COMPILE TIME ANALYSIS OF C AND C++ SYSTEMS

BY HEMANT D. PANDE

A dissertation submitted to the
Graduate School—New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
Graduate Program in Computer Science

Written under the direction of
Dr. Barbara G. Ryder

and approved by

New Brunswick, New Jersey

May, 1996
ABSTRACT OF THE DISSERTATION

Compile Time Analysis of C and C++ Systems

by Hemant D. Pande

Dissertation Director: Dr. Barbara G. Ryder

We present a new approach using data flow techniques to solve compile time analysis problems for languages with general purpose pointer usage. We solve the def-use associations for C and type determination for C++ as representative problems. A study of the close interaction of aliasing with these problems has led us to the development of a unified approach to solve them simultaneously with aliasing, as against a factored approach which may lead to significant loss of precision. These problems are fundamental for analysis because they provide important semantic information whose precision can greatly affect the quality and utility of almost all other compile time analyses. Our polynomial algorithms are approximate, which is expected since we have shown the NP-hardness of the problems we are solving. The robust empirical results on actual programs validate our analysis approach and demonstrate its utility.

Def-use analysis links possible value setting statements for a variable (i.e., definitions) to potential value-fetches (i.e., uses) of that value. Def-use associations are thus, compile time calculable data dependences, necessary for software engineering applications such as data flow testing coverage, static slicing techniques and integrating non-interfering versions of programs. Ours is the first interprocedural def-use associations algorithm which accounts for pointer usage and yields reasonable accuracy.

Type determination calculates at compile time, the possible types of objects to
which a pointer may point during some execution of the program. In C++, the type of object pointed to by the receiver at a virtual call site dynamically determines the function to be invoked. Type determination enables us to replace this late binding with a direct call to an appropriate function or with inlined code in suitable circumstances, thereby eliminating the late binding overhead and improving execution efficiency. We show how our work particularly benefits architectures which use deep pipelining and branch prediction. We also bring out its utility in building a more precise call graph and improving the efficacy of subsequent analyses for C++. We present a combined algorithm for aliasing and type determination for C++: the first data flow technique for the problem for an object-oriented language.
Acknowledgements

I thank my adviser Barbara Ryder for the support and encouragement throughout my stay at Rutgers. I thank the committee (Bill Landi, Don Smith and Miles Murdocca), the members of the PROLANGS group (particularly Sean Zhang, Javier Elices, Jyh-Shiarn Yur, Vince Gsro and Phil Stocks), and my colleagues at TRDDC (Ashok Sreenivas, Rakesh Ghiya, Ulka Shrotri and R. Venkatesh), who were ever willingly available for active help, comments and feedback. Special thanks are due to Bill Landi and Tom Marlowe for the countless discussions and invaluable feedback on this research. I also thank TRDDC (particularly E. C. Subbarao and K. V. Nori) and Siemens Corporate Research for the use of their resources. I thank all my family and friends who helped me in various ways to reach this milestone. And finally a special thanks to my wife Varsha; I simply would not have been able to do it without her relentless support and patience.
Dedication

To the memory of my father.
Table of Contents

Abstract ... ii
Acknowledgements ... iv
Dedication ... v
List of Tables ... x
List of Figures ... xii

1. Introduction ... 1
 1.1. Thesis Overview ... 6

2. Problem Representation ... 8
 2.1. Interprocedural Control Flow Graph 8
 2.2. Object Names .. 11
 2.3. Terminology .. 13

3. Interprocedural Def-Use Associations for C 15
 3.1. Problem Definition ... 17
 3.1.1. Additional Terminology 17
 3.1.2. Theoretical Complexity of the Problem 18
 3.2. May and Must Alias Information 20
 3.2.1. The may-hold Predicate 21
 3.2.2. The must-hold Function 22
 3.3. Reaching Definitions Algorithm for Single Level Pointers 23
 3.3.1. Interprocedural Reaching Definitions without Aliasing 24
 Conditional reaching definitions without aliasing .. 25
<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation at each ICFG node</td>
<td>26</td>
</tr>
<tr>
<td>Reaching definitions from conditional reaching definitions</td>
<td>29</td>
</tr>
<tr>
<td>Precision of calculation</td>
<td>30</td>
</tr>
<tr>
<td>3.3.2. Interprocedural Reaching Definitions with Aliasing</td>
<td>31</td>
</tr>
<tr>
<td>Modeling parameter bindings</td>
<td>32</td>
</tr>
<tr>
<td>Conditional reaching definitions with aliasing</td>
<td>33</td>
</tr>
<tr>
<td>Calculation at each ICFG node</td>
<td>34</td>
</tr>
<tr>
<td>Reaching definitions from conditional reaching definitions</td>
<td>39</td>
</tr>
<tr>
<td>Precision of calculation</td>
<td>39</td>
</tr>
<tr>
<td>3.3.3. Using Must Alias for More Precision</td>
<td>40</td>
</tr>
<tr>
<td>Approximating must alias information</td>
<td>42</td>
</tr>
<tr>
<td>3.4. Def-Use Associations Algorithm</td>
<td>44</td>
</tr>
<tr>
<td>3.5. Extensions to Handle Multiple Level Pointers</td>
<td>44</td>
</tr>
<tr>
<td>4. Present Status and Empirical Results</td>
<td>46</td>
</tr>
<tr>
<td>5. Type Determination and Aliasing for C++</td>
<td>50</td>
</tr>
<tr>
<td>5.1. Problem Definition</td>
<td>50</td>
</tr>
<tr>
<td>5.1.1. Additional Terminology</td>
<td>50</td>
</tr>
<tr>
<td>5.1.2. Interdependence of Aliasing and Type Determination</td>
<td>51</td>
</tr>
<tr>
<td>5.1.3. Theoretical Complexity of the Problem</td>
<td>52</td>
</tr>
<tr>
<td>5.2. Problem Formulations</td>
<td>54</td>
</tr>
<tr>
<td>5.3. Type Determination Algorithm for Single Level Pointers</td>
<td>59</td>
</tr>
<tr>
<td>5.3.1. Practical Issues</td>
<td>59</td>
</tr>
<tr>
<td>5.3.2. Algorithm Description</td>
<td>61</td>
</tr>
<tr>
<td>Initialization and introduction phases</td>
<td>62</td>
</tr>
<tr>
<td>Propagation phase</td>
<td>63</td>
</tr>
<tr>
<td>5.3.3. Sources of Approximation</td>
<td>70</td>
</tr>
<tr>
<td>5.4. Type Determination and Aliasing Algorithm for Multiple Level Pointers</td>
<td>71</td>
</tr>
<tr>
<td>5.4.1. Algorithm Overview</td>
<td>71</td>
</tr>
</tbody>
</table>
5.4.2. Calculation of Approximate Assumption Sets .. 74
5.4.3. Initialization and Introduction Phases .. 78
5.4.4. Intraprocedural Propagation ... 79
5.4.5. Interprocedural Propagation ... 83
 Propagation from call node .. 84
 Propagation from exit node .. 85
5.4.6. Analysis in the Presence of Recursive Data Structures 87
 Intraprocedural analysis in the presence of k-limiting 89
 Interprocedural analysis in the presence of k-limiting 91

6. Theoretical and Empirical Results ... 92
 6.1. Worst Case Complexity of Algorithm ... 92
 6.2. Algorithm Performance in Practice ... 94
 6.3. Prototype Implementation .. 96
 6.4. Empirical Observations .. 97
 The test suite of C++ programs .. 97
 Virtual function resolution .. 98
 Invocable virtual functions at a call site and call graph construction 99
 Parameterization of k .. 102
 Effect of inlining base class constructors ... 102
 Annotating functions as read-only or param-only .. 103
 Time performance of prototype implementation ... 108
 6.5. Limitations of the Implementation ... 108

7. Applications and Related Work ... 110
 7.1. Def-Use Associations for C .. 110
 7.2. Type Determination and Aliasing for C++ ... 111

8. Conclusions and Future Work .. 116
 Short term goals ... 117
Appendix A. Def-Use Associations for C 121
A.1. Reaching Definitions Using May and Must Alias Information 121
Calculation at each ICFG node 121
Reaching definitions from conditional reaching definitions 124
A.2. Solutions for Running Example 126

Appendix B. Compile Time Analysis of C++: Monotone Data Flow Frameworks .. 134
B.1. Type Determination for Single Level Pointers 134
B.2. Type Determination and Aliasing for Multiple Level Pointers 162
References .. 173
Vita ... 181
List of Tables

2.1. Syntax-directed definition of object names 12
3.1. Summary of reaches ... 29
4.1. Timing results .. 47
4.2. Analysis results .. 48
4.3. Recent implementation results 49
5.1. Intraprocedural interaction between may-hold and points-to-type . . . 80
5.2. smaller value of k resulting in fewer aliases 88
5.3. smaller value of k resulting in fewer pointer-type pairs 88
5.4. smaller value of k resulting in spurious aliases 89
6.1. Some characteristics of C++ programs analyzed 97
6.2. Parameterization of k ... 101
6.3. Inlining base class constructors 103
6.4. Functions annotated as read-only or param-only 104
6.5. Empirical corroboration: algorithm is linear in solution size - I 106
6.6. Empirical corroboration: algorithm is linear in solution size - II 107
A.1. Summary of may-hold .. 126
A.2. Summary of may alias ... 126
A.3. Summary of must-hold .. 127
A.4. Summary of must alias ... 127
A.5. Summary of reaches without must-hold 128
A.6. Summary of reaches with must-hold - I 129
A.7. Summary of reaches with must-hold - II 130
A.8. Summary of rdtop - I (computed from reaches without must-hold) ... 131
A.9. Summary of rdtop - II (computed from reaches without must-hold) ... 131
A.10. Summary of rdtop - I (computed from reaches with must-hold) 132
A.11. Summary of rdtop - II (computed from reaches with must-hold) 132
A.12. Summary of def-use associations . 133
List of Figures

3.1. Sample Program and its ICFG ... 16
3.2. \textit{NP}-hardness of the problem 19
3.3. A program segment .. 23
3.4. Interprocedural def-use associations algorithm 24
3.5. Conditional reaching definitions without aliasing 25
3.6. Example for non-visible object names 31
3.7. Source of approximation ... 39
3.8. Two possibilities ... 40
3.9. Problem using $<*p_{new2}>$ as a must alias at n_7 43
5.1. Interdependence of pointer-type and alias pairs 51
5.2. Reducing 3-SAT to type determination and aliasing 53
5.3. Example for type determination algorithm 60
5.4. Introduction phase .. 63
5.5. Propagation phase .. 64
5.6. A high level description of the algorithm 72
5.7. Example for binding functions .. 74
5.8. Intraprocedural introduction phase: \textit{intra-alias-type-introduction} . 79
5.9. \textit{points-to-type} using \textit{may-hold} to imply \textit{points-to-type} 81
5.10. \textit{points-to-type} using \textit{may-hold} to imply \textit{may-hold} 82
5.11. \textit{may-hold} using \textit{may-hold} to imply \textit{may-hold} 83
5.12. Example class hierarchy and storage layout 87
6.1. Percentage of virtual calls with 1,2,3,$>$3 invocable functions 100
6.2. Classification of unique resolution for appropriate programs from Figure 6.1100
6.3. Average percentage of invocable virtual functions out of those in class hierarchy at virtual call .. 101

B.1. Example for non-k-boundedness of F 146

B.2. Type determination algorithm .. 147
Chapter 1

Introduction

Historically, compile time analysis has been used in an intraprocedural context for code optimizations. In the past decade, the emphasis has shifted towards extending compile time analysis techniques to obtain interprocedural information [BC92, BCCH94, Ban79, Bar78, Bur90, Cal88, CBC93, CK88, CK89, EGH94, H894, HRB90, LRZ93, MLR+93, LR92, Lom77, Mye81]. This information is being employed for applications which go beyond code optimizations, such as construction of effective debugging, testing and maintenance tools [AG96, FW85, H889, HRB90, OW91, RW85, Wei84, YHR92]. These applications were largely successful in the Fortran model of interprocedural communication. Nevertheless, until recently software tools either have not performed interprocedural static analysis or have employed grossly approximate techniques for languages with pointers. Pointers are difficult to analyze because the address of a storage location can become the value of a pointer variable, and therefore, can be transferred by an assignment statement. An alias occurs at a program point when more than one name exists for the same storage location. In the presence of pointers, as in languages like C and C++, aliases are potentially created and destroyed at every pointer assignment. The Fortran model of aliasing fails in this context in two ways: (i) aliases cannot be created intraprocedurally during execution of a Fortran procedure, (ii) aliases in the calling procedure in Fortran cannot be affected by activity in the called procedure. Both (i) and (ii) can occur in C and C++ programs.

The research in this thesis was inspired by Landi’s work on aliasing for C [Lan92a], which enjoys the distinction of being the first practically successful flow sensitive pointer aliasing algorithm. He showed the theoretical difficulty of intraprocedural aliasing and introduced a new technique, called conditional analysis, for precise interprocedural
alias analysis for C programs restricted to single level pointers\(^1\) [LR91]. Informally, we state the idea of performing conditional alias analysis in the presence of pointers as: to analyze the code in a procedure under certain input assumptions and then combine the results of these conditional analyses for those assumptions that actually may occur during program execution. The conditional analysis technique answers the question: \(\text{If there is a path to the entry of the procedure containing node } n, \text{ on which condition } P \text{ holds, can fact } Q \text{ hold at } n?\) Landi and Ryder also developed a safe, approximate algorithm to solve the \textit{may aliasing} problem for general purpose pointer usage in a subset of C, one which included most language constructs contributing to the difficulty of the problem [LR92, Lan92a].

In this thesis, we show how to apply the conditional analysis technique to solve the def-use associations problem in C and a combined type determination and aliasing problem for C++. This thesis is part of the first comprehensive attempt to solve these problems in a uniform manner. Our polynomial time algorithms are approximate, which is expected since we have also shown the \(NP\)-hardness of the problems we are solving. Nevertheless, because the aliasing information we are using is specific to a program point (rather than having the same aliases hold throughout a procedure as in \textit{Fortran}), we are confident that sufficient accuracy is obtained to ensure the utility of our analysis, as demonstrated by our empirical results.

Determining data dependences precisely in the presence of pointers is crucial to the construction of effective software tools mentioned above. Our interprocedural def-use analysis for C programs is an important first step in practically providing accurate, compile time semantic information. Def-use analysis links possible value setting statements for a variable (i.e., definitions) to potential value-fetches (i.e., uses) of that value. Def-use associations are thus, compile time calculable data dependences. Informally speaking, the analysis proceeds by calculating those definitions of variable \(x\), which may have assigned the current value of \(x\) when program point \(n\) is executed. If \(x\) is used at \(n\),

\(^1\)By limiting programs to one level of indirection we mean, for example, that \textit{int} * variables can occur but not \textit{int} ** variables, and recursive structures (e.g., linked lists) are not allowed.
then each definition is linked to this use, forming a def-use association. The calculation described involves solution of the interprocedural reaching definitions problem, which is complicated by assignments through dereferenced pointers (e.g., *p = \ldots) and procedure calls. Ours is the first interprocedural reaching definitions algorithm that accounts for pointer usage and yields reasonable accuracy as demonstrated by our implementation results.

Encouraged by the results of analyzing C, we then concentrated on how to extend interprocedural static analysis techniques beneficially to the programming paradigm of object-orientedness. For us, C++ was the natural choice because of its proximity to C and its popularity as a representative object-oriented language, and last but not the least, a total absence of effective compile time analysis techniques for C++.

Our efforts are focused on developing new techniques to handle those features distinguishing C++ from C, such as inheritance and virtual functions (i.e., object-orientedness), subtyping and overloading (i.e., polymorphism). Most significant are virtual functions, because the type of receiver at a virtual call site dynamically determines the function to be invoked. *Type determination* enables us to replace late binding with a direct call to an appropriate function, or with inlined code in suitable circumstances, thereby eliminating the overhead of late binding and improving execution efficiency.

Recent empirical studies of dynamic behavior of C++ programs indicate that there is opportunity to avoid late bindings in many cases, which is particularly significant for architectures which employ deep pipelining [CG94]. A uniquely resolved call site would eliminate pipeline stalls, as the target of the call is unambiguously known. A related empirical study of behavioral differences between C and C++ programs reveals that C++ functions are usually small (in terms of lines of code) and C++ programs contain more calls than C programs [CGZ95]. The higher calling frequency usually degrades analysis performance because of the inherent difficulty of interprocedural analysis contrasted with that of traditional intraprocedural analysis. Therefore, these findings suggest that inlining a uniquely resolved function may be a crucial optimization. Even when unique resolution is not possible, short-listing the functions may allow the compiler to replace
the late binding mechanism of virtual call with appropriate function calls within a
decision statement. Branch prediction techniques may then be applied to improve the
execution performance of the program. Additionally, short-listing can focus further
analyses on selected functions, rather than on the entire pool of functions with the
same name, potentially saving analysis time and allowing building of a more precise
call graph. Also, exclusion of the statically non-invocable functions from analysis can
eliminate spurious side effects, thereby improving the precision of subsequent analyses.

Static type determination is significant in analyzing C++ also because it represents
important semantic information whose precision can greatly affect the quality and utility of various other static analyses. First, we developed a static type determination
algorithm for C++ programs restricted to using only single level pointers [PR94a]. In
this context, type determination can be solved independent of aliasing. However, in the
presence of multiple level pointers, these two problems cannot be solved separately, but
are interdependent. Secondly, we have designed a combined approximation algorithm
that solves type determination and aliasing simultaneously for C++ programs. Ours is
the first data flow technique for this combined problem in an object-oriented language.

Since all C++ programs can be source-to-source transformed into C programs, if
we claim to be able to analyze C, should we not be able to analyze C++ programs
in their C incarnation? Actually, this is not desirable because the distinguishing C++
constructs map to C constructs so general that gross approximations in analysis would
be inevitable. In particular, the virtual function mechanism can be expressed in terms
of function calls through arrays of function pointers. Algorithms which attempt pre-
cise analysis in the presence of function pointers and procedure variables handle only
a limited usage of such constructs or resort to possibly worst case exponential analyses [BCCH94, EGH94, HK93, Lak93, Ryd79, WL95]. In general, precise compile time
analysis in the presence of function pointers is an intractable problem [ZR94]. This
motivated us to develop new techniques to analyze virtual functions in the C++ do-
main itself. When there is no increase in generality, we reduce a C++ construct to
a semantically equivalent C construct. For example, we treat a class constructor as a
new followed by appropriate initializations and we express the principle of encapsulation
using the concepts of scope and visibility in C.

Major contributions of the thesis:

1. extension of the conditional alias analysis technique to solve fundamental compile
 time analysis problems such as def-use associations and type determination; a
 study of the close interaction of aliasing with these problems led to the develop-
 ment of a unified approach to solve each problem simultaneously with aliasing as
 against a factored approach which leads to loss of precision.

2. the first polynomial time approximation algorithm for def-use associations in C
 programs.

3. a combined approximation algorithm for aliasing and type determination for C++:
 the first data flow technique for the problem for an object-oriented language.

4. robust empirical results on actual programs to validate our analyses approaches
 and demonstrate their utility,

5. theoretical proofs of the \(NP \)-hardness of these problems.

6. monotone data flow framework definition for type determination and aliasing
 for C++: the first successful effort to fit into the standard lattice theoretical
 framework a practical, approximation algorithm for an intractable interprocedural
 data flow analysis problem involving pointers.

Limitations on the language constructs handled: Our research for C assumes a
restricted subset of the language which excludes pointers to functions, casting\(^2\), union

types, exception handling, \textit{setjump} and \textit{longjump}. We allow arrays and pointer arith-
metric; however, we simply treat arrays as aggregates and assume pointer arithmetic
stays within array bounds. The C++ programs we analyze have all the restrictions of
our C analysis, except we do handle type casting within class hierarchy. At this time,
our C++ algorithm does not handle class copies (when a class object is assigned or
passed as parameter to another class object) and constructs which create circular data
structures (such as circularly linked lists). We also assume that any template usage

\(^2\)However we do handle simple casting for \(p = \text{malloc}() \).
(recently added to C++ language definition) has been expanded before we analyze the program.

We represent an array element as a dereference of the array treated as a pointer. For example, we represent \(a[i] \) as \(*a\). As a result, we cannot distinguish between different elements of an array. For the sake of safety, we must assume that an assignment to \(*a\) updates an indeterminate element of \(a\) and preserves the others. Also, we transform the reference variables in C++ programs to pointers and treat the usage of such variables accordingly. Having reduced these language constructs to pointers in this manner, we will omit the special cases pertaining to them from the algorithm description.

1.1 Thesis Overview

In Chapter 2, we describe our program representation and define terminology used throughout this thesis. The main body of this thesis is divided into two parts. In Chapters 3 and 4, we concentrate on the def-use associations analysis of C. In Chapters 5 and 6, we discuss our compile time analysis approach for C++ programs.

Chapter 3 provides details of our approach to calculate interprocedural def-use associations for C: In Section 3.1, we introduce additional terminology specific to our C analysis. Here, we also show the theoretical difficulty of the problem. Section 3.2 includes a discussion of the may-hold predicate and the must-hold function, and how they relate to alias analysis. In Section 3.3, we describe our interprocedural reaching definitions algorithms first without and then with aliasing effects due to single level pointers. In Section 3.4, we outline how this information is used to calculate def-use associations. A straightforward extension to account for multiple level pointers follows immediately in Section 3.5. We describe our implementation techniques and report empirical results in Chapter 4.

In Chapter 5, we present our combined type determination and aliasing analysis for C++ programs. In Section 5.1, we establish the intractability of the problem. Section 5.2 includes a precise but intractable formulation, followed by an approximation formulation for the combined type determination and aliasing problem. We use the
latter formulation as the basis of our algorithms. Section 5.3 exploits the separability of aliasing and type determination in a scenario where only single level pointers are allowed and includes a description of type determination aspects of our algorithm. In Section 5.4, we describe our combined approximation algorithm for type determination and aliasing for C++ programs with general purpose pointer usage. Chapter 6 includes a discussion on theoretical aspects of our algorithm and empirical results of our prototype implementation.

In Chapter 7, we examine the significance of def-use analysis in various phases of software life cycle, and explore relevant prior work. We discuss how the precision of def-use information directly impacts the efficacy of software tools. Following that, we provide an overview of related work on optimizing in the presence of dynamically dispatched calls in object-oriented programming languages. We also discuss relevant literature on analysis in the presence of pointers as it represents an important aspect of our work. The summary of this thesis and our plans for future work appear in Chapter 8.

Throughout this thesis, we have chosen to describe our algorithms in detail for the restricted case of single level pointers first, and then extend them to the general pointer usage. This decision reflects our experience that major theoretical difficulties in solving these problems for programs with multiple level pointers are inherent for programs with single level pointers. Indeed, the proofs of NP-hardness of the problems under consideration only require the presence of single level pointers.
Chapter 2
Problem Representation

This chapter defines concepts such as intermediate program representation and object names, which are common to our analyses of both C and C++. We also explain the different nuances of some of these concepts in the context of the two analyses.

2.1 Interprocedural Control Flow Graph

A control flow graph (CFG) for a function consists of nodes which represent single-entry, single-exit regions of executable code, and edges which represent possible execution branches between code regions. We represent a program with an interprocedural control flow graph (ICFG), which intuitively is the collection of CFGs for the individual functions comprising the program, connected with edges representing function calls [LR91, PR94a]. Formally, an ICFG is a triple \((N, E, \rho)\) where \(N\) is the set of nodes, \(E\) is the set of edges and \(\rho\) is the entry node for main. \(N\) contains a node for each simple statement in the program, an entry and exit node for each function, and a call and return node for each invocation site. An intraprocedural edge into a call node represents the execution flow into an invocation site, while an intraprocedural edge out of a return node represents control flow from an invocation site once the invoked\(^3\) function has returned. For a non-virtual function call, we represent the control flow into the called function by an interprocedural edge from a call node to the corresponding entry node. Similarly, we represent the return of control from the called function by an interprocedural edge from the exit node to the return node\(^4\). However, virtual function

\(^3\)We use the terms call and invocation interchangeably.

\(^4\)This representation of a program is similar to those of [Mye81], although we use it differently during analysis.
invocation makes it impossible to determine the correspondence between a *call* and *entry* before analysis, since the function invoked depends on the type of the receiver at the call site. Establishing the interprocedural edge(s) from a *call* node representing a virtual function invocation to appropriate *entry* node(s) and from *exit* node(s) to the corresponding *return* node(s), (i.e., resolving virtual functions), is a major goal of our algorithms for C++.

We create a unique global variable for each value-returning function. The semantic effect of a function returning some value at a call site is captured by (i) *assigning* the return value to this global variable at an immediate predecessor of the exit node of the called function, and (ii) appropriately *using* the variable at the immediate successor of the corresponding return node. All implementations of a value-returning virtual function, say f, share a single global variable. Since a virtual call to f may actually invoke any implementation of f, this variable facilitates using the returned value of all the different implementations via a common mechanism.

A path in a flow graph is used to represent a program execution. Unfortunately, paths in the graph sometimes do not correspond to possible executions. Intraprocedurally, this can result from interactions of conditionals. For example, in:

$$
\begin{align*}
n_1 & : \text{if } (a > 0) \\
n_2 & : \quad b = 1; \\
n_3 & : \text{if } (a < 0) \\
n_4 & : \quad b = 2;
\end{align*}
$$

the path $n_1n_2n_3n_4$ can never be executed. The problem of determining which paths are executable can be shown equivalent to solving the Turing machine halting problem and thus is undecidable (i.e., the set of executable paths is not recursive). As is traditional with data flow analysis [Hec77], we will overestimate, assuming all intraprocedural paths are executable. During execution when a procedure finishes, it returns to the call site that invoked it, but paths in an ICFG do not guarantee this property.

We introduce some ICFG related terminology below.

- An ICFG path is *realizable* if, whenever a called function on this path returns, it returns to the corresponding *return* node of the call site which invoked it [LR91].
Clearly, not all ICFG paths are realizable. We refer to paths that are not realizable as *unrealizable*.

- A realizable path is *balanced* if for each intermediate *call* node, the path contains a corresponding *return* node representing the return of control from the called function\(^5\). Intuitively, the first and the last node on a balanced path belong to the same function. Moreover, they are in the same incarnation of that function since every called function on the path (perhaps recursively) must return control before the path terminates.

- A realizable path from \(\rho\) is called *consistent* if, for every edge \(\ll call, entry \gg\) on the path, where *call* represents a virtual call with receiver *rec*, the execution defined by the subpath from \(\rho\) to *call* implies a pointer-type pair \(<rec \Rightarrow C>\) at *call* such that the virtual function represented by *entry* is invocable from *call*. We refer to ICFG paths that are not consistent as *inconsistent*. Inconsistent paths do not correspond to any possible execution sequence; hence, we have designed our algorithms to usually avoid propagating information along inconsistent paths. Note that in the context of C without function pointers and virtual functions, each realizable path is consistent.

If we consider the sub-sequence of a consistent path consisting of those call nodes without corresponding return nodes, we have the *call stack*, which can be used to obtain the precise interprocedural connections in an ICFG path. With full knowledge of the call stack, a compile-time algorithm can avoid propagating information on inconsistent paths. For efficiency, in our algorithm we do not maintain the full call stack, but rather use an abstraction of the call stack that is sufficiently powerful to preserve the consistency of paths (Call stacks are discussed again in Section 3.2).

A useful call stack abstraction, must allow the following:

1. Given an abstraction and a call site (call node), compute the abstractions, possibly

\(^5\)We defined the terms *realizable* and *balanced* paths independently [LR91, PR94b], and later found that the ideas already existed in literature, referred to as *valid* and *complete* respectively in [SP81]. A more recent paper [RHS95] also addresses these issues.
not unique, for the called procedure.

2. Given an abstraction and an exit node, compute to which call sites (return nodes) information is propagated and the abstraction of call stack on return to the calling procedure.

2.2 Object Names

While objects correspond to locations that can store information, object names provide ways to refer to them at a program point. We begin by naming each object with a unique fixed-location name [LRZ93]. The fixed-location name for a statically allocated (on stack) object is the same as its variable name from the declaration statement. We create a fixed-location name new$_{pp}$ for a dynamically created object (on heap), where pp is the program point representing the creation site of the object. This method of naming heap locations was first proposed by Ruggieri and Murtagh [RM88]. A member access (using the "." operator) of a fixed-location also qualifies as a fixed-location as it uniquely identifies the contained object corresponding to the member. However, an object can be accessed with various names through pointer dereferencing. For example, if pointer p points to new$_{pp}$ at a program point, p can be used to access new$_{pp}$ at that program point. We use the term object name to refer to a fixed-location name or a name with at least one pointer dereference of a fixed-location name. Although these definitions of fixed-locations and object names are sufficient in the context of C (and have been used in our algorithms for C described in this thesis), we need more comprehensive definitions based on types for these terms for C++.

The functionality of a C++ program is expressed in terms of interactions between objects. Each C++ object has a declared type which may be either a primitive type (such as int) or a user defined class$.^6$ We list the relevant operations needed on these types. We borrow some definitions from [Lan92a], with appropriate modifications for the C++ type system.

can_deref(C): returns true iff C can be dereferenced without type casting.

6Another user defined type struct is equivalent to a class whose members are public.
<table>
<thead>
<tr>
<th>Rule</th>
<th>Production</th>
<th>Semantic Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>for each $i \in {1, \ldots,</td>
<td>\text{temp	extunderscore tuple}</td>
</tr>
<tr>
<td>(2)</td>
<td>OBJNAME$_1$ \rightarrow (OBJNAME$_0$.mem)</td>
<td>if is	extunderscore member(mem,OBJNAME$_0$.type) OBJNAME$_1$.type $= \text{member	extunderscore type}(\text{mem})$</td>
</tr>
<tr>
<td>(3)</td>
<td>OBJNAME$_1$ \rightarrow var</td>
<td>OBJNAME$_1$.type $= \text{var	extunderscore type}(\text{var})$</td>
</tr>
</tbody>
</table>

mem is any declared member of a class in the program.
var is any variable appearing in the program body or a heap variable name.

Table 2.1: Syntax-directed definition of object names

is	extunderscore member(member,C): returns true iff C is a class name and member is a direct or inherited data member of C.
is	extunderscore classptr(C): returns true iff type C is a pointer to a class.
type	extunderscore tuple(C): if is	extunderscore classptr(C), returns a tuple of pointers to all classes which an object of type C may point to (considering only type casts within inheritance hierarchy); otherwise, returns a single-element tuple containing C.
member	extunderscore type(member): returns the type of member.
var	extunderscore type(v): returns the type of variable v.
deref	extunderscore type(C): if can	extunderscore deref(C), returns the type of objects to which an object of type C may point without any type casting.

A syntax directed definition of object names appears in Table 2.1. Our definition is an extension of object names for C defined in [Lan92a]. Note that object names derived only using rules (2) and (3) correspond to fixed-location names. We also extend the set of object names in Table 2.1 with special names obtained by application of address operator to the object names (for example, &p). These names affect the aliasing and type determination calculations, but do not themselves appear in the solution.

7is	extunderscore classptr(C) implies can	extunderscore deref(C), but not vice versa.

8In the presence of nested classes, the number of fixed-locations generated by applying a sequence of ".” operator to a class object can be exponential in the nesting depth; nevertheless we assume a polynomial bound for realistic programs. Given that the number of variables used in a program is bounded above by the number of ICFG nodes, the number of object names created is polynomial in terms of the ICFG nodes.
Note that the object name $p\to\text{member}$ is short for $(\ast p).\text{member}$. Each dereference of an object name is associated with a type: the type which is being dereferenced. For example, $p^B\to\text{member}$ indicates that p points to an object of class B while being dereferenced to member^9.

We distinguish an object name from its access path representation [Deu94, LH88]. An access path is what typically appears in the program, without the intermediate types. For example, two distinct object names $p^A\to\text{member}$ and $p^B\to\text{member}$ have the same access path representation: $p\to\text{member}$. Nevertheless, for notational convenience we omit the intermediate types in object names. For example, we write the above object names simply as $p\to\text{member}$ and rely on the context for the intermediate type. To avoid confusion, we will consistently write object names in italics and access paths in typewriter font. Note that for fixed-locations, there is a one-to-one correspondence between access path and object name representation, as fixed-locations involve no dereferences.

2.3 Terminology

Finally, we list the definitions for some key concepts which will be used throughout this thesis.

- An **alias** exists at a program point when two or more object names refer to the same location as a result of program execution to that program point\(^{10}\). We represent aliases by unordered pairs of object names (e.g. $<v, \ast p>$). The order is unimportant since the alias relation is symmetric. *a may be aliased to b* at program point n if there exists an execution path ending at n on which a and b refer to the same location after n is executed. Because of the nature of pointers, these aliases are defined at a program point, not just at procedure entry as in the Fortran analysis [CK89]. *Must be aliased* is defined similarly except a and b must

\(^9\)Throughout this thesis, whenever we refer to an object of class B, we mean an instance of B proper and no other base or derived class of B.

\(^{10}\)For brevity, we use the phrase *to a program point* to mean up to and including a program point.
refer to the same location on all execution paths to \(n \). The solutions to may and must alias are formally defined as:

may alias: The precise\(^{11} \) solution for *interprocedural may alias* is

\[
\begin{cases}
[n, <a, b>] & \exists \text{ consistent path } \rho n_1 n_2 \ldots n_j n \text{ in } \\
\text{ICFG, on which } a \text{ and } b \text{ refer to the same location}
\end{cases}
\]

must alias: The precise solution for *interprocedural must alias* is

\[
\begin{cases}
[n, <a, b>] & \forall \text{ consistent paths } \rho n_1 n_2 \ldots n_j n \text{ in } \\
\text{ICFG, } a \text{ and } b \text{ refer to the same location}
\end{cases}
\]

A *safe* [MR90] (called conservative in [ASU86]) approximation to may alias is an overestimate of the precise may alias solution; it is safe to report all may aliases and possibly some spurious ones. For must alias, underestimates of the set of aliases are *safe*.

- At a call site, an object name is *visible* in the called function iff the called function is in the scope of the object name and at run time the object name refers to the same object in both the calling and called function. This means that if \(x \) is a local variable of function \(f \), then the \(x \) at a recursive call site is not visible in \(f \), since at run time there will be a distinct \(x \) in the new incarnation of \(f \). We consider heap storage names to be globals.

\(^{11}\)We are using the usual data flow definition of precise which means *precise up to symbolic execution*; in other words assuming all consistent paths through the program are executable [Bar78].
Chapter 3

Interprocedural Def-Use Associations for C

Informally, reaching definitions is the problem of statically determining all the program points where the value of a location (e.g., a variable) was last written. For example, in the code below:

\[
\begin{align*}
 n_1: & \quad a = x; \\
 n_2: & \quad \text{if } (a == 0) \\
 n_3: & \quad a = 1; \\
 \quad \text{else} \\
 n_4: & \quad a = 2; \\
 n_5: & \quad \text{printf("%d", a);} \\
\end{align*}
\]

reaching definitions at \(n_5\) tells us that \(a\) was written either at \(n_3\) or \(n_4\) (but not at \(n_1\)). Of course, this information is particularly interesting at \(n_5\) since \(a\) is being read. Such pairings of definitions to uses are called def-use associations.

In this thesis, we will be using data flow analysis [ASU86, Hec77, MR90] to solve the reaching definitions problem; this analysis requires programs to be represented by rooted, directed graphs. For analysis within a single procedure (i.e., intraprocedural analysis) a control flow graph (CFG) [ASU86, Hec77]\(^\text{12}\) is generally used. A CFG consists of nodes that represent single-entry/single-exit regions of executable code and edges which represent possible execution flow between code regions. Often CFG nodes are basic blocks, but we assume that the nodes are individual statements. For analysis across procedure calls (i.e., interprocedural analysis), a call graph is sometimes used, in which nodes represent procedures and edges represent possible calls. Either a call graph or control flow graph can be referred to by the term flow graph. Unfortunately, neither

\(^\text{12}\)In [ASU86] it is called simply a flow graph.
of these representations are sufficient for our purposes and we use an *interprocedural control flow graph* (ICFG) which is a hybrid of CFGs and call graphs (see Section 2.1). A sample program and its ICFG appears in Figure 3.1, and will be used as a running example throughout this chapter.
3.1 Problem Definition

3.1.1 Additional Terminology

We introduce the following terminology specific to our analysis of C, in addition to that defined in Section 2.3.

A location is *defined* when its value is set. We are only interested in the definitions of fixed-locations, because the location referred to by a dereferenced pointer (*p) can vary on different executions. So in the code below,

\[
\begin{align*}
n_1: & \quad \text{if} \ (a > 0) \\
n_2: & \quad p = &v; \\
\text{else} & \\
n_3: & \quad p = \text{malloc(sizeof(int))}; \\
n_4: & \quad *p = 5;
\end{align*}
\]

at \(n_4\) we consider \(v\) and \(newn_3\) defined, but not \(*p\). These two definitions are represented by \(<n_4: v>\) and \(<n_4: newn_3>\) respectively. Reaching definitions in the presence of pointers is the problem of statically determining all the program points where the value of a location was last written, perhaps indirectly through an alias. Formally,

reaching definition: A definition \(<n: a>\) of a fixed-location \(a\) at node \(n\) *reaches* node \(m\) if there is a realizable path \(nn_1n_2...n_j\) such that \(n_j = m\) and \(a\) is not redefined in any \(\{n_i\}_{i=1}^j\).

Finally, a location is *used* when its value is read, perhaps indirectly through an alias. A def-use association in the presence of pointers is a pairing of definitions with such uses. Formally,

def-use association: \(\ll<n: a>,m\rr\) is said to be a def-use association if the definition \(<n: a>\) reaches a predecessor of \(m\) and \(m\) uses \(a\).

Safe approximations for both reaching definitions and def-use associations are over-estimates of the precise solution.
3.1.2 Theoretical Complexity of the Problem

Myers [Mye81] showed that many interprocedural data flow problems are NP-hard in the presence of aliasing. Landi and Ryder [LR91] and Larus [Lar89] proved the NP-hardness of the intraprocedural alias problem in the presence of multiple level pointers. Landi [Lan92b] later showed that precise intraprocedural may alias in the presence of recursive data structures (e.g., linked lists) is undecidable (i.e., recursively enumerable, but not recursive) and that precise intraprocedural must alias also with recursive structures is uncomputable (i.e., not recursively enumerable). Ramalingam [Ram94] has also reported similar results about aliasing. We show that precise solution of intraprocedural reaching definitions in the presence of single level pointers is NP-hard. Our proof is by reduction of the 3-SAT problem and is a variation of similar proofs in [Lan92a, Lar89, Mye81].

Theorem 3.1.1 In the presence of single level pointers, the problem of calculating precise intraprocedural reaching definitions is NP-hard.

We proceed by reducing the problem of 3-Satisfiability (3-SAT) to the above problem. Let the formula in conjunctive normal form (cnf) be made of m logic variables $\{v_1, v_2, \ldots, v_m\}$. Let the cnf be represented as

$$(l_{11} \lor l_{12} \lor l_{13}) \land (l_{21} \lor l_{22} \lor l_{23}) \land \cdots (l_{n1} \lor l_{n2} \lor l_{n3})$$

where each l_{ij} represents a literal: logic variable or its negation. The above cnf is satisfiable iff there exists a truth assignment to the logic variables which makes the formula true. As a part of our reduction, we construct a program segment polynomial in the size of 3-SAT problem and show that the cnf is satisfiable iff we can solve the intraprocedural reaching definitions problem precisely on the program segment, thereby proving that the problem is NP-hard. The program segment appears in Figure 3.2. We have left out the conditions of the if statements because we are assuming all paths through the program are executable and thus the actual conditions do not impact this example. We interpret "v_i aliased to true" as meaning the logic variable v_i is true. We explicitly assign the complement of the value of v_i to $\neg v_i$ in the reduction. This is
int *v1,*nv1,*v2,*nv2,...,*vm,*nv_m;
int true,false;
const YES, NO;

/* A path through this section of code corresponds to a truth assignment */
L1:
 if (-) {v1 = true; nv1 = false}
 else {v1 = false; nv1 = true}
 if (-) {v2 = true; nv2 = false}
 else {v2 = false; nv2 = true}
 ...
 if (-) {vm = true; nv_m = false}
 else {vm = false; nv_m = true}

L2:
 d: false = NO;
L3:
 if (-) *l_{1i}^j = YES
 else if (-) *l_{12} = YES
 else *l_{13} = YES;
 if (-) *l_{21} = YES
 else if (-) *l_{22} = YES
 else *l_{23} = YES;
 ...
 if (-) *l_{ni} = YES
 else if (-) *l_{n2} = YES
 else *l_{n3} = YES;

L4:

† \(l_{ij}\) represents \(v_k\) or \(nv_k\) for some \(k\).

Figure 3.2: NP-hardness of the problem
consistent with the interpretation in propositional logic that whenever \(v_i \) is true, \(\neg v_i \) is false, and vice versa. Any path from L1 to L2 is a truth assignment to the variables. The propositional formula is represented between program points L3 and L4.

Suppose the formula is satisfiable, then there exists a path from L3 to L4 on which each \(*l_{ij}\) is aliased to true, which implies that all assignments on that path are in effect “true = YES”. Thus the definition “d: false = NO” reaches L4.

Suppose the formula is unsatisfiable, then for every truth assignment there is at least one outermost if statement where every \(*l_{ij}\) within the statement is aliased to false. In effect, we have an entire row of “false = YES” no matter which path is taken from L1 to L2. Thus “d: false = NO” does not reach L4.

Thus 3-SAT is polynomially reducible to intraprocedural reaching definitions with single level pointers, and we have proved Theorem 3.1.1. □

Corollary 3.1.1 In the presence of either single or multiple level pointers, the problem of calculating precise interprocedural reaching definitions is NP-hard.

3.2 May and Must Alias Information

It is easy to see how may alias information is needed to ensure safety and must alias information can be used to increase the quality of reaching definitions. This is illustrated below:

\[
\begin{align*}
&n_1: \quad a = 1; \\
&n_2: \quad p = &a; \\
&n_3: \quad *p = 2; \\
&n_4: \quad printf("%d",a);
\end{align*}
\]

Without may alias information the def-use association \(\ll n_3 : a , n_4 \rr \) is missed and without must alias information the definition \(n_1 : a \) is not killed at \(n_3 \), resulting in the spurious def-use association \(\ll n_1 : a , n_4 \rr \).

For aliasing calculations, we use the algorithms in [Lan92a]. These algorithms associate with alias information an abstraction of the call stack for which the alias information is created. This abstraction is created by a call and associated with aliases in the
called procedure; it is used at procedure exit to determine to which call site(s), alias information should be propagated. The alias solution with this call stack abstraction proves to be very useful in solving for reaching definitions.

3.2.1 The may-hold Predicate

For may alias at a node n, the representation of the call stack is a reaching alias\(^{13}\) that exists at entry of procedure P containing n when P is invoked. At first this may seem an odd abstraction, but in the presence of single level pointers, this abstraction precisely restricts alias information to realizable paths in the ICFG [LR91]. When multiple levels of indirection are possible, using one reaching alias rather than the set of reaching aliases that are propagated through a call, leads to approximate, but safe alias calculations [LR92].

We use the may-hold predicate to associate alias information with the call stack abstraction. Intuitively, \textit{may-hold(n, RA, $<a, b>$)} where n is an ICFG node, RA is a reaching alias and $<a, b>$ is an alias, answers the question: "If there is a path to the entry node of the procedure containing n, on which the reaching alias RA abstracts the call stack, then may a be aliased to b at n?". This question is asking about conditional aliasing information. RA can be \emptyset, which is not a true reaching alias, but is associated with aliases that exist regardless of the call stack; for example, for the statement "$n_1: p = &v$", we generate \textit{may-hold(n_1, \emptyset, $<\ast p, v>$)}.

