20 and compare the results with the G-

O model and Zhang–Teng–Pham model [106].

Table 5.6 describes the predicted number of software failures from each model. The AIC

value for the proposed model is not the smallest AIC value present in Table 5.6; however,

we still conclude that the proposed model is the best fit for this dataset, since the other three

126

Table 5. 6 Comparison of G-O, Zhang-Teng-Pham model and the proposed model

Testing Time

(weeks)

CPU

hours

Defects

found

Predicted

total defects

by G-O

Predicted total

defects by Zhang-

Teng-Pham model

Predicted total

defects by

proposed model

1 519 16 - - -

2 968 24 - - -

3 1,430 27 - - -

4 1,893 33 - - -

5 2,490 41 - - -

6 3,058 49 - - -

7 3,625 54 - - -

8 4,422 58 - - -

9 5,218 69 - - -

10 5,823 75 98 74.7 75.5

11 6,539 81 107 80.1 80.8

12 7,083 86 116 85.2 85.1

13 7,487 90 123 90.1 88.5

14 7,846 93 129 94.6 91.2

15 8,205 96 129 98.9 93.2

16 8,564 98 134 102.9 94.7

17 8,923 99 139 106.8 95.8

18 9,282 100 138 110.4 96.6

19 9,641 100 135 111.9 97.2

20 10,000 100 133 112.2 97.6

Predicted

MSE
- - 1359.222 82.660 10.120

Predicted

AIC
- - 149.600 186.468 169.667

Predicted

PRR
- - 0.756 0.041 0.007

Predicted PP - - 1.395 0.050 0.006

127

criteria (MSE, PRR and PP) indicate that the proposed model is significantly better than

other models.

The GA method is applied here to estimate the parameter. Parameter estimates for the

proposed model are given as �̂�0 = 3, �̂� = 181, �̂� = 0.5001, �̂� = 0.602, �̂� = 0.274.

We propose a one-phase software reliability model that incorporates dependent fault

detection and imperfect fault removal, along with the maximum number of faults contained

in the software. To our knowledge, not many research have included dependent fault

detection in software reliability models. We also estimate the maximum number of faults

in the software to provide software measurement metrics, such as remaining errors, failure

rate, and software reliability.

5.6 Numerical Examples for Two-Phase Software Reliability Model

Empirical Data Analysis for Software Failure Data Set

We employ three software failure datasets to illustrate the effectiveness of the proposed

two-phase model. The first dataset is the failure data from a real-time control system. This

monitoring software has about 200 modules with an average of 1000 lines of high-level

language in each module [112]. Table 5.7 shows the first failure dataset (DS1) which were

detected during the 111 days testing period. The second dataset (DS2) is obtained from

testing data of Release 3 [166] in a wireless network switching center, as seen in Table 5.8.

128

The third fault (DS3) tracking data [49] are collected and organized on Firefox from

Bugzilla (https: //bugzilla.mozilla.org/), as seen in Table 5.9.

The proposed model has two phases. Usually, software development team knows 𝑡0 value

in real software testing. However, for the given datasets, we do not know 𝑡0. Hence, the

first step is to determine 𝑡0 in the model validation.

Table 5. 7 Dataset 1 (DS 1)

Day
Cumulative

failures
Day

Cumulative

failures
Day

Cumulative

failures
Day

Cumulative

failures

1 5 29 254 57 448 85 473

2 10 30 259 58 451 86 473

3 15 31 263 59 453 87 475

4 20 32 264 60 460 88 475

5 26 33 268 61 463 89 475

6 34 34 271 62 463 90 475

7 36 35 277 63 464 91 475

8 43 36 293 64 464 92 475

9 47 37 309 65 465 93 475

10 49 38 324 66 465 94 475

11 80 39 331 67 465 95 475

12 84 40 346 68 466 96 476

13 108 41 367 69 467 97 476

14 157 42 375 70 467 98 476

15 171 43 381 71 467 99 476

16 183 44 401 72 468 100 477

17 191 45 411 73 469 101 477

18 200 46 414 74 469 102 477

19 204 47 417 75 469 103 478

20 211 48 425 76 469 104 478

21 217 49 430 77 470 105 478

22 226 50 431 78 472 106 479

23 230 51 433 79 472 107 479

24 234 52 435 80 473 108 479

25 236 53 437 81 473 109 480

26 240 54 444 82 473 110 480

27 243 55 446 83 473 111 481

28 252 56 446 84 473 - -

129

Table 5. 8 Dataset 2 (DS 2)

Week
Cumulative

failures
Week

Cumulative

failures
Week

Cumulative

failures
Week

Cumulative

failures

1 5 10 46 19 105 28 156

2 6 11 53 20 110 29 156

3 13 12 63 21 117 30 164

4 13 13 70 22 123 31 166

5 22 14 71 23 128 32 169

6 24 15 74 24 130 33 170

7 29 16 78 25 136 34 176

8 34 17 90 26 141 35 180

9 40 18 98 27 148 36 181

Table 5. 9 Dataset 3 (DS 3)

Week
Cumulative

failures
Week

Cumulative

failures
Week

Cumulative

failures
Week

Cumulative

failures

1 9 22 44 43 60 64 94

2 12 23 45 44 60 65 99

3 16 24 45 45 60 66 102

4 25 25 46 46 61 67 104

5 27 26 47 47 62 68 105

6 29 27 47 48 62 69 105

7 29 28 49 49 62 70 106

8 32 29 50 50 62 71 10

9 34 30 50 51 62 72 107

10 35 31 50 52 64 73 108

11 36 32 50 53 65 74 108

12 36 33 51 54 66 75 109

13 39 34 52 55 73 76 112

14 39 35 53 56 76 77 113

15 40 36 54 57 81 78 113

16 40 37 55 58 83 79 115

17 40 38 55 59 87 80 115

18 41 39 55 60 88 81 116

19 42 40 55 61 92 - -

20 43 41 56 62 94 - -

21 43 42 59 63 94 - -

130

Empirical data analysis is utilized to determine the value of 𝑡0 based on the practical

interpretation of Phase I and Phase II. The software failure increasing rate is desirable in

this analysis. We formulate the failure increasing rate as follows

 𝑦′(𝑡) = lim
∆𝑡→0

𝑦(𝑡 + ∆𝑡) − 𝑦(𝑡)

∆𝑡
 (5.27)

where 𝑦′(𝑡) illustrates the failure increasing rate during time interval (𝑡, 𝑡 + ∆𝑡). 𝑦(𝑡) is

the observed cumulative number of failures by time 𝑡. 𝑦(𝑡 + ∆𝑡) denotes the observed

cumulative number of failures by time 𝑡 + ∆𝑡 . Given different value of ∆𝑡 , we are

interested in investigating the pattern of 𝑦′(𝑡).

Dataset 1 (failure data from real-time control system [112])

Figure 5.6 illustrates the failure increasing rate 𝑦′(𝑡) in terms of different ∆𝑡 for Dataset 1.

We notice that 𝑦′(𝑡) has two peaks, 𝑡 = 14 and 𝑡 = 41. Software testers often need some

time to get familiar with the algorithm and failure mode. Software failure increasing rate

𝑦′(𝑡) usually stays stable at first, then presents a significantly increasing pattern until it

gets peak due to tester’s growing debugging experience. Afterwards, it declines to a

stabilized rate. The similar pattern is repeated for debugging another type of software fault.

Thus, we conclude that the maximum failure increasing rate for Type I fault is manifested

at time 𝑡 = 14 and the maximum failure increasing rate for Type II fault is manifested at

time 𝑡 = 41. Therefore, 𝑡0 = 35.

131

Figure 5. 6 Software failure increasing rate with respect to different value of ∆𝑡 (DS1)

Dataset 2 (failure data from wireless network switching center [166])

Figure 5.7 illustrates the failure increasing rate 𝑦′(𝑡) in terms of different ∆𝑡 for Dataset 2.

The failure increasing rate performs several peaks during the testing period. Considering

that each type of software fault should have its maximum failure rate, thus, we conclude at

time 𝑡 = 13, Type I fault have its maximum failure rate and at time 𝑡 = 18, Type II fault

have its maximum failure rate. Therefore, 𝑡0 is determined as 15 in this failure dataset.

132

Figure 5. 7 Software failure increasing rate with respect to different value of ∆𝑡 (DS2)

Dataset 3 (failure data from online bug tracking system [49])

Figure 5.8 illustrates the failure increasing rate 𝑦′(𝑡) in terms of different ∆𝑡 for Dataset 3

by applying equation (5.27). Given the nature characteristics of failure growing, we

consider 𝑡0 = 50 is employed to distinguish Phase I and Phase II for Dataset 3.

133

Figure 5. 8 Software failure increasing rate with respect to different value of ∆𝑡 (DS3)

Numerical Example 1

We conclude that 𝑡0 = 35 for the real-time control systems software failure data from

Section 5.6.1. Thus, Phase I is defined when 𝑡 ∈ [0, 35]; Phase II is defined when 𝑡 ∈ (35,

111] . Table 5.10 describes the comparison of software reliability models. Parameter

estimates and criteria comparisons for all models are displayed in Table 5.10 by the use of

GA method.

The proposed model has the smallest MSE, PP, and Variation value. PRR assigns a larger

penalty to the model which has underestimated the cumulative number of failures. Even

the proposed model does not perform the best PRR value, however, given such a significant

improvement on MSE, PP and Variation value, we still conclude that the proposed model

presents better prediction than other software reliability models. The mean value function

of the proposed model and the observed data is plotted in Figure 5.9.

134

As predicted by the proposed model, software tester successfully removed 273 Type I

(independent) software failures at the end of Phase I. At the end of Phase II, software testers

remove 471 software failures including 273 Type I (independent) software faults and 198

Type II (dependent) software faults. However, 504 software faults still exist in the program.

Thus, multiple version software release planning is utilized by most software organization

those days to deal with the faults after initial release.

Table 5. 10 Parameter estimates and model comparison (DS1)

Model
Parameter

Estimates
MSE PRR PP Variation

Yamada imperfect

debugging model

�̂� = 591.800

�̂� = 0.024

�̂� = 0.002

6000.690 6.460 31.440 132.910

PNZ model

�̂� = 470.760

�̂� = 0.075

�̂� = 0.0002

�̂� = 4.693

320.400 1.570 2.070 17.820

G-O model
�̂� = 497.290

�̂� = 0.031
1006.080 5.110 33.000 31.620

Delayed S-shaped

model

�̂� = 488.400

�̂� = 0.066
344.200 16.328 2.174 18.180

Inflection S-shaped

model

�̂� = 482.020

�̂� = 0.070

�̂� = 4.146

301.220 1.670 2.490 17.230

Pham-

Zhang IFD model

�̂� = 482.000

�̂� = 0.081

�̂� = 0.007

450.147 36.376 4.328 22.400

Proposed model

�̂� = 600.000

�̂�1 = 0.348

�̂�1 = 0.883

�̂� = 0.018

�̂� = 64.650

�̂�2 = 0.092

�̂�2 = 0.017

�̂� = 0.00013

51.450 5.310 1.630 6.980

135

Figure 5. 9 Comparison of failure data prediction and actual data (DS1)

Numerical Example 2

As discussed in Section 5.6.1, 𝑡0 = 15 for the failure data from wireless network switching

center. Thus, Phase I is defined when 𝑡 ∈ [0, 15]; Phase II is defined when 𝑡 ∈ (15, 36].

The proposed model presents the smallest MSE, PRR, PP, and Variation value, as

explained in Table 5.11. The mean value function of the proposed model and the observed

data is plotted in Figure 5.10. As predicted by the proposed model, software tester

successfully removed 73 Type I software failures at the end of Phase I. At the end of Phase

II, software testers remove 175 software failures including 73 Type I software failures and

102 Type II software failures. However, 1345 software faults still exist in the program.

136

Table 5. 11 Parameter estimates and model comparison (DS2)

Model
Parameter

Estimates
MSE PRR PP Variation

Yamada imperfect

debugging model

�̂� = 250.040

�̂� = 0.021

�̂� = 0.022

57.320 0.550 1.050 9.370

PNZ model

�̂� = 300.670

�̂� = 0.024

�̂� = 0.013

�̂� = 0.423

35.550 0.550 1.140 5.940

G-O model
�̂� = 463.060

�̂� = 0.014
70.560 1.360 3.820 12.150

Delayed S-shaped

model

�̂� = 280.340

�̂� = 0.061
36.860 64.270 2.210 6.750

Inflection S-shaped

model

�̂� = 191.000

�̂� = 0.157

�̂� = 15.207

45.160 4.730 1.400 7.280

Pham-

Zhang IFD model

�̂� = 192.910

�̂� = 0.116

�̂� = 0.013

41.560 261.570 4.160 7.580

Proposed model

�̂� = 240.000

�̂�1 = 0.0001

�̂�1 = 0.0001

�̂� = 0.376

�̂� = 8.217

�̂�2 = 0.074

�̂�2 = 0.158

�̂� = 0.0001

31.360 0.420 0.820 5.090

137

Figure 5. 10 Comparison of failure data prediction and actual data (DS2)

Numerical Example 3

𝑡0 = 50 is determined in Section 5.6.1 for the failure data of the online bug tracking system.

Phase I is defined when 𝑡 ∈ [0, 50]; Phase II is defined when 𝑡 ∈ (50, 81]. As seen from

Table 5.12, the proposed model has the smallest MSE, PRR, PP, and Variation value. The

mean value function of the proposed model and the observed data is plotted in Figure 5.11.

Software tester successfully removed 56 Type I software failures at the end of Phase I and

54 Type II software failures at the end of Phase II. However, there are still 617 software

faults left in the program after testing phase.

138

Table 5. 12 Parameter estimates and model comparison (DS3)

Model
Parameter

Estimates
MSE PRR PP Variation

Yamada imperfect

debugging model

�̂� = 129.560

�̂� = 0.014

�̂� = 0.005

91.500 44.660 5.880 10.210

PNZ model

�̂� = 120.060

�̂� = 0.021

�̂� = 0.005

�̂� = 0.423

100.290 50.340 6.270 10.050

G-O model
�̂� = 170.080

�̂� = 0.012
97.890 34.720 5.380 10.630

Delayed S-shaped

model

�̂� = 280.340

�̂� = 0.063
185.320 6571.610 11.920 15.750

Inflection S-shaped

model

�̂� = 195.010

�̂� = 0.015

�̂� = 0.804

101.310 64.340 6.760 12.180

Pham-

Zhang IFD model

�̂� = 120.00

�̂� = 0.045

�̂� = 1 × 10−6

187.630 6948.020 12.050 15.730

Proposed model

�̂� = 41.780

�̂�1 = 0.013

�̂�1 = 0.015

�̂� = 0.355

�̂� = 0.909

�̂�2 = 0.050

�̂�2 = 0.101

�̂� = 1.5 × 10−5

21.790 3.330 1.360 4.650

139

Figure 5. 11 Comparison of failure data prediction and actual data (DS3)

Reliability Prediction

As an illustration for quantifying reliability assessment, we will present reliability

prediction for Dataset 1, discussed in Section 5.6.2, for the proposed two-phase software

reliability model. Other datasets just follow the same calculation by applying equation

(5.28). Since the parameters have been estimated in Table 4, software reliability within

(𝑡, 𝑡 + 𝑥) is determined by

𝑅(𝑥|𝑡) = 𝑒−[𝑚(𝑡+𝑥)−𝑚(𝑡)] (5.28)

Let 𝑡 = 111, and vary x from 0 to 8, then we provide the reliability prediction for the field

operation. The reliability prediction curve for time x given t is illustrated in Figure 5.12.

140

Figure 5. 12 Reliability prediction

5.7 Conclusions

This chapter provides a practical and pioneering idea for the researchers since different

types of software faults are defined mainly depend on their detection dependency. We first

propose a one-phase software reliability model considering the program only has Type II

fault in the official testing phase while Type I faults have been removed in the preliminary

testing phase. Imperfect fault removal process is also considered in this model.

Later, we clearly define Type I (independent and easy-detected) software fault and Type II

(dependent and difficult-detected) software fault according to the classification discussed

in literature. Correspondingly, two phases (Phase I & II) debugging processes are defined

based on the debugged software fault type. Moreover, a small portion of software fault

retained at the end of Phase I & II with the realistic consideration. Thus, a two-phase

software reliability model is proposed.

141

Limitations also exist in this study. First, we assume only Type II (dependent) software

faults will be detected in Phase II. We could be able to detect both Type I (independent)

fault and Type II (dependent) fault in Phase II in the real application, of which we have not

considered in this chapter and will be addressed in the future research. Secondly, empirical

data analysis is employed to find 𝑡0 since we do not know this value. In reality, we are

expecting software testers have an estimate of this value based on their experience.

142

CHAPTER 6

MULTI-RELEASE SOFTWARE RELIABILITY MODELING

INCORPORATING DEPENDENT SOFTWARE FAULT DETECTION PROCESS

6.1 Research Motivation

In the previous chapter, we have discussed software reliability models subject to software

fault dependency along with imperfect fault removal process in one/two phase software

debugging process for a single-release software product. In addition, we notice that it still

exists a portion of software faults have not been detected or have already been detected but

not removed at the end of testing phase due to the limited testing time and resources, the

nature of software and market requirement.

Thereby, it is the time for software company to decide either develop a new product or just

release new version of the current product to solve issues brought by the remaining faults

in the program, which could cause failures under certain configurations in the operation

phase.

As software development moves further away from the rigid and monolithic model, the

importance of software multiple release is brought to the vanguard [147]. Most of the

software organizations release the initial version with sufficient functionalities to meet the

customer requirements and occupy a certain portion of market share at first. However, it is

unlikely to deliver all features that customers wanted in the single release given the

143

consideration of limited budget, unavailable resource, estimated risk, and constrained

schedules.

Staying competitive in the market and keeping profitable for a software product unlikely

happen in this increasing-innovational society if only has a single release especially when

rival has a new release carrying more attractive features and satisfying more customer

requirements [147]. From this point of view, multiple-release planning not only makes

software organization easily balance the competing stakeholder’s demands and benefits

according to the available resource but lower the risk of not satisfying customer

requirements [40, 41].

On the other hand, large software system continually needs to align with the changing

customer requirements for the sake of market share. In order to get the feedback earlier and

figure out what customer really wants, and assigning a lower software development cost,

with a certain portion of increments on requirement for multiple release product is essential

for the growth of an organization [42 - 44, 167]. Thus, it is plausible for software company

to modify the parts of the existing modules to extend the current functionality, usability,

and understandability by adding new features and correcting the issues from previous

release [45, 46].

