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ABSTRACT OF THE DISSERTATION 

Structural Connectivity and Task-evoked Dynamics of the Default Mode Network

by DANA MARIE MASTROVITO

Dissertation director:  Prof. Stephen Hanson

The default mode network (DMN) is a structurally interconnected network of 

brain regions defined collectively by their high level of intrinsic activity at “rest” and 

relative decrease in activity while performing a range of cognitive tasks.  The functional 

role of the network's intrinsic activity, as well as the significance of its task-evoked 

attenuation is unknown.  However, aberrations in DMN activity are implicated in many 

disorders including Alzheimers, depression, autism, and schizophrenia, suggesting it may

have a fundamental role in healthy brain function.  Using diffusion imaging, I trace the 

large-scale anatomical connections of the network through the basal ganglia and 

thalamus, illustrating that the core regions of the network form a distributed cortico-

striatal-thalamic circuit.  Using Markov chain models of functional MRI, I explore the 

temporal dynamics of each region of the network during task execution  and  and present 

evidence suggesting the DMN may orchestrate switching between bottom up and  top 

down processing in the brain through its connections to the basal ganglia.  

Subcomponents of the network in parietal cortex may support bottom-up processing 

while anterior portions in medial prefrontal cortex facilitate top-down.  Finally, I classify 

resting-state data from patients with autism and schizophrenia and find that changes in 

DMN activity are potential biomarkers for distinguishing between the two disorders.  
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CHAPTER I 

INTRODUCTION

1.1 Significance

Changes in neural energy consumption due to cognitive demands are only about 

5% of that at baseline levels (Raichle & Mintun, 2006; Sokoloff et al., 1955).  Therefore, 

most of the what the brain does is ongoing and spontaneous.  Spontaneous brain activity, 

is associated with fluctuations in large-scale functional networks of the brain.  

Understanding the default mode network (DMN) is necessary for understanding the 

nature of intrinsic brain activity, because the DMN is the only network more active at 

baseline than in response to cognitive demands.  In addition, disfunction in the DMN is 

associated with a wide array of neuropsychiatric disorders. Therefore, the functional role 

of the DMN may be fundamental to healthy brain function.

In this thesis, I aimed to further our understanding of the role of the DMN in 

healthy brain function by characterizing its anatomical connections and utilizing 

exploratory techniques to characterize task-evoked changes in DMN activity.  The work  

also furthers our appreciation of the relationship between functional networks and large-

scale anatomical structure of neural circuits through subcortical structures. 
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1.2  Overview of the Introduction

Section 1.3 covers the theoretical underpinnings of magnetic resonance imaging 

(MRI) and its use in cognitive neuroscience research.  Subsections describe the principles

of generating contrast in MRI (1.3.1), and in functional MRI specifically (1.3.2), 

modeling the hemodynamic response function (HRF) (1.3.3) and the neuronal basis of 

blood-oxygen-level-dependent (BOLD) signal.  Leading to the definition of the DMN, 

Sections 1.3.5  and 1.3.6 introduce the use of task-based fMRI in identifying brain 

regions that respond to experimental manipulations (activation) and the meaning and 

interpretation of negative BOLD signal (deactivation).  Section 1.3.7 introduces the use 

of resting-state fMRI in the study of functional brain networks.

In Section 1.4 I review the extant literature on the DMN in some detail.  In 

Section 1.4.1 I begin by describing the discovery of the DMN.   The subsequent 

subsections describe the current state of knowledge on the role of the DMN in cognitive 

tasks (1.4.2) and its intrinsic activity measured in resting-state fMRI (1.4.3).  As the 

function of the DMN is not known, insight into its role in cognition comes from research 

characterizing its activity across brain states (1.4.4), over the course of development 

(1.4.5), in relation to neuropsychiatric disorders (1.4.6), and in other species (1.4.7).  In 

Section 1.4.8 I provide a synthesis on the anatomical connections of individual regions of

the DMN from the macaque tracing literature.   Dividing the DMN into its anterior and 

posterior constituents, subsections detail the anatomical connections of six core regions 

of the DMN.  In section 1.4.8.4,  I discuss large-scale circuits through subcortical 

structures known as cortico-striatal-thalamic (STC) circuits and hypothesize on the 
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DMNs possible connections through such a circuit.  Finally, in section 1.4.9, I summarize

the current theories of the functional role of the DMN.  Section 1.5 provides an overview 

of the subsequent chapters.  

 

1.3  Magnetic Resonance Imaging

1.3.1  Mechanism of Contrast

Magnetic resonance imaging is a noninvasive technology that is used to produce 

detailed anatomical images of the brain.  A natural property of all biological tissues is 

magnetic susceptibility which means that the tissue will become magnetized when placed

in a magnetic field.  MRI makes use of this property using a strong static magnetic field 

to align protons in the tissue.  Larmor resonance frequency describes the relationship 

between precession frequency of the proton spins and magnetic field strength.  Tissue 

alignment is then perturbed by some angle (flip angle) out of the plane by a series of 

radio frequency pulses (pulse sequence).  The protons spin out of equilibrium and 

gradually relax back to an equilibrium state aligned with the static magnetic field via two 

independent relaxation processes each with their own time constant, called spin-lattice 

(T1) and spin-spin (T2) relaxation.  Spin-lattice relaxation time (T1) refers to the time till 

return to equilibrium in the direction of the static magnetic field.  Spin-spin relaxation 

time (T2) refers to the relaxation out of the plane of the main magnetic field which is 

always shorter than T1 relaxation time.  The time it takes for the perturbed protons to 

return to equilibrium depends on the rotational properties of the molecules in the tissue.  

Different tissues have different relaxation times.  The amount of signal measured depends
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on the density of aligned protons in the tissue.  Contrast in the MR image results from 

differences in the aligned proton density at tissue boundaries.  For example, fluids have 

long T1 (1500-2000ms) whereas fat has short T1 (100-150ms).  Therefore, differences in 

tissue proton density, T1 and T2 relaxation properties make up the basis of contrast in all 

MR images.  Pulse sequences can be designed to accentuate different tissue types by 

varying the time between pulses that perturb alignment (time to repetition (TR) between 

successive pulses) and the time between measurements (time to echo (TE)  between pulse

and measurement).  Pulse sequences with different combinations of flip angle, TR and 

TE are used to emphasize the effects of T1 or  T2 relaxation times for different imaging 

purposes.  Structural MRI images are typically T1 weighted images in which tissues with 

long T1 relaxation times appear dark and tissues with short T1 relaxation times (fat/lipid) 

are bright.  However, the signal alone is insufficient to produce an image because there is 

no way to assign signal to the area in 3d space where it originated.  Spatial localization of

the MR signal requires the use of 3 additional orthogonal linear gradient magnetic fields 

(x,y,z) measured in mTm-1 (millitesla per meter) which influence the resonant frequency 

of the spins along the gradient.  An RF pulse applied at a given frequency will result in a 

resonant magnetic signal, which can be detected using a receiver tuned to the same 

frequency (Hopf, 1985).  Gradients are normally applied transiently so frequency 

measurements can be used to distinguish between signals at different positions in three 

dimensional space.  The 3d image is created by exciting and sampling with different 

pulse frequencies and phases, measuring the spectrum of the object being imaged.  This 

process is known as  k-space sampling and results in a matrix of spatial frequencies.  
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Each point in k-space is a spatial frequency component.  The data are then Fourier 

transformed to produce a final image (McRobbie et al., 2017).

1.3.2 Functional Magnetic Resonance Imaging 

Functional Magnetic Resonance Imaging (fMRI) is a technique that is used to 

detect metabolic changes over time associated with brain activity rather than static 

images of brain structure. It is based on a series of T2 weighted images that make use of 

changes in magnetic susceptibility resulting from activity-dependent changes in blood 

oxygenation.  Changes in magnetic susceptibility occur because deoxygenated blood is 

paramagnetic, giving it a stronger magnetic susceptibility than oxygenated blood.  Local 

changes in magnetic susceptibility result in local field inhomogeneities.  The most 

common pulse sequences used to collect fMRI images are sensitive to field 

inhomogeneities that can shorten spin-spin relaxation times (T2
*) and therefore contain 

the effects of both T2 and T2
* relaxation.  A process called neurovascular coupling 

describes the relationship between neuronal activity and associated changes in cerebral 

blood flow (CBF).  Oxygen use by active cells temporarily increases the amount of local 

deoxyhemoglobin, inducing dephasing, which shortens T2
* and results in a decrease in 

signal intensity.  Then the surrounding neurovasculature responds by increasing blood 

flow to the region, delivering an excess of oxygenated blood which results in an increase 

in signal intensity.  Therefore, increases in neuronal activity are detectable, because of the

neurovascular response it produces, which is called the hemodynamic response.  The 

resulting activity-dependent changes in signal intensity are referred to as blood-oxygen-
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level dependent (BOLD) signal (Huettal, 2010).  A complex relationship between 

transient and baseline levels of cellular activity, CBF, cerebral blood volume (CBV), and 

the local metabolic rate of oxygen consumption (CMRO2) underly the BOLD signal.  

Simplified models of neurovascular coupling, described in the following section, are used

to draw inferences about changes in neural activity. 

1.3.3 Model of the Hemodynamic Response Function 

Because fMRI relies on BOLD signal as an indirect measure of cellular activity, 

hemodynamic models are of critical importance to the interpretation of fMRI studies.  

Models of the hemodynamic response must explain the process of neurovascular 

coupling linking changes in cellular activity with changes in CBF, CBV and changes in 

CMRO2 as well as describe the resulting transient dynamics in local deoxyhemoglobin 

concentration that underlie the BOLD signal.  The mechanics of steady state increases in 

CBF and CBV have been determined empirically to follow a power law function (Grubb 

et al., 1974) of the form:

 v = f α (1)

where α is a approximately 0.4 and:

v = CBV normalized to baseline 

f = CBF normalized to baseline 
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In response to increases in neural activity, relaxation of the smooth muscles of arterioles 

allow for increases in both CBF and CBV.  The relationship between changes in CBF and

changes in cerebral rate of oxygen consumption is approximately linear with changes in 

CBF roughly 2-3 times that of CMRO2 (Davis et al., 1998; Hoge et al., 1999; Kastrup et 

al., 2002; Marrett & Gjedde, 1997; Seitz & Roland, 1992).  Local oxygen concentration 

depends on changes in CBF, CMRO2 and the fractional rate of oxygen extraction E.

CMRO2=E⋅Ca⋅CBF (2)

where:

Ca is the arterial oxygen concentration

E  is the net oxygen extraction fraction 

Equation (2) expresses the empirical relationship between transient cellular activity, CBF 

and the fractional rate of oxygen extraction from the blood known as neurovascular 

coupling.   Increases in neural activity lead to increases in oxygen and glucose 

consumption, followed by an increase in CBF.  Oxygen consumption increases much less

than CBF, leading to a net increase in the amount of oxygen present.  This oversupply of 

oxygen due to the mismatch between CBF and oxygen consumption is the basis of the 

BOLD signal.  Whether vascular responses to neuronal activity are the result of a passive 

diffusion process (Attwell & Iadecola, 2002), an active process mediated by 

neurotransmitters and astrocytes (Harder et al., 1998; Pellerin & Magistretti, 2004) or 
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some combination of mechanisms (Attwell & Iadecola, 2002; Lauritzen, 2005; Uludag et 

al., 2004) is an ongoing topic of research.  For the purpose of  BOLD data, the model 

must also account for the effects of transient changes in magnetic susceptibility.  The MR

signal (S) is believed to have an exponential dependence on TE.

S=S max e−TE⋅T 2
*

  (3)

Where Smax is the maximum expected signal intensity if TE  = 0.  T2
* is assumed to 

include the effects of both T2 and T2
* relaxation.  Experiments indicate that changes in 

magnetic susceptibility can be modeled as a linear function of the local concentration of 

deoxyhemoglobin and that this quantity in turn can be expressed in terms of the change in

the oxygen extraction fraction E.

Δ S
S 0

≈A[1− V
V 0

( E
E 0

)
β

] (4)

Where A = 0.079 is an experimentally determined constant that depends on TE  (Davis et

al., 1998), β is ~ 1.5.  V0 ~ 3% represent baseline levels of veinous volume and and E0  

baseline levels of  oxygen extraction.  Equation (4) is biophysical model that describes 

the expected change in BOLD signal with a change in blood flow, but does not model the

temporal dynamics of the BOLD signal.  BOLD signal exhibits an initial dip due to the 

initial increase in deoxyhemoglobin (Ernst & Henning, 1994; Hu et al., 1997; Menon et 

al., 1995; Devor et al., 2003), followed by a signal increase that lags behind increased 
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neural activity by about 1-2 seconds for brief stimuli (Bandettini et al., 1992), reaches a 

plateau after 4-10 seconds (Buxton et al., 1998) for sustained stimulus, and then gradually

returns to baseline.   The BOLD signals has been found to exhibit temporal nonlinearities 

including a refractory period that may last up to 30 seconds (Frahm et al., 1996; Kruger et

al., 1996) and the response to repeated stimulation does not add linearly (Birn et al., 

2001; Boynton et al., 1996; Friston et al., 1998).  These observed transient BOLD 

dynamics have been described using the Balloon model (Buxton et al., 1998) in which 

veinous flow dynamics are described as flow f(t) in and out of a flexible balloon (Figure 

1.1).  The hemodynamic response is defined by time dependent functions of blood 

volume v(t) and amount of deoxyhemoglobin q(t).  

dq
dt

= 1
τMTT

[ f (t )
E (t )
E0

−
q(t )
v (t )

f out (v , t )] (5)

dv
dt

= 1
τMTT

[ f (t )− f out (v , t )] (6)

f out (v)=v
1
α+τ dv

dt
(7)

where:

E0 is the resting value of oxygen extraction ~ 0.4,  τ MTT  is the mean transit time through 

the vein at rest, based on a cerebral blood flow of 60 ml min-1 100 ml-1 of tissue ~ 3s and 

V0 is the resting volume fraction 0.03 (Buxton et al., 2004)
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To account for the undershoot of the BOLD signal after stimulus, the Balloon model 

proposes an uncoupling of the CBV and CBF dynamics based on the observation that 

CBV returned to baseline more slowly than CBF (Mandeville et al., 1998).  The 

following equation allows for the possibility of transient independent changes in blood 

flow that relax back to a new steady state power law relationship after some time constant

τ.  This model with a time constant τ > 0 predicts the observed late undershoot response.  

However, it has not been conclusively demonstrated that independent blood volume and 

blood flow dynamics are the true mechanistic explanation for the observed late BOLD 

signal undershoot.  Blood flow, however, is a measurable quantity using MRI techniques.

It has therefore been proposed that changes in blood flow be measured directly with 

fMRI using MRI sequences for arterial spin labeling, which provide a quantitative 

measurement of cerebral blood flow using magnetically labeled arterial blood as an 

endogenous tracer.  However this is not yet a common practice in fMRI studies.  It is 

important to note that each model expression depends on a baseline level of blood 

volume and oxygen metabolism that may differ significantly across brain regions.   

Studies of oxidative metabolism using arterial spin labeling found that baseline levels of 

blood flow vary significantly across the cortex (Davis et al., 1998).  Based on our current 

understanding of the relationships between BOLD signal and CBF changes, regional 

heterogeneity in CBF indicates that the magnitude of functionally induced changes will 

also vary across regions.  Differences in the temporal response of the hemodynamic 

response across brain regions have also been identified (Miezin et al., 2000; Chang et al., 

2008).
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Figure 1.1 Balloon Model of the Hemodynamic Response Function 

From “ Dynamics of Blood Flow and Oxygenation Changes During Brain Activation: the

Balloon Model,” by R.B. Buxton, E.C. Wong, L.R. Frank, 1998,  Magnetic Resonance in

Medicine : Official Journal of the Society of Magnetic Resonance in Medicine / Society of

Magnetic Resonance in Medicine, 39(6), p. 859. Copyright 1998 by the International 

Society for Magnetic Resonance in Medicine. 

1.3.4  Neuronal Basis of the BOLD signal 

Many aspects of neuronal function contribute to cellular metabolism, including 

the maintenance of membrane potentials, processing synaptic inputs, and cellular firing.  

However, synaptic activity accounts for  the largest share, up to 80% of the brain's energy
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usage, due to the metabolic demands of neurotransmitter cycling (Shulman, 2001; 

Shulman, 2004) and membrane potential maintenance.  The relationship between BOLD 

signal and cellular events has been characterized using simultaneous measurements of 

fMRI and extracellular recordings.  Extracellular recordings measure the summed action 

potentials and synaptic voltages from hundreds of neurons (Lorente deNo', 1947; Bishop 

& O'Leary, 1942) depending on the size and placement of the extracellular electrodes.  

Filtering this signal with a high-pass filter yields so-called multi-unit activity (MUA), 

containing the high frequency spiking behavior of nearby cells.  Low-pass filtering 

produces a waveform that reflects the local field potential (LFP) which reflects the 

population average of lower frequency electrical synaptic activity (Ajmone-Marsan, 

1965; Fromm & Bond, 1964) and membrane oscillations (Bullock, 1997).  Simultaneous 

measurements of local field potentials and multi-unit spiking activity in combination with

BOLD revealed that LFPs have the highest correspondence to BOLD signal (Hyder et al.,

2002; Smith et al., 2002a; Logothetis et al., 2001).  That is, in instances when MUA and 

LFP were in disagreement, the LFP predicted 7.6% more variance than the MUA 

(Logothetis et al., 2001).  This suggests that BOLD signal reflects synaptic rather than 

firing activity ( Lauritzen & Gold, 2003; Logothetis, 2002; Logothetis et al., 2001; 

Lauritzen, 2001).   This finding has significant implications for the interpretation of fMRI

studies as BOLD signal may reflect the combined effects of sub-threshold modulatory 

influences, excitatory or inhibitory synaptic activity. 

LFPs are generally studied within specific band limited frequency ranges: slow 

cortical potentials (SCP)  < 1 Hz; delta 1–4 Hz, theta 4– 8 Hz, alpha 8–12 Hz, beta 12–24
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Hz, and gamma >24 Hz.  A survey of the literature does not suggest a 1:1 correspondence

between BOLD signal and any specific frequency band.  All LFP bands explain some 

portion of the BOLD variance (Goense & Logotthetis, 2008; Scheeringa et al., 2011).   

However, oscillations in the SCP and gamma band have been the focus of much of this 

research.  SCPs are believed to represent fluctuations in cortical excitability (Birbaumer 

et al., 1990) and gamma band activity is believed to underlie binding of features of 

cognitive processes across brain regions.  SCPs modulate gamma band fluctuations 

(Leopold et al., 2003 ) such that gamma band power is dependent on the phase of the 

SCP.  This is known as cross-frequency or phase-amplitude coupling.  Cross frequency 

coupling has been proposed as a mechanism for neuronal communication, whereby 

fluctuations in excitability create temporal windows for communication (Pulvermüller, 

1995; Fries, 2005; Fries, 2009).  Accordingly, fluctuations in BOLD signal were found to

be positively correlated with gamma and modulated by SCPs (Scheeringa et al., 2011; 

Koch et al., 2012).  SCPs have a similar correlation structure to the BOLD signal across 

waking states, slow wave sleep and rapid eye movement sleep (REM) (He et al., 2008).  

In contrast, correspondence between BOLD signal and gamma band activity was found in

waking states and REM sleep but was absent from SWS (Nir et al., 2008), which was 

attributed to gamma oscillations' purported role in conscious experience (Rodriguez et al.,

1999).  BOLD signal is correlated with increased gamma associated with sensory 

stimulation in both humans (Nir et al., 2007) and non-human primates (Niessing et al., 

2005; Goense & Logothetis, 2008) as well as spontaneous gamma-band activity 

(Hutchinson et al., 2015).  Therefore, while the relationship between BOLD and cellular 
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function is a complex one, BOLD signal appears to capture important aspects of 

increased synaptic activity and coherent brain activity across regions related to sensory 

and cognitive processing.   

1.3.5  Task-Based fMRI 

Task-based fMRI experiments are used to infer the cognitive functions associated 

with brain regions.  Over the last decade, fMRI has been used to study a wide range of 

cognitive tasks, including but not limited to, visual perception, language, memory, and 

social cognition.  Prior to the use of fMRI,  lesion studies had already yielded insights 

into regional functional specialization in the brain (Broca, 1861; Wernicke, 1874; 

Scoville & Milner, 1957).  However, fMRI gave researchers the ability to design 

specialized tasks to probe and differentiate the functional roles that different brain regions

play in higher order cognitive abilities as well as to infer networks of regions that activate

together.  Experimental designs in fMRI have relied on the assumption that neural 

activity associated with an experimental manipulation results in increases in cellular 

activity relative to some control condition.  Based on the concept of pure insertion, 

experimental manipulations are assumed to evoke linearly increasing activity above that 

of the control condition.   Under these assumptions, the choice of a baseline condition is 

one of critical importance.  A common control condition is the so-called rest condition, 

where subjects are asked to keep their eyes open and fixate on a white crosshair at the 

center of a dark screen.  Other studies have created carefully constructed control 

conditions designed to isolate the cognitive function of interest, but still rely on the 
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assumption of linear signal increase relative to that control condition.  Linear models are 

generally employed to identify regions who's brain activity increases in response to task 

demands and subsequently thresholded to reduce the chance of finding brain activation 

by chance.  As detailed in section 1.3.3, the BOLD signal is delayed from increased 

neural activity by several seconds and exhibits nonlinearities associated with events 

occurring within this period resulting in limited temporal resolution.   Therefore, 

experimental manipulations are often presented in experimental blocks of 30 seconds or 

more interspersed with rest periods to allow the BOLD signal to return to baseline (Maus 

et al., 2012 ).  The hemodynamic response function can be thought of as a temporal point 

spread function which smooths and delays the neural correlates of  sensory processing.  

Therefore, resulting correlations between evoked changes in neuronal activity and 

measured hemodynamics will be both displaced and broadened in time.  To detect the 

brain activity of interest an HRF is convolved with the experimental design.  In practice, 

biophysical models of neural and hemodynamic processes are not generally used for 

analysis of fMRI data.  A commonly used hemodynamic model is the double gamma 

function, a lagged positive function with full width at half maximum of about 4 seconds, 

and a small, delayed, inverted gamma, to model the late undershoot.  Analysis proceeds 

in a univariate matter such that each image voxel is treated as an independent variable.  

The null hypothesis is that there are no significant activations that correlate with 

experimental manipulations (Friston, 1991; Worsley, 1992) .  For example, the linear 

model in the case of an experimental design with a single condition would be:
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yi (t )=βi⋅x (t)+b i+e i(t) (8)

 

where x(t) is the HRF convolved experimental design, bi is an average value during a 

control condition, and ei(t) is error.  The calculated amplitude of βi from the linear model 

provides an estimate of the relative strength of the relationship between BOLD signal in 

voxel i and the experimental design.  BOLD signal is also known to have significant 

spatial autocorrelation reducing the true degrees of freedom.  Spatial autocorrelation is 

taken into consideration when determining the statistical significance of the βi values 

(Woolrich et al., 2005).

As pointed out in section 1.3.3 the hemodynamic response can vary significantly 

across brain regions.  As a result, the choice of HRF when modeling fMRI data can have 

a significant impact on the analysis (Lindquist et al., 2009).  Differences in latency 

estimates between the true HRF and the standard double-Gamma HRF lead to false 

negatives, while differences in HRF peak width between the model and data lead to 

smaller magnitude estimates (Handwerker et al., 2004 ).  In addition, the assumption of 

pure insertion is that cognitive processes do not interact.  Subtraction of brain activity 

evoked in one condition from another is only valid if this assumption holds.  However, 

there is much evidence to indicate that cognitive processes do interact (Sidtis et al., 

1999).  Spontaneous activity measured in resting-state interacts with task-evoked activity 

(He, 2013; Northoff et al., 2010) in a behaviorally relevant manner (Friston et al., 1996; 

Weissman et al., 2006; Boly et al., 2007; Mennes et al., 2010).  Task-evoked activity can 

also impact subsequent regional interactions measured at rest (Lewis et al., 2009; Albert 
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et al., 2009).  These observations strongly suggest the use of more sophisticated analysis 

techniques such as multivariate pattern analysis or state space models which allow 

characterization of the spatiotemporal dynamics of the BOLD signal (Mastrovito, 2013).

1.3.6  Negative BOLD Signal

Negative BOLD signal, sometimes called deactivations, refer to task-evoked 

decreases in BOLD signal intensity when compared to a resting condition, or resulting 

from a contrast or subtraction performed between two experimental conditions of interest.

Negative BOLD signal therefore refers to a relatively lower signal in one condition vs. 

another.  Like activations, deactivations are dependent on the choice of baseline condition

(Fransson et al., 1999).  Negative BOLD signal is often detected by inverting the design 

matrix described in section 1.3.5 in order to find regions whose signal decreases relative 

to the baseline condition.  The mechanisms that underlie negative BOLD responses are 

unclear.  There are several possible explanations for such decreases.  Negative BOLD 

could reflect passive shunting of oxygen rich blood to adjacent areas whose cellular 

activity has increased, the so-called vascular steal effect (Logothetis et al., 2001).  This 

explanation is based on the idea that steady blood supply to active tissue necessitates 

decreases in blood flow to inactive areas.  However, there is evidence that the circulatory 

system can support large changes in demands by increasing cardiac output (Plum, 1968; 

Posner, 1969) and blood flow in the brain can also be increased by reducing vascular 

resistance (Reivich, 1964).  Passive shunting is more likely to be a localized effect 

whereas decreases in BOLD signal are often identified far from the regions of increased 
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signal (Shulman et al., 1997).  Decreased BOLD signal could also be the result of active 

neural processes including active inhibition or decreases in excitatory input.  Coupling 

spiking activity and LFP measurements with fMRI in monkey visual cortex, negative 

BOLD signal was associated with decreases in corresponding cellular firing rates when 

visual stimuli were outside of the cell's receptive fields (Shmuel et al., 2006).  The 

correspondence of time courses of negative BOLD relative to decreases in neuronal 

activity suggested that negative BOLD signal could not be attributed to passive decreases

in cerebral blood flow to the area.  Another study combining optical imaging with 

multiunit spike activity during hindlimb stimulation in the rat, also found that decreases 

in hemodynamic signal were associated with decreases in spiking activity (Yin et al.,  

2011).  Targeting specific calmodulin-dependent protein kinase II (CaMKIIα) excitatory 

neurons in rat primary motor cortex, a more recent study pairing optogenetics with high 

field fMRI found positive evoked BOLD signals in both the region of stimulation as well 

as in their thalamic targets (Lee et al., 2010).   The same study found that optically 

driving inhibitory parvalbumin-positive cells gave rise to a region of negative BOLD 

signal surrounding a positive BOLD signal consistent with the properties of lateral 

inhibition.  However, in regions that have a large number of inhibitory neurons, such as is

the case in structures within the basal ganglia, it is possible for increases in BOLD signal 

(likely associated with increased GABAergic synaptic activity) to be associated with 

decreases in cellular firing rate.  One recent study in rats combining electrophysiological 

measures with high field fMRI found such a dissociation between BOLD and multiunit 

activity in the caudate and putamen during whisker stimulation (Mishra  et al., 2011).  
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Overall, the evidence suggests that negative BOLD signal results from active processes 

resulting in decreases in cellular firing rate.  

