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Neuroendocrine tumors (NETs) are a rare, slow growing and biologically poorly 

understood presenting unique clinical challenges. The majority of NETs are localized to 

the gastrointestinal tract (predominately small intestinal and pancreas) and lung. NETs 

are well differentiated and the majority follows a benign course. However, these benign 

tumors can transform to malignant disease and results in adverse clinical outcome with 

few therapeutic options. The WHO classification of NETs has evolved over the last two 

decades but still lack clinical biomarkers for NETs stratifications. With greater awareness 

of NETs in clinic and improvement in diagnostic imaging techniques, the incidence rate 

of NETs has increased. Despite the increased incidence rate, the biological knowledge of 

these NETs is limited. 

 

The central theme of this thesis was to provide greater insights into NET biology 

including clinically relevant molecular subtypes, tumorigenesis pathways, tumor cell-of-
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origins and biomarkers for translation research. Specifically, the thesis focuses on 

genomic characterization of three major NET types: pancreatic NETs, lung carcinoids 

and small intestine NETs. The projects discussed in chapter 2, 3 and 4 involved the 

integration of genomics dataset (DNAseq, RNAseq and DNA CpG methylation) 

accompanied by clinical information.  

 

In Chapter 2, I discuss the results for pancreatic NETs (PanNETs). We identified two 

molecular subtypes of PanNETs with distinct genotype and clinical phenotypes. 

PanNETs with mutation in ATRX, DAXX or MEN1 gene (A-D-M mutant subtype) have 

adverse clinical outcome and resemble the gene expression profile of pancreatic alpha 

cells. We identified novel gene signature and biomarkers that differentiate PanNETs 

genotypes and gained an enhanced biological understanding of PanNETs from the cell 

lineage viewpoint.  

 

In Chapter 3, I discuss the results for lung carcinoids. We identified three novel 

molecular subtypes (LC1, LC2, and LC3) with distinct clinical phenotypes. The recurrent 

mutations we identified were enriched for genes involved in covalent histone 

modification/chromatin remodeling (34.5%) (MEN1, ARID1A, KMT2C and KMT2A) as 

well as DNA repair (17.2%) pathways. We found two biomarkers, ASCL1 and S100 that 

can stratify the three subtypes. MEN1 mutations were found to be exclusively enriched in 

subtype LC2.  Subtype LC1 and LC3 is predominately found at peripheral and 

endobronchial lung respectively. Subtype LC3 is diagnosed on average 10 years earlier 

than LC1 and LC2.  
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In Chapter 4, I discuss the results for small intestine NETs. We identified two (SINET-A 

and B) molecular subtypes of SI-NETs using gene expression and genetic dataset with 

distinct cell-of-origin signature. We identified one copy loss of chromosome 18 (chr18) 

in 85% (22 of 26) of subtype SINET-B while subtype SINET-A is diploid for chr18. We 

found that SINET-A subtype may originate from TPH1-/REG4- neuroendocrine cells of 

the small intestine and SINET-B from EC cells, which are TPH1+/REG4+. Gene 

expression profile of two potential biomarkers (LMX1A and ONECUT2) was found to 

stratify the two subtypes. 

 

Taken together, this research demonstrates the clinically relevant molecular subtypes of 

NETs with distinct molecular genotypes, cell linage and clinical phenotypes. This 

molecular classification of NET subtypes will improve NETs stratification, and may 

facilitate the molecular understanding of their pathogenesis and improve clinical 

management. 
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Chapter 1: Introduction and Background 
 

1.1 Neuroendocrine Cells 

Neuroendocrine (NE) cells are unique and exhibit morphological and physiological 

characteristic of both “neuro” and “endocrine” cells. This characteristic of “neuro” is 

mainly based on dense core granules (store 

monoamines) and “endocrine” for synthesis 

and secretion (Waldum et al., 2018)(Figure 1-

1). NE cells are specialized cells that react to 

chemical signals (neuronal input) by secreting 

hormones into the blood (like insulin 

production by beta cells of pancreas)(table 1-1 

for list of NE cells with specific secreted 

hormone) and control body homeostasis. NE 

cells are widely distributed across human body and clustered mainly in endocrine glands. 

Endocrine glands are aggregated and majorly made up of NE cells (such as pituitary, 

parathyroid etc) as well as endocrine islet tissue in pancreas and thyroid. NE cells, which 

are scattered throughout the length of an organs are often called “diffuse neuroendocrine 

systems” (DNES). These systems are suggested to have differences in terms of 

embryological origin, DNES are derived from endodermal tissues and endocrine glands 

are derived from ectodermal tissue(Schimmack, Svejda, Lawrence, Kidd, & Modlin, 

2011).  

NE cells are majorly found throughout the length of gastrointestinal (GI) tract, 

pancreas (Islet cells) and thyroid. Within GI tract, 15 different NE cells have been found 

	
Figure1-1. The regulatory system shows 
morphological and functional similarities 
between neurons and endocrine cells. 
Figure originally reported in (Waldum et 
al., 2018) 
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secreting wide range of neuropeptides and amines. Small intestine NE cells (majorly 

enterochromaffin cells) produce serotonin, chromogranin A (CHGA), tachykinins etc. 

 

Table 1-1. Different NE cells across GI-tract and Pancreas with hormonal spectrum. Table 
originally reported in (J. Y. Kim & Hong, 2016), shows cell-type-specific hormonal secretion 
across all organs. 
 
Pancreatic islet cells represent ~1% to 2% volume of pancreases and have 5 major known 

NE cell types: Alpha (produces Glucagon, ~20%), Beta (produces Insulin, ~70%), Delta 

(produces somatostatin, < 10%), Gamma (produces pancreatic polypeptide, < 5%) and 

Epsilon (produces Ghrelin, <1%). A pancreatic islet regulates blood glucose level by 

tracking the existing glucose level in blood. In lung, NE cells exist as clustered 

(NeuroEpithelial Bodies, NEB) and single cell (Kolschitzky cell) and function as 

chemoreceptor, immune response and in lung development and maturation(Linnoila, 

2006). Enteroendocrine cells (EEC) of small intestine secrets diverse hormones that 

function as metabolic signal transductions components. EECs are prime sensors of 

nutrients and microbial metabolites(Haber et al., 2017). Enterochromaffin cells (EC) or 

Kulchitsky cells, a type of EEC played an important function for gut motility and 

secretory reflexes. Recent single cell(Haber et al., 2017) RNAseq study of mice small 
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intestine reveal atleast 12 distinct neuroendocrine cells (Figure1-2) secreting variety of 

hormones such as serotonin, ghrelin, secretin, proglucagon, somatostatin, neurotensin etc.  

 

 

Figure 1-2. Enteroendocrine cells of small intestine from single cell RNAseq. a) Unsupervised 
clustering (tSNP) of 533 EEC cells into 12 clusters b) Subtype signature of EEC across rows and 
cells across column c) EEC classification based on cell-type-specific hormones expression.  
Figure originally reported in and adapted from (Haber et al., 2017). 
 

Moreover, four of the 12 cells have expression of enteroendocrine precursor markers 

(SOX4, NEUROG3 or NEUROD1) and other eight represent mature enteroendocrine 

cells. Interestingly, crossover between these cell types has been established(Gribble & 

Reimann, 2016). Enteroendocrine cells of small intestine majorly made of 

enterochromaffin (EC) cells and subdivided into EC and EC-Reg4 based on expression of 
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REG4 gene(Haber et al., 2017) (Figure 1-2). Based on TPH1 and REG4 gene expression 

profile, these clusters/cells may mainly be divided into two sub-classes: TPH1+/REG4+ 

neuroendocrine EC cells and TPH1-/REG4- neuroendocrine cells. The pathways and 

molecular process regulating EC cell function and growth remains unknown. 

NE cells across different organ and within organ have different morphology, suggesting 

diverse functions among these organs. Characterization of NE progenitor cells in 

different organ is unmet. Recent single cell genomic applications have leveraged 

identification of different NE cell populations across different organ (like in 

pancreases(Muraro et al., 2016), small intestine(Haber et al., 2017) etc.) elucidating 

transcription profile, cellular heterogeneity and NE cell-type-specific transcription factors 

and pathways.  

 

1.2 Neuroendocrine Tumors 

Tumor originating from hormone producing neuroendocrine cell is defined as 

Neuroendocrine Tumor (NET) or Neuroendocrine Cancer (NEC). Neuroendocrine 

cancers or carcinomas are poorly differentiated, aggressive and metastasizes more 

commonly. NETs are well differentiated and benign in nature (sometime referred as 

“Carcinoids”). However, these benign tumors can transform to malignant disease and 

results in adverse clinical outcome(Scherubl et al., 2013). NETs are clinically less 

challenging as compared to poorly differentiated NECs. NETs may produce higher 

amount of hormones with respect to its normal physiological amounts, which ultimately 

causes many symptoms and results in misdiagnosis(Mafficini & Scarpa, 2018). On the 

other side, most GI-NETs may present as asymptomatic for a long duration or present 
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non-specific symptom that results in large fraction of patients with delayed diagnosis and 

present as advanced diseases or metastasis with mortality rate of 50%	 (Mafficini	 &	

Scarpa,	2018;	Scherubl	et	al.,	2013). NETs are also observed throughout human body 

but majorly found at GI track, pancreas and lung. Because of lack of heterogeneous NET 

diseases models, most of the NETs research investigated on tumor specimens(Capdevila 

et al., 2017).  

 

NETs are rare, slow growing, biologically poorly understood and clinically challenging 

type of primary neoplasms and represent ~2% of all malignancies. NETs are considered 

as orphan diseases with prevalence of <200,000 in the US(Basu, Sirohi, & Corrie, 2010). 

NETs are classically defined as “carcinoids” or “carcinoid tumors” and observed body-

wide distribution, but these terms do not accurately explain their biology, histo-

pathological differences, or secretory capabilities. The discovery of GI-NETs started in 

1870 when Rudolph Heidenhain discovered the NE cells.  Later in 1907, pathologist 

Siegfried Oberndorfer was the first to describe little lesions of small intestine carcinomas 

and called them as “Carcinoids”. He defined carcinoids as slow growing, less aggressive, 

benign in nature than adenocarcinoma. In year of 1929, several cases have been observed 

with metastasis carcinoids(Modlin, Shapiro, & Kidd, 2004) and later it was concluded 

that NE carcinoids have a malignant potential. Recent efforts have identified genomic 

and epigenomics alterations in development and progression of NETs but the underlying 

biological knowledge is limited as compared to its respective tissue cancer.  
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1.3 Neuroendocrine tumor Classifications  

Histopathological classification of NETs has proven challenging and often shown to be 

error-prone in clinical practice(Basu et 

al., 2010). Like other cancers, NETs 

are mainly classified according to the 

site of origin and whether the tumor 

over-secreting hormones (functional) 

or not (non-functional). The majority 

of NETs are observed in 

gastrointestinal tract and in 

lungs(Vinik et al., 2010). In 1963, E.D 

Williams and M Sandler(Williams & 

Sandler, 1963) suggested a classification for GI-NETs based on their embryological gut 

origin and divided into three main class : foregut, midgut and hindgut (Figure 1-3).  

Within foregut, pancreatic NETs can be classified has functional (at least five main types) 

and non-functional based on physiologically hyper-secretion of hormone in 

blood(Williams & Sandler, 1963).  

 

1.4 World Health organization Classifications and Grading 

NETs are heterogeneous neoplasms with varied clinical outcome.  The classification 

terminology of NETs (specifically for GI-NETs) has evolved over the last two decades 

and revisited many times. NE cell neoplasm broadly classified into two fundamental 

group based on clinical features, histology, proliferation index (mitotic rate): a) Well-

Figure 1-3. Classification of NETs based on 
embryological site of origin into foregut, 
midgut and hindgut (Oronsky, Ma, 
Morgensztern, & Carter, 2017).  
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differentiated, low-proliferating NETs or carcinoids and b) poorly differentiated, high 

proliferative index (like in LCNECs)(Kloppel, 2017). Well-differentiated NETs have 

better clinical outcome as compared to poorly differentiated NEC (Kloppel, 2017).   

Recent classification of NETs is based on histological grade and proliferative index 

(Ki67) (Kloppel, 2017).  For GI-NETs 

using Ki67 index, NETs are graded as 

G1 (Ki67 < 3%), G2 (Ki67 3-20%) 

and NE carcinomas (NECs) as G3 

(Ki67 > 20%)(Kloppel, 2017). 

Because of the overlapping Ki67 index 

for NETs and NECs in pancreases, 

WHO 2017 updated the classification 

of Pancreatic NETs with recognition of 

heterogeneity of grade three (G3) NETs and included both well-differentiated and poorly 

differentiated NETs in G3 category. Expression of TP53 and RB1 genes are key 

distinguishable markers for G3 NETs from G3 NECs(Kloppel, 2017). Mixed 

neuroendocrine-non-neuroendocrine neoplasms (MiNEN) are recently recognized as 

heterogeneous group of rare pancreatic NETs that represents a one third of poorly 

differentiated NECs in combination to its neuroendocrine components(de Mestier et al., 

2017; Kloppel, 2017). NETs are also classified based on TNM (Tumor-Node-Metastasis) 

stage, which mainly includes invasion and metastasis spread. NET classifications are 

clinically relevant and significantly impact treatment decisions and prognosis. With 

recent molecular and genomic profiling success, systematic characterization and novel 

	
Table 1-2. WHO Classification of NETs based 
on Ki67 index and grading system. Table 
originally reported in (de Mestier et al., 2017)   
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molecular markers discovery will improve the classification in combination with 

histology.  

 

1.5 Epidemiology of Neuroendocrine Tumors 

NETs are a rare and slow-growing type of tumor with vague symptoms and are easily 

misdiagnosed as other condition (such as diarrhea, respiratory symptoms etc.). This 

misdiagnosis is mainly because of over-secretion of hormone, which leads to other 

conditions like excess serotonin, which further causes mild (diarrhea) to server symptoms 

(fever, seizures). Some of the common symptoms of NETs are flushing, diarrhea, high 

blood pressure, fatigue, abdominal pains, wheezing, coughing, skin lesions etc.  

NETs represent 0.5% from all newly diagnosed neoplasms(Taal & Visser, 2004).  The 

diagnosis incidence of NETs is steadily increasing over last 30 years, probably due to 

new diagnostic techniques and increased awareness(Gustafsson et al., 2008). Each year, 

approximately 12000 people in the US are diagnosed with a NET and the 5-year survival 

rate for these tumors varies and depends on several factors, primarily the location of 

tumor, grade, stage, age and tumorigenesis factor.  
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Figure 1-4 NETs Incidence and prevalence from SEER (v17) dataset. a) Annual incidence rate 
(per 100,000) of NETs (age adjusted) from 1973 to 2012 year, orange line represent NETs and 
blue line for all other cancers b) NETs by site. Figure adapted from (Dasari et al., 2017).  

 

Recent age, sex and race adjusted data analysis from Surveillance, Epidemiology and End 

Results (SEER) program, for NETs (from 1973 to 2012 year) revealed increased 

incidence of NETs by the factor of 6.4 fold (from 1.09 to 6.98 per 100,000 cases)(Dasari 

et al., 2017)(figure 1-4a) and eight fold more NETs were seen in those with age 65 or 

more. Among NETs, Lung subtypes (1.49 per 100,000 in the lung) were highest incident 

rate (figure 1-4b) followed by GI/Pancreatic NETs (3.56 per 100,000 in GI sites) and 

0.84 per 100,000 NETs with unknown primary. This increased incidence appeared at all 

tissue sites, stage and grade with varied overall survival (median 5 year). Moreover, no 

Lung 

Small	Intestine 
Rectum 

	

GEP-
NETs	
(~75%) 

1.0
9

6.98 
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difference has been observed for sex (male vs female) from SEER dataset for incidence 

of NETs.  

 

1.6 Biomarkers, Diagnosis and Treatment for Neuroendocrine Tumors 

NETs are originating form hormone producing NE cells and may leads to hyper-secretion 

of neuropeptides, which often results into hormonal syndromes. Chromogranin A (CgA) 

is membrane protein of neurosecretory granules, widely expressed in almost all NE cells 

and over-expressed in NETs, which is one of the prime clinical biomarker to identify 

NETs (in serum as well as immunohistochemistry (IHC) tumor markers)(Wiedenmann & 

Huttner, 1989), but not useful to stratify subtypes of NETs. However, increased level of 

CgA has been associated with shorter survival and may correlate with tumor 

progression(Arnold et al., 2008). Neuron-Specific Enolase (NSE) is also expressed in 

NETs but often elevated only in high grade or poorly differentiated tumors and less 

commonly used as compared to CgA marker in NETs identification(Vinik et al., 2009). 

The diagnosis of NETs is not commonly straightforward and not easily considered for 

differential diagnosis. Several different imaging and IHC markers have been utilized in 

clinics (such as computer tomography (CT), magnetic resonance imaging (MRI), 5-

hydroxyl-3-indoleacetic acid, somatostatin receptor imaging, serotonin, synaptophysin, 

NSE, gonadotropin hormone, peptide YY etc.) for NET diagnosis. However, CgA marker 

is specific, sensitive and widely used for NETs but not perfect(Vinik et al., 2009) and 

new biomarkers for NETs are needed to provide better diagnostics and prognostics 

information, specifically for subtypes of NETs, unknown primary NETs, well-

differentiated NETs(Vinik et al., 2009). Treatment decision for NETs depends on 
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multiple factors, such as: primary site, metastasis spread, grade, functional NETs vs non-

functional NETs, hereditary NETs, other health conductions, NETs subtype and 

mutational background. Current treatment strategies include, surgery, medical and 

radiological therapies (Figure 1-5).  

Surgery, one of the first lines of treatment for most of the well differentiated NETs(Welin 

et al., 2009). Plasma-CgA level 

measurement after surgery is 

strongly recommended as follow-up 

twice a year and ultrasonography 

once a year(Welin et al., 2009) for 

asymptomatic NETs. For localized 

NETs with stage 1 and 2, radical 

surgery has been recommended(Jann 

et al., 2011). PanNETs with MEN1 

mutations, surgery is frequently not 

as successful as cases without MEN1 

mutations(Frost et al., 2018) mainly 

because, MEN1 mutated panNETs 

are usually has multiple tumors and metastatic disease might be present(Anlauf et al., 

2008). Medical therapies(Frost et al., 2018) mainly include biotherapies and 

chemotherapy. Biotherapies for NETs can be hormonal (somatostatin), peptide hormone, 

which inhibit other hormones, targets for cell proliferations and angiogenesis(Frost et al., 

2018). Such few examples of current biotherapies(Frost et al., 2018) are: Somatostatin 

 
Figure 1-5. Treatment for NETs includes 
surgery, medical and radiological therapies. 
Figure originally reported in (Frost, Lines, & 
Thakker, 2018)  
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analogues, Interferon alpha, mTOR inhibitor (everolimus) etc. Chemotherapy for NETs 

includes(Frost et al., 2018) alkylating agents (like cisplatin), anti-microtubule agents, 

topoisomerase inhibitors, cytotoxic antibiotics and  antimetabolite (Frost et al., 2018). 

Radiological treatment mainly includes radiotherapy and interventional radiology. 

 

1.7 Genomics of NETs 

Recent genomic studies have identified genetic and epigenetic alterations in cancer at a 

massively unbiased way. Sequencing (DNA, RNA, epigenomic etc.) technological 

advancement played an important role in finding different hallmark of cancers and its 

correlation with survival outcome. This emergence of “high-throughput sequencing 

(HTS)” data fosters an integrative genotype to phenotype association approach with 

clinical information. This integration approach has lead to alter the practice of medicine 

in clinics to stratify cancers based on molecular aberrations for diagnosis, prognosis, and 

treatment(Bailey et al., 2016; Cancer Genome Atlas, 2012). According to recent national 

cancer comprehensive network guidelines, molecular profiling for cancer specific 

mutational event is recommended to inform decision for mutation-drug targeted 

therapy(Pal et al., 2016). 

