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Residents in coastal communities face multiple challenges when protecting their homes. 

Hurricane winds and storm surges have caused widespread structural damage throughout 

eastern and southern communities in the United States and internationally. This reality, coupled 

with existing research indicating rising sea levels and increased hurricane intensity has forced 

coastal communities to address the issue. One strategy being implemented and continuously 

refined is adaptive coastal structural design.  

This thesis explores adaptive coastal design techniques for residential structures, 

focusing on floating housing.  A literature review is conducted on existing design concepts of 

coastal housing that explored the advantages and disadvantages of various concepts as well the 

challenges associated with them. The floating home structural design concept presented in this 

thesis includes a lightweight concrete hollow slab base and steel guideposts to resist lateral 

loads and prevent lateral movements of the house under an extreme flood event. The presented 

design concept discusses the critical factors that influence the design of the floating home 

components and other related factors. The design loads and load combinations applied to the 

floating home structure were based on a 100- year flood event with hurricane level wind forces 

and high storm surges following FEMA recommendations. Results of the analysis and design of 
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the floating home structure showed that the design is feasible and sustainable in a 100-year 

flood event with minimum to minor structural damage. 

Additionally, a life-cycle cost analysis was conducted for a 50-year period. Using 

estimates of construction, maintenance and insurance costs, the analysis compared the costs of 

floating homes built in a New Jersey coastal community to the repair and restoration costs of 

existing homes damaged following 100-year flood event.  The results showed that the costs of 

floating homes were about 12% lower than the repair and restoration costs.  
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Chapter 1: Introduction  

1.1 Motivation   

Climate change and its effects on sea level is a concern for coastal communities. At 

current rates of sea level rise, many coastal areas are expected to flood repetitively [1]. In New 

Jersey, projections for sea level rise exist over various time scales. The Science and Technology 

Advisory Panel (STAP) at Rutgers University has evaluated sea level rise trends and assessed its 

implications for coastal stakeholders in New Jersey. Using existing projections, STAP concluded 

that New Jersey coastal areas are likely to experience between 0.6ft ς 1.0ft of sea level rise by 

the year 2030, and 1.0ft- 1.8ft by 2050 [2].  Under high greenhouse gas emissions, these coastal 

areas are likely to see between 2.4ft and 4.5ft by the year 2100 [2].  

 

Figure 1. Expected Sea Level Rise given greenhouse gas emissions. (Science and Technology 
Advisory Panel) 

A 2017 CNN article discussed the threat sea level rise poses to many U.S. cities in the 

coming century, including major metropolitan areas such as New York, Boston, San Francisco, 

and Miami [3]. The statistics discussed in this article were published in a report by the Union of 

Concerned Scientists, who discussed the potential for these cities to experience chronic 

inundation; flooding occurring 26 times per year or more, disrupting daily routines and covering 

ƻǾŜǊ мл҈ ƻŦ ǘƘŜ ŀǊŜŀΩǎ ƭŀƴŘ [4]. To solve this challenge of chronic inundation, the group 
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suggested that more comprehensive solutions be discovered to bring meaningful change and 

large-scale collaboration between stakeholders be increased [4]. 

In addition to chronic inundation, coastal communities are impacted by floods of greater 

magnitude during hurricanes. For example, storm surge levels observed during Hurricane Sandy 

were between 6 to 7 feet in certain parts of the Jersey Shore in 2012 [5]. Floods of this 

magnitude cause widespread devastation, displacing coastal residents and triggering expensive 

long-term recovery efforts. Figure 2 ŦƻǊ ŜȄŀƳǇƭŜΣ ŘƛǎǇƭŀȅǎ ǘƘŜ ǊŜƳƴŀƴǘǎ ƻŦ ŀ ƘƻƳŜΩǎ ŦƻǳƴŘŀǘƛƻƴΣ 

which was ripped off its base in Mexico Beach, Florida as a result of the storm surge from 

Hurricane Michael in 2018. 

 

Figure 2. Home ripped off foundation due to Hurricane Michael storm surge in Mexico Beach, 
Florida 

One potential solution to these issues is adaptive coastal construction. Designing coastal 

homes that remain immune to the effects of rising waters and storm surges could be beneficial 

in the foreseeable future if residents elect to remain on the coast. Although numerous coastal 

residential design techniques exist, design strategies should be analyzed and discussed to 

determine their suitability and practicality given the new threats coastlines face.  
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This thesis explores two coastal resilient design techniques for residential structures, the 

elevated home and the floating home, noting the benefits and setbacks of each design type. 

