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Dissertation Director

CarolynA. Maher

Recent data from a crosstional assessment, the Programme for International Student
Assessment (PISA), place the United States performance in maiteais88 out of 71
countries (OECD, 2018) one clear indication of the ongoing need for the improvement of
mathematics education. This improvement relies, in part, on improving undergraduate
mathematics education for prospective teachers of matheméaacshould learn mathematics in
a manner that encourages active engagement with mathematicdNdeasal Research
Council, 1989)

Despite the importance of teacher rational number knowledge, the ways in which they
successfully acquire that complexdyoof knowledge are not well understood (e.g. Depaepe et
al., 2015; Krauss, Baume# Blum, 2008; Newton, 2008; Senk, 2012; Son & Crespo, 2009;
Tirosh, 2000). Teachaisapability of building and using different representations of math ideas,
including rdaional number concepts, are considered important areas of mathematical knowledge
that must be developed in order to provide meaningful learning experiences for students
(National Governors Association for Best Practices & Council of Chief State SchomiSffi
2010; National Research Council, 2003). Studies on preservice tegbivisng about

fractions have shown that while they bring some knowledge of fractions to their undergraduate
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mathematics classes (Mack 199Wosh, 2000 Park,Gucler& McCrory, 2012), their
mi sunderstandings are still similar to those
1988; Osana & Royea, 2011; Zhou et al., 2006) . Studies have also reported that prospective
teachers often enter teacher preparairograms with beliefs inconsistent with the conceptual
teaching of mathematics (Ball, Lubienski & Mewborn, 2001; Strohlmann et al., 2015).
improvement in the teaching and learning of mathematics is to be realized, understanding how
prospective tea@rs build and justifgheir solutions to rational numbers problems will be of
importance.
This research, a component of a design study grant funded by the National Science

Foundatio#, investigates howrospectivedeacherextend knowledge aftional nunber ideas,
how they justify solutions and how their beliefs about teaching and learning mathematics evolve.
The study also explores the i nstthecladsroambs r ol e
environment. The students worked on mathematicallyfractions tasks using Cuisenaire rods
as they developed representations to understand the concept of unit fraction, to compare
fractions, and to build ideas of fraction equivalence. The stuglyided by the following
research questions:

1. What role does the instructor play infhe ospecti ve teacherso6 buil

of ideas?
2. What types of interventions does she employ?
3. What changes, ifany,mr ospective teachersod beliefs ab

mathematicgan be identifiedver the course of the intervention?

! The CyberEnabled Design Research to Enhance Teachers' Critical Thinking Using a Major
Video Collection on Children's Mathematical Reasomgng research and development project
sponsored by thHational Science FoundatipawardDRL-0822204]conductecht Rutgers
University and University of Wisconsin, Madisanddirected byDr. Carolyn A. Maher

iv
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The videotaped data eix female subjects in a mathematics class at a liberal arts college
were captured with two camerfs two 60-minute class sessions. During the sessions, students
explored fractions ideas while working with partners in small groups, discussed solutions, and
built models to justify solutions. Two sessions of videotaped data, transcripts, student work,
beliefs assessments and observation notes were analyzed using the analytical model described by
Powell, Francisco, and Maher (2003).

This study contributeto an underesearched body diferatureby examining nst r uct or 6
pedagogical and question moasprospective teachelsiild representatiasof rational number
concepts anglstifications for solutions to problemgthin an undergraduate mathematics
course. Its findings may be of value to colleges of education as they redesign curricula intended
toimprove prospective teachersodé understanding o

number ideas.
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1 THEORETICAL FRAMEWORK
1.1 Understanding Mathematics

Much work has been done on understandng@ t he mat i cal inanreffoetost and i
answer questions such as OHow do we come to u
understanding to occur ?06 1{oPavis([@192),anmddstakdinga en, 1
new idea requires thatitfitnt o a @l a rofpreviousty assembledadeak Thus, a
new ideais constructed anchust connect with some prior understanding.

Davis references the work of Pirie and Kieren and their theory of growth of mathematical
understandingPirie and Kiereroffered a modeto trace growth iunderstandingdescribing it
as a whole dynamic process and not as a single or-valilied acquisition, nor as a linear
sequencef knowledge categorid®irie & Kieren 1994. Their theoryof growth constructivist
and recursive in riare, attempts to elaborate the constructivist definition of understaruatidg
describes understandingias he per sona-br ganl dangoandfreneds
st r uc(Piner&&isren, 1992, p. 243).

Hiebert andCarpenter (1992) considen@athematical idea or procedure or fact
understood if it is part of an internal network. 8@ mathematics is understood if its mental
representation is part of a network of representatidtisbert andCarpenter (1992) also
conclude thathe degree of understanding is determined by the number and the strength of the
connectionsThe mathematical idea understooanorethoroughly if it is linked to existing
networks with strongr or more numerous connEns.

Skemp (1976) differentiates between two forms of mathematical knowledge: relational
and instrumental understanding. By relational understanding, he refers to a grasp of

mathematical concepts as well as an understanding of why the mathematicginmdeose
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concepts works. Instrumental understanding on the other hand, refers to knowledge of rules and
proceduresSkemp alsmpines that, in contrast to instrumental mathematics, relational
mathematics is adaptable to new situations and is easammeober than memorized
procedures. Manwho study mathematics learning agree that understanding involves
recognizing relationships between pieces of informgtitinbert & Carpenter, 1992

Constructivist theorygrounded in theiewt hat a p eedge s oodnposek ofo w i
building blocks that form mathematical ideas (Davis, 198#&Wws knowledge construction as
contingent on experiences and percepton These building blocks oricg
experiences and the mental images derived from preexqueriences can be used to build
mathematical ideas (Maher, 1998)avis and Maher (1997) explain that new knowledge is
constructed from old knowledge and that by ca
can be integrated accurately into thé u d e n t sA8 stuslents ereata appropriate schemas to
make sense of new knowledge, understanding grows out of the formation of connections.
Making sense of knowledge is the act of reasoning that derives knowledge from experiences

(von Glaserfeld, 198.

1.1.1 Reasoning

In order to reorganize knowledge, one nmestson Reasoning, broadly defined, is the
process of coordinating evidence, beliefs, and ideas to draw conclusions about what is accurate
or true (Leighton, 209). While Rips (1994) describes reasd n g mardal paocefs that creates
new ideas from old ongsThompson (19963onsiders reasoning tllep ur pos e f ul i nf er ¢
deduction, induction, and association in theea of quantity and structude Each recogni
reasoning as a process. However, reasoning is also a tool that is used within the process of

understanding that leads to knowing.
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Good reasoning abilitysiprerequisite to understandindggall and Bass (2003) discuss
the importance afeasoning in school mathematipssiing that mathematical understanding is
impossible without reasoningl hey asserthat without reasoninginderstanding mathematics
would only be procedural or instrumentahus, using mathematical knowledge requires
reasoning. Without conceptual understanding, that mathematical knowledge is difficult to use
and difficult to apply in new and varientexts

Yackel and Hanna (2003) recognize the social aspects of reasgesugibing it as
communal activitythat learnergarticipatein as they interact with one another to solve
mathematical problemsSkemp (1979highlights the social construct of convincing others and
finds that both the reasoning of justification and logical understatehodve convincing thers
of the truthof andtherationalesupportingthe mathematical ideas that one buildgall and
Bass (2003) describe reasoning as a sspohlnormsshared by the communityl hus the
ability to convince others through argumentation and justificagtablisheshe foundation of
mathematical reasonir{yankelewitz, 2009)
1.1.2 Representations

Crucial to the study of reasoning are the representations that stockzies The term
representation refers both to progele act of capturing a mathematical concept or relationship
in some formand to productthe formitself. Observablgrocessethat encapsulate
mathematical concep&ndthe productsof such processese externalepresentations that can
be captured; internal representations are in the minds of the people doing mathematics (Goldin,
2003) As suchwhen considering issues of representation in mathematics, we must think of

both internal and external representatidigert & Carpenter, 1992
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Representations are central to the study of mathematics. Preigassof mathematics
haveheld that mathematics is ultimately abeytnbols written on a page/hile newer views
advance the belief that mathematics is a wfahinking that involves mental representations of
problem situations and tiierelevant knowledge that involves dealing witese mental
representatiorfPavis, 1992. Although t may make use of written symbgike real essenasf
mathematicss thatwhichtakes place within theind (Davis, 1992.
1.1.2.1 Mental Representations

Hiebert and Carpenter (1992) establish that to tiottk aboutandultimately to
communicate mathematical ideas, we need to represent them in sorardvagnecessarily
represent them internallfhrougha process of constructing internal mental representations
learningi themodification ofthesemental representations in order to construct mathematical
relationships occurs(Cobb, Yackel and Wood, 1992%ince thesenternal representatioraad
constructing of relationships are not observable, tagyonly be inferredGoldin, 2003.

How do learners build mathematical knowledge? According to Davis (1984), a learner
builds mental representational struesthatare framed within his/her prior experiencéavis
and Maher (1998) stress that ideas the ledvadds throughsuchprior experienceconstitute
the additionatognitivebuilding blocks for constructing representatiohfew experiences that
create data for the learner to process suchihah faced with a mathematical task, a learner
first builds mental representations for both the input data and any prior, relevant knowledge. The
learner must then construetjaluate and possibly modify a apping between those two mental
representations the input data representation and the existing knowledge represenfagiuis. (

& Maher, 1990. Davis (1984) refers to the process of creating representations from cognitive

building blocksa® assembl yé and uses this term to descr
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representation is built up using bits and pieces of previously synthesized knowledge
representation structureso (p. 154)
1.1.2.2 External Representations

Lesh, PosandBehr(1987) tike thepositionthat some relationship exists between

externaland internatepresentationsWhile building internal mental representations leads to an
individually generated external representation of a mathematicakideédeatures of those
mental representations arede public through external representatiomsthematical meaning

is notinherent inexternal representatisnThe meaning of thexternal representation is a
product of an individual studdistinterpretation Thus, absent the studénexplanationany
relationship betweeexternal and internaepresentationsan only be inferred.

A particular mathematical idea can often be represented in any one form or in multiple
forms of representation (Hiebert & Carpenter, 1992). Lesh €987) identify five types of
representation systerexperiential, manipulatable models, pictures or diagrams, spoken
language, and written symbols. In experiential representations (or experience based scripts)
knowledge is organized around re@brld events that are the context for interpreting and
solving problems. Manipulatable models concrete objects such as base ten blocks and
CuisenairéM rods, have an intuitive appeal and support learning particular ifRetsires or
diagram representatioase static models that can be internalized as im&gpexken language
representationand written symbols can refer to specialized languages or sentaseesll as
normal English sentences or phras@éghile these forms of representation have long beeh p
of school mathematics, unfortunately, they have often been taught and learned as if they were

ends in themselves (Goldin, 2003).
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To think about and communicate mathematical ideas, we need to represent them in some
way (Hiebert & Carpenter, 1992 ommunicating math ideagquires that the representations
be externallt is important to distinguish external systems of representation from internal,
psychological representational systems of individuals. Such internal systems include personal
symbolizaton, personal assignments of meaning to mathematical notation, natural language,
visual imagery and spatial representation, problem solving strategies and heuristics, and affect in
relation to mathematics (Gold& Shteingold, 2001). Given the persondiiaa of individual
representatias) the notion of representation e ultimate goal of mathematics limits the power

and utility of representations as tools for learning and doing mathematics (Goldin, 2003)

1.1.3 Rational Number Ideas
Rational number conceptshile complex, are among the most important mathematical
ideas children encounter in the early grades. Rational number ideas are also the arena in which
many of the trouble spots in elementary school mathematics &egler and LortieForgues
(2017)report ontwo main classes of difficulties underlying poor understanding of rational
number ideas inherent and culturallgontingent sources of difficylt Inherent sources of
difficulty are those present regardless of the educational institution. Biopds, understanding
individual rational numbers, one inherent source of difficulty presentedelgjeBand Lortie
Forgues (2017)yequires distinguishing between rational and whole number representations and
relationships. Whole numbers have unique @cedsors and successors while between any two
rational numbers are an infinite number of other rational numbers. Culturally contingent sources
of difficulty, such as teacher knowledge and
Fractions are genally the first experience students have with rational numbEnsse

earlyexperiencesre often mearto develops t u d endetswriling diractiors asnumbes.
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For exampl e, repgiesentstheananmber timmidivdy/between 0 and 1/2 on a
number line.Carraher (1996¢ontendghat viewing a fraction simply as a numbemiaccurate.
Fractions are also meaningful repentations of relationships amaderstandinghem requires
understanding relationships besvenumbers, and the ability to express these relationships in
varied ways.

The 1983 work of Behr, Lesh, Ppanhd Silverassertghat rational numbers can be
interpretedn multiple ways;a partto-whole comparison, a decimal, a ratio, an indicated
division (quotient), and an operator exemplify some of the interpretafiohs. 4 6 can r epr e
the equal sharing ofdandy balamong 4 people, a measurement such as 1/4 mile, a ratio such as
1outof4cupcakes, he quotient of di vdadanwomeratorbsefuldond di vi
finding 1/4" of thenumber of3" grade student®ost, Behr, Harel, and Lesh (1993) cite these
multiple interpretations as contributing to the difficulty that children have in attaining clear
understanding of fraction ideaBurther,Freudenthal (198&)ositsthat learning a new idea with
so many diffeent associated meanings presses the student to sort and attach a proper
interpretation in eacimstance before considering any arithmetic approach to a situation.

The traditional way students learn about fractions compounds the complex ideas
associated wh understanding of fractiofraditional instructioremphasizesnemorization of
algorithns and permits insufficient experience with authentic problem solving, thereby detaching
learning from sensmaking and realvorld experiencesHuinker (1998) cautios that a
premature introduction of algorithms is damaging to students because the nature of mathematics
is distorted. With the imposition of meaningless rules for operating on fractions, a disconnect
between understanding of fraction as operator andeseaking of fraction as number occurs.

Many researcher studies suppii perspectivehat the operator senséfractionsdominates
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discusson of the meaning that learnedribute to fractior{Dienes 1967;Kieren,1994; Behr et
al., 1992; Freudenthall985), while algorithmsnvolving fractions are derived from tlwncept
of afraction as number (Steencken, 2001).

Units play an important role in understanding fraction concepts and operétions.
may be a whol& an entity which can be partitioned. A unit may also refer to an amount with
which to generate a new amount. These understandinfsuadational for éfining wholes as
well as success with more challenging topics, such as operations (Tobias, 2013).

With fractions, unitizinga cognitiveprocess for conceptualizing the amount of a given
commodity before, during, and after the sharing pss@aids stué nt s6 abi |l ity to
whole being used in a problem (Tobias, 2013) and to understand fractions as quantities (Lamon,
2002). For example, one third of one whole is not equivalent to one third of another whole when
the wholes are different. Unitizing important for students to understand unit fractions, iterating
unit fractions, and composing units (Lamon, 2005).

1.2 Teachingand Learning Mathematics

Improving the teaching and learning of mathematics has been diffikalk et al (2001)
having surveyed decades of research on reform efidetstify five problem areas(1) the
misrepresentations of mathematics that manifests as students areadwadia skills and
proceduresvithout developing an interest in and appreciation fopiheer of mathematic$)
the resilience of common patterns of instructieflecting intellectual traditionthatexpect
students to imitate, copgnd memorize knolgdge received through transmission, (3)
institutional factors such @sacher isolatiortjme constraints which make taking pedagogical
experimentation risky, angreoccupation wh standardized test scorst pressures teachers

towards a traditional euculum and a focus on basic skjl{g) the conservative nature lotal

de
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assessment armdirricular materialshat often providenadequately developed concepts, and (5)
the weak impact of professional education, particularly preservice tesdingation, on
teacher8knowledge and beliefs.

Discourse about the desirable endsnathematicseaching andearninghas centeredn
the development of mathematical powehe capacity to make sense with and about
mathematicgBall, 1990) Sensemaking crucialto learning matématics enableshe learner to
make connectionsetween informatonceptsand more formal mathematical ideas.

Learningmathematicsakes place over time as a result of repeated experiences that are
connected through personal semaking(Griffin, 1989). Learning includefong-term
conceptual developmeratl e a r shié befwween attending to relationships and perceiving
relationships as properties applicable in other situatigiason, 2004), and reflects advances in
abstract understandirfgvatson and Mason, 2006

Helping students develop this kind of mathematical power requires insightful
consideratin of both content and learnersareful analysis of the specific ot@nt to be learned
andunderstanding of how the students themselves learn particular cisnteeiredBall,

1990) Therefore thet e a ¢ h e, arguss Ball¢11999), requires a bifocal perspective
perceiving the mathematics through the mind of the learner while perceiving the mind of the
learner through mathematics

1.2.1 Role of the Instructor

Constructivism, a theory of learning or meaning makaagn dictate only guidelines for
constructivist pedagogy (Noddings, 1990). Translating a theory of learning into a theory of
teaching has proven challenging. In distinguishing between constructivism and constructivist

teaching, Maher (1998) theorizes that constructivist teachds one who
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encourages children to make conjectures and pursue the reasonableness of their ideas by
constructing models, comparing them, developing arguments, discussing ideas, and
negotiating conflicts while working on probleti@situations that either have been
presented to them or that they themselves have initiated and extgrii®ip. 39)
A necessary component of mathematics instruction, particularly that which supports work
on more challenging problems, is attendingh& development of student reasonimgavis
(1992)describegeaching mathematies amatter of guiding student development of a personal
repertoire of basic building blocks and helping students develop skill in building and using
mental representations
Effective instruction supports students as they build particular organizational and
classification schemes that are necessarily representations of their thinking and understanding.
Teachersd awareness of studeningdeetshntiahtt i ng and
developing mathematic#hinking (Maher & Martino, 1999)Addi t i onal |l 'y, teache
of and belief that learning is a process of both individual and smamstruction (Simon, 1995)
necessarily informs their pedagogical lemsl guides their instructional practice.
1.2.2 Beliefsabout Mathematics
A frequently held conceptioim education is that teacheitsach they way they were
taughté Research demonstrates the more complex rdalityat t eacher s6 pr of ess
are influenced by many factors including tha&ibject matteknowledge, social and poliat
context, family influencesandknowledge develogdover time about how to teach particular
topics(Shulman 1986; Beijaaret al., 2004 Further,asubstantial body of research suggests
that teachersd beliefs and values abo@ldark t each

& Peterson, 198&ang, 1996; Kagan, 1992; Timpson, 1992 For example, if a teacheegards
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mathematiceisa set oexplicit rulesto be followed classroom practice will tend to focus on
memorization, calculation and developing procedural sKilmversely, if doing mathematics
involves complex processes requiring heuristics and asdlysn learningactivitiesthat extend
beyond memorization and procedural skathd modes of inquiry are appropriéavis, 1990).