 

The molecular profiling of NETs is recently being appreciated and identified recurrent 

molecular alterations in the latest years. The genetic landscape of NETs has shed a light 

on tumorigenesis, oncogenic pathways and prognosis. The majority of NETs are 

sporadic, however small subset of NETs are heritable groups of neoplasms involving 

mutations in genes like MEN1, VHL, NF1, CDKN1B, TSC1 and TSC2. Recently, many 
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studies have identified underlying molecular abnormalities for sporadic or evidently 

sporadic NETs.  

 

The mutational landscape of well differentiated and poorly differentiated NETs revealed 

distinct altered pathway genes respectively. Poorly differentiated NETs of pancreas and 

lung are enriched and have recurrent mutations for TP53 and RB1 pathways(Simbolo et 

al., 2017). Well-differentiated NETs of pancreas have inactivation mutations in 

chromatin remodeling complex genes such as ATRX, DAXX and MEN1(Jiao et al., 

2011). It is remarkable that half of well-differentiated NETs have epigenetic related 

alterations that are not commonly seen in poorly differentiated NETs(Simbolo et al., 

2017). These distinct genetically altered pathways highlight different pathogenesis 

mechanism for NETs and have shown clinical utility for diagnosis and prognosis. 

Moreover, these altered epigenetic related genes have shown to be sufficient enough to 

drive tumorigenesis(Fernandez-Cuesta et al., 2014) for NETs but the underlying 

mechanism is unknown. Well-differentiated NETs have low somatic mutation burden 

(Fernandez-Cuesta et al., 2014; Lawrence et al., 2013) and mostly diploid 

genome(Francis et al., 2013).  
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Figure 1-6. Somatic mutation burden for major human cancer types from TCGA. Carcinoid 
tumors are highlighted in red box with ~0.8 somatic mutation frequency per MB. Figure adapted 
from(Lawrence et al., 2013).  
 

1.7.1 Pancreatic neuroendocrine tumors (PanNETs) 

Pancreas tissue is made of exocrine and endocrine cells. Exocrine (acinar, ductal etc.) 

cells secrets digestive enzymes and endocrine islet cells (at least five major cell types) 

secrets hormones (mainly to regulates blood glucose level). Pancreatic islet cells 

represent ~1% to 2% volume of pancreases and have 5 major known NE cell type: alpha 

(produces Glucagon, ~20%), beta (produces Insulin, ~70%), delta (produces 

somatostatin, < 10%), gamma (produces pancreatic polypeptide, < 5%) and epsilon 

(produces Ghrelin, <1%) (Da Silva Xavier, 2018). Pancreas has many islets distributed 

across the tissue(A. Kim et al., 2009). It is known in mouse and human that each islet has 

differential enrichment of NE cell populations(A. Kim et al., 2009) and number varies 

between two islets from the same individual(Muraro et al., 2016).   

PanNETs introduction is presented in chapter 2 introductions and from our paper (Chan 

et al., 2018) and here are some details of recent molecular studies of PanNETs.  

 

~0.8 



	

	

15	

																																																																																						
	

Molecular studies have identified mutations in MEN1, ATRX, and DAXX to be the most 

commonly found in PanNETs(Chan et al., 2018; Jiao et al., 2011; Scarpa et al., 

2017)(found in approximately 40, 10, and 20% of tumors, respectively). All the three 

genes play a role in chromatin remodeling and regulate gene expression. 

 

Figure 1-7.Mutation profiles of PanNETs, a) recurrent mutated genes in panNETs (Scarpa et al., 
2017) b) table represent mutated genes percentage in PanNETs and its counterpart exocrine 
(PDAC) tumors (Jiao et al., 2011).  
 

Additional mutations in mTOR pathway genes including TSC2, PTEN, and PIK3CA are 

found in one out of six well-differentiated PanNETs (Jiao et al., 2011). Other reported 

rare mutations in PanNETs include DNA damage repair (17%) genes (MUTYH, CHEK2, 

and BRCA2) and chromatin remodeling gene SETD2 (Scarpa et al., 2017). However, 

nearly one-third PanNETs do not have mutations in chromatin related genes and also 

other protein-coding region of the genome.  

The MEN1 Gene: An inactivation mutation in tumor suppressor MEN1 gene 

leads to multiple endocrine neoplasia type 1 (MEN1), an autosomal dominant 

disorder(Busygina & Bale, 2006). Menin, a protein product of MEN1 gene is a histone 

b a 

Genes	 PanNET	 PDAC	

MEN1	 44%	 0%	

DAXX,	ATRX	 43%	 0%	

Genes	in	mTOR	pathway	 15%	 0.80%	

TP53	 3%	 85%	

KRAS	 0%	 100%	

CDKN2A	 0%	 25%	

TGFBR1,	SMAD3,	SMAD4	 0%	 38%	



	

	

16	

																																																																																						
	

methyltransferase and essential component of MLL/SET1 complex(Hughes et al., 2004). 

MEN1 is an activator as well as repressor of the gene expression by epigenetic 

mechanisms and its function depends on the interacting partner of MEN1. For example, 

MEN1 interact with MLL complex leading to methylation of histone H3 (H3K4) and 

activate gene expression. Several studies have shown that loss of MEN1 does not alter 

global H3K4me3 level but are responsible for altering H3K4me3 at specific loci(Lin et 

al., 2015). They found MEN1 dependent H3K4me3 sites are altered during early stages of 

PanNETs formation and genes, which are significantly downregulated under MEN1 loss. 

However, the human MEN1 studies on proper cell types are missing and need extensive 

characterization.  In majority of MEN1 PanNETs (>90%), loss of heterozygosity (LOH) 

is common somatic alterations leading to complete loss of function(Valdes et al., 1998).   

ATRX - DAXX complex: This complex is recurrently mutated in PanNETs (44%) 

and suggested as putative tumor suppressor gene. One of the two subunit of this complex 

is mutated and exclusive to each other in panNETs cases but can coexist with MEN1 

mutations. ATRX (Alpha Thalassemia X-linked intellectual disability) and DAXX (Death 

domain associated protein) form hetero-dimer and is a part of SWI/SNF complex(Lewis, 

Elsaesser, Noh, Stadler, & Allis, 2010). This complex is known to deposit histone variant 

H3.3 to telomeric and centromeric region(Lewis et al., 2010) of the genome, maintaining 

telomeric repeat and tandem repeat elements, DNA methylation and repression of 

repetitive elements. Intriguingly, inactivation mutations in ATRX and DAXX are strongly 

associated with positive altered telomeric length (ALT) in PanNETs(Heaphy et al., 2011).  
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MEN1 and ATRX/DAXX complex are involved in distinct epigenetic pathways and cross 

talk between them is not well established. Interestingly, little is known about their 

mutation-specific gene signatures, epigenetic changes, tumorigenesis pathways, 

oncogenic activation and clinical biomarkers. Also, it is not clear which specific cell type 

within the Islet of Langerhans is the cell of origin for non-functional well-differentiated 

NETs. Comprehensive integration of genomics, epigenomic and transcriptomic dataset 

will elucidate the molecular subtypes of NETs, cell-of-origin, mutations specific 

transcriptional profile, clinical biomarker for stratifications and choice of targeted 

therapeutics options.  

 

1.7.2 Lung Carcinoids (LCs) 

Tumors originating from lung NE cells are defined as lung neuroendocrine tumors (lung 

NETs). According to WHO 2015, lung NETs represents ~ 20 to 25% of primary lung 

neoplasm and are classified as four histological subtypes(Travis et al., 2015) with 

considerably different biological characteristics: 1) Small Cell Carcinoma (SCLC) (~20% 

prevalence, high-grade), 2) Large Cell NE Carcinoma (LCNEC) (~3%, high-grade), 3) 

Atypical Carcinoids (AC) (~0.2%, intermediate grade), 4) Typical Carcinoids (TC) (~2%, 

low grade) (Figure 1-8). Carcinoids of lung include ACs and TCs and ACs are less 

frequent, aggressive with adverse clinical outcome.  

The key features of this classification rely on morphology, mitotic index per 2mm2, and 

necrosis assessment(Hendifar, Marchevsky, & Tuli, 2017). The reproducibility of this 

classification and its prognostic efficacy was disputed with high inter-observer 

variability(Travis et al., 1998; van den Bent, 2010), especially for LCs  (TCs Vs 



	

	

18	

																																																																																						
	

ACs)(Swarts et al., 2014). It has been reported that TCs and ACs tumors are over-

diagnosed as SCLC in small crush biopsy specimens(Pelosi, Rodriguez, Viale, & Rosai, 

2005). 

 

Figure 1-8.Classification of Lung NETs using morphological and proliferation criteria. Figure 
originally reported in and adapted from (Hendifar et al., 2017)  
 

Recent application of Ki67 proliferation markers for LCs classification revealed 

promising results yet failed to accurately distinguish ACs from TCs and also between 

high grade NETs on a large dataset(Pelosi, Rindi, Travis, & Papotti, 2014). Strikingly 

over the last 30 years, the incidence rate of carcinoids tumors has increased(Gustafsson et 

al., 2008) in the US, but our molecular understanding of tumorigenesis is incomplete. A 

MEN1 syndrome is more prevalent in bronchopulmonary carcinoids(Sachithanandan, 

Harle, & Burgess, 2005) as compared to high grade Lung NETs. Recent genomics study 

by Frenandez-Cuesta L et.al(Fernandez-Cuesta et al., 2014) on 74 pulmonary carcinoids 

(includes TCs and ACs) revealed somatic mutation rate of 0.4 per Mb, which is much 

lower than respective lung cancers (which is ~9 per Mb). They found genes with somatic 

mutations enriched for chromatin-remodeling genes with recurrent alteration in MEN1, 



	

	

19	

																																																																																						
	

PSIP1, and ARID1A. No significant mutations and focal copy alterations were observed 

for the frequently mutated genes in high-grade lung cancers (such as KRAS, TP53, EGFR 

etc)(Vollbrecht et al., 2015). This unique mutational profile suggests different cellular 

and biological mechanisms for LCs pathogenesis than high-grade NETs (LCNEC and 

SCLC) and lung cancers. In the same study(Fernandez-Cuesta et al., 2014), they also 

compared gene expression profile of LCs with SCLC and found RB1, EGFR, VEGF, 

mTOR, PRC2 etc. gene sets are overexpressed in SCLC, which are hallmarks for 

aggressive growth. It is not known if there are distinct molecular subtypes of LCs or what 

are their cells of origin. More accurate molecular diagnostic tools and stratification for 

lung carcinoids will help ensure more appropriate treatment and clinical management.  

 

1.7.3 Small Intestinal Neuroendocrine Tumors 

Small intestinal neuroendocrine tumors (SI-NET) are rare, slow growing (produces 

serotonin), well differentiated, most common type of gastrointestinal endocrines tumors 

with one case per 100,000 annually, account for 25% of all NETs(Karpathakis et al., 

2016). SI-NETs tumor (carcinoids) are small in size (frequently < 2cm) and slow growing 

with Ki67 index is frequently < 2% but the 5-year survival rate is 50-65%(Yao et al., 

2008). Classical NETs of small intestine proposed to originates from enterochromaffin 

cells (EC) but the origin and development remain undetermined.  

 

Recent single cell(Haber et al., 2017) RNAseq of mice’s small intestine reveal at least 12 

distinct neuroendocrine cell populations secreting a variety of hormones such as 

serotonin, ghrelin, secretin, proglucagon, somatostatin, neurotensin etc. Moreover, four of 
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the 12 cells have expression of enteroendocrine precursor markers (SOX4, NEUROG3 or 

NEUROD1) and the other eight represent mature enteroendocrine cells (EEC). 

Interestingly, interaction and plasticity between these cell types have been 

established(Gribble & Reimann, 2016). The dominant population of EEC in small 

intestine is enterochromaffin (EC) cells and can be subdivided into EC and EC-Reg4 

subgroups based on expression of REG4 gene(Haber et al., 2017). Moreover, based on 

TPH1 and REG4 gene expression profile, these clusters/cells may be divided into two 

sub-classes: Major enterochromaffin cells which are TPH1+/REG4+ and TPH1-/REG4- 

(rare) neuroendocrine cells. The pathways and molecular process regulating these EC cell 

function and growth remains unknown. 

 

Molecular studies identified handful of recurrent alterations for SI-NETs and found 

absence of obvious pathogenic genomic alterations. SI-NETs are genetically poorly 

understood type of NETs. One copy loss of chromosome 18 (chr18) is the most frequent 

genetic alterations (60 – 80%) of SI-NETs (Figure 1-9)(Francis et al., 2013), although the 

clinical significance of chr18 loss is unknown. Chr18 host ~400 genes participating in 

different molecular pathways but the sequencing data did not reveal any recurrent 

alterations (as a second hit) for chr18 genes. SI-NETs have low somatic mutation burden 

like other NETs(Francis et al., 2013). Second recurrent (~8%) event in SI-NETs is 

inactivation mutation in CDKN1B (Cyclin dependent kinase inhibitor 1B) gene (Figure 1-

9). However, these CDKN1B inactivation mutations have no differences in clinical 

survival or phenotypes(Karpathakis et al., 2016).  CDKN1B gene has been proposed to 

acts as a haploinsufficient tumor-suppressor gene in SI-NETs(Francis et al., 2013). 
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Another study identified three molecular subtypes of SI-NETs based on genetic, 

epigenetic and gene expression with different clinical outcome(Karpathakis et al., 2016). 

However, the clinical understanding of SI-NETs is still limited. 

 

Figure 1-9. Genomic landscape of primary and metastatic small intestine NETs. Top panel is for 
somatic mutation per Mb, bottom panel: CDKN1B recurrent somatic mutation and copy number 
alteration in each sample. Figure originally reported in and adapted from (Francis et al., 2013)  
 

A systematic and comprehensive study is missing to understand the chr18 loss, tumor 

suppressor genes on chr18 (if any), molecular subtypes, biomarker and targeted 

therapeutics options.  

 

Taking together, NETs originating from different organs shows different genetic 

landscape and expression pathways. Interestingly, frequent recurrent mutations in 

chromatic remodeling genes (like MEN1) are commonly seen in panNETs and LCs (part 

of foregut) but not in SI-NETs (part of midgut). Similarly, Chr18 loss is frequently found 

with SI-NETs and not in panNETs and LCs. These genetic and expression differences of 

NETs across GI-track may shed light into their dysregulation and pathogenesis.  
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1.8 Thesis Overview  

1.8.1 Objectives and Aims 

The incidence rate of NETs is increasing but the biological knowledge and 

clinical biomarkers of NETs diseases is limited. The overall objectives of this thesis were 

to determine the tumor pathogenesis, clinically relevant molecular subtypes, tumor cell-

of-origin, diagnostic biomarkers and clinical prognosis for NETs using integrative multi-

layered genomic datasets. My thesis work is mainly focused on Pancreatic NETs 

(PanNETs), Lung Carcinoids (LCs) and Small Intestine NETs (SI-NETs). 

 

The Specific aims of my thesis 	

Aim 1: Conduct comprehensive genomic, transcriptomic, and epigenomic profiles to 

elucidate molecular mechanisms for pathogenesis and molecular subtyping of NETs.  

a) Identify mutational landscape and driver mutations  

b) Delineate gene expression signatures for diagnostic, prognostic, and 

biological understanding of subtypes in NETs  

c) Delineate DNA methylation signatures for diagnostic, prognostic, and 

biological understanding of subtypes in NETs 

 

Aim 2: Investigate tumor molecular subtypes by genotype to phenotype associations with 

clinical data. 
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1.8.2 Multi-Layered NETs dataset and Meta-Analysis for Aim 1 and 2  

 

In collaboration with Prof. Laura Tang’s research group at Memorial Sloan-Kettering 

Cancer Center (MSKCC), we generated genomic dataset for LCs, PanNETs and SI-

NETs. Following table outline the dataset, technology and sample size used in this thesis. 

In addition to omics data generation, immunohistochemistry experiments for chapter 1 

and 2 were performed at MSKCC. 

 

 Targeted DNA 

Seq 

Exome 

Seq 

RNAseq Methylation 

ChIP 

Clinical 

data 

LCs 29 -- 30 18 30 

PanNETs** 64 -- 33 32 60 

SI-NETs -- 20  29 21 37 

 

** Genotype for MEN1, ATRX and DAXX gene is probed for all PanNETs samples using 

Sanger sequencing  

 

Table 1-3.Genomic dataset of LCs, PanNETs and SI-NETs.  Briefly, RNA sequencing 

and Methylation 450K array was performed for all three NETs; Targeted DNA 

sequencing (354 gene panel) was done on LCs samples, Exome sequencing was done on 

SI-NETs with 10-matched normal.  Sanger sequencing was done for MEN1, ATRX and 

DAXX gene for non-functional well-differentiated PanNETs.  

 

In addition to this omics dataset, we did IHC for biomarkers for respective NETs subtype 

at MSKCC core facility. More details are presented in each chapter. 
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1.8.3 Chapter Overview 

The studies addressing the specific aims outlined are described in chapter 2 through 

4.  

 

Chapter 2 describes the results of Pancreatic Neuroendocrine tumor (PanNETs), where 

we found two robust subtypes of PanNETs, A-D-M mutant and A-D-M wildtype with 

distinct clinical phenotypes. 

 

Published in Nature Communications volume 9, Article number: 4158 (2018)	Link: 

https://www.nature.com/articles/s41467-018-06498-2 	

 

Chapter 3 describes the results of lung carcinoids (LCs), where we found three (LC1, 

LC2 and LC3) novel molecular subtypes of LCs with distinct genotype, cell of origin, 

molecular marker and clinical phenotypes.  

 

Manuscript is submitted to “Journal of National Cancer Institute” at the time of thesis 

submission 

 

Chapter 4 describes the on-going work and results of small intestine NETs (SI-NETs), 

where we found two distinct cell-of-origin subtypes of SI-NETs.  

 

Manuscript in preparation: Brief communication 

 

Chapter 5 is a summary of my overall conclusions and covers a description of work-in-

progress as well as proposed future research.  
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Chapter 2 

ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct 

alpha-cell signature subgroup 

 

Results described in this chapter are reproduced/adapted with permission from Chan and 

Laddha et al, Nature Communications volume 9, Article number: 4158 (2018)	

Link: https://www.nature.com/articles/s41467-018-06498-2  

 

Chang S. Chan*#, Saurabh V. Laddha#, Peter W. Lewis, Matthew S. Koletsky, 

Kenneth Robzyk, Edaise Da Silva, Paula J. Torres, Brian R. Untch, Janet Li, Promita 

Bose, Timothy A. Chan, David S. Klimstra, C. David Allis & Laura H. Tang*	

# Equal contribution, * Corresponding Authors 

 

 

Contribution: 

SVL performed the data analysis, computational design and manuscript preparation and 

contributed equally with CSC. PL, MK, KR, EDS, PT, BRU, JL, PB, TAC, DSK 

assisted with experimental study design, implementation and data discussion. CSC, CDA 

and LHT supervised the project. 