Since multi-release is critical for modern software product, release planning is becoming a

popular research topic in the past few years. Release planning is a very complex problem.

It has to take into account the consequence of feedback and update from customers, the

144

demands of potential customers, market feedback, defects from the previous release and

other technical and non-technical constraints [40, 45]. Many researchers have studied

software release planning problems [39 - 43, 168, 169].

It is generally considered reliability as a key factor in software quality measurement owing

to the fact that it qualifies software failures and misbehaviors. Nonhomogeneous Poisson

process (NHPP) is considered as one of the most effective models to study software

reliability, as discussed in Chapter 2. Nevertheless, most of them only can be applied on a

single release. How to model software reliability based on a multiple release perspective

just starts gaining researcher’s attention not very long.

In this chapter, we take into account two types of software faults for developing the next

release: (1) faults from previous releases: remaining faults from previous release since it is

unlikely to detect and remove all faults within limited resources; (2) newly introduced

faults: new features are added in the next release, which also brings new software faults

into the next release. We also assume that the detection of software fault for the next

release’s development depends on the detection of the remaining faults from previous

release and the newly introduced faults. To the extent of our knowledge, we have not seen

any research focus on the remaining faults from previous release, newly introduced faults,

and dependent fault detection process in multi-release software reliability modeling.

145

6.2 Multi-Release Software Reliability Model Framework

Multi-Release Software Reliability Model

The notations of this section are given as follows.

𝑎(𝑡) Total fault content function from previous release

𝑏(𝑡) Total fault content function for the newly added features

𝑑(𝑡) Fault detection rate function for the next release

𝑚(𝑡) Expected number of software failures by time 𝑡

𝑁(𝑡) Total number of software failures in the time interval [0, 𝑡]

𝜆(𝑡) Failure intensity function 𝜆(𝑡) = 𝑑[𝑚(𝑡)]/𝑑𝑡

𝑚0 Expected number of software failures at 𝑡 = 0

𝐶0 Coefficient association with the general function

a Total fault content from previous release

b Total fault content from newly added features

d Fault detection rate for the development of the next release

It is unlikely to get bug-free software product within limited resources and tightened

schedules. Software detection process still follows a NHPP process for developing the next

release. The cumulative number of detected faults 𝑁(𝑡) follows Poisson Process, presented

as follows

Pr{𝑁(𝑡) = 𝑛} =
(𝑚(𝑡))

𝑛
exp(−𝑚(𝑡))

𝑛!
, for 𝑛 = 0,1,2,…

146

where 𝑚(𝑡) is the mean value function of the counting process 𝑁(𝑡).

Two types of software faults will be addressed in this chapter. Remaining faults from

previous release (Part I) and the newly introduced faults (Part II) will be both incorporated

with the aim of developing the next release. Fault detection is a dependent process. We

assume the detection of a software fault in the development of the next release depends on

the fault detected from Part I and Part II.

Thus, the multi-release software reliability modeling is formulated as follows

𝑑𝑚(𝑡)

𝑑𝑡
= 𝑑(𝑡)[𝑎(𝑡) − 𝑚(𝑡)][𝑏(𝑡) − 𝑚(𝑡)]𝑚(𝑡) (6.1)

where 𝑚(𝑡) represents the expected number of software failures by time 𝑡. 𝑑(𝑡) denotes

the fault detection rate function. 𝑎(𝑡)and 𝑏(𝑡) represent the total remaining faults from

previous release, and the total fault content of the newly added features, respectively. In

this model, we assume

𝑎(𝑡) = 𝑎, 𝑏(𝑡) = 𝑏, 𝑑(𝑡) = 𝑑 (6.2)

where a is the total fault content from previous release, b is the total fault content from the

newly added features and d is the fault detection rate for the development of the next release.

147

Substituting equation (6.2) into equation (6.1), we obtain a general solution for the mean

value function 𝑚(𝑡), given as follows

𝑒𝑑𝑡+𝐶0 = 𝑚(𝑡)
1
𝑎𝑏[𝑚(𝑡) − 𝑎]

1
𝑎(𝑎−𝑏)[𝑚(𝑡) − 𝑏]

−
1

𝑏(𝑎−𝑏) (6.3)

where 𝐶0 is a constant. In this study, we consider the initial solution of the function 𝑚(𝑡)

is given as follows

𝑚(𝑡 = 0) = 𝑚0 (6.4)

where 𝑚0 is unknown and 𝑚0 ≥ 0. At time 𝑡 = 0, the expected number of initial software

failures is 𝑚0. Since multiple software releases are considered in this study, the expected

number of software failures at the beginning of next release should be less than or equal to

the expected number of failures at the end of previous release. We are also supported by

references [40, 45, 46, 48 - 50] by stating that it is unlikely to remove all the software faults

for each release due to the limitation of all available resource, including software

programmer’s domain knowledge and other environmental factors.

Substituting equation (6.4) into equation (6.3), we obtain

𝑒𝐶0 = 𝑚0

1
𝑎𝑏(𝑚0 − 𝑎)

1
𝑎(𝑎−𝑏)(𝑚0 − 𝑏)

−
1

𝑏(𝑎−𝑏) (6.5)

148

Thus, the solution for the function 𝑚(𝑡), as seen in equation (6.1), is obtained by solving

the following equation

 𝑒𝑑𝑡 = [
𝑚(𝑡)

𝑚0
]

1
𝑎𝑏

 [
𝑚(𝑡) − 𝑎

𝑚0 − 𝑎
]

1
𝑎(𝑎−𝑏)

[
𝑚(𝑡) − 𝑏

𝑚0 − 𝑏
]

−
1

𝑏(𝑎−𝑏)

 (6.6)

Multi-Release Software Reliability Function Discussion

Let

𝑔(𝑡) = 𝑒𝑑𝑡+𝐶0 (6.7)

and

𝑓(𝑥) = 𝑥
1
𝑎𝑏 (𝑥 − 𝑎)

1
𝑎(𝑎−𝑏) (𝑥 − 𝑏)

−
1

𝑏(𝑎−𝑏) (6.8)

We now present the following results.

Lemma 1: The solution 𝑚(𝑡) of the equation (6.3) will be obtained by solving the

following function

𝑔(𝑡) = 𝑓[𝑚(𝑡)] (6.9)

149

and

• If 𝑔(0) > max{𝑓[𝑚(𝑡)]}, then there exists no solution, as illustrated in Figure 6.1.

• Otherwise, there exists at least one solution for the function m(t), as illustrated in

Figure 6.2.

where the function 𝑔(𝑡) and 𝑓(𝑥) are given in equations (6.7) and (6.8), respectively.

We need to prove: (1) Function 𝑔(𝑡), as stated in equation (6.7), is convex. (2) Function

𝑓(𝑥), as stated in equation (6.8), is concave.

Proof of Lemma 1:

(1) Since d is non-negative and 𝑔”(𝑡) = 𝑑2𝑒𝑑𝑡+𝐶0 > 0, thus function 𝑔(𝑡) is convex.

(2) Since 𝑓(𝑥) = 𝑥
1

𝑎𝑏 (𝑥 − 𝑎)
1

𝑎(𝑎−𝑏) (𝑥 − 𝑏)
−

1

𝑏(𝑎−𝑏),

Then

𝑓′(𝑥) =
1

𝑎𝑏
𝑥
1
𝑎𝑏−1 (𝑥 − 𝑎)

1
𝑎(𝑎−𝑏) (𝑥 − 𝑏)

−
1

𝑏(𝑎−𝑏)

+
1

𝑎(𝑎 − 𝑏)
𝑥
1
𝑎𝑏 (𝑥 − 𝑎)

1
𝑎(𝑎−𝑏)

−1
 (𝑥 − 𝑏)

−
1

𝑏(𝑎−𝑏)

−
1

𝑏(𝑎 − 𝑏)
𝑥
1
𝑎𝑏 (𝑥 − 𝑎)

1
𝑎(𝑎−𝑏) (𝑥 − 𝑏)

−
1

𝑏(𝑎−𝑏)
−1

Then

150

𝑓′(𝑥) = 𝑥
1
𝑎𝑏 (𝑥 − 𝑎)

1
𝑎(𝑎−𝑏) (𝑥 − 𝑏)

−
1

𝑏(𝑎−𝑏) [
1

𝑎𝑏𝑥
+

1

𝑎(𝑎 − 𝑏)(𝑥 − 𝑎)

−
1

𝑏(𝑎 − 𝑏)(𝑥 − 𝑏)
]

 = 𝑥
1
𝑎𝑏 (𝑥 − 𝑎)

1
𝑎(𝑎−𝑏) (𝑥 − 𝑏)

−
1

𝑏(𝑎−𝑏)
(𝑎𝑏 + 𝑎 + 𝑏) − (𝑎 + 𝑏)𝑥

𝑎𝑏𝑥(𝑥 − 𝑎)(𝑥 − 𝑏)

 = 𝑓(𝑥)
(𝑎𝑏 + 𝑎 + 𝑏) − (𝑎 + 𝑏)𝑥

𝑎𝑏𝑥(𝑥 − 𝑎)(𝑥 − 𝑏)

 = [𝑓(𝑥)]−1
(𝑎𝑏 + 𝑎 + 𝑏) − (𝑎 + 𝑏)𝑥

𝑎𝑏

Thus

𝑓"(𝑥) = −[𝑓(𝑥)]−2𝑓′(𝑥)
(𝑎𝑏 + 𝑎 + 𝑏) − (𝑎 + 𝑏)𝑥

𝑎𝑏
− [𝑓(𝑥)]−1

𝑎 + 𝑏

𝑎𝑏

 = −
𝑓′(𝑥) {[𝑓(𝑥)]−1

(𝑎𝑏 + 𝑎 + 𝑏) − (𝑎 + 𝑏)𝑥
𝑎𝑏

}

𝑓(𝑥)
− [𝑓(𝑥)]−1

𝑎 + 𝑏

𝑎𝑏

 = −
[𝑓′(𝑥)]2

𝑓(𝑥)
−

𝑎 + 𝑏
𝑎𝑏
𝑓(𝑥)

< 0

Note that 𝑓(𝑥) = 𝑔(𝑡) > 0 in equation (6.3), 𝑎 > 0 and 𝑏 > 0, hence, function 𝑓(𝑥) in

equation (6.8) is concave.

Since the function 𝑔(𝑡) is convex, and 𝑓(𝑥) is concave, the results in Lemma 1 follow

accordingly.

151

Q.E.D

Figure 6. 1 Illustration of solution – Part I

Figure 6. 2 Illustration of solution – Part II

6.3 Parameter Estimation and Comparison Criteria

Parameter Estimation

g(t)

f(m(t))

g(t)

f(m(t))

152

Most software reliability models use the least square estimate (LSE) or maximum

likelihood estimation to estimate the parameters carried in the model. For example,

minimizing the equation (6.10) or maximizing the equation (6.11).

𝑓(𝑡) =∑(𝑚(𝑡𝑖) − 𝑦𝑖)
2

𝑛

𝑖=1

 (6.10)

 𝐿𝐿𝐹 = ∑(𝑦𝑖 − 𝑦𝑖−1)log [𝑚(𝑡𝑖) − 𝑚(𝑡𝑖−1)]

𝑛

𝑖=1

−𝑚(𝑡𝑛) −∑log(𝑦𝑖 − 𝑦𝑖−1)!

𝑛

𝑖=1

 (6.11)

We apply LSE to minimize the equation (6.12) to estimate the parameters. Since 𝑔(𝑡) =

𝑓(𝑚(𝑡)), indeed, 𝑙𝑜𝑔 [𝑔(𝑡)] = 𝑙𝑜𝑔 [𝑓(𝑚(𝑡))]. The optimization function is given by

 min 𝑆(𝑎, 𝑏, 𝑑) = ∑{log[𝑓(𝑦𝑖)] − log[𝑔(𝑡𝑖)]}
2 (6.12)

𝑎,𝑏,𝑑

where 𝑦𝑖 is the observed number of failures at time 𝑡𝑖. 𝑔(𝑡𝑖) = 𝑒
𝑑𝑡𝑖+𝐶0.

The Lemma 1 presented in last section is to demonstrate that there could exist the solutions

and explain the behaviors of the proposed model. The Genetic Algorithm (GA) is employed

to solve the optimization function as given in equation (6.12). The schematic diagram of

the algorithm [170] is described in Figure 6.3. We use Matlab Optimization Toolbox to

solve the optimization function and estimate parameters.

153

Comparison Criteria

The detailed discussion of comparison criteria is described in Chapter 5.

6.4 Numerical Examples

Two numerical applications are given to validate the multi-release software reliability

model. We employ two datasets both collected from Open Source Software (OSS) project.

OSS is a new way to build a global-based large software system, which differs in many

perspectives with the traditional software engineering [171]. The evolution process of OSS

Generate initial population

Time to stop?

Evaluate individual fitness

Generate new population

Selection

Crossover

Mutation

STOP
Y

N

Figure 6. 3 Schematic diagram of Generic Algorithm

154

is much faster than the traditional close source software. Widespread OSS projects bring

in a great change in terms of software development paradigms and software architectures

[171 - 173].

Numerical Example 1

The Juddi OSS project data, adopted as numerical example 1, is shown in Table 6.1. Failure

dataset from week 1 to week 31 are considered as Release 1; failure dataset from week 32

to week 49 are considered as Release 2; failure dataset from week 50 to week 61 are

considered as Release 3. In this chapter, we use Release 2 to validate our proposed model.

First, Table 6.2 summarizes all the models we will compare for those two numerical

examples. We notice that the proposed model has the best performance in terms of all

criteria present in Table 6.3. Figure 6.4 illustrates the comparison between model

prediction and observed failure data. The x-axis represents week index. All models

presented in Table 6.3 only consider single-release software product except the proposed

model. In other words, they didn’t consider the remaining faults from the previous release

since most of models assume all software faults will be removed before software company

release the product.

155

Table 6. 1 Failure data of numerical example 1

Week
Cumulative

Failures
Week

Cumulative

Failures
Week

Cumulative

Failures
Week

Cumulative

Failures

1 10 17 131 33 210 49 221

2 12 18 136 34 210 50 234

3 20 19 137 35 211 51 249

4 31 20 137 36 213 52 267

5 33 21 139 37 213 53 273

6 41 22 144 38 214 54 279

7 47 23 155 39 217 55 290

8 54 24 160 40 217 56 297

9 64 25 160 41 217 57 314

10 74 26 169 42 218 58 336

11 77 27 170 43 218 59 345

12 99 28 180 44 218 60 387

13 110 29 193 45 218 61 393

14 118 30 194 46 221 - -

15 120 31 195 47 221 - -

16 127 32 210 48 221 - -

Table 6. 2 Software reliability models

Model Mean value function

G-O model 𝑚(𝑡) = 𝑎(1 − 𝑒−𝑏𝑡)

Inflection S-shaped model 𝑚(𝑡) =
𝑎(1 − 𝑒−𝑏𝑡)

1 + 𝛽𝑒−𝑏𝑡

Delayed S-shaped model 𝑚(𝑡) = 𝑎(1 − (1 + 𝑏𝑡)𝑒−𝑏𝑡)

Yamada imperfect debugging model 𝑚(𝑡) = 𝑎[1 − 𝑒−𝑏𝑡] [1 −
𝛼

𝑏
] + 𝛼𝑎𝑡

PNZ model 𝑚(𝑡) =
𝑎[(1 − 𝑒−𝑏𝑡) (1 −

𝛼
𝑏
) + 𝛼𝑡]

1 + 𝛽𝑒−𝑏𝑡

Pham-Zhang IFD 𝑚(𝑡) = 𝑎 − 𝑎𝑒−𝑏𝑡[1 + (𝑏 + 𝑑)𝑡 + 𝑏𝑑𝑡2]

Dependent-parameter model 𝑚(𝑡) = 𝛼(1 + 𝛾𝑡)(𝛾𝑡 + 𝑒−𝛾𝑡 − 1)

Proposed Model 𝑒𝑑𝑡 = [
𝑚(𝑡)

𝑚0

]

1
𝑎𝑏

 [
𝑚(𝑡) − 𝑎

𝑚0 − 𝑎
]

1
𝑎(𝑎−𝑏)

[
𝑚(𝑡) − 𝑏

𝑚0 − 𝑏
]

−
1

𝑏(𝑎−𝑏)

156

Table 6. 3 Parameter estimates and model comparison of numerical example 1

Model
Parameter

Estimates
MSE PRR PP Variation

G-O model
�̂� = 227.000

�̂� = 2.420
131.840 0.041 0.046 4.799

Inflection S-shaped

model

�̂� = 230.000

�̂� = 9.070

�̂� = 830.670

226.793 0.064 0.074 4.935

Delayed S-shaped

model

�̂� = 225.010

�̂� = 4.330
93.698 0.030 0.033 4.304

Yamada imperfect

debugging model

�̂� = 231.000

�̂� = 2.180

�̂� = 3.64 × 10−5

254.213 0.072 0.083 5.747

PNZ model

�̂� = 229.000

�̂� = 6.380

�̂� = 1 × 10−6

�̂� = 52.690

211.036 0.056 0.064 4.787

Pham-Zhang IFD

model

�̂� = 234.000

�̂� = 9.200

�̂� = 98.950

368.638 0.101 0.120 5.601

Dependent-parameter

model

�̂� = 364.850

�̂� = 0.063
23163.480 85316.330 8.153 108.378

Proposed Model

�̂� = 254.840

�̂� = 221.000

�̂�0 = 100.000

�̂� = 2.36 × 10−4

34.467 0.011 0.011 3.322

157

Figure 6. 4 Comparison of proposed model and other models of numerical example 1

Numerical Example 2

Apache 2.0 [174] is available on the website since 2002. The first two releases are

employed to verify the proposed model, as shown in Table 6.4. The failure data from day

1 to day 18 is taken into account as Release 1; failure data from day 19 to day 164 is

considered as Release 2.

The proposed model provides the smallest MSE, PP, and Variation, as seen in Table 6.5.

The PRR value even though is not the smaller one, however, 0.155 is just slightly higher

than 0.117. It is thus considering the proposed model presents the best performance to

model this dataset. Figure 6.5 also plots the comparison between the predicted values and

the observed values to provide an intuitive sense of model fitting. The x-axis represents

week index in the figure.