1.3.7  Resting-state fMRI

Task-based studies obscure the fact that most of the what the brain does is 

ongoing and spontaneous.  Changes in neural energy consumption due to cognitive 

demands are only about 5% of that at baseline levels (Raichle & Mintun, 2006; Sokoloff 

et al., 1955).  Therefore, task-related increases in BOLD signal represent only a small 

fraction of the brain's activity.  Constant neural activity is required to monitor all bodily 

functions, maintain homeostasis, and continually process sensory and interoceptive 

information.  fMRI in the absence of a task, called resting-state fMRI, measures 

synchronous ongoing activity in the brain.  Coherent brain activity in the absence of an 

explicit experimental manipulation was first discovered in the sensory motor system 

(Biswal et al., 1995).  This result was replicated in other functionally defined networks 

(Fox & Raichle, 2007; Cordes et al., 2000) including those supporting auditory, visual 

(Lowe et al., 1998) and language processes (Hampson et al., 2002).  This lead to the idea 

that intrinsic brain activity could be an avenue for studying brain networks without the 

potential confounds of specific task demands.  Approaches for analysis of resting-state 

data include seed-based approaches (Biswal et al., 1995), independent component 

analysis (Beckmann et al., 2005), graph methods (Power et al., 2011; Behrens et al., 

2012; Bullmore & Sporns, 2009), clustering algorithms (Lee et al., 2012; Golland et al., 

2008; Cordes et al., 2002 ), multivariate pattern classifiers (Zhong et al., 2017; Anderson 
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et al., 2011) and functional connectivity (correlation) (Yeo et al., 2011).  Using these 

techniques the entire cortex of the brain has been parceled into a map of constituent 

networks with patterns of activity that are preserved across scanning sessions and across 

subjects (Shehzad et al., 2009; Chen et al., 2008) despite the unconstrained nature of the 

measured activity.  Studies have indicated that there are likely between 10 and 15 major 

brain networks (Shirer et al., 2012;  Smith et al., 2012; Damoiseaux et al., 2006; De Luca 

et al., 2006; Beckmann et al., 2005).  In addition to a sensory motor network, identified 

networks include those that support visual processing, attention (ventral and dorsal 

networks ), executive function, auditory processing, memory and language.  Although 

functional connectivity can be detected between brain regions in the absence of direct 

anatomical connections (Honey et al., 2009), the observed patterns of functional 

connectivity are consistent with large-scale structural connections between brain areas 

(Meier et al., 2016; Honey et al., 2010; Skudlarski et al., 2008).  Anatomical connectivity 

alone can account for up to 15% of the variance in functional connectivity in resting-state

scans (Messe' et al., 2014).  Over development, the organization of resting-state activity 

into functional networks has been shown to mature in conjunction with white matter fiber

tracts (Hagmann et al., 2010; Olesen et al., 2003).  Therefore, ongoing brain activity 

measured in the resting-state contains information about the intrinsic network-level 

organization of the brain.  There is evidence that this activity may represent a larger set of

spatio-temporal patterns of activity from which task-evoked activity is sampled (Luczak 

et al., 2009).  For example, variance in metabolic activity decreases from resting levels 

during explicit task engagement (He et al., 2013) and functional connectivity during task 
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performance is primarily shaped by intrinsic architecture (Greicius et al., 2003; Cole et 

al., 2014; Chu et al., 2012).  In addition, there is a large and growing body of literature 

showing that resting-state fMRI in combination with multivariate pattern analysis and 

machine learning techniques can distinguish aberrant patterns of brain activity associated 

with a large number of neurologic and psychiatric disorders (Mastrovito et al., 2018; 

Nielsen et al., 2013; Cecchi et al., 2009).  

1.4 The Default Mode Network

1.4.1 Discovery of the Default Mode Network 

The overwhelming majority of cognitive neuroscience studies report only the set 

of regions that exhibit task-evoked activations.  They do not generally report regions 

exhibiting task-evoked decreases in BOLD signal.  The first study to examine task-

evoked decreases, analyzed a series of nine positron emission tomography (PET) 

experiments.  The experiments included one color/motion/shape discrimination task, 

three visual search tasks varying color, form, eccentricity and motion, one spatial 

attention task, two language tasks varying reading vs verb-generation, and a task 

involving recall of word lists (Shulman, 1997a).  A set of brain regions were found to 

exhibit task-evoked decreases in metabolic activity across all nine of these tasks relative 

to a passive resting-state condition (Shulman, 1997b).  Shulman identified these regions 

as posterior cingulate cortex (PCC) (Brodmann area (BA) 31), precuneus (BA 7), 

bilateral inferior parietal cortex (BA 40), left dorsolateral frontal cortex (BA 8), left 

lateral inferior frontal cortex (BA 10/47), left inferior temporal gyrus (BA 20), medial 
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frontal cortex (BAs 8, 9, 10, 32), as well as the right amygdala.  Shulman noted that these

decreases did not appear to be related to vascular steal effect since decreases were not 

accompanied by increases in neighboring regions and also occurred in the absence of a 

common set of increases across tasks.  However, it was not clear from this study whether 

signal decreases reflected task-evoked inhibitory processes, such as those that might 

suppress task-irrelevant sensory information, or the cessation of ongoing processes in the 

passive condition.  In order to discriminate between these two possibilities, Raichle et al.,

compared the blood oxygen extraction fraction (OEF) (a ratio of oxygen usage relative to 

oxygen delivery via blood flow) in these regions in a passive condition to hemispheric 

average OEF values (Raichle et al., 2001).  The OEF is relatively uniform throughout the 

brain at rest (Lebrun-Grandie et al., 1983, Raichle et al., 2001),  and accordingly their 

analysis failed to find any regions with OEF values significantly below hemispheric 

averages (which would have signified activations relative to the mean).  This result, 

suggests that these regions were not activated at rest, but rather exhibit a high level of 

baseline activity.  They concluded that there was “an organized, baseline default mode 

of brain function that is suspended during specific goal directed behaviors”.  As as result, 

this network became known as the Default Mode Network (DMN). 

1.4.2 DMN in task-based fMRI

Since the discovery of the DMN, studies using both PET and BOLD 

measurements have  consistently reported deactivation in DMN regions across a wide 

variety of task conditions (Mazoyer et al., 2001; Laird et al., 2009).  Some found 
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increased deactivation in DMN regions associated with increased task difficulty 

(Harrison et al., 2011) and with better task performance (Weissman et al., 2006 ; Boly et 

al., 2007; Kelly et al., 2008;  Minzenberg et al., 2011;  Sala-Llonch et al., 2012; Douw et 

al., 2016).  High baseline activity in the DMN in combination with the behavioral 

relevance of task-evoked deactivation has been interpreted as an indication that task-

evoked deactivation in the network is related to cessation of internal rumination required 

to redirect attentional resources.  However, the evidence on the relationship between 

DMN deactivation and task difficulty and performance is far from conclusive.   In 

Shulman's initial discovery of task-evoked deactivation, he noted that decreases were not 

influenced by changes in difficulty in either visual processing or  language tasks 

(Shulman et al., 1997b).  It has also been noted that strong correlation within the DMN 

remains even during task-associated deactivation (Greicius et al., 2003; Greicius & 

Menon, 2004 ).  Increased connectivity between  the posterior cingulate and the superior 

frontal gyrus was shown to result in faster reaction times in motor tasks (Vatansever et 

al., 2015).  BOLD signal measured during task performance in the DMN contains task-

specific patterns that can be used to distinguish task conditions (Crittenden et al., 2015).  

Furthermore, not all experimental paradigms evoke decreases in DMN regions.  Task-

evoked increases in the DMN have been reported for tasks involving autobiographical 

memory (Cabeza, 2004), self-referential processing (Gusnard et al., 2001; Buckner & 

Carroll, 2007;  Andrews-Hanna et al., 2010b), theory of mind (Amodio & Frith, 2006; 

Carrington & Bailey, 2009), semantic processing (Binder, 2009), task-switching 

(Crittenden et al., 2015), planning for the future (Baker et al., 1996;  Spreng et al., 2010), 
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working memory (Andreasen et al., 1995),  and action monitoring (Luu et al., 2000) (for 

reviews, see Buckner et al., 2008; Spreng et al., 2009).  A comparison has been made 

between this collection of activities that evoke activations in the DMN and cognitive 

functions likely to make up stream of consciousness or daydreaming occurring in resting 

state.  

1.4.3 DMN during Resting-state fMRI

Studies of resting-state functional connectivity universally find a coherent set of 

brain regions corresponding to the DMN.  The DMN network is so prominent that it is 

found no matter the analysis technique applied whether whole-brain functional 

connectivity, seed-based analysis (Greicius, 2003), PCA/ICA (Beckmann et al., 2014), or

clustering analysis (Golland et al., 2008).  Studies of cerebral blood flow, measured using

arterial spin labeling (Chen et al., 2015), found that blood flow was significantly higher 

in DMN regions both during rest (Zou et al., 2009) and during task performance 

(Pfefferbaum et al., 2011).  Patterns of functional connectivity in the resting-state reflect, 

in large part, the underlying pattern of structural connectivity through commissural, 

associative, and projection fibers (Skudlarski et al., 2008).  As such it constitutes the 

large-scale intrinsic pathways of the brain which closely resemble those measured during 

task manipulations (Greicius et al., 2003; Cole et al., 2014).  It is believed that the 

intrinsic pattern of temporal activity in the DMN is negatively correlated with a network 

corresponding to a combination of parts of the executive control (Greicius et al., 2003; 

Fair et al., 2007, Seeley et al., 2007) and dorsal attention networks (Corbetta & Shulman, 
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2002, Fox et al., 2006), called the task-positive network (TPN).  However this 

relationship is controversial because of an applied preprocessing technique that is known 

to induce negative correlations (Fox et al., 2009).  An electrophysiological study in cats 

found anticorrelations between the two networks occurred only 20% of the time (Popa et 

al., 2009), suggesting a relationship with both cooperation and antagonism.  A resting-

state study using self-report of mind-wandering found that the process of mind wandering

recruited the DMN as well as the executive control network (Christoff et al., 2009).  

Using a group temporal ICA to divide resting-state data into spatial patterns with 

independent time courses, several patterns (“temporal functional modes” (TFMs) ) 

contained DMN network regions.  In one pattern, DMN is anticorrelated with the task 

positive network and in another it is not (Smith et al., 2012).  A more recent study found 

that each region of the DMN had a functional connectivity gradient with regions in the 

attention network that strengthened over the course of development (Anderson et al., 

2011).  Some have suggested that anticorrelation between the two networks is mediated 

by competition between them for cognitive and metabolic resources (Fox et al., 2005; 

Kelly et al., 2008) based on a balance between internally and externally directed attention

(Golland et al., 2008; Salomon et al., 2014).  Other have suggested that the relationship 

between the two networks is mediated by the anterior insula (Sridharan et al., 2008).  

Variability in the strength of the anticorrelation between the two networks was found to 

be behaviorally relevant, with stronger anticorrelation related to less variation in reaction 

time (Kelly et al., 2008).  However, correlation between the two networks has been 

reported during tasks that evoke activation rather than deactivation in the DMN, calling 
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into question the intrinsic nature of anticorrelation between them.  

The DMN is sometimes partitioned into two main subdivisions dividing the 

anterior and posterior halves of the network based on resting-state temporal dynamics 

(Damoiseax et al., 2006).  Posterior parts of the DMN are more strongly correlated with 

the hippocampal gyrus and lateral parietal cortex and more negatively correlated with the 

task positive network than anterior parts of the network (Greicius et al., 2003; Yu et al., 

2011).  Dissociation between anterior and posterior DMN has also been reported in their 

responses to modulation via serotonin (Hahn et al., 2012). The division between 

spontaneous patterns of functional connectivity in anterior and posterior parts of the 

network suggests that the DMN does not function as a single unit.  Anterior and posterior

regions likely have different dynamic interactions with other networks related to 

differences in their anatomical connections (Vogt et al., 1979) as well as their role in 

cognition.  In addition, there is some evidence for further subdivision of the medial 

posterior cingulate and precuneus, separating limbic and associative cognitive networks 

(Cavanna & Trimble, 2006; Parvizi et al., 2006; Vogt et al., 2006; Laird et al., 2009; Yu 

et al., 2011; Leech et al., 2012).

1.4.4 DMN across brain states 

 Spontaneous brain activity with spatiotemporal patterns similar to those 

measured in the resting state persist across levels of conscious awareness, (Hobson & 

Pace-Schott, 2002), in sleep (Fukunaga et al., 2006; Larson-Prior et al., 2009), and under 

anesthesia (He et al., 2008; Breshears et al., 2010; Liu et al., 2015).  Coherent 
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fluctuations in the DMN persist with loss of consciousness (Greicius et al., 2008) and are 

present even in a vegetative state; their absence has come to define brain death (Boly et 

al., 2009).   As sleep stages progress (S1 – S2 - SWS), several changes occur in the 

functional connectivity patterns of the DMN.  Functional connectivity between PCC and 

and parahippocampal gyrus is present in SWS but is decreased in early sleep stages 

(Sämann et al., 2010).  The anticorrelated activity in DMN and task positive network 

becomes uncorrelated during S2 and SWS (Sämann et al., 2010).  Most pronounced is a 

reduction in the strength of connectivity between the PCC and ventral medial prefrontal 

cortex (vmPFC)  (Greicius et al., 2008; Horovitz et al., 2009; Sämann et al., 2011) as 

sleep stages progress.  A reduction in functional connectivity between anterior and 

posterior DMN begins with sleep pressure (Sämann et al., 2010; De Havas et al., 2012), 

and sees its largest decrease with transition from wakefulness into the early stages of 

sleep as conscious awareness is lost.  Therefore, it has been suggested that coupling 

between anterior and posterior DMN regions, may support conscious awareness (He & 

Raichle, 2009).  However, significant functional connectivity between anterior and 

posterior DMN persist through SWS and under anesthesia which suggest that coherent 

DMN activity may also support fundamental aspects of homeostatic maintenance 

unrelated to self-awareness or conscious thought (Buckner et al., 2008; Horovitz et al., 

2008).
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1.4.5 DMN Throughout Development

Functional connectivity of the DMN changes in a behaviorally relevant manner 

across the human lifespan.  At birth, the DMN does not appear to be a coherent network 

(Gao et al., 2009).  However, by one to two years of age the DMN becomes spatially 

similar to that observed in adults (Gao et al., 2009).  The anterior part of the DMN is a 

region of the brain that develops more slowly than other brain areas (Huttenlocker & 

Dabholkar, 1997; Johnson, 2001), experiencing high growth rates later in development 

between the ages of 5 and 11 (Sowell et al., 2004) and is one of the last brain regions to 

myelinate (von Bonin, 1950).   As such, functional connectivity patterns of the DMN 

continue to change over the course of development.  The DMN is still only weakly 

functionally connected before adolescence (Fair et al., 2008), especially connectivity 

between anterior and posterior DMN regions.  During adolescence, functional 

connectivity between anterior and posterior DMN strengthens.  At the same time, 

network segregation becomes more pronounced in the form of decreased connectivity 

between networks  (Fair et al., 2007; Anderson et al., 2011; Sherman et al., 2014).  These 

changes correspond to developmental increases in both within and between network 

white matter tracts and is correlated with IQ (Uddin et al., 2011; Sherman et al., 2014).  

However, in addition to the maturation of structural connectivity, some have suggested 

that it is the coactivation of these regions over time that increases their connectivity 

strength in a Hebbian manner (Bi & Poo, 1999).  The adult pattern of DMN functional 

connectivity is characterized by strong connectivity within the DMN and smoothly 

varying gradients of connectivity between each node of the DMN and those of the TPN, 
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ranging from weak negative correlation to positive correlation (Anderson et al., 2011).  

This organization is proposed as a mechanism for balancing activity between the DMN 

and the TPN.  In coordination with age-related cognitive decline, connections between 

anterior and posterior parts of the DMN are disrupted (Andrews-Hanna et al., 2007; 

Damoiseax et al., 2008).  Therefore, as children mature and develop the ability to perform

cognitive tasks, such as episodic memory formation/retrieval and theory of mind, 

connectivity within the DMN continues to strengthen.  Cognitive decline is associated 

with decreases in connectivity between the same brain regions within the DMN.  The 

developmental trajectory of DMN connectivity suggests that coherent DMN activity is 

necessary for healthy brain development and that the development of brain maturation 

involves a balancing of activity across networks (Supekar et al., 2009).  

1.4.6 DMN in Disease

Changes in connectivity of the DMN have been associated with a wide range of 

neurological and neuropsychiatric disorders (for reviews see Buckner et al., 2008; 

Anticevic et al., 2012; Roberto et al., 2016)  including depression (Sheline et al., 2009; 

Posner et al., 2016), obsessive-compulsive disorder (Beucke et al., 2014; Gonçalves et 

al., 2017), ADHD (Liddle et al., 2011; Sun et al., 2012), bipolar disorder (Liu et al., 2012;

Wang et al., 2016;), schizophrenia (Bluhm et al., 2007; Harrison et al., 2007), autism 

(Assaf et al., 2010; Washington et al., 2014), Alzheimer’s (Greicius et al., 2004; Wang et 

al., 2007a; Buckner et al., 2008), post-traumatic stress disorder (Daniels et al., 2010; 

Lanius et al., 2010), and even Parkinson's disease (Van Eimeren et al., 2009; Zhang et al.,
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2015).  In addition, disease specific treatments restore normal DMN functional 

connectivity patterns (Mayberg et al., 2005; Delaveau et al., 2010; Lorenzi et al., 2011).  

Despite the variation in disease etiologies and symptoms across these disorders, studies 

find disruption in DMN functional connectivity that correlate with disease severity.  Of 

course, DMN connectivity is differentially altered across these disorders.  For example, 

in depression, increases in DMN functional connectivity are associated with the tendency

for negative rumination (Zhu et al., 2012).  In contrast, decreases in DMN connectivity 

are associated with severity of cognitive impairment and memory disruption in 

Alzheimer’s (Hafkemeijer et al., 2012).  The literature on the role of the DMN in each of 

these disorders is vast and outside the scope of this brief introduction.  There is however, 

a growing understanding that a common feature over a spectrum of neurological 

disorders is an imbalance in excitatory and inhibitory influences across brain networks 

(Yizhar et al., 2011; Anticevic et al., 2017; Foss-Feig et al., 2017; Tatti, 2017).  

Dysfunction at many levels of organization, from the synaptic to large-scale structural 

connectivity can lead to such imbalances.  Variations on the pathways that lead to 

excitatory/inhibitory imbalances may explain the spectrum of resulting behavioral 

phenotypes, but may also explain the DMNs ubiquitous involvement across so many 

different disorders.  The DMN is consistently described in opposition to the TPN and 

tuning in the pattern of this relationship continues to mature over the course of brain 

development (Anderson et al., 2011). In addition, the DMN, and particularly the 

precuneus and PCC are structural hubs connecting many other brain regions (Hagmann et

al., 2008; Segall et al., 2012).  Therefore, any regional or network-level imbalance in 
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excitatory and inhibitory influences is likely to impact DMN functional connectivity.  

1.4.7  DMN in other species 

The DMN consists of regions that have undergone significant expansion in 

humans, particularly those in medial prefrontal cortex (BAs 10 and 32) (Ongür & Price, 

2000).  In addition, BA 32 is believed to have no homologue in monkeys (Brodmann, 

1909).  However, in spite of the extensive evolutionary expansion of association cortex, a

well-organized intrinsically coherent network resembling the human DMN has been 

identified in other species.  In the resting-state, a set of regions centered on the posterior 

cingulate was identified in the macaque using group ICA (Hutchison et al., 2011), but did

not include any medial prefrontal structures.  Several seed-based resting-state studies did 

identify networks linking monkey PCC with prefrontal cortex (Vincent et al., 2007; 

Rilling et al., 2007).  However, given the differences in prefrontal anatomy, the identified

prefrontal regions tended to be more lateral than those generally associated with the 

human DMN including dorsolateral prefrontal cortex (Margulies et al., 2009).  Task-

associated deactivations in macaques are also similar to those identified in human studies 

(Mantini et al., 2011), but also included more lateral prefrontal areas (BAs 9/46d and 8b) 

and may not include lateral parietal areas (Hayden et al., 2009).  However, unlike in 

humans, in macaques, the dorsal striatum, rather than DMN regions exhibit the greatest 

blood flow during rest (Kojima et al., 2009).  Intriguingly, resting-state networks similar 

to the human DMN have also been identified in mice (Stafford et al., 2014), rats (Lu et 

al., 2007; Upadhyay et al., 2011) and cats (Popa et al., 2009).   The existence of a default-
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mode-like network in species such as mice raises some questions about the function of 

this network, as it is not known whether the DMN in other species supports cognitive 

functions such as social/emotional processing and autobiographical memories.  Theory of

mind abilities are generally thought to be unique to humans, however there is some 

evidence that macaques do possess limited theory of mind abilities (Drayton et al., 2016).

Comparative anatomical studies of humans and macaque monkeys suggest a high degree 

of similarity in overall cytoarchitecture (Petrides & Pandya, 1999; Ongür & Price, 2000; 

Jbabdi et al., 2013), functional and anatomical connections.  Therefore,  a survey of the 

tract-tracing literature in macaques will provide a foundation for an anatomical 

understanding of the information processing of each region of the DMN.  

1.4.8 DMN Anatomy

While there are variations across studies in the extent of the cortical regions 

included in the DMN, there is however agreement on the core regions that make up the 

network.  The core of the network is made up of a cluster of regions in medial prefrontal 

cortex and a cluster of regions in posterior medial cortex (PMC).  The anterior portion of 

the network in medial prefrontal cortex includes BA area 10 medial and BA 32 

pregenual.  The posterior part of the network includes the posterior cingulate (BA 23 and 

BA 31), the precuneus (BA 7m) and lateral parietal cortex (BA39).  As the hippocampus 

is not always included in the network and is understood to have a role in spatial 

navigation and long-term memory unrelated to purported DMN function, I have not 

included it here.  In this section the anatomical connections of core DMN brain regions 
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will be explored from the tract tracing literature in macaque monkeys.  There is broad 

organizational similarity across species in the anatomical organization of cortical areas 

and their connections (Jbabdi et al., 2013; Ongür & Price, 2000).  However, the cortex 

has been subdivided architectonically by a number of investigators and there is 

considerable disagreement regarding the boundaries of its subdivisions (Brodmann, 1909;

Walker, 1940; Vogt et al., 1987).  These differential classifications have been taken into 

consideration as best as possible in compiling a comprehensive account of the cortical 

and subcortical projections of each of the core DMN regions. In addition, the tract tracing

literature suffers from overlap in injection sites across Brodmann areas and uncertain 

homologues in humans (Carmichael et al., 1994).  Many studies are focused on regional 

connections to or from a given area and/or do not report interhemispheric projections, 

making whole-brain summaries for each Brodmann area difficult.  Nonetheless, it 

provides a strong starting point for understanding the organization of afferents and 

efferents into these core regions which cannot be ascertained from noninvasive 

techniques in humans.  

1.4.8.1 DMN Regions of the Medial Prefrontal Cortex   

1.4.8.1.1 Brodmann Area 10 medial

In humans, BA 10 is larger relative to the rest of the brain than it is in non-human 

primates, and it has more connections to higher-order association areas (Semendeferi et 

al., 2001).  From this observation it has been suggested that this part of the cortex became

highly specialized during human evolution.  BA 10 medial is granular cortex (Carmichael
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& Price, 1994) that makes up the most ventral medial portion of the frontal cortex and 

also some portion of the medial orbital cortex.  The medial portion of BA10 (BA10m) is 

part of a network of medial prefrontal structures that are tightly interconnected and have a

distinct pattern of connectivity to other cortical and subcortical structures compared to 

that of the surrounding orbital and lateral prefrontal areas (Carmichael & Price, 1996; 

Ongür & Price, 2000). They provide cortical output to visceromotor structures in the 

hypothalamus and are connected to the nucleus accumbens and ventromedial caudate and

putamen in addition to having strong connections throughout the cingulate gyrus.  While 

abstract representation of all sensory modalities are present in the lateral network, there is

little evidence for sensory input directly to the medial network (Carmichael & Price, 

1996).  However, bidirectional connections through BA 13, BA1 2, BA 9 and BA 46 

connect the medial network with the orbital and lateral prefrontal cortex.  Three main 

groups of efferent fibers emanate from medial prefrontal structures: a lateral group 

through the extreme capsule targets auditory and multi-sensory regions in superior 

temporal cortex, and ventral insula, 2) a medial group of bidirectional association fibers 

through the cingulate fasciculus targets anterior and posterior cingulate, and 3) fibers that 

connect prefrontal cortex with the temporopolar regions, the hippocampal gyrus and 

ventrolateral part of basal nucleus of amygdala through the uncinate fasciculus (Petrides 

& Pandya, 2007).  In addition, subcortical fibers from the medial prefrontal network enter

the external capsule and terminate in the head and body of the caudate and rostral part of 

the putamen, dorsomedial and caudal parts of the mediodorsal (MD), intralaminar and 

pulvinar nucleus of the thalamus, and include minor projections to the hypothalamus.  
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  1.4.8.1.2   Brodmann Area 32

BA 32 makes up the most ventral part of the anterior cingulate and also a 

subgenual portion just inferior to the anterior part of the genus of the corpus callosum.  

BA 32 is agranular cortex cytoarchitecturally distinct from other regions of the cingulate 

(Pandya et al., 1981) and BA 10m (Carmichael & Price, 1994).  It has bidirectional 

connections with BAs 24 and 25 in the anterior cingulate and BA 23 in posterior 

cingulate (Parvizi et al., 2006).  However, its pattern of afferent and efferent connections 

are more similar to other regions of the ventral medial prefrontal cortex than adjacent 

anterior cingulate BA 24 (Pandya et al., 1981).  It projects to medial prefrontal regions 

BAs 8, 9 and 10, lateral BAs 6, 8, 9, 10 and 46 and orbitofrontal  BAs 11-14 (Pandya et 

al., 1981; Pandya et al., 1991; Petrides & Pandya, 2007).  Fibers projecting medially from

BA 32 terminate in the opposite hemisphere through the genus of the corpus callosum 

and to BA 24 and BA 23.  Laterally projecting fibers project to the head and body of the 

caudate and dorsomedial nucleus of the thalamus through the internal capsule.  Another 

group of fibers through the external capsule terminate in the ventromedial putamen and 

the shell of the nucleus accumbens (Haber et al., 1995).  Via the extreme capsule and 

uncinate fasciculus, fibers reach the amygdala, ventral anterior superior temporal gyrus 

(BA 22, TS1, and TS2) as well as TPO (BA 39) of the superior temporal sulcus (Pandya 

et al., 1981;Vogt & Pandya, 1987; Pandya et al., 1991; Petrides & Pandya, 2007).  
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1.4.8.2 DMN regions of the posterior medial cortex

Like the anterior part of the network, the posterior regions of the DMN are also 

part of a group of tightly interconnected regions sometimes called the PMC including 

posterior cingulate regions BA 23, BA 31, and BA 7 medial in the precuneus (Parvizi et 

al., 2006).  These regions share connections to BAs in the anterior cingulate, mid-

dorsolateral prefrontal cortex (BA 46), area PG (macaque homologue of human inferior 

parietal lobule), posterior area of tempero-parieto-occipital (TPO) junction BAs 39/40, 

the caudate, and extensive connections with the thalamus.  Thalamic projections from 

each region of the PMC reach all parts of the dorsal associative nuclei of the thalamus 

from the anterior to posterior extent including anterior ventral (AV), anterior dorsal (AD),

anterior medial (AM), superficial lateral dorsal (LD), dorsal tip of ventral lateral (VL) 

and ventral anterior (VA), lateral posterior (LP) and lateral pulvinar (Parvizi et al., 2006).