Necessary files and Supplementary data for this chapter available at 

https://www.nature.com/articles/s41467-018-06498-2  
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ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct 

alpha-cell signature subgroup 

 

Abstract  

The most commonly mutated genes in pancreatic neuroendocrine tumors (PanNETs) are 

ATRX, DAXX, and MEN1. Little is known about the cells-of-origin for non-functional 

neuroendocrine tumors. Here, we genotyped 64 PanNETs for mutations in ATRX, DAXX, 

and MEN1 and found 37 tumors (58%) carry mutations in these three genes (A-D-M 

mutant PanNETs) and this correlates with a worse clinical outcome than tumors carrying 

the wild-type alleles of all three genes (A-D-M WT PanNETs). We performed RNA 

sequencing and DNA-methylation analysis on 33 randomly selected cases to reveal two 

distinct subgroups with one group consisting entirely of A-D-M mutant PanNETs. Two 

biomarkers differentiating A-D-M mutant from A-D-M WT PanNETs were high ARX 

gene expression and low PDX1 gene expression with PDX1 promoter hyper-methylation 

in the A-D-M mutant PanNETs. Moreover, A-D-M mutant PanNETs had a gene 

expression signature related to that of alpha cells (pval < 0.009) of pancreatic islets 

including increased expression of HNF1A and its transcriptional target genes. This gene 

expression profile suggests that A-D-M mutant PanNETs originate from or 

transdifferentiate into a distinct cell type similar to alpha cells. 

 

Introduction  

Pancreatic neuroendocrine tumors (PanNETs) or islet cell tumors are a relatively rare 

neuroendocrine malignancy with an annual incidence of less than 1 per 100,000 per 
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year(Halfdanarson, Rabe, Rubin, & Petersen, 2008) (about 1,000 new cases per year in 

the United States) but currently represent the second most common epithelial neoplasm 

after ductal adenocarcinoma of the pancreas and account for 1% to 2% of pancreatic 

tumors. PanNETs were erroneously considered a benign group of neoplasm because they 

were initially mostly comprised of benign symptomatic insulin-producing tumors 

(insulinomas). However, in the past three decades, it has become apparent that at least 

half of all PanNETs are nonfunctional, and they are a heterogeneous group of tumors 

with often unpredictable and varying degrees of malignancy. As many as 50% to 80% of 

PanNETs are associated with synchronous or metachronous metastatic disease(Tang & 

Klimstra, 2011). Knowledge of functional PanNETs has evolved from insulinoma to 

almost a dozen other diverse hormone-secreting tumors. These individual lesions may 

have specific clinical, pathologic, and genetic associations, including multiple endocrine 

neoplasia type 1 (MEN-1), tuberous sclerosis, and von Hippel-Lindau (VHL) syndromes. 

Thus, the entity of PanNET represents a diverse group of heterogeneous neoplasms 

where combined clinical and pathologic assessment is required to further identify their 

genetic basis for neoplasia and to define their specific clinical behavior. The 

nonfunctional tumors require further elucidation to characterize their diverse 

pathogenesis and to predict outcome with potential biomarkers and molecular signatures. 

Current classification scheme for PanNETs include grade and stage(Halfdanarson et al., 

2008). The world Health Organization (WHO) classification, which assesses the 

proliferative index of neoplastic cells, divides PanNETs into low grade (G1), 

intermediate grade (G2), and high grade (G3). The higher grade PanNETs are generally 

associated clinically with more aggressive behavior(Tang, Basturk, Sue, & Klimstra, 
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2016). Poorly differentiated neuroendocrine tumor of the pancreas is extremely rare and 

clinically aggressive, which represents a different pathogenesis from the well-

differentiated counterpart(Tang, Untch, et al., 2016). While well-differentiated PanNETs 

can be successfully treated with surgery, there are few treatments for metastatic 

PanNETs, and they do not respond to conventional chemotherapy. A greater 

understanding of PanNET pathogenesis may guide the development of novel therapeutic 

options. 

 

Molecular studies have identified mutations in MEN1, ATRX, and DAXX to be the most 

commonly found in PanNETs(Jiao et al., 2011; Scarpa et al., 2017) (found in 

approximately 40%, 10%, and 20% of tumors, respectively). All three genes play a role 

in chromatin remodeling. MEN1 is a component of a histone methyltransferase 

complex(Hughes et al., 2004) that specifically methylates Lysine 4 of histone H3 and 

functions as a transcriptional regulator. ATRX and DAXX interact to deposit histone H3.3-

containing nucleosomes in centromeric and telomeric regions of the genome(Lewis et al., 

2010). Additional mutations in mTOR pathway genes including TSC2, PTEN, and 

PIK3CA are found in one in six well-differentiated PanNETs(Jiao et al., 2011). Other 

reported rare mutations in PanNETs include DNA damage repair genes (MUTYH, 

CHEK2, BRCA2) and chromatin remodeling gene SETD2(Scarpa et al., 2017). 

 

The neuroendocrine cells in the pancreas include alpha, beta, delta, pancreatic 

polypeptide (pp)-producing and vasoactive intestinal peptide (VIP)-producing cells. The 

cell of origin for nonfunctional PanNETs is not well established. Here, we genotyped 64 
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well differentiated PanNETs for mutations in ATRX, DAXX and MEN1 and performed 

RNA sequencing (n=33) and DNA methylation (n=32) analysis to identify distinct 

molecular phenotypes of A-D-M mutant PanNETs which potentially reveals their distinct 

cell of origin or transdifferentiated state. 

  

Materials and Methods  

Patient’s information: Retrospective and prospective reviews of well-differentiated, 

pancreatic neuroendocrine neoplasms were performed using the pathology files and 

pancreatic database at MSKCC with IRB approval. All patients were evaluated clinically 

at our institution with confirmed pathologic diagnoses, appropriate radiological and 

laboratory studies, and surgical or oncological management. Follow-up information was 

obtained for all cases.  

Tissue acquisition and nucleotide extraction: Cases of non-functional well-

differentiated pancreatic neuroendocrine tumors were identified. Fresh-frozen tumor and 

paired normal tissues were obtained from MSKCC’s tissue bank under an Institutional 

Review Board protocol. Histopathology of all tissues was evaluated on hematoxylin and 

eosin stained sections by an experienced gastrointestinal-hepato-pancreatobiliary 

pathologist to insure the nature of the tissue, greater than 80% tumor cellularity and 

absence of necrosis. The relevant tissues were then macro-dissected (20-25 mg) and 

DNA/RNA extraction using Qiagen DNeasy Blood & Tissue Kit and RNeasy Mini Kit, 

respectively was carried out according to the manufacturer’s protocols (Qiagen, Valencia, 

CA).  



	

	

30	

																																																																																						
	

Sanger sequencing for gene mutation: All exons of the DAXX, ATRX, and MEN1 genes 

were amplified by PCR and then sequenced using Sanger sequencing. Every mutation 

detected was validated by bidirectional Sanger sequencing on the tumor-normal pairs. To 

maintain the correct sample annotation, we used mutation status as sample name with 

sample ID (For example, A_mk11 sample is ATRX mutant and mk11 is sample ID). 

Supplementary file 1 a, b and c contains all the clinical information, mutational profile, 

sample annotation and ESTIMATE tumor purity. Online Oncoprint was used to plot 

create figure1a.  

PanNETs Transcriptome Sequencing and data analysis: RNA Library preparation and 

RNA sequencing was done by MSKCC Genomics Core Laboratory using Illumina HiSeq 

with (2 x 75 bp paired end reads) to a minimum depth of ~ 50 million reads were 

generated for each sample. Raw fastq files were probed for sequencing quality control 

using FastQC [http://www.bioinformatics.babraham.ac.uk/projects/fastqc]. Sequencing 

reads were mapped to human transcripts corresponding to Genepattern(Reich et al., 2006) 

genome (hg19 version) GTF annotations using RSEM with default parameters. RSEM 

package(B. Li & Dewey, 2011) was used to prepare the reference genome with given 

GTF and calculated expression from mapped BAM files. STAR(Dobin et al., 2013) 

aligner was used to map reads in RSEM algorithm. Transcripts mapped data were 

normalized to TPM (Transcript Per Million) from RSEM and log2 transformed 

(Supplementary file 6). This log2TPM values were used for all downstream analysis. 

Unsupervised clustering and Principal Component analysis was conducted to elucidate 

subtypes structure using top 3000 variant genes as input. To query robustness of this 

subtyping, multiple variant gene sets were used and repeated the same process of 
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unsupervised clustering. Top 100 variable genes were used to find genes, which were 

highly expressed in each subtype. Subset of these genes is selected to show in figure 2d 

for liver and complement system genes. To find differentially expressed genes (DEgenes) 

between A-D-M mutant PanNETs and A-D-M WT panNETs, we used DeSeq2 R 

package(Love, Huber, & Anders, 2014) on raw count (values from RSEM). We used 

significance cutoff with greater than 3 fold change and corrected p-value < 0.05 to call a 

gene as DEgenes. GSEA Preranked(Subramanian et al., 2005) method was used on 

DEgenes to find significant KEGG pathways, motif and biological process.  

Clustering and Principal Component Analysis: For unsupervised clustering on 

log2TPM, we used Pearson distance metric and ward.D2 hclust method (unless stated 

otherwise). PCA analysis was done using prcomp in R. R (http://www.r-project.org/) was 

used for all the analysis and visualization of data. 

PEEGset from published dataset(Bramswig et al., 2013; Muraro et al., 2016; Y. J. 

Wang et al., 2016): The neuroendocrine cells in the pancreas include alpha, beta, delta, 

pancreatic polypeptide (pp)-producing and vasoactive intestinal peptide (VIP)-producing 

cells. Gene sets representing different endocrine islet and exocrine pancreatic cells 

(PEEGset) were obtained from three metadata(Bramswig et al., 2013; Muraro et al., 

2016; Y. J. Wang et al., 2016) (Supplementary Table 2). We created 13 PEEGset 

representing all major cells from endocrine and exocrine pancreases. Supplementary 

Table 2 shows these gene sets with major cell types and number of genes in each set. 

These gene set were used as prior defined gene set for GSEA analysis.  

Gene Set Enrichment Analysis on Major Islets cell types: Gene Set Enrichment 

Analysis(Subramanian et al., 2005) (GSEA) was performed on the log2TPM expression 
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values of all samples using downloaded version of GSEA software (Broad Institute, 

Cambridge, MA, USA) to identify the statistically enriched gene sets between A-D-M 

mutant and A-D-M WT PanNETs. Published pancreatic islet endocrine and exocrine cells 

signatures were used as prior defined sets as an input. We used all default parameters to 

perform GSEA on this gene sets to determine the enrichment of specific cell signature 

enrichment in the PanNET subtypes. We ran GSEA on 1000 permutation mode on 

phenotypic label to generate FDR and enrichment score (ES) for each gene set. 

Significant gene set was filtered based on FDR q-values (cutoff of 0.05).  

Bramswig et al., FACs sorted normal alpha and beta cells gene expression: We 

extensively used Bramswig et al(Bramswig et al., 2013) FACs sorted RNAseq data to 

understand normal alpha and beta cells and correlated their gene signature sets with our 

A-D-M mutant and A-D-M WT panNETs. We downloaded supplement file for total 

RNA seq normalized expression data for alpha (3 replicate) and beta (3 replicate) and 

exocrine cells (2 replicate). Bramswig et al(Bramswig et al., 2013) provide strong genes 

associated with alpha, beta and exocrine cells as supplement file. We used this strong cell 

specific genes and created gene set for alpha, beta and exocrine and named as 

Bramswig_et_al gene set. HNF1A gene expression values were fetched to check whether 

HNF1A is over expression in normal alpha as compared to beta and exocrine. We applied 

Student ttest’s between three alpha and three beta samples to calculate p-value for 

HNF1A gene expression. Bramswig et al strong alpha cell genes (n=465) were queried to 

check for HNF1A transcription factor motif enriched using online GSEA version (C3 TFs 

motif database).  
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450K DNA methylation array analysis: DNA extracted from PanNETs samples and 

interrogated using the Illumina 450K platform (Illumina Inc. San Diego, CA) to access 

the DNA methylation profiles. All the analysis was performed using ChAMP(Morris et 

al., 2014) version 2.6.0 open source software implemented in R. Briefly, IDAT file raw 

data were imported in R and filtered to exclude samples with detection p-value <0.01 and 

beadcount <3 in at least 5% of samples and normalized using 

FunctionNormalization(Fortin et al., 2014). This normalization method correct for 

background; remove dye bias followed by Quantile normalization. Unsupervised 

clustering and PCA were done on top variants 2000 probes (Var2000) across all samples 

to find classes of PanNETs. We repeated this clustering using different number 

(Var10000, Var5000, Var3000, Var1000 and Var500) of probes to check robustness of 

this subtyping. Differentially methylated CpG sites (DMP) between the A-D-M mutant 

and A-D-M WT PanNETs were identified using champ.MVP using the all default 

parameter method (Bonferroni-Hochberg) to adjust the p-value. Significant DMP sites 

from respective genes were compared to DEgenes to find overlapping dysregulated genes 

in each subtype.  

A-D-M mutant PanNET Signature and validation: Significant differentially expressed 

genes (fold change >= 3 and BH Corrected Pval < 0.05) between A-D-M mutant and WT 

panNETs were used with log2 transformation of fold changes to create an A-D-M mutant 

PanNETs signature for validation. We downloaded gene expression and genotype data 

from two independent PanNETs cohort a) ICGC Pancreatic Cancer Endocrine 

Neoplasms(Scarpa et al., 2017) (PAEN) and b) (Sadanandam et al., 2015). ICGC PAEN 

processed A-D-M mutation status and RNAseq gene expression dataset (FPKM 
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normalized expression) were downloaded from ICGC website 

(http://icgc.org/icgc/cgp/68/304/1003406) for 29 samples (16 A-D-M Mutant and 13 A-

D-M WT). Sadanandam et al., 2015 performed targeted sequencing of ATRX, DAXX, 

MEN1, PTEN, TSC2 and ATM on 75 PanNETs. Genotype information was downloaded 

from supplementary file of (Sadanandam et al., 2015) and matched microarray gene 

expression data for 75 PanNETs (28 A-D-M and 47 A-D-M WT) were downloaded from 

NCBI GEO (Accession Number GSE73338). Normalized gene expression values 

obtained from GSE73338 were used for gene signature analysis. Pearson correlation was 

calculated between our A-D-M mutant gene signature and the mean-variance normalized 

gene expressions from ICGC PAEN and Sadanandam A et al., and pvalue was calculated 

using Wilcox test (in R). We performed GSEA analysis on A-D-M mutant and WT 

panNETs from Sadanandam A et al(Sadanandam et al., 2015). 

Immunohistochemistry (IHC): A representative, formalin-fixed, paraffin-embedded 

tissue section (4 µm thick) of each case was submitted to our institution’s core facility to 

perform immunohistochemistry-using antibodies recognizing the APOH proteins. 

Briefly, sections were de-paraffinized and pre-treated in Cell Conditioning 1 (CC1 mild; 

Ventana Medical Systems, AZ, USA) using an automated staining system (Ventana 

Discovery XT Autostainer; Ventana Medical Systems Inc, Tucson, AZ). Primary 

antibodies were applied for 60 min at a dilution of 1:100 for APOH (anti-APOH, 

polyclonal antibody; Proteintech). The sections were then incubated for 60min with 

secondary antibody (1:200) followed by DAB Map detection (DAB visualization; 

Ventana Medical Systems). Cytoplasmic (APOH) labeling in at least 50% of the tumor 
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cells was considered positive. In the case of APOH, normal liver tissue was used as a 

positive control in each experiment.   

Histone marks IHC: Serial unstained slides (4µm) were prepared from each block for 

subsequent immunohistochemistry with the following Histone 3 lysine antibodies cones: 

H3K4me3 clone C42D8 (Cell Signaling Technologies, 1:1000 dilution), H3K9me3 clone 

EPR16601 (abCam, 1:1000 dilution), H3K27me3 clone C36B11 (Cell Signaling, 1:100 

dilution) and H3K36me3, clone 333 (Active motif, 1:500 dilution). Staining for all clones 

was performed on the Leica Bond immunohistochemistry platform according to the 

manufacturer’s protocol with the Lieca DAB IHC detection kit. All slides were pretreated 

with epitope retrieval two solution (Lieca Biostystems) for 30 minutes. Primary 

antibodies were incubated for 30 minutes. Multi-tissue normal positive control was used. 

The PanNET cases (n=36, 14 A-D-M mutant and 22 A-D-M WT) were read and 

interpreted by an independent observer blinded to the clinicopathologic information. 

Scoring of all histone marks was performed using previously validated scoring systems 

H3K4me3(Z. J. Wang et al., 2013), H3K9me3(A. Noguchi et al., 2013), H3K27me3(Wei 

et al., 2008), H3K36me3(Ho et al., 2016).  The tumor was considered positive for the 

histone mark if there was histological evidence of nuclear staining. Every tumor was 

scored on a scale of 0-3 according to the percentage of cells with nuclear staining: (0, 

0%-5% positive cells; 1, 6%-50% positive cells; 2, 51%-75% positive cells; 3, 76%-

100% positive cells). Scores of 0-1 were estimated as low expression and scores of 2-3 

indicated high expression. Student t-test was used to test significance for histone 

methylations across MEN1 panNETs as compared to MEN1 WT PanNETs. 
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Statistical Analysis: Data are represented as mean ± standard deviation. GraphPad Prism 

6 (GraphPad Software Inc, La Jolla, Ca) was used for statistical and survival analyses. 

Survival analysis p-values (2-sided) were based on log-rank tests. Significance was 

defined as P < 0.05.  

Supplementary Files, Figures and tables: All the supplementary contents of this paper 

is online and can be found at https://www.nature.com/articles/s41467-018-06498-

2#Sec25   

 

 

Results  

Patient cohort, clinical annotation, and genotyping for ATRX, DAXX and MEN1 

We initially performed Sanger sequencing to genotype the ATRX, DAXX and MEN1 

genes in 64 individual PanNETs. All cases were histologically confirmed to be well-

differentiated PanNETs of WHO G1/G2 grade, and cases of poorly differentiated 

neuroendocrine carcinoma were excluded. The mean patient age was 52±1.5 years 

(ranging from 26-73) with a 59% male population. The locations of the tumors were 38% 

proximal/mid body, and 62% distal pancreas. Eighty-one percent of the cases were 

clinically non-functional and the remaining cases included insulinomas, glucagonomas, 

gastrinomas, and VIPomas. The median size of tumor was 3.6±0.4 cm (ranging from 1.0 

– 14.5 cm). Sixty-eight percent of patients had localized disease without distant 

metastasis at the time of initial diagnosis (Supplementary file 1). 
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An A-D-M mutant genotype was identified in 58% (37/64) of cases with ATRX, DAXX, 

MEN1, MEN1/ATRX, and MEN1/DAXX mutations in 8%, 16%, 20%, 3%, and 11% cases, 

respectively (Figure 1a).  

 

 

Figure 2-1. Mutational landscape of ATRX, DAXX and MEN1 in PanNETs. a) Oncoprint 
mutational profile for PanNETs samples. ATRX/DAXX/MEN1 mutations were identified in 37/64 
(58 %) of PanNETs using Sanger sequencing. b) Among 44 patients who initially presented with 
localized PanNETs (without distant metastasis), those with A-D-M mutant genotype had a worse 
recurrence free survival outcome than those A-D-M WT genotype in their primary tumors. A-D-
M mutated samples are annotated as any mutation (n = 20) and A-D-M WT samples annotated as 
WT (n = 24). 
 

The majority of mutations in ATRX, DAXX and MEN1 were truncation mutations (stop-

gain or frame-shift) and loss of function consistent with their role as tumor suppressors 

(Supplementary file 1b). Similar to the observations in our previously published 

data(Ferrone et al., 2007), the 5-year disease specific survival was associated with tumor 

stage (p-value < 0.04), tumor grade (G1 vs G2 p-value < 0.02), and distant metastasis (p-

value < 0.002), respectively. Among 44 patients who initially presented with localized 
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disease without distant metastasis, those with the A-D-M mutant genotype had a worse 

recurrence free survival than those of A-D-M WT genotype (Figure 1b). Furthermore, in 

comparison to A-D-M WT PanNETs, the A-D-M mutant PanNETs were associated with 

larger tumor size (3.6±0.6 cm vs. 5.6±0.7 cm, p-value < 0.03) and higher tumor stage (T1 

and T2 vs. T3, p-value < 0.04). Other demographic and clinical characteristics (including 

gender, age, tumor functionality, and lymph node metastasis) revealed no statistically 

significant differences between the two genotypes of PanNETs.  

