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The increasing dependence of our modern society on software systems has driven the 

development of software product to be more competitive and time-consuming. At the same 

time, large-scale software development is still considered as a complex, effort consuming, 

and expensive activity, given the influence of the transitions in software development, 

which are the adoption of software product lines, software development globalization, and 

the adoption of software ecosystems. Hence, the consequence of software failures becomes 

costly, and even dangerous. Therefore, in this dissertation, we have not only integrated 

software practitioners’ opinions from a wide variety of industries, but also developed 

software reliability models by addressing different practical problems observed in software 

development practices. 

 

We first revisit 32 environmental factors affecting software reliability in single-release 

software development and compare with the findings 15 years ago [27, 28]. Later, we 

investigate the environmental factors affecting software reliability in multi-release 

software development and compare the impact of environmental factors between the 
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development of multi-release and single-release software to provide a comprehensive 

analysis for software development practices. 

 

Software faults are classified into two groups, Type I (independent) faults and Type II 

(dependent) faults. Two phases software debugging process are introduced according to 

different types of faults. Firstly, a one-phase software reliability model is proposed with 

the assumption that there is only Type II faults exist in the program given Type I faults 

have been removed in the preliminary testing phase. Later, a two-phase software reliability 

model is developed in consideration of Type I and Type II faults, fault dependency, and 

imperfect fault removal. 

 

Given software multiple releases are commonly adopted in industry, a software reliability 

model for multi-release software product is proposed. The remaining faults from previous 

release, and the newly introduced faults, generated from the newly added features, are both 

considered into the model development. In addition, the detection of the new fault in the 

development of the next release depends on the remaining faults from previous release and 

the newly introduced faults from the newly added features. 

 

Finally, given the environment factors studies in the early stage of this dissertation, the 

single-environmental-factor software reliability model under the Martingale framework in 

consideration of environmental factor, Percentage of Reused Modules, and the randomness 

caused by this environmental factor is developed. Later, we propose a generalized multiple-

environmental-factors model framework incorporating multiple environmental factors and 



iv 

 

the randomness caused by these environmental factors. We further propose two specific 

multiple-environmental-factors models considering two environmental factors, gamma-

distributed Percentage of Reused Modules, and gamma-distributed or beta-distributed 

Frequency of Program Specification Change. 

 

In sum, this dissertation firstly investigates 32 environmental factors affecting software 

reliability in the development of single-release and multiple-release software and further 

compares the findings of these two studies regarding environmental factors and 

development phase. Software reliability models are developed in each chapter in 

consideration of different problems/applications in practices, such as software fault 

dependency, imperfect fault removal, software multiple releases, and the impact of 

environmental factors on software reliability during the development process. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Importance of Reliable Software 

In today’s technological world, almost everyone is directly or indirectly in contact with 

computer software. Computers have been rapidly expanding to a wide array of complex 

machinery and equipment applied in our everyday safety, security, infrastructure, 

transportation system, financial management, and so on. Since software product is 

extensively involved in various industries and service-based applications, the increasing 

dependence of our modern society on software-driven systems has led the development of 

software product to be very competitive and time-consuming [1]. Unlike hardware system, 

software cannot break down or wear out during its life cycle, but can fail or malfunction 

under certain configuration within specific condition [2]. Hence, the development, 

measurement and qualifying of software are challenging yet critical in such a fast-growing 

technological society. 

 

In 1980, Lehman [3] summarized the Laws of Program Evolution. The first law, 

Continuing Change, expressed the universally observed fact that large programs are never 

completed. They just continue to evolve until the more cost-effective updated version to 

replace the systems. The second law, Increasing Complexity, could also be viewed as an 

instance of the second law of thermodynamics. As an evolving program is continually 

changed, its complexity, reflecting deteriorating structure, increases as well, unless the 
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mission is done, or maintenance is needed. The third law, The Fundamental Law of 

Program Evolution, subjects to dynamics which make the programming process, measures 

system attributes and collaborative projects, and self-regulating with statistically-proven 

trends and invariances. The fourth law, Conservation of Organizational Stability (Invariant 

Work Rate), and the fifth law, Conservation of familiarity, both lead to the third law. The 

fourth law more focuses on the steadiness of multiloop self-stabilizing systems. A well-

established organization is good at avoiding the dramatic change and particularly 

discontinuities in an increasing growth of an organization. Especially in the past two 

decades, the complexity of the task that software system performs has grown dramatically, 

faster than hardware due to the fast-paced high technology development [4]. 

 

A modern software product is prone to include a large number of modules, system 

components and Lines of Code (LOC) [4 – 5, 7 - 9]. The size of software product is no 

longer measured in terms of thousands of lines of code, but millions of lines of code. The 

latest investigation states that more than 10 Microsoft commercial software products could 

have more than 600 million LOC [6]. In view of such a great amount of LOC, complexity 

of software product, domain knowledge of programmer/tester, testing methodologies, 

testing coverage, and testing environment should be all carefully taken into account in 

software development. 

 

Since the inception of electronic computing in the late 1940s, the development race of 

computer industry has led to unprecedented process [10]. Powerful, inexpensive computer 

workstation replaced the drafting boards of circuit and computer designers. Moreover, an 
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increasing number of design steps was automated. Computer and communication 

industries have grown into the largest, amongst the new rising industries in twenty 

centuries [11]. Hardware advances have allowed software programmers to create 

wonderful coding and develop new features and functionality [11]. However, there is an 

existing uneven progress between software and hardware in the computer revolution in the 

past few decades. Based on the latest technology review, hardware is leaving software 

behind. As a matter of fact, software is relied on less firm foundation, at the same time, 

carries a larger burden than hardware in operation. Given the current technology on 

manufacturing and electrical engineering, software has more potentials to allow designers 

to contemplate more ambitious systems in consideration of a broader multidisciplinary 

scope [12, 13]. 

 

The nonperformance and failures of software system are inconvenient, sometimes can lead 

to severe consequence especially in aerospace engineering and national defense systems. 

In March 2015 [14], a software glitch carried in software package of Lockheed Martin F-

35 Joint Strike Fighter aircraft had made the aircraft could not correctly detect the target. 

The sensor on the plane cannot distinguish the difference between a singular and multiple 

threats. Additionally, different F-35 aircraft provides different detection information even 

they are aiming at the same threat, which depends on the angles they are aiming at and 

what their sensors have received. The delivery date had to be postponed as well because of 

this issue. 
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Software failures can also cause serious consequence in automobile. Toyota had to recall 

almost 2 million Prius hybrid vehicles, in order to fix a software glitch along with its engine 

control units (ECUs) in February 2014 [14]. A malfunction within the car's hybrid drive 

system caused by software glitch could, in certain circumstances, cut the system's power 

and cause the car to an unscheduled halt. A software glitch affecting the ECUs controlling 

the motor/generator and hybrid system could put extra thermal stress on certain transistors 

under certain condition. The same software issue recurred in July 2015, which has resulted 

in the recall of 625,000 Prius cars globally. 

 

Software failures have affected healthcare system as well. Emergency services were 

unavailable for around six hours across seven U.S. states in April 2014 [14]. The incident 

had a major impact on 81 call centers, meaning about 6,000 people made 911 calls that 

were unable to connect in these seven states. There is a study announced by Federal 

Communications Commission found that the cause of service unavailable was an entirely 

preventable software error. 

 

The nonperformance and failures of software are expensive. A study carried by National 

Institute of Standards & Technology in 2002 found that inadequate infrastructures for 

fixing software bugs cost the U.S economy $59.5 billion every year. What about the global 

cost on fixing software bugs every year? This study also estimated that more than a third 

of software bugs could be eliminated by improving software testing scheduling and 

methodology [15]. 
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Hence, developing reliable software is a major challenge to software industry, technology 

industry, and other related industries, and this leads to the fact that Software Reliability 

Engineering is popular in both academia and industry. 

 

1.2 Software Reliability Engineering 

1.2.1 Trends in Software Development 

Large-scale software development is very complex, effort consuming and expensive 

activity. Even though many innovations and improvements have been proposed on 

software architecting system and development approach, the large-scale software 

development is still largely unpredictable and error-prone [51]. 

 

Recently, Bosch-Sijtsema [51] discussed three trends in software development, which 

further accelerate the complexity of large-scale software development. The first trend is 

the increasing adoption of software product lines. A software product line consists of a 

software platform shared by a group of products. Each software product can select and 

configure components in the platform and extend the platform with desirable functionality. 

At the same time, the platform consists of many components with associated team. Each 

team takes charge of one product or several products. Software development is taken place 

within many teams in the organization. During the development cycle, interactions and 

communications between teams are much than traditional software development teams. 

Some research identified the adoption of software product lines allows 50 – 75% of 

development expenses reduction and decreases the defect density if the adoption is 



6 

 

 

successful [52, 53]. However, the adoption of software product lines also brings new level 

of dependency in the organization in software development. 

 

The second trend is software development globalization. Recent years, many companies 

have multiple software development sites globally, or partnered with other remote 

companies especially located in India and China. There are many advantages in terms of 

software development, e.g., cycle time reduction, travel cost reduction, less communication 

issues about user experiences, faster response to customers [54]. At the same time, software 

development globalization brings challenges given the culture difference, time zone, 

software engineering maturity in every country, and technical skills between different 

countries. 

 

The third trend is the adoption of software ecosystems. A software ecosystem is defined as 

a set of businesses functioning as a unit and interacting with a shared market for software 

and services. There are relationships amongst those units which are supported by a 

technological platform, operating through the exchange of information, resources, and 

artifacts [55, 56]. Software ecosystem takes external developer, domain experts and users, 

hence, the community-centric collaboration and coordination are very important, which are 

similar to the adoption of software product lines, as discussed in the first trend of software 

development. Thus, the dependencies between components will increase and the 

complexity of software development will increase accordingly [51]. 
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1.2.2 Software Reliability Model 

As discussed in Section 1.2.1, given large-scale software development is an increasing-

complexity, effort-consuming, and expensive activity, how can we assure software quality 

is one of the challenging problems in industry. One of the fundamental quality 

characteristics is reliability. It is generally accepted that reliability is the key factor in 

software quality since it quantifies failures and misbehaviors of the product. As recognized 

in both industry and academia, reliability is an essential measurement metric for developing 

a robust and high-quality software product [1, 12, 13]. According to the definition given 

by ANSI, software reliability is defined as the probability that a software system can 

perform its designed function without failure during a specified time on a given set of 

inputs under defined environments [12]. 

 

On the other hand, the increasing complexity and shortened iteration cycle of software 

products bring in a decreasing average market life expectancy [15]. Thus, since 2000s, 

there is a great attention shift from hardware development and testing to improve software 

quality and reliability with the purpose of wining more market share. 

 

Moreover, high reliability is desirable if software company plans to reduce the total cost of 

software product upon the economic point of view. It is undoubtedly that lower reliability 

software product not only results in the negative impact regarding customer satisfaction, 

but also brings in the additional cost occurred during the operation phase because of fixing 

a software fault in the operation phase costs more resource compared with in-house testing. 

Since the fixing cost for a software fault in the operation phase is much higher than in-
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house testing phase, most of organizations try to minimize these expenditures occurred in 

the operation phase. That is why many high technology organizations need to release 

multiple versions for a software product instead of fixing software faults in the operation 

phase to improve product reliability and introduce new features to improve the user 

experience as well. 

 

Therefore, it is necessary to develop a practical and applicable model which can capture 

the software failure growth trend, predict the number of failures, predict software reliability 

given a specific period of operation time, propose the optimal release time of new products, 

and schedule the delivery time for the next release based on the predetermined level of 

reliability. Software reliability models are applied to evaluate software reliability and 

capture the failure growth trend in the past few decades. There are several ways to measure 

software reliability. A practical and common one is model software reliability by utilizing 

the past failure behavior obtained from testing phase. 

 

There are two main types of software reliability models: the deterministic and the 

probabilistic. The number of distinct operators and operands, the number of errors, and the 

number of machine instructions in the program are investigated in deterministic software 

reliability model. Performance measures of the deterministic type are obtained by 

analyzing the program texture and do not involve any random event. 

 

Two well-known models are: Halstead’s software metric and McCabe’s cyclomatic 

complexity metric. Halstead’s software metric is used to estimate the number of errors in 
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the program [16]. McCabe’s cyclomatic complexity metric is used to determine the upper 

bound for estimating the number of remaining software defects [17]. In sum, these models 

provide a quantitative way of software measurement, however, they mainly focus on 

analyzing program texture and have not considered any random event [18] in the models. 

 

The probabilistic model considers the failure occurrence and the fault removal as 

probabilistic events. The probabilistic software reliability models can be classified into 

different groups as stated in references [18, 19]. 

 

(1) Error seeding 

(2) Failure rate 

(3) Curve fitting 

(4) Reliability growth 

(5) Markov structure 

(6) Time series 

(7) Nonhomogeneous Poisson process 

 

In this dissertation, we firstly focus on investigating the significant environmental factors 

affecting software reliability during single-release and multi-release software development, 

correlation between environmental factors, significant environmental factors in each 

development phase based on the applications of statistical learning methodologies. 

Meanwhile, comparisons of the significant environmental factors, correlation between 

environmental factors, and principle components between the development of single-
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release and multi-release software product are discussed. Secondly, we propose a two-

phase software reliability model incorporating software dependency and imperfect fault 

removal process. Different types of software faults are defined. A two-phase debugging 

process is also proposed according to different types of software faults. Thirdly, we develop 

a multi-release software reliability model in consideration of the remaining faults from 

previous release and the newly introduced faults, generated from the new-introduced 

features for the development of current release. Fourthly, given the significant impact of 

environmental factors on software reliability, we incorporate single/multiple 

environmental factor(s) in software reliability models. We not only consider environmental 

factors in the models but also the randomness caused by these environmental factors under 

the Martingale framework. All software reliability models developed in this dissertation 

are based on nonhomogeneous Poisson process assumption. Thus, we will provide detailed 

discussion of nonhomogeneous Poisson process in the next section. 

 

1.2.3 General Theory of Nonhomogeneous Poisson Process 

Nonhomogeneous Poisson Process (NHPP) has been successfully applied to model 

software reliability in the past few decades. Let 𝑁(𝑡) denotes the cumulative number of 

software failures by time t. The counting process {𝑁(𝑡), 𝑡 ≥ 0} is said to be a NHPP with 

intensity function 𝜆(𝑡), 𝑡 ≥ 0. The probability of exactly n failures occurring during the 

time interval (0, 𝑡) for the NHPP is given by 

 

 𝑃 {𝑁(𝑡) = 𝑛} =
[𝑚(𝑡)]𝑛

𝑛!
𝑒−𝑚(𝑡)     for 𝑛 = 0, 1, 2, …                      (1.1) 
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     𝑚(𝑡) = 𝐸[𝑁(𝑡)] = ∫𝜆(𝑠)𝑑𝑠

𝑡

0

                                             (1.2) 

 

where 𝑚(𝑡) is the expected number of failures up to time t, which is also known as the 

mean value function. 

 

Note that the forms of mean value function vary with different assumptions. In NHPP, the 

stationary assumption is relaxed compared with Poisson process. In other words, 𝑁(𝑡) is 

Poisson-distributed with a time-dependent failure intensity function 𝜆(𝑡), while Poisson 

process holds the stationary assumption, 𝑚(𝑡) =  𝜆𝑡. 

 

A general NHPP model includes the following assumptions. 

 

(1) The failure process has an independent increment. 

(2) The failure rate of the process is given by  

𝑃{𝑁(𝑡 + 𝛥𝑡) − 𝑁(𝑡) = 1} = 𝜆(𝑡)𝛥𝑡 + 𝑜(𝛥𝑡) 

(3) During a small interval 𝛥𝑡, the probability of more than one failure is negligible, 

that is 

𝑃{𝑁(𝑡 + 𝛥𝑡) − 𝑁(𝑡) ≥ 2} = 𝑜(𝛥𝑡) 

 

where 𝑜(𝛥𝑡) represents a quantity which tends to be zero for a small 𝛥𝑡. The instantaneous 

failure intensity function 𝜆(𝑡) is defined as 
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  𝜆(𝑡) = lim
𝛥𝑡→0

𝑅(𝑡) − 𝑅(𝛥𝑡 + 𝑡)

𝛥𝑡𝑅(𝑡)
=
𝑓(𝑡)

𝑅(𝑡)
                                   (1.3)  

 

where 

 

𝑅(𝑡) = 𝑃[𝑁(𝑡) = 0] = 𝑒−𝑚(𝑡). 

 

 Given 𝜆(𝑡), the mean value function 𝑚(𝑡) is  

 

𝑚(𝑡) = ∫𝜆(𝑠)𝑑𝑠

𝑡

0

.                                                       (1.4) 

 

One of the main objectives of NHPP software reliability model is to derive appropriate 

mean value function 𝑚(𝑡).  The failure intensity function is equivalent to the derivative of 

mean value function, 𝜆(𝑡) = 𝑚′(𝑡). Different assumptions on the fault detection and fault 

removal process lead to different failure intensity function, 𝜆(𝑡). Reliability and other 

related measurements can be obtained by solving the differential equation, 𝑚′(𝑡). The least 

square estimate or maximum likelihood estimate mostly will be utilized to estimate the 

unknown parameters. 

 

Software reliability 𝑅(𝑡) is defined as the probability that a software failure does not occur 

in (0, 𝑡), that is 
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     𝑅(𝑡) = 𝑃[𝑁(𝑡) = 0] = 𝑒−𝑚(𝑡)                                        (1.5) 

 

In general, during time interval (𝑡, 𝑡 + 𝑥), software reliability can be described as  

 

𝑅(𝑥|𝑡) = 𝑃[𝑁(𝑡 + 𝑥) − 𝑁(𝑡) = 0] = 𝑒−[𝑚(𝑡+𝑥)−𝑚(𝑡)]                     (1.6) 

 

1.3 Importance of Software Testing 

The commonest and easiest way to improve software reliability is focusing on in-house 

testing. Myers [20] defined software testing as a process of executing a program with the 

intent of finding errors. There are two fundamental rules in software testing. Firstly, it is 

intended to detect as many faults as possible during in-house testing phase and remove the 

detected faults from software system. Secondly, software failure data will be collected to 

predict system reliability, estimate the remaining faults, and schedule the product delivery 

date. 

 

Owing to the fact that software debugging, testing and verification are accounted for 50 – 

70% of a software product’s development cost. Indeed, software testing is always defined 

as a difficult, time-consuming, and expensive section in software development [21, 22]. 

Software debugging cost even goes higher if debugging is carried out in the operation phase. 

In practice, it is unlikely to release bug-free software product owning to its nature limitation. 

Post-deployment failures are inevitable in a complex software. 
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It is generally accepted that the longer time spent on software testing, the less faults that 

software will carry and the more reliable of software will be. However, this is not a practical 

approach. Exhaustive testing to execute all possible inputs unlikely happens since too many 

possible combinations result in little improvement on system reliability [23, 24]. Moreover, 

full execution tracing is usually impractical for the complex software program due to the 

limitation of cost and resource [21]. Furthermore, after software reaches a certain level of 

refinement, any further effort on removing faults will cause an exponentially increase in 

the total development cost but not much increase in reliability assessment [25, 26]. Thus, 

how to test software efficiently and meet the determined reliability is challenging task for 

both researchers and practitioners. 

 

1.4 Transitions of Environmental Factors Affecting Software Reliability  

In this section, we firstly revisit 32 environmental factors defined in reference [27] fifteen 

years ago and analyze their impact on software reliability during software development 

based on a current survey distributed to software development practitioners. Secondly, 

given the application of agile development and increasing popularity of multi-release 

software products in many organizations, we conduct a new study investigating the impact 

level of these 32 environmental factors on affecting software reliability in the development 

of multi-release software to provide a sound and concise guidance to software practitioners 

and researchers [30]. 

 

Software development process has gone through a great change during the past one and 

half decades. The rise of the Internet had led to a rapid growth in the demand for 
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international information display and email systems on the World Wide Web. Software 

programmers are required to handle various illustrations, maps, photographs, and other 

images, plus simple animations at a rate we have never seen before. The high technology 

has an ever-increasing impact on daily life, which drives the software release cycle 

becomes shorter than before, for instance, many companies have shortened their software 

release cycle from traditional 18 months to 3 months, in order to respond the fast-changing 

and competitive market [31, 32]. 

  

Moreover, as the high technology gets more involved in our everyday life, there are a wide 

variety of computational devices like mobile phones, tablet PCs, laptops, desktops, 

notebooks, and so on [33], which also brings more challenges to software developers such 

as application maintenance, device consistency, and dynamic version settings [34]. 

Customers also have more requirements on the specific design and functionality of the 

software product. A user-friendly interface, involved in the interaction amongst users, 

designers, hardware system and software systems, has been emphasized to a great extent 

nowadays. 

 

Furthermore, for practitioners and researchers, the programming skills, programming 

language, domain knowledge, and even the programmer organization and team size are 

different compared with fifteen years ago. Finally, software development is distributed 

across multiple locations as the development of globalization [35]. Some studies [36 - 38] 

stated that the cross-site work takes much longer time and requires much more effort, even 

though the work size and complexity is similar. 
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Given a great number of changes stated above, thus, it is time to investigate the transition 

of significant environmental factors affecting software reliability, the time distribution in 

each phase during software development, the principle components, the significant 

environmental factors in each phase, and the correlations between some of the 

environmental factors, and compare the findings with previous studies [27, 28] for the 

single-release software product and multi-release software product [29, 30]. 

 

1.5 Importance of Multi-Release Software Product 

As the software development moves further away from the rigid and monolithic model, the 

importance of software multiple releases is brought to the vanguard. It is unlikely to deliver 

all features that customers wanted in the single release because of the limited budget, 

unavailable resource, estimated risk, and constrained working schedules. Staying 

competitive in the market and keeping profitable for a software product are difficult with 

having only a single release especially when rival releases a new release carrying more 

attractive features and satisfying more customer requirements [39]. As a result of multiple 

releases planning, software organization has more competitive and overwhelming 

advantages to balance the competing stakeholder’s demands and benefits according to the 

available resource [40, 41]. 

 

On the other hand, large software system continually desires to align with the changing 

customer requirements for the sake of market share. In order to obtain the feedback from 

the users earlier, figure out what customers really look for, and assign a lower software 
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development cost, a certain portion of increments on the requirements for multi-release 

product is essential for the growth of an organization [42 - 44]. Thus, software organization 

needs to modify the parts of the existing modules to extend the current functionality, 

usability, and understandability by adding new features and correcting the problems from 

previous release [45, 46]. 

 

Additionally, agile software development is getting more attention in recent years. Agile is 

an iterative and team-based approach, which emphasizes the rapid delivery of an 

application in complete functional components [203]. The wide adoption of agile 

methodology also promotes software multiple releases. 

 

Hence, software multiple releases are critical to keep software company stay competitive 

in the market. Only a few researchers proposed multi-release software reliability models 

[47 - 50], however, most reliability models only optimized software cost model to obtain 

the optimal release time, instead of considering software faults from different releases. 

Thus, this section focuses on developing software reliability model in terms of multi-

release software incorporating the remaining faults from previous release and the newly 

introduced faults resulting from the newly introduced features in the development of the 

next release. 

 

1.6 Overview of the Dissertation 

This reminder of this dissertation is stated as follows. In Chapter 1, a general introduction 

of research background, current research limitation, and the motivation of this dissertation 
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are discussed. In Chapter 2, literatures that are related to NHPP software reliability model 

are reviewed. In Chapter 3, the objectives of this dissertation are presented. 

 

In Chapter 4, a comparison analysis of environmental factors affecting software reliability 

is presented for the development of single-release software product and multi-release 

software product. This chapter aims to compare what have been changed for the past fifteen 

years regarding the environmental factors affecting software reliability in the development 

of single-release software product, and compare the environmental factors affecting 

software reliability, principles components, and development phase between single-release 

and multi-release software development. 

 

In Chapter 5, we firstly develop a software reliability model in consideration of dependent 

fault detection process and imperfect fault removal processes. Later, we define a two-phase 

software debugging process considering different types of software faults in each phase. 

Thus, a two-phase software reliability model is proposed in this chapter addressing two 

main topics, software dependency, and imperfect fault removal process. 

 

Most software reliability models in literature focus on single-release software product. 

However, nowadays, it is critical to release multiple version software product, given the 

increasing adoption of agile methodology in software development and the customer-

oriented market. Thus, in Chapter 6, a multi-release software reliability model is proposed 

to capture the remaining faults from previous release and the newly introduced software 

faults along with the newly added features. 
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In Chapter 7, due to the significant impacts of environmental factors affecting software 

reliability during software development, as discussed in Chapter 4, therefore, we firstly 

propose a single-environmental-factor software reliability model under the Martingale 

framework to reflect the impact of a significant environmental factor, Percentage of Reused 

Modules. Later, we propose a multiple-environmental-factors software reliability model 

under the Martingale framework to address more practical and applicable issues in the real 

world by incorporating multiple environment factors contributed to the reliability 

improvement in the development process. 

 

In Chapter 8, we conclude this dissertation and discuss the future research. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

In this chapter, we review several research articles with respect to the topics investigated 

in this dissertation. 

 

In Section 2.1, we review the literatures defined and discussed different types of factors 

and their impact on software quality/reliability in software development process, e.g., 

environmental factors, success factors, situational factors. 

 

There are two main types of software reliability models, the deterministic models and the 

probabilistic models. In Section 2.2, we present the review on software reliability models 

in terms of the deterministic models and the probabilistic models. The probabilistic models 

can be classified into different groups, such as error seeding, failure rate, curve fitting, 

reliability growth, Markov structure, time series, and nonhomogeneous Poisson process 

(NHPP). 

 

This dissertation mainly focuses on the development of software reliability models based 

on NHPP assumption. Thus, Section 2.3 reviews a great number of literatures regarding 

NHPP software reliability models in terms of different assumptions on testing effort, 

testing coverage, fault removal efficiency, time-delay fault removal, and environmental 

factor impact under perfect debugging/imperfect debugging process. Meanwhile, the 
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software reliability models developed in Chapters 5, 6 and 7 consider software fault 

classification and fault dependency, multi-release software product, and the impact of 

single/multiple environmental factor(s) on software reliability, respectively. Hence, 

Sections 2.3.1, 2.3.2, and 2.3.3 review the related literatures along with the research topics 

focused in Chapters 5, 6 and 7, respectively. 

 

2.1 Environmental Factors in Software Development 

Although no general definition has been given to define what are the environmental factors 

affecting software reliability during software development process, there have been many 

related works in literature defined different types of factors in software development from 

various perspectives. 

 

Zhang and Pham [27] defined 32 environmental factors to characterize the impact of these 

environmental factors affecting software reliability during software development process 

for single-release software product. 32 environmental factors are defined from the four 

phases of software development, general information, and the interaction with hardware 

systems. Software development is divided into four phases in this study: Analysis phase, 

Design phase, Coding phase and Testing phase. The authors conducted a survey 

investigation and obtained empirical quantitative and qualitative data form mangers, 

software engineers, designers, programmers, and testers whom participate in software 

development practices. This paper identified the importance of factors in software 

development and analyzed the correlation between factors. Later, Zhang et al. [28] 
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provided an exploratory analysis to further analyze the detailed relationship of these 

environmental factors. 

 

Sawyer and Guinan [113] presented the effects on software development performance 

depend on the production method of software development and the social process of how 

people work together in software development environment. 

 

Roberts Jr. et al. [114] proposed five factors which are essential to implement a system 

development methodology, e.g., organizational system development methodology (SDM) 

transition, functional management involvement/support, SDM transition, use of models, 

and external support. 

 

Chow and Cao [89] collected the survey data from 109 agile projects from a diverse group 

of organizations with different sizes, industries and geographic locations to provide 

empirical information for the statistical analysis. Based on the multiple regression analysis, 

the critical success factors are identified to be a correct delivery strategy, a proper practice 

of agile software engineering techniques, and a high-caliber team. Three other factors that 

could be critical to certain success dimensions are identified to be a good agile project 

management process, an agile-friendly team environment, and a strong customer 

involvement. 

 

Misra et al. [88] conducted a large-scale survey-based study to identify the success factors 

from the perspective of agile software development practitioners who have successfully 
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adopted agile software development in their projects. This study identified nine out of the 

fourteen hypothesized factors have statistically significant relationship with “success”. The 

important success factors are: customer satisfaction, customer collaboration, customer 

commitment, decision time, corporate culture, control, personal characteristics, societal 

culture, and training and learning. 

 

Clarke and O’Connor [90] conducted the research on the situational factors affecting the 

software development process. Rigorous data coding techniques from Grounded Theory 

have been applied in this study. They concluded that the resulting reference framework of 

situational factors consists of eight classifications and 44 factors that inform the software 

process. On the other hand, this framework also provides useful information for 

practitioners who are challenged with defining and maintaining software development 

process. 

 

In this dissertation, we present a comparison analysis, which has been published in Journal 

of Systems and Software [29], to compare the changes of 32 environmental factors affecting 

software reliability after Zhang and Pham [27] firstly proposed this idea. The above 

research mainly discussed the environmental factors/success factors/situational factors in 

the development process of single-release software. As the application of the principles of 

agile and lean software development, software multiple releases are very common in the 

modern society. Software multiple releases not only make company easily balance the 

competing stakeholder’s demand and benefits but also increase reliability and customer 

satisfaction level during each release, thus, we conduct another survey study, which has 
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been published in Journal of Systems and Software [30], to investigate the impact of 

environmental factors on software reliability in the development of multi-release software 

and compare with the findings in reference [29]. 

 

2.2 Software Reliability Model 

In the past few decades, software failure data, collected mostly in the testing phase, are 

applied to study the behavior of software system, including software reliability given a 

specific period of time, failure growth rate, the number of remaining faults in the system, 

and the optimal release time. Hence, a great number of research have been focused on the 

development of software reliability models in the past four decades with various 

assumptions regarding testing methodology, testing coverage, fault removal efficiency, 

fault dependency, delay debugging, optimal release time, and so on. 

 

The classification of software reliability model was presented by different researchers [57 

- 60]. One of the most widely utilized classification methodologies categorizes software 

reliability models into two types: the deterministic models and the probabilistic models 

[19]. 

 

The deterministic models are used to study: (1) the element of a program by counting the 

number of distinct operators, operands, errors, and instruction; (2) the control flow of a 

program by counting the branches; (3) the data flow of a program (data sharing and 

passing). There are two well-known models: Halstead’s software metric [16] and 

McCabe’s cyclomatic complexity metric [17]. These models provided an innovative and 
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pioneering quantitative approach to analyze and measure the performance of software 

system at that time; however, random event is not involved, hence, these models are not 

suitable to apply in the modern software. 

 

The probabilistic models take into account the failure detection and failure removal as 

probabilistic events during software development. The classification of probabilistic 

software reliability model is given by references [19, 61]: (1) error seeding; (2) failure rate; 

(3) curve fitting; (4) reliability growth; (5) Markov structure; (6) time series; (7) NHPP. 

 

In error seeding class, the number of errors in a program is estimated by applying the multi-

stage sampling technique. Mills’ error seeding model [62] proposed an error seeding 

method to estimate the number of errors in a program by introducing seeded errors into the 

program. Cai [63] modified Mills’ model by diving software into two parts: Part 0 and Part 

1. Tohma et al. [64] introduced a reliability model based on the hypergeometric distribution 

to estimate the number of errors in the program. 

 

In failure rate class, these studies focused on how failure rates change at the failure time 

during the failure intervals. The number of faults in the program is a discrete function, thus, 

the failure rate of a program is a discrete function as well. The Jelinski-Moranda model 

[65] is one of the earliest software reliability models, which states the program failure rate 

at the 𝑖𝑡ℎ failure interval is given by  

 

𝜆(𝑡𝑖) = ∅[𝑁 − (𝑖 − 1)]       for  𝑖 = 1, 2, … ,𝑁                            (2.1) 
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where ∅ is a proportional constant and represents the contribution of one fault makes to the 

overall program, and N is the number of initial faults in the program. 

 

The Schick-Wolverton model [66] modified the Jelinski-Moranda model by assuming the 

failure rate at the 𝑖𝑡ℎ  time interval increases with time 𝑡𝑖  since last debugging. Later, 

Moranda [67] proposed a reliability model considering the program failure rate function as 

initially a constant D and decreases geometrically at failure times. 

 

In curve fitting class, the models use statistical regression analysis to illustrate the 

relationship amongst software complexity, the number of faults, and failure rate in the 

software. Linear regression analysis, nonlinear regression analysis, or time series approach 

is applied between the dependent and independent variables. Estimation of errors, 

complexity, and failure rate are investigated in the modeling. Belady and Lehman [68] 

introduced a model by applying time series approach to estimate software complexity. 

Miller and Sofer [69] also proposed a model to estimate software failure rate by assuming 

the failure rate is a monotonically non-increasing function. 

 

In reliability growth class, the improvement of program reliability is measured and 

predicted via the testing phase by reliability growth models. The failure rate is a function 

of time, or the number of testing cases in this group of models. Coutinho [70] pointed out 

that the failure rate is a function of the cumulative number of failures and testing time. Wall 
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and Ferguson [71] proposed a model that is similar to Weibull model to predict software 

failure rate during testing. 

 

In the group of Markov structure models, the assumption is that the failure of the modules 

is independent of each other. Goel and Okumoto [72] proposed a linear Markov model with 

imperfect debugging. Meanwhile, the transition probability of the model was stated. 

Littlewoods [73] developed a reliability model incorporating the transitions between 

modules while operating. Two types of failures are considered: failure from each module, 

as a Poisson failure process, and failure from interface between modules. Yamada et al. 

[74] performed a software safety model to illustrate software’s time-dependent behavior 

using Markov process. 

 

In time series model group, Auto-Regressive Integrated Moving Average (ARIMA) 

method is applied to study software reliability. Singpurwalla and Soyer [75] introduced 

several ramifications into a random coefficient auto-regressive process of order 1 to 

describe software reliability. In addition, several research papers [8, 75 - 78] also used time 

series approach to address software reliability prediction in testing phase and operation 

phase. 

 

Since this dissertation mainly focuses on the development of software reliability modeling 

based on the NHPP assumption. Therefore, the literature review on NHPP software 

reliability models will be carried out in the next section. 
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2.3 NHPP Software Reliability Model 

NHPP has been successfully applied on modeling software reliability since Goel and 

Okumoto [79] firstly proposed their innovative model in 1979 which assumed a constant 

fault detection rate and a constant total software fault content. In addition, they made 

assumptions that all software faults are mutually independent from the failure detection 

point of view. The failure intensity at any time is proportional to the remaining number of 

faults in the software program. Based on the fundamental assumptions of Goel-Okumoto 

model, a great number of NHPP software reliability models have been proposed in the past 

four decades to address different scenarios in software fault detection and fault correction 

process. 