However, these connections are not all reciprocal, a fact that has led some to speculate 

PMC connections to the thalamus contribute a modulatory influence (Sherman, 2001).  

Projections to the striatum span the entire head and body of the caudate (Parvizi et al., 

2006) and include contralateral areas of both the caudate and putamen.  PMC is generally

connected to associative cortex with few connections to primary sensory, primary motor 

cortex and sensory thalamic nuclei.  Outside of their shared connectivity patterns and 

strong interconnectivity, each region has distinct connections suggesting unique 

functional roles.  Connections to PMC and the DMN in general exclude primary sensory 

and motor regions as well as primary sensory thalamic nuclei.  



37

1.4.8.2.1 Brodmann Area 23

Based on patterns of connections and cytoarchitectural attributes, BA 23 is 

sometimes subdivided into 3 ventrodorsal subregions(a-c).  BA 23c distinguishes itself 

from BA 23a,b with connections to sensorimotor areas BA 3, 4, 6 and secondary 

somatosensory cortex BA 40 (Parvizi et al., 2006).  BA 23 receives input from the insula 

(Vogt & Pandya, 1987) and has bidirectional connections to BA 24 in anterior cingulate 

and retrosplenial cortex BAs 29/30 (Parvizi et al., 2006).  In prefrontal cortex, BA 23 has 

reciprocal connections to BAs 9, 10, 11,14 and 46 (Vogt & Pandya, 1987).  BA 23 is 

heavily connected to parietal cortical regions including the inferior parietal lobule (BA 

39), TPO (BA 39), and is also connected to visual association cortex BA 19.  In the 

temporal lobe, BA 23 has bidirectional connections to the STS, TF, TH and entorhinal 

cortex (Vogt & Pandya, 1987; Kobayashi & Amaral, 2003; Parvizi et al., 2006).  The 

principle thalamic input to BA 23 is from the AM nucleus and is topographically 

organized (Vogt et al., 1987), with more inferior BA 23a receiving input mainly from the 

central core of the nucleus.  Thalamic afferents also come from the AV, AD, AM, LD, 

intralaminar and pulvinar regions of the thalamus (Vogt et al., 1987; Parvizi et al., 2006). 

BA 23 projects to the head and body of the dorsal caudate and has sparse projections to 

the putamen. 

1.4.8.2.2  Brodmann Area 31

BA 31 is situated dorsal to BA 23 in the posterior cingulate and is a major hub of 

regional connectivity in the brain.  It is connected to all regions of the cingulate, superior 
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and inferior parietal lobules, the frontal pole, temporal cortex, and the basal forebrain.  In 

the frontal cortex, it has reciprocal connections with BAs 10, 9/46 (Vogt & Pandya, 

1987), and premotor BA 6.  In temporal cortex, it receives projections from TL and TH in

the parahippocampal region (Vogt & Pandya, 1987), and the STS  (Vogt & Pandya, 

1987) and entorhinal cortex.  In parietal cortex, BA 31 receives dense projections from 

BAs 39, 40 and 7 (Vogt & Pandya, 1987) and projects back to BA 39.  Similar to the 

patterns of thalamic connectivity in BA 23, BA 31 has extensive projections to the 

thalamus extending through AV, AD, AM, LD, VL, VA, LP and the lateral pulvinar.  BA

31 receives projections from more thalamic nuclei than other PMC regions including 

projections from AV, AM, anterior intralaminar, VL, MD, LP, and anterior, lateral, and 

medial pulvinar, but far more from posterior than anterior nuclei.  As is the case for other 

PMC regions, striatal projections from BA 31 reach the dorsal part of the head and body 

of the caudate and hav sparse projections to the putamen (Vogt et al., 1987).

1.4.8.2.3 Brodmann Area 7m Precuneus (PGm)

Dorsal to BA 31 in the precuneus, is medial BA 7 (BA 7m) also referred to as 

PGm in the macaque literature (Von Economo & Koskinas, 1925).  In the frontal cortex, 

BA 7m is bidirectionally connected to both ipsilateral and contralateral dorsal premotor 

and supplementary motor cortex (BA 6) and the FEF (BA 8) (Petrides & Pandya, 1984; 

Cavada & Goldman-Rakic, 1989; Parvizi et al., 2006). BA 7m is not connected to BA 32 

in the anterior cingulate (Parvizi et al., 2006) nor insular cortex (Leichnetz, 2001).  It is 

however it is reciprocally connected with BAs 23 and 31 and retrosplenial cortex 
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(Cavada & Goldman-Rakic, 1989) in the posterior cingulate (Leichnetz, 2001; Parvizi et 

al., 2006).  BA 7m may also project to premotor regions of  BA 24 in the cingulate gryus 

(Petrides & Pandya, 1984; Parvizi et al., 2006).  In parietal cortex, it has bidirectional 

connections to the medial intraparietal sulcus and superior parietal lobule (BA 7 lateral) 

and BA 39/40 (Cavada & Goldman-Rakic, 1989; Pandya & Seltzer, 1982; Leichnetz, 

2001; Parvizi et al., 2006 ).  It has reciprocal thalamic projections with VL, MD, LP, AV,

and intralaminar nuclei as well as the pulvinar (Leichnetz, 2001; Parvizi et al., 2006).  It 

projects to the basal forebrain (Leichnetz, 2001), dorsolateral caudate and putamen with 

denser connections to the putamen than other PMC regions (Leichnetz, 2001; Parvizi et 

al., 2006).  In the temporal lobe, BA 7m is interconnected with the STS and BA 22 

(Cavada & Goldman-Rakic, 1989; Leichnetz, 2001) and has sparse connections within 

the hippocampal formation (Cavada & Goldman-Rakic. 1989; Parvizi et al., 2006).

1.4.8.2.4 BA 39 Inferior Parietal Lobule or PG 

Located in the inferior parietal lobule, BA 39 is more laterally located than the 

rest of the core DMN regions and has connections to lateral prefrontal cortex not seen in 

other core regions of the DMN.  Cytoarchitecturally, it appears to be part of the same 

structure as BA 7m (Brodmann, 1909), sometimes referred to as BA 7a (Pandya & 

Seltzer, 1982).  It shares, reciprocal connections with all of the PMC regions (BA 23, BA 

31, BA 7m, BA 29 and 30) (Mesulam et al., 1977; Cavada & Goldman-Rakic, 1989; 

Parvizi et al., 2006).  It has bidirectional connections with both ipsilateral and 

contralateral FEF (BA 8) and BA 46 in dorsolateral prefrontal cortex (Mesulam et al., 

1977; Petrides & Pandya, 1984).  It is reciprocally connected to BA 24 in the cingulate 
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gyrus, BA 19 in occipital cortex (Mesulam et al., 1977; Cavada & Goldman-Rakic, 1989)

as well as the parahippocampal region and STS (Cavada & Goldman-Rakic, 1989; 

Mesulam et al., 1977).  Its thalamic projections are also similar to that of BA 7m, with 

connections to the pulvinar, LP (Weber & Yin, 1984) , and intralaminar nuclei (Mesulam 

et al., 1977; Weber & Yin, 1984).   However, unlike BA 7m, BA 39 has substantial 

projections to VP medial nuclei (Yeterian & Pandya, 1985) as well as the suprageniculate

(Weber & Yin, 1984) and the dorsal reticular nuclei (Yeterian & Pandya, 1985).   In 

addition, BA 39 projects to both the caudate and putamen (Weber & Yin, 1984; Yeterian 

& Pandya, 1985).  

1.4.8.3  Summary DMN Anatomy

 PDMN regions have connections to visual and somatosensory association and 

premotor cortical regions that are not shared by the ADMN.  ADMN receives input from 

few if any regions associated with sensory-motor processing and has connections to more

limbic structures such as the amygdala, which are not shared by the posterior part of the 

network.  In addition, anterior and posterior parts of the DMN differ in their subcortical 

connections.  Although both anterior and posterior DMN regions are connected to 

midline and intralaminar thalamic nuclei, posterior DMN regions also have connections 

throughout the anterior and lateral thalamic nuclei (Vogt et al., 1979).  In addition, the 

macaque literature suggest that BAs 10  and 32 in the ADMN are connected to PDMN 

cingulate regions in BA 23 and 31.  Interestingly, the tract tracing literature in macaques 

suggest that BAs 7m and 39 are exclusively connected to lateral prefrontal areas rather 
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than the medial anterior structures that are part of the DMN.  

 1.4.8.4 DMN and Cortical-Striatal-Thalamic circuits

Current understanding of the large scale organization of circuits in the brain posits

that at least five functionally distinct parallel circuits link cortex, basal ganglia and 

thalamus.  The currently proposed circuits include a motor circuit originating in 

supplementary motor region, an occulomotor circuit originating in the FEF, two 

associative prefrontal circuits originating in dorsolateral prefrontal and lateral orbital 

cortex, and a  circuit with unknown function originating in the anterior cingulate cortex 

(Alexander, 1986).  Each is believed to be a partially closed-loop segregated circuit, 

originating in cortex, converging onto non-overlapping regions within striatal structures 

(caudate, putamen, and ventral striatum), projecting from the basal ganglia to circuit-

specific targets in the thalamus and returning to the cortical region from which it 

originated.  Each circuit is thought to receive input from multiple interconnected 

functionally related cortical areas whose inputs are progressively integrated through basal

ganglia structures.  Each circuit involves excitatory cortical projections to the striatum 

which proceed through inhibitory GABA-mediated direct and indirect pathways through 

the basal ganglia (Alexander & Crutchner, 1990).  The two pathways are believed to 

differentially modulate their thalamic targets, balancing and selecting excitatory and 

inhibitory responses to their targets.  Interaction between segregated circuits also occurs 

at the level of the basal ganglia where inputs from individual circuits are also relayed to 

associative cortex (Joel & Weiner, 1994), suggesting that behavior is dependent on 

complex interactions between cortex and cortico–basal ganglia networks (Haber, 2016).  
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Disruption of any one of these circuits results in a variety of cognitive and 

neuropsychiatric disorders (Cummings, 1993; Mega & Cummings, 1994; Tekin & 

Cummings, 2002 ; Price & Drevets, 2009) and similar neuropsychiatric symptoms may 

arise from damage or disruption at different levels within or between circuits.

As noted in the previous section, both anterior and posterior portions of the DMN 

project to different areas of the striatum (Draganski et al., 2008; Haber, 2016).  In 

addition, they have bidirectional connections with different thalamic nuclei.  Anterior 

DMN is connected to midline thalamic nuclei and posterior DMN is connected to lateral 

and anterior nuclei (Vogt et al., 1979).  This suggests that anterior and posterior DMN 

may be part of separate circuits through the thalamus (Parvizi et al., 2006) and therefore 

that they may participate in more than one CST circuit.  The posterior DMN is 

structurally interconnected with cortical occulomotor structures and may therefore 

contribute to the occulomotor circuit.  The associative and limbic circuits through the 

basal ganglia are less well characterized than that of the motor and occulomotor circuits.  

The contribution of projections of anterior DMN regions in ventral medial prefrontal 

cortex (BA 10 and BA 32) is not explicit in the currently defined circuits.  However, 

given the projections of BA 10 and BA 32 through the striatum, they may contribute to 

one or both of the associative circuits, the limbic circuit and/or may be part of an 

additional as of yet undefined circuit.  It is likely that an understanding of these non-

motor CST circuits is necessary to elucidate the true functional role of the DMN in 

cognition, its functional relationship with the TPN, as well as the changes in DMN 

activity associated with a wide range of disorders.  
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1.4.9   Function of the DMN

The functional role played by the DMN in cognition is not well understood.  

Several theories regarding its functional role have been proposed.  One theory is based on

inferences drawn from the set of experimental paradigms that evoke increases rather than 

decreases in BOLD signal within the network.  Experimental paradigms involving 

processing social or emotion stimuli  (Spreng et al., 2009,  Kelley et al., 2002, Mitchell et

al., 2006), making moral judgements (Greene et al., 2016a), thinking about oneself 

(Gusnard & Raichle, 2001) or the mental state of others (theory of mind) (Fletcher et al., 

1995; Rilling et al., 2004; Amodio & Frith, 2006), envisioning or planning for the future 

(Okuda et al., 2003, Szpunar et al., 2007, Gilbert et al., 2007, Addis et al., 2007, Botzung 

et al., 2008, D’Argembeau et al., 2008), and autobiographical recollection (Andreasen et 

al., 1995) all evoke increases in BOLD signal within the network.  These studies 

collectively suggest that the cognitive role of the DMN is related to self-referential and 

related social cognitive processing (Buckner & Carroll, 2007).  Additional evidence for 

this view comes in part from lesion studies of prefrontal cortex.  Patients with lesions in 

medial prefrontal brain regions may suffer changes in personality and exhibit 

inappropriate social behavior (Bechara et al., 1994, Damasio & VanHoesen, 1983) and 

deficits in the ability to carry out plans.  Furthermore, the role of vmPFC in emotional 

regulation is underscored by clinical research indicating increased activity in vmPFC 

associated with anxiety disorders (Simpson et al., 2001) and depression.  The role of the 

DMN in autobiographical memory is bolstered by the observation that BOLD signal in 

the hippocampus is temporally correlated with that of spontaneous DMN brain activity.  
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In addition, medial posterior parts of the network have been associated with recollection 

(Vincent et al., 2006).  One study identified diurnal variation in functional connectivity 

between PCC/precuneus and the hippocampal formation, present in the evening and 

absent in the morning after sleep (Shannon et al., 2013).  However, in the absence of any 

explicit social, self-referential or memory-related experimental task, in resting-state, the 

DMN is known to exhibit a high level of baseline activity.  Based on the tasks known to 

cause increases in DMN activity, one possible explanation is that typical of stream of 

consciousness during rest, may involve thinking about oneself, planning for the future, 

remembering the past or thinking about events with social or emotional relevance.  

Therefore, spontaneous BOLD signal in the DMN may correspond with the kind of 

cognitive tasks carried out spontaneously in resting conditions.  If so, one possible 

explanation for commonly observed task-evoked decreases in the DMN is the need to 

divert attention away from internal rumination in order to direct attention towards 

external stimuli.  From this perspective, decreases in DMN activity are interpreted as 

evidence that the DMN does not participate in tasks that require externally directed focus.

Others have suggested that at rest, in addition to supporting internally directed thoughts, 

the DMN may subserve a broad unfocused attention on the environment, scanning the 

periphery for salient stimuli.  An fMRI study designed to test this hypothesis found that 

the DMN responds to visual stimuli when presented in peripheral vision, particularly 

when their appearance is unpredictable (Hahn et al., 2007).  Anatomical considerations 

alone suggest a role for posterior DMN regions in visual attention as BAs 7m and 39 are 

both connected to cortical areas associated with higher order visual processing in the 
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dorsal stream (Ghatan et al., 1995, Hahn et al., 2007).  Bilateral lesions that extend across

posterior parietal cortex can induce Balint’s syndrome (Mesulam, 2000), a form of tunnel

vision in which patients can only perceive a small portion of the visual world and often 

fail to notice the appearance of objects outside the immediate focus of attention.  These 

observations suggests that task-associated deactivations in the DMN occur because 

attention has been narrowed from that of broad unfocused exploration to focus on a 

specific cognitive task (He et al., 2013).  Combining evidence from the set of tasks that 

evoke increases in the DMN and observations of the network's likely role in perception of

salient visual stimuli, the most parsimonious of the currently proposed functions of the 

DMN suggests its role as a sensory-visceromotor link (Raichle, 2015) that functions to 

pair experience with appropriate behavioral and emotional responses (Ongür & Price, 

2000).  In this view, the DMN, far from being disengaged  during externally focused 

tasks, plays a role integrating external awareness and experience with the moods and 

autobiographical relevance of the self in order to influence behavior.   If so, task-evoked 

decreases in the DMN observed in fMRI experimental paradigms must be evaluated more

cautiously.  If the DMN does play such a role, the temporal dynamics of activity in the 

network should reflect both the bottom up processing of sensory stimuli and top-down 

modulatory signals that influence behavior.  In addition to mapping the anatomical 

connections of the core DMN regions in humans, the temporal dynamics of the DMN in 

response to a variety of task demands are a focus of this thesis.
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1.5  Summary 

The core regions of the DMN are midline cortical structures in vmPFC and PMC. 

Anterior and posterior parts of the network have different connectivity profiles in 

macaques suggesting that different parts of the network play a different role in DMN 

function.   The DMN has a high baseline level of activity in the absence of externally 

focused attention.  This activity is attenuated while performing a wide range of cognitive 

tasks.  The functional significance of task-evoked deactivation in the DMN is not known. 

However, certain tasks, such as those requiring self-referential thinking, do not evoke 

decreases in the DMN.   As the function of the DMN is not well understood, a detailed 

accounting of its anatomical connections and the temporal evolution of its activity during 

task performance may yield insights into its function. 

1.6  Overview of the Data Chapters

In the previous sections I have synthesized the tracing literature in macaques to 

detail the anatomical connections of each region of the DMN.  DMN regions, particularly

those in vmPFC, are significantly larger in humans and may not have homologues in 

monkeys.  Therefore in Chapter III, I detail the connections of each region of the DMN in

humans using diffusion spectrum imaging data.  I characterize differences in connectivity

profiles of anterior and posterior portions of the network and emphasize the connections 

of the network as a whole through the basal ganglia and thalamus.   

Chapter IV focuses on task-evoked activity in the DMN.  It begins with a careful 

accounting of the regions that exhibit task-evoked decreases in activity across several 
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experimental paradigms.  The temporal evolution of activity in the DMN is then explored

in the context of three paradigms that purportedly evoke different responses in the DMN 

(increase, decrease, no change).

In Chapter V, I explore the role of the DMN in autism spectrum disorder (ASD) 

and schizophrenia (SZ).  Using a supervised machine learning technique, I identify 

changes in connectivity, particularly in the DMN, that distinguish ASD and SZ patients 

from healthy controls as well as from each other.
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CHAPTER II 

GENERAL METHODS

2.1  Human Connectome Project Data 

Data used for this work was collected by the Human Connectome Project (HCP) 

(http://www.humanconnectome.org) with the exception of patient population data 

detailed in chapter V.  The HCP is a consortium led by Washington University, 

University of Minnesota, and Oxford University with the aim to map large-scale human 

brain circuitry in order to decipher the neural pathways underlying healthy brain function 

and behavior.  In pursuit of this goal they have collected both structural (T1) and 

functional MRI (T2*), Diffusion tensor imaging (DTI) and magneto-

electroencephalography (MEG) data from 1200 healthy adults between the ages of 22 and

35 (Sotiropoulos et al., 2013; Van Essen et al., 2014 ).   MEG and high-temporal 

resolution MRI data were collected in resting state and for 7 different task paradigms. 

Tasks include 1) an emotion processing task in which subjects were asked to judge the 

similarity of faces that were either angry or fearful (Hariri et al., 2002) , 2) a gambling 

task in which subjects played a card guessing game in order to win or lose money 

(Delgado et al., 2000), 3) a language processing task with alternating blocks of audibly 

presented stories and arithmetic problems followed by a forced choice question (Binder et

al., 2011), 4) a motor task where subjects were asked to tap fingers, toes, and move their 

tongues (Bucker et al., 2011), 5) a relational task in which subjects were asked to find the

feature that varied across one set of objects (shape or texture) and determine if the same 

http://www.humanconnectome.org/
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feature varied across a second set of objects (Smith et al., 2007), 6) a social 

cognition/theory of mind task in which subjects were asked to judge the mental 

interaction of objects that either interacted in a socially evocative manner or moved 

randomly in short video clips (Casetelli et al., 2000; Wheatley et al., 2007), and 7) a 

working-memory n-back task (Barch et al., 2013; Van Essen et al., 2013).  The data set 

included four 15 minute resting state scans (eyes open).  Functional MRI data were 

collected with a spatial resolution of 2 mm isotropic voxels and a TR of .72 seconds 

using a multiband factor of 8.  A subset of the HCP data used for this work was based on 

the 27 subjects who had completed the entire battery of MRI and MEG experiments as of 

January 1, 2015 from the 800 subject release.  Three left-handed subjects were later 

excluded for analysis in order not to confound results based on differences in 

lateralization associated with handedness.  The remaining 24 subjects included 17 

females, and 8 males.  Two subjects were between the ages of 22-25, 12 between the ages

of 26 and 30 and 11 between the ages of 31 and 35.  Data for the remaining 24 subjects 

was used in Chapters III and IV.  

2.2 Region of Interest Definition Anatomical Brain Atlas

For ease of comparison with animal literature and to include both cortical and 

subcortical regions of interest (ROIs), we opted to use a brain atlas based on the 

Brodmann areas.  The atlas chosen is called the Human Brainnetome Atlas (Fan et al., 

2016).  It consist of 246 regions (210 cortical and 36 subcortical regions).  Regions of the

Brainnetome atlas are defined by their structural similarity as well as similarity of 

connectivity patterns.  It is based on an initial automated gyral-based parcellation 
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Desikan-Killany atlas (Desikan et al., 2006) followed by a clustering over similarity of 

structural connectivity determined through DTI probabilistic tract-tracing.  Naming of 

regions was based on similarity of the resulting parcellation to other atlases based on  

cytoarchitecture, myelnation maps and receptor based architectonic parcellations.   

However, in order to allow for analysis based on circuitry through the direct and indirect 

pathways of the basal ganglia, pallidal ROIs from the Brainnetome atlas were replaced 

with those of a recently created probabilistic BG atlas (Keuken & Forstman, 2015).  From

the BG atlas ROIs for bilateral internal and external globus pallidus, as well as the 

subthalamic nucleus and substantia nigra were added to those of the Brainnetome atlas 

for a total of 252 ROIs.   A set of putative DMN regions were identified within the 

Brainnetome atlas with the use of a separately generated functional atlas, the willard 

atlas.  The willard atlas contains 14 functional networks (Richiardi & Altmann, 2015) 

defined by multimodal independent component analysis combining resting state fMRI 

and post mortem gene expression.  Brainnetome regions overlapping with the “ventral” 

and “dorsal” default mode networks as defined in the willard atlas included bilateral 

Brainnetome regions:  BA 10m (medial), BA 32p (pregenual), BA 7m (medial), BA 39rv 

(rostroventral), BA 31, and BA 23d (dorsal).  These ROIs were used for all analysis in 

chapters III and IV.  A table of the combined regions and their coordinates in MNI space 

can be found in Table 2.1.
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CHAPTER III

ANATOMICAL CONNECTIONS OF THE HUMAN DMN

3.1 Introduction

The relationship between structure and function in the brain is observed across all 

scales from the protein-level, through the level of the synapse, and microcircuit, as well 

as the entire brain.  At the network level, evidence for the relationship between the 

structural connections between brain areas and their function comes from many sources.  

From developmental neuroscience, we know that network level activity resembling the 

functional networks of adults emerges in concert with the development of the structural 

connections between brain regions (Casey et al., 2005).  For example, in a longitudinal 

study of axonal myelination and axonal thickness in children between the ages of 8 and 

18, reading ability was found to correlate with white matter development in the left 

temporal lobe (Nagy et al., 2004).  Multimodal approaches combining structural and 

functional imaging, have shown that loss of function is often associated with decreases in

white matter integrity.  Disruption of the structural connections between brain areas is 

associated with psychiatric and cognitive disorders including including Alzheimer’s 

(Scheltens et al., 1992), schizophrenia (Davis et al., 2003), and autism (Barnea-Goraly et 

al., 2004; Wolff et al., 2012).  The degree of structural connectivity between brain 

regions is also known to be a strong predictor of functional connectivity (Vincent et al., , 

2007;  Greicius et al., 2009; Honey et al., 2009;  Margulies et al., 2009; Kelly et al., 2010;

Messe' et al., 2014).  Furthermore, insights into the functional role played by a region can
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be gained by identifying its afferents and efferents.  For example, if a brain region 

receives input from primary sensory regions, it likely has a role in processing low-level 

sensory information.  If a region receives inputs from multiple sensory modalities, it is 

likely involved in integrating sensory information.  This relationship between structure 

and function at the regional level underlies recent studies of connectomics with the goal 

of mapping the large-scale structural connections of the brain.  

White matter tracts in the brain are divided into three main categories: projection 

pathways, commissural pathways and association pathways.  Projection pathways contain

both ascending and descending fibers connecting the cortex to subcortical structures. 

Association pathways connect cortical regions within a hemisphere along the anterior to 

posterior axis of the brain.  The commissural pathways consist of fibers that connect 

brain regions across hemispheres and includes the corpus callosum, the largest fiber tract 

in the brain.  The DMN consists of several medial brain areas that are situated along both 

the main association pathway in the cingulum and the main commissural pathway, the 

corpus callosum.  Anterior DMN regions in vmPFC sit just anteriorly to the genu of the 

corpus callosum and the posterior regions at the splenium of the corpus callosum.  Medial

anterior and posterior regions of the DMN are connected to each other through the 

association fibers of the cingulum.  Therefore, the midline regions of the DMN are 

robustly connected to each other through major white matter tracts.  As such, it is has 

been found that the DMN has the strongest relationship between structural and functional

connectivity amongst the identified functional networks (Horn et al., 2104).   In addition, 

several studies of whole-brain structural connectivity have concluded that DMN regions, 
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particularly those in medial parietal cortex, are part of a set of structural hubs through 

which many regions may connect mono or polysynaptically (Hagmann et al., 2008; Gong

et al., 2009).  Each region, however, has its own profile of connections which should 

yield insights into the functional role of each region in the network.  Most of the literature

on structural connectivity has been carried out using tract-tracing techniques in animals.  

Comparative anatomical studies indicate that general organizational principles are 

conserved across humans and non-human primates (Uylings & van Eden, 1991; Jbabdi et 

al., 2013).   In chapter I, I detailed the anatomical connectivity of the key nodes of the 

DMN from the tract-tracing literature in macaque monkeys.  There are, however, 

anatomical differences in human brains relative to macaques.  The DMN comprises 

regions that are known to have undergone extensive evolutionary changes especially in 

prefrontal cortex (Semendeferi et al., 2001).  Furthermore, it is not clear that all vmPFC 

structures have homologues in non-human primates.  Therefore, it is not certain that 

primate tract-tracing studies in these regions accurately reflect the connectivity of these 

regions in humans.  One recent study directly compared structural connectivity in vmPFC

in humans and macaques and found broad agreement in the organization of white matter 

tracts but did not address connections at the level of individual Brodmann areas that may 

or may not have homologues (Jbabdi et al., 2013).  

Five parallel cortico-striatal-thalamic (CST) circuits have been proposed: motor 

circuit, occulomotor, dorsolateral prefrontal, lateral orbitofrontal, and anterior cingulate 

(Alexander, 1986).  Except for the motor circuit, each of the proposed circuits contain 

regions that are part of the DMN, especially BA 10, BA 32 and BA 7.  This led me to 
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hypothesize that the DMN may participate in one or more of these large-scale circuits. 

Surprisingly, there are few if any studies characterizing the brain-wide structural 

connections of functional networks.  Therefore, in this chapter I will characterize the 

structural connectivity of each DMN brain region in humans using diffusion spectrum 

imaging and probabilistic tractography.  Emphasizing tracts that run through the basal 

ganglia and thalamus, I show that the core regions of the DMN form a distributed (CST) 

circuit.  Differences in the connectivity of anterior regions in ventral medial prefrontal 

cortex and posterior regions of the network in the posterior cingulate and lateral parietal 

cortex are also highlighted.  

