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1 Abstract

The goal of points-to analysis for Java is to determine the set
of objects pointed to by a reference variable or a reference
object field. In this paper we define and evaluate a points-to
analysis for Java which extends Andersen’s points-to analy-
sis for C [4].

Andersen’s analysis for C can be implemented efficiently
by using systems of set-inclusion constraints and by employ-
ing several techniques for constraint representation and res-
olution. We extend these techniques to efficiently represent
and solve systems of annotated inclusion constraints. The
annotations play two roles in our analysis. Method annota-
tions are used to model precisely and efficiently the seman-
tics of virtual calls. Field annotations allow us to distinguish
the flow of values through different fields of an object. In
addition, our analysis keeps track of all methods reachable
from the entry point of the program, and avoids analyzing
dead library code.

We evaluate the performance of the analysis on a large
set of realistic Java programs. Our results show that the
analysis is practical and therefore will be useful as a rel-
atively precise general-purpose points-to analysis for Java.
The experiments also show that the points-to solution has
significant impact on call graph construction, virtual call
resolution, elimination of unnecessary synchronization, and
stack-based object allocation.

2 Introduction

The goal of points-to analysis is to determine all memory
locations whose address may be stored in a given variable p.
This information is used to estimate the set of locations in-
directly read or written through p. Without points-to infor-
mation, many subsequent analyses and optimizations would
be impossible.

There are many points-to analyses for C with various
degrees of cost and precision [25, 24, 18, 4, 31, 39, 33, 32, 19,
26, 34, 21, 30, 14, 20, 10]. There is growing interest in points-
to analysis for object-oriented languages; for example, for
Java the goal of points-to analysis is to determine the set

of objects pointed to by a reference variable or a reference
object field. This information can be used (i) to construct
the program call graph (needed by various other analyses),
(ii) to resolve virtual calls (i.e., to treat them as direct calls if
there is only one target method) and enable method inlining,
and (iii) to determine whether all references to an object
are localized in a specific portion of the program (e.g., a
method or a thread) to allow stack-based object allocation
and synchronization removal. (These and other applications
of points-to analysis for Java are discussed in Section 4).

Object references in Java serve many of the same roles
as general-purpose pointers in C; therefore, analysis tech-
niques developed for C can be adapted for Java. The goal
of this paper is to define and evaluate a points-to analysis for
Java which extends Andersen’s points-to analysis for C [4].
Andersen’s analysis is a relatively precise flow- and context-
insensitive analysis1. Even though it has cubic worst-case
complexity, recent work has shown that the analysis can be
implemented very efficiently using inclusion constraints. As
a result, implementations of Andersen’s analysis are capable
of analyzing hundreds of thousands lines of C code in a few
minutes [34, 30]. The goal of our work is to achieve similar
performance for Java.

Some of the fastest implementations of Andersen’s anal-
ysis for C define and solve systems of inclusion constraints
of the form L ⊆ R, where L and R are points-to sets. Their
performance is based on several techniques for efficient con-
straint representation and constraint resolution [19, 34]. We
extend these techniques to efficiently represent and solve sys-
tems of annotated inclusion constraints of the form L ⊆a R,
where a is an annotation. The annotations play two roles in
the analysis. First, method annotations are used to model
precisely and efficiently the semantics of virtual calls. Sec-
ond, field annotations allow us to distinguish the flow of
values through different fields of an object, analogous to
tracing flow through fields of a C structure. The existing
constraint-based implementations of Andersen’s analysis for
C do not make this distinction. However, our experiments
show that if object fields are not treated as separate entities,
the performance of the analysis deteriorates.

One disadvantage of Andersen’s analysis is the implicit
assumption that all code in the program is executable. Java
programs contain large portions of unused library code; in-
cluding such dead code can have negative effects on the anal-
ysis cost and precision. In our points-to analysis, we keep
track of all methods reachable from the entry point of the

1A flow-insensitive analysis ignores the flow of control between
program points. A context-insensitive analysis does not distinguish
between different invocation sites of a procedure.
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class Y {..}

class X {
Y f;

void set (Y r)

{ this.f = r; }

static void main() {
X p = new X();s1:

Y q = new Y();s2:

p.set(q);
}
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Figure 1: Sample points-to graph.

program, and only analyze reachable methods. An addi-
tional advantage of this approach is that it produces the
reachability information as part of an integrated analysis.

We have implemented our analysis and evaluated its per-
formance on a large set of realistic Java programs. On 15
out of the 23 data programs, the analysis runs in less than
100 seconds using less than 40Mb of memory. To the best of
our knowledge, these are the first published empirical results
showing that a relatively precise points-to analysis can run
in practical time and space on realistic Java programs. This
practicality shows that the analysis will be useful as a rela-
tively precise general-purpose points-to analysis for Java.

Our experiments show that the computed points-to in-
formation can significantly improve the precision of the pro-
gram call graph. Furthermore, using the points-to solution,
we have been able to determine that in our multi-threaded
data programs about 50% of the object allocation sites cor-
respond to objects for which synchronization is unnecessary
and can be safely removed. The points-to information also
allowed us to show that for about 45% of all allocation sites,
the objects can be stack-allocated instead of heap-allocated.

The contributions of our work are the following:

• We define a points-to analysis for Java that extends
Andersen’s points-to analysis for C [4].

• We show how to implement the analysis using anno-
tated inclusion constraints. The implementation effi-
ciently and precisely models virtual calls and flow of
values through object fields, and only analyzes reach-
able methods.

• We evaluate the cost and precision of our analysis on a
large set of realistic Java programs. We show that the
analysis is practical both in time and memory usage.
We also show that the points-to solution has signif-
icant impact on call graph construction, virtual call
resolution, synchronization removal, and stack-based
object allocation.

The rest of the paper is organized as follows. Section 3
defines the semantics of our points-to analysis. Section 4
discusses several applications of points-to analysis for Java.
Section 5 describes the general structure of our annotated in-
clusion constraints, and Section 6 shows the specific kinds on
constraints and annotations. Section 7 describes the analysis
implementation. The experimental results are presented in
Section 8. Section 9 discusses related work, and Section 10
presents conclusions and future work.