All mathematical pedagogestson a philosophy of mathematics (Thompson, 3992
While the beliefsupon which a philosdpy of mathematics restsay befairly stable and
resistant taahanggBrandt et al 2012) beliefs can also be held with varying degrees of
conviction.Thus an opportunity to shift beliefs about what mathematics is, what value it has,
how it is learned, who should learn it, and what mathematical reasoning emtisiis,In order
to shift prospective teachers towardoptng teaching practices that ageourded in evidence
abouthowlearn ng occur s, gauging and i nStipekegalci ng t ea

2001)
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2 LITERATURE REVIEW
2.1 Introduction

This study situates itself in discourse related to the teaching and learning of rational
numberideas While there are many pedagogical philosophéggmrdingteaching andearning
mathematicsn generalthis reviewfocuses narrowly orepresentationslicited by means of
particularlysequenced instructional tasks, prospective teachdgara®rs, and the instructors
roleasanintermediary The goal of this review is to paion this study in discussiorms
interventions for prospective teacharsd the instructor moves that undergird those
interventions

The research on prospectivee a c her s 6 r a tdevelopmédntcanlbbenb er | de a
organized into three themes. The first theme that will be discusezlvarious representations
and the sequencing of ideas associated ratibnal number concepts. A second section
discusses the rolaf the instructor as the facilitator of learning and the moves employed in order
to probe studentsdéd reasoning and elicit justi
mathematical reasoning about rational number ideas is developed in prespeEathers in the
context of undergraduate mathematics courses.
2.2 Role of the Instructor

The view of constructivism as a theory of learning guides much of the development of
constructivist pedagogyrichardson, 2003)Maher (198) describeslassrooms thgiromote
6constructivist teaching6 as thosproviddsat mi ght
experiences from whicstudents can buildowerful repertoirs of mental images to draw upon
for the construction of representations of mathematical j§2psssesses the ideas that a student

buildsby observing their activity (model building) andtéising to their explanations; (3)
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encourages the students to support ideas with suiadtiications and arguments; (4)ovks to
build a classroom cultuthat encarages the exchange of ideas; (&ljscdifferences and
disagreementto the attention of student®) facilitates the organization and reorganization of
student groups to allow for the timely sharingd#as; (7) acourages studemt-studentand
studentto-teacher efforts to map representations and develop modes of inquiry that might
disclose deeper derstanding of discrepancies; (8bpides multiple opportunities for students
to talk dout and represent ideas; (®eps discussion open amavisits ideas over sustained
periods of timeand (10) seks opportunities for generalizations and extensidmsse
characterizations reflect the ntnaditional role of thenstructoras an active participant who
attends to childrends cognitive devel opment
community (Maher, 1998).

Thei nstruct or 6 s andseleetioniisrcrudiabirsfiramind) eesired) l@arning
experiences that encog@mathematical reasoning and facilitate student engagebeatr
and English (2006) assert that tasks should be designed to encourage students to use
representations assandow into their thinking which then enables the community of learners to
view ard understand their ideasnstructorsalsofacilitate discussions and probe for better
understanding of student thinkinghese probes manifest through appropriateely,

purposeful questioning directly relatemlstudents' constructiomasd require am-depth

a

knowl edge of mat hematics as wegMaher,d998Smithi | dr en 0

and Stein, 2011 Yankelewitz et al(2010) report on two studies in whidburth andsixth

gradestudents investigadea strand of taskgvolving Cuisenaire rodand were encouraged to

both justify their sol ut.iAnealytaskpiomgtedestadentsdon ot

find the correct rod that could be called one half when the blue rod was calleBarid, a

h
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fourthgrade, reasoned that there is no such rod. After the instructor questioned his hypothesis,

David justified his assertion using an upper and lower bounds argument. Through this task, the
instructor povided anexperiencdor building mental imagesf an ideajn this example a linear
representation of oAealf, observed he st udent 6 s ouestbeed hlruislt diidreagt 6.
hypothesis as a means of making his reasoning available to the community for questioning
(Yankelewitz et al., 2010).

Research bimaher(1998) emphasizes the significancgadviding multiple
opportunities for students to talk@ut and represent ideaGerstein and Yankelewitz (2017)
offer further analysis of the Colts Neskudy asstudents investigate tmetion d fraction
equivalence During the fourth sessiorgsearcher Martino asks what two white rods would be
called if the orange rod were given the number namd®esstein and Yankelewitz, 2017)

Mark, using an orange, red and two white rods, construoigdel and justifies his solution of

one fifth(Gerstein and Yankelewitz, 2017Researcher Martinprovidesfurther opportunities

for students to talk about and represent ideas by subsequently asking if there are other. solutions
Meredith volunteers aodution of twatenths and builds a model of one orange rod and ten white
rods(Gerstein and Yankelewitz, 201 Btudentto-student efforts tqustify andmapvarying
representationsnsues as Researcher Martino indicates that she is confused becauses® be

the various model&erstein and Yankelewitz, 2017).

The i nstruct or Gbsocntical Using intentidnaldeachar maves toi s
promote discourse, thele ofinstructoris toestablish a classroom culture encouraging
exchangesf ideas, listen, encouragsstification and argumentatiofgcilitate inquiry and
timely sharing of idegsand providemultiple opportunities to talk about, represent, and revisit

ideas Interactions beteen instructor and learner that result from beaecnoves shape students
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talk and help to construct understandi@fapin et al. Z0®) emphasizéothstudentto-student
and teachestudenttcommunicatiorin Project Challenge, a fowyear study involving
approximately 400 Boston school district studentgrades 4 through 7The instructors
maintained a consistent focus on explanations of students megsdnle emphasizing
communication through support for both leng#nd brief discussionsClhapi n and OO6 Con
2007). Results of the Project Challga study provide strong evidence that student learning is
greatly supported by student engagenieainda sustained emphasis on academically
productive talk (Chapin and O6Connor, 2007).
The timingof questionsand the pauses between themaiseimportant. It is important
not only to wait after a question is posed, but it is equally important to waitladtgtudent
respondgHerbetEisenmann2009) Providing this time allows other students process time
during which they determine whether yregree or disagree, and what contributiansaketo
the digussion(Gronewold, 2009).These subsequent contributions make take the form of
guestions and situations raised by students, and may be used judiciously to further guide
instruction. Decades bresearch on wait time&lefined in terms of the duiah of pauses
separating utt@mces during verbal interactidmighlight numerous benefits of pausing for longer
periods of time before speaking (Tobin, 1986aving reviewedtudies involving wait tira
acrossa range of subjestaind grade levelslobin (1987) finds that wheawverage wait time was
greater than 3 seconds, changesathteacher and student discourgereobserved Increases
in middle school mathematicsl@evementvere also reported These findingsuggest that wait
time mayfacilitate higher cognitive level learning by providing teachers ardesitis with

additional time to process information.
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2.3 Rational Number Ideas

The study of both the learning and teaching of rational number ideas has been a crucial
area of mathematics education research for many years. A review of the research on rational
number learning indicates researchers continue to focus on the variocts adplee topic.
Considerable researthas been conducted focusing on child
experimental instructional materials including physical manipulatives and pictorial
representation@ehr, Harel, Post, & Lesi,993;Kamii & Kirk land, 2001; Maher &
Yankelewitz, 2017; Steencken & Maher, 2003; Schmeelk, 2017). These studies frenotently
common misconceptions in children6s unsuccess
sensemaking void frequently associated with such @ffohlthough most stdents eventually
learn the specific algorithms they are taught, retentiorcandeptual knowledgeften remain
deficient. Physical manipulatives, particularly linear models, can support the requisite meaning
making critical in the aagjsition of conceptual understanding of rational number ideas.

The Rational Number Project (RNP), a muitiiversity NSF funded research effort,
developed instructional and assessment materials concerning rational numbencefits: part
whole, measw, quotient, decimal, and ratio. The curriculum designed reflected four beliefs: (1)
childrendéds |l earning about fractions can be op
concrete models, (2) most children need to use concrete models over exiemnoldsl of time to
develop mental images needed to think conceptually about fractions, (3) children benefit from
opportunities to talk to one another and with their teacher about fraction ideas as they construct
their own understandings of fraction as anfwer, and (4) instructional materials for fractions
should focus on developing conceptual knowledge prior to formal work with symbols and

algorithms Cramer et al., 200€Cramer and Henry, 2002)0f particular interest was the role of
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physical models orhe learning of the suboncepts, as well as the use of math concepts as
understanding progressed from concrete to absBattr (et al, 1984. The project yielded
several longerm studies regarding the teaching and learning of fractions afowrly and fifth
grade studentBgzuk& Cramer, 1989Post et al., 1985).

Research by Post and colleagues (1985) emphasized the significance of physical models
and strategies utilized as understanding progressed from concrete to abstraethofart
interpretation of rational numbers was facilitated by teachers using both circular and rectangular
physical models.Subsequent lessons engaged subjects in modeling solutions with Cuisenaire
rods, paper folding, poker chips, and number lings the studentdiscussed the solutions to the
mathematical tasksesearchers interview questions revealed the strategies that students chose as
they participated in the tasks (Post et al., 1985).

The 18week teaching experiment, conducted in Minnesotaléindis, included a
combination of individual and group wofér 12 fourth grade studentsix at each site Before
introducingcolor-coded rectangular models, the teaching experiment introducedcooled
circular model s, e n oo that a5 gide degreasds thel rimbergcdmake bhe e r v
whole increases (Post et al., 1985). Students investigated fraction equivalence using paper
folding with circles and rectangles, and translated between circular and rectangular models
before attaching uhfraction names to models. (Post et al., 1985). Among the tasks students
participated in were those requiring use of Cuisenaire rods to name unit fractions, noting
fractions as sums of unit fractions, and translating across various physical and pictorial
representations (Post et al., 1985).

Each student was interviewed individually on 11 separate occasions throughout the

teaching experiment, with each interview audio taped or videotaped. The interviews solicited a
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verbal explanation or demonstration Veradministering items that required ordering, assessing
the equivalence of or generating equivalent fractions (Post et al., 1985). Results were analyzed
according to the three classes of fractions used in the items: fractions with the same numerators,
fractions with the same denominators, and fractions with different numerators and denominators.
The findings reflect an analysis of students?o
fractions (Post et al ., 1 9 8 &rategy in Whitlea studesth st r a
explains his or her response using pictures or manipulative materials, occurred least frequently
amongst the valid strategy types for each class of fraction (Post et al., 1985). Conaitlering
three classes of fractions, the manipulative strategy occurred most frequently for the class of
fractions that embodied different numerators and denomiriageserally a more cognitively
demanding task.
Acquisition of quantitative understandingfodctions is based on individual experiences

with physical models and on instruction that emphasizes meamakghg rather than procedures
(Bezuk& Cramer, 1989). Thusseof manipulatives is crucial to the developmehtational
number ideas. Manipuigesaid in the construan of mental images that are essential for
meaningfully performing fractions tasks. Among several recommendations that Bezuk and
Cramer (1989bffer regarding physical modedse the following

a) use manipulatives at each gradeelgo introduce all components on fractions

b) delay work with operations to allow necessary time for work on concepts

c) base primary grades instruction on whplat concepts using first the continuous

physicalmodel and then the discrgt@ysicalmodel
d) in primary grades, ask students to name fractions represented by physical models
and diagrams
e) use words (twhirds) initially, then introduce symbols (2/3)

Maher and Yankelewit2017)report on a study of fourth grade students investigating

fraction ideas under conditions supporting investigation and argumentation. Thetong
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partnership between teachers in the suburban, public school district of Colts Neck, NJ and the
faculty of Rutgers University focused initially on challenging studentsmsteuct personal

knowledge of fraction concepts such as fraction as number, fraction equivalence, fraction
comparison, and operations with fractions (Maher and Yankelewitz, 2017). Steencken and

Maher (2003) report on the early investigations, payingquear attention to the flow of the

ideas of children whose activities include constructing representations to show part of some

finite quantity. In later sessions, students explore fraction properties, perform fraction operations
and represent fractiors number. Over the course of these videotaped sessions, the researchers
noted that studentsd | anguage, as they commun
(Steencken and Maher, 2003).

An important aspect of the Colts Neck study is the reselarshé d e s iregded of open
tasks, monitoring developing ideas of students, and creating new tasks as their judgment
suggested (Maher and Yankelewitz, 2017). Researchers designed an adaptive intervention,
developing new learning experiences based on thedltias of studentsa novel approach in
studies incorporating experimental instructional materials. The intervention comprised tasks in
which learners build models of the fraction ideas that they explored using Cuisenaire rods,
attending to the attributef length. After working on a task or group of tasks, learners were
invited to share their solutions by reconstructing earlier models while being encouraged to justify
their solutions.

The videotaped sessions of the Colts Neck intervention have beegddbydnany
researchers. Yankelewitz (2009) investigates the forrasgofmentation, both its structure and
purpose, and forms oéasoning elicited as students work on tasks involving the building of

fraction ideasThe study alsexamineghe ways in whiclstudent reasoningvolvesasstudents
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revisit tasks previously introducethefindings provide insightinte t udent sd constr uc
direct and indirect arguments, as welfjasifications andise of counterargumertis refute

claims Further, Yankelewitz (2009lentifiesseveral forms of reasoning elicited as students

work on tasks. The forms of reasoning include generic reasoning, reasoning by cases, recursive
reasoning, and reasoning by upper and lower bouBtiglents were founiw spontaneously

reason indirectly; a potential indication that indirect reasoning is becoming a way of thinking.

Analysis of thefirst seven sessions of tiolts Neck intervention by Steencken (2001)
evidences the fraction ideas children build, theesentations that they use, and how
mathematical ideas travel within the classroorhe study finds that children often udéferent
met hods to find sol ut iideasgo assesd and/dr inadify theirsownd e a c h
thinking. Theyassiséd oneanother in preseimg models and justifyingolutions. Children
expressed their thinking both verbally and +vanbally, aswvell as with drawings, constructions
and written exchangesThese varying expressions of thought alloathematical ideas toavel
amongthe community of learneiSteencken, 2001)

One initial goal of Colts Neck interventio
fraction as operator with fraction as number as a means of avoiding inappropriate generalizations
and in order t@nnex appropriate extensions of the whole number system to include fractions
and their associated ideas (Maher and Yankelewitz, 2QR&ported studies offer evidence that
teacherslike children,have similar difficultyconceptualizing fractions and ma§ meaning of
fractions in contextualized and decontextualized scenariosl(esh,& Schultz, 1983ost et

al., 1985.
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2.4 ProspectiveTeacher Education

The urgent need to revitalize mathematics education pergisiszerybody Counts: A
report to the nation on the future of mathematics atan, he National Research Council
(1989)reports ora number of challenges renewing mathematics education. eTdhallenges
among manyincludea shortage of quified mathematics teachers, a needKet 6 curriculum
and instructiorthat demandkigher order thinking skilland stimulates studegisiathematical
interests, and a proliferation mitellectually stagantundergraduate mathematiwsurses (NRC,
1989)

The relative impact of colleges and universities on teacher education has received a great
deal of attention in the literatu(geichner& Tabachnick198). Nonetheless,réics cite a
weak impact of professional education on teachers as contributing to the difficulty o¥iingpro
mathematics outcomegyecifically, they observehat preservice teacher education typically has
a weak ef f emathenaticaknoeledgeBallretsal) 200). The Mathematical
Education of Elementary TeachéMEET) project explored preservice teachers learning in their
undergraduate mathematics classes, with a particular focus on fradtighsir analysis of the
MEET data Parke et al(2013)soudht to understand what is taught and learned in undergraduate
mathematics courses and to understand the general goals of teaching thdrcastgesequent
analysis oMEET video datapbserved teaching practices revealed that instructors rarely
mentionedractionasnumber or made explicit connections to the ways that fractions fit into the
whole number system (Park et &013). This is consistent with other studies that show teachers
tend to overgeneralize their knowledge of whole numbers wioeking in the domain of

fractions (Tirosh et al., 1999)
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Many studies have been conducted to better underptasgdective elementatye a c her s 0
rational numbeconceptions and misconceptigiill et al., 2005) Newton (2008) pursues a
comprehensivether st andi ng of el ementiavesjyigatingivec her s 6 un
aspects of fractions knowledgeomputational skill, basic concepts, word problems, flexibility
and transfer across all four operationsWith multiple sections of anndergraduatéevel
elementary school mathematics coursehecontext foranalyzing teacherfowledge and
administration ofractions pre and post assessraghie study offers important findings and
implications(Newton, 2008) First, because dichotomizing matheiratknowledge into
procedures and concepts does not fully account for its complibatyton (2008) recommends
more studiegxamineknowledge from multiple perspectives, including the analyssoakect
solution methods Second, studying related topicgyether (e.g. including all four operations in a
study) reveals patterns that would otherwise go unnofiedton, 2008 For example,lie
misconception that the denominators rather than the operation determined the algorithm was
most prevalenmisconcetion in the studyNewton, 2008).