Subsequently, the design of a specific style of floating home is explored further through 

structural analysis and design, seeking to evaluate its performance against hurricane force winds 

and storm surges. Following this, the cost of the required design is considered and weighed 

against its potential to reduce residential losses following 100-year flood event.  A prototype of 

the floating home was also built to further illustrate the concept.   

1.2 Literature Review  

This literature review provides background information on both structural types: the 

elevated home and the floating home. It is divided into two sections, each discussing the history 

of both building strategies and their use in different regions of the world. Following this, the 

chapter highlights specific benefits and challenges that come alongside both structural types.  

1.2.1   The Elevated Home  

1.2.1.1 History  & Usage 

Elevated houses are built in areas vulnerable to flooding to ensure livable spaces are 

protected from flood damage. Permanent home elevation is not a new concept and some cities 

have grown on water out of necessity. Ganvie, for example, is a village built on Lake Nokoué in 

Benin and is home to approximately 20,000 residents [6]. The Tofinu people settled there 

approximately 400 years ago to escape attackers who refused to venture into the water [6]. As a 

result, they developed a lifestyle that revolved around water, with full markets permanently 
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erected atop the lake where residents trade goods while in canoes [6].  The homes in Ganvie are 

an example of an open foundation, built with bamboo and permanently elevated on stilts [6].  

 

Figure 3. Homes on stilts in Ganvie, Benin 

Open foundations are extremely popular throughout the globe and allow water to flow 

under the house during a flood eventΦ ²ƘƛƭŜ DŀƴǾƛŜΩǎ ƘƻƳŜǎ ǿŜǊŜ ŘŜǎƛƎƴŜŘ ǘƻ ǎǘŀƴŘ 

permanently above a lake, many elevated homes are built on land, prepared for potential floods 

and storm surges. There are examples of this type of construction in the United States 

throughout its coastal regions.  

 

Figure 4. Elevated house along the New Jersey coastline 
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Many homes on the New Jersey coastline use pile foundations along with other 

strategies to achieve a desired first floor elevation (Figure 4).  Coastal communities in New 

Jersey and the rest of the United States have the option of participating in the National Flood 

Insurance Program (NFIP), sponsored by the Federal Emergency Management Agency (FEMA), 

which aims to minimize the loss of life and property due to flooding [7]. The program requires 

new, improved, or repaired buildings to comply with floodplain management regulations and be 

elevated to designated heights [7].  

 

Figure 5. Elevation requirements of the National Flood Insurance Program. 

1.2.2   Benefits  of Elevated Structures  

1.2.2.1 Flood Insurance D iscounts  

 One advantageous aspect of elevated housing for coastal homeowners in the United 

States is the opportunity to receive discounted flood insurance. Ground-level structures are 

mandated to pay higher flood insurance rates if located within a floodplain. Coastal 

communities in the United States have the option of participating in the National Flood 

Insurance Program that mandates new homes maintain a certain level of freeboard above base 

flood elevation (Figure 5). The base flood elevation (BFE) is the expected 100-year flood 
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elevation of the community, which has a 1% chance of occurring in a given year. The higher a 

home is elevated, the greater insurance discount the home receives [7].  

1.2.2.2 Resilience 

Another benefit of elevated housing is its resilience against flood waters. Flood waters 

move beneath or around the structure leaving the livable space within the home untouched. 

Numerous strategies exist to achieve desired levels of elevation and are discussed in later 

sections. These strategies include elevating on piles, extending existing foundation walls or even 

abandoning the lower areas of the home to live at higher levels [7]. 

1.2.2.3 Familia rity  

As mentioned previously, home elevation is well-known and has existed in construction 

for quite some time. Therefore, qualified contractors are readily available to complete elevation 

jobs [8]. This contrasts with other adaptive forms of living, which have traditionally been viewed 

as an alternative form of living entirely. Industries promoting the construction of these adaptive 

methods, such as floating home construction for example, have not expanded to levels 

comparable to those of elevated houses.  