 

Gene expression and DNA methylation reveal two subtypes of PanNETs 

We performed RNA sequencing on 33 randomly selected tumors (19 A-D-M mutant, and 

14 A-D-M WT). Unsupervised hierarchical clustering of the top 3000 variable genes 

across the PanNETs revealed two distinct clusters where almost all A-D-M mutant 

PanNETs were found in one cluster (Figure 2a). The grouping of A-D-M mutant 

PanNETs into one distinct cluster by gene expression was robust to the number of most 

variable genes used for clustering (Supplementary Fig 1). Principal component analysis 

(PCA) separated the A-D-M mutant PanNETs from the A-D-M WT PanNETs along the 

first principal component (corresponding to the component comprising the largest 

variation in gene expression) (Figure 2b). The separation of A-D-M mutant PanNETs 

from A-D-M WT PanNETs by PCA was robust to the number of top variable genes used 

(Supplementary Fig 2). These data show that A-D-M mutant tumors have a distinct gene 

expression pattern from that of A-D-M WT PanNETs. Neither hierarchical clustering nor 

PCA from gene expression revealed further subgrouping of the tumors with single 
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mutations in ATRX, DAXX, or MEN1 or double mutations in ATRX/MEN1 or 

DAXX/MEN1.  

 

Figure 2-2.A-D-M mutant and WT PanNETs as two distinct gene expression groups. a) 
Unsupervised clustering of PanNETs using top 3000 variant genes across all samples revealed 
two distinct robust clusters, b) Principal component analysis using top 3000 variant genes 
separated the A-D-M mutant from A-D-M WT PanNETs along the first principal component 
(PC1), c) Heatmap of pair-wise Pearson correlation of panNETs using top 3000 variant genes 
across all samples revealed a higher correlation among A-D-M mutants as compared to A-D-M 
WT panNETs. Red color represents higher correlation and blue represents lower correlation, d) 
Heatmap of top variants genes showing liver, complement, and coagulation genes highly 
expressed in A-D-M mutant panNETs. Star (*) below sample names represent liver metastatic 
samples (except for A_mk12 which is a lymph node). 
 

In hierarchical clustering, the A-D-M mutant PanNETs formed a tighter cluster than the 

A-D-M WT PanNETs. In PCA, the A-D-M mutant PanNETs had smaller variance along 
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PC1 than A-D-M WT PanNETs. Pair-wise correlation of gene expression between all 

PanNETs, showed a higher correlation among A-D-M mutant PanNETs as compared to 

A-D-M WT PanNETs (Figure 2c). Among A-D-M mutant PanNETs, mutants with the 

same genotype (mutations in ATRX/DAXX/MEN1) did not show greater gene expression 

correlation. These data suggest that A-D-M mutant PanNETs are a more homogeneous 

group compared to A-D-M WT PanNETs.  

 

Within A-D-M mutant or A-D-M WT PanNETs groups, unsupervised clustering and 

PCA did not reveal differences between primary and metastatic tumors. Top 100 genes 

with highest variance across all samples separates mutant from A-D-M WT PanNETs and 

showed relatively high expression of “liver-specific” genes (APOH, ALDH1A1, FGB, 

APOC3 etc.) as well as complement and coagulation pathway genes (SERPINA1, FGA, 

F10, CP, MT3 etc.) in A-D-M mutant PanNETs (Figure 2d;Supplementary Fig 3), both in 

primary (collected in absence of liver tissue) and metastatic tumors. Moreover, the 

pathological estimate of tumor purity was over 80% for all samples of PanNETs 

consistent with inference from ESTIMATE(Yoshihara et al., 2013) (median tumor purity 

of 90%, Supplementary file 1c) showing high tumor purity characteristic of well 

differentiated PanNETs.  In addition, seven A-D-M mutants and one A-D-M WT 

PanNETs were from the tissue of liver metastases and they had gene expression profile 

most similar to the genotype group of their primary PanNET counterpart (Figure 2d). We 

confirmed the distinct gene expression signature of A-D-M mutant PanNETs in a larger 

tumor set (47 PanNETs including the 33 PanNETs where RNA sequencing was 

performed) using gene expression microarray technology. The 14 additional samples are 
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comprised of 3 A-D-M WT PanNETs and 11 A-D-M mutant PanNETs (7 MEN1 mutant, 

2 DAXX mutant, and 2 DAXX/MEN1 mutant)(Supplementary Fig 4). 

To investigate epigenetic differences between PanNETs, we used the Illumina 450K chip 

to assay the DNA methylation at 411,549 CpG sites in 32 PanNETs. Unsupervised 

hierarchical clustering of the top 2000 variable DNA methylation sites across the 

PanNETs revealed two distinct clusters where almost all A-D-M mutant PanNETs were 

found in one cluster (Figure 3a). Principal component analysis (PCA) separated the A-D-

M mutant PanNETs from the A-D-M WT PanNETs along the first principal component 

(corresponding to the component comprising the largest variation in DNA methylation) 

(Figure 3b).  

 

Figure 2-3. Distinct DNA methylation pattern PanNETs subtypes. a) Unsupervised clustering of 
PanNETs using top 2000 variant CpG sites across all samples revealed two clusters, b) PCA 
using top 2000 variant CpG sites separated A-D-M mutant from A-D-M WT PanNETs along 
PC1. 
 

The separation of A-D-M mutant PanNETs from A-D-M WT PanNETs by PCA was 

robust to the number of top variable DNA methylation sites used (Supplementary Fig 5). 

These data reveal that A-D-M mutants PanNETs have a distinct DNA methylation pattern 

from that of A-D-M WT PanNETs. Neither hierarchical clustering nor PCA revealed 

differences in DNA methylation sites between the different combinations of genes 
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mutated among the A-D-M mutant PanNETs. Within A-D-M mutant or A-D-M WT 

PanNETs groups, unsupervised clustering and PCA of DNA methylation did not reveal 

differences between primary and metastatic tumors. 

To investigate the global histone methylation level in PanNETs with and without A-D-M 

mutations, we performed immunohistochemistry on H3K4me3, H3K9me3, H3K27me3, 

and H3K36me3 on 36 PanNETs.  There was a general trend of lower histone methylation 

level for MEN1 mutated PanNETs when compared to WT PanNETs (Supplementary Fig 

6 and Supplementary Table 1).   

 

A-D-M mutant PanNET gene expression resembles that of alpha cells 

There are multiple neuroendocrine cell types in the pancreas including alpha, beta, 

gamma, delta, and epsilon. We used gene expression data for these various pancreatic 

neuroendocrine and exocrine cell types from a single cell sequencing study(Muraro et al., 

2016) (Supplementary Table 2) to identify gene-set signatures representing highly 

expressed cell-type-specific genes (Supplementary file 2). The A-D-M mutant PanNETs 

uniformly exhibited a gene expression signature that was very similar to that of alpha 

cells (Figure 4a). The A-D-M WT PanNETs were more heterogeneous in their expression 

of the genes among the gene set signatures for the different pancreatic neuroendocrine 

cell types. Greater heterogeneity of gene expression signature in A-D-M WT PanNETs 

was consistent with the greater heterogeneity found in global gene expression. 
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Figure 2-4.A-D-M mutant PanNETs with alpha-cell signature. a) Heatmap of gene expression for 
top 20 alpha and beta cell-specific genes from (Muraro et al. 2016) revealed alpha cell specific 
genes are highly expressed in A-D-M mutant panNETs. A-D-M WT panNETs are more 
heterogeneous in gene expression but some show high beta cell specific gene expression. Red 
color represents higher correlation with alpha cell specific genes, b) Gene set enrichment analysis 
show A-D-M mutant PanNETs to be enriched for expression of alpha cell specific genes. 
Pancreas cell type (alpha, beta, delta, PP, acinar, ductal) gene signatures were obtained from three 
different published dataset to access enrichment of cell type signatures in A-D-M mutant vs A-D-
M WT PanNETs. Table represents GSEA results where size is the number of genes in gene set. 
All alpha cell gene sets (from three different sources) are significantly enriched in A-D-M mutant 
panNETs (highlighted in red). No other cell types were enriched in A-D-M mutant or A-D-M WT 
panNETs, c) GSEA plots of significant alpha cell signatures (from Bramswig et al.,2013;Wang et 
al., 2016;Muraro et al., 2016) 
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To further investigate the gene expression signature of A-D-M mutant PanNETs we 

performed gene set enrichment analysis(Subramanian et al., 2005) (GSEA) on the 

thirteen manually curated gene sets for pancreatic endocrine and exocrine cells from a 

previous study. This study assessed gene expression of individual pancreatic cell types 

(alpha, beta, delta, PP, acinar, ductal, mesenchyme and endothelial) enriched by flow 

cytometry and using single cell RNAseq (Supplementary Table 2). Our analysis indicates 

that only the alpha cell gene signature was significantly enriched in A-D-M mutant 

PanNETs (FDR q-value < 0.009) (Figure 4b and c)(Supplementary table 3). 

 

Alpha and beta cell lineage specific genes were examined for the A-D-M mutant and WT 

PanNETs. ARX, IRX2, and TM4SF4 were all highly expressed in A-D-M mutant 

PanNETs compared to A-D-M WT PanNETs (Supplementary Fig 7). Surprisingly, GCG 

(glucagon) expression was lower in A-D-M mutants as compared A-D-M WT PanNETs. 

For beta cell specific genes, PDX1, MAFA, INS, and DLK1, all had lower expression in 

A-D-M mutant PanNETs than A-D-M WT PanNETs (Supplementary Fig 7). However, 

these genes had much greater expression heterogeneity in A-D-M WT PanNETs 

suggesting that some A-D-M WT PanNETs resemble beta cells and others did not 

(Supplementary Fig 7).  

 

Validation of distinct subtype and alpha cell signature in A-D-M mutant PanNETs 

We derived an A-D-M mutant gene expression signature from significant differentially 

expressed genes between the A-D-M mutant and WT PanNETs from our data set (n=33). 

We used two independent panNET (Sadanandam et al., 2015; Scarpa et al., 2017) data 
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sets to validate the gene expression signature of A-D-M mutant panNETs. We obtained 

A-D-M mutation status and gene expression dataset from International Cancer Genome 

Consortium Pancreatic Endocrine Neoplasm (ICGC PAEN) (n=29)(Scarpa et al., 2017) 

and Sadanandam, A. et al (n=75)(Sadanandam et al., 2015).  

 

Figure 2-5.Validation of A-D-M mutant PanNET and alpha cell signatures. a) Pearson 
correlation boxplot for two independent PanNET datasets show significant positive and negative 
correlations of A-D-M mutant and WT PanNETs with our A-D-M mutant PanNETs signature 
respectively (red represent A-D-M mutant and blue represent A-D-M WT with Wilcox p-value; 
center line is median, bounds of box are first and third quartile, and whiskers are min and max). 
b) GSEA analysis shows A-D-M mutant PanNETs from ICGC PAEN (Scarpa A et al., 2017) and 
Sadanandam et al., 2015 are enriched for A-D-M mutant and alpha cell gene signatures. c) GSEA 
enrichment plot for significant gene set for A-D-M mutant and alpha cell gene signatures from 
Sadanandam et al., 2015 dataset. 
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The A-D-M mutant and WT PanNETs from both data sets have significant positive and 

negative correlations with our A-D-M mutant PanNET signature respectively (Figure 5a) 

(Supplementary file 3). Additionally, we found alpha cell signatures to be significantly 

enriched (FDR q<0.001) only in the A-D-M mutant PanNETs from the two validation 

data sets using GSEA (Figure 5b and 5c).  

 

HNF1A pathway is transcriptionally upregulated in A-D-M mutant PanNETs and 

alpha cells 

HNF1A is one of the most significantly differentially expressed genes between A-D-M 

mutant and WT PanNETs. HNF1A is a homeobox family transcription factor that is 

highly expressed in the liver and is involved in the regulation of several liver-specific 

genes. The expression of HNF1A was 2.93 fold higher in A-D-M mutant PanNETs than 

A-D-M WT PanNETs (corrected p-value < 0.004) (Figure 6a). Differentially expressed 

genes (DEgenes) between the A-D-M mutant and A-D-M WT PanNETs were found in 

1478 genes (with greater than 3 fold change and corrected p-value < 0.05, see Methods 

section)(Supplementary file 4).  

 

Figure 2-6.HNF1A motif and pathways with transcriptionally up-regulation in A-D-M mutant 
panNETs and alpha cells. a) Boxplot of HNF1A gene expression for A-D-M mutant and A-D-M 
WT PanNETs. HNF1A was homogeneously expressed 2.93 fold higher in A-D-M mutants 
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PanNETs (corrected p-val < 0.004, Benjamini–Hochberg). b) Table represents significant KEGG 
pathways where genes were differentially expressed between A-D-M mutants and A-D-M WT 
panNETs. c) Table represents transcription factor motifs significantly enriched in promoters of 
genes differentially expressed in A-D-M mutants and A-D-M WT panNETs. Three HNF1 related 
motif gene sets from GSEA showed significant enrichment in genes over-expressed in A-D-M 
mutant panNETs. GSEA was used to find pathway enrichment from genes differentially 
expressed between A-D-M mutant and A-D-M WT PanNETs 
 

Functional pathway enrichment for DEgenes using preranked GSEA revealed the 

complement and coagulation cascades, retinol metabolism, and drug metabolism to be 

upregulated in A-D-M mutant PanNETs (see Methods section) (Figure 6b; 

Supplementary file 4). The differentially expressed genes were also enriched for HNF1A 

transcription factor motifs in their promoters (FDR < 0.001, Figure 6c). The complete list 

of significant TF motifs is presented in Supplementary file 4. Taken together, the A-D-M 

mutant PanNETs had higher expression of HNF1A along with many of its transcriptional 

target genes associated with liver function. In addition, the transcriptional regulator of 

HNF1A, HNF4A(J. Li, Ning, & Duncan, 2000) was expressed 3.02 fold higher in A-D-M 

mutant PanNETs (p-value < 0.009). We used gene expression data from Bramswig et 

al(Bramswig et al., 2013) to show HNF1A expression was increased in alpha cells 

compared to beta cells (p-value < 0.008), and the 465 alpha cell specific genes in the 

pancreas were enriched for transcriptional targets of HNF1A and for having HNF1A TF 

motif in their promoters (Methods section; Supplementary Table 4). 

 

Many of the most differentially expressed genes and highly expressed in A-D-M mutant 

PanNETs are targets of HNF1A and are involved in protein secretion, transport and 

metabolism (APOH, ALB, AFM, HAO1, UGT1A3, UGT1A1, GC, G6PC, TM4SF4, PKLR 

etc). APOH is expressed 8.46 fold higher in A-D-M mutant PanNETs (p-value < 10-5) 
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and is potentially a good diagnostic biomarker for A-D-M mutant PanNETs. Moreover, 

APOH has been shown to have high expression in only the alpha cells of the pancreatic 

islet in a single cell RNA sequencing study(Baron et al., 2016). We perform IHC staining 

for APOH and show positive staining in 70±2.5% of A-D-M mutant and only 18±2.0% of 

A-D-M WT PanNETs (Supplementary Fig 8). 

 

Integrative analysis reveals PDX1 gene is hypermethylated with low expression in 

A-D-M mutant PanNETs 

There is no genome wide hypo or hypermethylation of DNA in A-D-M mutant or WT 

panNETs. DNA methylation differences between the A-D-M mutant and A-D-M WT 

PanNETs were found at 378 CpG sites (corrected p-value < 0.05 and difference in beta 

value > 0.2, see Methods section), 287 of which were found in genes and 91 in intergenic 

regions (Supplementary file 5). Of the 287 differentially methylated genic CpG sites, 70 

(associated with 59 genes) were found at promoter (transcriptional start site, TSS1500 

and TSS200) or within first exon, a region where DNA methylation is associated with 

transcriptional repression(Brenet et al., 2011). Thirteen of the 59 genes were also found 

to be differentially expressed (with fold change greater than 3 and corrected p-value < 

0.05, see Methods section) and seven genes that were hypomethylated in A-D-M mutant 

and over-expressed are APOH, CCL15, EMID2, PDZK1, HAO1, BAIAP2L2, and 

NPC1L1. One gene, TACR3, was hypomethylated in A-D-M WT and over-expressed 

(Supplementary file 5). Four of the 70 CpG sites were found in the gene PDX1 

(pancreatic and duodenal homeobox 1), a transcription factor necessary for pancreatic 

development and beta cell maturation.  
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Figure 2-7.PDX1 has promoter hypermethylated and lower gene expression in A-D-M mutant 
panNETs. a) Four PDX1 promoter CpG sites show strong hypermethylation in A-D-M mutant 
PanNETs (corrected p-val < 0.05, Benjamini–Hochberg). The range of beta values is from 0 to 1 
and represented as blue (hypo-methylation) to red (hyper-methylation). b) PDX1 expression and 
promoter methylation (TSS1500 cg27033418 CpG site) across all samples showing separation of 
A-D-M mutant and A-D-M WT PanNETs. 
 

PDX1 functions in the cell fating of endocrine cells, favoring the production of insulin 

positive beta cells and somatostatin positive delta cells while repressing glucagon 

positive alpha cells(Mansouri, 2012). These four CpG sites were all hypermethylated in 

A-D-M mutant PanNETs (Figure 7a) and the expression of PDX1 was 2.92 fold higher in 

A-D-M WT PanNETs (p-value < 0.005) (Figure 7a and b). In contrast, while ARX was 

highly expressed in A-D-M mutant PanNETs compared to A-D-M WT PanNETs, the 

promoter and first exon of ARX are not differentially methylated. 

 

Discussion and Conclusions 

Similar to a number of recent studies(Marinoni et al., 2014; Park et al., 2017), we have 

demonstrated in this cohort of PanNETs that, in additional to pathologic stage and grade 

of the tumor, mutations in DAXX, ATRX, and MEN1 are associated with adverse clinical 
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outcome in comparison to those without these mutations. Our results seem to be in 

contradiction to the findings initially reported by Jiao et al,(Jiao et al., 2011) in that 15 

patients with PanNETs carrying mutations in DAXX or ATRX genes had better survival 

than did 12 patients with wild-type PanNET. This discrepancy between our data and their 

data could be attributed to a different composition of the tumors. Indeed, all the tumors 

analyzed in Jiao’s study(Jiao et al., 2011) were liver metastases from PanNETs as 

opposed to only 19 % (12 out of 64) in our study. Other factors including sample size and 

length of follow up time may also contribute to discrepancies between different studies. 

 

Here, we found that A-D-M mutant PanNETs form a distinct subgroup on the basis of 

their gene expression profile and DNA methylation pattern. Moreover, this subgroup is 

more homogeneous based on gene expression profile than the A-D-M WT PanNETs. The 

gene signature of the A-D-M mutant PanNETs strongly corresponds to the genes that are 

specifically expressed in alpha cells including genes known to define alpha cells such as 

ARX and “liver-specific” genes such as HNF1A and its transcriptional targets. 

Conversely, PDX1, a gene critical to the beta cell lineage is transcriptionally repressed in 

A-D-M mutant PanNETs and the PDX1 promoter is hypermethylated. On the other hand, 

WT PanNETs have heterogeneous gene expression profiles and their gene mutational 

landscape is less understood. 

 

The pancreas is comprised of many different cell types including acinar, ductal, and at 

least five neuroendocrine cell types including alpha, beta, gamma, delta, and epsilon 

cells. There are two plausible explanations for the “alpha cell-like” expression pattern of 
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A-D-M mutant PanNETs. Either an alpha cell or an uncharacterized cell type with an 

alpha-cell like gene expression profile is the cell-of-origin for PanNETs with mutations in 

ATRX, DAXX and MEN, or loss of ATRX, DAXX, or MEN1 genes may promote 

pancreatic neuroendocrine (or progenitor) cell types to reprogram their gene expression 

profiles to resemble alpha cells. It remains unclear whether there are pancreatic stem or 

progenitor cells in adult pancreas.  