In a similar fashionTobias (2013u s es prospective el ementary
samples and classroom conversations to illustrate difficulties with defining the whole and
conceptualizing particular language for describing fractional amounts. In contrast to Newton
(2008), Tobiag2013)emphasizes uniquely designed activitigoblems focused on pasthole
understanding that providefoundation for language skills develop explaining and justifying
solutions and solution processes, and the reinforcement ofrsatieematical norm3.aken
from a content course focusing on mathematics for teaching elementary schimg,afod
conversations revealed persistent difficulty using appropriate languagesimibing the whole.

This was noted especiallyhenthe problems which used pizzaas a contextinvolved more
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than one pizzaut also when pizzas represented fractions less thanfoneb i as 6 resul ts
provide insight into the types of understandings prospective teachers bring to teacher education
programs and indicate that wheadbers develop understanding of language for fractions less
than one, this does not signal understanding of language for fractions greater than one.
Researchers employ specific instructional interventitisin teacher education courses
inordertostudy ar yi ng aspects of prospecti(lwlak-teacher :
Ucar, 2009; Osana& Royea, 2011Lin et al, 2013) Problem posingefers to generating new
problem or questigras well ageformationof a problem, during the problesolving process
(Silver, 1994) Toluk-Ucar(2009) in designing anethods course interventidmits the notion
of problem posing tthat of generatingn original problem from a given situatiorhe 20®-
2007studyinvestigated the effect of problem piogias a teaching strategg preservice
primary teacherand wasntended teelucidate their existing understandioffractions.
T e a ¢ hearningexperiences focused diiscussions of the appropriateness of the word
problems generated angstifications of posed problems using different forms of representations.
While externalrepresentationsan facilitateunderstanohg of mathematical concepts
(Janvier, Girardon,ardlor and, 1993), a single type of repr
understanding of a concept (Stylian®Pitta-Pantazi, 2002)Lesh et al. (1987) posit that both
translations across representation systems as well as transformations within a réjoresenta
system are important. In tA®luk-Ucar(2009) study, teachdysepresentations were largely
limited to area models, an indication of a lack in flexibility with representational systems.
In a smaliscale studyf eight undergraduate studenBsana and Royg2011)
implement oneon-one fractions instructiom an eémentary teacher training prografhe

threeweeksummer intervention, implementeéfore any participants had taken any of the
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required mathematics methods couréesl been designed to address specific challenges noted
in the wuni ver sthodydowsesnat hemati cs me

The intervention, a replication of the fractions unit from the methods course, required
students to solve a series of word problems involving fractional quantities. For each word
problem, students were asked to draw a picturecthat assist with determining a solution, to
write a number sentence for the problem that had been solved. During the problem solving, the
instructor highlighted specific foundational fractions concepts that were inherent in the&tudent
solutonandmad e connections between the studentds
(Osana& Royea, 201).

As part of the pretegiosttest design for the study, measures of conceptual and
procedural knowledgeonstituted an attempt to examine effects of the inteimein preservice
teacher knowledge and to document the challenges that teachers encounter during the
intervention(Osana% Royea, 201). Included in thisassessment wadractions testlesigned
by Saxe, Gearhart, and Nasir (2001), along with fmablen-posing transfer task The
problemposing tasks required teachers to attach meaning to situations by creating word
problems for given number sentences. Since they were not a component of the intervention,
these tasks were considered transfer tasks.

Consistent withJohnson (1998)ho concludedhat preservice teachers lack the number
sense to solve problentscreative noralgorithmic ways, Osana and Royea (2011) found that
reliance on procedures blocked the ability to find mathexalbdtructure in problems and
prevented the ability to make sense of word problems and invent meaningful solutions. Further,
the researchers found that teachers actively sought to learn procedures that could be applied

across problems.

mdc
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ResearcherbBavecontinued to fincempirical support for the intuitive notion that when
elementary teachers possess deep understanding of mathematics, their students learn more
(Newton, 2008Hill et al., 2005. Tirosh et al(1998), through the conducting of personalized
interviews of both mathematics and Amathematics majors, aim to understand prospective
el ement ar gnceptors oftationa Mumbers awddevelopdidacticapproaches to help
themextend(1) their mathematics conceptions g@j their knowledge bhow children think
about those concepta.study by Isiksal and Cakiroglu (2010) similarly focused on prospective
teachers pedagogical content knowle(l€K), analyzes results of a multiplication of fractions
guestionnaire and results of interviews dasd to obtain additional information about each
prospecti ve t ecasestudyonpreospdetivieachéridhomiledge of common
conceptions and misconceptidmsid by sixth and seventh grade students afvadtion
multiplicationf i nds t hat teachersd perceptions of st ui
algorithmically based mistakes, intuitively based mistakes, mistakes based on formal knowledge
of fractions operations, misunderstanding of the symbolism of a fractiomiandderstanding
of the problem.The resulting analysis ledsliksal and Cakiroglu (201@p recommendhat
teacher education prograrasniliarize prospective teachers with vari@mmsnmon types of
cognitive processeicluding erroneous oneghey furthe recommend thahese programs
familiarize teachers withow thesecognitiveprocesses may lead Yarious ways of thinking
(Tirosh, 2000.

Teachersodo ability to use varying represent
important area of mathematidalowledge to develop in order to provide meaningful learning
opportunities for students (National Research Council [NRC], 2003; National Governors

Association Center for Best Practices & Council of Chief State School Officers [NGA &
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CCSSO0], 2010) This mahematicaknowledge base includé®th subject matter knowledge
(SMK) andpedagogical content knowledge@K), notions first coined by Lee Shulman (1986).
A number of studies (e.g.irosh, 2000Depaepe et al., 2015; Lin et al., 20aBalyze the
rational numbecontent knowledge and pedagogical content knowledgeospective
elementary teachers as a means of unearthing gaps in understanding, assessing the impact of
particular interventions (e.g. open approach instructim) generallpromoting theneed for
awareness of likely sources of common misconceptions held by children and prospective
teachers.
2.5 Intended Contribution of the Study
In the literature on rational number ideaational numbeknowledge of prospective

teachers and the rolé the instructorconsiderable research focuses on rational number
knowledge acquisition of children. Whisuc h r esearch has attended t
of fractions operationgrospective teachegsonceptual understanding argpresentational
knowledge of rational number ideissa burgeoning area fifcus The role that the instructor
pl ays i n pr osatendticaknevletdge aqulsigon is & largely untapped area of
study. Specifically, there is a lack of attention torble ofthe instructoas prospective teachers
reasorabout rational number concepigiild representations of the associated mathematical
ideas, and justifgolutions taasks that elicitationalnumberidea reasoning. Given this gap in
the literature, his study contributet the literature by examining the following:

1. What role does the instructor play in the students building and justifying of ideas?
2. What types of interventions does she employ?
3

. Wha changes, ifany,ipr ospecti ve teachersdé beliefs ab
mathematicgan be identifieabver the course of the intervention?
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3 METHODOLOGY
3.1 ResearchContext

TheMath Reasoning and Assessmeotirseunder studyook placeata privatecollege
in New Jerseyluring the spring semester of 2011. The course is required fsepriee middle

school math teacheesd met twice peweek for75 minutes.Six prospective teacheenrolled

in the coursgall of whom were female, engadjin fractions tasks over the coursdioé weeks.

Data from videotaped problesolving sessions focusing oational number ideasas analyzed
for this study. Theessiongnalyzed for this studgccurred orApril 13, 2011andApril 15,
2011 The tablebelow indicates the organization of the activities indbmpletefractions

intervention.

A CASE
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Table3.1 Fractions Intervention Activities

Date Topic or Activity

Wednesday, April 13| Fractionintervention

1 Video AnalysisUpper and lower bound video

1 Determine relative numberames of rods

1 Use rod models to determine which is larger, 3/4 or 2/3.

Friday, April 15 Fraction Intervention

9 Build rod models to solvevord problemswrite mathematical
sentences for the problems and explain how the rods are re
to the mathematical sentences

Wednesday, April 20| FractionIntervention
1 Problem solving sharing jizzas

Wednesday, April 27 | Fractionintervention
1 Problem solving products and factoyparts of a whole
1 Problem solving measurement

Friday, April 29 Fraction Intervention
1 Problem solving represent multiplication of fractions
analytically and using either rods or drawing

Wednesday, May 4 | Mixed Topics
1 Signed numbers
i Taxicab problems

Friday,May 6 Fraction intervention

1 What role, if any, can manipulatives in understanding fractio
addition/subtraction? multiplication? division?

1 Why is the result larger when you divide by a fraction less th
1?

Friday,May 13 Final exam Beliefs Inventory, Fractiongsostassessment

3.2 Participants

During the spring semester of 2011 sndergraduate students in their junior year were
enrolled in the Math Reasoning and Assessroeutsenstructed bya single instructoata
privateCollegein northernNew Jersey. The students in the class were all mathematics majors
studyng to be teachers. All of the subjeatsre women. All sbprospective teacheegreed to
be videotaped and that their work could be used for this study. Theresirage classroom

instructor
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3.3 Setting

This study is a component ofNational Science Foundation (NSEpdeddesign study
in its third year. Théational Science Foundation (NSgrant conductedat Rutgers University
and University of Wisconsin, Madison [award DRB22204]anddirected byDr. Carolyn A.
Maher, funds the establishmentaofepository to store a collection of video data and related
metadata from earlier NSF funded projects. Theetdand related metadata are being prepared
for bothpre-service andn-service teacher interventiorBy collecting and analyzing video data
of students engaged fractions tasks andgtudyingvideos of children reasoning, this study
extends the work dhe grant.

Throughouthe intervention, the participants were seated at two adjoining tables as they
engaged in both whole group and small grmgdruction The twosmall groups werself
selected. Each wa®mprisedof three participants.

3.4 Tasks

Theinterventionstudied herdés composed afwo sessionsEachsessiorconsists of the
prospectivdeachers working on a set of mathematycath fractionstasks Before the initial
session, prospective teachers engaged in preliminary fractions acthadtiesduired the use of
Cuisenaire rod<Cuisenaire rods as set of 10 colored rods ranging in length from 1 cm to 10
cm.- enable learners tmodel mathematical ideas and visualize relationships.

In session 1, the prospective teachers worked onessgfrifractions problems requiring
building models using Cuisenaire rods. The fpsbblem requiredhat teachers build a model for
determiningthe shortest trains that could be measured by two distinctly colored rods. A second
problem requiredbuilding a model fordetermining the longest traithatmeasures two distinctly

colored rods. Several problems ask prospective teachers to identify a rod having a particular
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number name or to determine the number name of one or more rods when given the number
namne for one rod in the set of ten Cuisenaire rdde final two problems for session 1 ask
prospectivdeachers to create a unique problem that can be answered using Cuisenaire rods, and
to build a model that can be used determine which oftaations is larger and how much
larger. The inclass tasks for session 2 on 4/15Mdre real world problem solving tasks that
required sharing and/or combining fractional portions of pizzas and candy bars.
3.5 Data Sources

This studydraws on multiple sages of data including video data of prospective teachers
building solutions, writing solutions, and interacting with each other as well as the instructor.
The table belowists the video data pertinent to thitudy.

Table3.2 Video Data Sources

Date Session/Camera Subjects
April 13, 2011 | Session 1 Camera 1 Group 1

1 Fae

i Sarah

1 Kelly
April 13, 2011 | Session 1 Camera 2 Group 2

1 Janelle
1 Erika

9 Darlene
April 15, 2011 | Session 2 Camera 1 Group 1

1 Fae

{1 Sarah
1 Kelly
April 15, 2011 | Session 2 Camera 2 Group 2

1 Janelle
1 Erika

1 Darlene

Data also include researcher field nof@®spectivd e a ¢ hrittan sv@rk such athe

beliefinventorypre and post assessments, aadsigned clasgork.
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3.6 Data Collection

Data directly involving the prospective teacheesecollectedusing two videa@ameras
one for each of two group$he data collected includedeo recordings of therospective
teachers workingmthefractionstasksas well as th@hysical modelshat were createdndtheir
written work Thecollectedwritten workis included in Appendik.
3.7 Methods and Coding

Forresearch questiarin this study, anodifiedcoding scheme was signed based on
the prior collaborave work ofa team of researcherBetails of each coding scheme and
relevant definitions are described beloWwranscripts of videandprospective teachdyessays
were coded using each coding scheBaiefs inventory data were aggregated into summary
statistics and presented in tabular form
3.7.1 Framework for Analysis of Video Data

In order to analyze the video data, this studgdthe method of analysis outlined by
Powell, Francisccand Maher (2003). This model usesultiphase proceds studyvideo data.
The application of each phase witlhis study is described below.
3.7.1.1 Viewing

Powell et al (2003) describe the first step atsentively viewingeach videseveral times
to become familiar with the conteMlultiple viewings of each videallow the reseacher to
observe and recomketails in the video that may nadvebesnapparent on the first viewing.
3.7.1.2 Describing

Video data inherently contain enormous amounts of informatdter watchingeach

videoseveral timestime-codedobjectivedescriptios of the eventsn the video aravrittento
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allow one to quickly locatparticular events in the videdhedescriptions contain details of the

event, budo notreflect ary interpretatiorby theresearber.

3.7.1.3 ldentify ing Critical Events

In identifying critical eventsthe researcheselectsevents that will beighlighted in the
study Maher and Martino define critical events as those events that provide mathematical
insight(1996. The identifiedeventswill be any event that is significant to the research agenda
of this study and wiltontain specific representatioffirough the identification of the critical

events the full data set for this studgkes shape.

3.7.1.4 Transcribing

The video data for eadessiorwill be transcribedo provideevidence an@ means for
detailedanalysis These transcriptions will beerified andas accurate as possible to provide the
best possible data for analysiBhe purposeof the transcript for this study is simply transfer
to the page sound and sequencing of talk. Although the transcripts wilchateany gestic
interactions,imagesof models andavritten work relevant to the research agenda will be

embedded.

3.7.1.5 Coding
Aimed atidentifying themes thadid interpretation of data, codingf video datas guided
by the theoretical framework and defined relative to the research questions (Poweli3)!
For each research question, coding schemes developed collaboratitedyrisgf researchers
were empoyed. Video transcriptsvere analyzed ancbded using the coding schenfes
mathematical representations, teacher moves, and beliefs. Each coding scheme is described

below.
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3.7.2 Framework for Analysis of Instructor Moves

The instructor moves framework fonalysiswasused to code the strategies
implementedy the instructor to facilitatprospectivaeacher8building and justification of
solutions. This framework in addition toa framework fortheanalysis of representations, is used
to code the video da of observed instructor moves@sspectivedeachers worked on
mathematical task&\ coding schem&asdeveloped to describe the types of pedagogical moves
employed by the instructofThe codesreorganized into two group®nedescribing the forms
of pedagogical practi¢cghe otherdescribingthe type of instructor questioning

1. Monitoring: Checkingf or t eachersé understanding as
monitors for the purpose of making decisions about whether and which strategjies

solutions to make available to the class. (Smith & Stein, 2011)

2. SelectinggChoosing to share a particul.ar teacher

3. Motivating: Cel ebrating teachersé work through

(2011)

4. Inviting: Solici ti ng multiple solution strategies,

solutions available for public considerat.

discussion. (Herbetisenmann et al., 2013, p. 183)

5. Revoicing:i Rest at i ng oarc hreerpdhsr acsoinnt grEissmmnzren ed al.,. 0
2013, p. 183)

6. Creating: Askingt eachers to engage with another
instructor may ask a teacher to agree or disagree with a solution or to add on to another

t e a c éxplandtisn or conjecturedérbelEisenmann, Steele, & Cirillo, 2013)
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In addition to thecodes characterizing n s t r actiohsparsét sf codes identifying the

types of questions the instructor posed reflecting the varying purposes of teacher iqpgestsn
developed.

1. Explanation: Questions that invite a teacher or group of teachers to describe what they
are doing or did. Explanation questions might be used while teachers are working on a
task, in contrast to describing a completed task. (M&heiartino, 1999)

2. Justification: Questions that elicit how the teachers are convinced that the solution is
correct. (Mahe& Martino, 1999)iquestions posed by the teacher which are aimed at
justification of an asserted solution can stimulate further thoudpuiua the problem
situation, and even lead to a reorganization of the student's saufidaher et al.,

1993. This process of rerganization frequently results in the creation of a more
sophisticated form of justification. Questions which encourage mathematical justification
includefiHow did you reach that conclusionfiCould you explain to me what you did?"
andfiCan you convince the rest of us that your method works?"

3. Probing:Questions that invite teacher-s Ato el a
Eisenmann et al., 2013, p. 188)or t he purposes of this stud
di stingui s magd of ridPm ofbii mwiot iwi I I refer to sit
teacher is invited to elaborate on his or
to situations in which the question is asked in a way to encourage many teachers to
respond.