1.2.2.4 Maintenance  

It is significantly easier to access certain aspects of an elevated home to install necessary 

additions. For example, cable, wiring and plumbing systems could run underneath the floor and 

these features could be installed without damaging existing features such as the walls of the 

home [9]. Building owners and contractors can easily move beneath the structure to install any 

necessary additions or make improvements.  
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1.2.3   Challenges of Elevated Structures  

1.2.3.1 Accessibility  

A common complaint with permanently elevated homes is their lack of accessibility for 

the elderly and disabled, who often find it challenging to climb the staircases required to access 

their front door [10]. Attempts are ongoing to solve this issue. For example, New York Rising, a 

reconstruction program developed after Hurricane Sandy, provided disabled homeowners in 

New York with up to $22,000 to install lifts and elevators to access the first floor of their home 

[10]. However, homeowners were still reluctant to install the lift system.  

1.2.3.2 Aesthetics  

There are also complaints that certain permanent elevation techniques are not 

aesthetically pleasing and are eyesores in certain communities [8]. If such opinions become 

popular, they could discourage future home elevations in these communities. To combat such 

opinions, strategies such as planting shrubbery around the home or extending the siding down 

the foundation walls are recommended to alleviate the issue [8].   

1.2.3.3 Foundation T ype before  Elevating  

Difficulties can arise in the elevation process ōŜŎŀǳǎŜ ƻŦ ǘƘŜ ƘƻƳŜΩs original foundation, 

as some structural foundations are easier to elevate than others. Homes with crawlspaces are 

easiest to elevate, as contractors can maneuver underneath buildings to place beams and jacks 

[8]. Homes with piers, columns, or shear walls however, are more difficult, as original piers or 

walls need to be removed, which can only be done with the home lifted and placed to the side 

[8]. New piers or walls are then installed. The most difficult foundation to work with is a slab-on-
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grade foundation as contractors must prevent the slab from cracking during the elevation 

process. The area under the slab also must be excavated to insert lifting equipment [8]. 

1.2.3.4 Vulnerability to Wind  

Elevated homes face an additional challenge of withstanding wind forces, which get 

stronger with increasing height. This is a result of the derived wind pressure on a building being 

a function of the square of the wind speed [11]. Although raised housing avoids flood damage, it 

is exposed to stronger winds. This permanent exposure over time could lead to unexpected 

building damage and economic losses [11]. Therefore, studies are being conducted on 

alternative resilient building strategies that do not permanently elevate the home.   

1.2.4   The Floating Home  

The floating home is one alternative to elevated residential construction. This section 

explores the ŦƭƻŀǘƛƴƎ ǎǘǊǳŎǘǳǊŜΩǎ suitability as a design strategy for coastal residents through 

examined literature. It discusses its global history, with a specific focus on its development and 

use in the Netherlands, and examines the methods used to ensure its structural stability on 

water. It also addresses ǘƘŜ ōǳƛƭŘƛƴƎ ǎǘǊŀǘŜƎȅΩǎ benefits and the unique challenges it presents to 

residents. 

1.2.4.1 History & Usage 

Floating homes have been in existence for many years and are found throughout the 

globe. Reasons for their development vary from region to region. In China, between the tenth 

ŀƴŘ ǘƘƛǊǘŜŜƴǘƘ ŎŜƴǘǳǊƛŜǎΣ ƘƻǳǎŜōƻŀǘǎ ŘŜǾŜƭƻǇŜŘ ŀǎ άǊŜŦƛƴŜŘέ ƳŜǘƘƻŘǎ ƻŦ ǘǊŀǾŜƭƛƴƎ [12]. The 

boats held suites for travelers, with decks that functioned as a roof for passengers as well as a 
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living and work space for crew members [12]. High ranking officials made use of these boats for 

travel and brought their family with them [12]. Unlike houseboats however, the floating homes 

explored in this thesis remain in one location and have no propulsion power [13]. 

 

Figure 6. Line drawing of a portion of Guo Zhongshu's 'Travelling on the Yangzi through a Snow 
Night'. The painting presents an image of a Chinese houseboat, as windows are observed below 

the deck (Nanny Kim) 

In the United States, floating residential structures were found in coastal towns on the 

West Coast [13]. Seattle in the 1930s for example, possessed a few thousand floating homes. 

Their existence during these time periods was primarily a result of unaffordable land rather than 

desires to live on water [13]. However, as cities such as Seattle cleaned their waterways, homes 

on the water became a more fashionable form of living [13]. Currently, some of these homes sell 

for as little as $200,000 while larger homes with multiple stories can cost up to $2.8 million [13]. 