To explain the use of reaching aliases, assume that all variables are globals and there are no parameters. It is straightforward to introduce name space binding functions, when needed (see Section 3.3.2, p. 32).

- Let c_1 represent a call site and RA a reaching alias at that call site, then every alias $<a, b>$ such that \textit{may-hold(c_1, RA, $<a, b>$)} is true, becomes an induced reaching alias in the called procedure from that call site. These reaching aliases are associated only with themselves; i.e., \textit{may-hold(e_i, $<a, b>$, $<a, b>$)} is true for e_i, the entry node of the called procedure.

\(^{13}\)Reaching aliases are referred to as assumed aliases in [Lan92a, LR91, LR92, PRL91, PLR94].
Given an exit node \((x_1)\) and a RA (not \(\emptyset\)), the aliases associated with RA at \(x_1\) are returned to all return nodes \(r_i\), with reaching alias RA' such that \(\text{may-hold}(c_i, RA', RA)\) is true. If RA is \(\emptyset\), then the associated alias alias-pair is returned to all call sites (i.e., \(\text{may-hold}(r_1, \emptyset, \text{alias-pair})\) is true for all \(r_i\)).

The \(\text{may-hold}\) solution for the program in Figure 3.1 appears in Table A.1 of Appendix A.2 and the may alias solution is in Table A.2. In terms of aliasing, it is a simple example, although it does involve parameter passing; however, it does illustrate why \(\text{may-hold}\) information is more useful than may alias information. In particular, at \(n_8\) (*\(f = 1\)) with may alias information we can correctly conclude that \(a\) is defined. However, when R returns we are unable to determine to which call sites \(<n_8 : a>\) should be returned. If we use \(\text{may-hold}\), then we can associate the reaching alias \(<*f, a>\) with the definition \(<n_8 : a>\). This allows us to correctly return the definition to \(r_1\) while safely avoiding returning it to \(r_2\).

3.2.2 The must-hold Function

To represent conditional must alias information, we use the \(\text{must-hold}\) function. The conditional must alias set for a node \(n_i\) of the CFG and an alias-pair is the unique minimal set of pairs that must be aliased at the entry node of the procedure containing \(n_i\) which ensures that alias-pair must be aliased at \(n_i\). If no such set exists, we say \(\text{must-hold}(n_i, \text{alias-pair})\) is \(\perp\). This implies that alias-pair cannot be aliased on all paths to node \(n_i\), regardless of what must alias set exists at entry of the procedure containing \(n_i\). By contrast, \(\text{must-hold}(n_i, \text{alias-pair}) = \emptyset\) implies that without requiring any assumptions at the entry node, alias-pair must be aliased at node \(n_i\).

In Figure 3.3, \(\text{must-hold}(x_1, <*r, s>) = \{<*p, s>, <*q, s>\}\), since both pairs must be aliased at entry to ensure \(<*r, s>\) must be aliased at \(x_1\), no matter which path is taken. However, \(\text{must-hold}(n_1, <*r, s>) = \perp\) since no set at entry can ensure that \(<*r, s>\) must be aliased immediately after node \(n_1\) is executed and \(\text{must-hold}(n_3, <*r, *p>) = \emptyset\), since this alias always exists immediately after \(n_3\) is executed.

\(\text{must-hold}\) is computed by setting up a system of equations and solving them with
fixed-point iteration. We do not go into the details of this algorithm in this thesis, but *must-hold* is polynomial-time computable in the number of ICFG nodes [Lan92a]. For a must alias problem, an abstraction of the call stacks must embody all the call stacks on which the data flow information occurs. An obvious choice is the value of \(\text{must-hold}(n_i, alias-pair) \) as the abstraction of all call stacks on which \(alias-pair \) is a must alias. Thus, the call stack abstraction for *must-hold* is a set of aliases rather than one alias pair.

The *must-hold* solution for the program in Figure 3.1 appears in Table A.3 of Appendix A.2 and the must alias solution is given in Table A.4. The program in Figure 3.1 illustrates why using *must-hold* information is more useful than just using must alias information. In particular, \(n_8 (*f = 1) \) redefines \(a \) or \(b \) depending on the call site. Without *must-hold* information we cannot take advantage of this, as there are no fixed-location must aliases of \(*f \). If we use *must-hold*, then we capture the fact that \(n_8 \) is a kill of definitions of \(a \) when called from \(c_1 \), and is a kill of definitions of \(b \) when called from \(c_2 \).

3.3 Reaching Definitions Algorithm for Single Level Pointers

We begin with the algorithm to calculate interprocedural reaching definitions in the absence of pointers, effectively in the absence of mechanisms that cause aliasing, as C only has pass-by-value parameters. In a sense, this is equivalent to Fortran without aliasing due to pass-by-reference parameters. A high level overview of our full def-use associations algorithm is shown in Figure 3.4. We first explain the algorithm for programs without aliasing; this involves the starred steps in Figure 3.4. Then, we show
1. construct the ICFG of the program.
2. compute the conditional may alias solution (may-hold).
3. compute the may alias solution (may alias) from the conditional may alias solution.
4. compute the conditional must alias solution (must-hold).
5. compute the must alias solution (must alias) from the conditional must alias solution.
6. compute a conditional reaching definitions solution (reaches) using the conditional may alias, conditional must alias, and must alias solutions, when necessary. (Note: this does not use may alias.)
7. compute the interprocedural reaching definitions solution (rdtop) using conditional reaching definitions.
8. compute the def-use solution using interprocedural reaching definitions and, when necessary, may alias.

Figure 3.4: Interprocedural def-use associations algorithm

how to adapt the algorithm to use may-hold information for single level pointers; this is the version of the algorithm in our prototype implementation.

The conditional analysis approach obviates the need for any special treatment to handle recursive procedures. When conditional analysis assumes a condition at the entry of a procedure, it is regardless of whether the condition holds due to a recursive or non-recursive call, and for a procedure the same condition is never processed twice. Finally, we describe the algorithm to compute def-use associations given the reaching definitions for each ICFG node; we also indicate possible precision improvements through the use of must alias information.

3.3.1 Interprocedural Reaching Definitions without Aliasing

In the case of no aliasing, we use an assumed reaching definition assumed-rd as an abstraction of the call stack. We solve the conditional reaching definitions problem (reaches): Given that \(m, n \) are ICFG nodes, if the definition assumed-rd of a fixed-location reaches the entry of the procedure containing node \(n_i \), can definition \(< n_k : a > \)
int a, b;
 c1: p () {
 e1: Q () {
 e2: R () {
 e3: R () {
 n3: b = 3;
 n4: printf("%d", b);
 }
 }
 }
 n2: a = 2;
 n1: a = 1;
 c1: R ();
 r1: x2: }
 x1: }

Figure 3.5: Conditional reaching definitions without aliasing

reach node ni? This section describes how to solve for conditional reaching definitions. Then we show how to use conditional reaching definitions to obtain interprocedural reaching definitions sets (rdtop) at the top of every ICFG node. This use of conditional information enables us to restrict our analysis to realizable paths in the ICFG.

Conditional reaching definitions without aliasing

We define the reaches predicate to represent conditional reaching definitions information at the bottom of each ICFG node. reaches(ni, ARD, rd) is true iff assuming the assumed-rd ARD reaches the entry of the procedure containing ni, rd reaches the bottom of ni. There are two types of rd to consider. First, rd can be generated during the execution of the procedure containing ni and subsequently reach ni. In this case, no assumptions are necessary at the entry or equivalently the reaching definition is valid regardless of the calling context; we use the ARD of ∅ to represent this case. For example in Figure 3.5, reaches(n4, ∅, < n3 : b >) = true, since the definition < n3 : b > reaches node n4 regardless of calling context. Second, an rd may reach the entry of the procedure and be preserved on some realizable path from entry to ni, in which case ARD = rd and ARD abstracts the call stack. For example in Figure 3.5, reaches(n4, < n1 : a >, < n1 : a >) = true, since the definition < n1 : a > reaches node n4 contingent on the assumption that < n1 : a > reaches e3. From these two cases, it is easy to see that the value of ARD is either ∅ or rd itself.

\[14\] Note that reaches(n4, ∅, < n1 : a >) = false.
Calculation at each ICFG node

Below we specify the *reaches* equations for each ICFG node \(n_i \). Return nodes offer the most interesting case in the interprocedural analysis.

Assignment node \(n_i \): "a = ..." has three effects on reaching definitions; it (1) creates the definition \(< n_i : a \rangle\) regardless of calling context, (2) kills (i.e. does not preserve) all incoming definitions of \(a \), and (3) preserves definitions of everything but \(a \). This naturally implies the equations:

1. \(\text{reaches}(n_i, \emptyset, < n_i : a \rangle) = \text{true}^{15} \)
2. for all \(n_k \neq n_i \), \(\text{ARD} = \emptyset \) or \(< n_k : a \rangle:\)
 \[\text{reaches}(n_i, \text{ARD}, < n_k : a \rangle) = \text{false} \]
3. for all fixed-locations \(b \neq a \), all nodes \(n_k \), \(\text{ARD} = \emptyset \) or \(< n_k : b \rangle:\)
 \[\text{reaches}(n_i, \text{ARD}, < n_k : b \rangle) = \bigvee_{n_p \text{ pred of } n_i} (\text{reaches}(n_p, \text{ARD}, < n_k : b \rangle)) \]

Entry node \(n_i \): The start of a procedure has three effects; (1) formal parameters are defined, (2) definitions of globals are preserved across the call and reach the entry of the called procedure, (3) definitions of locals of all procedures (including this one) are uninteresting as they can not be redefined nor used and thus can be ignored. This leads to the following equations:

1. for each formal \(f \):
 \[\text{reaches}(n_i, \emptyset, < n_i : f \rangle) = \text{true} \]
2. for all globals \(b \), all nodes \(n_k \):
 \[\text{reaches}(n_i, < n_k : b \rangle, < n_k : b \rangle) = \bigvee_{c_p \text{ calls } n_i \text{ and } \text{ARD} = \emptyset \text{ or } < n_k : b \rangle} (\text{reaches}(c_p, \text{ARD}, < n_k : b \rangle)) \]

\(^{15}\)For completeness, we need to define \(\text{reaches}(n_i, < n_i : a \rangle, < n_i : a \rangle) \). Its value is unimportant, but we assume \(\text{true} \).
3. all other $\text{reaches}(n_i, \text{ARD}, < n_k : a >)$ not covered by (1) or (2) are false.

Rule 2 indicates that the call stack abstraction of ARD at c_p maps to all $< n_k : b >$ such that $\text{reaches}(c_p, \text{ARD}, < n_k : b >)$ is true and b is visible at the call.

Return node n_i: Let c_i be the call node for the site, n_i is the corresponding return node and x_c be the exit node of the procedure called by c_i. There are three ways a reaching definition $< n_k : b >$ can reach the return node of a call site: (i) b is not visible in the called procedure (because of the absence of aliasing this definition must be preserved through the procedure) and $< n_k : b >$ reaches c_i, (ii) $< n_k : b >$ reaches x_c regardless of the calling context (i.e., $\text{reaches}(x_c, \emptyset, < n_k : b >)$ is true) and b is visible in the called procedure, (iii) $< n_k : b >$ reaches x_c assuming it reaches e_c (entry of procedure containing x_c), b is visible in the called procedure, and $< n_k : b >$ reaches c_i under some abstraction of the call stack.

For Figure 3.5, (ii) allows us to conclude that $< n_3 : b >$ reaches r_1 and r_2, while (iii) allows us to conclude that $< n_2 : a >$ reaches r_2 but not r_1. If there were a local variable c in Q, such that a definition of c appeared at n_2' before node c_2, then the definition $< n_2' : c >$ would be preserved through the call to procedure R and would reach r_2, as in case (i).

1. for all b not visible in the called procedure, all nodes $n_k, \text{ARD} = \emptyset$ or $< n_k : b >$:

$$\text{reaches}(n_i, \text{ARD}, < n_k : b >) = \text{reaches}(c_i, \text{ARD}, < n_k : b >)$$

2. for all b visible in the called procedure, all nodes $n_k, \text{ARD} = \emptyset$ or $< n_k : b >$:

$$\text{reaches}(n_i, \text{ARD}, < n_k : b >) = $$

$$
\left\{ \begin{array}{l}
\text{reaches}(x_c, \emptyset, < n_k : b >) \lor \\
\text{from ii} \\
\text{reaches}(x_c, < n_k : b >, < n_k : b >) \\
\text{from iii} \\
\land \text{reaches}(c_i, \text{ARD}, < n_k : b >)
\end{array} \right\}
$$
Any other node n_i: Because $\textit{reaches}$ at a node includes the effects of that node, other nodes (e.g., call, exit, conditional, ...) simply collect the reaching definitions information. Thus:

$$reaches(n_i, \text{ARD}, < n_k : b >) = \bigvee_{n_p \text{ pred of } n_i} (reaches(n_p, \text{ARD}, < n_k : b >))$$

Thus, the conceptual (although inefficient) algorithm to calculate $\textit{reaches}$ comprises steps 1 and 6 in Figure 3.4 restated here:

1. Construct the ICFG.

2. Compute $\textit{reaches}$.

 - Initialize $\textit{reaches}(n_i, \text{ARD}, rd)$ to \textit{false} for all nodes n_i, reaching definitions rd, and $\text{ARD} = \emptyset$ or rd.

 - Using the above equations, calculate the fixed point of $\textit{reaches}$ using a standard data flow analysis algorithm.

The $\textit{reaches}$ solution for the program in Figure 3.5 can be found in Table 3.1.

Theorem 3.3.1 The computation of the $\textit{reaches}$ predicate is a polynomial-time (in the number of ICFG nodes) fixed point calculation.

Let N denote the set of ICFG nodes and v the number of fixed-locations that get defined in the program. There are $O(|N|^2 \times v)$ $\textit{reaches}$ predicates because a definition is a node/fixed-location pair ($O(|N| \times v)$) and $\textit{reaches}$ is a node/definition pair with a bit to indicate if the assumed-rd is \emptyset or the definition. Since each definition of a fixed-location is represented by an ICFG node, it is clear that $v \leq |N|$. The calculation of each $\textit{reaches}$ takes time $O(\text{predecessors})$ of the node which is at most $O(|N|)$. In the fixed point calculation the value of a $\textit{reaches}$ changes from \textit{false} to \textit{true} at most once. Thus the computation of all $\textit{reaches}$ predicates is a polynomial-time calculation. □
This table summarizes the reaches(node, ARD, rd) which are true for the program in Figure 3.5.

Table 3.1: Summary of reaches

Reaching definitions from conditional reaching definitions

We now formulate a data flow problem on the ICFG to compute (non-conditional) reaching definition solution rdtop from reaches. reaches is defined so that the solution associated with a program point (node) includes the effects of executing that program point; we call this an on-bottom data flow solution. However, rdtop is an on-top data flow problem which means the solution does not include the effects of the associated program point. Thus, the equations for rdtop must capture this shift from an on-bottom to an on-top solution. This is done by combining reaches solutions from predecessor nodes to form an rdtop solution at their shared successor node.

Clearly, rd is in the reaching solution at ni (ignoring the top/bottom issue for now) if it conditionally reaches ni (i.e. reaches(ni, ARD, rd)) and ARD occurs on some path to the entry of the procedure. However, given our equation for reaches at entry (on p. 26), reaches(ek, ARD, ARD) will be true only if there exists an execution on which ARD reaches the entry node ek.

Therefore, for each node ni in the ICFG, rdtop is calculated as follows:

- if ni is an entry node or return node (these two are special cases as they do not have intraprocedural predecessors).
\[
rdtop(n_i) = \left\{ \begin{array}{ll}
< n_k : b > & (\exists \ ARD) \text{ such that } \\
& \text{reaches}(n_i, ARD, < n_k : b >) \\
is \text{true}
\end{array} \right. \\
\bigcup_{n_p \text{ pred of } n_i} \left\{ \begin{array}{ll}
< n_k : b > & (\exists \ ARD) \text{ such that } \\
& \text{reaches}(n_p, ARD, < n_k : b >) \\
is \text{true}
\end{array} \right.
\]

\[\text{otherwise}\]

\[
rdtop(n_i) = \left\{ \begin{array}{ll}
< n_k : b > & (\exists \ ARD) \text{ such that } \\
& \text{reaches}(n_i, ARD, < n_k : b >) \\
is \text{true}
\end{array} \right. \\
\bigcup_{n_p \text{ pred of } n_i} \left\{ \begin{array}{ll}
< n_k : b > & (\exists \ ARD) \text{ such that } \\
& \text{reaches}(n_p, ARD, < n_k : b >) \\
is \text{true}
\end{array} \right.
\]

Theorem 3.3.2 The computation of \(rdtop \) given \(reaches \) is a polynomial-time fixed point calculation.

\(reaches(n_k, ARD, rd) \) will be accessed exactly once for each intraprocedural successor of \(n_k \) unless \(n_k \) is a entry or return node. No node has more than two intraprocedural successors. If \(n_k \) is an entry or return node, \(reaches(n_k, ARD, rd) \) is accessed for the \(rdtop \) equation of unique successor of \(n_k \) and for \(rdtop(n_k) \). Thus the cost of computing \(rdtop \) is \(O(\text{size of reaches solution}) \) which is clearly polynomial-time (in the size of the ICFG).

Precision of calculation

Intraprocedural reaching definitions without aliasing is a well-understood problem and precise solution procedures are available in literature. The intraprocedural aspects of our reaching definitions calculation are essentially equivalent to them in obtaining a precise solution. To solve the interprocedural reaching definitions problem precisely, a solution procedure must propagate the intraprocedural reaching definitions only over realizable paths. Using conditional analysis, our algorithm described above restricts propagation to exactly such paths. If a definition \(rd \) of a local variable reaches a call site, it is preserved through the called function and propagated directly to the corresponding

\(^{16} \text{Switch statements are translated into nested if-then-else statements.} \)
Figure 3.6: Example for non-visible object names

\begin{verbatim}
R(f)
 int *f;
 e1: {
 int x;
 n1: x = 1;
 n2: printf("%d",x);
 n3: printf("%d",*f);
 n4: x = 2;
 n5: if (*f == 2)
 c1: R(&x);
 r1: }
\end{verbatim}

\textit{return} node, as the called function cannot address the variable (case (i) p. 27). If a definition of a global variable is created in a called function and reaches the \textit{exit} of that function, we propagate it to \textit{return} nodes of all call sites invoking the function, as the creation and intraprocedural propagation is completely independent of calling context (see case (ii) on p. 27). Lastly, if a definition \textit{rd} reaches the \textit{entry} of a function, and is preserved through the function to reach its \textit{exit}, it should propagate to only those \textit{return} nodes corresponding to call sites which propagated \textit{rd} to \textit{entry} (case (iii) on p. 27). These simple constraints on interprocedural propagation are satisfied by our algorithm to yield a precise solution of the problem in the absence of aliasing. In terms of the solution calculated, this algorithm is identical to the interprocedural reaching definitions algorithm by Harrold and Soffa \cite{HS90}.

3.3.2 Interprocedural Reaching Definitions with Aliasing

In this section, we extend the framework described in Section 3.3.1 to include single level pointers in the analysis. The introduction of pointers results in aliases at various program points. Our analysis must account for the generation of reaching definitions due to aliasing effects. Our reaching definitions algorithm for this problem is polynomial but imprecise, as any polynomial algorithm must be, assuming $P \neq NP$ (see Section 3.1.2).
Before we can give the equations we have to address the issue of non-visible fixed-locations, which intuitively correspond to the local variables of calling procedure propagating into a called procedure. This is especially important in recursive procedures. Consider the program segment in Figure 3.6: we want to ensure that \(\ll n_4 : x , n_3 \gg \) is reported and avoid reporting \(\ll n_1 : x , n_3 \gg \). This is not possible if we use \(x \) to represent both itself and the “\(x \)” from earlier instantiations of \(R \) on the runtime stack. Thus we let \(x \) represent the local variable of the procedure which instantiates it, but refer to it as \(\text{nv}_x \) when it propagates into a called procedure. Note that in case of a recursive call, \(\text{nv}_x \) represents the \(x \) from an earlier instantiation of the called procedure.

Modeling parameter bindings

We need to model the aliasing effects of pointer parameter bindings for each call site. For this purpose, we use the function \(\text{back-bind}_{cP} \) for each call site \(cP \). \(\text{back-bind}_{cP}(RA) \) specifies which alias on a path \(\rho \ldots cP \) guarantees that \(RA \) exists on the path \(\rho \ldots cP eP \) where \(eP \) is the entry node of the procedure being invoked. \(\text{back-bind}_{cP} \) is similar to \(b_e \) of [CK88], but instead of mapping a formal parameter to its corresponding actual argument in a call, we are mapping an alias pair in the called procedure to the inducing alias pair in the calling procedure. Assume that \(f_1, f_2 \) are pointer formals of procedure \(P \), \(q \) is a global pointer, \(cP \) is “\(P(q, x) \)”, and alias \(\ll q, \text{nv}_l \gg \) holds at \(cP \). Then we have:

\[
\begin{align*}
\text{back-bind}_{cP}(\emptyset) &= \emptyset \\
\text{back-bind}_{cP}(\ll f_2, r \gg) &= \emptyset \\
\text{back-bind}_{cP}(\ll f_1, \text{nv}_l \gg) &= \ll q, \text{nv}_l \gg \\
\text{back-bind}_{cP}(\ll q, \text{nv}_l \gg) &= \ll q, \text{nv}_l \gg
\end{align*}
\]

We also need the inverse of \(\text{back-bind}_{cP} \) operation; we use \(\text{bind}_{cP} \) to model the affects of parameter bindings on aliases\(^\text{17}\). Intuitively, \(\text{bind}_{cP}(\emptyset) \) is the set of all the aliases on entry of a called procedure that must exist because of parameter bindings.

\(^{17}\)A detailed discussion of \(\text{back-bind}_{cP} \) and \(\text{bind}_{cP} \) appears in [Lan92a].
while \(\text{bind}_{c_P}(<a, b>) \) is the set of aliases at entry of a called procedure whose existence is implied by \(a \) being aliased to \(b \) at \(c_P \). For the following example program segment, assume that the aliases \(<*_g, l>\) and \(<*_g, _{\text{nv}}x>\) hold at \(c_P \) where \(g \) is a global, \(l \) is local to procedure \(R \) and \(x \) is local to the caller of procedure \(R \).

\[
R(\) \\
\{ \\
\quad P(f) \\
\ldots \\
\quad \text{int } *f; \\
\} \\
\]

\[
c_P: \quad P(g); \\
\ldots \\
\]

\[
r_P: \\
\} \\
\]

\[
\text{bind}_{c_P}(\emptyset) = \{<*_f, *g>\}, \\
\text{bind}_{c_P}(<*_g, l>) = \{<*_g, _{\text{nv}}l>, <*_f, _{\text{nv}}l>\}, \text{ and} \\
\text{bind}_{c_P}(<*_g, _{\text{nv}}x>) = \{<*_g, _{\text{nv}}x>, <*_f, _{\text{nv}}x>\}
\]

Conditional reaching definitions with aliasing

The \(\text{reaches} \) predicate for this version of the algorithm has the following interpretation: \(\text{reaches}(n_i, (\text{ARD}, \text{RA}), rd) \) is true if, given that \(\text{ARD} \) and \(\text{RA} \) reach the entry of the procedure containing \(n_i \), \(rd \) reaches the bottom of \(n_i \). Now the pair \((\text{ARD}, \text{RA})\) is our abstraction of the call stack. \(\text{reaches} \) has the nice property that \(\text{ARD} \) and \(\text{RA} \) are never both non-\(\emptyset \). Intuitively, it is easy to see three possible situations at procedure exit:

1. If \(\text{ARD} \) is \(\emptyset \) and the corresponding reaching definition was created as a result of the call and did not need an alias for its creation, then we have \((\emptyset, \emptyset)\) as our reaching definition, reaching alias information.

2. If \(\text{ARD} \) is non-\(\emptyset \), then the corresponding reaching definition was passed in from a call and the \(\text{ARD} \) acts as an abstraction of the call stack. A may alias cannot be used to kill a definition unless it is also a must alias; thus, there is no need for retaining an \(\text{RA} \) with this definition, because our \(\text{RA} \) is not an explicit must alias.
3. If \(\text{ARD} \) is \(\emptyset \), but \(RA \) is non-\(\emptyset \), then the corresponding definition was created during the call through the alias information. Here \(RA \) acts as a call stack abstraction and is necessary for the definition through the alias to be identified. In Figure 3.1 (p. 16), \(< n_8 : a > \) is created at node \(n_8 \) if the alias \(<*f, a> \) reaches the entry node of function \(R \). Here, \((\emptyset, <*f, a>) \) abstracts the call stack.

This property limits the number of \emph{reaches} relations by eliminating a multiplicative effect which would arise if relations with both non-\(\emptyset \) components occurred in the analysis.

To shorten our equations in the remainder of this section, let the notation “\((\text{ARD} \) or \(RA= \emptyset \))” represent the condition “for \(\text{ARD} = \emptyset \) or \(< n_k : a > \) \((n_k \) and \(a \) are determined by context, that is, by the last component of the \emph{reaches}), and for all \(RA \) such that at least one of \(\text{ARD} \) and \(RA \) is \(\emptyset \).”

\textbf{Calculation at each ICFG node}

As in Section 3.3.1, we now present the \emph{reaches} equations differentiated by node type, for programs with single level pointers. Recall from Figure 3.4 that at this point in our algorithm we already have computed \emph{may-hold} information.

\textbf{Assignment node} \(n_i \): There are two classes of assignments; one is assignments to fixed-locations and the other is an assignment through a dereferenced pointer.

In either case, the assignment: (i) creates definitions of aliases of the left-hand-side (Reflexive aliases exist everywhere with reaching alias \(\emptyset \)), (ii) kills incoming definitions of the left-hand-side (We do not use must alias information in this version of the algorithm.), (iii) preserves definitions of everything other than the left-hand-side.

1. Consider the fixed-location assignment “\(a = \ldots \)” (similar to the corresponding case in Section 3.3.1):

\begin{itemize}
 \item [(a)] \(\text{reaches}(n_i, (\emptyset, \emptyset), < n_i : a >) = \text{true} \) (It is not possible for two fixed-locations to be aliased; therefore, we do not need to consider aliases of \(a \)).
\end{itemize}
(b) for all $n_k \neq n_i$, $(\text{ARD or } RA = \emptyset)$:

\[\text{reaches}(n_i, (\text{ARD, RA}), < n_k : a >) = false \]

(c) for all fixed-locations $b \neq a$, all nodes n_k, $(\text{ARD or } RA = \emptyset)$:

\[\text{reaches}(n_i, (\text{ARD, RA}), < n_k : b >) = \]

\[\bigvee_{n_p \text{ pred of } n_i} (\text{reaches}(n_p, (\text{ARD, RA}), < n_k : b >)) \]

2. Consider the assignment "*p = ...": For all nodes n_k, $(\text{ARD or } RA = \emptyset)$, and all fixed-locations b (the first part is from (i) and the second part is from (iii)):

\[\text{reaches}(n_i, (\text{ARD, RA}), < n_k : b >) = \]

\[\left(n_k = n_i \land \text{ARD} = \emptyset \land \right. \]

\[\left. \bigvee_{n_p \text{ pred of } n_i} (\text{may-hold}(n_p, \text{RA}, <*p, b>)) \right) \]

\[\bigvee \]

\[\left(\bigvee_{n_p \text{ pred of } n_i} (\text{reaches}(n_p, (\text{ARD, RA}), < n_k : b >)) \right) \]

Entry node n_i: reaches at entry nodes is exactly the same as for the case when there are no aliases in the program (see Section 3.3.1) except that there is an associated reaching alias which will always be \emptyset. The equations are:

1. for each formal f:

\[\text{reaches}(n_i, (\emptyset, \emptyset), <n_i : f>) = true \]

2. for all globals g, all nodes n_k:

\[\text{reaches}(n_i, (< n_k : g >, \emptyset), <n_k : g>) = \]

\[\bigvee_{c_p \text{ calls } n_i \text{ and } (\text{ARD or } RA = \emptyset)} (\text{reaches}(c_p, (\text{ARD, RA}), <n_k : g>)) \]
3. for all locals \(l \), all nodes \(n_k \), and all call sites \(c_p \) of \(n_i \) (the equation is similar to (2); however, it is complicated by name space mapping):

\[
\text{reaches}(n_i, (< n_k : \text{nv}_l >, \emptyset), < n_k : \text{nv}_l >) =
\]

\[
\bigvee_{\alpha \in \{l, \text{nv}_l\} \text{ and } (\text{ARD or } RA = \emptyset)} (\text{reaches}(c_p, (\text{ARD, RA}), < n_k : \alpha >))
\]

This accounts for the situations where (i) \(l \) is local to the procedure containing \(c_p \) or (ii) \(l \) is not visible in the procedure containing \(c_p \) and appears as \(\text{nv}_l \) at \(c_p \) itself.

4. all other predicates, \((\text{ARD or } RA = \emptyset)\), \(\text{reaches}(n_i, (\text{ARD, RA}), < n_k : a >) \) not covered by (1) or (2) are \textit{false}.

\textbf{Return node} \(n_i \): In the following, let the return node be \(n_i \), the corresponding call node be \(c_i \), and the exit node of the called procedure be \(x_k \). \((\text{ARD or } RA = \emptyset)\), \(\text{reaches}(n_i, (\text{ARD, RA}), rd) \) is \textit{true} iff any of the following situations exists:

1. \(rd \) was generated during the execution of the called procedure without any assumptions at entry and reached the exit. For example, in Table A.5 of Appendix A.2:

\[
\text{reaches}(x_2, (\emptyset, \emptyset), < n_0 : c >)
\]

\[
\Rightarrow \text{reaches}(r_1, (\emptyset, \emptyset), < n_0 : c >)
\]

2. \(rd \) reached the call site (and thus the entry of the called procedure) and is preserved through the called procedure to reach its exit. For example in Figure 3.1, the definition \(< n_4 : p > \) reaches the call node \(c_1 \) and is preserved through \(R \) to reach \(x_2 \). As a result in Table A.5:

\[
\left(\text{reaches}(c_1, (\emptyset, \emptyset), < n_4 : p >) \land \left(\text{reaches}(x_2, (< n_4 : p >, \emptyset), < n_4 : p >) \right) \right)
\]

\[
\Rightarrow \text{reaches}(r_1, (\emptyset, \emptyset), < n_4 : p >)
\]
3. \(rd \) is created because of an alias which exists conditional on some \(RA \) at the entry of the called procedure and that \(rd \) reaches the exit of that procedure (for example, \(\text{reaches}(x_2, (\emptyset, <*f,a>), <n_8 : a>) \) in Table A.5). Also the call site must induce \(RA \) in the called procedure (e.g., \(c_1 \) induces \(<*f,a> \) in \(R \)). Thus,

\[
\begin{align*}
\text{reaches}(x_2, (\emptyset, <*f,a>), <n_8 : a>) \land \\
\text{back-bind}_{c_1}(<*f,a>) = <p,a> \land \\
\text{may-hold}(c_1, \emptyset, <*p,a>)
\end{align*}
\]

\[
\Rightarrow \text{reaches}(r_1, (\emptyset, \emptyset), <n_8 : a>)
\]

The following formula accounts for the three situations described above. A fourth situation where a definition reaches the entry of a procedure and is preserved because of the absence of a must alias is safely covered by (2) but is handled better when \(\text{reaches} \) is calculated using \(\text{must-hold} \) information (see Section 3.3.3).

For \(c_i \) the call node of the call site of \(n_i, x_k \) the exit of the called procedure, \((ARD \text{ or } RA = \emptyset), b \) a global or \(n_{v,l} \) for some \(1 \) which is not visible in the procedure containing \(c_i \):

\[
\text{reaches}(n_i, (ARD, RA), <n_m : b>) =
\]

1. \(\text{reaches}(x_k, (\emptyset, \emptyset), <n_m : b>) \lor \\
2. \text{reaches}(c_i, (ARD, RA), <n_m : b>) \land \\
\text{reaches}(x_k, (<n_m : b>, \emptyset), <n_m : b>)
\]

3. \(\lor \left(\text{reaches}(x_k, (\emptyset, RA'), <n_m : b>) \land \text{may-hold}(c_i, RA, \text{back-bind}_{c_i}(RA'))^{18} \right) \)

\[
\text{all reaching aliases } RA'
\]

For \(c_i \) the call node of the call site of \(n_i, x_k \) the exit of the called procedure, \((ARD \text{ or } RA = \emptyset), 1 \) a local to the procedure containing \(c_i \):

\[^{18}\text{For simplicity, assume } \text{may-hold}(n_m, RA_m, \emptyset) \text{ is true for all } n_m \text{ and } RA_m.\]
\[
\text{reaches}(n_i, (ARD, RA, RMA), < n_m : l >) =
\]

1. /* there is no corresponding case 1 */
2. \[\text{reaches}(c_i, (ARD, RA), < n_m : l >) \land \text{reaches}(x_k, (< n_m : n v . l >, \emptyset), < n_m : n v . l >)\]
3. \[\bigvee_{\text{all reaching \textsc{aliases} RA'}} \left(\text{reaches}(x_k, (\emptyset, RA'), < n_m : n v . l >) \land \text{may-hold}(c_i, RA, \text{back-bind'}c_i(RA')) \right)\]

Note: \text{back-bind'}c_i(<a, b>) is identical to \text{back-bind}c_i(<a, b>) except whenever \text{back-bind}c_i(<a, b>) = <*g, n v . l > (any variable g, local 1), <*g, l > is returned instead.

\textbf{Any other node} \(n_i\): Because \text{reaches} at a node includes the effects of that node, other nodes (e.g., call, exit, conditional, ...) simply collect the reaching definitions information. Thus:

\[
\text{reaches}(n_i, (ARD, RA), < n_k : b >) =
\bigvee_{n_p \text{ prel of } n_i} (\text{reaches}(n_p, (ARD, RA), < n_k : b >))
\]

\textbf{Theorem 3.3.3} The algorithm to calculate \text{reaches} is polynomial in the number of ICFG nodes and object names.

Let \(N\) denote the set of ICFG nodes and \(v\) the number of object names. Aliases are pairs of object names; thus there are \(O(v^2)\) of them. Definitions are node / fixed-location pairs, so there are \(O(|N| \ast v)\) of them. \text{reaches} is a quadruple \(\text{reaches}(n_i, (ARD, RA), rd)\) with the restriction that \(ARD\) is either \(\emptyset\) or \(rd\); thus there are \(O(|N|^2 \ast v^3)\) \text{reaches} predicates. For each \text{reaches} calculation at a return node we may do \(O(v^2)\) work because there may be as many as \(v^2\) RA values (worst case). The work at an arbitrary ICFG node is bounded by the work at a return node. Therefore the total cost of processing for all ICFG nodes, is bounded above by \(O(|N|^2 \ast v^5)\) since, in the fixed point calculation, the value of a \text{reaches} changes from \text{false} to \text{true} at most once. Thus, the computation of \text{reaches} predicate is a polynomial-time calculation. \(\square\)
Reaching definitions from conditional reaching definitions

The \textit{rttop} calculation with aliasing is conceptually identical to the \textit{rttop} calculation without aliasing (see Section 3.3.1). The \textit{rttop} solution for the program in Figure 3.1 appears in Tables A.8 and A.9.

For each node \(n_i \) in the ICFG, \textit{rttop} is calculated as follows:

- if \(n_i \) is an entry node or return node (special case these two as they do not have intraprocedural predecessors).

\[
\text{rttop}(n_i) = \begin{cases}
<n_k : b> & (\exists (\text{ARD, RA})) \text{ such that } \text{reaches}(n_i, (\text{ARD, RA}), <n_k : b>) \text{ is true} \\
\end{cases}
\]

- otherwise

\[
\text{rttop}(n_i) = \bigcup_{n_p \text{ pred of } n_i} \left\{ <n_k : b> \mid (\exists (\text{ARD, RA})) \text{ such that } \text{reaches}(n_p, (\text{ARD, RA}), <n_k : b>) \text{ is true} \right\}
\]

Precision of calculation

Beyond the normal imprecision due to nonexecutable intraprocedural paths, there is another source of approximation in our reaching definitions algorithm, which is illustrated by the following scenario. We illustrate the example for \textit{reaches} without must alias information, but must alias information is not enough to avoid this problem in all cases. As shown in Figure 3.7, suppose:
\begin{verbatim}
if (i == 0)
p = &a;
else
nk: a = 1;
np: i = 0;
ni: *p = 2;

reaches(ni, (0, 0), < nk : a >)
is precise
\end{verbatim}

\hline
\begin{verbatim}
if (i == 0)
p = &a;
else
nk: a = 1;
np: i = 0;
ni: *p = 2;

reaches(ni, (0, 0), < nk : a >)
is imprecise (but safe)
\end{verbatim}
\hline
\end{tabular}

\textit{Case 1}

\textit{Case 2}

\begin{figure}[h]
\centering
\begin{tabular}{ll}
\hline
\textbullet n\textsubscript{i} is the assignment "*p = \ldots"

\textbullet np is an immediate predecessor of ni in the ICFG.

\textbullet we know that the definition < nk : a > reaches the bottom of np10 on some path
 (for example, the predicate reaches(np, (0, 0), < nk : a >) is true).

\textbullet we also know that *p is aliased to a on some path to the bottom of np (for example, the predicate may-hold(np, 0, < *p, a >) is true).

Our algorithm as described would conclude that the predicate reaches(ni, (0, 0), < nk : a >) is true, but is that precise? If definition < nk : a > reaches np on some path and < *p, a > does not hold on that path then definition < nk : a > reaches the bottom of ni (see Case 1 of Figure 3.8). However, if for every path on which definition < nk : a > reaches np, *p is aliased to a, then < nk : a > does not reach the bottom of ni and our algorithm is being imprecise (see Case 2 of Figure 3.8).

\subsection{3.3.3 Using Must Alias for More Precision}

To increase the accuracy of the reaching definition calculation, we can use the \textit{must-hold} function and the must alias solution in the \textit{reaches} calculation to kill reaching

10and thus the top of ni
definitions when an assignment is made through a must-aliased object name20. The new \textit{reaches} has the form

\[\text{reaches}(n_i, (\text{ARD}, RA, RMA), rd) \]

and is true iff \(rd \) reaches \(n_i \), with the assumed-\(\text{ARD} \), the reaching alias \(RA \), and the reaching must alias set \(RMA \). For every call site \(c_i \), we define one reaching must alias set \(\text{RMA}_{c_i} \), as the set of must aliases which are propagated to the called procedure from that call. For non-globals, this propagation involves parameter bindings and name space mappings (see Appendix A.1). The number of distinct reaching must alias sets equals the number of calls to the procedure.

Although we are doing a refined conditional reaching definitions calculation, it is still true that during the calculation, a \textit{reaches} can only change its value from \textit{false} to \textit{true}, thus assuring \textit{monotonicity}. This becomes obvious when one realizes that to \textit{kill} a reaching definition simply means \textit{not propagating} an \(rd \) at a node to its successor(s). A complete and formal description of this final version of the algorithm appears in Appendix A.1, but it is similar enough to the algorithm in Section 3.3.2 that we limit our discussion here to an example of killing definitions at an assignment.

In Figure 3.1, \(\{< *p, a >\} \) is the set of aliases associated with \(c_1 \) in must alias solution (see Table A.4). Thus, \(\{< *p, a >, < *p, *f >, < *f, a >\} \) is a reaching must alias set of \(R \). Since \(< n_1 : a > \) reaches \(c_1 \), \textit{reaches}(\(e_2 \), \((< n_1 : a >, \emptyset, \{< *p, a >, < *p, *f >, < *f, a >\}) \), \(< n_1 : a > \) is \textit{true} (see Table A.7 for the complete \textit{reaches} solution). The successor of \(e_2 \) is \(n_8 \) (\(*f = 1 \)). Clearly this assignment kills off definitions of \(a \) if \(*f \) is must aliased to \(a \). In this case it is, and thus \textit{reaches}(\(n_8 \), \((< n_1 : a >, \emptyset, \{< *p, a >, < *p, *f >, < *f, a >\}) \), \(< n_1 : a > \) remains \textit{false}. The formal check to see if \("*q = \ldots" \) at \(n_i \) kills a \textit{reaches}(\(n_p \), \((\text{ARD}, RA, RMA), < n_k : x > \)), where \(n_p \) is a predecessor of \(n_i \), is:

\[\text{must-hold}(n_p, < *q, x >) \subseteq RMA \]

20The analysis in this section is not included in our prototype implementation. We do not use \textit{must-hold} information as there are still difficulties that must be surmounted before \textit{must-hold} can be implemented practically.
Now we consider \(c_2 \) of Figure 3.1. \(\{< p, b > \} \) is the set of all aliases associated with \(c_2 \) in the must alias solution (see Table A.4). Thus, \(\{< p, b >, < p, f >, < f, b > \} \) is a reaching must alias set of \(R \). Since \(< n_1 : a > \) reaches \(c_2 \),

\[
\text{reaches}(c_2, (< n_1 : a >, \emptyset, \{< p, b >, < p, f >, < f, b > \}), < n_1 : a >)
\]

is true (see Table A.7). Again consider the assignment at \(n_8 \), since

\[
\text{must-hold}(c_2, < p, a >) = \{< p, a >\} \not\subseteq \{< p, b >, < p, f >, < f, b >\}
\]

we set \(\text{reaches}(n_8, (< n_1 : a >, \emptyset, \{< p, b >, < p, f >, < f, b > \}), < n_1 : a >) \) to true
implying that \(\text{reaches}(c_2, (< n_1 : a >, \emptyset, \{< p, b >, < p, f >, < f, b > \}), < n_1 : a >) \) is true also. \(\text{reaches} \) at return nodes are handled as in Section 3.3.2 with the additional restriction that the call node of the call site must induce the reaching must alias. Thus the above \(\text{reaches} \) causes \(\text{reaches}(r_2, (\emptyset, \emptyset), < n_1 : a >) \) to be true but leaves \(\text{reaches}(r_1, (\emptyset, \emptyset), < n_1 : a >) \) false. A comparison of the corresponding entries for \(r_1 \) in Tables A.5 and A.6 reveals that the absence of \text{must-hold} information leads to a spurious \(< n_1 : a > \) reaching \(r_1 \). Similarly, in the absence of \text{must-hold} information, a spurious \(< n_2 : b > \) reaches \(r_2 \) (compare corresponding entries in the two tables).

Again, details of how to compute \(\text{reaches} \) using \text{must-hold} and must alias are in Appendix A.1, and the complete solution for the program in Figure 3.1 is in Tables A.6 and A.7.

Approximating must alias information

As we demonstrated in Section 3.3.3, must alias information is useful in increasing the precision of \(\text{reaches} \). Unfortunately, little research has been done for computing must alias information in the presence of pointers. Landi [Lan92a] presented a polynomial time algorithm for computing must alias in the presence of single level pointers. As presented, the algorithm is of more theoretical than practical utility; it has never been generalized to handle arbitrary pointers.