3.1.1  Principles of Diffusion Imaging

Water diffusion in white matter tracts and other tissues of the body is anisotropic, 

meaning that water molecules do not diffuse equally in all directions (Hansen, 1971).  

Water diffusion is restricted in the direction perpendicular to the axon.  This feature is 

exploited in diffusion tensor imaging (DTI) which makes use of the fact that the direction

of maximal diffusivity is parallel to the direction of the axonal fiber where diffusion 

occurs faster.  Contrast in diffusion weighted images is created in the same way as in 

fMRI and therefore includes effects of  both T1 and T2 contrast.  Diffusion weighted 

images are created by adding additional magnetic field gradients to standard MRI 

sequences. As in standard MR imaging, gradients are applied once to dephase and again 

to counteract dephasing (rephasing).  In the case where no diffusion has occurred, the 

effects of the applied gradients will be cancelled out.  Displacement of molecules due to 
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diffusion occurring in the time between gradient applications results in attenuation of 

signal that is dependent on the magnitude of the applied gradient, its duration, and the 

time between dephasing and rephasing gradient applications.  Changes in image intensity 

due to diffusion provide a quantitative measure of the extent of diffusion anisotropy and 

its predominant direction within a voxel.  Analysis of diffusion weighted images 

generally involves two steps.  The first being a voxel-level local estimation of anisotropy 

and a second step that traces through the resulting voxel-level vectors to estimate 3-d 

tracts through the brain, a process called tractography or tract tracing.  Generally, the 

diameter of axon bundles traced in tractography are on the order of 1mm whereas 

individual axon fibers are on the order of 1-30 um (Mori, 2002).  Therefore, on average 

white matter voxels may contain between 30-1000 fibers.  The signal measured within a 

voxel is indicative of the averaged diffusion properties of water molecules and fibers 

within them.  As a result, reconstructed pathways are often interpretable as major fiber 

tracts in the brain.  Tractography has shown reasonable agreement with ex vivo studies in

non-human primates and humans posthumously (Behrens et al., 2003).  However 

diffusion tensor models fail to accurately identify tracts with large curvatures or tracts 

that cross one-another.  Fiber bundles that are oriented in a single direction pose less 

difficulty, but many voxels contain fibers that cross.   In voxels containing two crossing 

fibers, the average diffusion signal results in an apparent principal direction intermediate 

to the fiber orientations, and therefore not in the direction of either fiber (Basser et al., 

2000).  The diffusion tensor model will therefore result in misidentified fiber directions, 

with larger discrepancies associated with larger crossing angles.  More accurate estimates
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of fiber direction may be obtained by achieving better angular resolution in diffusion 

weighted images.  This can be achieved by acquiring measurements at several gradient 

intensity (b or shell) values and in multiple gradient directions.  So-called multi-shell 

approaches demonstrate greater sensitivity in detecting fiber crossings than single shell 

schemes (Wedeen et al., 2008).  Diffusion spectrum imaging (DSI) or Q-ball imaging is a

multi-shell imaging technique that employs the same pulsed gradient spin echo used to 

obtain diffusion weighted images, but results in diffusion displacement distributions 

rather than a single measurement of the diffusion tensor in each voxel (King et al., 1994).

Spin displacement profiles, or diffusion spectrums, are obtained via Fourier transform of 

Q-space in a manner analogous to Fourier transform of k-space in T1 or T2 weighted MR 

images.  Spectrum imaging techniques estimate a probability distribution of diffusion 

direction at each voxel, with broad probability distributions reflecting increased 

uncertainty.  The diffusion spectrum of a voxel containing crossing fibers will exhibit 

multiple discrete peaks, with each peak directed towards a component fiber group.  In this

way spectrum imaging can resolve crossing fibers that cannot be resolved using a 

diffusion tensor model.  Probabilistic tractography is then performed by drawing samples 

from the diffusion distribution within a seed voxel to generate streamlines across voxels 

building a probabilistic connectivity distribution.  Thousands of samples are drawn in 

each seed and the density of streamline samples reflects the probability of connection 

with other seed voxels.  The combination of DSI and probabilistic tractography reduce 

model errors and more accurately identify fiber tracts than simpler models that assume a 

single primary direction of diffusion (Jbabdi et al., 2012).
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3.2 Methods

3.2.1 Data 

Diffusion spectrum data was obtained from the HCP database for the same 

subjects as for the functional MRI data detailed in Chapter II Section 2.2.1.  As the main 

goal of the HCP is to map macroscopic connections in the human brain and its variability 

in healthy adults, considerable effort was put into optimizing the scanning parameters for 

diffusion data (Ugurbil et al., 2013).  After sampling the parameter space, the best trade-

off between angular contrast and SNR was found when all shells were below b = 3500 

s/mm2 (Sotiropoulos et al., 2013).  It was further determined that three shells were better 

for resolving three way fibre crossings than two shells while having almost identical 

performance in detecting two-way crossings.  Therefore, HCP DSI data was collected 

using three shells (b = 1000, 2000, and 3000 s/mm2) each with 192 data points in 90 

gradient directions (Jones, 2004).  Six b=0 acquisitions were also acquired (three pairs in 

each of 2  phase encoding directions).  The scanning protocol resulted in a diffusion 

resolution of 1.25 mm isotropic voxels with 111 slices (TR 5520 ms; TE 89.5 ms, FOV 

210x180).  

3.2.2 Data Preprocessing 

The data was obtained in a preprocessed form from the HCP database.  The 

preprocessing pipeline executed by the HCP includes normalization of b0 image intensity 

across runs, and corrections for EPI distortions, eddy-current-induced distortions, subject 

motion, and gradient-nonlinearities (Glasser et al., 2013).  Large amplitude gradient 
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fields and rapid gradient switching are required for diffusion spectrum MR sequences.  

The required gradients result in image distortion due to gradient induced eddy currents.  

The HCP scheme for correction of EPI and eddy-current induced distortions is based on 

manipulation of acquisitions so that the distortion manifests differently in different 

images (Andersson et al., 2003).  Two phase-encoding direction-reversed images for each

diffusion direction are acquired.  Reversing the phase encoding direction flips the sign of 

the susceptibility-induced distortions.  Knowledge of distortion in complimentary 

diffusion image pairs is used to invert a generative model to simultaneously correct for 

motion, susceptibility and eddy current distortions (Andersson & Sotiropoulos, 2015; 

2016).  Image pairs are then combined into a single distortion-corrected image, as 

implemented in FSL's (Smith et al., 2004) eddy (Anderson et al., 2012; Anderson & 

Sotiropoulos, 2015; 2106; Jesper et al., 2016) and topup (Andersson et al., 2003) 

algorithms.  A gradient nonlinearity correction warp field is then calculated to remove 

spatial distortion (Jovichich et al., 2006) in b0 images.  Structural images for each subject 

are registered to the gradient nonlinearity corrected mean b0 image using rigid body six 

degrees of freedom (DOF) boundary-based registration (Greve & Fischl, 2009).  Eddy 

corrected diffusion data is then registered to the structural volume for each subject 

according to both the gradient nonlinearity correction and the b0 to T1 registration 

transform.  
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3.2.3 Fiber Orientation Estimation  

A common model-based approach to fiber orientation estimation is the so-called 

ball and stick model (Behrens et al., 2003b).  In this model, the diffusion within a voxel is 

assumed to be comprised of two types of compartments: a non-oriented tissue that gives 

rise to an isotropic diffusion signal, and an oriented fiber component with an anisotropic 

diffusion signal.  The approach is to model the diffusion signal attenuation ui  for each 

gradient intensity value bi as a 3D gaussian distribution (Behrens et al., 2003b) along a 

gradient direction ri

ui=S 0((1− f )exp(b i d )+ f exp(−bi d r i
T R ART r)) (1)

where d is diffusivity, S0 is the diffusion signal with no applied gradients, f is the fraction 

of the signal contributed to by anisotropic diffusion within the voxel corresponding to a 

single fiber and RART is the corresponding tensor along the fiber direction.   The first 

term represents the isotropic partial volume and the second term the anisotropic partial 

volume.  The parameters of interest are the tensor eigenvalues and the angles between 

them that describe the direction of the fiber.  Bayesian estimation of the parameters of 

this model to the signal at each voxel generates a fiber orientation density function 

(fODF) for each voxel as well as a measure of its uncertainty.  Additional fibers j are 

added to the partial volume model as a sum over fiber compartments fj within the voxel:

ui=S 0((1−∑
j=1

N

f j)exp(bi d )+∑
j=1

N

f j exp(−bi d r i
T R j AR j

T r i)) (2)
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The partial volume model of the diffusion signal within each voxel is the sum of an 

isotropic signal and the weighted sum of signals from a set of fibers with different 

orientations.  However, at b values above 1500 s/mm2 however, diffusive decay is no 

longer mono-exponential (Niendorf et al., 1996).  Therefore, when multi-shell imaging is 

used, simply adding additional terms for additional fiber directions leads to erroneous 

results.  Approaches that attempt to explicitly model the divergence from a single 

exponential term can lead to model overfitting (Jbabdi et al., 2012) and false positive 

connections.  Therefore, an extension of this model for the estimation of additional fiber 

directions treats the diffusion coefficients within a voxel as a continuous (gamma) 

distribution (Jbabdi et al., 2012).  Parameterizing the distribution allows an analytic 

expression to be formulated for the (fODF) and requires the addition of only one 

parameter to the mono-exponential model, avoiding overfitting.  This algorithm is 

implemented in the Bayesian estimation of diffusion parameters obtained using sampling 

techniques for crossing fibers (BEDPOSTX) algorithm, part of the fMRI software library 

(FSL).  It runs Markov Chain Monte Carlo (MCMC) sampling to build distributions on 

diffusion parameters at each voxel.  Automatic relevance determination (ARD) or 

shrinkage priors (MacKay, 1995; Friston, 2003; Woolrich & Smith, 2001)  are used for 

assessing the most appropriate number of fiber orientations at each voxel (Behrens et al., 

2007).  ARD does not fit a separate model for different numbers of fibers and compare 

them.  Instead it fits a single model with parameters for multiple fiber orientations.  When

there is little evidence that additional directions are present within a voxel, the 

corresponding estimate of parameter variance will be very small and the parameter 
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estimate will be forced to zero.  ARD is used on the partial volume parameters for all 

additional fiber orientations beyond the first one.  BEDPOSTX algorithm was applied to 

the preprocessed HCP data to estimate fiber orientation densities and their uncertainties 

using this framework and a Rician noise model (Jbabdi et al., 2012; Sotiropoulos et al., 

2013).

3.2.4 Probabilistic Tractography 

After generating voxel-wise probability density functions, a global connectivity 

model is inferred by spatially propagating the local fiber orientation information obtained

through the BEDPOSTX procedure (Behrens et al., 2003b; Parker & Alexander, 2003).  A

probabilistic streamline tractography procedure was used called probabilistic tracking 

with crossing fibers (PROBTRACKX),  also part of the FSL package (Behrens et al., 

2007; Behrens et al., 2003b).  Tracing proceeds from a seed location along a direction 

sampled from the posterior probability distributions resulting from the previous voxel-

level analysis and continues through neighboring voxels by choosing samples whose 

orientation is closest to that of the preceding one in the streamline.  This procedure is 

repeated at each seed regions drawing many samples in order to create a probability 

distribution on the connection between n seed regions and n target regions. The resulting 

nxn matrix will contain the number of streamlines that have started from one seed region 

and passed through any target ROIs.  The number of streamlines that passed though 

target regions are then counted and divided by the total number of samples drawn to 

compute a probability.  This generates a spatial probability distribution function on 
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connectivity between each seed region and all target brain regions given the local 

probability distributions.  In this way, structural connectivity matrices are obtained using 

a seeding strategy.  Probabilistic tractography was performed using all 252 Brodmann 

area ROIs as described in Section 2.2 as seeds and targets. The algorithm was run using 

the following parameters: 5000 samples were drawn from each voxel within a seed 

region, a  curvature threshold of .2 excludes tracts with a sharp curvature in a single step 

(corresponding to the cosine of the allowable angle between two steps ~+-80 degrees);  

2000 steps per sample with a .5 mm step length; volume fraction threshold of .01 for 

inclusion of more than one fibre orientation, loop checks were performed on paths and no

minimum distance threshold.  Results at three different thresholds 1%, 5%, and 10% were

compared against connectivity reported in the macaque literature.  Based on this 

comparison, a 5% thresholding (250 of  5000 seeds) was chosen.  A seed region was 

considered to be connected to a target region if any voxel within the target exceeded this 

threshold.  Binary group-level connectivity matrices were created from single subject 

matrices with the added requirement that connections be present in at least half (12/24) of

the subjects.  These matrices were used to generate group-level whole-brain connectivity 

profiles for each DMN region.  Group-level matrices containing the mean number of 

streamlines reaching target ROIs were generated using the same criteria, as a de-facto 

measure of connection strength.   The resulting group-level binary connection matrices 

were visualized using BrainNet Viewer (Xia et al., 2013).  In addition, visualizations of 

the reconstructed tracts were created for qualitative assessment of patterns of 

connectivity.  Since tractography traces through  fODFs, of which there is no group-level 



63

estimate,  fiber tract visualizations are performed at the single subject level.  Therefore, a 

euclidean distance measure between the group connectivity matrix and each individual 

subject was calculated to identify the subject whose individual structural connectivity 

was most similar to the group connectivity matrix.  This subject was chosen to generate 

visualizations of tracts through DMN regions.  For these visualizations, a deterministic 

fiber tracking algorithm (Yeh et al., 2013)  was used to trace through the results of the 

BEDPOSTX reconstruction allowing for 2 fibers of different orientation within a voxel. 

A random seeding procedure was used covering the whole brain with an anisotropy 

threshold of 0.12, angular threshold of 65 degrees, and step size of 0.1 mm.  The fiber 

trajectories were smoothed by averaging the propagation direction with 40% of the 

previous direction.  A total of 200,000 tracts were calculated.  DMN ROIs were 

transformed via a non-linear transformation to warp them from MNI standard space to 

the subject's diffusion space.  Visualizations of the tracts passing through the DMN ROIs 

were then created using using trackVis (Wang et al., 2007b).

In addition to the methodological considerations described above, there are many 

other caveats to the interpretation of DTI data.  Even using data with high angular 

resolution suffers from difficulties tracing fibers through the grey matter white matter 

boundary particularly from cortical areas within sulci (Reveley et al. 2015).  Because 

diffusion is equally likely in any direction along a fiber, the direction of axonal projection

cannot be determined and therefore afferents and efferents cannot be inferred.  Synapses 

are much smaller than diffusion imaging resolution, therefore connectivity results are 

typically based on the assumption that a connection is made if a fiber passes through a 
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structure without direct evidence or ability to discern the type of cells being synapsed.  

The number of fiber tracts between regions is not the only indicator of connection 

strength as factors such as the firing properties of the post-synaptic cells and arrangement

of incoming synapses also play an important role in determining the strength of regional 

connections.  Errors in fiber orientation estimation can propagate along the the length of a

tract and therefore longer tracts have greater possibility for both false positives and false 

negatives.  With these caveats in mind, diffusion imaging also allows unprecedented 

insight into the large scale organization of the brain and the connectivity of functional 

networks.  

 

3.2.5  Comparing Connections of  ADMN and PDMN

Comparisons of connections in different lobes of the brain and different thalamic 

nuclei were made to summarize differences in connectivity profiles of anterior and 

posterior portions of the DMN.  Using single subject binary connectivity matrices, 

regional connections between anterior and posterior DMN regions were compared.  

Number of streamlines for each region and subject were calculated and normalized by the

number of right/left lateralized ROIs in anterior (4) and posterior (8) portions of the 

network.  Connections between DMN brain areas and ROIs in 24 regional subdivisions 

based on lobe and gyri from the Brainnetome atlas (described in Section 2.2) were then 

compared via t-test.  

3.3 Results



65

Overall, the connectivity patterns of the DMN regions are similar to those detailed

in macaques in Section 1.4.8, including in regions of significant evolutionary changes in 

ventral medial prefrontal cortex.  With the exception of lateral parietal cortex BA 39, all 

of the DMN regions are strongly interconnected.  However the connections of individual 

regions differ significantly, especially between anterior and posterior parts of the 

network. Both portions of the network have extensive connections through subcortical 

structures in the striatum and thalamus although they project to different areas within 

those structures.  Differences in connectivity in anterior and posterior portions of the 

network are also consistent with the animal literature.  The following sections first detail 

the connections of each DMN region in anterior and posterior DMN.  Then, the 

differences in connectivity between the anterior and posterior portions of the network are 

considered.   The chapter concludes with a discussion of DMN region projections through

the basal ganglia and thalamus.  Tables of connections for each region sorted by their 

connection strength are provided in the Appendix.

3.3.1  Connections of the Anterior Default Mode Network 

3.3.1.1 Brodmann Area 10 medial 

As shown in Figure 3.1, BA 10 medial (m) projects strongly and ipsilaterally 

through the cingulum bundle to medial posterior parts of the network, BAs 31, 23, and 

7m and to secondary somatosensory cortex BA 5.  While, connections to posterior 

cingulate and medial parietal regions are mostly ipsilateral, it is strongly connected 

through the genu of the corpus callosum to contralateral regions in frontal cortex 
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including BAs 10m, 14, 32p, 8 (FEF), and 9m.  It has  connections to the ventral insula  

and hippocampus and parahippocampal gyrus.  Its striatal projections intersect both the 

head and body of the caudate as well as the nucleus accumbens.  Streamlines from BA 

10m intersect all subdivisions of the thalamus except sensory thalamus.  It does not 

appear to have direct connections with BA39, typically considered part of the DMN.  

Table B1 lists all connections of BA 10m ordered by de-facto connection strength 

(number of streamlines) and averaged over left and right lateralized regions.  

3.3.1.2 Brodmann Area 32 pregenual 

In comparison to BA 10m,  BA32 pregenual (p) has a more circumscribed pattern 

of almost exclusively ipsilateral connections through the cingulum (Figure 3.2).  It has 

connections with most regions within and anterior to the cingulate gyrus including BAs 

32 subgenual (sg), 9m, 8, 6, 24, 23, 31, and 7m.  A large number of fibers connect it to 

the nucleus accumbens but not to other striatal regions nor the thalamus.  Also absent are 

connections to regions in the temporal and occipital lobes.  See Table B2 for a list of all 

connections of BA 32p.
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Figure 3.1 Anatomical Connections  of BA 10 Medial

A.  Group-level connectivity for BA 10m (red).  B.  Side and front views of single subject

tractography for left hemisphere BA 10m (red), illustrating ipsilateral fibers projecting to 

subcortical regions, projections through the cingulum and contralateral connections in 

prefrontal cortex through the genu of the corpus callosum.  The color-coding of 
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tractography pathways was based on a standard red-green-blue code for each pathway 

(red for right-left, blue for dorsal-ventral and green for anterior-posterior).
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Figure 3.2 Anatomical Connections of BA 32 Pregenual 

A.  Group-level connectivity for BA 32p (red).  B.  Side and front views of single subject 

tractography for left hemisphere BA 32p (red). BA 32p has almost exclusively ipsilateral 

connections through the cingulum.  Tractography pathways coded red for right-left, blue 

for dorsal-ventral and green for anterior-posterior.

3.3.2  Connections of the Posterior Default Mode Network

3.3.2.1 Connections of Posterior Parietal Cortex - BA 23 dorsal

BA 23 dorsal (d) in the posterior cingulate has connections to all other  parts of 

the posterior DMN both ipsilaterally and contralaterally through the isthmus of the corpus

callosum (Figure 3.3).  Through the cingulum bundle, it is connected ipsilaterally with 

anterior regions of the DMN as well as regions within and superior to the cingulate gyrus 

including BAs 32 sg, 24, 5, 8m, and 9m.  It is also connected with neighboring cortical 

regions in cuneal cortex BAs: 7rostral (r), 7 postcentral (pc) and 7 caudal (c), parietal-

occipital sulcus as well as primary motor and somatosensory cortex including BAs 1, 2, 3

and medial portions of BA 4.  It has both ipsilateral and contralateral connections with 

the insula and temporal regions including the hippocampus, parahippocampal gyrus and 

superior and inferior temporal gyrus (BAs 22 and 20).  It projects to the dorsal caudate, 

dorsal lateral putamen and nucleus accumbens and has connections with thalamic 

subdivisions associated with temporal, occipital, posterior-parietal, sensory, premotor, 

medial and lateral prefrontal cortex (Table B3).   
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3.3.2.2  Connections of Posterior Parietal Cortex - BA 31

Situated just dorsal to BA23d in the posterior cingulate, BA 31 is connected 

ipsilaterally to all other regions of the DMN (Figure 3.4) and contralaterally to posterior 

DMN regions.  Like area 23d, BA31 is also connected ipsilaterally through the cingulum 

to regions within and on the anterior border of the cingulate gyrus including BAs 5, 7, 8, 

9, 24, 32sg as well as primary somatosensory cortex BAs 1, 2, 3 and primary motor 

cortex.  It has connections with area 9 lateral (l) in lateral prefrontal cortex, the insula and

neighboring regions in cuneal cortex, and parietooccipital sulcus.  It has both ipsilateral 

and contralateral connections to all parts of the striatum and all major subdivisions of 

thalamic nuclei except premotor thalamus (Table B4).  There is some disagreement 

between the group-level connectivity matrix and the single-subject tracts for BA 31.  The 

single-subject results show connections throughout the ipsilateral temporal lobe that are 

not present in the group-level connectivity matrices.  Connections between BA 31 and 

temporal regions have been identified in the macaque literature (Section 1.4.8.2.2).  

However, these connections can be seen when using a lower connectivity threshold of 

about 1%.  Given the probabilistic nature of the tractography algorithm, it is possible that 

a lower threshold is required for hub regions such as BA31.   

3.3.2.3 Connections of  the Precuneus - BA 7m

Located in the medial superior parietal lobule, BA 7m is connected bilaterally to 

other posterior DMN regions and ipsilaterally to the anterior DMN via the cingulum 

(Figure 3.5).  Along the cingulum, tracts reach medial BAs 5 ,6, 8, and 9, and primary 
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sensory cortex.  It has extensive connections in the ipsilateral temporal lobe and more 

extensive connections in occipital cortex than BAs 23 or 31.  In the striatum, it projects to

the dorsal caudate, ventral and dorsal putamen, and nucleus accumbens.  Its thalamic 

connections include nuclei associated with sensory, premotor, occipital, temporal, 

posterior parietal, and lateral prefrontal regions (Table B5).  

3.3.2.4  Connections of BA 39 rostrovental 

BA 39 rostroventral (rv), located more laterally in superior parietal cortex than the

rest of the posterior DMN regions, has a connectivity profile unlike any of the other 

DMN regions (Figure 3.6).  Its projections are much more laterally focused with 

extensive connections throughout the temporal lobe.  It has connections with the caudal 

hippocampus as well as the insula and lateral prefrontal cortex including BAs  5l, 6l, 8l, 

10l, 44 and the inferior frontal junction (IFJ).  Furthermore, it does not share connections 

through the cingulum to the anterior portions of the network.  It projects to a more 

restricted area of the striatum, having connections with the nucleus accumbens dorsal and

ventral putamen, but not the caudate nucleus.  It is also connected with more lateral and 

inferior portions of the thalamus having connections only with nuclei associated with 

posterior parietal, sensory and and temporal cortex (Table B6).

3.3.3 DMN Structural Connections Summary

Fibers that pass through the DMN were found to pass through 62% of  the 

Brodmann areas in the Brainnetome atlas outside the network itself.  Anterior and 
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posterior regions of the DMN are connected to one another through the association fibers 

of the cingulum, but each has a local connectivity profile that shifts gradually across the 

network as you go from anterior to posterior regions (Figure 3.7).  Connections through 

ADMN are concentrated medially in prefrontal cortex, subcortical areas and throughout 

the cingulate gyrus.  The anterior portion of the DMN, BAs 32p and 10m are highly 

interconnected with one another both ipsilaterally and contralaterally through the genu of 

the corpus callosum.  They are both connected to ipsilateral regions throughout the 

cingulate gyrus through the cingulum.  Tracts did not appear to connect ADMN regions 

with the amygdala or temporal cortex through the uncinate fasciculus.  Connections to 

frontal cortex through the uncinate fasciculus appear to be restricted to regions more 

ventral in orbital prefrontal cortex and regions more lateral than BA 10m.  Therefore, if 

DMN connections through the uncinate fasciculus do exist, BA 11 must also be 

considered part of the network.  Alternatively, ADMN may have connections to temporal

cortex indirectly through the PDMN regions.  Ipsilaterally, PDMN regions are tightly 

interconnected with ADMN regions through the cingulum, with the exception of BA 39.  

PDMN has significantly more connections to hippocampal regions as well as regions 

throughout the temporal lobe, regions associated with visual processing and regions in 

precentral and postcentral gyrus associated with sensory-motor processing  (Figure 3.7).  

As you move more dorsally through the medial posterior DMN regions, there are more 

occipital connections and connections with more inferior regions of temporal cortex.  The

connections of BA 39 are quite different than those of the rest of the network as it does 

not appear to have connections through the cingulum bundle.  Instead, it has has 
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extensive projections in the temporal lobe and to some areas of lateral prefrontal cortex 

that are not associated with the DMN.   Anterior and posterior DMN regions project to 

the striatum especially the caudate and nucleus accumbens, and PDMN also has 

connections to the putamen.  Differences between ADMN and PDMN can also be seen in

their thalamic connections (Figure 3.8).  ADMN has the strongest connection to the 

medial thalamus generally associated with prefrontal cortical regions and the thalamic 

subregion associated with premotor cortices.  PDMN has a connections throughout most 

of the thalamic subregions.  PDMN tracts enter the thalamus at its medial posterior and 

lateral posterior extent, with a subset of those fibers continuing through the center of 

anterior thalamus through its entire anterior to posterior extent.
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Figure 3.3 Anatomical Connections of BA 23 Dorsal   

A.  Group-level connectivity for BA 23d (red).  B.  Side and front views of single subject 

tractography for left hemisphere BA 23d  (red). BA 23d  has ipsilateral and contralateral 

connections with DMN regions in the posterior cingulate and the hippocampal and 

parahippocampal regions through the cingulum and ipsilateral connections to regions 
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throughout and anterior to  mid and anterior cingulate. Tractography pathways coded red 

for right-left, blue for dorsal-ventral and green for anterior-posterior.
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Figure 3.4 Anatomical Connections of BA 31 

A.  Group-level connectivity for BA 31 (red).  B.  Side and front views of single subject 

tractography for left hemisphere BA 31  (red). BA 31 has ipsilateral and contralateral 

connections with DMN regions in the medial posterior cingulate.  It has ipsilateral 

connections to anterior DMN regions, regions throughout the cingulate gyrus and the 

hippocampus and extensive connections through the temporal lobe. Tractography 

pathways coded red for right-left, blue for dorsal-ventral and green for anterior-posterior.
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Figure 3.5 Anatomical Connections of BA 7 Medial  

A.  Group-level connectivity for BA 7m (red).  B.  Side and front views of single subject 

tractography for left hemisphere BA 7m  (red). BA 7m  has ipsilateral and contralateral 

connections with DMN regions in the posterior cingulate and connections ipsilaterally 
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within the temporal lobe and occipital cortex. Tractography pathways coded red for right-

left, blue for dorsal-ventral and green for anterior-posterior.