158

Table 6. 4 Failure data of numerical example 2

Day
Cumulative

Failures
Day

Cumulative

Failures
Day

Cumulative

Failures
Day

Cumulative

Failures

1 1 15 20 28 36 49 51

2 3 16 22 29 37 50 52

3 5 17 25 30 39 51 53

4 8 18 26 31 40 57 54

5 11 19 27 32 41 66 55

7 13 22 30 35 44 70 56

8 14 23 31 38 45 81 57

9 15 24 32 39 46 164 58

10 16 25 34 42 47 - -

11 17 26 35 43 48 - -

Figure 6. 5 Comparison of proposed model and other models of numerical example 2

159

Table 6. 5 Parameter estimates and model comparison of numerical example 2

Model
Parameter

Estimates
MSE PRR PP Variation

G-O model
�̂� = 82.990

�̂� = 0.022
38.317 0.169 0.268 8.449

Inflection S-shaped

model

�̂� = 75.017

�̂� = 0.019

�̂� = 0.274

104.096 2.299 1.304 17.380

Delayed S-shaped

model

�̂� = 69.000

�̂� = 0.060
21.784 0.230 0.223 4.930

Yamada imperfect

debugging model

�̂� = 79.690

�̂� = 0.021

�̂� = 1 × 10−4

26.670 0.117 0.178 5.241

PNZ model

�̂� = 65.000

�̂� = 0.121

�̂� = 1 × 10−4

�̂� = 26.178

64.302 1.129 0.754 8.484

Pham-Zhang IFD

model

�̂� = 71.200

�̂� = 0.058

�̂� = 9.15 × 10−5

30.828 0.309 0.300 5.656

Dependent-parameter

model

�̂� = 101.110

�̂� = 0.007 1587.346 3843.289 18.719 71.169

Proposed Model

�̂� = 90.038

�̂� = 61.001

�̂�0 = 20.000

�̂� = 1.165 × 10−5

13.197 0.155 0.171 3.630

In summary, the proposed model has considered a dependent fault detection process.

Specifically, the newly detected faults depend on the detection of the remaining faults from

previous release and the newly introduced faults. In order to detect a new fault, we need to

detect the corresponded faults from the remaining faults from previous release and the

newly introduced faults first. Therefore, there is only a small portion of software faults

detected for developing the next release.

160

6.5 Conclusions

It is unlikely to deliver all the features in a single release for modern software products.

The proposed software reliability model provides a new paradigm to integrate the

dependent fault detection process and different types of software faults in multiple software

releases. Due to the resource limitation, there also exists a portion of undetected software

faults for the current release. Thus, how to incorporate the remaining faults from previous

release into the development for the next release is an important issue for software

practitioners.

As an effort to reflect the development of multi-release software, the remaining faults from

previous release, the newly introduced faults, and the dependent fault detection process are

discussed in this chapter. In order to accurately illustrate the performance of the proposed

model, we employ two datasets both collected from OSS project to validate the usage of

the model. The behavior of software reliability function is studied as well. We are currently

investigating the new features adding in the next release and the remaining faults from

previous release as fixed numbers in this study, which can be extended as a random number

or as a time-dependent function corresponding to its optimal profit and release time for the

organization. The impact of environmental factors [29, 30] during the software

development process can be considered into the future research as well.

161

CHAPTER 7

MARTINGALE-BASED SOFTWARE RELIABILITY MODEL

INCORPORATING SINGLE/MULTIPLE ENVIRONMENTAL FACTOR(S)

7.1 Research Motivation

The increasing power and versatility of software systems has led to their widespread

applications in our modern society [176]. Since software system has become one of the

essential elements in different aspects of our daily life and an important factor in numerous

critical industrial application and software system is expected to be even more ubiquitous

in the coming years, there are a great demand for high-quality software products [177, 178].

However, delivering high quality software products for real-world applications is not easy

[179].

Despite of being widely studied and of interested to the global market, software quality is

still a complex and costly task for the researchers and practitioners. Meanwhile, we are

facing an increasing-complexity software development environment due to the three trends

discussed in Chapter 1. The first trend is the wide-spread adoption of software product

lines. The adoption of software product lines will reduce the release time to the market,

decrease the development cost, optimize resource assignment, and achieve the

commonality in user experience between different products. However, the adoption of

software product lines also brings a new level of dependency into the product and

organization, which causes the added complexity for software development.

162

The second trend is the globalization of software development within many organizations.

Many software companies have either placed several software development sites globally

or have partnered with remoted companies, located mostly in India and China. However,

it could increase the complexity of the product and organization as well.

The third trend is the adoption of software ecosystems. In recent years, software

development has transitioned from a predominantly solo activity of developing standalone

programs within a single organization, to a highly distributed and collaborative

environment that depends on or contributed to large and complex software ecosystems

which could be placed world-wide [180]. Software developers are able to contribute to

multiple projects, accordingly, the project boundaries blur, not just program architecture

and paradigm, and even how they are authored. Software developers not only focus on how

to write the code, but also the contribution they make, the connection that they build within

development-related communities by establishing a participatory culture [181 - 183]. Since

the development of new functionality can be occurred outside of the platform, App-store

styled approaches are introduced by many companies to provide this feature to the market

[184 – 186]. However, software ecosystems build dependencies between components and

their associated organizations which did not exist earlier.

Hence, in recent years, most software developments have shifted their attention from

building the system toward composing system from the existing open source, commercial,

163

and internal developed components. Under such transitions, the goal of software

development will be more concentrated on the creation and functionality.

Given large-scale software development is an increasing-complexity, effort-consuming,

and expensive activity, how we can assure software quality in one of the challenge problem

in industry. One of the fundamental quality characteristics is the reliability. Many

nonhomogeneous Poisson process (NHPP) software reliability growth models have been

developed regarding various testing/operation scenarios for the sake of remaining faults

estimation, failure rate prediction, and software reliability prediction given a specific time

of interest since 1970s. However, most of existing NHPP software reliability models or

software fault prediction frameworks based on neural networks, vector machines, or other

machine learning techniques did not incorporate the impact of environmental factors in

software reliability/fault prediction.

As discussed above, given the current trends of software development process, adoption of

software product lines, software development globalization, and the establishment of

software ecosystems, the complication and human-centered software development process

needs to be addressed more appropriately in software reliability model in order to

accurately predict failures. Thus, how to incorporate the environmental factors which

present such significant impacts on reliability into software reliability models is critical to

address modern software development in practice.

164

Thus, in the early stage of this dissertation, presented in Chapter 4, we studied the impact

the environmental factors affecting software reliability in single-release and multi-release

software development. In this chapter, we will incorporate single and multiple

environmental factor(s) in software reliability models to improve the model prediction

power and applicability.

First, we consider one of the top 10 critical environmental factors as concluded in Chapter

4 [29, 30], Percentage of Reused Modules (PoRM), to be a random variable which has

random effect on software fault detection rate. The data collected from several industries

is applied to obtain the distribution of PoRM. We then introduce the Martingale framework,

specifically, Brownian motion and white noise process in the stochastic fault detection

process to reflect the randomness resulting from influence of environmental factor. Thus,

a single-environmental-factor software reliability model incorporating these considerations

is proposed in Section 7.2.

Secondly, we consider multiple environmental factors which have significant impacts on

software reliability during software development process into software reliability models.

Martingale framework, in particular, Brownian motion, and white noise process is

introduced to reflect the stochastic fault detection process and the randomness caused by

these environmental factors. To the best of our knowledge, we have not seen any research

incorporates multiple environmental factors and their random impact on fault detection

process in software reliability models. The proposed generalized multiple-environmental-

factors software reliability model incorporating these considerations will be presented in

165

Section 7.3. We further present two specific software reliability models incorporating two

important factors from previous study, PoRM, and Frequency of Program Specification

Change (FoPSC) in Section 7.3.

Numerical examples for the single-environmental-factor and multiple-environmental-

factors software reliability model are illustrated in Sections 7.4 and 7.5, respectively.

Moreover, we are interested in the predictive accuracy comparison of the proposed models

with and without considering environmental factor(s), therefore, failure prediction

comparison is discussed in Section 7.6. We conclude this chapter in Section 7.7.

7.2 Single-Environmental-Factor Software Reliability Model

In this section, we consider environmental factor, PoRM, to be a random variable, performs

random effect on software fault detection rate. The distribution of PoRM will be

determined in Section 7.2.1, given the data collected in a wide variety of industries. The

introduction of Martingale process and the framework of other software reliability models

considering random environments are discussed in Section 7.2.2. Finally, we propose a

single-environmental-factor software reliability model in Section 7.2.3.

The notations that are used in this section is explained as follows.

𝑚(𝑡, 𝜂) Expected number of software failure detected by time 𝑡 considering

environmental factor and its impact

𝑁(𝑡) Total fault content function in the software by time 𝑡

166

ℎ(𝑡, 𝜂) Time-dependent fault detection rate per unit of time considering

random effect

ℎ(𝑡) Time-dependent fault detection rate per unit of time

𝐺(𝑡, 𝜂) Impact of PoRM on failure detection rate per unit of time

𝑀(𝑡, 𝑤) Martingale with respect to the filtration (Ƒ𝑡 , 𝑡 ≥ 0)

�̇�(𝑡, 𝑤) Derivative of 𝑀(𝑡, 𝑤) with respect to time 𝑡

𝑓(𝜂) Probability density function of PoRM

𝑣(𝑡) Measures the impact of time on PoRM

𝐹∗(𝑠) Laplace transform of 𝑓(𝜂)

𝐵(𝑡) Brownian motion

�̇�(𝑡) Standard white noise

𝛿 Dirac Delta measure

𝜃, 𝛾 Parameters of gamma distribution

𝜂 Random variable, which represents PoRM

𝜆0 Coefficient along with 𝐺(𝑡, 𝜂)

𝑏, 𝑐, 𝑎, 𝑘 Coefficient in function ℎ(𝑡), 𝑣(𝑡), and 𝑁(𝑡)

𝑦𝑖 Observed number of software failures at time 𝑡𝑖

Environmental Factor (PoRM) Distribution

Although some existing software reliability models have considered the environmental

factors in the modeling, most of them assume the distribution of environmental factor based

on their knowledge and model consideration. For example, Teng and Pham [103] described

167

the random environmental factor is 1 in in-house testing phase and a random variable in

operation phase. They assumed that this random variable follows gamma distribution or

beta distribution in their proposed reliability models. But, there is no real data to support

this assumption.

In this study, the definition of PoRM, adopted from references [27 - 30], is presented as

follows

𝑃𝑜𝑅𝑀 =
𝑆0

𝑆𝑁 + 𝑆0
 (7.1)

where 𝑆0 represents kiloline of code for the existing modules and 𝑆𝑁 represents kiloline of

code for the new modules.

In this section, we employ the real-world data collected from several industries to illustrate

the distribution of PoRM. Participants were asked to provide PoRM in their industries

based on the relevant working experience. All the participants are currently working in IT

Department in various industry including computer software, banking, semiconductor,

online retailing, IT service & research institution or working on software development in

high-tech company in favor of the validity and reliability of the survey response. The

collected PoRM are illustrated in Figure 7.1.

168

Figure 7. 1 Data collection of PoRM

Eight different distributions commonly applied to model environmental factors are adopted

in the model comparison to estimate the distribution of PoRM. The maximum likelihood

estimation (MLE) is applied to compare the effectiveness of each model. The log-

likelihood values for all models are revealed in Table 7.1.

Table 7. 1 Log-likelihood value comparison

Normal

Dist.

Weibull

Dist.

Beta

Dist.

Exponential

Dist.

Gamma

Dist.

Inverse

Gaussian Dist.

Log-logistic

 Dist.

Lognormal

Dist.

7.041 7.639 7.830 -3.782 8.174 8.002 7.739 8.015

Gamma distribution will be employed to model the distribution of PoRM. The parameters

of gamma distribution are also obtained from model comparison: 𝜃 = 14.726, 𝛾 = 6.487.

169

𝑓(𝜂) =
𝜃𝛾𝜂𝛾−1𝑒−𝜃𝜂

г(𝛾)
 (7.2)

where 𝜂 is a random variable and represents PoRM. 𝜃 and 𝛾 are the parameters along with

gamma distribution, respectively.

Related Works

We first provide the definition of software fault and software failure in order to clearly

address the software reliability models discussed below. Software fault is caused by an

incorrect step, process, or data definition in a computer program [187]. Failure is defined

as a system or component is not able to perform its required functions within specified

performance requirements. Software failure is the manifestation of software fault [187].

Many NHPP software reliability models have been proposed for the past four decades to

address different assumptions. The failure processes are described by NHPP property with

the mean value function at time 𝑡, 𝑚(𝑡), and the failure intensity of the software, 𝜆(𝑡),

which is also the derivative of the mean value function. Most existing NHPP software

reliability models are developed based on the model given as follows

𝑑

𝑑𝑡
𝑚(𝑡) = ℎ(𝑡)[𝑁(𝑡) − 𝑚(𝑡)] (7.3)

where 𝑚(𝑡) is the expected number of software failures detected by time 𝑡, 𝑁(𝑡) is the

total number of fault content by time 𝑡, and ℎ(𝑡) is the time-dependent fault detection rate

170

per unit of time. The underlying assumption of equation (7.3) is the failure intensity is

proportional to the residual fault content in the software. Many NHPP software reliability

models are developed based on the different formulation of ℎ(𝑡) and 𝑁(𝑡) in equation (7.3).

Some examples are given in Table 7.2.

Table 7. 2 Some existing NHPP software reliability models

NHPP model Functions Mean value function

Geol-Okumoto
ℎ(𝑡) = 𝑏

𝑁(𝑡) = 𝑎
𝑚(𝑡) = 𝑎(1 − 𝑒−𝑏𝑡)

Delayed S-shaped

ℎ(𝑡) =
𝑏𝑡2

1 + 𝑏𝑡

𝑁(𝑡) = 𝑎

𝑚(𝑡) = 𝑎(1 − (1 + 𝑏𝑡)𝑒−𝑏𝑡)

Inflection S-shaped

ℎ(𝑡) =
𝑏

1 + 𝛽𝑒−𝑏𝑡

𝑁(𝑡) = 𝑎

𝑚(𝑡) =
𝑎(1 − 𝑒−𝑏𝑡)

1 + 𝛽𝑒−𝑏𝑡

Yamada imperfect

debugging

ℎ(𝑡) = 𝑏

𝑁(𝑡) = 𝑎(1 + 𝛼𝑡)
𝑚(𝑡) = 𝑎[1 − 𝑒−𝑏𝑡] [1 −

𝛼

𝑏
] + 𝛼𝑎𝑡

PNZ

ℎ(𝑡) =
𝑏

1 + 𝛽𝑒−𝑏𝑡

𝑁(𝑡) = 𝑎(1 + 𝛼𝑡)
𝑚(𝑡) =

𝑎[(1 − 𝑒−𝑏𝑡) (1 −
𝛼
𝑏
) + 𝛼𝑡]

1 + 𝛽𝑒−𝑏𝑡

Pham-Zhang IFD

ℎ(𝑡) =
𝑏2𝑡

1 + 𝑏𝑡
+

𝑑

1 + 𝑑𝑡

𝑁(𝑡) = 𝑎

𝑚(𝑡) = 𝑎 − 𝑎𝑒−𝑏𝑡(1 + (𝑏 + 𝑑)𝑡 + 𝑏𝑑𝑡2)

The software reliability models presented in Table 7.2, along with other deterministic

models, have not taken into account the effect of randomness from the

development/operation environment. To capture the effect of random environments, a

stochastic process is incorporated in the fault detection process by imposing ℎ(𝑡) to be

ℎ(𝑡, 𝜂), where 𝜂 is the random effect. The equation (7.3) will be described as

171

𝑑

𝑑𝑡
𝑚(𝑡, 𝜂) = ℎ(𝑡, 𝜂)[𝑁(𝑡) − 𝑚(𝑡, 𝜂)] (7.4)

For example, in Pham [136], the author considered

ℎ(𝑡, 𝜂) = ℎ(𝑡) 𝜂, 𝑁(𝑡) = 𝑁 (7.5)

where 𝜂 is a random variable and follows gamma distribution with parameter α and β. By

substituting equation (7.5) to equation (7.4), the explicit solution of the mean value

function is expressed as [136]

𝑚(𝑡) = 𝑁 [1 − (
𝛽

𝛽 + ∫ ℎ(𝑠)𝑑𝑠
𝑡

0

)

𝛼

] (7.6)

The above formulation, ℎ(𝑡, 𝜂) = ℎ(𝑡) 𝜂, proposed in Pham [136], is referred as dynamic

multiplicative noise model in recent publication from Pham and Pham [188]. They [188]

also proposed a dynamic additive noise model shown as follows

ℎ(𝑡, 𝑤) = ℎ(𝑡) + �̇�(𝑡, 𝑤) (7.7)

where �̇�(𝑡, 𝑤) denotes the derivative of 𝑀 with respect to time 𝑡. 𝑀(𝑡) is defined as a

martingale with respect to the filtration (Ƒ𝑡 , 𝑡 ≥ 0) in this function. One worth-noting

martingale property [189, 190] applied in equation (7.7) is

172

𝐸 (∫ ℎ(𝑠, 𝑤)𝑑𝑠
𝑡

𝑣

) = ∫ ℎ(𝑠)𝑑𝑠
𝑡

𝑣

 (7.8)

Brownian motion [189] is also a martingale. Let {𝐵(𝑡): 𝑡 ≥ 0} be Brownian motion,

Mikosch [189] mentioned that {𝐵(𝑡): 𝑡 ≥ 0} and {𝐵2(𝑡) − 𝑡: 𝑡 ≥ 0} are martingale with

respect to the nature filtration (Ƒ𝑡 , 𝑡 ≥ 0). For the model consideration in this chapter, we

also choose 𝑀(𝑡) to be Brownian motion since Brownian motion is deeply researched by

many literatures.

A stochastic process {𝐵(𝑡): 𝑡 ≥ 0} is called Brownian motion [190] with start in 𝑥 ∈ ℝ if

(1) 𝐵(0) = 𝑥.

(2) The process has independent increments. For example, the increments 𝐵(𝑡𝑛) −

𝐵(𝑡𝑛−1), 𝐵(𝑡𝑛−1) − 𝐵(𝑡𝑛−2), … , 𝐵(𝑡2) − 𝐵(𝑡1) are independent for all time 0 ≤

𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑛.

(3) The increments 𝐵(𝑡 + 𝑠) − 𝐵(𝑡) are normally distributed, for all 𝑡 ≥ 0, 𝑠 ≥ 0.

If 𝐵(0) = 0, i.e. the motion starts from the origins, this is called standard Brownian motion.

