Staff View
Investigation of chemical and physical processes on Arctic aerosols through a combined approach of field and laboratory studies

Descriptive

TitleInfo
Title
Investigation of chemical and physical processes on Arctic aerosols through a combined approach of field and laboratory studies
Name (type = personal)
NamePart (type = family)
Mukherjee
NamePart (type = given)
Pami
NamePart (type = date)
1986-
DisplayForm
Pami Mukherjee
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Gao
NamePart (type = given)
Yuan
DisplayForm
Yuan Gao
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Reinfelder
NamePart (type = given)
John
DisplayForm
John Reinfelder
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Rouff
NamePart (type = given)
Ashaki
DisplayForm
Ashaki Rouff
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Khalizov
NamePart (type = given)
Alexei
DisplayForm
Alexei Khalizov
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - Newark
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2018
DateOther (encoding = w3cdtf); (qualifier = exact); (type = degree)
2018-10
CopyrightDate (encoding = w3cdtf)
2018
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
The causes and effects of recent global warming have been studied extensively; but, the role of atmospheric aerosols in the Arctic biogeochemistry has not been widely explored yet.
The water-soluble Arctic aerosols directly impact the climate by participating in cloud formation and influencing its radiative property. Moreover, the amplified Arctic warming may significantly influence the solubility and bio-availability of aerosol iron (Fe)—which is a limiting nutrient for phytoplankton growth, an important sink for atmospheric carbon dioxide (CO2).
This research investigates the chemical and physical processes on aerosols that were collected during the US Geotraces Arctic cruise in summer 2015 and natural snow samples from Newark, New Jersey in conjunction with laboratory experiments involving Fe minerals and organic ligands. We hypothesize that the Arctic aerosols were modified by various natural and anthropogenic processes, affecting the concentrations and hygroscopic properties of the cloud condensation nuclei and soluble Fe input to the Arctic Ocean.
Laboratory studies with hematite and major organic ligands showed that oxalate, when present above a threshold amount, had a significant effect on the absorptive dissolution of Fe. The results from the Arctic Ocean expedition showed that coarse mode sea-salt was the major aerosol component and non-sea-salt-sulfate was significantly present in fine mode aerosol particles. Among the organic species, oxalate, acetate, and formate were the major components among the species examined at the pole. Calcium was enriched on the sea-spray aerosols, pre-dominantly in the fine mode, leading to significant modification of the aerosol hygroscopic growth factor. Analysis of the natural snow and ice-melts showed that freezing could induce compaction and clustering of particles, but had negligible effect on modulating Fe solubility.
This study provides significant insight into the water soluble component of Arctic summer aerosols regarding their concentrations, sources, and possible formation mechanisms, and their effects on the Arctic climate via cloud formation. The laboratory based experiments increase our understanding of the effects of various processes occurring in Arctic aerosols—including the accumulation and reactions of organic components in aerosols and the freeze concentration effect on iron chemistry, which could affect the biogeochemical cycles in the Arctic Ocean.
Subject (authority = RUETD)
Topic
Environmental Science
Subject (authority = ETD-LCSH)
Topic
Atmospheric aerosols
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_8935
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (160 pages : illustrations)
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Note (type = statement of responsibility)
by Pami Mukherjee
RelatedItem (type = host)
TitleInfo
Title
Graduate School - Newark Electronic Theses and Dissertations
Identifier (type = local)
rucore10002600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-bmq6-q097
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Mukherjee
GivenName
Pami
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2018-04-20 10:55:19
AssociatedEntity
Name
Pami Mukherjee
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - Newark
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
Type
Embargo
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2018-10-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2020-10-30
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after October 30th, 2020.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.5
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2018-08-14T13:54:24
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2018-08-14T13:54:24
ApplicationName
Microsoft® Word 2013
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024