Figure 3.6 Anatomical Connections of BA 39 Rostroventral 

A.  Group-level connectivity for BA 39rv (red).  B.  Side and front views of single 
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subject tractography for left hemisphere BA 39rv (red). BA 39rv has connections mostly 

in ipsilateral temporal lobe and lateral prefrontal areas and does not have connections 

through the cingulum bundle to ADMN regions.  Tractography pathways coded red for 

right-left, blue for dorsal-ventral and green for anterior-posterior.

Figure 3.7 Regional Connections of the Anterior vs. Posterior DMN 

Anterior and posterior DMN connections through the Brainnetome atlas across subjects 

normalized by the number of areas in each cortical region so that a value of 1 indicates a 

mean across subjects where all DMN regions are connected to all cortical subregions.  

Regional connection frequency is sorted by their association with ADMN, illustrating a 

dissociation between ADMN and PDMN connections.  PDMN has more extensive 
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connections to temporal, parietal and occipital cortex while ADMN has more connections

in the superior frontal, medial frontal and orbital gyrus.  CG = cingulate gyrus, SFG = 

superior frontal gyrus, Pcun = precuneus, OrG = orbital gyrus, BG = basal ganglia, MFG 

= middle frontal gyrus, Tha = thalamus, Hipp = hippocampus, PCL = paracentral lobule, 

MVOcC = medio-ventral occipital cortex, PhG = parahippocampal gyrus, Amyg = 

amygdala, INS = insula, STG = superior temporal gyrus, FuG = fusiform gyrus, IFG = 

inferior frontal gyrus, LocC = lateral occipital cortex, SPL = superior parietal lobule, ITG

= inferior temporal gyrus, MTG = medial temporal gyurs, IPL = inferior parietal lobule, 

PrG = precentral gyrus, pSTS = posterior superior temporal sulcus, PoG = postcentral 

gyrus. *** indicates significance at p < .001, * significance at p <.05 corrected, error bars

indicate standard error.  
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Figure 3.8 ADMN and PDMN Thalamic Connections 

Anterior and posterior DMN connections through the thalamic subregions of the 

Brainnetome atlas across subjects sorted by connection frequency in the ADMN.  A 

dissociation between ADMN and PDMN connections in thalamic regions is apparent.   

PDMN has connections throughout a greater extent of the thalamus while ADMN has 

greater connections to thalamic subregions associated with prefrontal and premotor 

cortices.  A value of 1 indicates a mean across subjects where all DMN regions are 

connected to the thalamic subregion. *** indicates significance at p < .001, ** p<.01 and 

* p<.05 corrected, error bars indicate standard error.



82

3.3.4 Cortico-Striatal-Thalamic Circuit of the DMN

Both anterior and posterior regions of the DMN have connections with the 

striatum and thalamus.   However, the two parts of the network appear to project to 

different areas within these structures.  Anterior parts of the DMN appear to project to 

both medial and lateral regions of the head of the caudate and anterior nucleus 

accumbens.  Posterior parts of the network project to the tail of the caudate and to the 

posterior parts of the putamen and nucleus accumbens (Figure 3.9).  ADMN has 

connections with the anterior medial thalamus while posterior regions have fibers that 

approach the thalamus from its posterior extent and continue anteriorly through most of 

the thalamic subregions.  Therefore, ADMN and PDMN connect to the striatum and 

thalamus from opposite ends forming a circuit in the sagittal plane through the basal 

ganglia and thalamus ipsilaterally.   Contralateral connections through the striatum and 

thalamus form a second loop also in the sagittal plane that circumscribes the ipsilateral 

one (Figure 3.10).  In the ipsilateral circuit, cingulum fibers from the PDMN pass through

ADMN regions and continue into the anterior ventral caudate and nucleus accumbens.  

Contralaterally, PDMN regions appear to have connections to the same areas of the basal 

ganglia and thalamus as it does ipsilaterally.  ADMN also has connections through 

contralateral striatal regions.  It does not appear to have direct connections to 

contralateral thalamic regions, though such connections may occur downstream of its 

basal ganglia connections.  Tracts that go through anterior and posterior regions of the 

network in one hemisphere are connected to striatal and thalamic nuclei in the 

contralateral hemisphere.  Therefore, a contralateral circuit circumscribes the ipsilateral 



83

circuit (Figure 3.11A).   Assuming that striatal connections are unidirectional and that 

there are likely reciprocal connections between the thalamus and each DMN region, 

Figure 3.11B diagrams the proposed CST circuit through the DMN.  

Cortical maps of connections to the basal ganglia and thalamus indicate that 

projections from regions with similar functionality cluster into distinct regions within 

these subcortical structures (Choi et al. 2012; Metzeger et al., 2013; Haber & McFarland, 

2001; Haber, 2016; Choi et al. 2017).  Based on tract tracing studies, five CST circuits 

have previously been proposed (Alexander, 1986).  Two prefrontal circuits, one 

originating in dorsolateral prefrontal cortex, and one originating in lateral orbitofrontal 

cortex, an occulomotor circuit and a circuit with unknown function originating in the 

anterior cingulate gyrus were described.  It is possible that the CST circuit through the 

DMN participates in or subsumes one or more of these circuits, particularly the 

occulomotor and anterior cingulate circuits.  The occulomotor circuit is believed to 

originate in the frontal eye field (BA 8) and is proposed to include projections from BAs 

9, 10 and 7 (Yeterian & VanHoesen, 1978, Selemon & Goldman-Rakic, 1985) to the 

body of the caudate and the ventral anterior and mediodorsal regions of the thalamus.  

My results suggest that only BA 10m has direct connections to lateral portions of BA 8 

(FEF), but all of the other medial DMN structures have connections with BAs 8m, 7 and 

9l as well as the caudate nucleus and the anterior subregions of the thalamus.  Therefore, 

there is considerable overlap in the DMN circuit and the proposed occulomotor circuit.  

The anterior cingulate circuit is described as having projections from BA 24 in anterior 

cingulate, the hippocampus, amygdala, entorhinal cortex and regions throughout the 



84

temporal lobe to the nucleus accumbens and mediodorsal portion of the thalamus.  While 

BA 24 is not part of the DMN, the circuit through which the DMN connects to the 

striatum and thalamus projects heavily through the entire cingulate gyrus.  In addition, 

the hippocampus and entorhinal cortex are connected to DMN regions and are often 

considered to be part of the DMN.  Therefore, it may be that the DMN CST circuit is an 

amalgamation of two of the proposed circuits through the striatum and thalamus.  The 

other two prefrontal circuits were described as dorsolateral and lateral orbitofrontal 

circuits.  The orbitofrontal circuit is said to originate in BAs 9 and 10 in orbitofrontal 

cortex and also includes BA 7 in posterior-parietal cortex with projections throughout the

caudate.  Thus it is conceivable that the CST circuit described here through DMN 

structures may have some overlap with all but the motor circuit.   

Projections through the basal ganglia are organized into two main pathways called

the direct and indirect pathways generally believed to have opposing roles in motor 

function.  The direct pathway through the basal ganglia proceeds from the striatum 

directly to the globus pallidus internal (GPi) and substantia nigra pars reticulata (SNr).  

The indirect pathway proceeds from the striatum to the GPi via the globus pallidus 

external (GPe) and subthalamic nucleus (STN) (Haber, 2016).  Activation of the direct 

pathway acts to release thalamic regions from inhibition, while activation of the indirect 

pathway increases inhibition of thalamic nuclei.  The two pathways are believed to 

cooperate by releasing from inhibition cell assemblies related to desired movement, while

inhibiting unwanted movement.  The role of the two pathways in cognitive function is 

less well understood.  As the two pathways have opposing roles, understanding the 
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relationship of functional networks that may compete with one another through these 

subcortical structures is of particular interest.  However, it is not possible to disambiguate

the two pathways using diffusion imaging, because many of the fibers that synapse in the 

GPi reach the GPi by first passing through the GPe.  However, it is worth noting that 

connections from sensory motor cortex have a relatively vertical trajectory through the 

GP so that the majority of fibers that traverse the internal segment pass first through the 

external segment.  Fibers originating in frontal and parietal cortex, however, appeared to 

pass through the external segment at an oblique angle such that they do not always pass 

through the GPi.  Further study is required to determine the veracity of this observation 

and, if true, its functional significance.  Nevertheless, the anatomical connections of the 

DMN appear to form a CST circuit that may subsume several of the previously proposed 

CST circuits.  This result also raises the possibility that other functional networks 

identified in the functional MRI literature may each be involved in parallel CST circuits.  
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Figure 3.9 Thalamic and Striatal Connections of the DMN 

A. ADMN connections to the striatum.  B. ADMN connections to the thalamus. 

C. PDMN connections to the striatum. D. PDM connections to the thalamus.
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Figure 3.10 Ipsilateral and Contralateral DMN connections to Striatum and Thalamus 

A.  ADMN tracts through the striatum.  B.  PDMN tracts through the striatum.  C. PDMN

thalamic tracts.  Crosshairs indicate the midline of the brain.  Blue tracts indicate 

ipsilateral connections, green tracts indicate connections from contralateral DMN 

regions.
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Figure 3.11  Cortical Striatal Thalamic Circuit of the DMN 

A.  Blue tracts show ipsilateral circuit on the left side.  Green and purple lines show 

contralateral circuit with connections from left DMN regions in purple and right DMN 

regions in green.  B. Group level connection matrix of DMN connections with striatum 
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and thalamus.  C.  Diagram of the ipsilateral and contralateral cortical striatal thalamic 

circuits through the DMN.  Black lines indicate ipsilateral connections.  Yellow lines 

indicate contralateral connections.  



90

CHAPTER IV
DMN TASK-EVOKED DYNAMICS

4.1 Introduction

Task-based fMRI studies have identified networks that support a wide range of 

cognitive abilities (Cabeza & Nyberg, 2000).  Regions associated with attention and 

executive control exhibit task-evoked increases in BOLD signal and are known 

collectively as the fronto-parietal control network or the task positive network (TPN) 

(Shulman et al., 1997; Niendam et al., 2012).  Task-evoked increases in the TPN are 

often coincident with decreases in signal within the DMN (Golland et al., 2008; Spreng et

al., 2010), although the functional significance of this relationship is not yet known.  The 

consistency of DMN deactivations across disparate experimental paradigms suggests that 

DMN deactivation has a more general purpose in the context of externally directed focus.

Many studies report a correlation between task-evoked suppression of DMN activity and 

task accuracy (Weissman et al., 2006; Kelly et al., 2008; Esterman et al., 2013).   

Therefore it is thought that a reduction in DMN activity is required to successfully 

redirect attention away from internal rumination towards the external environment 

(Buckner et al., 2008).  Others have suggested that decreased activity in the DMN may 

act to reduce brain activity in regions supporting task-irrelevant functions (Anticevic et 

al., 2013).   A negative relationship between the DMN and TPN has also been observed 

in spontaneous BOLD fluctuations measured in the resting state (Fox et al., 2005).  This 

observation led to the view that there is an intrinsic antagonism between the two 

networks.  However, some have attributed negative correlation between the DMN and 
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TPN during rest to an artifact caused by the use of global signal regression in 

preprocessing (Dixon et al., 2016).  Additionally, it has been shown that coordinated 

activity in the DMN and TPN can be evoked by certain cognitive tasks (Spreng et al., 

2010; Gerlach et al., 2011), demonstrating that the two networks are not necessarily 

antagonistic.  Several studies have suggested that interaction between the TPN and DMN 

is mediated by the anterior insula (dIa) (Menon & Uddin, 2010; Sridharan et al., 2008), 

which is believed to play a role in task switching.  However, the mechanism underlying 

the interaction between the TPN and DMN is unknown. 

Inference about the interaction between brain regions requires characterizing their 

concurrent changes in activity over time.  However, the most commonly used fMRI 

analysis techniques provide no information about dynamic changes in activity.  General 

linear models typically employed for the analysis of task-based fMRI provide only a 

static picture of voxels whose activity is significantly correlated with the time course of 

experimental manipulation.  In block design fMRI studies, the time course of the 

experiment is modeled by blocks of on-off periods.  On periods represent experimental 

epochs consisting of multiple trials.  Each trial typically includes several distinct 

operations including processing visual stimuli, any number of cognitive computations, 

and choosing a response.  The rational for block designs in task-based fMRI is based on 

the lagging temporal response of the HRF, but the successful use of event-related designs

(Friston et al., 1997; Buckner et al., 1998; Amaro & Barker, 2006) suggests that BOLD 

signal contains fluctuations related to events on smaller time scales (Mechelli et al., 

2003).   Another commonly used technique for analysis of MRI data is functional 
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connectivity.  Functional connectivity is more commonly applied to resting-state fMRI.  

It measures the correlation between regions, but provides only a static snapshot of the 

pattern of these relationships over time.  Several approaches have been developed for the 

purpose of studying temporal dynamics in MRI time series.  One simple approach, 

sliding window correlation, bins the time series into small segments and measures the 

correlation over successive bins (Hutchison et al., 2013).  Sliding window correlations 

may not accurately reflect changes in the covariance structure between brain regions over

time, as changes in signal variance across windows are often accounted for.  More 

critically, if the DMN and TPN are negatively correlated both during the execution of 

explicit cognitive tasks as well as during periods of rest (Cole et al., 2014; Hansen et al., 

2014), brain activity related to behavioral changes may not be reflected in functional 

connectivity analysis.  Another approach for studying temporal dynamics is effective 

connectivity.  Effective connectivity analyses such as Bayesian network analysis (Spirtes 

et al., 2000, Ramsey et al., 2011), granger causality (Brovelli et al., 2004) and dynamic 

causal modeling (Friston et al., 2003), describe the direction of influence between brain 

regions in addition to the strength of their functional relationships.  However, these 

approaches cannot disambiguate whether task-evoked decreases in the DMN result from 

decreases in excitatory input, increases in inhibitory input, or a specific pattern of activity

across functionally connected regions. 

Recent neurophysiological studies have demonstrated transient changes in neural 

activity in response to external task demands corresponding to sequential bottom-up and 

top-down flow of information (Siegel et al., 2015).  Transient task-evoked activity has 
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also been identified using fMRI where it has been shown that while some regions exhibit 

sustained increases over task blocks, others, such as in the occipito-parietal junction, 

exhibit only transient increases in activity during task transitions (Gonzalez-Castillo et 

al., 2012).  Therefore, characterizing the temporal dynamics of changes in BOLD signal 

across trials may provide insights into the functional role of the DMN.  In this chapter, I 

present the results of a series of exploratory analyses designed to describe the dynamics 

of task-evoked activity in the DMN.  The work is based on the assumption that task-

evoked changes in activity in the DMN are dependent on changes in brain regions that 

provide input to the network and makes use of the anatomical connectivity described in 

Chapter II.  I show that DMN regions do not exhibit sustained suppression of activity 

during experimental epochs and do not function as a unit.  Rather, each region of the 

DMN exhibits unique task-specific fluctuations.  Time courses of DMN activity appear to

be related to trial responses.  Using an approach that combines clustering analysis and 

Markov chain models, I show that for each task, there is a predictable progression 

through successive patterns of activity across brain regions.  The anterior and posterior 

part of the network often act independently of one another and frequently demonstrate 

opposing changes in signal intensity.  During task performance, the most common 

configuration of activity has above baseline activity in parietal regions, and below 

baseline activity in DMN regions in the prefrontal cortex and cingulate.  This pattern 

appears to be reversed for motor-related tasks.  Periods of time when the ADMN and 

PDMN are correlated appear to be associated with specific changes in BG and thalamic 

activity.  Based on these observations, I speculate on a functional role for the DMN in 
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directing the flow of top-down and bottom up influences during task performance.  

4.2 Methods 

4.2.1 Data

The HCP data set included seven task paradigms, with two runs each.  A subset of

these tasks included rest epochs interspersed with task epochs in a block design.  As the 

definition of deactivation implies a comparison to a baseline condition, usually a rest 

condition, only paradigms that included resting epochs were used.  These were the 

working memory, gambling, motor, relational, and social cognition tasks.  Of these tasks,

three were chosen for more detailed analysis because of their differential engagement of 

the DMN, exhibiting task-evoked increases, decreases, and no significant change in 

activity.  These are the social cognition, relational processing and motor tasks 

respectively.  The social cognition paradigm is a theory of mind task.  Theory of mind is 

a cognitive ability that is believed to engage the DMN and to evoke increases in DMN 

activity (Fletcher et al., 1995).  The Relational task involves visual information 

processing.  Visual processing tasks were among the first shown to evoke decreases in 

DMN activity (Shulman, 1997b).  Motor tasks do not evoke increases or decreases in the 

DMN (Allison et al., 2000; Liu et al., 2011).  The details of each of these tasks has 

previously been described elsewhere and will be briefly described here (Barch et al., 

2013a). 

In the gambling task, participants play a card guessing game to win or lose money

(Delgado et al., 2000).  On each trial participants are asked to guess the number on a card
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marked with a “?” and respond if they think the number is more or less than 5.  After 

participant response, the number on the card is revealed with either a green up arrow 

indicated a $1 reward, a red down arrow indicating $.50 loss or the number 5 indicating 

no monetary reward or loss.  The “?” is presented for up to 1500 ms or until the 

participant responds.  Feedback is displayed for 1000 ms.  The task is presented in blocks

of eight trials with a 1000 ms inter-trial interval (ITI).  Blocks were either mostly reward, 

or mostly loss.  Reward blocks had six reward trials with two randomly interleaved loss 

or neutral trials.  Loss blocks had six loss trials with two randomly interleaved reward or 

neutral trials. In each of two runs, there were two reward blocks, two loss blocks and four

15 second fixation blocks.  

The social cognition task is based on videos developed for the purpose of studying

theory of mind (Castelli et al., 2000; Wheatley et al., 2007).  In 20 second video clips, 

geometric figures (squares, circles, and triangles) move either randomly on the screen or 

in a manner suggesting social interaction.  After each video, participants judged wether 

the objects interacted with each other or moved randomly.  Each of two task runs had five

video blocks (two mental and three random in one run, three mental and two random in 

the other run) and five fixation blocks (15 seconds each).  

The working memory task consisted of separate blocks of trials for objects of four

different types: places, tools, faces, and body parts.  For each object type, half of the trials

were 2-back memory trials and the other half were 0-back memory trials.  A cue 

indicating the trial type was displayed for 2500 ms prior to each block.  Each of two runs 

consisted of four 15 second fixation blocks and eight 25 second blocks each with ten 
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25000 ms trials.  On each trial the stimulus was presented for two seconds followed by a 

500 ms ITI.

The relational task is a visual information processing paradigm involving stimuli 

with different shapes and textures (Smith et al., 2007).  In each trial, participants are 

presented with two pairs of objects, one at the top of the screen and one at the bottom of 

the screen.  In the relational condition, subjects first decide whether the pair at the top of 

the screen differs in shape or texture and then decide whether the bottom pair differs 

along the same dimension (shape or texture) as the top pair.  In a matching condition, 

subjects are presented with one pair at the top of the screen and a single image at the  

bottom of the screen.   A cue with the word “shape” or “texture” in the middle of the 

screen instructs subjects to decide if the image at the bottom of the screen matches either 

image at the top of the screen on that dimension.  In the relational condition, the stimuli 

are presented for 3500 ms with a 500ms ITI, with four trials per block. In the matching 

condition, the stimuli are presented for 2800 ms, with a 400 ms ITI and 5 trials per block.

In each of two runs there are three 18 second relational blocks, three 18 second matching 

blocks and three 16 second fixation blocks. 

The motor task was adapted from previous motor MRI experiments (Yeo et al., 

2011) involving movement of the hands, feet, and tongue.  Participants are presented with

a visual cue instructing them to tap the fingers of their left or right hands, squeeze their 

left or right toes, or move their tongues.  Each movement block lasted 12 seconds, 

preceded by a three second cue.  In each of the two runs, there are ten blocks, two of 

tongue movements, four of hand movements (two right and two left),  four of foot 
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movements (two right and two left) and two 15 second fixation blocks.  All 24 subjects 

included in this analysis were right handed and in all but the motor paradigm, subject 

responses were made with a button box using their right hands.  

4.2.2 Data Preprocessing 

Functional MRI data from the HCP was acquired after preprocessing with their 

minimal preprocessing pipeline (Glasser et al., 2013).   Custom design of the HCP 

Siemens Skyra scanner required a customized correction for gradient nonlinearities which

was performed using the gradient_nonlin_unwarp package of FreeSurfer (Jovicich et al., 

2006).  The pipeline corrects for motion by frame realignment using six degrees of 

freedom (DOF) linear image registration tool (FLIRT) registration to a single band 

reference image with greater anatomical contrast.  FSL topup (Andersson et al., 2003) 

algorithm is used to estimate the distortion due to B0 field inhomogeneities in the phase 

encoding direction.  Transformations for registration and distortion correction (gradient 

nonlinearity distortion, motion correction and EPI distortion) are concatenated and 

applied in a single transform with spline interpolation.  The resulting images are in 2 mm 

MNI space.  Next, data is corrected for receive and transmit bias using field maps 

estimated from the distortion-corrected single band reference image.  Data is then masked

and normalized to a 4D whole brain mean of 10,000.  Following these preprocessing 

steps, mean time series were extracted for each of the 252 ROIs in the combined 

Brainnetome (Fan et al., 2016) and basal ganglia atlases (Keuken & Forstman, 2015) 

(Chapter II 2.2) and detrended to remove linear trends in the time series.
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4.2.3  General Linear Modeling 

Functional imaging studies often do not report deactivations in their results.  

Others report deactivations in regions associated with the DMN without including the 

specific coordinates of the regions that were identified.  Since the definition of the DMN 

is tied so closely to task-evoked deactivation, general linear modeling (GLM) analysis 

was used to identify the regions that deactivated across HCP experimental paradigms.  

All linear modeling was run using FSL's FEAT (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/  

Smith et al., 2004).  First, voxel-wise multiple regression of experimental block designs 

was performed at the single subject level.  This analysis included pre-whitening 

(Woolrich et al., 2001), spatial smoothing using a Gaussian kernel of 4 mm full width 

half max (FWHM) and high pass temporal filtering with a cutoff of 200 seconds. 

Activation map Z statistic images were created for single subjects with an initial cluster 

threshold of Z  > 3.29 and corrected cluster significance threshold of p < 0.05 (Worsley, 

2003).  For each paradigm, GLM results for each of two runs were combined for 

individual subjects using a fixed effects model.  This resulted in an average activation 

map for each subject and condition of each experimental paradigm, as well as average 

deactivation maps over those conditions.  For each paradigm, group level analysis was 

then carried out using a mixed-effects model (FLAME1)  (Beckmann et al., 2003; 

Woolrich et al., 2004).  Percent signal change for each subject and task was calculated 

using FSL's featquery for voxels in the group level average activation and deactivation 

masks.  Finally, a higher level analysis using a mixed effects model was used for group-

level deactivation maps across paradigms.  The resulting group-level Z statistic map, with
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corrected cluster significance threshold of p < 0.05, was indicative of regions that on 

average exhibit decreases in BOLD signal during task epochs across all four task 

conditions.   Next the Brodmann areas associated with the final group-level Z statistic 

map were determined.  To do this a binary mask of the Z statistic map was created and 

multiplied by the Brainnetome atlas.  Any non-zero voxels in the resulting image are 

indicative of deactivated regions.  

4.2.4 PeriStimulus Plots

In neurophysiological studies, peristimulus histograms are often used to visualize 

changes in neuronal firing rate in relation to an external event or stimulus.   Analogously 

in fMRI, peristimulus plots can be used to visualize task-evoked changes in BOLD signal

and qualitatively characterize the dynamics of task-evoked BOLD signal.  On average, 

the DMN exhibits decreases in BOLD signal over experimental epochs containing some 

number of trials.  However, the dynamics of signal change in these regions over 

experimental trials is unknown.  To explore these dynamics, visualizations of 

peristimulus activity in each of the DMN regions were created.  First, mean time series 

for each ROI of the Brodmann atlas and basal ganglia (Section 2.2) atlas were calculated 

for each subject and task.  Then, TRs associated with trials of a single experimental 

condition were identified using the experimental block design convolved with a canonical

double gamma HRF function identical to that used in the GLM analysis.  For each subject

and ROI, average signal during rest epochs was used as a baseline.  For ease of 

comparison to GLM results, ROI time series were centered on this value and normalized 
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by their standard deviation over the entire scan.  Across subjects, the resulting time series

in each region of the DMN was averaged over task-associated experimental blocks.  To 

account for different block lengths without discarding data, each trial was linearly 

interpolated to match the number of time points of the longest trial.  Similarly, an average

across subjects was calculated over the task-activated regions identified through the GLM

analysis.  This created a single time series for each task condition representing the 

dynamics associated with task-activated regions, which exhibit sustained signal increase 

over experimental blocks.  In addition, a special button press ROI was created using data 

from the social cognition paradigm.  The social cognition contained separate video 

watching epochs and response epochs such that response periods could be modeled 

separately.  The group-level activation map for the response condition was used to 

identify voxels in the motor cortex associated with the button press response.  These 

voxels were used to create an average time series across subjects of the BOLD activity 

associated with button press for each experimental paradigm and for the contralateral 

motor cortex.  Peristimulus plots for each paradigm were created by averaging data over 

task epochs for 24 subjects with two runs each: relational task = 144 blocks;  mental 

condition of the social cognition paradigm = 120 blocks.  For the motor paradigm, 

separate peristimulus plots were created for both the left and right hand conditions, with 

96 blocks each.  
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4.2.5 Structural Equation Modeling 

Functional connectivity can exist in the absence of direct or monosynaptic 

connections.  Nonetheless, the strength and spatial pattern of functional connectivity is 

constrained by anatomical structure.  Therefore, structural connectivity was used to 

define an anatomically constrained structural equation model (SEM) (de Marco et al., 

2007).  The model was used to estimate the strength of the functional relationships 

between connected regions.  The BOLD signal of each region R at time t was defined as a

linear function of the BOLD signal in structurally connected regions at time t-1.  

 

[
R1(t )
R2(t )
R3(t )

⋮
Rn(t )

] = [β11 0 β12 ... β1n

0 β23 β24 ... β2n

0 β33 0 ... 0
⋮ ⋮ ⋮ ⋮ ⋮
βn1 βn2 0 ... βnn

] [
R1(t−1)
R2(t−1)
R3(t−1)

⋮
Rn(t−1)

] (1)

The model contained an equation for each region of the DMN as well as each region with

structural connections to the DMN, resulting in a system of 200 equations with 1500 

parameters (β coefficients, intercepts and error terms).   The system of linear equations 

was solved for β coefficients using a weighted least squares method (Browne, 1984) and 

data from a resting-state scan using the R systemfit package (Henningsen & Hamann, 

2007).   To solve the system for β coefficients, resting-state data (1200 TRs per subject) 

was normalized (Z-scored) by subject and the data for 5 subjects was concatenated 

resulting in 6000 samples.   A bootstrap procedure solved the system of equations 100 

times using the concatenated resting-state time-series for 5 randomly sampled subjects at 
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a time.  Coefficients significant at the p < .01 level were included in the final model.   To 

test the solution, mean values of the coefficients over bootstrap solutions (Efron & 

Tibshirani, 1993; Hoyle, 1995) were used to predict the time series of a second resting-

state scan (Cudeck et al., 1991).   Regional time series in the second scan were 

normalized for each subject.  The value of the first time point of the second scan was 

used as t0 in the model.  The rest of the time series (t1-1200) for each region was then 

predicted by the model.  Mean correlation across subjects between the predicted and 

observed values were used a measure of goodness-of-fit.  Regions with significant β 

coefficients were included in the Markov model of task-based state transitions (Section 

4.26).  