However, a relevant and safe alternative to must alias information can be obtained cheaply from the \text{may-hold} information. Consider the following program segment:
For (i=0; i<2; i++) {
 q = malloc();
 *q = 2;
 if (i == 0)
 p = q;
}
* p = 3; /* cannot kill < n3 : new2 > */

Figure 3.9: Problem using < p, new2 > as a must alias at n7

v = 2;
*p = 3;
printf ("%d", v);

and assume the only reported fixed-location may alias for * p immediately prior to the
execution of node n2 is v. Because of safety of the may alias algorithm, this means
that whenever n2 is executed one of three cases must exist: (i) p points to v, (ii) p is
uninitialized, or (iii) p is NULL. In case (i), v is redefined and the definition < n1 : v >
is killed. In cases (ii) and (iii), the action of this statement is undefined by the C standard,
but for most C compilers, abnormal termination results. Thus, whenever statement n3
is executed and execution continues, the statement that defined v is always n2, never
n1. Given our assumptions about abnormal termination in cases (ii) and (iii), we can
treat < p, v > as a must alias, at the cost of querying the may alias solution and finding
all the fixed-location aliases of * p when * p is used/defined.

A few points about this technique are:

- If * p is being used/defined and it has only one fixed-location may alias, then it
can be treated as a must alias.

- If p points to heap storage, then this fact must be represented by some < p, newi >
(Recall we use a unique newi name for each allocation site i in the program). If
the alias < p, newi > is in the may alias solution at nk, even if it is the only
alias involving * p, then this technique cannot be used as the name newi possibly
represents multiple locations and without further information we cannot safely
consider < p, newi > as a must alias (see Figure 3.9).
3.4 Def-Use Associations Algorithm

Given interprocedural reaching definitions information (i.e., rdtop) at each ICFG node, it is straightforward to compute the interprocedural def-use associations. If a node \(n_i \) uses a fixed-location \(a \) either directly or indirectly through a pointer (thus requiring may alias information), and there is a definition \(\langle n_k : a \rangle \) reaching the top of node \(n_i \), then we establish a def-use association \(\langle \langle n_k : a \rangle, n_i \rangle \). The def-use association solution for the program in Figure 3.1 appears in Table A.1. Notice that \(\langle \langle n_k : b \rangle, n_7 \rangle \) corresponds to a direct use while \(\langle \langle n_6 : a \rangle, n_5 \rangle \) corresponds to a use through a pointer. This algorithm is clearly polynomial in the number of nodes in the ICFG.

In addition to the imprecision in our conditional reaching definitions algorithm, there is another source of approximation inherent in our calculation of def-use associations. Suppose \(n_i \) uses \(a \) indirectly through a may alias. We establish a def-use \(\langle \langle n_k : a \rangle, n_i \rangle \). But the realizable path on which \(\langle n_k : a \rangle \) is created at \(n_k \) and subsequently reaches \(n_i \), and the realizable path on which the may alias holds at the top of \(n_i \) may be distinct. Nevertheless, following the same reasoning as on p. 39, we must assume, for the sake of safety, that the reaching definition as well as the alias occur on the same path, and create a possibly spurious def-use association.

3.5 Extensions to Handle Multiple Level Pointers

When we allow multiple levels of pointer dereferencing, the solution of conditional aliasing is no longer precise, but is safe and approximate [LR92]. Our algorithm for conditional reaching definitions inherits this approximation from the aliasing calculation to create possibly spurious reaching definitions at an assignment node. Although the algorithm description in Section 3.3.2 remains unchanged, we need to study implications of this approximation by revisiting the case where our algorithm creates a definition at an assignment node using aliases of the left-hand-side. On p. 35, where we consider the assignment "\(*p = \ldots\)", there may in fact be no realizable path to node \(n_p \) on which \(\langle *p, b \rangle \) holds. Nevertheless, the presence of an approximate may-hold\((n_p, RA, \langle *p, b \rangle)\) will result in \(\text{reaches}(n_i, (ARD, RA), \langle n_k : b \rangle) \). This is clearly approximate,
since there is no realizable path to \(n_i \) on which the definition of \(*p \) redefines the fixed-location \(b \).

Allowing multiple levels of indirection adds another complication to the aliasing part of our algorithm, \(i.e., \) the possibility of infinite object names in the presence of recursive structures. The notion of \(k \)-limiting, similar to that introduced by Jones and Muchnick [JM79], may be used to limit the length and number of object names. Intuitively, \(k \)-limiting implies that up to \(k \) explicit dereferences are maintained in an object name and further dereferences are abstracted into a special dereference. Although the aliasing algorithm must account for \(k \)-limiting, it has no impact on our reaching definitions and def-use associations algorithms provided that the value of \(k \) is so chosen that the names in the source code do not require \(k \)-limiting. We are only interested in the reaching definitions of fixed-locations, which are never \(k \)-limited (remember, fixed-locations do not have any dereferences). A fixed-location may be indirectly defined or used through an alias of an object name appearing at an ICFG node, which again is not \(k \)-limited. We discuss the notion of \(k \)-limiting in the context of our C++ analysis in Section 5.4.6.
Chapter 4
Present Status and Empirical Results

We have constructed a prototype implementation of our algorithm to observe its performance on C programs. We use the PTT system from Siemens Corporate Research [PWC91] for our C parser. For efficiency, in our implementation we use a worklist-based algorithm. At an assignment node, we initialize the appropriate reaches predicates to true depending on the may-hold predicates at the node. We then propagate the reaches values along the realizable paths.

Our original prototype implementation obtained the reaching definitions and def-use associations for C systems with at most a single level of indirection. For aliasing calculation, it used the implementation described in [Lan92a]. Finding C programs that used only single level pointers was extremely difficult, so our test suite is limited to eleven programs. We present our preliminary implementation timing results on a Sun SPARCstation 10 in Table 4.1. The programs come from the following sources: (i) programming assignments for graduate courses at Rutgers University, (ii) C library functions, and (iii) the test suite for TACTIC [Ost90] which used the def-use associations to perform data-flow-based test coverage of C programs. The timings for various analysis phases\(^2\) (viz., conditional may alias, interprocedural reaching definitions, and def-use analysis) are promising, especially since this is a prototype implementation. The time for an unoptimized compile of each program is included for comparison.

To obtain a lower bound on the empirical precision of our reaching definitions solution we use methods similar to those in [LR92]. We designed our implementation to

\(^2\)The timings are measured separately for each phase, and are not cumulative.
Table 4.1: Timing results

keep track of these possibly spurious reaches22, appearing in the solution due to the approximation described in Section 3.3.2 (p. 39). From this we compute \%precision which is the percentage of the solution generated which is definitely not spurious. We consider the precision of our solution to be the ratio of the size of the provably precise23 reaching definitions solution to the size of the entire solution. Thus, \%precision is a lower bound on the precision of our solution because it assumes that the reaches resulting from every such safety consideration was spurious.

In Table 4.2, we present measurements indicating the size and quality of our solutions. \textit{RD's Per Node} is the average number of reaching definitions per ICFG node. \textit{RD \% precision} is the measure defined above that gives a lower bound on the precision of our calculated solution. The precision of our algorithm appears to be good; at least 90\% of the reaching definitions reported by our algorithm are present in the precise solution. \textit{Def-Uses} is the total number of def-use associations in each program. Perhaps most interesting for data-flow-based testing applications are the last two columns

22Reporting reaches as true is counted as possibly spurious if it is the result of some form of the above case or if it depends on some possibly spurious reaches.

23assuming all intraprocedural paths are executable
<table>
<thead>
<tr>
<th>Program Name</th>
<th>Lines</th>
<th>Nodes</th>
<th>RDs Per Node</th>
<th>RD %precision</th>
<th>Def-Uses</th>
<th>DUs Per Def</th>
<th>DUs Per Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>bcmp-etc</td>
<td>50</td>
<td>53</td>
<td>2.7</td>
<td>100.00</td>
<td>24</td>
<td>1.71</td>
<td>1.33</td>
</tr>
<tr>
<td>pattern</td>
<td>99</td>
<td>183</td>
<td>13.1</td>
<td>91.91</td>
<td>124</td>
<td>2.43</td>
<td>1.55</td>
</tr>
<tr>
<td>atol-etc</td>
<td>100</td>
<td>160</td>
<td>4.9</td>
<td>98.90</td>
<td>105</td>
<td>2.62</td>
<td>1.57</td>
</tr>
<tr>
<td>weather</td>
<td>132</td>
<td>134</td>
<td>6.8</td>
<td>96.93</td>
<td>115</td>
<td>2.21</td>
<td>2.17</td>
</tr>
<tr>
<td>jacobi</td>
<td>172</td>
<td>357</td>
<td>7.3</td>
<td>98.56</td>
<td>304</td>
<td>3.75</td>
<td>1.68</td>
</tr>
<tr>
<td>SOR</td>
<td>177</td>
<td>352</td>
<td>7.6</td>
<td>91.52</td>
<td>266</td>
<td>3.17</td>
<td>1.57</td>
</tr>
<tr>
<td>strings</td>
<td>185</td>
<td>415</td>
<td>8.0</td>
<td>100.00</td>
<td>242</td>
<td>2.95</td>
<td>1.34</td>
</tr>
<tr>
<td>random</td>
<td>366</td>
<td>247</td>
<td>15.6</td>
<td>90.26</td>
<td>227</td>
<td>2.99</td>
<td>1.94</td>
</tr>
<tr>
<td>crypt</td>
<td>396</td>
<td>395</td>
<td>27.2</td>
<td>93.68</td>
<td>468</td>
<td>3.26</td>
<td>2.00</td>
</tr>
<tr>
<td>fixoutput</td>
<td>400</td>
<td>616</td>
<td>35.1</td>
<td>100.00</td>
<td>306</td>
<td>5.88</td>
<td>2.15</td>
</tr>
<tr>
<td>parser</td>
<td>731</td>
<td>1305</td>
<td>40.7</td>
<td>93.12</td>
<td>867</td>
<td>6.15</td>
<td>2.29</td>
</tr>
</tbody>
</table>

Table 4.2: Analysis results

which measure the number of def-use associations on average at each definition site (i.e., assignment statement) and at each use site in the program, respectively. There is one definition site per assignment statement; in contrast, there is one use site for each value-fetching part of a statement. For example, \(*p = a + *q \) has one definition site (for \(*p \)) and four use sites (for \(p, a, q, \) and \(*q \)), regardless of the number of aliases for \(*p \) and \(*q \).

Our prototype implementation of the def-use associations algorithm (at Siemens Corporate Research Inc.) is now capable of analyzing programs with multiple level pointers and uses an improved version of aliasing algorithm\(^{24}\). We have obtained some data using this extended implementation. We report the results in Table 4.3. In comparison with Tables 4.1 and 4.2, the number of def-use associations per definition and the analysis time appear to have increased. This is expected since the programs in Table 4.3 are bigger in code size and more complex in pointer usage than those analyzed by our original implementation. Also, we conjecture that further imprecision inherent to analysis for multiple level pointers [LR92] is also responsible for the increase in the number of def-use associations. Unfortunately, we do not have access to such analysis.

\(^{24}\)If our original benchmarks are re-analyzed using this prototype, we should see significantly better timing results than those reported in Table 4.1.
<table>
<thead>
<tr>
<th>Program Name</th>
<th>Nodes</th>
<th>Def-Uses</th>
<th>Def-Uses Per Def</th>
<th>Total Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>strings1</td>
<td>279</td>
<td>194</td>
<td>3.34</td>
<td>0.34</td>
</tr>
<tr>
<td>allroots</td>
<td>411</td>
<td>429</td>
<td>3.67</td>
<td>0.77</td>
</tr>
<tr>
<td>diffh</td>
<td>635</td>
<td>794</td>
<td>4.46</td>
<td>2.31</td>
</tr>
<tr>
<td>fixoutput1</td>
<td>621</td>
<td>2967</td>
<td>20.05</td>
<td>2.54</td>
</tr>
<tr>
<td>lex315</td>
<td>1306</td>
<td>2432</td>
<td>12.60</td>
<td>6.17</td>
</tr>
<tr>
<td>calls</td>
<td>1289</td>
<td>16838</td>
<td>12.92</td>
<td>28.17</td>
</tr>
<tr>
<td>pokerd</td>
<td>1886</td>
<td>2776</td>
<td>5.83</td>
<td>11.89</td>
</tr>
<tr>
<td>clust</td>
<td>1282</td>
<td>28064</td>
<td>17.33</td>
<td>27.98</td>
</tr>
<tr>
<td>loader</td>
<td>1567</td>
<td>2398</td>
<td>5.68</td>
<td>12.56</td>
</tr>
<tr>
<td>compress</td>
<td>1917</td>
<td>2007</td>
<td>5.35</td>
<td>8.67</td>
</tr>
<tr>
<td>diff</td>
<td>3950</td>
<td>7476</td>
<td>8.27</td>
<td>52.31</td>
</tr>
<tr>
<td>tbl</td>
<td>6060</td>
<td>52714</td>
<td>33.17</td>
<td>137.65</td>
</tr>
<tr>
<td>assembler</td>
<td>3629</td>
<td>13274</td>
<td>14.97</td>
<td>65.82</td>
</tr>
<tr>
<td>simulator</td>
<td>5578</td>
<td>36501</td>
<td>34.80</td>
<td>104.73</td>
</tr>
</tbody>
</table>

Table 4.3: Recent implementation results

figures as the number of reaching definitions or the \(%\text{precision} \) measure for reaching definitions solution of this recent implementation.
Chapter 5

Type Determination and Aliasing for C++

This chapter is divided into three sections. Section 5.1 mainly discusses the theoretical issues involving type determination and aliasing. We show that type determination and aliasing are separable when the pointer usage is restricted to a single level of dereferencing, but are closely interdependent when the restriction is lifted. In Section 5.2, we formulate the combined problem and state our tractable approximation of it. In Section 5.3, we describe a type determination algorithm for this restricted usage. Section 5.4 includes the description of our polynomial time combined algorithm for approximate type determination and aliasing for C++ with general purpose pointer dereferencing.

5.1 Problem Definition

5.1.1 Additional Terminology

- *Type determination* involves calculating the type of the object pointed to by a pointer at a program point as a result of an execution to that program point. We represent this information by a pair consisting of a pointer and an associated type (e.g. \(<p \Rightarrow C> \)), called a *pointer-type pair*.

- A dereference of an object name (using "\(\rightarrow\)" or "\(*\)" dereference operator) at a program point is *valid* if there exists a consistent path to the program point on which the object name points to an object of appropriate type. We only deal with valid dereferences.

- The *precise* solution for static type determination and aliasing at a program point is a set of pointer-type and alias pairs, each of which is a result of an execution on
some consistent path to that program point. We denote the type determination solution at a program point n as May-$Pointer$-$Type(n)$, and the aliasing solution as May-$Alias(n)$.

5.1.2 Interdependence of Aliasing and Type Determination

In programs restricted to single level pointers, one pointer cannot be aliased to another, as this requires multiple levels of indirection [LR91]. As a result, when a pointer changes its value (to point to an object of another type), it does not affect the value of any other pointers. In this context, type determination impinges on aliasing since the receiver types decide which virtual function is invoked at a call site, and the invoked function can affect aliasing; however, aliasing plays no part in type determination.

Such a separation does not occur when we allow multiple level pointers. We illustrate the close interdependence between aliasing and type determination with the help of Figure 5.1. Assume that class D is derived from class B and that both B: f and D: f are virtual functions. The accompanying program segment includes two pointer assignment statements and a virtual function call. In the following cases, as expected, multiple levels of pointer dereferencing is required for aliasing to affect type determination.

unsafe type determination compromising safety of aliasing Suppose an unsafe solution of type determination at the virtual call node $call_n$ does not include $<q \Rightarrow B>$. Thus, $entry_{B:f}$ will not be considered an interprocedural successor of $call_n$. Since the function $B :: f$ is never called in the context of $call_n$, in turn $<*r, s>$ will not hold at $return_n$. Thus, the aliasing solution at $return_n$ will be
unsafe aliasing compromising safety of type determination Suppose $<*p, q*>$ is not available at an immediate predecessor of m. This will lead to omission of $<q \Rightarrow B>$ in the type determination solution at m, which is unsafe.

imprecise type determination leading to imprecise aliasing The presence of a spurious pointer-type pair $<q \Rightarrow D>$ at $call_n$ will lead to invocation of virtual function $D :: f$ from $call_n$. This will result in a spurious alias $<*r, t>$ to hold at $return_n$, rendering the alias solution at $return_n$ imprecise.

imprecise aliasing leading to imprecise type determination Suppose a spurious alias $<*p, u>$ holds at an immediate predecessor of pointer assignment node m. This will lead to a spurious pointer-type pair $<u \Rightarrow B>$ to hold at m, rendering the type determination solution at m imprecise.

Thus, aliasing affects type determination and vice versa. This interdependence motivated us to design a combined algorithm to solve the problems together.

5.1.3 Theoretical Complexity of the Problem

Theorem 5.1.1 In the presence of single level pointers and virtual functions in C++, precise program-point-specific type determination and aliasing is NP-hard.

Proof outline: We reduce the 3-SAT problem to the above problem. Let the formula in conjunctive normal form (cnf) be made of m logic variables v_1, v_2, \ldots, v_m. Let the cnf be represented as

$$(l_{11} \lor l_{12} \lor l_{13}) \land (l_{21} \lor l_{22} \lor l_{23}) \land \cdots (l_{n1} \lor l_{n2} \lor l_{n3})$$

where each l_{jk} represents a literal: variable or its negation. The above cnf is satisfiable iff there exists a truth assignment to the logic variables which makes the formula true.

As a part of our reduction, we construct a program segment polynomial in the size of 3-SAT problem and show that the cnf is satisfiable iff we can solve the point-specific type determination and aliasing problem precisely on the program segment, thereby proving
Define a class `True` and a derived class `False`. Let `true` and `false` be objects of the two classes respectively. Each class has a function called `and()` and is virtual.

```cpp
True::and (True *arg) {
    return arg;
}

True::and (False *arg) {
    return false;
}
```

```cpp
True *v1, *v2, *v3, ... *vm, *nv_m;
```

```cpp
L1:
    if(-) { v1 = &true; nv_m = &false; }
    else { v1 = &false; nv1 = &true; }
    ...
    if(-) { v_m = &true; nv_m = &false; }
    else { v_m = &false; nv_m = &true; }
```

```cpp
L2:
    if(-) c_1=l_11; else if(-) c_1=l_12; else c_1=l_13;
    ...
    if(-) c_m=l_m1; else if(-) c_m=l_m2; else c_m=l_m3;
```

```cpp
L3:
```

Figure 5.2: Reducing 3-SAT to type determination and aliasing

that the problem is \(NP\)-hard. We represent each logic variable \(v_i\) as a program variable with the name \(v_i\) and its negation with an explicit program variable \(nv_i\). Also, each \(l_{jk}\) in the program segment corresponds to the literal \(l_{jk}\) from the cnf and represents a program variable \(v_i\) or \(nv_i\). Figure 5.2 shows the program segment.

A path between L1 and L2 in the program segment represents a truth assignment to the logic variables in the cnf. The code between L2 and L3 represents the cnf with each line as a conjunct and the compound `if` statement on each line represents the disjunction of literals. A program variable pointing to `true` implies that the corresponding logic variable in the cnf is assigned a `true` value.

Claim 1: \(\text{cnf}\) is satisfiable iff \(c_n\) may point to an object of class `True` at statement L3.

Claim 2: \(\text{cnf}\) is satisfiable iff \(*c_n\) may be aliased to `true` at statement L3.

Suppose the formula is satisfiable, then there exists a path from L1 to L2 such that in each row between L2 and L3 at least one \(l_{jk}\) points to `true`, defining an all-true path from L2 to L3. By construction, the variable \(c_n\) points to an object of class `True` at the end of that path. Equivalently, \(*c_n\) is aliased to `true` on the same path.
Suppose the formula is unsatisfiable. For every path from L1 to L2, there is at least one row between L2 and L3 where every \(l_{jk} \) points to \texttt{false}. This row will be responsible for the variable \(c_j \) through \(c_n \) to point to an object of class \texttt{False} from that row onwards. Thus at statement L3, \(c_n \) will never point to \texttt{True}. Again equivalently, *\(c_n \) will never be aliased to \texttt{true}. \(\square \)

Corollary 5.1.1 In the presence of multiple level pointers and virtual functions in C++, precise program-point-specific type determination and aliasing is NP-hard.

The theorem involves a subproblem of the problem mentioned in Corollary 5.1.1. \(\square \)

Corollary 5.1.2 In the presence of single level pointers and virtual functions in C++, the problem of determining precisely the set of pointer-type and alias pairs which hold on a consistent path is NP-hard.

Each alias and pointer-type pair from the set \{\(\langle *c_1, \texttt{true} \rangle, \ldots, \langle *c_n, \texttt{true} \rangle, \langle c_1 \Rightarrow \texttt{True} \rangle, \ldots, \langle c_n \Rightarrow \texttt{True} \rangle \} \) holds on a consistent path to L3 iff the cnf is satisfiable, leading to Corollary 5.1.2. \(\square \)

5.2 Problem Formulations

Precise Problem Formulation:

Conditional analysis \([LR91]\) involves analyzing execution flow in a function, assuming certain information holds at the entry of the function. We formalize this notion as follows:

- A balanced path to an ICFG node \(n \) from entry node \(e \) of the function containing node \(n \) is called *conditionally consistent* with respect to an assumption set \(S \) of alias and pointer-type pairs, if for every edge \(\langle \texttt{call,entry} \rangle \) on the path, where \texttt{call} represents a virtual call with receiver \(\texttt{rec} \), the following is true:

Given that all the alias and pointer-type pairs in \(S \) hold at \(e \), the execution defined by the subpath from \(e \) to \texttt{call} implies a pointer-type pair
\textit{<rec \Rightarrow C>} at \textit{call} such that the virtual function represented by \textit{entry} is invocable from \textit{call}.

We denote such a path by \(\mathcal{P}_{n, S} \).

- We define the \textit{conditional type determination problem} as deciding for an ICFG node \(n \), a pointer-type pair \(PT \), and a set of alias and pointer-type pairs \(S \), whether:

 there exists a conditionally consistent path with respect to \(S \) to node \(n \) on which \(PT \) holds, and there exists a consistent path from \(\rho \) to the entry node of function containing \(n \) on which every pair in \(S \) holds.

- Similarly, we define the \textit{conditional aliasing problem} as deciding for an ICFG node \(n \), an alias \(AP \), and a set of alias and pointer-type pairs \(S \), whether:

 there exists a conditionally consistent path with respect to \(S \) to node \(n \) on which \(AP \) holds, and there exists a consistent path from \(\rho \) to the entry node of function containing \(n \) on which every pair in \(S \) holds.

\textbf{Approximation Formulation:}

Note that the above formulation uses a set of alias and pointer-type pairs at \textit{entry} nodes. Corollary 5.1.2 on p. 54 states the intractability of the problem of finding such a set, rendering this formulation computationally intractable. We approximate the joint solution of these two related problems by considering an assumption set \(S' \) containing at most one alias or pointer-type pair from \(S \), chosen arbitrarily\(^{25}\). We use this pair

1. to approximate a conditionally consistent path to \(n \), and

2. in subsequent conditional aliasing and type determination calculation, as the only explicitly mentioned pair from some actual assumption set \(S \).

Note that using at most one pair from the assumption set leads to an approximation of consistent paths: any path which imposes a pair \(AAPT \) at \textit{entry} now qualifies as a

\(^{25}\)\(S' \) serves as an approximation of the call stack at the invocation, similar to the reaching alias abstraction in [LR92, LRZ93]. An abstraction determines how well the algorithm approximates consistent paths.
consistent path imposing set S at entry as long as $AAPT \in S$. This is a conservative, safe approximation since the actual path imposing S will be one of the approximate consistent paths. Note also that in the original formulation, a consistent path which imposed the set S at entry was "extended" to node n using a conditionally consistent path which required the same set S to be present at entry. Clearly the single-pair formulation is less constrained in that a consistent path which imposes a set S at entry can now be extended to node n using any conditionally consistent path which uses an assumption set S_i as long as $AAPT \in S_i$. This is also a safe approximation because the conditionally consistent path with set S will be one of the many extensions for which $S_i = S$.

Approximating consistent paths leads to an approximation in creating object names with dereferences. Our algorithm treats a dereference of an object name as valid at a program point, if the analysis can infer that the object name points to an object of appropriate type on some approximation of a consistent path. In other words, we dereference an object name at a program point n only if it can be shown to be non-NULL on some static path to n. Henceforth, we will not explicitly qualify dereferences as valid, as we never create object names with dereferences which are not valid according to the approximation formulation.

A pointer-type or alias pair at an ICFG node n may be created as a result of interaction between two distinct pairs appearing as a result of executing the same consistent path to a predecessor of n. For example, $<p, *u>$ and $<q \Rightarrow int>$, at the predecessor m of a pointer assignment "$n : p = q$", will interact to produce a pointer-type pair $<*u \Rightarrow int>$ at n only if these pairs hold at m as a result of executing the same consistent path. In the approximation formulation, the lack of precise information regarding the equality of two consistent paths necessitates a safe decision that the two pairs may possibly hold on the same consistent path to the predecessor, and hence may interact. Continuing the same reasoning, $<p, *u>$, $<q \Rightarrow int>$ and $<*u \Rightarrow int>$ are considered to hold on the same consistent path to n because they all result from the pairs present at the same predecessor, i.e., m.
We define two predicates, points-to-type26 and may-hold27, with the following interpretation reflecting the approximation formulation. points-to-type\((n, \text{AAPT}, <p \Rightarrow C>)\) is true if there exists a consistent path from \(\rho\) to the entry node of the procedure containing node \(n\), on which an alias or pointer-type pair \(\text{AAPT}\) (if any)28 holds \textbf{and} there exists a conditionally consistent path \(P_{n,\{\text{AAPT}\}}\) to \(n\) on which \(<p \Rightarrow C>\) holds. Similarly, may-hold\((n, \text{AAPT}, <a, b>)\) is true if there exists a consistent path from \(\rho\) to the entry node of the procedure containing node \(n\), on which \(\text{AAPT}\) (if any) holds \textbf{and} there exists a conditionally consistent path \(P_{n,\{\text{AAPT}\}}\) to \(n\) on which \(<a, b>\) holds.

For efficiency, we have designed our approximation algorithm so that work is performed only for true-valued may-hold and points-to-type predicates.

Aliasing information is readily computable from the may-hold solution as follows:

\[
\text{May-Alias}(n) = \left\{ <a, b> \mid \exists \text{AAPT}(\text{may-hold}(n, \text{AAPT}, <a, b>)) \right\}
\]

The type determination solution follows directly from the solution of points-to-type predicates:

\[
\text{May-Pointer-Type}(n) = \left\{ <p \Rightarrow C> \mid \exists \text{AAPT}(\text{points-to-type}(n, \text{AAPT}, <p \Rightarrow C>)) \right\}
\]

Clearly, the algorithm for May-Alias and May-Pointer-Type is linear in the size of the may-hold and points-to-type solutions respectively.

To perform aliasing and type determination calculation in the presence of object names with dereferences, we will need the following “dereference theorem”. Intuitively the theorem states that every object name with multiple dereferences is also aliased to another object name with fewer dereferences and a similar dereference sequence.

Theorem 5.2.1 Given an object name \(q\) with \(m \geq 1\) valid dereferences on a consistent path to program point \(n\), for each \((1 \leq i \leq m)\) there exists an object name \(p\) with \((m-i)\) valid dereferences such that \(q\) is aliased to \(p\) on the same path \textbf{and} the dereference sequence of \(q\) beyond its \(i^{th}\) dereference is identical to the dereference sequence of \(p\).

26In our previous papers [PR94a, PR94b], points-to-type was called points-to.

27This predicate is a generalization of may-hold for C introduced in Section 3.2.1 (p. 21).

28\text{AAPT} may be \(\emptyset\).
We prove the above theorem by induction on the number of dereferences in \(q \). All aliases and dereferences appearing in the proof are with respect to the same consistent path to node \(n \).

basis: Suppose \(m = 1 \).

- If \(q \) is of the form \(r \rightarrow f \), where \(r \) is a fixed-location and \(f \) contains no dereferences (but may contain multiple member accesses with the "." operator): By definition of valid dereference, \(r \) points to an object of some class \(T \) such that \(r \rightarrow f \) is a legal object name. Let \(u \) be the fixed-location name for that object. Clearly, \(r \rightarrow f \) is aliased to \(u.f \).

- If \(q \) is of the form \(*r \), where \(r \) is a fixed-location: By definition of valid dereference, \(r \) points to an object of primitive type; let the fixed-location name for the object be \(u \). In this case, \(*r \) is aliased to \(u \).

Note that \(u \), being a fixed-location, has 0 dereferences.

induction hypothesis: Suppose true for object names with \(< m \) dereferences.

induction step: Given an object name \(p \) with \(m \) dereferences, it must be of the form \(r \rightarrow f \) or \(*r \), where \(r \) is an object name with \(m - 1 \) valid dereferences and \(f \) contains no dereferences. We will only consider the former case, as the treatment for latter (i.e. \(*r \)) is similar. Using the induction hypothesis, for each \(i < m \), \(r \) is aliased to an object name \(p_i \) with \((m - 1 - i)\) valid dereferences and identical dereference sequence after \(i^{th} \) dereference. Since \(r \) is aliased to \(p_i \), \(r \rightarrow f \) is aliased to \(p_i \rightarrow f \). Finally, by definition of valid dereference for \(r \rightarrow f \), \(r \rightarrow f \) is aliased to \(u.f \) where \(u \) is a fixed-location name for an object of some class \(T \) such that \(u.f \) is a legal object name.

Corollary 5.2.1 An object name with a non-empty sequence of all valid dereferences on a consistent path is aliased to a fixed-location on that path.

For \(i = m \) in Theorem 5.2.1, we have the corollary. \(\square \)
5.3 Type Determination Algorithm for Single Level Pointers

As we mentioned in Section 5.1.2, type determination and aliasing are separable when the C++ programs are restricted to the use of single level pointers. Since a major motivation of this research is virtual function resolution which is closely related to type determination, we exploit this separability to only describe the type determination aspect of the combined problem in full detail. In Section 5.4, we will present the combined algorithm where we will concentrate on the interaction between types and aliases.

A Running Example: Before discussing the algorithm, we examine a program segment in Figure 5.3. We will use it in Section 5.3.1 to illustrate the significance of type determination in practical issues of run-time efficiency and benefits to other optimizations. Throughout Section 5.3.2, we will use it as an illustration for our algorithm description and in Section 5.3.3, to illustrate the sources of approximation for the algorithm. We assume that the boolean conditions in if statements are side effect free and hence inconsequential to the analysis.

5.3.1 Practical Issues

At node n_{13} in Figure 5.3, the pointer q is made to point to an object of class $Base$, and then immediately used at node n_{14} as the receiver for a virtual function invocation. Under these circumstances $Base :: foo()$ will be invoked on all executions notwithstanding the virtual nature of the invocation. Since the virtuality of $Base :: foo()$ is not utilized, the invocation can be compiled as a function call, thereby reducing the run time overhead of virtual invocation.

Limiting the scope of invocation to $Base :: foo()$ and eliminating $Derived :: foo()$ from consideration may benefit other analyses. The assignments at nodes n_{1} and n_{3}, and printing $hello world$ at n_{2} will not appear as possible side effects of the invocation at node n_{14}. As another significant implication, our algorithm will be able to determine that n_{15} is a call of $Base :: bar()$ and never $Derived :: bar()$, because the receiver a may only point to an object of type $Base$. Therefore, call site n_{15} can be considered
Figure 5.3: Example for type determination algorithm
non-virtual. Given the potential disparity in side effects of virtual functions which share
the same name, type determination can significantly improve the precision of analysis.

Resolving a virtual function invocation to a unique function call may create possibilities for inlining, resulting in elimination of function call overhead. Inlining a function
call can also provide opportunities for various intraprocedural optimizations.

A transformation from virtual invocation to function call is sometimes possible
without complete resolution of the receiver type. For example at node n16, the receiver
p may point to an object of class Base or Derived. Since the receiver type is not
unique, a naive approach may result in retaining the invocation as virtual. However,
since class Derived inherits the function baz() from class Base without redefining it,
n16 may still be safely compiled as a function call to Base : baz(). In general, even if
the receiver at the virtual invocation site does not point to a unique class, but all the
receiver types utilize the same virtual function, the virtual invocation may be compiled
as a function call.

For architectures which use deep pipelining and speculative execution, the issue
of accurate control flow prediction assumes significant importance. Using static type
determination to replace virtual invocations with function calls, when the target func-
tion is known at compile time, would yield benefits comparable to those obtained by
profile-based prediction for C++ [CG94].

5.3.2 Algorithm Description

The algorithm to perform type determination for C++ programs with single level point-
ers is formally stated in Appendix B.1. In the remainder of this section, we present an
equivalent approach, more amenable to understanding and implementation.

To determine the type of an object to which a pointer variable may point at a given
program point, we perform a fixed point computation of the data flow equations descri-
bining the semantic effects of C++ statements. Since type determination is separable from
aliasing in this scenario, the equations only involve the points-to-type predicates. We
present an algorithm which is both safe and approximate for C++ programs with only
single level pointers: if there exists a path to node \(n \) on which \(<ptr \Rightarrow C> \) holds during some execution, our algorithm will report a true-valued predicate \(\text{points-to-type}(n, APT, <ptr \Rightarrow C>) \) for some \(APT \), guaranteeing the safety of calculation. The assumption \(APT \) is either \(\emptyset \) or a pointer-type pair, and never involves an alias, reflecting the independence of type determination from aliasing.

The calculation of a fixed point for \(\text{points-to-type} \) is tantamount to the solution of a monotone data flow framework defined on a lattice whose elements are sets of (assumption, pointer-type pair), as described in Appendix B.1. We use a worklist for this calculation. Whenever a predicate \(\text{points-to-type}(n, APT, PT) \) becomes true for the first time, it is placed on the worklist. Once marked true, a predicate stays true, ensuring monotonicity of calculation. A predicate goes on the worklist at most once, guaranteeing the termination of our algorithm. We refer to this action as \text{make-true} and denote it in the algorithm by \(\text{make-true}(\text{points-to-type}(n, APT, PT)) \).

We describe the algorithm in three phases: (i) we initialize the information, (ii) during the introduction phase we annotate each node appropriately with the information obtained locally at the node itself, and (iii) we propagate the information throughout the ICFG until stabilization. All \(\text{points-to-type} \) predicates are assumed false initially. For efficiency, we have designed the algorithm in such a way that work is performed only for \(\text{points-to-type}(n, APT, PT) \) which become true.

Initialization and introduction phases

Conceptually, we start with no information at any of the ICFG nodes by initializing each possible \(\text{points-to-type} \) predicate to false. The time complexity of the initialization of the entire \(\text{points-to-type} \) predicate may appear as proportional to the number of predicates possible, but we have a constant time initialization by following a lazy approach [LR92]. We also initialize the worklist to empty.

The first entries in the worklist come from the introduction phase during which we \text{make-true} certain predicates at a node by looking at the local information available in the node itself. Figure 5.4 lists the nodes examined in the introduction phase and their associated actions. Note that in item 3 we restrict ourselves to non-virtual function
for each node \(n \) in the ICFG

If \(n \) is

1. \(n : p = \text{new T} \)
 \[
 \text{make-true}(\text{points-to-type}(n, \emptyset, <p \Rightarrow T>))
 \]

2. \(n : p = \& r \)
 \[
 \text{make-true}(\text{points-to-type}(n, \emptyset, <p \Rightarrow \text{type}(r)>))
 \]
 where \(\text{type}(r) \) returns the type of object name \(r \).

3. \(n : \text{foo(param} \, -1, \ldots, \text{param}_k) \)
 \[
 \text{make-true}(\text{points-to-type}(\text{entry_foo}, <p \Rightarrow \text{type}(r)>, <p \Rightarrow \text{type}(r)>))
 \]
 for each \(\text{param}_i \) of the form \(\& r \) with pointer variable \(p \) as the corresponding formal, and call is non-virtual.

 \[
 \text{make-true}(\text{points-to-type}(\text{entry_foo}, <p \Rightarrow T>, <p \Rightarrow T>))
 \]
 for each \(\text{param}_i \) of the form \(\text{new T} \) with pointer variable \(p \) as the corresponding formal, and call is non-virtual.

Note: \(p \) and \(r \) represent fixed-locations.

Figure 5.4: Introduction phase

calls, because without the knowledge of the receiver type, we cannot determine which function is invoked from a virtual call site. We handle virtual function calls during the propagation phase.

Using the program segment in Figure 5.3 (p. 60), we list the following examples of type introduction. Using item 1 we have

\[
\text{make-true}(\text{points-to-type}(n4, \emptyset, <p \Rightarrow Base>))
\]
reflecting the fact that \(<p \Rightarrow Base> \) holds on any balanced path from \(\text{entry}_{\text{main}} \) to \(n4 \) without assuming any information at \(\text{entry}_{\text{main}} \). Similarly, using item 1 we also have

\[
\text{make-true}(\text{points-to-type}(n7, \emptyset, <p \Rightarrow Derived>))
\]

At node \(n9 \), using item 2 and the fact that \(r \) is an object of class \(Derived \), we have

\[
\text{make-true}(\text{points-to-type}(n9, \emptyset, <s \Rightarrow Derived>))
\]

Propagation phase

During the propagation phase, the worklist entries are processed one at a time. Processing a worklist entry implies propagating the effects of the pair \(PT \) holding at node
while worklist is not empty
 remove \((m, APT, <ptr \Rightarrow C>)\) from worklist
 if \(m\) is a call node
 type-implies-type-from-call \((m, APT, <ptr \Rightarrow C>)\)
 else if \(m\) is an exit node
 type-implies-type-from-exit \((m, APT, <ptr \Rightarrow C>)\)
 else
 type-implies-type-through-other \((m, APT, <ptr \Rightarrow C>)\)

Figure 5.5: Propagation phase

\(m\) given the assumption \(APT\), to all the successors of the node \(m\), and then removing
the entry from the worklist. New entries which become \textit{true} as a result of this action
are placed on the worklist. The computation reaches a fixed point when the worklist
becomes empty. We describe this phase as a case analysis on the kind of logical succes-
sor of each worklist entry. Figure 5.5 illustrates the propagation phase at a high level
with the help of three propagation functions: type-implies-type-through-other,
type-implies-type-from-call and type-implies-type-from-exit. In the following
discussion, we explicate the high level view by describing each propagation function.

type-implies-type-through-other\((m, APT, <ptr \Rightarrow C>)\): This function captures
the intraprocedural aspects of type propagation as described in the following cases.
case 1 and case 3 are mutually exclusive, but either may appear with case 2.

case 1: If successor is an assignment to \(ptr\), \("n : ptr = \ldots\", the given points-to-type
does not propagate through \(n\), as the value of \(ptr\) is updated as a result of this
assignment.

case 2: If successor is an assignment of \(ptr\) to a pointer variable \(aptr\), with or with-
out casting (within inheritance hierarchy): \("n : aptr = ptr\" or \("n : aptr =\n(E \ast) \ ptr\"

 \textbf{make-true}(points-to-type\((n, APT, <aptr \Rightarrow C>)\)).

Type casting appears in the latter node so that the assignment is type-correct,
but it is unimportant to our analysis as the semantics of a pointer-type pair
dictate that we record the type of object to which the pointer actually points, and not the type of object to which it is declared to point. Since ptr points to an object with type C prior to assignment n, aptr points to an object with type C at n, and not to an object with type E.

case 3: If successor node n does not define the pointer variable ptr, then the type of ptr is preserved: **make-true(points-to-type(n, APT, <ptr ⇒ C>)).** This is a case of simple propagation of information without any change. In the example for type introduction, we inferred points-to-type(n4, {}, <p ⇒ Base>) and points-to-type(n7, {}, <p ⇒ Derived>). Propagating this information through the type preserving successors up to node n9, we **make-true** the following predicates.

\[
\text{points-to-type}(n9, {}, <p ⇒ Base>) \quad \text{and} \quad \text{points-to-type}(n9, {}, <p ⇒ Derived>)
\]

Using further applications of **case 3**, the information at n9 propagates to its successors with **make-true** for each of the following.

\[
\begin{align*}
\text{points-to-type}(\text{call}_{n10}, {}, <p ⇒ Base>) & \quad \text{points-to-type}(\text{call}_{n11}, {}, <p ⇒ Base>) \\
\text{points-to-type}(\text{call}_{n10}, {}, <p ⇒ Derived>) & \quad \text{points-to-type}(\text{call}_{n11}, {}, <p ⇒ Derived>) \\
\text{points-to-type}(\text{call}_{n10}, {}, <s ⇒ Derived>) & \quad \text{points-to-type}(\text{call}_{n11}, {}, <s ⇒ Derived>)
\end{align*}
\]

type-implies-type-from-call (call, APT, <ptr ⇒ C>): This function is responsible for propagating a pointer-type pair at the call site to appropriate entry and return nodes. We consider the following cases.

case 1: Propagation is simpler when the corresponding entry is readily known, typically when call represents a non-virtual function invocation. As we already saw, points-to-type(call_{n10}, {}, <s ⇒ Derived>) is true. Since s is visible in the called function Derived :: bar(), we **make-true**

\[
\text{points-to-type(entry}_{\text{Derived::bar}}, {}, <s ⇒ Derived>, <s ⇒ Derived>)
\]

We also associate the type of object pointed to by each actual parameter with the corresponding formal parameter. For example, at the call site n10, s is the first actual parameter and corresponds to the formal this of Derived :: bar(). Since points-to-type(call_{n10}, {}, <s ⇒ Derived>) is true, we **make-true**

\[
\text{points-to-type(entry}_{\text{Derived::bar}}, {}, <\text{this ⇒ Derived}>, <\text{this ⇒ Derived}>)
\]
If \(ptr \) is not visible in the called function, the type pointed to by \(ptr \) cannot change\(^{29} \). In this case we propagate the predicate \(\text{points-to-type}(\text{call}, \text{APT}, <ptr \Rightarrow C>) \) directly to the corresponding \textit{return} node as

\[
\text{make-true}(\text{points-to-type}(\text{return}, \text{APT}, <ptr \Rightarrow C>)).
\]

case 2: If the call is virtual and the call site is: "m : rec->fun ()".

Irrespective of which functions may be invoked by this virtual call, if the pointer variable \(pptr \) is local to the calling function, the predicate on the worklist propagates directly to the \textit{return} node with

\[
\text{make-true}(\text{points-to-type}(\text{return}, \text{APT}, <ptr \Rightarrow C>))
\]

The entry nodes to which the effects of the given worklist entry have to be propagated depend on the type(s) of objects the receiver \(rec \) may point to at the call site. Two circumstances are possible: (i) some typing information is already available at the virtual call site before resolving a function to be invocable (**case 2.1**), and (ii) a function is resolved to be invocable before all the typing information to be propagated has reached the virtual call site (**case 2.2**).

case 2.1: \(pptr == rec \) (i.e. \(pptr \) is the same variable as the receiver \(rec \))

1. The effect of this \(\text{points-to-type} \) needs to be propagated only to the function invocable when the receiver points to an object of class \(C \). In the example, \(\text{points-to-type}(\text{call}_{n11}, \emptyset, <p \Rightarrow \text{Base}>) \) propagates to \textit{entry}_{\text{Base::foo}} but not to \textit{entry}_{\text{Derived::foo}}, with

\[
\text{make-true}(\text{points-to-type}(\text{entry}_{\text{Base::foo}}, <p \Rightarrow \text{Base}>, <p \Rightarrow \text{Base}>) \text{ and } \text{make-true}(\text{points-to-type}(\text{entry}_{\text{Base::foo}}, <\text{this} \Rightarrow \text{Base}>, <\text{this} \Rightarrow \text{Base}>)).
\]

On the other hand, \(\text{points-to-type}(\text{call}_{n11}, \emptyset, <p \Rightarrow \text{Derived}>) \) propagates to \textit{entry}_{\text{Derived::foo}} (with \textbf{make-true} of following predicates),

\[
\text{points-to-type}(\text{entry}_{\text{Derived::foo}}, <p \Rightarrow \text{Derived}>, <p \Rightarrow \text{Derived}>) \text{ and } \text{points-to-type}(\text{entry}_{\text{Derived::foo}}, <\text{this} \Rightarrow \text{Derived}>, <\text{this} \Rightarrow \text{Derived}>)
\]

but not to \textit{entry}_{\text{Base::foo}}.