Although the number of floating homes in Seattle have decreased over time, their prices have 

significantly risen.  
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Figure 7. Seattle Houseboats: Seattle Floating Homes for sale (Cooper Jacobs Real Estate Group) 

New Orleans, Louisiana has also explored the capabilities of floating homes.  Following 

the devastation of Hurricane Katrina in 2005, designers from Morphosis Architects developed a 

floating home to resist high storm surges. Named the FLOAT house, the sustainable floating 

home is designed to sustain its own water and power needs and is constructed on land, only 

rising during a flood. Created specifically for storm surge, it can rise to 12 feet while attached to 

guide posts. Despite their potential resilience, these homes are not designed for residents to 

remain inside during a storm [14].  

 

Figure 8. FLOAT house on Tennessee St, New Orleans, LA in 2009 (Iwan Baan) 

The floating structures mentioned thus far were built for several reasons. The 

houseboats in China were developed as a method of transportation, while past floating homes 
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in Seattle sprung up because of climbing land prices. The FLOAT house in New Orleans was 

specifically designed to guard against storm surges.  The Netherlands also has a history of 

adapting to rising waters. This is primarily a result of its land elevation, with many of its cities are 

already below sea level [15].  

Cities like Amsterdam and others in the region are highly vulnerable to the effects of sea 

level rise and climate change given their growing population density [16]. If the modern Dutch 

coastal defenses were to fail during an emergency, it is estimated the nation could suffer 

damages above 400 billion euros [16].  As a result, numerous efforts have been made in 

throughout history to combat the threat of sea level rise and inundation.  

As early as 500 B.C., settlers began building their homes on terps, which were mounds 

of clay and sand to elevate themselves above flood levels [15]. This concept was eventually 

expanded to ensure that entire groups of homes were above inundation levels. By 50 B.C. dikes 

were developed to provide a second level of protection for homes and agricultural land [15]. To 

further enhance the living scenario, windmills were introduced in 1200, and were used to pump 

excess water out of the settlement, increasing the amount of available land for residents in 

these areas [15]. 

These windmills had negative consequences however. The water removed by the 

windmills exposed the base of the mounds, causing the organic materials utilized during 

construction to oxidize and decompose [15]. Thus, the mounds began to sink, and flooding 

began to increase again due to ǘƘŜ ƭŀƴŘΩǎ ŎƭƻǎŜǊ ǇǊƻȄƛƳƛǘȅ ǘƻ ǘƘŜ ƎǊƻǳƴŘǿŀǘŜǊ ǘŀōƭŜ [15]. As a 

result, more windmills were built to pump out additional water, which only further intensified 

ƭŀƴŘ ǎǳōǎƛŘŜƴŎŜΦ ¢Ƙƛǎ ǇŜǊƛƻŘ ƛƴ 5ǳǘŎƘ ƘƛǎǘƻǊȅ ŎƻƴǘǊƛōǳǘŜŘ ǘƻ ǘƘŜ ǊŜƎƛƻƴΩǎ present low land 
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elevation relative to sea level. Today, Dutch engineers and designers are exploring the option of 

designing on the water itself.  

A study conducted in 2006 by DeltaSync, a Dutch based floating urbanization consulting 

firm, explored the feasibility of designing a floating city for the Amsterdam-Almere region of the 

Netherlands [16]. Since the Amsterdam-Almere region is an important economic engine, 

designing an adaptable and sustainable floating city on the IJmeer Lake between the two cities 

seemed reasonable, as it had the potential to alleviate some of the stress the region could face 

due to climate change and sea level rise [16].   

The floating city would be a source of housing, which is urgently needed as both 

population and urbanization rises alongside flood risks. Some of its other benefits include 

boosting the local economy by attracting tourists and aiding the local ecology as the constructed 

wetlands surrounding the city appeal to migratory birds. These wetlands also efficiently serve as 

breakwaters to reduce the wave action experienced on the floating structures within the city 

[16]. 

 These examples of floating structures and their historical and modern-day applications 

illustrate their usefulness against rising waters. Communities throughout the globe have used 

them to their benefit. Even though their potential benefits have been realized within certain 

communities, buoyant structures possess unique setbacks as well. These benefits and setbacks 

are discussed in the following section.   
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Figure 9. Proposed floating city concept by DeltaSync for the Amsterdam-Almere region 
(DeltaSync) 
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1.2.5  Benefits  of Floating Structures  

1.2.5.1 Resilience & Sustainability  

Like elevated structures, floating structures are resilient to sea level rise and flooding. As 

waters rise, floating structures rest on the water surface, avoiding inundation. If properly 

designed, this significantly reduces and potentially eliminates the structural damage 

experienced due to inundation.  