3 Points-to Analysis for Java

In this section we define the semantics of our points-to analy-
sis for Java by extending the semantics of Andersen’s points-

〈si : l = new C , G〉 ⇒ G ∪ {(l , oi)}

〈l = r, G〉 ⇒ G ∪ {(l, oi) | oi∈Pt(G,r)}

〈l.f = r, G〉 ⇒

G ∪ {(〈oi, f〉, oj) | oi∈Pt(G, l) ∧ oj ∈Pt(G, r)}

〈l = r.f, G〉 ⇒

G ∪ {(l, oi) | oj ∈Pt(G, r) ∧ oi∈Pt(G, 〈oj, f〉)}

〈l = r0.m(r1, . . . , rn), G〉 ⇒

G ∪ {resolve(G, m, oi, r1, . . . , rn, l) | oi∈Pt(G, r0)}

resolve(G,m, oi, r1, . . . , rn, l) =
let mj(p0, p1, . . . , pn, ret j ) = dispatch(oi, m) in

{(p0, oi)} ∪ 〈p1 = r1, G〉 ∪ . . . ∪ 〈l = ret j ,G〉

Figure 2: Points-to effects of program statements.

to analysis for C. The implementation of the analysis using
annotated inclusion constraints is described in Section 6.

The analysis is defined in terms of three sets. Set R
contains all reference variables in the analyzed program. Set
O contains names for all objects created at object allocation
sites. For each allocation site si, we use a separate object
name oi ∈ O. Set F contains all instance fields in program
classes.

The semantics of the analysis is expressed as manipu-
lations of points-to graphs with two kinds of edges. Edge
(r, oi) ∈ R×O shows that reference variable r points to ob-
ject oi. Edge (〈oi, f〉, oj) ∈ (O × F ) × O shows that field f
of object oi points to object oj. A simple program and its
points-to graph are shown in Figure 1.

We assume that the program is represented by state-
ments of the following form:

• Direct assignment: l = r

• Instance field write: l.f = r

• Instance field read: l = r.f

• Object creation: l = new C

• Virtual invocation: l = r0.m(r1,...,rk)

At a virtual call (i.e., method invocation site), name m
uniquely identifies a method in the program. This method is
the compile-time target of the call, and is determined based
on the declared type of r0 [22, Section 15.11.3]. At run-
time, the invoked method is determined by examining the
class of the receiver object and all of its superclasses, and
finding the first method that matches the signature and the
return type of m [22, Section 15.11.4].

The analysis semantics is defined in terms of rules for
adding new edges to points-to graphs. Each rule represents
the semantics of a program statement. The analysis solution
is the closure of the empty graph under the edge-addition
rules. The rules for different program statements are shown
in Figure 2, in the format 〈s,G〉 ⇒ G′. Here s is a statement,
G is the input points-to graph, and G′ is the resulting points-
to graph. Pt(G,x) denotes the points-to set (i.e., the set of
all successors) of x in graph G.

The effects on the points-to graph are straightforward,
except for virtual call sites where resolution is performed
for every possible receiver object. Function dispatch uses
the class of the object and the compile-time target of the
call to determine the actual method mj invoked at run
time. Variables p0, . . . , pn are the formal parameters of the
method; variable p0 corresponds to the implicit parameter
this. Variable ret j contains the return value of mj.
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4 Applications of Points-to Analysis for Java

In this section we briefly discuss several applications of points-
to analysis for Java. In our experiments, we have measured
the precision of the analysis solution with respect to some
of these applications.

Call Graph Construction and Virtual Call Resolution Points-
to information can be used to determine the target methods
of a virtual call by examining the classes of all possible re-
ceiver objects. The information about target methods is
needed to construct the program call graph, which is a pre-
requisite for all interprocedural analyses and optimizations.
If the call has only one target method, it can be resolved by
replacing the virtual call with a direct call; furthermore, the
target method can be inlined. In Section 8, we empirically
evaluate the impact of our points-to solution on call graph
construction and virtual call resolution.

Read-Write Information Points-to analysis can be used to
determine what objects are read or written by every program
statement. This information is needed to perform side-effect
analysis and def-use analysis, which in turn are needed for
various optimizations (e.g., partial redundancy elimination).
For example, better points-to analysis could improve the def-
use information used for removal of array bounds checks [7],
the side-effect information needed to implement lazy excep-
tions [12], and the elimination of redundant cast checks and
tests through instanceof.

Synchronization Removal Synchronization constructs in
Java allow multiple threads to access shared objects safely.
Synchronization operations can have considerable overhead;
however, the synchronization can be removed for objects
accessed by only one thread. Several kinds of escape anal-
ysis [11, 6, 8, 38] have been used to identify thread-local
objects.

Points-to analysis can be used as an alternative to es-
cape analysis in detecting thread-local objects. Consider an
object oi such that in the points-to graph computed by the
analysis, oi is not reachable from (i) static (i.e., global) ref-
erence variables, or (ii) objects of classes that implement
interface java.lang.Runnable2. It is easy to see that such
oi does not escape the thread that created it. Thus, given
the output of the points-to analysis, we can identify thread-
local objects by traversing the points-to graph. In Section 8
we show empirical results from our experiments with this
approach.

Stack Allocation If the lifetime of an object does not ex-
ceed the lifetime of the method that created it, the object
can be allocated on the method’s stack frame. This trans-
formation reduces garbage collection overhead and opens up
opportunities for additional optimizations in the method.
Some escape analyses [11, 6, 38] have been used to identify
objects that do not escape the methods that created them.

Similarly to thread-local objects, points-to analysis al-
lows easy identification of method-local objects. Consider a
thread-local object oi such that in the points-to graph com-
puted by the analysis, oi is not reachable from the formal
parameters or the return variable of the method that created
oi. In this case, oi does not escape its creating method and

2The run methods of such objects are the starting points of new
threads.

can be allocated on the stack. Section 8 shows the empirical
results from our experiments with this application.

5 Annotated Inclusion Constraints

This section describes the general structure of the annotated
inclusion constraints used in our points-to analysis; the de-
tails about the specific kinds of constraints and annotations
are discussed in Section 6.

Previous work on Andersen’s analysis for C [19, 34] is
based on non-annotated inclusion constraints and uses sev-
eral techniques for efficient constraint representation and
resolution. We extend this work by introducing annotations
that allow us to model object fields and virtual calls in Java.
By adapting the existing techniques for efficient constraint-
based points-to analysis for C, we have been able to perform
precise and practical points-to analysis for Java.

5.1 Constraint Language

We consider annotated set-inclusion constraints of the form
L ⊆a R, where a is chosen from a given set of annotations.
We assume that one element of this set is defined as the
“empty” annotation, and will use L ⊆ R to denote con-
straints labeled with the empty annotation. In our analysis,
the annotations are used to model the flow of values through
fields of objects, as well as the flow of values between a vir-
tual call and the run-time target methods of the call.