 

ATRX-DAXX and MEN1 are involved in distinct biochemical pathways to regulate gene 

expression. Therefore, we would expect that loss of these proteins during transformation 

of A-D-M mutant PanNETs would result in a more heterogeneous gene expression 

profile. Due to the high degree of homogeneity of the A-D-M mutant PanNETs at the 

level of gene expression and the strong expression of genes that are known to be alpha 

cell specific, we hypothesize that alpha cells are the cell-of-origin for this group of 

tumors. In addition, MEN1 and ATRX/DAXX mutations occur alone or in a combined 

pattern suggest that they have independent oncogenic activities in A-D-M mutant 

PanNETs, making the idea of reprogramming to a homogeneous alpha-like cell state less 

probable. Some of the A-D-M WT PanNETs have a strong beta cell signature and these 

may have arisen from beta cells (Figure 4a). However, other A-D-M WT PanNETs have 

neither alpha nor beta cell signatures, which may arise from other cell types in the 

pancreas. 

 

Conditional knockouts of MEN1 in mice support the model of an alpha cell origin for A-

D-M PanNETs(Shen et al., 2009). The restricted deletion of MEN1 to alpha cells 
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surprisingly led to the development of insulinomas(Lu et al., 2010; Shen et al., 2010). 

Most of our PanNETs were nonfunctional (26 of 33 PanNETs) but the functional tumors 

were insulinoma and VIPoma, even though their gene expressions have alpha cell 

signature. Moreover, some PanNETs express combinations of neuroendocrine hormones 

(GCG, INS, SST, PPY, GHRL, VIP, and GAST), suggesting that regulation of cell type 

specific hormone may be disrupted. To create robust gene signatures that are not sensitive 

to changes in expression of a few genes, we use a large number of genes to create the A-

D-M mutant and alpha cell signatures. In other mouse models of PanNETs(Bertolino et 

al., 2003; F. Li et al., 2015; Shen et al., 2009), MEN1 deletion using the insulin or PDX1 

promoter driven Cre construct, insulinomas, glucagon-expressing tumors and well 

differentiated PanNETs were also observed. However, Cre expression may be leaky in 

these models and further study is needed to understand the heterogeneity of the cells in 

the tumors that develop and trace the cell of origin or transdifferentiated state of the 

cancer cells. 

In our gene expression analysis, we have not identified the oncogenic pathways activated 

in A-D-M mutant PanNETs. MEN1 has been shown to upregulate expression of long 

noncoding RNA MEG3 in MIN6 mouse insulinoma cell line(Modali, Parekh, Kebebew, 

& Agarwal, 2015). In the same study, they show MEG3 represses expression of the 

oncogene MET leading to delayed cell cycle progression and reduced cell proliferation. 

In a different study, MEN1 and DAXX were shown to repress the expression of the 

membrane metalloendopeptidase (MME) and mutations in MEN1 or DAXX result in loss 

of this repression leading to neuroendocrine tumor proliferation(Feng et al., 2017). Our 

data is consistent with these studies when comparing A-D-M mutant to WT PanNETs, 
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showing that A-D-M mutant PanNETs have lower expression of MEG3 (7.3 fold lower, 

p-value < 4.3E-07), higher expression of MET (3 fold higher, p-value < 0.003), and 

higher expression of MME (4 fold higher, p-value < 0.001). Among A-D-M mutant 

PanNETs, we do not see expression differences of MEG3, MET, and MME depending on 

mutation status of ATRX, DAXX, and MEN1. 

 

While PanNETs may seemingly represent as a single clinical disease, they can be further 

characterized into different subtypes based upon their cell lineage and the associated 

molecular genotype. Understanding the epigenetic and transcriptional dysregulation of 

PanNETs will require comparison to their proper cells of origin and may explain the 

unpredictable outcome of the disease and facilitate the development of unique and 

targeted therapeutic strategies.  
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Chapter 3 

	

Integrative Genomic Characterization Identifies Molecular Subtypes of Lung 

Carcinoids 
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Integrative Genomic Characterization Identifies Molecular Subtypes of Lung 

Carcinoids 

 

Abstract  

Lung carcinoids (LCs) are rare and slow growing primary lung neuroendocrine tumors. 

We performed targeted exome sequencing using a 354-cancer gene panel (n=29), mRNA 

sequencing (n=30) and DNA methylation array (450K, n=18) on macro-dissected lung 

carcinoids. The recurrent mutations we identified were enriched for genes involved in 

covalent histone modification/chromatin remodeling (34.5%) (MEN1, ARID1A, KMT2C 

and KMT2A) as well as DNA repair (17.2%) pathways. Unsupervised clustering and 

principle component analysis on gene expression and DNA methylation profiles showed 

three robust molecular subtypes (LC1, LC2, LC3) with distinct clinical features. MEN1 

gene mutations were found to be exclusively enriched in the LC2 subtype (p-value < 

0.001). Subtype LC1 and LC3 is predominately found at peripheral and endobronchial 

lung respectively.  Subtype LC3 is diagnosed at younger age than LC1 and LC2. 

Immunohistochemical staining of two biomarkers, ASCL1 and S100, was found to be 

sufficient to stratify the three subtypes. This molecular classification of lung carcinoids 

into three subtypes may facilitate the understanding of their molecular mechanisms and 

improve treatment decision and clinical management. 

 

Introduction 

Lung carcinoids are an indolent and rare type of primary lung neoplasms that are, in 

general, understudied. The 2015 World Health Organization(Travis et al., 2015) (WHO) 
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classification of Lung Carcinoids (LCs) includes Atypical Carcinoids (AC) (~0.2% 

prevalence) and Typical Carcinoids (TC) (~2% prevalence). TCs are slow growing 

tumors that rarely spread beyond the lungs while ACs are faster growing tumors and have 

a greater chance of metastasizing to other tissues(Caplin et al., 2015). The WHO 

classification relies mainly on morphology, proliferation rate (mitotic index) and necrosis 

assessment(Travis et al., 1998). This current method of classification has its drawbacks as 

studies have shown that the reproducibility of cancer classification and its prognostic 

efficacy have high inter-observer variability(Travis et al., 1998; van den Bent, 2010), 

especially for differentiating between TC and AC(Swarts et al., 2014). Recent WHO 

classifications highlight use of the Ki67 cell proliferation marker to distinguish ACs from 

TCs(Travis et al., 2015). However, overlapping distribution of Ki67 between ACs and 

TCs does not enable reliable stratification between well-differentiated lung 

carcinoids1,(Pelosi, Papotti, Rindi, & Scarpa, 2014; Volante, Gatti, & Papotti, 2015).  It 

has also been reported that TCs and ACs are over-diagnosed as small cell lung 

carcinomas (SCLC) in small crush biopsy specimens(Pelosi et al., 2005), a situation 

where artifacts in specimens appear as bluish clusters in which cellular details are not 

recognizable.  As SCLCs are highly malignant, incorrect diagnosis of TC and AC tumors 

as SCLC can subject patients to unnecessary stress and treatment(Pelosi et al., 2005).  

More accurate molecular diagnostic tools and stratification for lung carcinoids will help 

ensure more appropriate treatment and clinical management. 

 

Previous genomic analysis of lung carcinoid tumors has identified recurrent mutations in 

MEN1, PSIP1, and ARID1A(Fernandez-Cuesta et al., 2014). No significant mutations or 
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focal copy alterations were observed in genes that are frequently mutated in non-small 

cell lung cancer (NSCLC), large cell neuroendocrine carcinoma (LCNEC) and SCLC 

(e.g. KRAS, TP53, EGFR and RB1)(Vollbrecht et al., 2015). The different mutation 

spectrum and low mutation burden(Fernandez-Cuesta et al., 2014) of lung carcinoids 

indicate they are distinct from NSCLC and high-grade lung NETs.  It is not known if 

there are distinct molecular subtypes of lung carcinoids or what are their cells of origin. 

 

In this study, we performed genotyping on 29 LCs to detect mutations in a 354-cancer 

gene panel, mRNA sequencing (n=30) and DNA methylation 450K-array analysis (n=18) 

and thus found three molecular subtypes with distinct clinical features. We also identified 

two key biomarkers (ASCL1 and S100) to stratify these subtypes. Integration of genetic 

and epigenetic hallmarks distinguishes each subtype of carcinoid (irrespective of their 

TCs or ACs WHO classification), providing deeper insight into their distinctive 

molecular and biological mechanisms of tumorigenesis as well as cell of origin. 

 

Materials and Methods  

Patient Data: Retrospective and prospective reviews of 30 lung carcinoids neoplasms 

were performed using the pathology files and institutional database at MSKCC with IRB 

approval.  All patients were evaluated clinically at MSKCC institution with confirmed 

pathologic diagnoses, appropriate radiological and laboratory studies, and surgical or 

oncological management. Relevant clinical and pathologic information is presented in 

Supplementary File 1. Tissue microdissection and nucleic acid extraction process were 
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followed as described in chapter 2 under “Tissue microdissection and nucleic acid 

extraction” section. 

DNA sequencing: We performed next-generation targeted sequencing on 29 LCs using 

MSK-IMPACT(Cheng et al., 2015) hybrid capture based array enclosed cancer gene 

panel (n=341). Single nucleotide variants and shorts Indel (<30bp) were annotated using 

MSK-IMPACT pipeline, as previously described(Cheng et al., 2015). Briefly, reads were 

filtered based on quality, mapped to NCBI b37 genome using BWA–MEM, coordinate 

sorted, duplicates marked, recalibration, IndelRealigner using GATK and finally variant 

discovery using MuTect. Variants were annotated based on its entry in NCBI-dbSNPs 

(http://www.ncbi.nlm.nih.gov/snp), 1000G project (http://www.1000genomes.org/) and 

COSMIC (http://cancer.sanger.ac.uk/cosmic). Filtered variants were manfully reviewed 

on IGV. We created mutational OncoPrint plot using online cBioPortal website 

(http://www.cbioportal.org/oncoprinter.jsp) on our 29 LCs dataset. The MSK-IMPACT 

mutational dataset is available on MSKCC cbioportal (under Pulmonary NET, Tang 

CMO5837).  

RNA sequencing and analysis: RNA Library preparation and RNA sequencing was 

done by MSKCC Genomics Core Laboratory using Illumina HiSeq with (2 x 100 bp 

paired end reads) to a minimum depth of  ~ 50 million reads for each sample. We 

performed standard RNAseq data analysis as previously described in chapter 2 under 

“RNA sequencing and data analysis” and (Chan et al., 2018),(Conesa et al., 2016). The R 

package DeSeq2(Love et al., 2014) was used to identify find differentially expressed 

genes between three subtypes, between ACs vs TCs , between subtype LC1 ACs vs TCs 
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and between LC2 ACs vs TCs. We used Benjamini & Hochberg (BH) corrected p-value 

(< 0.05) and log2foldchange of >=2 to filter differentially expressed genes.  

Subtype validation using independent lung carcinoid dataset: To validate our novel 

molecular subtyping, we used Fernandez-Cuesta L et al(Fernandez-Cuesta et al., 2014) 

gene expression and mutational dataset of lung carcinoids (n=65). The gene expression 

and mutational data was downloaded from supplement data files 

(https://www.nature.com/articles/ncomms4518#supplementary-information) reported in 

ref.9. This gene expression data was reported as transcript expression instead of gene 

expression. We used callapseRows(Miller et al., 2011) on transcript expression to convert 

to respective gene expression using MaxVariance option. Gene expression for LCs 

signature (top 100 variant genes from our 30 LCs dataset) was fetched from this RNAseq 

dataset. Unsupervised clustering and PCA analysis on this dataset was performed and 

MEN1 mutation data was overlaid in respective samples. Boxplot was created for LCs 

biomarker (ASCL1 and S100) and heatmap for HNF1A, HNF4A and FEV using gene 

expression.  

DNA Methylation Analyses: DNA extracted from LC samples and interrogated for 

DNA CpG methylation using the Illumina 450K array platform (Illumina Inc. San Diego, 

CA). All the analysis were performed using ChAMP(Morris et al., 2014) version 2.6.0 

open source software implemented in R/Bioconductor and followed same steps as 

mentioned in chapter 2 under “Genome wide 450k analysis” section. Subtype specific 

differentially methylated CpG probes (DMP) and CpG island were identified using 

COHCAP(Warden et al., 2013) using all default parameter. 
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COHCAP analysis on matched LCs methylation and expression: We performed an 

integrative analysis on methylation beta values (CpG island) and gene expression values 

for matched methylation and expression (n=18) samples using R/Bioconductor package 

COHCAP(Warden et al., 2013) with default parameter. We pursued COHCAP protocol 

for 450K array to identify differentially methylated CpG probes followed by 

differentially methylated CpG island using delta beta value >0.2 and corrected FDR P-

value < 0.05. We focused on probes present at TSS1500/200 and 1st Exon for subsequent 

analysis. Differentially methylated CpG sites were annotated to respective CpG Island 

(UCSC 450k) and average of this island were used for comparisons. Next, we integrated 

differentially methylated events with gene expression and found subtype specific genes 

anti-correlated at methylation and gene expression level (default parameter for 

COHCAP.integrate.avg.by.island with FDR p-value <0.01). 

Immunohistochemical staining: Immunohistochemical staining was performed using 

commercially available antibodies at optimal dilutions as follows: ASCL1 (a-MASH1) 

[monoclonal, 1:300, BD] and S100 [monoclonal, 1:4000, BG]. Tissue Microarray (TMA) 

constructed from 173 independent lung carcinoid tumors to check for clinical correlates. 

  

Results 

Patient cohort, clinical annotations and mutational profile of lung carcinoids  

We analyzed 30 randomly selected and histologically confirmed, well-differentiated LCs 

(17 TCs and 13 ACs). Most specimens were from pulmonary lobectomy with lymph node 

detection.  Tumor locations, i.e. peripheral versus central (endobronchial), were assessed 

by the combination of radiographic reveal and the pathologic observations.  Fifty-four 
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percent (7/13) of ACs had either lymph node or distant metastasis while 6% (1/17) of 

TCs had local lymph node metastasis.  The 5-year disease specific survival was 89% and 

55% for TC and AC, respectively.  Clinical information and features are presented in 

Supplementary File 1.  In addition, a tissue microarray (TMA) containing 173 cases of 

lung carcinoid had been prepared previously(Rekhtman et al., 2018) and used for 

biomarker validation in this study. 

 

We performed targeted sequencing of a 354-cancer gene panel (MSK-IMPACT(Cheng et 

al., 2015)) on 29 LCs.  The mutated genes were enriched for those implicated in covalent 

histone modification/chromatin remodeling and found in 10 samples (MEN1 (13.8%), 

ARID1A (10%), KMT2A (3%), KMT2C (7%), KMT2D (3%) and SMARCA4 (3%)) 

recapitulating the results from a previous study where they also show mutations in genes 

involved in histone methylation leading to trend of global decrease in H3K9me3 and 

H3K27me3 methylation(Fernandez-Cuesta et al., 2014). We also found mutations in 

DNA repair (17.2%) pathways (Figure 1a) (Supplementary File 2). Mutations were not 

detected in the 354-cancer gene panel for 13 LCs samples.  Mutations in MEN1, the most 

frequently mutated gene, were found in four samples (4 ACs) and four of these mutations 

had variant allele frequencies higher than 70% indicating loss of heterozygosity (LOH) 

(Supplementary Figure 1). One sample (Lu-Aty9) has two MEN1 mutations (an in-frame 

deletion and a missense substitution) a few bases apart on the same copy of MEN1 

(Supplementary File 2).  The ARID1A gene is mutated in three samples with LOH 

occurring in one of the three samples. Using variant allele frequencies and LOH status of 

MEN1 and ARID1A, we found median tumor purity to be 91% (Supplemental File 1), 
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consistent with our pathology based estimates (Supplemental Table 1). In addition to 

MEN1, other genes encoding SET1/MLL complex proteins are also found mutated 

(KMT2A (3%), KMT2C (7%), KMT2D (3%)). One sample (Lu-ty4) from subtype LC3 

has the highest number of mutations (nine) including mutations in POLE (DNA 

polymerase B domain: V1016M), ROS1, FAT1, NBN, PARP1, and TERT (in-frame 

deletion close to Telomerase RBD). We found homozygous deletions only in the FANCA 

and RAD51 genes in two different ACs.  

 

Figure 3-1. Three novel molecular subtype of lung carcinoids with mutational, gene expressions 
and DNA CpG methylation with distinct clinical features. a) Mutated genes in Lung carcinoids on 
a 354-cancer gene panel. Samples summary from DNA (n=29), methylation (n=18), RNAseq 
(n=30), carcinoids samples (Atypical (n=13, grey) and Typical (n=17, white)) and specimen 
location (endobronchial in white (n=9) and peripheral in grey (n=21)). Samples are grouped 
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according to their gene expression and DNA methylation pattern. Orange = subtype 1 (LC1), Red 
= subtype 2 (LC2), Blue = subtype 3 (LC3). Column represents sample and row represents gene 
name with mutation frequency. Gene expression (n=30) and DNA CpG methylation (n=18) 
analysis revealed novel three Lung Carcinoid subtypes using unsupervised clustering and PCA 
analysis: b) Heatmap of unsupervised clustering of top 100 variably expressed gene across all 
samples. c) PCA of top 3000 variably expressed genes. d) Heatmap of unsupervised clustering of 
top 500 variable methylated CpG probes. e) PCA on top 3000 variable methylated CpG probes. 
 

The most recurrent CNV are single copy deletions in FANCA (17%), FAT1 (10%), MEN1 

(7%), ATM (17%), SDHD (17%), and CHEK1 (17%), many of which reside on chr11q. 

We did not observe changes in the transcription levels of these genes with hemizygous 

deletions in comparison to wild type samples. There are 18 samples (4 ACs and 14 TCs) 

with normal karyotype, 6 samples (4 ACs and 2 TCs) with nearly normal karyotype 

(aneuploid for only one or two different chromosomes), and 6 samples (5 ACs and 1 

TCs) with aneuploidy in more than two different chromosomes in our dataset 

(Supplementary file 2).  We did not find any known pathogenic germline mutations in the 

panel of cancer-associated genes in our samples. TP53 and RB1 genes were not mutated 

in this cohort, unlike high-grade lung NETs and SCLC.  

 

Transcriptome and methylome profiles reveal three distinct subtypes 

We performed RNA sequencing on 30 LCs (including 13 atypical and 17 typical 

samples) and DNA methylation analysis on 18 LCs (12 of the 30 samples did not have 

sufficient material for analysis). Unsupervised clustering and principal component 

analysis (PCA) on the top 3000 variable (Var3000) genes showed three distinct clusters 

(Figure 1b and 1c). These clusters are robust when different number of top variable genes 

was used for clustering (Supplementary Figure 2). We named these subtypes LC1, LC2 

and LC3 (Lung Carcinoid 1, 2 and 3).  Pearson correlation heatmap on Var3000 genes 
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shows three blocks representing the three evident subtypes (Supplementary Figure 3). 

The top 100 variable genes (Supplementary Figure 4) across all LCs show enrichment for 

gene ontologies related to hormonal secretions, endogenous stimulus, wound healing and 

developmental processes (Supplementary Table 2). Genome wide expression analysis 

revealed greater similarity between LC2 and LC3 as compared to LC1 (Figure 2, heatmap 

of differentially expressed genes between three subtypes, Supplementary File 3).  

	
Figure 3-2. Heatmap of differentially expressed genes between LC subtypes. Supervised analysis 
on LC subtypes reveals differential expression of transcription factor and neuropeptide (some are 
highlighted on the left side of the heatmap). Heatmap expression level is in Z-score.  
 