 

Figure 10. Fraunhofer floating home concept (Fraunhofer) 

Given the resilience and renewed interest in floating structures, opportunities arise to 

incorporate sustainable materials to their design. For example, Fraunhofer, a German research 

organization, began developing a sustainable floating home prototype in 2015 (Figure 10). The 

finished product sought to contain an adiabatic cooling system that cools itself in the summer 

[17]. For this process, a surface on the side of the house is moistened and over time evaporation 

cools the building [17].  The house also contains a zeolite thermal storage unit that stores heat 

in the summer and releases it in the winter to increase comfort. This process is purely physical 

and occurs without the use of electricity [17].  
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Floating homes elsewhere have also incorporated sustainable concepts in their design. 

The FLOAT house previously mentioned for example has a net-zero annual energy consumption 

[14]. Each house is designed with a ground source heat pump that naturally conditions the air 

depending on the season [14]. This geothermal heating and cooling system reduces the energy 

required to keep the indoor air temperature at desired levels. Additionally, these homes are 

equipped with solar panels and sloped roofs that collect rainwater which is filtered and stored 

for regular use [14].  

 

Figure 11. Makoko Floating School, Logos, Nigeria (NLÉ) 

A third example of a floating structure designed with sustainable materials is the 

Makoko Floating School, formerly located on the Lagos Lagoon in Lagos, Nigeria (Figure 11). The 

school was constructed in 2013 to serve as a teaching facility for residents of Makoko, an 

informal settlement on the Lagos Lagoon. The design utilized locally sourced timber to create 

the triangular structure, which is buoyed on floating barrels [18].  The use of local materials that 

have relatively low production costs is a sustainable strategy of construction for the community, 

given its location. Unfortunately, the structure collapsed in 2016 due to heavy rainfall.   
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Figure 12. Aerial photograph of Makoko Floating School alongside the Makoko settlement (Iwan 
Baan) 

 

1.2.5.2 Additional Land Space  

Given their nature, floating homes provide homeowners the option of building directly 

on water or extremely close to it. Building on the water provides more space inland. This is 

particularly useful in densely populated regions with growing populations. The city of London, 

for example, has experienced a significant population increases between 2011 and 2015, 

growing twice as fast as the rest of the UK over the four-year period [19]. As a result, designers 

are developing solutions to utilize available water space for housing (Figure 13).  Baca Architects 

ŦƻǊ ŜȄŀƳǇƭŜΣ ƘŀǾŜ ǇǊƻǇƻǎŜŘ ǘƘŀǘ ǇǊŜŦŀōǊƛŎŀǘŜŘ ŦƭƻŀǘƛƴƎ ƘƻƳŜǎ ōŜ ŘŜǾŜƭƻǇŜŘ ŀƭƻƴƎ [ƻƴŘƻƴΩǎ 

waterways [20].  
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Figure 13. Concept drawings of proposed floating homes along London's rivers and canals. (Baca 
Architects) 

1.2.5.3 Sense of Community 

  Floating structures and their design can also create a sense of community among 

residents. Rather than retreating from the shoreline, buoyant design keeps communities 

together ultimately strengthening bonds between residents. This is evident in the Makoko 

Waterfront community in Nigeria, as they have adapted and created a lifestyle to survive on the 

ƻǇŜƴ ǿŀǘŜǊΦ ¢ƘŜ ŎƻƴǎǘǊǳŎǘƛƻƴ ƻŦ ǘƘŜ ŦƭƻŀǘƛƴƎ ǎŎƘƻƻƭ ƛƴ aŀƪƻƪƻ ƎŀǾŜ ǊŜǎƛŘŜƴǘǎ ŀ άΧpowerful 

sense of ownershipΧέ ŀƴŘ ŀ ŦŜŜƭƛƴƎ ƻŦ ƛƳǇƻǊǘŀƴŎŜΣ ŀǎ ǘƘŜ ǎǘǊǳŎǘǳǊŜ ǊŜǇǊŜǎŜƴǘŜŘ ǎƻƳŜǘƘƛƴƎ ǘƘŀǘ 

was resilient and able to withstand future sea level rise [18].  