4.2.6 Finite Markov Chain Model  

A Markov chain describes a stochastic process characterized by the Markov 

property, which states that future behavior of the process depends only on its current 

state.  A Markov chain model can describe dynamic changes in patterns of brain activity 

across many brain regions with the simplifying assumption that future states can be 

predicted based solely on the current pattern of activity.  For example, it is known that 

activation of the TPN during experimental epochs is often coincident with decreases in 

signal in the DMN.  This configuration of brain activity, including both task-evoked 

increases and decreases, could be considered a single state in a finite Markov chain 

model.  States for this model were based on the signal intensity of 120 ROIs in the DMN,

BG, thalamus, insula and regions with functional influence on the DMN (Section 4.2.5).  
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To define the state space of the model,  BOLD signal from each region was normalized 

(Z-scored) for each subject.  Then, a moving average was calculated using a window of 

size five TRs.  The window was advanced in increments of two TRs along the time series

of each region, for each subject.  This has the effect of smoothing and downsampling the 

time series.  Downsampled time series for each of (n = 24) subjects were computed 

individually.  This results in an array of intensity values of 120 regions at each of m time 

points for each subject.  These values were then concatenated to form a superset of size 

(n*m) x 120.   The euclidean distance between each of  the (n*m) vectors was then 

calculated.  The elements of the resulting matrix contain the distances between  the 

patterns of intensity values at every five TR bin.  Wards hierarchical agglomerative 

clustering was then performed on the distance matrix to factor the data into 20 

empirically determined “states”.  The choice of the number of states is somewhat 

arbitrary, but was chosen to maximize the amount of variance accounted for while 

minimizing the number of states containing a disproportionately large or small (less than 

1%) number of time points.  These 20 states then form a finite state space (X) from which

the probability of transition between states can be calculated.  Assuming a first order 

Markov process, a state transition table can be generated indicating the likelihood of 

transition to state xj given that the currently occupied state is xi.  

P (Xt+1 = x | Xt  = xn) (2)

Empirical probabilities are calculated across subjects as the number of times a transition 
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from state xi to state xj occurs relative to the number of times state xi is occupied.  States 

can be characterized in terms of their association with particular conditions (rest or task) 

within an experimental paradigm.  In addition, detailed information about the pattern of 

brain activity across ROIs in each state can be retrieved.  Thus the model provides a 

means to explore the temporal dynamics of changes in DMN activity in relation to other 

functionally connected brain areas.  

4.2.7 Validating Markov Chain Models 

To validate the results of the clustering analysis several steps were taken.  The 

first was to verify that the clusters identified show state transitions that correspond to the 

experimental design.  This was done visually using a raster plot of states over time.  In 

addition, the clustering solutions were tested for an interaction between state and scan 

condition (rest vs. task).  An interaction would indicate that a state was more prevalent in 

rest or task condition.  However, each subject's data may contain a different number of 

task and rest bins.  Therefore, the proportion of states in each condition was calculated as 

the number bins in each state in each condition divided by the number of bins in that 

condition (state or rest).  To determine whether certain states are preferentially associated

with task or rest conditions, the proportion of states in each condition were compared 

using a repeated measures two-way ANOVA with two within-factors (condition and 

state).   This was done separately for each experimental paradigm.  

The second test made use of random permutations of the time series for each subject.  If 

the clustering identifies specific states that are associated with task rather than rest 
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conditions, this association should disappear if the temporal order of the time series is 

disrupted.  Therefore, a random permutation of the time points for each subject was 

prepared and the clustering was repeated.  Finally, the clustering solution was used to 

predict the states of the second run of each experimental paradigm.  Linear discriminant 

analysis (Ripley, 1996; Venables et al., 2002) was used to create a classifier based on the 

clustering solution.  States of the second run of each paradigm were predicted by the 

classifier based on their downsampled time series.  The resulting predictions could then 

be compared to the experimental model (block design) of the second scan.  

4.3 Results 

4.3.1 GLM Task-evoked Deactivation 

Linear modeling was employed to identify brain regions that exhibit task-evoked 

decreases in signal relative to a resting condition in response to multiple task conditions.  

The group-level deactivation map, included all DMN regions in the medial prefrontal 

cortex and cingulate gyrus : BA 10m, BA 32p, BA 23d, BA 31 (Figure 4.1).  However, 

only three voxels were significant in BA 7m and deactivations in BA 39rv were found 

only in the left hemisphere.  Task-evoked deactivation was also found in left lateralized 

hippocampus and parahippocampal gyrus.  In addition to regions typically associated 

with the DMN, many other regions also showed significant task-evoked deactivations 

(Table 4.2).  Among them are some regions of the left dorsolateral prefrontal cortex and 

bilateral insular cortex more typically associated with the TPN.  Regions of both the pre 

and post central gyrus, particularly in the right hemisphere also exhibited task-evoked 
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decreases as did voxels in the nucleus accumbens and ventral caudate.  Task-evoked 

deactivations, therefore, extend beyond the DMN.  They include regions of motor cortex 

bilaterally, although more extensive in the motor cortex ipsilateral to the dominant hand 

(the motor cortex associated with the unused hand).

Percent signal change between task and rest epochs was calculated using FSL's 

featquery tool.  This allowed a comparison of the magnitude of signal change in DMN 

regions relative to task-activated regions.   For each paradigm, mean, and max percent 

signal change was calculated for voxels in the task-specific group-level activation and 

deactivation masks (Table 4.1) (24 subjects * 2 scans each = 48 scans per paradigm).  For

all experimental paradigms, mean and max percent signal change in deactivating regions 

was significantly smaller (p << .001) than changes in task-activated regions.    Therefore, 

relative to its high level of baseline activity, task-evoked changes in the DMN are smaller

and less variable than those in task-activated brain regions.

Table 4.1 Percent Signal Change 

Percent signal change in task activated regions (red) and in task deactivated regions 

(blue) at the single subject level and their standard deviation across subjects. Across all 

tasks, percent signal decreases evoked in the DMN from that baseline are small relative 

to evoked increases in task-activated regions. 
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Relational: mean t (47) = 33.39, p << .001; max t (47) = 21.35, p << .001

Social: mean t (47) = 25.59, p << .001; max t (47) = 21.89, p << .001 

Gambling: mean t (47) = 27.15, p << .001; max t (47) = 14.50, p << .001

Working Memory: mean t (47) = 31.44, p << .001; max t (47) = 20.50, p << .001

Figure 4.1  Task-Evoked Deactivation Beyond the DMN  

A. Decreases in BOLD signal evoked across the HCP relational, social, gambling and 

working memory paradigms.  Each color represents a different BA in the Brainnetome 

atlas; coordinates in MNI 2mm space. In addition to regions typically associated with the 

DMN, BOLD decreases were evoked in bilateral sensory motor cortex and the striatum.  
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Table 4.2 Brodmann Areas Exhibiting Task-evoked Deactivation 

Brodmann areas exhibiting task-evoked decreases across the HCP relational, social, 

gambling and working memory paradigms.  Coordinates in MNI space represent the 

central voxel of the deactivated region.  
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4.3.2 DMN Peristimulus Dynamics 

Task-activated brain regions exhibit a sustained increase in BOLD signal 

across a block of experimental trials.  Peristimulus plots for each region of the DMN 

were created in order visualize the dynamics of DMN activity during experimental 

epochs.  Peristimulus activity in voxels of the button-press ROI and its contralateral 

counterpart are included as a reference for activity related to task response.  Across all 

tasks, it is readily apparent that activity in the DMN is not simply an inverse of the 

activity in task-activated brain regions.  DMN activity does not exhibit sustained 

suppression of activity across experimental blocks.  Instead, each region of the DMN has 

a unique and task-specific time course that corresponds with experimental trials.  

4.3.2.1  ADMN Peristimulus Activity

In the relational paradigm, activity in BA 10m exhibits oscillatory behavior that 

corresponds to the timing of within-block trials (Figure 4.3).  Clearly activity in these 

regions is not simply suppressed over task epochs.  Changes in signal intensity in left and

right BA 10m were significantly related to the time course of individual trails (Pearson r 

= -.43 and -.46 respectively, p < .05).  The time course suggests that task-evoked activity 

in this region is initially suppressed, but begins to increase before the end of the trial, at 

or about the time of peak activity in the task-related brain regions. In the social paradigm,

where there is only one trial in each block, the relationship between activity in ADMN 

regions and the trial response is more readily apparent (Figure 4.2).  Temporal dynamics 

of BA 32p in the anterior cingulate cortex of the right hemisphere, resembles that of the 



110

motor cortex of the dominant hand, the left motor cortex.  All ADMN regions exhibited 

significant increases in signal intensity during task response (BA 10m left t(23) = 15.47, 

p < .001; BA 10m right t(23)= 9.15, p < .001; BA32p left t(23) = 4.46, p < .001; BA 32p 

right t(23) = 5.09, p < .001).  The motor paradigm included periods of right hand and left 

hand movements.  During right hand movements, the temporal dynamics of BOLD signal

in BA 32p in the right hemisphere closely resembles that of the left motor cortex (Figure 

4.5).  The resemblance switches during left hand trials to that of the right motor cortex 

(Figure 4.4).  Therefore activity in right lateralized BA 32p appears to consistently 

fluctuate with that of the motor cortex of the actively engaged hand.  Unlike in the 

relational and social cognition tasks, activity in BA 10m remains above baseline during 

right and left hand movements in the motor paradigm. 

4.3.2.2  PDMN Peristimulus Activity

In the social cognition paradigm, there is a clear distinction between the activity in

BAs 39rv and 7m, and the rest of the DMN (Figure 4.2).   These PDMN regions exhibit 

task-evoked increases with similar time courses to the task-activated brain regions while 

regions in the posterior cingulate increase during task response (BA 23 left t(23) = 5.4, p 

< .001; BA 23 right t(23) = 4.9, p < .001; BA 31 left t(23) = 17.69, p < .001; BA 31 right 

t(23) = 11.49, p < .001) .  However, only BA 7m exhibited task-evoked increases in the 

relational paradigm (Figure 4.3).  In this paradigm, regions in the PCC and lateral parietal

cortex showed a significant association with the time course of individual trials (Pearson 

r left lateralized BA 31 r = -.42, BA 39rv left side r= -.46, BA 39rv right side r = -.44,     
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p < .05).  All p values FDR corrected for multiple comparisons.  In contrast, both regions 

exhibited task-evoked decreases in the motor paradigm (Figures 4.4 and 4.5).  The time 

courses of peristimulus activity in the posterior cingulate gyrus (BAs 23d and 31) 

resemble that of the motor cortex of the motionless hand in all experimental paradigms.  

4.3.2.3 Peristimulus Summary

Peristimulus activity in DMN regions is consistent with the GLM results.  Across 

cognitive paradigms the GLM finds task-evoked decreases in the ADMN and in the 

posterior cingulate cortex (PCC), but not in BA 7m.  The peristimulus activity in BA 7m 

shows sustained increases in activity in both the social and relational paradigms.  Also 

consistent, the GLM fails to find deactivations during motor performance.  Peristimulus 

activity during left and right hand conditions of the motor task show above baseline 

activity for all regions of the DMN.  However, while the GLM analysis indicates a 

pattern of evoked decreases independent of the experimental paradigm, the peristimulus 

visualization makes clear that the DMN response is task-specific.  The visualizations 

suggest that task-evoked activity in medial parietal cortex opposes that in the cingulate 

and medial prefrontal cortex.   The cognitive paradigms (social and relational) evoked a 

sustained increase in parietal cortex while the ADMN exhibited trial-associated 

fluctuations resembling those of trial responses.   The motor paradigm evoked the 

opposite pattern of activity with sustained increases in ADMN and suppressed activity in 

BA 7m. 
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Figure 4.2 Social Cognition DMN Peristimulus Evoked Activity 

The social cognition task is a theory of mind manipulation in which subjects watch short 

video clips of animated geometric shapes from which a social relationship can be 

inferred.  An experimental block contained a single trial.  Peristimulus time courses 

represent the mean and standard error across 24 subjects of 120 trials of the social (not 

random) condition.  Each panel shows a different DMN region (blue) against identical 

traces of the task-activated regions (red) and signal associated with left hand (light green)
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and right hand (dark green).  The right hand trace (R Hand) represents the signal from the

left motor cortex associated with movement of the right hand during the trial response.  

Qualitatively, there is a clear distinction in the evoked responses from each region of the 

DMN.  Dynamics of bilateral regions BA 7m and 39rv exhibit sustained increases over 

the trial while activity in the rest of the DMN has a time course that resembles trial 

response.  
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Figure 4.3 Relational Task DMN Peristimulus Evoked Activity 

The peristimulus is produced as the mean and standard error across 24 subjects over 144 

experimental blocks of the relational condition which contains 4 trials per block (vertical 

grey bars).  Task-activated brain regions (red) identified from group level GLM analysis 

exhibit sustained increases in BOLD signal across trials, but also have fluctuations in 

signal intensity that appear to correspond to individual trials.  It is readily ascertained that

all regions of the DMN (blue) have fluctuations that correspond to the 4 trials.  In 

addition, it can be seen that each region of the DMN has a unique task-evoked pattern of 

activity.  Areas in the posterior cingulate, particularly BA 23d, have time courses that 

appear to align with the motor cortex associated with the non-dominant (left) hand (light 

green).  BA 32 in the right hemisphere, has a time course resembling that of the dominant

(right) hand (dark green) used to make a button press at the end of each trial.  Time 

courses of task regions (red) and hands (green) are identical in each plot.  
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Figure 4.4 Motor Task Left Hand Condition DMN Evoked Activity 

Peristimulus mean and standard error across 24 subjects over 96 blocks, consisting of a 

three second cue and a 12 second block in which subjects tap the fingers of their left 

hand.  The pattern of DMN (blue) activity in the motor condition differs substantially 

from that in the non-motor paradigms. The temporal dynamics of BA 32p in the right 

hemisphere appears to correspond to that of the active left hand (light green).  BA 10m 

exhibits task-evoked increases while BA 7m is suppressed.  Right lateralized regions of 

the posterior cingulate (BAs 23d and 31) resemble that of the right (dark green) 
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motionless hand.  

Figure 4.5 Motor Task Right Hand Condition DMN Evoked Activity 

Peristimulus mean and standard error across 24 subjects over 96 blocks consisting of a 

three second cue and a 12 second block in which subjects tap the fingers of their right 

hand.  The temporal dynamics of BA 32p in the right hemisphere appears to correspond 

to that of the active right hand (dark green).  Activity in BA 7m is suppressed.  Right 

lateralized regions of the posterior cingulate (BAs 23d and 31) resemble that of the left 
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(light green) motionless hand.  

4.3.3   DMN Functional Influences 

The strength of functional influences on the DMN were estimated using an 

atomically constrained structural equation model in which the observed signals at time t 

are modeled as a linear function of BOLD signal in structurally connected regions at time

t – 1.   Coefficients representing the strength of regional influences were determined by 

simultaneously solving the set of linear equations in the model.  After removing non-

significant coefficients, the model was used to predict the time series of a second resting-

state scan.   The correlation between the predicted and measured time series (1200 TRs) 

was used as a measure of the goodness-of-fit of the model.  Mean correlations for all 

regions of the DMN  (Figure 4.6) were significant (t (1198)  = 19.99; p < .01 corrected), 

and the distribution of coefficients show good agreement over bootstrap solutions 

(ADMN Figure 4.7; PDMN Figure 4.8).  

The TPN and DMN are believed to have an antagonistic relationship.  If true, 

TPN regions would be expected to have negative coefficients in the SEM.  The results, 

however, show a complex mixture of both positive and negative coefficients for TPN 

regions.   The sum over mean coefficients for functional connections to the ADMN and 

PDMN are shown in Figures 4.9 and 4.10. Generally, the strongest positive influence on 

any region of the DMN comes from other regions of the DMN.   However,  several 

within-network negative interactions were identified.  In the ADMN these were BA 32p 

R → BA 10m L and BA 10m R → BA 32 R.  In the PDMN, BA 23d L → BA 7m R.  
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Although structural connections to thalamic and insular regions were included in the 

model, their  coefficients were not significant.  

Figure 4.6 Linear System Solution Predicts Resting State Time series 

A SEM was used to predict BOLD in a second resting-state time series with 1200 TRs.  

Each bar indicates the mean and standard error of correlations between predicted and 

measured time series for each subject.   
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Figure 4.7 ADMN Coefficients of Functionally Connected Regions 

Coefficient values over 100 bootstrap solutions of the anatomically based SEM defined 

by structural connections identified from DTI analysis in Chapter III.  Coefficient 



120

magnitudes (mean and standard error) are sorted from lowest to highest and show good 

agreement over bootstrap solutions. 
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Figure 4.8 PDMN Coefficients of Functionally Connected Regions 

Coefficient values over 100 bootstrap solutions of the anatomically based SEM defined 

by DTI analysis in Chapter III.  Coefficient magnitudes (mean and standard error) are 

sorted from lowest to highest and show good agreement over bootstrap solutions.   

 

Figure 4.9 ADMN Functional Connectivity 

Each bar indicates the sum of the region's influences on the ADMN, with positive and 

negative coefficients considered separately.  Regions that have a negative influence on 

one component of the DMN may also have a positive influence on other components.  
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Regions of the TPN have a mixture of positive and negative influences.  

Figure 4.10 PDMN Functional Connectivity 

Each bar indicates the sum of the region's influences on the PDMN, with positive and 

negative coefficients considered separately.  Regions that have a negative influence on 

one component of the DMN may also have a positive influence on other components.  As

is the case for the ADMN, regions of the TPN have a mixture of positive and negative 

influences.  
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4.3.4 Markov Chain Models

Markov chain models with 20 states were created for the relational, social 

cognition, and motor paradigms.  The clustering solutions for each paradigm can be seen 

in Figures 4.12 A, 4.14 A, and  4.16 A.  The amount of variance accounted for by the 

clustering solution is defined as the ratio of between-cluster variance to the total variance:

64.39% for the relational paradigm, 51.95% for the social cognition paradigm, and 

58.79% in the motor task.  Several steps were taken to establish that the states identified 

by the clustering solutions represent behaviorally meaningful transitions.  In the relational

and social cognition paradigms, raster plots of the temporal progression of states show 

clear boundaries between task and rest epochs (Figures 4.11A and 4.13A).  As expected, 

state boundaries between rest and task epochs are no longer visible in the cluster 

solutions generated on randomly permuted time series (Figures 4.11B and 4.13B).  As a 

final validation step, linear discriminant analysis was used to create a linear classifier 

based on the clustering solution.  The classifier was then used to predict the states of the 

second run of each experimental paradigm.  The predicted states successfully reproduce 

state changes associated with rest and task epochs of the second experimental run 

(Figures 4.11C and 4.13C).  Therefore, the clustering solutions appear to capture 

dynamics meaningfully related to behavioral changes.  Probabilistic state transition tables

assuming a first order Markov process were created and are shown in graphical form for 

each experimental paradigm (Figures 4.12B, 4.14B, 4.16B).   To determine whether 

certain states are preferentially associated with task or rest conditions, a separate repeated

measures ANOVA was conducted on the proportion of states in each condition with two 
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within-factors (condition and state) for each paradigm.  In addition to the main effect of 

state F(1,19), p< 2e-16, the interaction between state and condition was significant for all 

tasks F(1,19) p < .0005.  Tukey post hoc tests were carried out to identify the states 

associated with each condition (Figures 4.12C, 4.14C, 4.16C).  For the social cognition 

and relational paradigms, several states were preferentially occupied during task and rest 

conditions.  The pattern of signal intensities associated with these states are shown in 

Figures 4.12 D, 4.14 D, 4.16 D ordered by the frequency of their occurrence.  These 

patterns represent the mean intensities for each region over time bins within the clustered 

state.  

The clustering solution of the motor paradigm differed from relational and social 

cognition in several ways.  State transitions at the boundaries of task and rest epochs in 

the motor paradigm raster plots are not clearly visible, as they are in the relational and 

social tasks (Figure 4.15).  In addition, in the motor paradigm, no states were 

preferentially associated with task epochs.  One state, however, was preferentially related

to rest epochs (Figure 4.16C).  Note that state numbers have no particular meaning and 

the same number does not represent the same pattern of activity across experimental 

paradigms. 

Within network activity in the DMN is correlated over time scales of 10s-100s of 

seconds.  However, the patterns of activity identified in the Markov chain model show 

that transient states exist in which regions of the ADMN and PDMN are negatively 

correlated.  One such state preferentially corresponds to task epochs.  The most common 

pattern of activity associated with non-motor task performance (state 20 in the relational 
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task and states 17 and 18 in the social cognition task), had below baseline activity in the 

ADMN and above baseline activity in the PDMN.  This pattern is consistent with the 

peristimulus plots for these paradigms.  

The relational and social paradigms both have task-associated states in which the 

entire DMN is above baseline (state 1 of the relational task and state 11 of the social 

cognition task).  States in which all regions of the DMN exhibit above baseline activity 

are one of the most striking patterns across all three experimental paradigms.  When the 

ADMN and PDMN simultaneously exhibit above baseline activity, the striatum, thalamus

and most functionally connected regions also exhibit above baseline activity, while 

activity is suppressed in the substantia nigra (state 1 of the relational paradigm (Figure 

4.12 D), state 7 of the social paradigm (Figure 4.17) and states 5 and 7 (Figures 4.17 and 

4.16 D) of the motor paradigm).   States in which all regions of the DMN exhibit below 

baseline activity have the opposite pattern: increases in the substantia nigra and decreases

throughout the striatum, thalamus and most other regions in the model (social state 4 

Figure 4.14 D, motor state 10 Figure 4.16 D, and relational state 6 Figure 4.17).  In the 

social cognition raster plot (Figure 4.13 A,C),  it can be seen that the latter half of task 

epochs, corresponding to the task response, is associated with a state in which all regions 

of the DMN and thalamus are above baseline and activity in the STN and substantia nigra

is suppressed.  This pattern of activity during task response suggests its interpretation as a

release from inhibition as might be expected from direct pathway stimulation.  

Additionally, there is an apparent relationship between activity in BA 7m and that of the 

dorsal insula (dIa).  The relationship is most prevalent in the relational task, in both task 
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and rest associated states.  Activity in BA 7m frequently opposes that of the rest of the 

DMN, but is consistently correlated with activity in the dIa. 
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Figure 4.11 Relational Paradigm Cluster Validation 

A. Raster plot of empirically determined states of the relational paradigm.  Black lines 

indicate experimental epochs. B. Clustering solution of randomly permuted time series. 

C. States predicted by a linear discriminant classifier for a second relational scan on the 

same subjects. 
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Figure 4.12  Relational Visual Processing Markov Chain Model 

A. Twenty state clustering solution.  Clusters are indicated by a colored outline: red for 
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states preferentially associated with task conditions, blue for states preferentially 

associated with rest conditions, green for states with no preferential association.  B. State 

transition probability matrix. States are ordered according to their frequency and colored 

according to their association with task (red) or rest (blue).  The percent of time spent in 

each state over the scans for all subjects is indicated (left).  Each row indicates the 

probability of transition from the row state to the column state.  Probability of remaining 

in the current state is indicated along the diagonal (blue), while the probability of state 

transition is indicated in the off diagonal elements (red). C. Box-plot indicating the 

distribution (minimum, first quartile, median, third quartile, maximum) of the proportion 

of time points in each state as function of the scanning condition (rest or task epoch); * = 

p < .05; ** = p < .01; *** = p < .001.  D.  The pattern of signal intensities for states 

associated with task and rest conditions.  Each pattern represents the mean and standard 

error over signal intensities in the state cluster.  The top row of each state includes signal 

intensities for the DMN (red - ordered from anterior to posterior), the BG (green - 

ordered from input to output nuclei), the thalamus (blue), and the insula (purple).  The 

bottom row shows the signal intensities for regions with structural and functional 

connections to the DMN.  The first half are those with connections to the ADMN; the 

second half are those with connections to the PDMN. These are colored according to the 

direction of their functional influence (positive = salmon/dark salmon; negative = light 

blue/grey).  State 1 is a state associated with the task condition in which the DMN has 

above baseline activity and is associated with above baseline activity in the striatum, 

thalamus, insula and most functionally regions, but below baseline activity in the 
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substantia nigra.  

Figure 4.13 Social Paradigm Cluster Validation 

A. Raster plot of empirically determined states of the social cognition paradigm.  Black 

lines indicate experimental epochs. B. Clustering solution of randomly permuted time 
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series. C. States predicted by a linear discriminant classifier for a second social cognition 

scan on the same subjects. 
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Figure 4.14  Social Cognition Markov Chain Model 

A. Twenty state clustering solution.  Clusters are indicated by a colored outline: red for 

states preferentially associated with task conditions, blue for states preferentially 

associated with rest conditions, green for states with no preferential association.  B. State 

transition probability matrix. States are ordered according to their frequency and colored 

according to their association with task (red) or rest (blue).  Each row indicates the 

probability of transition from the row state to the column state.  Probability of remaining 

in the current state is indicated along the diagonal (blue), while the probability of state 

transition is indicated in the off diagonal elements (red). C. Box-plot indicating the 

distribution (minimum, first quartile, median, third quartile, maximum) of the proportion 

of time points in each state as function of the scanning condition (rest or task epoch);  

*** = p < .001.  D.  The pattern of signal intensities for states associated with task and 

rest conditions.  Each pattern represents the mean and standard error over signal 

intensities in the state cluster.  The top row of each state includes signal intensities for the

DMN (red - ordered from anterior to posterior), the BG (green - ordered from input to 

output nuclei), the thalamus (blue), and the insula (purple).  The bottom row shows the 

signal intensities for regions with structural and functional connections to the DMN.  The

first half are those with connections to the ADMN; the second half are those with 

connections to the PDMN. These are colored according to the direction of their functional

influence (positive = salmon/dark salmon; negative = light blue/grey).  State 11 is a state 

associated with the task condition with above baseline activity in the DMN, striatum, 

thalamus, insula and most functionally connected regions, and decreased activity in the 



134

substantia nigra and STN.   State 4 is a rest condition with an opposite pattern of activity. 