To investigate the epigenetic profiles of LCs (n=18), we used Illumina 450K chip array to 

assay DNA methylation. Unsupervised clustering and principal component analysis of 

top 3000 variable CpG sites revealed three subtypes in complete agreement with the gene 

expression based subtypes (Figure 1c and 1d). These data revealed distinct methylation 

sites between the three subtypes. Consistent with gene expression, we also observed 

greater similarity of DNA methylation levels for LC2 and LC3 subtype when compared 

to LC1. The three grouping of subtypes was robust and reproducible using different 
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numbers of top variable CpG sites (Supplementary Figure 5). Total genome-wide DNA 

methylation level is not different in the three subtypes (Supplementary Table 3). 

 

 

Subtype–specific molecular characterization of lung carcinoids 

We investigated gene expression and DNA methylation (CpG site and CpG island) 

profiles to determine subtype-specific molecular alterations (see Materials and Methods 

section). Genes up-regulated in LC2 and LC3 as compared to LC1 are enriched for 

having the transcription factor motifs for HNF1 (FDR q-value < 0.001) and HNF4 (FDR 

q-value < 0.001)(Supplementary File 3).  This is in agreement with the observed high 

gene expression and DNA hypomethylation of HNF1A, FOXA3 and HNF4A in LC2 and 

LC3 as compared to LC1 (Figure 3a and 3b, Supplementary Figure 6).  In fact, many of 

the most highly expressed genes (APOH, GC, HAO1, G6PC, TM4SF4, PKLR, UGT2B17, 

CDH1, and SERPINA1/2/6) in LC2 and LC3 are targets of these hepatocyte nuclear 

factors. Cancer hallmark gene set enrichment analysis shows complement and 

coagulation, xenobiotic, retinol and bile acid metabolism to be significantly up-regulated 

in LC2 and LC3 as compared to LC1 (Supplementary File 3).  However, we also found 

many subtype specific TFs that are differentially expressed between LC2 and LC3 (FEV 

is more highly expressed in LC2 whereas POU3F4 has higher expression in LC3)(Figure 

3-2).  

MEN1 gene is shown to regulate several members of the HOX gene family(Yokoyama et 

al., 2005).  Indeed, the LC2 subtype, which included all of the MEN1 mutant samples, 

has low expression of HOXB2/3/4/5/6 genes as compared to LC1 and LC3 
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(Supplementary Figure 7). We found several key neuro-peptides that are highly and 

significantly differentially expressed in the three subtypes. TRH (10.7 log2FC and BH 

corrected p-value 4.16E-49), GRP (7.98 log2FC and BH corrected p-value 7.83E-31) and 

NPPA (3.39 log2FC and BH corrected p-value 1.44E-14) are highly expressed in LC1 

only. NXPH1 (3.90 log2FC and BH corrected p-value 2.33E-05) and GHRH (5.29 

log2FC and BH corrected p-value 8.62E-09) are only highly expressed in LC2 and LC3 

respectively. 

	
Figure 3-3. Subtype specific molecular characterization of gene expression and DNA 
methylation profiles. a) Heatmap of differentially methylated CpG sites (probes from TSS1500, 
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TSS200 and first exon) of genes among the three LC subtypes. Some genes with altered gene 
expression and CpG sites are highlighted on the left of heatmap. Dark black line represent 
subtype specific blocks b) Anti-correlation of gene expression and respective CpG island 
methylation (18 matched samples) for HNF1A, FOXA3, FEV and ILRL2 across three subtypes. 
Each plot represents gene expression on x-axis and average CpG island beta value on y-axis 
along with Pearson correlation (r) and p-value (p) on top of the plot.  
 

In addition to subtype-specific, differentially expressed genes, we integrated subtype-

specific DNA methylation at CpG sites and CpG islands (see method section). We 

focused on CpG sites between 1500 bps and 200 bps upstream to the transcription start 

site (TSS) and in the first exon, which have been shown to inversely correlate with gene 

expression(Brenet et al., 2011). Figure 3a shows subtype-specific differentially 

methylated CpG probes (DMP) and these subtypes-specific DMPs are inversely 

correlated with neighboring gene expression. We found 75 genes with expression to be 

significantly anti-correlated with respective CpG island methylation level (FDR P-

value<0.01) (Supplementary File 4). HNF1A and FOXA3 are hypermethylated and low-

expressed in LC1. FEV, GATA2 and PROCR are hypomethylated and highly expressed in 

LC2. SOX1 is hypermethylated and low-expressed in LC2. SIX2, ONECUT2 and IL1RL2 

are hypomethylated and highly expressed in LC3 (Figure 3b). Many of these observations 

suggest further mechanistic studies but there are currently no appropriate lung carcinoids 

cell lines or animal models that can be used.   

 

Independent validation of lung carcinoid classification 

We validated our novel classification and gene expression of biomarkers using published 

lung carcinoid genomic data from (Fernandez-Cuesta et al., 2014) which include 

genome/exome and RNA sequencing of 65 samples (56 TCs, 6 ACs and 3 carcinoids). 
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Using our gene signatures derived from the top 100 most variable genes (Supplementary 

File 5) across lung carcinoids, we found three distinct subtypes using unsupervised 

clustering and PCA that are consistent with the subtypes identified from our data (Figure 

4a,b) (Supplementary Figure 8).  Moreover, all MEN1 mutated lung carcinoids in their 

study are found exclusively in LC2 (Figure 4b). In addition, we found HNF1A and 

FOXA3 are more highly expressed in LC2 and LC3 whereas FEV is more highly 

expressed in LC2 consistent with our data (Supplementary Figure 9).  

	

	
Figure 4-4. Validation of novel classification of LC on an independent collection of LCs 
(Fernandez-Cuesta et al., 2014) a) and b) PCA and Heatmap of hierarchical clustering of gene 
expression of LCs from (Fernandez-Cuesta et al., 2014) using our top 100 gene set signature 
show three distinct subtypes LC1 (orange), LC2 (red) and LC3 (blue). Black sticks represent 
samples with MEN1 mutations and they are all found in subtype LC2.  c) Boxplot of ASCL1 and 
S100 gene expression from Fernandez-Cuesta et al. is consistent with LC subtypes.  
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We selected genes with distinct subtype-specific expression to test for use as biomarkers. 

ASCL1 encodes a transcription factor that plays a role in neuronal differentiation and 

proliferation(Castro et al., 2011), neuroepithelial bodies formation(Guha et al., 2012) and 

is a lineage specific oncogene for high-grade neuroendocrine lung cancer(Borromeo et 

al., 2016).  ASCL1 is significantly highly expressed in LC1 along with its transcriptional 

targets (Figure 5a and 4c) (Supplementary Figure 10).  S100, a family of proteins 

containing two EF-hand calcium-binding motifs, is implicated in tumor progression and 

poor prognosis(Chen, Xu, Jin, & Liu, 2014). Its gene expression levels are significantly 

higher in subtype LC2 (Figure 5a and 4c).  We performed IHC staining of ASCL1 and 

S100 to use as biomarkers. ASCL1 stained positively only for LC1 samples (n=11) and 

S100 stained positively only for LC2 samples (n=5). Both of these genes stained 

negatively for LC3 samples (n=4)(Supplementary Table 4).  

	
Figure 3-5.Gene expression and immunohistochemistry for ASCL1 and S100 biomarker genes. 
a) Boxplot of ASCL1 and S100 Gene expression. b) IHC staining results for ASCL1 and S100 in 
LC samples: LC1 (n=11), LC2 (n=5) and LC3 (n=4). Supplementary table 4 has IHC results for 
all samples. 
 

Additionally, we performed ASCL1 and S100 IHC staining on a panel of 173 independent 

lung carcinoids tissue microarray (TMA) (Supplementary File 6). ASCL1 positive and 
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S100 negative samples (n=54) were designated TMA-LC1.  ASCL1 negative and S100 

positive samples (n=15) were designated TMA-LC2.  ASCL1 negative and S100 

negative samples (n=71) were designated TMA-LC3.  Fifteen percent of the TMA 

samples stained positive for ASCL1 and S100, which is not represented in our 30 LC 

samples for which we did gene expression analysis.    

 

 

Lung carcinoid subtypes have distinct clinical phenotypes 

The three subtypes of lung carcinoids have distinct clinical phenotypes. Subtype LC1 is 

enriched for peripheral lung (p-value <0.003 in 30 LC dataset; p-value < 0.002 in TMA-

LC1) while subtype LC3 is found predominately at endobronchial lung (p-value < 0.054 

in 30 LC dataset; p-value < 3.8e-5 in TMA) (Figure 1a box)(Supplementary file 1). 

Subtype LC3 has significantly younger age of diagnosis (median age of 33, 44.5, and 48 

years in 30 LC dataset, Fernandez-Cuesta et al, and TMA respectively) than LC1 (median 

age of 67, 66, and 60 years respectively) and LC2 (median age of 62.5, 57, and 65 years 

respectively)(Supplementary Figure 11a and b).  LC1 subtype was enriched for female 

patients (p-value < 0.007 in 30 LC dataset, p-value < 1.4e-5 in TMA) but not for LC2 or 

LC3. 
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Dataset LC1 median age LC2 median age LC3 median age 

a) Discovery dataset 67 62.5 33 

b) TMA dataset 60 65 48 

c) Frenandez-Cuesta L et al 66 57 44 

 

Supplementary Figure 11: Clinical features of lung carcinoid subtypes with median age of 
diagnosis. a) Our dataset , b) Tissue Microarray dataset from MSKCC and c) Frenandez-Cuesta L 
et al., 2014 dataset for median age across all three subtypes. *** Represent pval < 0.0001 and ** 
represents < 0.001 significance level. 
 

Cell cycle and mitotic genes are highly expressed in atypical carcinoids 

Pathologically, atypical carcinoids are more aggressive and have a higher mitotic index in 

comparison to TCs. To find the gene signature responsible for these features of ACs, we 

compared ACs (n=13) and TCs (n=17) from our 30 LC cohort. Surprisingly, we did not 

find cell cycle or mitosis-related genes to be differentially expressed. We then controlled 

for LC subtypes and compared ACs (n=8) and TCs (n=7) from subtype LC1 and found 

differentially expressed genes (Figure 6) were then enriched for mitotic and cell cycle 

related pathways with high expression in the ACs (Supplementary File 7). Of the eight 

AC tumors, three with highest gene expression signature for mitotic/cell-cycle pathway 
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have metastases or recurrences while only one of the five with low gene expression 

signature have recurrence or metastases (Figure 6). We also observed high aneuploidy in 

the ACs with high gene expression signature of mitotic/cell-cycle pathway. We did the 

same analysis for ACs and TCs from LC2 and did not find any significant gene 

signatures, which could be due to the small sample size of LC2.   

 

	
	

Figure 3-6. Heatmap of differentially expressed genes between ACs and TCs within LC1 
subtypes. Upregulated genes in ACs are significantly enriched for cell cycle and mitotic gene 
ontologies. 

	

 

Discussion and Conclusions 

We identified three novel molecular subtypes of lung carcinoids with distinct clinical 

features on the basis of gene expression, DNA methylation and mutational profile (Figure 

7). Integrative analysis of gene expression and DNA methylation identified subtype 
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specific transcriptional profiles of key differentiation transcription factors (ASCL1, 

HNF1A, FOXA1) and their downstream target genes.  

 

Figure 3-7. Subtype-specific molecular events for LCs based on mutation, gene expression, DNA 
methylation and clinical informations. ** Represents nature of neuroendocrine cells based on 
gene expression of ASCL1/ROBO1/SLIT (Supplementary Figure 12). The age mentioned in this 
schematic figure is median age. 
 

Mutational analysis revealed recurrent mutations in chromatin remodeling genes found in 

all subtypes with exception of MEN1 mutations occurring only in subtype LC2 tumors. 

Importantly, we found mutations in DNA repair genes in 17% of our LC samples.  

Interestingly, germline mutations in DNA repair genes MUTYH, CHEK2, and BRCA2 

were found at larger than expected proportions in clinically sporadic pancreatic 

neuroendocrine tumors which is thought to share embryologic lineage with the 

pulmonary counterpart(Scarpa et al., 2017). Subtype LC3 have younger age of diagnosis 

and are predominantly endobronchial, whereas subtypes LC1 are predominantly found in 

peripheral regions of the lung. The younger age of diagnosis for LC3 by 15-20 years as 

compared to LC1 and LC2 may be due to earlier diagnosis from the clinically 
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symptomatic tumors located in the central lung as compared to asymptomatic tumors at 

the peripheral lung or suggest a possible germline mutation predisposing to LC3.  

However, we were not able to detect any pathogenic germline mutations in the panel of 

cancer associated genes used in the MSK IMPACT testing for any of the lung carcinoids.   

 

Our classification and gene expression biomarkers were validated in 65 additional lung 

carcinoid samples from (Fernandez-Cuesta et al., 2014).  Using our subtype 

classification, we found gene signature for cell cycle and mitotic processes activated in 

ACs as compared to TCs of the LC1 subtype and those ACs with the high gene signature 

have worst outcome. This gene signature may potentially serve as a diagnostic and 

prognostic biomarker to differentiate malignant from more benign ACs from subtype 

LC1.  This gene signature is specific to LC1 and would not have been found from 

comparing ACs to TCs from all lung carcinoids.  

 

The three distinct subtypes of LCs identified may arise from distinct population of cells 

or the genetic or epigenetic alterations acquired in tumorigenesis may give rise to the 

distinct gene expression profiles.  Neuroendocrine cells (NECs) in the lung occur as 

randomly scattered solitary cells known as Kultchitsky (K) cells and as clusters known as 

neuroepithelial bodies (NEB). NECs have many functions in lung development and as 

chemoreceptors in the airway(Van Lommel, 2001). The development and cell lineage of 

lung NECs are not fully understood. Solitary NECs migrate distally and form intermodal 

NEBs along the airway and nodal NEBs at bifurcation points in the airway(M. Noguchi, 

Sumiyama, & Morimoto, 2015). Gene expression studies identified selective expression 
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and protein localization of DLL3(Verckist et al., 2017) and GAD1/2(Schnorbusch et al., 

2013) only in NEBs. ROBO1/2 is required for the ability of NECs to cluster into NEBs 

and for maintenance of NEBs after clustering(Branchfield et al., 2016). SLIT1/2 are 

ligands to ROBO and the SLIT-ROBO signaling complex is required to drive NEC 

clustering through cellular attraction(Branchfield et al., 2016).  Genetic ablation of 

ASCL1 prevents the formation of NEB(Guha et al., 2012). We found higher expression of 

ASCL1, DLL3, GAD1/2, ROBO1/2 and SLIT1 in LC1 compared to LC2 and LC3 

(Supplementary Figure 12), suggesting that LC1 carcinoids originate from NEB cells and 

LC2 and LC3 from K cells from the peripheral and endobronchial lung respectively. 

Alternatively, genetic and epigenetic alterations producing three distinct subtypes from a 

homogeneous cell population is less likely because besides the MEN1 mutations found 

exclusively in LC2, there were no recurrent genes mutated that were subtype specific.   

 

Our molecular classification introduces three subtypes of lung carcinoids with distinct 

clinical phenotypes. This can refine and complement the WHO classification of lung 

carcinoids into typical or atypical carcinoids and help diagnose ambiguous cases of lung 

carcinoids from the more malignant LCNEC and SCLC.  The stratification of LCs into 

distinct molecular subtypes will help with future study of prognosis and treatment 

options. 
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Genomic Analyses Identify Two Distinct Cell-Of-Origin Subtypes Of Small Intestine 

Neuroendocrine Tumors 

Abstract	

Small intestine neuroendocrine tumors (SI-NETs) are rare, slow growing, well 

differentiated and the most common neoplasms of small bowel. SI-NETs are proposed to 

originate from enterochromaffin (EC) cells but their cell-of-origin and development 

remains undetermined. We performed exome sequencing (n=20) and mRNA sequencing 

(n=29) on well-differentiated SI-NETs. We identified loss of chromosome 18 (chr18) in 

75% (22 of 29) of samples. We did not find any mutation on chr18 genes. Unsupervised 

clustering and principle component analysis on gene expression profile showed two 

robust molecular subgroups (SINET-A and SINET-B) with distinct cell-of-origin 

signature. SINET-B subtype uniformly expresses TPH1 and REG4 gene 

(TPH1+/REG4+), which are the key markers for major EC cells, whereas SINET-A 

exhibit gene signature for rare neuroendocrine cells that are TPH1-/REG4-. SINET-A 

(n=3) has chromosome 18 wildtype copy while SINET-B mostly lose one copy of 

chromosome 18 (22 of 26 samples).  Gene expression profile of two potential biomarkers 

(LMX1A and ONECUT2) was found to stratify the two subtypes. This molecular 

classification of SI-NETs will enable comparison to the proper cell of origin to improve 

the study of their molecular mechanisms and potentially improve clinical management.  

	

Introduction 

SI-NETs are slow growing and well differentiated (serotonin producing).  They are the 

most common type of gastrointestinal endocrine tumors with one case per 100,000 
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annually and account for 25% of all NETs(Karpathakis et al., 2016). SI-NETs are 

generally small in size (frequently < 2cm) and slow growing (Ki67 index frequently < 

2%) but for metastatic tumors, the 5-year survival rate is 50-65%(Walter et al., 2018; Yao 

et al., 2008). SI-NETs are proposed to originate from enterochromaffin cells(Lundqvist & 

Wilander, 1987) but their origin and development remains undetermined.  

 

Molecular studies identified only a few recurrent alterations for SI-NETs. One copy loss 

of chromosome 18 (chr18) is the most frequent (60% to 80%) genetic alterations in SI-

NETs (Francis et al., 2013), however, the clinical significance of chr18 loss is unknown. 

SI-NETs have low somatic mutation burden like other NETs and most of the tumors are 

diploid with no genome instability except for one copy loss of chr18. Second most 

frequent (~8%) alteration in SI-NETs is inactivation mutations in CDKN1B (Cyclin 

dependent kinase inhibitor 1B) gene. However, tumors with CDKN1B inactivation 

mutations have no difference in clinical survival or phenotypes(Karpathakis et al., 2016) 

as compared to wild type and CDKN1B is proposed to act as a haploinsufficient tumor-

suppressor gene in SI-NETs(Francis et al., 2013).  

 

Recent single cell(Haber et al., 2017) surveys of mice small intestine revealed at least 12 

distinct neuroendocrine cell populations secreting a variety of hormones such as 

serotonin, ghrelin, secretin, proglucagon, somatostatin, neurotensin etc. Moreover, four of 

the 12 cells have expression of enteroendocrine precursor markers (SOX4, NEUROG3 or 

NEUROD1) and the other eight represent mature enteroendocrine cells (EEC). 

Interestingly, interaction and plasticity between these cell types have been 
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established(Gribble & Reimann, 2016). The dominant population of EEC in small 

intestine is enterochromaffin (EC) cells and can be subdivided into EC and EC-Reg4 

subgroups based on expression of REG4 gene(Haber et al., 2017). Moreover, based on 

TPH1 and REG4 gene expression profile, these clusters/cells may be divided into two 

sub-classes: Major enterochromaffin cells which are TPH1+/REG4+ and TPH1-/REG4- 

(rare) neuroendocrine cells. The pathways and molecular process regulating these EC cell 

function and growth remains unknown. 

 

In this study, we performed exome sequencing (n=20) and mRNA sequencing (n=29) and 

found two distinct cell-of-origin subtypes of SI-NETs. We also identified two potential 

biomarkers (LMX1A and ONECUT2) to stratify these subtypes based on gene expression. 

This molecular subtyping of SI-NETs provides deeper insights into the cell-of-origin and 

biomarkers for clinical research. 