\(^{29}\text{This is true because we only have single level pointers.}\)
2. The effects of other accumulated information at the call site are propagated through the appropriate function(s) as follows:

a) If the function call involves passing of an object address &r as an actual to a pointer formal f: **make-true(points-to-type(entry, <f ⇒ type(r)>, <f ⇒ type(r)>)).** Note that this case cannot be handled in the introduction phase, as the invocability of this function from node m would not be known then.

b) For each points-to-type(call, APT1, <ptr' ⇒ E>) where ptr' ≠ rec:

 We determine the corresponding entry and perform actions as in case 1. In the example, during **type-implies-type-from-call(call_n11, 0, <p ⇒ Base>)** involving the receiver p, we propagate points-to-type(call_n11, 0, <b ⇒ Base>) to entryBase::foo with

 make-true(points-to-type(entryBase::foo, <b ⇒ Base>, <b ⇒ Base>))

case 2.2: ptr and rec are distinct variables:

Suppose the points-to-type information currently available about the receiver rec at the given call node is:

- points-to-type(call, APT1, <rec ⇒ C1>) and
- points-to-type(call, APT2, <rec ⇒ C2>)

According to this information, the receiver rec may point to an object of type C1 or C2 at the call site depending on the execution path. So the virtual function call rec → fun() may lead to the invocation of two distinct virtual functions with name fun. Hence the effects of the given worklist entry need to be propagated to the entry nodes of each of these invocable functions. This is done in the same fashion as for case 1, considering one entry node at a time. In the example, suppose points-to-type(call_n11, 0, <s ⇒ Derived>) is the candidate for propagation at call_n11. We have also seen that points-to-type(call_n11, 0, <p ⇒ Base>) and points-to-type(call_n11, 0, <p ⇒ Derived>) are true at call_n11 with receiver p. Thus there are two distinct functions Base :: foo() and Derived :: foo() which may be invoked at call_n11. As a result, we propagate points-to-type(call_n11, 0,
Handling memoization: A significant property of our implementation of the conditional approach is that we analyze a function only once under each reaching assumption, even if the same assumption may be imposed multiple times from different call sites. This memoization necessitates the following additional action by type-implies-type-from-call: Suppose points-to-type(call, APT1, APT2) results in points-to-type(entry, APT3, APT3) being propagated to some entry node using any of the various cases in type-implies-type-from-call, but that the latter is already true there. It is possible that the called function has already been analyzed for assumption APT3 and there exists some points-to-type(exit, APT3, PT) at the exit of the function. When type-implies-type-from-exit (described below) propagated its effects to the return nodes known at that time, it did not include the return of current call. In such cases, type-implies-type-from-call utilizes points-to-type(exit, APT3, PT) to \texttt{make-true(points-to-type(return, APT1, PT))}.

type-implies-type-from-exit (exit, APT, <ptr \Rightarrow C>): Lastly we describe how the type information propagates from exit node to the corresponding return node(s). Let exit be the exit node of a function \texttt{fun()} and the return nodes corresponding to exit be \(r_1, r_2, \ldots, r_k \) at the instant of processing this worklist entry. New return nodes may be added later, when the function is determined to be invocable from other virtual function call sites. We do not consider them at this time. As explained earlier, when a new virtual function is determined to be invocable from a call site we propagate the effects of that call using case 2.1 of type-implies-type-from-call. Let the call nodes corresponding to these return nodes be \(c_1, c_2, \ldots, c_k \). We do the following for each return node \(r_i \):

If \(ptr \) is not visible in the function containing the return node \(r_i \), we take no propagation action. Since the variable itself goes out of scope, we do not need to know its
type. However if \(\text{ptr} \) is visible in the function containing the return node \(r_i \), we have the following cases:

case 1: If \(\text{APT} \) is non-\(\emptyset \), this implies that \(\text{APT} \) holds at entry in order that \(\text{ptr} \) points to an object of class \(C \) at exit. Each call node \(c_i \) responsible for imposing \(\text{APT} \) at entry in turn leads to \(\langle \text{ptr} \Rightarrow C \rangle \) holding at its corresponding return node \(r_i \).

If \(\text{APT} \) is imposed at entry of the invoked function without requiring any points-to-type predicate at the call node \(c_i \) (i.e. \(\text{points-to-type}(\text{entry}, \text{APT}, \text{APT}) \) was made \(\text{true} \) during introduction phase), we simply propagate \(\langle \text{ptr} \Rightarrow C \rangle \) to \(r_i \).

In this case: \(\text{make-true}((\text{points-to-type}(r_i, \emptyset, \langle \text{ptr} \Rightarrow C \rangle)) \). On the other hand, suppose it took \(\text{points-to-type}(c_i, \text{APT2}, PT1) \) to impose \(\text{APT} \) at the entry; then we have: \(\text{make-true}((\text{points-to-type}(r_i, \text{APT2}, \langle \text{ptr} \Rightarrow C \rangle)) \).

In the example, when \(\text{points-to-type}(\text{exitBase::foo}, \langle p \Rightarrow \text{Base} \rangle, \langle p \Rightarrow \text{Base} \rangle) \) is propagated, there are two possible return nodes viz. \(\text{return}_n_{11} \) and \(\text{return}_n_{14} \). Since it takes \(\text{points-to-type}(\text{call}_n_{11}, \emptyset, \langle p \Rightarrow \text{Base} \rangle) \) to impose \(\langle p \Rightarrow \text{Base} \rangle \) at \(\text{entryBase::foo} \), using the information thus available at \(\text{call}_n_{11} \) and \(\text{exitBase::foo} \):

\[
\text{make-true}((\text{points-to-type}(\text{return}_n_{11}, \emptyset, \langle p \Rightarrow \text{Base} \rangle))
\]

As there is no assignment to \(p \) on any path from \(\text{call}_n_{11} \) to \(\text{call}_n_{14} \), we have \(\text{points-to-type}(\text{call}_n_{14}, \emptyset, \langle p \Rightarrow \text{Base} \rangle) \). This predicate also imposes \(\langle p \Rightarrow \text{Base} \rangle \) at \(\text{entryBase::foo} \). While propagating \(\text{points-to-type}(\text{exitBase::foo}, \langle p \Rightarrow \text{Base} \rangle, \langle p \Rightarrow \text{Base} \rangle) \), we use this information available at \(\text{call}_n_{14} \) to

\[
\text{make-true}((\text{points-to-type}(\text{return}_n_{14}, \emptyset, \langle p \Rightarrow \text{Base} \rangle))
\]

case 2: If \(\text{APT} = \emptyset \), implying that \(\langle \text{ptr} \Rightarrow C \rangle \) holds at exit without any assumption at entry of the function, we directly propagate \(\langle \text{ptr} \Rightarrow C \rangle \) to \(r_i \) using \(\text{make-true}((\text{points-to-type}(r_i, \emptyset, \langle \text{ptr} \Rightarrow C \rangle)) \).

Improving precision at return nodes for virtual calls: In all the above cases, there is an opportunity for improving the precision, although we have not incorporated it in our algorithm or the implementation. Suppose a function \(E :: \text{foo}() \) is invocable
from a virtual call site with receiver l due to the presence of points-to-type(c_i, APT3, <l ⇒ E>). Suppose further that a predicate is being propagated (using case 1 or case 2) from exit_E::foo to the return node r_i as points-to-type(r_i, ∅, <p ⇒ C>). Since APT3 is indirectly responsible for <p ⇒ C> to hold at r_i by making E::foo() invocable from c_i, we replace the ∅ assumption with APT3 to obtain a more precise points-to-type(r_i, APT3, <p ⇒ C>).

5.3.3 Sources of Approximation

We illustrate the sources of approximation in our type determination algorithm for single level pointers using two examples from Figure 5.3 (p. 60).

1. At the virtual call node call_{n11}, we have the following predicates:

 \[\text{points-to-type}(\text{call}_{n11}, ∅, <p ⇒ \text{Derived}>)\] and
 \[\text{points-to-type}(\text{call}_{n11}, ∅, <b ⇒ \text{Base}>)\]

 The two predicates are true on two distinct consistent paths through the assignment nodes n7 and n6 respectively. However, in the absence of complete path specific information, at call_{n11} we must conservatively assume that the predicates may be true on the same path. The former predicate makes the function Derived :: foo() invocable from call_{n11}, and we imprecisely propagate the latter predicate to entry_{Derived::foo} by

 \[\text{make-true}(\text{points-to-type}(\text{entry}_{\text{Derived::foo}}, <b ⇒ \text{Base}>, <b ⇒ \text{Base}>)\]

2. The following predicates are true on the same path to the virtual call node call_{n11}:

 \[\text{points-to-type}(\text{call}_{n11}, ∅, <p ⇒ \text{Base}>)\] and
 \[\text{points-to-type}(\text{call}_{n11}, ∅, <b ⇒ \text{Base}>)\]

 Thus we propagate the latter predicate to Base :: foo() with

 \[\text{make-true}(\text{points-to-type}(\text{entry}_{\text{Base::foo}}, <b ⇒ \text{Base}>, <b ⇒ \text{Base}>)\]

 As a result of further propagation through the function, we have

 \[\text{make-true}(\text{points-to-type}(\text{exit}_{\text{Base::foo}}, <b ⇒ \text{Base}>, <b ⇒ \text{Base}>)\]
When we propagate this predicate to appropriate return nodes, the presence of

\[\text{points-to-type}(\text{call}_{n12}, \emptyset, <q \Rightarrow \text{Base}>) \]
\[\text{points-to-type}(\text{call}_{n12}, \emptyset, <b \Rightarrow \text{Base}>) \]

at \(\text{call}_{n12} \) implies \(\text{make-true}(\text{points-to-type}(\text{return}_{n12}, \emptyset, <b \Rightarrow \text{Base}>) \). This is a conservative decision since the above predicates are true on distinct paths to \(\text{call}_{n12} \), so there is no consistent path to \(\text{return}_{n12} \) on which \(<b \Rightarrow \text{Base} > \) holds.

In general, the algorithm is rendered imprecise on two counts: 1) while propagating a predicate from a virtual call to the entry of a function, and 2) while propagating a predicate from exit of a function to an associated return node of a virtual call site. In both cases, the imprecision is the outcome of our safe decision to assume that a single consistent path may have made two predicates true at the virtual call site.

5.4 Type Determination and Aliasing Algorithm for Multiple Level Pointers

Having described the type determination algorithm for single level pointer dereferencing in Section 5.3, we now concentrate on handling the interaction between types and aliases in the presence of multiple level pointers. When the calculation only involves types, we proceed as in Section 5.3. When the calculation only involves aliases without using or affecting any type information, the transfer functions are similar to that in [LR92, Lan92a].

5.4.1 Algorithm Overview

Our combined algorithm for aliasing and type determination is a worklist based, fixed point iteration method which is both safe and approximate: If there exists an execution path to ICFG node \(n \) on which a pointer \(p \) points to an object of type \(C \), our algorithm will report \(\text{points-to-type}(n, \text{AAPT}, <p \Rightarrow C>) \) for some entry assumption \(\text{AAPT} \). Similarly, if there exists an execution path to node \(n \) on which \(<a, b> \) holds, our algorithm will report \(\text{may-hold}(n, \text{AAPT}, <a, b>) \) for some \(\text{AAPT} \).
// initialization of information (Section 5.4.3)
lazily set all possible predicates to false;
set worklist to empty;
// introduction of aliases and pointer-type pairs (Section 5.4.3)

intra-alias-type-introduction(); // (Figure 5.8)
for each non-virtual call to entry
 inter-alias-type-introduction(call, entry);
// propagation of aliases and pointer-type pairs
while worklist is not empty
 remove (m, AAPT, APT) from worklist
 if m is a call node // (Section 5.4.5)
 if APT is an alias pair
 alias-implies-from-call(m, AAPT, APT);
 if APT is a pointer-type pair
 type-implies-from-call(m, AAPT, APT);
 elseif m is an exit node // (Section 5.4.5)
 if APT is an alias pair
 alias-implies-alias-from-exit(m, AAPT, APT);
 if APT is a pointer-type pair
 type-implies-type-from-exit(m, AAPT, APT);
 else // intraprocedural propagation (Section 5.4.4)
 for each n \in successor (m)
 if n is a pointer assignment // (Table 5.1)
 if APT is an alias pair
 alias-implies-alias-thru-assign(n, m, AAPT, APT);
 alias-implies-type-thru-assign(n, m, AAPT, APT);
 if APT is a pointer-type pair
 type-implies-type-thru-assign(n, m, AAPT, APT);
 type-implies-alias-thru-assign(n, m, AAPT, APT);
 else // propagate directly through n
 if APT is an alias pair
 make-true(may-hold(n, AAPT, APT))
 if APT is a pointer-type pair
 make-true(points-to-type(n, AAPT, APT))

Figure 5.6: A high level description of the algorithm
A high level description of our algorithm appears in Figure 5.6. The algorithm has three main phases which are discussed using examples in Sections 5.4.3–5.4.5. Firstly, the predicates points-to-type and may-hold and the worklist are initialized (see Section 5.4.3). Secondly, we introduce certain true-valued predicates at pointer assignments (using intra-alias-type-introduction) and at parameter binding sites (using inter-alias-type-introduction) (see Section 5.4.3). These initial predicates are placed on the worklist. Thirdly, the algorithm performs the usual fixed point iteration, until the worklist is empty. That is, a predicate is removed from the worklist and propagated through successor nodes using appropriate functions determined by the node type. This propagation of information occurs in the while loop of Figure 5.6. Intraprocedural propagation is explained in Section 5.4.4; the interprocedural propagation functions (e.g., alias-type-propagation-from-call) are explained in Section 5.4.5. The propagation functions make additional predicates true and put them on the worklist. In this section, we use make-true on both points-to-type and may-hold to set each one to true when appropriate and add it to the worklist exactly once.

Our algorithm has a high-level structure that corresponds to a lazy evaluation of the interactions between points-to-type and may-hold predicates. Several of the auxiliary functions used to explain the algorithm may appear to be redundant. In fact, some of them are duals of the others in the following sense: more than one predicate may be necessary at a program point to imply a consequence at a successor. These predicates are propagated to the program point in indeterminate order by our worklist algorithm. The propagation phase must deal with the situation where any one of them is the last one propagated to that program point and use it with the other predicates already propagated to imply the consequence. The cases described in this section include this duality of order of processing both during the intraprocedural (Section 5.4.4) and interprocedural (Section 5.4.5) propagations.

Our calculation of a fixed point for points-to-type and may-hold is tantamount to the solution of a monotone data flow framework, defined over the ICFG, with a lattice whose elements are sets of (assumption1, assumption2, alias/pointer-type) tuples (See Appendix B.2).
5.4.2 Calculation of Approximate Assumption Sets

In order to perform interprocedural analysis in the presence of recursive functions and local variables, we need the concept of non-visible object names, similar to that described in [Lan92a]. A called function can both create or destroy an alias in the calling function containing an object name not visible in the called function. A called function can also create, but not destroy, a pointer-type pair in the calling function containing an object name not visible in the called function. The only way to destroy an incoming pointer-type pair is by re-assigning the pointer directly, not through an alias (remember, aliasing is a may problem). Obviously the called function cannot directly assign to a non-visible object name. We illustrate the above circumstances using Figure 5.7.

Alias \(<*p,*q>\) reaches the function \(foo\) via \(call_{c1}\). Although \(*q\) is not visible in \(foo\), the alias is destroyed in \(foo\) by the re-assignment of \(p\) at node \(n6\). Although \(t\) is not visible in function \(foo\), it is aliased to \(*f3\) in \(foo\) via call site \(call_{c1}\). Node \(n7\) creates an
alias \langle *t, i \rangle through an assignment to \emph{f3}. The same assignment is also responsible for creating a pointer-type \langle \text{t} \Rightarrow \text{int} \rangle. In order to represent non-visible object names, we create a special fixed-location name for each type \emph{T} in the program, we call it \emph{nvT}. In the called function, each occurrence a non-visible object name with a (possibly empty) dereference sequence applied to a fixed-location of type \emph{T} is replaced by an object name with the identical dereference sequence applied to \emph{nvT}. In Figure 5.7, we would represent *\emph{q} as *\emph{nv} in function \emph{foo}.

Before providing algorithm details, we describe some auxiliary functions used to capture type and aliasing effects on entry of an invoked function from the types and aliases present at the invocation site. These functions calculate the approximate assumption sets with cardinality of at most one, described earlier. The first two functions, \texttt{bind0} and \texttt{type-bind0}, are used during the introduction phase (Section 5.4.3) and the rest during interprocedural propagation (Section 5.4.5). In these descriptions, \-emph{call} and \emph{entry} represent ICFG nodes whereas \emph{alias} and \emph{pointer-type} are specific pairs.

\texttt{bind0}(\texttt{call}, \texttt{entry}) : This function calculates those aliasing effects from \emph{call} to \emph{entry} requiring no information from the predecessor(s) of \emph{call}. In other words, only the information local to \texttt{call} is utilized. For example, if \&\emph{a} is visible in the called function and is passed as an actual to the formal \emph{f1}, \langle *\emph{f}, \emph{a} \rangle is created at \emph{entry} regardless of any aliases \emph{a} may have at \texttt{call}. Also, \&\emph{a} and \&\emph{a}.\emph{mem} passed to the formals \emph{f1} and \emph{f2} respectively cause the creation of \langle *\emph{f1}→\emph{mem}, *\emph{f2} \rangle at \emph{entry}. In this example, \texttt{bind0}(\texttt{call}, \texttt{entry}) =

\[
\{ \langle *\emph{f1}, \emph{a} \rangle, \langle \emph{a}.\emph{mem}, *\emph{f2} \rangle, \langle \emph{f1}→\emph{mem}, *\emph{f2} \rangle, \langle \emph{f1}→\emph{mem}, \emph{a}.\emph{mem} \rangle \}
\]

If \emph{a} is non-visible, then \texttt{bind0}(\texttt{call}, \texttt{entry}) =

\[
\{ \langle *\emph{f1}, \emph{nv} \rangle, \langle \emph{nv}.\emph{mem}, *\emph{f2} \rangle, \langle \emph{f1}→\emph{mem}, *\emph{f2} \rangle, \langle \emph{f1}→\emph{mem}, \emph{nv}.\emph{mem} \rangle \}
\]

Note : A pointer \emph{a} passed to formal \emph{f} does not create an alias \langle *\emph{a}, *\emph{f} \rangle because it would require information from the predecessor(s) of \texttt{call} regarding the type of object.

\footnote{Although the type information is important for the algorithm, for notational convenience we simply use \emph{nv}, and let the type be implicit.}
pointed to by \(a\). This case is handled by Rule 2 of \textbf{alias-bind} which we will describe shortly.

\textbf{type-bind0} (\texttt{call}, \texttt{entry}) : This function calculates those \textit{type effects} from \texttt{call} to \texttt{entry} requiring no information from the predecessor(s) of \texttt{call}. Like \texttt{bind0}, only those cases are relevant where an address of an object name is passed as actual. For example, suppose \(a\) is an object of class \texttt{B}, \(a\) is visible in the called function, and \&\(a\) is passed as actual to the formal \(f\). Then \(<f \Rightarrow B> \in \texttt{type-bind0} (\texttt{call}, \texttt{entry})\).

We examine the details of the remaining functions with respect to the example in Figure 5.7.

\textbf{bind} (\texttt{call}, \texttt{entry}, \texttt{alias}) : This function represents the propagation of \texttt{alias} reaching the \texttt{call} to the corresponding \texttt{entry}. Depending on the actual-formal associations, \texttt{alias} may manifest itself at \texttt{entry} and/or may give rise to additional alias pairs. In Figure 5.7, \(<*p, *q>\) is created at \texttt{n2} and reaches \texttt{callc1}. The aliases created at \texttt{entryC::foo} by this pair fall into the following three categories:

1. aliases between dereferences of formals: Since the dereferences of two actuals are aliased at \texttt{callc1}, the dereferences of corresponding formals are aliased at \texttt{entryC::foo}.

2. aliases between an alias of a dereference of an actual and an appropriate dereference of the corresponding formal: Since \(*p\) is aliased to \(*q\) at \texttt{callc1}, \(*f1\) is aliased to \(*nv\) at \texttt{entryC::foo}. Similarly, \(*f2\) is aliased to \(*p\) at \texttt{entryC::foo}.

3. \texttt{alias} itself propagating to \texttt{entry}: \(<*p, *nv>\) holds at \texttt{entryC::foo}.

For this example,

\[
\text{bind}\left(\texttt{callc1}, \texttt{entryC::foo}, <*p, *q>\right) = \{<*f1, *f2>, <*f1, *nv>, <*f2, *p>, <*p, *nv>\}
\]

\textbf{alias-bind} (\texttt{call}, \texttt{entry}, \texttt{pointer-type}) : This function calculates the \textit{alias effects} of \texttt{pointer-type} present at \texttt{call} which fall into the following two categories:
1. aliases between appropriate dereferences of two formals: At \textit{call}_2, actual \(r \) is passed to formal \(\text{bar}1 \) and \(r \rightarrow d1 \) is passed to formal \(\text{bar}2 \). Given that \textit{pointer-type} is \(\langle r \rightarrow d1 \Rightarrow B \rangle \), the appropriate dereferences of \(\text{bar}1 \) and \(\text{bar}2 \) form aliases comprising the members of class \(B \). Thus

\[
\{\langle * \text{bar}1 \rightarrow d1, * \text{bar}2 \rangle, \langle \text{bar}1 \rightarrow d1 \rightarrow b1, \text{bar}2 \rightarrow b1 \rangle\}
\]

forms a subset of \textit{alias-bind}(\textit{call}_2, \textit{entry}_{C:\text{bar}}, \langle r \rightarrow d1 \Rightarrow B \rangle).

2. aliases between the dereference of an actual and the corresponding formal: Given that \textit{pointer-type} is \(\langle r \rightarrow d1 \Rightarrow B \rangle \) and \(r \rightarrow d1 \) is passed to formal \(\text{bar}2 \) at \textit{call}_2,

\[
\{\langle * \text{nv} \rightarrow d1, * \text{bar}2 \rangle, \langle \text{nv} \rightarrow d1 \rightarrow b1, \text{bar}2 \rightarrow b1 \rangle\}
\]

also forms a subset of \textit{alias-bind}(\textit{call}_2, \textit{entry}_{C:\text{bar}}, \langle r \rightarrow d1 \Rightarrow B \rangle).

The pair at the call site contains information about which object name was mapped to \(\text{nv} \) in the called function by \textit{bind} or \textit{alias-bind}. For example,

\[
\langle * p, * \text{nv} \rangle \in \textit{bind}(\textit{call}_1, \textit{entry}_{C:\text{foo}}, \langle * p, * q \rangle)
\]

where \(q \) is mapped to \(\text{nv} \). While propagating an alias from the called to the calling function (Section 5.4.5), we will use this association to map the object name involving \(\text{nv} \) back to the object name local to the calling function.

\textit{type-bind}(\textit{call}, \textit{entry}, \textit{pointer-type}): This function calculates the \textit{type effects} of \textit{pointer-type} present at \textit{call} on \textit{entry}. Depending on the actual-formal bindings at \textit{call}, \textit{pointer-type} may simply propagate to \textit{entry} and/or may create a pointer-type pair involving the corresponding formal. In Figure 5.7,

\textit{type-bind}(\textit{call}_2, \textit{entry}_{C:\text{bar}}, \langle s \Rightarrow C \rangle) = \{\langle s \Rightarrow C \rangle, \langle \text{this} \Rightarrow C \rangle\}

Unlike \textit{bind} and \textit{alias-bind}, which may impose aliases involving \(\text{nv} \) at the entry node, \textit{type-bind} does not impose any pointer-type pairs which involve \(\text{nv} \). As we will see in Section 5.4.4, intraprocedural propagation uses a pointer-type pair \(\langle p \Rightarrow C \rangle \) at a pointer assignment \(\text{"lhs = rhs"} \) only if \(p \) is a dereference of \(\text{rhs} \). Since an object
name containing \(nv \) cannot explicitly appear in a pointer assignment, pointer-type pairs containing \(nv \) are irrelevant as entry assumptions in the called function. For example in Figure 5.7, although \(<q \Rightarrow int>\) holds at \(call_1 \),

\[
<nv \Rightarrow int> \notin \text{type-bind}(call_{c1}, entry_{C::foo}, <q \Rightarrow int>)
\]

Note that all the above binding functions iterate over the parameter list at most twice, in particular when two actual parameters are aliased. If the number of parameters for any function in the program is assumed to be bounded by a constant, \(\text{bind, alias-bind} \) and \(\text{type-bind} \) have \(O(1)\) complexity.

5.4.3 Initialization and Introduction Phases

The algorithm starts by lazily initializing all the \(points-to-type\) and \(may-hold\) predicates to \(false\); this enables us to perform initialization of all the predicates in constant time [LR92]. We also initialize the worklist to empty. The intraprocedural aspects of the introduction phase are summarized in Figure 5.8. This introduces pointer-type and alias pairs generated locally at a pointer assignment ICFG node. Note that we only can deal with access paths without dereferences during the introduction phase, because creating the corresponding object name for an access path with dereferences requires knowledge of the type being dereferenced (recall, our analysis restricts itself to generating object names with valid dereferences). This information only becomes available during the propagation phase. Nevertheless, the type of \&r is uniquely known using symbol table information, which can be utilized in introducing \(points-to-type\) predicates.

The function \(\text{inter-alias-type-introduction}(call, entry)\) has the following tasks:

1. For each \(AP\) in \(\text{bind0}(call, entry)\),

\[
\text{make-true}(may-hold(entry, AP, AP))
\]

2. for each \(PT\) in \(\text{type-bind0}(call, entry)\),

\[
\text{make-true}(points-to-type(entry, PT, PT))
\]
for each node n in the ICFG
 If n is
 n : p = new T;
 make-true(points-to-type(n, {}, <p ⇒ T>))
 make-true(may-hold(n, {}, <p ⇒ memₖ, newᵥ, memₖ>))\footnotemark
 n : p = &r;
 make-true(points-to-type(n, {}, <p ⇒ type(r)>)
 if r is a fixed-location
 make-true(may-hold(n, {}, <p ⇒ memₖ, r.memₖ>))
\footnotetext{We use <p⇒memₖ, newᵥ, memₖ> to denote all aliases involving corresponding members. If p is not a class pointer, we denote the resulting alias as <*p, newᵥ>.}

Note: p represents a fixed-location.

Figure 5.8: Intraprocedural introduction phase: \textbf{intra-alias-type-introduction}

\footnotetext{We use <p⇒memₖ, newᵥ, memₖ> to denote all aliases involving corresponding members. If p is not a class pointer, we denote the resulting alias as <*p, newᵥ>.}

5.4.4 Intraprocedural Propagation

Propagation of information is simple through an intraprocedural successor which is not a pointer assignment; such a node can neither create nor destroy aliases or pointer-types. In this case, a predicate points-to-type(m, AAPT, PT) propagates through the successor n with make-true(points-to-type(n, AAPT, PT)). Similarly a predicate may-hold(m, AAPT, AP) propagates through n with make-true(may-hold(n, AAPT, AP)). Therefore, we concentrate on propagation through pointer assignment nodes, calculating the semantic effects (i.e., transfer functions) of the code at these nodes on the information reaching from an ICFG predecessor. In Table 5.1, we categorize various interactions between may-hold and points-to-type as they propagate through a pointer assignment. As many as two incoming predicates may be needed to infer one predicate at a successor. In the worklist algorithm, they become candidates for propagation in an indeterminate order. The one which reaches last determines which intraprocedural propagation functions from Figure 5.6 (p. 72) is utilized. In Figures 5.9, 5.10 and 5.11, we list the two incoming predicates (i1) and (i2) from a predecessor m to a pointer assignment “n : lhs = rhs”. We then list the resulting predicates at node n. When two predicates imply a single predicate at the successor, we may use
Table 5.1: Intraprocedural interaction between may-hold and points-to-type

<table>
<thead>
<tr>
<th>result</th>
<th>points-to-type [and may-hold]</th>
<th>may-hold [and may-hold]</th>
</tr>
</thead>
<tbody>
<tr>
<td>points-to-type</td>
<td>Figure 5.9</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Details on p. 80</td>
<td></td>
</tr>
<tr>
<td>may-hold</td>
<td>Figure 5.10</td>
<td>Figure 5.11</td>
</tr>
<tr>
<td></td>
<td>Details on p. 81</td>
<td>Details on p. 82</td>
</tr>
</tbody>
</table>

either of the two assumptions from the incoming predicates, as our approximation formulation accommodates at most one assumption. We prefer the one which is non-\emptyset whenever possible\(^{31}\). We denote the resulting choice from $AAPT_1$ and $AAPT_2$ as $(AAPT_1 \oplus AAPT_2)$. Note that aliases alone can never create a pointer-type pair without using another pointer-type pair, which accounts for the blank entry in Table 5.1.

Whenever we use two predicates at a node m to derive a predicate at the successor n, we are making a safe, conservative decision, as the two predicates at m need not be true on the same consistent path to m. Nevertheless, in the absence of precise path specific information, we must conservatively assume that they are. For example, suppose $<\ast u, p>$ and $<q \Rightarrow \text{int}>$ hold at a node m which is a predecessor of the pointer assignment "$n : p = q$". Although $<\ast p, \ast q>$ clearly holds at n solely on account of $<q \Rightarrow \text{int}>$ at m, the transitive alias $<\ast q, \ast \ast u>$ should not hold at n unless the two incoming aliases hold as result of execution of the same consistent path to m. The following intraprocedural propagation functions account for this possibility by safely creating transitive aliases and pointer-type pairs at the expense of precision.

\textbf{points-to-type and may-hold implying points-to-type:} Figure 5.9 shows the most general case of this category of propagation. If a dereference (if any) of the right hand side (rhs) points to an object of class C, then the corresponding dereference of the left hand side (lhs) will point to the same object, resulting in (o1). Also, the corresponding dereference of any alias of the lhs will also point to the same object, resulting in (o2). The incoming predicate (i1) simply propagates to the successor n as (o3). If (i1)

\(^{31}\)Unfortunately such a simple choice is not possible when either or both assumptions contain an object name with nv; we leave further details for Appendix B.2.
Figure 5.9: points-to-type using may-hold to imply points-to-type

becomes a candidate for propagation later than (i2), then type-implies-type-thru-assign performs the above actions. On the other hand, if (i2) comes up for propagation later than (i1), alias-implies-type-thru-assign performs the same task.

Special cases

- If lhs has no dereferences: In this case, we do not need (i2) to obtain the corresponding object name from the access path lhs to derive (o1); we can use the fixed-location lhs. (i1) alone propagates to (o1) using type-implies-type-thru-assign. Since (i2) is not used, AAPT2 is ∅ in (o1).

- If lhs is a prefix of rhs, clearly (i1) is blocked by the assignment and will not result in (o3).

- points-to-type(m, AAPT1, <p ⇒ C>), where p cannot be obtained by applying a (perhaps empty) dereference sequence to lhs, propagates directly to n. Clearly, the assignment cannot break the pointer-type pair in this case.

points-to-type and may-hold implying may-hold: Figure 5.10 shows the general case of this category of propagation. If a dereference (if any) of the right hand side (rhs) points to an object of class C, then the corresponding dereference of the left hand side (lhs) will point to the same object. In other words, corresponding dereferences of
Figure 5.10: points-to-type using may-hold to imply may-hold

these two object names will be aliased, resulting in (o1). Similarly, the corresponding dereference of any alias of the \textit{lhs} will also point to the same object, resulting in (o2). Since \textit{lhs} and \textit{lhs_alias} will point to the same object after the assignment, we have (o3). If (i1) becomes a candidate for propagation later than (i2), then \textit{type-implies-alias-thru-assign} performs the above actions. On the other hand, if (i2) comes up for propagation later than (i1), \textit{alias-implies-alias-thru-assign} performs the same task.

Special cases

- If \textit{lhs} has no dereferences: In this case, we do not need (i2) to obtain the corresponding object name from the access path \textit{lhs} to derive (o1); we can use the fixed-location \textit{lhs}. If \textit{lhs} is not a prefix of \textit{rhs}, (i1) alone propagates to (o1) using \textit{type-implies-alias-thru-assign}. Since (i2) is not used, \textit{AAPT2} is \emptyset in (o1).

- If \textit{lhs} is a prefix of \textit{rhs}, (i1) does not propagate to (o1) or (o2).

Note that both special cases always require (i1). Whether or not (i2) is needed depends on the particular case.

\textit{may-hold and may-hold implying may-hold:} If a strict dereference of the right hand side (\textit{rhs}) is aliased to another object name (\textit{objname}), the corresponding dereference
\begin{align*}
\text{(i1)} & \quad \text{may-hold}(m, AAPT1, \langle \text{rhs}_{\text{deref_seq}}, \text{objname} \rangle) \quad \text{may-hold}(m, AAPT2, \langle \text{lhs}, \text{lhs_alias} \rangle) \\
\text{(i2)} & \quad \text{may-hold}(n, AAPT1 \oplus AAPT2, \langle \text{lhs}_{\text{deref_seq}}, \text{objname} \rangle) \\
& \quad \text{may-hold}(n, AAPT1 \oplus AAPT2, \langle \text{lhs_alias}_{\text{deref_seq}}, \text{objname} \rangle)
\end{align*}

\begin{align*}
\text{n : lhs} & = \text{rhs}; \\
\text{(o1)} & \quad \text{may-hold}(n, AAPT1 \oplus AAPT2, \langle \text{lhs}_{\text{deref_seq}}, \text{objname} \rangle) \\
\text{(o2)} & \quad \text{may-hold}(n, AAPT1 \oplus AAPT2, \langle \text{lhs_alias}_{\text{deref_seq}}, \text{objname} \rangle)
\end{align*}

Figure 5.11: may-hold using may-hold to imply may-hold

of the left hand side (lhs) will be aliased to objname after the assignment. The corresponding dereference of any object names aliased to lhs will also be aliased to objname. Figure 5.11 captures this category of intraprocedural propagation. This task is performed by alias-implies-alias-thru-assign.

Special cases

- lhs has no dereferences; only (i1) is sufficient to derive (o1). We consider AAPT2 as \emptyset in (o1).
- may-hold\((m, AAPT, \langle p, q \rangle)\), where neither \(p\) nor \(q\) can be obtained by applying a dereference sequence to lhs, propagates directly to \(n\). Clearly, the assignment cannot break the alias in this case.

5.4.5 Interprocedural Propagation

For ease of description, we need to define another auxiliary function to encapsulate the various steps involved in propagating a predicate from an exit node to a return node. make-true-at-return\(\langle mp(\text{return}, AAPT, APT), APT_e \rangle\), where \(mp\) stands for either may-hold or points-to-type, does the following:

if APT contains an object name involving a local variable
 do nothing // variable goes out of scope on exiting the function
elseif APT contains an object name involving mv
\[APT_1 = APT \text{ with the corresponding original object name substituted for object name involving } nv, \text{ using } APT_c \]

\[
\text{make-true}(mp(return, AAPT, APT_1))
\]

else

\[
\text{make-true}(mp(return, AAPT, APT))
\]

In the above function, we assume that \(APT \) contains at most one object name which involves \(nv \). There are circumstances which create an alias between two object names containing \(nv \), which require special treatment. We will not consider those circumstances here, and leave them for Appendix B.2.

Propagation from call node

For non-virtual function calls, the corresponding entry node is easily determined. However if \(call \) represents a virtual call site, the points-to-type predicates involving the receiver at \(call \) determine the possible functions invoked (Section 5.3.2, p. 63). Each class associated with the receiver corresponds to a virtual function. For each \(entry \) so determined, we propagate information to \(entry \) and the corresponding \(return \), as outlined below.

\[\text{alias-implies-from-call}(call, AAPT, alias) \] : The aliases imposed at \(entry \) due to the presence of \(alias \) at \(call \) are available through the set \(\text{bind}(call, entry, alias) \). Each alias pair \(AA \) in this set causes \(\text{make-true}(\text{may-hold(entry, AA, AA}) \). In some previous iteration of the worklist algorithm, the presence of \(AA \) at \(entry \) (imposed by another call) may have already made some \(\text{may-hold} \) predicates \(true \) at the exit of the function. Let a representative predicate be \(\text{may-hold} (exit, AA, APT) \). Associating this information at \(call \) and \(exit \), we \(\text{make-true-at-return}(\text{may-hold}(return, AAPT, APT), alias) \). Similarly, for each points-to-type\((exit, AA, APT) \), \(\text{make-true-at-return}(\text{points-to-type}(return, AAPT, APT), alias) \).

If both the object names in \(alias \) are non-visible in the called function, the alias cannot be destroyed by the call. We propagate the predicate directly to the return node with \(\text{make-true}(\text{may-hold}(return, AAPT, alias)) \).
type-implies-from-call(*call, AAPT, pointer-type*): This function accounts for the special case of type propagation when *pointer-type* involves the receiver of a virtual call. When a receiver pointing to an instance of a class is a candidate for propagation, it implies a new function invocable from *call*. Since the introduction phase cannot perform type and alias introduction for virtual function invocations, **alias-intros-by-call**(*call, entry*) and **types-intro-by-call**(*call, entry*) are performed at this stage for *entry* node corresponding to the receiver type. Also, all the information (in the form of *points-to-type* and *may-hold*) already existing at *call* is propagated to the new *entry*.

Once the *entry* is so determined, the routine task of propagation continues as follows. Let *pointer-type* be \(<p \Rightarrow B>\) without loss of generality.

The set of pointer-type pairs created by \(<p \Rightarrow B>\) at *entry* is available as **type-bind**(*call, entry, <p \Rightarrow B>). Each *PT* \(\in\) **type-bind**(*call, entry, <p \Rightarrow B>) causes **make-true**(*may-hold(entry, PT, PT)*). If some pair *PT* from this set has already created a true predicate of the form *may-hold*(*exit, PT, APT*), we **make-true-at-return**(*may-hold(return, AAPT, APT), <p \Rightarrow B>). Similarly, if some pair *PT* has already created a true predicate of the form *points-to-type*(*exit, PT, APT*), we **make-true-at-return**(*points-to-type(return, AAPT, APT), <p \Rightarrow B>).

Each *AA* \(\in\) **alias-bind**(*call, entry, <p \Rightarrow B>) causes **make-true**(*may-hold(entry, AA, AA)*). Some pairs from this set may have already yielded a true valued predicate *may-hold*(*exit, AA, APT*) at the exit of called function, which results in **make-true-at-return**(*may-hold(return, AAPT, APT), <p \Rightarrow B>). Similarly, if some pair *AA* has already created a true predicate of the form *points-to-type*(*exit, AA, APT*), we **make-true-at-return**(*points-to-type(return, AAPT, APT), <p \Rightarrow B>).

If *p* is non-visible in the called function, the call has no effect on \(<p \Rightarrow B>\). Therefore, we also propagate the predicate directly to the return node using **make-true**(*points-to-type(return, AAPT, <p \Rightarrow B>)*).

Propagation from exit node

Suppose a pair *APT* holds at *exit* with assumption *AAPT* at *entry*. Using the parameter binding functions described in Section 5.4.2 we determine the *call(s)* responsible
for imposing \(AAPT \) at \(\text{entry} \), and propagate \(APT \) only to the corresponding return(s).

This pivotal role played by the binding functions allows us to propagate information along a good approximation of consistent paths.

alias-implies-alias-from-exit(\text{exit}, AAPT, \text{alias}):

1. If the entry assumption \(AAPT \) is \(\emptyset \), alias may hold at \(\text{exit} \) no matter which \text{call} invokes the function containing \(\text{exit} \), as this alias pair is created solely due to the execution of the function and not due to the information reaching \(\text{entry} \) from a call site. As a result, we \text{make-true-at-return}(\text{may-hold}(\text{return}, \emptyset, \text{alias}), \emptyset)\) for all returns corresponding to virtual or non-virtual \text{calls} invoking this function.

2. If \(AAPT \) is non-\(\emptyset \), it implies that alias holds at \(\text{exit} \) if a \text{call} imposes \(AAPT \) at \(\text{entry} \). Suppose \text{may-hold}(\text{call}, AAPT', \ AP) imposes \(AAPT \) at \(\text{entry} \) through \text{bind}(\text{call}, \text{entry}, \ AP). Using this association, we propagate alias to return with \text{make-true-at-return} (\text{may-hold}(\text{return}, AAPT', \text{alias}), \ AP). Similarly, for each \text{points-to-type}(\text{call}, AAPT', \ PT) imposing \(AAPT \) at \(\text{entry} \) through either \text{type-bind}(\text{call}, \text{entry}, \ PT) or \text{alias-bind}(\text{call}, \text{entry}, \ PT), we \text{make-true-at-return}(\text{may-hold}(\text{return}, AAPT', \text{alias}), \ PT).

type-implies-type-from-exit(\text{exit}, AAPT, \text{pointer-type}):

1. If the entry assumption \(AAPT \) is \(\emptyset \), \text{pointer-type} may hold at \(\text{exit} \) of a function regardless of which \text{call} invokes it. This pointer-type pair is created solely due to the execution of the function, and not due to the information reaching \(\text{entry} \). As a result, we \text{make-true-at-return}(\text{points-to-type}(\text{return}, \emptyset, \text{pointer-type}), \emptyset)\) for all return nodes corresponding to \text{call} nodes invoking this function.

2. If \(AAPT \) is non-\(\emptyset \), it implies that \text{pointer-type} holds at \(\text{exit} \) if a \text{call site} imposes \(AAPT \) at \(\text{entry} \). Suppose \text{may-hold}(\text{call}, AAPT', \ AP) imposes \(AAPT \) at \(\text{entry} \) through \text{bind}(\text{call}, \text{entry}, \ AP). Using this association at \text{call}, we \text{make-true-at-return}(\text{points-to-type}(\text{return}, AAPT', \text{pointer-type}), \ AP). Similarly, suppose
```cpp
class A {
    public:
        int i, j, k;
};

class B : public A {
    public: ...
        A *next;
    } *p, *q;
    A u, v, w;

Figure 5.12: Example class hierarchy and storage layout
```

\[\text{points-to-type}(call, AAPT', PT)\] imposes \(AAPT\) at entry through either \text{type-bind}(call, entry, PT) or \text{alias-bind}(call, entry, PT). Here, we make-true-at-return(points-to-type(return, AAPT', pointer-type), PT).

5.4.6 Analysis in the Presence of Recursive Data Structures

Recursive structures give rise to potentially infinite object names. For example, using the declarations in Figure 5.12, arbitrarily many object names (represented by the regular expression \(p(\rightarrow\text{next})^*\)) are possible. To reduce the number and length of object names (and therefore, of aliases and pointer-type pairs) to a finite number, we use the notion of \(k\)-limiting, similar to that introduced by Jones and Muchnick [JM79]. Intuitively, \(k\)-limiting implies that up to \(k\) explicit dereferences are maintained in an object name and further dereferences are abstracted into a special \# dereference.

For example, we represent \(q\rightarrow\text{next}\rightarrow\text{next}\rightarrow\text{next}\rightarrow i\) by \(q\rightarrow\text{next}\rightarrow\text{next}\#\), where the value of \(k\) is 2. Note that \(k\)-limiting involves loss of information due to a combination of the following basic approximations in object names.