Figure 4.15 Motor Paradigm Cluster Validation 

A. Raster plot of empirically determined states of the Motor paradigm.  Black lines 

indicate experimental epochs. B. Clustering solution of randomly permuted time series. 
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C. States predicted by a linear discriminant classifier for a second Motor scan on the 

same subjects. 
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Figure 4.16 Motor Task Markov Chain Model 

A. Twenty state clustering solution.  Clusters are indicated by a colored outline: red for 

states preferentially associated with task conditions, blue for states preferentially 

associated with rest conditions, green for states with no preferential association.  B. State 

transition probability matrix. States are ordered according to their frequency and colored 

according to their association with task (red) or rest (blue).  Each row indicates the 

probability of transition from the row state to the column state.  Probability of remaining 

in the current state is indicated along the diagonal (blue), while the probability of state 

transition is indicated in the off diagonal elements (red). C. Box-plot indicating the 

distribution (minimum, first quartile, median, third quartile, maximum) of the proportion 

of time points in each state as function of the scanning condition (rest or task epoch); * = 

p < .05.  D.  The pattern of signal intensities for the state associated with rest conditions 

and other frequently occupied states.  Each pattern represents the mean and standard error

over signal intensities in the state cluster.  The top row of each state includes signal 

intensities for the DMN (red - ordered from anterior to posterior), the BG (green - 

ordered from input to output nuclei), the thalamus (blue), and the insula (purple).  The 

bottom row shows the signal intensities for regions with structural and functional 

connections to the DMN.  The first half are those with connections to the ADMN; the 

second half are those with connections to the PDMN. These are colored according to the 

direction of their functional influence (positive = salmon/dark salmon; negative = light 

blue/grey).  No states were preferentially associated with the motor task condition.
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Figure 4.17  DMN Activity and the Thalamus

States with correlated activity in the DMN have a characteristic relationship with activity 

in the BG and thalamus.  Above baseline activity in the DMN is associated with 

increased thalamic activity and below baseline activity is associated with decreased 

thalamic activity. 
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4.4 Discussion 

4.4.1 Task Evoked Decreases Across Experimental Paradigms 

 Task-evoked decreases were identified in a large number of brain areas across 

four distinct experimental paradigms.  All DMN-associated regions detailed in Chapters I

and II are amongst the deactivating regions except BA 7m.  This result highlights the 

necessity of anatomical specificity in reporting task-evoked deactivations.  That is, while 

the DMN is visually recognizable in the spatial pattern of deactivated voxels, functional 

specialization of subcomponents of the network may be revealed by the differences in 

their task-evoked activity.  The hippocampus is a region that is often associated with the 

DMN and although it has not been a focus of this work, deactivations were identified in 

both the left hippocampus and parahippocampal gyrus.  In addition, BA 14m in the 

medial orbital frontal cortex and BA 32sg in the ventral anterior cingulate both exhibited 

task-evoked deactivation.  These regions have anatomical connectivity patterns similar to 

that of BA 10m and BA 32p.  Therefore, it's possible these regions should be considered 

part of the ADMN.  However, task-evoked decreases were not restricted to regions within

the DMN.   Other studies have also reported task-related deactivations outside of the 

DMN, particularly in the posterior insula (Harrison et al., 2011), a region believed to 

support somatosensory and interoceptive processing (Eickhoff et al., 2006).  The results 

presented here are consistent with this finding as deactivations were found in the insula 

bilaterally, but were also found in the nucleus accumbens and ventral caudate.  In 

addition, bilateral areas of sensorimotor cortex also exhibited task-evoked decreases, but 

were more extensive in the right hemisphere.  Since all subjects included in this analysis 



139

were right-handed, deactivations in the right motor cortex correspond to that of the 

resting hand.  

4.4.2 Task-evoked Activity in the DMN 

Task-evoked activations are characterized by sustained increase in BOLD signal 

over blocks of repeated experimental trials.  Visualizing the temporal dynamics of task-

evoked signal changes in the DMN revealed that deactivations in the DMN are not equal 

and opposite that of task-activated regions.  Rather than a sustained suppression of 

activity over trials, BOLD signal in all regions of the DMN fluctuates in a task-specific 

manner.  The temporal dynamics of BOLD signal in DMN regions seen in combination 

with that of the motor cortex, suggest that DMN activity is related to the task response.  

Other studies have previously reported that activity in the DMN contained task-specific 

information (Vatansever et al., 2015).  However, with the exception of parietal DMN 

regions, peristimulus time courses suggest a role specifically in trial responses.  The 

clearest indication of DMN participation in task responding is seen in the social cognition

peristimulus.  With a single trial per block, and a separate epoch associated with task 

response, the relationship between activity in the DMN and activity associated with the 

button press response is readily appreciable.  It's possible that this relationship could be 

the result of the DMN's purported role in theory of mind abilities.  However, it is 

important to note that the social cognition paradigm was included in the GLM analysis, 

which identified regions that deactivate across task paradigms, including the social 

cognition paradigm.  In fact, all core regions of the DMN exhibited task-evoked 
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deactivations on average during epochs in which subjects watched the socially evocative 

videos.  A GLM contrast of the social (theory of mind) vs random condition implicated 

regions of the superior, medial, and inferior temporal gyrus, as well as the 

parahippocampal gyrus and inferior parietal lobule.  The core regions of the DMN were 

not activated by the theory of mind condition.  In fact, the role of the DMN as a whole in 

theory of mind tasks is far from established.  Meta-analytic studies of theory of mind 

literature suggest that the temporal parietal junction may be the only region that is 

consistently identified across different experimental approaches (Mars et al., 2012; Mahy 

et al., 2014).  Published analysis of the social cognition paradigm from the HCP project 

also reported task-evoked deactivation in the DMN (Barch et al., 2013b).  Therefore, the 

role of the DMN in theory of mind cognition may depend entirely on the experimental 

paradigm. 

 Peristimulus activity also showed that each region of the DMN has unique task-

evoked dynamics.  Therefore each node of the network likely has a unique role.  For 

example, across all paradigms, the temporal dynamics of BOLD signal in BA 32p, of the 

right anterior cingulate, mirrored that of the motor response in the left motor cortex 

associated with button press using the right hand.  This is similar to the response in the 

motor paradigm in the right hand condition when subjects are tapping the fingers of their 

right hand.  When subjects tap their left hand, activity in BA 32p switches to resemble 

that of the opposite hemisphere, associated with movement of the left hand.  The 

dynamics of DMN regions in the posterior cingulate (BA 31 and BA 23d), resembled that

of the unused hand.  Consistent with this interpretation, one large-scale, coordinate-based
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meta-analysis of DMN function using the BrainMap database, identified the functional 

domain of the ventral ACC as “action preparation” and found that the PCC had a 

decreased preference for action (Laird et al., 2009).  Unlike the ADMN and PCC, BA 

7m, exhibited sustained increases in activity in both the relational and social cognition 

paradigms.  As both tasks involve processing visual stimuli, this is consistent with the 

region's anatomical connections to visual cortex.  It's also consistent with recent studies 

indicating that portions of the medial parietal cortex become uncorrelated with the DMN 

and correlated with the TPN during task execution (Leech et al., 2011).   However, 

during both the left hand and right hand conditions of the motor paradigm, activity in BA 

7m is suppressed.  

The time course of DMN activity suggests a possible role for the DMN in 

facilitating task responses.  Of course the time course of evoked activity in the DMN does

not mean it directs or controls motor activity.   Understanding the relationship between 

the DMN and task response will require further research.   Nevertheless, some evidence 

for DMN influence on motor responses was reported in a resting-state study which 

identified negative relationships between activity in vmPFC and parietal visual spatial 

regions and between PCC and prefrontal motor circuits.  Using granger causality analysis

they found that vmPFC and PCC exerted greater influence on anticorrelated regions than 

the other way around (Uddin et al., 2009).  Furthermore, a large body of 

neurophysiological literature supports the role of the anterior cingulate in voluntary 

movement including one study that found voluntary movements can be predicted by 

changes in neural firing rate in the anterior cingulate (Fried et al., 2011).   In 
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combination, the lateralization of deactivation in motor cortex identified through linear 

modeling, and the similarity of DMN temporal dynamics with that of motor cortex, 

suggests that the DMN may play a role in top-down control of task responses.   

4.4.3 DMN Deactivation  – Interactions with the TPN and the Insula

There is growing evidence against the suggestion that DMN deactivation results 

from increases in the TPN due to their intrinsic opposition.  The coefficients of TPN 

regions in the structural equation model were found to have a mixture of positive and 

negative influences on the DMN.  In addition, empirically derived states across 

experimental paradigms featured correlated activity in the DMN and TPN regions.   This 

is consistent with other recent work showing that the two networks exhibit periods of 

coupled activity at rest and during task performance (Spreng et al., 2010; Dixon et al., 

2017; Dixon et al., 2018).  An alternative hypothesis is that DMN deactivations are 

mediated by the anterior insula (Sridharan et al., 2008; Menon & Uddin, 2010).   A 

detailed account of the proposed function of the anterior insula posits that it is critically 

involved in bottom-up detection of salient events and in switching between large-scale 

networks to facilitate access to attentional resources in response to those events (Menon 

& Uddin, 2010).  The coordinates of the region (Uddin et al., 2011) hypothesized to play 

this role coincides with the dorsal agranular insula (dIa) of the Brainnetome atlas.  

Several states in the Markov chain models showed correlated activity between BA 7m 

and specifically the dIa rather than any other region of the insula.  This relationship is 

most readily appreciated in states in which activity of BA 7m opposes that of the rest of 
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the DMN.  This suggests that the dIa may act cooperatively with regions of the DMN in 

parietal cortex to detect salient events and elicit state transitions that support bottom-up 

visual information processing.  

4.4.4 DMN Activity and Striato-Thalamic Circuits

Studies of the basal ganglia have identified two main pathways: the direct and 

indirect pathways (Albin et al., 1989; DeLong, 1990).  The canonical understanding of 

the two pathways has it that the thalamus is released from inhibition through the direct 

pathway and inhibited through the indirect pathway.  Movement is associated with 

coordinated activity through both pathways (Bolam et al., 2000).  However, the basal 

ganglia's role in cognition more broadly is not understood.  In chapter III, I showed that 

core regions of the DMN have extensive connections through the BG and thalamus 

forming a large CST circuit.  The synaptic organization of DMN connections through the 

direct and indirect pathways is unknown.   However, a recent tracing study generated a 

brain-wide map of connections through the BG and found synaptic connections through 

both pathways from both the ventral orbitofrontal cortex and cingulate gyrus (Wall et al. 

2013).  Although for both regions more direct than indirect pathway synapses were 

identified.  The Markov chain models for all three paradigms identified a reciprocal 

relationship between DMN activity and striato-thalamic activity.  Activity in the thalamus

was consistently above baseline in states when both the anterior and posterior DMN were

active above baseline.  Reciprocally, thalamic activity was consistently below baseline 

when all regions of the DMN were below baseline.  In both of these states, correlated 
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activity in the DMN and thalamus was coincident with correlated activity in functionally 

connected brain regions.  Transient periods of widespread synchrony have been reported 

previously (Hutchison et al., 2013b), but here it can be seen that these states are 

negatively associated with activity in output regions of the BG.  The functional 

significance of these states is uncertain.  However, tract-tracing and human neuroimaging

studies have shown that both the medial and lateral PFC project to the dorsal caudate 

where it thought that information is integrated through interconnected CST loops (Joel & 

Weiner, 1994).   Therefore, transient periods of correlated activity in the DMN and TPN 

may allow for integrating information processed across the two networks resulting in 

changes in thalamic inhibition.  Simultaneous increases in the DMN, TPN, and striatum 

in combination with increases in thalamic activity are consistent with direct pathway 

stimulation.  

4.4.5  Functional Role of the DMN

The DMN has been characterized as a task negative network as a result of its 

relative decrease in activity during externally focused attention.  However, a certain set of

tasks such as planning for the future, remembering the past, and self reflection evoke 

increases rather than decreases in DMN activity.  Therefore it is believed that the DMN 

supports these cognitive abilities.  Motor tasks do not evoke decreases in DMN activity.  

The prevailing explanation for the continuation of DMN activity during motor tasks is 

that they lack cognitive difficulty, and therefore do not require cessation of internal 

rumination.  However, there is another important difference between the types of tasks 
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known to evoke increases rather than decreases in the DMN.  Tasks such as planning for 

the future, or self reflection are self-directed tasks.  They do not require bottom-up 

processing of external (visual) stimuli.   Likewise, motor tasks are usually conducted in a 

self-directed manner, in the sense that subjects move their fingers at their own pace 

independent of any externally presented stimuli.  Therefore, a more parsimonious 

explanation for the functional role of the DMN might be that it is involved top-down 

processing.  In this view, the network is not really task-negative, but preferentially 

responds when bottom-up processing is complete.  The majority of fMRI experimental 

paradigms involve visually presented stimuli and participant response via button box.  

The moment a subject responds typically marks the end of a trial.  The end of a trial is 

associated with rebound in DMN activity.  This is true in event-related (Shannon et al., 

2006) as well as block design studies.  It is presumed that post-trial increases in DMN 

activity support the resumption of internally directed thoughts associated with mind-

wandering in the resting state.  However, the temporal dynamics of DMN activity in the 

relational and social cognition paradigms appears to correspond to the motor-related 

response at the end of each trial.  This suggests that post-trial increases in DMN activity 

may actively support top-down processing related to trial responses.  This explanation 

also accounts for the existence of DMN activity in other species including rodents which 

are not believed to engage self-reflection and other cognitive abilities associated with the 

DMN.  

Subcomponents of the DMN may have different functional roles in supporting 

top-down processing.  Peristimulus DMN activity in all three experimental paradigms 
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showed that parietal regions of the DMN may work in opposition to the ADMN and 

PCC.  During bottom-up processing in the relational and social cognition paradigms, 

DMN regions of the parietal cortex exhibited increases in activity while activity in the 

ADMN and PCC was suppressed.  This can also be seen in the pattern of  activity 

associated with task epochs in the social and relational Markov chain models.  In the self-

directed motor paradigm, this pattern is reversed.   ADMN is above baseline while BA 

7m in medial parietal cortex was suppressed.  The time course of activity in PCC 

consistently resembled that of the motor cortex of the unused hand.  It is possible that 

these regions may play a role in top-down suppression of unwanted motor responses.  

When activity across the network is cooperative, there are correlated changes in thalamic 

activity.  This state may function as a switch supporting the redirection of attention from 

endogenous to exogenous stimuli or between bottom-up and top-down modulation of 

brain activity.  

Combining evidence from the set of tasks that evoke increases in the DMN and 

observations of the network's likely role in perception of salient visual stimuli, the most 

parsimonious of the currently proposed functions of the DMN suggests its role as a 

sensory-visceromotor link (Raichle, 2015) that pairs experience with appropriate 

behavioral and emotional responses (Ongür & Price, 2000).  The results of this work are 

consistent with this explanation.  However, the DMN may play an additional role in 

facilitating the switch between bottom-up processing of sensory information and top-

down execution of motor responses, with posterior parietal regions supporting the 

sensory and the ADMN and PCC visceromotor functions. 
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4.4.6 Methodological Considerations 

A SEM was used to estimate functional influences on the DMN and to select 

variables for consideration in the Markov chain model.   However, interactions between 

activity in different brain regions are likely non-linear.  In addition, the SEM was 

formulated with a temporal lag of 1 TR.  To account for uncertainties in the 

hemodynamic response within different brain areas, a more sophisticated approach such 

as blind deconvolution could be employed in the future.  A selection of the most 

influential brain regions and a more complex model may better reflect the functional 

relationships between the DMN and other cortical regions.  However, the model 

performed well at predicting activity in the DMN in a second resting-state scan and 

therefore may provide a first order approximation of the strength of regional functional 

influences. 

The hierarchical clustering method captured behaviorally relevant state 

transitions.  A nested hierarchical clustering approach may provide a method to explore 

dynamic patterns of activity within states associated with task performance in greater 

detail.  In addition, the predictive power of the probabilistic Markov chain modeling 

approach was not fully exploited in these analyses.  Applied to resting-state fMRI data, 

this approach has potential to yield exciting new insights into the dynamics of intrinsic 

brain activity.  
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CHAPTER V

ABERRANT DMN ACTIVITY DISTINGUISHES AUTISM AND

SCHIZOPHRENIA

5.1 Introduction 

Clinical similarities between schizophrenia (SZ) and autism spectrum disorder 

(ASD) were recognized even in the earliest descriptions of the two disorders (Kolvin, 

1971; Rutter, 1972).  The first reported cases of autism were initially thought to be a form

of infantile SZ.  In fact, the name Autism, which comes from the Greek word “auto” 

meaning “self”, was originally used to describe a lack of interest in social interaction in 

individuals with schizophrenia (Bleuler, 1951).  Later the term became associated with 

children who exhibited a similar lack of interest in social interaction and the spectrum of 

disorders we now call ASD.  The young age of onset of clinical symptoms and lack of 

psychosis in ASD were later recognized as the main features that separated SZ from 

ASD.  While they are now recognized as distinct disorders, their shared cognitive 

symptoms include impairments in social interaction and communication, deficits in 

processing emotion (Wallace et al., 2011; Brune, 2003; Morrison et al., 1998), theory of 

mind abilities (Pilowsky et al., 2000), language skills (Magaud et al., 2010) and learning 

(Titone et al., 2004), and the inability to suppress irrelevant information (Bird et al., 

2006; Cutting et al., 1987).  There are currently no medical tests available for either 

disorder.  According to the diagnostic guidelines contained in the Diagnostic and 

Statistical Manual of Mental Disorders (DSM), many patients may qualify as having 
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either condition (Solomon et al., 2011; Konstantareas et al., 2001).  Therefore, there is 

considerable interest in identifying reliable biomarkers.

Aberrant brain connectivity is strongly implicated in both disorders, as many of 

the genes implicated in ASD and SZ are involved in developing both long-range 

projections between brain areas as well as short-range synaptic connections (Crespi et al.,

2010).   Comparative studies aimed at understanding the genetic etiological relationship 

between the two disorders have identified some evidence for overlapping etiology and 

some evidence for diametric etiology (resulting from reciprocal alterations to common 

risk factors).  However, while there is strong evidence for genetic risk factors and 

heritability, overlapping epigenetic mechanisms are now recognized as potentially 

playing a vital role in pathogenesis (McCarthy et al., 2014; see Persico et al., 2006, Roth 

et al., 2009 for reviews in ASD and schizophrenia respectively).  The resulting cognitive 

deficits observed in both disorders are believed to be caused by altered communication 

between brain areas.  However, studies aimed at identifying the regions of altered 

connectivity have yielded many conflicting results and failed replications.  The large 

majority of such studies have made use of resting-state fMRI because of its ease of 

collection and the ability to make measurements of large-scale functional connectivity 

across the brain. Both disorders are associated with decreases in interhemispheric 

connectivity (SZ:Venkataraman et al., 2012; ASD: Anderson et al., 2011c), particularly 

in sensory regions and alterations in connectivity between frontal and posterior regions in

the parietal lobe and occipital cortex (SZ: Venkataraman et al., 2012; ASD: Cherkassky 

et al., 2006; Just et al., 2007).  Both have been associated with changes in connectivity 
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within the DMN.  However, in some studies, increases rather than decreases in inter-

regional functional connectivity are reported and others fail to find significant regional 

differences (see Anderson, 2014 for review in ASD and Fornito et al., 2012 for SZ).  

Inconsistencies in study outcomes may reflect methodological differences, and/or 

differences in patient sub-populations (age, sex, IQ, medication, and/or disease severity 

and duration), but also highlight the variability in these patient populations and the 

difficulty of characterizing either disorder by changes in connectivity between any one or

two regions.   

Where studies of regional changes in connectivity have yielded inconsistent 

results, studies using whole-brain measures of functional connectivity, in combination 

with machine learning algorithms, have demonstrated that multivariate patterns of 

connectivity can successfully distinguish patients from healthy controls (Shen et al., 

2010; Anderson et al., 2011a; Du et al., 2012; Nielsen et al., 2013; Castro et al., 2014; 

Plitt et al., 2015).  Using a multivariate classification approach, a recent study aimed at 

identifying biomarkers specifically for ASD found that application of their ASD model to

other disorders was moderately successful in identifying SZ patients from healthy 

controls, but not those with attention-deficit hyperactivity disorder (ADHD) or major 

depressive disorder (Yahata et al., 2106).  This suggests that common cognitive deficits 

in the two disorders may be accompanied by common changes in connectivity.  

Therefore, a comparative study of the changes in functional connectivity between ASD 

and SZ may identify divergent features that make the two disorders unique, which may 

aid in the development of disease interventions (Sasson et al., 2011).   Both ASD and SZ 
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have been associated with changes in connectivity in the DMN, however, it is unknown 

whether differences in aberrant connectivity patterns across disorders can be used to 

differentiate between them.  Therefore, in this chapter I apply supervised machine 

learning to whole-brain models of effective connectivity for subjects with ASD and SZ.  

The resulting machine learning models are cross-validated on independent training-naive 

data sets to determine if they generalize.  I identify the most diagnostic features for each 

disorder and show that changes in effective connectivity, particularly in the DMN, can be

used to successfully classify autistic subjects from those diagnosed with schizophrenia.  

5.2  Methods

5.2.1 Data

Resting state data for subjects with SZ was archived by the Center for Biomedical

Research Excellence (COBRE) and obtained from  

http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html.  The data set included 146 

subjects ranging in age between 18 and 65 (72 SZ mean age = 38.17,  SD = 13.89, 58 

males; and 74 controls mean age  = 35.82, SD =  11.58, 51 males).  This data set was 

used to train a support vector machine (SVM) classifier.  A separate data set was used as 

a testing cross validation set.  The classifier was never trained on the testing cross 

validation data sets.  Testing data was collected at the Rutgers University Brain Imaging 

Center as part of another study (not yet published).  It included ten subjects ranging in 

age from 19-54 years old ( 5 SZ mean age  = 42.6, SD = 11.59, 2 males; and 5 controls 

mean age = 20, SD = 1.22, 2 males) with two resting state scans each.
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Resting state data for autistic spectrum disorder subjects was archived by the 

Autism Brian Imaging Data Exchange (ABIDE) and obtained from 

http://fcon_1000.projects.nitrc.org/indi/abide.  The data set used was the ABIDE I 

University of Utah School of Medicine (USM) data set.  It consisted of 101 subjects 

between the ages of 8 and 50 (58 ASD 11-50 years old, mean = 22.65, SD = 7.73; and 43 

controls 8-39 years old, mean=21.36, SD=7.64).  As the COBRE dataset did not include 

any individuals below 18 years of age, subjects younger than 18 were excluded, resulting 

in 37 patients (mean age = 26.34, SD = 7.37, 37 males) and  27 controls (mean age = 

25.42, SD = 6.28, 27 males).  Testing cross validation was performed on the ABIDE II 

Barrow Neurological Institute (BNI) data set.   It consisted of 58 subjects between the 

ages of 18 and 64 (29 controls age range = 18 – 64, mean age = 39.59, SD = 15.09; and 

29 patients age range 18 – 62, mean age = 37.44, SD = 16.09).  After removing four 18 

year old subjects, the sample consisted of 27 controls (mean age = 39.58;  SD = 15.09; 27

males) and 27 patients (mean age = 37.6; SD = 16.09; 27 males).  All data was collected 

in compliance with their relevant institutional review boards.  

5.2.2 Preprocessing

Preprocessing steps were carried out using FSL 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL) and included brain extraction using FSL's BET 

(Smith, 2002b), motion correction using FSL's MCFLIRT (Jenkinson et al., 2002), and 

linear registration to the Montreal Neurological Institute (MNI152) 2mm standard 

(Mazziotta et al., 1995) using FSL's FLIRT (Jenkinson et al.,  2001; Jenkinson et al., 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
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2002).  Frame displacement parameters were regressed out of each data set to control for 

motion.  

5.2.3 Region of Interest Selection

A previously generated parcellation based on meta-analysis over a range of tasks 

identified 264 ROIs of putative functional relevance spanning both cortical and 

subcortical areas (Power et al., 2011).  The resulting atlas was extended to include an 

additional 19 ROIs in the brainstem, basal forebrain, hippocampus, amygdala, and 

putamen bilaterally for a total of 283 regions.  Each ROI is a 5mm sphere around a voxel 

of peak significant activity during performance of tasks such as button-pressing, reading, 

and memory retrieval.  For each subject, average time series was extracted for each ROI. 

Data sets were matched for number of time points to the COBRE SZ data set by 

randomly selecting a start point that resulted in 120 consecutive scans.  

5.2.4 Connectivity Matrix Graph Model Generation 

There are several possible approaches to generating connectivity matrices.  The 

simplest and most common is to use thresholded functional connectivity.  However, data 

from patient populations have a higher risk of motion artifacts (Greene et al., 2016b).  

Even after motion correction and regressing motion parameters, residual motion artifacts 

can alter correlation coefficients across the brain (Power et al., 2012).  Therefore, a 

Bayesian approach was used to determine effective connectivity between brain areas 

(Friston, 1994).  Because connections are determined probabilistically in Bayesian 
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models, they are less susceptible to spurious connections resulting from motion artifacts 

(Hanson et al., 2016).  Bayesian network models can be represented as graphical models 

where variables (ROIs) are depicted as the nodes of the network and directed edges as the

interactions between nodes.  Connections between ROIs represent probabilistic 

dependencies among variables quantified by their conditional probability distributions.  

The network structure expresses the joint probability distribution over all variables.  The 

structure of a Bayesian network model representing the interactions between ROIs over 

the scan duration is learned from the ROI time series data using a score-based hill-

climbing greedy search algorithm as implemented in the R bnlearn package 

(https://cran.r-project.org/web/packages/bnlearn/index.html).  Such algorithms have been 

benchmarked for use in fMRI data and have demonstrated excellent accuracy and 

stability (Ramsey et al.,  2011) over known network structures.  Bayesian information 

criterion (BIC) scores measure the goodness of fit of the model based on the log-

likelihood of the data given the network structure, while simultaneously penalizing the 

number of parameters in the model.  

BIC=ln (n)k−2ln (L
^

) (1)

L
^

= p(x |θ , M ) (2)

L
^

= maximized likelihood function of the model M over the observed data x, and 

parameter values θ

https://cran.r-project.org/web/packages/bnlearn/index.html
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n = number of data points

k = number of parameters to be estimated

As the number of parameters k in the model increases the BIC score also increases; lower

BIC scores are considered better models.  In this way, the number of parameters in the 

model is constrained.  Edges are added to the model individually and a new BIC score is 

calculated to determine whether the additional variable improves the fit.  The search 

procedure concludes when the fit is not further improved (the BIC score is not reduced) 

by inclusion of new edge parameters.  The number of ROIs in the feature set was 283, 

resulting in 80,089 (283x283) possible edges or features.  Therefore this is the feature 

space that is searched during the learning procedure.   Once the graph structure is 

determined, edge weights are calculated as linear regression coefficients, resulting in a 

weighted connectivity matrix for each subject.  These weights were then normalized by 

subject by z-scoring over the non-zero model edge weights in order to preserve the 

relationships between variables and to facilitate comparison across subjects and data 

centers.  

5.2.5 Identifying Relevant Discriminatory Features 

A linear support vector machine (SVM) was used to classify schizophrenic 

patients from controls based on each subject's weighted connectivity matrix.  An SVM is 

a supervised multivariate classification method that treats each of the features, or edges, 
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as a point in a high dimensional space.  Training of an SVM results in a set of support 

vectors (points in multidimensional feature-space) that represent the boundary between 

classes.  Because the support vectors are at the boundary between classes, they are not 

useful in determining features that are most indicative of each class.  Recursive feature 

elimination (RFE) was used to identify the most predictive features (Guyon et al., 2002; 

Hanson et al., 2008).  The basic principle of RFE is to initially include all edges in the 

model and to gradually exclude edges, that contribute least to successful discrimination 

between the two classes.  This approach iteratively trains and tests the SVM, discarding 

the least important features at each iteration until a core set of features remain, having the

highest discriminative power.  At each iteration, data from the training set is randomly 

sub-divided into training and testing sets consisting of 10% of the total number of 

subjects.  After training, the least significant 10% of features are removed from the 

feature set.  Feature significance is based on the support vector model coefficients 

(Krantz et al., 1971).   Classification accuracy on the held out 10% of  subjects is 

recorded at each iteration.  A bootstrap procedure was implemented that repeats the RFE 

process 100 times.  Accuracies are averaged over the 100 bootstrap samples.  The number

of features to include in the final model was determined by choosing the number that 

yielded the highest classification accuracy on average over bootstrap samples.  Edge 

features were sorted according to the frequency (1-100) of their inclusion in the top 

feature set yielding highest accuracy.  The RFE process was done separately and 

identically for both the SZ and ASD datasets, resulting in a separate set of distinguishing 

features for each patient population from that of healthy controls.  A separate SVM 
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model for SZ and ASD was then created using these features. 