1.2.6   Challenges of Floating Structures  

1.2.6.1 Waste Removal 

Despite the evident benefits of floating construction, multiple challenges arise when 

constructing such structures. For example, if a structure is built to sit permanently on water, 

waste removal becomes an issue. In the United States, it is illegal and unsanitary to dispose of 
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waste in the waterways on which these structures are built. For example, tƘŜ ǎǘŀǘŜ ƻŦ hǊŜƎƻƴΩǎ 

Department of Environmental Quality (DEQ) states that floating homes must have permanent 

plumbing systems that are connected to a DEQ approved sewage system [21]. These plumbing 

systems must be designed to account for the potential vertical movement of the home due to 

rising and falling water levels. Regular trash must also be walked back up to dry land for disposal 

and residents have grown wary of this routine in the past [22].  

1.2.6.2 Safety 

Additionally, since some floating structures are located permanently on bodies of water, 

there are safety concerns for young children and pets that utilize the docks around the homes. 

In 2015, a couple living on Lake Union in Washington described the regulations their young 

children, ages 8 and 3 must follow when on the docks around their home [23]. The children 

wear life jackets on the deck and are taught swimming lessons from an early age. There are also 

specific sections of the deck around the home that are off limits to the children [23].  

1.2.6.3 Wind  

Apart from large storm surges, hurricanes can bring significant amounts of wind. Wind 

gusts from Hurricane Michael, which struck the Florida in late 2018, were reported as high as 

150 miles per hour [24]. Ideally, structures that can survive flood inundation should also be able 

to withstand other aspects of storm systems such as their winds. Depending on the elevation 

technique, permanently raised homes have the option of installing bracing between piles or 

columns to resist lateral wind loads the structure could face, preventing it from overturning. 

Although floating structures utilize posts to resist lateral loads, a robust lateral system is needed 

to insure minimal wind damage to the home during a high wind event.   
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Chapter 2: Concepts & Designs 

2.1 Elevated Homes 

Numerous methods of home elevation exist and historically this has been achieved by 

using two foundation types: closed foundations and open foundations. Closed foundations force 

water to move around the structure in the event of a flood. Residents utilize the space within 

some closed foundations for storage and other functions. Open foundations exist in the form of 

posts, piles, or piers, and allow water to flow freely under the structure in the event of a flood. 

This section describes several types of closed and open foundations. 

2.1.1   Elevating on a Closed Foundatio n  

2.1.1.1 Extending Existing Foundation Walls  

Foundation walls are part of the foundation system for a building. They provide support 

ŦƻǊ ǘƘŜ ƘƻƳŜΩǎ ǎǳǇŜǊǎǘǊǳŎǘǳǊŜΦ hƴŜ ŜƭŜǾŀǘƛƻƴ ƻǇǘƛƻƴ ƛƴǾƻƭǾŜǎ ƛƴŎǊŜŀǎƛƴƎ ǘƘŜ ƘŜƛƎƘǘ ƻŦ ǘƘŜǎŜ 

foundation walls. This is done by creating openings in the foundation walls and installing I-

ōŜŀƳǎ ōŜƴŜŀǘƘ ǘƘŜ ŦƭƻƻǊ Ƨƻƛǎǘǎ ƻŦ ǘƘŜ ǎǘǊǳŎǘǳǊŜΩǎ ŦƛǊǎǘ ŦƭƻƻǊ (Figure 14). Then, these beams are 

lifted with jacks, subsequently lifting the entire structure (Figure 15). Once at the desired height, 

the foundation wall is extended to reconnect with the first floor of the home (Figure 16). Gaps 

are then left in the foundation walls for floodwaters to flow through [7].  



20 
 

 

 

Figure 14. Temporary Jacks installed beneath the home to begin the elevation process (FEMA) 

 

Figure 15. Raised home using jack system (FEMA) 
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Figure 16. Foundation wall is extended to reconnection with the first floor of the home (FEMA). 

 

 

Figure 17. Openings are sometimes left in the foundation wall to all water to flow through the 
wall, lowering the lateral pressure experienced by the wall (FEMA) 
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2.1.1.2 Extending Home Walls  

The walls of the home itself can also be extended. To do this, the roof of the home is 

first removed. Then, the walls are built to a desired height based on how much the first floor 

needs to be raised. Once the floor is raised, the area beneath becomes a crawlspace and 

openings must be placed in the walls for floodwater to ensure water pressures equalize in the 

event of a flood. After the floor and walls are raised to their desired height, the roof is 

reinstalled [7].  

 

Figure 18. Original slab on grade masonry home (FEMA) 

 












































































































































































































































