1. last-member approximation: A single \(k\)-limited object name may represent distinct object names with different last dereferences. For example in Figure 5.12, 1-limited object name \(q\rightarrow\text{next}\#\) represents both \(q\rightarrow\text{next}\rightarrow i\) and \(q\rightarrow\text{next}\rightarrow j\).

2. dereference approximation: A single \(k\)-limited object name may represent object names with distinct numbers of dereferences. For example in Figure 5.12, a single 1-limited object name \(q\rightarrow\text{next}\#\) represents both \(q\rightarrow\text{next}\rightarrow\text{next}\) and \(q\rightarrow\text{next}\rightarrow\text{next}\rightarrow\text{next}\).
The approximations in object names due to \(k \)-limiting have two opposite effects on the number of alias and pointer-type pairs. We use the example class declaration and an initial storage layout in Figure 5.12 to illustrate these effects. In Tables 5.2 and 5.3, we show how the number of aliases and pointer-type pairs decreases for a smaller value of \(k \). The first column shows a pointer assignment at \(m \), and the remaining columns list for two values of \(k \), the relevant pairs resulting from this assignment. Due to the last-member approximation, multiple alias pairs map to a single alias pair for \(k = 1 \) reducing the number of aliases. Also with \(k = 1 \), the dereference approximation maps two distinct pointer-type pairs to \(<p\rightarrow next\# \Rightarrow A>\).

Assuming the same initial storage layout, we show how the number of alias pairs at a program point increases as a result of selecting a lower value of \(k \). In the first row of Table 5.4, we list relevant alias pairs at some predecessor 1 of node \(m \). For \(k = 2 \), we can distinguish the object names aliased to \(v\cdot next \) and \(w\cdot next \). However for \(k = 1 \), owing to the dereference approximation, \(q\rightarrow next\# \) represents both these object names. In the second row, we propagate these aliases through the pointer assignment at \(m \). Since the information is lost as to how many dereferences are abstracted by \# in \(q\rightarrow next\# \), spurious aliases (marked with } mark) are generated for \(k = 1 \), leading to an increase in the number of aliases\(^{32}\). Suppose the pointer assignment at \(m \) is followed by

\(^{32}\)In our prototype implementation, we use @ to abstract a single \(k \)-limited dereference and # for more than one dereference. As a result, our implementation can distinguish between \(q\rightarrow next@ \) and
Table 5.4: smaller value of k resulting in spurious aliases

```
<table>
<thead>
<tr>
<th>source code</th>
<th>k = 2</th>
<th>k = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: ...</td>
<td>&lt;q→next→next, v.next&gt;</td>
<td>&lt;q→next#, v.next&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;q→next→next#, w.next&gt;</td>
<td>&lt;q→next#, w.next&gt;</td>
</tr>
<tr>
<td>m: p = q→next</td>
<td>&lt;p→next, v.next&gt;</td>
<td>&lt;p→next#, v.next&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;p→next→next, w.next&gt;</td>
<td>&lt;p→next#, w.next&gt;</td>
</tr>
</tbody>
</table>
```

¹Spurious aliases

“n: p→next = new B”. For k = 1, the presence of spurious alias <p→next, w.next> creates a spurious pointer-type pair <w.next ⇒ B> at node n, increasing the number of pointer-type pairs created.

In the remainder of this section, we provide an intuitive overview of type determination and aliasing in the presence of k-limited object names through examples, assuming that the value of k is 2.

Intraprocedural analysis in the presence of k-limiting

First, we show how k-limited pointer-type pairs and aliases are initially created from those which are not k-limited. In general, if any of the cases during intraprocedural introduction and propagation (from Sections 5.4.3 and 5.4.4) create an object name with > k dereferences using those with ≤ k dereferences, that object name would be replaced by the corresponding k-limited object name.

Initial creation of a k-limited pointer-type pair: <p→g→h ⇒ C> propagating through a pointer assignment “n: q→f = p;” creates <q→f→g# ⇒ C> at n.

Initial creation of a k-limited alias: <p→g→h ⇒ C> propagating through a pointer assignment “n: q→f = p;” creates the alias <q→f→g#, p→g→h#>.

Now, we show how to propagate k-limited pointer-type pairs and aliases through

$q→next#$. However the example can be generalized using an additional level of dereferencing, so that spurious aliases are generated.
pointer assignments. The following examples describe how we recover the explicit dereferences abstracted into \#.

Once the dereferences are recovered, intraprocedural propagation is similar to that summarized in Table 5.1 (p. 80), except that each object name created with \(k \) dereferences would be replaced by the corresponding \(k \)-limited object name.

Propagating a \(k \)-limited pointer-type pair: A \(k \)-limited pointer-type pair is shown below as a candidate for propagation through a pointer assignment. One possible storage layout for this scenario appears alongside.

\[
\begin{align*}
\langle q \rightarrow f \rightarrow g \# \Rightarrow C \rangle \\
\text{n: } p = q \rightarrow f;
\end{align*}
\]

Since the right hand side (rhs) of the assignment is more dereferenced than the left hand side (lhs), a dereference sequence of the rhs may be \(k \)-limited while the corresponding dereference sequence of the lhs may not. Since the difference in dereferences between lhs and rhs is 1, we need to recover one explicit dereference that may be abstracted by \(q \rightarrow f \rightarrow g \# \). For example, if the object name were to represent \(q \rightarrow f \rightarrow g \rightarrow h \), using Theorem 5.2.1 (see p. 57) there must exist an alias \(\langle q \rightarrow f \rightarrow g \rightarrow h, (u.f) \rightarrow g \rightarrow h \rangle \). With \(k \)-limiting, it would appear as \(\langle q \rightarrow f \rightarrow g \#, (u.f) \rightarrow g \rightarrow h \rangle \). We use this alias to recover the required explicit dereference, viz. \(h \), to obtain \(\langle q \rightarrow f \rightarrow g \Rightarrow h \Rightarrow C \rangle \). It is now straightforward to infer \(\langle p \rightarrow g \rightarrow h \Rightarrow C \rangle \) at \(n \). Propagation of \(\langle q \rightarrow f \rightarrow g \Rightarrow h \Rightarrow C \rangle \) also results in aliases \(\langle p \rightarrow g \rightarrow h \Rightarrow \text{mem}_i, q \rightarrow f \rightarrow g \rightarrow h \Rightarrow \text{mem}_i \rangle \) for each member \(\text{mem}_i \) of class \(C \). These aliases are represented as \(\langle p \rightarrow g \rightarrow h \#, q \rightarrow f \rightarrow g \# \rangle \) for each distinct type corresponding to \(\text{memberType(\text{mem}_i)} \).\(^{33}\)

Propagating a \(k \)-limited alias: Suppose an alias involving \(k \)-limited object name as shown below is a candidate for propagation through pointer assignment \(n \). Again, we show one possible storage layout corresponding to the program segment.

\(^{33}\)Recall that each object name has an associated type (from Figure 2.1, p. 12). For notational convenience we normally omit it. However, \(p \rightarrow g \rightarrow h \# \) representing \(p \rightarrow g \rightarrow h \Rightarrow \text{mem}_i \) is distinct from \(p \rightarrow g \rightarrow h \# \) representing \(p \rightarrow g \rightarrow h \Rightarrow \text{mem}_j \) if members \(\text{mem}_i \) and \(\text{mem}_j \) have distinct types.
If the object name \(q \rightarrow f \rightarrow g \# \) in the alias were to represent \(q \rightarrow f \rightarrow g \rightarrow h \), it must be the case that we have the following aliases:

1. \(<q \rightarrow f \rightarrow g \rightarrow h, (u.f) \rightarrow g \rightarrow h> \) for some \(u : \) using Theorem 5.2.1 (p. 57).
2. \(<(u.f) \rightarrow g \rightarrow h, r.h> \) : since \(q \rightarrow f \rightarrow g \rightarrow h \) is given as aliased to \(r.h \).

With \(k \)-limiting, the above aliases would appear as \(<q \rightarrow f \rightarrow g \#, (u.f) \rightarrow g \rightarrow h> \) and \(<(u.f) \rightarrow g \rightarrow h, r.h> \). The existence of these aliases serves as evidence of the fact that the explicit dereference \(h \) is abstracted as \(\# \) in \(q \rightarrow f \rightarrow g \rightarrow h \). Having inferred this, it is easy to derive that \(<p \rightarrow g \rightarrow h, r \rightarrow h> \) holds at \(n \).

Interprocedural analysis in the presence of \(k \)-limiting

The dereference recovery at a call site is similar to that described above, where \(\text{rhs} \) is the actual parameter and \(\text{lhs} \) is the corresponding formal parameter. We use appropriate alias or pointer-type pairs at the call site to recover the required explicit dereferences and proceed with parameter bindings as in Section 5.7.

\[^{34} \text{For efficiency, we do not explicitly check for this alias from Rule 2, but safely and approximately assume that it exists.} \]
Chapter 6
Theoretical and Empirical Results

We have shown that the problem of type determination and aliasing for C++ with single level pointers, and hence for general purpose pointer usage, is \(NP\)-hard. We have presented an algorithm to solve the above problem safely and approximately. In this chapter we derive the theoretical worst case polynomial complexity of the algorithm. In the absence of a good mechanism for calculating usages in an \textit{average} C++ program, a theoretical average case analysis would be impossible. Therefore, we resorted to empirical analysis of algorithm performance using a prototype implementation. In this chapter, we show that our algorithm is linear in the size of the solution, with empirical corroboration of our claim using a modest test suite of C++ programs. We show that the direct application of our type determination solution yields highly effective results for virtual function resolution. Nevertheless, definite claims about the precision or effectiveness of aliasing solution are beyond the purview of this thesis, as we have not yet used the aliasing solution in an application to gauge its utility.

6.1 Worst Case Complexity of Algorithm

The lazy approach for calculation makes it difficult to obtain a tight bound on the theoretical complexity of our algorithm. However we can show that the worst case complexity of our algorithm is polynomial in the number of ICFG nodes. We define the following sets:

- \(\mathcal{N}\) = set of ICFG nodes.
- \(\mathcal{O}\) = set of object names.
- \(\mathcal{T}\) = set of types.
We make the following reasonable assumptions:

1. The maximum number of parameters for a function is bounded by a constant over the entire program [CK89]. Given this assumption the parameter binding functions are constant time (Section 5.4.2).

2. The value of k, the maximum number of dereferences maintained explicitly by our algorithm, is a small constant. The maximum k used by our algorithm is 5.

3. The data structures and encodings used by the algorithm provide constant time functions for initialization, existence test and insertion for any predicate (using lazy initialization and hashing).

4. All alias and pointer-type pairs relevant to the algorithm at an ICFG node can be obtained in time linear with respect to the number of these relevant pairs. For example, with each assignment node of the form “lhs = rhs”, we explicitly maintain a list of all points-to-type and may-hold predicates which contain pairs involving dereferences of rhs.

5. The number of types used in the program is bounded above by $O(|\mathcal{N}|)$. In other words, $|\mathcal{T}| = O(|\mathcal{N}|)$.

6. The number of fixed-locations appearing in the program body\(^{35}\) is bounded above by $O(|\mathcal{N}|)$.

7. The maximum number of data members of a class (including inherited members and the members of any class object contained within the class) is bounded above by $O(|\mathcal{N}|)$.

8. For realistic programs, the maximum number of different implementations of a virtual function in a hierarchy is bounded by a constant.

Let fl be a fixed-location. Then the object names derived from fl can be expressed using a regular expression $fl^{(type member)^*}$. Since we use only up to k dereferences,

\(^{35}\)We do not consider the declarations to be part of the program body.
clearly the number of object names is polynomial in terms of the number of ICFG nodes. Since a pointer-type is represented as <object_name \Rightarrow type> we have a polynomial number of pointer-type pairs. Similarly, an alias is a pair of object names, implying that the number of possible aliases is polynomial. Given that each may-hold is a tuple of the form (node, alias/pointer-type, alias) and each points-to-type is a tuple of the form (node, alias/pointer-type, pointer-type), the total number of possible predicates is polynomial in |N|.

As we saw in Section 5.4, each predicate is either introduced (in constant time) at a node or created as a result of propagation from the predicates present at the predecessors. Each propagation function uses a fixed number of predicates at a time to infer a single predicate. The worst case occurs while inferring a predicate at the return node of a virtual call site where 3 predicates, viz. points-to-type involving the receiver and a predicate each from the call and the exit node, yield a single predicate at the return node. For example, the predicates points-to-type(call, AAPT, <rec \Rightarrow C>), points-to-type(call, AAPT1, PT1) and points-to-type(exit, PT2, PT3) contribute to make-true-at-return(points-to-type(return, AAPT, PT3)), where PT2 ∈ type-bind (call, entry, PT1). However, there are multiple ways the same predicate may be inferred at a node. If there are n true-valued predicates present at the predecessors, there are \(C_3^n\) ways in which a predicate may be inferred in the worst case, which is polynomial. As a result, the worst case complexity of the entire algorithm is polynomial in |N|.

6.2 Algorithm Performance in Practice

The above worst case complexity does not provide any insight into the practical running complexity of the algorithm. We have designed the algorithm in such a way that the work is performed only for the predicates which become true. A better criterion would be to express the performance of the algorithm in terms of the size of may-hold and points-to-type solution it generates\(^{36}\). Using the assumptions in Section 6.1, a constant amount of work is required to make a predicate true, except when the same predicate

\(^{36}\)Since the design of our algorithm is similar to Landi’s pointer aliasing analysis for C, the reasoning is similar to that in [Lan92a].
is created in multiple ways. If \(n \) is neither a return node nor a pointer assignment,
the number of ways a predicate can become \textit{true} is \(O(\text{number of ICFG predecessors of } n) \). Since the number of intraprocedural edges in the ICFG is of the order of the number of nodes, in an amortized sense the work done per predicate is constant time. Nevertheless, we need a more careful counting argument while dealing with propagation involving return nodes and pointer assignment nodes.

Propagation from a return node Let \(n \) be a return node and \(\text{call} \) be the corresponding call node. Suppose we want to \textbf{make-true-at-return}(\textit{may-hold}(n, AAPT, APT)).

1. If \(\text{call} \) represents a virtual call site, \(\textit{may-hold}(n, AAPT, AP) \) may be a result of propagation from multiple exit nodes, depending on the number of functions invoked by the call. Given our assumption that the maximum number of different implementations of a virtual function in a hierarchy is bounded by a constant, the number of distinct exit nodes associated with \(n \) is constant.

2. For each exit node \(\text{exit} \) with corresponding entry node \(\text{entry} \),

\[
\textit{may-hold}(n, AAPT, AP) = \left(\textit{may-hold}(\text{exit}, \emptyset, AP) \cup_{\text{AAPT2}} \left(\textit{may-hold}(\text{exit}, \text{AAPT2}, AP) \land \textit{may-hold}(\text{call}, \text{AAPT}, AP_c) \right) \right)
\]

where \(\text{AAPT2} \in \text{bind}(\text{call}, \text{entry}, AP_c) \). A similar argument applies to inferring a
points-to-type at \(n \). Clearly, the number of different ways \(\textit{may-hold}(n, AAPT, AP) \)
can become \textit{true} depends on \((1 + \text{number of distinct AAPT2 for AP to hold at exit}) \). Unfortunately, the number of distinct predicates which are identical except in their assumption cannot be theoretically bounded by a constant. As a conservative decision, we arbitrarily allowed maximum 5 distinct assumptions for predicates which were otherwise identical and replaced any further assumptions with \(\emptyset \)\(^37\). Given this, the number of distinct ways a predicate can become \textit{true} is

\[\text{We could not replace an AAPT with } \emptyset \text{ in } \textit{may-hold}(n, AAPT, AP) \text{ or } \text{points-to-type}(n, AAPT, PT) \text{ if AP or PT contained an object name involving } ne. \text{ In our implementation, the assumption stores}\]

\(^37\)
now a constant.

Propagation through a pointer assignment As we saw in Section 5.4.4, many predicates at an ICFG node may interact (two at a time) to create a new predicate at a pointer assignment successor. For example, suppose for an ICFG node \(m \) with pointer assignment successor \(n \), a single predicate \(\text{may-hold}(m, \text{AAP}T_1, \text{AP}) \) interacts with multiple predicates, identical except in their assumption, to create \(\text{may-hold}(n, \text{AAP}T_1, <a, b>) \). This will happen if \(\text{AAP}T_1 \) is non-\(\emptyset \) and the operation \((\text{AAP}T_1 \oplus \text{AAP}T_2) \) favors \(\text{AAP}T_1 \) over \(\text{AAP}T_2 \) for any \(\text{AAP}T_2 \). Then,

\[
\text{may-hold}(n, \text{AAP}T_1, <a, b>) = \bigvee_{\text{AAP}T_2} \left(\text{points-to-type}(m, \text{AAP}T_1, \text{PT}) \land \text{may-hold}(m, \text{AAP}T_2, \text{AP}) \right)
\]

The same decision to allow maximum 5 distinct non-\(\emptyset \) assumptions would enable the algorithm to infer the resulting predicate in \(O(1) \) time.

Since each true predicate is created at a node using constant time work and then remains true, the algorithm runs in time linear with respect to the size of \(\text{may-hold} \) and \(\text{points-to-type} \) solution for realistic programs.

6.3 Prototype Implementation

The results presented in the remainder of this chapter represent our efforts to empirically demonstrate the contributions of the algorithm and assess its practicality using a prototype implementation. The prototype is written in C and runs on a Sun SPARC-20 with 64MB main memory. We are using the MasterCraft C++ system of Tata Consultancy Services as the front end C++ parser for the implementation. Our aliasing and type determination algorithm reuses some code from Landi’s aliasing algorithm [Lan92a] with suitable modifications. We present empirical results of analyzing 19 C++ programs obtained from various (publicly available) sources such as textbooks, demonstration programs accompanying a C++ compiler and undergraduate projects.

crucial information to retrieve the corresponding non-visible fixed-location from \(nv \). Fortunately, the number of such distinct assumptions did not exceed 6 in our test suite.
Table 6.1: Some characteristics of C++ programs analyzed

<table>
<thead>
<tr>
<th>name</th>
<th>LOC</th>
<th>functions</th>
<th>virtual functions</th>
<th>virtual calls</th>
<th>% unreachable virtual calls</th>
<th>aliases per node</th>
<th>ptr-types per node</th>
<th>time min:sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. greed</td>
<td>968</td>
<td>47</td>
<td>9</td>
<td>17</td>
<td>35</td>
<td>2</td>
<td>2</td>
<td>0:31</td>
</tr>
<tr>
<td>2. garage</td>
<td>143</td>
<td>19</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>304</td>
<td>34</td>
<td>0:54</td>
</tr>
<tr>
<td>3. vcircle</td>
<td>142</td>
<td>16</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0:01</td>
</tr>
<tr>
<td>4. office</td>
<td>213</td>
<td>12</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>49</td>
<td>10</td>
<td>0:04</td>
</tr>
<tr>
<td>5. family</td>
<td>109</td>
<td>22</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>0:02</td>
</tr>
<tr>
<td>6. FSM</td>
<td>98</td>
<td>15</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>0:01</td>
</tr>
<tr>
<td>7. deriv2</td>
<td>313</td>
<td>34</td>
<td>16</td>
<td>66</td>
<td>45</td>
<td>29</td>
<td>3</td>
<td>1:05</td>
</tr>
<tr>
<td>8. shapes</td>
<td>267</td>
<td>34</td>
<td>12</td>
<td>22</td>
<td>23</td>
<td>38</td>
<td>5</td>
<td>0:56</td>
</tr>
<tr>
<td>9. deriv1</td>
<td>192</td>
<td>31</td>
<td>13</td>
<td>28</td>
<td>29</td>
<td>20</td>
<td>4</td>
<td>0:14</td>
</tr>
<tr>
<td>10. objects</td>
<td>465</td>
<td>59</td>
<td>31</td>
<td>39</td>
<td>85</td>
<td>6</td>
<td>1</td>
<td>0:08</td>
</tr>
<tr>
<td>11. simul</td>
<td>339</td>
<td>54</td>
<td>12</td>
<td>7</td>
<td>15</td>
<td>3</td>
<td>1</td>
<td>0:02</td>
</tr>
<tr>
<td>12. primes</td>
<td>46</td>
<td>11</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>48</td>
<td>7</td>
<td>0:16</td>
</tr>
<tr>
<td>13. ocean</td>
<td>444</td>
<td>64</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>81</td>
<td>8</td>
<td>1:58</td>
</tr>
<tr>
<td>14. NP</td>
<td>31</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0:01</td>
</tr>
<tr>
<td>15. city</td>
<td>519</td>
<td>67</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>322</td>
<td>12</td>
<td>13:27</td>
</tr>
<tr>
<td>16. tree</td>
<td>217</td>
<td>26</td>
<td>8</td>
<td>3</td>
<td>33</td>
<td>726</td>
<td>34</td>
<td>8:34</td>
</tr>
<tr>
<td>17. employ</td>
<td>894</td>
<td>58</td>
<td>25</td>
<td>4</td>
<td>0</td>
<td>213</td>
<td>14</td>
<td>5:49</td>
</tr>
<tr>
<td>18. life</td>
<td>178</td>
<td>21</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>49</td>
<td>3</td>
<td>0:26</td>
</tr>
<tr>
<td>19. chess</td>
<td>392</td>
<td>43</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>58</td>
<td>16</td>
<td>0:54</td>
</tr>
</tbody>
</table>

All these programs exhibit object-oriented programming style through encapsulation, code reuse and modularity.

6.4 Empirical Observations

The test suite of C++ programs

Table 6.1 lists some characteristics of programs we analyzed, such as the lines of code (LOC), number of functions, number of virtual functions and number of virtual calls. We also list the number of virtual call sites present in those functions which were found unreachable, number of aliases per ICFG node, number of pointer-types per ICFG node and finally, the program analysis time. Some programs have high analysis times because we have not optimized our prototype for time performance. In the remainder of this
section, unless otherwise stated, we normalize the data with respect to virtual call sites in reachable functions. In the charts appearing in this section, we will list the programs by number (from Table 6.1) instead of by name.

Virtual function resolution

Based on the distinct classes of objects pointed to by the receiver at a virtual call site, the algorithm determines which virtual functions in the inheritance hierarchy may be invoked from the call site. In Figure 6.1 we classify the reachable virtual call sites in terms of the number of virtual functions found invocable. Our results support the observation by Calder and Grunwald that although object-oriented libraries support polymorphism through virtual functions, the target of most indirect function calls can be accurately predicted [CG94]. While their observation is based on execution profiles of programs, our results eliminate the dependence on profile data by using compile time analysis which accounts for all possible executions of the program. We examined the data and ascertained that the calls for which unique resolution was not possible, would indeed demonstrate polymorphism at run-time, and that the non-uniqueness was never due to approximations in analysis. We also wanted to find out if there was any relation between the program characteristics from Table 6.1 and virtual function resolution results in Figure 6.1. For example, it would have been interesting to find that the resolution results were better for programs with greater number of virtual calls or virtual functions. Table 6.1 is sorted on the decreasing percentage values of virtual function resolution obtained for the programs. There are no corresponding trends in the program characteristics such as lines of code (LOC), number of virtual functions or the number of virtual calls. We conjecture that it is not these program characteristics but the programming style and the functionality of the program which influence the degree of polymorphism demonstrated by the virtual calls. However, a bigger data set is needed to draw definite conclusions about the factors affecting virtual function resolution.

We further classified uniquely resolved virtual calls into those resolved without employing data flow analysis techniques (where the class hierarchy contained only one
implementation or the receiver was the address of an object), and those which required the entire functionality of our algorithm (where unique resolution was out of two or more functions). Results in Figure 6.2 suggest that data flow analysis is necessary to obtain good results.

Invocable virtual functions at a call site and call graph construction

Even when unique resolution is not possible, limiting the number of virtual functions invoked at a call site can help subsequent analyses, in that the side effects of the non-invocable functions can be safely eliminated in the context of that call. Given the potential disparity in various implementations of a virtual function, this can translate into improved precision and efficiency of analysis. Limiting the number of invocable virtual functions at a virtual call is relevant to tools which use branch prediction. In Figure 6.3, we report the average percentage of virtual functions found invocable out of those in the class hierarchy of the receiver type at a (reachable or unreachable) virtual call site. We create edges from a virtual call site only to the functions found invocable using resolution information, implicitly building a smaller and more precise call graph than the one built without such information. Therefore, the values in Figure 6.3 can also be interpreted as the size of our call graph *vis à vis* that of a naive approach. Viewing only the relevant aspects of the program (using a call graph browser which avails of the analysis information) can be used for better program understanding. Eliminating non-invocable functions can also be used to prune the class libraries. Such pruning would lead to smaller object code.

As expected, the average percentage of invocable virtual functions was low (implying that many functions were eliminated) for those programs for which

1. a high percentage of virtual calls were found unreachable (in Table 6.1), or

2. we obtained good virtual function resolution (in Figure 6.1), or

3. most of the unique resolution was obtained from two or more candidate functions in the class hierarchy (in Table 6.2).
Figure 6.1: Percentage of virtual calls with 1, 2, 3, >3 invocable functions

Figure 6.2: Classification of unique resolution for appropriate programs from Figure 6.1
Figure 6.3: Average percentage of invocable virtual functions out of those in class hierarchy at virtual call

<table>
<thead>
<tr>
<th>name</th>
<th>aliases</th>
<th>pointer-types</th>
<th>virtual resolution (unique, 2-way, 3-way, >3-way)</th>
</tr>
</thead>
<tbody>
<tr>
<td>deriv2</td>
<td>k=3</td>
<td>7064</td>
<td>300, 30, 30, 0</td>
</tr>
<tr>
<td></td>
<td>k=2</td>
<td>7064</td>
<td>300, 30, 30, 0</td>
</tr>
<tr>
<td></td>
<td>k=1</td>
<td>7098</td>
<td>273, 30, 30, 0</td>
</tr>
<tr>
<td>deriv1</td>
<td>k=3</td>
<td>2443</td>
<td>208, 13, 5, 2, 0</td>
</tr>
<tr>
<td></td>
<td>k=2</td>
<td>2443</td>
<td>208, 13, 5, 2, 0</td>
</tr>
<tr>
<td></td>
<td>k=1</td>
<td>2223</td>
<td>176, 13, 5, 2, 0</td>
</tr>
<tr>
<td>primes</td>
<td>k=4</td>
<td>2986</td>
<td>139, 1, 2, 0, 0</td>
</tr>
<tr>
<td></td>
<td>k=3</td>
<td>2164</td>
<td>119, 1, 2, 0, 0</td>
</tr>
<tr>
<td></td>
<td>k=2</td>
<td>1466</td>
<td>99, 1, 2, 0, 0</td>
</tr>
<tr>
<td>ocean</td>
<td>k=4</td>
<td>4623</td>
<td>215, 1, 2, 1, 1</td>
</tr>
<tr>
<td></td>
<td>k=3</td>
<td>4255</td>
<td>215, 1, 2, 1, 1</td>
</tr>
<tr>
<td></td>
<td>k=2</td>
<td>2971</td>
<td>203, 1, 2, 1, 1</td>
</tr>
<tr>
<td>chess</td>
<td>k=5</td>
<td>2285</td>
<td>286, 0, 0, 0, 1</td>
</tr>
<tr>
<td></td>
<td>k=4</td>
<td>2285</td>
<td>286, 0, 0, 0, 1</td>
</tr>
<tr>
<td></td>
<td>k=3</td>
<td>2185</td>
<td>286, 0, 0, 0, 1</td>
</tr>
</tbody>
</table>

Table 6.2: Parameterization of k
Parameterization of k

To study the effect of k-limiting on algorithm performance, we parameterized the analysis on the value of k. For each program we picked a minimum value of k, called min_k, such that the object names appearing in the source code would not be k-limited. We analyzed five programs – deriv2, deriv1, primes, ocean and chess – with three values of k, viz. $(\text{min}_k + 2)$, $(\text{min}_k + 1)$ and min_k. These programs were such that we could pick the above three values of k starting with min_k, and analyze the three versions. We had to limit the study to these programs because either the analysis never needed to generate k-limited object names for k values higher than min_k, or the implementation ran out of resources while analyzing the program for the higher k values. For most of the above programs, we found that virtual function resolution was insensitive to the value of k. This is probably because no receiver of a virtual function call was ever k-limited, owing to the selection criterion for min_k.

We also observed that the size of alias and pointer-type solution usually decreased with lower values of k. This was the net result of two opposite effects of k-limiting discussed in Section 5.4.6. On the one hand, multiple object names may map to a single k-limited object name for a lower value of k, leading to reduction in the number of object names and correspondingly alias and pointer-type solution size. On the other hand, further loss of precision caused by a lower value of k leads to increased solution size due to spurious pairs. It was heartening to see that any possible size increase due to loss of precision was almost always overtaken by the reduction due to many-to-one object name mapping. Table 6.2 summarizes our observations. Note that for deriv2, the size of alias solution and precision of function resolution suffered for a lower k.

Effect of inlining base class constructors

In C++, the derived class constructor calls the constructor of each base class to initialize the inherited base class members. While analyzing the body of the base constructors in certain programs, we realized that the algorithm could not distinguish the calling contexts of distinct derived constructors. These programs were such that distinct derived
class constructors called the same base class constructor with distinct initialization values for pointer members of the base class. As a result, the information due to one derived constructor went to all derived constructors on return from the base constructor. In other words, our approximations led to propagation of information over non-realizable paths. In order to regain the calling context, we inlined the base constructor in each derived constructor. The dramatic improvements in time requirement and precision of analysis are reported in Table 6.3. They underline the need for context sensitive analysis for precision and also suggest a potential technique to improve efficacy of other analyses of object-oriented programs.

Annotating functions as read-only or param-only

We observed in our test suite that most member functions were small in size. Also, many either were side-effect-free, or only affected outside data through parameter dereferences. This is expected since object-oriented programming style promotes encapsulation and discourages direct references to non-local data. The side-effect-free functions were typically observers, which returned the value of a data member. We called such

<table>
<thead>
<tr>
<th>name</th>
<th>aliases and pointer-types</th>
<th>may-hold per node</th>
<th>points-to-type per node</th>
<th>time min:sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>deriv2</td>
<td></td>
<td>>65000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>inlined</td>
<td></td>
<td>7367</td>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>shapes</td>
<td>original</td>
<td>4508</td>
<td>105</td>
<td>6</td>
</tr>
<tr>
<td>inlined</td>
<td></td>
<td>4264</td>
<td>89</td>
<td>5</td>
</tr>
<tr>
<td>deriv1</td>
<td>original</td>
<td>41430</td>
<td>1823</td>
<td>24</td>
</tr>
<tr>
<td>inlined</td>
<td></td>
<td>2409</td>
<td>42</td>
<td>4</td>
</tr>
<tr>
<td>primes</td>
<td>original</td>
<td>4947</td>
<td>349</td>
<td>12</td>
</tr>
<tr>
<td>inlined</td>
<td></td>
<td>2291</td>
<td>192</td>
<td>7</td>
</tr>
</tbody>
</table>

† The prototype ran out of resources while analyzing this version.

Table 6.3: Inlining base class constructors
<table>
<thead>
<tr>
<th>name</th>
<th>%r-o</th>
<th>%p-o</th>
<th>may-hold</th>
<th>points-to-type</th>
<th>#malloc</th>
<th>time min:sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>garage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>original</td>
<td></td>
<td></td>
<td>119654</td>
<td>11294</td>
<td>1789065</td>
<td>1:01</td>
</tr>
<tr>
<td>annotated</td>
<td>26</td>
<td>0</td>
<td>104076</td>
<td>9906</td>
<td>1562648</td>
<td>0:54</td>
</tr>
<tr>
<td>deriv2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>original</td>
<td></td>
<td></td>
<td>111160</td>
<td>2620</td>
<td>2123106</td>
<td>2:31</td>
</tr>
<tr>
<td>annotated</td>
<td>62</td>
<td>29</td>
<td>50416</td>
<td>2620</td>
<td>957134</td>
<td>1:05</td>
</tr>
<tr>
<td>shapes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>original</td>
<td></td>
<td></td>
<td>46960</td>
<td>3172</td>
<td>1738203</td>
<td>1:48</td>
</tr>
<tr>
<td>annotated</td>
<td>71</td>
<td>15</td>
<td>4960</td>
<td>2939</td>
<td>783060</td>
<td>0:56</td>
</tr>
<tr>
<td>deriv1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>original</td>
<td></td>
<td></td>
<td>26312</td>
<td>1414</td>
<td>617066</td>
<td>0:26</td>
</tr>
<tr>
<td>annotated</td>
<td>52</td>
<td>32</td>
<td>14253</td>
<td>1414</td>
<td>339094</td>
<td>0:14</td>
</tr>
<tr>
<td>simul</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>original</td>
<td></td>
<td></td>
<td>4868</td>
<td>715</td>
<td>121784</td>
<td>0:03</td>
</tr>
<tr>
<td>annotated</td>
<td>83</td>
<td>0</td>
<td>3120</td>
<td>467</td>
<td>80546</td>
<td>0:02</td>
</tr>
<tr>
<td>tree</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>original</td>
<td></td>
<td></td>
<td>579742</td>
<td>12425</td>
<td>12597024</td>
<td>11:22</td>
</tr>
<tr>
<td>annotated</td>
<td>23</td>
<td>58</td>
<td>479146</td>
<td>12425</td>
<td>8937086</td>
<td>8:34</td>
</tr>
<tr>
<td>employ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>original</td>
<td></td>
<td></td>
<td>439659</td>
<td>7988</td>
<td>8489510</td>
<td>7:42</td>
</tr>
<tr>
<td>annotated</td>
<td>33</td>
<td>0</td>
<td>317769</td>
<td>7988</td>
<td>6690717</td>
<td>5:49</td>
</tr>
</tbody>
</table>

Table 6.4: Functions annotated as read-only or param-only
functions *read-only*. The other observable category of functions updated the dereferences of formal parameters, possibly changing the alias or typing relationships in the calling function. We called them *param-only* functions. *Read-only* functions were particularly useful for analysis efficiency because we did not have to propagate the predicates through these functions. We propagated the predicates directly from *call* to *return*. *Parameter-only* functions implied that we needed to propagate through the functions only those predicates involving actual parameters at the call site. All other predicates were propagated directly to the corresponding *return* node. We selected 7 programs where a sizeable proportion of functions could be classified into either category by code inspection\(^\text{38}\). Note that this transformation was not intended to improve the precision of our solution, but to improve the time and storage efficiency of analysis by utilizing an easily observable property of the functions. Indeed, certain *may-hold* or *points-to-type* are absent from the computed solution for annotated functions, since they were known to be preserved through such functions and hence, were never propagated to them. Nevertheless, it should be noted that the above optimization is useful only to applications where the absence of such preserved information does not violate safety. For example, this optimization is not appropriate if one needed information about object names *used* by a function, either directly or indirectly. In Table 6.4, we compare the results of analyzing the annotated program *vis à vis* the original program. We list the percentages of functions annotated *read-only* (column \(\% r-o\)) and *param-only* (column \(\% p-o\)), the size of solution in terms of the number of *may-hold* and *points-to-type* predicates over the entire program, the number of storage allocations (column \#malloc) done by our implementation while analyzing the program and finally, the time taken for analysis. As expected, we found that the improvements were proportional to the percentages of functions so annotated, especially if they were marked *read-only*.

\(^{38}\)A simple flow insensitive algorithm would be able to find similar information, although it may be more conservative than that derived by hand. It remains to be seen whether such an automated process would still give comparable time improvements.
<table>
<thead>
<tr>
<th>name</th>
<th>LOC</th>
<th>may-hold</th>
<th>points-to-type</th>
<th>time (sec)</th>
<th>predicates/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>31</td>
<td>0</td>
<td>675</td>
<td>0.37</td>
<td>1824</td>
</tr>
<tr>
<td>primes</td>
<td>46</td>
<td>13398</td>
<td>513</td>
<td>16.07</td>
<td>866</td>
</tr>
<tr>
<td>FSM</td>
<td>98</td>
<td>1402</td>
<td>236</td>
<td>0.88</td>
<td>1861</td>
</tr>
<tr>
<td>family</td>
<td>109</td>
<td>2435</td>
<td>639</td>
<td>1.70</td>
<td>1808</td>
</tr>
<tr>
<td>vcircle</td>
<td>142</td>
<td>372</td>
<td>52</td>
<td>0.31</td>
<td>1367</td>
</tr>
<tr>
<td>garage</td>
<td>143</td>
<td>104076</td>
<td>9906</td>
<td>54.28</td>
<td>2100</td>
</tr>
<tr>
<td>life</td>
<td>178</td>
<td>46184</td>
<td>1130</td>
<td>25.50</td>
<td>1855</td>
</tr>
<tr>
<td>deriv1</td>
<td>192</td>
<td>14253</td>
<td>1414</td>
<td>14.12</td>
<td>1109</td>
</tr>
<tr>
<td>office</td>
<td>213</td>
<td>7510</td>
<td>1461</td>
<td>3.91</td>
<td>2238</td>
</tr>
<tr>
<td>tree</td>
<td>217</td>
<td>479146</td>
<td>12425</td>
<td>513.76</td>
<td>957</td>
</tr>
<tr>
<td>shapes</td>
<td>267</td>
<td>46960</td>
<td>2939</td>
<td>55.53</td>
<td>899</td>
</tr>
<tr>
<td>deriv2</td>
<td>313</td>
<td>50416</td>
<td>2620</td>
<td>64.68</td>
<td>819</td>
</tr>
<tr>
<td>simul</td>
<td>339</td>
<td>3120</td>
<td>467</td>
<td>2.00</td>
<td>1794</td>
</tr>
<tr>
<td>chess</td>
<td>392</td>
<td>66758</td>
<td>11598</td>
<td>54.31</td>
<td>1443</td>
</tr>
<tr>
<td>ocean</td>
<td>444</td>
<td>147820</td>
<td>5946</td>
<td>117.61</td>
<td>1307</td>
</tr>
<tr>
<td>objects</td>
<td>465</td>
<td>8368</td>
<td>581</td>
<td>8.11</td>
<td>1103</td>
</tr>
<tr>
<td>city</td>
<td>519</td>
<td>770868</td>
<td>12162</td>
<td>807.17</td>
<td>970</td>
</tr>
<tr>
<td>employ</td>
<td>894</td>
<td>317769</td>
<td>7988</td>
<td>348.76</td>
<td>934</td>
</tr>
<tr>
<td>greed</td>
<td>968</td>
<td>22490</td>
<td>2081</td>
<td>30.66</td>
<td>801</td>
</tr>
</tbody>
</table>

Table 6.5: Empirical corroboration: algorithm is linear in solution size - I
<table>
<thead>
<tr>
<th>name</th>
<th>virtual calls</th>
<th>predicates/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSM</td>
<td>1</td>
<td>1861</td>
</tr>
<tr>
<td>chess</td>
<td>1</td>
<td>1443</td>
</tr>
<tr>
<td>city</td>
<td>1</td>
<td>970</td>
</tr>
<tr>
<td>life</td>
<td>2</td>
<td>1855</td>
</tr>
<tr>
<td>primes</td>
<td>3</td>
<td>866</td>
</tr>
<tr>
<td>family</td>
<td>3</td>
<td>1808</td>
</tr>
<tr>
<td>tree</td>
<td>3</td>
<td>957</td>
</tr>
<tr>
<td>office</td>
<td>4</td>
<td>2238</td>
</tr>
<tr>
<td>employ</td>
<td>4</td>
<td>934</td>
</tr>
<tr>
<td>vcircle</td>
<td>5</td>
<td>1367</td>
</tr>
<tr>
<td>ocean</td>
<td>5</td>
<td>1307</td>
</tr>
<tr>
<td>NP</td>
<td>6</td>
<td>1824</td>
</tr>
<tr>
<td>simul</td>
<td>7</td>
<td>1794</td>
</tr>
<tr>
<td>garage</td>
<td>10</td>
<td>2100</td>
</tr>
<tr>
<td>greed</td>
<td>17</td>
<td>801</td>
</tr>
<tr>
<td>shapes</td>
<td>22</td>
<td>899</td>
</tr>
<tr>
<td>deriv1</td>
<td>28</td>
<td>1109</td>
</tr>
<tr>
<td>objects</td>
<td>39</td>
<td>1103</td>
</tr>
<tr>
<td>deriv2</td>
<td>66</td>
<td>819</td>
</tr>
</tbody>
</table>

Table 6.6: Empirical corroboration: algorithm is linear in solution size - II
Time performance of prototype implementation

In Section 6.2, we claimed that with reasonable assumptions, our algorithm is linear in the size of `may-hold` and `points-to-type` solution. In Tables 6.5 and 6.6, we provide empirical corroboration of this claim using the same programs listed in Table 6.1. We divided the total number of predicates (`#may-hold + #points-to-type`) with the time (in seconds) taken to analyze the program. Although the total size of `may-hold` and `points-to-type` solution varies significantly, #predicates per second indeed seems independent of the total solution size. In Table 6.5, we list the programs in increasing order of lines of code (LOC) while in Table 6.6, we list them in increasing order of the number of virtual calls. We do not observe any trends with respect to program size or the number of virtual calls, indicating the value of #predicates per second is independent of these program parameters.

6.5 Limitations of the Implementation

Although our algorithm is capable of analyzing all C++ programs subject to restrictions mentioned in Chapter 1 (p. 5), our *proof-of-the-concept* prototype has the following additional limitations.

1. Our front end parser does not handle multiple source files and libraries. We manually merge the multiple source files into a single file before analyzing the program.

2. The implementation does not handle multiple inheritance. Our inability to avoid duplication of members inherited from a virtual base class is the cause of this limitation. To overcome it would require additional information from our *black-box* front end.

3. We use an encoding scheme which assigns a unique ID for each object name generated during analysis. The encoding utilizes a fast growing function of the number of variables, the number of types, the maximum number of members any class in the program and finally, the number of dereferences (i.e., k-limit). This
placed a severe constraint on the programs we could analyze, as the ID would quickly exceed MAXINT. In some cases, the encoding failed when we tried to analyze a program from our test suite for a higher value of k.

4. The object name encoding assumes that there are no nested class declarations. In other words, class A cannot have a member which is a class B object. We hardly encountered nested class declarations in our test data.

5. The object name encoding also assumes that there are no static members in classes.

Our efforts to scale up the analysis to handle bigger programs involve lifting these restrictions, and are described in Chapter 8.
Chapter 7

Applications and Related Work

7.1 Def-Use Associations for C

Def-use associations are necessary for a range of software development environment tools, and are crucial to data-flow-based testing systems [FW88, HS89, HS90, OW91, Ost90, RW85]. Previous efforts to calculate interprocedural def-use associations [HS90, HS91], focused on Pascal like programs; their implementation did not account for pointer aliasing. The accuracy of the def-use information determines the efficiency of the test case coverage. If imprecise information is an underestimate of the def-use associations, it can lead to missed test paths; if it is an overestimate of the def-use associations it can lead to generating unnecessary test cases, resulting in more lengthy testing. If we obtain a safe approximation to the def-use associations, then only the latter situation can occur.

Debuggers based on static and dynamic slicing methods [AH90, Gor93, HRB90, KL90, OO84, Ven91, Wei84] offer the promise of efficient on-line analyses of programs. The aim of slicing is to concentrate the programmer's attention on those parts of the program significant to the computation under current investigation; the more imprecise the def-use information, the less effectively the slicing method can prune away unrelated computations.