5.2.6 Cross Validation on Independent Data 

Independent data sets, from a new cohort of subjects that were collected at 

different sites were used as testing cross validation sets.   The SVM models generated 

from the features identified through the RFE procedure, were used to predict group 

membership of the validation data sets.  Each of the new data sets underwent identical 

preprocessing procedures as the original training cohorts.  Their weighted edge matrices 

were used to determine how well the SVM models generalize.   Group membership, 

(ASD vs. control, SZ vs. control), was predicted for these new subjects using the SVM 

models that were trained on the initial training cohort of subjects.  Cross-validation in this

way will determine how well the models generalize outside of the patient population on 

which it was trained and also ensures that classification accuracy is not driven by 

differences in age, scanning site or other potential cohort or procedural differences in 

subject groups.  

5.2.7 Identifying Common and Disparate Feature  s 

To identify common and disparate features, a hybrid control group was created by

combining the 27 ASD control subjects from the ASD training set with 27 randomly 

selected subjects from the control group of the SZ training data set.  Using this hybrid 

group during training controls for differences in the samples that may be present due to 

different protocols and/or scanning sites.  RFE was performed separately for ASD and SZ
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against this common control group.  Identified features were separated into common and 

divergent feature sets.  Common features were those present in both the SZ and ASD 

models relative to the common control; divergent features were the remaining SZ and 

ASD features combined.  Features were then divided into non-overlapping functional 

networks for the purpose of visualization using network definitions from a previously 

defined functional brain atlas (Richiardi et al., 2015).  ROIs were defined as belonging to 

a given network if they were spatially overlapping with the atlas network mask.  

5.3 Results

5.3.1 Discriminative Features 

RFE was performed separately on the ASD and SZ training data sets and resulted 

in: 1) a set of features or edges that were most diagnostic in distinguishing ASD/SZ 

subjects from healthy controls 2) a model generated by training an SVM on just these 

features which can then be used to predict the class of a new set of subjects in the 

validation data sets.  

5.3.1.1 ASD Diagnostic Features 

The RFE procedure was performed on the ASD training data set to classify ASD 

subjects from healthy controls.  The procedure resulted in maximum average accuracy 

over 100 bootstrap samples using 4500 features.  SVM models for classification of the 

ASD training set were generated by training an SVM on a range of between 100 and 

4500 of the top RFE determined features.  Classification accuracy dropped steeply if 
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fewer than 100 of these diagnostic features were used.  In order to determine whether the 

model generalizes to ASD patients outside of this set, diagnostic accuracy was tested on 

an independent testing data set.  The features were used to predict the identity of subjects 

in the training-naive ASD validation data set.  Receiver operator curves (ROCs) were 

generated to show classification accuracy on the training-naive dataset as a function of 

the number of the top features used (Figure 5.1A).  An ROC is a visual representation of 

the sensitivity and specificity of the model.  Sensitivity is the ability to correctly identify 

ASD subjects or the true positive rate (TPR).   Specificity is the ability to correctly 

identify healthy individuals or 1- false positive rate (1-FPR).   A perfect model would 

have 100% sensitivity (TPR = 1) and specificity (FPR = 0).  Note that the SVM was 

never trained on the validation data set.  Rather, SVM models generated on the  training 

data set with different numbers of the top features identified through the RFE procedure 

were used to predict the identity of subjects in the ASD validation set.  Over a range 

between 800 and 1000 of the top RFE-determined features, the models performed well, 

with accuracies of 83% (75% sensitivity and 89% specificity).  Therefore these edges 

represent the features that are most diagnostic for ASD and generalize across data sets.   

Diagnostic features are distributed across the brain and across networks, with the largest 

number of diagnostic features clustering within the default mode, salience, executive 

control, higher order visual and motor networks (Figure 5.2A).
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Figure 5.1 Cross-Validation ROCs

 A. ASD training-naive test data set as a function of the number of diagnostic features 

used for prediction.  Best model performance: of 83% accuracy (75% sensitivity and 89%

specificity) was achieved using between 800 and 1000 of the top RFE-determined 

features. B. SZ training-naive test data set.  Best performance was achieved using the top 

400-600 RFE features which resulted in 80% accuracy with 80% sensitivity (TPR) and 

80% specificity (1-FPR).  Diagnostic features were determined by RFE on training data 

sets.  Performance at chance is represented on the red diagonal. 
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Table 5.1  Specificity and Sensitivity for ASD classification on untrained data.

ASD
Number of Features Specificity Sensitivity Accuracy

9 0.33 0.33 33.00%
13 0.33 0.5 42.00%
17 0.44 0.33 39.00%
24 0.33 0.75 54.00%
34 0.44 0.42 43.00%
49 0.44 0.5 47.00%
73 0.56 0.75 66.00%

110 0.56 0.67 62.00%
165 0.56 0.75 65.00%
249 0.56 0.75 65.00%
376 0.44 0.75 60.00%
570 0.55 0.75 65.00%
868 0.89 0.75 83.00%

1321 0.89 0.75 83.00%
2009 0.78 0.67 73.00%
3060 0.78 58 68.00%



162

Figure 5.2  Diagnostic Features by network.  

Diagonal elements represent within network edges (edges between different regions of 

the same network).  Numbers represent the number of features while the size/colors 

indicate the ratio of those features that represent increases rather than decreases in 

connectivity strength relative to controls.  Larger circles/yellow colors indicate a greater 

proportion of connectivity increases and red a greater proportion of decreases.  Total 

number of features per network are indicated in the left column.   A. In ASD, features 

cluster within the DMN, salience, ECN, higher order visual and motor networks. B. In 

SZ, features are also clustered in the DMN and salience networks with fewer features in 

the ECN.  
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5.3.1.2 Schizophrenia Diagnostic Features 

The RFE procedure was performed on the SZ training data set to classify SZ 

subjects from healthy controls.   SVM models using these features on the training set 

were created by training an SVM on the SZ training data using the top 165-4500 features.

These features were then used to predict SZ patients in the training-naive SZ validation 

set.  ROC curves were generated to show the classification performance on the test data 

set as a function of the number RFE features used (Figure 5.1B).  Again, the SVM was 

never trained on the SZ validation set.  Models generated on the training data set with 

different numbers of the top features identified through the RFE procedure were used to 

predict the identity of subjects in the SZ testing data set.  Fewer features were required to 

achieve good classification in the SZ test validation data set than in the ASD test 

validation set.  Over a range between 400 and 600 of the top RFE-determined features the

models performed very well, achieving accuracy of 80% (80% sensitivity and 80% 

specificity) on the SZ validation set.  These edges are those features that are most 

diagnostic for SZ across data sets.  Diagnostic features had the largest contributions from 

the DMN, salience network, and sensory-motor cortices (Figure 5.2B). 
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Table 5.2  Specificity and Sensitivity for SZ  Classification on Untrained Data.

5.3.2  Common Features 

Approximately 100 features were common to the SVM models for ASD and SZ 

against the common control group.  Common features are the graph model edge weights 

whose values are diagnostic for both disorders.  Common features may not necessarily be

increases (or decreases) relative to controls for both disorders.  It is possible for a 

common feature to be indicative of increased connectivity in one disorder and decreased 

connectivity in the other.  However, the overall pattern of connectivity changes in 

common features across networks are similar for both ASD and SZ, with similar patterns 

of increases relative to decreases.  A small number of features such as those between the 

salience and ECN networks indicated a greater proportion of increases than decreases for 

SZ
Number of Features Specificity Sensitivity Accuracy

12 0.3 0.4 35.00%
16 0.8 0.2 50.00%
22 0.3 0.7 50.00%
31 0.3 0.8 55.00%
45 0.5 0.8 65.00%
66 0.4 0.8 60.00%
99 0.5 0.7 60.00%

149 0.6 0.8 70.00%
225 0.7 8 75.00%
339 0.7 8 75.00%
514 0.8 0.8 80.00%
782 0.8 6 70.00%

1809 0.7 0.7 70.00%
2754 0.7 0.7 70.00%
4195 0.8 0.8 80.00%
5753 0.8 0.7 75.00%
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SZ as compared to ASD subjects.   The number of increases relative to decreases in these 

features are shown for ASD in Figure 5.3A and for SZ in Figure 5.3B.  About half of the 

common features are within-network connectivity differences (changes in connectivity 

between spatially disparate regions of the same network) shown along the diagonal in 

Figure 5.3.  Common diagnostic features across the disorders are concentrated within the 

sensory-motor cortex, executive control, salience and default mode networks and were 

visualized (Figure 5.4) using BrainNet Viewer (http://www.nitrc.org/projects/bnv/) (Xia 

et al., 2013).   
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Figure 5.3  Common Features of ASD and SZ

Features common to both the ASD and SZ models relative to the common control group. 

Diagonal elements represent within network edges between different regions of the same 

network.   Numbers represent the number of features within and between networks while 
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the size/colors indicate the ratio of those features that represent increases rather than 

decreases in connectivity strength relative to controls.  Larger circles/yellow colors 

indicate a greater proportion of connectivity increases and red a greater proportion of 

decreases for A. ASD and B. SZ.  Total number of features per network are indicated in 

the left column.  Overall pattern of connectivity changes in common features across 

networks are similar for both ASD and SZ. C. Common diagnostic features across the 

disorders are concentrated within the sensory-motor cortex, executive control, salience 

and default mode networks and cluster in the left hemisphere.

 

5.3.2.1 Common Features Predict Deficits in ASD Communication

Symptom severity scores for SZ patients were not available in the COBRE and 

Rutgers data sets.  A variety of cognitive assessments were available for ASD patients in 

the ABIDE dataset.  Scores on social and communication deficits were of particular 

interest since social deficits are common to both ASD and SZ.  The average edge weights

of ASD patients relative to controls over common features were compared to the autism 

diagnostic observation schedule (ADOS) (Lord et al., 2000) standardized assessment of 

social and communicative abilities.  Differences in edge weights of the common edges 

between the two models significantly predicted ADOS social scores, b = -17.24, t(35) = 

-2.054, p < .05; R2 = .11, F(1,35) = 4.219, p < .05.  Decreased average connectivity 

strength over the edges common to the ASD and SZ models in the DMN were associated 

with higher ADOS scores indicative of greater communication deficits.  
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5.3.3 ASD and SZ Disparate Features 

The remaining disparate features between the ASD and SZ models (~1000 ) 

represent features found to be diagnostic in either the ASD (Figure 5A) or SZ (Figure 5B)

models relative to the common control group, but were not present in both models.  The 

ASD model required a greater number of features to obtain good classification.  Both 

models contain a mixture of increases and decreases in connectivity strength across and 

within networks.  The ASD and SZ models exhibited a large number of non-overlapping 

features within the DMN and the salience network.  However, a much larger proportion 

of diagnostic features associated with ASD were within-network changes in the DMN as 

compared to SZ.   Features within sensory-motor networks were more prominent in the 

ASD than SZ model, while changes in the ECN and increases in connectivity in higher 

level visual processing areas were more prominent in the SZ model.  Sections 5.3.1.1 and

5.3.1.2 detail the features identified through the RFE procedure when performed on each 

of the individual training data sets.  These features were compared to those identified by 

performing the same procedure using the common mixed control group, which consisted 

of an equal number of control subjects from both data sets.  From the initial set of 

potential features, about half of those identified using  RFE on the original training data 

sets were also identified using the hybrid control group.   

 

5.3.3.1 SVM Discrimination between SZ and ASD Subjects

An SVM was trained using the combined common and distinct features across the
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ASD and SZ models to determine wether they could be used to classify ASD from SZ 

subjects.  Patients from the training data sets were successfully classified achieving 98% 

accuracy with 10-fold cross-validation.  These features were then used to predict group 

membership in ASD and SZ subjects from the validation data sets.  Again, the SVM 

model was trained on the training data sets and the resulting model was used to predict 

membership in the validation set.  As in the other validation procedures, diagnostic 

accuracy was explored over different numbers of the most significant features.  A 

prediction accuracy of 75% was achieved using 40-50 of these features  (Figure 5.6).  

When examining the edge weights of these features in ASD and SZ patients (Figure 5.7), 

a striking difference in the pattern of increases and decreases is readily apparent.  In the 

feature set that distinguishes ASD from SZ subjects, ASD is characterized by increases 

rather than decreases in connectivity strength in nearly all connections between and 

within networks.  While DMN connectivity is prominent in the feature sets for both 

disorders,  the DMN is also the most diagnostic network for distinguishing ASD from SZ.

Examining the specific edges involved, SZ exhibited decreased connectivity strength in 

all DMN connections except those between the posterior cingulate and supplementary 

motor cortex, and between the precuneus and lateral occipital cortex.  
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Figure 5.4 Disparate Features of ASD and SZ

Disparate features present in a) ASD model or b) SZ model but not in both models.  

Connectivity strength differences are relative to healthy individuals in the hybrid control 

group.  Diagonal elements represent within network edges between different regions of 

the same network.  Numbers represent the number of features within or between 

networks, while color and size indicate the ratio of  increases to decreases in connectivity 

strength for those features relative to controls.  Yellow colors indicate a greater 

proportion of connectivity increases, red a greater proportion of decreases.   The DMN 

and salience networks account for the largest number of features with a mix of increases 

and decreases in connectivity strength.  
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Figure 5.5  Prediction Accuracy ASD of SZ Cross-Validation 

ROCs of cross-validation accuracy predicting SZ from ASD patients in the training-naive

validation set as a function of the number of diagnostic features used for prediction. 

Diagnostic features are the combination of the SZ and ASD features when trained against

the hybrid control group.  Best performance was achieved using the top 40-50 RFE 

features which resulted in 75% accuracy with 90% sensitivity (TPR) and 60% specificity 

(1-FPR).
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Table 5.3  Prediction Accuracy ASD from SZ Cross-Validation

Specificity and Sensitivity for classification of ASD patients from SZ patients in 

untrained testing data sets.

Figure 5.6 DMN Distinguishes ASD from SZ  

Features that distinguish ASD from SZ.  Diagonal elements represent within network 

edges between different regions of the same network.  A. For ASD relative to SZ, the 

Number of Features Specificity Sensitivity Accuracy
5 0.5 0.6 55.00%

35 0.6 0.6 60.00%
41 0.6 0.9 75.00%
47 0.6 0.9 75.00%
53 0.6 0.7 65.00%
82 0.3 0.7 50.00%

118 0.2 0.6 40.00%
300 0.3 0.5 40.00%
590 0.3 0.4 35.00%
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DMN network accounts for the largest number of features where there are mostly 

increases in connectivity strength relative to SZ patients.  B.  SZ relative to ASD.  

Numbers represent the number of features within or between networks, while color and 

size indicate the ratio of increases to decreases in connectivity strength in those features.  

Yellow colors indicate a greater proportion of connectivity increases, red a greater 

proportion of decreases.   

5.4 Discussion

From a diagnostic point of view, there is considerable interest in identifying 

biomarkers for psychiatric disorders such as ASD and SZ.  However, there is a 

recognition that symptoms in many psychiatric disorders lie along a continuum with 

some degree of overlap across disorders.  Despite the similarities between ASD and SZ, 

particularly in social cognitive deficits and their overlapping etiologies, they are seldom 

studied comparatively.  In their separate literatures, aberrant connectivity has been the 

focus of study in both ASD and SZ, because it is believed that their cognitive deficits 

may be caused by the impaired ability to integrate information across functionally 

distributed brain areas.  However, studies of connectivity differences in both ASD and SZ

have yielded conflicting results, particularly those that have focused on average 

connectivity changes between specific brain regions.  This highlights the difficulty of 

using regional connectivity differences between just one or two regions to characterize 

complex disorders such as ASD and SZ.  Even if individual features did reach statistical 
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significance, this would not be sufficient for use as a biomarker, since there is still 

considerable overlap in the distributions of regional connectivity strengths between 

patients and controls.  Multivariate pattern analysis, on the other hand, can reliably 

distinguish patients from healthy controls by identifying a set of features that in 

combination best describe the deviations from normal connectivity patterns.  In addition, 

this technique makes use of the mixture of increases and decreases in regional 

connectivity strength to help distinguish groups.  In contrast, univariate techniques 

typically require averaging over regional changes which may account for some of the 

conflicting results in the literature.

5.4.1 Classification Accuracy 

For both SZ and ASD, SVM models were created on an optimized set of 

diagnostic features identified through a feature elimination procedure.   These models 

were then tested on independent data sets to see if they generalize.  The most significant 

features from each classification set did generalize and yielded good classification 

accuracies on testing data sets: 83% accuracy on the ASD validation data set and 80% 

accuracy on the SZ validation data set.  Many studies using multivariate classifiers have 

previously been carried out for both disorders (see Demirci et al., 2008  and Kambeitz et 

al., 2015 for schizophrenia review; Stevenson et al., 2010 autism).  The overwhelming 

majority of such studies cross-validate their models using a leave one out, leave two out, 

or 10-fold cross validation scheme.  Very few test the generalization of their models on 

independent data sets.  For example, in one recent study of ASD (Ecker et al., 2009) 81%
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classification accuracy was achieved using SVM and leave two out cross validation of 

MRI structural images.  They identified differences in grey matter structure in frontal, 

parietal, and limbic regions as well as the basal ganglia.  In another large multi-site study 

of 964 autistics, 60% accuracy was achieved using functional connectivity and leave one 

out cross-validation.  They identified features in DMN, temporal cortex and the 

intraparietal sulcus.  Similar studies have been carried out in the SZ literature.  One such 

study reported 85% classification accuracy using SVM with 10-fold cross validation on 

functional connectivity measures (Arbabshirani, 2014).  Another study achieved 93% 

accuracy using Fishers' linear discriminant analysis.  Their analysis identified the DMN, 

temporal and visual regions as the most significant classification features (Du et al., 

2012).   Testing the classification models on independent data sets over a range of the top

diagnostic features showed that the most predictive features for the training data sets, 

determined based on the SVM model coefficients, generalized to independent training-

naive data sets and that validation accuracies decrease as the number of diagnostic 

features becomes insufficient. 

5.4.2 Divergent Features of ASD and SZ

  The diagnostic features identified through the RFE procedure were distributed 

across the brain, which supports the hypothesis that impaired integration of information 

across distributed brain areas is a hallmark of both ASD and SZ.  Both disorders 

exhibited a large number of changes in connectivity in the DMN and salience networks.  

However, the two disorders dissociate in terms of the specific pattern of alterations.  ASD
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showed a greater proportion of within-network changes in the DMN and reduced 

connectivity between DMN and language areas.  In contrast, SZ changes between DMN 

and language areas were largely increases in connectivity.  Diametric changes in 

connectivity were also identified within the ECN where ASD exhibited largely decreases 

in connectivity relative to controls and SZ largely increases.  The ECN is involved in 

execution of voluntary control of behavioral responses to salient stimuli and has been 

identified as a loci of changes in connectivity in SZ (PC et al., 2013; Orellana et al., 

2013).  It is unclear however whether changes in ECN associated with ASD are a primary

cause of dysfunction or the result of dysfunction in lower-level sensory processing 

(Kenworthy et al., 2008).  In fact, a much larger proportion of diagnostic features were 

found in sensory-motor regions in ASD than were identified in SZ patients.  The role of 

the sensory-motor cortex in social cognition has been studied in the context of the mirror-

neuron system, where it is believed that individuals make sense of the actions and 

emotions of others (Gallese et al., 2004; Oberman et al., 2007).  Mirror neurons were 

originally discovered in the pre-motor cortex of macaque monkeys (Rizzolatti et al., 

1996).  They are known to fire during goal-oriented motor action, but also in response to 

observing the same action performed by another individual.  Previous studies have 

indicated dysfunction of the mirror-neuron system in both ASD (Oberman et al., 2005; 

Enticott, et al., 2012) and SZ (Mehta et al., 2013; Möhring et al., 2015) patients.  In 

addition, the ASD model required more features for accurate classification than were 

required for SZ subjects.  This may be due to the onset of the disorder early during brain 

development.  It has been suggested that early changes in sensory processing of facial 
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features, for example, lead to changes in the perceived salience of such features and 

eventually to altered attentional processing and social impairments in ASD (Schultz et al.,

2005).  Therefore, aberrant function and connectivity early in development may lead to 

compound changes later in development for higher level skills that are dependent on 

more elementary or sensory-level function.  

5.4.3 Common Features of ASD and SZ

The ability to behave in a context appropriate manner is dependent on recognition 

of socially relevant sensory information.  Accordingly, the overwhelming majority of 

diagnostic features identified for both ASD and SZ are in the salience and default mode 

networks.  The DMN is believed to be essential to theory of mind abilities (Buckner & 

Carroll, 2007), while the salience network contributes to a variety of cognitive abilities 

including communication, social behavior and self-awareness (Menon & Uddin, 2010).  

Both networks have previously been implicated in a variety of brain disorders including 

SZ and ASD.  For example, in autism is it known that the relative salience of social 

queues including facial expressions are impaired (Volkmar, 2005).  In schizophrenia, 

misattribution of salience to external and internal stimuli may be a cause of positive 

symptoms such as hallucinations (Palaniyappan & Liddle, 2012).   The DMN is an 

important part of association cortex.  The DMN has connections to supplementary motor 

areas, frontal eye fields involved in control of visual attention, and reciprocal connections

to thalamic nuclei that in-turn connect exclusively with higher association cortices  

(Cavanna & Trimble, 2006).  Many studies have identified the DMN as a collection of 
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areas that are structural and functional hubs, acting as a common connection point for 

many other brain areas (Nijhuis et al., 2013; van den Heuvel & Sporns, 2013).  The DMN

may play a key role in integrating executive control and salience networks, as was 

reported recently in the context of an n-back working memory task (Liang et al., 2016).  

As the task load elevated, functional connectivity increased between the salience network

and the default mode and executive control networks.  Interestingly, there is evidence that

the DMN may integrate with salience networks in a graded manner.  In a very large study

of resting state functional connectivity, smoothly varying gradients of connectivity were 

found between each region of the DMN and salience network (Anderson et al., 2011b).  

These connectivity gradients were found to strengthen with maturity.  It is possible that 

aberrant balance between these gradients of connectivity develop as a result of improper 

pruning and fine tuning over the course of development leading to disfunction.  

Therefore, the changing interaction of these networks over the course of brain 

development is one possible explanation for why cognitive deficits similar to those of 

ASD do not manifest in SZ till early adulthood.  A graded response between key 

networks may also contribute to the spectrum of cognitive deficits observed when this 

system is compromised.  

5.4.4 Discriminating ASD from SZ

A small subset of the common and divergent features that distinguished either 

ASD or SZ from controls had diagnostic importance for classifying ASD from SZ 

subjects.  This subset was dominated by features in the DMN.   The results indicate that, 
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relative to SZ patients (rather than controls), ASD is associated with stronger 

connectivity in the DMN, while weaker connectivity was found in SZ patients for the 

same edges.  Positive symptoms associated with SZ, such as hallucinations, are one of the

main characteristics that distinguish SZ from ASD.  Positive symptoms in SZ are 

reportedly correlated with increased functional connectivity between the posterior regions

of the DMN and the salience network (Bluhm et al., 2007).   The features identified in 

this study are consistent with this and suggest that such increases involve connections 

specifically between the posterior cingulate and supplementary motor cortex, and 

between the precuneus and lateral occipital cortex.  In addition, some studies have 

indicated that negative symptoms in SZ, such as impaired social cognition, are associated

with decreased connectivity with anterior parts of the DMN in medial prefrontal cortex 

(Camchong et al., 2011).   The diagnostic features identified suggest that SZ subjects 

have weaker connectivity over specific edges within anterior DMN regions particularly 

related to connections to the paracingulate.  These features successfully classified ASD 

from SZ subjects in validation data sets, demonstrating that multivariate machine learning

techniques can be used to distinguish between disorders even when there is considerable 

overlap in their symptoms.  

5.4.5 Limitations of the current study 

The RFE method employed demonstrates that there are characteristic changes in 

the patterns of resting state connectivity that generalize to patient populations outside of 

the training sets.  A specific challenge to be met in identifying diagnostic biomarkers 
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from resting state functional connectivity is to find the best set of features to maximize 

diagnostic capability.  The set of ROIs used, while comprehensive in their representative 

coverage of functional brain areas, nonetheless has sparse coverage over the whole brain. 

Future work should explore similar analysis using a voxel level approach to determine if 

there are better features to use for this purpose.  Additionally, symptom severity measures

were not available for schizophrenic patients, it was not possible to explicitly associate 

common connectivity differences in ASD and SZ to measures of symptom severity in SZ 

patients.  Finally the sample size of the SZ test data was small.  Future studies should 

explore the the utility of identified features over several data sets for greater certainty of 

diagnostic utility.  However, few studies attempt to validate classifier models on data sets

outside of the training set.  The SVM models achieved good classification accuracy on 

this small data set as well as the larger ASD test set, suggesting that the model features 

are based in disease specific changes in connectivity that may generalize to other patient 

populations.  

5.5 Summary

In summary, common changes in connectivity between ASD and SZ were 

identified that predict deficits in communication skills in ASD patients.  The  results 

suggest that common social cognitive deficits associated with ASD and SZ may be 

related to changes in connectivity within higher order association cortex in the DMN and 

salience network.  In addition, divergent changes in connectivity were identified, which 

were successfully used to discriminate between ASD and SZ patients.  These features 

resulted in classification accuracies well above chance performance in training-naive data
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sets, suggesting that these models may generalize across patient populations.    Relative 

to healthy individuals, there were more disparate than common features of the two 

disorders, but only a few features had diagnostic significance in distinguishing the two 

populations.  Relative to SZ patients, the distinguishing features of ASD were increases 

in connectivity within higher order visual processing areas and the DMN.  When 

disorders exhibit considerable overlap in their symptoms, as is the case in ASD and SZ, 

comparative studies can yield insights into the changes in connectivity that lead to 

common deficits. 
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CONCLUSION

In this thesis I propose an account of DMN function based on the anatomical 

connections of each region of the network as well as their temporal dynamics in response 

in to task demands.  Unlike DMN regions in vmPFC and the cingulate, parietal DMN 

regions have connections to visual cortex.  I found that these regions increase in activity 

during visual processing.  In contrast, regions of the vmPFC increased in activity after 

visual stimuli were processed, during task responses, suggesting dynamic changes in 

DMN activity that correspond to changes in bottom-up and top-down processing.  This 

pattern of evoked activity was consistent across experimental paradigms.  An 

interpretation of DMN function based on top-down and bottom-up modulation provides a

parsimonious explanation for the network's high level of baseline activity as well as the 

collection of tasks known to evoke increases and decreases in DMN activity.  The 

observed patterns of activity in the DMN, TPN, basal ganglia and thalamus, suggest that 

the transitions between between bottom-up and top-down processing may be 

accomplished through coordinated signaling between the DMN and TPN through these 

subcortical structures.  The arrangement of DMN projections through the direct and 

indirect pathways of the basal ganglia may be key in understanding how this transition 

takes place and may also yield insights into the relationship between DMN disfunction 

and the wide array of neuropsychiatric disorders with which it is associated.  
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Appendix B DMN Diffusion Imaging Regional Connections 

Table B1. Structural Connections of BA 10 medial
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Table B2. Structural Connections of BA 32 pregenual
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Table B3. Structural Connections of BA 23 dorsal 
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Table B4. Structural Connections of BA 31
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Table B5. Structural Connections of BA 7 medial
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Table B6. Structural Connections of BA 39 rostroventral 
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