4. Connecting: Questions that invite teachers to connect their approach or strategy to the

underlying mathematics. (Mah&rMartino, 1999; Smith & Stein, 2011)
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5. Sustaining: Questions designed to sustain the teacher's thought about a mathematical
idea or repesentation that is a component of his/her solution or argument. For example,
the instructor may ask fihave you considere
the problem to consider fAthisd?. The purpo
complete argument or extending thinking about a particular idea. (Matartino,
1999)
6. Generalization: Questions that invite teachers to consider a similar probléhtié
goal of encouraging them to consider patterns that suggest a solution to the original
problem. (Mahe& Martino, 1999, p. 65)
7. Other Solution: Questions that make various solutions public to other teachers. (Maher
& Martino, 1999)
3.7.3 Framework for Examination of Beliefs
All participants in the study completed a beliefs inventory prior to and at the end of the
fractions intervention. Th&4 iteminventory, shown in Appendix A¢ontains some statements
presented as inconsistent with the Professiotaidards for Teaching Mathematics (NCTM,
1991), while other statements are presented as consistent with those staidaildshe
inventoryincluded 34 items, 22 items were related to the intervention and linked to changes in
teacher beliefs during analyses of intervention mogdé&her, Palius& Mueller, 2010; Maher,
Landis & Palius 201Q. The 22 relevant items wetssed to track chang@s the prospective
teachersdé beliefs adoiogmathemaiemcross thegntervéngoa.c hi ng, a
One ofthegoalsofthst udy i s t o examine the participe
teaching, andloingmathematicsData regarding partigant beliefs were collected from beliefs

inventory assessments, and from participant claims during the intervention. Participants
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completed two beliefs inventory assessments; onaggessment, and one passessment. All
of the data sources (videossaksionsfinal projects) were also analyzed foforming
participant beliefs. The methods for analyzing the assessment data, as well as the intervention

dataaredescribed below.

3.7.3.1 Beliefs Inventory
As indicated earlier, prospectiteachers completed a Bebdhventory prior to and at
the completion of the intervention. The Inventorgluded 34 items, of which 22 were related to
the intervention and linked with changes in teadtediefs in analyse of the intervention model
(Maher, Landis& Palius 2010; Maher, Paliu&, Mueller 2010). These were used to examine
the stability of teacher beliefs over time. Some of the bidiefs were presented as statements
consistent with cuemt National Councibf Teaches of Mathematics (NCTM) Standards, while
others were presented as statements inconsistent withstlaoskards. In the list of questions
below, the statements inconsistent with current standardisdacated with an asterisk.
Q1- Learners gemally understand more mathematics than their teachers or parents expect
Q2 - Teachers should make sure that students know the correct procedure for solving a. problem
Q4-1t 6s hel pful ttostudem talking duirgg enatls dctivities. n t
*Q5 - Math is primarily about learning the procedures.
*Q6 - Students will get confused if you show them more than one way to solve a problem.
Q7 - All students are capable of working on complex math tasks.
Q9- If students learn math concepts before they lda@rprocedures, they are more likely to
understand the concepts.
*Ql0-Mani pul atives should only be used with stu

*Q11 - Young children must master math facts before starting to solve problems.
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*Q13 - Only really snart students are capable of working on complex math tasks.

Q15- Learners generally have more flexible solution strategies than their teachers or parents
expect.

*Q17 - Manipulatives cannot be used to justify a solution to a problem.

Q18- Learners casolve problems in novel ways before being taught to solve such problems.
Q19- Understanding math concepts is more powerful than memorizing procedures.

Q21- If students learn math concepts before procedures, they are more likely to understand the
procedues when they learn them.

*Q23 - Collaborative learning is effective only for those students who actually talk during group
work.

Q24- Students should be corrected by the teacher if their answers are incorrect.

Q28- Learning a stejby-step approach is hglul for slow learners.

*Q29 - Only the most talented students can learn math with understanding.

*Q30 - The idea that students are responsible for their own learning does not work in practice.
Q31- Teachers need to adjust math instruction to accommeadatege of student abilities.

*Q32-Teacher questioning of studentsd solutions

Some of the questions refer to similar beliefs. For example, questions 10 and 17 relate to
beliefs abouthe use of manipulatives inathematics classes. For the purposes of analyzing
beliefs, the questionsere grouped into the followinfive questioncategories:

Expectations and Student Abilities Q1, Q7, *Q13, Q150Q28,*Q29
Mathematical Discourse Q4, *Q23

Concepts and ProceduresQ2, *Q5, Q9, *Q11, Q18, Q19, Q21,
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Manipulatives: *Q10, *Q17
Student and Teacher Roles*Q6, Q24, *Q30, Q31*Q32

Prospectivedachers completed the beliefs inventory assessments by rating each
statement on a-pointLikert scaleResponsesweree c or ded as fAConsadarstent o
AUndeci de dtothe educatiendl standaad Wescribed ineach®nt i ngs of @A30
(neutral) were coded @sU n d e ¢ Ratingscexpressing agreement with statements consistent
with standards, as wedksratings expressing disagreement with statements inconsistent with
standards were coded &C o n s i Ratingsmextpressing disagreement with statements
consistent with standards, &ell as ratings expressing agreement with statements inconsistent
with standards were codedsl nconsi stento. The use of these
of trends inprospective e ac her s 6 Inehe stamdarsls expeebsadtin the beliefs

assessments.

3.7.3.2 Beliefs Coding

Codegthatrelateprospectivd e a ¢ h e s @r belief dtateinents made during the
intervention to auestion categorgsdescribed in the beliefs inventomere developed
Additional codes identifying beliefs as pertaining totibygics of learning, teaching axdding
mathematics were also develdpBrospectivedacher8 b statamerfts were coded witbth
guestion category codes as well as topic codes.

Each belief statememtascoded for its relationship to the standatiust arepresented by
thebeliefs inventory assessmentStatementsverecoded as inconsistent with the standards,
consistent with standards, or undecidedrdang the standardsl he criteria for establishing
whether beliefs statements in each question category or topic are consistent or inconsistent with

standards presentéy the beliefs assessments are dbed below Any statement in which
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teachergeference®ithera topic or question category, but not in a way that clearly aligns or

conflicts with the standandascoded as undecided regarding the standards.

Expectations and Student abilities:

Statements indicatinipwer expectations for some learnersttat only some students are

capable of mathematical succegi be marked asnconsistentvith standards.

Statements indicating beliefs that students are capable of mathematical suceéske

marked agonsistentvith standards.

Mathematical Discouse:

Statements claiming thatudent mathematical discourse is not valuable, or that mathematical

discourse is only valuable to students actively discussing the mathemiditims marked as

inconsistentvith standards.

Statements claiming thatathematical discourse is valuable for all studenlisoe marked as

consistentvith standards.

Concepts and Procedures:

Statements claiming thatathematics is more about procedures than coneelptse marked as

inconsistentvith standards.

Statements claiming thabncepts and procedures are both important in mathenaallite

marked agonsistentvith standards.
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Manipulatives:

Statements claiming thatanipulatives have a limited value or are only useful for certain
learnes will be marked asnconsistentvith standards.

Statements claiming thatanipulatives are valuabl@r all learners, particularly as reasoning

and communication toglsvill be marked asonsistentvith standards.

Student and Teacher Roles:

Statementslaiming that theeacher is the sole authority in the classraathbe marked as

inconsistentvith standards.

Statements claiming thatudents can have mathematical authority, particuahnisn making

and supporting claimsvill be marked asonsistehwith standards.

Learning:

Statements claiming thatudents learn mathematics through direct instruction as a set of rules or

proceduresvill be marked asnconsistentvith standards.

Statements claiming thatudents can take ownership of tHearning, or that students can learn

from their peerswill be marked agsonsistentvith standards.

Teaching:

Statements claiming théte teacher must be the authority in the classroom, or that teachers

should tell students how to solve problems besbuelents interact with those problemd be

marked asnconsistentvith standards.
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Statements claiming that tieacher can assist students in sharing and refining mathematical

ideas, without being the sole authority in the classradlhbe marked agonsistentvith

standards.

Doing Mathematics:

Statements claiming thatathematics is primarily about rules or proceduviisbe marked as

inconsistentvith standards.

Statements claiming thatathematics is primarily about sense mgkamd justificatiorwill be

marked agonsistentvith standards.
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4 TEACHER JUSTIFICATION NARRATIVES

Il n this section, pr ospec tthavwerebodsappditedr s d i nd
with aphysicalmodel and prompted an instructor move, specificallyjastification question
are presentedAlthough instructor moves were employed in either small group or whole group
settings, opportunities for teachers to offer individual justifications arose. Two of six
prospectivdeachers, one from each of the two small groups, built models in support of their
justifications.
4.1 Narratives of Erika (Group 2)

For the beginning session on 04/13, the instructor introduced Cuisenaire rods as the tool
prospective teachers would usecbnstruct models of their ideas. After introducing some
academic vocabulary essential for effectively engaging in and completing the first tasks
(Appendix F), she uses two white rods and a s
the read rd. Having been asked to create a model of the shortest train that measures dark green
and purple, the prospective teachers work in their small groups to construct models and explain
why their models represent the shortest train.

While engaging in this nithematical exploration, Erikauilds a model comprised of two

dark green rods and three purple rods (figu9.4The instructor prompts Erika for justification
of her claim that this is the shortest train. In modeling the justification for her claika, Er
removes one dark green rod and one purple rod from her model, revealing that the purples were
longer than the dark green rod. Erika then returns the second dark green rod to the model,
resulting in two dark green rods longer than the two purple rods.

T/R: Ok. So any one of those descriptions will be a train that is measured

by the dark green and the purple. And the

that you could measure with a dark green and a purple. And how do you
know itds the shortest?
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Erika: Um. Well, if | were to use one gredime purples are too long. So |
needed to add another greeaut then the purples are too short. So |
grabbed another purple.

(04/13/11transcriptl, lines 32-33).

Figure 4-1 Erika's LCM Model

Erika concludes her argument by returning to her original model as shown in figure 6 above.
One of the early tasks on April 13 prompted prospective teachers to determine the
number names for each Cuisemnaod when the red rod is called 1. Fae uses numeric pattern
recognition to complete the table provided (Appendix G) by first identifying the rods
representing whole numbers. She explains that if each rod represented a whole number, then
every other rodvould represent an odd number; but since the red rod represents one instead of
two, the rods increase by one half. As the tasks become more challenging, Fae and her group
members begin to use Cuisenaire rods to build models, including those reprasexeohg
fractions for which the unit fraction is otenth.
In completing the same task, group 1 members Erika and Darlene use rod models to
determine that the light green rod is called one and a half when the red rod is called one.
Recognizing that therhite rod is called ondalf in this case, the pair use numeric pattern

recognition to determine the number names for the remaining Cuisenaire rods. For the
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remaining tasks, the group employs a strategy involving a combination of constructing rod
modelsand analyzing numerical patterns in order to determine their solutions.

As session 1 concludes, the instructor revisits a portion of this taskadlitates a
discussion on the various models of equivalent fractions that the prospective teachers have
constructed andonnecs their representations to the customary strategygémverting mixed
numbers to improper fractions. The prospective teachers revisit the task for which the number
name for the black rod is determined when the red rod is called\stibey construct models to
prove that the black rod would be called both seven halves and three amalfpieika is
selected to share her proof with the class.

TR:So& has it over here if you donét have en
Fae:l have it too.

T/R:Oh youdve éghagitovet here. ®band thoke of you that
have enough white cubes haveSib, show us your proof.

Erika: Ok.

T/R: Tell us about your proof

Erika: So black is one. Now you said you wanted three

T/R:No, black is not one.

Erikas What is it?

T/R: Red is one.

Erkaa Redbs one.

T/ R: And black is &

Erika: And you want us to prove that black is three and one half.

TR:Which é and | want you to show me that t
halves.

Erika: Alright. So,black s t hree and a half. So, reddés o
a half. Hal f , half of a red is a white. S
seven halves?

T/R: Yeah

Erikae Si nce one of these i s one,ightSodwoeies t wo
three because we have three reds, is six. Plus the one white we have at the end is seven.

TR:0k. And that was actuallyé youdre sort o

Remember three and a half. Remember that ruledioverting three and a half to a
mixed number. The three times the two plus the numerator. Remember?
(04/13/11transcript2, lines515531)
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Figure 4-2 Erika's Seven Halves Model

F

From——

Erikaconcludes her argument by presenting the model as shown in figuabdve.
4.2 Narratives of Fae(Group 1)

During session 1, Fae, Sarah, and Kelly work collaboratively to construct models that
allow them to determine the number name for the red rod whdiiudeod is called one. Fae
and Sarah build similar models (figurelt The instructor prompts them for justification of
their claim that the red rod would be called iniaths. Fae and Sarah work separately to line up
a sufficient number of white rods when building their models. Each determines that one white
rod is called onainth and a red rod is the same length as two white rods

T/R:Bec a u sW¢hg is red tweninths?

Fae:Oh. Because it equals. These are-oingh each. Sawo of them

togetherequals one red. That makes two ninths.

Sarah | got two out of nine. It would be like that. Two out of nine.
(04/1311 transcript4, lines 243-245)

Figure 4-3 Blue Rod Model

Distinctly, Sarah usestio languagé two out of nine’ as opposed to fractions langudgesvo
ninths- to report her final answer.
The mathematicahsks for the second day of the fractions interveritioludedproblem

solving taskspneof which required sharing fractionpbrtions of a candy bar among friends.
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The prospective teachers were instructed to model their solutions with Cuisenaire rods. For the
first task, half of onghird of a candy bar is given away. Fae states that her answer, the amount
that remains aftealf is given away, is both twiwelfths and onesixth. She builds a model
containing a train of an orange and red rod, next to a train of four light green rods, next to a train
of three purple rods; she then explains that she has done this becauasyit@sdivide 12 into
thirds and halves.

To complete the task students worked together, shatteeir mathematical ideasith
other studentsand justified their solutions with a physical modéieinstructorobserved
facilitated discourse, aremployed other pedagogical moveslasprospective teachersy
groups thregsat at a tableThe following excerptAppendix H)illustrates the instructors
simultaneous use of selecting, explanation and justification questions to elicit a physical model
and supporting justification from Fae. In response to the instructor m@4d85/01transcripts,
lines 287), Fae builds a train using an orange rod and a red rod (fig)rio4epresent the candy
bar that is shared among Pablo, Gordon and Keishasasiloed in a reakorld problemsolving
task during the 04/15/11 sessigppendix G) After identifying the train for her model, Fae
lines up a sufficient number of white rods that she eventually refers to as twelfths.

T/R: Two? Ok,now F¢ over here already has the equation but not the
model, saccanyou explain your model and you see if it agrees with your

eguation

Fae:This is half of the candy bar

T/R:Buts o, whatoés the whole candy bar?
Fae: Twelve

Sarah: Twelve

T/R: Ok

Fae: IHeovedhede 6

T/R: Ok

(04/15/11transcripts, lines 287-294)
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Figure 4-4 Candy Bar Modelpart 1

In the excerpt below, Fae explains the fractional relationships in her model, using white rods to

represent the unit fraction oeelfth.

FaeNo w. Hereb6s the whol ereddalfdy bar. The or
it, is two greens. Which if you put them next to the whites, it adds up to
six-twelfthsoronehal f. Um, and thenlpub thatds half
three purples up against it to represent thirds. One third of the candy bar
given to Gordon. So thereds one third plus

twel fths. And then é

TR:That 6s what was taken away

FaeThat 6s what was t akeordoaBathisis Thi s i s Pabl
Keisha. The twdwelfths.

T/R: And you said your answer was?

SarahOnesixth. So two twelfths is onsixth

(04/15/11transcripts, lines 295299)

She then presents a model (figur8)4o justify naming the green rod ehalf and a
seond model (figure 4) to justify calling the purplerodosiehi rd. Wit h Pabl o an
share of the candy bar represented by the green and purple rods of figiraetindicates that

the remaining portion of the candy bar would be calledtimealfths.
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Figure 4-5 Candy Bar Model, part 2

Figure 4-6 Candy Bar Model, part 3
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Figure 4-7 Candy Bar Model, part 4
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5 INSTRUCTOR MOVES ANALYSIS

This chapter is an analysis of instructor moves for two sessidhe @rfactions
intervention The instructor moves are examir®dsession, by tasknd bystudenigroup; and
trendsare described within these contexts.
5.1 Instructor Moves bySession

The instructois use of pedagogical and question moves varied by session, group, and
task. The table below summarizes the wéénstructorpedagogical practiceoves by sssion.
The first number represents the numbemaofves foreachpedagogical practice. The second
number represesithe percentagef eachtype ofpedagogicapracticemove relative to the total
number of pedagogicaracticemoves

Table5.1 Instructor Practice Moves by Session

Pedagogical Session 1 Session 2 Both Sessions
Practice
Monitoring 45 (33%) 27 (34%) 72 (33%)
Selecting 19(14%) 10 (13%) 29 (13%)
Motivating 12 (9%) 10 (13%) 22 (10%)
Inviting 13(9%) 6 (8%) 19 (9%)
Revoicing 38(28%) 18(23%) 56 (26%)
Creating 11 (8%) 8 (10%) 19 (9%)
Total Practice 35 6400 79 (36%) 217(100%)

Moves

5.1.1 Session1

During the firstsession of the fracti@s interventionthemost frequentlyccurring
pedagogicainove was the practice of monitoring prospective teachers understanolitygfive
of the instructols comments were coded as monitoringe second most frequent pedagogical

practice was revoicing awhxrhaoaamped 8timemthe t eac her 6
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sessionThe third most frequent move was Atel ecting

selectingerikato share the type of model she creg@f1311 transcript 1Jine 21), the

instructorrevoicesErikad s duwiontvih e n s $oamyiome @f thidsse descriptions will be a

train that is measured llge dark green and the purple;d t he cl aim is thatods

that you could measur e (Wil3dlhtrarscripllalinek32)gr een and
On average, motivating, inviting and creating were used by the instructor twelve times

during the first sessionThe following excerpt illustrates the instrud®simultaneous use of

inviting and creatingafter selectingarahto share her naeland explanation
thedlfthreeofthewhitsequal s one, then 1itos one plus t
thiras.

T/R: Now, this F¢ said the answer was fistbirds. So, show me fivehirds.
Sarah Because | counted that this was five whité/ellow is five whites.

T/R: OK
Sarah So, | said é
T/R: Yellow is fivethirds.
Sarah Yeah.
T/R: She said yellow is fiwhirds. She said yellow is one and tfirds. Which ones
right?