Proposed Single-Environmental-Factor Software Reliability Model

The proposed NHPP software reliability model in this study incorporates both the dynamic

multiplicative and additive noise characteristics discussed in Section 7.2.2. Meanwhile, one

of the top 10 environmental factors from the recent comparison survey studies in Chapter

4, modeled as a gamma distribution with parameter θ and r estimated from real-collected

173

data from various industries, is incorporated in the model development. In sum,

environmental factor, PoRM, described as gamma distribution from real data, and the

randomness caused by PoRM, illustrated by the martingale, specifically, Brownian motion,

are taken into account for the proposed software reliability model.

The assumptions for the proposed model are given as follows.

(1) The fault removal process follows a NHPP.

(2) The failure of software system subjects to the manifestation of the remaining faults

in the software program.

(3) All faults in the software are independent.

(4) The failure intensity is proportional to the remaining faults in the software.

(5) The environmental factor, PoRM, is described as gamma distribution based on the

real data collected from various industry. The impact of PoRM is explained by an

additive portion along with the traditional fault detected process.

(6) The randomness caused by the environmental factor is explained as a martingale,

particularly, Brownian motion in this study.

The proposed NHPP software reliability model is formulated as

𝑑

𝑑𝑡
𝑚(𝑡, 𝜂) = [ℎ(𝑡) + 𝜆0𝐺(𝑡, 𝜂) + �̇�(𝑡)][𝑁(𝑡) − 𝑚(𝑡, 𝜂)] (7.9)

m(0) = 0 (7.10)

174

where 𝑚(𝑡, 𝜂) is the expected number of failures by time 𝑡. ℎ(𝑡) is the fault detection rate

per unit of time without considering the effect of environmental factor. 𝜂 is a random

variable and represents the environmental factor, PoRM. 𝐺(𝑡, 𝜂) is a time-dependent

function and represents the impact of PoRM on failure detection rate per unit of time. 𝜆0

is the coefficient along with 𝐺(𝑡, 𝜂) . �̇�(𝑡) denotes a standard Gaussian white noise,

specifically

𝑑

𝑑𝑡
𝐵(𝑡) = �̇�(𝑡) (7.11)

where 𝐵(𝑡) is a Brownian motion.

The covariance of �̇�(𝑡) is

𝐸 (�̇�(𝑡)�̇�(𝑢)) = 𝛿(𝑢 − 𝑡), 0 < 𝑡 < 𝑢 (7.12)

where 𝛿 is the Dirac Delta measure.

From [188], similarly, we obtain the general solution for equation (7.9) as follows

𝑚(𝑡, 𝜂) = 𝑁(𝑡) − 𝑁(0)𝑒−∫ (ℎ
(𝑠)+𝜆0𝐺(𝑠,𝜂)+�̇�(𝑠))𝑑𝑠

𝑡
0 − ∫ 𝑒

−∫ (ℎ(𝑠)+𝜆0𝐺(𝑠,𝜂)+�̇�(𝑠))𝑑𝑠
𝑡
𝑢 𝑁′(𝑢)𝑑𝑢

𝑡

0

(7.13)

175

The detailed derivation is presented in Appendix I, located at the last page of this chapter.

Since �̇�(𝑡) denotes a standard Gaussian white noise, we also have

∫ (ℎ(𝑠) + 𝜆0𝐺(𝑠, 𝜂) + �̇�(𝑠))𝑑𝑠
𝑡

0

= ∫ (ℎ(𝑠) + 𝜆0𝐺(𝑠, 𝜂))𝑑𝑠
𝑡

0

+ 𝐵(𝑡) − 𝐵(0)

= ∫ (ℎ(𝑠) + 𝜆0𝐺(𝑠, 𝜂))𝑑𝑠
𝑡

0

+ 𝐵(𝑡) (7.14)

The mean value function is expressed as

�̅�(𝑡) = 𝑁(𝑡) − 𝑁(0)𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
0 𝑒

𝑡
2𝑒−∫ 𝜆0𝐺(𝑠,𝜂)𝑑𝑠

𝑡
0

−∫ 𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
𝑢 𝑒

𝑡−𝑢
2 𝑒−∫ 𝜆0𝐺(𝑠,𝜂)𝑑𝑠

𝑡
𝑢 𝑁′(𝑢)𝑑𝑢 (7.15)

𝑡

0

Let

𝐺(𝑡, 𝜂) = 𝜂𝑣(𝑡) (7.16)

where 𝑣(𝑡) is a time-dependent function and measures the impact of time on PoRM.

The probability density function of the environmental factor, 𝜂, described as a gamma

distribution with the parameter 𝜃 and 𝑟, is given as follows

176

𝑓(𝜂) =
𝜃𝛾𝜂𝛾−1𝑒−𝜃𝜂

г(𝛾)
 (7.17)

We apply the expectation on equation (7.15) with respect to 𝜂. The mean value function is

obtained

�̅�𝜂(𝑡) = 𝑁(𝑡) − 𝑁(0)𝑒
−∫ ℎ(𝑠)𝑑𝑠

𝑡
0 𝑒

𝑡
2 [∫ 𝑒−𝜂 ∫ 𝜆0𝑣(𝑠)𝑑𝑠

𝑡
0 𝑓(𝜂)

∞

0

𝑑𝜂]

 −∫ ∫ 𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
𝑢 𝑒

𝑡−𝑢
2 𝑒−∫ 𝜆0𝜂𝑣(𝑠)𝑑𝑠

𝑡
𝑢 𝑁′(𝑢)𝑓(𝜂)𝑑𝑢

𝑡

0

∞

0

𝑑𝜂

 = 𝑁(𝑡) − 𝑁(0)𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
0 𝑒

𝑡
2 [∫ 𝑒−𝜂 ∫ 𝜆0𝑣(𝑠)𝑑𝑠

𝑡
0 𝑓(𝜂)

∞

0

𝑑𝜂]

−∫ 𝑁′(𝑢)𝑒−∫ (ℎ
(𝑠)−

1
2)𝑑𝑠

𝑡
𝑢 [∫ 𝑒−𝜂 ∫ 𝜆0𝑣(𝑠)𝑑𝑠

𝑡
𝑢 𝑓(𝜂)𝑑𝜂

∞

0

] 𝑑𝑢
𝑡

0

 (7.18)

Compute the equations with Laplace Transform

∫ 𝑥𝑒−𝑠𝑥𝑓(𝑥)𝑑𝑥 = −
𝑑𝐹∗(𝑠)

𝑑𝑠
 (7.19)

∞

0

The Laplace Transform of gamma probability density function is

𝐹∗(𝑠) = (
𝜃

𝜃 + 𝑠
)
𝛾

 (7.20)

Therefore

177

�̅�𝜂(𝑡) = 𝑁(𝑡) − 𝑁(0)𝑒
−∫ ℎ(𝑠)𝑑𝑠

𝑡
0 𝑒

𝑡
2𝐹∗ (∫ 𝜆0𝑣(𝑠)𝑑𝑠

𝑡

0

)

 −∫ 𝑁′(𝑢)𝑒−∫ (ℎ
(𝑠)−

1
2
)𝑑𝑠

𝑡
𝑢

𝑡

0

𝐹∗ (∫ 𝜆0𝑣(𝑠)𝑑𝑠
𝑡

0

)𝑑𝑢

 = 𝑁(𝑡) − 𝑁(0)𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
0 𝑒

𝑡
2 [

𝜃

𝜃 + ∫ 𝜆0𝑣(𝑠)𝑑𝑠
𝑡

0

]

𝛾

 −∫ 𝑁′(𝑢)𝑒−∫ (ℎ
(𝑠)−

1
2
)𝑑𝑠

𝑡
𝑢

𝑡

0

[
𝜃

𝜃 + ∫ 𝜆0𝑣(𝑠)𝑑𝑠
𝑡

0

]

𝛾

𝑑𝑢

 = 𝑁(𝑡) − 𝑁(0)𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
0 𝑒

𝑡
2 [

𝜃

𝜃 + ∫ 𝜆0𝑣(𝑠)𝑑𝑠
𝑡

0

]

𝛾

 − [
𝜃

𝜃 + ∫ 𝜆0𝑣(𝑠)𝑑𝑠
𝑡

0

]

𝛾

∫ 𝑁′(𝑢)𝑒−∫ (ℎ
(𝑠)−

1
2)𝑑𝑠

𝑡
𝑢

𝑡

0

𝑑𝑢 (7.21)

The equation (7.21) provides a general solution for the proposed single-environmental-

factor software reliability model in considerations of PoRM and the randomness caused by

this environmental factor. Different formulation for ℎ(𝑡), 𝑣(𝑡) and 𝑁(𝑡) with respect to

different assumptions can be plugged in equation (7.21) to obtain the final solution. In this

study, we apply the formulation as follows.

Let

ℎ(𝑡) =
𝑏

1 + 𝑐𝑒−𝑏𝑡
 (7.22)

𝑣(𝑡) = 𝑒−𝑎𝑡 (7.23)

178

𝑁(𝑡) =
1

𝑘
𝑒𝑘𝑡 (7.24)

As described in Melo et al. [191], the application process of the reused module is described

as follows: (1) Reused module selection. (2) The adaption of the reused module to the new

objective. (3) The integration to the new-developed software product. The impact of PoRM

on the software fault detection rate will decrease as software development moves to the

later phase. Thus, we use an exponentially decreasing function 𝑒−𝑎𝑡 to represent 𝑣(𝑡) in

this study. Meanwhile, due to
1

𝑘
𝑒𝑘𝑡 is a monotonically increasing function and the

inspiration from reference [188], we employ
1

𝑘
𝑒𝑘𝑡 to represent 𝑁(𝑡), the nature growth of

the software failures.

Substituting equations (7.22) - (7.24) to equation (7.21), the mean value function is

expressed as

𝑚(𝑡, 𝜂) =
1

𝑘
𝑒𝑘𝑡 −

1

𝑘

𝑐 + 1

𝑐 + 𝑒𝑏𝑡
𝑒
𝑡
2 [

𝜃

𝜃 +
𝜆0
𝑎
(1 − 𝑒−𝑎𝑡)

]

𝛾

 − [
𝜃

𝜃 +
𝜆0
𝑎
(1 − 𝑒−𝑎𝑡)

]

𝛾

𝑒
𝑡
2

𝑐 + 𝑒𝑏𝑡
∫ 𝑁′(𝑢) [𝑐𝑒−

𝑢
2 + 𝑒(𝑏−

1
2)𝑢] 𝑑𝑢

𝑡

0

179

 =
1

𝑘
𝑒𝑘𝑡 −

𝑒
𝑡
2

𝑐 + 𝑒𝑏𝑡
[

𝜃

𝜃 +
𝜆0
𝑎
(1 − 𝑒−𝑎𝑡)

]

𝛾

[
𝑐 + 1

𝑘
−

𝑐

𝑘 −
1
2

𝑒(𝑘−
1
2
)𝑡 −

1

𝑏 + 𝑘 −
1
2

𝑒(𝑏+𝑘−
1
2
)𝑡

+
𝑐

𝑘 −
1
2

+
1

𝑏 + 𝑘 −
1
2

] (7.25)

Given the definition of 𝑚(𝑡) is the expected number of software failures by time t, we do

know 𝑚(𝑡) is an increasing function and we are also able to prove 𝑤ℎ𝑒𝑛 𝑡 → ∞,𝑚(𝑡) →

∞ for equation (7.25) based on the numerical example.

We believe the behavior of equations (7.21) and (7.25) mainly depends on the formulation

of 𝑁(𝑡). For example,

(1) If 𝑁(𝑡) is a constant, then 𝑚(𝑡) converges to this constant.

(2) If 𝑁(𝑡) is a time-dependent function and can converge to a finite number, then

𝑚(𝑡) converges to this finite number.

(3) If 𝑁(𝑡) is a time-dependent function and cannot converge, then 𝑚(𝑡) cannot

converge.

But in this dissertation, we are not going to cover the mathematical proof for the above

description. The investigation of the function behavior will be further studied in the future

research.

180

7.3 Multiple-Environmental-Factors Software Reliability Model

We first propose a generalized software reliability model considering multiple

environmental factors under the Martingale framework in Section 7.3.1, and then we

present two specific software reliability models incorporating two important factors from

previous study, PoRM, and FoPSC.

The notations that are used in this section is explained as follows.

𝑚(𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟) Expected number of software failure detected by time 𝑡 considering

multiple environmental factors and their impact

𝐺𝑖 (𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟) Impact of environmental factor 1, 2, 3, …, n on failure detection rate

per unit of time

HG([𝛽2], [𝛽1 + 𝛽2], 𝑠) Generic hypergeometric function

𝑁(𝑡) Total fault content function in the software by time 𝑡

ℎ(𝑡) Time-dependent fault detection rate per unit of time

𝑓(𝜂𝑖) Probability density function of environmental factor 1, 2, 3, …, n

𝑓(𝜂1) Probability density function of PoRM

𝑓(𝜂2) Probability density function of FoPSC

𝐵(𝑡) Brownian motion

�̇�(𝑡) Standard white noise

𝑣𝑖(𝑡) Impact of time on environmental factor 𝜂𝑖

𝑣1(𝑡) Impact of time on environmental factor 𝜂1

181

𝑣2(𝑡) Impact of time on environmental factor 𝜂2

𝐹𝜂𝑖
∗ (𝑠) Laplace transform of 𝑓(𝜂𝑖)

𝐹𝜂1
∗ (𝑠) Laplace transform of 𝑓(𝜂1)

𝐹𝜂2
∗ (𝑠) Laplace transform of 𝑓(𝜂2)

𝜂𝑖 Random variable and represents environmental factor 1, 2, 3, …, n

𝜂1 Random variable and represents PoRM

𝜂2 Random variable and represents FoPSC

𝜆𝑖 Coefficient along with 𝐺1(𝑡, 𝜂1), 𝐺2(𝑡, 𝜂2), 𝐺3(𝑡, 𝜂𝑛), … , 𝐺𝑛(𝑡, 𝜂𝑛)

𝛿 Dirac Delta measure

𝜃1, 𝛾1 Parameters of gamma distribution, which denotes PoRM

𝜃2, 𝛾2 Parameters of gamma distribution, which denotes FoPSC

𝛽1, 𝛽2 Parameters of beta distribution, which denotes FoPSC

𝑏, 𝑐, 𝑎, 𝑘 Coefficients in function ℎ(𝑡), 𝑣(𝑡), and 𝑁(𝑡)

𝑦𝑖 Observed number of software failures at time 𝑡𝑖

7.3.1 A Generalized Multiple-Environmental-Factors Software Reliability Model

We present the following assumptions to develop the generalized multiple-environmental-

factors software reliability model.

(1) Software fault removal process follows the NHPP.

(2) Software failure intensity is proportional to the remaining faults in the software

program.

182

(3) Software failures subject to the manifestation of the remaining faults in the software

program.

(4) All software faults in the program are independent.

(5) Multiple environmental factors are considered in the proposed model. All

environmental factors are independent in this study. We do not consider correlation

between environmental factors in this study.

(6) The randomness imposed on the software fault detection rate, caused by the

introduction of environmental factors, is modeled by Martingale process,

specifically, Brownian motion.

Hence, we propose a generalized multiple-environmental-factors software reliability

model, given as follows

𝑑

𝑑𝑡
𝑚 (𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟)

= [ℎ(𝑡) +∑𝜆𝑖

𝑛

𝑖=1

𝐺𝑖 (𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟) + �̇�(𝑡)] [𝑁(𝑡) − 𝑚 (𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟)] (7.26)

 𝑚(0) = 0 (7.27)

where 𝜂1, 𝜂2, … , 𝜂𝑛⏟ represents n-dimensional vector. 𝑚(𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟) represents the

expected number of software failures by time t considering multiple environmental factors.

ℎ(𝑡) is the software fault detection rate per unit of time without the impact of

environmental factors. 𝜂𝑖 is random variable represented environmental factor 1, 2, 3, …,

183

n. 𝐺𝑖 (𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟) is the time-dependent function, represents the impact of

environmental factor 1, 2, 3, …, n on software fault detection rate per unit of time. 𝜆𝑖 is the

coefficient associated with 𝐺1(𝑡, 𝜂1), 𝐺2(𝑡, 𝜂2), 𝐺3(𝑡, 𝜂𝑛), … , 𝐺𝑛(𝑡, 𝜂𝑛). 𝑁(𝑡) is the fault

content function by time t. �̇�(𝑡) is a standard white noise, is given as follows

𝑑

𝑑𝑡
𝐵(𝑡) = �̇�(𝑡) (7.28)

where 𝐵(𝑡) denotes Brownian motion.

Given �̇�(𝑡) is the white noise process, in other words, �̇�(𝑡) is a Gaussian process with the

covariance structure given as follows

𝐸 (�̇�(𝑡)�̇�(𝑢)) = 𝛿(𝑢 − 𝑡), 0 < 𝑡 < 𝑢 (7.29)

where 𝛿 is the Dirac Delta measure. Equation (7.29) will have the impact on ℎ(𝑡) +

∑ 𝜆𝑖
𝑛
𝑖=1 𝐺𝑖 (𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟) + �̇�(𝑡), specifically, we obtain

∫ [ℎ(𝑠) +∑𝜆𝑖

𝑛

𝑖=1

𝐺𝑖 (𝑠, 𝜂1, 𝜂2, … , 𝜂𝑛⏟) + �̇�(𝑠)
𝑡

0

]𝑑𝑠

= ∫ [ℎ(𝑠) +∑𝜆𝑖

𝑛

𝑖=1

𝐺𝑖 (𝑠, 𝜂1, 𝜂2, … , 𝜂𝑛⏟)] 𝑑𝑠
𝑡

0

+ 𝐵(𝑡) − 𝐵(0)

184

= ∫ [ℎ(𝑠) +∑𝜆𝑖

𝑛

𝑖=1

𝐺𝑖 (𝑠, 𝜂1, 𝜂2, … , 𝜂𝑛⏟)] 𝑑𝑠
𝑡

0

+ 𝐵(𝑡) (7.30)

Given the general solution discussed in last section, the general solution for equation (7.26)

is provided as follows

𝑚(𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟) = 𝑁(𝑡) − 𝑁(0)𝑒
−∫ (ℎ(𝑠)+∑ 𝜆𝑖

𝑛
𝑖=1 𝐺𝑖(𝑠,𝜂1,𝜂2,…,𝜂𝑛⏟)+�̇�(𝑠))𝑑𝑠

𝑡
0

 −∫ 𝑒
−∫ (ℎ(𝑠)+∑ 𝜆𝑖

𝑛
𝑖=1 𝐺𝑖(𝑠,𝜂1,𝜂2,…,𝜂𝑛⏟)+�̇�(𝑠))𝑑𝑠

𝑡
𝑢 𝑁′(𝑢)𝑑𝑢

𝑡

0

 (7.31)

Substituting equation (7.30) to equation (7.31), the mean value function is obtained as

�̅� (𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟) = 𝑁(𝑡) − 𝑁(0)𝑒
−∫ ℎ(𝑠)𝑑𝑠

𝑡
0 𝑒

𝑡
2𝑒
−∫ ∑ 𝜆𝑖

𝑛
𝑖=1 𝐺𝑖(𝑠,𝜂1,𝜂2,…,𝜂𝑛⏟)𝑑𝑠

𝑡
0

 −∫ 𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
𝑢 𝑒

𝑡−𝑢
2 𝑒

−∫ ∑ 𝜆𝑖
𝑛
𝑖=1 𝐺𝑖(𝑠,𝜂1,𝜂2,…,𝜂𝑛⏟)𝑑𝑠

𝑡
𝑢 𝑁′(𝑢)𝑑𝑢

𝑡

0

 (7.32)

Let

𝐺𝑖 (𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟) = 𝜂𝑖𝑣𝑖(𝑡) (7.33)

where 𝑣𝑖(𝑡) is a time-dependent function and measures the impact of time on

environmental factor 𝜂1, 𝜂2, 𝜂3, … , 𝜂𝑛.