L and R are expressions representing sets, defined by the
following grammar:

L, R → v | c(v1, . . . , vn) | proj (c, i , v) | 0 | 1

Here v and vi are set variables, c(. . .) are constructed
terms and proj(. . .) are projection terms. Each constructed
term is built from an n-ary constructor c. A constructor is
either covariant or contravariant in each of its arguments;
the role of this variance in constraint resolution will be ex-
plained shortly. Constructed terms may appear on both
sides of inclusion relations. 0 and 1 represent the empty set
and the universal set; they are treated as nullary construc-
tors. Projections of the form proj(c, i , v) are terms used to
select the i-th argument of any constructed term c(.., vi,..).
Projection terms may appear only on the right-hand side of
an inclusion.

5.2 Annotated Constraint Graphs

Systems of constraints from the above language can be rep-
resented as directed (multi)graphs. This representation is
a natural extension of the graph representation for non-
annotated constraints used to implement Andersen’s anal-
ysis for C [19]. Constraint L ⊆a R is represented by an
edge from the node for L to the node for R; the edge is la-
beled with the annotation a. There could be multiple edges
between the same pair of nodes, each with a different anno-
tation.

The nodes in the graph can be classified as variables,
sources, and sinks. Sources are constructed terms that oc-
cur on the left-hand side of inclusions. Sinks are constructed
terms or projections that occur on the right-hand side of
inclusions. The graph only contains edges that represent
atomic constraints of the following forms: Source ⊆a Var,
Var ⊆a Var, or Var ⊆a Sink. If the constraint system con-
tains a structural (non-atomic) constraint, the resolution
rules from Figure 3 are used to generate new atomic con-
straints.
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c(v1, ..., vn) ⊆a c(v′

1, ..., v
′

n) ⇒

{

vi ⊆a v′

i if c is covariant in i
v′

i ⊆a vi if c is contravariant in i

c(v1, ..., vn) ⊆a proj(c, i, v) ⇒

{

vi ⊆a v if c is covariant in i
v ⊆a vi if c is contravariant in i

Figure 3: Resolution rules for structural constraints.

We use annotated constraint graphs based on the induc-
tive form representation [3]. Inductive form is an efficient
sparse representation that does not explicitly represent the
transitive closure of the constraint graph. The graphs are
represented with adjacency lists pred(n) and succ(n) stored
at each node n. Edge (n1, n2, a), where a is an annota-
tion, is represented either as a predecessor edge by hav-
ing 〈n1, a〉 ∈ pred(n2), or as a successor edge by having
〈n2, a〉 ∈ succ(n1), but not both. Source ⊆a Var is always
a predecessor edge and Var ⊆a Sink is always a successor
edge. Var ⊆a Var is either a predecessor or a successor edge,
based on a fixed total order τ : Vars → N . Edge (v1, v2, a)
is a predecessor edge if and only if τ(v1) < τ(v2). The order
function is typically based on the order in which variables
are created as part of building the constraint system [34].

5.3 Solving Systems of Annotated Constraints

Every system of annotated inclusion constraints can be rep-
resented by an annotated constraint graph in inductive form.
The system is solved by computing the closure of the graph
under the following transitive closure rule:

〈L, a〉 ∈ pred(v)
〈R, b〉 ∈ succ(v)
Match(a, b)

}

⇒ L ⊆c R (Trans)

The closure rule can be applied locally, by examining
pred(v) and succ(v). The new transitive constraint is cre-
ated only if the annotations of the two existing constraints
“match”—that is, only if Match(a , b) holds, where Match
is a binary predicate on the set of annotations. Intuitively,
the Trans rule uses the annotations to filter out some flow
of values in the constraint system. The Match predicate is
defined as follows:

Match(a, b) =

{

true if a or b is empty
true if a = b
false otherwise

The annotation c of the new constraint is

c =

{

a if b is empty
b if a is empty
empty otherwise

Intuitively, an annotation is propagated until it is matched
with another instance of itself, after which the two instances
cancel out.

If the new constraint generated by the Trans rule is
atomic, a new edge is added to the graph. Otherwise, the
resolution rules from Figure 3 are used to transform the

constraint into several atomic constraints and their corre-
sponding edges are added to the graph.

The closure of a constraint graph under the Trans rule
is the solved inductive form of the corresponding constraint
system. The least solution of the system is not explicit in
the solved inductive form [3], but is easy to compute by
examining all predecessors of each variable. For constraint
graphs without annotations, the least solution LS(v) for a
variable v is

LS(v) = {c(. . .) | c(. . .) ∈ pred(v)} ∪
⋃

u∈pred(v)

LS(u)

In this case, LS(v) can be computed by transitive acyclic
traversal of all predecessor edges [19]. For an annotated
constraint graph, the traversal is done similarly, but the
annotations are used as in rule Trans:

LS(v) = {〈c(. . .), a〉 | 〈c(. . .), a〉 ∈ pred(v)} ∪

{〈c(. . .), z〉 | 〈u, x〉 ∈ pred(v) ∧ 〈c(. . .), y〉 ∈ LS(u)

∧ Match(x, y)}

Here annotation z is computed from annotations x and y as
in the Trans rule.

6 Constraint-based Points-to Analysis for Java

In this section we show how to implement the points-to anal-
ysis from Section 3 using annotated inclusion constraints.
Recall that the analysis is defined in terms of the set R of
all reference variables and the set O of names for all objects
created at object allocation sites. Every element of (R ∪O)
is essentially an abstract memory location representing a set
of run-time memory locations.

To model the analysis with annotated inclusion constraints,
we extend a technique developed for Andersen’s analysis for
C [19, 34]. For each abstract location x, a set variable vx

represents the set of abstract locations pointed-to by x. The
representation of each location is through a trinary construc-
tor ref which is used to build constructed terms of the form
ref (x, vx, vx). The last two arguments are the same variable,
but with different variance—the overline notation is used to
denote a contravariant argument. Intuitively, the second ar-
gument is used to read the values of locations pointed-to by
x, while the last argument is used to update the values of
locations pointed-to by x. Given a reference variable r∈R
and an object variable o∈O, constraint

ref (o, vo, vo) ⊆ vr

shows that r points to o.
We use field annotations to model the flow of values

through fields of objects. Field annotations are unique iden-
tifiers for all instance fields defined in program classes. For
any two object variables o1 and o2, constraint

ref (o2, vo2
, vo2

) ⊆f vo1

shows that field f in object o1 points to object o2.

6.1 Constraints for Assignment Statements

For every program statement, our analysis generates anno-
tated inclusion constraints representing the semantics of the
statement. Figure 4 shows the constraints generated for
assignment statements. The first two generation rules are
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〈l = new oi〉 ⇒ {ref (oi, voi , voi) ⊆ vl}

〈l = r〉 ⇒ {vr ⊆ vl}

〈l.f = r〉 ⇒ {vl ⊆ proj (ref , 3, u), vr ⊆f u}, u fresh

〈l = r.f〉 ⇒ {vr ⊆ proj (ref , 2, u), u ⊆f vl}, u fresh

Figure 4: Constraints for assignment statements.

straightforward. The rule for “l.f = r” uses the first con-
straint to access the points-to set of l, and the second con-
straint to update the values of field f in all objects pointed-
to by l. Similarly, the last rule uses two constraints to read
the values of field f in all objects pointed-to by r.