Techniques for merging independently altered versions of programs [HPR89, YHR90] are of great interest to the programming-in-the-large community. In this domain also, the precision of the def-use information greatly impacts the comparison of the program semantics before and after changes; imprecise information may lead to incorrect conclusions of semantic differences.
The classical problem of intraprocedural reaching definitions [Hec77] was extended to handle interprocedural propagation by Harrold and Soffa [HS90]. In the absence of aliasing, our algorithm is equivalent to theirs in that both obtain the precise solution. While our approach extends naturally to account for aliasing induced by pointers as well as parameter bindings, they suggest factoring the aliases into data flow problem solution separately, as in previous work by Lomet [Lom77]. Lomet's approach suggested that an approximation of program semantics could be obtained by analyzing the procedure under different aliasing conditions and then combining them at some loss of precision. This is conceptually similar to our approach, except we are dealing with pointer induced aliasing. By solving a conditional version of the data flow problem, we avoid some of the loss of precision that Lomet incurred. The algorithm by Liu and Taha [LT90] has similar shortcomings in the presence of aliasing. Our work is qualitatively different from these analyses, as we use flow sensitive pointer aliasing during our reaching definitions calculation, rather than a factored approach.

7.2 Type Determination and Aliasing for C++

Research in optimizations for object-oriented languages has mainly concentrated on two analysis techniques: type feedback (run time) and type inference (compile time). A comparison of the two techniques appears in [AH95] using SELF as the target language. Although type feedback can be (and has been) applied to languages like C++, which use pointers extensively, existing type inference techniques for SELF do not extend naturally to handle the additional complications of pointer induced aliasing. Type feedback uses information from previous or current executions of the program to determine the possible receiver classes, while type inference approaches the same goal by analyzing the program's source code at compile time.

Type Feedback Recent work by Dean et al. [DCG95] uses a combination of type feedback and static class hierarchy information for specialization (compiling multiple versions of a method) based on subsets of possible argument classes of the method. Hölzle and Ungar [HU94] employ type feedback for optimizing dynamically dispatched
calls in SELF. Calder and Grunwald [CG94] use their profile based measurements on C++ programs to demonstrate that virtual function resolution is applicable and beneficial to C++. Prior work on improving run-time efficiency of SELF uses customization, iterative type analysis and inline caches to replace dynamic binding with procedure calls or inlined code [CU89, CU90, HCU91]. Although type feedback techniques are more suitable for interactive systems and are scalable to handle large and extensible systems, the results of type feedback depend heavily on run time information or representative profiles [AH95]. Although they are effective on most executions, their predictions cannot be extrapolated to all executions of the program and hence must provide run time support to handle the situations which may deviate from those inferred from previous executions.

In the remainder of this chapter, we concentrate on compile time analyses of object-oriented languages. We discuss in detail the existing type inference techniques based on class hierarchy, type constraints, function pointer analysis and control flow analysis of higher order languages. The type determination aspect of our work can be viewed as type inference using data flow analysis. Prior to our work, the interaction between pointer induced aliasing and type determination has enjoyed little attention. We discuss the approaches which factor out aliasing and type determination for object-oriented languages.

Class Hierarchy Analysis Class hierarchy information is used at link time by Fernandez to replace method invocations with direct calls in Modula-3 programs [Fer95]. Since Modula-3 has opaque class hierarchy (where the separate compilation module compiling a derived class may have little information about implementation of the base class), the late binding mechanism is required even for invoking methods inherited from a parent class. This language feature makes hierarchy analysis a very effective link time mechanism to eliminate indirect calls. In contrast, in a C++ program, an equivalent method invocation would have already been compiled as a direct function call. Diwan et al. have effectively applied hierarchy information and a limited form of static analysis to optimize Modula-3 programs [DMM95]. Nevertheless, such simple techniques proved less effective on our C++ benchmarks, as demonstrated empirically in Section 6.4. Kuhn
and Binkley use a simple transformation which replaces virtual invocations in C++ with direct calls within a decision statement [KB95]. The class hierarchy information is used to obtain the list of virtual functions possibly invocable at each virtual call site. Having obtained an equivalent program without the construct of virtual calls, they propose applying existing optimization techniques to improve program performance. Since hierarchy analysis alone is not shown to be effective in obtaining virtual function resolution, it is not clear to what extent the approach would be useful in practice.

Constraint based Analysis Suzuki attempted eliminating dynamically dispatched calls in Smalltalk programs by using unification based type inference [Suz81]. He performed iterative analysis to determine the receiver type as a set of classes. Although the algorithm failed to type-check common programs, it served as a starting point for other efforts to infer types in object-oriented languages. The algorithm by Palsberg and Schwartzbach infers types of expressions in an object oriented language with inheritance, assignments and late bindings [PS91]. They set up type constraints and compute the least solution in worst case exponential time. The algorithm does not perform control flow analysis nor does it track the values of objects. They suggest type determination using data flow analysis as an orthogonal way to aid their algorithm in performing optimizations and type safety checks. Agesen *et al.* present a polynomial time constraint based type inferencing algorithm for SELF to compute approximate types of all expressions in the program, including the types of receivers at dynamic dispatch sites [APS93]. Kumar *et al.* improve on this technique by utilizing the *Static Single Assignment* form of object-oriented programs [KAI95]. Since each use of an object is reached by at most one definition, their framework can track the program points where a particular receiver may have a Nil value. Plevyak and Chien describe an incremental constraint based type inference technique for Concurrent Aggregates, a concurrent object-oriented language [PC94]. While constraint based inferencing is most suitable for purely dynamic, untyped languages like SELF and ours for typed languages like C++, the two approaches may supplement each other for languages which combine these separate domains. The former can benefit from type declarations and flow analysis to keep track of instance variable values. With this information, it can refine the
type solution obtained by satisfying the flow insensitive constraints. The latter can use
the constraint based approach to arrive at an initial approximation of types for untyped
variables and proceed with flow analysis.

Function Pointer Analysis Since virtual function calls in C++ can be modeled using
function pointers in C, algorithms which handle them [BCCH94, EGH94, WL95, Wei80]
may be applied towards analysis of C++. Nevertheless, these approaches i) have a differ-
ent emphasis and are ill-tuned to function pointer analysis and/or ii) have impractical
worst case complexity, and are unsuitable in C++ context where virtual functions are
ubiquitous.

Flow Analysis of Higher Order Languages Techniques for flow analysis of higher
order languages like Scheme [Har89, JM79, Shi90] may be adapted for analyzing func-
tion pointers (and hence C++); however, they do not have acceptable complexity for
reasonable precision on real programs. The emphasis seems to be on theoretical issues
such as being able to solve the problem. It is not clear whether the theory can lead to
a practical implementation. Jagannathan and Wright compare various existing tech-
niques for analysis of such languages and motivate the need for alternative data flow
techniques [JW95].

Flow Analysis of Object-Oriented Languages The algorithm by Larcheveque fac-
tors out from type determination the side effects of function invocations and aliasing
due to parameter bindings as well as pointers [Lar92]. The suggested algorithms for
these problems [CK89, Wei80] are grossly approximate and unsuitable in a C++ con-
text. Parameswaran has developed an algorithm which performs alias analysis without
the knowledge of the receiver type at an invocation site and thus assuming that all cor-
responding virtual functions are invocable [Par92]. He then uses the precalculated alias
information for type determination. We show that aliasing and type determination are
inseparable in the general case, therefore a factored approach is not desirable. Suedholt
and Steigner use a concept of *representant* virtual function to keep information about
all the virtual functions with the same name [SS92]. This approach leads to the loss of
context which distinguishes one virtual function from others. Vitek et al. present an
algorithm which discovers the potential classes of objects for a simple object oriented language as well as a safe approximation to their lifetimes [VHU92].

Pointer Induced Aliasing and Type Determination We have shown that in C++, the problems of aliasing and type determination are practically inseparable in the presence of general purpose pointers. We use the conditional approach proposed by Landi and Ryder [LR91] to solve a combined problem. Since C++ is closely related to C (but distinguishes itself from the latter with the significant addition of object-oriented paradigm and polymorphism), our work closely relates to Landi's pointer induced aliasing work for C [Lan92a]. Other techniques for flow-sensitive pointer aliasing include [CBC93, Deu94, EGH94, WL95]. They are disparate in representation, complexity and precision. Nevertheless, we believe it is possible to define the interaction between aliasing and type determination and solve the combined problem using these techniques. Recently, Carini et al. [CHS95] have developed a type determination algorithm for C++ using the aliasing technique presented in [CBC93]. In contrast to our explicit representation of type information (in terms of pointer-type pairs), they recover in a lazy manner the information about types stored implicitly in their alias representation.
Chapter 8

Conclusions and Future Work

In this thesis, we have presented a unified approach to solve fundamental data flow analysis problems for languages with general purpose pointer usage. The technique of conditional analysis was introduced by Landi to solve the problem of aliasing in the presence of pointers [LR91]; we have extended it to solve other problems which, like aliasing, are crucial to compile time analysis. We have included a comprehensive treatment of two representative problems: def-use associations for C and type determination for C++.

In both these language domains, the thesis has contributed to the state of the art at three levels: theoretical analysis of the problems, development of safe and approximate algorithms, and empirical demonstration of the practicality and utility of these algorithms using prototype implementations.

Precise compile time analyses are intractable in the presence of multiple level pointers, and undecidable when recursive data structures are allowed [Lan92b]. We have proved that the def-use associations and type determination problems are \(\mathcal{NP} \)-hard even when only single level pointers are allowed, providing an insight into the inherent complexity of these problems. This motivated us to develop safe and approximate algorithms which concentrated on the sources of difficulty, before inheriting the additional intricacies of multiple level pointer usage. We have studied the close interaction of each of these problems with aliasing and developed a unified approach to exploit the interaction during calculation. We have shown that there would be further loss of precision if one problem was solved in isolation while making conservative assumptions about the other.

Ours is the first polynomial-time approximation algorithm for def-use associations for C programs. The algorithm has contributed to further research in the area of
software re-engineering: (i) it has been extended to improve the quality of def-uses for dynamically allocated locations [AL95], (ii) it has been adapted to perform data flow testing on classes [HR94] and (iii) it has been used to study the effectiveness of data flow based test coverage [HFO94]. Our algorithm for type determination and aliasing is the first attempt to solve this combined problem for an object-oriented language. Empirical studies of C++ program characteristics have shown that most indirect (virtual) method invocations may be uniquely resolved to direct function calls at run time. In other words, most virtual calls are run time monomorphic. Our algorithm has provided a compile time mechanism to support this result.

We have shown the viability of our approach using prototype implementations for the algorithms presented in this thesis. The empirical results obtained using our def-use associations algorithm for single level pointers have been highly precise, while the results of the recently extended implementation which handles multiple level pointers have been promising. Our C++ implementation has yielded impressive virtual function resolution on the test suite comprised of a variety of publicly available C++ programs. We have shown that simpler flow-insensitive techniques like class hierarchy information alone are not effective towards this goal. We have also suggested ways to exploit some observable properties of C++ programs to improve analysis performance.

We view the research reported in this thesis as an initial attempt to perform practical compile time analysis of C and C++. The necessity of good compile time analysis information to enhance the efficacy of software tools is well established. Although the efforts to obtain and apply such information have been largely successful for Fortran, a lot more work must go into the analysis of languages which use pointers and dynamic binding for function calls. We envisage the following future directions for our research.

Short term goals

There are engineering issues which need to be ironed out to make our algorithms more practical. Also, our proof of the concept prototype implementations require substantial enhancements so that they efficiently provide useful analysis information for larger programs. The following issues are not independent, but may be viewed as components
1. Our algorithms have a number of limitations on the language constructs handled (see Chapter 1, p. 5). Although many constructs present open research problems, the analysis should be able to detect such constructs and continue with very conservative and safe assumptions to handle them. For example, when an indirect call involving a function pointer is encountered, the analysis can consider all the functions with the appropriate type signature to be invocable and obtain safe, albeit grossly approximate results in the context of that call.

2. Our implementations need to be optimized for time performance. For some of the test programs, the analysis times are unacceptably high. The size of the alias solution has been a major factor in these pathological cases, since our algorithms are linear in the size of the solution. Our experiments to improve the analysis performance using the observable characteristics of the test programs have yielded encouraging results in reducing the solution size (See Table 6.3 and Table 6.4 in Chapter 6). Currently we compute exhaustive solutions for def-use associations, aliasing and type determination. For example, as a result of the assignment "p = &a", we create the aliases of the form <p→mk, a.mk> for all data members mk (direct as well as inherited) of the class of a. By abstracting all such aliases as <*p, a>, we can reduce the solution size. The above alias can be expanded for a particular pointer-typed member whenever it participates in further analysis. The alias may not have to be expanded for data members which are not pointers, as they do not individually participate in aliasing. Also, our algorithms use an unoptimized version of aliasing. An independent effort in optimizing this version while solving the modification side effects (MOD) problem for C has been quite successful [LRZA96]. We plan to incorporate similar optimizations to improve our analysis performance as well.

3. We have experienced some bottlenecks with the front end in our attempts to analyze realistic programs. (i) Limitations of the front end (i.e., the parsers are not capable of providing some information we require for better performance of our
back end implementation): For example, the PTT system used in our C implementation stores no information about types of expressions involved in type casts, and the MasterCraft parser for C++ requires the entire program under analysis to be contained in a single file. (ii) Inadequate functionality of interface with the front end: For example, although the MasterCraft system handles multiple inheritance, we cannot obtain a list of data members of a derived class in a multiple inheritance hierarchy. We seek a suitable front end in terms of capability and ease of interface with our back end analysis.

4. We need a more powerful and efficient representation for object names.

5. We plan to enhance our algorithms to safely handle the constructs which can create circular data structures. It involves additional case analysis during the intraprocedural propagation phase of the algorithms. Recent work on shape analysis for pointer data structures [GH96, SRW96] is relevant in this respect.

6. Our analysis works on the intermediate representation for the whole source program and keeps the entire analysis database in main memory, an approach clearly not suitable for analyzing large programs. We need to re-engineer the algorithms towards modular analysis. A possible approach would be to analyze each module with safe assumptions regarding other modules, and refine the analysis results using an iterative process.

7. Given the above limitations, we were severely restricted in choosing the programs that could be included in the test suite. We need to enlarge our C and C++ benchmarks (i) to gauge the utility of our analysis, (ii) to better study the program characteristics affecting our analysis and (iii) to obtain more confidence in our empirical results.

Open research problems

To meet the ultimate goal of this research – to provide useful semantic information leading to powerful software re-engineering and reverse-engineering tools for languages like C and C++ – we need to address the following open problems.
1. Popular programming language constructs like function pointers, type casts between structured and scalar types, and exceptions pose difficult problems for compile time analysis. There is a strong need for practical but reasonably precise analysis techniques to solve these problems.

2. Various approaches exist in literature to solve the fundamental analysis problem of pointer aliasing. We have presented a unified framework to solve two practically significant problems, data dependence analysis and virtual function resolution, in combination with the aliasing technique proposed by Landi. We believe that these problems can be combined with the other approaches for aliasing. It would be interesting to see which approaches (or a combination thereof) lead to practical analyses of large programs. There are tradeoffs in cost (time as well as space utilization) vs. precision, which may be relevant in this investigation.

3. We would like to further extend this research to solve other data flow problems such as def-use associations and modification side effects (MOD) problems for C++. The def-use associations analysis may be applied to build static slices, and used in turn to increase the effectiveness of software tools such as source level debuggers and semantic browsers.

4. We wish to investigate extending our analysis approach to other object-oriented languages (e.g. Smalltalk and SELF) as well as the languages which use other programming paradigms (e.g. functional languages like Scheme).

5. We would like to quantify the actual impact of the program transformations enabled by our research. Our def-use associations analysis already has been applied to study the data flow based test coverage of C programs. In Section 6.3, we listed various applications of virtual function resolution, such as inlining, call graph generation, and pruning the class libraries. Associated with each application, we mentioned the possible benefits, ranging from execution performance improvement to program understanding. Our analysis results need to be incorporated in appropriate software tools to quantify these benefits.
Appendix A

Def-Use Associations for C

A.1 Reaching Definitions Using May and Must Alias Information

Calculation at each ICFG node

To shorten our equations, let the notation
\[(\text{ARD or } RA = \emptyset)\]
represent the condition

"for \(\text{ARD} = \emptyset\) or \(< n_k : a >\) (where \(n_k\) and \(a\) make up the last component of the reaches); for all \(RA\) such that at least one of \(\text{ARD}\) and \(RA\) is \(\emptyset\)".

Assignment node: Consider the fixed-location assignment \(n_i \ "a = \ldots"\):

1. for all reaching must alias sets \(RMA\):
 \[
 \text{reaches}(n_i, (\emptyset, \emptyset, RMA), < n_i : a >) = \text{true}
 \]
 \[
 \text{reaches}(n_i, (< n_i : a >, \emptyset, RMA), < n_i : a >) = \text{false}
 \]
 \[
 \text{reaches}(n_i, (\emptyset, RA, RMA), < n_i : a >) = \text{false}
 \]
 (any RA except \(\emptyset\))

2. for all \(n_k \neq n_i\), (\(\text{ARD}\) or \(RA = \emptyset\)), all reaching must alias sets \(RMA\):
 \[
 \text{reaches}(n_i, (\text{ARD}, RA, RMA), < n_k : a >) = \text{false}
 \]

3. for all fixed-locations \(b \neq a\), all nodes \(n_k\), (\(\text{ARD}\) or \(RA = \emptyset\)), all reaching must alias sets \(RMA\):

 \[
 \text{reaches}(n_i, (\text{ARD}, RA, RMA), < n_k : b >) =
 \]
 \[
 \bigvee_{n_p \text{ pred of } n_i} (\text{reaches}(n_p, (\text{ARD}, RA, RMA), < n_k : b >))
 \]

Consider the assignment \(n_i \ "*p = \ldots"\):
• for all nodes \(n_k \), (ARD or RA = \emptyset), and all fixed-locations \(b \), all reaching must alias sets \(RMA \):

\[
\text{reaches}(n_i, (ARD, RA, RMA), < n_k : b >) = \begin{cases}
 n_k = n_i \land ARD = \emptyset \land \\
 \bigvee \left(\text{may-hold}(n_p, RA, <p, b>) \right) \\
 n_p \text{ pred of } n_i
\end{cases}
\]

\[
\bigvee \left(\begin{array}{ll}
 \text{false} & \text{if must-hold}(n_p, <p, b>) \subseteq RMA \\
 \beta & \text{otherwise}
\end{array} \right)
\]

\[
\beta = \bigvee \left(\text{reaches}(n_p, (ARD, RA, RMA), < n_k : b >) \right)
\]

\(n_p \text{ pred of } n_i \)

Entry node: For a call node \(c_p \), let

\[
RMA_{c_p} = \text{bind}_{c_p}(\emptyset) \cup \bigcup \text{bind}_{c_p}(<a, b>).
\]

\(\text{all } [c_p,<a,b>] \text{ in } \)

\(\text{the must alias solution} \)

For procedure \(P \), the set of all reaching must alias sets is \{RMA_{c_p} | c_p \text{ invokes } P\}.

1. for each formal \(f \), all reaching must alias sets \(RMA \):

\[
\text{reaches}(n_i, (\emptyset, \emptyset, RMA), < n_i : f >) = \text{true}
\]

\[
\text{reaches}(n_i, (< n_i : f >, \emptyset, RMA), < n_i : f >) = \text{false}
\]

\[
\text{reaches}(n_i, (\emptyset, RA, RMA), < n_i : f >) = \text{false}
\]

(any RA except \(\emptyset \))
2. for all globals g, all nodes n_k, and all call sites c_p of n_i:

\[\text{reaches}(n_i, (\langle n_k : g >, \emptyset, RMA_{c_p}), < n_k : g >) = \]
\[\bigvee (\text{reaches}(c_p, (ARD, RA, RMA'), < n_k : g >)) \]
\[(ARD \text{ or } RA = \emptyset)\]
and RMA' of calling procedure

\[\text{reaches}(n_i, (\emptyset, RA, RMA_{c_p}), < n_k : g >) = false \]
(any RA)

\[\text{reaches}(n_i, (\langle n_k : g >, RA, RMA_{c_p}), < n_k : g >) = false \]
(any RA except \emptyset)

3. for all locals l, all nodes n_k, and all call sites c_p of n_i:

\[\text{reaches}(n_i, (\langle n_k : nvl >, \emptyset, RMA_{c_p}), < n_k : nvl >) = \]
\[\bigvee (\text{reaches}(c_p, (ARD, RA, RMA'), < n_k : \alpha >)) \]
\[\alpha \in \{nl, nvl\} \text{ and} \]
\[(ARD \text{ or } RA = \emptyset)\]
and RMA' of calling procedure

\[\text{reaches}(n_i, (\emptyset, RA, RMA_{c_p}), < n_k : nvl >) = false \]
(any RA)

\[\text{reaches}(n_i, (\langle n_k : b >, RA, RMA_{c_p}), < n_k : nvl >) = \]
\[false \text{ (any RA except } \emptyset) \]

4. for all other cases (ARD or RA = \emptyset):

\[\text{reaches}(n_i, (ARD, RA, RMA), < n_k : a >) = false \]

Return node: In the following, let RMA_{c_p} (any call node c_p) be as defined on p. 122, and for notational simplicity consider may-hold(n_i, RA, \emptyset) to be true for all nodes n_i and all reaching aliases RA.

For c_i the call node of the call site of n_i, x_k the exit of the called procedure, (ARD or RA = \emptyset), all reaching must alias sets RMA, b a global or nvl for some local 1:
\(\text{reaches}(n_i, (ARD, RA, RMA), < n_m : b >) = \)

1. \(\text{reaches}(x_k, (\emptyset, \emptyset, RMA_{C_i}), < n_m : b >) \lor \)
2. \(\text{reaches}(c_i, (ARD, RA, RMA), < n_m : b >) \land \)
 \(\text{reaches}(x_k, (< n_m : b >, \emptyset, RMA_{C_i}), < n_m : b >) \)
3. \(\bigvee_{\text{all reaching}} \left(\text{reaches}(x_k, (\emptyset, RA', RMA_{C_i}), < n_m : b >) \land \right. \)
 \(\left. \text{may-hold}(c_i, RA, \text{back-bind}_{C_i}(RA')) \right) \)

For \(c_i \) the call node of the call site of \(n_i \), \(x_k \) the exit of the called procedure, \((ARD \lor RA = \emptyset)\), all reaching must alias sets \(RMA, 1 \) a local:

\(\text{reaches}(n_i, (ARD, RA, RMA), < n_m : l >) = \)

1. /* there is no corresponding case 1 */
2. \(\text{reaches}(c_i, (ARD, RA, RMA), < n_m : l >) \land \)
 \(\text{reaches}(x_k, (< n_m : n v \bot >, \emptyset, RMA_{C_i}), < n_m : n v \bot >) \)
3. \(\bigvee_{\text{all reaching}} \left(\text{reaches}(x_k, (\emptyset, RA', RMA_{C_i}), < n_m : n v \bot >) \land \right. \)
 \(\left. \text{may-hold}(c_i, RA, \text{back-bind}_{C_i}(RA')) \right) \)

Any other node: Because \(\text{reaches} \) at a node includes the effects of that node, other nodes (e.g., call, exit, conditional, ...) simply collect the reaching definitions information. Thus:

\(\text{reaches}(n_i, (ARD, RA, RMA), < n_k : b >) = \)

\(\bigvee_{n_p \text{ pred of } n_i} \left(\text{reaches}(n_p, (ARD, RA, RMA), < n_k : b >) \right) \)

Reaching definitions from conditional reaching definitions

The \(\text{rttop} \) calculation with aliasing is conceptually identical to the \(\text{rttop} \) calculation in Section 3.3.2. The \(\text{rttop} \) solution for the program in Figure 3.1 appears in Tables A.10 and A.11.

For each node \(n_i \) in the ICFG, \(\text{rttop} \) is calculated as follows:
• if \(n_i \) is an entry node or return node (special case these two as they do not have intraprocedural predecessors).

\[
rdtop(n_i) = \begin{cases}
<n_k : b> & \text{(\(\exists \) (ARD,RA,RMA)) such that} \\
& \text{reaches}(n_i, (ARD, RA, RMA), <n_k : b>) \\
& \text{is true}
\end{cases}
\]

• otherwise \(rdtop(n_i) = \)

\[
\bigcup_{n_p \text{ pred of } n_i} \begin{cases}
<n_k : b> & \text{(\(\exists \) (ARD,RA,RMA)) such that} \\
& \text{reaches}\left(\begin{array}{c}
 n_p, \\
 (ARD, RA, RMA), \\
 <n_k : b>
\end{array}\right) \\
& \text{is true}
\end{cases}
\]
A.2 Solutions for Running Example

<table>
<thead>
<tr>
<th>Procedure main</th>
<th>Procedure R</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>RA</td>
</tr>
<tr>
<td>n_4, c_1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>r_1, n_5</td>
<td>\emptyset</td>
</tr>
<tr>
<td>n_6, c_2</td>
<td>\emptyset</td>
</tr>
<tr>
<td>r_2, n_7</td>
<td>\emptyset</td>
</tr>
<tr>
<td>x_1</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

This table summarizes the *may-hold*(node, RA, alias) predicates that are true for the program in Figure 3.1. Reflexive cases (i.e., *may-hold*(n, \emptyset, $\prec x, x \succ$) for all nodes n and all object names x) which are always true are omitted for brevity.

Table A.1: Summary of may-hold

<table>
<thead>
<tr>
<th>Procedure main</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
</tr>
<tr>
<td>n_4, c_1</td>
</tr>
<tr>
<td>r_1, n_5</td>
</tr>
<tr>
<td>n_6, c_2</td>
</tr>
<tr>
<td>r_2, n_7</td>
</tr>
<tr>
<td>x_1</td>
</tr>
<tr>
<td>\emptyset</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Procedure R</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
</tr>
<tr>
<td>e_2, n_8, n_9, x_2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

This table summarizes the may alias solution for the program in Figure 3.1. Reflexive cases (i.e., $[n, \prec x, x \succ]$ for all nodes n and all object names x) are omitted for brevity.

Table A.2: Summary of may alias
This table summarizes the must-hold(node, MA) = value functions that are not \(\perp \) for the program in Figure 3.1. Reflexive cases (i.e., must-hold(n, <x, x>) for all nodes n and all object names x) are all equal to \(\emptyset \) and are omitted for brevity.

Table A.3: Summary of must-hold

<table>
<thead>
<tr>
<th>Procedure main</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>MA</td>
<td>value</td>
</tr>
<tr>
<td>(n_4, c_1)</td>
<td><*p, a></td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(r_1, n_5)</td>
<td><*p, a></td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(n_6, c_2)</td>
<td><*p, b></td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(r_2, n_7)</td>
<td><*p, b></td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Procedure R</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>MA</td>
<td>value</td>
</tr>
<tr>
<td>e_2, n_8, n_9, x_2</td>
<td><*p, a></td>
<td>{<*p, a>}</td>
</tr>
<tr>
<td></td>
<td><*p, b></td>
<td>{<*p, b>}</td>
</tr>
<tr>
<td></td>
<td><*p, *f></td>
<td>{<*p, *f>}</td>
</tr>
<tr>
<td></td>
<td><*f, a></td>
<td>{<*f, a>}</td>
</tr>
<tr>
<td></td>
<td><*f, b></td>
<td>{<*f, b>}</td>
</tr>
</tbody>
</table>

This table summarizes the must alias solution for the program in Figure 3.1. Reflexive cases (i.e., \([n, <x, x>] \) for all nodes n and all object names x) are omitted for brevity.

Table A.4: Summary of must alias

<table>
<thead>
<tr>
<th>Procedure main</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>alias</td>
<td></td>
</tr>
<tr>
<td>(n_4, c_1)</td>
<td><*p, a></td>
<td></td>
</tr>
<tr>
<td>(r_1, n_5)</td>
<td><*p, a></td>
<td></td>
</tr>
<tr>
<td>(n_6, c_2)</td>
<td><*p, b></td>
<td></td>
</tr>
<tr>
<td>(r_2, n_7)</td>
<td><*p, b></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Procedure R</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>alias</td>
</tr>
<tr>
<td>e_2 n_8, n_9, x_2</td>
<td><*p, *f></td>
</tr>
</tbody>
</table>
This table summarizes the \texttt{reaches(node, (ARD, RA), rd)} which are \texttt{true} for the program in Figure 3.1.

Table A.5: Summary of \texttt{reaches} without \texttt{must-hold}
This table summarizes the \textit{reaches}(\textit{node}, \langle \textit{ARD}, \textit{RA}, \textit{RMA} \rangle, \textit{rd}) which are \textit{true} for the procedure \textit{main} in Figure 3.1.

Table A.6: Summary of \textit{reaches} with \textit{must-hold} - I
<table>
<thead>
<tr>
<th>node</th>
<th>ARD</th>
<th>RA</th>
<th>RMA</th>
<th>rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>e₂</td>
<td>Ø</td>
<td>Ø</td>
<td>RMA₁,RMA₂</td>
<td><e₂ : f></td>
</tr>
<tr>
<td></td>
<td><n₁ : a></td>
<td>Ø</td>
<td>RMA₁,RMA₂</td>
<td><n₁ : a></td>
</tr>
<tr>
<td></td>
<td><n₂ : b></td>
<td>Ø</td>
<td>RMA₁,RMA₂</td>
<td><n₂ : b></td>
</tr>
<tr>
<td></td>
<td><n₄ : p></td>
<td>Ø</td>
<td>RMA₁</td>
<td><n₄ : p></td>
</tr>
<tr>
<td></td>
<td><n₆ : p></td>
<td>Ø</td>
<td>RMA₂</td>
<td><n₆ : p></td>
</tr>
<tr>
<td>n₈</td>
<td>Ø</td>
<td>Ø</td>
<td>RMA₁,RMA₂</td>
<td><e₂ : f></td>
</tr>
<tr>
<td></td>
<td><n₁ : a></td>
<td>Ø</td>
<td>RMA₂</td>
<td><n₁ : a></td>
</tr>
<tr>
<td></td>
<td><n₂ : b></td>
<td>Ø</td>
<td>RMA₁</td>
<td><n₂ : b></td>
</tr>
<tr>
<td></td>
<td><n₄ : p></td>
<td>Ø</td>
<td>RMA₁</td>
<td><n₄ : p></td>
</tr>
<tr>
<td></td>
<td><n₆ : p></td>
<td>Ø</td>
<td>RMA₂</td>
<td><n₆ : p></td>
</tr>
<tr>
<td></td>
<td>< *f, a ></td>
<td>RMA₁,RMA₂</td>
<td><n₈ : a></td>
<td></td>
</tr>
<tr>
<td></td>
<td>< *f, b ></td>
<td>RMA₁,RMA₂</td>
<td><n₈ : b></td>
<td></td>
</tr>
<tr>
<td>n₀, x₂</td>
<td>Ø</td>
<td>Ø</td>
<td>RMA₁,RMA₂</td>
<td><e₂ : f></td>
</tr>
<tr>
<td></td>
<td><n₁ : a></td>
<td>Ø</td>
<td>RMA₂</td>
<td><n₁ : a></td>
</tr>
<tr>
<td></td>
<td><n₂ : b></td>
<td>Ø</td>
<td>RMA₁</td>
<td><n₂ : b></td>
</tr>
<tr>
<td></td>
<td><n₄ : p></td>
<td>Ø</td>
<td>RMA₁</td>
<td><n₄ : p></td>
</tr>
<tr>
<td></td>
<td><n₆ : p></td>
<td>Ø</td>
<td>RMA₂</td>
<td><n₆ : p></td>
</tr>
<tr>
<td></td>
<td>< *f, a ></td>
<td>RMA₁,RMA₂</td>
<td><n₈ : a></td>
<td></td>
</tr>
<tr>
<td></td>
<td>< *f, b ></td>
<td>RMA₁,RMA₂</td>
<td><n₈ : b></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ø</td>
<td>Ø</td>
<td>RMA₁,RMA₂</td>
<td><n₀ : c></td>
</tr>
</tbody>
</table>

This table summarizes the reaches(node, (ARD, RA, RMA), rd) which are true for the procedure R in Figure 3.1. To make the summary more readable, define:

- **RMA₁** = \{ <*p, a>, <*p, *f>, <*f, a> \}
- **RMA₂** = \{ <*p, b>, <*p, *f>, <*f, b> \}

Table A.7: Summary of reaches with *must-hold* - II
Procedure `main`

<table>
<thead>
<tr>
<th>node</th>
<th><code>rdtop(node)</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>n_2</code></td>
<td><code>\{ < n_1 : a > \}</code></td>
</tr>
<tr>
<td><code>n_3, n_4</code></td>
<td><code>\{ < n_1 : a >, < n_2 : b > \}</code></td>
</tr>
<tr>
<td><code>c_1</code></td>
<td><code>\{ < n_1 : a >, < n_2 : b >, < n_4 : p > \}</code></td>
</tr>
</tbody>
</table>
| `r_1, n_5` | `\{ < n_1 : a >, < n_2 : b >, < n_4 : p >, < n_8 : a >, \}
| | `< n_9 : c >` |
| `n_6` | `\{ < n_1 : a >, < n_2 : b > \}` |
| `c_2` | `\{ < n_1 : a >, < n_2 : b >, < n_6 : p > \}` |
| `r_2, n_7` | `\{ < n_1 : a >, < n_2 : b >, < n_6 : p >, < n_8 : b >, \}
| | `< n_9 : c >` |
| `x_1` | `\{ < n_1 : a >, < n_2 : b >, < n_4 : p >, < n_6 : p >, < n_8 : a >, < n_8 : b >, < n_9 : c > \}` |

This table summarizes the `rdtop` solution for procedure `main` in Figure 3.1.

Table A.8: Summary of `rdtop` - I (computed from `reaches` without `must-hold`)

Procedure `R`

<table>
<thead>
<tr>
<th>node</th>
<th><code>rdtop(node)</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>e_2, n_8</code></td>
<td><code>\{ < e_2 : f >, < n_1 : a >, < n_2 : b >, < n_4 : p >, < n_6 : p > \}</code></td>
</tr>
<tr>
<td><code>n_9</code></td>
<td><code>\{ < e_2 : f >, < n_1 : a >, < n_2 : b >, < n_4 : p >, < n_6 : p > < n_8 : a >, < n_8 : b > \}</code></td>
</tr>
<tr>
<td><code>x_2</code></td>
<td><code>\{ < e_2 : f >, < n_1 : a >, < n_2 : b >, < n_4 : p >, < n_6 : p > < n_8 : a >, < n_8 : b >, < n_9 : c > \}</code></td>
</tr>
</tbody>
</table>

This table summarizes the `rdtop` solution for procedure `R` in Figure 3.1.

Table A.9: Summary of `rdtop` - II (computed from `reaches` without `must-hold`)
This table summarizes the \textit{rdtop} solution for procedure \textit{main} in Figure 3.1.

\textbf{Table A.10: Summary of \textit{rdtop} - I (computed from \textit{reaches} with \textit{must}-\textit{hold})}

<table>
<thead>
<tr>
<th>node</th>
<th>\textit{rdtop}(node)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_2</td>
<td>${ < n_1 : a > }$</td>
</tr>
<tr>
<td>n_3,n_4</td>
<td>${ < n_1 : a >, < n_2 : b > }$</td>
</tr>
<tr>
<td>c_1</td>
<td>${ < n_1 : a >, < n_2 : b >, < n_4 : p > }$</td>
</tr>
<tr>
<td>r_1,n_5</td>
<td>${ < n_2 : b >, < n_4 : p >, < n_8 : a >, < n_9 : c > }$</td>
</tr>
<tr>
<td>n_6</td>
<td>${ < n_1 : a >, < n_2 : b > }$</td>
</tr>
<tr>
<td>c_2</td>
<td>${ < n_1 : a >, < n_2 : b >, < n_6 : p > }$</td>
</tr>
<tr>
<td>r_2,n_7</td>
<td>${ < n_1 : a > < n_6 : p >, < n_8 : b >, < n_9 : c > }$</td>
</tr>
<tr>
<td>x_1</td>
<td>${ < n_3 : a >, < n_2 : b >, < n_4 : p >, < n_6 : p >, < n_8 : a >, < n_8 : b >, < n_9 : c > }$</td>
</tr>
</tbody>
</table>

This table summarizes the \textit{rdtop} solution for procedure \textit{R} in Figure 3.1.

\textbf{Table A.11: Summary of \textit{rdtop} - II (computed from \textit{reaches} with \textit{must}-\textit{hold})}

<table>
<thead>
<tr>
<th>node</th>
<th>\textit{rdtop}(node)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_2,n_8</td>
<td>${ < e_2 : f >, < n_1 : a >, < n_2 : b >, < n_4 : p >, < n_6 : p > }$</td>
</tr>
<tr>
<td>n_0</td>
<td>${ < e_2 : f >, < n_1 : a >, < n_2 : b >, < n_4 : p >, < n_6 : p > < n_8 : a >, < n_8 : b > }$</td>
</tr>
<tr>
<td>x_2</td>
<td>${ < e_2 : f >, < n_1 : a >, < n_2 : b >, < n_4 : p >, < n_6 : p > < n_8 : a >, < n_8 : b >, < n_9 : c > }$</td>
</tr>
<tr>
<td>Def-use without must-hold</td>
<td>Def-use with must-hold</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>(<< n_1 : a), n_3 >></td>
<td>(<< n_1 : a), n_3 >></td>
</tr>
<tr>
<td>(<< n_4 : p), c_1 >></td>
<td>(<< n_4 : p), c_1 >></td>
</tr>
<tr>
<td>(<< n_6 : p), c_2 >></td>
<td>(<< n_6 : p), c_2 >></td>
</tr>
<tr>
<td>(<< e_2 : f), n_8 >></td>
<td>(<< e_2 : f), n_8 >></td>
</tr>
<tr>
<td>(<< n_4 : p), n_5 >></td>
<td>(<< n_4 : p), n_5 >></td>
</tr>
<tr>
<td>(<< n_8 : a), n_5 >></td>
<td>(<< n_8 : a), n_5 >></td>
</tr>
<tr>
<td>(<< n_8 : b), n_7 >></td>
<td>(<< n_8 : b), n_7 >></td>
</tr>
<tr>
<td>(<< n_1 : a), n_5 >></td>
<td>(<< n_8 : b), n_7 >></td>
</tr>
<tr>
<td>(<< n_2 : b), n_7 >></td>
<td></td>
</tr>
</tbody>
</table>

This table is the def-use solution for the program in Figure 3.1.

Table A.12: Summary of def-use associations
Appendix B

Compile Time Analysis of C++: Monotone Data Flow Frameworks

This chapter represents the first comprehensive effort to fit a practical approximation algorithm for an intractable interprocedural data flow analysis problem involving pointers in the classical model of monotone data flow frameworks. Previous researches have proposed general theoretical frameworks to solve interprocedural data flow problems precisely [CC77, SP81]. However, they have not led to corresponding practical implementations. Others have proposed data flow frameworks for interprocedural problems with precise, polynomial-time solution procedures [KRS94, Lan92a, RHS95]. We present an algorithm for approximation formulation of interprocedural type determination using a monotone data flow framework based on a finite multisource lattice [MMR95]. We show that the algorithm calculates an approximate and safe solution for the precise type determination problem, and the solution is identical to that computed by the algorithm presented in Section 5.3. Further, we outline a similar framework for the combined problem of type determination and aliasing. We believe that practical approximation algorithms for interprocedural problems using conditional analysis approach can be presented in similar monotone data flow frameworks, providing the algorithms a theoretical foundation to reason about properties such as safety and correctness.

In the following discussion, we assume the same restrictions on language constructs as mentioned in Chapter 1 (see p. 5).

B.1 Type Determination for Single Level Pointers

We define the following sets:
\(\mathcal{X} \) : set of exit nodes of ICFG with each node in the set indexed by a unique number between 1 and \(|\mathcal{X}|\). Let \(\tilde{x} = |\mathcal{X}| \). Let \(d_x \) be the index of exit node \(x \).

\(\mathcal{EN} \) : set of entry nodes of ICFG. Since there is a unique exit for each entry, each node \(e \) in \(\mathcal{EN} \) is indexed by the same number \(d_e \), between 1 and \(\tilde{x} \), as its corresponding exit.

\(T \) : Set of types in the program.

\(\mathcal{LC}_n \) : set of pointer-typed object names derived from local variables of the function containing ICFG node \(n \).

\(\mathcal{GB} \) : set of pointer-typed object names derived from global variables in the program (including heap variables and static members of classes).

\(\mathcal{P} \) : Set of object names which have a pointer type. Clearly, \(\mathcal{P} = \mathcal{GB} \cup (\bigcup_{e \in \mathcal{EN}} \mathcal{LC}_e) \).

\(\mathcal{PT} = (\mathcal{P} \times T) \) : set of all possible pointer-type pairs (e.g., \(\langle p \Rightarrow C \rangle \)).

\(\mathcal{RT}_{c \rightarrow e} = \{ \langle \text{rec} \Rightarrow T \rangle \mid \text{rec} \in \mathcal{P} \text{ is the receiver of call node } c, \text{ and } \text{points to an object of } T \in T \text{ at } c \} \).

\(\mathcal{PT}_\emptyset = (\mathcal{PT} \cup \{\emptyset\}) \) : set of all possible assumptions at entry nodes.

\(\mathcal{S} = (\mathcal{PT}_\emptyset \times \mathcal{PT}) \) : set of all (assumption, pointer-type) tuples.

\(\mathcal{S}^{\tilde{x}} \) : \((\tilde{x} + 1)\)-ary cross product of \(\mathcal{S} \).

\(\emptyset^{\tilde{x}} \) : \((\tilde{x} + 1)\)-ary tuple of \(\emptyset s \).

Monotone data flow framework: To solve the problem of type determination using the approximation formulation (see Section 5.2), we define an instance of a monotone data flow framework \(D = (ICFG_D, L, F, M) \), where

1. \(ICFG_D = (N, E_D, \rho) \) is a program representation similar to the ICFG described in Section 2.1. \(N \) is the set of nodes, \(E_D \) is the set of edges and \(\rho \) is the entry node of main.
2. \(L = (2^{\mathcal{S}^\mathcal{X}}, \mathcal{S}^\mathcal{X}, \emptyset^\mathcal{X}, \supseteq^\mathcal{X}, \uparrow) \) is a finite meet semilattice with poset \(2^{\mathcal{S}^\mathcal{X}} \), two special elements \(\mathcal{S}^\mathcal{X} \) and \(\emptyset^\mathcal{X} \), a reflexive partial order \(\supseteq^\mathcal{X} \), and a meet operator \(\uparrow \).

3. \(F \) is a closed subset of monotone operations from \(2^{\mathcal{S}^\mathcal{X}} \to 2^{\mathcal{S}^\mathcal{X}} \).

4. \(M : \mathcal{E}_D \to F \) is a function which maps each edge in \(\mathcal{E}_D \) to an edge function in \(F \).

We describe the above concepts in detail as follows.

The program representation \(ICFG_D \) defined for the above framework is identical to the ICFG in Section 2.1 with the exit-to-return edges in \(\mathcal{E} \) replaced by the following two types of edges.

- \(\ll \text{exit, call} \gg \) is an edge from exit to call if the function containing exit is possibly invoked from call.

- \(\ll \text{call, return} \gg \) is an edge from call to its corresponding return.

Note that these edges do not represent any execution flow, but are introduced in order to define appropriate edge functions accounting for interprocedural data flow from exit to return. The significance of these special edges will become clear when we describe the edge functions.