185

As discussed in the model assumption, we consider all environmental factors are

independent, and environmental factor 1, 2, 3, …, and n are represented by 𝜂𝑖, where 𝑖 =

1, 2, … , 𝑛. 𝜂𝑖 is considered as random variable in this study, which could follow different

distribution function. In order to solve equation (7.32), we apply the expectation on both

sides of equation (7.32) with respect to 𝜂1, 𝜂2, 𝜂3, … , 𝜂𝑛. Thus, the mean value function is

expressed as

�̅�𝜂1,𝜂2,…,𝜂𝑛⏟ (𝑡) = 𝑁(𝑡) − 𝑁(0)𝑒
−∫ ℎ(𝑠)𝑑𝑠

𝑡
0 𝑒

𝑡
2 [∏∫ 𝑒−∫ 𝜆𝑖𝜂𝑖𝑣𝑖(𝑠)𝑑𝑠

𝑡
𝑢 𝑓(𝜂𝑖)𝑑𝜂𝑖

∞

0

𝑛

𝑖=1

]

− ∫ 𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
𝑢 𝑒

𝑡−𝑢
2 [∏∫ 𝑒−∫ 𝜆𝑖𝜂𝑖𝑣𝑖(𝑠)𝑑𝑠

𝑡
𝑢 𝑓(𝜂𝑖)𝑑𝜂𝑖

∞

0

𝑛

𝑖=1

]𝑁′(𝑢)𝑑𝑢
𝑡

0

= 𝑁(𝑡) − 𝑁(0)𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
0 𝑒

𝑡
2 [∏∫ 𝑒−∫ 𝜆𝑖𝜂𝑖𝑣𝑖(𝑠)𝑑𝑠

𝑡
𝑢 𝑓(𝜂𝑖)𝑑𝜂𝑖

∞

0

𝑛

𝑖=1

]

−∫ 𝑁′(𝑢)𝑒−∫ (ℎ
(𝑠)−

1
2)𝑑𝑠

𝑡
𝑢 [∏∫ 𝑒−∫ 𝜆𝑖𝜂𝑖𝑣𝑖(𝑠)𝑑𝑠

𝑡
𝑢 𝑓(𝜂𝑖)𝑑𝜂𝑖

∞

0

𝑛

𝑖=1

] 𝑑𝑢
𝑡

0

 (7.34)

Equation (7.34) is the generalized mean value function in consideration of multiple

environmental factors, and the randomness caused by these environmental factors,

modeled as Brownian motion. Because each environmental factor is modeled as a random

variable, which follows certain distribution, there is another advantage regarding the

formulation of equation (7.34) stated as follows. If we know the distribution of each factor,

we use the Laplace Transform of the probability density function and will have high

possibility to obtain a close form solution of the mean value function.

186

7.3.2 Specific Multiple-Environmental-Factors Software Reliability Models

Two Specific Environmental Factors

PoRM

The same definition and distribution given in Section 7.2.1 will be adopted for the

development of specific multiple-environmental-factors software reliability models.

FoPSC

In 1980, Lehman [3] summarized the Laws of Program Evolution. The first law, continuing

change, expressed the universally observed fact that large programs are never completed.

They just continue to evolve. Changes of specifications occur since the initial development

until product delivery, which posing a considerate amount of risk to software cost but

brining new opportunity to add value and improve reliability [192]. Changes of

specifications, in the early 1990s, studied by Harker et al. [193] mostly due to the source

described as follows. (1) Fluctuations within organization or the market. (2) Increased

understanding of requirements. (3) Consequence of system-usage. (4) Customer migratory

issues. (5) Adaption issues. Later, many literatures proposed other explanations for the

changes of specifications mainly from the perspectives of product strategy,

hardware/software environment/interaction, testability and functionality enhancement

[194 - 196].

187

Meanwhile, FoPSC is one of the significant environmental factors in the recent survey

study investigating the impact of environmental factors affecting software reliability during

development process, stated in Chapter 4. We define FoPSC as the total times of all the

specifications have been changed in all the historical versions in software development.

But in this study, we will use the percentage of all the changes in a project to estimate the

parameters. We employ the dataset provided in references [197, 201] to estimate the

distribution of FoPSC, as shown in Figure 7.2.

Figure 7. 2 Data collection of FoPSC

Gamma distribution or beta distribution is good choice for FoPSC, given the model

characteristics. Thus, we compare the Log-likelihood value for gamma distribution and

beta distribution, and it demonstrates beta distribution is better fit for FoPSC. The

parameter estimate of beta distribution is also obtained, which is written as

FoPSC ~ 𝐵𝑒𝑡𝑎 (1.411, 7.409). In Section 7.3.2.2, we provide the specific models with

FoPSC follows gamma distribution and beta distribution, but later in the numerical

188

examples illustration, we only use beta distribution to estimate parameters and compare

model predictive power.

Model Framework

In this section, we use two environmental factors, PoRM and FoPSC, as discussed in the

previous section, to substitute in the generalized mean value function considering multiple

environmental factors.

The mean value function with two environmental factors is obtained from equation (7.34)

as follows

�̅�𝜂1,𝜂2,…,𝜂𝑛⏟ (𝑡) = 𝑁(𝑡) − 𝑁(0)𝑒
−∫ ℎ(𝑠)𝑑𝑠

𝑡
0 𝑒

𝑡
2 (∏∫ 𝑒−∫ 𝜆𝑖𝜂𝑖𝑣𝑖(𝑠)𝑑𝑠

𝑡
0 𝑓(𝜂𝑖)𝑑𝜂𝑖

∞

0

2

𝑖=1

)

− ∫ 𝑁′(𝑢)𝑒−∫ (ℎ
(𝑠)−

1
2)𝑑𝑠

𝑡
𝑢 (∏∫ 𝑒−∫ 𝜆𝑖𝜂𝑖𝑣𝑖(𝑠)𝑑𝑠

𝑡
0 𝑓(𝜂𝑖)𝑑𝜂𝑖

∞

0

2

𝑖=1

)𝑑𝑢
𝑡

0

(7.35)

where 𝜂1 denotes PoRM and 𝜂2 denotes FoPSC. 𝜆1and 𝜆2 is the coefficient associated

with the function 𝐺1(𝑡, 𝜂1) and 𝐺2(𝑡, 𝜂2) , respectively. 𝑣1(𝑡) and 𝑣2(𝑡) are time-

dependent functions and measure the impact of time on environmental factor 𝜂1, 𝜂2 ,

respectively.

189

Note that PoRM follows gamma distribution as discussed in the previous section, which is

𝜂1~Gamma(𝛾1, 𝜃1) The probability density function for PoRM is given as follows

𝑓(𝜂1) =
𝜃1
𝛾1𝜂1

𝛾1−1𝑒−𝜃1𝜂1

г(𝛾1)
 (7.36)

where 𝛾1 and 𝜃1are the parameters of the gamma distribution, which represents PoRM.

Next, we present the specific software reliability models when FoPSC follows gamma

distribution and beta distribution. Software researchers and practitioner will choose the one

fits best for the forthcoming scenarios.

First, let FoPSC follows gamma distribution, which is 𝜂2~Gamma(𝛾2, 𝜃2), then

𝑓(𝜂2) =
𝜃2
𝛾2𝜂2

𝛾2−1𝑒−𝜃2𝜂2

г(𝛾2)
 (7.37)

where 𝛾2 and 𝜃2 are the parameters of the gamma distribution, which represents FoPSC.

The mean value function with gamma-distributed PoRM and gamma-distributed FoPSC is

written as

190

�̅�𝜂1,𝜂2,…,𝜂𝑛⏟ (𝑡)

= 𝑁(𝑡) − 𝑁(0)𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
0 𝑒

𝑡
2 [

𝜃1

𝜃1 + ∫ 𝜆1𝑣1(𝑠)𝑑𝑠
𝑡

0

]

𝛾1

[
𝜃2

𝜃2 + ∫ 𝜆2𝑣2(𝑠)𝑑𝑠
𝑡

0

]

𝛾2

− [
𝜃1

𝜃1 + ∫ 𝜆1𝑣1(𝑠)𝑑𝑠
𝑡

0

]

𝛾1

[
𝜃2

𝜃2 + ∫ 𝜆2𝑣2(𝑠)𝑑𝑠
𝑡

0

]

𝛾2

∫ 𝑁′(𝑢)𝑒−∫ (ℎ
(𝑠)−

1
2
)𝑑𝑠

𝑡
𝑢

𝑡

0

𝑑𝑢 (7.38)

Let ℎ(𝑡) and 𝑁(𝑡) be equations (7.22) and (7.24), respectively, 𝑣1(𝑡) = 𝑒
−𝑎1𝑡 , and

𝑣2(𝑡) = 𝑒
−𝑎2𝑡, the mean value function is written as

�̅�𝜂1,𝜂2,…,𝜂𝑛⏟ (𝑡) =
1

𝑘
𝑒𝑘𝑡

−
𝑒
𝑡
2

𝑐 + 𝑒𝑏𝑡
[

𝜃1

𝜃1 +
𝜆1
𝑎1
(1 − 𝑒−𝑎1𝑡)

]

𝛾1

[
𝜃2

𝜃2 +
𝜆2
𝑎2
(1 − 𝑒−𝑎2𝑡)

]

𝛾2

[
𝑐 + 1

𝑘

−
𝑐

𝑘 −
1
2

𝑒(𝑘−
1
2)𝑡 −

1

𝑏 + 𝑘 −
1
2

𝑒(𝑏+𝑘−
1
2)𝑡 +

𝑐

𝑘 −
1
2

+
1

𝑏 + 𝑘 −
1
2

] (7.39)

Secondly, let FoPSC follows beta distribution, which is 𝜂2~Beta(𝛽1, 𝛽2), then

𝑓(𝜂2) =
г(𝛽1 + 𝛽2)𝜂2

𝛽1−1(1 − 𝜂2)
𝛽2−1

г(𝛽1)г(𝛽2)
 (7.40)

where 𝛽1 and 𝛽2 are the parameters of beta distribution.

191

The Laplace transform of 𝜂2 is given as follows [103]

𝐹𝜂2
∗ (𝑠) = 𝑒−𝑠 × 𝐻𝐺([𝛽2], [𝛽1 + 𝛽2], 𝑠) (7.41)

where HG([𝛽2], [𝛽1 + 𝛽2], 𝑠) is the generic hypergeometric function such that

𝐻𝐺([𝑎1, 𝑎2, … , 𝑎𝑚], [𝑏1, 𝑏2, … , 𝑏𝑛], 𝑠) = ∑[
𝑠𝑘∏

г(𝑎𝑖 + 𝑘)
г(𝑎𝑖)

𝑚
𝑖=1

∏
г(𝑏𝑖 + 𝑘)
г(𝑏𝑖)

𝑘!𝑛
𝑖=1

]

∞

𝑘=0

.

Therefore

𝐹𝜂2
∗ (𝑠) = 𝑒−𝑠 [∑

г(𝛽1 + 𝛽2)г(𝛽2 + 𝑗)

г(𝛽2)г(𝛽1 + 𝛽2 + 𝑗)

∞

𝑗=0

] =∑
г(𝛽1 + 𝛽2)г(𝛽2 + 𝑗)

г(𝛽2)г(𝛽1 + 𝛽2 + 𝑗)
×
𝑠𝑗𝑒−𝑠

𝑗!

∞

𝑗=0

=∑
г(𝛽1 + 𝛽2)г(𝛽2 + 𝑗) × 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑗, 𝑠)

г(𝛽2)г(𝛽1 + 𝛽2 + 𝑗)
× Poisson(𝑗, 𝑠)

∞

𝑗=0

 (7.42)

where 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑗, 𝑠) =
𝑠𝑗𝑒−𝑠

𝑗!
.

The mean value function with gamma-distributed PoRM and beta-distributed FoPSC is

written as

192

�̅�𝜂1,𝜂2,…,𝜂𝑛⏟ (𝑡) = 𝑁(𝑡) −

𝑁(0)𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
0 𝑒

𝑡

2 [
𝜃1

𝜃1+∫ 𝜆1𝑣1(𝑠)𝑑𝑠
𝑡
0

]
𝛾1

[∑
г(𝛽1+𝛽2)г(𝛽2+𝑗)×𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑗,∫ 𝜆2𝑣2(𝑠)𝑑𝑠

𝑡
0)

г(𝛽2)г(𝛽1+𝛽2+𝑗)

∞
𝑗=0] −

[
𝜃1

𝜃1+∫ 𝜆1𝑣1(𝑠)𝑑𝑠
𝑡
0

]
𝛾1

[∑
г(𝛽1+𝛽2)г(𝛽2+𝑗)×𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑗,∫ 𝜆2𝑣2(𝑠)𝑑𝑠

𝑡
0)

г(𝛽2)г(𝛽1+𝛽2+𝑗)

∞
𝑗=0] ∫ 𝑁′(𝑢)𝑒

−∫ (ℎ(𝑠)−
1

2
)𝑑𝑠

𝑡
𝑢

𝑡

0
𝑑𝑢

(7.43)

where 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑗, ∫ 𝜆2𝑣2(𝑠)𝑑𝑠
𝑡

0
) =

(∫ 𝜆2𝑣2(𝑠)𝑑𝑠
𝑡
0)

𝑗
𝑒−∫ 𝜆2𝑣2(𝑠)𝑑𝑠

𝑡
0

𝑗!
.

Let ℎ(𝑡) and 𝑁(𝑡) be equations (7.22) and (7.24), respectively, 𝑣1(𝑡) = 𝑒
−𝑎1𝑡 , and

𝑣2(𝑡) = 𝑒
−𝑎2𝑡, the mean value function is written as

�̅�𝜂1,𝜂2,…,𝜂𝑛⏟ (𝑡)

=
1

𝑘
𝑒𝑘𝑡

−
𝑒
𝑡
2

𝑐 + 𝑒𝑏𝑡
[

𝜃1

𝜃1 +
𝜆1
𝑎1
(1 − 𝑒−𝑎1𝑡)

]

𝛾1

[

∑

г(𝛽1 + 𝛽2)г(𝛽2 + 𝑗) × 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑗,
𝜆2
𝑎2
(1 − 𝑒−𝑎2𝑡))

г(𝛽2)г(𝛽1 + 𝛽2 + 𝑗)

∞

𝑗=0

]

[
𝑐 + 1

𝑘

−
𝑐

𝑘 −
1
2

𝑒(𝑘−
1
2)𝑡 −

1

𝑏 + 𝑘 −
1
2

𝑒(𝑏+𝑘−
1
2)𝑡 +

𝑐

𝑘 −
1
2

+
1

𝑏 + 𝑘 −
1
2

] (7.44)

where 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑗,
𝜆2

𝑎2
(1 − 𝑒−𝑎2𝑡)) =

[
𝜆2
𝑎2
(1−𝑒−𝑎2𝑡)]

𝑗
𝑒
−
𝜆2
𝑎2
(1−𝑒−𝑎2𝑡)

𝑗!
.

193

7.4 Numerical Examples for Single-Environmental-Factor Software Reliability

Model

In the following experiments, we choose two applications, DS1 and DS2, to validate the

proposed single-environmental-factor software reliability model and compare the

performance with other existing software reliability models. The comparison criteria are

discussed in Chapter 5. DS1 and DS2 are both collected from Open Source Software (OSS)

project. OSS has attracted significant attention in the past decade. Some report shows that

a few major OSS products have surpassed their commercial counterparts in terms of the

market share and quality evaluation [198]. Not only individuals are attracted by the features

of OSS, but many software companies and government-supported organizations [199]. A

research study conducted by CIO Magazine [200] found that IT community is growing

better by using open source development model and OSS will dominate as the Web server

application platform and server operating system. The majority of the companies are using

open source today for web development. To align with the new transitions in software

development, OSS project data are employed to illustrate the performance of the proposed

model.

Numerical Example 1

Dataset 1 (DS1) is extracted from Apache OSS project. It was collected from Sep 2010 to

April 2013. The collected data are described in Table 7.3. The column named Failures in

Table 7.3 represents the number of software failures detected between time unit t-1 and t.

The column named Cumulative failures in Table 7.3 represents the cumulative software

failure by time t. We compare the models discussed in Table 7.4. The parameter estimates

194

and model comparisons are presented in Table 7.5. In this dataset, we use the first 24 time

units to estimate the parameters.

As presented in Table 7.5, the proposed single-environmental-factor model has the smallest

MSE, PRR, and Variation. It is worth noting that MSE is the most critical criteria in terms

of model selection. The PP value for the proposed model is 0.311, which is just slightly

larger than the smallest PP value 0.228, however, all other three criteria for G-O model is

significantly larger than the proposed model. Thus, we conclude that the proposed model

has the best fit. Figure 7.3 and 7.4 also illustrate the comparison between the actual failure

data and the predicted failure data from all the models discussed in Table 7.5. The proposed

model yields very close fittings and predictions of software failures.