Example Consider the statements in Figure 5 and their
corresponding points-to graph. After processing the state-
ments, our analysis creates the following constraints:

ref (o1, vo1
, vo1

) ⊆ vp ref (o2, vo2
, vo2

) ⊆ vq

vp ⊆ proj(ref , 3, u) vq ⊆f u
vp ⊆ proj(ref , 2, w) w ⊆f vr

where u and w are fresh variables. For the purpose of this
example we assume that the variable order τ (defined in
Section 5.2) is τ(vp) < τ(vq) < τ(vr) < τ(vo1

) < τ(vo2
) <

τ(u) < τ(w). Consider the indirect write in p.f = q. Since
we have

ref (o1, vo1
, vo1

) ⊆ vp ⊆ proj (ref , 3, u)

we can use the Trans rule and the resolution rules from
Figure 3 to generate a new constraint u ⊆ vo1

. Thus,

vq ⊆f u ⊆ vo1

and using rule Trans we generate vq ⊆f vo1
. Intuitively,

this new constraint shows that some of the values of field f
in object o1 come from variable q. Now we have

ref (o2, vo2
, vo2

) ⊆ vq ⊆f vo1

Since both constraint edges are predecessor edges, we can-
not apply rule Trans. Still, in the least solution of the
constraint system (as defined in Section 5.3), we have the
constraint ref (o2, vo2

, vo2
) ⊆f vo1

, which shows that field f
of o1 points to o2.

To model indirect reads, we use the second argument of
the ref constructor. For example, for the constraints above
we have

ref (o1, vo1
, vo1

) ⊆ vp ⊆ proj(ref , 2, w)

and therefore vo1
⊆ w ⊆f vr, which through Trans gener-

ates vo1
⊆f vr. This new constraint shows that the value of

r comes from field f of object o1. Now we have

vq ⊆f vo1
⊆f vr

Since the annotations of the two constraints match—that
is, they represent accesses to the same field—we generate
vq ⊆ vr to represent the flow of values from q to r. Thus, in
the least solution of the system we have

ref (o2, vo2
, vo2

) ⊆ vr

which shows that reference variable r points to o2. This
example illustrates how field annotations allow us to model
flow of values through object fields.

p = new o1

q = new o2

p.f = q

r = p.f

-
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Figure 5: Accessing fields of objects.

6.2 Handling of Virtual Calls

For every virtual call in the program, our analysis generates
a constraint according to the following rule:

〈l = r0.m(r1, . . . , rk)〉 ⇒

{vr0 ⊆m lam(0, vr1 , . . . , vrk
, vl)}

The rule is based on a lam (lambda) constructor. The con-
structor is used to build a term that encapsulates the actual
arguments and the left-hand side variable of the call. The
annotation on the constraint is a unique identifier of the
compile-time target method of the call. This annotation
is used during the analysis to find all appropriate run-time
target methods.

To model the semantics of virtual calls as defined in Sec-
tion 3, we separately perform virtual dispatch for every pos-
sible receiver object. In order to do this efficiently, we use
a precomputed lookup table. For a given receiver object at
a virtual call site, the lookup table is used to determine the
corresponding run-time target method, based on the class
of the receiver object.3 Such a table is straightforward to
precompute by analyzing the class hierarchy; the table is
essentially a representation of the dispatch function from
Section 3.

Given the class of the receiver object and the unique
identifier for the compile-time target of the virtual call, the
lookup table returns a lambda term of the form

lam(vp0
, vp1

, . . . , vpk
, vret)

Here pi are the formal parameters of the run-time target
method; p0 corresponds to the implicit parameter this. We
assume that each method has a unique variable ret that is
assigned the value returned by the method. At the begin-
ning of the analysis, lambda terms of this form are created
for all non-abstract methods in the program and are stored
in the lookup table.

To model the effects of virtual calls, we define an addi-
tional closure rule Virtual. This rule encodes the semantics
of virtual calls described in Section 3 and is used together
with the Trans rule to obtain the solved form of the con-
straint system. Virtual is applied whenever we have two
constraints of the form

ref (o, vo, vo) ⊆ v v ⊆m lam(0, vr1 , . . . , vrk
, vl)

As described in Section 5.2, the edge from the ref term is a
predecessor edge, and the edge to the lam term is a successor
edge. Thus, the Virtual closure rule can be applied locally,
by examining sets pred(v) and succ(v). Whenever two such

3Every object is tagged with its class; this tag is used when per-
forming lookups.
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class A { X n() { ... return rA; } }
class B extends A

{ X n() { ... return rB; } }
A a = new A(); // object o1
A b = new B(); // object o2
B c = b;

s1: X x = b.n();
s2: X y = c.n();

if (...) a = b;
s3: X z = a.n();

(1) ref (o2, vo2
, vo2

) ⊆ vb ⊆A::n lam(0, vx) ⇒

{ref (o2, vo2
, vo2

) ⊆ vB::n::this , vrB ⊆ vx}

(2) ref (o2, vo2
, vo2

) ⊆ vc ⊆B::n lam(0, vy) ⇒

{ref (o2, vo2
, vo2

) ⊆ vB::n::this , vrB ⊆ vy}

(3) ref (o1, vo1
, vo1

) ⊆ va ⊆A::n lam(0, vz) ⇒

{ref (o1, vo1
, vo1

) ⊆ vA::n::this , vrA ⊆ vz}

(4) ref (o2, vo2
, vo2

) ⊆ va ⊆A::n lam(0, vz) ⇒

{ref (o2, vo2
, vo2

) ⊆ vB::n::this , vrB ⊆ vz}

Figure 6: Example of virtual call resolution.

constraints are detected, the lookup table is used to find
the lambda term for the run-time method corresponding to
object o and compile-time target method m. The result of
applying Virtual are two new constraints:

ref (o, vo, vo) ⊆ vp0

lam(vp0
, vp1

, . . . , vpk
, vret) ⊆ lam(0, vr1 , . . . , vrk

, vl)

The first constraint creates the association between param-
eter this of the invoked method and the receiver object.
The second constraint immediately resolves to vri ⊆ vpi

(for i ≥ 1) and vret ⊆ vl, plus the trivial constraint 0 ⊆ vp0
.

These new atomic constraints model the flow of values from
actuals to formals, as well as the flow of return values to the
left-hand side variable l used at the call site.