Each node in \(\mathcal{N} \) is associated with a lattice element \(\in 2^{\mathcal{S}^\mathcal{X}} \) (i.e., a subset of \(\mathcal{S}^\mathcal{X} \)). Let the lattice element associated with node \(n \) be \(S_n = [S_n(0), \ldots, S_n(\mathcal{Z})] \). In this framework, which serves as the basis of our approximation formulation, \((APT, PT) \in S_n(0) \) if the following is true.

There exists an approximate conditionally consistent path to \(n \) from the entry node \(e \) of the function containing \(n \) on which \(PT \) holds assuming \(APT \) holds at \(e \), and there exists an approximate consistent path to \(e \) on which \(APT \) holds.

The other components of the lattice elements (i.e., \(S_n(1) \) through \(S_n(\mathcal{Z}) \)) play a crucial role in the propagation of information from an exit node to corresponding return node(s). They are non-\(\emptyset \) only at the call nodes, and are used by the edge function associated with the special interprocedural edges introduced above. The edge functions
representing interprocedural propagation from a call node to entry node(s) and the
dge functions representing intraprocedural propagation effectively ignore these com-
ponents. The use of this multi-component lattice enables us to fit our formulation
in the classical definition of a monotone data flow framework [KU77]. By employing
the well-established results of data flow analysis based on this model, we prove certain
properties of the formulation, such as safety and non-distributivity.

\(S^\bar{\top} \) represents the \(\bot \) (bottom) and \(\top^\bar{\top} \) represents the \(\top \) (top) elements of this semi-
lattice. The reflexive partial order \(\preceq^\bar{\top} \) is defined on \(2^S^\bar{\top} \) as: if \(S \) and \(T \) are two elements
of \(2^S^\bar{\top} \), \(S \preceq^\bar{\top} T \) iff \(S(i) \supseteq T(i) \) for all \(i \), \(0 \leq i \leq \bar{x} \). The irreflexive relation \(\succeq^\bar{\top} \) is
similarly defined. The meet operator has the following interpretation: if \(S \) and \(T \) are
two elements of \(2^S^\bar{\top} \), \((S \cup \bar{T}) = [S(0) \cup T(0), \ldots, S(\bar{x}) \cup T(\bar{x})] \).

Monotone operation space: In order to define the operation space \(\mathcal{F} \), we need some
auxiliary functions. Since the set \(S \) is finite, we can assign to each subset of \(S \) a unique
index between 0 and \(|2^S| - 1 \). Let \(s_j \) represent the subset of \(S \) with index \(j \), with \(s_0 \)
representing \(\emptyset \). Define\(^{39} \)

\[
g^i_j(S) : 2^S^\bar{\top} \rightarrow 2^S = S(i) - s_j
\]

\[
g^i_{jk}(S) : 2^S^\bar{\top} \rightarrow 2^S = s_j \subseteq S(i) \ ? \ s_k : \emptyset
\]

\[
\pi_1(s) : 2^S \rightarrow 2^{\mathcal{P} T_s} = \left\{ APT \ \middle| \ (A PT, PT) \in s \right\}
\]

\[
\pi_2(s) : 2^S \rightarrow 2^{\mathcal{P} T} = \left\{ PT \ \middle| \ (A PT, PT) \in s \right\}
\]

We inductively define a set of functions, each of which has signature \(h : 2^S^\bar{\top} \rightarrow 2^S \), as
follows:

Rule 1.1: \(h \leftarrow g^i_j \)

Rule 1.2: \(\leftarrow g^i_{jk} \)

Rule 1.3: \(\leftarrow (\pi_1 \circ h_1) \times (\pi_2 \circ h_2) \)

Rule 1.4: \(\leftarrow h_1 \cup h_2 \)

\(^{39}\text{Note that } g^i_j(S) \text{ can also be defined as } S(i) \cap s_j \text{ where } s_j = S - s_j.\)
Equipped with these auxiliary functions, we now define the operation space F to be comprised of the functions obtained by the following inductive definition. Each function in F has type $2^{S^2} \rightarrow 2^{S^2}$ and each component function (h_0 through $h_\tilde{x}$) in Rule 2.1 below satisfies Rule 1.

Rule 2.1:
$$f \leftarrow [h_0, \ldots, h_\tilde{x}]$$
$$f_1 \cup f_2 \leftarrow f_1 \circ f_2$$

We now show that F satisfies the following four conditions [Hec77], making it a monotone function space associated with L.

1. Each $f \in F$ is monotonic. That is, $(\forall f \in F)(\forall S, T \in L)[S \supseteq T \Rightarrow f(S) \supseteq f(T)]$: We prove this by structural induction, first on the formation of each component function h, and then on the formation of f.

basis: By inspection, g_j^i and $g_{j,k}^i$ are monotonic. Therefore each component function h defined by Rule 1.1 or Rule 1.2 is monotonic.

induction hypothesis: Suppose h_1 and h_2 are monotonic.

induction step: By inspection, π_1 and π_2 are monotonic. Since cross-product, functional composition and set union are monotonic, each h formed using Rule 1.3 or Rule 1.4 is monotonic.

Therefore, each component function h is monotonic. Finally we show that the f functions are monotonic.

basis: Using the above result, each component function h defined by Rule 1 is monotonic. Since cross-product is a monotonic operation, each f formed using Rule 2.1 is monotonic.

induction hypothesis: Suppose f_1 and f_2 are monotonic.

induction step: f is formed by monotonic operations (meet and composition) on f_1 and f_2 (Rules 2.2 and 2.3).

2. There exists an identity operation f_e in F. That is, $(\exists f_e \in F)(\forall S \in L)[f_e(S) = S]$:

Let $f_e = [g_0^0, g_0^1, \ldots, g_\tilde{x}]$. Clearly f_e is an identity operation.
3. F is closed under meet and composition. That is, $(\forall f_1, f_2 \in F)[f_1 \hat{\lor} f_2 \in F]$ and $(\forall f_1, f_2 \in F)[f_1 \circ f_2 \in F]$: By construction (Rules 2.2 and 2.3 above).

We consider only finite ICFG paths; therefore, showing closure under infinite composition is irrelevant to our formulation. Since we are dealing with a finite domain (set S is finite), an infinite meet can be expressed as a meet of finitely many sets which are pairwise unrelated with respect to set inclusion. Thus, F is closed under infinite meets.

4. For each $S \in I$, there exists an $f_S \in F$ such that $S = f_S(S^{\hat{x}})$: By definition, $S = [S(0), S(1), \ldots, S(\hat{x})]$. For each $S(i)$, we can find an index k_i such that $S(i) = s_{k_i}$. For each such S, we can define f_S to be $[g_{0,k_0}^0, g_{0,k_1}^1, \ldots, g_{0,k_2}^{\hat{x}}]$. Clearly f_S is a function such that $f_S(S^{\hat{x}}) = S$.

Edge functions: First we define an auxiliary edge function $\text{type-bind}_{c \rightarrow e}$ to account for the parameter bindings at call sites.

$$\text{type-bind}_{c \rightarrow e}(\theta) = \begin{cases} < f \Rightarrow B> & \text{f is corresponding formal for actual & b (where b is an object of type B) or new B at call c} \\ < p \Rightarrow B> & p \in G_B \end{cases} \cup$$

$$\text{type-bind}_{c \rightarrow e}(< p \Rightarrow B>) = \begin{cases} < f \Rightarrow B> & \text{f is corresponding formal for actual p at call c} \\ < p \Rightarrow B> & p \in G_B \end{cases}$$

Finally, we define the edge functions describing propagation of type information over each class of ICFG edges. In all the following cases, we first list some component functions which facilitate defining the edge function, describe these component functions intuitively, and then define the edge function using them.

1. $\ll m, n \gg$ where n is a pointer assignment with left hand side p and m is an intraprocedural predecessor. Let

$$h_\emptyset(S) = S(0) - \begin{cases} (APT, < p \Rightarrow C>) & APT \in \mathcal{PT}_\emptyset \text{ and C } \in \mathcal{T} \end{cases}$$
$h_0(S)$ removes all tuples (APT, PT) where PT involves p, since p is redefined.

$$h_{1_{APT_q,C}}(S) = \{(APT, \langle q \Rightarrow C \rangle) \} \subseteq S(0) \setminus \{(APT, \langle p \Rightarrow C \rangle)\} : \emptyset$$

$$h_2\langle q \rangle(S) = \bigcup_{\text{APT} \in \mathcal{PT}_0} h_{1_{APT_q,C}}(S)$$

$$h_2\langle q \rangle(S) \text{ returns tuples of the form } (APT, \langle q \Rightarrow C \rangle) \text{ where } (APT, \langle p \Rightarrow C \rangle) \text{ holds at the predecessor } m.$$

$$h_4_B(S) = \{(\emptyset, \langle p \Rightarrow B \rangle)\}$$

\[
\mathcal{f}_{m \rightarrow n}(S) \triangleq \begin{cases}
 [h_0(S), g_{0,0}^1(S), \ldots, g_{0,0}^\ell(S)] & n : p = \text{NULL} \\
 [h_0(S) \cup h_2\langle q \rangle(S), g_{0,0}^1(S), \ldots, g_{0,0}^\ell(S)] & n : p = q \\
 [h_0(S) \cup h_4_B(S), g_{0,0}^1(S), \ldots, g_{0,0}^\ell(S)] & n : p = \text{new } B \\
 [h_0(S) \cup h_4_B(S), g_{0,0}^1(S), \ldots, g_{0,0}^\ell(S)] & n : p = \&b$
\]

\text{1b is an object of type } B.

2. $\ll c, e \gg$ where c is a non-virtual call node, e is the corresponding entry node. Let

$$h_{0_{APT_1,PT_1}}(S) = \{(APT_1, PT_1) \} \subseteq S(0) \setminus \bigcup \left\{ (APT_e, APT_e) \mid APT_e \in \text{type-bind}_{c\rightarrow e}(PT_1) \right\} : \emptyset$$

$$h_{1}(S) = \bigcup_{\text{APT}_1 \in \mathcal{PT}_0} h_{0_{APT_1,PT_1}}(S)$$

$$h_{1}(S) \text{ returns all tuples } (APT_e, APT_e) \text{ where } (i) APT_e \in \text{type-bind}_{c\rightarrow e}(PT_1) \text{ and }$$

(ii) PT_1 holds at c.

$$h_2(S) = \left\{ (APT_e, APT_e) \mid APT_e \in \text{type-bind}_{c\rightarrow e}(\emptyset) \right\}$$

$$h_2(S) \text{ returns all tuples } (APT_e, APT_e) \text{ where } APT_e \in \text{type-bind}_{c\rightarrow e}(\emptyset).$$

$$\mathcal{f}_{c\rightarrow e}(S) \triangleq [h_{1}(S) \cup h_2(S), g_{0,0}^1(S), \ldots, g_{0,0}^\ell(S)]$$
3. \(\ll c, e \gg \) where \(c \) is a virtual call node with receiver \(rec \), \(e \) is an entry node. Let

\[
\begin{align*}
 h_{0_{APT1,PT1,APT2,PT2}}(S) &= \{(APT1, PT1), (APT2, PT2)\} \subseteq S(0) \\
 h1(S) &= \bigcup_{APT1, APT2 \in \mathcal{PT}_0} h_{0_{APT1,PT1,APT2,PT2}}(S) \\
 &\quad \bigcup_{PT1 \in \mathcal{PT}} \bigcup_{PT2 \in \mathcal{RT}_{c \mapsto c}} h_{0_{APT1,PT1,APT2,PT2}}(S)
\end{align*}
\]

\(h1(S) \) checks if a pointer-type pair \(\langle rec \Rightarrow E \rangle \) holds at \(c \) (i.e., \((APT, \langle rec \Rightarrow E \rangle) \in S(0) \) for some \(APT \)) such that \(rec \) pointing to an object of class \(E \) makes \(c \) invoke \(e \); if so, returns tuples \((APT_c, APT_e) \) where (i) \(APT_c \in type\text{-}bind_{c \mapsto c}(PT1) \) and (ii) \(PT1 \) holds at \(c \).

\[
\begin{align*}
 h_{2_{APT2,PT2}}(S) &= \{(APT2, PT2)\} \subseteq S(0) \\
 h3(S) &= \bigcup_{APT2 \in \mathcal{PT}_0} h_{2_{APT2,PT2}}(S) \\
 &\quad \bigcup_{PT2 \in \mathcal{RT}_{c \mapsto c}} h_{2_{APT2,PT2}}(S)
\end{align*}
\]

\(h3(S) \) checks if a pointer-type pair \(\langle rec \Rightarrow E \rangle \) holds at \(c \) such that \(rec \) pointing to an object of class \(E \) makes \(c \) invoke \(e \); if so, returns tuples \((APT_c, APT_e) \) where \(APT_c \in type\text{-}bind_{c \mapsto c}(\emptyset) \).

\[
f_{c \mapsto c}(S) \triangleq [h1(S) \cup h3(S), g_0^1(S), \ldots, g_{0,\emptyset}^\ddagger(\emptyset)]
\]
4. \(\ll c, r \gg \) where \(c \) is a non-virtual call node with corresponding entry node \(e \), \(r \) is the corresponding return node. Let

\[
h_{0_{PT1}}(S) = S(d_e) \cap (type\text{-}bind_{c \rightarrow e}(PT1) \times (GB \times T))
\]

\[
h_{1_{APT1, PT1}}(S) = \{(APT1, PT1)\} \subseteq S(0) \ ? \{(APT1, PT1)\} : 0
\]

\[
h_{2_{PT1}}(S) = \bigcup_{APT1 \in \mathcal{PT}_0} h_{1_{APT1, PT1}}(S)
\]

\[
h_{3}(S) = \bigcup_{PT1 \in \mathcal{PT}} \pi_1(h_{2_{PT1}}(S)) \times \pi_2(h_{0_{PT1}}(S))
\]

\(h_{3}(S) \) returns tuples \((APT1, PT) \) such that (i) \(PT1 \) holds at \(c \) with assumption \(APT1 \), (ii) \(APTc \in type\text{-}bind_{c \rightarrow e}(PT1) \), (iii) \(PT \) holds at corresponding exit node of \(e \) with assumption \(APTc \), and (iv) \(PT \) involves a global object name.

\[
h_{4}(S) = S(d_e) \cap ((type\text{-}bind_{c \rightarrow e}(\emptyset) \cup \{\emptyset\}) \times (GB \times T))
\]

\[
h_{5}(S) = \{\emptyset\} \times \pi_2(h_{4}(S))
\]

\(h_{5}(S) \) returns tuples \((\emptyset, PT) \) such that (i) \(APTc \in type\text{-}bind_{c \rightarrow e}(\emptyset) \) or \(APTc = \emptyset \), (ii) \(PT \) holds at corresponding exit node of \(e \) with assumption \(APTc \), and (iii) \(PT \) involves a global object name.

\[
h_{6}(S) = \bigcup_{APT1 \in \mathcal{PT}_0} h_{1_{APT1, PT1}}(S)
\]

\[
h_{6}(S) \in \mathcal{PT}_0 \times TC \times T
\]

\(h_{6}(S) \) returns tuples \((APT1, PT1) \in S(0) \) where \(PT1 \) involves an object name local to the function containing call node \(c \).

\[
f_{c \rightarrow r}(S) \triangleq [h_{3}(S) \cup h_{5}(S) \cup h_{6}(S), g_{0,0}^{1}(S), \ldots, g_{0,0}^{\alpha}(S)]
\]
5. \(\llangle c, r \rrangle\) where \(c\) is a virtual call node with receiver \(rec\), \(r\) is the corresponding return node, and \(e \in \mathcal{E}_N\). Let

\[
h_{0, PT_1}(S) = S(d_c) \cap (\text{type-bind}_{c \rightarrow e}(PT_1) \times (\mathcal{G}B \times T))
\]

\[
h_{1_{APT_1, PT_1, APT_2, PT_2}}(S) = \{(APT_1, PT_1), (APT_2, PT_2)\} \subseteq S(0) \cup \{(APT_1, PT_1)\} : \emptyset
\]

\[
h_{2, PT_1}(S) = \bigcup_{APT_1, APT_2 \in \mathcal{P}T_0} \bigcup_{PT_2 \in \mathcal{R}_{T_{c \rightarrow e}}} h_{1_{APT_1, PT_1, APT_2, PT_2}}(S)
\]

\[
h_3(e)(S) = \bigcup_{PT_1 \in \mathcal{P}T} \pi_1(h_{2, PT_1}(S)) \times \pi_2(h_{0, PT_1}(S))
\]

\(h_3(e)(S)\) checks if \(S(0)\) contains a tuple \((APT_2, \llangle rec \Rightarrow E \rrangle)\) such that \(rec\) pointing to an object of class \(E\) results in \(c\) calling \(e\); if so, returns tuples \((APT_1, PT)\) such that (i) \(PT_1\) holds at \(c\) with assumption \(APT_1\), (ii) \(APT_e \in \text{type-bind}_{c \rightarrow e}(PT_1)\), (iii) \(PT\) holds at corresponding exit node of \(e\) with assumption \(APT_e\), and (iv) \(PT\) involves a global object name.

\[
h_{4, PT_1}(S) = S(d_c) \cap ((\text{type-bind}_{c \rightarrow e}(\emptyset) \cup \{\emptyset\}) \times (\mathcal{G}B \times T))
\]

\[
h_{5_{APT_2, PT_2}}(S) = \{(APT_2, PT_2)\} \subseteq S(0) \cup \{(\emptyset, PT_2)\} : \emptyset
\]

\[
h_6(e)(S) = \bigcup_{APT_2 \in \mathcal{P}T_0} \bigcup_{PT_2 \in \mathcal{R}_{T_{c \rightarrow e}}} h_{5_{APT_2, PT_2}}(S)
\]

\[
h_7(e)(S) = \pi_1(h_6(e)(S)) \times \pi_2(h_4(e)(S))
\]

\(h_7(e)(S)\) checks if \(S(0)\) contains a tuple \((APT_2, \llangle rec \Rightarrow E \rrangle)\) such that \(rec\) pointing to an object of class \(E\) results in \(c\) calling \(e\); if so, returns tuples \((\emptyset, PT)\) such that (i) \(APT_e \in \text{type-bind}_{c \rightarrow e}(\emptyset)\) or \(APT_e = \emptyset\), (ii) \(PT\) holds at corresponding exit
node of e with assumption APT_e, and (iii) PT involves a global object name.

$$h8(S) = \bigcup_{APT1, APT2 \in PT} h1_{APT1, PT1, APT2, PT2}(S)$$

$h8$ returns tuples $(APT1, PT1) \in S(0)$ where $PT1$ involves an object name local to the function containing call node c.

$$h9(S) = \bigcup_{e \in \mathcal{EN}} (h3_e(S) \cup h7_e(S)) \cup h8(S)$$

$$f_{c \rightarrow r}(S) \overset{\Delta}{=} [h9(S), g^1_0(S), \ldots, g^8_0(S)]$$

6. $\ll x, c \gg$ where x is an exit node and c is a call node. Let

$$h^i(S) = \begin{cases}
 g^0_0(S) & i = d_x \\
 g^0_{0,0}(S) & \text{otherwise}
\end{cases}$$

$$f_{x \rightarrow c}(S) \overset{\Delta}{=} [g^0_0(S), h^1(S), \ldots, h^8(S)]$$

Effectively, $S_x(0)$ of exit node x is propagated to $S_c(d_x)$ of the call site c. We saw earlier how $f_{c \rightarrow r}$ uses $S_e(0)$ and $S_c(d_x)$ at call node c to propagate type information to corresponding return node r.

7. $\ll m, n \gg$ where m is not an exit node and n is not an entry node, return node or pointer assignment. This is the case of simple intraprocedural propagation, since the information flows unchanged on an intraprocedural edge to a node which is not a pointer assignment.

$$f_{m \rightarrow n}(S) \overset{\Delta}{=} [g^0_0(S), g^0_{0,0}(S), \ldots, g^0_{0,0}(S)]$$

Theoretical properties of the framework: To demonstrate the difficulty of type determination even in the approximation formulation, we evaluate the function space
with respect to two properties viz., distributivity and k-boundedness. A distributive function space guarantees that the iteratively obtained Maximal Fixed Point (MFP) solution is identical to the ideally sought Meet-Over-all-Paths (MOP) solution of the problem. k-boundedness of the function space guarantees that the lattice values being carried around a loop in the source code stabilize in at most k iterations of the loop. Unfortunately our function space possesses neither of these properties, providing a measure of inherent difficulty of the approximation formulation.

The closed monotone function space F associated with lattice L is distributive iff

$$(\forall f \in F)(\forall S_1, S_2 \in L) : [f(S_1 \uplus S_2) = f(S_1) \uplus f(S_2)]$$

Theorem B.1.1 F is not a distributive function space.

Let e be the entry node of a virtual function f and c be a virtual call node of the form “rec $\rightarrow f(\)$”, such that c invokes f when the receiver rec points to an object of class E. Let p be a global object name and rec be local to the calling function. Assume

$S_1(0) = \{(\emptyset, <p \Rightarrow C>)\}$ and $S_2(0) = \{(\emptyset, <\text{rec} \Rightarrow E>)\}$

while each $S_1(i \neq 0)$ and $S_2(i \neq 0)$ is \emptyset. Clearly, \text{type-bind}_{c \rightarrow e}(<p \Rightarrow C>) = \{<p \Rightarrow C>\}$ and \text{type-bind}_{c \rightarrow e}(<\text{rec} \Rightarrow E>) = \{<\text{this} \Rightarrow E>\}. Using the edge function for the interprocedural edge $\ll c, e \gg$,

$$f_{c \rightarrow e}(S_1) = \emptyset \text{ and } f_{c \rightarrow e}(S_2) = \{\{<\text{this} \Rightarrow E>, <\text{this} \Rightarrow E>\}, \emptyset, \ldots, \emptyset\}$$

whereas

$$f_{c \rightarrow e}(S_1 \uplus S_2) = \{\{<p \Rightarrow C>, <p \Rightarrow C>\}, \{<\text{this} \Rightarrow E>, \text{this} \Rightarrow E>\}\}, \emptyset, \ldots, \emptyset\}$$

Therefore,

$$f_{c \rightarrow e}(S_1 \uplus S_2) \neq f_{c \rightarrow e}(S_1) \uplus f_{c \rightarrow e}(S_2)$$

\[\square\]

Let f^i represent i-composition of the function $f \in F$. For example, $f^0(S) = S$, $f^1(S) = f(S)$ and $f^2(S) = f \circ f(S)$. Let $f^{[k]} = \bigcup_{i=0}^{k-1} f$. The monotone function space F is k-bounded iff there exists a constant k such that

$$(\forall f \in F)(\forall S \in L) : [f^{[k]}(S) \supseteq f^k(S)]$$
while (-) {
 n₀ : ...
 n₁ : p₁ = p₂
 n₂ : p₂ = p₃
 ...
 nₘ₋₁ : pₘ₋₁ = pₘ
 nₘ : pₘ = new B
}

Figure B.1: Example for non-
boundedness of \(F \)

In other words, the sequence of repeated applications of any \(f \) until stabilization is at most \(k \) in length.

Theorem B.1.2 \(F \) is not \(k \)-bounded.

Consider the code segment in Figure B.1. Assume that all variables are initialized to \(NULL \) initially. Let \(f = f_{n₀ → n₁} ◦ f_{n₁ → n₂} ◦ \ldots ◦ f_{nₘ → n₀} \). Each application of this function corresponds to an iteration of the **while** loop. For each \(1 \leq i \leq m \), \(f^{i+1}(\emptyset) \) adds a tuple \((\emptyset, \langle p_{m-i+1} \Rightarrow B \rangle)\) to the value of \(S_{n₀}(\emptyset) \) from previous iteration. For example, 1\(^{st}\) iteration adds \((\emptyset, \langle p_m \Rightarrow B \rangle)\) to the solution at node \(n₀ \) and \(m^{th} \) iteration adds \((\emptyset, \langle p_1 \Rightarrow B \rangle)\) to the solution at node \(n₀ \). This process stabilizes only after \(m \) iterations, when each variable eventually points to an object of class \(B \). By construction, \(m \) may be arbitrarily large. Note that the monotonicity of \(F \) and the finiteness of lattice \(L \) imply that the function space is bounded. However, as we have just shown, no predetermined \(k \) exists to guarantee \(k \)-boundedness. □

Algorithm: We use a worklist algorithm to obtain the MFP solution of the system of equations defined by the edge functions. The algorithm appears in Figure B.2.

Every iteration of the **while** loop starts by removing exactly one element from the worklist. If \(S_m \supseteq \bar{x} S \), nothing is added to the worklist, effectively shrinking the worklist in length by 1. Otherwise, for each successor \(n \), \((n, S_n)\) may be added to the worklist iff \(S_{new} \supseteq \bar{x} S_n \) (i.e., only if \(S_n \) grows). Since \(S_{new} \) is finite and the edge functions are monotonic, this process will terminate at the MFP solution.
set worklist to empty;
for each $m \in \mathcal{N}$ // introduction of type information
 switch (m)

 'p = new B' :
 \[S_m = \{((\emptyset, <p \Rightarrow B>), \emptyset, \ldots, \emptyset)\}\]
 add (m, S_m) to worklist;

 'p = \&b' :
 \[S_m = \{((\emptyset, <p \Rightarrow B>), \emptyset, \ldots, \emptyset)\}\] // b is object of type B
 add (m, S_m) to worklist;

 non-virtual call with corresponding entry e :
 \[S_e = \{(\text{AP}_T e, \text{AP}_T e) | \text{AP}_T e \in \text{type-bind}_m (\emptyset)\}, \emptyset, \ldots, \emptyset\];
 add (e, S_e) to worklist;

 default: \[S_m = \emptyset\];
while worklist is not empty
 remove (m, S) from worklist;
 if $S_m \sqsupseteq S$ continue;
 switch (m)
 call :
 for each e invocable by m
 \[S_{\text{new}} = f_{m \rightarrow e} (S) \sqsupseteq S_e\]
 if $S_{\text{new}} \sqsupseteq S_e$
 \[S_e = S_{\text{new}}\]
 add (e, S_e) to worklist;
 \[r = \text{corresponding return node for } m\];
 \[S_{\text{new}} = f_{m \rightarrow r} (S) \sqsupseteq S_r\]
 if $S_{\text{new}} \sqsupseteq S_r$
 \[S_r = S_{\text{new}}\]
 add (r, S_r) to worklist;
 exit :
 for each call node c such that c may
 invoke function containing m
 \[S_{\text{new}} = f_{m \rightarrow c} (S) \sqsupseteq S_c\]
 if $S_{\text{new}} \sqsupseteq S_c$
 \[S_c = S_{\text{new}}\]
 add (c, S_c) to worklist;
 default:
 for each $n \in \text{succ}(m)$
 \[S_{\text{new}} = f_{m \rightarrow n} (S) \sqsupseteq S_n\]
 if $S_{\text{new}} \sqsupseteq S_n$
 \[S_n = S_{\text{new}}\]
 add (n, S_n) to worklist;

Figure B.2: Type determination algorithm
Lemma B.1.1 For a call node c, the entry node e for the function invoked by c, and a (possibly \emptyset) pointer-type pair PT, $\text{type-bind}_{c\rightarrow e}(PT)$ is the precise set of pointer-type pairs which hold on a consistent path $\rho\Sigma e$ using the fact that PT holds on $\rho\Sigma c$.

The pointer-type pairs which hold on $\rho\Sigma e$ without requiring any pairs to hold on $\rho\Sigma c$ are exactly what is calculated by $\text{type-bind}_{c\rightarrow e}(\emptyset)$. This is the type information derived solely from the actual parameters at the call site c, and not from any predecessors of c. All circumstances which result in a set of pointer-type pairs holding on $\rho\Sigma e$, given that PT holds on $\rho\Sigma c$, are exactly captured by $\text{type-bind}_{c\rightarrow e}(PT)$. If PT involves a global object name, PT itself holds on $\rho\Sigma e$. If $PT = <p \Rightarrow B>$ where p is an actual parameter of c, the corresponding formal f of e must point to an object of type B (i.e., $<f \Rightarrow B>$ must hold on $\rho\Sigma e$). \square

Proof of safety of the algorithm: Let S_m denote the MFP solution for node m calculated by the algorithm in Figure B.2.

Theorem B.1.3 Given an execution path $\Sigma = \Upsilon e \Phi$ such that (i) Υ originates at ρ, (ii) e is the entry node of the function containing node n, and (iii) $e \Phi$ is a balanced path to n, if $<p \Rightarrow B>$ holds on Σ then $(APT, <p \Rightarrow B>) \in S_n(0)$ for some assumption APT where APT holds on Υe.

We prove the theorem using induction on the path length. Let k denote the length of path Σ. Note that Υ and Φ may possibly be empty paths.

basis: $k = 1$. Trivially true since no pointer-types hold at ρ.

induction hypothesis: Theorem B.1.3 holds for paths of length $j < k$.

induction step: We show that Theorem B.1.3 is true for each path Σ of length k. let m be the immediate predecessor of n on Σ. The following are all the cases which make $<p \Rightarrow B>$ hold on Σ.

1. n is pointer assignment "$p = \text{new} B$" or "$p = \&b$" where b has type $B : f_{m\rightarrow n}(S_m)$ ensures that $(\emptyset, <p \Rightarrow B>) \in S_n(0)$. Clearly, \emptyset always holds on Υe.

2. n is pointer assignment “$p = q$” and $<q \Rightarrow B>$ holds on the subpath of Σ from ρ to m: Using induction hypothesis, $(APT, <q \Rightarrow B>) \in S_m(0)$ where APT holds on Υe. $f_{m \rightarrow n}(S_m)$ ensures that $(APT, <p \Rightarrow B>) \in S_n(0)$ where APT holds on Υe.

3. m is a call node, n is the entry of function invoked by m (i.e., n is the entry node e itself, Φ is an empty path and Υ ends at m), and $<p \Rightarrow B> \in type-bind_{m \rightarrow n}(PT1)$ for some $PT1 \neq \emptyset$ which holds on Υe.

 (a) m is not a virtual call: Using induction hypothesis, $(APT1, PT1) \in S_m(0)$ for an entry assumption $APT1$. Using $f_{m \rightarrow n}(S_m)$ and $type-bind_{m \rightarrow n}(PT1)$ (Lemma B.1.1),

 $$<(p \Rightarrow B), (p \Rightarrow B)> \in S_n(0)$$

 where $<p \Rightarrow B>$ holds on Υe.

 (b) m is a virtual call: Since Σ is an execution path, the receiver rec of m must point to an object of appropriate type E such that m invokes n. Using induction hypothesis,

 $$\{(APT1, PT1), (APT2, <rec \Rightarrow E>)\} \subseteq S_m(0)$$

 for entry assumptions $APT2$ and $APT1$. Using $f_{m \rightarrow n}(S_m)$ and Lemma B.1.1 for $type-bind_{m \rightarrow n}(PT1)$,

 $$<(p \Rightarrow B), (p \Rightarrow B)> \in S_n(0)$$

 where $<p \Rightarrow B>$ holds on Υe.

4. m is a call node, n is the entry of function invoked by m (i.e., n is the entry node e itself, Φ is an empty path and Υ ends at m), and $<p \Rightarrow B> \in type-bind_{m \rightarrow n}(\emptyset)$. By Lemma B.1.1, this case represents all parameter bindings not covered by case 3 above.

 (a) m is not a virtual call: Using $f_{m \rightarrow n}(S_m)$ and Lemma B.1.1 for correctness of $type-bind_{m \rightarrow n}(\emptyset)$,

 $$<(p \Rightarrow B), (p \Rightarrow B)> \in S_n(0)$$
where \(<p \Rightarrow B>\) holds on \(\forall e\).

(b) \(m\) is a virtual call: Since \(\Sigma\) is an execution path, the receiver \(rec\) of \(m\) must point to an object of appropriate type \(E\) such that \(m\) invokes \(n\). Using induction hypothesis, \((APT2, <rec \Rightarrow E>) \in S_m(0)\) for an entry assumption \(APT2\). Using \(f_{m \rightarrow n}(S_m)\) and Lemma B.1.1 for \(type\)-\(bind_{m \rightarrow n}(0)\),

\[
(APT2, <p \Rightarrow B>, <p \Rightarrow B>) \in S_n(0)
\]

where \(<p \Rightarrow B>\) holds on \(\forall e\).

5. \(n\) is a return node with corresponding virtual or non-virtual call \(c\) on \(\Sigma\), \(m\) is exit node of the function with entry node \(e\), \(p\) is local to the function containing \(n\), and \(<p \Rightarrow B>\) holds on the subpath of \(\Sigma\) from \(\rho\) to \(c\): Using induction hypothesis,

\[
(APT1, <p \Rightarrow B>) \in S_c(0)
\]

for some assumption \(APT1\) which holds on \(\forall e\). Using \(f_{c \rightarrow n}(S_c)\),

\[
(APT1, <p \Rightarrow B>) \in S_n(0)
\]

where \(APT1\) holds on \(\forall e\).

6. \(n\) is a return node with corresponding non-virtual call \(c\) on \(\Sigma\), \(m\) is exit node of the function with entry node \(e\), \(p\) is a global object name and \(<p \Rightarrow B>\) holds on the subpath of \(\Sigma\) from \(\rho\) to \(m\): Let the path \(\Phi\) be represented as \(\Theta ce'\Psi m\) where \(e'\Psi m\) is a balanced path.

(a) Using induction hypothesis, \((APT_{e'}, <p \Rightarrow B>) \in S_m(0)\) for some \(APT_{e'}\) holding on \(\forall e\Theta ce'\).

(b) Since \(APT_{e'}\) holds on \(\forall e\Theta ce'\), either \(APT_{e'} \in (type\)-\(bind_{c \rightarrow e'}(0) \cup \{0\})\) or \(APT_{e'} \in type\)-\(bind_{c \rightarrow e'}(PT1)\), using Lemma B.1.1.

(c) If \(APT_{e'} \in type\)-\(bind_{c \rightarrow e'}(PT1)\), using induction hypothesis \((APT1, PT1) \in S_c(0)\), where \(APT1\) holds on \(\forall e\).

Given the above, \(f_{m \rightarrow c}(S_m)\) ensures that \((APT_{e'}, <p \Rightarrow B>) \in S_c(d_m)\). Subsequently, \(f_{c \rightarrow n}(S_c)\) makes

\[
(\emptyset, <p \Rightarrow B>) \in S_n(0) \text{ or } (APT1, <p \Rightarrow B>) \in S_n(0)
\]
as
\[
APT_{e'} \in (\text{type-bind}_{c \rightarrow e'}(\emptyset) \cup \{\emptyset\}) \text{ or } APT_{e'} \in \text{type-bind}_{c \rightarrow e'}(PT1)
\]
respectively. In the former case, \(\emptyset\) always holds at \(\Upsilon e\). In the latter, we already saw that \(APT1\) holds at \(\Upsilon e\).

7. \(n\) is a return node with corresponding virtual call \(c\) on \(\Sigma\), \(m\) is exit node of the function with entry node \(e\), \(p\) is a global object name and \(<p \Rightarrow B>\) holds on path \(\Sigma\) ending at \(m\). Let the path \(\Phi\) be represented as \(\Theta ce\Psi m\) where \(\Psi m\) is a balanced path.

(a) Using induction hypothesis, \((APT2, <rec \Rightarrow E>) \in S_c(0)\) for some \(APT2\) holding on \(\Upsilon e\).

(b) Using induction hypothesis, \((APT_{e'}, <p \Rightarrow B>) \in S_m(0)\) for some \(APT_{e'}\) holding on \(\Upsilon e\Theta ce'\).

(c) Since \(APT_{e'}\) holds on \(\Upsilon e\Theta ce'\), either \(APT_{e'} \in (\text{type-bind}_{c \rightarrow e'}(\emptyset) \cup \{\emptyset\})\) or \(APT_{e'} \in \text{type-bind}_{c \rightarrow e'}(PT1)\), using Lemma B.1.1.

(d) If \(APT_{e'} \in \text{type-bind}_{c \rightarrow e'}(PT1)\), using induction hypothesis \((APT1, PT1) \in S_c(0)\), where \(APT1\) holds on \(\Upsilon e\).

Given the above, \(f_{m \rightarrow c}(S_m)\) ensures that \((APT_{e'}, <p \Rightarrow B>) \in S_c(d_m)\). Subsequently, \(f_{c \rightarrow n}(S_c)\) makes

\[
(\emptyset, <p \Rightarrow B>) \in S_n(0) \text{ or } (APT1, <p \Rightarrow B>) \in S_n(0)
\]
as
\[
APT_{e'} \in (\text{type-bind}_{c \rightarrow e'}(\emptyset) \cup \{\emptyset\}) \text{ or } APT_{e'} \in \text{type-bind}_{c \rightarrow e'}(PT1)
\]
respectively. In the former case, \(\emptyset\) always holds at \(\Upsilon e\). In the latter, we already saw that \(APT1\) holds at \(\Upsilon e\).

8. \(n\) is none of the above and \(<p \Rightarrow B>\) holds on the subpath of \(\Sigma\) from \(\rho\) to \(m\) : Using induction hypothesis, \((APT, <p \Rightarrow B>) \in S_m(0)\) where \(APT\) holds on \(\Upsilon e\).
\(f_{m \rightarrow n}(S_m)\) ensures that

\[
(APT, <p \Rightarrow B>) \in S_n(0)
\]
where APT holds on Te.

We have accounted for all situations which result in $<p \Rightarrow B>$ holding at Σ of length k, and hence proved Theorem B.1.3. □

In Section 5.3.2, we calculated type information of finer granularity (in terms of the points-to-type predicates) than the sets S_n associated with each ICFG node. We now show that the fixed point solutions calculated by the algorithm in Section 5.3.2 (see Figures 5.4 on p. 63 and 5.5 on p. 64 for a high level view of the algorithm) and the algorithm in Figure B.2 are identical. As we have already seen, once (APT, PT) is added to $S_n(0)$, it is never taken out of the set, and once points-to-type(n, APT, PT) becomes true, it stays true, preserving monotonicity of information calculated at each ICFG node by both algorithms. Therefore, the equality of the fixed point solution is tantamount to showing that for each ICFG node n, points-to-type(n, APT, PT) = true iff $(APT, PT) \in S_n(0)$ during some iteration of the algorithms. Let's call the two algorithms A_{PTT} and A_S respectively. Each iteration of the while loop in Figures 5.5 and B.2 represents an iteration of the respective algorithm. A_{PTT} and A_S only differ in the order of evaluation at ICFG nodes, owing to the following differences in the way information is processed by them.

1. In A_S, an edge function $f_{m \rightarrow n}$ maps the entire set S_m at an ICFG node m to its successor n. This would be equivalent to propagating all the points-to-type predicates at node m through successor n in consecutive iterations of A_{PTT}. Since A_{PTT} actually propagates one points-to-type predicate at m through n at a time, the iterations propagating these predicates are staggered rather than necessarily being consecutive.

2. The A_S edge function $f_{x \rightarrow c}$ from exit node x to call node c propagates, in one iteration, the set $S_x(0)$ of x to the set $S_c(d_x)$ of c (where d_x is the index of exit node x). Effectively, this action copies the information at x in the lattice value for c. In a later iteration, the edge function $f_{c \rightarrow r}$ uses the type information from $S_c(0)$ and $S_c(d_x)$ together to derive information at the corresponding return node r. On the other hand, A_{PTT} propagates a predicate from c to r directly, using
appropriate predicates at \(x \) in a single iteration.

Nevertheless, given that the information grows monotonically, the order of evaluation does not matter, and the two algorithms converge to the same fixed point. We now informally prove the equality of the solutions of \(A_{PTT} \) and \(A_S \).

In order to compare the solutions of the two algorithms, we define the following quantities.

\[
PTT_n = \left\{ (APT, PT) \mid \text{points-to-type}(n, APT, PT) \text{ belongs to the MFP solution of } A_{PTT} \text{ at node } n \right\}
\]

\[
PTT^i_n = \left\{ (APT, PT) \mid \text{points-to-type}(n, APT, PT) \text{ is true after the } i\text{th iteration of } A_{PTT} \right\}
\]

\[
S_n = \text{MFP solution of } A_S \text{ at node } n
\]

\[
S^i_n = \text{solution of } A_S \text{ at node } n \text{ after the } i\text{th iteration}
\]

Let \(PTT^0_n \) and \(S^0_n \) be defined as the solutions for node \(n \) just after the introduction phase of the respective algorithms.

Lemma B.1.2 For each node \(n \in \mathcal{N} \), \(PTT^0_n = S^0_n(0) \).

By inspection. See the definition of \(type-bind_{c \rightarrow e} \) on p. 139, Figure B.2 and Figure 5.4. \(\Box \)

Lemma B.1.3 For each node \(n \in \mathcal{N} \), any iteration \(j \)

\[
PTT^j_n \subseteq PTT_n \text{ and } S^j_n(0) \subseteq S_n(0)
\]

Obvious, using monotonicity of operations in both the algorithms. \(\Box \)

Lemma B.1.4 For each node \(n \in \mathcal{N} \), any iteration \(j \) of \(A_{PTT} \)

\[
PTT^j_n \subseteq S_n(0)
\]

We prove Lemma B.1.4 by induction on the number of iterations of \(A_{PTT} \).
basis: Let $j = 0$. For each node n, using Lemma B.1.2

$$PTT_n^0 = S_n^0(0)$$

Since $S_n^0(0) \subseteq S_n(0)$, using Lemma B.1.3

$$PTT_n^0 \subseteq S_n(0)$$

induction hypothesis: Let Lemma B.1.4 be true for $i < j$.

induction step: For those nodes whose solutions are not affected by the j^{th} iteration, $PTT_n^j \subseteq S_n(0)$ using induction hypothesis. We show that for each node n whose solution changes (i.e., grows) after the j^{th} iteration, $PTT_n^j \subseteq S_n(0)$. We achieve it by showing that for each new (APT, PT) added to PTT_n^j,

$$(APT, PT) \in S_n(0)$$

We explore all cases which add such a tuple to PTT_n^j during the j^{th} iteration. In the following cases, without loss of generality, let $\langle rec \Rightarrow E \rangle$ be the pointer-type pair which makes a virtual call m with receiver rec invoke the function with entry e.

1. n is not an entry or return node, and the predicate $\text{points-to-type}(n, APT, PT)$ is added by $\text{type-implies-type-through-other}(m, APT, PT1)$ at a predecessor m (using case 1, case 2 or case 3): Using induction hypothesis,

$$(APT, PT1) \in S_m(0)$$

The edge function $f_{m \rightarrow n}(S_m)$ uses the tuple $(APT, PT1)$ in $S_m(0)$ resulting in

$$(APT, PT) \in S_n(0)$$

2. $\text{points-to-type}(e, APT_e, APT_e)$ is added by $\text{type-implies-type-from-call}$ at an entry node e. This may happen in one of the following circumstances.