Table 7. 3 DS1 failure data

Time

unit

Failures

Cumulative

failures

Time

unit

Failures

Cumulative

failures

Time

unit

Failures

Cumulative

failures

1 6 6 12 4 66 23 6 102

2 6 12 13 0 66 24 22 124

3 6 18 14 4 70 25 3 127

4 8 26 15 5 75 26 1 128

5 13 39 16 5 80 27 1 129

6 6 45 17 2 82 28 0 129

7 8 53 18 10 92 29 0 129

8 2 55 19 1 93 30 0 129

9 3 58 20 1 94 31 4 133

10 3 61 21 2 96 32 3 136

11 1 62 22 0 96 - - -

195

Table 7. 4 Model comparisons

Model Mean value function

G-O model 𝑚(𝑡) = 𝑎(1 − 𝑒−𝑏𝑡)

Inflection S-shaped model 𝑚(𝑡) =
𝑎(1 − 𝑒−𝑏𝑡)

1 + 𝛽𝑒−𝑏𝑡

Delayed S-shaped model
𝑚(𝑡) = 𝑎(1 − (1 + 𝑏𝑡)𝑒−𝑏𝑡)

Yamada imperfect

debugging model
𝑚(𝑡) = 𝑎[1 − 𝑒−𝑏𝑡] [1 −

𝛼

𝑏
] + 𝛼𝑎𝑡

PNZ model 𝑚(𝑡) =
𝑎[(1 − 𝑒−𝑏𝑡) (1 −

𝛼
𝑏
) + 𝛼𝑡]

1 + 𝛽𝑒−𝑏𝑡

Pham-Zhang IFD
𝑚(𝑡) = 𝑎 − 𝑎𝑒−𝑏𝑡(1 + (𝑏 + 𝑑)𝑡 + 𝑏𝑑𝑡2)

Proposed single-

environmental-factor

model

𝑚(𝑡) =
1

𝑘
𝑒𝑘𝑡 −

𝑒
𝑡
2

𝑐 + 𝑒𝑏𝑡
[

𝜃

𝜃 +
𝜆0
𝑎
(1 − 𝑒−𝑎𝑡)

]

𝛾

(
𝑐 + 1

𝑘
−

𝑐

𝑘 −
1
2

𝑒(𝑘−
1
2)
𝑡

−
1

𝑏 + 𝑘 −
1
2

𝑒(𝑏+𝑘−
1
2)
𝑡 +

𝑐

𝑘 −
1
2

+
1

𝑏 + 𝑘 −
1
2

)

Table 7. 5 DS1 parameter estimates and model comparison

Model MSE PRR PP Variation
Parameter

Estimates

G-O model 36.561 0.315 0.228 6.076
�̂� = 201.250

�̂� = 0.033

Inflection S-shaped

model
68.326 0.789 0.483 7.992

�̂� = 150.030

�̂� = 0.096

�̂� = 1.830

Delayed S-shaped

model
110.047 20.902 2.123 10.544

�̂� = 131.400

�̂� = 0.144

Yamada imperfect

debugging model
60.193 0.401 0.300 74.941

�̂� = 185.180

�̂� = 0.033

�̂� = 0.010

196

PNZ model 54.515 0.523 0.333 6.795

�̂� = 161.010

�̂� = 0.069

�̂� = 0.001

�̂� = 0.930

Pham-Zhang IFD 143.253 40.461 2.665 11.076

�̂� = 143.045

�̂� = 0.129

�̂� = 0.001

Proposed single-

environmental-

factor model

35.173 0.254 0.311 5.390

�̂� = 0.014

�̂� = 0.589

�̂� = 0.039

�̂� = 75.000

𝜆0̂ = 2.001

Figure 7. 3 DS1 comparison of actual failure data and predicted failure data – Part I

Figure 7. 4 DS1 comparison of actual failure data and predicted failure data – Part II

197

Other software reliability measures are also calculated to provide a comprehensive

understanding of the prediction power for the proposed model. In this study, we are

interested in the estimated software failures for each time unit, which is obtained by

𝑚(𝑡) − 𝑚(𝑡 − 1), and the estimated time to detect all the 136 actual software failures that

already have been appeared in the program, as seen in Table 7.3. Figure 7.5 illustrates the

estimated software failures for 16 time units, ranging from time unit 25 to 40, which gives

an estimate for software tester in terms of the number of software failures occurred in the

operation field during each time unit and further helps software multiple release. Moreover,

the estimated time unit to detect all the 136 actual software failures is 38.40 based on the

proposed model. Software tester use this information to estimate how much time will be

spent on one project and assign the corresponding testing resource. In sum, those measures

are helpful for software testing team to optimally assign the available testing resource to

each ongoing project, decide when to stop testing, and plan software multiple release.

Figure 7. 5 DS1 software failure prediction from time unit 25 to 40

198

Numerical Example 2

DS2 is also one of Apache OSS project data. It was collected from Feb 2009 to Feb 2014.

33 sets of failure data are presented in Table 7.6. The column named Failures in Table 7.6

represents the number of software failures detected between time unit t-1 and t. The column

named Cumulative failures in Table 7.6 represents the cumulative software failure by time

t. The parameter estimates and model comparisons are described in Table 7.7.

Table 7. 6 DS2 failure data

Time

unit

Failures

Cumulative

failures

Time

unit

Failures

Cumulative

failures

Time

unit

Failures

Cumulative

failures

1 7 7 12 22 88 23 11 140

2 2 9 13 11 99 24 4 144

3 8 17 14 8 107 25 0 144

4 9 26 15 2 109 26 5 149

5 2 28 16 7 116 27 0 149

6 5 33 17 3 119 28 9 158

7 5 38 18 4 123 29 13 171

8 7 45 19 1 124 30 1 172

9 10 55 20 0 124 31 1 173

10 9 64 21 0 124 32 12 185

11 2 66 22 5 129 33 0 185

As seen from Table 7.7, the proposed model has the smallest MSE and Variation. Although

PNZ model has the smallest PRR and PP, the MSE for PNZ model is much larger than the

proposed model. Given MSE is the most critical for model selection, therefore, the best

fitting model is still the proposed model. Figure 7.6 and 7.7 illustrate the comparison

between the actual failure data and the predicted failure data from all the models discussed

199

in Table 7.7. The proposed model subjects to a very close fittings and predictions on the

cumulative software failures of DS2.

Table 7. 7 DS2 parameter estimates and model comparison

Model MSE PRR PP Variation
Parameter

Estimates

G-O model 136.477 1.285 3.462 11.892
�̂� = 181.250

�̂� = 0.056

Inflection

S-shaped model
176.235 5.292 1.513 12.794

�̂� = 179.230

�̂� = 0.193

�̂� = 13.159

Delayed S-shaped

model
67.922 27.778 1.536 8.221

�̂� = 200.090

�̂� = 0.112

Yamada imperfect

debugging model
69.510 0.625 1.180 103.480

�̂� = 230.250

�̂� = 0.034

�̂� = 0.008

PNZ model 90.902 0.372 0.418 8.809

�̂� = 300.130

�̂� = 0.048

�̂� = 0.001

�̂� = 1.321

Pham-Zhang IFD 74.124 528.248 2.576 8.240

�̂� = 189.960

�̂� = 0.134

�̂� = 0.010

Proposed single-

environmental-

factor model

63.989 4.895 1.224 7.576

�̂� = 0.009

�̂� = 0.626

�̂� = 1.078

�̂� = 51.725

𝜆0̂ = 25.346

200

Figure 7. 6 DS2 comparison of actual failure data and predicted failure data – Part I

Figure 7. 7 DS2 comparison of actual failure data and predicted failure data – Part II

We also provide other software reliability measures for DS2. Figure 7.8 presents the

estimated failures for each time unit, ranging from time unit 29 to 44. Moreover, the

estimated time unit to detect all 185 software failures that have been already appeared in

the program is 50.92.

201

Figure 7. 8 DS2 software failure prediction for time unit 29 to 44

Reliability Prediction

Once the parameters are obtained, the software reliability within (𝑡, 𝑡 + 𝑥) is determined

as

𝑅(𝑥|𝑡) = 𝑒−[𝑚(𝑡+𝑥)−𝑚(𝑡)] (7.45)

Figure 7.9, and 7.10 presents the reliability prediction for DS1 and DS2 by varying 𝑥 from

time unit 0 to 1.2, respectively. All other models did not take into consideration of

environmental factor (PoRM) and a dynamic fault detection process. As a result, they

cannot present reliability prediction well since OSS projects are influenced by the

randomness caused by environmental factors significantly than traditional projects. Thus,

we did not incorporate reliability prediction from other models.

202

Figure 7. 9 DS 1 reliablity predicton

Figure 7. 10 DS2 reliablity predicton

7.5 Numerical Examples for Multiple-Environmental-Factors Software

Reliability Model

We use the same data set as in Section 7.4.2 to compare the prediction power of the

proposed specific multiple-environmental-factors software reliability model, specifically,

with gamma-distributed PoRM and beta-distributed FoPSC. The model comparison and

parameter estimate are presented in Table 7.8. The proposed multiple-environmental-

203

factors model, with gamma-distributed PoRM and beta-distributed FoPSC, performs better

accuracy of prediction failures, compared with the single-environmental-factor model.

Table 7. 8 Parameter estimates and model comparison

Model MSE PRR PP Variation
Parameter

Estimates

G-O model 136.477 1.285 3.462 11.892
�̂� = 181.250

�̂� = 0.056

Inflection

S-shaped model
176.235 5.292 1.513 12.794

�̂� = 179.230

�̂� = 0.193

�̂� = 13.159

Delayed S-shaped

model
67.922 27.778 1.536 8.221

�̂� = 200.090

�̂� = 0.112

Yamada imperfect

debugging model
69.510 0.625 1.180 103.480

�̂� = 230.250

�̂� = 0.034

�̂� = 0.008

PNZ model 90.902 0.372 0.418 8.809

�̂� = 300.130

�̂� = 0.048

�̂� = 0.001

�̂� = 1.321

Pham-Zhang IFD 74.124 528.248 2.576 8.240

�̂� = 189.960

�̂� = 0.134

�̂� = 0.010

Proposed single-

environmental-factor

model

63.989 4.895 1.224 7.576

�̂� = 0.009

�̂� = 0.626

�̂� = 1.078

�̂� = 51.725

𝜆0̂ = 25.346

Proposed multiple-

environmental-factor

model

(gamma-distributed

PoRM and beta-

distributed FoPSC)

44.780 0.990 0.327 5.421

�̂� = 0.008

�̂� = 0.597

�̂� = 0.900

𝑎1̂ = 100.000

𝜆1̂ = 40.148

𝑎2̂ = 113.644

𝜆2̂ = 29.289

204

7.6 Discussion of Impact of Environmental Factor

To emphasize the significance of incorporating environmental factor(s) in software

reliability models in this chapter, the comparison between the software reliability model

with and without environmental factor(s) will be discussed in this section. Without

considering environmental factors(s), equation (7.26) will be formulated as

𝑑

𝑑𝑡
𝑚(𝑡, 𝜂) = [ℎ(𝑡) + �̇�(𝑡)][𝑁(𝑡) − 𝑚(𝑡, 𝜂)] (7.46)

This formulation has detailed explanation in Pham and Pham [188]. Substituting equations

(7.22) - (7.24) into equation (7.45), the new mean value function without considering

environmental factor(s) is obtained as follows

𝑚(𝑡) =
1

𝑘
𝑒𝑘𝑡 −

𝑒
𝑡
2

𝑐 + 𝑒𝑏𝑡
(
𝑐 + 1

𝑘
−

𝑐

𝑘 −
1
2

−
1

𝑏 + 𝑘 −
1
2

) −
𝑐𝑒𝑘𝑡(𝑐 + 𝑒𝑏𝑡)−1

𝑘 −
1
2

−
𝑒(𝑘+𝑏)𝑡(𝑐 + 𝑒𝑏𝑡)−1

𝑏 + 𝑘 −
1
2

 (7.47)

As an illustration for the comparison, DS1 will be used to compare the mean value function

with environmental factor (equation (7.25)) and the mean value function without

environmental factor (equation (7.47)). The parameter estimates for the mean value

function without environmental factor are �̂� = 0.109, �̂� = 0.045, �̂� = 0.501. Using the

criteria described previously, we have 𝑀𝑆𝐸 = 103.238, which is significantly higher than

205

the model considering environmental factor, 35.173, as shown in Table 7.5. We also

present Figure 7.11, which compares the actual failure data, the failure prediction by the

model with environmental factor, and the failure prediction by the model without

environmental factor. We notice that the failure prediction will be more accurate with

considering environmental factor for OSS project data. Therefore, incorporating

environmental factor in software reliability model will significantly improve the predictive

accuracy.

Figure 7. 11 Comparison of failure prediction

7.7 Conclusions

To the best of our knowledge, environmental factor(s), and martingale framework,

specifically, Brownian motion and white noise process have not been simultaneously

employed in NHPP software reliability model. A considerable amount of software

development has shifted their attention from building a new system toward composing

system from the existing open source platform. On the other hand, there is an increasing

trend on the adoption of software ecosystem. The development of new functionality can be

206

occurred outside of the platform. For example, App-store styled approaches are getting

popular in software community. Therefore, it is of great importance to incorporate

environmental factor(s) in the software reliability model because it brings a significant

impact on open source project compared with traditional software development.

There are several research directions can be pursued in the next step. For instance, (1) the

total number of fault content is considered as a time-dependent function in this study. The

randomness caused by environmental factors may also affect this time-dependent function;

(2) environmental factors are correlated; (3) the function (equations (21) and (34)) behavior

can be further investigated.

207

Appendix I

Given a generalized mean value function

𝑑

𝑑𝑡
𝑚(𝑡, 𝜂) = ℎ(𝑡, 𝜂)[𝑁(𝑡) − 𝑚(𝑡, 𝜂)]

 𝑚(0) = 0

The general solution for the above function is

𝑚(𝑡, 𝜂) = 𝑒−∫ ℎ(𝑠,𝜂)𝑑𝑡
𝑡
0 ∫ 𝑒∫ ℎ(𝑠,𝜂)𝑑𝑠

𝑢
0 ℎ(𝑢)𝑁(𝑢)𝑑𝑢

𝑡

0

= ∫ ℎ(𝑢)𝑁(𝑢)𝑒−∫ ℎ(𝑠,𝜂)𝑑𝑠
𝑡
𝑢 𝑑𝑢

𝑡

0

Since

𝑑

𝑑𝑢
(𝑒−∫ ℎ(𝑠,𝜂)𝑑𝑠

𝑡
𝑢) = 𝑒−∫ ℎ(𝑠,𝜂)𝑑𝑠

𝑡
𝑢 ∗ ℎ(𝑢, 𝜂)

Thus, we have

𝑚(𝑡, 𝜂) = ∫ 𝑁(𝑢)𝑑[𝑒−∫ ℎ(𝑠,𝜂)𝑑𝑠
𝑡
𝑢]

𝑡

0

 = [𝑁(𝑡)𝑒−∫ ℎ(𝑠,𝜂)𝑑𝑠
𝑡
𝑢]

𝑢=𝑡
− [𝑁(𝑡)𝑒−∫ ℎ(𝑠,𝜂)𝑑𝑠

𝑡
𝑢]

𝑢=0
−∫ 𝑒−∫ ℎ(𝑠,𝜂)𝑑𝑠

𝑡
𝑢 𝑑[𝑁(𝑢)]

𝑡

0

 = 𝑁(𝑡) − 𝑁(0)𝑒−∫ ℎ(𝑠,𝜂)𝑑𝑠
𝑡
0 −∫ 𝑒−∫ ℎ(𝑠,𝜂)𝑑𝑠

𝑡
𝑢 𝑁′(𝑢)𝑑𝑢

𝑡

0

208

CHAPTER 8

CONCLUSIONS AND FUTURE RESEARCH

8.1 Conclusions

At the early stage of this dissertation, in Chapter 4, firstly, a comparison analysis for

environmental factors affecting software reliability during single-release software

development is carried out. The data collection is conducted by survey from twenty

organizations, a diverse group of industries is selected to participate in the survey

investigation. Participants were asked to rank the environmental factors in light of their

impact on software reliability. The significant environmental factors in software

development process/each development phase, principle components, and significant level

of development phases are revealed and compared with the previous findings [27, 28]. The

correlation between environmental factors, how to reduce the dimension of these correlated

environmental factors, and development phase analysis are discussed as well.

Later, another investigation of environmental factors affecting reliability in multi-release

software development is studied. We further compare the significant factors and other

findings between the development of singe-release and multi-release software.

In Chapter 5, software faults are classified into two groups, Type I (independent) faults and

Type II (dependent) faults. Two phases software debugging process are introduced

according to different types of faults. We firstly propose a one-phase NHPP software

reliability model. We assume there is only Type II faults in this model given the Type I

209

faults have been removed in the preliminary testing phase. Later, a two-phase NHPP

software reliability model is developed in consideration of fault dependency and imperfect

fault removal. The descriptive and predictive ability of the proposed models is examined

in the numerical examples.

In Chapter 6, we aim to develop a NHPP software reliability model for multi-release

software product. The remaining faults from previous release and the newly introduced

faults (from newly added features) are both incorporated in the model development. In

addition, the detection of the new faults in the development of the next release depends on

the remaining faults from previous release and the newly introduced faults for developing

the next release.

In Chapter 7, the software reliability models incorporating single/multiple environmental

factor(s) under the Martingale framework are proposed. We have not only considered the

impact of significant factor(s) on software reliability, revealed in Chapter 4, but also the

randomness caused by these factors under the Martingale framework in the model

development.

Chapter 4 has been published in Journal of Systems and Software, as cited in references

[29, 30]. Chapter 5 has been published in Computer Languages, Systems & Structures and

Vietnam Journal of Computer Science, as cited in references [133, 174]. Chapter 6 has been

published in Annals of Operations Research, as cited in reference [116]. Chapter 7 has

been published in Annals of Operations Research, as cited in reference [202].

210

8.2 Future Research

Given the study discussed in Chapter 4, there could exists correlations between

environmental factors in software development, and we have not considered this

correlation in the single and multiple-environmental-factor(s) models in Chapter 7. The

first research problem is presented as follows.

Problem 1: Develop software reliability models considering multiple environmental

factors, the randomness caused by these factors, and the correlation between the factors.

All the software reliability models developed in this dissertation still focus on the

methodologies applied in the Testing phase and the defects found in the Testing phase. As

the agile development and other new development methodologies are applied in industry,

how to quantify software quality and reliability is interesting to investigate. The second

research problem is described as follows.

Problem 2: Develop policies/models to quantify software quality and reliability in the

earlier phases of software development, not waiting until the Testing phase.

Software-embedded systems have been greatly adopted in a wide array such as consumer,

automotive, medical, commercial and military applications. High quality and reliability of

software-embedded systems have been highlighted as leverages to achieve competitive

advantages of producing secure and reliable goods. Hence, advanced reliability models are

211

necessitated to improve the prediction power of the whole system considering critical

factors. In general, software-embedded systems consist of hardware and software systems;

accordingly, the system failures are classified into three categories: hardware, software,

and hardware-software-interaction failures. Thus, the third research problem is proposed

as follows.