(04/1311 transcript2, lines 488-495)

5.1.2 Session 2

During the second sessigractice moves were generally employed less frequently.
Seventynine practice moves wercoded. The types of moves employed were monitoring, 27
times, selecting, 10 times, motivating, 10 times, invitsigtimes, revoicing, 18 times, and
creating.eighttimes.Although less frequent as compared to session oositoning and
revoicing wee agairnthe mostfrequently occurring pedagogical movassession twolnviting,
soliciting multiple solution strategiesias noted least frequentlifter revoicingFae s
conclusion that the number name for a rod is-thirel, the class is invited to ebgin why

(04/15/11transcripts, lines 197-199). It is possible that the instructor used more pedagogical
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moves during Session 1 because it was the beginning of the fractions intervention and
prospective teachers were being introduced to the use of Cuisenaire rods as representations of
rational numberdeas.

Throughout each session, the instructor facilitated dialogue with the teachers through
guestioning. During the discussion, different types of questions were pbisedable below
summarizes the use of instructor question moves by session. r§thmufnber represents the
number of moves for each question type. The second number represents the percentage of each
guestion move relative to the total number of question moves.

Table5.2 Instructor Queson Moves by Session

Question Session 1 Session 2 Both Sessions
Type
Explanation 9 (24%) 10 (45%) 19 (32%)
Justification 12 (32%) 4 (18%) 16 (27%)
Probing 7 (19%) 3 (14%) 10 (17%)
Connecting 2 (5%) 1 (5%) 3 (5%)
Sustaining 4 (11%) 4 (18%) 8 (18%)
Generalization 1(3%) 0 (0%) 1 (2%)
Other Solution 2 (5%) 0 (0%) 2 (3%)
Total Question 47 o) 22 (37%) 59 (100%)

Moves

During the firstfractions intervention session on 4/13/4ik prospective teachers worked
on mathematically ricfractions tasks and built models using Cuisenaire rods. As they worked
on the tasks, the instructor asked questions regarding their ideas and their mbuigisseVen
guestion moves were notddring this first sessionThe most frequently occurringigstion
move was the practice agkingprospective teachets justify their solutionsNine of the
i nst r questionavedescoded asxplanatiori an invitation for teachers to describe what
they are doingExplanation and justification questions agoted for56 percent of the session 1

guestion moves.
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The second fractions intervention session occurred on 4/15/11. During this session, the
six prospective teachers worked on real world fractions taskghematical ideas were
communicated usinghysical manipulatives, pictorial representations and symbols as the
prospective teachetsanslated among representatiohwenty-two question moves were noted
during thissession. Thenore commonloccurring question move wasplanation, 10 times;
justification and sustaininigguesti ons designed to sustain a t
representatioih were asked frequently. Those question types were the second and third most
common, occurrindgour times each. Probing questions were asked thmesst Three question
types- probing, explanation and justificatiemepresented 77 percent of the questions in the
second sessiornt is possible that the prevalencetibése types ajuestiongeflected the
instructorsdesire to ensure teachers nented the realorld context of the word problems with

the underlying mathematical concepts andtrenships

5.2 Instructor Moves by Task

Throughout each session, the instructor employed pedagogical practice moves &s teache
wor ked on tasks. The practice moves were use
to facilitate teacher sm@thematically tich mskregsiringitesachers ey w
engage cognitively with distinct mathematical concepts. Tasgkjuired physical
representations, specifically linear models, of least common multiple and greatest common
factor. Task 2 required teachers examine relationships among rods in order to name rods based
on relative size. Task 3 required teachers coosimodels to compare the size of two fractions

and identify which was larger and by how much. Teachers engaged with tasks 1 through 3
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during session 1. Task 4, solving reairld problems involving the addition or subtraction of

fractions, was presenteldiring session 2.

5.2.1 Practice Moves by Task

Table5.3 Instructor Practice Moves by Task

Pedagogical

: Task 1 Task 2 Task 3 Task 4
Practice

Monitoring 4 (13%) 23(38%) 18(38%) 23(32%)
Selecting 5(17%) 4 (7%) 10(21%) 10 (14%)
Motivating 2 (7%) 9 (15%) 1(2%) 9 (12%)
Inviting 4 (13%) 6 (10%) 3 (6%) 6 (8%)
Revoicing 14(47™%) 11(18%) 13(27%) 17(23%)
Creating 1 (3%) 7 (12%) 3(6%)  8(11%)
I/I‘z)t\"j"esprac“ce 30(14%) 60(28%) 48(22%) 73(33%)

| DEASE4 A CASE

Throughout each session, the instructor employed pedagogical practice moves as teachers

worked on tasksSelecting particular teachers to share their models occiiveetimes and was

the second most prevalent pedagogical practice move during tagloditoring and inviting

were the nexmost common, occurrinfpur times eachMotivating and creating, asking teachers

t o

the moves were revoicing moves emplogsdhe teachers worked on this first task. Revoicing

engage

wi th

anot her 6s

I de asFRortywevenpercenea st fr

may have been the more prevalent practice move because the instructor sought to establish a

strong foundational understanding for constructing physical models to represent rational number

ideas.

Task 2w a s

compri sed

of

sever al

guestions

a select rod, requingrospective teachets determine the fractional name feachof the

remaining ningods. Task 2 elicited twertthree monitoring and eleven i@ging moves from

the instructorepresenting 38 percent and 18 percent of the total practice moves, respectively

t hat



PROSPECTI VE TEACHERS DEVELOPI NG FRACTI ON I DEASEF A CASE
MOVES

These two moves represented 56 percent of the moves employed during task 2. This task elicited
7 creating moves from the instrucioaskinga prospective teacher to engage with thesdéa
anotherteacher While this represents only 12 percent of the moves employed dhisnigisk
this creatingmove was employeseven times more frequently as compared to task 1 and more
than twice as ofteas compared to task 3.

After construcing physicalmodels to compare the size of two fractiolask 3 required
teacherdo identify which was larger and by how mudi® of the practice moves were
monitoring prospective teachersdé understandin
monitoring was the most prevalently used move for task 3. Rephrasing teacher ideas was the
next most prevalent move. Thirteenmovelstee ct ed t he i nstructors rep
These two moves monitoring and revoicing represent 65 percent of the practice moves for
this task. Twentyone percent of the moves, 10 occurrences, reflected the insshatanga
particular teach r 6 s Inwopeingtance, the instructor shardanell® s model wi t h t he
(04/13/11 transcrip4, line 517). Subsequentlirika interpretslanell® s model and i den
red rod as representing otveelfth in the model (04/13/11 transcrigtline 519).

Of the four tasksthegreatest numbesf pedagogical practice movessemployed during
task 4 This task comprised of three realord problems, requirdbatprospective teachers
interpret mathematical ideas in context and select a solutateg@yMonitoring and revoicing
are again the most prevalent practice moves representing 32tpmnde23 percent respectively.
Soliciting multiples solutions and asking teachers to engage with another teadbamrepresent
20 percent of the practiceoves Although soliciting multiple solutions occurred least

frequently of all task 4 practice movelse instructor used the practice mawere frequently
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during task 4 than during task 1 or task 3. Selecting a teacher to share their ideas occuss 10 time

more frequently than during task 1 or task 2

5.2.2 Question Moves by Task

Table5.4 Instructor Question Moves by Task

Q#.ispion Task 1 Task 2 Task3  Task4
Explanation 3(30%) 1(12.3%) 5(26%)  10(53%)
Justification 4(40%)  4(50%) 4(21%)  4(21%)
Probing 0 (0%) 2 (25%) 5 (26%) 0 (0%)
Connecting 0 (0%) 0 (0%) 2 (11%) 1 (5%)
Sustaining 2(20%) 1(12.3%)  1(9%) 4 (21%)

Generalization 1 (10%) 0 (0%) 0 (0%) 0 (0%)
Other Solution 0 (0%) 0 (0%) 2 (11%) 0 (0%)

Total Question
Moves 10(17%) 8(14%) 19(32%) 19(32%)

For task 1, 10 questions were asked by the instructor as teachers constructed physical
models. The more commauestions were justificatiofpur times, and explanatiothree
times. The least commonly asked questions were sustaining and generalizatieachers
worked on task ZXewer questions were asked. Of eight questions asked during this task, half
were justification questions. The raming questions were probinigyo times, and sustaining
and explanatiompnetime each.

During task 3and task 4approximately twice as many questions were posed when
compared to task 1 and tasKtZs possible that task 3 and task 4 were more ciogiyjt
demanding tasks for the prospective teachadsconsequentithe instructoposed more
guestions in order to better understand their thinking throughout the Exghanation and
probing were the most commonly used questions during task 3, iogclive times each

Justification questions were asked 4 times; questions that make various solutions public to other
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teachers and connecting questions were asketimes each; andnequestion intended to
sustain prospective teachersd6 thought about a
For the fourth taskpineteerquestions were asked by the instructor regarding prospective
teacher8ideas on the solutions to reabrld problems requing operations on fractions. More
than half, 10 questions, sought explanations or descriptions of teachers work. Of the remaining 9
guestionsfour justification, oneconnecting, andour sustainingquestionsvere posed A
justification question waasked by the instructor in resporieean equation written bgarah
The instructor notethatSarahhad thesymbolic representation of a reabrld problem but that
she did not yet have a model. Subsagly, the instructor asksaeto both explain hemodel
and to justify whether or not it agrees with her equaii@diils/11 transcripts, line 287).
5.3 Instructor Moves byGroup
During the firstsessionthe instructor established two small groups each containing three
teachers. The members of groufGll) wereKelly, Fag andSarah The members of group 2
(G2) wereDarlene Erika, andJanelle These small groupgmained fixed during the two
session®f thisintervention.For each session, the instructor addressed the prospective teachers
as a whole group (WG), as well as within each of the smaller groups of three teachers.

Pedagogical practice moves and question moves were employed during botH typepiog.
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Table5.5 Instructor Practice Moves by Group

Pedagqglcal Group 1 Group 2 WG Total
Practice

Monitoring 49 43%) 11 (23%) 12 22%) 72 (33%)
Selecting 9 (8%) 4 (8%) 16 29%) 29 (13%)
Motivating 18 (16%) 3 (6%) 1 (2%) 22 (10%)
Inviting 6 (5%) 3 (6%) 10 (18%) 19 (9%)
Revoicing 25 %) 21 (44%) 10 (18%) 56 (26%)
Creating 7 (6%) 6 (13%) 6 (11%) 19 (9%)
mjésrac“ce 114 53%)  48(22%) 55(25%) 217 (100%)

*Note: G1 and G2efer to group 1 and group 2 small group
instruction. WG refers to whole group instruction

Table5.6 Instructor Question Moves by Group

Question

Groupl Group?2 WG Total
Type

Explanation 4 (20%) 5(56%) 10 (33%) 19 (32%)
Justification 6 30%) 0(0%) 10 (33%) 16 (27%)
Probing 4(20%) 3(33%) 3 (10%) 10 (17%)
Connecting 00%) 1(11%)  2(7%) 3 (5%)
Sustaining 6 (30%) 0 (0%) 2 (7%) 8 (14%)
Generalization 0 (0%) 0 (0%) 1 (3%) 1(2%)
OtherSolution 0 (0%) 0 (0%) 2 (7%) 2 (3%)
Iﬂcgs('ag“es“"” 20(34%) 9(15%) 30(51%) 59 (100%)

*Note: G1 and G2 refer to group 1 and group 2 small group
instruction. WG refers to whole group instruction

5.3.1 Group 1

One hundred fourtegmedagogical practice moves were coded by the researcher for the
two sessions of fractions intervention under study. Of those 114 moves, 49 were monitoring
moves and 25 were restatements of prospective

revacing moves were the most prevalent moves for group 1. The next most commonly used

practice move wsmotivating- movest hat cel ebrated or encouraged
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inviting and creating were the least frequently used moves for this smali, grccurringnine
times,six times, andsevenimes, respectively.

The instructor used a total of twenty question moves while engaging with group 1 during
the two sessions on 4/13/11 and 4/15/The most frequently occurring question moves were
the practice of sustaining teastojpgtfgtheirt hi nki ng
solutions. Each move was coded 6 times and accounted for 60% of the question moves
empl oyed with group 1. Four of the instructo
remaining four questions were probing questidfsr both giestion moves and pedagogical
practice moves, the instructemployedmore than twice as many mowsgh group 1 as
compared to group 2. i possible that the instructors o b s er v a intentianauséeadd t o a
a greatenumber of instructor movesith group 1

As a small group, group 1 experienced 114 practice moves while the whole group
experienced 55 practice moves. Although more than double the number of pedagogical practice
moves were employed with group 1 asnpared to the whole group, selecting and inviting were
used more frequently in the whole group setting. Conversely, the whole group experienced more
guestion moves as compared to group 1 independeittlyexplanation and justification being
the most freqantly occurring question moves within the whole group settings
5.3.2 Group 2

Of the 48 pedagogical practice moves employed with group 2, revoicing and monitoring
were most common, occurring 21 times and 11 times respectively. These two moves account for
67 percent of the practice moves used with group\thile six opportunities to respond to
anot her teacherso6 thinking wer e foatmestbshdrd e, a

their ideas with the group. The least common practice moves wereatim@iand inviting,
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occurringthreetimes each.Of the seven types of question movig instructoemployedonly
threetypeswith group 2. More than hatff the questionss6 percent, were explanation
guestions.One connecting antthreeprobing questins were posedAs compared to the whole
group, group 2 experiencéelwerthan onethird the number of question moves.
5.4 Summary of Instructor Moves

Based on the data from this research study
sessions of the fractiomstervention helped prospectiteachers explain, justify and construct
representative build models of rational number ideas. The pedagogical practices used and
guestions asked were analyzed throughout two sessions of the intervention as teachermsnworked

fractions task. Table 57 and table 8 below summarizéhe instructor moves analyzed for this

study.
Table5.7 Pedagogical Practice Moves Summary
P%ﬂzgggécal Both Sessions
Monitoring 72
Selecting 29
Motivating 22
Inviting 19
Revoicing 56
Creating 19

Total Practice

Moves 217
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Table5.8 Question MoveSummary

Question Both Sessions
Type

Explanation 19
Justification 16
Probing 10
Connecting 3
Sustaining 8
Generalization 1
Other Solution 2
Total Question

59
Moves

The researcher coded 276 instructor moves.

guestions posed by tlimstructor. The most common type of question asked was explanation, 19
times. Other question types frequently employed by the instructor wereatsiif and probing
guestions.

Of the 276 instructor moves, 79 percent were pedagogical practice moves. The most
common practice was monitoring. It is possible that the instructor used monitoring frequently
because the mathematical tasks requiregbtbgpective teachers to construct models whose
meaning could not be inferred or interpreted solely through observation. Other frequently used

pedagogical practices werevoicing, 56 times; and selecting, 29 times.
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6 TEACHERSOG BELI EFS ANALYSI S

Athird go a | of this study was to deter mine what
beliefs about mathematicecurred. The prospective teachers completed the beliefs inventory as
a preassessment preceding the intervention and as apssssment at therlusion of the
intervention. The beliefs preassessment offers a baselinedfon d er st andi ng teachei
beliefs and allows for later comparisoRreassessment data indicate ttheprospective
teachers agreed with the stand@8d3% of thetime, on averagean indication that prospective
teacher sé6 bel wdlélignedwéth seandardsTha tabie bedolv gummarizes
prospect i v eassessnent and passessmentescores. In each cell, the first number
representsthendmer of st atements for which the prospe
inconsistent or undecided relative to the standard. The second number represents the
corresponding percentage of i1 tems for nwhich t
inconsistent or undecided relative to the standard.

Table6.1 Teachers' Scores for Belief Statements by Relation to Standards

Teacher Pre-Assessment PostAssessment
Consistent Inconsistent Undecided Consistent Inconsistent Undecided
Fae 11(50%) 2(9%) 9 (41%) 12 (5% 1(4.5%) 9 (41%)
Kelly 13(6G9% 6 (27%) 3 (14%) 10 @5% 7 (32%) 5 (23%)
Erika 18 81% 3(14%) 1(4.5%) 19@86% 0(0%) 3 (14%)
Janelle 14 64% 2 (9%) 6 (27%) 17 (7% 1(4.5%) 4 (18%)

Darlene 19 86%) 1(4.5%) 2(9%) 17 (77% 1(45%) 4 (18%)
Sarah 16 73%) 3(14%)  3(14%) 17 (77% 1(4.5%)  4(18%)

Postassessment data indicate that the prospective teachers agreed with the ataadardge
of 69.5% of thetime. This suggests hat pr os pect iramainetedativelhvell s 6 bel i
aligned with standardsAs part of a more granular analysi s,

beliefs will be further examined by beliefs statement category and by prospective teacher.
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6.1 BeliefsAssessmenResults

Using the beliefs prassessment as a baseline for understgndih e ac her s 6 i ni t i
the percentage of teacher responses consistent with standards was calculated for each of the 22
beliefsinventorystatementsAnalysis of postassessment datacludingpercentages of teacher
responses consistent with standardveala netchange forl3 of 22 beliefinventory items This
changendicates that e a ¢ h e r abdut tihedehchiegf lsarning, or doing of mathematics as
conveyed by those statementay have changed

Table6.2 belowpresents statements for wbh the number of prospective teachers
indicating beliefonsistent with standards increasedi6 statements for which the number of
prospective teachemdicating beliefs consistent with standards decreased.

The concepts and procedures category cantaieliefs statements. Peassessment data
analysis indicate that pr os pwithtespecetdieefac her s o
those statements.f@he 7 statements favhich growth may have occurred, 4 reflpcbspective
t e a ¢ h e sabat mateematiesfconcepts and proceduiids beliefs statement within
concepts and procedures category for whichgteatest changeccurredindicatedprospective
t eac her s §ouryg ehildreenked holmaster math facts before startingsolve problems
There may also have been a changeoandfor pr ospect
parent§expectations of learners understanding and flexibility with solution strategies.