Example Consider the set of statements in Figure 6. For
the purpose of this example, assume that τ(va) < τ(vc) <
τ(vb). Since the declared type of b is A, at call site s1 the
compile-time target method is A::n4; thus, we have

vb ⊆A::n lam(0, vx)

When rule Virtual is applied as shown in (1), the lookup
for receiver object o2 and compile-time target A::n produces
run-time target B::n. The resolution with the lam term for
B::n creates the two new constraints shown in (1).

The declared type of c is B, and for call site s2 we have

ref (o2, vo2
, vo2

) ⊆ vc vc ⊆B::n lam(0, vy)

where the first constraint is obtained through the Trans

rule.5 By applying Virtual, we create the constraints shown
in (2).

4We use X::z to denote method z defined in class X.
5Note that if τ(vb) < τ(vc), instead of propagating the ref term

to vc we would propagate the lam term to vb.

For call site s3, the receiver object can be either o1 or
o2. As shown in (3) and (4), separate lookup and resolution
is performed for each receiver.

6.3 Correctness

For every program statement, our analysis generates con-
straints representing the semantics of the statement. This
initial constraint system is solved by closing the correspond-
ing constraint graph under closure rules Trans and Vir-

tual. Let A∗ be the solved inductive form of the constraint
system. Recall that the least solution of the system is not ex-
plicit in A∗ and can be obtained through additional traversal
of predecessor edges, as described in Section 5.3.

Let G∗ be the points-to graph computed by the algorithm
in Section 3. Consider a reference variable r and an object
variable o such that (r, o) ∈ G∗. We can show that the least
solution constructed from A∗ contains

ref (o, vo, vo) ⊆ vr

Similarly, consider two object variables oi and oj such that
(〈oi, f〉, oj) ∈ G∗. Again, we can show that the least solution
contains

ref (oj, voj , voj ) ⊆f voi

The above relationships hold only if we impose some re-
strictions on the order of variables in the constraint system.
As described in Section 5.2, the graph representation of the
system is based on a total order τ : Vars → N on the set of
variables. This order determines whether a variable-variable
edge is a predecessor edge or a successor edge. Suppose r∈R
is an arbitrary reference variable. For every object variable
oi ∈ O, we should have τ(vr) < τ(voi). Similarly, for every
“fresh” variable u created due to field access (see Figure 4),
we should have τ(vr) < τ(u). We enforce these restrictions
as part of building the constraint system.

Given these restrictions, it can be proven that the least
solution of the constraint system represents all points-to
pairs from G∗. The proof of this claim is outlined in Ap-
pendix A.

6.4 Cycle Elimination

Cycle elimination [19] is an approach for reducing the cost
of constraint resolution. It is an important technique for
achieving good performance for Andersen’s analysis for C. In
this section we show that a specific form of cycle elimination
can be used during our analysis for Java.

The idea behind cycle elimination is to detect a set of
variables that form a cycle in the constraint graph:

v1 ⊆ v2 ⊆ . . . ⊆ vk ⊆ v1

Clearly, all such variables have equal solutions and can be
replaced with a single variable. Whenever a cycle is detected
during the resolution process, one variable from the cycle is
chosen as a witness variable, and the rest of the variables are
redirected to the witness. This transformation has no effect
on the computed solution, but can significantly reduce the
cost of the analysis.

Cycle detection is performed every time a new edge is
added between two variables vi and vj. The detection algo-
rithm essentially performs depth-first traversal of the con-
straint graph and tries to determine whether vi is reach-
able from vj. Cycle detection is partial and does not detect
all cycles. Nevertheless, for Andersen’s analysis for C this
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technique has significant impact on the running time of the
analysis (we refer the reader to [19] for more details).

In our analysis for Java, we use a restricted form of cycle
elimination. The cycle detection algorithm is the same as
in [19], but is invoked only when a new edge is added be-
tween two reference variables—that is, when the new edge
is (vri , vrj ), where ri, rj ∈ R. It can be shown that in this
case the detected cycles contain only reference variables,
and all edges in the cycles have empty annotations. If we
performed cycle detection for all variable-variable edges, we
would discover cycles in which some edges have field annota-
tions. However, the variables in such cycles do not have the
same solution, and cannot be replaced by a single witness
variable.

6.5 Tracking Reachable Methods

Andersen’s analysis implicitly assumes that all code in the
program is executable. Since Java programs heavily use li-
braries that contain many unused methods, we have aug-
mented our analysis to keep track of all reachable methods,
in order to avoid analyzing dead code. Thus, we take into
account the effects of a method only if the method has been
shown to be reachable from one of the entry methods of
the program. The set of entry methods M0 contains the
main method of the starting class and the class initializa-
tion methods for all classes.6

We can augment the semantic rules from Section 3 to
include this reachability computation. The original rules are
of the form 〈s, G〉 ⇒ G′, and define the effects of statement
s on points-to graph G. We augment these rules to include
sets of reachable methods. The new rules have the form
〈s, G, M〉 ⇒ (G′, M ′), where M and M ′ are sets of reachable
methods. If the method to which s belongs is not in M , we
have G′ = G and M ′ = M . Otherwise, G′ is defined as in
Figure 2, and M ′ contains all elements of M plus all methods
that become reachable when s is a call statement.7

It is straightforward to implement this augmented se-
mantics in our constraint-based analysis. We maintain a
list of reachable methods, initialized with M0. Whenever a
method becomes reachable, all statements in its body are
processed and the appropriate constraints are introduced
in the constraint system. It is easy to show that this ap-
proach produces a solution that is safe with respect to the
augmented semantics.

7 Analysis Implementation

For our experiments we used an implementation of the anal-
ysis described in Section 6. The implementation uses the
Soot framework8 to process Java bytecode and to build a
typed intermediate representation [37]. The constraint-based
analysis uses Bane (Berkeley ANalysis Engine) [2]. Bane

is a toolkit for constructing constraint-based program anal-
yses. The public distribution of Bane

9 contains an efficient
constraint-solving engine that employs inductive form [3]
and cycle elimination [19]. We modified the constraint en-
gine to attach annotations to the constraints, to implement
the appropriate resolution and closure rules, and to perform
cycle elimination as described in Section 6.4. The analysis

6Class initialization methods contain the initializers for static
fields [27, Section 3.9].

7For multi-threaded programs, a call to Thread::start also makes
the corresponding run method reachable.