(a) m is a non-virtual call and $\text{points-to-type}(m, APT1, PT1)$ contributes to this addition (using case 1 of $\text{type-implies-type-from-call}$): Using induction hypothesis,

$$(APT1, PT1) \in S_m(0)$$
The edge function $f_{m \rightarrow c}(S_m)$ uses $\text{type-bind}_{m \rightarrow c}(PT1)$ and the above tuple in $S_m(0)$ to ensure that

$$(APT_c, APT_e) \in S_c(0)$$

(b) m is a virtual call, $\text{points-to-type}(m, APT1, PT1)$ and $\text{points-to-type}(m, APT2, <\text{rec} \Rightarrow \text{E}>)$, where $PT1 \neq <\text{rec} \Rightarrow \text{E}>$, together contribute to this addition (using case 2.1 or case 2.2 of $\text{type-implies-type-from-call}$): Using induction hypothesis,

$$\{(APT1, PT1), (APT2, <\text{rec} \Rightarrow \text{E}>)\} \subseteq S_m(0)$$

The edge function $f_{m \rightarrow c}(S_m)$ uses $\text{type-bind}_{m \rightarrow c}(PT1)$ and the above subset of $S_m(0)$ to ensure that

$$(APT_c, APT_e) \in S_c(0)$$

(c) m is a virtual call and $\text{points-to-type}(m, APT2, <\text{rec} \Rightarrow \text{E}>)$ contributes to this addition (using case 2.1 of $\text{type-implies-type-from-call}$): Using induction hypothesis,

$$(APT2, <\text{rec} \Rightarrow \text{E}>) \in S_m(0)$$

The edge function $f_{m \rightarrow r}(S_m)$ uses $\text{type-bind}_{m \rightarrow r}(\emptyset)$ and the above tuple in $S_m(0)$ resulting in

$$(APT_c, APT_e) \in S_c(0)$$

3. $\text{type-implies-type-from-call}(m, APT, PT)$ adds $\text{points-to-type}(r, APT, PT)$ to the solution at the corresponding return node r where PT involves a local variable of the calling function and the call node m is virtual or non-virtual: By induction hypothesis

$$(APT, PT) \in S_m(0)$$

$f_{m \rightarrow r}(S_m)$ uses this tuple in $S_m(0)$, resulting in

$$(APT, PT) \in S_r(0)$$
4. \(\text{points-to-type}(r, APT, PT) \) is added to the solution at a return node \(r \) of non-virtual call \(m \) by either \text{type-implies-type-from-call} \) or \text{type-implies-type-from-exit} \), where \(PT \) involves a global variable. This may happen using one of the following cases. Let \(e \) be the entry of function invoked by \(m \) and \(x \) be the corresponding exit node for \(e \).

(a) \(\text{points-to-type}(m, APT, PT1) \) exist at call node \(m \), \(PT1 \) imposes \(APT_e \) at entry node \(e \), and \(\text{points-to-type}(x, APT_e, PT) \) is present at \(x \) : Using induction hypothesis,

\[
(APT, PT1) \in S_m(0)
\]

Also, \(APT_e \in \text{type-bind}_{m \rightarrow e}(PT1) \) using Lemma B.1.1. Applying induction hypothesis again,

\[
(APT_e, PT) \in S_x(0)
\]

Using \(f_{x \rightarrow m}(S_x) \),

\[
(APT_e, PT) \in S_m(d_x)
\]

Using \(f_{m \rightarrow r}(S_m) \),

\[
(APT, PT) \in S_r(0)
\]

(b) \(APT_e \) is either \(\emptyset \) or imposed at entry node \(e \) simply because of actual-formal parameter bindings, and \(\text{points-to-type}(x, APT_e, PT) \) is present at \(x \) : \(APT_e \in \text{type-bind}_{m \rightarrow e}(\emptyset) \) using Lemma B.1.1 or \(APT_e = \emptyset \). Applying induction hypothesis,

\[
(APT_e, PT) \in S_x(0)
\]

Using \(f_{x \rightarrow m}(S_x) \),

\[
(APT_e, PT) \in S_m(d_x)
\]

Using \(f_{m \rightarrow r}(S_m) \),

\[
(\emptyset, PT) \in S_r(0)
\]

5. \(\text{points-to-type}(r, APT, PT) \) is added to the solution at a return node \(r \) of virtual call \(m \) by either \text{type-implies-type-from-call} \) or \text{type-implies-type-from-exit} \), where \(PT \) involves a global variable. This may happen using one of the
following cases. Let e be the entry of function invoked by m and x be the corresponding exit node for e.

(a) $\text{points-to-type}(m, APT, <\text{rec }\Rightarrow E>)$ and $\text{points-to-type}(m, APT, PT1)$ exist at call node m, $PT1$ imposes APT_e at e, and $\text{points-to-type}(x, APT_e, PT)$ is present at x : Using induction hypothesis,

$$\{(APT, PT1), (APT2, <\text{rec }\Rightarrow E>)\} \subseteq S_m(0)$$

Also, $APT_e \in \text{type-bind}_{m \to e}(PT1)$ using Lemma B.1.1. Applying induction hypothesis again,

$$(APT_e, PT) \in S_x(0)$$

Using $f_{x \to m}(S_x)$,

$$(APT_e, PT) \in S_m(d_x)$$

Using $f_{m \to r}(S_m)$,

$$(APT, PT) \in S_r(0)$$

(b) $\text{points-to-type}(m, APT2, <\text{rec }\Rightarrow E>)$ exists at call node m, APT_e is either \emptyset or imposed at entry node e simply because of actual-formal parameter bindings, and $\text{points-to-type}(x, APT_e, PT)$ is present at x : Using induction hypothesis,

$$(APT2, <\text{rec }\Rightarrow E>) \in S_m(0)$$

Also, $APT_e \in \text{type-bind}_{m \to e}(\emptyset)$ using Lemma B.1.1 or $APT_e = \emptyset$. Applying induction hypothesis again,

$$(APT_e, PT) \in S_x(0)$$

Using $f_{x \to m}(S_x)$,

$$(APT_e, PT) \in S_m(d_x)$$

Using $f_{m \to r}(S_m)$,

$$(\emptyset, PT) \in S_r(0)$$
Lemma B.1.5 For each node $n \in \mathcal{N}$, any iteration j of A_S

\[S_n^j(0) \subseteq PTT_n \]

We prove Lemma B.1.5 by induction on the number of iterations of A_S.

basis: Let $j = 0$. For each node n, using Lemma B.1.2

\[S_n^0(0) = PTT_n^0 \]

But $PTT_n^0 \subseteq PTT_n$ using Lemma B.1.3. Therefore,

\[S_n^0(0) \subseteq PTT_n \]

induction hypothesis: Let Lemma B.1.5 be true for $i < j$.

induction step: For those nodes whose solutions are not affected by the j^{th} iteration, $S_n^j(0) \subseteq PTT_n$ using induction hypothesis. We prove that for each node n whose solution changes (i.e., grows) after the j^{th} iteration, $S_n^j(0) \subseteq PTT_n$. For this purpose, we show that for each new tuple (APT, PT) added to $S_n^j(0)$,

\[(APT, PT) \in PTT_n \]

which is equivalent to stating that points-to-type(n, APT, PT) is true at node n in the fixed point solution of A_{PTT}. We explore all cases which add such a tuple to $S_n^j(0)$ during the j^{th} iteration. Like in the proof for Lemma B.1.4, let $\langle rec \Rightarrow E \rangle$ be the pointer-type pair which makes a virtual call m with receiver rec invoke the function with entry e.

1. n is not an entry or return node, and the tuple (APT, PT) is added to $S_n^j(0)$ by $f_{m\rightarrow n}(S_m^{j-1})$ because $(APT, PT1) \in S_m^{j-1}(0)$. Using induction hypothesis,

\[(APT, PT1) \in PTT_m \]

But type-implies-type-through-other must use points-to-type($m, APT, PT1$) resulting in make-true(points-to-type(n, APT, PT)).
2. \((APT_e, APT_e)\) is added by \(f_{m \rightarrow e}(S_{m}^{i-1})\) at an entry node \(e\). This may happen in one of the following circumstances.

(a) \(m\) is a non-virtual call, \((APT_1, PT_1) \in S_{m}^{i-1}(0)\) and \(APT_e\) belongs to \(type-bind_{m \rightarrow e}(PT_1)\) : Using induction hypothesis, \(points-to-type(m, APT_1, PT_1)\) is true at \(m\) and must contribute to the addition of \(points-to-type(e, APT_e, APT_e)\) in the solution for node \(e\) (using case 1 of \(type-implies-type-from-call\)).

(b) \(m\) is a virtual call, \(\{(APT_1, PT_1), (APT_2, <rec ⇒ E>)\} \subseteq S_{m}^{i-1}(0)\) and \(APT_e \in type-bind_{m \rightarrow e}(PT_1)\) : Using induction hypothesis, \(points-to-type(m, APT_1, PT_1)\) and \(points-to-type(m, APT_2, <rec ⇒ E>)\) exist at \(m\). Then it must be that \(points-to-type(e, APT_e, APT_e)\) is true (using either case 2.1 or case 2.2 of \(type-implies-type-from-call\)).

(c) \(m\) is a virtual call, \((APT_2, <rec ⇒ E>) \in S_{m}^{i-1}(0)\) and \(APT_e\) belongs to \(type-bind_{m \rightarrow e}(\emptyset)\) : Using induction hypothesis, \(points-to-type(m, APT_2, <rec ⇒ E>)\) exists at \(m\). Then it must be that \(points-to-type(e, APT_e, APT_e)\) is true (using case 2.1 of \(type-implies-type-from-call\)).

3. \(m\) is a virtual or non-virtual call, \(PT\) involves a local variable of the calling function and \(f_{m \rightarrow r}(S_{m}^{i-1})\) adds \((APT, PT)\) to the solution at the corresponding return node \(r\) : By induction hypothesis, \((APT, PT) \in PTT_m\). Then \(type-implies-type-from-call(m, APT, PT)\) must make-true\((points-to-type(r, APT, PT))\).

4. \((APT, PT)\) is added to the solution at a return node \(r\) of non-virtual call \(m\) by \(f_{m \rightarrow r}(S_{m}^{i-1})\) and \(PT\) involves a global variable. This can happen in one of the following circumstances. Let \(e\) be the entry of function invoked by \(m\) and \(z\) be the corresponding exit node for \(e\).

(a) \((APT, PT_1) \in S_{m}^{i-1}(0)\), \(APT_e \in type-bind_{m \rightarrow e}(PT_1)\), and \((APT_e, PT) \in S_{m}^{i-1}(d_x)\) : Using induction hypothesis, \(points-to-type(m, APT, PT_1)\) exists at call node \(m\). Since the tuple \((APT_e, PT)\) belongs to \(S_{m}^{i-1}(d_x)\), it must
have been added in some earlier iteration \(i \) by \(f_x \rightarrow c(S^i_{x}^{-1}) \), implying that \((APT_c, PT) \in S^i_{x}^{-1}(0)\). Using induction hypothesis again, points-to-type\((x, APT_c, PT)\) is true at \(x \). Therefore, points-to-type\((r, APT, PT)\) using either type-implies-type-from-call or type-implies-type-from-exit.

(b) \(APT = \emptyset, APT_c \in (type\text{-}bind_{m \rightarrow c}(\emptyset) \cup \{\emptyset\}) \) and \((APT_c, PT) \in S^i_{m}^{-1}(d_x)\):
Since the tuple \((APT_c, PT)\) belongs to \(S^i_{m}^{-1}(d_x)\), it must have been added in some earlier iteration \(i \) by \(f_x \rightarrow c(S^i_{x}^{-1}) \), implying that \((APT_c, PT) \in S^i_{x}^{-1}(0)\). Using induction hypothesis, points-to-type\((x, APT_c, PT)\) is true at \(x \). Therefore, points-to-type\((r, \emptyset, PT)\) must be true using type-implies-type-from-exit.

5. \((APT, PT)\) is added to the solution at a return node \(r \) of virtual call \(m \) by \(f_m \rightarrow r(S^i_{m}^{-1}) \) and \(PT \) involves a global variable. This can happen in one of the following circumstances. Let \(e \) be the entry of a function invoked by \(m \) and \(x \) be the corresponding exit node for \(e \).

(a) \{(APT, PT1), (APT2, <rec \Rightarrow E>)\} \subseteq S^i_{m}^{-1}(0), (APT_c, PT) \in S^i_{m}^{-1}(d_x)\)
where \(APT_c \in type\text{-}bind_{m \rightarrow c}(PT1) : points\text{-}to\text{-}type(m, APT2, <rec \Rightarrow E>) \)
and points-to-type\((m, APT, PT1)\) exist at call node \(m \) by induction hypothesis. Since the tuple \((APT_c, PT)\) belongs to \(S^i_{m}^{-1}(d_x)\), it must have been added in some earlier iteration \(i \) by \(f_x \rightarrow c(S^i_{x}^{-1}) \), implying that \((APT_c, PT) \in S^i_{x}^{-1}(0)\). Using induction hypothesis again, points-to-type\((x, APT_c, PT)\) is true at \(x \). Therefore, points-to-type\((r, APT, PT)\) is true using either type-implies-type-from-call or type-implies-type-from-exit.

(b) \(APT = \emptyset, (APT2, <rec \Rightarrow E>) \in S^i_{m}^{-1}(0), (APT_c, PT) \in S^i_{m}^{-1}(d_x)\) where \(APT_c \in (type\text{-}bind_{m \rightarrow c}(\emptyset) \cup \{\emptyset\}) : points\text{-}to\text{-}type(m, APT2, <rec \Rightarrow E>) \)
exists at call node \(m \) using induction hypothesis. Since the tuple \((APT_c, PT)\) belongs to \(S^i_{m}^{-1}(d_x)\), it must have been added in some earlier iteration \(i \) by \(f_x \rightarrow c(S^i_{x}^{-1}) \), implying that \((APT_c, PT) \in S^i_{x}^{-1}(0)\). By induction hypothesis, points-to-type\((x, APT_c, PT)\) is true at \(x \). Therefore, points-to-type\((r, \emptyset, PT)\)
is true using either type-implies-type-from-call or type-implies-type-from-exit.

\[\square\]

Theorem B.1.4 For each node \(n \), the MFP solutions \(PTT_n \) of \(A_{PTT} \) and \(S_n(0) \) of \(A_S \) are identical.

Using Lemma B.1.4, after \(j^{th} \) iteration of \(A_{PTT} \)

\[PTT_n^j \subseteq S_n(0) \]

Since \(A_{PTT} \) terminates after finite number of iterations,

\[PTT_n \subseteq S_n(0) \]

Using Lemma B.1.5, after \(j^{th} \) iteration of \(A_S \)

\[S_n^j(0) \subseteq PTT_n \]

Since \(A_S \) terminates after finite number of iterations,

\[S_n(0) \subseteq PTT_n \]

Clearly for each node \(n \),

\[S_n(0) = PTT_n \]

\[\square\]

Algorithm \(A_S \) is based on concrete lattice theoretical foundations which makes it amenable to theoretical analyses such as the safety of calculation, but unsuitable for implementation. On the other hand, efficiency of implementation is an important motivation underlying the design of algorithm \(A_{PTT} \). Our prototype implementation described in Chapter 6 is directly based on this algorithm\(^{40}\). Due to various efficiency-oriented optimizations, it is difficult to reason about the theoretical properties of algorithm \(A_{PTT} \). By proving that they calculate the same solution (Theorem B.1.4), we have effectively shown that \(A_{PTT} \) is a safe and efficient algorithm for type determination of C++ programs restricted to the use of single level pointers.

\[\footnote{The inefficiencies of our prototype are due to factors external to the algorithm (such as limitations of the front end) and aspects common to both algorithms (such as poor representation of object names).}\]
B.2 Type Determination and Aliasing for Multiple Level Pointers

In order to define a monotone data flow framework for the combined problem of type determination and aliasing in the presence of multiple, but finitely many, levels of pointer dereferencing (without \(k \)-limiting), we need a new list of set definitions. Note that these definitions override the definitions for identically named sets in Appendix B.1. Again, we assume the same restrictions on the language constructs as mentioned in Chapter 1 (p. 5).

\(\mathcal{X} \) : set of exit nodes of ICFG with each node in the set indexed by a unique number between 1 and \(|\mathcal{X}| \). Let \(\tilde{x} = |\mathcal{X}| \). Let \(d_x \) be the index of exit node \(x \).

\(\mathcal{EN} \) : set of entry nodes of ICFG. Since there is a unique exit for each entry, each node \(e \) in \(\mathcal{EN} \) is indexed by the same number \(d_e \), between 1 and \(\tilde{x} \), as its corresponding exit.

\(\mathcal{T} \) : Set of types in the program.

\(\mathcal{NV} \) : set of object names derived from \(nv_T \), where \(nv_T \) is a global variable associated with each type \(T \in \mathcal{T} \).

\(\mathcal{LC}_n \) : set of object names derived from local variables of the function containing ICFG node \(n \).

\(\mathcal{GB} \) : set of object names derived from global variables in the program (including heap variables, static members of classes, and \(nv \)'s).

\(\mathcal{GB}_v = \mathcal{GB} - \mathcal{NV} \) : set of global object names not involving \(nv \).

\(\mathcal{O} \) : Set of object names, as defined in Table 2.1 (p. 12). Clearly, \(\mathcal{O} = \mathcal{GB} \cup (\bigcup_{e \in \mathcal{EN}} \mathcal{LC}_e) \).

\(\mathcal{P} \) : Set of object names which have a pointer type. Clearly, \(\mathcal{P} \subseteq \mathcal{O} \).

\(\mathcal{PT} = (\mathcal{P} \times \mathcal{T}) \) : set of all possible pointer-type pairs (e.g., \(<p \Rightarrow C> \)).

\(^{41}\)As mentioned in Section 5.4.2; we omit the explicit mention of \(T \) and simply denote the variable as \(nv \).
\[\mathcal{RT}_{c \rightarrow e} = \begin{cases} \langle \text{rec} \Rightarrow T \rangle & \text{rec} \in \mathcal{P} \text{ is the receiver of call node } c, \text{ and } \\ c \text{ calls the method with entry node } e \text{ if } \text{rec} \text{ points to an object of } T \in \mathcal{T} \text{ at } c \end{cases} \]

\[\mathcal{A} = (\mathcal{O} \times \mathcal{O}) : \text{set of all possible ordered alias pairs (e.g., } \langle p, q \rangle \text{ and } \langle q, p \rangle). \]

\[\mathcal{APT} = \mathcal{A} \cup \mathcal{PT} : \text{the set of all possible alias and pointer-type pairs.} \]

\[\mathcal{APT}_\emptyset = (\mathcal{APT} \cup \{\emptyset\}) : \text{set of all possible assumptions at entry nodes.} \]

\[\mathcal{S} = (\mathcal{APT} \times \mathcal{APT} \times \mathcal{APT}). \]

\[\mathcal{S}^x : (x + 1)\text{-ary cross product of } \mathcal{S}. \]

\[\emptyset^x : (x + 1)\text{-ary tuple of } \emptyset. \]

We have redefined the set \(\mathcal{S} \) from Appendix B.1 to have the following interpretation in the context of the new framework. \(\mathcal{S} \) is the set of all tuples of the form (assumption, assumption, pointer-type/alias). We define the instance of a monotone data flow framework for this general problem as \(D = (\mathcal{ICFG}, L, F, M) \), similar to that defined in Appendix B.1. However, we need to update the definitions of the following functions:

\[\pi_1(s) : 2^\mathcal{S} \rightarrow 2^{(\mathcal{APT}_0 \times \mathcal{APT}_0)} = \left\{ (AAP1, AAP2) \ \bigg| \ (AAP1, AAP2, AP) \in s \right\} \]

\[\pi_2(s) : 2^\mathcal{S} \rightarrow 2^{\mathcal{APT}} = \left\{ AP \ \bigg| \ (AAP1, AAP2, AP) \in s \right\} \]

The mapping function \(M : \mathcal{E}_D \rightarrow F \) must account for more complex edge functions reflecting the interdependence of type determination and aliasing. Having defined the framework for single level pointers in detail, we claim that the monotone function space \(F \) is powerful enough to include all the edge functions in the general framework. To substantiate this claim, we list the edge functions for some representative classes of edges. The description is incomplete, but we believe it provides the salient features of the framework sufficient to corroborate our claim.

As in Appendix B.1, we begin by describing the auxiliary functions responsible for parameter bindings at the call sites. Let \(c \) be a call node, \(e \in \mathcal{EN} \) be possibly invocable
from c, and $AP \in APT$.

$$b_{c\rightarrow e}(\emptyset) = \text{type-bind0}(c, e) \cup \text{bind0}(c, e)$$

$$b_{c\rightarrow e}(AP) = \text{type-bind}(c, e, AP) \cup \text{alias-bind}(c, e, AP) \cup \text{bind}(c, e, AP)$$

The functions comprising $b_{c\rightarrow e}(\emptyset)$ and $b_{c\rightarrow e}(AP)$ have been described in Section 5.4.2 (p. 74).

Before we provide details of the selected edge functions, we must mention a few significant facts about our treatment of alias and pointer-type pairs which involve non-visible object names. As we saw in Section 5.4.4, when two incoming predicates propagate through a pointer assignment to derive a single predicate, we may choose the entry assumption of either incoming predicate as the assumption for the resulting predicate. Using the \odot operation, we prefer the non-\emptyset assumption, arbitrarily picking one when both are non-\emptyset. Unfortunately, such a simple choice is not sufficient when object names with nv are involved. If the resulting predicate contains an object name p involving nv, we must use the entry assumption from that incoming predicate which contributes to the presence of p in the resulting predicate. As we saw in Section 5.4.2 (See p. 77), the alias or pointer-type pair which imposes the entry assumption AAP_c from call node c enables us to map back p to the original non-visible object name at c. In deference to this crucial role played by parameter binding, we ensure that AAP_c containing nv appears as entry assumption whenever the resulting alias or pointer-type pair contains an object name with the same nv. This situation is further complicated by the fact that sometimes two may-hold predicates, each involving an object name with nv, give rise to an alias, say AP, between those two object names. In Figure 5.11 (p. 83), suppose the predicates (i1) and (i2) result in (o2), and both lhs_alias and $objname$ contain nv. In this special case, both AP_T1 and AP_T2 are essential; each enables us to retrieve the corresponding object name in the calling function when the alias propagates from the exit node of the called function. This is the only case where both the assumptions are non-\emptyset. Fortunately, such aliases do not interact with other nodes in the called function and can be propagated directly to the exit node.

The following terms facilitate the description of edge functions.
- **null.object**: A special object name \(\not\in \mathcal{O} \); a comparison of this object name with any object name in \(\mathcal{O} \) returns false.

- **is.equal\((p, q) \)**: Returns true iff \(p \) is the access path representation of the object name \(q \).

- **is.prefix\((p, q) \)**: Returns true iff \(q \) may be obtained by applying a (possibly empty) dereference sequence to an object name \(r \) where **is.equal\((p, r) \)**.

- **is.strict.prefix\((p, q) \)**: Returns true iff \(q \) may be obtained by applying a non-empty dereference sequence to an object name \(r \) where **is.equal\((p, r) \)**.

- **apply.deref\((p, q, u) \)**: Returns null.object if !**is.prefix\((p, q) \)**, otherwise returns the object name obtained by applying to \(u \) the dereference sequence which would transform an object name \(r \) into \(q \), where **is.equal\((p, r) \)**.

- **pair.contain.nv\((pair) \)**: Returns true iff the alias or pointer-type pair \(pair \) contains an object name involving \(nv \).

- **map.nv1\(c \to e (AP, AAP_c, <p, q>) \)**: Let \(\ll c, e \gg \) be the interprocedural edge from a call node \(c \) to an entry node \(e \), \(<p, q> \) be such that at most one of \(p \) and \(q \) involve \(nv \), and \(AAP_c \in b_{c\to e}(AP) \). Then this function returns the alias pair \(<a, b> \) where \(a \) and \(b \) are obtained in the following manner. If \(p \) involves \(nv \), \(p \) is mapped to the corresponding object name \(a \) in the calling function, else \(a = p \). This mapping is achieved using \(AAP_c \in b_{c\to e}(AP) \). For example, if \(g \) is the corresponding actual associated with the formal \(f \) for the edge \(\ll c, e \gg \), and \(l \) is a local variable at the call site \(c \), **map.nv1\(c \to e (\ll *g, *l>, \ll *f, *nv>, \ll *nv, q >) \)** will return \(<*l, q> \). Similarly, if \(q \) involves \(nv \), \(q \) is mapped to the corresponding object name \(b \) in the calling function, else \(b = q \).

- **map.nv2\(c \to e (AP1, AAP1_c, AP2, AAP2_c, <p, q>) \)**: Let \(\ll c, e \gg \) be the interprocedural edge from a call node \(c \) to an entry node \(e \), \(<p, q> \) be such that both \(p \) and \(q \) involve \(nv \), \(AAP1_c \in b_{c\to e}(AP1) \), and \(AAP2_c \in b_{c\to e}(AP2) \). Then this function returns the alias pair \(<a, b> \) where \(a \) and \(b \) are obtained in the following
manner. \(p \) is mapped to the corresponding object name \(a \) in the calling function using \(AAP_1 \in b_{c\rightarrow e}(AP1) \). Similarly, \(q \) is mapped to the corresponding object name \(b \) in the calling function using \(AAP_2 \in b_{c\rightarrow e}(AP2) \).

- \(map_{nv1_{c\rightarrow e}}(AP, AAP_c, <p \Rightarrow C>) \): Let \(\ll c, e \gg \) be the interprocedural edge from a call node \(c \) to an entry node \(e \), and \(AAP \in b_{c\rightarrow e}(AP) \). Then this function returns the pointer-type pair \(<a \Rightarrow C> \) in the following manner. If \(p \) involves \(nv \), \(p \) is mapped to the corresponding object name \(a \) in the calling function using \(AAP \in b_{c\rightarrow e}(AP1) \), else \(a = p \).

As in Appendix B.1, we first list some component functions which facilitate defining an edge function, describe these component functions intuitively, and then define the edge function using them. In all the following definitions, given a tuple \((AAP1, AAP2, pair) \), both \(AAP1 \) and \(AAP2 \) are non-\(\emptyset \) iff \(pair \) is an alias between two object names involving \(nv \). In all other cases, \(AAP2 \) is \(\emptyset \).

1. \(\ll m, n \gg \) where \(n \) is a pointer assignment \("1hs = rhs" \) and \(m \) is an intraprocedural predecessor. Assume that \(1hs \) as well as \(rhs \) contain dereferences.

\[
\begin{align*}
h_0(S) &= S(0) - \\
&= \left\{ \begin{array}{l}
(AAP,0,<p \Rightarrow C>) \quad \text{AAP} \in \mathcal{AP\mathcal{T}_0} \land C \in \mathcal{C} \land \text{is_prefix}(1hs,p) \\
(AAP,0,<p,q>) \quad \text{AAP} \in \mathcal{AP\mathcal{T}_0} \land p,q \in \mathcal{O} \land \\
\quad \quad \text{is_strict_prefix}(1hs,p) \lor \\
\quad \quad \text{is_strict_prefix}(1hs,q) \\
\end{array} \right\}
\end{align*}
\]

\(h_0(S) \) removes all tuples \((AAP,0,AP) \) where \(AP \) involves an object name which can be obtained by applying a dereference sequence to \(1hs \).

\[
\begin{align*}
h_{1AAP1,AAP2,p,C,q,r}(S) &= \left\{ \begin{array}{l}
(AAP_1,0,<p \Rightarrow C>), \\
(AAP_2,0,<q,r>)
\end{array} \right\} \subseteq S(0) \quad s_{AAP1,AAP2,p,C,q,r} : \emptyset
\end{align*}
\]

\[
\begin{align*}
h_{2AAP1,AAP2,p,C,q,r}(S) &= \left\{ \begin{array}{l}
(AAP_1,0,<p \Rightarrow C>), \\
(AAP_2,0,<q,r>)
\end{array} \right\} \subseteq S(0) \quad s_{AAP1,AAP2,p,C,q,r} : \emptyset
\end{align*}
\]
where $s_{\text{AAP1}, \text{AAP2}, p, C, q, r} =$

\[
\begin{align*}
\begin{cases}
(AAP1 \oplus AAP2, \emptyset, <t \Rightarrow C>), \\
(AAP1 \oplus AAP2, \emptyset, <u \Rightarrow C>)
\end{cases} & \quad t := \text{apply} _\text{deref}(\text{rhs}, p, q) \land \\
(AAP1, \emptyset, <t \Rightarrow C>), & \quad u := \text{apply} _\text{deref}(\text{rhs}, p, r) \land \\
(AAP2, \emptyset, <u \Rightarrow C>) & \quad !\text{pair} _\text{contain} _\text{nv}(AAP2)
\end{cases}
\cup
\begin{cases}
(AAP1, \emptyset, <t \Rightarrow C>), \\
(AAP2, \emptyset, <u \Rightarrow C>)
\end{cases} & \quad t := \text{apply} _\text{deref}(\text{rhs}, p, q) \land \\
(AAP1, \emptyset, <t \Rightarrow C>), & \quad u := \text{apply} _\text{deref}(\text{rhs}, p, r) \land \\
(AAP2, \emptyset, <u \Rightarrow C>) & \quad !\text{pair} _\text{contain} _\text{nv}(AAP2)
\end{align*}
\]

\[h_3(S) = \bigcup_{AAP1, AAP2 \in \text{AP} \Gamma_0} \left(\begin{array}{c}
h_{1,\text{AAP1}, \text{AAP2}, p, C, q, r}(S) \\
h_{2,\text{AAP1}, \text{AAP2}, p, C, q, r}(S) \\
h_{3,\text{AAP1}, \text{AAP2}, p, C, q, r}(S) \\
h_{4,\text{AAP1}, \text{AAP2}, p, q, r, w}(S) = \left\{ (AAP1, \emptyset, <p, q>), (AAP2, \emptyset, <u, w>) \right\} \subseteq S(0) ? s_{\text{AAP1}, \text{AAP2}, p, q, r, w} : \emptyset \\
h_{5,\text{AAP1}, \text{AAP2}, p, q, r, w}(S) = \left\{ (AAP1, \emptyset, <q, p>), (AAP2, \emptyset, <u, w>) \right\} \subseteq S(0) ? s_{\text{AAP1}, \text{AAP2}, p, q, r, w} : \emptyset \\
h_{6,\text{AAP1}, \text{AAP2}, p, q, r, w}(S) = \left\{ (AAP1, \emptyset, <p, q>), (AAP2, \emptyset, <w, v>) \right\} \subseteq S(0) ? s_{\text{AAP1}, \text{AAP2}, p, q, r, w} : \emptyset \\
h_{7,\text{AAP1}, \text{AAP2}, p, q, r, w}(S) = \left\{ (AAP1, \emptyset, <q, p>), (AAP2, \emptyset, <w, v>) \right\} \subseteq S(0) ? s_{\text{AAP1}, \text{AAP2}, p, q, r, w} : \emptyset
\end{array} \right)\]

$h_3(S)$ is a comprehensive version of propagation described by Figure 5.9, accounting for cases when the incoming predicates may involve object names containing nv and the result is a points-to-type predicate. Note that the condition $p \in \mathcal{O} \land \text{is} _\text{prefix}(\text{rhs}, p)$ in the definition of $h_3(S)$ above ensures that $\text{apply} _\text{deref}$ never assigns $\text{null} _\text{object}$ to t or u in the set $s_{\text{AAP1}, \text{AAP2}, p, C, q, r}.$
where \(s_{AAP1, AAP2, p, q, v, w} = \)

\[
\begin{cases}
(AAP1 \oplus AAP2, 0, \langle t, q \rangle), & t == apply_{deref}(rhs, p, q) \land \\
(AAP1 \oplus AAP2, 0, \langle q, t \rangle), & u == apply_{deref}(rhs, p, r) \land \\
(AAP1 \oplus AAP2, 0, \langle u, q \rangle), & \text{pair}_{\text{contain}}(AAP1) \land \\
(AAP1 \oplus AAP2, 0, \langle q, u \rangle) & \text{pair}_{\text{contain}}(AAP2)
\end{cases}
\]

\[
\begin{cases}
(AAP1, 0, \langle t, q \rangle), & t == apply_{deref}(rhs, p, q) \land \\
(AAP1, 0, \langle q, t \rangle), & u == apply_{deref}(rhs, p, r) \land \\
(AAP1, 0, \langle u, q \rangle), & \text{pair}_{\text{contain}}(AAP1) \land \\
(AAP1, 0, \langle q, u \rangle) & \text{pair}_{\text{contain}}(AAP2)
\end{cases}
\]

\[
\begin{cases}
(AAP1, 0, \langle t, q \rangle), & t == apply_{deref}(rhs, p, q) \land \\
(AAP1, 0, \langle q, t \rangle), & u == apply_{deref}(rhs, p, r) \land \\
(AAP2, 0, \langle u, q \rangle), & \text{pair}_{\text{contain}}(AAP1) \land \\
(AAP2, 0, \langle q, u \rangle) & \text{pair}_{\text{contain}}(AAP2)
\end{cases}
\]

\[
\begin{cases}
(AAP1, 0, \langle t, q \rangle), & t == apply_{deref}(rhs, p, q) \land \\
(AAP1, 0, \langle q, t \rangle), & u == apply_{deref}(rhs, p, r) \land \\
(AAP1, AAP2, \langle q, u \rangle), & \text{pair}_{\text{contain}}(AAP1) \land \\
(AAP2, AAP1, \langle u, q \rangle) & \text{pair}_{\text{contain}}(AAP2)
\end{cases}
\]

\[
h_8(S) = \bigcup_{AAP1, AAP2 \in AT_0}
\begin{cases}
h_{4AAP1, AAP2, p, q, v, w}(S) \cup \\
h_{5AAP1, AAP2, p, q, v, w}(S) \cup \\
h_{6AAP1, AAP2, p, q, v, w}(S) \cup \\
h_{7AAP1, AAP2, p, q, v, w}(S)
\end{cases}
\]

\(h_8(S) \) is a comprehensive version of propagation described by Figure 5.11, accounting for cases when the incoming predicates may involve object names containing \(nu \) and the result is a \textit{may-hold} predicate. Note that the condition \(p \in O \land is_{\text{strict_prefix}}(rhs, p) \) in the definition of \(h_8(S) \) above ensures that \(apply_{deref} \) never assigns \textit{null.object} to
We can similarly define a component function representing the aspects of propagation outlined in Figure 5.10. Let \(h_9(S) \) denote the function responsible for propagating a \(\text{may}-\text{hold} \) predicate to \(n \) using \(\text{points-to-type} \) and \(\text{may}-\text{hold} \) predicates at \(m \). We omit the details of \(h_9(S) \). Given the above functions, the edge function can now be defined as

\[
f_{m\rightarrow n}(S) = [h_1(S) \cup h_3(S) \cup h_8(S) \cup h_9(S), g_{0,0}^1(S), \ldots, g_{0,0}^9(S)]
\]

2. \(\ll c, e \gg \) where \(c \) is a non-virtual call node and \(e \) is the corresponding entry node.

Let

\[
h_0(S) = \left\{ (\text{AP}_c, 0, \text{AP}_e) \mid \text{AP}_e \in b_{c\rightarrow e}(0) \right\}
\]

\(h_0(S) \) returns all tuples \((\text{AP}_c, 0, \text{AP}_e) \) where \(\text{AP}_e \in b_{c\rightarrow e}(0) \).

\[
h_1_{\text{AP}, \text{AP}}(S) = \left\{ ((\text{AP}_c, 0, \text{AP}), \text{AP}) \subseteq S(0) \right\}
\]

\[
h_0(S) \cup \left(\bigcup_{\text{AP} \in \text{AP}_c} h_0_{\text{AP}, \text{AP}}(S) \right)
\]

\(h_2(S) \) returns all tuples \((\text{AP}_c, 0, \text{AP}_e) \) where (i) \(\text{AP}_e \in b_{c\rightarrow e}(\text{AP}) \) and (ii) \(\text{AP} \) holds at \(c \).

\[
f_{c\rightarrow e}(S) = [h_0(S) \cup h_2(S), g_{0,0}^1(S), \ldots, g_{0,0}^9(S)]
\]

The edge function for \(\ll c, e \gg \) where \(c \) is a virtual call and \(e \in \mathcal{EN} \) can be defined as an extension of the above edge function. In Appendix B.1, we have already described a similar extension in the context of single level pointers.

3. \(\ll c, r \gg \) where \(c \) is a non-virtual call node with corresponding entry node \(e \) and \(r \) is the corresponding return node.

\[
h_0(S) = S(d_e) \cap ((b_{c\rightarrow e}(0) \cup \{0\}) \times \{0\} \times ((\mathcal{GB}_v \times T) \cup (\mathcal{GB}_v \times \mathcal{GB}_v)))
\]

\[
h_1(S) = ((\emptyset, \emptyset), \pi_2(h_0(S)))
\]
$h_1(S)$ returns tuples $(\emptyset, \emptyset, AP)$ such that (i) $AAP_c \in b_{c\rightarrow c}(\emptyset)$ or $AAP_c = \emptyset$, (ii) AP holds at corresponding exit node of e with assumption (AAP_c, \emptyset), and (iii) AP only contains global object names not involving nv.

$$h_{2, AP, AAP_c, AP_e}(S) = \{(AAP_c, \emptyset, AP_e)\} \subseteq S(d_e)$$

\begin{align*}
\begin{cases}
(AAP_c, \emptyset, AP_1_x) & AAP_c \in b_{c\rightarrow c}(AP) \land \\
AP_x \in ((GB \times GB) \cup (GB \times T)) \land \\
AP_1_x == map_nv1_{c\rightarrow c}(AP, AAP_c, AP_x)
\end{cases}
\end{align*}

\begin{align*}
h_{3, AP}(S) &= \bigcup_{AAP_c, AP_e \in APT} h_{2, AP, AAP_c, AP_e}(S)
\end{align*}

\begin{align*}
h_{4, AP}(S) &= \bigcup_{AAP \in APT_0} \{\{(AAP, \emptyset, AP)\} \subseteq S(0)? \{(AAP, \emptyset, AP)\} : \emptyset
\end{align*}

\begin{align*}
h_5(S) &= \bigcup_{AP \in APT} \pi_1(h_{4, AP}(S)) \times \pi_2(h_{3, AP}(S))
\end{align*}

$h_3(S)$ returns tuples (AAP, \emptyset, AP_1_x) such that (i) AP holds at c with assumption (AAP, \emptyset), (ii) $AAP_c \in b_{c\rightarrow c}(AP_1_x)$, (iii) AP_x holds at corresponding exit node of e with assumption (AAP_c, \emptyset), (iv) AP_x contains only global object names with at most one object name involving nv, and (v) AP_1_x is the pair with appropriate object names mapped back using AP at c.

$$h_{6, AAP_1, AAP_2, AP}(S) = \{(AAP_1, AAP_2, AP)\} \subseteq S(0)? \{(AAP_1, AAP_2, AP)\} : \emptyset$$

$$h_7(S) = \bigcup_{AAP_1, AAP_2 \in APT_0} h_{6, AAP_1, AAP_2, AP}(S)$$

\begin{align*}
AAP_2 == \emptyset \\
AP \in ((LC_c \times T) \cup (LC_c \times LC_c))
\end{align*}

$h_7(S)$ returns tuples $(AAP_1, \emptyset, AP) \in S(0)$ where the pair AP only consists of object names local to the function containing call node c. Such pairs cannot be destroyed by the called function, and hence directly propagate to the return node r.
\[h8(S) = \bigcup_{AAP_1, AAP_2 \in \mathcal{APT}_0} h6_{AAP_1, AAP_2, AP}(S) \]

\[AP \in ((\mathcal{NV} \times T) \cup (\mathcal{NV} \times \mathcal{NV})) \]

\(h8(S) \) returns tuples \((AAP_1, AAP_2, AP) \in S(0)\) where the pair \(AP\) only consists of object names with \(nv\). Such pairs cannot be destroyed by the called function, and hence directly propagate to the return node \(r\).

\[h9_{AAP_1, AAP_2, AAP_1_e, AAP_2_e, AP_e}(S) = \{(AAP_1_e, AAP_2_e, AP_x)\} \subseteq S(d_e) \]

\[? s_{AAP_1, AAP_2, AAP_1_e, AAP_2_e, AP_e} : \emptyset \]

where \(s_{AAP_1, AAP_2, AAP_1_e, AAP_2_e, AP_e} = \)

\[
\begin{cases}
(AAP_1_e, AAP_2_e, AP_1_x) & \text{pair_contain_nv}(AAP_1_e) \land AAP_1_e \in b_c(e)(AP1) \land \\
(AAP_2_e, AAP_2_e, AP_2_x) & \text{pair_contain_nv}(AAP_2_e) \land AAP_2_e \in b_c(e)(AP2) \land \\
& AP_x \in (GB \times GB) \land (PT1_x = = \\
& \text{map_nv}(AP1, AAP1_c, AP2, AAP2_c, AP_x))
\end{cases}
\]

\[h10_{AP_1, AP_2}(S) = \bigcup_{AAP_1, AAP_2, AP_e \in \mathcal{APT}} h9_{AAP_1, AP_2, AAP_1_e, AAP_2_e, AP_e}(S) \]

\[h11_{AP_1, AP_2, AAP_1, AAP_2}(S) = \]

\[
\begin{cases}
(AAP_1, \emptyset, AP1), \\
(AAP_2, \emptyset, AP2)
\end{cases} \subseteq S(0) ? \{(AAP1, AAP2, AP2)\} : \emptyset
\]

\[h12_{AP_1, AP_2}(S) = \bigcup_{AAP_1, AAP_2 \in \mathcal{APT}} h11_{AP_1, AP_2, AAP_1, AAP_2}(S) \]

\[\text{pair_contain_nv}(AAP1) \]

\[\text{pair_contain_nv}(AAP2) \]

\[h13(S) = \bigcup_{AP_1, AP_2 \in \mathcal{APT}} \pi_1(h12_{AP_1, AP_2}(S)) \times \pi_2(h10_{AP_1, AP_2}(S)) \]
Alias pair AP_x at exit of the called function is such that both object names in this alias involve nv, and $h13(S)$ maps them to the corresponding object names in the calling function where each mapped object name again involves nv.

$$h14_{AP_1, AP_2, AAP_1, AAP_2}(S) = \begin{cases} (AAP_1, \emptyset, AP_1), \\ (AAP_2, \emptyset, AP_2) \end{cases} \subseteq S(0) \cap \{(AAP_1, \emptyset, AP_1) : \emptyset$$

$$h15_{AP_1, AP_2}(S) = \bigcup_{AAP_1, AAP_2 \in \mathcal{APT}} h14_{AP_1, AP_2, AAP_1, AAP_2}(S)$$

$$h16(S) = \bigcup_{AP_1, AP_2 \in \mathcal{APT}} \pi_1(h15_{AP_1, AP_2}(S)) \times \pi_2(h10_{AP_1, AP_2}(S))$$

Alias pair AP_x at exit of the called function is such that both object names in this alias involve nv, and $h15(S)$ maps them to the corresponding object names in the calling function where at most one of the mapped object names again involves nv.

Given the above component functions,

$$f_{c \rightarrow r}(S) = [h1(S) \cup h5(S) \cup h7(S) \cup h8(S) \cup h13(S) \cup h16(S), g_{0,0}(S), \ldots, g_{0,0}(S)]$$
References

Vita

Hemant D. Pande

1985 B.Tech. in Computer Science and Engineering, IIT, Bombay.

1985–1989 Graduate work in Computer Science, Rutgers University.

1986–1989 Graduate assistant (Center for Computer Aids for Industrial Productivity grant), Dept. of Computer Science, Rutgers University.

1988 M.S. in Computer Science, Rutgers University.

1989–1991 Member of technical staff, Siemens Corporate Research, Princeton, NJ.

1990 “Profiling an Incremental Data Flow Analysis Algorithm” [RLP90].

1990 M.Phil. in Computer Science, Rutgers University.

1991 “Interprocedural Def-Use Associations for C Programs” [PRL91].

1991–1993 Member of technical staff, Tata Research Development and Design Centre, Pune.

1993–1996 Doctoral student and research assistant (Siemens Corporate Research Fellowship), Dept. of Computer Science, Rutgers University.

1994 “Static Type Determination for C++” [PR94a].

1994 “Interprocedural Def-Use Associations for C Systems with Single Level Pointers” [PLR94].

1996 Ph.D. in Computer Science, Rutgers University.