Of the 5 beliefs statements in the student and teaclesr categorygata for 3 of those
statements suggestthhae ac her s6 bel i efs may haveThbecome i n
suggests prospective teaclidysliefthat theteacher is the sole authority in the classroom.

Beliefs datementlaiming that mthematical discourse is only valuable to students

actively discussing the mathematicsreveoded agconsistentvith standards Of 2 statements
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about mathematical discoursme statement indicatedthmr o s pecti ve teachersbo
have become ingwsistent with the standard. Specificalfyrospective teachers believed that

collaborative learning is effective only for those students who actually talk during group work

Table6.2 Summary of Reported Teachers' Beliefs Changes

Beliefs Statement Pre- Post
Assessment Assessment
CN (CP) CN (CP)

(1) Learners generally understand more mathematics thi 3 (50%) 4 (67%)
ther teachers or parents expecj (E

(2) Teachers should malkeire that students know the 6 (100%) 2 (33%)
correct praedure for solving a problem YC

(5) Inverse of:  Math is primdyi about learning 1(17%) 3 (50%)

procedures (L

(6) Inverse of:  Students will get confused if you show 4 (67%) 3 (50%)
them more thaone way to solve a problem (BT

(9) If students learn math concepts before they learn the 3 (50%) 5 (83%)
procedures, they are more liggb understand the concept

(©

(11)Inverse of:  Young children must master math fact: 1 (17%) 4 (67%)
beforestarting to solve problems JC

(15) Learners generally have more flexible solution 3 (50%) 5 (83%)
strategies than theteachers or parents expec) (E

(18) Learners can solve problems in novel ways before 4 (67%) 5 (83%)
being taught to solve sugnoblems (¢

(23) Inverse of: Collaborative learning is effective only for 4 (67%) 1(17%)
those students who actually talk during group W)

(24) Students should be corrected by the teachéeif t 3 (50%) 2 (33%)

answers are incorrect (T

(28) Learning a stejby-step approactsihelpful for slow 6 (100%) 5 (83%)
learners (

(30)Inverse of: The idea that students are responsible 3 (50%) 4 (67%)
their own learningloes not work in practice ($T

(32) Inverse of:  Teacher questioning of students' 3 (50%) 2 (33%)
solutions tends to undaine students' confidence (BT

*Note: CN refers to the number of teach&nisose responses are consistent with standards. CP
refers to the percent of teachers whose responses are consistent with standards.
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6.2 Beliefs by Teacher
Each prospetive teacher was administered theiefs inventoryas apre-assessment and
as apostassessment. The results of those inventories will be described, noting instances of

possible change in beliefs.

6.2.1 Fae
Table6.3 summarizes the prassessment and passessment data fléae The beliefs
inventory statemestwere grouped by category. For each tledl,numbersepresenthe number
of statements, within each category, for whikdescored consistent with the standard and the
percentage of questions in that category for whkigbscored consistent with theasidard Based
upon the beliefs inventorffaed s bel i efs regarding mat hemati cal

procedures may have changed.

Table6.3 BeliefsinventoryResults by Statement Category Faie

Statement Category Pre-Assessment PostAssessmen
CN (CP) CN (CP)

Expectations and Abilities 3 (50%) 3 (50%)

Mathematical Discourse 2 (100%) 1 (50%)

Concepts and Procedures 3 (43%) 5 (71%)

Manipulatives 2 (100%) 2 (100%)

Student and Teach&oles 1 (20%) 1 (20%)

Claims attesting that mathematics is primarily about seresang and justification were
coded as consistent with standaidaring the interventionFaemade two claims regarding
doing mathematics that were consistent with the standards. She also made one claim consistent
with the standard for concepts and procedures and one consistent with the standard for

manipulatives.
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6.2.2 Kelly
Table6.4 below summarizethe preassessment and pastsessment data foelly. The
beliefs inventory statements were grouped by category. For each cell, the ntepbessnthe
number ofstatements, within each category, for whiatily scored consistent with the standard
ard the percentage of questions in that category for wkédly scored consistent with the
standard. Based upon the beliefs invent&sllyd6 s bel i efs regarding expe:-
mathematical discourse, and concepts and procedures may have chilogaily, her beliefs
with respect to concepts and procedures may have shifted significantly towards inconsistent with

the standard.

Table6.4 Beliefs Inventory Results by Statement Categoryedinr

Statement Category Pre-Assessment PostAssessment
CN (CP) CN (CP)

Expectations and Abilities 3 (50%) 4 (67%)

Mathematical Discourse 2 (100%) 1 (50%)

Concepts and Procedures 5 (71%) 1 (14%)

Manipulatives 2 (100%) 2 (100%)

Student and Teacher Roles 2 (40%) 2 (40%)

Claims suggesting that students can take ownership of their learning, or that students can
learn from their peers were coded as consistent with standards for learning mathematics. As part
of her end of course essad{elly made one claim consistent withstiard for learning
mathematics. She made two additional claims. Those claims were consistent with the standards

for manipulatives and for doing mathematics.
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6.2.3 Erika
Table6-5 summarizegrika 6 s-asgassenent and paestsessment data.

Table6.5 Beliefs Inventory Results by Statement Categoriz fida

Statement Category Pre-Assessment PostAssessment
CN (CP) CN (CP)

Expectations andbilities 3 (50%) 4 (67%)

Mathematical Discourse 2 (100%) 2 (100%)

Concepts and Procedures 4 (57%) 5 (71%)

Manipulatives 2 (100%) 2 (100%)

Student and Teacher Roles 3 (60%) 4 (80%)

The beliefs inventory statements were grouped by categoryea€brcell, the numberspresent

the number o$tatements, within each category, for whigitika scored consistent with the

standard and the percentage of questions in that category for Erikalscored consistent with

the standard. Based upon the beliefventoryErikab s bel i ef s regarding exp

abilities, student and teacher roles, and concepts and procedures may have ckhangedh of

those categoriegrikab s bel i ef may have shifted towards c
As part of he end of course essayrikamade a single claim that was inconsistent with

the teaching of mathematics. Claims inconsistent with teaching mathematics show the teacher as

the authority in the classroom, or that teachers should tell students how torsblesns before

students interact with those problentsikaar gues t hat 1 f a teacher sh
denominator worko6, then it wild hel p students
6.2.4 Janelle

Table6.6 below summarizes the passessment and pastsessment data fdanelle
The beliefs inventory statements were grouped by category. For each cell, the mepresent

the number o$tatements, within each category, for whieimellescored consiste with the



PROSPECTI VE TEACHERS DEVELOPI NG FRACTI ON | DEASgGg A CASE
MOVES

standard and the percentage of questions in that category for Jaimelescored consistent with

the standard. Based upon the beliefs inventtagell® s bel i ef s regarding st
roles, and concepts and procedures may have eblangotably, her beliefs regarding concepts

and procedures may have become more consistent with the standard while her beliefs regarding
student and teacher roles may have become inconsistent with the standard.

Table6.6 Beliefs Inventory Results by Statement Categoryafarile

Statement Category Pre-Assessment PostAssessment
CN (CP) CN (CP)

Expectations and Abilites 6 (100%) 6 (100%)

Mathematical Discourse 1 (50%) 1 (50%)

Concepts an®rocedures 4 (57%) 6 (86%)

Manipulatives 2 (100%) 2 (100%)

Student and Teacher Roles 5 (100%) 4 (80%)

Janellemade aotal of severtlaims regarding manipulatives, doing mathematics,
teaching mathematics, learning mathematics, and concepts and procédiucésmswere
consistent witlthe corresponding standard. Three of the claims support the idea that

manipulatives are valuablerfall learners, particularly as tools for reasoning.

6.2.5 Darlene

Table6-7 below summarizes the pessessment and pastsessment data fDarlene
The beliefs inventory statements were grouped by category. For each cell, the mepiesent
the number o$tatements, within each category, for whizdrlenescored consistent with the
standard and the percentage of questions in that category for Rdnilgmescored consistent
with the standard. Based upon the beliefs invenaylen® s 3 eedardieg student and

teacher roles, and mathematical discourse may have chahgwmebly, her beliefs regarding
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each of these categories may have become inconsistent with the standard. Paridegis the

only teacher whose beliefs regarding apts and procedures may have remained unchanged.

Table6.7 Beliefs Inventory Results by Statement Categorpdoene

Statement Category Pre-Assessment PostAssessment
CN (CP) CN (CP)

Expectations and Abilities 6 (100%) 6 (100%)

Mathematical Discourse 2 (100%) 1 (50%)

Concepts and Procedures 5 (71%) 5 (71%)

Manipulatives 2 (100%) 2 (100%)

Student and Teacher Roles 4 (80%) 3 (60%)

During the interventiorDarlenemakes a claim that is consistent with the standard for
concepts and procedures. Using the concept of division as an example, she states that when
discussing division, understanding that division is the opposite or inverse of multiplication is an

importart understanding.

6.2.6 Sarah

Table6-8 summarizes the prassessment and pa@stsessment data f8arah The
beliefs inventory statements were grouped by category. For each cell, the ntepbessnthe
number ofstatements, within each category, for whdrahscored consistent with the standard
and the percentage of questions in that category for v@acahscored consistent with the
standard. Based upon the beliefs invent8ry r ddliéfssregarding studeand teacher roles,
and concepts and procedures may have chaniyedably, her beliefs regarding student and
teacher roles may have become inconsistent with the standard, while her beliefs regarding

concepts and procedures may have become consisterhegtandard.
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Table6.8 Beliefs Inventory Results by Statement Categor$énah

Statement Category Pre-Assessment PostAssessment
CN (CP) CN (CP)

Expectations and Abilities 5 (83%) 5 (83%)

Mathematical Discourse 1 (50%) 1 (50%)

Concepts and Procedures 5 (71%) 7 (100%)

Manipulatives 2 (100%) 2 (100%)

Student and Teacher Roles 3 (60%) 2 (40%)

63 Teachersd Beliefs by Statement Category
Ananalysisopr ospect i ve date amljzetdlysadh obihe fivistatdment
categoriesywas conductedThe resultof this analysisaredescribed, noting instances of

possible change in beliefs.

6.3.1 Expectations and Abilities

The standard fathe expectations and abilitieategoryreflects the belief thatll students
are capable of mathematical succebwopr ospecti ve teachersod belief
consistent with this standard. While four teachers were undecided on at least one of the six
expectations and aliksbeliefs statemeastfor both the preand postassessments, overall the
prospective teachersd bel i efthestawaydorihisv e bec o me
category.
6.3.2 Mathematical Discourse

The standard for mathematical discourse reflects thef lediemathematical discourse is
valuable for all students, as opposedn@thematical discourse as valuable only to students
actively discussing the mathematics or not valuable aflalr e e pr ospecti ve teac
may have become more inconsisteith this standard. While only one prospective teacher was

undecided on one of the two statements in this category for threspessment, four prospective
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teachers were undecided on a statement regarding mathematical discourse on the post

assessment.

6.3.3 Concepts and Procedures
The standard foconcepts and procedunesflects the beliethatbothconcepts and
procedures are important in mathematiEso ur pr ospecti ve teachersé b
more consistent with this standard, while one prospexti t eacher 6s bel i efs ma
inconsistent with the standard. While all six prospective teagere undecided on at least one
of the seven statements in this category for theapsessment, five were undecided on one or
more statements regardingncepts and procedures on the faEstessment.
6.3.4 Manipulatives
The standard for manipulatives reflects the belief taipulatives are valuablr all
learners, particularly as reasoning and communication.tool# | | prospective tea:

reported on the prand postassessment were consistent with this standard.

6.3.5 Student and Teacher Roles
The standard for thetudent and teacher roleategory reflects the belief thstlidents
can have mathematicalthority, particularly when making and supporting clair$ree
prospective teachersodo beliefs may have Dbecome
teachers were undecided on at least one dithestudent and teacher rolesliefsinventory
staements duringhe preassessment, all six prospective teachers reported being undecided on at
least one student and teacher rddebefinventorystatements of the peassessment.
64 Summary of Teachersdé Beliefs
Basedonthedat fr om t his research study, prospec:

teaching, learning and doing of mathematics may have varied both within and across statement
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categories. Analysis of pi@nd postassessment beliefs inventory data suggest prospective
teahher sé6 beliefs were consi stQ@fd2tbéligfsiweniory al i gnec
items, a mean of approximately 15 statements were coded as consistent with standard. The pre
assessment mean for inconsistent and undecided statements was 21@spectiyely.
Analysis of postassessment data reveal a 1 point reduction in the mean number of items marked
inconsistent with the standards. The mean number ofgsssissment items coded as undecided
increased by .8 points.

Teachers beliefs as evideddey the end of course essays tended to be consistent with the
standard. Osixteen claims, fifteen claims made by the prospective teachers were consistent
with the standards of various statement categories reflecting beliefs about the learning, teaching,

and doing of mathematics
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7 FINDINGS
Thepurposeof this study is t@examine thevolving beliefs anghedagogical practices
employed during fractionsintervention that was a requiretidergraduateourse for
prospective teacherSpecifically, three research questions guided the study:
1. What role does the instructor play infhe ospecti ve teachersoé6 buil
of ideas?
2. What types of interventions does she employ?
3. What changes, ifany,imospp ct i ve teachersod beliefs about
mathematicgan be identifiedver the course of the intervention?
This chapter summarizes tfiedingsrelevant to each research questidideo data for
this studywere analyzedsinga multiphase processeveloped byPowell, Franciscoand
Maher (2003).The citical eventddentified through this procesgcessarilyprovide
mathematical insighMaher & Martino, 1996)The criticaleventsreferenced in this research
are events where the instructor makes pedagogical moves that prompt the immediate justification
of a mathematical idea or solution that is supported by a physical nfeiddings regarding
instructor éds motv,e sf ocalrleo werde sheyn tfeidn dfiinrgss r el at ed
beliefs related to the doing, teaching, and learning mathemahedindings are discussed
through the lens of the relevant literature.
7.1 Instructor Moves
In this sectionseminalfindings from theinstructor moves analysis areported The
intervention helped prospective teachers to develop and represent rational number ideas, as well

as to justify those ideas.



PROSPECTI VE TEACHERS DEVELOPI NG FRACTI ON | DEAS74 A CASE
MOVES

7.1.1 Findings from Instructor Moves Analysis

Many interventionbehaviorsecommended in theesearchiteraturewere modeled by
the instructoMartino & Maher, 1999; Smith & Stein, 2011; Herlls@Eenmann, Steele, and
Cirillo, 2013). All of the question moves were employed by the instructor with varying
frequencyDiscoursetht r eveal ed the ways in which prospe
facilitated by thenstrudor by selecting prospective teachers to share their ideas or mbygels,
probing prospective teachers to elaborate on idgesoliciting explanationsf what pospective
teachers were doing as they worked on tashd by prompting fojustificationsof how
prospective teachers are convinced that a solution is correct.

While teachers worked on tasks, the instructor observed their physical models, probed for
individual ideas of prospective teachers, and encouraged others to reBp@mistructor made
various solutions and representations available for others to coasitlezir own ideas were
developed.The instructor regularly used revoicing to both check her own understanding of ideas
as she heard them, and to allow teachers to confirm their contribution to the discourse.

During whole group discussions, the instareemployed question moves more
frequently when compadewith small group discussions. Questions that invited prospective
teachers to consider similar problems or to make various solutions available for other prospective
teachers were employeldiring whde group discussionsnly.

Both pedagogical practice moves and question moves were employed to facilitate
discourse and the building of mathematical ideas. With few exceptions, the most frequent
instructor movewhen analyzed by varying contexts (e.gugr, task, sessiomas that of
monitoring prospective teachersodé understandin

was the most frequent move, its relative frequency varigddkyand by session.
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Instructor moves also varied by group type.gémeral, thenstructor employed more
than twice the number of practice mowvegh group las compared to group 2. Practice moves
were also used more frequently with group 1 as compared to the whole group setting.
Irrespective of group type, the prevdlenus e of monitoring under st ani
attention to building prospective teacherso r
7.2 TeachersBeliefs

Seminal findings resulting from instructor moves analyasng with descriptions of
possible relationships amg findings, are reported in this section
7.2.1 Findings from Beliefs Analysis

Over the course of the intervention, it ap
becamdess inconsistent witthe standards as presented in the beliefs inventory assessment.
The percent of beliefs inconsistent with the standards relative to the total number of beliefs
statements decreased over the course of the intervention. This is accompanied by an increase in
the percent of beliefs for which teachers were undecided about their perspective was noted.
Overall, an increase in alignment bern ween pr
generaljs not reflected in the research data. Howgther datado suggest changes in
prospective t eac helpraspetiieeltenchdibeliefs ab&@ipcenceptand al | vy,
procedure$ learning mathematics became more aligned with the corresponding stan@ayd;
prospective t eac heandseachds mlésieachirg mathematidsbecaimal d e n t
less aligned with the corresponding standard; apgr&pective teachers no longspouse
beliefs inconsistent witparticularstandards

Through the end of course essays, claims were made regdrdilgatning, teaching, and

doing of mathematics. Claims related to manipulatives, concepts and procedures, and student
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and teacher roles belief categories were alsoniddet a suggest pretiedgspecti ve
related to thenanipulatives and concemsd proceduresategoriebecamanore aligned with
the standard
7.2.2 Relationships in Findings
Some changes in beliefs may be related to the instéaataves that prospective
teachers experienced throughout the intervention. The instructor regularly mpdgieg
explanation and justification questions, encouraging prospective teachers to make connections
and develop proofs with the support of physical models. One specific instance of this is the
whole group discussian which the instructor asks prospeetteachers for a physical model
that would be a proof that three and a half and seven halves are equl&l&git 1 transcript2,
lines 527-531)
Data suggest preldgspetaed tconceptstardprodeduresb@carbe
more aligned with thetandard During the intervention, instructor moves included questions
that invited prospective teachers to connect an approach or strategy to underlying mathematics.
As opportunities arosehe instructoemployed moves toonnecpr os pecti ve teacher
reasoning abouythysical models tthe underlying mathematics and/or to algorithdmsan end
of course written essalfaestates that she has finally learned the reasoning of equivalent
fractionsi a belief statemenndicatingthatmathematicateasoning ismportantfor procedural

tasks such as adding or subtracting fracti@ssay 1, lines-8).
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8 CONCLUSIONS

In this chapter, implications for instructors moves in the context of undergraduate
coursework, an explanation of the itations of the study, and suggestions for future research
are described.