 

Materials and Methods 

Patient Data: Retrospective and prospective reviews of 29 SI-NETs neoplasms were 

performed using the pathology files and institutional database at MSKCC with IRB 

approval.  All patients were evaluated clinically at MSK institution with confirmed 

pathologic diagnoses, appropriate radiological and laboratory studies, and surgical or 

oncological management.  Follow-up information was obtained for all cases. DNA 

extraction from microdissected tumor samples and normal adjacent tissues (if available) 

was performed using the same protocol as mentioned in chapter 2 under “Tissue 

Acquisition and nucleic acid extraction” section. 
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Single Nucleotide variants, Indel and Copy Number variation analysis:. We followed 

the same protocol as mentioned chapter 3 method section for MSK-IMPACT data 

analysis for calling variants at single nucleotide and copy number variations. Briefly, 

exome seq fastq files were mapped to hg19 genome using BWA-MEM(H. Li & Durbin, 

2009) and followed by post-alignment processing (mark duplicates, .bam file conversion 

etc). Mutect (Cibulskis et al., 2013) was used to call single nucleotide variants and 

ExomeCNVs(Sathirapongsasuti et al., 2011) algorithm was used to find focal and large 

CNVs.  

RNA sequencing and data analysis: We followed the same protocol as mentioned in 

chapter 3 method section for RNAseq analysis for gene expression quantifications, 

unsupervised clustering, PCA, differentially expressed gene test, pathway analysis and 

visualization in R.  

To investigate chr18 status for samples with no exome seq data, we did qPCR and used 

gene expression pattern. For gene expression, we summed TPM values of chr18 genes 

and ranked with known chr18 copy status from exomeseq and qPCR. We normalized 

using median sumTPM for each sample and assigned chr18 copy based on positive (two 

copy) and negative (loss). This analysis is not binary but certainly helped to validate the 

known chr18 pattern and predicted for samples where exome seq data is not available.  
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Results  

Loss of Chromosome 18 is frequent genetic alterations in SI-NETs 

Copy number variations analysis identified 75% of SI-NETs with hemizygous loss of 

chr18 from exome sequencing and RNAseq dataset (see method section)(table 4-1), 

which is consistent with previous studies(Francis et al., 2013). However, we did not find 

any mutation for chr18 genes.  Most chromosomes of SI-NETs from our dataset have two 

copies (except for loss of chr18). Other reported recurrent alteration we found was gain 

of chr5 (in 3 samples) and chr10 (in 3 sample). We did not find any mutations in 

CDKN1B gene, which reported to be altered in 8% of SI-NETs(Francis et al., 2013).  

 

Table 4-1. Chromosome 18 status for SI-NET subtypes. Samples are arranged based on the 
subtype from gene expression and grouped as SINET-A and SINET-B class. 
 

Gene expressions reveal two distinct subtypes of SI-NET 

Subtype Sample ID chr18 Status 
SINET-B SBo149 LOSS 
SINET-B SBo151 LOSS 
SINET-B SBo152 LOSS 
SINET-B SBo153 LOSS 
SINET-B SBo154 LOSS 
SINET-B SBo157 LOSS 
SINET-B SBo168 LOSS 
SINET-B SBo173 LOSS 
SINET-B SBo180 LOSS 
SINET-B SBo30 LOSS 
SINET-B SBo45 LOSS 
SINET-B SBo50 LOSS 
SINET-B SBo58 LOSS 
SINET-B SBo60 LOSS 
SINET-B SBo64 LOSS 
SINET-B SBo65 LOSS 
SINET-B SBo67 LOSS 
SINET-B SBo74 LOSS 
SINET-B SBo76 LOSS 
SINET-B SBo80 LOSS 
SINET-B SBo82 LOSS 
SINET-B SBo84 LOSS 
SINET-B SBo150 WT 
SINET-B SBo41 WT 
SINET-B SBo47 WT 
SINET-B SBo91 WT 
SINET-A SBo148 WT 
SINET-A SBo18 WT 
SINET-A SBo56 WT 
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We performed RNA sequencing on 29 well-differentiated SI-NETs. Unsupervised 

clustering and principal component analysis (PCA) on the top 3000 variable (Var3000) 

genes showed two distinct clusters (Figure 1a and 1b). These clusters are robust when 

different number of top variable genes was used for clustering and PCA. We named these 

subtypes SINET-A and SINET-B. Heatmap of top 100 variant genes distinctly revealed 

genes with subtype specific expression patterns. To understand the gene expression 

differences between subtypes, we performed supervised differential expression test 

(DeSeq2) and identified pathways related to metabolism, cAMP and hypoxia processes. 

Interestingly SINET-A subtypes (n=3) are wildtype for chr18 copy number while most 

subtype B has loss of one copy of chr18 (22 of 26 samples). We also performed 

comparison within SINET-B subtypes for samples with and without chr18 loss and did 

not find any chr18 genes to be significantly differentially expressed.  

 

Figure 4-1. Molecular subtypes of SI-NET using gene expression profile. a) Unsupervised 
clustering, b) PCA and c) correlation coefficient heatmap on top 3000 variants genes across all 
samples.  
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Subtypes of SI-NET reveal distinct cell-of-origin signature 

Recent single cell(Haber et al., 2017) analysis of small intestine from mice reveals at 

least 12 distinct neuroendocrine cell populations. Chromogranin A (CGHA) gene 

expression is distinctly high in all 29 SI-NETs confirming the neuroendocrine origin for 

these tumors. Interestingly, the SINET-B subtype uniformly expresses TPH1 and REG4 

gene (TPH1+/REG4+), which is a key marker for major EC cells, whereas SINET-A 

exhibit gene signature for rare neuroendocrine cells, which is TPH1-/REG4- (Figure 4-2a 

and b). Based on this observation, we found that SINET-A may originate from TPH1-

/REG4- rare neuroendocrine cells and SINET-B from EC cells.  

 

Figure 4-2. Cell type specific marker for SI-NETs subtypes. Boxplot of TPH1 (a) and REG4 (b) 
gene for two subtypes, c) Heatmap of small intestine neuroendocrine cell-specific marker 
(obtained from (Haber et al., 2017)) on SI-NETs gene expression.  
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LMX1A and ONECUT2 are potential biomarkers to distinguish SI-NET subtypes 

To further investigate the cell-of-origin for these subtypes, we selected genes with 

distinct cell-type-specific expression. LMX1A (LIM Homeobox Transcription Factor 1, 

Alpha) a transcription factor that positively regulates the insulin gene expression and one 

of the important downstream targets of NKX2.2 transcription factor in EC cells of small 

intestine for production of serotonin(Gross et al., 2016). LMX1A gene is highly expressed 

in normal EC cells and SINET-B subtype (with log2FC of 9.82 and corrected pval < 

E^94)(Figure 4-3a). ONECUT2 (One cut homeobox 2) is a transcription factor known 

that regulate genes involved in differentiation(Klimova, Antosova, Kuzelova, Strnad, & 

Kozmik, 2015). ONECUT2 gene is not expressed in normal EC cells(Haber et al., 2017) 

but highly expressed in TPH1-/REG4- normal (rare) neuroendocrine cells of small 

intestine. We found ONECUT2 gene expression level is significantly high in SINET-A 

subtype (with log2FC of 5.60 and corrected pval < E^05)(Figure4-3b).  

 

Figure 4-3. Gene expression boxplot of potential biomarkers (LMX1A and ONECUT2) for SI-
NET subtypes.  
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Discussion and Conclusion 

We identified two distinct cell-of-origin signature molecular subtypes of SI-NETs. 

Genetic analysis revealed chr18 loss in ~75% of SI-NETs. We did not find any mutation 

in chr18 genes. Interestingly, we found SINET-A subtype members (n=3) have chr18 

wildtype copy and mostly loss of chr18 (loss in 22 samples and wildtype in 4 samples) in 

SINET-B subtype members. We found metabolism, cAMP and hypoxia hallmark 

processes to be differentially expressed between these subtypes. Using gene expression 

signature from normal neuroendocrine cells of small intestine, we found that SINET-A 

may originate from TPH1-/REG4- neuroendocrine cells of small intestine and SINET-B 

from EC cells that are TPH1+/REG4+. Gene expression profile of two potential 

biomarkers, LMX1A and ONECUT2, was found to be sufficient to stratify the two 

subtypes. 

 

Our molecular classification introduces two subtypes of SI-NETs with distinct cell-of-

origin signature and novel biomarkers. This molecular classification and knowledge of 

cell-of-origin of SI-NETs subtypes may facilitate the understanding of their molecular 

mechanisms by comparing within appropriate cell population and improve biological and 

clinical research of SI-NETs. 
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Chapter 5: Conclusion and Future Directions 
 
 
5.1 Thesis Conclusions  
 
The overall goal of this thesis was to provide greater insights into neuroendocrine tumor 

biology, molecular subtypes, pathogenesis, and cell-of-origins and to translate this 

knowledge to the clinic for the advancement of NETs treatment. The project discussed in 

chapter 2, 3 and 4 involved the integration of genomics dataset (DNAseq, RNAseq and 

DNA CpG methylation) to uncover the clinically relevant molecular subtypes and their 

cell-of-origin. Chapter 2 covers the two molecular subtypes of panNETs with distinct 

clinical phenotypes. Non-functional well-differentiated panNETs with mutations in 

ATRX, DAXX or MEN1 have worst clinical outcome and resemble the gene expression 

profile of pancreatic alpha cells. We identified novel gene signature and biomarkers that 

differentiate panNETs genotype and gained an enhanced understanding of biology of 

panNETs from the cell lineage viewpoint. Chapter 3 demonstrates the molecular subtypes 

of lung carcinoids with distinct clinical phenotypes. We identified three novel molecular 

subtypes (LC1, LC2, and LC3) using genomics dataset. We found two biomarkers, 

ASCL1 and S100 that can stratify the three subtypes and performed IHC on 173 lung 

carcinoid tissue microarray with detailed clinical information. MEN1 mutations were 

found to be enriched and exclusively in subtype LC2.  Subtype LC1 and LC3 is 

predominately found at peripheral and endobronchial lung respectively. Subtype LC3 is 

diagnosed on average 10 years earlier than LC1 and LC2. While frequently mutated 

chromatin remodeling complex genes were previously found in lung carcinoids, we found 

that DNA repair genes are mutated in 17% of our samples. PanNETs and LCs are part of 

foregut and MEN1 mutations is one of the common genetic alterations found to be 
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present in foregut NETs. In addition to this, we found common gene signature between 

PanNETs (with ATRX, DAXX and MEN1 mutations subtype) and LCs (LC2 (MEN1) 

and LC3 subtypes) including high expression of the hepatocyte nuclear factors (HNF1A, 

HNF4A) and their transcriptional targets as well as the transcription factor FEV. This 

suggest there are commonalities between the subtypes of lung and pancreatic 

neuroendocrine tumors harboring MEN1 mutations that may shed some light into some 

shared gene dysregulation and pathogenesis. Chapter 4 discusses the SI-NETs subtypes 

with distinct cell-of-origin signature. We identified two (SINET-A and B) subtypes of SI-

NETs using gene expression and genetic dataset with distinct cell-of-origin signature. We 

identified one copy loss of chromosome 18 (chr18) in 85% (22 of 26) of subtype SINET-

B while subtype SINET-A is diploid for chr18. We found that SINET-A subtype may 

originate from TPH1-/REG4- neuroendocrine cells of the small intestine and SINET-B 

from enterochromaffin (EC) cells, which are TPH1+/REG4+. Gene expression profile of 

two potential biomarkers (LMX1A and ONECUT2) was found to stratify the two 

subtypes. 

 

While well-differentiated NETs of an organ may seemingly represent as a single clinical 

disease, they can be further characterized into different molecular subtypes based upon 

their cell lineage and the associated molecular genotype. Understanding the epigenetic 

and transcriptional dysregulation of NETs will require comparison to their proper cells of 

origin which may explain the unpredictable outcome of the disease and facilitate the 

development of unique and targeted therapeutic strategies. 
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5.2 Work in Progress and Future Directions  
 
 
5.2.1 Investigate Single Cell RNA sequencing data of MEN1 knockout PanNETs 

We found two distinct molecular subtypes of human PanNETs using mutational, gene 

expression and DNA methylation profile (Chapter 2). PanNETs subtype with ATRX, 

DAXX and MEN1 are associated with adverse clinical outcome as compared to PanNETs 

without these three mutations.  Moreover, their gene expression profile resembles that of 

pancreatic alpha cells. This result is surprising, as pancreatic beta cell has been postulated 

to be the cell-of-origin for PanNETs. Further work is needed to characterize the cellular 

origin for PanNETs at single cell resolution. Particularly, 1) Identification of cell-of-

origin and tumor heterogeneity for PanNETs, 2) MEN1 PanNET tumorigenesis should be 

evaluated in comparison to appropriate cell type. 

Unlike MEN1 knockout mice models, DAXX and ATRX knockout mice models do not 

promote PanNETs tumorigenesis. Hence we selected MEN1 knockout mice model to 

study PanNETs. We plan to do single cell RNA sequencing of MEN1 knockout mice to:  

1: To characterize gene expression profiles of normal pancreatic neuroendocrine cells, 

pancreatic hyperplasia (6 months of age) and PanNETs (12 months of age) in MEN1 

knockout mouse model  

2: Identify the cell of origin and cellular heterogeneity of PanNETs  

 

To conduct the studies at single cell resolution, we will use Drop-seq RNA sequencing 

technology, which is a droplet based high throughput method for RNA profiling. The 

following schematic diagram shows the model and single cell data generation strategies 

for our further study. 
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Figure 5-1. Schematic representation of MEN1 knockout mice model for single cell RNA 
sequencing from normal islets, hyperplasia and PanNETs 

 

5.2.2 Continued Characterization of MEN1 PanNETs and identifications of genome 

wide binding sites of MEN1  

 

The work presented in this thesis has uncovered genetic alterations in MEN1 gene that are 

strongly enriched for NET subtypes. However, the functional mechanistic understanding 

of MEN1 tumorigenesis in NETs is limited and complicated by the different cell-of-origin 

signatures between subtypes. MEN1 encodes a histone methyltransferase and regulates 

gene expression. Further work should characterize the genome wide binding of MEN1 in 

wildtype neuroendocrine cells as compared to MEN1 mutated NETs. Particularly, which 

binding sites of endogenous MEN1 are lost in MEN1 mutated samples and which 

oncogenic genes are activated or which tumor suppressor genes are repressed during 

tumorigenesis.  
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5.3 Concluding Remarks 

NETs are a rare, slow growing and benign neoplasm with malignant potentials. The 

classification of NETs (specifically for GI-NETs) has evolved over the last two decades 

and revisited many times. With greater awareness of NETs in clinic and improvement in 

diagnostic imaging techniques, there has been steady increase in incidence rate of NETs. 

Despite the increased incidence rate, the biological knowledge, molecular subtypes, 

mutational landscape, clinical diagnostic and prognostic markers are limited. Another rate 

limiting step in NET research is lack of proper cell of origin to compare tumors with. 

Recently, genomic studies decoded the mutational landscape of NETs and found most 

NETs have low mutation burden with few recurrent alterations. However, there are some 

key pathways frequently targeted in tumorigenic process and result in loss of MEN1 

function, inactivation of chromatin remodeling complex, activation of the PI3K/mTOR 

pathways, loss of chromosome 18 and altered telomere length. The work presented in this 

thesis was focused on deciphering ways to understand the underlying biology, molecular 

subtypes and cell-of-origin of NETs using integrative genomics dataset, with an objective 

to bridge the gap between basic genomic research and the clinic. Collectively, the 

primary research presented here should provide a stepping-stone to advance knowledge 

of NET biology and the molecular subtypes of NETs to improve clinical decision-

making.  

 

 

 

 



	

	

91	

																																																																																						
	

References 

 

Anlauf,	M.,	Enosawa,	T.,	Henopp,	T.,	Schmitt,	A.,	Gimm,	O.,	Brauckhoff,	M.,	.	.	.	Kloppel,	
G.	 (2008).	 Primary	 lymph	 node	 gastrinoma	 or	 occult	 duodenal	
microgastrinoma	with	 lymph	node	metastases	 in	a	MEN1	patient:	 the	need	
for	a	systematic	search	for	the	primary	tumor.	Am	J	Surg	Pathol,	32(7),	1101-
1105.	doi:10.1097/PAS.0b013e3181655811	

Arnold,	R.,	Wilke,	A.,	Rinke,	A.,	Mayer,	C.,	Kann,	P.	H.,	Klose,	K.	J.,	.	.	.	Barth,	P.	(2008).	
Plasma	 chromogranin	 A	 as	marker	 for	 survival	 in	 patients	with	metastatic	
endocrine	 gastroenteropancreatic	 tumors.	 Clin	 Gastroenterol	 Hepatol,	 6(7),	
820-827.	doi:10.1016/j.cgh.2008.02.052	

Bailey,	 P.,	 Chang,	 D.	 K.,	 Nones,	 K.,	 Johns,	 A.	 L.,	 Patch,	 A.	 M.,	 Gingras,	 M.	 C.,	 .	 .	 .	
Grimmond,	 S.	 M.	 (2016).	 Genomic	 analyses	 identify	 molecular	 subtypes	 of	
pancreatic	cancer.	Nature,	531(7592),	47-52.	doi:10.1038/nature16965	

Baron,	M.,	 Veres,	 A.,	Wolock,	 S.	 L.,	 Faust,	 A.	 L.,	 Gaujoux,	R.,	 Vetere,	 A.,	 .	 .	 .	 Yanai,	 I.	
(2016).	A	Single-Cell	Transcriptomic	Map	of	the	Human	and	Mouse	Pancreas	
Reveals	 Inter-	 and	 Intra-cell	 Population	 Structure.	 Cell	 Syst,	 3(4),	 346-360	
e344.	doi:10.1016/j.cels.2016.08.011	

Basu,	 B.,	 Sirohi,	 B.,	 &	 Corrie,	 P.	 (2010).	 Systemic	 therapy	 for	 neuroendocrine	
tumours	 of	 gastroenteropancreatic	 origin.	Endocr	Relat	Cancer,	17(1),	 R75-
90.	doi:10.1677/ERC-09-0108	

Bertolino,	P.,	Tong,	W.	M.,	Herrera,	P.	L.,	Casse,	H.,	Zhang,	C.	X.,	&	Wang,	Z.	Q.	(2003).	
Pancreatic	 beta-cell-specific	 ablation	 of	 the	 multiple	 endocrine	 neoplasia	
type	 1	 (MEN1)	 gene	 causes	 full	 penetrance	 of	 insulinoma	 development	 in	
mice.	Cancer	Res,	63(16),	4836-4841.		

Borromeo,	M.	D.,	Savage,	T.	K.,	Kollipara,	R.	K.,	He,	M.,	Augustyn,	A.,	Osborne,	J.	K.,	.	.	.	
Johnson,	 J.	 E.	 (2016).	 ASCL1	 and	 NEUROD1	 Reveal	 Heterogeneity	 in	
Pulmonary	Neuroendocrine	Tumors	and	Regulate	Distinct	Genetic	Programs.	
Cell	Rep,	16(5),	1259-1272.	doi:10.1016/j.celrep.2016.06.081	

Bramswig,	N.	C.,	Everett,	L.	J.,	Schug,	J.,	Dorrell,	C.,	Liu,	C.,	Luo,	Y.,	.	.	 .	Kaestner,	K.	H.	
(2013).	 Epigenomic	 plasticity	 enables	 human	 pancreatic	 alpha	 to	 beta	 cell	
reprogramming.	J	Clin	Invest,	123(3),	1275-1284.	doi:10.1172/JCI66514	

Branchfield,	K.,	Nantie,	L.,	Verheyden,	J.	M.,	Sui,	P.,	Wienhold,	M.	D.,	&	Sun,	X.	(2016).	
Pulmonary	neuroendocrine	cells	 function	as	airway	sensors	 to	control	 lung	
immune	 response.	 Science,	 351(6274),	 707-710.	
doi:10.1126/science.aad7969	

Brenet,	F.,	Moh,	M.,	Funk,	P.,	Feierstein,	E.,	Viale,	A.	J.,	Socci,	N.	D.,	&	Scandura,	J.	M.	
(2011).	DNA	methylation	of	the	first	exon	is	tightly	linked	to	transcriptional	
silencing.	PLoS	One,	6(1),	e14524.	doi:10.1371/journal.pone.0014524	

Busygina,	V.,	&	Bale,	A.	E.	(2006).	Multiple	endocrine	neoplasia	type	1	(MEN1)	as	a	
cancer	predisposition	syndrome:	clues	into	the	mechanisms	of	MEN1-related	
carcinogenesis.	Yale	J	Biol	Med,	79(3-4),	105-114.		