8http://www.sable.mcgill.ca/soot
9http://bane.cs.berkeley.edu

Program User Size Whole-program
Class (Kb) Class Method Stmt

proxy 18 56.6 59 831 14968
compress 22 76.7 206 740 15070
db 14 70.7 200 780 15907
mtrt 35 115.9 221 892 17660
raytrace 35 115.9 221 892 17993
jlex 25 95.1 159 752 18849
echo 17 66.7 234 1068 19070
javacup 33 127.3 163 936 19971
rabbit 24 88.4 196 1217 21962
jess 117 319.0 312 1231 23757
jack 67 191.5 251 1023 24528
mpegaudio 62 176.8 246 958 26729
volano 95 249.6 335 1956 32448
jjtree 72 272.0 200 1455 32943
jflex 54 198.2 276 1668 33230
jtar 64 185.2 306 1645 34236
javac 182 614.7 370 1997 38977
mindterm 69 279.9 312 2070 39725
muffin 158 391.5 394 2485 43012
creature 65 259.7 292 1725 43115
sablecc 312 532.4 541 3162 45387
soot 677 1070.4 802 3067 46385
javacc 63 502.6 193 1582 56465

Table 1: Characteristics of the data programs. First two
columns show the number and bytecode size of user classes.
Last three columns include library classes.

works on top of the constraint engine, by processing every
newly discovered reachable method and generating the ap-
propriate constraints.

The reflection mechanism in Java presents problems for
all compile-time analyses, including ours. At run-time, re-
flection may introduce new classes into the class hierarchy.
This mechanism also allows indirect access to objects, meth-
ods and fields. One way to handle this problem is to supply
the analysis with a list of classes that could be accessed
through reflection (some experience with this approach is
described in [35]). Our current implementation does not
handle reflection, but we are in the process of implementing
the approach described above, and we plan to have complete
handling of reflection for our future work.

Since the bytecode does not contain bodies for native
methods, their effects on the points-to solution cannot be
taken into account. In our experience, native methods only
occur in the standard libraries. We are currently working
on generating summaries that encode the points-to effects of
native library methods. Such summaries are commonly used
in points-to analysis for C to model the effects of library
calls. We are using the same approach for Java, and the
summaries will be incorporated in our future work.

8 Empirical Results

All experiments were performed on a 360MHz Sun Ultra-
60 machine with 512Mb physical memory. The reported
times are the median values out of three runs. We used 23
publicly available data programs, ranging in size from 56Kb
to about 1Mb of bytecode (excluding library classes). We
used programs from the SPEC JVM98 suite, other bench-
marks used in previous work on analysis for Java, as well as
programs from an Internet archive (www.jars.com) of popu-
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Program Time Memory Time-nf Memory-nf
(sec) (Mb) (sec) (Mb)

proxy 19.8 13.1 133.4 16.9
compress 12.9 11.3 20.5 11.6
db 17.2 12.7 41.8 13.0
mtrt 28.3 15.8 344.4 22.9
raytrace 28.4 15.8 344.5 22.9
jlex 28.9 15.0 2687.6 49.6
echo 33.0 15.7 336.6 23.0
javacup 160.8 28.9 1128.8 44.8
rabbit 51.2 22.1 864.9 40.9
jess 70.2 25.5 3387.9 72.1
jack 73.0 21.2 420.0 33.5
mpegaudio 26.1 17.4 3654.5 126.3
volano 85.5 32.2 2148.4 85.7
jjtree 46.4 22.1 238.5 33.7
jflex 273.9 46.6 6201.6 134.6
jtar 22.6 20.9 73.8 23.6
javac 2332.5 104.0 13151.0 222.1
mindterm 95.6 37.7 9029.0 141.2
muffin 135.2 43.2 1681.5 93.3
creature 252.6 42.5 4929.6 177.4
sablecc 1700.5 110.0 20879.5 292.2
soot 1622.5 124.5 26639.3 333.7
javacc 857.7 84.9 4931.8 139.9

Table 2: Running time and memory usage of the analysis.
Last two columns show the cost when object fields are not
distinguished.

lar publicly available Java applications. The data programs
represent a mix of different kinds of applications. For ex-
ample, we included several applications that use graphical
interfaces. Such programs are examples of an emerging class
of Java applications that has been underrepresented in the
previous empirical work on analyzing Java programs.

Table 1 shows some characteristics of the data programs.
The first two columns show the number of user (i.e., non-
library) classes and their bytecode size. The next three
columns show the size of the program, including library
classes, after class hierarchy analysis (CHA) [15] has been
used to filter out unused classes and methods. The number
of methods is essentially the number of nodes in the call
graph computed by CHA. The last column shows the num-
ber of statements from Soot’s intermediate representation.

Analysis Cost Our first set of experiments measured the
cost of the analysis. The results are shown in Table 2. The
first two columns show the running time of the analysis and
the amount of memory used. For 15 out of the 23 pro-
grams, the analysis runs in less than 100 seconds; for all
but 4 programs, the running time is less than five minutes
and the memory usage is less than 50Mb. To the best of
our knowledge, these are the first published empirical re-
sults showing that a relatively precise points-to analysis can
run in a few minutes on realistic Java programs. Empirical
results for more expensive points-to analyses [23, 9] suggest
that they do not scale; for example, the 1-1-CFA analysis
from [23] runs in about 2000 seconds on javacup and runs
out of memory on javac. The practicality of our analysis
makes it a good candidate for precise points-to analysis for
Java.

All four outlier programs in our data set are compiler-
related: javac is a compiler, soot is a compiler-like frame-
work, and sablecc and javacc are compiler generators. All

four programs have parsers that process some input lan-
guage; different kinds of entities in the language are repre-
sented by different classes. For example, soot parses Java
bytecode; various kinds of bytecode instructions are repre-
sented by more than 200 subclasses of the abstract class
Instruction. The bytecode is then transformed into an in-
termediate representation; again, there is a large number of
classes used to represent different kinds of statements and
expressions. Because of these wide inheritance hierarchies,
there are many variables with large points-to sets. This sig-
nificantly increases the size of the points-to graph and the
cost of the analysis. We observed similar patterns in the
other outlier programs.

We draw two conclusions from these experiments. First,
for most Java applications our analysis is practical in terms
of running time and memory usage, as evidenced on a variety
of realistic Java programs. This practicality shows that the
analysis will be useful as a relatively precise general-purpose
points-to analysis for Java. The second conclusion is that
for programs with wide inheritance hierarchies, the analysis
becomes costly. We are currently investigating techniques
that would allow us to reduce the cost of the analysis for
this particular class of Java programs.

The last two columns in Table 2 show the cost of the
analysis when object fields are not distinguished—that is,
when all field annotations are replaced with empty annota-
tions, and therefore objects are treated as monolithic enti-
ties. The resulting imprecision creates significantly larger
points-to sets, which causes the increase in analysis cost.
These results show that distinguishing between fields of ob-
jects is crucial for reducing the time and space cost of the
analysis.