8.1 Implications

The analysis of this intervention demonstrates that particular instructor sumesrt
prospective teachers building and justification of rational number.id&@ecifically, employing
combinations of pedagogical practice moves and question moves supporting building rational
number ideasThe instructods use oparticularteachemoves reflected current reseaitzfised
expectations of teachelex ampl es of the instructordés intera
could be used in training instructors of undergraduate mathematics, in training of prospective
teachers during undergradeanathematics courses, or in professional learning for teachers in
general.

More gecific salient findings for teache&ducatorsnclude the importance ¢1) intently
examiningteachejustifications alongide the mathematical relationships portrayed by
supportingphysical moded in pursuit of deeper understanding of student reaspf#hg
recognizingand attending to the constructionvafrioussolutionsand/or strategies order to
seizeopportunities for ithe-moment decisions thatake thenpublic to the class; and (3)
engaging learners the reconstruction of multiple solutions representations of a mathematical
idea, as well as in thexplanation othe relationship betwedhosesolutions

Some change in prospective teachersb e | i ef s r egar diaomceptshe | eat
and procedures, and student and teacher wades notd. While theend of course essays

captured limited information regarding prospective teaciteléefs analysis of the beliefs
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inventoryassessmermata revealed shifts mverallbeliefsaway fromperspectivesnconsistent
with standard.

Physicalrepresentations were key aspdotthe sequence of tasks that comprise this
intervention.Not abl y, t he pr os ipothbdforeamftettkeantetventios 6 bel i €
were well aligned to the standardlicatingthatmanipulatives are valuable for all learners,
particularly as reasoning and communication to@snsequently, the potential impact of the
intervention on prospective teachers whodefseare not initiallywell aligned with this
standardvasnot be examined.

8.2 Limitations

Six prospective teachers enrolled in an undergraduate mathematics course participated in
this intervention. The results of a study with sucmalksamplesizeare not generalizable.
However, a cohort of this size allowed for deep analysis of video data that captured the
individual work and discourse of each teacher.

For each session, the prospective teachers worked in twosstiasklectedyroups while
sitting at adjoined tables. Two videographers captureghlsical models constructed and the
rational number ideas communicated. The videographers captured the physical movement and
gestures of the instructor only when the instructor happened intocovihe camera.

This intervention was the second intervention within this semé&stgrcourse. The
beliefsinventory conducted as a passessment was administered in advanegeieek
combinatorics interventiothatpreceded the fractions interventiothe combinatorics
interventionmay have impactethe results reported on the pasisessment.

Video data allow for observation of instructors moves and the correspondingmsatti

prospective teachers. Video data also record questions and thergspmaises of prospective
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teachersVideo data do not, however, capture the rationale for particular pedagogical and
guestion movesherebylimiting the ability to fully describéhe dynamics of the intervention.
8.3 Suggestions for Further Study

This study provided det asipédagogicdmlfguestiomat i on o
moves as well as on prospective teacldeational numberdesas, physical models, arsblutions.
However, it might be us ei{varbdal mbves teseeawnat effectst he i n
thosetypes ofmoves not captured in this studgnay have orprospectivaeachersuilding
rational number ideas

Given thatthe findings of this study are not generalizabtigigonal implementations of
this intervention might be useful in determining which findings, if any, are independent of the
instructor, independent of the cohort of prospective teachershareforedurable.

Structured interviewsf the instructodesigned to assess tientionality of and
rationale for employingarticulr instructor movesnight be usefulCollection and analysis of
generalizablelataregarding reasoned decisiamaking when empying particular instructor
movescouldultimately be informative in a variety of professional learning contexts for both pre

service and irservice teachers.
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APPENDICES

Appendix A Course Schedule

Math 380- Mathematics Reasoning and Assessment
Felician College
Class Met WF from 2:35i 3:50

| DEASQQ A CASE

Spring 2011
Date Topic Attendance
Friday, First Day- Introductions Faewas absent

January 21 1 Administer keliefs assessment
1 Administer @unting strand prassessmer
1 AssignedGang of Four vided pre
assessment for homework
Wednesday, | ClassCancelled Inclement Weather
January 26
Friday, Mixture of Topics faewas absent
January 28 1 Collectedfraction preassessment
9 Discussed quadratic and exponential
functions.
9 Discussed patterns and deduction.
9 Discussed triangular and Fibonacci
numbers
1 Worked on theHandshake Problem.
Wednesday, | Class Cancellednclement Weather
February 2
Friday, Mixture of Topics Kelly was absent
February 4 9 Discussed homework questions
1 Focused on Triangular numbers and the
Chessboard problem
Wednesday, | Induction All present
February 9 1 Modeledproofs that demonstrated the
steps for induction
Friday, Combinatorics Intervention All present
February 11| ¢q Towers 4tall choosing from 2 colors
Videotaped f Ankuroés Challenge
Wednesday, | Induction All present
February 16 i Reviewed Induction Homework
Friday, Combinatorics Intervention JanelleandFae were
February 18 1 The towers problem 4 tall, 2 colors. absent
Videotaped |  The pizza probler 4 toppings.

9 Isomorphism between the towers and th

pizzaproblems.
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Date Topic Attendance
Wednesday, | Combinatorics Intervention DarleneandFaewere
February 23| 9 Discussed the isomorphism between thg absent
Videotaped pi zza, t he tower s,
9 Isomorphism between the binomial
expansion and the towers gpidza
Friday, Formal Proofs All present
February 25| ¢ The instructor explains proof by
contradiction, proof by cases, and
induction.
1 Watched the Brandon video and they we
asked to see what types of informal prog
they saw in therideo.
Wednesday, | Proofs and Fibonacci numbers All present
March 2
Friday, Combinatorics Intervention Darlene FaeandJanelle
March 4 1 Additionruleformscal 6s t r {wereabsent
Videotaped towers and pizzas.
i Taxi Cab Problem.
Wednesday, | Spring Break
March 9
Friday, Spring Break
March 11
Wednesday, | Combinatorics Intervention Darlenewas absent
March 16 T Ankurds Chall enge
Videotaped | § Pascal 6s Pyr amid
1 Taxi Cab Problem
1 Isomorphism between the taxicab proble
andthe towers problem
Friday, Inductive Proofs Kelly andFaewere
March 18 1 Formal algebraic p|absent
Identity
Wednesday, | Inductive Proofs and Number Theory Janellewas absent
March 23 1 Completed two inductive proofsgether.
1 Started number theoilydiscussed
divisibility.
Friday, Algebraic Proofs Faewas absent
March 25 9 Assigned gang of four assessmfamt
homework.
9 Algebraic Proofs
Wednesday, | Number Theory Attendance data not
March 30 9 Discussed th&olden Ratio and Fibonacd available
numbers

9 Discussed a problem from the ouse

math contest.
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Date Topic Attendance
Friday, Number Theory Attendance data not
April 1 1 Discussed 6 theorems from number the¢ available
Wednesday, | Number Theory Attendance data not
April 6 1 Fundamental theorem of arithmetic available

9 Prime Factorization and abundant

numbers

Friday, Number Theory/ Introduction to Fraction Attendance data not
April 8 intervention available

1 Conjectures and proofs

I Prime Factorization anabundant

numbers.

1 Introduced Cuisenaire rods
Wednesday, | Fraction Intervention All present
April 13 9 Upper and lower bound video watched
Videotaped
Friday, Fraction Intervention All present
April 15
Videotaped
Wednesday, | Fraction Fae and Kelly absent
April 20 Intervention
Friday, No Class holiday
April 22
Wednesday, | Fractions All present
April 27
Videotaped
Friday, Fraction Fae, Sara andganelle
April 29 Intervention absent
Videotaped
Wednesday, | Mixture of Topics Kelly absent
May 4 1 Signed numbers
Videotaped |  Taxicab problems

1 Some fraction problems
Friday, Mixture of Topics Kelly absent
May 6 1 Signed numbers
Videotaped | q Taxicab problems

1 Some fraction problems
Wednesday, | No Class reading day
May 11
Friday, Last day- finals All present
May 13 1 2 take home essays

1 beliefs postassessment

i fractions postassessment

| DEASQ2 A CASE
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Appendix B BeliefsAssessment
1. Learners generally understand morathematics than their teachers or parents expect.
1 2 3 4 5
Strongly Agree Strongly Disagree

2. Teachers should make sure that students know the correct procedure for solving a

problem.
1 2 3 4 5
Strongly Agree Strongly Disagree

3. Calculators can help students learn math facts.
1 2 3 4 5
Strongly Agree Strongly Disagree
4. 1t 6s hel pful ttoestudem alking duing enatls dctivities. n t

1 2 3 4 5
Strongly Agree Strongly Disagree

5. Math is primarily about learning the procedures.

1 2 3 4 5
Strongly Agree Strongly Disagree

6. Students will get confused if you show them more than one way to solve a problem.
1 2 3 4 5
Strongly Agree Strongly Disagree
7. All students are capable of working on complex math tasks.

1 2 3 4 5
Strongly Agree Strongly Disagree
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8. Math is primarily about identifying patterns.
1 2 3 4 5
Strongly Agree Strongly Disagree

9. If students learn math concepts before they learn the procedures, they are more likely to
understand the concepts.

1 2 3 4 5
Strongly Agree Strongly Disagree
10.Manipulatives should only be used with students whmn 6t | ear n fr om t he
1 2 3 4 5
Strongly Agree Strongly Disagree

11.Young children must master math facts before starting to solve problems.

1 2 3 4 5
Strongly Agree Strongly Disagree

12.Teachers shoulshow students multiple ways of solving a problem.

1 2 3 4 5
Strongly Agree Strongly Disagree

13. Only really smart students are capable of working on complex math tasks.
1 2 3 4 5
Strongly Agree Strongly Disagee
14. Calculators should be introduced only after students learn math facts.

1 2 3 4 5
Strongly Agree Strongly Disagree
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15. Learners generally have more flexible solution strategies than their teachers or parents
expect.

1 2 3 4 5
Strongly Agree Strongly Disagree

16.Math is primarily about communication.

1 2 3 4 5
Strongly Agree Strongly Disagree

17.Manipulatives cannot be used to justify a solution to a problem.

1 2 3 4 5
Strongly Agree Strongly Disagree

18. Learners can solve problems in novel ways before being taught to solve such problems.

1 2 3 4 5
Strongly Agree Strongly Disagree

19.Understanding math concepts is more powerful thananiemg procedures.

1 2 3 4 5
Strongly Agree Strongly Disagree

20.Diagrams are not to be accepted as justifications for procedures.

1 2 3 4 5
Strongly Agree Strongly Disagree

21.1f students learn math concepts dref procedures, they are more likely to understand the
procedures when they learn them.

1 2 3 4 5
Strongly Agree Strongly Disagree

22.Students are able to tell when their teacher does not like mathematics.

1 2 3 4 5
Strongly Agree Strongly Disagree
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23.Collaborative learning is effective only for those students who actually talk during group
work.

1 2 3 4 5
Strongly Agree Strongly Disagree
24. Students should be corrected by the teacher if #msiwers are incorrect.

1 2 3 4 5
Strongly Agree Strongly Disagree

25.Mixed ability groups are effective organizations for stronger students to help slower

learners.
1 2 3 4 5
Strongly Agree Strongly Disagree

26. Collaborative groups work best if students are grouped according to like abilities.

1 2 3 4 5
Strongly Agree Strongly Disagree

27.Conflicts in learning arise if teachers facilitate multiple solutions.

1 2 3 4 5
Strorgly Agree Strongly Disagree

28.Learning a stejoy-step approach is helpful for slow learners.

1 2 3 4 5
Strongly Agree Strongly Disagree

29.0nly the most talented students can learn math with understanding.

1 2 3 4 5
Strongly Agree Strongly Disagree
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30.The idea that students are responsible for their own learning does not work in practice.

1 2 3 4 5
Strongly Agree Strongly Disagree

31.Teachers need to adjust mathtinstion to accommodate a range of student abilities.

1 2 3 4 5
Strongly Agree Strongly Disagree

32Z2Teacher questioning of studentsdé solutions

1 2 3 4 5
Strongly Agree Strongly Disagree

33.Teachers should intervene as little as possible when students are working -@mopen
mathematics problems.

1 2 3 4 5
Strongly Agree Strongly Disagree

34. Students should not be penalized for making a computagoralwhen they use the
correct procedures for solving a problem.

1 2 3 4 5
Strongly Agree Strongly Disagree
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Appendix C BeliefsInventory StatementData

Overall Beliefs Consistency Results by Belief Statement

Beliefs Statement

Pre-Assessment PostAssessment

Learners generally understand more mathematics tha
ther teachers or parents expect JE1

All students are capable of workj on complex math
tasks (K)
Inverse of:  Onlyeally smart students are capable of

working on complex math tasks (E13)

Learners generally have more flexible solution strateg
than their teachers or parents expect (E15)

Learning a stejy-step approach iselpful for slow
learners (E28)

Inverse of:  Only the most talented students can lear
math with understanding (E29)

It's helpful to encourage studeiotstudent talking during
math activities (MD4)

Inverse of:  Collaborative learning is effective only fc
those students who actually talk during group work
(MD23)

Teachers should make sure that students know the c«
procedure for solving a problem (C2)

Inverse of:  Math is primarily about learning
procedures (C5)

If students learn math concepts before they learn the
procedures, they are more likely to understand the
concepts (C9)

Inverse of: Younghildren must master math facts
before starting to solve problems (C11)

Learners can solve problems in novel ways before be
taught to solve such problems (C18)

Understanding math concepts is more powerful than
memorizing procedures (C19)

If students learn math concepts before procedures, th
are more likely to understand the procedures when th
learn them (C21)

Inverse of:  Manipulatives should only be used with
students who don't learn from the textbook (M13)

CN (CP)
3 (50%)

2 (33%)
6 (100%)
3 (50%)
6 (100%)
6 (100%)
6 (100%)

4 (67%)

6 (100%)
1 (17%)

3 (50%)

1 (17%)
4 (67%)
6 (100%)

4 (67%)

6 (100%)

CN (CP)
4 (67%)

2 (33%)
6 (100%)
5 (83%)
5 (83%)
6 (100%)
6 (100%)

1 (17%)

2 (33%)
3 (50%)

5 (83%)

4 (67%)
5 (83%)
6 (100%)

4 (67%)

6 (100%)

| DEASQ8 A CASE
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Inverse of:  Manipulatives cannot be used to justify i 6 (100%)
solution to a problem (M17)

Inverse of:  Students will get confused if you show 4 (67%)
them more than one way $olve a problem (ST6)

Students should be corrected by the teacher if their 3 (50%)
answers are incorrect (ST24)

Inverse of: The idea that students are responsible fc 3 (50%)
their own learning does not work in practice (ST30)

Teachers need to adjust math instruction to accommc 5 (83%)
a range of student abilities (ST31)

Inverse of:  Teacher questioning of students' solutio 3 (50%)
tends to undermine students' confidence (ST32)

6 (100%)
3 (50%)
2 (33%)
4 (67%)
5 (83%)

2 (33%)
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Appendix D Beliefs Inventory Databy Question Category

Beliefs Consistency ResuitExpectations and Abilities Category

Teacher Pre-Assessment PostAssessment

CP CN IN UN CP CN IN UN
FC 50 3 0 3 50 3 1 2
KD 50 3 1 2 67 4 1 1
M 50 3 1 2 67 4 0 2
RH 100 6 0 0 100 6 0 0
JR 100 6 0 0 100 6 0 0
FS 83 5 0 1 83 5 0 1
Beliefs Consistency Resuitdlathematical Discourse Category
Teacher Pre-Assessment PostAssessment

CP CN IN UN CP CN IN UN
FC 100 2 0 0 50 1 0 1
KD 100 2 0 0 50 1 0 1
JM 100 2 0 0 100 2 0 0
RH 50 1 1 0 50 1 0 1
JR 100 2 0 0 50 1 1 0
FS 50 1 0 1 50 1 0 1
Beliefs Consistency Resuit€oncepts and Procedures Category
Teacher Pre-Assessment PostAssessment

CP CN IN UN CP CN IN UN
FC 43 3 1 3 71 5 0 2
KD 57 4 2 1 14 1 5 1
JM 57 4 1 2 71 5 1 1
RH 57 4 2 1 86 6 0 1
JR 71 5 0 2 71 5 0 2
FS 71 5 1 1 100 7 0 0
Beliefs Consistency Resuitdlanipulatives Category
Teacher Pre-Assessment PostAssessment

CP CN IN UN CP CN IN UN
FC 100 2 0 0 100 2 0 0
KD 100 2 0 0 100 2 0 0
JM 100 2 0 0 100 2 0 0
RH 100 2 0 0 100 2 0 0
JR 100 2 0 0 100 2 0 0
FS 100 2 0 0 100 2 0 0
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Beliefs Consistency ResuitStudent and Teacher Roles Category

Teacher Pre-Assessment PostAssessment
CP CN IN UN CP CN IN UN

FC 20 1 1 3 20 1 0 4
KD 40 2 3 0 40 2 1 2
JM 60 3 0 2 80 4 0 1
RH 100 5 0 0 80 4 0 1
JR 80 4 0 1 60 3 0 2
FS 60 3 0 2 40 2 1 2
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Appendix E Final Project Essays

Essayl
Author: Fae

| DEA $0:

A CASE

Topic: The meaning of equivalent fractions and why you need a common denominator when you
add or subtract fractions.