 

Ohba [80] proposed the hyper-exponential growth model in consideration of different 

clusters of modules in a program. Each module contains different initial number of errors 

and different failure rate, which are all assumed as constants in the software reliability 

model. It is well-known that the sum of exponential distribution is a hyper-exponential 

distribution. Thus, the system software reliability model is more like the summation of 

each module’s reliability model. 

 

Yamada and Osaki [81] also proposed a software reliability model which is similar to the 

model proposed by Ohba [80]. Software can be divided into K modules. The probability 

of faults for each module will be taken into consideration. The fault detection rate is same 

within modules, however, various between modules. The total number of errors in the 
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software is assumed as a constant and there are no new errors will be introduced during 

fault detection process. 

 

Time-dependent fault detection rate is applied in modeling software reliability growth trend. 

The concept of S-shaped model is proposed to describe the behavior of the detected failures. 

Ohba et al. [82] discussed a NHPP model with S-shaped mean value function. Ohba and 

Yamada [83] also proposed a NHPP model with S-shaped mean value function and 

considered the cumulative number of detected faults often seems to perform S-shaped.  

They stated that some of the faults are not detectable before some other faults are removed. 

In addition, the probability of the failure detection at any time is proportional to the 

remaining faults in the software. 

 

Around the same time, Yamada et al. [84 - 86] proposed several software reliability models 

considering software fault detection process as a learning process. Specifically, when 

software testers get more familiar with testing environment, specifications, and 

requirements, software fault detection rate will go higher. 

 

Nakagawa [87] developed the connective NHPP model with S-curve forms. A group of 

modules called, main route modules, are tested first, followed by other modules. Even the 

failure intensity in the main route modules and other modules are similar, the failure growth 

curve performs as S-curve since the detection starts at different time points. Afterwards, S-

shaped reliability models are further developed in many literatures [8, 9, 91 - 93]. 
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NHPP perfect debugging model often assumes when a failure occurs, the fault that caused 

it can be immediately removed and no new faults are introduced [72, 83, 84, 94]. The 

concept of imperfect debugging is based on the assumptions [18, 19]: (1) when detected 

errors are removed, it is possible to introduce new errors; (2) the probability of finding an 

error in a program is proportional to the number of remaining errors in the program. Many 

reliability models are proposed based on NHPP imperfect debugging concept [18, 85, 91 -

93, 98 - 105, 155, 156]. For instance, Yamada et al. [105] developed two software 

reliability models incorporating imperfect debugging concept. New faults are sometimes 

introduced when faults originally are latent in software system. The test-effort functions 

are expressed by exponential and Rayleigh curves in this study. 

 

Since testing phase plays an essential role in software development, a great number of 

software reliability models focus on testing coverage, testing efficiency, testing resource 

allocation, and so on. Pham and Zhang [97] presented testing coverage is a measure that 

enables software developers to evaluate the quality of the tested software and determine 

how much additional effort is needed to improve the quality and reliability. They 

introduced a generalized model incorporating the measurement of testing coverage into 

software reliability assessment. This model indicates that the failure intensity depends on 

both the rate at which the remaining faults are covered and the number of remaining faults 

at current time t divided by the current fractional population of uncovered faults.  

 

Zhang et al. [106] developed a software reliability model based on imperfect debugging 

considering new faults can be introduced while debugging and the detected faults may not 



31 

 

 

be removed completely. They defined the fault removal efficiency in the study, which 

presented a new idea for the later research.  

 

Huang and Lyu [107] studied the impact of testing effort and testing efficiency on the 

modeling of software reliability and the cost for optimal release time. Inoue and Yamada 

[99] developed a software reliability model by formulating the relationship between the 

alternative testing-coverage evaluation function and the number of detected faults. Later, 

Huang [108] incorporated both a generalized logistic testing-effort function and the 

change-point parameter into software reliability model.  

 

Li et al. [109] incorporated logistic testing coverage function to develop software reliability 

model. Lin and Huang [110] incorporated the Weibull-type testing effort function with the 

multiple change-points into software reliability modeling. Moreover, Chatterjee and Singh 

[9] proposed a software reliability model by considering a logistic-exponential testing 

coverage function and an imperfect debugging process. 

 

Time-delay fault removal are also discussed in many literatures. Xie and Zhao [111] 

generalized Schneidewind’s model by assuming a continuous time-dependent delay 

function which quantifies the expected delay in correcting the detected faults. Delay is 

treated as an increasing function of time t. The faults are easily to be corrected in the early 

state of testing and become difficult to detect as time goes by.  
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Hwang and Pham [112] developed a generalized NHPP software reliability model 

considering quasi-renewal time-delay fault removal. The time delay is defined as the 

interval between fault detection and fault removal. Time-delay is considered as a time-

dependent function, described by a quasi-renewal process in this study. This model 

provides a more relaxed assumption in software testing and debugging, which is very close 

to the practical testing and debugging process.  

 

The testing resource allocation during the testing phase, which is usually depicted by the 

testing effort function, which is affected not only by the fault detection rate but also the 

time to correct a detected fault. In the research paper published by Peng et al. [204], the 

authors firstly incorporated testing effort function and fault introduction into the fault 

detection process and then developed the model considering fault correction prosses as a 

fault detection process with a correction effort. Various specific paired fault detection 

process and fault correction process models are obtained based on different assumptions of 

fault introduction and correction effort.  

 

2.3.1 Software Reliability Model with Different Fault Classification 

Many literatures state that there exists more than one type of software fault in the program 

[117 - 126]. Different fault classes are categorized by practitioners and researchers to 

describe the characteristics of software faults that cause failures during testing and 

operation phase [117, 118, 124 – 126]. The limits and challenges in the dependability of 

computer systems in terms of the fault class, such as physical faults, design faults, and 

interaction faults, are discussed in references [124, 125] as well. 
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Ohba [80] discussed two types of software faults, mutually independent faults and mutually 

dependent faults. Tokuno and Yamada [104] proposed an imperfect debugging software 

reliability model with two types of software failures involved. The first type is caused by 

the fault latent in the system, which is described by a geometrically decreasing function; 

the second type fault is randomly regenerated in testing phase, which has a constant hazard 

rate.  

 

Kapur and Younes [127] considered leading error and dependent error in the model 

development. Pham [128, 129] also studied multiple failure types with different detection 

rate, but it was too simple to address the modern software products.  

 

Goseva-Popstojanova and Trivedi [130] addressed the fault correlation and its impact on 

the software reliability assessment. Dai et al. [131] incorporated multiple types of software 

failures in software reliability model. Huang and Lin [132] incorporated fault dependence 

and delay debugging in the software reliability growth model. 

 

Grottke et al. [117] studied the proportion of the various fault types and their evolvement 

with time based on the fault discovered in the on-board software for 18 JPL/NASA space 

missions. However, they did not provide a quantitative way to estimate the number of faults. 

Thus, an explicit method to quantify the behavior of different fault type, consider software 

dependency and imperfect fault removal is needed.  
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Our research, which has been published in Computer Languages, Systems & Structures 

[133], proposes a new NHPP software reliability model with a pioneering idea by 

considering software fault dependency and imperfect fault removal. In order to clearly 

explain software fault dependency, some facts and examples regarding the detection of 

different type of faults are discussed in Chapter 5. Two types of software faults are defined, 

Type I (independent) fault and Type II (dependent) fault, based on the consideration of 

fault dependency. Two phases debugging processes, Phase I and Phase II, are proposed 

according to the debugged software fault type. A small portion of software faults that 

software testers are not able to remove is also considered in both phases in the proposed 

model. 

 

2.3.2 Multi-Release Software Reliability Model 

Most software products are not introduced into the market with full capacities at their initial 

release. New features will be added, and existing features will be enhanced after launched 

software for a while. Extensive studies have been done for the release of single version 

software system for the past few decades. Modeling and predicting software failure 

behavior are investigated by many researchers as well. However, only a few researchers 

studied multi-release software reliability and introduced prediction models to explain 

software fault detection process and fault removal process for multi-release software 

products. 

 

Garmabaki et al. [115] incorporated different severities level used to describe the difficulty 

of correcting faults in the upgrade process to develop a multi up-gradation software 
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reliability model. Faults are classified into two categories, simple fault and hard fault. The 

fault removal for the development of the new release depends on the fault from previous 

release and fault generated in that release.  

 

Hu et al. [47] considered the effect of multiple releases regarding the fault detection process 

in software development. They assumed that there is no gap between the release of previous 

version and the development of next version. Moreover, optimal release time for each 

version is discussed in this study. 

 

Kapur et al. [48] introduced the combined effect of schedule pressure and resource 

limitations by the use of Cobb-Douglas production function in software reliability 

modeling. The Cobb-Douglas function illustrates the total production output can be 

obtained by the amount of labor input, capital input, and total factor productivity. An 

optimal release planning problem is formulated in this study for software with multiple 

releases with the solution obtained by applying genetic algorithm method. 

 

Pachauri et al. [50] proposed a software reliability growth model by considering fault 

reduction factors (FRFs) and extended this idea to multi-release software systems. FRFs is 

defined as the ratio of the total number of reduced faults to the total number of failures. 

FRFs is not a constant, which can be affected by other factors, such as resources allocation, 

debugging time lag, and imperfect debugging. 
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Yang et al. [49] incorporated fault detection and fault correction process in multi-release 

software reliability modeling. They considered there is a time-delay in fault repair after 

detecting faults. The time-delay function is explained by an exponential function or a 

gamma function. They also assumed the faults in a new version including both the 

undetected faults from last version and the newly introduced faults during the development 

process of the new version. 

 

However, most literatures aimed to develop multi-release software reliability model only 

through optimizing software cost model to determine the optimal software release time 

except Yang et al. [49]. 

 

Our research, which has been published in Annals of Operations Research [116], focuses 

on the development of a multi-release software reliability model considering the remaining 

software faults from previous release and the newly introduced faults (from newly added 

features). Additionally, dependent fault detection process is taken into account in this 

research. In particular, the detection of a new software fault for developing the next release 

depends on the detection of the remaining faults from previous release and the detection of 

the newly introduced faults. 

 

2.3.3 Environmental-Factor-Based Software Reliability Model 

As discussed in Chapter 1, given the current trends of software development process, which 

are the adoption of software product lines, software development globalization, and the 

establishment of software ecosystems, the complication and human-centered software 
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development process needs to be addressed more appropriately. Meanwhile, environmental 

factors play significant impacts on affecting software reliability during development 

process [27 – 30, 88 – 90, 113, 114], as discussed in Section 2.1. Thus, how to incorporate 

the single/multiple environmental factors which present significant impact on reliability 

into software reliability model is critical to address modern software development in 

practice. 

 

Only a few literatures incorporated random effect of the environments, or other factors, 

e.g., fault reduction factor, into software reliability models. 

 

Teng and Pham [103] presented a new methodology for predicting software reliability in 

the field environment. A generalized random field environment (RFE) software reliability 

model which can cover both the testing phase and operating phase is proposed in this study 

by assuming all the random effect in the field environments can be captured by a unit-free 

environmental factor. Two specific RFE reliability models are developed by the use of the 

generalized RFE software reliability model, called the γ-RFE model and the β-RFE model, 

to describe different random effects in the operation phase. 

 

Hsu et al. [134] integrated fault reduction factor into software reliability models. Fault 

reduction factor is proposed by Musa [135], which is generally defined the ratio of net fault 

reduction to failures experience, which could be influenced by many environmental factors, 

e.g., imperfect debugging or delay debugging. The authors firstly studied the trend of the 

fault reduction factor and considered it as a time-variable function, and then incorporated 
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the fault reduction factor in software reliability growth modeling to improve the accuracy 

of failure prediction. 

 

Recently, Pham [136] incorporated the uncertainty of the operation environment into a 

software Vtub-shaped fault detection rate model. In particular, fault detection rate in this 

study is represented by a Vtub-shape function and the uncertainty of the operation 

environments is represented by a random variable, modeled as gamma distribution. 

 

The first part of our research in this chapter, which has been published in Annals of 

Operations Research, incorporates one of the top 10 significant environmental factors, 

Percentage of Reused Modules (PoRM), to be a random variable which has random effect 

on fault detection rate. We then introduce the Martingale framework, specifically, 

Brownian motion and white noise process in the stochastic fault detection process to reflect 

the impact resulting from the randomness of environmental factor and to propose a single-

environmental-factor software reliability model. Moreover, given the significance of these 

impact, we further propose a generalized software reliability model with multiple 

environmental factors under the Martingale framework. 
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CHAPTER 3 

OBJECTIVES OF THE DISSERTATION 

 

 

Software reliability growth model has been studied for a long time since 1970s. A great 

number of software reliability models have been proposed in consideration of different 

methodologies, assumptions, and field applications. In order to obtain software metrics 

such as the remaining faults in software system, failure growth rate, failure intensity, and 

optimal release time, past testing/operation failure data are usually employed to develop 

software reliability growth model. 

 

Given the transitions of modern software development, how to predict software failures in 

terms of the practical development/application scenarios is critical yet challenging for 

researchers. Therefore, in this dissertation, we have not only integrated software 

practitioners’ opinions from a wide variety of industries, but also developed software 

reliability models by addressing different practical problems observed in software 

development practices. 

 

The objectives of this dissertation are stated as follows. 

 

(1)  Reinvestigate the environmental factors affecting software reliability in single-release 

software development and compare the findings with references [27, 28] to present an 

advanced analysis for all 32 environmental factors. Specifically, 
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• Investigate the correlation of some of the environmental factors and identify the 

methodology to reduce the dimension of related environmental factors, in order to 

apply the significant factors into software reliability model in the later research. 

• Reveal the significant factors in each development phase. 

• Examine the significance level of each development phase in the whole software 

development process. 

• Compare the significant factors, principle components, significance levels of 

development phases, significant factors of each development phase, and time 

allocation of each development phase revealed in this study and previous findings 

[27, 28] to investigate the root cause of those differences. 

 

(2) Investigate the environmental factors affecting software reliability in multi-release 

software development and compare the findings in Objective (1) to provide a 

comprehensive analysis for software development practices. 

 

(3) Develop one-phase and two-phase NHPP software reliability models considering 

software fault dependency and imperfect fault removal process. Specifically, 

• Define two types of software faults, Type I (independent fault) and Type II 

(dependent fault). 

• Two phases debugging process are introduced. Each type of software fault will be 

detected and removed in different phase according to their own characteristics. 

• Compare the descriptive and predictive ability of the proposed models with the 

existing NHPP models. 
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(4)  Propose a multi-release software reliability model incorporating the remaining faults 

from previous release and newly introduced faults (from newly added features) for the 

development of the new release. The detection of the new faults depends on the remaining 

faults from previous release and the newly introduced faults. We also compare the 

predictive ability of the proposed model with other multi-release software reliability 

models. 

 

(5) Given the findings from Objectives (1) and (2), incorporate single/multiple 

environmental factor(s) and the randomness caused by these environmental factor(s) in 

software reliability models under the Martingale framework. We also compare the 

predictive power of the software reliability models with and without incorporating 

environmental factors(s). 
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CHAPTER 4 

ENVIRONMENTAL FACTORS IN SOFTWARE DEVELOPMENT 

 

4.1 Environmental Factors in Single-Release Software Development 

4.1.1 Research Motivation 

Computer systems are widely applied on various areas to provide fast, reliable, and 

effective service to the targeted market nowadays. Software development process has gone 

through dramatic changes especially in the past one and half decades. The rise of the 

Internet has led to the rapid growths in many industries, such as semiconductor, 

pharmaceutical, online retailing, banking, financial service, and computer hardware & 

software. The high technology has an ever-increasing impact on our daily life. For example, 

the wide applications of computational devices like mobile phones, tablets, and laptops 

have brought the increasing conveniences for everyday life.  

 

At the same time, software development process has become more critical and complicated, 

which also brings major effects on the growth of a company, including market share and 

position, customer loyalty, and the new product development. One of the main challenges 

for the software development team is to provide on-time, reliable, and high-quality 

software within budget [28]. On the other hand, software development is a complex and 

human-centric activity that is subject to many pitfalls if not appropriately organized [90]. 

Hence, improving software reliability has turned out to be one of the essential concerns for 

software practitioners and researchers. 
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Many software reliability models have been proposed during the past few decades, most of 

which focus on analyzing the software fault detection process as a function of time. Yet, 

most software reliability models are developed without considering other attributes during 

this complicated and human-centered software development process, testing process, and 

field operation. 

 

Only a few literatures considered the impact of random environments and predicted the 

software reliability incorporating the random environmental factors. Teng and Pham [103] 

presented a new methodology for predicting software reliability in the field environment. 

A generalized random field environment (RFE) software reliability model which can cover 

both the testing phase and operating phase is proposed in this study by assuming all the 

random effect in the field environments can be captured by a unit-free environmental factor. 

Later, Hsu et al. [134] integrated fault reduction factor into software reliability models.  

 

Zhang and Pham [27] defined 32 environmental factors in the software development 

process fifteen years ago. These factors not only included each phase of software 

development practice, but considered human nature, teamwork, and interactions of 

hardware system. They also provided a survey study to investigate the ranking based on 

the influence of the factors on software reliability and correlations between some of the 

factors. Moreover, Zhang et al. [28] presented another exploratory analysis to reduce the 

dimension of the factor space by applying factor analysis, analyze the relation between the 

years of experience, positions, and the opinions on software reliability improvement for 32 
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environmental factors. But, is there any changes of the findings after fifteen years? If there 

is any change, how can we quantify those changes? 

 

4.1.2 Objectives 

This study aims to reinvestigate the environmental factors and compare the findings with 

the references [27, 28] to provide an up-to-date ranking for all 32 environmental factors. 

The investigation is carried out by conducting a survey of environmental factors regarding 

their impact on software reliability from the perspective of managers, software engineers, 

programmers, and testers. We are going to investigate the correlation of some of the factors, 

identify methods to reduce the dimension of some related environmental factors, and 

identify the significant environmental factors in each development phase to provide a 

practical reference for software practitioners.  

 

Statistical method such as principle component analysis (PCA) can be employed to perform 

the dimension deduction and correlation analysis. In addition, analysis of development life 

cycle is discussed in this study. The significant environmental factors are revealed in each 

development phase. Examination of the significance level of each development phase is 

included in the study as well. Finally, by comparing the ranking for the environmental 

factors, principle components of the environmental factors, significance levels of 

development phases, significant factors and time allocation of each development phase 

with previous findings, this study enables us to understand the root causes of these 

differences. The future software reliability models may also incorporate the significant 

factors defined from this study to improve the power of prediction.  
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4.1.3 Data Collection 

We use the same survey from Zhang and Pham [27] included 32 environmental factors, 

which are defined from software development process and the information of software 

developer background. This study aims to investigate whether the significance levels of 

environmental factors during software development have changed after one and half 

decades. Thus, it is desired to maintain the homogeneity of the organization type and 

choose similar organizations to conduct the survey. Twenty organizations from diverse 

industries are selected to participate in the survey investigation. 

 

Thirty-five survey forms are collected from 20 companies in various industries including 

semiconductor, pharmaceutical, online retailing, banking, financial service, computer 

hardware & software, IT service & consulting, and oil field service & equipment. 

Participants were asked to rank the environmental factors in terms of its impact on software 

reliability. Software developers in the participating organizations mainly focus on safety-

critical, commercial, and inside users-oriented applications. To obtain a wide-ranging 

investigation, the years of experience and experience type on software development for the 

investigated participants are different. For instance, the software development experience 

type includes database, operation system, communication control, and language processor. 

In addition, participants have different positions, such as manager, software engineer, 

programmer, tester, and system administrator.  
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4.1.4 Findings and Results 

Environmental Factor Analysis 

Relative Weighted Method 

The ranking for each environmental factor is from 0 to 7 in terms of its impact level on 

affecting software reliability. For example, if participants think one environmental factor 

is an extremely important factor based on its significance impact on software reliability, 

they should rank 7; if participants think the one environmental factor will not have impact 

on software reliability at all, then the rank for this environmental factor should be 0. Hence, 

the ranking summations for all 32 environmental factors are ranging from 0 to 224 in this 

study.  

 

Relative weighted method is applied firstly to investigate the ranking proportion of each 

environmental factor in one survey form and all survey forms. First, summarize the original 

ranking provided by participants for all 32 environmental factors in each survey form. 31 

out of 35 complete survey forms are used to calculate the ranking for the 32 environmental 

factors. The summations for all 32 environmental factors of our original ranking range from 

64 to 196. Let 𝑟𝑖𝑗 be the score of the ith factor in the jth survey. Normalize 𝑟𝑖𝑗 for each survey 

by using  

 

𝑤𝑖𝑗 =
𝑟𝑖𝑗

∑ 𝑟𝑖𝑗
𝑁
𝑖=1

                                                          (4.1)   

 

where N is the number of factors which are filled up by the jth participant in the jth survey.  
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The range of ∑ 𝑟𝑖𝑗
𝑁
𝑖=1  is from 64 to 196 as described earlier. Thus, by averaging 𝑤𝑖𝑗, we 

obtain the final weight for the ith factor by 

 

𝑤𝑖 =
∑ 𝑤𝑖𝑗
𝑙
𝑗=1

𝑙
                                                            (4.2) 

 

where 𝑙 is the number of complete survey forms. 

 

Table 4.1 presents the final normalized weight for each environmental factor and the 

ranking of all 32 environmental factors. Generally, the environmental factor that has a 

higher normalized weight plays a more significant impact on the software reliability than 

the factor that has a lower weight; thereby, software developer should pay more attention 

to the environmental factors with higher normalized weight. 

 

Principle Component Analysis of Environmental Factors 

From Table 4.1, we notice that the environmental factors cover many aspects in the 

software development, and the majority of these factors have similarly impact on software 

reliability. A question one might ask now is whether some of these factors are correlated. 

If some of these factors are correlated, is it possible to reduce the dimension of these 

correlated factors? 
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PCA is a statistical analysis that can be used to reduce the dimensionality of a data set 

consisting of a large number of interrelated variables, while retaining as much of the 

variation present in the data set as possible [137]. 

 

Table 4. 1 Environmental factors ranking based on relative weight method 

Rank Factor Factor name Normalized weight 

1 f8 frequency of program specification change 0.039283972 

2 f22 testing effort 0.038359377 

3 f21 testing environment 0.038250613 

4 f25 testing coverage 0.037435855 

5 f1 program complexity 0.036961340 

6 f15 programmer skill 0.036862675 

7 f6 percentage of reused modules 0.036405410 

8 f12 relationship of detailed design to requirement 0.035234326 

9 f24 testing methodologies 0.035101487 

10 f19 domain knowledge 0.035036992 

11 f16 programmer organization 0.034724575 

12 f18 program workload(stress) 0.034271335 

13 f23 testing resource allocation 0.034194468 

14 f13 work standards 0.034183421 

15 f11 requirements analysis 0.034042553 

16 f20 human nature 0.033593929 

17 f14 development management 0.033003212 

18 f3 difficulty of programming 0.032899502 

19 f4 amount of programming effort 0.032852885 

20 f5 level of programming technologies 0.032745404 

21 f26 testing tools 0.032457656 

22 f27 documentation 0.032236361 

23 f9 volume of program design documents 0.032076971 

24 f10 design methodology 0.031998207 

25 f17 development team size 0.030222175 

26 f7 programming language 0.029878290 

27 f2 program categories 0.028608644 

28 f28 processors 0.027675094 

29 f31 telecommunication devices 0.027071145 

30 f32 system software 0.026832350 

31 f30 input/output devices 0.026788903 

32 f29 storage devices 0.026773022 



49 

 

 

 

The idea is that smaller dimension set of principle components can be used to capture the 

characteristics of the larger data set and provide a concise yet critical principle components 

for software developers. The top 10 most important environmental factors are selected 

based on the ranking results present by relative weight method in Table 4.1. The top 10 

important environmental factors are f8, f22, f21, f25, f1, f15, f6, f12, f24, f19; four of them 

come from the Testing phase, two of them in the Analysis and Design phase, two of them 

in the Coding phase, and two of them in the General phase.  

 

The original data set is ten-dimensional. PCA method will find the covariance matrix first, 

and then calculate the eigenvector and eigenvalue from this 10 by 10 covariance matrix. 

Eigenvectors enable us to capture the characteristics of the data set. Eigenvalue is ranked 

from the highest to the lowest in terms of the order of significance level of principle 

components. The eigenvalue of components, proportion, and cumulative proportion are 

illustrated in Table 4.2. 

 

About 40% of the data variation can be explained by the first principle component, 16.7% 

of the data variation can be explained by the second principle component, and 11.8% of 

the data variation can be interpreted by the third principle component. Thus, about 69% of 

the data variation can be explained by the first three principle components. On the other 

hand, by subtracting the second eigenvalue 1.679 from the first eigenvalue 4.008, we obtain 

a difference is 2.329; by subtracting the third eigenvalue 1.175 from the second eigenvalue 

1.679, we have a difference is 0.504; however, if we subtract the fourth eigenvalue 0.843 
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from the third eigenvalue, the difference is 0.332, which is smaller compared with the first 

two differences. Hence, the first three principle components are retained. 

 

Table 4. 2 Eigenvalue of correlation matrix 

Component Eigenvalue Proportion 
Cumulative 

proportion 

PC1 4.008 0.401 0.401 

PC2 1.679 0.167 0.568 

PC3 1.175 0.118 0.686 

PC4 0.843 0.084 0.770 

PC5 0.737 0.074 0.844 

PC6 0.608 0.061 0.905 

PC7 0.442 0.044 0.949 

PC8 0.241 0.024 0.973 

PC9 0.165 0.016 0.989 

PC10 0.106 0.011 1.000 

 

 

As seen from Table 4.2, three principle components are retained, PC1, PC2, and PC3. The 

loading coefficient, measures the contribution to the data variance between the principle 

components and related environmental factors, is also determined. If the loading coefficient 

is very small, or only strongly-correlated with less-significant principle components, such 

as PC4, PC5, PC6, PC7, PC8, PC9, PC10, these environmental factors have little or no 

contribution to the variation of the data set. Table 4.3 describes the environmental factors 

which are strongly correlated with the first three principle components. For example, 

testing coverage has the highest correlation with the first principle component compared 

with other environmental factors. Frequency of specification change and programmer skills 

have high correlation with the second principle component and the third principle 

component, respectively.  
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Table 4. 3 Principle components and strongly correlated factors 

Component Factor Description Loading coefficient 

PC1 f25 testing coverage 0.400 

 f21 testing environment 0.385 

 f22 testing effort 0.379 

 f24 testing methodologies 0.368 

 f12 relationship of detailed design and requirement 0.359 

 f6 percentage of reused code 0.269 

PC2 f8 frequency of Specification change 0.559 

 f19 domain knowledge 0.482 

PC3 f15 programmer skills 0.664 

 f1 program complexity 0.408 

 

 

Hypothesis Testing 

This study aims to investigate whether those environmental factors have the same 

significance impact on software reliability. Analysis of Variance (ANOVA) is a statistical 

method used to compare the mean of two or more samples set [138]. ANOVA is applied 

in this study to compare the significance level for these environmental factors. In order to 

compare all pairwise difference between factors and control the error rate within a level 

that you specify [139], Tukey method, a single-step multiple comparison procedure, is used 

to group environmental factors in terms of their mean values.  

 

Table 4.4 depicts the final grouping using Tukey’s method. Table 4.4 lists the 

environmental factors based on the significance impact on software reliability from the 

greatest to the least. Factors of the same numeric values are considered as of the same 

significant level. For example, based on the final grouping, the most impactful factor is 
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testing coverage; frequency of specification change is the second significant factor 

followed by testing environment and testing effort as the third and fourth critical factors. 

Factors listed from testing methodologies to processors belong to one significance level 

based on the Tukey method. 

 

Correlation Analysis 

The purpose of performing correlation analysis is to observe the relationship between 

variables and investigate the strength and direction of this relationship. Having the 

knowledge of the correlation of the environmental factors will provide a better 

understanding for software developers on resource allocation and testing efficiency during 

software development, in particular, Testing phase. The Pearson product-moment 

correlation coefficient, also called Pearson's r, is a measure of the linear correlation 

between two variables. The range for Pearson's r is from -1 to 1. If r is 0, meaning there is 

no relationship between variables; if r is 1, indicating a total positive correlation; if r is -1, 

referring a total negative correlation. For the output from Minitab, the absolute value of r 

is larger than 0.5 is chosen as the correlation factors for each environmental factor. Table 

4.5 presents the correlation of the environmental factors. 
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Table 4. 4 Final grouping based on Tukey method 

Factor Description N Mean Final grouping 

f25 testing coverage 29 5.586 1 

f8 frequency of program specification change 31 5.516 2 

f21 testing environment 30 5.500 3 

f22 testing effort 30 5.433 4 

f24 testing methodologies 29 5.276 5 

f15 programmer skill 31 5.226 5 

f23 testing resource allocation 28 5.214 5 

f12 relationship of detailed design to requirement 28 5.214 5 

f1 program complexity 29 5.172 5 

f16 programmer organization 30 5.100 5 

f6 percentage of reused modules 30 5.067 5 

f19 domain knowledge 30 5.033 5 

f11 requirements analysis 30 5.000 5 

f13 work standards 30 4.967 5 

f18 program workload(stress) 29 4.966 5 

f27 documentation 29 4.931 5 

f4 amount of programming effort 29 4.897 5 

f10 design methodology 29 4.862 5 

f9 volume of program design documents 29 4.862 5 

f3 difficulty of programming 28 4.857 5 

f14 development management 28 4.786 5 

f20 human nature 31 4.774 5 

f5 level of programming technologies 30 4.733 5 

f26 testing tools 29 4.621 5 

f17 development team size 29 4.483 5 

f7 programming language 30 4.233 5 

f28 processors 28 4.179 5 

f2 program categories 29 4.103 6 

f32 system software 28 4.071 6 

f30 input/output devices 29 4.043 7 

f29 storage devices 29 3.966 8 

f31 telecommunication devices 28 3.964 9 
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Table 4. 5 Correlation analysis for single-release software survey data 

Factor Description Correlated factors 
Pearson's 

r 

f25 testing coverage f18 program workload(stress) 0.773 

f24 testing methodologies 0.729 

f26 testing tools 0.661 

f27 documentation 0.660 

f12 relationship of detailed design to requirement 0.648 

f17 development team size 0.568 

f9 volume of program design documents 0.566 

f3 difficulty of programming 0.537 

f4 amount of programming effort 0.528 

f14 development management 0.528 

f22 testing effort 0.506 

f8 frequency of program 

specification change 
f31 telecommunication devices -0.519 

f21 testing environment f22 testing effort 0.749 

f19 domain knowledge 0.719 

f16 programmer organization 0.668 

f13 work standards 0.576 

f4 amount of programming effort 0.526 

f22 testing effort f21 testing environment 0.749 

f13 work standards 0.651 

f18 program workload(stress) 0.610 

f16 programmer organization 0.564 

f25 testing coverage 0.506 

f24 testing methodologies f4 amount of programming effort 0.574 

f9 volume of program design documents 0.549 

f10 design methodology 0.506 

f12 relationship of detailed design to requirement 0.555 

f17 development team size 0.612 

f18 program workload(stress) 0.666 

f25 testing coverage 0.729 

f26 testing tools 0.540 

f27 documentation 0.533 

f31 telecommunication devices 0.527 

f32 system software 0.526 

f15 programmer skill f20 human nature 0.431 

f23 testing resource allocation f12 relationship of detailed design to requirement 0.766 

f14 development management 0.712 

f4 amount of programming effort 0.625 
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f10 design methodology 0.618 

f3 difficulty of programming 0.579 

f27 documentation 0.556 

f1 program complexity 0.547 

f32 system software 0.536 

f9 volume of program design documents 0.533 

f26 testing tools 0.504 

f12 relationship of detailed 

design to requirement 
f23 testing resource allocation 0.766 

f32 system software 0.734 

f28 processors 0.659 

f25 testing coverage 0.648 

f31 telecommunication devices 0.641 

f14 development management 0.626 

f3 difficulty of programming 0.610 

f9 volume of program design documents 0.593 

f27 documentation 0.578 

f30 input/output devices 0.562 

f10 design methodology 0.555 

f24 testing methodologies 0.555 

f1 program complexity 0.552 

f4 amount of programming effort 0.536 

f1 program complexity f12 relationship of detailed design to requirement 0.552 

f23 testing resource allocation 0.547 

f29 storage devices 0.510 

f16 programmer organization f21 testing environment 0.668 

f22 testing effort 0.564 

f19 domain knowledge 0.536 

f6 percentage of reused 

modules 
f5 level of programming technologies 0.578 

f19 domain knowledge f21 testing environment 0.719 

f10 design methodology 0.544 

f16 programmer organization 0.536 

f4 amount of programming effort 0.524 

f11 requirements analysis f2 program categories 0.637 

f13 work standards f22 testing effort 0.651 

f21 testing environment 0.576 

f18 program workload(stress) 0.526 

f18 program workload(stress) f25 testing coverage 0.773 

f4 amount of programming effort 0.673 

f24 testing methodologies 0.666 

f27 documentation 0.628 

f22 testing effort 0.610 
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f26 testing tools 0.572 

f9 volume of program design documents 0.557 

f3 difficulty of programming 0.550 

f13 work standards 0.526 

f27 documentation f9 volume of program design documents 0.731 

f18 program workload(stress) 0.628 

f10 design methodology 0.624 

f12 relationship of detailed design to requirement 0.578 

f14 development management 0.559 

f23 testing resource allocation 0.556 

f4 amount of programming effort 0.541 

f30 input/output devices 0.527 

f4 amount of programming 

effort 
f3 difficulty of programming 0.753 

f10 design methodology 0.697 

f9 volume of program design documents 0.677 

f18 program workload(stress) 0.673 

f23 testing resource allocation 0.625 

f14 development management 0.575 

f24 testing methodologies 0.574 

f27 documentation 0.541 

f12 relationship of detailed design to requirement 0.536 

f25 testing coverage 0.528 

f21 testing environment 0.526 

f19 domain knowledge 0.524 

f10 design methodology f9 volume of program design documents 0.840 

f4 amount of programming effort 0.697 

f27 documentation 0.624 

f23 testing resource allocation 0.618 

f14 development management 0.591 

f3 difficulty of programming 0.570 

f12 relationship of detailed design to requirement 0.555 

f32 system software 0.547 

f19 domain knowledge 0.544 

f24 testing methodologies 0.506 

f9 volume of program design 

documents 
f10 design methodology 0.840 

f27 documentation 0.731 

f4 amount of programming effort 0.677 

f12 relationship of detailed design to requirement 0.593 

f25 testing coverage 0.566 

f32 system software 0.559 

f18 program workload(stress) 0.557 
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f24 testing methodologies 0.549 

f26 testing tools 0.546 

f14 development management 0.533 

f23 testing resource allocation 0.533 

f30 input/output devices 0.529 

f28 processors 0.525 

f3 difficulty of programming f4 amount of programming effort 0.753 

f14 development management 0.613 

f12 relationship of detailed design to requirement 0.610 

f23 testing resource allocation 0.579 

f10 design methodology 0.570 

f18 program workload(stress) 0.550 

f25 testing coverage 0.537 

f14 development management f23 testing resource allocation 0.712 

f12 relationship of detailed design to requirement 0.626 

f3 difficulty of programming 0.613 

f10 design methodology 0.591 

f4 amount of programming effort 0.575 

f27 documentation 0.559 

f9 volume of program design documents 0.533 

f25 testing coverage 0.528 

f20 human nature f32 system software 0.434 

f15 programmer skill 0.431 

f5 level of programming 

technologies 
f6 percentage of reused modules 0.578 

f26 testing tools f27 documentation 0.610 

f28 processors 0.610 

f30 input/output devices 0.609 

f18 program workload(stress) 0.572 

f25 testing coverage 0.561 

f9 volume of program design documents 0.546 

f24 testing methodologies 0.540 

f23 testing resource allocation 0.504 

f17 development team size f24 testing methodologies 0.612 

f25 testing coverage 0.568 

f7 programming language f30 input/output devices 0.525 

f28 processors f32 system software 0.871 

f30 input/output devices 0.806 

f31 telecommunication devices 0.795 

f12 relationship of detailed design to requirement 0.659 

f9 volume of program design documents 0.525 

f2 program categories f11 requirements analysis 0.637 
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f32 system software f28 processors 0.871 

f31 telecommunication devices 0.826 

f30 input/output devices 0.799 

f9 volume of program design documents 0.559 

f10 design methodology 0.547 

f23 testing resource allocation 0.536 

f24 testing methodologies 0.526 

f30 input/output devices f28 processors 0.806 

f32 system software 0.799 

f31 telecommunication devices 0.748 

f26 testing tools 0.609 

f12 relationship of detailed design to requirement 0.562 

f9 volume of program design documents 0.529 

f27 documentation 0.527 

f7 programming language 0.525 

f29 storage devices f1 program complexity 0.510 

f31 telecommunication 

devices 
f32 system software 0.826 

f32 system software 0.799 

f28 processors 0.795 

f30 input/output devices 0.748 

f12 relationship of detailed design to requirement 0.641 

f24 testing methodologies 0.527 

f8 frequency of program specification change -0.519 
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Development Life Cycle Phase Analysis 

Do First Four Environmental Factor Groups have Same Impact? 