Problem 3: Develop system reliability model considering three types of failures, hardware,

software, and hardware-software-interaction.

212

REFERENCES

[1] Febrero, F., Calero, C., & Moraga, M. Á. (2016). Software reliability modeling based

on ISO/IEC SQuaRE. Information and Software Technology, 70, 18-29.

[2] Hartz, M. A., Walker, E. L., & Mahar, D. (1997). Introduction to Software Reliability:

A State of The Art Review. The Center.

[3] Lehman, M. M. (1980). Programs, life cycles, and laws of software

evolution. Proceedings of the IEEE, 68(9), 1060-1076.

[4] Catelani, M., Ciani, L., Scarano, V. L., & Bacioccola, A. (2011). Software automated

testing: A solution to maximize the test plan coverage and to increase software reliability

and quality in use. Computer Standards & Interfaces, 33(2), 152-158.

[5] Han, S., Dang, Y., Ge, S., Zhang, D., & Xie, T. (2012). Performance debugging in the

large via mining millions of stack traces. Proceedings of the 34th International Conference

on Software Engineering, IEEE, 145-155.

[6] Dang, Y., Ge, S., Huang, R., & Zhang, D. (2011). Code clone detection experience at

Microsoft. Proceedings of the 5th International Workshop on Software Clones, ACM, 63-

64.

[7] Chang, I. H., Pham, H., Lee, S. W., & Song, K. Y. (2014). A testing-coverage software

reliability model with the uncertainty of operating environments. International Journal of

Systems Science: Operations & Logistics, 1(4), 220-227.

[8] Chatterjee, S., Misra, R. B., & Alam, S. S. (1997). Prediction of software reliability

using an auto regressive process. International Journal of Systems Science, 28(2), 211-216.

[9] Chatterjee, S., & Singh, J. B. (2014). A NHPP based software reliability model and

optimal release policy with logistic–exponential test coverage under imperfect

debugging. International Journal of System Assurance Engineering and Management, 5(3),

399-406.

[10] Patterson, D. A., & Hennessy, J. L. (2013). Computer Organization and Design: The

Hardware/Software Interface. Morgan Kaufmann Publishers.

[11] Moravec, H. (1998). When will computer hardware match the human brain. Journal

of Evolution and Technology, 1(1), 10.

[12] Lyu, M. R. (1996). Handbook of Software Reliability Engineering. IEEE Computer

Society.

213

[13] Lyu, M. R. (2007). Software reliability engineering: A roadmap. 2007 Future of

Software Engineering, IEEE Computer Society, 153-170.

[14] https://www.computerworlduk.com/galleries/infrastructure/top-software-failures-

recent-history-3599618/#22.

[15] Tassey, G. (2002). The economic impacts of inadequate infrastructure for software

testing. National Institute of Standards and Technology, RTI Project, 7007(011).

[16] Halstead, M. H. (1977). Elements of Software Science. Elsevier.

[17] McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software

Engineering, 4, 308-320.

[18] Pham, H. (2007). System Software Reliability. Springer Science & Business Media.

[19] Pham, H. (2000). Software Reliability. Springer Science & Business Media.

[20] Myers, G. J., Sandler, C., & Badgett, T. (2011). The Art of Software Testing. John

Wiley & Sons.

[21] Ohmann, P., & Liblit, B. (2017). Lightweight control-flow instrumentation and

postmortem analysis in support of debugging. Automated Software Engineering, 24(4),

865-904.

[22] Hailpern, B., & Santhanam, P. (2002). Software debugging, testing, and

verification. IBM Systems Journal, 41(1), 4-12.

[23] Weyuker, E. J. (2004). How to judge testing progress. Information and Software

Technology, 46(5), 323-328.

[24] Kaner, C., Falk, J., & Nguyen, H. Q. (2000). Testing Computer Software. Second

Edition. Dreamtech Press.

[25] Pham, H., & Zhang, X. (1999). Software release policies with gain in reliability

justifying the costs. Annals of Software Engineering, 8(1-4), 147-166.

[26] Pham, H., & Zhang, X. (1999). A software cost model with warranty and risk

costs. IEEE Transactions on Computers, 48(1), 71-75.

[27] Zhang, X., & Pham, H. (2000). An analysis of factors affecting software

reliability. Journal of Systems and Software, 50(1), 43-56.

[28] Zhang, X., Shin, M. Y., & Pham, H. (2001). Exploratory analysis of environmental

factors for enhancing the software reliability assessment. Journal of Systems and

Software, 57(1), 73-78.

214

[29] Zhu, M., Zhang, X., & Pham, H. (2015). A comparison analysis of environmental

factors affecting software reliability. Journal of Systems and Software, 109, 150-160.

[30] Zhu, M., & Pham, H. (2017). Environmental factors analysis and comparison affecting

software reliability in development of multi-release software. Journal of Systems and

Software, 132, 72-84.

[31] HP Applications Handbook. (2012). Shorten release cycles by bringing developers to

application lifecycle management.

http://www.hp.com/hpinfo/newsroom/press_kits/2011/optimization2011/Lifecycle.pdf.

[32] Khomh, F., Dhaliwal, T., Zou, Y., & Adams, B. (2012). Do faster releases improve

software quality? An empirical case study of Mozilla Firefox. Proceedings of the 9th IEEE

Working Conference on Mining Software Repositories, IEEE, 179-188.

[33] Gallud, J. A., Peñalver, A., López-Espín, J. J., Lazcorreta, E., Botella, F., Fardoun, H.

M., & Sebastián, G. (2012). A proposal to validate the user's goal in distributed user

interfaces. International Journal of Human-Computer Interaction, 28(11), 700-708.

[34] Eisenstein, J., Vanderdonckt, J., & Puerta, A. (2001). Applying model-based

techniques to the development of UIs for mobile computers. Proceedings of the 6th

International Conference on Intelligent User Interfaces, ACM, 69-76.

[35] Ramasubbu, N., & Balan, R. K. (2007). Globally distributed software development

project performance: An empirical analysis. Proceedings of the 6th Joint Meeting of the

European Software Engineering Conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering, ACM, 125-134.

[36] Herbsleb, J. D., Mockus, A., Finholt, T. A., & Grinter, R. E. (2000). Distance,

dependencies, and delay in a global collaboration. Proceedings of the 2000 ACM

Conference on Computer Supported Cooperative Work, ACM, 319-328.

[37] Herbsleb, J. D., Mockus, A., Finholt, T. A., & Grinter, R. E. (2001). An empirical

study of global software development: Distance and speed. Proceedings of the 23rd

International Conference on Software Engineering, IEEE Computer Society, 81-90.

[38] Herbsleb, J. D., & Mockus, A. (2003). An empirical study of speed and

communication in globally distributed software development. IEEE Transactions on

Software Engineering, 29(6), 481-494.

[39] Saliu, O., & Ruhe, G. (2005). Software release planning for evolving

systems. Innovations in Systems and Software Engineering, 1(2), 189-204.

[40] Ruhe, G., & Momoh, J. (2005). Strategic release planning and evaluation of

operational feasibility. Proceedings of the 38th Annual Hawaii International Conference

on System Science, IEEE, 313b-313b.

215

[41] Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S. B., & Shafique, M. U.

(2010). A systematic review on strategic release planning models. Information and

Software Technology, 52(3), 237-248.

[42] Maurice, S., Ruhe, G., & Saliu, O. (2006). Decision support for value-based software

release planning. Value-based Software Engineering, Springer, 247-261.

[43] Greer, D., & Ruhe, G. (2004). Software release planning: an evolutionary and iterative

approach. Information and Software Technology, 46(4), 243-253.

[44] Missbauer, H. (2002). Aggregate order release planning for time-varying

demand. International Journal of Production Research, 40(3), 699-718.

[45] Al-Emran, A., & Pfahl, D. (2007). Operational planning, re-planning and risk analysis

for software releases. International Conference on Product Focused Software Process

Improvement, Springer, 315-329.

[46] Gorschek, T., & Davis, A. M. (2008). Requirements engineering: In search of the

dependent variables. Information and Software Technology, 50(1-2), 67-75.

[47] Hu, Q. P., Peng, R., Xie, M., Ng, S. H., & Levitin, G. (2011). Software reliability

modelling and optimization for multi-release software development processes.

Proceedings of 2011 IEEE International Conference on Industrial Engineering and

Engineering Management (IEEM), IEEE, 1534-1538.

[48] Kapur, P. K., Pham, H., Aggarwal, A. G., & Kaur, G. (2012). Two dimensional multi-

release software reliability modeling and optimal release planning. IEEE Transactions on

Reliability, 61(3), 758-768.

[49] Yang, J., Liu, Y., Xie, M., & Zhao, M. (2016). Modeling and analysis of reliability of

multi-release open source software incorporating both fault detection and correction

processes. Journal of Systems and Software, 115, 102-110.

[50] Pachauri, B., Dhar, J., & Kumar, A. (2015). Incorporating inflection S-shaped fault

reduction factor to enhance software reliability growth. Applied Mathematical

Modelling, 39(5-6), 1463-1469.

[51] Bosch, J., & Bosch-Sijtsema, P. (2010). From integration to composition: On the

impact of software product lines, global development and ecosystems. Journal of Systems

and Software, 83(1), 67-76.

[52] Hallsteinsen, S., Hinchey, M., Park, S., & Schmid, K. (2008). Dynamic software

product lines. Computer, 41(4).

[53] Clements, P., & Northrop, L. (2002). Software Product Lines. Addison-Wesley.

216

[54] Cascio, W. F., & Shurygailo, S. (2003). E-leadership and virtual

teams. Organizational Dynamics, 31(4), 362-376.

[55] Messerschmitt, D. G., & Szyperski, C. (2005). Software Ecosystem: Understanding

an Indispensable Technology and Industry. MIT Press Books, 1.

[56] Jansen, S., Brinkkemper, S., & Finkelstein, A. (2007). Providing transparency in the

business of software: A modeling technique for software supply networks. Establishing the

Foundation of Collaborative Networks, Springer, 677-686.

[57] Bastani, F. B., & Ramamoorthy, C. V. (1986). Input-domain-based models for

estimating the correctness of process control programs. Reliability Theory, 321-378.

[58] Goel, A. L. (1985). Software reliability models: Assumptions, limitations, and

applicability. IEEE Transactions on Software Engineering, 12, 1411-1423.

[59] Musa, J. D., Iannino, A., & Okumoto, K. (1990). Software reliability. Advances in

Computers, 30, 85-170.

[60] Mellor, P. (1987). Software reliability modelling: The state of the art. Information and

Software Technology, 29(2), 81-98.

[61] Xie, M. (1991). Software Reliability Modelling. World Scientific.

[62] Mills, H. (1972). On the Statistical Validation of Compute Programs. IBM Federal

Systems Division Report, 72-6015.

[63] Cai, K. Y. (1998). On estimating the number of defects remaining in software. Journal

of Systems and Software, 40(2), 93-114.

[64] Tohma, Y., Yamano, H., Ohba, M., & Jacoby, R. (1991). The estimation of parameters

of the hypergeometric distribution and its application to the software reliability growth

model. IEEE Transactions on Software Engineering, 17(5), 483-489.

[65] Jelinski, Z., & Moranda, P. (1972). Software reliability research. Statistical Computer

Performance Evaluation, 465-484.

[66] Schick, G. J., & Wolverton, R. W. (1978). An analysis of competing software

reliability models. IEEE Transactions on Software Engineering, 2, 104-120.

[67] Moranda, P. B. (1981). An error detection model for application during software

development. IEEE Transactions on Reliability, 30(4), 309-312.

[68] Belady, L. A., & Lehman, M. M. (1976). A model of large program development. IBM

Systems journal, 15(3), 225-252.

217

[69] Miller, D. R., & Sofer, A. (1985). Completely monotone regression estimates of

software failure rates. Proceedings of the 8th International Conference on Software

Engineering, IEEE Computer Society, 343-348.

[70] Coutinho, J. D. S. (1973). Software reliability growth. Proceedings of the IEEE

Symposium on Computer Software Reliability, 58-64.

[71] Wall, J. K., & Ferguson, P. A. (1977). Pragmatic software reliability prediction.

Annual Reliability and Maintainability Symposium, 485-488.

[72] Goel, A. L., & Okumoto, K. (1979). A Markovian model for reliability and other

performance measures of software systems. National Computer Conference, IEEE, 769-

774.

[73] Littlewood, B. (1979). Software reliability model for modular program

structure. IEEE Transactions on Reliability, 28(3), 241-246.

[74] Yamada, S., Tokuno, K., & Kasano, Y. (1998). Quantitative assessment models for

software safety/reliability. Electronics and Communications in Japan (Part II:

Electronics), 81(5), 33-43.

[75] Singpurwalla, N. D., & Soyer, R. (1985). Assessing (software) reliability growth using

a random coefficient autoregressive process and its ramifications. IEEE Transactions on

Software Engineering, 12, 1456-1464.

[76] Ho, S. L., & Xie, M. (1998). The use of ARIMA models for reliability forecasting and

analysis. Computers & Industrial Engineering, 35(1-2), 213-216.

[78] Xie, M., & Ho, S. L. (1999). Analysis of repairable system failure data using time

series models. Journal of Quality in Maintenance Engineering, 5(1), 50-61.

[79] Goel, A. L., & Okumoto, K. (1979). Time-dependent error-detection rate model for

software reliability and other performance measures. IEEE Transactions on

Reliability, 28(3), 206-211.

[80] Ohba, M. (1984). Software reliability analysis models. IBM Journal of Research and

Development, 28(4), 428-443.

[81] Yamada, S., & Osaki, S. (1985). Software reliability growth modeling: Models and

applications. IEEE Transactions on Software Engineering, 12, 1431-1437.

[82] Ohba, M., Yamada, S., Takeda, K., & Osaki, S. (1982). S-shaped software reliability

growth curve: How good is it?. Proceedings of COMPSAC'82, 38-44.

218

[83] Ohba, M., & Yamada, S. (1984). S-shaped software reliability growth models.

Proceedings of the 4th International Colloquium on Reliability and Maintainability, 430-

436.

[84] Yamada, S., Ohba, M., & Osaki, S. (1983). S-shaped reliability growth modeling for

software error detection. IEEE Transactions on Reliability, 32(5), 475-484.

[85] Yamada, S., Ohba, M., & Osaki, S. (1984). S-shaped software reliability growth

models and their applications. IEEE Transactions on Reliability, 33(4), 289-292.

[86] Yamada, S., Ohtera, H., & Narihisa, H. (1986). Software reliability growth models

with testing-effort. IEEE Transactions on Reliability, 35(1), 19-23.

[87] Nakagawa, Y. (1994). A connective exponential software reliability growth model

based on analysis of software reliability growth curves. IEICE Trans, 77, 433-442.

[88] Misra, S. C., Kumar, V., & Kumar, U. (2009). Identifying some important success

factors in adopting agile software development practices. Journal of Systems and

Software, 82(11), 1869-1890.

[89] Chow, T., & Cao, D. B. (2008). A survey study of critical success factors in agile

software projects. Journal of Systems and Software, 81(6), 961-971.

[90] Clarke, P., & O’Connor, R. V. (2012). The situational factors that affect the software

development process: Towards a comprehensive reference framework. Information and

Software Technology, 54(5), 433-447.

[91] Pham, H. (1993). Software reliability assessment: Imperfect debugging and multiple

failure types in software development. EGandG-RAAM-10737, Idaho National

Engineering Laboratory.

[92] Pham, H., & Zhang, X. (1997). An NHPP software reliability model and its

comparison. International Journal of Reliability, Quality and Safety Engineering, 4(03),

269-282.

[93] Pham, H., Nordmann, L., & Zhang, Z. (1999). A general imperfect-software-

debugging model with S-shaped fault-detection rate. IEEE Transactions on

Reliability, 48(2), 169-175.

[94] Hossain, S. A., & Dahiya, R. C. (1993). Estimating the parameters of a non-

homogeneous Poisson-process model for software reliability. IEEE Transactions on

Reliability, 42(4), 604-612.

[95] Pham, H. (2014). Loglog fault-detection rate and testing coverage software reliability

models subject to random environments. Vietnam Journal of Computer Science, 1(1), 39-

45.

219

[96] Pham, H., & Wang, H. (2001). A quasi-renewal process for software reliability and

testing costs. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and

Humans, 31(6), 623-631.

[97] Pham, H., & Zhang, X. (2003). NHPP software reliability and cost models with testing

coverage. European Journal of Operational Research, 145(2), 443-454.

[98] Pham, L., & Pham, H. (2000). Software reliability models with time-dependent hazard

function based on Bayesian approach. IEEE Transactions on Systems, Man, and

Cybernetics-Part A: Systems and Humans, 30(1), 25-35.

[99] Inoue, S., & Yamada, S. (2004). Testing-coverage dependent software reliability

growth modeling. International Journal of Reliability, Quality and Safety

Engineering, 11(04), 303-312.

[100] Jones, C. (1996). Software defect-removal efficiency. Computer, 29(4), 94-95.

[101] Kapur, P. K., GUPTA, A., & Jha, P. C. (2007). Reliability analysis of project and

product type software in operational phase incorporating the effect of fault removal

efficiency. International Journal of Reliability, Quality and Safety Engineering, 14(03),

219-240.

[102] Kapur, P. K., Pham, H., Anand, S., & Yadav, K. (2011). A unified approach for

developing software reliability growth models in the presence of imperfect debugging and

error generation. IEEE Transactions on Reliability, 60(1), 331-340.

[103] Teng, X., & Pham, H. (2006). A new methodology for predicting software reliability

in the random field environments. IEEE Transactions on Reliability, 55(3), 458-468.

[104] Tokuno, K., & Yamada, S. (2000). An imperfect debugging model with two types of

hazard rates for software reliability measurement and assessment. Mathematical and

Computer Modelling, 31(10-12), 343-352.

[105] Yamada, S., Hishitani, J., & Osaki, S. (1991). Test-effort dependent software

reliability measurement. International Journal of Systems Science, 22(1), 73-83.

[106] Zhang, X., Teng, X., & Pham, H. (2003). Considering fault removal efficiency in

software reliability assessment. IEEE Transactions on Systems, Man, and Cybernetics-

Part A: Systems and Humans, 33(1), 114-120.

[107] Huang, C. Y., & Lyu, M. R. (2005). Optimal release time for software systems

considering cost, testing-effort, and test efficiency. IEEE Transactions on

Reliability, 54(4), 583-591.

[108] Huang, C. Y. (2005). Performance analysis of software reliability growth models

with testing-effort and change-point. Journal of Systems and Software, 76(2), 181-194.