Line | Text
1 Learning fractions is a major
2 | I never liked solving any math problems that had to do with fractions. |
3 | not like doing fraction equations, or fraction word problems, etc. | woulg
4 | to avoid fractionsn any way possible. During this semester | have finally
5 | learned the reasoning of equivalent fractions and why a common
6 | denominator is necessary when adding or subtracting fractions.
7 I now know the proper definition of equivalent fractions. Fractions wi
8 | have the same value even though the numbers are different, is an easy
9 | to understand the meaning of equivalent fractions. The use of manipul
10 | helped me realize the remsng of two fractions being equal to one anoth
11 | even though different color rods/different numbers were being used to
12 | represent the two fractions. Since | plan to be a future educator | now K
13 | a much simpler way of teaching fractions to studentswég able to learn
14 | through manipulatives as a college student, students in any grade can
15 | taught through the use of manipulatives to help with the understanding
16 | fractions.
17 Common denominators are used when adding or subtrdiictepns
18 | because thdenominator shows how many equal parts the item is divide




PROSPECTI VE TEACHERS DEVELOPI NG FRACTI ON | DEA %0

MOVES
19 |into. In order to add or subtract you need the amount of equal parts to
20 | same so you know how many pieces of that part you are adding or
21 | subtracting from. | always kneishad to find a common denominator in
22 | order to add or subtract fractions but never knew why, now | do.
23 | believe the use of manipulatives makes fractions so much easier a
24 | enjoyable to work with. I will no longer mind havinggolve equations or
25 | word problems with the use of fractions because | can now just draw a
26 | picture of the rods or use other sources of manipulatives toriefolve.

A CASE
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Essay?

Author: Kelly

Topic: Why dividing by two is different from dividing by offlfi why students have trouble
with this concept and what you could do to help them increase their understanding.

Line | Text
1 Dividing by two is different than dividing by offealf because a

2 | student can divide a number by two but wheror she is dividing by one
3 | half, the fraction of onéalf flips to make the number multiply by two.

4 | Students might have trouble with it because when they think ehalfie

5 | they think of dividing it by two. For example, if the problem was eight
6 | divided by2 (8/2), the answer would be four. If the problem was eight
7 | divided by onehalf (8~4%) the answer would be 16 because there is anotl
8 | barunder the division bar which means that the student has to multiply

9 | getthe half from under the fraction bar.

100 /I think 1 6ve learned a | ot this
11 | sense to me. | have a better understanding of how to teach fractions tg
12 | group of students. | have more patience for students who do not under

13 | something because 1 kmdow it feels to get frustrated at something.

14 | Students need manipulatives to help them understand a specific topic
15 | because some students might not understand a specific concept just b
16 | thinking of it. The student might not understand why the (1/2) is multipl
17 | but I would try to explain using the G@naire rods. | might try to find a

18 | video for the students who are better listening to a video on fractions. T

19 | students need a bit of everything to practice techniques on how to add
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20 | fractions.Some people might explain it better than me and there meht
21 | more than one way of explaining it. There could be another way of solv
22 | the problem as well. | liked working with other people in case | was not
23 | understanding something my partners would try to help me

A CASE
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Essay3

Author: Janelle

Topic: The meaning agdquivalent fractions and why you need a common denominator when you
add or subtract fractions.

Line | Text
1 A fraction means a part of a whole. Therefore, when you hawehinds,

2 | it means you have two parts out of a whole tuatsists of three parts. Ong
3 | half means you have one part out of a whole that consists of two parts.
4 | Equivalent fractions mean that two or more fractions have the same va|
5 | even if they look different. Orbalf and twefourths are equivalent fractior
6 | because twefourths can be reduced to ehaelf. When you add fractions,

7 | you need to have the same number of parts that make up a whole. Ha
g | two-eighths and fousixteenths, you cannot just add the numerator and

g | denominator together because they atepads of the same whole.

10 An example of equivalent fractions:

11 f Rob's Piz:; - ! Tom's Pizza
|

|
| |
| {

12 | Rob has 2/8 of his pizza left over. Tom has 4/16 of his pizza left over. H
13 | though these look different, they are equivalent fractions because they
14 | arethe same quantities. Even though Rob has two slices, and Tom hag

15 |sl i ces, two of Tombs slices makeé

16 To add these fractions, you must make the denominators of the frac

17 | the sameTwo-eighths is equivalent to fotgixteenths. Therefore, Rob als
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Line | Text
18 | has foursixteenths of his pizza left over. When yloave the same
19 | denominator, you simply add the two numerators together. Therefore, i
20 [ put Rob and Tombs | eHlate eighieteenths ofz :
21 | pizza between them.
22 .5
8 16
23 | Ftitm:
24 Manipulatives would be very useful in this area of mathematics. Usif
25 | slices of pizza or Cuisenaire rods would be excellent manipulatives. Us
26 | manipulatives allows stlents to touch tangible items in order to figure ol
27 | the fractions. By using pizza, there is a +@akld connection that allows th
28 | students to realize the importance of mathematics in everyday life. In
29 | addition, using tangible items allows basic concéptse retained quickly
30 | and easily. Students are also motived to learn mathematics because th
31 | enjoying it instead of just drilling facts repetitively. Since the Cuisenaire
32 | rods come in many differesizes, the fractions can be represented
33 | horizontaly. For some students, this method may allow fractions to be
34 | easily understood.
35 There are many ways to teach fractions. | believe the best way to
36 | introduce fractions to children are with tangible, +ial objects. A pizza
37 | would be an excellent way. Since it is a circle, it can but cut in many
38 | different ways. You can represent onegtalf, onethird, onefourth, one
39 | fifth, onesixth, etc... Any fraction can be represented by a circle. This

A CASE
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Line | Text
40 | allows for tiered lessons. Using manipulatives gives a visual representg

41 | of the material instead of just random lines and numbers on acStmsgder.
42 | One method | would avoid is asking students to memorize the relationg
43 | of fractions and equivalent fractions. By simply teaching students the
44 | methods for solving fraction problems, they will not understand the con
45 | By allowing them to playvith manipulatives and the numbers, they will
46 | figure out their own methods to solving problems. In addition, the stude
47 | will then be able to generalize their methods to contsaleing

48 | increasingly difficult problems. If the student can figure out tleegss, the

49 | rules can be recreated.
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Essayd

Author: Erika

Topic: The meaning of equivalent fractions and why you need a common denominator when you
add or subtract fractions.

Line | Text
1 Equivalent fractions are fractions that arpial to each other but are

2 | written more than one wayfji.e.,3/4 = 6/8) This is an extremely hard conce
3 | of children to understand. Many timtsachers do not feel like or know ho
4 | to explain this to children. In order for childrencdomprehend this topic,
5 | they need to know about lowest terms. Thereflongestterms must be

6 | taught at the same time as equivalent fractions

7 A common denominator is needed because otherwise it would be al
8 | impossible to add them together. Children may think that all you nesid {
9 | is add the numerators together d@he denominators together to get the
10 | correct answefi.e. 3/4 + 12 = 5/4 not 4/ Those are tweery different

11 | answers. A common denominator, LCD preferably, will actually help
12 | childrenunderstand lowest terms as well. So if you show them commor]
13 | denominator work it will help them excel in equivalent fractions. Onéef
14 | good things about math is that it builds on itself. Teachers that enjoy

15 | working with fractions are needed.
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Essays
Author: Darlene
Topic: What it means to divide by a fraction and why the division algorithm works

Line | Text

1 The word "division" is the noun form of "divide" which means to

2 | separate into groups, parts or sections. When discussing division, it is
3 |[important to understand that di
4 | multiplication. To illustrate thisencept furt her , aree
5 | having a party for some friends. How do you determine how many gue
6 | you can serve if yohave 12 large brownies that you are going to split ez
7 | in half? The brownies are big ardchperson will eat half of a brownie. In
8 | this case, you take 12 but now yioane to divide byt%. When you think

9 | about it, one large brownie will serve 2 people, sib@plus1/2 equal one
10 | whole. With each guest eatidg? a brownie, you can now serve ddeithe

11 | amount of people as you have cookies, or in other words, twice the am

12 When you divide by a fraction, you are essentially asking "How man
13 | times will the fraction fit into this number?" Fexample, 3/%%= 6/1 = 6.

14 | 1/2 fits into the number three 6 times. This way of thinking works when
15 | both parts of the equation are fractiolsorder to make dividing fractions
16 | easier is to remember to invert and multiply. For example, if your problé
17 | 2 divided byl/4 think of this as a big fraction with 2 in the numerator an(
18 | the fraction 1/4inthd e nomi nat or. Theanadvmut
19 | means to take the denominator of this foagtion, 1/4, and invert it. In othe

20 | words, flip it so its numerator becomes its denominator and vice versa.
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21 l[inverse of 1/4 is therefore 4/ 1),
22 |landmul ti plyo: all you need to do
23 |by the inverted denominator, 4.

24 | However, now we have an easy method for doing harder problems too
25 | 7 divided by 8/9. All we have to do isvert 8/9 to get 9/8, and., then
26 | multiply this by 7 (numerator: 7 x 9 = 63; denominator: 1 x 8 = 8) to fing

27 |t hat the answer is 63/ 8, or 7 al

28 | that long division will always work because every number can beswiiitt

29 | this form whether it be negative or positive
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Essayo

Author: Sarah
Topic: The meaning of equivalent fractions and why you need a common denominator when you
add or subtract fractions.

| DEA $12

Line | Text
1 It is known inorder to add and subtract fractions, you need a comma
2 | denominator. Since a fraction is actually a division problem not worked
3 | yet, instead of dividing 1 by 2 to get .50, we just say 1/2. | believe it is &
4 |Il'i ke algebra, x/ vy, ublaute wa sewalul
5 | values. They are usually difficult to find especially with two variables. |
6 |think the reason we dondét think
7 | use the fraction as an expression, rather than turn it intgiendl first,
g | which can sometimes be confusing depending on the problem, we can
g | the distributive property to shothis. Therefore, we need a new
10 | denominator for the answer. You can use (bd) as a common denoming
11 | and convert both fractions by tlégnominator by multiplying by 1:
12 (a/b)+ (c/d) = (a/b)(1) + (c/d) (1)
13 = (a/b)(d/d) + (c/d)(b/b)
14 = (ad)/(bd) + (bc)/(bd)
15 | Then thedistributive property shows the common denominator (bd) ir
16 | fraction form:
17 = (ad+bc)/(bd)
18 | When doing addition, you need a common denominator first so you cali
19 | factor it out.
20 | In order to daequivalent fractions you need to first start out with a fractig

A CASE
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21 | For example 1/2You have to multiply top and bottom by the same num
22 | and that is your equivalent fractions. So we can say a/b x d/d is equal t
23 | LetGs say we started with the resngifraction, we can divide d/d by the to
24 | and bottom (preferably the GCF) and also get a fraction in its simplest

A CASE
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Appendix F Task Statements

Math 380 April 13, 2011

1. What is the shortest train that can be measured by bottatkereen and the purple rod?

2. What is the shortest train that can be measured by both the dark green rod and the brown rod?

3. What is the longest train that measures both the dark green rod and the purple rod?

4. What is the longest train that measures blaghtirown rod and the black rod?
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Math 380 Fractions with Cisenaire Rods April 13, 2011

1. Call the red rod 1. What are the number names for all other rods?

2. Call the orange rod 1. What are the number names for all other rods?

3. Select aifferent rod to call 1. What are the number names for all other rods?

4. Representing orlealf:
a) if you call the brown rod 1, which rod represents - loak?

b) If you call the blue rod 1, which rod represents one half?

5. Call the light green rod 1.
a) What number is represented by the red rod?

b) What number is represented by the dark green rod?

6. Call the white rod onthird.
a) Which rod represents 1?

b) What number does the yellow rod represent?

7. Use Cuisnaire rodsd model the following situatioand answer the questi. Which is

larger, 3/4 or 2/3?
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8. Make up your own guestion similar to the one above that can be answered using Cuisenaire

rods.

Your nhame:

Rod that = 1:

Rod

Fraction

White

Red

Lt. Green

Purple

Yellow

Dk. Green

Black

Brown

Blue

Orange
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Math 380 April 15, 2011

1. Susie has 1/3 of a candy bar. She gives half of what she has to Paul. How much does she
give to Paul? How much does she hafe?

2. Keisha has a candy bar. She gives 1/2 of a bar to Pablo and 1/3 of a bar to Gordon. What
portion of a candy bar does she have left?

3. John has 1/2 of a candy bar. Bill takes 1/3 of a candy bar from John. What portion of a
candy bar doedohn have left?

Use the Cuisenaire rods to answer the above problems.
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Math 380 Problems with Fractions April 15, 2011
1. Mary, Lisa, and Patricia each sent out for pizza, and they all had some pizza left over. Mary

had ¥ of a pizza leftver, Lisa had 1/3 of a pizza left over, and Patricia had 1/6 of a pizza
left over. If they put all their leftover pizza together, how much pizza would they have?

2. Joe has a piece of wood % meter long. If he cuts off a piece that is IiiGetéra how long
a piece of wood does he have left?

Use the Cuisenaire rods to answer the above problems. Then write mathematical sentences for

these problems. Explain how the rods are related to the mathematical sentences.
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Appendix G 04/13/11Classwork
FAE

Math 380 Fractions with Cuisenaire Rods April 13, 2011

1. Call the red rod 1. What are the number names for all the other rods?
2. Call the orange rod 1. What are the number names for all the other rods?
3. Select a different rod to call 1. What are the number names for all the other rods?

4. Representing one-half: a) If you call the brown rod 1, which rod represents one-half?
b) If you call the blue rod 1, which rod represents one-half?

c') P‘J i },.rl'n_\_ :F'_g_ el e
g . " # A ek s, 'I f Pl o 3 8- FEEP
. ||‘1-';. an T= L e L _‘ =% K ¥ d e {j ':l..--' L, LB

et

¥ )

3. Call the light greenrod 1. a) What number is represented by the red rod? b) What
number is represented by the dark green rod?

@) 25 = o
b‘} ¥ ok c."llf-ﬁ.ﬂ'-'l"'l

6. Call the white rod one-third. a) Which rod represents 17 h) What number does the
yellow rod represent?
a) Lk arfen
a3 | 1_,1"3 = L}ALI Low

7. Use Cuisenaire rods to model the following situations and answer the questions.
Which is larger, 3/4 or 2/37

3y s fortr by e bje dha Qs 12

8. Make up your own question similar to the one above that can be answered using
Culsenaire rods.

UoRICh 15 \COvoEr

Sle T 1 %Y,
o
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Rod that = 1:
Rod Fraction
White hiYel/al '/
Red | s (7a]  |ls
Lt. Green f}; gﬂa Ll'rj \
Purple 217 f’r‘i ':"z |Jf3:
Yellow 205 Blel W%
Dk.Green =Pk KE 7
Black 7o} /g
Brown 4 L”S q// 91 |
Blue AN ER
Orange S |1k
F o = oL
e b i :
g ¢ TR TR
6o oW
Ly r
¢ £
o

| DEA$2C A CASE
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JANELLE
Iath 380 Fractions with Cuisenaire Rods April 13, 2011

1. Call the red rod 1. What are the number names for all the other rods?
2. Call the crange rod 1. What are the number names for all the other rods?
3. Sclect a different rod to call 1. What are the number names for all the other rods?

4. Representing one-half: a) If you call the brown rod 1, which rod represents one-half?
b) If you call the blue rod 1, which rod represents one-half?

[ I i " [

A LY

"

F 4
.__,'.‘

1 Pl il ¥ 1 R 2 -
o B R 7 e b : o

3. Call the light green rod 1. a) What number is represented by the red rod? b) What
number is represented by the datk green rod?

EY

6. Call the white rod one-third. a) Which rod represents 17 b) What number does the
vellow rod r nt?

! fapt
&

7. Use Cuisenaire rods to model the following situations and answer the guestions.
Which is larger, 3/4 or 2/37

L1 . ' % " A 1
1 % Vi i :
8. Make up your own question similar to the one above that can be answered using T ¢

Cuisenaire rods. L
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Rod that = 1:

Rod

White

Fraction

Red

Lt. Green

Purple

Yellow

Dk.Green

Black

Brown

Blue

Orange

| DEA $22

A CASE



PROSPECTI VE TEACHERS DEVELOPI NG FRACTI ON | DEA $2-

MOVES

DARLENE

1. Call the red rod 1. What are the number names for all the other rods?
2. Call the orange rod 1. What are the number names for all the other rods?
3. Select a different rod to call 1. What are the number names for all the other rods?

4. Representing one-half: a) If you call the brown rod 1, which rod represents one-half?
b) If you call the blue rod 1, which rod nts one-half?

&) vrgle

.fo) N oA
5. Call the light green rod 1. a) Wf;alnumb:r is represented by the red rod? b) What
number is represented by the dark green rod? (}"\J 2 /5 b)g

6. Call the white rod one-third. a) Whigh rod represents 17 b) What number does the

yellow rod represent? a L;Sh+ f‘]m b] l ﬂfj

7. Use Cuisenaire rods to model the following situations and answer the questions.

Which is larger, 3/4 or 2/37
; Y (s lecaer
Piurple ovnd ‘\rt& 9re€n
roos RSP
8. Make up your own question similar to the one above that can be answered using
Cuisenaire rods, WL\;th Ve [ e r QJJE .
S[k or A[3

/

A CASE
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