Since Zhang and Pham [27] categorized these 32 environmental factors into five groups, 

General, Analysis and Design, Coding, Testing, Hardware Systems, we intend to 

investigate whether the first four groups have the same impact on software reliability or 

not in this study and compare with the results from Zhang et al. [28].  

 

Table 4.6 describes the final grouping for each phase in software development process. The 

ranging of the mean score from participants for each development phase is from 4.722 to 

5.225. Tukey grouping is applied here to group different development phases based on the 

mean value of participants’ score. Finally, three final groups are present in Table 4.6. 

Testing phase, including testing effort, testing methodologies, testing coverage, etc., are in 

the Group 1. Analysis and Design phase and Coding phase are in the Group 2. General 

phase, including program complexity, program categories, amount of programming effort, 

etc., are in the Group 3. 

 

The final grouping table exhibits the Testing phase has higher mean value compared with 

other development phases, which also implies that the Testing phase has higher significant 

impact level on affecting software reliability from the survey feedback.  On the other hand, 

40% of the environmental factors on the top 10 ranking environmental factors in Table 4.1 

is from the Testing phase; in particular, there are four environmental factors from the 

Testing phase stay on the top 10 ranking. These comparisons provide the same conclusion 
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that Testing phase is the most critical phase on affecting software reliability during the 

software development process in this study. 

 

Table 4. 6 Final grouping for development phase 

Development phase N Mean Tukey grouping Final grouping 

Testing 204 5.225 A   1 

Analysis and Design 205 5.034 A B 2 

Coding 180 4.933 A B 2 

General 205 4.722   B 3 

 

 

Significant Factors in Each Development Phase 

As mentioned in the last section, General phase, Analysis and Design phase, Coding phase, 

and Testing phase are included in software development. Software projects are often 

considered as long-term projects [140]. Communication, coordination, and knowledge 

sharing with other team members are very common amongst software developers, as the 

software project grows larger [141]. However, an individual still has his/her own job 

responsibility. Thus, it is very helpful to provide the significant environmental factors in 

each development phase to software developers based on their impact on software 

reliability.  

 

Backward elimination method is applied in this study to eliminate the non-significant 

environmental factors in each development phase. The variables of the backward 

elimination for each development phase are the environmental factors in this phase. The 

responses of the backward elimination are the improvement of the accuracy on software 
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reliability, which are collected from the participants as well and the value may vary from 

0 to 100. Table 4.7 presents the significant factors, parameter estimate, and p-value for 

each phase. 

 

Backward elimination starts with all the predictors, all environmental factors in each 

development phase in the model, eliminates the predictor based on the p-value as compared 

with Alpha-to-Remove value and stops when the p-value for all left predictors are less than 

or equal to Alpha-to-remove value [139]. Parameters are also calculated in the backward 

elimination for the predicators in the final linear model. Hence, the parameter estimate can 

be positive or negative, which depends on this environmental factor is positively or 

negatively correlated with the improvement of software reliability. As seen from the results, 

f24, testing methodologies is negatively correlated with the improvement of software 

reliability. In practice, as the testing methodology becomes more complicated, it becomes 

easier for the software testers to make mistakes during testing. As a result, the improvement 

of software reliability will decrease, which explains the coefficient of testing 

methodologies in the backward elimination method is negative.  

 

In the General phase, f6, percentage of reused code, is one of the significant factors, which 

is also on the top 10 ranking environmental factors by relative weighted method from Table 

4.1. f8, frequency of program specification change, and f12, relationship of detailed design 

to requirement, are significant factors in the Analysis and Design phase, which are ranked 

1 and 8 on top 10 ranking environmental factors, respectively. It is noticeable that 

significant environmental factors identified by using the backward elimination method for 
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each development phase are also have high rankings based on the relative weighted method 

described in Table 4.1.  

 

Table 4. 7 Significant environmental factor in each development phase 

Development  

phase 

Significant 

factor 
Description 

Parameter 

estimate 
p-value 

General  f4 amount of programming effort 8.2 0.0001 

  f6 percentage of reused code 4.7 0.0130 

Analysis and 

Design 

f8 frequency of program specification 

change 

5.9 0.0060 

  

f12 relationship of detailed design to 

requirement 

5.7 0.0140 

Coding f15 programmer skill 6.5 0.0320 

  f18 program workload (stress) 8.9 0.0001 

Testing f23 testing resource allocation 8.3 0.0010 

  f24 testing methodologies -7.8 0.0170 

  f25 testing coverage 10.8 0.0020 

 

 

4.1.5 Comparisons 

The above sections have discussed the environmental factor analysis and development life 

cycle phase analysis based on the survey we conducted. What is left for this study is to 

investigate whether the significance rankings of 32 environmental factors on affecting 

software reliability have changed after fifteen years; if they have changed, what are the 

reasons that caused these changes.  

 

In this section, results comparisons between the analysis in this study and those in the 

references [27, 28] will be discussed in the following section. These comparisons will be 

helpful for software developers to identify up-to-date significant environmental factors in 

software development and improve working efficiency on software reliability 
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improvement. Moreover, incorporating these up-to-date significant environmental factors 

into software reliability modeling will enhance prediction for the software reliability 

analysis [103]. 

 

Ranking of Environmental Factors 

Since the participants and the time of the two investigations are not identical, and thus the 

ranking results are different. What is interesting is that most of the top 10 ranking 

environmental factors from fifteen years ago still stay on the top 10 ranking nowadays 

except f11 falls to rank 15 based on the relative weight method. Additionally, the order of 

importance for each environmental factor has changed compared with the previous analysis 

[27]. The comparison of the top 10 ranking between the new analysis and the findings from 

Zhang and Pham [27] are illustrated in Table 4.8. 

 

As described in Table 4.8, f11, requirement analysis, are replaced by f19, domain 

knowledge. F11, requirement analysis, usually, analyzes the requirements from current or 

potential customers. Software developer will generate the updated specifications for the 

new product in consideration of the customer specifications. f19, domain knowledge, refers 

to the developer's knowledge of the input space and output target. Since the wide 

application of computing operation systems and a great amount of sales data analysis, 

software development team has better understanding in terms of customer requirement 

compared with 15 years ago. Domain knowledge is critical nowadays because of 

insufficient domain knowledge not only causes problems for coding and testing procedures, 

but also delays the software delivery date and affect software reliability in the field 
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operation. Domain knowledge has more influence for the entire development process than 

requirement analysis in terms of software reliability improvement. Therefore, domain 

knowledge is listed in the top 10 most important factors in this study. 

 

F8, frequency of program specification change, takes the place of f1, program complexity, 

is the most important environmental factors in this study. Program specifications are 

generated by software developers based on the customer requirements. First of all, if the 

frequency of changing program specification is very high, it will certainly lower the 

software developer’s working efficiency. Moreover, frequently changed specifications lead 

to more code changes and testing, in most cases, will delay software release and affect 

software robustness and reliability. 

 

There are other reasons that cause frequent specification changes. 1. Different software 

development crew may understand customer requirements differently. The employee 

turnover rates nowadays can be as high as 40%, or even higher [144]. The newly hired 

developers may need to change specifications based on their understanding of customer 

requirement, which is different with the old employees. At the same time, there is a time 

lag between the new employees receiving training and they are able to perform as well as 

the experienced employee. This gap will reduce productivity and service quality [144]. 2. 

Time-to-market (TTM) has driven the needs to speed up the development process starting 

from the specification generation to the final product. Sometimes, marketing department 

promises some features to the customers, however the development team is not able to 
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deliver. The discrepancy between marketing team and developers would inevitably cause 

specification changes. 

 

Nowadays, many companies intend to shorten the software release cycle. Beck and Andres 

[143] claims shorter release cycle can bring more benefits for both the companies and users.  

However, there is some literatures reported the shorter release cycle makes it impossible 

to test the adequate configurations for software product [142]. Hence, if the frequency of 

changing specifications is high in such a short inter-release time, it will lead to a severe 

software reliability issue for the released product.  

 

Therefore, the impact of the frequency of program specification change on affecting 

software reliability is the highest amongst all the other environmental factors in this study.  

 

Table 4. 8 Comparison of new ranking and previous ranking 

  New ranking  Ranking from Zhang and Pham [27] 

Rank Factor Description Factor Description 

1 f8 frequency of program specification 

change 

f1 program complexity 

2 f22 testing effort f15 programmer skill 

3 f21 testing environment f25 testing coverage 

4 f25 testing coverage f22 testing effort 

5 f1 program complexity f21 testing environment 

6 f15 programmer skill f8 frequency of program specification 

change 

7 f6 percentage of reused modules f24 testing methodologies 

8 f12 relationship of detailed design to 

requirement 

f11 requirements analysis 

9 f24 testing methodologies f6 percentage of reused modules 

10 f19 domain knowledge f12 relationship of detailed design to 

requirement 
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Principle Components of Environmental Factors 

PCA is applied to determine the principle components which are able to capture the 

characteristics of the survey data as provided in Section 4.1.4. Zhang et al. [28] applied 

factor analysis to investigate common factors which can represent most of the variation of 

the data. This study selects the top 10 important environmental factors for principle 

component analysis, f11, requirement analysis, and f5, level of programming technologies, 

are not included in this study, while Zhang et al. [28] selected the top 11 environmental 

factors for factor analysis.  

 

Table 4. 9 Comparison of principle components 

Principle components Common factors from Zhang et al. [28] 

Principle 

Component  
Factor Description 

Common 

factor 
Factor Description 

PC1 

f25 testing coverage 

C1 

f21 testing environment 

f21 testing environment f22 testing effort 

f22 testing effort f5 

level of programming 

technologies 

f24 testing methodologies f12 
relationship of detailed 

design and requirements 

f12 
relationship of detailed 

design and requirements 

C2 

f24 testing methodologies 

f6 percentage of reused code f25 testing coverage 

PC2 
f8 

frequency of specification 

change f6 percentage of reused code 

f19 domain knowledge     

PC3 

  

f15 

  

programmer skills 
C3 

f11 requirements analysis 

f8 
frequency of specification 

change 

f1 

  

program complexity 

  
C4 

f15 programmer skills 

f1 program complexity 

 

 

Generally speaking, three principle components are retained in this study, while four 

common factors are revealed in Zhang et al. [28], as described in Table 4.9. The first 
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principle component is the combination of the first common factor and the second common 

factor, but f5, level of programming technologies is not included. PCA provides less 

number of principle components compared with the number of common factors. The 

principle components in this study also deliver a clear and comprehensive interpretation in 

terms of investigating strong correlated factors.  

 

Significance Level of Each Development Phase based on Tukey Grouping and SNK 

Grouping 

Tukey method is used in this study to group the four development phases in terms of their 

mean scores. SNK multiple comparison test was applied in Zhang et al. [28]. The 

hypothesis for these two methods is that all development phases have the same significant 

level.   

 

As seen in the left side of Table 4.10, there are three final groups based on Tukey method, 

yet the previous study [28] only has one final group. Testing phase and General phase are 

not staying in one group. It is reasonable to be separated into different groups, due to the 

fact that the environmental factors from the Testing phase have higher occupancies on the 

top 10 ranking, compared with the factors from other phases from the above analysis. These 

changes can also be interpreted as the shift of attention of modern software development. 

Analysis and Design play more important roles in software development than fifteen years 

ago. 
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Table 4. 10 Final grouping comparison 

New grouping Grouping from Zhang et al. [28] 

Development phase Mean Final grouping Development phase SNK grouping Mean 

Testing 5.225 1 Testing A 5.430 

Analysis and Design 5.034 2 Coding A 5.350 

Coding 4.933 2 General A 5.240 

General 4.722 3 Analysis and Design A 5.030 

 

 

Significant Environmental Factors in Each Development Phase  

Linear regression backward elimination method is employed in both survey studies. Due 

to the participants are not the same, each survey feedback may provide different answer 

for each environmental factor. The response for the linear regression backward elimination 

method are the improvement of software reliability, which may vary from 0 to 100.  

 

The significant environmental factors comparison is present in Table 4.11. In the General 

phase, f6, percent of reused modules, is the most significant factor in both analyses, which 

is also on the top 10 ranking environmental factors. In the Analysis and Design phase, f8, 

frequency of program specification change, has high significant level in both studies. f12, 

relationship of detailed design to requirement, is another significant factor. Detailed design 

will be compared with customer requirements at the end of design phase, inspections will 

be performed, and misunderstanding part will be removed. Customer satisfaction has 

gained more attention in such a competitive and fast-changing technology environment and 

this is ultimately one of the key attributes to the company growth. Hence, f12, relationship 
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of detailed design to requirement, is the significant environmental factor in the Analysis 

and Design phase. 

 

The time spent on coding in software development largely depends on programmers’ skills 

since software programming is a complex exercise nowadays. Moreover, how to handle 

stress is another important issue addressed in this competitive society. The software 

development is still considered as a complicated yet resource-limited activity; at the same 

time, customers demand more reliable and safer software products. Thus, testing resource 

allocation, testing methodologies, and testing coverage are undoubtedly the most 

significant factors in the Testing phase.  

 

Table 4. 11 Comparison of significant factors in each development phase 

New significant factors Results from Zhang et al. [28] 

Phase Factor Description p-value Phase Factor Description p-value 

General  

  

f4 

amount of 

programming 

effort 

0.0001 

General  

  

f1 
program 

complexity 
0.0001 

f6 
percentage of 

reused code 
0.0130 f6 

percentage of 

reused code 
0.0907 

Analysis 

and 

Design 

f8 

frequency of 

program 

specification 

change 

0.0060 

Analysis 

and 

Design 

f8 

frequency of 

program 

specification 

change 

0.0635 

f12 

relationship of 

detailed design to 

requirement 

0.0140 f10 
design 

methodology 
0.0063 

Coding 

  

f15 programmer skill 0.0320 f13 work standards 0.0068 

f18 
program workload 

(stress) 
0.0001 

Coding 

  

f17 
development team 

size 
0.0192 

Testing 

  

  

f23 
testing resource 

allocation 
0.0010 f19 domain knowledge 0.0341 

f24 
testing 

methodologies 
0.0170 

 

Testing 

 

f21 

 

testing 

environment 

 

0.0001 

f25 testing coverage 0.0020        



70 

 

 

 

Again, the surveys are conducted from the perspective of the improvement and the impact 

on software reliability. The ranking of these environmental factors could have a wide 

variation depends on the opinion of participants. Compared with the studies conducted 

fifteen years ago [27, 28], most of the significant factors still stay on the top 10 lists, even 

though the importance orders are slightly different. This confirms that both analyses 

provide valuable information about what software developers shall focus on during 

different development stages. 

 

Time Allocation of Each Development Phase in Software Development 

The percentages of the time allocation of each development phase in this study are: 22% 

on the Analysis phase, 20% on the Design phase, 34% on the Coding phase, 24% on the 

Testing phase. Zhang and Pham’s [27] analysis concluded that the percentages of time 

spent on Analysis, Design, Coding and Testing phase are 25%, 18%, 36%, and 21%, 

respectively. The time allocation for each development only has slight difference, but also 

reflect the current emphasis of software development on the Analysis phase with the 

increasing customer involvement, less coding, and more testing. 

 

4.1.6 Conclusions of Comparison Analysis between Current Study and Previous 

Findings 

We revisit the 32 environmental factors defined in Zhang and Pham [27], reinvestigate 

their impact on software reliability to provide an up-to-date environmental factors analysis 
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and development life cycle phase analysis, and compare the results with the previous 

findings [27, 28] to analyze the difference of the impact of environmental factors on 

software reliability and each development phase in software development process. 

Conclusions can be drawn as follows. 

 

1. Most environmental factors listed on the top 10 lists in the previous study also stay 

on the top 10 lists in this study. However, the order of importance for environmental 

factors has changed. In this study, the frequency of program specification change 

is the most significant environmental factor amongst all 32 environmental factors 

in terms of the impact on affecting software reliability. Additionally, the frequency 

of program specification change can also be considered in the future software 

reliability modeling development. 

 

2. Three principle components, PC1, PC2, and PC3, as presented in Table 4.9, are 

able to represent 69% of the data variation of the collected survey of environmental 

factors. The three principle components, determined by PCA, are slightly different 

with the previous findings. 

 

3. The impacts of four development phases on software reliability are different in this 

study compared with what was discussed in Zhang et al. [28].  The earlier study 

indicated that four development phase shared equal importance in terms of 

improving software reliability. In our study, though, Testing phase still has the 

highest impact on software reliability, Analysis and Design phase has moved up as 
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the second significant phase. This reflects an emphasis on the front-end analysis 

and design which will help to straighten the development of software while making 

a more stringent TTM requirement. 

 

4. In response to the improvement on software reliability, the significant factors in 

each development phase have different orderings as compared with the previous 

study based on the backward elimination method. 

 

5. The time allocation for each development phase, Analysis, Design, Coding, and 

Testing are slightly different as compared with the previous study. 

  

4.2 Environmental Factors in Multi-Release Software Development 

4.2.1 Research Motivation 

As software systems are more deeply embedded in our everyday life, the dependence of 

our modern society on complex, intelligent and reliable large-scale software systems is 

rapidly growing than ever [145]. Meanwhile, the possibility of carrying more faults in the 

large-scale software systems is higher than decades ago. Software failures are increasingly 

common in the filed environment given the increasing complexity of software products 

[146]. 

 

To continually align with the fast-changing customer’s requirements and provide reliable 

products to the market, most companies will release multiple versions of the software 
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product since it is unlikely to deliver all the features in a single release and satisfy all the 

constraints within the limited resources [1, 46, 48, 147]. 

 

The principles of multi-release software are: adding new features in the next release and 

fixing the remaining faults from previous release due to the fact that bug-free software 

product is not likely to be delivered in any release [42]. Software multiple releases not only 

make company easily balance the competing stakeholder’s demand and benefits, but also 

increase reliability and customer satisfaction level during each release [40, 41]. 

 

The resources and constraints for the development of multi-release software are different. 

Software development team needs to select the corresponding features included in the next 

release with respect to customers’ feedback and market requirements. Since software will 

be released in increments for multi-release software, thus, coupling this concept with other 

principles such as continuous unit testing and pair programming will better arrange the cost 

distribution [148]. 

 

During the past decades, software version planning and release has been studied by many 

researchers. Szoke [149] developed a staged-delivery global optimized model for agile 

release planning. Li et al. [150] proposed a multi-objective optimization technique to 

optimize three main objectives with respect to cost, revenue, and uncertainty for robust 

next release problem. Etgar et al. [151] explored several optimization approaches to 

determine the content and release date for each release to provide optimal net present value. 
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However, all the past research related to release planning or multi-release software 

reliability modeling did not investigate the impact of environmental factors on software 

reliability in the development of multi-release software. It is very pragmatic yet interesting 

to investigate what are the impact of environmental factors affecting software reliability in 

the development of multi-release software. 

 

Therefore, it is plausible to conduct a new study to investigate the impact of these 

environmental factors on software reliability for multi-release software development and 

compare the differences between single-release software and multi-release software. 

 

4.2.2 Objectives 

As discussed in the previous section, the emphasis of the development process for multi-

release software is different with single-release software. For example, how to select the 

desirable features in which release, and how to determine the removal percentage of the 

detected software faults in each release. This study aims to revisit the environmental factors 

in terms of their impact on software reliability for multi-release software development. 

This study is carried out by conducting a survey of environmental factors affecting software 

reliability for the next release’s development. 

 

Firstly, we need to investigate the significant environmental factors affecting reliability in 

the development of multi-release software. Secondly, the correlation between 

environmental factors. Is it possible to reduce the dimension of those variables to provide 

concise and sound information for software researchers and practitioners? 
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Moreover, the significant environmental factors in each development phase and the 

significance level of each development phase are investigated to provide a helpful 

time/resource allocation matrix for software development team. Thirdly, we also compare 

the significant environmental factors during the whole development process, principle 

components, significant environmental factors in each development phase, and 

significance level of each development phase between the development of single-release 

software and multi-release software. 

 

At the end of this study, other statistical methods in terms of variable selection is also 

applied in this dissertation to provide an insightful matrix for readers according to their 

selection priority. Software practitioners can choose the results coming from different 

methodologies based on their requirements for the reference of multi-release software 

development. 

 

4.2.3 Data Collection 

To align with the latest survey data analysis focused on the significant environmental 

factors on affecting software reliability during the development of single-release software 

[29] and maintain the similarity for the comparison of environmental factors, we still use 

the same 32 environmental factors firstly defined in Zhang and Pham [27]. 

 

Forty-five survey responses are collected from various industries including computer 

software, internet, banking, semiconductor, online retailing, financial service, IT service & 
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consulting and research institution. Participants ranked the environmental factors based on 

the impact of each environmental factor on software reliability during the development of 

multi-release software. The software development experiences, software applications, 

years of experience, and job title are also provided from the participants. All the 

participants are currently working in IT Department in different industries or working on 

software development in high technology companies in favor of the validity and reliability 

of the survey response. Hence, we are expecting the survey response data is sound, valid, 

and reliable. 

 

4.2.4 Findings and Results 

Environmental Factor Analysis 

Relative Weighted Method 

We are using the same method as described in Section 4.1.4.1.1, the summation for all 

survey responses ranges from 87 to 191. Equations (4.1) and (4.2) are used for the 

normalization of each score in the original survey and final weight calculation, respectively. 

Note that L is the number of complete form, which is 45 in this multi-release study.  

 

As a result, we are able to calculate the normalized weight for each environmental factor 

and find their ranking, as presented in Table 4.12. Program complexity is the most 

important factor, which has higher impact on affecting software reliability for the 

development of next release than other environmental factors. In general, the higher 
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ranking of an environmental factor in Table 4.12, the higher impact of this environmental 

factor on software reliability in the development of multi-release software. 

 

Table 4. 12 Environmental factors ranking by relative weighted method 

Rank Factor Description 
Normalized 

weight 

1 f1 program complexity 0.0390879087 

2 f11 requirement analysis 0.0384558837 

3 f8 frequency of program specification change 0.0368853086 

4 f22 testing effort 0.0361218996 

5 f12 relationship of detailed design to requirement 0.0355715603 

6 f4 amount of programming effort 0.0353399281 

7 f25 testing coverage 0.0342799173 

8 f18 program workload (stress) 0.0342002348 

9 f6 percentage of reused modules 0.0341796701 

10 f5 level of programming technologies 0.0340814368 

11 f15 programmer skills 0.0337374978 

12 f21 testing environment 0.0337126257 

13 f23 testing resource allocation 0.0330611582 

14 f10 design methodology 0.0329230683 

15 f24 testing methodologies 0.0328771780 

16 f19 domain knowledge 0.0327225665 

17 f27 documentation 0.0322377808 

18 f3 difficulty of programming 0.0320263075 

19 f26 testing tools 0.0312195731 

20 f14 development management 0.0311128846 

21 f16 programmer organization 0.0306560899 

22 f2 program categories 0.0303179007 

23 f20 human nature 0.0300672895 

24 f17 development team size 0.0293613617 

25 f9 volume of program design documents 0.0291258278 

26 f13 work standards 0.0286965882 

27 f28 processors 0.0248516495 

28 f32 system software 0.0247222791 

29 f29 storage devices 0.0246144443 

30 f7 programming language 0.0226114305 

31 f30 input/output devices 0.0211775686 

32 f31 telecommunication devices 0.0199631816 
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Principle Component Analysis of Environmental Factors 

In order to keep the similarity of this study with the previous study, described in Section 

4.1, and compare what are differences between these two studies regarding single/multi 

release software, we are using the same methodology to analyze environmental factors. 

 

PCA is applied to reduce the dimension of the environmental factors for multi-release 

software survey study. The top 10 most important environmental factors based on the 

relative weighted method are selected to perform PCA. 

 

The top 10 environmental factors are f1, f11, f8, f22, f12, f4, f25, f18, f6, and f5. We notice 

that the ranking is quite different compared with the findings from Section 4.1.4.1.2. The 

group of significant environmental factors affecting software reliability is also different 

between the development of multi-release software and single-release software. The 

covariance matrix of 10 × 10 will be calculated to obtain the eigenvalues and eigenvectors. 

Eigenvalues, from the highest to the lowest, are listed in Table 4.13 in terms of their impact 

level on the principle components. 

 

As seen from Table 4.13, four principle components will be retained, which are PC1, PC2, 

PC3, and PC4. The first four principle components are able to address over 75% of the data 

variation. 38.2% of the data variation is explained by the first principle component; about 

13% of the data variation is explained by the second principle component. Likewise, the 

third and the fourth principle component are able to represent 12.7% and 11.1% of the data 
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variation, respectively. All other principle components only represent less than 10% of the 

variation, respectively. For the principle components PC5, PC6, PC7, PC8, PC9, and PC10, 

the compensation of adding one more principle component is considerately high according 

to the contributions that they bring in. 

  

Table 4. 13 Eigenvalue and proportion of the principle components 

Component Eigenvalue Proportion Cumulative proportion 

PC1 3.9836 0.3821 0.3821 

PC2 1.2567 0.1303 0.5124 

PC3 1.1596 0.1273 0.6397 

PC4 1.0539 0.1113 0.751 

PC5 0.8239 0.0832 0.8342 

PC6 0.6142 0.0654 0.8996 

PC7 0.4195 0.0429 0.9425 

PC8 0.2871 0.0241 0.9666 

PC9 0.2418 0.0192 0.9858 

PC10 0.1596 0.0141 1.0000 

 

 

After retaining the principles components of environmental factors in the development of 

multi-release software product. The next question we want to discuss is the contribution of 

each environmental factor to each principle component. Specifically, each principle 

component is the linear combination of the environmental factors.  

 

Table 4.14 presents the environmental factors which are strongly-correlated with the 

principle components. The loading coefficient is utilized to measure the contribution of 

each environmental factor to the principle components. Relationship of detailed design to 

requirement is highly correlated with the first principle component; amount of 
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programming effort is highly correlated with the second principle component; program 

complexity and frequency of specification change are highly correlated with the third and 

fourth principle component, respectively. 

 

Table 4. 14 Principle component associated with strong-correlated environmental factors 

Component Factor Description 
Loading 

coefficient 

PC1 f12 relationship of detailed design to requirement -0.399 

  f25 testing coverage -0.383 

  f22 testing effort -0.383 

  f11 requirement analysis -0.323 

  f5 level of programming technologies -0.294 

PC2 f18 program workload (stress) 0.520 

  f4 amount of programming effort -0.308 

PC3 f6 percentage of reused modules -0.526 

  f1 program complexity 0.509 

PC4 f8 frequency of program specification change 0.629 

 

 

Hypothesis Testing 

There is a common question that software practitioners often bring up: do these 32 

environmental factors have the same impact on software reliability in the development of 

multi-release software? In this section, one-way ANOVA is applied to compare the 

significance level of those environmental factors. From the R output, F-statistics for the 

environmental factors analysis is 8.342 with a p-value less than 2𝑒−16; while the value of 

𝐹31,1408 is 1.459. Statistically, the null hypothesis is rejected when F value is larger than F 

critical value of 1.459. Therefore, the significance level of each environmental factor on 
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software reliability assessment is different during the development of multi-release 

software. 

 

Correlation Analysis 

Table 4.15 presents the Pearson’s r associated with each pair of environmental factors in 

the development of multi-release software. Due to the limitation of the page, we only 

choose the absolute value of Pearson’s r is larger than 0.45 to present. 