Analysis Precision To measure the precision of the analysis
with respect to call graph construction and virtual call res-
olution, we compared the two versions of the analysis (with
and without distinguishing object fields) with rapid type
analysis (RTA) [5]. RTA is an inexpensive and widely used
analysis for call graph construction. It performs a reach-
ability computation on the call graph generated by CHA.
By keeping track of the classes that have been instantiated,
RTA computes a more precise call graph than CHA.

The first three columns of Table 3 show the reduction
in the number of methods in the call graph, compared to
the graph computed by CHA. On average, the reachability
computation in our points-to analysis identifies 40% of the
methods as dead code. This reduction in the number of
methods allows subsequent analyses and optimizations to
safely ignore large portions of the program.

To determine the improvements in call graph informa-
tion for virtual calls, we considered calls that could not be
resolved to a single target method by CHA. Let V be the set
of all CHA-unresolved calls that occur in methods identified
by our analysis as reachable. For our data programs, the
size of V is between 3% and 34% (13% on average) of all
virtual calls in reachable methods. For each call site from
V , we computed the difference between the number of tar-
get methods according to CHA and the number of target
methods according to each of the three analyses. The aver-
age differences are shown in the second section of Table 3.
On average, our analysis removes more than twice as many
targets as RTA. The improved precision can be beneficial for
reducing the cost and improving the precision of subsequent
interprocedural analyses.

The last section of Table 3 shows the percentage of call
sites from V that were resolved to a single target method.
Our points-to analysis performs significantly better than

8



Program Removed Methods Removed Targets for Call Site Resolved Call Sites
Points-to No fields RTA Points-to No fields RTA Points-to No Fields RTA

proxy 37% 35% 31% 7.0 6.1 3.7 70% 55% 0%
compress 65% 64% 55% 13.5 12.8 8.6 93% 66% 0%
db 57% 56% 48% 8.7 8.2 4.2 79% 68% 0%
mtrt 52% 51% 42% 10.3 9.8 5.3 65% 45% 0%
raytrace 52% 51% 42% 10.3 9.8 5.3 65% 45% 0%
jlex 46% 43% 42% 9.4 8.0 6.2 83% 54% 15%
echo 52% 49% 40% 3.4 3.1 2.3 27% 25% 4%
javacup 26% 24% 17% 4.1 3.7 2.1 68% 63% 19%
rabbit 16% 13% 7% 7.1 4.3 1.8 59% 33% 10%
jess 38% 36% 31% 7.4 6.5 4.4 48% 47% 25%
jack 43% 41% 37% 2.3 2.2 1.5 95% 91% 72%
mpegaudio 51% 46% 40% 10.0 8.9 5.1 50% 35% 0%
volano 38% 35% 29% 5.1 3.2 1.7 49% 24% 7%
jjtree 24% 23% 22% 6.8 5.9 5.2 45% 34% 18%
jflex 37% 31% 27% 6.2 3.7 2.4 49% 35% 6%
jtar 76% 75% 18% 5.3 5.2 1.7 32% 32% 3%
javac 22% 20% 17% 2.2 1.9 1.1 19% 17% 0%
mindterm 20% 18% 14% 2.9 2.3 1.3 26% 20% 6%
muffin 39% 35% 30% 3.7 3.3 1.5 72% 68% 4%
creature 60% 53% 14% 3.2 2.5 1.2 47% 21% 2%
sablecc 24% 22% 15% 7.0 1.7 0.9 24% 14% 1%
soot 14% 13% 9% 3.7 2.8 0.5 39% 20% 1%
javacc 21% 21% 20% 3.1 3.0 1.9 88% 85% 4%

Average 40% 37% 28% 6.2 5.2 3.0 56% 43% 9%

Table 3: Improvements over CHA-based call graph. (a) Reduction in the number of reachable methods. (b) Average reduction
in the number of target methods per virtual call. (c) Number of resolved virtual calls.

RTA—on average, 56% versus 9% of the virtual call sites
are resolved. The increased precision enables improvements
in the removal of run-time lookups and in method inlining.

Unlike RTA and similar class analyses, points-to analy-
sis produces information that is useful for applications other
than call graph construction. To investigate the impact
of our points-to analysis on synchronization removal and
stack allocation, we identified all object allocation sites that
correspond to thread-local and method-local objects. To
do this, we used the approach from Section 4, augmented
with detection of single-threaded programs—if no objects
implementing java.lang.Runnable are allocated in reach-
able methods, the program is single-threaded and all ob-
jects are thread-local. For every object allocation site in a
reachable method, we used the two versions of the analy-
sis (with and without object fields) to determine whether
the site is thread-local or method-local. The percentage of
thread-local and method-local sites is shown in Figure 7.

The analysis identifies 13 programs as single-threaded,
and 100% of their sites are thread-local. For the multi-
threaded programs, the analysis detects a significant num-
ber of allocation sites for thread-local objects—on average,
about 50% of all allocation sites. These results show that our
analysis can be very effective in detecting and eliminating
unnecessary synchronization in Java programs. The analysis
also discovers a significant number of sites for method-local
objects—on average, about 45% of all sites. This result in-
dicates that there are many opportunities for stack-based
object allocation that can be detected using our points-to
analysis.

An interesting result from the experiments is that for
the purpose of identifying thread-local and method-local ob-
jects, there is little precision improvement from distinguish-
ing object fields. On the other hand, distinguishing object

fields does have significant impact on the sizes of the points-
to sets. We computed the average points-to set sizes for all
programs and determined that the less precise version of the
analysis computes points-to sets that are 4.4 times larger on
average. This leads to the significant difference in the run-
ning times shown in Table 2. We expect that the precision
difference between the two versions of the analysis will be
more significant for other client applications such as def-use
analysis and side-effect analysis.

9 Related Work

Points-to analysis for object references in Java is clearly re-
lated to pointer analysis for imperative languages such as
C. There are various pointer analyses for C with different
tradeoffs between cost and precision [25, 24, 18, 4, 31, 39,
33, 32, 19, 26, 34, 21, 30, 14, 20, 10]. The closest related work
from this category are the efficient constraint-based imple-
mentations of Andersen’s analysis from [19] and [34]. This
work shows how to reduce the cost of Andersen’s analysis by
using the inductive form representation together with effi-
cient resolution techniques such as cycle elimination [19] and
projection merging [34]. Our work extends this approach
by introducing constraint annotations and by modifying the
graph representation and the resolution procedure. Field
annotations allow us to track object fields separately; this is
not possible with the constraints from [19, 34]. Method an-
notations allow us to model the semantics of virtual calls. In
addition, we avoid analyzing dead library code by including
a reachability computation as part of an integrated analysis.

Constraint indices and constraint polarities [20] have been
used to introduce context-sensitivity in unification-based flow
analysis. This work has similar flavor to our use of an-
notations for tracking flow of values through object fields.
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Figure 7: Thread-local and method-local object allocation sites. The average for thread-local sites does not include single-
threaded programs.