220

[109] Li, H., Li, Q., & Lu, M. (2008). Software reliability modeling with logistic test

coverage function. Proceedings of the 19th International Symposium on Software

Reliability Engineering (ISSRE), IEEE, 319-320.

[110] Lin, C. T., & Huang, C. Y. (2008). Enhancing and measuring the predictive

capabilities of testing-effort dependent software reliability models. Journal of Systems and

Software, 81(6), 1025-1038.

[111] Xie, M., & Zhao, M. (1992). The Schneidewind software reliability model revisited.

Proceedings of the 3rd International Symposium on Software Reliability Engineering

(ISSRE), IEEE, 184-192.

[112] Hwang, S., & Pham, H. (2009). Quasi-renewal time-delay fault-removal

consideration in software reliability modeling. IEEE Transactions on Systems, Man, and

Cybernetics-Part A: Systems and Humans, 39(1), 200-209.

[113] Sawyer, S., & Guinan, P. J. (1998). Software development: Processes and

performance. IBM Systems Journal, 37(4), 552-569.

[114] Roberts, T. L., Gibson, M. L., Fields, K. T., & Rainer, R. K. (1998). Factors that

impact implementing a system development methodology. IEEE Transactions on Software

Engineering, 24(8), 640-649.

[115] Garmabaki, A. H., Aggarwal, A. G., & Kapur, P. K. (2011). Multi up-gradation

software reliability growth model with faults of different severity. Proceedings of 2011

IEEE International Conference on Industrial Engineering and Engineering Management

(IEEM), IEEE, 1539-1543.

[116] Zhu, M., & Pham, H. (2017). A multi-release software reliability modeling for open

source software incorporating dependent fault detection process. Annals of Operations

Research. https://doi.org/10.1007/s10479-017-2556-6.

[117] Grottke, M., Nikora, A. P., & Trivedi, K. S. (2010). An empirical investigation of

fault types in space mission system software. Proceedings of 2010 IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), IEEE, 447-456.

[118] Laprie, J. C., Arlat, J., Beounes, C., & Kanoun, K. (1990). Definition and analysis of

hardware-and software-fault-tolerant architectures. Computer, 23(7), 39-51.

[119] Avizienis, A. (1985). The N-version approach to fault-tolerant software. IEEE

Transactions on Software Engineering, 12, 1491-1501.

[120] Grottke, M., & Trivedi, K. S. (2005). A classification of software faults. Journal of

Reliability Engineering Association of Japan, 27(7), 425-438.

221

[121] Grottke, M., & Trivedi, K. S. (2007). Fighting bugs: Remove, retry, replicate, and

rejuvenate. Computer, 40(2).

[122] Shetti, N. M. (2003). Heisenbugs and Bohrbugs: Why are they different. Techn. Ber.

Rutgers, The State University of New Jersey.

[123] Alonso, J., Grottke, M., Nikora, A. P., & Trivedi, K. S. (2013). An empirical

investigation of fault repairs and mitigations in space mission system software.

Proceedings of 2013 43rd Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), IEEE, 1-8.

[124] Yazdanbakhsh, O., Dick, S., Reay, I., & Mace, E. (2016). On deterministic chaos in

software reliability growth models. Applied Soft Computing, 49, 1256-1269.

[125] Deswarte, Y., Kanoun, K., & Laprie, J. C. (1998). Diversity against accidental and

deliberate faults. Proceedings of the Computer Security, Dependability and Assurance:

From Needs to Solution, IEEE, 171-181.

[126] Laprie, J. C. (1995). Dependable computing: Concepts, limits, challenges. Special

Issue of the 25th International Symposium on Fault-Tolerant Computing, 42-54.

[127] Kapur, P. K., & Younes, S. (1995). Software reliability growth model with error

dependency. Microelectronics Reliability, 35(2), 273-278.

[128] Pham, H. (1996). A software cost model with imperfect debugging, random life cycle

and penalty cost. International Journal of Systems Science, 27(5), 455-463.

[129] Pham, H., & Deng, C. (2003). Predictive-ratio risk criterion for selecting software

reliability models. Proceedings of the 9th International Conference on Reliability and

Quality in Design, 17-21.

[130] Goseva-Popstojanova, K., & Trivedi, K. (1999). Failure correlation in software

reliability models. Proceeding of the 10th International Symposium on Software Reliability

Engineering (ISSRE), IEEE, 232-241.

[131] Dai, Y. S., Xie, M., & Poh, K. L. (2005). Modeling and analysis of correlated

software failures of multiple types. IEEE Transactions on Reliability, 54(1), 100-106.

[132] Huang, C. Y., & Lin, C. T. (2006). Software reliability analysis by considering fault

dependency and debugging time lag. IEEE Transactions on Reliability, 55(3), 436-450.

[133] Zhu, M., & Pham, H. (2017). A two-phase software reliability modeling involving

with software fault dependency and imperfect fault removal. Computer Languages,

Systems & Structures, 53, 27-42.

222

[134] Hsu, C. J., Huang, C. Y., & Chang, J. R. (2011). Enhancing software reliability

modeling and prediction through the introduction of time-variable fault reduction

factor. Applied Mathematical Modelling, 35(1), 506-521.

[135] Musa, J. D. (1975). A theory of software reliability and its application. IEEE

Transactions on Software Engineering, 3, 312-327.

[136] Pham, H. (2014). A new software reliability model with Vtub-shaped fault-detection

rate and the uncertainty of operating environments. Optimization, 63(10), 1481-1490.

[137] Jolliffe, I. T. (2002). Principal Component Analysis. Springer.

[138] Montgomery, D. C. (2017). Design and Analysis of Experiments. John Wiley & Sons.

[139] Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to Linear

Regression Analysis. John Wiley & Sons.

[140] Lo, D., Li, J., & Khoo, S. C. (2011). Mining iterative generators and representative

rules for software specification discovery. IEEE Transactions on Knowledge and Data

Engineering, 23(2), 282-296.

[141] Panagiotou, D., & Mentzas, G. (2011). Leveraging software reuse with knowledge

management in software development. International Journal of Software Engineering and

Knowledge Engineering, 21(05), 693-723.

[142] Porter, A., Yilmaz, C., Memon, A. M., Krishna, A. S., Schmidt, D. C., & Gokhale,

A. (2006). Techniques and processes for improving the quality and performance of open‐

source software. Software Process: Improvement and Practice, 11(2), 163-176.

[143] Beck, K., & Gamma, E. (2000). Extreme Programming Explained: Embrace Change.

Addison-Wesley Professional.

[144] Van der Aa, Z., Bloemer, J., & Henseler, J. (2012). Reducing employee turnover

through customer contact center job quality. The International Journal of Human Resource

Management, 23(18), 3925-3941.

[145] Mohanty, R., Ravi, V., & Patra, M. R. (2013). Hybrid intelligent systems for

predicting software reliability. Applied Soft Computing, 13(1), 189-200.

[146] Sahoo, S. K., Criswell, J., & Adve, V. (2010). An empirical study of reported bugs

in server software with implications for automated bug diagnosis. 2010 ACM/IEEE 32nd

International Conference on Software Engineering, IEEE, 1, 485-494.

[147] Saliu, O., & Ruhe, G. (2005). Software release planning for evolving

systems. Innovations in Systems and Software Engineering, 1(2), 189-204.

223

[148] Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,

M., & Kern, J. (2001). Manifesto for agile software development. www.agilemanifesto.org.

[149] Szőke, Á. (2011). Conceptual scheduling model and optimized release scheduling

for agile environments. Information and Software Technology, 53(6), 574-591.

[150] Li, L., Harman, M., Letier, E., & Zhang, Y. (2014). Robust next release problem:

Handling uncertainty during optimization. Proceedings of the 2014 Annual Conference on

Genetic and Evolutionary Computation, ACM, 1247-1254.

[151] Etgar, R., Gelbard, R., & Cohen, Y. (2017). Optimizing version release dates of

research and development long-term processes. European Journal of Operational

Research, 259(2), 642-653.

[152] Fritsch, B. L., Bibr, V., Blagojevic, V., Goring, B. R., Shenfield, M., & Vitanov, K.

B. (2010). U.S. Patent No. 7,747,995. Washington, DC: U.S. Patent and Trademark Office.

[153] Staron, M., Meding, W., & Palm, K. (2012). Release readiness indicator for mature

agile and lean software development projects. International Conference on Agile Software

Development, Springer, 93-107.

[154] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to

Statistical Learning. Springer.

[155] Fang, C. C., & Yeh, C. W. (2016). Effective confidence interval estimation of fault-

detection process of software reliability growth models. International Journal of Systems

Science, 47(12), 2878-2892.

[156] Xie, M., & Yang, B. (2003). A study of the effect of imperfect debugging on software

development cost. IEEE Transactions on Software Engineering, 29(5), 471-473.

[157] Rana, R., Staron, M., Berger, C., Hansson, J., Nilsson, M., Törner, F., Meding, W.,

& Höglund, C. (2014). Selecting software reliability growth models and improving their

predictive accuracy using historical projects data. Journal of Systems and Software, 98, 59-

78.

[158] Yan, H. (2013). NHPP software reliability growth model incorporating fault

detection and debugging. 2013 IEEE 4th International Conference on Software

Engineering and Service Science (ICSESS), IEEE, 225-228.

[159] Li, Q., & Pham, H. (2017). A testing-coverage software reliability model considering

fault removal efficiency and error generation. PloS one, 12(7), e0181524.

[160] Huang, C. Y. (2005). Cost-reliability-optimal release policy for software reliability

models incorporating improvements in testing efficiency. Journal of Systems and

Software, 77(2), 139-155.

224

[161] Huang, C. Y., Luo, S. Y., & Lyu, M. R. (1999). Optimal software release policy

based on cost and reliability with testing efficiency. Proceedings of the 23rd Annual

International Computer Software and Applications Conference, IEEE, 468-473.

[162] Huang, C. Y., & Kuo, S. Y. (2002). Analysis of incorporating logistic testing-effort

function into software reliability modeling. IEEE Transaction on Reliability, 51(3), 261-

270.

[163] Zhang, X., Jeske, D. R., & Pham, H. (2002). Calibrating software reliability models

when the test environment does not match the user environment. Applied Stochastic

Models in Business and Industry, 18(1), 87-99.

[164] Vaidyanathan, K., & Trivedi, K. S. (2001). Extended classification of software faults

based on aging. Fast Abstracts, Proceedings of the 12th International Symposium on

Software Reliability Engineering (ISSRE), IEEE.

[165] Wood, A. (1996). Predicting software reliability. Computer, 29(11), 69-77.

[166] Jeske, D. R., & Zhang, X. (2005). Some successful approaches to software reliability

modeling in industry. Journal of Systems and Software, 74(1), 85-99.

[167] Mehlawat, M. K. (2013). A multi-choice goal programming approach for COTS

products selection of modular software systems. International Journal of Reliability,

Quality and Safety Engineering, 20(06), 1350026.

[168] Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., & Natt och Dag, J. N. (2001).

An industrial survey of requirements interdependencies in software product release

planning. Proceedings of the 5th IEEE International Symposium on Requirements

Engineering, IEEE, 84-91.

[169] Ho, J., & Ruhe, G. (2013). Releasing sooner or later: An optimization approach and

its case study evaluation. Proceedings of the 1st International Workshop on Release

Engineering, IEEE, 21-24.

[170] Kachitvichyanukul, V. (2012). Comparison of three evolutionary algorithms: GA,

PSO, and DE. Industrial Engineering and Management Systems, 11(3), 215-223.

[171] Raymond, E. S. (2001). The cathedral and the bazaar: Musings on Linux and open

source by an accidental revolutionary (2nd ed.). Sebastapol, CA: O’Reilly.

[172] Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., & Zhai, C. (2006). Have things changed

now? An empirical study of bug characteristics in modern open source software.

Proceedings of the 1st workshop on Architectural and System Support for Improving

Software Dependability, ACM, 25-33.

https://www.google.com/search?safe=active&q=O%27REILLY+MEDIA&stick=H4sIAAAAAAAAAOPgE-LQz9U3SDIsNlXiBLEM04osk7TUMsqt9JPzc3JSk0sy8_P0y4syS0pS8-LL84uyi60KSpNyMoszUosA8PMN1j8AAAA&sa=X&ved=2ahUKEwjtpK2J_srcAhXMuFkKHUCbCfwQmxMoATAWegQICBAw

225

[173] Li, X., Li, Y. F., Xie, M., & Ng, S. H. (2011). Reliability analysis and optimal

version-updating for open source software. Information and Software Technology, 53(9),

929-936.

[174] Zhu, M., & Pham, H. (2016). A software reliability model with time-dependent fault

detection and fault removal. Vietnam Journal of Computer Science, 3(2), 71-79.

[175] https://www.apache.org/.

[176] Fiondella, L., Rajasekaran, S., & Gokhale, S. S. (2013). Efficient software reliability

analysis with correlated component failures. IEEE Transactions on Reliability, 62(1), 244-

255.

[177] Condori-Fernandez, N., & Lago, P. (2018). Characterizing the contribution of quality

requirements to software sustainability. Journal of Systems and Software, 137, 289-305.

[178] El-Sebakhy, E. A. (2009). Software reliability identification using functional

networks: A comparative study. Expert Systems with Applications, 36(2), 4013-4020.

[179] Ponnurangam, D., & Uma, G. V. (2005). Fuzzy complexity assessment model for

resource negotiation and allocation in agent-based software testing framework. Expert

Systems with Applications, 29(1), 105-119.

[180] Storey, M. A., Zagalsky, A., Figueira Filho, F., Singer, L., & German, D. M. (2017).

How social and communication channels shape and challenge a participatory culture in

software development. IEEE Transactions on Software Engineering, 43(2), 185-204.

[181] Singer, L., Figueira Filho, F., Cleary, B., Treude, C., Storey, M. A., & Schneider, K.

(2013). Mutual assessment in the social programmer ecosystem: An empirical

investigation of developer profile aggregators. Proceedings of 2013 conference on

Computer Supported Cooperative Work, ACM, 103-116.

[182] Wenger, E. C., & Snyder, W. M. (2000). Communities of practice: The

organizational frontier. Harvard Business Review, 78(1), 139-146.

[183] Jenkins, H., Purushotma, R., Weigel, M., Clinton, K., & Robison, A. J.

(2009). Confronting the Challenges of Participatory Culture: Media Education for the 21st

Century. MIT Press.

[184] Harman, M., Jia, Y., & Zhang, Y. (2012). App store mining and analysis: MSR for

app stores. Proceedings of the 9th IEEE Working Conference on Mining Software

Repositories (MSR), IEEE, 108-111.

[185] Ghazawneh, A., & Henfridsson, O. (2013). Balancing platform control and external

contribution in third‐party development: The boundary resources model. Information

Systems Journal, 23(2), 173-192.

226

[186] Basole, R. C., & Karla, J. (2011). On the evolution of mobile platform ecosystem

structure and strategy. Business & Information Systems Engineering, 3(5), 313.

[187] Radatz, J., Geraci, A., & Katki, F. (1990). IEEE standard glossary of software

engineering terminology. IEEE Standard, 610121990(121990), 3.

[188] Pham, T., & Pham, H. (2017). A generalized software reliability model with

stochastic fault-detection rate. Annals of Operations Research.

https://doi.org/10.1007/s10479-017-2486-3.

[189] Mikosch, T. (1998). Elementary Stochastic Calculus, with Finance in View. World

Scientific.

[190] Mörters, P., & Peres, Y. (2010). Brownian Motion. Cambridge University Press.

[191] Melo, W. L., Briand, L., & Basili, V. R. (1998). Measuring the impact of reuse on

quality and productivity in object-oriented systems. Technical Report, University of

Maryland, Department of Computer Science, College Park, MD, USA.

[192] McGee, S., & Greer, D. (2010). Sources of software requirements change from the

perspectives of development and maintenance. International Journal on Advances in

Software, 3(1-2), 186-200.

[193] Harker, S. D., Eason, K. D., & Dobson, J. E. (1993). The change and evolution of

requirements as a challenge to the practice of software engineering. Proceedings of IEEE

International Symposium on Requirements Engineering, IEEE, 266-272.

[194] Nurmuliani, N., Zowghi, D., & Powell, S. (2004). Analysis of requirements volatility

during software development life cycle. Proceedings of 2004 Australian Software

Engineering Conference, IEEE, 28-37.

[195] Carlshamre, P. (2002). Release planning in market-driven software product

development: Provoking an understanding. Requirements Engineering, 7(3), 139-151.

[196] Nurmuliani, N., Zowghi, D., & Williams, S. P. (2004). Using card sorting technique

to classify requirements change. Proceedings of the 12th IEEE International Requirements

Engineering Conference, IEEE, 240-248.

[197] Shi, L., Wang, Q., & Li, M. (2013). Learning from evolution history to predict future

requirement changes. Proceedings of the 21st IEEE International Requirements

Engineering Conference, IEEE, 135-144.

[198] Wheeler, D. A. (2007). Why open source software/free software (OSS/FS, FLOSS,

or FOSS)? Look at the numbers. https://www.dwheeler.com/oss_fs_why.html.

227

[199] Zhou, Y., & Davis, J. (2005). Open source software reliability model: An empirical

approach. ACM SIGSOFT Software Engineering Notes, ACM, 30(4),1-6.

[200] Cosgrove, L. (2003). Confidence in open source growing. CIO Research Report.

[201] Loconsole, A., & Borstler, J. (2005). An industrial case study on requirements

volatility measures. Proceedings of the 12th Asia-Pacific Software Engineering Conference

(APSEC'05), IEEE.

[202] Zhu, M., & Pham, H. (2018). A Software reliability model incorporating martingale

process with gamma-distributed environmental factors. Annals of Operations Research.

https://doi.org/10.1007/s10479-018-2951-7.

[203] https://www.seguetech.com/waterfall-vs-agile-methodology/.

[204] Peng, R., Li, Y. F., Zhang, W. J., & Hu, Q. P. (2014). Testing effort dependent

software reliability model for imperfect debugging process considering both detection and

correction. Reliability Engineering & System Safety, 126, 37-43.

[205] Zhang, X. (1999). Software reliability and cost models with environmental factors.

Doctor of Philosophy Dissertation, Department of Industrial and Systems Engineering,

Rutgers, The State University of New Jersey, New Brunswick, New Jersey.

[206] Teng, X. (2001). A non-homogeneous Poisson process software reliability growth

model for N-version programming systems. Doctor of Philosophy Dissertation,

Department of Industrial and Systems Engineering, Rutgers, The State University of New

Jersey, New Brunswick, New Jersey.