 

Table 4. 15 Correlation analysis for multi-release software survey data 

Factor Description Correlated factors 
Pearson's 

r 

f1 program complexity f5 level of programming technologies 0.452 

f11 requirement analysis f22 testing effort 0.574 

    f29 storage devices -0.565 

    f5 level of programming technologies 0.561 

    f12 relationship of detailed design to requirement 0.553 

    f28 processors -0.539 

    f23 testing resource allocation 0.485 

    f25 testing coverage 0.477 

f22 testing effort f25 testing coverage 0.764 

    f23 testing resource allocation 0.684 

    f26 testing tools 0.679 

    f21 testing environment 0.671 

    f27 documentation 0.632 

    f5 level of programming technologies 0.627 

    f17 development team size 0.584 

    f14 development management 0.573 

 

f12 

 

relationship of detailed 

design to requirement 

f10 design methodology 0.554 

    f11 requirement analysis 0.553 

    f6 percentage of reused modules 0.496 

 

f4 

 

amount of programming 

effort 

f3 difficulty of programming 0.646 
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    f15 programmer skills 0.524 

    f7 programming language 0.476 

f25 testing coverage f24 testing methodologies 0.801 

    f22 testing effort 0.764 

    f21 testing environment 0.712 

    f26 testing tools 0.704 

    f23 testing resource allocation 0.690 

    f17 development team size 0.624 

    f14 development management 0.570 

    f13 work standards 0.550 

    f27 documentation 0.539 

    f5 level of programming technologies 0.534 

    f11 requirement analysis 0.477 

    f2 program categories 0.463 

    f32 system software 0.451 

 

f18 

 

program workload 

(stress) 

f20 human nature 0.497 

    f19 domain knowledge 0.491 

    f17 development team size 0.467 

 

f6 

 

percentage of reused 

modules 

f12 relationship of detailed design to requirement 0.496 

    f5 level of programming technologies 0.484 

 

f5 

 

level of programming 

technologies 

f22 testing effort 0.627 

    f11 requirement analysis 0.561 

    f25 testing coverage 0.534 

    f26 testing tools 0.510 

    f6 percentage of reused modules 0.484 

    f23 testing resource allocation 0.474 

    f1 program complexity 0.452 

f15 programmer skills f7 programming language 0.647 

    f19 domain knowledge 0.603 

    f16 programmer organization 0.591 

    f4 amount of programming effort 0.524 

f21 testing environment f25 testing coverage 0.711 

    f22 testing effort 0.671 

    f23 testing resource allocation 0.643 

    f17 development team size 0.627 

    f26 testing tools 0.570 

    f20 human nature 0.538 

    f24 testing methodologies 0.475 

 

f23 

 

testing resource 

allocation 

f26 testing tools 0.842 
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    f25 testing coverage 0.690 

    f22 testing effort 0.685 

    f24 testing methodologies 0.668 

    f21 testing environment 0.643 

    f17 development team size 0.558 

    f14 development management 0.555 

    f9 volume of program design documents 0.492 

    f11 requirement analysis 0.485 

    f13 work standards 0.479 

    f5 level of programming technologies 0.474 

f10 design methodology f14 development management 0.604 

    f9 volume of program design documents 0.563 

    f12 relationship of detailed design to requirement 0.554 

f24 testing methodologies f25 testing coverage 0.800 

    f13 work standards 0.715 

    f14 development management 0.694 

    f23 testing resource allocation 0.668 

    f22 testing effort 0.625 

    f26 testing tools 0.621 

    f9 volume of program design documents 0.613 

    f17 development team size 0.599 

    f27 documentation 0.564 

    f32 system software 0.508 

    f31 telecommunication devices 0.470 

f19 domain knowledge f29 storage devices 0.741 

    f7 programming language 0.653 

    f16 programmer organization 0.631 

    f15 programmer skills 0.603 

    f20 human nature 0.564 

    f17 development team size 0.513 

    f18 program workload (stress) 0.491 

f27 documentation f14 development management 0.642 

    f22 testing effort 0.632 

    f24 testing methodologies 0.564 

    f13 work standards 0.551 

    f25 testing coverage 0.539 

    f31 telecommunication devices 0.512 

    f17 development team size 0.493 

 

f3 

 

difficulty of 

programming 

f4 amount of programming effort 0.646 

    f7 programming language 0.538 

f26 testing tools f23 testing resource allocation 0.843 

    f25 testing coverage 0.703 

    f22 testing effort 0.679 
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    f24 testing methodologies 0.621 

    f21 testing environment 0.570 

    f5 level of programming technologies 0.510 

    f32 system software 0.492 

    f17 development team size 0.459 

    f2 program categories 0.451 

 

f14 

 

development 

management 

f24 testing methodologies 0.694 

    f27 documentation 0.642 

    f10 design methodology 0.604 

    f22 testing effort 0.573 

    f23 testing resource allocation 0.554 

    f13 work standards 0.498 

 

f16 

 

programmer organization 
f19 domain knowledge 0.631 

    f31 telecommunication devices 0.611 

    f29 storage devices 0.596 

    f15 programmer skills 0.592 

    f17 development team size 0.522 

    f28 processors 0.504 

f2 program categories f13 work standards 0.715 

    f9 volume of program design documents 0.472 

    f25 testing coverage 0.463 

    f26 testing tools 0.451 

f20 human nature f19 domain knowledge 0.564 

    f7 programming language 0.563 

    f21 testing environment 0.538 

    f18 program workload (stress) 0.497 

f17 development team size f32 system software 0.663 

    f21 testing environment 0.627 

    f24 testing methodologies 0.599 

    f22 testing effort 0.584 

    f31 telecommunication devices 0.572 

    f23 testing resource allocation 0.560 

    f30 input/output devices 0.560 

    f15 programmer skills 0.550 

    f16 programmer organization 0.522 

    f19 domain knowledge 0.513 

    f27 documentation 0.493 

    f14 development management 0.483 

    f7 programming language 0.477 

    f18 program workload (stress) 0.467 

    f26 testing tools 0.459 



85 

 

 

 

f9 

 

volume of program 

design documents 

f2 program categories 0.472 

    f10 design methodology 0.563 

    f13 work standards 0.584 

    f14 development management 0.500 

    f23 testing resource allocation 0.492 

    f24 testing methodologies 0.613 

f13 work standards f2 program categories 0.715 

    f24 testing methodologies 0.715 

    f9 volume of program design documents 0.584 

    f27 documentation 0.551 

    f25 testing coverage 0.550 

    f14 development management 0.498 

    f23 testing resource allocation 0.479 

f28 processors f29 storage devices 0.887 

    f30 input/output devices 0.668 

    f31 telecommunication devices 0.561 

    f16 programmer organization 0.506 

    f19 domain knowledge 0.469 

    f7 programming language 0.459 

    f11 requirement analysis -0.539 

f32 system software f17 development team size 0.663 

    f30 input/output devices 0.654 

    f31 telecommunication devices 0.650 

    f25 testing coverage 0.571 

    f24 testing methodologies 0.508 

    f26 testing tools 0.492 

    f14 development management 0.474 

    f22 testing effort 0.467 

f29 storage devices f28 processors 0.886 

    f30 input/output devices 0.683 

    f31 telecommunication devices 0.619 

    f16 programmer organization 0.596 

    f7 programming language 0.503 

    f19 domain knowledge 0.471 

    f11 requirement analysis -0.565 

f7 programming language f4 amount of programming effort 0.476 

    f15 programmer skills 0.647 

    f17 development team size 0.477 

    f19 domain knowledge 0.653 

    f20 human nature 0.563 

    f28 processors 0.459 

    f29 storage devices 0.503 

    f30 input/output devices 0.467 
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f30 input/output devices f31 telecommunication devices 0.829 

    f29 storage devices 0.683 

    f28 processors 0.668 

    f32 system software 0.654 

    f17 development team size 0.560 

    f16 programmer organization 0.497 

    f7 programming language 0.468 

 

f31 

 

telecommunication 

devices 

f30 input/output devices 0.839 

    f32 system software 0.650 

    f29 storage devices 0.619 

    f16 programmer organization 0.612 

    f17 development team size 0.572 

    f28 processors 0.561 

    f14 development management 0.488 

 

 

Development Phase Analysis 

Significance Level of Each Development Phase 

We are interested in whether these five development phases have the same impact on 

software reliability during the development of multi-release software. Thereafter the 

comparison between the development of single-release software and multi-release software 

in terms of the significance level of each development phase will be drawn later. One-way 

ANOVA method is utilized to compare the significance level. The hypothesis is presented 

as follows. 

 

𝐻0: µ𝐺𝑒𝑛𝑒𝑟𝑎𝑙 = µ𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠&𝑑𝑒𝑠𝑖𝑔𝑛 = µ𝐶𝑜𝑑𝑖𝑛𝑔 = µ𝑇𝑒𝑠𝑡𝑖𝑛𝑔 = µ𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 

 

𝐻𝑎: 𝑛𝑜𝑡 𝑎𝑙𝑙 𝑒𝑞𝑢𝑎𝑙 
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From the R output, the F-statistic for the development phase is 35.98 with p-value less than 

2𝑒−16. The F critical value, 𝐹4,1435, is 2.378 from F table, which is much less than 35.98. 

Therefore, during the development of multi-release software, the impact of each 

development phase on software reliability is different. 

 

Figure 4.1 illustrates the boxplot of each development phase. General phase, Analysis and 

Design phase, Coding phase, and Testing phase have the similar mean value. From the 

output of Tukey multiple comparison of mean, we consider the General, Analysis and 

Design, Coding and Testing as a group. The grouping distribution is different with the 

previous findings from Section 4.1, for which, we will discuss later.  

 

 

Figure 4. 1 Boxplot for each development phase 

 

Significant Environmental Factors in Each Development Phase 
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We also use the backward elimination to identify the significant environmental factors in 

each phase during multi-release software development. For the variable selection process, 

we use Reliability obtained from survey as response variable and the environmental factors 

in each phase as explanatory variables. For instance, in the General phase, f1, f2, f3, f4, f5, 

f6, and f7 are explanatory variable, the Reliability value is obtained from survey.  

 

Table 4.16 reveals the significant environmental factors in each development phase for 

multi-release software. Most significant factors in the General, Analysis and Design phase 

also stay on top 10 ranking environmental factors calculated by relative weighted method. 

It is very interesting to see human nature is one of the significant factors in the Coding 

phase. Human nature refers to the characteristics of software developer, such as the ability 

to avoid making mistakes. As the software release cycle becomes shorter, the software 

development cycle is also getting shorter accordingly. In such a scenario, the consequence 

of human nature on affecting software reliability is getting more attention in the 

development of multi-release software. 

 

Table 4. 16 Significant factors in each development phases for multi-release software 

Development phase 
Significant 

factor 
Description 

Parameter 

estimate 
p-value 

General f4 amount of programming effort -0.074 0.017500 

  f5 level of programming technologies 0.090 0.006600 

  f7 programming language 0.049 0.023000 

Analysis and Design f11 requirement analysis 0.080 0.002600 

Coding f20 human nature 0.092 0.000006 

Testing f23 testing resource allocation 0.099 0.002500 
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4.3 Comparisons between Single-Release and Multi-Release Software 

4.3.1 Ranking of Environmental Factors 

There are 60% environmental factors on the top 10 ranking for single-release software still 

stay on the top 10 ranking for multi-release software, however, the order of importance has 

changed. The detailed comparison of the top 10 ranking between single-release software 

and multi-release software is presented in Table 4.17. 

 

Table 4. 17 Comparison of ranking between multi-release and single-release 

  Multi-release software Single-release software 

Rank Factor Description Factor Description 

1 f1 program complexity f8 frequency of program specification 

change 

2 f11 requirement analysis f22 testing effort 

3 f8 frequency of program specification 

change 

f21 testing environment 

4 f22 testing effort f25 testing coverage 

5 f12 relationship of detailed design to 

requirement 

f1 program complexity 

6 f4 amount of programming effort f15 programmer skills 

7 f25 testing coverage f6 percentage of reused modules 

8 f18 program workload (stress) f12 relationship of detailed design to 

requirement 

9 f6 percentage of reused modules f24 testing methodologies 

10 f5 level of programming technologies f19  domain knowledge 

 

 

Most software companies frequently release new updated versions to stay competitive in 

the market. Depending on the purpose of the new release, some version may be released 

on a frequent basis, for instance, fix urgent faults in the previous software release; some 

version may be released on a long-term basis since it will bring in major updates [152].  
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Additionally, large software companies like Ericsson increasingly apply the principles of 

agile and lean software development in an iterative manner to quickly respond to customers’ 

feedback [153]. It is understood that the requirements analysis and design and have the 

customers involved take longer time for the multi-release software development. The 

testing is relatively on a smaller scope and takes shorter time compared with single-release 

software. Likewise, this study also supports this point of view. For example, as seen in 

Table 4.17, there are four environmental factors are coming from the Testing phase for 

single-release software, while only two environmental factors are coming from the Testing 

phase for multi-release software. 

 

Environmental factors, f11, f4, f18, and f5, are revealed in the top 10 ranking for the first 

time. f11, f4, f18, f5 refers to requirement analysis, amount of programming effort, 

program workload (stress), and level of programming technologies, respectively.  

Environmental factor, f11, requirement analysis, usually comes from customers, is the 

fundamental factor for the following design and coding work. The specifications that 

software developers generate mostly based on the requirements from customers. It is also 

known that continuous delivery of customer requirement is critical for software 

development company in this very market-driven environment [153], thus, it is reasonable 

that requirement analysis has significant impact on affecting software reliability in the 

development of multi-release software. f4 and f5 are coming from the General phase and 

both stay in the top 10 ranking in this study. f4, amount of programming effort, which may 

directly improve the efficiency and reliability of the product. f5 refers to the level of 

programming technologies. The programming technologies are classified into four 
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categories: design techniques, documentation techniques, programming techniques and 

development techniques. f5 represents a comprehensive consideration for software 

development team. Due to the short release of the software and the quick response to 

customer requirements, programming technologies have more significant impact on 

affecting the quality and reliability of multi-release software.  

 

4.3.2 Principle Components of Environmental Factors 

Four principle components are obtained in multi-release software survey study, represented 

over 75% variation for the collected data; three principle components were generated in 

the previous findings for single-release software, explained 69% variation of the collected 

data. The detailed comparisons are explained in Table 4.18. In sum, software developers 

need to choose the corresponding results according to the product requirements.  

 

4.3.3 Significance Level of Each Development Phase 

Tukey method is utilized on both studies to compare the four development phases. The 

comparison of significance level of each development phase is illustrated in Table 4.19. 

The null hypothesis for both studies is all development phases have the same significance 

level in terms of their impact on software reliability. Three groups are categorized for 

single-release software development. Testing phase is the most important phase on 

affecting software reliability; Analysis, Design, and Coding phases have the same 

significance level; General phase has the least significance level. However, in the 

development of multi-release software, all of four development phases have the equal 
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impact on affecting software reliability. As we discussed earlier, the application of agile 

and lean software development method results in short iteration and short release to quickly 

respond customers’ feedback. Thus, the significance level of the Testing phase in the 

development of multi-release software is not as significant as it in the development of 

single-release software. 

 

Table 4. 18 Comparisons of principle components between single-release and multi-

release software 

Principle components for multi-release software 
Principle components for single-release 

software 

Principle 

components 

Factor Description Principle 

components 

Factor Description 

 

 

PC1 

  

  

  

  

f12 
relationship of detailed 

design to requirement 

 

 

 

PC1 

  

  

  

  

  

f25 testing coverage 

f25 testing coverage f21 testing environment 

f22 testing effort f22 testing effort 

f11 requirement analysis f24 testing methodologies 

f5 
level of programming 

technologies 
f12 

relationship of detailed 

design to requirement 

 

PC2  
f18 

program workload 

(stress) 
f6 

percentage of reused 

modules 

f4 
amount of programming 

effort 
PC2 f8 

frequency of program 

specification change  

 

PC3 

  

f6 
percentage of reused 

modules 

  
f19 domain knowledge 

f1 program complexity  

PC3 

  

f15 programmer skills 

PC4 f8 
frequency of program 

specification change  
f1 program complexity 

 

 

4.3.4 Significant Environmental Factors in Each Development Phase 

Backward elimination method is applied in both studies to extract the significant 

environment factors of each development phase for single/multi release software. The 

comparisons are illustrated in Table 4.20.  
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Most of the significant factors in each development phase are also on the top 10 ranking 

environmental factors in these two studies. The significant factors in each development 

phase are different between single-release software and multi-release software. For multi-

release software, the significant factors in the General phase are f4, amount of 

programming effort, f5, level of programming technologies, and f7, programming language; 

while the significant factors in the General phase for single-release software are f4, amount 

of programming effort and f6, percentage of reused modules. Only f4, amount of 

programming effort, is the significant factor in the General phase in both studies.  Analysis 

and Design phase have the similar choice of significant factors in these two studies since 

f11, requirement analysis, and f12, relationship of detailed design to requirement, both 

focus on the alignment of customer requirements. 

 

In the Coding phase, the interesting finding is that multi-release software development 

more focuses on human nature. Human nature refers to the developers’ characteristics, 

including the ability to avoid making working mistakes, careless work omission. Given the 

short-release cycle of multi-release software, on-time project delivery is very critical thus 

any working mistake could affect the coding efficiency and delay the product release. 

 

In the Testing phase, testing resource allocation is the significant factor in both studies. 

Technical-related environmental factors like testing methodology and coverage are more 

emphasized in the development of single-release software. In sum, the selection of the 
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significant factors in these two studies reflects the difference of the development 

methodology. 

 

Table 4. 19 Comparison of final grouping 

Grouping (multi-release software) Grouping (single-release software) 

Development phase Mean Final grouping Development phase Mean Final grouping 

General 4.540 1 General 5.225 1 

Analysis and Design 4.641 1 Analysis and Design 5.034 2 

Coding 4.470 1 Coding 4.933 2 

Testing 4.707 1 Testing 4.722 3 

 

 

Table 4. 20 Comparison of significant factors in each development phase 

Significant factors for multi-release software Significant factors for single-release software 

Phase 
Sig. 

factor 
Description p-value Phase 

Sig. 

factor 
Description p-value 

General 

f4 

amount of 

programming 

effort 

0.01750 

General 

f4 
amount of programming 

effort 
0.0001 

f5 

level of 

programming 

technologies 

0.00660 f6 
percentage of reused 

module 
0.0130 

f7 
programming 

language 
0.02300 

Analysis 

and 

Design 

f8 
frequency of program 

specification change 
0.0060 

Analysis 

and 

Design 

f11 
requirement 

analysis 
0.00260 f12 

relationship of detailed 

design to requirement 
0.0140 

Coding f20 human nature 0.00001 
Coding 

f15 programmer skills 0.0320 

    f18 program workload (stress) 0.0001 

  testing     

Testing 
f23 testing resource allocation 0.0010 

Testing f23 resource      0.00250 f24 testing methodologies 0.0170 

    allocation   f25 testing coverage 0.0020 
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4.4 Other Statistical Learning Method to Select Environmental Factors 

We apply lasso regression in this section and compare with the results from other variable 

selection methods for multi-release survey data. Why do we choose lasso regression to fit 

the model instead of least squares? It is the trade-off between the variance and bias for the 

sake of the model prediction accuracy and interpretability [154]. The least squares 

estimates tend to have low bias if the relationship between the response and the predictors 

is linear. If 𝑛 ≫ 𝑝, that is, if the number of observations, n, is much larger that the number 

of variables, p, the least squares tends to have low variance and performs well on the test 

observations. However, if n is not larger than p, then variability can be occurred in the least 

squares estimates. Overfitting and poor prediction may also appear in the future 

observation, which are not used in the model training [154]. We have 45 survey responses 

while 32 environmental factors are presented for multi-release survey data. The number of 

observations is not much larger than the number of variables. To reduce the variance at the 

cost of increasing bias, we often shrink the estimated coefficients. Therefore, lasso 

regression, a shrinkage regression method, in which some coefficients will be estimated 

towards zero, hence, is applied to perform variable selection.  

 

As the tuning parameter λ is sufficiently large, some coefficients can be exactly equal to 

zero in lasso regression. By applying lasso regression, the non-zero-coefficient variables 

are f11, f20, f23, represent requirement analysis, human nature, and testing resource 

allocation, respectively. They are considered as the significant predictors on affecting 

reliability in the development of multi-release software from lasso regression.  
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Different variable selection methods may provide different sets of significant factors, but 

similarity could still exist in these sets. For instance, relative weighted method applied in 

all 32 environmental factors and the backward elimination method applied in each 

development phase both conclude f11, requirement analysis, is an important environmental 

factor. Moreover, f20, human nature, and f23, testing resource allocation, are selected as 

significant factor in each development phase addressed in Section 4.2. There are also some 

drawbacks on selecting variables using lasso regression. We understand that other variables 

which are highly-correlated with the selected variables may be eliminated in the selection 

process based on the mathematical theory, however, some of them may possess more 

practical meaning than the selected variables. From this point of view, Table 4.15 provides 

detailed explanation on their correlations. 

 

4.5 Conclusions of Environmental Factor Studies in Development of Single-

Release and Multi-Release Software 

This chapter aims to investigate and compare the impact of environmental factors on 

affecting software reliability in the development of single-release and multi-release 

software. Comparisons are concluded as follows.  

 

1. 60% similarity of environmental factors listed on the top 10 ranking in these two 

studies. However, the order of importance has changed. The importance level of 

the Testing phase in the development of multi-release software is not as significant 

as in single-release software because of the increasing application of agile software 

development method. Correspondingly, factors related to the Testing phase are not 



97 

 

 

important as before, while factors related to customer requirement/feedback 

analysis are getting more attention in the development of multi-release software.  

 

2. Given the emphasis of multi-release software development is shifting more to the 

Analysis and Design phase, all four development phases in multi-release software 

are categorized as one group, while three groups are retained for single-release 

software. 

 

3. Significant factors in each development phase are not the same for single and multi- 

release software. The weight of testing-related and programmer-skill-related 

factors decreases, as the weight of customer-related factors increases. 

 

4. Other statistical learning method, e.g., lasso regression, is applied to analyze thee 

multi-release survey data. Requirement analysis, human nature, and testing 

resource allocation are considered as the significant predictors on predicting 

reliability for the development of multi-release software. Different variable 

selection method has its own limitation, researchers and practitioners will choose 

the corresponding results depends on their applications. 

 

In this chapter, survey responses from different industries/projects/regions are considered 

as one group to investigate the significance level of environmental factors on affecting 

software reliability in the development of single-release and multi-release software. 

Several research directions can be addressed in the future research. For example, the 
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comparison of the findings amongst industries, projects, or even regions can be further 

discussed since the variance exists in those groups are considerably worthy to be 

investigated. Incorporating single/multiple significant environmental factor(s) in software 

reliability modeling is also plausible. 
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CHAPTER 5 

SOFTWARE RELIABILITY MODELS CONSIDERING FAULT DEPENDENCY 

AND IMPERFECT FAULT REMOVAL 

 

5.1 Research Motivation 

Software technologies have been greatly adopted in many critical applications, such as air 

traffic control system, national security defend system, network/grid system, and consumer 

appliance [157]. Given such an increasing expectation on the performance of software-

related product, the reliability and quality of software product have been studied by many 

practitioners and researchers since 1970s. Thus, a great number of attempts and approaches 

are proposed to measure software reliability and reliability improvement during the 

testing/operation phase in the past four decades, as reviewed in Chapter 2. NHPP is 

considered as one of the most effective mathematical tools to model software fault growth 

process since software faults come on a discrete-time scale.  

 

The common assumptions for the existing software reliability growth models are 

summarized as follows. (1) Software faults are mutually independent. (2) The program 

only has one type of software fault; hence, the difficulty level of detecting software faults 

is the same. In other words, software detection rate is always the same without considering 

different fault type. (3) The detected software faults are perfectly removed during the 

testing phase. It is unlikely to remove all the faults during the testing phase for the modern 

software product in consideration of the limited resource, estimated risk, constrained 

schedules, and multi-release consideration [39]. The above assumptions are proposed 
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mainly because of the simplicity consideration of the mathematical modeling for fault 

detection process. However, it may not be realistic.  

 

As discussed in Chapter 2, a typical software program usually suffers from more than one 

type of software fault [117 - 123]. Different fault classes are categorized by practitioners 

and researchers to describe the characteristics of software faults that cause failures during 

testing and operation phase [117, 124]. Some fault classes are discussed as follows. 

 

First, solid (hard) faults, often corresponding to Bohrbugs, and soft (elusive) faults, 

referring to Mandelbugs. Even Bohrbug and Mandelbug are discussed by many 

practitioners. we still do not have consistent definitions given in the literature for Bohrbug 

and Mandelbug [120 - 121]. The definitions given in this dissertation are referred from 

Grottke et al. [117]. Bohrbug is defined as an easily isolated fault that manifests 

consistently under a well-defined set of condition due to its activation is lack of complexity, 

while Mandelbug is associated with complex activation and/or error propagation behavior. 

The “Complexity” in Mandelbug may be triggered by the interaction of software 

application and its system environment (hardware, operation system, and other 

applications), the influence of the operation sequences, the influence of inputs, and the time 

lag between fault activation and failure occurrence [122, 123]. 

 

Secondly, related faults and independent faults. Laprie et al. [118] stated that software 

faults are either related or independent. Related faults manifest themselves as similar errors 

and lead to the common-mode failures, while independents faults usually cause distinct 



101 

 

 

errors and separate failures. In other words, the failure mode of related faults is similar, but 

the failure mode of independent faults is distinct. 

 

Thirdly, Lapire [126] also identified and discussed the limits and challenges in the 

dependability of computer systems in terms of the fault class, such as physical faults, 

design faults, and interaction faults.  

 

Given the practical consideration of different types of software faults discussed above, and 

the lack of software reliability models incorporating both software fault dependency and 

imperfect fault removal, therefore, we include both software fault dependency and 

imperfect fault removal in a NHPP software reliability model in this chapter. 

 

Two main concerns: Software Fault Dependency and Software Imperfect Fault Removal, 

are included in this chapter. A brief discussion regarding these two topics are presented 

below.   

 

Software Fault Dependency 

As discussed above, different types of software faults are defined in the literature based on 

different criteria. For example, solid faults and soft faults are defined with respect to the 

existence of “complexity”. “Complexity” is caused by a time lag between the fault 

activation and failure occurrence, or the influence of interaction between software and 

application environment [117]. Independent faults and related faults are also defined 

according to the independence of fault manifestation. Those literatures are commonly 
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known in software engineering area. But when it comes to develop software reliability 

growth model, software fault dependency is often neglected for the sake of model 

simplicity. Only a few literatures address fault dependence/different types of software 

faults in the modeling, as discussed in Chapter 2. 

 

In order to explain the fault dependency, we adopt an example of correct and faulty 

program from Huang and Lin [132], as revealed in Figure 5.1. The left side of Figure 5.1 

is the correct program, while the right side of Figure 5.1 is the faulty program.  

 

There are two misusing operators in the faulty program, located in line 30 and line 105, 

respectively. The fault located in line 30 in the faulty program is caused by a misusing 

operator. After executing line 30, it will lead to the wrong input for line 42. It is expected 

that line 105 will not print out the right output since another fault exists in line 105. Besides 

removing the fault in line 105, the fault existing in line 30 still needs to be corrected. Thus, 

in the segment discussed below, fault located in line 30 is Type I (independent) fault, while 

fault located in line 105 is Type II (dependent) fault based on the definition given in this 

study. 

 

The detailed discussion for Type I and Type II fault will be described in Section 5.3. Note 

that in the proposed software reliability model for one-phase debugging process, we 

assume Type I (independent) faults have been removed in the preliminary testing, thus, 

only consider Type II (dependent) faults in the program for the sake of simplification. The 
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proposed software reliability model for two-phase debugging process consider both types 

of faults in the program.  

 

                 Correct program                   Faulty program  

Line  

number 
Code   

Line  

number 
Code Remarks  

:   :   :   :   

30  key = key % 5 30  key = key / 5 #misusing operator 

:       :       

42  while (key < 5) 42  while (key < 5)   

43   {   43   {   

:   :   :   :   

70       count = count * 2 70       count = count * 2   

:   :   :   :   

80   }   80   }   

:       :       

105  print (count % 5) 105  print (count / 5) #misusing operator 

106  print ("end") 106  print ("end")  

Figure 5. 1 Example of Type I (independent) fault and Type II (dependent) fault 

 

Software Imperfect Removal 

In practice, it is unlikely to remove all the detected faults in software testing phase due to 

the limited resource, estimated risk, constrained schedules, and multi-release consideration. 

These literatures [106, 158 – 161] incorporated fault removal efficiency in the software 

reliability models. We also consider imperfect fault removal in this chapter. Specifically, 

detected faults cannot be perfectly removed in software testing phase. 
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5.2 Proposed Software Reliability Model for One-Phase Debugging Process 

As discussed in Figure 5.1, we define two types of software faults, Type I (independent) 

fault and Type II (dependent) fault. For the sake of model simplification, we first consider 

one-phase debugging process to model the failure growth. We only consider Type II faults 

in one-phase debugging process and assume all Type I faults have been removed in the 

preliminary testing phase. Thus, as seen in Figure 5.2, we assume at 𝑡 = 0, the detection 

of Type II faults starts. 

 

 

 

 

 

 

 

The assumptions for the proposed one-phase software reliability model are described as 

follows. 

 

(1) Software detection follows a NHPP process. 

(2) This is a fault-dependent detection process.  

(3) Fault detection is a process of a learning curve phenomenon. 

(4) Fault is not removed perfectly upon detection.  

(5) The debugging process may introduce new errors into software. This is an imperfect 

debugging process, but the maximum faults contained in the software is 𝐿. 

Type II (depend) faults 

0 𝑡 

Figure 5. 2 One-phase debugging process 
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(6) The software failure intensity 𝜆(𝑡) is explained as the percentage of the removed 

errors in the software product. 

(7) The non-removed software error rate is assumed to be a constant. 

 

The notations for this section are given as follows. 

 

L  Maximum number of software faults in the program 

b  Asymptotic unit of software fault detection rate 

𝛽   Shape parameter of the learning curve 

c  Non-removable error rate per unit of time 

𝑚0  Expected number of software failures at time t = 0 

𝑚(𝑡)   Expected number of software failures by time 𝑡 

𝑏(𝑡)   Fault detection rate function 

𝑐(𝑡)  Non-removable fault rate function due to the limitation of testing resource, 

the skill and experience of the programmer, and multi-release consideration 

for software organization 

 

A NHPP software reliability model with fault-dependent detection, imperfect fault removal, 

and the maximum number of faults is formulated as follows 

 

𝑑𝑚(𝑡)

𝑑𝑡
= 𝑏(𝑡)𝑚(𝑡) [1 −

𝑚(𝑡)

𝐿
] − 𝑐(𝑡)𝑚(𝑡)                                 (5.1) 
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where 𝑚(𝑡) represents the expected number of software failures detected by time 𝑡. 𝐿 

denotes the maximum number of software faults in the program. 𝑏(𝑡) is the fault detection 

rate per individual fault per unit of time. 𝑐(𝑡) represents the non-removed error rate per 

unit of time. 

 

(1 −
𝑚(𝑡)

𝐿
)  indicates the proportion of software faults are going to detect in every 

debugging effort. 𝑏(𝑡)𝑚(𝑡) [1 −
𝑚(𝑡)

𝐿
] is the percentage of detected dependent errors by 

time 𝑡 . 𝑐(𝑡)𝑚(𝑡) represents the non-removed errors by time 𝑡 . Hence, 𝑏(𝑡)𝑚(𝑡) [1 −

𝑚(𝑡)

𝐿
] − 𝑐𝑚(𝑡) represents the proportion of the removed errors in the software by time 𝑡. 

𝜆(𝑡) =  
𝑑𝑚(𝑡)

𝑑𝑡
 is the failure intensity function for the whole software system by time 𝑡. 

 

The marginal condition for the above equation is given as 

 

𝑚(𝑡0) = 𝑚0,     𝑚0 > 0                                                   (5.2) 

 

Given software testers perform a preliminary testing to remove the Type I software faults 

before officially starting this one-phase debugging process. Thus, in this chapter, we 

assume 𝑚0 > 0 by taking into consideration of those errors. The general solution for (5.1) 

is easily obtained as 

 

𝑚(𝑡) =  
𝑒
∫ (𝑏(𝜏)− 𝑐(𝜏))𝑑𝜏
𝑡
𝑡0

1
𝐿 ∫

𝑒
∫ (𝑏(𝑠)− 𝑐(𝑠))𝑑𝑠
𝜏
𝑡0 𝑏(𝜏)𝑑𝜏 +

1
𝑚0

𝑡

𝑡0

                                  (5.3) 



107 

 

 

 

We assume fault detection is a process of a learning curve phenomenon, which is addressed 

in equation (5.4). Non-removed rate 𝑐(𝑡) is a constant, given in equation (5.5). 

 

𝑏(𝑡) =
𝑏

1 + 𝛽𝑒−𝑏𝑡
, 𝑏 > 0, 𝛽 > 0                                 (5.4) 

 

𝑐(𝑡) =  𝑐, 𝑐 > 0                                                   (5.5) 

 

Substituting equations (5.4) – (5.5) into equation (5.3), we obtain 

 

𝑚(𝑡) =
𝛽 + 𝑒𝑏𝑡

𝑏
𝐿(𝑏 − 𝑐)

[𝑒𝑏𝑡 − 𝑒𝑐𝑡] +
1 + 𝛽
𝑚0

𝑒𝑐𝑡
                              (5.6) 

 

5.3 Proposed Software Reliability Model for Two-Phase Debugging Process 

In the last section, we discuss one-phase debugging process with dependent fault detection 

process and imperfect fault removal along with the maximum number of software faults 

exists in the program. We also assume Type I software faults have been eliminated in the 

pre-analysis testing phase.  

 

In this section, we propose a two-phase software reliability model in consideration of 

software fault dependency and imperfect fault removal process to model software failure 

growth. 
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Firstly, two types of software faults are defined, Type I and Type II. Type I software fault 

is defined as an independent and easy-detected fault, which is detected and corrected in 

Phase I. Type II software fault is defined as a dependent and difficult-detected fault, which 

is detected and corrected in Phase II. In particular, the detection of Type II faults depends 

on the faults that have already detected. Hence, two-phase debugging process is proposed 

accordingly.  

 

 

 

 

 

 

 

Figure 5.3 describes two-phase debugging process and their corresponding fault type. 

Secondly, there exists a small portion of software faults in both phases that software 

programmer is not able to remove owing to the fact that programmer’s domain knowledge 

and limited testing resources.  

 

Thirdly, new software faults will be introduced to detect the existing software faults. In 

this study, we assume that no new Type I fault will be introduced in Phase II and left-over 

Type I faults from Phase I are still not able to be detected in Phase II. In the future research, 

 Type I faults     Type II faults  

Phase I Phase II 
𝑡0 𝑡 

 

0 

Figure 5. 3 Phase I and Phase II associated with corresponding fault type 
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we will consider the new-introduced Type I faults and the left-over Type I faults from 

Phase I could both be detected in Phase II.  

 

The assumptions for the proposed two-phase software reliability model are given as 

follows. 

 

(1) Software detection follows a NHPP process. 

(2) Software debugging is imperfect. New software faults will be introduced into the 

program to detect the existing faults. 

(3) Type I fault is detected and removed in Phase I; Type II fault is detected and 

removed in Phase II. In this section, we do not consider Type I fault detection in 

Phase II and the left-over Type I faults from Phase I are still not able to be detected 

in Phase II.  

(4) In both phases, there exists a certain portion of software faults that software 

development team are not able to remove. 

(5) The fault detection rate and non-removable fault rate are different in Phase I and 

Phase II due to different software fault type. 

(6) Debugging time is negligible.  

 

The notations for this section are given as follows. 

 

𝑎   The number of initial fault in the program 

𝛼   Fault introduction rate per detected fault 
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𝑏1  Asymptotic unit of software fault detection rate in Phase I 

𝛽   Shape parameter of the learning curve in Phase I 

𝑐1   Non-removable software fault in Phase I 

𝑏2   Asymptotic unit software fault detection rate in Phase II 

𝛾   Shape parameter of the learning curve in Phase II 

𝑐2   Non-removable software fault rate in Phase II 

𝑚1(𝑡)   Expected number of software failures in Phase I by time 𝑡, 𝑡 ∈ [0, 𝑡0] 

𝑚2(𝑡)  Expected number of software failures in Phase II by time 𝑡, 𝑡 ∈ (𝑡0, ∞) 

𝑚1(𝑡0)  Expected number of software failures in Phase I by time 𝑡0 

𝑚2(𝑡0)  Expected number of software failures in Phase II by time 𝑡0 

𝑎1(𝑡)  Total fault content function in Phase I 

𝑎2(𝑡)  Total fault content function in Phase II 

𝑏1(𝑡)   Fault detection rate function in Phase I 

𝑏2(𝑡)  Fault detection rate function in Phase II 

𝑐1(𝑡)  Non-removable fault rate function in Phase I due to the limitation of testing 

resource, the skill and experience of the programmer, and multi-release 

consideration for software organization 

𝑐2(𝑡)  Non-removable fault rate function in Phase II due to the limitation of testing 

resource, the skill and experience of the programmer, and multi-release 

consideration for software organization 

𝑦′(𝑡)   Failure increasing rate during time interval (𝑡, 𝑡 + ∆𝑡) 

𝑦(𝑡)   Observed cumulative number of failures by time 𝑡 

𝑦(𝑡 + ∆𝑡)  Observed cumulative number of failures by time 𝑡 + ∆𝑡 
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The proposed two-phase software reliability model considering software fault dependency 

and imperfect fault removal is formulated as follows 

 

                      
𝑑𝑚1(𝑡)

𝑑𝑡
=  𝑏1(𝑡)[𝑎1(𝑡)−𝑚1(𝑡)] − 𝑐1(𝑡)𝑚1(𝑡), 𝑡 ≤   𝑡0          (5.7) 

 

          
𝑑𝑚2(𝑡)

𝑑𝑡
 =  

𝑏2(𝑡)

𝑎2(𝑡)
𝑚2(𝑡)[𝑎2(𝑡)−𝑚2(𝑡)] − 𝑐2(𝑡)𝑚2(𝑡), 𝑡 > 𝑡0        (5.8) 

 

where 𝑚1(𝑡)  is the expected number of software failures in Phase I by time 𝑡 , 

𝑡 ∈ [0, 𝑡0] .  𝑚2(𝑡) is the expected number of software failures in Phase II by time 

𝑡, 𝑡 ∈ (𝑡0, ∞). 𝑎1(𝑡) and 𝑎2(𝑡) represent the total fault content function in Phase I and 

Phase II, respectively. 𝑏1(𝑡) and 𝑏2(𝑡) denote the fault detection rate function in Phase I 

and Phase II, respectively. 𝑐1(𝑡) and 𝑐2(𝑡) describe non-removable fault rate function in 

Phase I and Phase II, respectively, due to the limitation of testing resource, the skill and 

experience of the programmer, and multi-release consideration of software organization. 