Conceptually, in both cases the annotations model restricted
value flow in constraint systems—either for unification-based
constraints in [20], or for inclusion constraints in our analy-
sis.

Previous work on points-to analysis for object-oriented
languages includes the flow- and context-sensitive analysis
by Chatterjee et al. [9]. This analysis is more precise than
ours, but it is unclear whether it will scale for programs as
large as the programs from our data set. Points-to analyses
with different degrees of precision have been proposed in the
context of a framework for call graph construction in object-
oriented languages [23]. The closest to our work is the 1-1-
CFA algorithm, which incorporates flow- and context- sen-
sitive points-to analysis. The test suite from [23] contains
few Java programs, and the analysis times suggest that 1-
1-CFA might not be practical. Our empirical results on a
large set of realistic Java applications show that our anal-
ysis is a practical alternative to the more expensive analy-
ses from [9] and [23]. Plevyak and Chien [29] incorporate
points-to analysis in their concrete type inference algorithm;
their experiments use small programs written in Concurrent
Aggregates. Corbett [13] presents a flow-sensitive points-to
analysis for Java in the context of synchronization removal;
no implementation is reported.

Recent work on escape analysis for Java [11, 8, 38] in-
corporates several specialized forms of points-to analysis.
The scalability of these approaches remains unclear, since
the analysis running times are not reported. In contrast,
we have a practical general-purpose points-to analysis that
can be used by a variety of client applications, including
synchronization removal and stack-based object allocation.

Class analysis for object-oriented languages computes a
set of classes for each program variable; this set approx-
imates the classes of all run-time values for this variable.
The traditional client applications of class analysis are call
graph construction and virtual call resolution. In general,
points-to analysis subsumes class analysis; practical imple-
mentations of points-to analysis can be used for a variety of
applications, including call graph construction and virtual
call resolution. DeFouw et al. [16] present a family of prac-

tical interprocedural class analyses. Other work in this area
considers more precise and costly analyses with some degree
of context- or flow-sensitivity [28, 1, 29, 17, 23], as well as
less precise but inexpensive analyses such as RTA [5, 36].

10 Conclusions and Future Work

We have defined a points-to analysis for Java that extends
Andersen’s points-to analysis for C. The analysis defines and
solves systems of annotated set-inclusion constraints. The
annotations allow us to model the semantics of virtual calls
and the flow of values through object fields. By using several
techniques for efficient constraint representation and resolu-
tion, we have been able to perform practical and precise
points-to analysis on a large set of realistic Java programs.
Our experiments show that the analysis performs very well
on a wide variety of Java applications. The experiments
also show that the points-to solution has significant impact
with respect to call graph construction, virtual call resolu-
tion, synchronization removal, and stack-based object allo-
cation. These results show that our analysis will be useful
as a precise and practical general-purpose points-to analysis
for Java.

For programs with wide inheritance hierarchies, the anal-
ysis may be relatively costly, with running times in the order
of tens of minutes. It is unclear how often such applica-
tions occur in practice. Nevertheless, in our future work we
plan to investigate techniques for handling such programs.
For example, there are various kinds of approximations that
could reduce the running time of the analysis without sig-
nificant loss of precision.

Another direction of future work is to investigate the
impact of the analysis solution on def-use analysis and side-
effect analysis. For C, these analyses are the traditional
clients of points-to information. Currently, there is little
work on investigating the uses of these analyses for Java—
both in the context of compiler optimizations and in the
contexts of software engineering applications such as pro-
gram slicing and data-flow-based testing.
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A Proof of Correctness

Let G be a points-to graph as defined in Section 3 and A
be an annotated constraint graph in inductive form as de-
scribed in Section 6. We will define a representation relation
α between A and the edges in G. If α holds between A and
all edges in G, we will write α(A,G).

Consider a reference variable r and an object variable o
such that e = (r, o) is an edge in G. We have α(A,e) if and
only if A contains a path

ref (o, vo, vo) → v1 → . . . → vn → vr

such that all vi correspond to reference variables and all
edges are predecessor edges with empty annotations.

Similarly, consider two object variables oi and oj such
that e = (〈oi, f〉, oj) is an edge in G. We have α(A,e) if and
only if at least one of the following two conditions is true.
The first condition is that A contains a path

ref (oj, voj , voj ) → v1 → . . . → vn
f
→ voi

such that all vi (1≤ i≤n) correspond to reference variables,
all edges are predecessor edges, and the only non-empty an-
notation on the path is f on edge (vn, voi). The second
condition is that A contains a path

ref (oj, voj , voj ) → v1 → . . . → vn
f
→ u → voi

such that all vi (1≤ i≤n) correspond to reference variables
and u is a “fresh” variable created due to field access (see
Figure 4). In this path, all edges are predecessor edges, and
the only non-empty annotation is f on edge (vn, u).

Let G∗ be the final points-to graph computed by the al-
gorithm in Section 3, and A∗ be the solved inductive form of
the corresponding annotated constraint system. The least
solution of the constraint system is obtained through addi-
tional traversal of predecessor edges in A∗, as described in
Section 5.3.

Suppose that α(A∗, G∗). It is easy to show that in this
case G∗ is contained in the set of points-to pairs extracted
from the least solution of the constraint system. For ex-
ample, for every edge (〈oi, f〉, oj) ∈ G∗, the least solution
contains ref (oj, voj , voj ) ⊆f voi . To prove that α(A∗, G∗),
we use the following lemma:

Lemma 1 Let 〈s, G〉 ⇒ G′ as described in Figure 2. If
α(A, G), there exists a sequence of applications of closure
rules and resolution rules such that A can be transformed
into A′ for which α(A′, G′).

The proof of the lemma requires case-by-case analysis of
all statement kinds. For example, consider the assignment
l = r. In G′, there are new edges of the form (l, oi), where
(r, oi) ∈ G. In A, we have a path from ref (oi, voi , voi) to vr

containing only predecessor edges with empty annotations.
Graph A also contains vr ⊆ vl, which is represented either
as a predecessor edge or as a successor edge (depending on
the order of vr and vl). If vr ∈ pred(vl), then we have the
needed path from ref (oi, voi , voi) to vl. If vl ∈ succ(vr),
then a sequence of applications of rule Trans creates the
needed path.

The rest of the statements are handled in a similar man-
ner. For the cases when we have access to object fields, we
have to know that all reference variables have order smaller
than the rest of the variables (as described in Section 6.3).
This restriction ensures that the appropriate kinds of edges
(predecessor or successor) are created when transforming A.

Given the above lemma, it is trivial to show that α holds
between A∗ and G∗.
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