 

The connection between Phase I and II is given as follows 

 

 𝑚1(𝑡0) = 𝑚2(𝑡0)                                                     (5.9) 

 

where 𝑚1(𝑡0) represents the expected number of software failures in Phase I by time 𝑡0 

and 𝑚2(𝑡0) represents the expected number of software failures in Phase II by time 𝑡0. 
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Note that we consider time 𝑡0 belongs to Phase I for the latter parameter estimation. The 

fault content in Phase II is obtained by 

 

                                  𝑎2(𝑡) = 𝑎1(𝑡0) − 𝑚1(𝑡0)                                        (5.10) 

 

where 𝑎1(𝑡0) is the total fault content function in Phase I at time 𝑡0. 

 

5.3.1 Phase I Software Reliability Model 

As illustrated in Figure 5.3, software testers only detect and remove Type I fault, which is 

the independent and easy-detected software fault in Phase I. New software faults will be 

introduced into system while executing debugging, therefore, this is an imperfect 

debugging process and the total software faults content in Phase I is 

 

                    𝑎1(𝑡) = 𝑎(1 + 𝛼𝑡),    𝑎 > 0, 𝛼 > 0                                 (5.11) 

 

where 𝑎 is the number of initial fault in the program and 𝛼 is the fault introduction rate per 

detected fault. 

 

The fault detection rate in Phase I is given by 

 

                                  𝑏1(𝑡) =
𝑏1

1 + 𝛽𝑒−𝑏1𝑡
,     𝑏1 > 0, 𝛽 > 0                             (5.12) 
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where 𝑏1 is the asymptotic unit of software fault detection rate in Phase I and 𝛽 is the 

parameter applied to determine the shape of the learning curve in Phase I. 

 

The non-removable fault rate in Phase I is given by 

 

                      𝑐1(𝑡) =  𝑐1,        𝑐1 > 0                                              (5.13) 

 

where 𝑐1 denotes the non-removable software fault in Phase I. The initial condition for 

Phase I is given as 

 

                        𝑚1(𝑡 = 0) = 0                                                     (5.14) 

 

Substituting equations (5.11) - (5.14) into equation (5.7), we obtain the mean value function 

𝑚1(𝑡) given as follows 

 

𝑚1(𝑡) =
𝑎𝑏1[(𝑏1 + 𝑐1)(1 + 𝛼𝑡)𝑒

(𝑏1+𝑐1)𝑡 − 𝛼𝑒(𝑏1+𝑐1)𝑡 + 𝛼 − 𝑏1 − 𝑐1]

(𝑏1 + 𝑐1)
2(𝛽 + 𝑒𝑏1𝑡)𝑒𝑐1𝑡

, 𝑡 ∈ [0, 𝑡0] 

(5.15) 
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5.3.2 Phase II Software Reliability Model 

Software testers are going to detect and remove Type II fault in Phase II. Note that we do 

not consider the detection of Type I fault in Phase II in this study and the left-over Type I 

faults from Phase I are still not able to be detected in Phase II.  

 

The fault content function 𝑎2(𝑡) is obtained from equations (5.9) and (5.10) 

 

                              𝑎2(𝑡) = 𝑎1(𝑡0) − 𝑚1(𝑡0) = 𝑎(1 + 𝛼𝑡0) − 𝑚1(𝑡0)                      (5.16) 

 

The fault detection rate function 𝑏2(𝑡) in Phase II is described as  

 

                    𝑏2(𝑡) =
𝑏2

1 + 𝛾𝑒−𝑏2𝑡
,     𝑏2 > 0, 𝛾 > 0                             (5.17) 

 

where 𝑏2 is the asymptotic unit software fault detection rate in Phase II and 𝛾 determines 

the shape of the learning curve in Phase II. 

 

The non-removable fault rate in Phase II is given by 

 

                                                    𝑐2(𝑡) =  𝑐2,    𝑐2 > 0                                               (5.18) 

 

where 𝑐2 represents the non-removable software fault rate in Phase II. 
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Substituting equations (5.9) - (5.10), (5.15) - (5.18) into equation (5.8), the mean value 

function 𝑚2(𝑡) is obtained as follows 

 

𝑚2(𝑡) 

=
𝛾 + 𝑒𝑏2𝑡

𝑏2𝑒
𝑐2𝑡

[𝑎(1 + 𝛼𝑡0) − 𝑚1(𝑡0)](𝑏2 − 𝑐2)
[𝑒(𝑏2−𝑐2)𝑡 − 𝑒(𝑏2−𝑐2)𝑡0] +

𝛾 + 𝑒𝑏2𝑡0

𝑚1(𝑡0)

, 𝑡 ∈ (𝑡0, ∞) 

(5.19) 

 

where    𝑚1(𝑡0) =
𝑎𝑏1[(𝑏1 + 𝑐1)(1 + 𝛼𝑡0)𝑒

(𝑏1+𝑐1)𝑡0 − 𝛼𝑒(𝑏1+𝑐1)𝑡0 + 𝛼 − 𝑏1 − 𝑐1]

(𝑏1 + 𝑐1)
2(𝛽 + 𝑒𝑏1𝑡0)𝑒𝑐1𝑡0

. 

 

5.4 Parameter Estimation and Comparison Criteria 

Parameter Estimation 

In practice, parameter estimation will be achieved by applying least square estimate (LSE) 

and maximum likelihood estimation. For example, minimizing the equation (5.20) or 

maximizing the equation (5.21).  

 

                 𝑆 =∑[𝑚(𝑡𝑖) − 𝑦𝑖]
2

𝑛

𝑖=1

                                               (5.20) 

 

   𝐿𝐿𝐹 =  ∑(𝑦𝑖 − 𝑦𝑖−1)log [𝑚(𝑡𝑖) − 𝑚(𝑡𝑖−1)]

𝑛

𝑖=1

−𝑚(𝑡𝑛) −∑log(𝑦𝑖 − 𝑦𝑖−1)!

𝑛

𝑖=1

    (5.21) 
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where 𝑦𝑖  is the observed number of failures at time 𝑡𝑖 . 𝑚(𝑡𝑖) is the predicted data. We 

apply LSE to minimize the equation (5.20) to estimate the parameters. 𝑡0  has already 

determined in last section. Thus, we have eight unknown parameters from equations (5.15) 

and (5.19) that need to be estimated. The Genetic Algorithm (GA) is employed to solve the 

optimization function. MATLAB and R software are used to solve the optimization 

function and estimate parameters. 

 

Comparison Criteria 

(1) Mean Squared Error (MSE) 

 

𝑀𝑆𝐸 =  
∑ [𝑚(𝑡𝑖) − 𝑦𝑖]

2𝑛
𝑖=1

𝑛 − 𝑁
                                      (5.22) 

 

where n is the total number of observations. 𝑦𝑖 is the observed failure data at 𝑡𝑖. 𝑚(𝑡𝑖) is 

the predicted failure data at 𝑡𝑖. N represents the number of unknown parameters in each 

model. The MSE measures the distance of a model estimate from the observed data.  

 

(2) Predictive-Ratio Risk (PRR) and Predictive Power (PP) [18] 

 

 𝑃𝑅𝑅 =∑[
𝑚(𝑡𝑖) − 𝑦𝑖
𝑚(𝑡𝑖)

]

2𝑛

𝑖=1

                                         (5.23) 
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          𝑃𝑃 =∑[
𝑚(𝑡𝑖) − 𝑦𝑖

𝑦𝑖
]

2𝑛

𝑖=1

                                            (5.24) 

 

The PRR and PP are calculated to compare the power of different models. The PRR 

measures the distance of the model estimates from the actual data against the model 

estimates; while the PP measures the distance of the model estimates from the actual data 

against the actual data. 

 

(3) Variation  

The Variation is defined as [162] 

 

                  𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = √
1

𝑛 − 1
∑ [𝑦𝑖 −𝑚(𝑡𝑖) − 𝐵𝑖𝑎𝑠]

2
𝑛

𝑖=1
                      (5.25) 

 

where 

 

𝐵𝑖𝑎𝑠 =  
1

𝑛
∑ [𝑚(𝑡𝑖) − 𝑦𝑖]

𝑛

𝑖=1
. 

 

 (4) The Akaike information criterion (AIC) not only measures the ability of a model to 

maximize its likelihood function, but also assigns the penalty for increasing the number of 

estimated parameters. 

 

                𝐴𝐼𝐶 =  −2 ∗ 𝑙𝑜𝑔(𝐿𝐹) + 2 ∗ 𝑁                                     (5.26) 
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where LF is the maximum value of the likelihood function. N is the number of estimated 

parameters. 

 

For all the criteria discussed above, the smaller of the criteria, the better fit of the model. 

 

5.5 Numerical Examples for One-Phase Software Reliability Model 

Numerical Example 1 

Telecommunication system data, reported by Zhang et al. [163], are applied to validate the 

proposed one-phase software reliability model. System test data consists of two phases of 

test data. In each phase, the system records the cumulative number of faults by each week. 

356 system test hours were observed in each week for Phase I data, as seen in Table 5.1. 

416 system test hours were observed in each week for Phase II data, as seen in Table 5.2. 

Parameter estimate was carried out by the GA method.  

 

To provide a better comparison of our proposed one-phase software reliability model with 

the other existing models, described in Table 5.3, we have analyzed Phase I as well as 

Phase II system test data in this section. 
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Table 5. 1 Phase I system test data 

Week 

index 

Exposure time 

(System test 

hours) 

Failures 
Cumulative 

failures 

Week 

index 

Exposure time 

(System test 

hours) 

Failures 
Cumulative 

failures 

1 356 1 1 12 4272 2 15 

2 712 0 1 13 4628 4 19 

3 1068 1 2 14 4984 0 19 

4 1424 1 3 15 5340 3 22 

5 1780 2 5 16 5696 0 22 

6 2136 0 5 17 6052 1 23 

7 2492 0 5 18 6408 1 24 

8 2848 3 8 19 6764 0 24 

9 3204 1 9 20 7120 0 24 

10 3560 2 11 21 7476 2 26 

11 3916 2 13 - - - - 

 

 

Table 5. 2 Phase II system test data 

Week 

index 

Exposure time 

(System test 

hours) 

Failures 
Cumulative 

failures 

Week 

index 

Exposure time 

(System test 

hours) 

Failures 
Cumulative 

failures 

1 416 3 3 12 4992 2 25 

2 832 1 4 13 5408 5 30 

3 1248 0 4 14 5824 2 32 

4 1664 3 7 15 6240 4 36 

5 2080 2 9 16 6656 1 37 

6 2496 0 9 17 7072 2 39 

7 2912 1 10 18 7488 0 39 

8 3328 3 13 19 7904 0 39 

9 3744 4 17 20 8320 3 42 

10 4160 2 19 21 8736 1 43 

11 4576 4 23 - - - - 
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Table 5. 3 Mean value function for all compared models 

Model Mean Value Function  

Goel-Okumoto (G-O)  𝑚(𝑡) = 𝑎(1 − 𝑒𝑏𝑡) 

Delayed S-shaped 𝑚(𝑡) = 𝑎[1 − (1 + 𝑏𝑡)𝑒−𝑏𝑡] 

Inflection S-shaped 𝑚(𝑡) =
𝑎(1 − 𝑒−𝑏𝑡)

1 + 𝛽𝑒−𝑏𝑡
 

Yamada imperfect debugging 𝑚(𝑡) = 𝑎(1 − 𝑒−𝑏𝑡) (1 −
𝛼

𝑏
) + 𝛼𝑎𝑡 

PNZ Model 𝑚(𝑡) =
𝑎[(1 − 𝑒−𝑏𝑡) (1 −

𝛼
𝑏
) + 𝛼𝑡]

1 + 𝛽𝑒−𝑏𝑡
 

Pham-Zhang model 𝑚(𝑡) =
1

1 + 𝛽𝑒−𝑏𝑡
[(𝑐 + 𝑎)(1 − 𝑒−𝑏𝑡) −

𝑎𝑏

𝑏 − 𝛼
(𝑒−𝛼𝑡 − 𝑒−𝑏𝑡)] 

Dependent-parameter model  𝑚(𝑡) = 𝛼(1 + 𝛾𝑡)(𝛾𝑡 + 𝑒−𝛾𝑡 − 1)  

Dependent-parameter model  

with 𝑚0 ≠ 0, 𝑡0 ≠ 0,   

 

𝑚(𝑡) = 𝑚0 (
𝛾𝑡 + 1

𝑟𝑡0 + 1
)𝑒−𝛾(𝑡−𝑡0)

+ 𝛼(𝛾𝑡 + 1)[𝛾𝑡 − 1 + (1 − 𝛾𝑡0)𝑒
−𝛾(𝑡−𝑡0)] 

Loglog fault-detection rate model 𝑚(𝑡) = 𝑁(1 − 𝑒−(𝑎
𝑡𝑏−1)) 

Proposed model 𝑚(𝑡) =
𝛽 + 𝑒𝑏𝑡

𝑏
𝐿(𝑏 − 𝑐)

[𝑒𝑏𝑡 − 𝑒𝑐𝑡] +
1 + 𝛽
𝑚0

𝑒𝑐𝑡
 

 

 

In the proposed one-phase software model, when  𝑡 = 0, the initial number of faults in the 

software satisfies  0 < 𝑚0 ≤ 𝑦1, where  𝑦1 is the number of observed failures at time 𝑡 =

1. At the same time,  𝑚0 must be an integer. The interpretation of this constraint is that the 

software tester often completes preliminary testing to eliminate trivial errors, Type I faults 

in this study, before officially starting testing. The cause of these trivial errors could be 

human mistakes or other simple settings. Since we consider the maximum number of faults 

that the software to contain in the modeling, these eliminated trivial errors will be counted 

into the total number of software faults. 
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Tables 5.4 and 5.5 summarize the results of the estimated parameters and corresponding 

criteria value (MSE, PRR, PP, AIC) for the proposed one-phase software reliability model 

and other existing models. Both system test data present as an S-shaped curve. Thus, the 

existing models such as Goel-Okumoto model is not able to perfectly capture the 

characteristic of the two system test datasets. 

 

For Phase I system test data, the estimated parameters are �̂�0 = 1, �̂� = 49.7429, �̂� =

0.2925, �̂� = 0.6151, �̂� = 0.292  . As seen in Table 5.4, MSE and PRR values for the 

proposed model are 0.630 and 0.408, which are the smallest among all ten models listed 

here. Inflection S-shaped model has the smallest PP value. However, the PP value for the 

proposed model is 0.526, which is only slightly higher than 0.512.  

 

Moreover, the PRR value for the inflection S-shaped model is much higher than that of the 

proposed model. The AIC value for the proposed model is 65.777, which is just slightly 

higher than the smallest AIC value, 63.938. Thus, we conclude that the proposed model is 

the best fit for Phase I system test data compared with the other nine models. Figure 5.4 

presents the comparison of actual cumulative failures and cumulative failures predicted the 

proposed model. 
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Table 5. 4 Parameter estimates and model comparison (Phase I system test data) 

Model MSE PRR PP AIC 
Parameter  

Estimates 

Goel-Okumoto (G-O) 5.944 1.818 8.165 66.211 
�̂� = 62.040 

�̂� = 0.024 

Delayed S-shaped 1.609 14.546 0.981 64.230 
�̂� = 44.221 

�̂� = 0.101 

Inflection S-shaped 0.709 1.714 0.512 63.938 

�̂� = 27.247 

�̂� = 0.269 

�̂� = 17.255 

Yamada imperfect 

debugging 
2.602 0.840 0.757 66.710 

�̂� = 1.864 

�̂� = 0.250 

�̂� = 0.842 

PNZ Model 2.479 2.954 0.690 68.611 

�̂� = 1.556 

�̂� = 0.324 

�̂� = 0.969 

�̂� = 0.999 

Pham-Zhang model 3.429 1.982 1.187 70.617 

�̂� = 13.394 

�̂� = 0.267 

�̂� = 0.511 

�̂� = 9.013 

�̂� = 12.034 

Dependent-parameter 

model 
15.741 287.191 3.768 77.541 

�̂� = 0.087 

�̂� = 0.952 

Dependent-parameter 

model with 𝑚0 ≠ 0, 

𝑡0 ≠ 0 

13.477 2.136 1.189 77.621 

�̂� = 6206.000 

�̂� = 0.005 

𝑡0 = 1.000 

𝑚0 = 1.000 

Loglog fault-detection 

rate model 
71.241 11.736 15.475 93.592 

�̂� = 15.403 

�̂� = 1.181 

�̂� = 0.567 

Proposed model 0.630 0.408 0.526 65.777 

�̂�0 = 1.000 

�̂� = 49.743 

�̂� = 0.293 

�̂� = 0.615 

�̂� = 0.292 
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Figure 5. 4 Comparison of actual predicted failures (Phase I system test data) 

 

For Phase II system test data, the estimated parameters are  �̂�0 = 3, �̂� = 59.997, �̂� =

0.843, �̂� = 0.409, �̂� = 0.108. The proposed model presents the smallest MSE, PRR, PP 

and AIC value in Table 5.5. Thus, we conclude that the proposed model is the best fitting 

for Phase II test data among all other models. Figure 5.5 plots the comparison of the actual 

cumulative failures and cumulative failures predicted the proposed model. 

 

Moreover, the proposed model provides the maximum number of faults contained in 

software, for instance, 𝐿 = 60 for Phase II test data. Assume that the company releases 

software at week 21, 43 faults will be detected upon this time based on the actual 

observations; however, the fault may not be perfectly removed upon detection as discussed 

in Section 5.1. The remaining faults revealed in the operation field, mostly, are Mandelbugs 

[164]. Given the maximum number of faults in the software, it is very helpful for the 
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software developer to better predict the remaining errors and decide the release time for 

the next version. 

 

Table 5. 5 Parameter estimates and model comparison (Phase II system test data) 

Model MSE PRR PP AIC 
Parameter  

Estimates 

Goel-Okumoto (G-O)  6.607 0.687 1.099 74.752 
�̂� = 98295.000 

�̂� = 5.2𝐸 − 8 

Delayed S-shaped 3.273 44.267 1.429 77.502 
�̂� = 62.300 

�̂� = 2.85𝐸 − 4 

Inflection S-shaped 1.871 5.938 0.895 73.359 

�̂� = 46.600 

�̂� = 5.78𝐸 − 4 

�̂� = 12.200 

Yamada imperfect 

debugging 
4.982 4.296 0.809 78.054 

�̂� = 1.500 

�̂� = 0.001 

�̂� = 0.004 

PNZ Model 1.994 6.834 0.957 75.501 

�̂� = 45.990 

�̂� = 6.0𝐸 − 4 

�̂� = 0 

�̂� = 13.240 

Pham-Zhang model 2.119 6.762 0.952 77.502 

�̂� = 0.060 

�̂� = 6.0𝐸 − 4 

�̂� = 1.0𝐸 − 4 

�̂� = 13.200 

�̂� = 45.900 

Dependent-parameter 

model  
43.689 601.336 4.530 101.386 

�̂� = 3.0𝐸 − 6 

�̂� = 0.490 

Dependent-parameter 

model with 𝑚0 ≠ 0, 

𝑡0 ≠ 0 

35.398 2.250 1.167 87.667 

�̂�

= 890996.000 

�̂� = 1.2𝐸 − 6 

𝑡0 = 832.000 

𝑚0 = 4.000 

Loglog fault-detection 

rate model 
219.687 13.655 4.383 114.807 

�̂� = 231.920 

�̂� = 1.019 

�̂� = 0.489 

Proposed model 1.058 0.163 0.144 68.316 

�̂�0 = 3.000 

�̂� = 59.997 

�̂� = 0.843 

�̂� = 0.409 

�̂� = 0.108 
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Figure 5. 5 Comparison of actual predicted failures (Phase II system test data) 

 

Numerical Example 2 

Wood [165] provides software failure data including four major releases of software 

products at Tandem Computers. Eight NHPP models were studied in Wood [165] and it 

was found that the G-O models provided the best performance in terms of goodness of fit. 

By fitting our model into the same subset of data, from week 1 to week 9, we predict the 

cumulative number of faults from week 10 to week 20 and compare the results with the G-

O model and Zhang–Teng–Pham model [106].  

 

Table 5.6 describes the predicted number of software failures from each model. The AIC 

value for the proposed model is not the smallest AIC value present in Table 5.6; however, 

we still conclude that the proposed model is the best fit for this dataset, since the other three 
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Table 5. 6 Comparison of G-O, Zhang-Teng-Pham model and the proposed model 

Testing Time 

(weeks) 

CPU 

hours 

Defects 

found 

Predicted 

total defects 

by G-O 

Predicted total 

defects by Zhang-

Teng-Pham model 

Predicted total 

defects by 

proposed model 

1 519 16 - - - 

2 968 24 - - - 

3 1,430 27 - - - 

4 1,893 33 - - - 

5 2,490 41 - - - 

6 3,058 49 - - - 

7 3,625 54 - - - 

8 4,422 58 - - - 

9 5,218 69 - - - 

10 5,823 75 98 74.7 75.5 

11 6,539 81 107 80.1 80.8 

12 7,083 86 116 85.2 85.1 

13 7,487 90 123 90.1 88.5 

14 7,846 93 129 94.6 91.2 

15 8,205 96 129 98.9 93.2 

16 8,564 98 134 102.9 94.7 

17 8,923 99 139 106.8 95.8 

18 9,282 100 138 110.4 96.6 

19 9,641 100 135 111.9 97.2 

20 10,000 100 133 112.2 97.6 

Predicted 

MSE 
- - 1359.222 82.660 10.120 

Predicted 

AIC 
- - 149.600 186.468 169.667 

Predicted 

PRR 
- - 0.756 0.041 0.007 

Predicted PP - - 1.395 0.050 0.006 

 



127 

 

 

criteria (MSE, PRR and PP) indicate that the proposed model is significantly better than 

other models. 

 

The GA method is applied here to estimate the parameter. Parameter estimates for the 

proposed model are given as  �̂�0 = 3, �̂� = 181, �̂� = 0.5001, �̂� = 0.602, �̂� = 0.274. 

 

We propose a one-phase software reliability model that incorporates dependent fault 

detection and imperfect fault removal, along with the maximum number of faults contained 

in the software. To our knowledge, not many research have included dependent fault 

detection in software reliability models. We also estimate the maximum number of faults 

in the software to provide software measurement metrics, such as remaining errors, failure 

rate, and software reliability. 

 

5.6 Numerical Examples for Two-Phase Software Reliability Model 

Empirical Data Analysis for Software Failure Data Set 

We employ three software failure datasets to illustrate the effectiveness of the proposed 

two-phase model. The first dataset is the failure data from a real-time control system. This 

monitoring software has about 200 modules with an average of 1000 lines of high-level 

language in each module [112]. Table 5.7 shows the first failure dataset (DS1) which were 

detected during the 111 days testing period. The second dataset (DS2) is obtained from 

testing data of Release 3 [166] in a wireless network switching center, as seen in Table 5.8. 
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The third fault (DS3) tracking data [49] are collected and organized on Firefox from 

Bugzilla (https: //bugzilla.mozilla.org/), as seen in Table 5.9.  

 

The proposed model has two phases. Usually, software development team knows 𝑡0 value 

in real software testing. However, for the given datasets, we do not know 𝑡0. Hence, the 

first step is to determine 𝑡0 in the model validation. 

 

Table 5. 7 Dataset 1 (DS 1) 

Day 
Cumulative 

failures 
Day 

Cumulative 

failures 
Day 

Cumulative 

failures 
Day 

Cumulative 

failures 

1 5 29 254 57 448 85 473 

2 10 30 259 58 451 86 473 

3 15 31 263 59 453 87 475 

4 20 32 264 60 460 88 475 

5 26 33 268 61 463 89 475 

6 34 34 271 62 463 90 475 

7 36 35 277 63 464 91 475 

8 43 36 293 64 464 92 475 

9 47 37 309 65 465 93 475 

10 49 38 324 66 465 94 475 

11 80 39 331 67 465 95 475 

12 84 40 346 68 466 96 476 

13 108 41 367 69 467 97 476 

14 157 42 375 70 467 98 476 

15 171 43 381 71 467 99 476 

16 183 44 401 72 468 100 477 

17 191 45 411 73 469 101 477 

18 200 46 414 74 469 102 477 

19 204 47 417 75 469 103 478 

20 211 48 425 76 469 104 478 

21 217 49 430 77 470 105 478 

22 226 50 431 78 472 106 479 

23 230 51 433 79 472 107 479 

24 234 52 435 80 473 108 479 

25 236 53 437 81 473 109 480 

26 240 54 444 82 473 110 480 

27 243 55 446 83 473 111 481 

28 252 56 446 84 473 - - 
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Table 5. 8 Dataset 2 (DS 2) 

Week 
Cumulative 

failures 
Week 

Cumulative 

failures 
Week 

Cumulative 

failures 
Week 

Cumulative 

failures 

1 5 10 46 19 105 28 156 

2 6 11 53 20 110 29 156 

3 13 12 63 21 117 30 164 

4 13 13 70 22 123 31 166 

5 22 14 71 23 128 32 169 

6 24 15 74 24 130 33 170 

7 29 16 78 25 136 34 176 

8 34 17 90 26 141 35 180 

9 40 18 98 27 148 36 181 

 

 

Table 5. 9 Dataset 3 (DS 3) 

Week 
Cumulative 

failures 
Week 

Cumulative 

failures 
Week 

Cumulative 

failures 
Week 

Cumulative 

failures 

1 9 22 44 43 60 64 94 

2 12 23 45 44 60 65 99 

3 16 24 45 45 60 66 102 

4 25 25 46 46 61 67 104 

5 27 26 47 47 62 68 105 

6 29 27 47 48 62 69 105 

7 29 28 49 49 62 70 106 

8 32 29 50 50 62 71 10 

9 34 30 50 51 62 72 107 

10 35 31 50 52 64 73 108 

11 36 32 50 53 65 74 108 

12 36 33 51 54 66 75 109 

13 39 34 52 55 73 76 112 

14 39 35 53 56 76 77 113 

15 40 36 54 57 81 78 113 

16 40 37 55 58 83 79 115 

17 40 38 55 59 87 80 115 

18 41 39 55 60 88 81 116 

19 42 40 55 61 92 - - 

20 43 41 56 62 94 - - 

21 43 42 59 63 94 - - 
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Empirical data analysis is utilized to determine the value of 𝑡0  based on the practical 

interpretation of Phase I and Phase II. The software failure increasing rate is desirable in 

this analysis. We formulate the failure increasing rate as follows 

 

                        𝑦′(𝑡) = lim
∆𝑡→0

𝑦(𝑡 + ∆𝑡) − 𝑦(𝑡)

∆𝑡
                                      (5.27) 

 

where 𝑦′(𝑡) illustrates the failure increasing rate during time interval (𝑡, 𝑡 + ∆𝑡).  𝑦(𝑡) is 

the observed cumulative number of failures by time 𝑡. 𝑦(𝑡 + ∆𝑡) denotes the observed 

cumulative number of failures by time 𝑡 + ∆𝑡 . Given different value of ∆𝑡 , we are 

interested in investigating the pattern of 𝑦′(𝑡).  

 

Dataset 1 (failure data from real-time control system [112]) 

Figure 5.6 illustrates the failure increasing rate 𝑦′(𝑡) in terms of different ∆𝑡 for Dataset 1. 

We notice that 𝑦′(𝑡) has two peaks, 𝑡 = 14  and 𝑡 = 41. Software testers often need some 

time to get familiar with the algorithm and failure mode. Software failure increasing rate 

𝑦′(𝑡) usually stays stable at first, then presents a significantly increasing pattern until it 

gets peak due to tester’s growing debugging experience. Afterwards, it declines to a 

stabilized rate. The similar pattern is repeated for debugging another type of software fault. 

Thus, we conclude that the maximum failure increasing rate for Type I fault is manifested 

at time 𝑡 = 14 and the maximum failure increasing rate for Type II fault is manifested at 

time 𝑡 = 41. Therefore, 𝑡0 = 35. 
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Figure 5. 6 Software failure increasing rate with respect to different value of ∆𝑡 (DS1) 

 

Dataset 2 (failure data from wireless network switching center [166]) 

Figure 5.7 illustrates the failure increasing rate 𝑦′(𝑡) in terms of different ∆𝑡 for Dataset 2. 

The failure increasing rate performs several peaks during the testing period. Considering 

that each type of software fault should have its maximum failure rate, thus, we conclude at 

time  𝑡 = 13, Type I fault have its maximum failure rate and at time 𝑡 = 18, Type II fault 

have its maximum failure rate. Therefore, 𝑡0 is determined as 15 in this failure dataset.  
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Figure 5. 7 Software failure increasing rate with respect to different value of ∆𝑡 (DS2) 

 

Dataset 3 (failure data from online bug tracking system [49]) 

Figure 5.8 illustrates the failure increasing rate 𝑦′(𝑡) in terms of different ∆𝑡 for Dataset 3 

by applying equation (5.27). Given the nature characteristics of failure growing, we 

consider 𝑡0 = 50 is employed to distinguish Phase I and Phase II for Dataset 3. 
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Figure 5. 8 Software failure increasing rate with respect to different value of ∆𝑡 (DS3) 

 

Numerical Example 1 

We conclude that 𝑡0 = 35 for the real-time control systems software failure data from 

Section 5.6.1. Thus, Phase I is defined when 𝑡 ∈ [0, 35]; Phase II is defined when 𝑡 ∈ (35, 

111] . Table 5.10 describes the comparison of software reliability models. Parameter 

estimates and criteria comparisons for all models are displayed in Table 5.10 by the use of 

GA method. 

 

The proposed model has the smallest MSE, PP, and Variation value. PRR assigns a larger 

penalty to the model which has underestimated the cumulative number of failures. Even 

the proposed model does not perform the best PRR value, however, given such a significant 

improvement on MSE, PP and Variation value, we still conclude that the proposed model 

presents better prediction than other software reliability models. The mean value function 

of the proposed model and the observed data is plotted in Figure 5.9. 
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As predicted by the proposed model, software tester successfully removed 273 Type I 

(independent) software failures at the end of Phase I. At the end of Phase II, software testers 

remove 471 software failures including 273 Type I (independent) software faults and 198 

Type II (dependent) software faults. However, 504 software faults still exist in the program. 

Thus, multiple version software release planning is utilized by most software organization 

those days to deal with the faults after initial release.  

 

Table 5. 10 Parameter estimates and model comparison (DS1) 

Model 
Parameter  

Estimates 
MSE PRR PP Variation 

Yamada imperfect 

debugging model 

�̂� = 591.800 

�̂� = 0.024 

�̂� = 0.002 

6000.690 6.460 31.440 132.910 

PNZ model 

 

�̂� = 470.760 

�̂� = 0.075 

�̂� = 0.0002 

�̂� = 4.693 

320.400 1.570 2.070 17.820 

G-O model 
�̂� = 497.290 

�̂� = 0.031 
1006.080 5.110 33.000 31.620 

Delayed S-shaped 

model 

�̂� = 488.400 

�̂� = 0.066 
344.200 16.328 2.174 18.180 

Inflection S-shaped 

model 

�̂� = 482.020 

�̂� = 0.070 

�̂� = 4.146 

301.220 1.670 2.490 17.230 

Pham- 

Zhang IFD model 

�̂� = 482.000 

�̂� = 0.081 

�̂� = 0.007 

450.147 36.376 4.328 22.400 

Proposed model 

�̂� = 600.000 

�̂�1 = 0.348 

�̂�1 = 0.883 

�̂� = 0.018 

�̂� = 64.650 

�̂�2 = 0.092 

�̂�2 = 0.017 

�̂� = 0.00013 

51.450 5.310 1.630 6.980 
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Figure 5. 9 Comparison of failure data prediction and actual data (DS1) 

 

Numerical Example 2 

As discussed in Section 5.6.1, 𝑡0 = 15 for the failure data from wireless network switching 

center. Thus, Phase I is defined when 𝑡 ∈ [0, 15]; Phase II is defined when 𝑡 ∈ (15, 36]. 

The proposed model presents the smallest MSE, PRR, PP, and Variation value, as 

explained in Table 5.11. The mean value function of the proposed model and the observed 

data is plotted in Figure 5.10. As predicted by the proposed model, software tester 

successfully removed 73 Type I software failures at the end of Phase I. At the end of Phase 

II, software testers remove 175 software failures including 73 Type I software failures and 

102 Type II software failures. However, 1345 software faults still exist in the program. 
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Table 5. 11 Parameter estimates and model comparison (DS2) 

Model 
Parameter  

Estimates 
MSE PRR PP Variation 

Yamada imperfect 

debugging model 

�̂� = 250.040 

�̂� = 0.021 

�̂� = 0.022 

57.320 0.550 1.050 9.370 

PNZ model 

 

�̂� = 300.670 

�̂� = 0.024 

�̂� = 0.013 

�̂� = 0.423 

35.550 0.550 1.140 5.940 

G-O model 
�̂� = 463.060 

�̂� = 0.014 
70.560 1.360 3.820 12.150 

Delayed S-shaped 

model 

�̂� = 280.340 

�̂� = 0.061 
36.860 64.270 2.210 6.750 

Inflection S-shaped 

model 

�̂� = 191.000 

�̂� = 0.157 

�̂� = 15.207 

45.160 4.730 1.400 7.280 

Pham- 

Zhang IFD model 

�̂� = 192.910 

�̂� = 0.116 

�̂� = 0.013 

41.560 261.570 4.160 7.580 

Proposed model 

�̂� = 240.000 

�̂�1 = 0.0001 

�̂�1 = 0.0001 

�̂� = 0.376 

�̂� = 8.217 

�̂�2 = 0.074 

�̂�2 = 0.158 

�̂� = 0.0001 

31.360 0.420 0.820 5.090 
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Figure 5. 10 Comparison of failure data prediction and actual data (DS2) 

 

Numerical Example 3       

𝑡0 = 50 is determined in Section 5.6.1 for the failure data of the online bug tracking system. 

Phase I is defined when 𝑡 ∈ [0, 50]; Phase II is defined when 𝑡 ∈ (50, 81]. As seen from 

Table 5.12, the proposed model has the smallest MSE, PRR, PP, and Variation value. The 

mean value function of the proposed model and the observed data is plotted in Figure 5.11. 

Software tester successfully removed 56 Type I software failures at the end of Phase I and 

54 Type II software failures at the end of Phase II. However, there are still 617 software 

faults left in the program after testing phase. 
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Table 5. 12 Parameter estimates and model comparison (DS3) 

Model 
Parameter 

Estimates 
MSE PRR PP Variation 

Yamada imperfect 

debugging model 

�̂� = 129.560 

�̂� = 0.014 

�̂� = 0.005 

91.500 44.660 5.880 10.210 

PNZ model 

 

�̂� = 120.060 

�̂� = 0.021 

�̂� = 0.005 

�̂� = 0.423 

100.290 50.340 6.270 10.050 

G-O model 
�̂� = 170.080 

�̂� = 0.012 
97.890 34.720 5.380 10.630 

Delayed S-shaped 

model 

�̂� = 280.340 

�̂� = 0.063 
185.320 6571.610 11.920 15.750 

Inflection S-shaped 

model 

�̂� = 195.010 

�̂� = 0.015 

�̂� = 0.804 

101.310 64.340 6.760 12.180 

Pham- 

Zhang IFD model 

�̂� = 120.00 

�̂� = 0.045 

�̂� = 1 × 10−6 

187.630 6948.020 12.050 15.730 

Proposed model 

�̂� = 41.780 

�̂�1 = 0.013 

�̂�1 = 0.015 

�̂� = 0.355 

�̂� = 0.909 

�̂�2 = 0.050 

�̂�2 = 0.101 

�̂� = 1.5 × 10−5 

21.790 3.330 1.360 4.650 
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Figure 5. 11 Comparison of failure data prediction and actual data (DS3) 

 

Reliability Prediction 

As an illustration for quantifying reliability assessment, we will present reliability 

prediction for Dataset 1, discussed in Section 5.6.2, for the proposed two-phase software 

reliability model. Other datasets just follow the same calculation by applying equation 

(5.28). Since the parameters have been estimated in Table 4, software reliability within 

(𝑡, 𝑡 + 𝑥) is determined by  

 

𝑅(𝑥|𝑡) = 𝑒−[𝑚(𝑡+𝑥)−𝑚(𝑡)]                                        (5.28) 

 

Let 𝑡 = 111, and vary x from 0 to 8, then we provide the reliability prediction for the field 

operation. The reliability prediction curve for time x given t is illustrated in Figure 5.12.  
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Figure 5. 12 Reliability prediction 

 

5.7 Conclusions 

This chapter provides a practical and pioneering idea for the researchers since different 

types of software faults are defined mainly depend on their detection dependency. We first 

propose a one-phase software reliability model considering the program only has Type II 

fault in the official testing phase while Type I faults have been removed in the preliminary 

testing phase. Imperfect fault removal process is also considered in this model. 

 

Later, we clearly define Type I (independent and easy-detected) software fault and Type II 

(dependent and difficult-detected) software fault according to the classification discussed 

in literature. Correspondingly, two phases (Phase I & II) debugging processes are defined 

based on the debugged software fault type. Moreover, a small portion of software fault 

retained at the end of Phase I & II with the realistic consideration. Thus, a two-phase 

software reliability model is proposed.  
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Limitations also exist in this study. First, we assume only Type II (dependent) software 

faults will be detected in Phase II. We could be able to detect both Type I (independent) 

fault and Type II (dependent) fault in Phase II in the real application, of which we have not 

considered in this chapter and will be addressed in the future research. Secondly, empirical 

data analysis is employed to find 𝑡0 since we do not know this value. In reality, we are 

expecting software testers have an estimate of this value based on their experience.  
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CHAPTER 6 

MULTI-RELEASE SOFTWARE RELIABILITY MODELING 

INCORPORATING DEPENDENT SOFTWARE FAULT DETECTION PROCESS 

 

6.1 Research Motivation 

In the previous chapter, we have discussed software reliability models subject to software 

fault dependency along with imperfect fault removal process in one/two phase software 

debugging process for a single-release software product. In addition, we notice that it still 

exists a portion of software faults have not been detected or have already been detected but 

not removed at the end of testing phase due to the limited testing time and resources, the 

nature of software and market requirement.  

 

Thereby, it is the time for software company to decide either develop a new product or just 

release new version of the current product to solve issues brought by the remaining faults 

in the program, which could cause failures under certain configurations in the operation 

phase.  

 

As software development moves further away from the rigid and monolithic model, the 

importance of software multiple release is brought to the vanguard [147]. Most of the 

software organizations release the initial version with sufficient functionalities to meet the 

customer requirements and occupy a certain portion of market share at first. However, it is 

unlikely to deliver all features that customers wanted in the single release given the 
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consideration of limited budget, unavailable resource, estimated risk, and constrained 

schedules.  

 

Staying competitive in the market and keeping profitable for a software product unlikely 

happen in this increasing-innovational society if only has a single release especially when 

rival has a new release carrying more attractive features and satisfying more customer 

requirements [147]. From this point of view, multiple-release planning not only makes 

software organization easily balance the competing stakeholder’s demands and benefits 

according to the available resource but lower the risk of not satisfying customer 

requirements [40, 41].  

 

On the other hand, large software system continually needs to align with the changing 

customer requirements for the sake of market share. In order to get the feedback earlier and 

figure out what customer really wants, and assigning a lower software development cost, 

with a certain portion of increments on requirement for multiple release product is essential 

for the growth of an organization [42 - 44, 167]. Thus, it is plausible for software company 

to modify the parts of the existing modules to extend the current functionality, usability, 

and understandability by adding new features and correcting the issues from previous 

release [45, 46]. 

 

Since multi-release is critical for modern software product, release planning is becoming a 

popular research topic in the past few years. Release planning is a very complex problem. 

It has to take into account the consequence of feedback and update from customers, the 
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demands of potential customers, market feedback, defects from the previous release and 

other technical and non-technical constraints [40, 45]. Many researchers have studied 

software release planning problems [39 - 43, 168, 169].  

 

It is generally considered reliability as a key factor in software quality measurement owing 

to the fact that it qualifies software failures and misbehaviors. Nonhomogeneous Poisson 

process (NHPP) is considered as one of the most effective models to study software 

reliability, as discussed in Chapter 2. Nevertheless, most of them only can be applied on a 

single release. How to model software reliability based on a multiple release perspective 

just starts gaining researcher’s attention not very long.  

 

In this chapter, we take into account two types of software faults for developing the next 

release: (1) faults from previous releases: remaining faults from previous release since it is 

unlikely to detect and remove all faults within limited resources; (2) newly introduced 

faults: new features are added in the next release, which also brings new software faults 

into the next release. We also assume that the detection of software fault for the next 

release’s development depends on the detection of the remaining faults from previous 

release and the newly introduced faults. To the extent of our knowledge, we have not seen 

any research focus on the remaining faults from previous release, newly introduced faults, 

and dependent fault detection process in multi-release software reliability modeling. 
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6.2 Multi-Release Software Reliability Model Framework 

Multi-Release Software Reliability Model 

The notations of this section are given as follows. 

 

𝑎(𝑡)  Total fault content function from previous release 

𝑏(𝑡)  Total fault content function for the newly added features 

𝑑(𝑡)  Fault detection rate function for the next release 

𝑚(𝑡)  Expected number of software failures by time 𝑡 

𝑁(𝑡)  Total number of software failures in the time interval [0, 𝑡] 

𝜆(𝑡)  Failure intensity function 𝜆(𝑡) = 𝑑[𝑚(𝑡)]/𝑑𝑡 

𝑚0  Expected number of software failures at 𝑡 = 0 

𝐶0  Coefficient association with the general function 

a   Total fault content from previous release 

b  Total fault content from newly added features 

d  Fault detection rate for the development of the next release 

 

It is unlikely to get bug-free software product within limited resources and tightened 

schedules. Software detection process still follows a NHPP process for developing the next 

release. The cumulative number of detected faults 𝑁(𝑡) follows Poisson Process, presented 

as follows  

 

Pr{𝑁(𝑡) = 𝑛} =
(𝑚(𝑡))

𝑛
exp(−𝑚(𝑡))

𝑛!
, for 𝑛 = 0,1,2,… 
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where 𝑚(𝑡) is the mean value function of the counting process 𝑁(𝑡). 

 

Two types of software faults will be addressed in this chapter. Remaining faults from 

previous release (Part I) and the newly introduced faults (Part II) will be both incorporated 

with the aim of developing the next release. Fault detection is a dependent process. We 

assume the detection of a software fault in the development of the next release depends on 

the fault detected from Part I and Part II.  

 

Thus, the multi-release software reliability modeling is formulated as follows 

 

𝑑𝑚(𝑡)

𝑑𝑡
=  𝑑(𝑡)[𝑎(𝑡) − 𝑚(𝑡)][𝑏(𝑡) − 𝑚(𝑡)]𝑚(𝑡)                       (6.1) 

 

where 𝑚(𝑡) represents the expected number of software failures by time 𝑡. 𝑑(𝑡) denotes 

the fault detection rate function. 𝑎(𝑡)and 𝑏(𝑡) represent the total remaining faults from 

previous release, and the total fault content of the newly added features, respectively. In 

this model, we assume 

 

𝑎(𝑡) = 𝑎, 𝑏(𝑡) = 𝑏, 𝑑(𝑡) = 𝑑                                   (6.2)   

 

where a is the total fault content from previous release, b is the total fault content from the 

newly added features and d is the fault detection rate for the development of the next release. 
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Substituting equation (6.2) into equation (6.1), we obtain a general solution for the mean 

value function 𝑚(𝑡), given as follows 

 

𝑒𝑑𝑡+𝐶0 = 𝑚(𝑡)
1
𝑎𝑏[𝑚(𝑡) − 𝑎]

1
𝑎(𝑎−𝑏)[𝑚(𝑡) − 𝑏]

−
1

𝑏(𝑎−𝑏)                     (6.3) 

 

where 𝐶0 is a constant. In this study, we consider the initial solution of the function 𝑚(𝑡) 

is given as follows 

 

𝑚(𝑡 = 0) =  𝑚0                                                          (6.4) 

 

where 𝑚0 is unknown and 𝑚0 ≥ 0. At time 𝑡 = 0, the expected number of initial software 

failures is 𝑚0. Since multiple software releases are considered in this study, the expected 

number of software failures at the beginning of next release should be less than or equal to 

the expected number of failures at the end of previous release. We are also supported by 

references [40, 45, 46, 48 - 50] by stating that it is unlikely to remove all the software faults 

for each release due to the limitation of all available resource, including software 

programmer’s domain knowledge and other environmental factors. 

 

Substituting equation (6.4) into equation (6.3), we obtain 

 

𝑒𝐶0 = 𝑚0

1
𝑎𝑏(𝑚0 − 𝑎)

1
𝑎(𝑎−𝑏)(𝑚0 − 𝑏)

−
1

𝑏(𝑎−𝑏)                             (6.5) 
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Thus, the solution for the function 𝑚(𝑡), as seen in equation (6.1), is obtained by solving 

the following equation 

 

   𝑒𝑑𝑡 = [
𝑚(𝑡)

𝑚0
]

1
𝑎𝑏

 [
𝑚(𝑡) − 𝑎

𝑚0 − 𝑎
]

1
𝑎(𝑎−𝑏)

[
𝑚(𝑡) − 𝑏

𝑚0 − 𝑏
]

−
1

𝑏(𝑎−𝑏)

               (6.6) 

 

Multi-Release Software Reliability Function Discussion 

Let 

 

𝑔(𝑡) = 𝑒𝑑𝑡+𝐶0                                                         (6.7) 

 

and 

 

𝑓(𝑥) = 𝑥
1
𝑎𝑏 (𝑥 − 𝑎)

1
𝑎(𝑎−𝑏) (𝑥 − 𝑏)

−
1

𝑏(𝑎−𝑏)                              (6.8) 

 

We now present the following results. 

 

Lemma 1: The solution 𝑚(𝑡)  of the equation (6.3) will be obtained by solving the 

following function 

 

𝑔(𝑡) =  𝑓[𝑚(𝑡)]                                                       (6.9) 
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and 

• If 𝑔(0) > max{𝑓[𝑚(𝑡)]}, then there exists no solution, as illustrated in Figure 6.1. 

• Otherwise, there exists at least one solution for the function m(t), as illustrated in 

Figure 6.2. 

 

where the function 𝑔(𝑡) and 𝑓(𝑥) are given in equations (6.7) and (6.8), respectively. 

 

We need to prove: (1) Function 𝑔(𝑡), as stated in equation (6.7), is convex. (2) Function 

𝑓(𝑥), as stated in equation (6.8), is concave. 

 

Proof of Lemma 1: 

(1)  Since d is non-negative and 𝑔”(𝑡) = 𝑑2𝑒𝑑𝑡+𝐶0 > 0, thus function 𝑔(𝑡) is convex. 

(2)  Since    𝑓(𝑥) = 𝑥
1

𝑎𝑏 (𝑥 − 𝑎)
1

𝑎(𝑎−𝑏) (𝑥 − 𝑏)
−

1

𝑏(𝑎−𝑏), 

 

Then 

 

𝑓′(𝑥) =
1

𝑎𝑏
𝑥
1
𝑎𝑏−1 (𝑥 − 𝑎)

1
𝑎(𝑎−𝑏) (𝑥 − 𝑏)

−
1

𝑏(𝑎−𝑏)     

+
1

𝑎(𝑎 − 𝑏)
𝑥
1
𝑎𝑏 (𝑥 − 𝑎)

1
𝑎(𝑎−𝑏)

−1
 (𝑥 − 𝑏)

−
1

𝑏(𝑎−𝑏)      

−
1

𝑏(𝑎 − 𝑏)
𝑥
1
𝑎𝑏 (𝑥 − 𝑎)

1
𝑎(𝑎−𝑏) (𝑥 − 𝑏)

−
1

𝑏(𝑎−𝑏)
−1
     

 

Then 
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𝑓′(𝑥) = 𝑥
1
𝑎𝑏 (𝑥 − 𝑎)

1
𝑎(𝑎−𝑏) (𝑥 − 𝑏)

−
1

𝑏(𝑎−𝑏) [
1

𝑎𝑏𝑥
+

1

𝑎(𝑎 − 𝑏)(𝑥 − 𝑎)

−
1

𝑏(𝑎 − 𝑏)(𝑥 − 𝑏)
] 

           = 𝑥
1
𝑎𝑏 (𝑥 − 𝑎)

1
𝑎(𝑎−𝑏) (𝑥 − 𝑏)

−
1

𝑏(𝑎−𝑏)
(𝑎𝑏 + 𝑎 + 𝑏) − (𝑎 + 𝑏)𝑥

𝑎𝑏𝑥(𝑥 − 𝑎)(𝑥 − 𝑏)
 

           = 𝑓(𝑥)
(𝑎𝑏 + 𝑎 + 𝑏) − (𝑎 + 𝑏)𝑥

𝑎𝑏𝑥(𝑥 − 𝑎)(𝑥 − 𝑏)
 

           = [𝑓(𝑥)]−1
(𝑎𝑏 + 𝑎 + 𝑏) − (𝑎 + 𝑏)𝑥

𝑎𝑏
 

 

Thus 

 

𝑓"(𝑥) = −[𝑓(𝑥)]−2𝑓′(𝑥)
(𝑎𝑏 + 𝑎 + 𝑏) − (𝑎 + 𝑏)𝑥

𝑎𝑏
− [𝑓(𝑥)]−1

𝑎 + 𝑏

𝑎𝑏
 

            = −
𝑓′(𝑥) {[𝑓(𝑥)]−1

(𝑎𝑏 + 𝑎 + 𝑏) − (𝑎 + 𝑏)𝑥
𝑎𝑏

}

𝑓(𝑥)
− [𝑓(𝑥)]−1

𝑎 + 𝑏

𝑎𝑏
 

            = −
[𝑓′(𝑥)]2

𝑓(𝑥)
−

𝑎 + 𝑏
𝑎𝑏
𝑓(𝑥)

< 0 

 

Note that 𝑓(𝑥) = 𝑔(𝑡) > 0 in equation (6.3), 𝑎 > 0 and 𝑏 > 0, hence, function 𝑓(𝑥) in 

equation (6.8) is concave. 

 

Since the function 𝑔(𝑡) is convex, and 𝑓(𝑥) is concave, the results in Lemma 1 follow 

accordingly. 
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Q.E.D 

 

 

                               

Figure 6. 1 Illustration of solution – Part I 

 

 

Figure 6. 2 Illustration of solution – Part II 

 

6.3 Parameter Estimation and Comparison Criteria 

Parameter Estimation 

g(t) 

f(m(t)) 

g(t) 

f(m(t)) 
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Most software reliability models use the least square estimate (LSE) or maximum 

likelihood estimation to estimate the parameters carried in the model. For example, 

minimizing the equation (6.10) or maximizing the equation (6.11).  

 

𝑓(𝑡) =∑(𝑚(𝑡𝑖) − 𝑦𝑖)
2

𝑛

𝑖=1

                                            (6.10) 

 

   𝐿𝐿𝐹 =  ∑(𝑦𝑖 − 𝑦𝑖−1)log [𝑚(𝑡𝑖) − 𝑚(𝑡𝑖−1)]

𝑛

𝑖=1

−𝑚(𝑡𝑛) −∑log(𝑦𝑖 − 𝑦𝑖−1)!

𝑛

𝑖=1

  (6.11) 

 

We apply LSE to minimize the equation (6.12) to estimate the parameters. Since 𝑔(𝑡) =

𝑓(𝑚(𝑡)), indeed, 𝑙𝑜𝑔 [𝑔(𝑡)] = 𝑙𝑜𝑔 [𝑓(𝑚(𝑡))]. The optimization function is given by  

 

 min 𝑆(𝑎, 𝑏, 𝑑) = ∑{log[𝑓(𝑦𝑖)] − log[𝑔(𝑡𝑖)]}
2                      (6.12)

𝑎,𝑏,𝑑

 

 

where 𝑦𝑖 is the observed number of failures at time 𝑡𝑖. 𝑔(𝑡𝑖) = 𝑒
𝑑𝑡𝑖+𝐶0. 

 

The Lemma 1 presented in last section is to demonstrate that there could exist the solutions 

and explain the behaviors of the proposed model. The Genetic Algorithm (GA) is employed 

to solve the optimization function as given in equation (6.12). The schematic diagram of 

the algorithm [170] is described in Figure 6.3. We use Matlab Optimization Toolbox to 

solve the optimization function and estimate parameters. 
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Comparison Criteria 

The detailed discussion of comparison criteria is described in Chapter 5. 

 

6.4 Numerical Examples 

Two numerical applications are given to validate the multi-release software reliability 

model. We employ two datasets both collected from Open Source Software (OSS) project. 

OSS is a new way to build a global-based large software system, which differs in many 

perspectives with the traditional software engineering [171]. The evolution process of OSS 

Generate initial population 

Time to stop? 

Evaluate individual fitness 

 

Generate new population 

Selection 

Crossover 

Mutation 

 

STOP 
Y 

N 

Figure 6. 3 Schematic diagram of Generic Algorithm 
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is much faster than the traditional close source software. Widespread OSS projects bring 

in a great change in terms of software development paradigms and software architectures 

[171 - 173].   

 

Numerical Example 1 

The Juddi OSS project data, adopted as numerical example 1, is shown in Table 6.1. Failure 

dataset from week 1 to week 31 are considered as Release 1; failure dataset from week 32 

to week 49 are considered as Release 2; failure dataset from week 50 to week 61 are 

considered as Release 3. In this chapter, we use Release 2 to validate our proposed model.  

 

First, Table 6.2 summarizes all the models we will compare for those two numerical 

examples. We notice that the proposed model has the best performance in terms of all 

criteria present in Table 6.3. Figure 6.4 illustrates the comparison between model 

prediction and observed failure data. The x-axis represents week index. All models 

presented in Table 6.3 only consider single-release software product except the proposed 

model. In other words, they didn’t consider the remaining faults from the previous release 

since most of models assume all software faults will be removed before software company 

release the product.  
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Table 6. 1 Failure data of numerical example 1 

Week 
Cumulative 

Failures 
Week 

Cumulative 

Failures 
Week 

Cumulative 

Failures 
Week 

Cumulative 

Failures 

1 10 17 131 33 210 49 221 

2 12 18 136 34 210 50 234 

3 20 19 137 35 211 51 249 

4 31 20 137 36 213 52 267 

5 33 21 139 37 213 53 273 

6 41 22 144 38 214 54 279 

7 47 23 155 39 217 55 290 

8 54 24 160 40 217 56 297 

9 64 25 160 41 217 57 314 

10 74 26 169 42 218 58 336 

11 77 27 170 43 218 59 345 

12 99 28 180 44 218 60 387 

13 110 29 193 45 218 61 393 

14 118 30 194 46 221 - - 

15 120 31 195 47 221 - - 

16 127 32 210 48 221 - - 

 

 

Table 6. 2 Software reliability models 

Model  Mean value function 

G-O model 𝑚(𝑡) = 𝑎(1 − 𝑒−𝑏𝑡) 

Inflection S-shaped model 𝑚(𝑡) =
𝑎(1 − 𝑒−𝑏𝑡)

1 + 𝛽𝑒−𝑏𝑡
 

Delayed S-shaped model 𝑚(𝑡) = 𝑎(1 − (1 + 𝑏𝑡)𝑒−𝑏𝑡) 

Yamada imperfect debugging model 𝑚(𝑡) = 𝑎[1 − 𝑒−𝑏𝑡] [1 −
𝛼

𝑏
] + 𝛼𝑎𝑡 

PNZ model 𝑚(𝑡) =
𝑎[(1 − 𝑒−𝑏𝑡) (1 −

𝛼
𝑏
) + 𝛼𝑡]

1 + 𝛽𝑒−𝑏𝑡
 

Pham-Zhang IFD 𝑚(𝑡) = 𝑎 − 𝑎𝑒−𝑏𝑡[1 + (𝑏 + 𝑑)𝑡 + 𝑏𝑑𝑡2] 

Dependent-parameter model 𝑚(𝑡) = 𝛼(1 + 𝛾𝑡)(𝛾𝑡 + 𝑒−𝛾𝑡 − 1) 

Proposed Model 𝑒𝑑𝑡 = [
𝑚(𝑡)

𝑚0

]

1
𝑎𝑏

 [
𝑚(𝑡) − 𝑎

𝑚0 − 𝑎
]

1
𝑎(𝑎−𝑏)

[
𝑚(𝑡) − 𝑏

𝑚0 − 𝑏
]

−
1

𝑏(𝑎−𝑏)
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Table 6. 3 Parameter estimates and model comparison of numerical example 1 

Model  
Parameter  

Estimates 
MSE PRR PP Variation 

G-O model 
�̂� = 227.000 

�̂� = 2.420 
131.840 0.041 0.046 4.799 

Inflection S-shaped 

model 

�̂� = 230.000 

�̂� = 9.070 

�̂� = 830.670 

226.793 0.064 0.074 4.935 

Delayed S-shaped 

model 

�̂� = 225.010 

�̂� = 4.330 
93.698 0.030 0.033 4.304 

Yamada imperfect 

debugging model 

�̂� = 231.000 

�̂� = 2.180 

�̂� = 3.64 × 10−5 

254.213 0.072 0.083 5.747 

PNZ model 

�̂� = 229.000 

�̂� = 6.380 

�̂� = 1 × 10−6 

�̂� = 52.690 

211.036 0.056 0.064 4.787 

Pham-Zhang IFD 

model 

�̂� = 234.000 

�̂� = 9.200 

�̂� = 98.950 

368.638 0.101 0.120 5.601 

Dependent-parameter 

model 

�̂� = 364.850 

�̂� = 0.063 
23163.480 85316.330 8.153 108.378 

Proposed Model 

�̂� = 254.840 

�̂� = 221.000 

�̂�0 = 100.000 

�̂� = 2.36 × 10−4 

34.467 0.011 0.011 3.322 
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Figure 6. 4 Comparison of proposed model and other models of numerical example 1 

 

Numerical Example 2  

Apache 2.0 [174] is available on the website since 2002. The first two releases are 

employed to verify the proposed model, as shown in Table 6.4. The failure data from day 

1 to day 18 is taken into account as Release 1; failure data from day 19 to day 164 is 

considered as Release 2.  

 

The proposed model provides the smallest MSE, PP, and Variation, as seen in Table 6.5. 

The PRR value even though is not the smaller one, however, 0.155 is just slightly higher 

than 0.117. It is thus considering the proposed model presents the best performance to 

model this dataset. Figure 6.5 also plots the comparison between the predicted values and 

the observed values to provide an intuitive sense of model fitting. The x-axis represents 

week index in the figure.  
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Table 6. 4 Failure data of numerical example 2 

Day 
Cumulative 

Failures 
Day 

Cumulative 

Failures 
Day 

Cumulative 

Failures 
Day 

Cumulative 

Failures 

1 1 15 20 28 36 49 51 

2 3 16 22 29 37 50 52 

3 5 17 25 30 39 51 53 

4 8 18 26 31 40 57 54 

5 11 19 27 32 41 66 55 

7 13 22 30 35 44 70 56 

8 14 23 31 38 45 81 57 

9 15 24 32 39 46 164 58 

10 16 25 34 42 47 - - 

11 17 26 35 43 48 - - 

 

 

 

Figure 6. 5 Comparison of proposed model and other models of numerical example 2 
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Table 6. 5 Parameter estimates and model comparison of numerical example 2 

Model  
Parameter  

Estimates 
MSE PRR PP Variation 

G-O model 
�̂� = 82.990 

�̂� = 0.022 
38.317 0.169 0.268 8.449 

Inflection S-shaped 

model 

�̂� = 75.017 

�̂� = 0.019 

�̂� = 0.274 

104.096 2.299 1.304 17.380 

Delayed S-shaped 

model 

�̂� = 69.000 

�̂� = 0.060 
21.784 0.230 0.223 4.930 

Yamada imperfect 

debugging model 

�̂� = 79.690 

�̂� = 0.021 

�̂� = 1 × 10−4 

26.670 0.117 0.178 5.241 

PNZ model 

�̂� = 65.000 

�̂� = 0.121 

�̂� = 1 × 10−4 

�̂� = 26.178 

64.302 1.129 0.754 8.484 

Pham-Zhang IFD 

model 

�̂� = 71.200 

�̂� = 0.058 

�̂� = 9.15 × 10−5 

30.828 0.309 0.300 5.656 

Dependent-parameter 

model 

�̂� = 101.110 

�̂� = 0.007 1587.346 3843.289 18.719 71.169 

Proposed Model 

�̂� = 90.038 

�̂� = 61.001 

�̂�0 = 20.000 

�̂� = 1.165 × 10−5 

13.197 0.155 0.171 3.630 

 

 

In summary, the proposed model has considered a dependent fault detection process. 

Specifically, the newly detected faults depend on the detection of the remaining faults from 

previous release and the newly introduced faults. In order to detect a new fault, we need to 

detect the corresponded faults from the remaining faults from previous release and the 

newly introduced faults first. Therefore, there is only a small portion of software faults 

detected for developing the next release. 
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6.5 Conclusions  

It is unlikely to deliver all the features in a single release for modern software products. 

The proposed software reliability model provides a new paradigm to integrate the 

dependent fault detection process and different types of software faults in multiple software 

releases. Due to the resource limitation, there also exists a portion of undetected software 

faults for the current release. Thus, how to incorporate the remaining faults from previous 

release into the development for the next release is an important issue for software 

practitioners.  

 

As an effort to reflect the development of multi-release software, the remaining faults from 

previous release, the newly introduced faults, and the dependent fault detection process are 

discussed in this chapter. In order to accurately illustrate the performance of the proposed 

model, we employ two datasets both collected from OSS project to validate the usage of 

the model. The behavior of software reliability function is studied as well. We are currently 

investigating the new features adding in the next release and the remaining faults from 

previous release as fixed numbers in this study, which can be extended as a random number 

or as a time-dependent function corresponding to its optimal profit and release time for the 

organization. The impact of environmental factors [29, 30] during the software 

development process can be considered into the future research as well. 

 

 

 

  



161 

 

 

CHAPTER 7 

MARTINGALE-BASED SOFTWARE RELIABILITY MODEL 

INCORPORATING SINGLE/MULTIPLE ENVIRONMENTAL FACTOR(S) 

 

7.1 Research Motivation 

The increasing power and versatility of software systems has led to their widespread 

applications in our modern society [176]. Since software system has become one of the 

essential elements in different aspects of our daily life and an important factor in numerous 

critical industrial application and software system is expected to be even more ubiquitous 

in the coming years, there are a great demand for high-quality software products [177, 178]. 

However, delivering high quality software products for real-world applications is not easy 

[179]. 

 

Despite of being widely studied and of interested to the global market, software quality is 

still a complex and costly task for the researchers and practitioners. Meanwhile, we are 

facing an increasing-complexity software development environment due to the three trends 

discussed in Chapter 1. The first trend is the wide-spread adoption of software product 

lines. The adoption of software product lines will reduce the release time to the market, 

decrease the development cost, optimize resource assignment, and achieve the 

commonality in user experience between different products. However, the adoption of 

software product lines also brings a new level of dependency into the product and 

organization, which causes the added complexity for software development. 
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The second trend is the globalization of software development within many organizations. 

Many software companies have either placed several software development sites globally 

or have partnered with remoted companies, located mostly in India and China. However, 

it could increase the complexity of the product and organization as well. 

 

The third trend is the adoption of software ecosystems. In recent years, software 

development has transitioned from a predominantly solo activity of developing standalone 

programs within a single organization, to a highly distributed and collaborative 

environment that depends on or contributed to large and complex software ecosystems 

which could be placed world-wide [180]. Software developers are able to contribute to 

multiple projects, accordingly, the project boundaries blur, not just program architecture 

and paradigm, and even how they are authored. Software developers not only focus on how 

to write the code, but also the contribution they make, the connection that they build within 

development-related communities by establishing a participatory culture [181 - 183]. Since 

the development of new functionality can be occurred outside of the platform, App-store 

styled approaches are introduced by many companies to provide this feature to the market 

[184 – 186]. However, software ecosystems build dependencies between components and 

their associated organizations which did not exist earlier.  

 

Hence, in recent years, most software developments have shifted their attention from 

building the system toward composing system from the existing open source, commercial, 
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and internal developed components. Under such transitions, the goal of software 

development will be more concentrated on the creation and functionality. 

 

Given large-scale software development is an increasing-complexity, effort-consuming, 

and expensive activity, how we can assure software quality in one of the challenge problem 

in industry. One of the fundamental quality characteristics is the reliability. Many 

nonhomogeneous Poisson process (NHPP) software reliability growth models have been 

developed regarding various testing/operation scenarios for the sake of remaining faults 

estimation, failure rate prediction, and software reliability prediction given a specific time 

of interest since 1970s. However, most of existing NHPP software reliability models or 

software fault prediction frameworks based on neural networks, vector machines, or other 

machine learning techniques did not incorporate the impact of environmental factors in 

software reliability/fault prediction.  

 

As discussed above, given the current trends of software development process, adoption of 

software product lines, software development globalization, and the establishment of 

software ecosystems, the complication and human-centered software development process 

needs to be addressed more appropriately in software reliability model in order to 

accurately predict failures. Thus, how to incorporate the environmental factors which 

present such significant impacts on reliability into software reliability models is critical to 

address modern software development in practice. 
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Thus, in the early stage of this dissertation, presented in Chapter 4, we studied the impact 

the environmental factors affecting software reliability in single-release and multi-release 

software development. In this chapter, we will incorporate single and multiple 

environmental factor(s) in software reliability models to improve the model prediction 

power and applicability. 

 

First, we consider one of the top 10 critical environmental factors as concluded in Chapter 

4 [29, 30], Percentage of Reused Modules (PoRM), to be a random variable which has 

random effect on software fault detection rate. The data collected from several industries 

is applied to obtain the distribution of PoRM. We then introduce the Martingale framework, 

specifically, Brownian motion and white noise process in the stochastic fault detection 

process to reflect the randomness resulting from influence of environmental factor. Thus, 

a single-environmental-factor software reliability model incorporating these considerations 

is proposed in Section 7.2.  

 

Secondly, we consider multiple environmental factors which have significant impacts on 

software reliability during software development process into software reliability models. 

Martingale framework, in particular, Brownian motion, and white noise process is 

introduced to reflect the stochastic fault detection process and the randomness caused by 

these environmental factors. To the best of our knowledge, we have not seen any research 

incorporates multiple environmental factors and their random impact on fault detection 

process in software reliability models. The proposed generalized multiple-environmental-

factors software reliability model incorporating these considerations will be presented in 
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Section 7.3. We further present two specific software reliability models incorporating two 

important factors from previous study, PoRM, and Frequency of Program Specification 

Change (FoPSC) in Section 7.3. 

 

Numerical examples for the single-environmental-factor and multiple-environmental-

factors software reliability model are illustrated in Sections 7.4 and 7.5, respectively. 

Moreover, we are interested in the predictive accuracy comparison of the proposed models 

with and without considering environmental factor(s), therefore, failure prediction 

comparison is discussed in Section 7.6. We conclude this chapter in Section 7.7. 

 

7.2 Single-Environmental-Factor Software Reliability Model 

In this section, we consider environmental factor, PoRM, to be a random variable, performs 

random effect on software fault detection rate. The distribution of PoRM will be 

determined in Section 7.2.1, given the data collected in a wide variety of industries. The 

introduction of Martingale process and the framework of other software reliability models 

considering random environments are discussed in Section 7.2.2. Finally, we propose a 

single-environmental-factor software reliability model in Section 7.2.3.  

 

The notations that are used in this section is explained as follows. 

 

𝑚(𝑡, 𝜂) Expected number of software failure detected by time 𝑡 considering 

environmental factor and its impact 

𝑁(𝑡)   Total fault content function in the software by time 𝑡 
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ℎ(𝑡, 𝜂) Time-dependent fault detection rate per unit of time considering 

random effect 

ℎ(𝑡)   Time-dependent fault detection rate per unit of time 

𝐺(𝑡, 𝜂) Impact of PoRM on failure detection rate per unit of time 

𝑀(𝑡, 𝑤)  Martingale with respect to the filtration (Ƒ𝑡 , 𝑡 ≥ 0) 

�̇�(𝑡, 𝑤)  Derivative of 𝑀(𝑡, 𝑤) with respect to time 𝑡 

𝑓(𝜂)   Probability density function of PoRM 

𝑣(𝑡)   Measures the impact of time on PoRM 

𝐹∗(𝑠)   Laplace transform of 𝑓(𝜂) 

𝐵(𝑡)    Brownian motion 

�̇�(𝑡)   Standard white noise 

𝛿    Dirac Delta measure 

𝜃, 𝛾    Parameters of gamma distribution 

𝜂   Random variable, which represents PoRM 

𝜆0   Coefficient along with 𝐺(𝑡, 𝜂) 

𝑏, 𝑐, 𝑎, 𝑘  Coefficient in function ℎ(𝑡), 𝑣(𝑡), and 𝑁(𝑡) 

𝑦𝑖   Observed number of software failures at time 𝑡𝑖 

 

Environmental Factor (PoRM) Distribution 

Although some existing software reliability models have considered the environmental 

factors in the modeling, most of them assume the distribution of environmental factor based 

on their knowledge and model consideration. For example, Teng and Pham [103] described 
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the random environmental factor is 1 in in-house testing phase and a random variable in 

operation phase. They assumed that this random variable follows gamma distribution or 

beta distribution in their proposed reliability models. But, there is no real data to support 

this assumption.   

 

In this study, the definition of PoRM, adopted from references [27 - 30], is presented as 

follows  

 

𝑃𝑜𝑅𝑀 =  
𝑆0

𝑆𝑁 + 𝑆0
                                                      (7.1) 

 

where 𝑆0 represents kiloline of code for the existing modules and 𝑆𝑁 represents kiloline of 

code for the new modules. 

 

In this section, we employ the real-world data collected from several industries to illustrate 

the distribution of PoRM. Participants were asked to provide PoRM in their industries 

based on the relevant working experience. All the participants are currently working in IT 

Department in various industry including computer software, banking, semiconductor, 

online retailing, IT service & research institution or working on software development in 

high-tech company in favor of the validity and reliability of the survey response. The 

collected PoRM are illustrated in Figure 7.1. 
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Figure 7. 1 Data collection of PoRM 

 

Eight different distributions commonly applied to model environmental factors are adopted 

in the model comparison to estimate the distribution of PoRM. The maximum likelihood 

estimation (MLE) is applied to compare the effectiveness of each model. The log-

likelihood values for all models are revealed in Table 7.1. 

 

Table 7. 1 Log-likelihood value comparison 

Normal 

Dist. 

Weibull 

Dist. 

Beta 

Dist. 

Exponential 

Dist. 

Gamma 

Dist. 

Inverse 

Gaussian Dist. 

Log-logistic   

       Dist. 

Lognormal 

Dist. 

7.041 7.639 7.830 -3.782 8.174 8.002 7.739 8.015 

 

 

Gamma distribution will be employed to model the distribution of PoRM. The parameters 

of gamma distribution are also obtained from model comparison: 𝜃 = 14.726, 𝛾 = 6.487. 

 



169 

 

 

𝑓(𝜂) =
𝜃𝛾𝜂𝛾−1𝑒−𝜃𝜂

г(𝛾)
                                                  (7.2) 

 

where 𝜂 is a random variable and represents PoRM. 𝜃 and 𝛾 are the parameters along with 

gamma distribution, respectively. 

 

Related Works 

We first provide the definition of software fault and software failure in order to clearly 

address the software reliability models discussed below. Software fault is caused by an 

incorrect step, process, or data definition in a computer program [187]. Failure is defined 

as a system or component is not able to perform its required functions within specified 

performance requirements. Software failure is the manifestation of software fault [187]. 

 

Many NHPP software reliability models have been proposed for the past four decades to 

address different assumptions. The failure processes are described by NHPP property with 

the mean value function at time 𝑡, 𝑚(𝑡), and the failure intensity of the software, 𝜆(𝑡), 

which is also the derivative of the mean value function. Most existing NHPP software 

reliability models are developed based on the model given as follows 

 

                 
𝑑

𝑑𝑡
𝑚(𝑡) = ℎ(𝑡)[𝑁(𝑡) − 𝑚(𝑡)]                                       (7.3) 

 

where 𝑚(𝑡) is the expected number of software failures detected by time 𝑡, 𝑁(𝑡) is the 

total number of fault content by time 𝑡, and ℎ(𝑡) is the time-dependent fault detection rate 
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per unit of time. The underlying assumption of equation (7.3) is the failure intensity is 

proportional to the residual fault content in the software. Many NHPP software reliability 

models are developed based on the different formulation of ℎ(𝑡) and 𝑁(𝑡) in equation (7.3). 

Some examples are given in Table 7.2. 

 

Table 7. 2 Some existing NHPP software reliability models 

NHPP model Functions Mean value function 

Geol-Okumoto 
ℎ(𝑡) = 𝑏 

𝑁(𝑡) = 𝑎 
𝑚(𝑡) = 𝑎(1 − 𝑒−𝑏𝑡) 

 

Delayed S-shaped 

ℎ(𝑡) =
𝑏𝑡2

1 + 𝑏𝑡
 

𝑁(𝑡) = 𝑎 

𝑚(𝑡) = 𝑎(1 − (1 + 𝑏𝑡)𝑒−𝑏𝑡) 

 

Inflection S-shaped 

ℎ(𝑡) =
𝑏

1 + 𝛽𝑒−𝑏𝑡
  

𝑁(𝑡) = 𝑎 

𝑚(𝑡) =
𝑎(1 − 𝑒−𝑏𝑡)

1 + 𝛽𝑒−𝑏𝑡
 

Yamada imperfect 

debugging  

ℎ(𝑡) = 𝑏 

𝑁(𝑡) = 𝑎(1 + 𝛼𝑡) 
𝑚(𝑡) = 𝑎[1 − 𝑒−𝑏𝑡] [1 −

𝛼

𝑏
] + 𝛼𝑎𝑡 

 

PNZ 

ℎ(𝑡) =
𝑏

1 + 𝛽𝑒−𝑏𝑡
  

𝑁(𝑡) = 𝑎(1 + 𝛼𝑡) 
𝑚(𝑡) =

𝑎[(1 − 𝑒−𝑏𝑡) (1 −
𝛼
𝑏
) + 𝛼𝑡]

1 + 𝛽𝑒−𝑏𝑡
 

 

Pham-Zhang IFD 

 

ℎ(𝑡) =
𝑏2𝑡

1 + 𝑏𝑡
+

𝑑

1 + 𝑑𝑡
 

𝑁(𝑡) = 𝑎 

𝑚(𝑡) = 𝑎 − 𝑎𝑒−𝑏𝑡(1 + (𝑏 + 𝑑)𝑡 + 𝑏𝑑𝑡2) 

 

 

The software reliability models presented in Table 7.2, along with other deterministic 

models, have not taken into account the effect of randomness from the 

development/operation environment. To capture the effect of random environments, a 

stochastic process is incorporated in the fault detection process by imposing ℎ(𝑡) to be 

ℎ(𝑡, 𝜂), where 𝜂 is the random effect. The equation (7.3) will be described as  
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𝑑

𝑑𝑡
𝑚(𝑡, 𝜂) = ℎ(𝑡, 𝜂)[𝑁(𝑡) − 𝑚(𝑡, 𝜂)]                                 (7.4) 

 

For example, in Pham [136], the author considered  

 

ℎ(𝑡, 𝜂) = ℎ(𝑡) 𝜂,    𝑁(𝑡) = 𝑁                                           (7.5) 

 

where 𝜂 is a random variable and follows gamma distribution with parameter α and β. By 

substituting equation (7.5) to equation (7.4), the explicit solution of the mean value 

function is expressed as [136] 

 

𝑚(𝑡) = 𝑁 [1 − (
𝛽

𝛽 + ∫ ℎ(𝑠)𝑑𝑠
𝑡

0

)

𝛼

]                                    (7.6) 

 

The above formulation, ℎ(𝑡, 𝜂) = ℎ(𝑡) 𝜂, proposed in Pham [136], is referred as dynamic 

multiplicative noise model in recent publication from Pham and Pham [188]. They [188] 

also proposed a dynamic additive noise model shown as follows  

 

ℎ(𝑡, 𝑤) = ℎ(𝑡) + �̇�(𝑡, 𝑤)                                               (7.7) 

 

where �̇�(𝑡, 𝑤) denotes the derivative of 𝑀 with respect to time 𝑡. 𝑀(𝑡) is defined as a 

martingale with respect to the filtration (Ƒ𝑡 , 𝑡 ≥ 0) in this function. One worth-noting 

martingale property [189, 190] applied in equation (7.7) is 
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𝐸 (∫ ℎ(𝑠, 𝑤)𝑑𝑠
𝑡

𝑣

) = ∫ ℎ(𝑠)𝑑𝑠
𝑡

𝑣

                                      (7.8) 

 

Brownian motion [189] is also a martingale. Let {𝐵(𝑡): 𝑡 ≥ 0}  be Brownian motion, 

Mikosch [189] mentioned that {𝐵(𝑡): 𝑡 ≥ 0} and {𝐵2(𝑡) − 𝑡: 𝑡 ≥ 0} are martingale with 

respect to the nature filtration (Ƒ𝑡 , 𝑡 ≥ 0). For the model consideration in this chapter, we 

also choose 𝑀(𝑡) to be Brownian motion since Brownian motion is deeply researched by 

many literatures. 

 

A stochastic process {𝐵(𝑡): 𝑡 ≥ 0} is called Brownian motion [190] with start in 𝑥 ∈ ℝ if  

(1) 𝐵(0) = 𝑥. 

(2) The process has independent increments. For example, the increments 𝐵(𝑡𝑛) −

𝐵(𝑡𝑛−1), 𝐵(𝑡𝑛−1) − 𝐵(𝑡𝑛−2), … , 𝐵(𝑡2) − 𝐵(𝑡1) are independent for all time 0 ≤

𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑛. 

(3) The increments 𝐵(𝑡 + 𝑠) − 𝐵(𝑡) are normally distributed, for all 𝑡 ≥ 0, 𝑠 ≥ 0. 

 

If 𝐵(0) = 0,  i.e. the motion starts from the origins, this is called standard Brownian motion.  

 

Proposed Single-Environmental-Factor Software Reliability Model 

The proposed NHPP software reliability model in this study incorporates both the dynamic 

multiplicative and additive noise characteristics discussed in Section 7.2.2. Meanwhile, one 

of the top 10 environmental factors from the recent comparison survey studies in Chapter 

4, modeled as a gamma distribution with parameter θ and r estimated from real-collected 
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data from various industries, is incorporated in the model development. In sum, 

environmental factor, PoRM, described as gamma distribution from real data, and the 

randomness caused by PoRM, illustrated by the martingale, specifically, Brownian motion, 

are taken into account for the proposed software reliability model. 

 

The assumptions for the proposed model are given as follows. 

 

(1) The fault removal process follows a NHPP. 

(2) The failure of software system subjects to the manifestation of the remaining faults 

in the software program. 

(3) All faults in the software are independent. 

(4) The failure intensity is proportional to the remaining faults in the software. 

(5) The environmental factor, PoRM, is described as gamma distribution based on the 

real data collected from various industry. The impact of PoRM is explained by an 

additive portion along with the traditional fault detected process.  

(6) The randomness caused by the environmental factor is explained as a martingale, 

particularly, Brownian motion in this study. 

 

The proposed NHPP software reliability model is formulated as 

 

𝑑

𝑑𝑡
𝑚(𝑡, 𝜂) = [ℎ(𝑡) + 𝜆0𝐺(𝑡, 𝜂) + �̇�(𝑡)][𝑁(𝑡) − 𝑚(𝑡, 𝜂)]                  (7.9) 

 

m(0) = 0                                                         (7.10) 
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where 𝑚(𝑡, 𝜂) is the expected number of failures by time 𝑡. ℎ(𝑡) is the fault detection rate 

per unit of time without considering the effect of environmental factor. 𝜂 is a random 

variable and represents the environmental factor, PoRM. 𝐺(𝑡, 𝜂)  is a time-dependent 

function and represents the impact of PoRM on failure detection rate per unit of time. 𝜆0 

is the coefficient along with 𝐺(𝑡, 𝜂) . �̇�(𝑡)  denotes a standard Gaussian white noise, 

specifically 

 

𝑑

𝑑𝑡
𝐵(𝑡) = �̇�(𝑡)                                                    (7.11) 

 

where 𝐵(𝑡) is a Brownian motion. 

 

The covariance of �̇�(𝑡) is 

 

𝐸 (�̇�(𝑡)�̇�(𝑢)) = 𝛿(𝑢 − 𝑡), 0 < 𝑡 < 𝑢                          (7.12) 

 

where 𝛿 is the Dirac Delta measure.  

 

From [188], similarly, we obtain the general solution for equation (7.9) as follows  

 

𝑚(𝑡, 𝜂) = 𝑁(𝑡) − 𝑁(0)𝑒−∫ (ℎ
(𝑠)+𝜆0𝐺(𝑠,𝜂)+�̇�(𝑠))𝑑𝑠

𝑡
0 − ∫ 𝑒

−∫ (ℎ(𝑠)+𝜆0𝐺(𝑠,𝜂)+�̇�(𝑠))𝑑𝑠
𝑡
𝑢 𝑁′(𝑢)𝑑𝑢

𝑡

0
 

(7.13) 
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The detailed derivation is presented in Appendix I, located at the last page of this chapter. 

Since �̇�(𝑡) denotes a standard Gaussian white noise, we also have  

 

∫ (ℎ(𝑠) + 𝜆0𝐺(𝑠, 𝜂) + �̇�(𝑠))𝑑𝑠
𝑡

0

= ∫ (ℎ(𝑠) + 𝜆0𝐺(𝑠, 𝜂))𝑑𝑠
𝑡

0

+ 𝐵(𝑡) − 𝐵(0) 

= ∫ (ℎ(𝑠) + 𝜆0𝐺(𝑠, 𝜂))𝑑𝑠
𝑡

0

+ 𝐵(𝑡)                         (7.14) 

 

The mean value function is expressed as 

 

�̅�(𝑡) = 𝑁(𝑡) − 𝑁(0)𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
0 𝑒

𝑡
2𝑒−∫ 𝜆0𝐺(𝑠,𝜂)𝑑𝑠

𝑡
0  

−∫ 𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
𝑢 𝑒

𝑡−𝑢
2 𝑒−∫ 𝜆0𝐺(𝑠,𝜂)𝑑𝑠

𝑡
𝑢 𝑁′(𝑢)𝑑𝑢                                                        (7.15)

𝑡

0

 

 

Let  

 

𝐺(𝑡, 𝜂) = 𝜂𝑣(𝑡)                                                    (7.16) 

 

where 𝑣(𝑡) is a time-dependent function and measures the impact of time on PoRM. 

 

The probability density function of the environmental factor, 𝜂, described as a gamma 

distribution with the parameter 𝜃 and 𝑟, is given as follows 
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𝑓(𝜂) =
𝜃𝛾𝜂𝛾−1𝑒−𝜃𝜂

г(𝛾)
                                            (7.17) 

 

We apply the expectation on equation (7.15) with respect to 𝜂. The mean value function is 

obtained 

 

�̅�𝜂(𝑡) = 𝑁(𝑡) − 𝑁(0)𝑒
−∫ ℎ(𝑠)𝑑𝑠

𝑡
0 𝑒

𝑡
2 [∫ 𝑒−𝜂 ∫ 𝜆0𝑣(𝑠)𝑑𝑠

𝑡
0 𝑓(𝜂)

∞

0

𝑑𝜂] 

                 −∫ ∫ 𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
𝑢 𝑒

𝑡−𝑢
2 𝑒−∫ 𝜆0𝜂𝑣(𝑠)𝑑𝑠

𝑡
𝑢 𝑁′(𝑢)𝑓(𝜂)𝑑𝑢

𝑡

0

∞

0

𝑑𝜂 

             =  𝑁(𝑡) − 𝑁(0)𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
0 𝑒

𝑡
2 [∫ 𝑒−𝜂 ∫ 𝜆0𝑣(𝑠)𝑑𝑠

𝑡
0 𝑓(𝜂)

∞

0

𝑑𝜂] 

−∫ 𝑁′(𝑢)𝑒−∫ (ℎ
(𝑠)−

1
2)𝑑𝑠

𝑡
𝑢 [∫ 𝑒−𝜂 ∫ 𝜆0𝑣(𝑠)𝑑𝑠

𝑡
𝑢 𝑓(𝜂)𝑑𝜂

∞

0

] 𝑑𝑢
𝑡

0

                             (7.18) 

 

Compute the equations with Laplace Transform 

 

∫ 𝑥𝑒−𝑠𝑥𝑓(𝑥)𝑑𝑥 = −
𝑑𝐹∗(𝑠)

𝑑𝑠
                                   (7.19)

∞

0

 

 

The Laplace Transform of gamma probability density function is 

 

𝐹∗(𝑠) = (
𝜃

𝜃 + 𝑠
)
𝛾

                                                (7.20) 

 

Therefore 
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�̅�𝜂(𝑡) = 𝑁(𝑡) − 𝑁(0)𝑒
−∫ ℎ(𝑠)𝑑𝑠

𝑡
0 𝑒

𝑡
2𝐹∗ (∫ 𝜆0𝑣(𝑠)𝑑𝑠

𝑡

0

) 

                 −∫ 𝑁′(𝑢)𝑒−∫ (ℎ
(𝑠)−

1
2
)𝑑𝑠

𝑡
𝑢

𝑡

0

𝐹∗ (∫ 𝜆0𝑣(𝑠)𝑑𝑠
𝑡

0

)𝑑𝑢 

           = 𝑁(𝑡) − 𝑁(0)𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
0 𝑒

𝑡
2 [

𝜃

𝜃 + ∫ 𝜆0𝑣(𝑠)𝑑𝑠
𝑡

0

]

𝛾

 

              −∫ 𝑁′(𝑢)𝑒−∫ (ℎ
(𝑠)−

1
2
)𝑑𝑠

𝑡
𝑢

𝑡

0

[
𝜃

𝜃 + ∫ 𝜆0𝑣(𝑠)𝑑𝑠
𝑡

0

]

𝛾

𝑑𝑢 

         = 𝑁(𝑡) − 𝑁(0)𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
0 𝑒

𝑡
2 [

𝜃

𝜃 + ∫ 𝜆0𝑣(𝑠)𝑑𝑠
𝑡

0

]

𝛾

 

            − [
𝜃

𝜃 + ∫ 𝜆0𝑣(𝑠)𝑑𝑠
𝑡

0

]

𝛾

∫ 𝑁′(𝑢)𝑒−∫ (ℎ
(𝑠)−

1
2)𝑑𝑠

𝑡
𝑢

𝑡

0

𝑑𝑢                                              (7.21) 

 

The equation (7.21) provides a general solution for the proposed single-environmental-

factor software reliability model in considerations of PoRM and the randomness caused by 

this environmental factor. Different formulation for ℎ(𝑡), 𝑣(𝑡) and 𝑁(𝑡) with respect to 

different assumptions can be plugged in equation (7.21) to obtain the final solution. In this 

study, we apply the formulation as follows. 

 

Let 

 

ℎ(𝑡) =
𝑏

1 + 𝑐𝑒−𝑏𝑡
                                              (7.22) 

 

𝑣(𝑡) = 𝑒−𝑎𝑡                                                    (7.23) 
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𝑁(𝑡) =
1

𝑘
𝑒𝑘𝑡                                                     (7.24) 

 

As described in Melo et al. [191], the application process of the reused module is described 

as follows: (1) Reused module selection. (2) The adaption of the reused module to the new 

objective. (3) The integration to the new-developed software product. The impact of PoRM 

on the software fault detection rate will decrease as software development moves to the 

later phase. Thus, we use an exponentially decreasing function 𝑒−𝑎𝑡 to represent 𝑣(𝑡) in 

this study. Meanwhile, due to  
1

𝑘
𝑒𝑘𝑡  is a monotonically increasing function and the 

inspiration from reference [188], we employ  
1

𝑘
𝑒𝑘𝑡 to represent 𝑁(𝑡), the nature growth of 

the software failures. 

 

Substituting equations (7.22) - (7.24) to equation (7.21), the mean value function is 

expressed as 

 

𝑚(𝑡, 𝜂) =
1

𝑘
𝑒𝑘𝑡 −

1

𝑘

𝑐 + 1

𝑐 + 𝑒𝑏𝑡
𝑒
𝑡
2 [

𝜃

𝜃 +
𝜆0
𝑎
(1 − 𝑒−𝑎𝑡)

]

𝛾

 

 

               − [
𝜃

𝜃 +
𝜆0
𝑎
(1 − 𝑒−𝑎𝑡)

]

𝛾

𝑒
𝑡
2

𝑐 + 𝑒𝑏𝑡
∫ 𝑁′(𝑢) [𝑐𝑒−

𝑢
2 + 𝑒(𝑏−

1
2)𝑢] 𝑑𝑢

𝑡

0
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 =
1

𝑘
𝑒𝑘𝑡 −

𝑒
𝑡
2

𝑐 + 𝑒𝑏𝑡
[

𝜃

𝜃 +
𝜆0
𝑎
(1 − 𝑒−𝑎𝑡)

]

𝛾

[
𝑐 + 1

𝑘
−

𝑐

𝑘 −
1
2

𝑒(𝑘−
1
2
)𝑡 −

1

𝑏 + 𝑘 −
1
2

𝑒(𝑏+𝑘−
1
2
)𝑡

+
𝑐

𝑘 −
1
2

+
1

𝑏 + 𝑘 −
1
2

]                                                                                  (7.25) 

 

Given the definition of 𝑚(𝑡) is the expected number of software failures by time t, we do 

know 𝑚(𝑡) is an increasing function and we are also able to prove 𝑤ℎ𝑒𝑛 𝑡 → ∞,𝑚(𝑡) →

∞ for equation (7.25) based on the numerical example. 

 

We believe the behavior of equations (7.21) and (7.25) mainly depends on the formulation 

of 𝑁(𝑡). For example, 

(1) If 𝑁(𝑡) is a constant, then 𝑚(𝑡) converges to this constant. 

(2) If 𝑁(𝑡) is a time-dependent function and can converge to a finite number, then 

𝑚(𝑡) converges to this finite number.  

(3) If 𝑁(𝑡)  is a time-dependent function and cannot converge, then 𝑚(𝑡)  cannot 

converge. 

 

But in this dissertation, we are not going to cover the mathematical proof for the above 

description. The investigation of the function behavior will be further studied in the future 

research. 
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7.3 Multiple-Environmental-Factors Software Reliability Model 

We first propose a generalized software reliability model considering multiple 

environmental factors under the Martingale framework in Section 7.3.1, and then we 

present two specific software reliability models incorporating two important factors from 

previous study, PoRM, and FoPSC. 

 

The notations that are used in this section is explained as follows. 

 

𝑚(𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟        ) Expected number of software failure detected by time 𝑡 considering 

multiple environmental factors and their impact 

𝐺𝑖 (𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟        )  Impact of environmental factor 1, 2, 3, …, n on failure detection rate 

per unit of time 

HG([𝛽2], [𝛽1 + 𝛽2], 𝑠) Generic hypergeometric function  

𝑁(𝑡)   Total fault content function in the software by time 𝑡 

ℎ(𝑡)   Time-dependent fault detection rate per unit of time 

𝑓(𝜂𝑖)   Probability density function of environmental factor 1, 2, 3, …, n 

𝑓(𝜂1)   Probability density function of PoRM 

𝑓(𝜂2)   Probability density function of FoPSC 

𝐵(𝑡)    Brownian motion 

�̇�(𝑡)   Standard white noise 

𝑣𝑖(𝑡)   Impact of time on environmental factor 𝜂𝑖 

𝑣1(𝑡)   Impact of time on environmental factor 𝜂1 
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𝑣2(𝑡)   Impact of time on environmental factor 𝜂2 

𝐹𝜂𝑖
∗ (𝑠)   Laplace transform of 𝑓(𝜂𝑖) 

𝐹𝜂1
∗ (𝑠)   Laplace transform of 𝑓(𝜂1) 

𝐹𝜂2
∗ (𝑠)   Laplace transform of 𝑓(𝜂2) 

𝜂𝑖   Random variable and represents environmental factor 1, 2, 3, …, n 

𝜂1   Random variable and represents PoRM 

𝜂2   Random variable and represents FoPSC 

𝜆𝑖   Coefficient along with 𝐺1(𝑡, 𝜂1), 𝐺2(𝑡, 𝜂2), 𝐺3(𝑡, 𝜂𝑛), … , 𝐺𝑛(𝑡, 𝜂𝑛) 

𝛿   Dirac Delta measure 

𝜃1, 𝛾1    Parameters of gamma distribution, which denotes PoRM 

𝜃2, 𝛾2   Parameters of gamma distribution, which denotes FoPSC 

𝛽1, 𝛽2   Parameters of beta distribution, which denotes FoPSC 

𝑏, 𝑐, 𝑎, 𝑘  Coefficients in function ℎ(𝑡), 𝑣(𝑡), and 𝑁(𝑡) 

𝑦𝑖   Observed number of software failures at time 𝑡𝑖 

 

7.3.1 A Generalized Multiple-Environmental-Factors Software Reliability Model 

We present the following assumptions to develop the generalized multiple-environmental-

factors software reliability model. 

 

(1) Software fault removal process follows the NHPP. 

(2) Software failure intensity is proportional to the remaining faults in the software 

program. 



182 

 

 

(3) Software failures subject to the manifestation of the remaining faults in the software 

program. 

(4) All software faults in the program are independent. 

(5) Multiple environmental factors are considered in the proposed model. All 

environmental factors are independent in this study. We do not consider correlation 

between environmental factors in this study. 

(6) The randomness imposed on the software fault detection rate, caused by the 

introduction of environmental factors, is modeled by Martingale process, 

specifically, Brownian motion. 

 

Hence, we propose a generalized multiple-environmental-factors software reliability 

model, given as follows  

 

𝑑

𝑑𝑡
𝑚 (𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟        ) 

= [ℎ(𝑡) +∑𝜆𝑖

𝑛

𝑖=1

𝐺𝑖 (𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟        ) + �̇�(𝑡)] [𝑁(𝑡) −  𝑚 (𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟        )]     (7.26) 

 

    𝑚(0) = 0                                                          (7.27) 

 

where 𝜂1, 𝜂2, … , 𝜂𝑛⏟         represents n-dimensional vector. 𝑚(𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟        )  represents the 

expected number of software failures by time t considering multiple environmental factors. 

ℎ(𝑡)  is the software fault detection rate per unit of time without the impact of 

environmental factors. 𝜂𝑖 is random variable represented environmental factor 1, 2, 3, …, 
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n. 𝐺𝑖 (𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟        )  is the time-dependent function, represents the impact of 

environmental factor 1, 2, 3, …, n on software fault detection rate per unit of time. 𝜆𝑖 is the 

coefficient associated with 𝐺1(𝑡, 𝜂1), 𝐺2(𝑡, 𝜂2), 𝐺3(𝑡, 𝜂𝑛), … , 𝐺𝑛(𝑡, 𝜂𝑛). 𝑁(𝑡) is the fault 

content function by time t. �̇�(𝑡) is a standard white noise, is given as follows 

 

𝑑

𝑑𝑡
𝐵(𝑡) = �̇�(𝑡)                                                     (7.28)  

 

where 𝐵(𝑡) denotes Brownian motion.  

 

Given �̇�(𝑡) is the white noise process, in other words, �̇�(𝑡) is a Gaussian process with the 

covariance structure given as follows  

 

𝐸 (�̇�(𝑡)�̇�(𝑢)) = 𝛿(𝑢 − 𝑡), 0 < 𝑡 < 𝑢                          (7.29)  

 

where 𝛿  is the Dirac Delta measure. Equation (7.29) will have the impact on ℎ(𝑡) +

∑ 𝜆𝑖
𝑛
𝑖=1 𝐺𝑖 (𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟        ) + �̇�(𝑡), specifically, we obtain 

 

∫ [ℎ(𝑠) +∑𝜆𝑖

𝑛

𝑖=1

𝐺𝑖 (𝑠, 𝜂1, 𝜂2, … , 𝜂𝑛⏟        ) + �̇�(𝑠)
𝑡

0

]𝑑𝑠   

= ∫ [ℎ(𝑠) +∑𝜆𝑖

𝑛

𝑖=1

𝐺𝑖 (𝑠, 𝜂1, 𝜂2, … , 𝜂𝑛⏟        )] 𝑑𝑠
𝑡

0

+ 𝐵(𝑡) − 𝐵(0) 
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= ∫ [ℎ(𝑠) +∑𝜆𝑖

𝑛

𝑖=1

𝐺𝑖 (𝑠, 𝜂1, 𝜂2, … , 𝜂𝑛⏟        )] 𝑑𝑠
𝑡

0

+ 𝐵(𝑡)                            (7.30) 

 

Given the general solution discussed in last section, the general solution for equation (7.26) 

is provided as follows 

 

𝑚(𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟        ) = 𝑁(𝑡) − 𝑁(0)𝑒
−∫ (ℎ(𝑠)+∑ 𝜆𝑖

𝑛
𝑖=1 𝐺𝑖(𝑠,𝜂1,𝜂2,…,𝜂𝑛⏟      )+�̇�(𝑠))𝑑𝑠

𝑡
0  

  −∫ 𝑒
−∫ (ℎ(𝑠)+∑ 𝜆𝑖

𝑛
𝑖=1 𝐺𝑖(𝑠,𝜂1,𝜂2,…,𝜂𝑛⏟      )+�̇�(𝑠))𝑑𝑠

𝑡
𝑢 𝑁′(𝑢)𝑑𝑢

𝑡

0

                 (7.31) 

 

Substituting equation (7.30) to equation (7.31), the mean value function is obtained as 

 

�̅� (𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟        ) = 𝑁(𝑡) − 𝑁(0)𝑒
−∫ ℎ(𝑠)𝑑𝑠

𝑡
0 𝑒

𝑡
2𝑒
−∫ ∑ 𝜆𝑖

𝑛
𝑖=1 𝐺𝑖(𝑠,𝜂1,𝜂2,…,𝜂𝑛⏟      )𝑑𝑠

𝑡
0                         

                  −∫ 𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
𝑢 𝑒

𝑡−𝑢
2 𝑒

−∫ ∑ 𝜆𝑖
𝑛
𝑖=1 𝐺𝑖(𝑠,𝜂1,𝜂2,…,𝜂𝑛⏟      )𝑑𝑠

𝑡
𝑢 𝑁′(𝑢)𝑑𝑢

𝑡

0

    (7.32) 

 

Let 

 

𝐺𝑖 (𝑡, 𝜂1, 𝜂2, … , 𝜂𝑛⏟        ) = 𝜂𝑖𝑣𝑖(𝑡)                                     (7.33) 

 

where 𝑣𝑖(𝑡)  is a time-dependent function and measures the impact of time on 

environmental factor 𝜂1, 𝜂2, 𝜂3, … , 𝜂𝑛. 
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As discussed in the model assumption, we consider all environmental factors are 

independent, and environmental factor 1, 2, 3, …, and n are represented by 𝜂𝑖, where 𝑖 =

1, 2, … , 𝑛. 𝜂𝑖 is considered as random variable in this study, which could follow different 

distribution function. In order to solve equation (7.32), we apply the expectation on both 

sides of equation (7.32) with respect to 𝜂1, 𝜂2, 𝜂3, … , 𝜂𝑛. Thus, the mean value function is 

expressed as 

 

�̅�𝜂1,𝜂2,…,𝜂𝑛⏟      (𝑡) = 𝑁(𝑡) − 𝑁(0)𝑒
−∫ ℎ(𝑠)𝑑𝑠

𝑡
0 𝑒

𝑡
2 [∏∫ 𝑒−∫ 𝜆𝑖𝜂𝑖𝑣𝑖(𝑠)𝑑𝑠

𝑡
𝑢 𝑓(𝜂𝑖)𝑑𝜂𝑖

∞

0

𝑛

𝑖=1

]    

− ∫ 𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
𝑢 𝑒

𝑡−𝑢
2 [∏∫ 𝑒−∫ 𝜆𝑖𝜂𝑖𝑣𝑖(𝑠)𝑑𝑠

𝑡
𝑢 𝑓(𝜂𝑖)𝑑𝜂𝑖

∞

0

𝑛

𝑖=1

]𝑁′(𝑢)𝑑𝑢
𝑡

0

 

= 𝑁(𝑡) − 𝑁(0)𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
0 𝑒

𝑡
2 [∏∫ 𝑒−∫ 𝜆𝑖𝜂𝑖𝑣𝑖(𝑠)𝑑𝑠

𝑡
𝑢 𝑓(𝜂𝑖)𝑑𝜂𝑖

∞

0

𝑛

𝑖=1

]                       

−∫ 𝑁′(𝑢)𝑒−∫ (ℎ
(𝑠)−

1
2)𝑑𝑠

𝑡
𝑢 [∏∫ 𝑒−∫ 𝜆𝑖𝜂𝑖𝑣𝑖(𝑠)𝑑𝑠

𝑡
𝑢 𝑓(𝜂𝑖)𝑑𝜂𝑖

∞

0

𝑛

𝑖=1

] 𝑑𝑢
𝑡

0

        (7.34) 

 

Equation (7.34) is the generalized mean value function in consideration of multiple 

environmental factors, and the randomness caused by these environmental factors, 

modeled as Brownian motion. Because each environmental factor is modeled as a random 

variable, which follows certain distribution, there is another advantage regarding the 

formulation of equation (7.34) stated as follows. If we know the distribution of each factor, 

we use the Laplace Transform of the probability density function and will have high 

possibility to obtain a close form solution of the mean value function. 
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7.3.2     Specific Multiple-Environmental-Factors Software Reliability Models 

Two Specific Environmental Factors 

PoRM 

The same definition and distribution given in Section 7.2.1 will be adopted for the 

development of specific multiple-environmental-factors software reliability models. 

 

FoPSC 

In 1980, Lehman [3] summarized the Laws of Program Evolution. The first law, continuing 

change, expressed the universally observed fact that large programs are never completed. 

They just continue to evolve. Changes of specifications occur since the initial development 

until product delivery, which posing a considerate amount of risk to software cost but 

brining new opportunity to add value and improve reliability [192]. Changes of 

specifications, in the early 1990s, studied by Harker et al. [193] mostly due to the source 

described as follows. (1) Fluctuations within organization or the market. (2) Increased 

understanding of requirements. (3) Consequence of system-usage. (4) Customer migratory 

issues. (5) Adaption issues. Later, many literatures proposed other explanations for the 

changes of specifications mainly from the perspectives of product strategy, 

hardware/software environment/interaction, testability and functionality enhancement 

[194 - 196].  
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Meanwhile, FoPSC is one of the significant environmental factors in the recent survey 

study investigating the impact of environmental factors affecting software reliability during 

development process, stated in Chapter 4. We define FoPSC as the total times of all the 

specifications have been changed in all the historical versions in software development. 

But in this study, we will use the percentage of all the changes in a project to estimate the 

parameters. We employ the dataset provided in references [197, 201] to estimate the 

distribution of FoPSC, as shown in Figure 7.2. 

 

 

Figure 7. 2 Data collection of FoPSC 

 

Gamma distribution or beta distribution is good choice for FoPSC, given the model 

characteristics. Thus, we compare the Log-likelihood value for gamma distribution and 

beta distribution, and it demonstrates beta distribution is better fit for FoPSC. The 

parameter estimate of beta distribution is also obtained, which is written as 

FoPSC ~ 𝐵𝑒𝑡𝑎 (1.411, 7.409). In Section 7.3.2.2, we provide the specific models with 

FoPSC follows gamma distribution and beta distribution, but later in the numerical 
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examples illustration, we only use beta distribution to estimate parameters and compare 

model predictive power.  

 

Model Framework 

In this section, we use two environmental factors, PoRM and FoPSC, as discussed in the 

previous section, to substitute in the generalized mean value function considering multiple 

environmental factors.  

 

The mean value function with two environmental factors is obtained from equation (7.34) 

as follows 

 

�̅�𝜂1,𝜂2,…,𝜂𝑛⏟      (𝑡) = 𝑁(𝑡) − 𝑁(0)𝑒
−∫ ℎ(𝑠)𝑑𝑠

𝑡
0 𝑒

𝑡
2 (∏∫ 𝑒−∫ 𝜆𝑖𝜂𝑖𝑣𝑖(𝑠)𝑑𝑠

𝑡
0 𝑓(𝜂𝑖)𝑑𝜂𝑖

∞

0

2

𝑖=1

)

− ∫ 𝑁′(𝑢)𝑒−∫ (ℎ
(𝑠)−

1
2)𝑑𝑠

𝑡
𝑢 (∏∫ 𝑒−∫ 𝜆𝑖𝜂𝑖𝑣𝑖(𝑠)𝑑𝑠

𝑡
0 𝑓(𝜂𝑖)𝑑𝜂𝑖

∞

0

2

𝑖=1

)𝑑𝑢
𝑡

0

 

(7.35) 

 

where 𝜂1  denotes PoRM and 𝜂2  denotes FoPSC. 𝜆1and 𝜆2  is the coefficient associated 

with the function 𝐺1(𝑡, 𝜂1)  and 𝐺2(𝑡, 𝜂2) , respectively. 𝑣1(𝑡)  and 𝑣2(𝑡)  are time-

dependent functions and measure the impact of time on environmental factor 𝜂1, 𝜂2 , 

respectively. 
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Note that PoRM follows gamma distribution as discussed in the previous section, which is 

𝜂1~Gamma(𝛾1, 𝜃1) The probability density function for PoRM is given as follows 

 

𝑓(𝜂1) =
𝜃1
𝛾1𝜂1

𝛾1−1𝑒−𝜃1𝜂1

г(𝛾1)
                                         (7.36)  

 

where 𝛾1 and  𝜃1are the parameters of the gamma distribution, which represents PoRM. 

 

Next, we present the specific software reliability models when FoPSC follows gamma 

distribution and beta distribution. Software researchers and practitioner will choose the one 

fits best for the forthcoming scenarios.  

 

First, let FoPSC follows gamma distribution, which is 𝜂2~Gamma(𝛾2, 𝜃2), then 

 

𝑓(𝜂2) =
𝜃2
𝛾2𝜂2

𝛾2−1𝑒−𝜃2𝜂2

г(𝛾2)
                                          (7.37) 

 

where 𝛾2 and 𝜃2 are the parameters of the gamma distribution, which represents FoPSC. 

 

The mean value function with gamma-distributed PoRM and gamma-distributed FoPSC is 

written as  
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�̅�𝜂1,𝜂2,…,𝜂𝑛⏟      (𝑡)

= 𝑁(𝑡) − 𝑁(0)𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
0 𝑒

𝑡
2 [

𝜃1

𝜃1 + ∫ 𝜆1𝑣1(𝑠)𝑑𝑠
𝑡

0

]

𝛾1

[
𝜃2

𝜃2 + ∫ 𝜆2𝑣2(𝑠)𝑑𝑠
𝑡

0

]

𝛾2

− [
𝜃1

𝜃1 + ∫ 𝜆1𝑣1(𝑠)𝑑𝑠
𝑡

0

]

𝛾1

[
𝜃2

𝜃2 + ∫ 𝜆2𝑣2(𝑠)𝑑𝑠
𝑡

0

]

𝛾2

∫ 𝑁′(𝑢)𝑒−∫ (ℎ
(𝑠)−

1
2
)𝑑𝑠

𝑡
𝑢

𝑡

0

𝑑𝑢             (7.38) 

 

Let ℎ(𝑡)  and 𝑁(𝑡)  be equations (7.22) and (7.24), respectively, 𝑣1(𝑡) = 𝑒
−𝑎1𝑡 , and 

𝑣2(𝑡) = 𝑒
−𝑎2𝑡, the mean value function is written as 

 

�̅�𝜂1,𝜂2,…,𝜂𝑛⏟      (𝑡) =
1

𝑘
𝑒𝑘𝑡

−
𝑒
𝑡
2

𝑐 + 𝑒𝑏𝑡
[

𝜃1

𝜃1 +
𝜆1
𝑎1
(1 − 𝑒−𝑎1𝑡)

]

𝛾1

[
𝜃2

𝜃2 +
𝜆2
𝑎2
(1 − 𝑒−𝑎2𝑡)

]

𝛾2

[
𝑐 + 1

𝑘

−
𝑐

𝑘 −
1
2

𝑒(𝑘−
1
2)𝑡 − 

1

𝑏 + 𝑘 −
1
2

𝑒(𝑏+𝑘−
1
2)𝑡 +

𝑐

𝑘 −
1
2

+
1

𝑏 + 𝑘 −
1
2

]        (7.39) 

 

Secondly, let FoPSC follows beta distribution, which is 𝜂2~Beta(𝛽1, 𝛽2), then 

 

𝑓(𝜂2) =
г(𝛽1 + 𝛽2)𝜂2

𝛽1−1(1 − 𝜂2)
𝛽2−1

г(𝛽1)г(𝛽2)
                                  (7.40) 

 

where 𝛽1 and 𝛽2 are the parameters of beta distribution. 
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The Laplace transform of 𝜂2 is given as follows [103] 

 

𝐹𝜂2
∗ (𝑠) = 𝑒−𝑠 × 𝐻𝐺([𝛽2], [𝛽1 + 𝛽2], 𝑠)                             (7.41) 

 

where HG([𝛽2], [𝛽1 + 𝛽2], 𝑠) is the generic hypergeometric function such that 

 

𝐻𝐺([𝑎1, 𝑎2, … , 𝑎𝑚], [𝑏1, 𝑏2, … , 𝑏𝑛], 𝑠) = ∑[
𝑠𝑘∏

г(𝑎𝑖 + 𝑘)
г(𝑎𝑖)

𝑚
𝑖=1

∏
г(𝑏𝑖 + 𝑘)
г(𝑏𝑖)

𝑘!𝑛
𝑖=1

]

∞

𝑘=0

. 

 

Therefore 

 

𝐹𝜂2
∗ (𝑠) = 𝑒−𝑠 [∑

г(𝛽1 + 𝛽2)г(𝛽2 + 𝑗)

г(𝛽2)г(𝛽1 + 𝛽2 + 𝑗)

∞

𝑗=0

] =∑
г(𝛽1 + 𝛽2)г(𝛽2 + 𝑗)

г(𝛽2)г(𝛽1 + 𝛽2 + 𝑗)
×
𝑠𝑗𝑒−𝑠

𝑗!

∞

𝑗=0

         

=∑
г(𝛽1 + 𝛽2)г(𝛽2 + 𝑗) × 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑗, 𝑠)

г(𝛽2)г(𝛽1 + 𝛽2 + 𝑗)
× Poisson(𝑗, 𝑠)

∞

𝑗=0

             (7.42) 

 

where 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑗, 𝑠) =
𝑠𝑗𝑒−𝑠

𝑗!
. 

 

The mean value function with gamma-distributed PoRM and beta-distributed FoPSC is 

written as 
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�̅�𝜂1,𝜂2,…,𝜂𝑛⏟      (𝑡) = 𝑁(𝑡) −

𝑁(0)𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
0 𝑒

𝑡

2 [
𝜃1

𝜃1+∫ 𝜆1𝑣1(𝑠)𝑑𝑠
𝑡
0

]
𝛾1

[∑
г(𝛽1+𝛽2)г(𝛽2+𝑗)×𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑗,∫ 𝜆2𝑣2(𝑠)𝑑𝑠

𝑡
0 )

г(𝛽2)г(𝛽1+𝛽2+𝑗)

∞
𝑗=0 ] −

[
𝜃1

𝜃1+∫ 𝜆1𝑣1(𝑠)𝑑𝑠
𝑡
0

]
𝛾1

[∑
г(𝛽1+𝛽2)г(𝛽2+𝑗)×𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑗,∫ 𝜆2𝑣2(𝑠)𝑑𝑠

𝑡
0 )

г(𝛽2)г(𝛽1+𝛽2+𝑗)

∞
𝑗=0 ] ∫ 𝑁′(𝑢)𝑒

−∫ (ℎ(𝑠)−
1

2
)𝑑𝑠

𝑡
𝑢

𝑡

0
𝑑𝑢   

(7.43) 

 

where 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑗, ∫ 𝜆2𝑣2(𝑠)𝑑𝑠
𝑡

0
) =

(∫ 𝜆2𝑣2(𝑠)𝑑𝑠
𝑡
0 )

𝑗
𝑒−∫ 𝜆2𝑣2(𝑠)𝑑𝑠

𝑡
0

𝑗!
. 

 

Let ℎ(𝑡)  and 𝑁(𝑡)  be equations (7.22) and (7.24), respectively, 𝑣1(𝑡) = 𝑒
−𝑎1𝑡 , and 

𝑣2(𝑡) = 𝑒
−𝑎2𝑡, the mean value function is written as 

 

�̅�𝜂1,𝜂2,…,𝜂𝑛⏟      (𝑡)

=
1

𝑘
𝑒𝑘𝑡

−
𝑒
𝑡
2

𝑐 + 𝑒𝑏𝑡
[

𝜃1

𝜃1 +
𝜆1
𝑎1
(1 − 𝑒−𝑎1𝑡)

]

𝛾1

[
 
 
 
 

∑

г(𝛽1 + 𝛽2)г(𝛽2 + 𝑗) × 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑗,
𝜆2
𝑎2
(1 − 𝑒−𝑎2𝑡))

г(𝛽2)г(𝛽1 + 𝛽2 + 𝑗)

∞

𝑗=0

]
 
 
 
 

[
𝑐 + 1

𝑘

−
𝑐

𝑘 −
1
2

𝑒(𝑘−
1
2)𝑡 −

1

𝑏 + 𝑘 −
1
2

𝑒(𝑏+𝑘−
1
2)𝑡 +

𝑐

𝑘 −
1
2

+
1

𝑏 + 𝑘 −
1
2

]                                    (7.44) 

 

where 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑗,
𝜆2

𝑎2
(1 − 𝑒−𝑎2𝑡)) =

[
𝜆2
𝑎2
(1−𝑒−𝑎2𝑡)]

𝑗
𝑒
−
𝜆2
𝑎2
(1−𝑒−𝑎2𝑡)

𝑗!
. 
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7.4 Numerical Examples for Single-Environmental-Factor Software Reliability 

Model 

In the following experiments, we choose two applications, DS1 and DS2, to validate the 

proposed single-environmental-factor software reliability model and compare the 

performance with other existing software reliability models. The comparison criteria are 

discussed in Chapter 5.  DS1 and DS2 are both collected from Open Source Software (OSS) 

project. OSS has attracted significant attention in the past decade. Some report shows that 

a few major OSS products have surpassed their commercial counterparts in terms of the 

market share and quality evaluation [198]. Not only individuals are attracted by the features 

of OSS, but many software companies and government-supported organizations [199]. A 

research study conducted by CIO Magazine [200] found that IT community is growing 

better by using open source development model and OSS will dominate as the Web server 

application platform and server operating system. The majority of the companies are using 

open source today for web development. To align with the new transitions in software 

development, OSS project data are employed to illustrate the performance of the proposed 

model.  

 

Numerical Example 1 

Dataset 1 (DS1) is extracted from Apache OSS project. It was collected from Sep 2010 to 

April 2013. The collected data are described in Table 7.3. The column named Failures in 

Table 7.3 represents the number of software failures detected between time unit t-1 and t. 

The column named Cumulative failures in Table 7.3 represents the cumulative software 

failure by time t. We compare the models discussed in Table 7.4. The parameter estimates 
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and model comparisons are presented in Table 7.5. In this dataset, we use the first 24 time 

units to estimate the parameters.  

 

As presented in Table 7.5, the proposed single-environmental-factor model has the smallest 

MSE, PRR, and Variation. It is worth noting that MSE is the most critical criteria in terms 

of model selection. The PP value for the proposed model is 0.311, which is just slightly 

larger than the smallest PP value 0.228, however, all other three criteria for G-O model is 

significantly larger than the proposed model. Thus, we conclude that the proposed model 

has the best fit. Figure 7.3 and 7.4 also illustrate the comparison between the actual failure 

data and the predicted failure data from all the models discussed in Table 7.5. The proposed 

model yields very close fittings and predictions of software failures.  

 

Table 7. 3 DS1 failure data 

Time 

unit 

 

Failures 

 

Cumulative 

failures 

Time 

unit 

 

Failures 

 

Cumulative 

failures 

Time 

unit 

 

Failures 

 

Cumulative 

failures 

1 6 6 12 4 66 23 6 102 

2 6 12 13 0 66 24 22 124 

3 6 18 14 4 70 25 3 127 

4 8 26 15 5 75 26 1 128 

5 13 39 16 5 80 27 1 129 

6 6 45 17 2 82 28 0 129 

7 8 53 18 10 92 29 0 129 

8 2 55 19 1 93 30 0 129 

9 3 58 20 1 94 31 4 133 

10 3 61 21 2 96 32 3 136 

11 1 62 22 0 96 - - - 
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Table 7. 4 Model comparisons 

Model  Mean value function 

G-O model 𝑚(𝑡) = 𝑎(1 − 𝑒−𝑏𝑡) 

Inflection S-shaped model 𝑚(𝑡) =
𝑎(1 − 𝑒−𝑏𝑡)

1 + 𝛽𝑒−𝑏𝑡
 

Delayed S-shaped model 
𝑚(𝑡) = 𝑎(1 − (1 + 𝑏𝑡)𝑒−𝑏𝑡) 

 

Yamada imperfect 

debugging model 
𝑚(𝑡) = 𝑎[1 − 𝑒−𝑏𝑡] [1 −

𝛼

𝑏
] + 𝛼𝑎𝑡 

PNZ model 𝑚(𝑡) =
𝑎[(1 − 𝑒−𝑏𝑡) (1 −

𝛼
𝑏
) + 𝛼𝑡]

1 + 𝛽𝑒−𝑏𝑡
 

Pham-Zhang IFD 
𝑚(𝑡) = 𝑎 − 𝑎𝑒−𝑏𝑡(1 + (𝑏 + 𝑑)𝑡 + 𝑏𝑑𝑡2) 

 

Proposed single-

environmental-factor 

model 

𝑚(𝑡) =
1

𝑘
𝑒𝑘𝑡 −

𝑒
𝑡
2

𝑐 + 𝑒𝑏𝑡
[

𝜃

𝜃 +
𝜆0
𝑎
(1 − 𝑒−𝑎𝑡)

]

𝛾

(
𝑐 + 1

𝑘
−

𝑐

𝑘 −
1
2

𝑒(𝑘−
1
2)
𝑡

−
1

𝑏 + 𝑘 −
1
2

𝑒(𝑏+𝑘−
1
2)
𝑡 +

𝑐

𝑘 −
1
2

+
1

𝑏 + 𝑘 −
1
2

) 

 

 

Table 7. 5 DS1 parameter estimates and model comparison 

Model MSE PRR PP Variation 
Parameter 

Estimates 

G-O model 36.561 0.315 0.228 6.076 
�̂� = 201.250 

�̂� = 0.033 

Inflection S-shaped 

model 
68.326 0.789 0.483 7.992 

�̂� = 150.030 

�̂� = 0.096 

�̂� = 1.830 

Delayed S-shaped 

model 
110.047 20.902 2.123 10.544 

�̂� = 131.400 

�̂� = 0.144 

Yamada imperfect 

debugging model 
60.193 0.401 0.300 74.941 

�̂� = 185.180 

�̂� = 0.033 

�̂� = 0.010 
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PNZ model 54.515 0.523 0.333 6.795 

�̂� = 161.010 

�̂� = 0.069 

�̂� = 0.001 

�̂� = 0.930 

Pham-Zhang IFD 143.253 40.461 2.665 11.076 

�̂� = 143.045 

�̂� = 0.129 

�̂� = 0.001 

Proposed single-

environmental-

factor model 

35.173 0.254 0.311 5.390 

�̂� = 0.014 

�̂� = 0.589 

�̂� = 0.039 

�̂� = 75.000 

𝜆0̂ = 2.001 

 

 

 

Figure 7. 3 DS1 comparison of actual failure data and predicted failure data – Part I 

 

 

Figure 7. 4 DS1 comparison of actual failure data and predicted failure data – Part II 
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Other software reliability measures are also calculated to provide a comprehensive 

understanding of the prediction power for the proposed model. In this study, we are 

interested in the estimated software failures for each time unit, which is obtained by 

𝑚(𝑡) − 𝑚(𝑡 − 1), and the estimated time to detect all the 136 actual software failures that 

already have been appeared in the program, as seen in Table 7.3. Figure 7.5 illustrates the 

estimated software failures for 16 time units, ranging from time unit 25 to 40, which gives 

an estimate for software tester in terms of the number of software failures occurred in the 

operation field during each time unit and further helps software multiple release. Moreover, 

the estimated time unit to detect all the 136 actual software failures is 38.40 based on the 

proposed model. Software tester use this information to estimate how much time will be 

spent on one project and assign the corresponding testing resource. In sum, those measures 

are helpful for software testing team to optimally assign the available testing resource to 

each ongoing project, decide when to stop testing, and plan software multiple release.  

 

 

Figure 7. 5 DS1 software failure prediction from time unit 25 to 40 
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Numerical Example 2 

DS2 is also one of Apache OSS project data. It was collected from Feb 2009 to Feb 2014. 

33 sets of failure data are presented in Table 7.6. The column named Failures in Table 7.6 

represents the number of software failures detected between time unit t-1 and t. The column 

named Cumulative failures in Table 7.6 represents the cumulative software failure by time 

t. The parameter estimates and model comparisons are described in Table 7.7.  

 

Table 7. 6 DS2 failure data 

Time 

unit 

Failures 

 

Cumulative 

failures 

Time 

unit 

 

Failures 

 

Cumulative 

failures 

Time 

unit 

Failures 

 

Cumulative 

failures 

1 7 7 12 22 88 23 11 140 

2 2 9 13 11 99 24 4 144 

3 8 17 14 8 107 25 0 144 

4 9 26 15 2 109 26 5 149 

5 2 28 16 7 116 27 0 149 

6 5 33 17 3 119 28 9 158 

7 5 38 18 4 123 29 13 171 

8 7 45 19 1 124 30 1 172 

9 10 55 20 0 124 31 1 173 

10 9 64 21 0 124 32 12 185 

11 2 66 22 5 129 33 0 185 

 

 

As seen from Table 7.7, the proposed model has the smallest MSE and Variation. Although 

PNZ model has the smallest PRR and PP, the MSE for PNZ model is much larger than the 

proposed model. Given MSE is the most critical for model selection, therefore, the best 

fitting model is still the proposed model. Figure 7.6 and 7.7 illustrate the comparison 

between the actual failure data and the predicted failure data from all the models discussed 
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in Table 7.7. The proposed model subjects to a very close fittings and predictions on the 

cumulative software failures of DS2.  

 

Table 7. 7 DS2 parameter estimates and model comparison 

Model  MSE PRR PP Variation 
Parameter 

Estimates 

G-O model 136.477 1.285 3.462 11.892 
�̂� = 181.250 

�̂� = 0.056 

Inflection  

S-shaped model 
176.235 5.292 1.513 12.794 

�̂� = 179.230 

�̂� = 0.193 

�̂� = 13.159 

Delayed S-shaped 

model 
67.922 27.778 1.536 8.221 

�̂� = 200.090 

�̂� = 0.112 

Yamada imperfect 

debugging model 
69.510 0.625 1.180 103.480 

�̂� = 230.250 

�̂� = 0.034 

�̂� = 0.008 

PNZ model 90.902 0.372 0.418 8.809 

�̂� = 300.130 

�̂� = 0.048 

�̂� = 0.001 

�̂� = 1.321 

Pham-Zhang IFD 74.124 528.248 2.576 8.240 

�̂� = 189.960 

�̂� = 0.134 

�̂� = 0.010 

Proposed single-

environmental-

factor model 

63.989 4.895 1.224 7.576 

�̂� = 0.009 

�̂� = 0.626 

�̂� = 1.078 

�̂� = 51.725 

𝜆0̂ = 25.346 
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Figure 7. 6 DS2 comparison of actual failure data and predicted failure data – Part I 

 

 

Figure 7. 7 DS2 comparison of actual failure data and predicted failure data – Part II 

 

We also provide other software reliability measures for DS2. Figure 7.8 presents the 

estimated failures for each time unit, ranging from time unit 29 to 44. Moreover, the 

estimated time unit to detect all 185 software failures that have been already appeared in 

the program is 50.92.  
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Figure 7. 8 DS2 software failure prediction for time unit 29 to 44 

 

Reliability Prediction 

Once the parameters are obtained, the software reliability within (𝑡, 𝑡 + 𝑥) is determined 

as  

 

𝑅(𝑥|𝑡) = 𝑒−[𝑚(𝑡+𝑥)−𝑚(𝑡)]                                          (7.45) 

 

Figure 7.9, and 7.10 presents the reliability prediction for DS1 and DS2 by varying 𝑥 from 

time unit 0 to 1.2, respectively. All other models did not take into consideration of 

environmental factor (PoRM) and a dynamic fault detection process. As a result, they 

cannot present reliability prediction well since OSS projects are influenced by the 

randomness caused by environmental factors significantly than traditional projects. Thus, 

we did not incorporate reliability prediction from other models. 
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Figure 7. 9 DS 1 reliablity predicton 

 

 

Figure 7. 10 DS2 reliablity predicton 

 

7.5 Numerical Examples for Multiple-Environmental-Factors Software 

Reliability Model 

We use the same data set as in Section 7.4.2 to compare the prediction power of the 

proposed specific multiple-environmental-factors software reliability model, specifically, 

with gamma-distributed PoRM and beta-distributed FoPSC. The model comparison and 

parameter estimate are presented in Table 7.8. The proposed multiple-environmental-
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factors model, with gamma-distributed PoRM and beta-distributed FoPSC, performs better 

accuracy of prediction failures, compared with the single-environmental-factor model. 

 

Table 7. 8 Parameter estimates and model comparison 

Model  MSE PRR PP Variation 
Parameter  

Estimates 

G-O model 136.477 1.285 3.462 11.892 
�̂� = 181.250 

�̂� = 0.056 

Inflection  

S-shaped model 
176.235 5.292 1.513 12.794 

�̂� = 179.230 

�̂� = 0.193 

�̂� = 13.159 

Delayed S-shaped 

model 
67.922 27.778 1.536 8.221 

�̂� = 200.090 

�̂� = 0.112 

Yamada imperfect 

debugging model 
69.510 0.625 1.180 103.480 

�̂� = 230.250 

�̂� = 0.034 

�̂� = 0.008 

PNZ model 90.902 0.372 0.418 8.809 

�̂� = 300.130 

�̂� = 0.048 

�̂� = 0.001 

�̂� = 1.321 

Pham-Zhang IFD 74.124 528.248 2.576 8.240 

�̂� = 189.960 

�̂� = 0.134 

�̂� = 0.010 

Proposed single-

environmental-factor 

model 

63.989 4.895 1.224 7.576 

�̂� = 0.009 

�̂� = 0.626 

�̂� = 1.078 

�̂� = 51.725 

𝜆0̂ = 25.346 

Proposed multiple-

environmental-factor 

model 

(gamma-distributed 

PoRM and beta-

distributed FoPSC) 

44.780 0.990 0.327 5.421 

�̂� = 0.008 

�̂� = 0.597 

�̂� = 0.900 

𝑎1̂ = 100.000 

𝜆1̂ = 40.148 

𝑎2̂ = 113.644 

𝜆2̂ = 29.289 
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7.6 Discussion of Impact of Environmental Factor 

To emphasize the significance of incorporating environmental factor(s) in software 

reliability models in this chapter, the comparison between the software reliability model 

with and without environmental factor(s) will be discussed in this section. Without 

considering environmental factors(s), equation (7.26) will be formulated as  

 

                              
𝑑

𝑑𝑡
𝑚(𝑡, 𝜂) = [ℎ(𝑡) + �̇�(𝑡)][𝑁(𝑡) − 𝑚(𝑡, 𝜂)]                          (7.46) 

 

This formulation has detailed explanation in Pham and Pham [188]. Substituting equations 

(7.22) - (7.24) into equation (7.45), the new mean value function without considering 

environmental factor(s) is obtained as follows 

 

𝑚(𝑡) =
1

𝑘
𝑒𝑘𝑡 −

𝑒
𝑡
2

𝑐 + 𝑒𝑏𝑡
(
𝑐 + 1

𝑘
−

𝑐

𝑘 −
1
2

−
1

𝑏 + 𝑘 −
1
2

) −
𝑐𝑒𝑘𝑡(𝑐 + 𝑒𝑏𝑡)−1

𝑘 −
1
2

−
𝑒(𝑘+𝑏)𝑡(𝑐 + 𝑒𝑏𝑡)−1

𝑏 + 𝑘 −
1
2

                                                                      (7.47) 

 

As an illustration for the comparison, DS1 will be used to compare the mean value function 

with environmental factor (equation (7.25)) and the mean value function without 

environmental factor (equation (7.47)). The parameter estimates for the mean value 

function without environmental factor are �̂� = 0.109, �̂� = 0.045, �̂� = 0.501. Using the 

criteria described previously, we have 𝑀𝑆𝐸 = 103.238, which is significantly higher than 
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the model considering environmental factor, 35.173, as shown in Table 7.5. We also 

present Figure 7.11, which compares the actual failure data, the failure prediction by the 

model with environmental factor, and the failure prediction by the model without 

environmental factor. We notice that the failure prediction will be more accurate with 

considering environmental factor for OSS project data. Therefore, incorporating 

environmental factor in software reliability model will significantly improve the predictive 

accuracy. 

 

 

Figure 7. 11 Comparison of failure prediction 

 

7.7 Conclusions 

To the best of our knowledge, environmental factor(s), and martingale framework, 

specifically, Brownian motion and white noise process have not been simultaneously 

employed in NHPP software reliability model. A considerable amount of software 

development has shifted their attention from building a new system toward composing 

system from the existing open source platform. On the other hand, there is an increasing 

trend on the adoption of software ecosystem. The development of new functionality can be 
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occurred outside of the platform. For example, App-store styled approaches are getting 

popular in software community. Therefore, it is of great importance to incorporate 

environmental factor(s) in the software reliability model because it brings a significant 

impact on open source project compared with traditional software development. 

 

There are several research directions can be pursued in the next step. For instance, (1) the 

total number of fault content is considered as a time-dependent function in this study. The 

randomness caused by environmental factors may also affect this time-dependent function; 

(2) environmental factors are correlated; (3) the function (equations (21) and (34)) behavior 

can be further investigated.  
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Appendix I 

 

Given a generalized mean value function 

𝑑

𝑑𝑡
𝑚(𝑡, 𝜂) = ℎ(𝑡, 𝜂)[𝑁(𝑡) − 𝑚(𝑡, 𝜂)] 

                𝑚(0) = 0 

 

The general solution for the above function is 

 

𝑚(𝑡, 𝜂) = 𝑒−∫ ℎ(𝑠,𝜂)𝑑𝑡
𝑡
0 ∫ 𝑒∫ ℎ(𝑠,𝜂)𝑑𝑠

𝑢
0 ℎ(𝑢)𝑁(𝑢)𝑑𝑢

𝑡

0

= ∫ ℎ(𝑢)𝑁(𝑢)𝑒−∫ ℎ(𝑠,𝜂)𝑑𝑠
𝑡
𝑢 𝑑𝑢

𝑡

0

 

 

Since 

𝑑

𝑑𝑢
(𝑒−∫ ℎ(𝑠,𝜂)𝑑𝑠

𝑡
𝑢 ) = 𝑒−∫ ℎ(𝑠,𝜂)𝑑𝑠

𝑡
𝑢 ∗ ℎ(𝑢, 𝜂) 

 

Thus, we have 

𝑚(𝑡, 𝜂) = ∫ 𝑁(𝑢)𝑑[𝑒−∫ ℎ(𝑠,𝜂)𝑑𝑠
𝑡
𝑢 ]

𝑡

0

 

                = [𝑁(𝑡)𝑒−∫ ℎ(𝑠,𝜂)𝑑𝑠
𝑡
𝑢 ]

𝑢=𝑡
− [𝑁(𝑡)𝑒−∫ ℎ(𝑠,𝜂)𝑑𝑠

𝑡
𝑢 ]

𝑢=0
−∫ 𝑒−∫ ℎ(𝑠,𝜂)𝑑𝑠

𝑡
𝑢 𝑑[𝑁(𝑢)]

𝑡

0

 

                = 𝑁(𝑡) − 𝑁(0)𝑒−∫ ℎ(𝑠,𝜂)𝑑𝑠
𝑡
0 −∫ 𝑒−∫ ℎ(𝑠,𝜂)𝑑𝑠

𝑡
𝑢 𝑁′(𝑢)𝑑𝑢

𝑡

0

 

 

  



208 

 

 

CHAPTER 8 

CONCLUSIONS AND FUTURE RESEARCH 

 

8.1 Conclusions 

At the early stage of this dissertation, in Chapter 4, firstly, a comparison analysis for 

environmental factors affecting software reliability during single-release software 

development is carried out. The data collection is conducted by survey from twenty 

organizations, a diverse group of industries is selected to participate in the survey 

investigation. Participants were asked to rank the environmental factors in light of their 

impact on software reliability.  The significant environmental factors in software 

development process/each development phase, principle components, and significant level 

of development phases are revealed and compared with the previous findings [27, 28]. The 

correlation between environmental factors, how to reduce the dimension of these correlated 

environmental factors, and development phase analysis are discussed as well. 

 

Later, another investigation of environmental factors affecting reliability in multi-release 

software development is studied. We further compare the significant factors and other 

findings between the development of singe-release and multi-release software.  

 

In Chapter 5, software faults are classified into two groups, Type I (independent) faults and 

Type II (dependent) faults. Two phases software debugging process are introduced 

according to different types of faults. We firstly propose a one-phase NHPP software 

reliability model. We assume there is only Type II faults in this model given the Type I 
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faults have been removed in the preliminary testing phase. Later, a two-phase NHPP 

software reliability model is developed in consideration of fault dependency and imperfect 

fault removal. The descriptive and predictive ability of the proposed models is examined 

in the numerical examples. 

 

In Chapter 6, we aim to develop a NHPP software reliability model for multi-release 

software product. The remaining faults from previous release and the newly introduced 

faults (from newly added features) are both incorporated in the model development. In 

addition, the detection of the new faults in the development of the next release depends on 

the remaining faults from previous release and the newly introduced faults for developing 

the next release.  

 

In Chapter 7, the software reliability models incorporating single/multiple environmental 

factor(s) under the Martingale framework are proposed. We have not only considered the 

impact of significant factor(s) on software reliability, revealed in Chapter 4, but also the 

randomness caused by these factors under the Martingale framework in the model 

development.  

 

Chapter 4 has been published in Journal of Systems and Software, as cited in references 

[29, 30]. Chapter 5 has been published in Computer Languages, Systems & Structures and 

Vietnam Journal of Computer Science, as cited in references [133, 174]. Chapter 6 has been 

published in Annals of Operations Research, as cited in reference [116]. Chapter 7 has 

been published in Annals of Operations Research, as cited in reference [202]. 
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8.2 Future Research 

Given the study discussed in Chapter 4, there could exists correlations between 

environmental factors in software development, and we have not considered this 

correlation in the single and multiple-environmental-factor(s) models in Chapter 7. The 

first research problem is presented as follows. 

 

Problem 1: Develop software reliability models considering multiple environmental 

factors, the randomness caused by these factors, and the correlation between the factors.  

 

All the software reliability models developed in this dissertation still focus on the 

methodologies applied in the Testing phase and the defects found in the Testing phase. As 

the agile development and other new development methodologies are applied in industry, 

how to quantify software quality and reliability is interesting to investigate. The second 

research problem is described as follows. 

 

Problem 2: Develop policies/models to quantify software quality and reliability in the 

earlier phases of software development, not waiting until the Testing phase.  

 

Software-embedded systems have been greatly adopted in a wide array such as consumer, 

automotive, medical, commercial and military applications. High quality and reliability of 

software-embedded systems have been highlighted as leverages to achieve competitive 

advantages of producing secure and reliable goods. Hence, advanced reliability models are 
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necessitated to improve the prediction power of the whole system considering critical 

factors. In general, software-embedded systems consist of hardware and software systems; 

accordingly, the system failures are classified into three categories: hardware, software, 

and hardware-software-interaction failures. Thus, the third research problem is proposed 

as follows. 

 

Problem 3: Develop system reliability model considering three types of failures, hardware, 

software, and hardware-software-interaction.  
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