Cancer	 Genome	 Atlas,	 N.	 (2012).	 Comprehensive	 molecular	 portraits	 of	 human	
breast	tumours.	Nature,	490(7418),	61-70.	doi:10.1038/nature11412	



	

	

92	

																																																																																						
	

Capdevila,	 J.,	 Casanovas,	 O.,	 Salazar,	 R.,	 Castellano,	 D.,	 Segura,	 A.,	 Fuster,	 P.,	 .	 .	 .	
Castano,	 J.	 P.	 (2017).	 Translational	 research	 in	 neuroendocrine	 tumors:	
pitfalls	 and	 opportunities.	 Oncogene,	 36(14),	 1899-1907.	
doi:10.1038/onc.2016.316	

Caplin,	 M.	 E.,	 Baudin,	 E.,	 Ferolla,	 P.,	 Filosso,	 P.,	 Garcia-Yuste,	 M.,	 Lim,	 E.,	 .	 .	 .	
participants,	E.	 c.	 c.	 (2015).	Pulmonary	neuroendocrine	 (carcinoid)	 tumors:	
European	 Neuroendocrine	 Tumor	 Society	 expert	 consensus	 and	
recommendations	 for	 best	 practice	 for	 typical	 and	 atypical	 pulmonary	
carcinoids.	Ann	Oncol,	26(8),	1604-1620.	doi:10.1093/annonc/mdv041	

Castro,	 D.	 S.,	 Martynoga,	 B.,	 Parras,	 C.,	 Ramesh,	 V.,	 Pacary,	 E.,	 Johnston,	 C.,	 .	 .	 .	
Guillemot,	 F.	 (2011).	 A	 novel	 function	 of	 the	 proneural	 factor	 Ascl1	 in	
progenitor	 proliferation	 identified	 by	 genome-wide	 characterization	 of	 its	
targets.	Genes	Dev,	25(9),	930-945.	doi:10.1101/gad.627811	

Chan,	C.	S.,	Laddha,	S.	V.,	Lewis,	P.	W.,	Koletsky,	M.	S.,	Robzyk,	K.,	Da	Silva,	E.,	.	.	.	Tang,	
L.	 H.	 (2018).	 ATRX,	 DAXX	 or	 MEN1	 mutant	 pancreatic	 neuroendocrine	
tumors	are	a	distinct	alpha-cell	signature	subgroup.	Nat	Commun,	9(1),	4158.	
doi:10.1038/s41467-018-06498-2	

Chen,	H.,	Xu,	C.,	 Jin,	Q.,	&	Liu,	Z.	(2014).	S100	protein	family	in	human	cancer.	Am	J	
Cancer	Res,	4(2),	89-115.		

Cheng,	D.	T.,	Mitchell,	T.	N.,	Zehir,	A.,	Shah,	R.	H.,	Benayed,	R.,	Syed,	A.,	.	.	.	Berger,	M.	
F.	 (2015).	 Memorial	 Sloan	 Kettering-Integrated	 Mutation	 Profiling	 of	
Actionable	 Cancer	 Targets	 (MSK-IMPACT):	 A	 Hybridization	 Capture-Based	
Next-Generation	 Sequencing	 Clinical	 Assay	 for	 Solid	 Tumor	 Molecular	
Oncology.	J	Mol	Diagn,	17(3),	251-264.	doi:10.1016/j.jmoldx.2014.12.006	

Cibulskis,	K.,	Lawrence,	M.	S.,	Carter,	 S.	L.,	 Sivachenko,	A.,	 Jaffe,	D.,	 Sougnez,	C.,	 .	 .	 .	
Getz,	G.	(2013).	Sensitive	detection	of	somatic	point	mutations	in	impure	and	
heterogeneous	 cancer	 samples.	 Nat	 Biotechnol,	 31(3),	 213-219.	
doi:10.1038/nbt.2514	

Conesa,	A.,	Madrigal,	P.,	Tarazona,	S.,	Gomez-Cabrero,	D.,	Cervera,	A.,	McPherson,	A.,	.	
.	.	Mortazavi,	A.	(2016).	A	survey	of	best	practices	for	RNA-seq	data	analysis.	
Genome	Biol,	17,	13.	doi:10.1186/s13059-016-0881-8	

Da	 Silva	 Xavier,	 G.	 (2018).	 The	 Cells	 of	 the	 Islets	 of	 Langerhans.	 J	 Clin	Med,	 7(3).	
doi:10.3390/jcm7030054	

Dasari,	A.,	Shen,	C.,	Halperin,	D.,	Zhao,	B.,	Zhou,	S.,	Xu,	Y.,	.	.	.	Yao,	J.	C.	(2017).	Trends	
in	 the	 Incidence,	 Prevalence,	 and	 Survival	 Outcomes	 in	 Patients	 With	
Neuroendocrine	Tumors	in	the	United	States.	JAMA	Oncol,	3(10),	1335-1342.	
doi:10.1001/jamaoncol.2017.0589	

de	Mestier,	 L.,	 Cros,	 J.,	 Neuzillet,	 C.,	 Hentic,	 O.,	 Egal,	 A.,	Muller,	 N.,	 .	 .	 .	 Hammel,	 P.	
(2017).	 Digestive	 System	 Mixed	 Neuroendocrine-Non-Neuroendocrine	
Neoplasms.	Neuroendocrinology,	105(4),	412-425.	doi:10.1159/000475527	

Dobin,	A.,	Davis,	C.	A.,	Schlesinger,	F.,	Drenkow,	J.,	Zaleski,	C.,	Jha,	S.,	.	.	.	Gingeras,	T.	R.	
(2013).	STAR:	ultrafast	universal	RNA-seq	aligner.	Bioinformatics,	29(1),	15-
21.	doi:10.1093/bioinformatics/bts635	

Feng,	Z.,	Wang,	L.,	Sun,	Y.,	 Jiang,	Z.,	Domsic,	 J.,	An,	C.,	 .	 .	 .	Hua,	X.	(2017).	Menin	and	
Daxx	 Interact	 to	 Suppress	 Neuroendocrine	 Tumors	 through	 Epigenetic	



	

	

93	

																																																																																						
	

Control	of	the	Membrane	Metallo-Endopeptidase.	Cancer	Res,	77(2),	401-411.	
doi:10.1158/0008-5472.CAN-16-1567	

Fernandez-Cuesta,	L.,	Peifer,	M.,	Lu,	X.,	Sun,	R.,	Ozretic,	L.,	Seidal,	D.,	.	.	.	Thomas,	R.	K.	
(2014).	 Frequent	 mutations	 in	 chromatin-remodelling	 genes	 in	 pulmonary	
carcinoids.	Nat	Commun,	5,	3518.	doi:10.1038/ncomms4518	

Ferrone,	C.	R.,	Tang,	L.	H.,	Tomlinson,	J.,	Gonen,	M.,	Hochwald,	S.	N.,	Brennan,	M.	F.,	.	.	
.	 Allen,	 P.	 J.	 (2007).	 Determining	 prognosis	 in	 patients	 with	 pancreatic	
endocrine	neoplasms:	can	the	WHO	classification	system	be	simplified?	J	Clin	
Oncol,	25(35),	5609-5615.	doi:10.1200/JCO.2007.12.9809	

Fortin,	J.	P.,	Labbe,	A.,	Lemire,	M.,	Zanke,	B.	W.,	Hudson,	T.	J.,	Fertig,	E.	J.,	.	.	.	Hansen,	
K.	 D.	 (2014).	 Functional	 normalization	 of	 450k	 methylation	 array	 data	
improves	 replication	 in	 large	 cancer	 studies.	 Genome	 Biol,	 15(12),	 503.	
doi:10.1186/s13059-014-0503-2	

Francis,	 J.	 M.,	 Kiezun,	 A.,	 Ramos,	 A.	 H.,	 Serra,	 S.,	 Pedamallu,	 C.	 S.,	 Qian,	 Z.	 R.,	 .	 .	 .	
Meyerson,	 M.	 (2013).	 Somatic	 mutation	 of	 CDKN1B	 in	 small	 intestine	
neuroendocrine	tumors.	Nat	Genet,	45(12),	1483-1486.	doi:10.1038/ng.2821	

Frost,	M.,	Lines,	K.	E.,	&	Thakker,	R.	V.	 (2018).	Current	and	emerging	therapies	 for	
PNETs	in	patients	with	or	without	MEN1.	Nat	Rev	Endocrinol,	14(4),	216-227.	
doi:10.1038/nrendo.2018.3	

Gribble,	 F.	M.,	 &	 Reimann,	 F.	 (2016).	 Enteroendocrine	 Cells:	 Chemosensors	 in	 the	
Intestinal	 Epithelium.	Annu	Rev	Physiol,	78,	 277-299.	 doi:10.1146/annurev-
physiol-021115-105439	

Gross,	S.,	Garofalo,	D.	C.,	Balderes,	D.	A.,	Mastracci,	T.	L.,	Dias,	J.	M.,	Perlmann,	T.,	.	.	.	
Sussel,	 L.	 (2016).	 The	 novel	 enterochromaffin	 marker	 Lmx1a	 regulates	
serotonin	 biosynthesis	 in	 enteroendocrine	 cell	 lineages	 downstream	 of	
Nkx2.2.	Development,	143(14),	2616-2628.	doi:10.1242/dev.130682	

Guha,	A.,	Vasconcelos,	M.,	 Cai,	 Y.,	 Yoneda,	M.,	Hinds,	A.,	Qian,	 J.,	 .	 .	 .	 Cardoso,	W.	V.	
(2012).	 Neuroepithelial	 body	 microenvironment	 is	 a	 niche	 for	 a	 distinct	
subset	of	Clara-like	precursors	in	the	developing	airways.	Proc	Natl	Acad	Sci	
U	S	A,	109(31),	12592-12597.	doi:10.1073/pnas.1204710109	

Gustafsson,	B.	I.,	Siddique,	L.,	Chan,	A.,	Dong,	M.,	Drozdov,	I.,	Kidd,	M.,	&	Modlin,	I.	M.	
(2008).	 Uncommon	 cancers	 of	 the	 small	 intestine,	 appendix	 and	 colon:	 an	
analysis	of	SEER	1973-2004,	and	current	diagnosis	and	therapy.	 Int	J	Oncol,	
33(6),	1121-1131.		

Haber,	A.	L.,	Biton,	M.,	Rogel,	N.,	Herbst,	R.	H.,	Shekhar,	K.,	Smillie,	C.,	 .	 .	 .	Regev,	A.	
(2017).	 A	 single-cell	 survey	 of	 the	 small	 intestinal	 epithelium.	 Nature,	
551(7680),	333-339.	doi:10.1038/nature24489	

Halfdanarson,	 T.	 R.,	 Rabe,	 K.	 G.,	 Rubin,	 J.,	 &	 Petersen,	 G.	 M.	 (2008).	 Pancreatic	
neuroendocrine	 tumors	 (PNETs):	 incidence,	 prognosis	 and	 recent	 trend	
toward	 improved	 survival.	 Ann	 Oncol,	 19(10),	 1727-1733.	
doi:10.1093/annonc/mdn351	

Hashemi,	J.,	Fotouhi,	O.,	Sulaiman,	L.,	Kjellman,	M.,	Hoog,	A.,	Zedenius,	J.,	&	Larsson,	
C.	 (2013).	 Copy	 number	 alterations	 in	 small	 intestinal	 neuroendocrine	
tumors	 determined	 by	 array	 comparative	 genomic	 hybridization.	 BMC	
Cancer,	13,	505.	doi:10.1186/1471-2407-13-505	



	

	

94	

																																																																																						
	

Heaphy,	C.	M.,	de	Wilde,	R.	F.,	Jiao,	Y.,	Klein,	A.	P.,	Edil,	B.	H.,	Shi,	C.,	.	.	.	Meeker,	A.	K.	
(2011).	Altered	telomeres	in	tumors	with	ATRX	and	DAXX	mutations.	Science,	
333(6041),	425.	doi:10.1126/science.1207313	

Hendifar,	A.	E.,	Marchevsky,	A.	M.,	&	Tuli,	R.	(2017).	Neuroendocrine	Tumors	of	the	
Lung:	Current	Challenges	and	Advances	in	the	Diagnosis	and	Management	of	
Well-Differentiated	 Disease.	 J	 Thorac	 Oncol,	 12(3),	 425-436.	
doi:10.1016/j.jtho.2016.11.2222	

Ho,	T.	H.,	Kapur,	P.,	Joseph,	R.	W.,	Serie,	D.	J.,	Eckel-Passow,	J.	E.,	Tong,	P.,	.	.	.	Parker,	
A.	S.	(2016).	Loss	of	histone	H3	lysine	36	trimethylation	is	associated	with	an	
increased	risk	of	 renal	 cell	 carcinoma-specific	death.	Mod	Pathol,	29(1),	34-
42.	doi:10.1038/modpathol.2015.123	

Hughes,	C.	M.,	Rozenblatt-Rosen,	O.,	Milne,	T.	A.,	Copeland,	T.	D.,	Levine,	S.	S.,	Lee,	J.	
C.,	.	.	.	Meyerson,	M.	(2004).	Menin	associates	with	a	trithorax	family	histone	
methyltransferase	 complex	 and	with	 the	 hoxc8	 locus.	Mol	 Cell,	 13(4),	 587-
597.		

Jann,	H.,	Roll,	S.,	Couvelard,	A.,	Hentic,	O.,	Pavel,	M.,	Muller-Nordhorn,	J.,	.	.	.	Pape,	U.	F.	
(2011).	Neuroendocrine	 tumors	of	midgut	and	hindgut	origin:	 tumor-node-
metastasis	classification	determines	clinical	outcome.	Cancer,	117(15),	3332-
3341.	doi:10.1002/cncr.25855	

Jiao,	Y.,	Shi,	C.,	Edil,	B.	H.,	de	Wilde,	R.	F.,	Klimstra,	D.	S.,	Maitra,	A.,	.	.	.	Papadopoulos,	
N.	 (2011).	 DAXX/ATRX,	 MEN1,	 and	 mTOR	 pathway	 genes	 are	 frequently	
altered	 in	 pancreatic	 neuroendocrine	 tumors.	 Science,	 331(6021),	 1199-
1203.	doi:10.1126/science.1200609	

Karpathakis,	A.,	Dibra,	H.,	Pipinikas,	C.,	Feber,	A.,	Morris,	T.,	Francis,	J.,	.	.	.	Thirlwell,	
C.	(2016).	Prognostic	Impact	of	Novel	Molecular	Subtypes	of	Small	Intestinal	
Neuroendocrine	Tumor.	Clin	Cancer	Res,	22(1),	250-258.	doi:10.1158/1078-
0432.CCR-15-0373	

Kim,	A.,	Miller,	K.,	Jo,	J.,	Kilimnik,	G.,	Wojcik,	P.,	&	Hara,	M.	(2009).	Islet	architecture:	
A	comparative	study.	Islets,	1(2),	129-136.	doi:10.4161/isl.1.2.9480	

Kim,	 J.	Y.,	&	Hong,	S.	M.	 (2016).	Recent	Updates	on	Neuroendocrine	Tumors	From	
the	 Gastrointestinal	 and	 Pancreatobiliary	 Tracts.	 Arch	 Pathol	 Lab	 Med,	
140(5),	437-448.	doi:10.5858/arpa.2015-0314-RA	

Klimova,	L.,	Antosova,	B.,	Kuzelova,	A.,	Strnad,	H.,	&	Kozmik,	Z.	(2015).	Onecut1	and	
Onecut2	 transcription	 factors	 operate	 downstream	 of	 Pax6	 to	 regulate	
horizontal	 cell	 development.	 Dev	 Biol,	 402(1),	 48-60.	
doi:10.1016/j.ydbio.2015.02.023	

Kloppel,	 G.	 (2017).	 Neuroendocrine	 Neoplasms:	 Dichotomy,	 Origin	 and	
Classifications.	Visc	Med,	33(5),	324-330.	doi:10.1159/000481390	

Lawrence,	M.	S.,	Stojanov,	P.,	Polak,	P.,	Kryukov,	G.	V.,	Cibulskis,	K.,	Sivachenko,	A.,	.	.	.	
Getz,	G.	 (2013).	Mutational	heterogeneity	 in	 cancer	and	 the	 search	 for	new	
cancer-associated	 genes.	 Nature,	 499(7457),	 214-218.	
doi:10.1038/nature12213	

Lewis,	P.	W.,	Elsaesser,	S.	J.,	Noh,	K.	M.,	Stadler,	S.	C.,	&	Allis,	C.	D.	(2010).	Daxx	is	an	
H3.3-specific	 histone	 chaperone	 and	 cooperates	 with	 ATRX	 in	 replication-
independent	 chromatin	 assembly	 at	 telomeres.	 Proc	 Natl	 Acad	 Sci	 U	 S	 A,	
107(32),	14075-14080.	doi:10.1073/pnas.1008850107	



	

	

95	

																																																																																						
	

Li,	B.,	&	Dewey,	C.	N.	(2011).	RSEM:	accurate	transcript	quantification	from	RNA-Seq	
data	 with	 or	 without	 a	 reference	 genome.	 BMC	 Bioinformatics,	 12,	 323.	
doi:10.1186/1471-2105-12-323	

Li,	 F.,	 Su,	 Y.,	 Cheng,	 Y.,	 Jiang,	 X.,	 Peng,	 Y.,	 Li,	 Y.,	 .	 .	 .	 Ning,	 G.	 (2015).	 Conditional	
deletion	 of	 Men1	 in	 the	 pancreatic	 beta-cell	 leads	 to	 glucagon-expressing	
tumor	 development.	 Endocrinology,	 156(1),	 48-57.	 doi:10.1210/en.2014-
1433	

Li,	H.,	&	Durbin,	R.	 (2009).	Fast	 and	accurate	 short	 read	alignment	with	Burrows-
Wheeler	 transform.	 Bioinformatics,	 25(14),	 1754-1760.	
doi:10.1093/bioinformatics/btp324	

Li,	 J.,	 Ning,	 G.,	 &	 Duncan,	 S.	 A.	 (2000).	 Mammalian	 hepatocyte	 differentiation	
requires	the	transcription	factor	HNF-4alpha.	Genes	Dev,	14(4),	464-474.		

Lin,	 W.,	 Watanabe,	 H.,	 Peng,	 S.,	 Francis,	 J.	 M.,	 Kaplan,	 N.,	 Pedamallu,	 C.	 S.,	 .	 .	 .	
Meyerson,	 M.	 (2015).	 Dynamic	 epigenetic	 regulation	 by	 menin	 during	
pancreatic	 islet	 tumor	 formation.	 Mol	 Cancer	 Res,	 13(4),	 689-698.	
doi:10.1158/1541-7786.MCR-14-0457	

Linnoila,	 R.	 I.	 (2006).	 Functional	 facets	 of	 the	 pulmonary	 neuroendocrine	 system.	
Lab	Invest,	86(5),	425-444.	doi:10.1038/labinvest.3700412	

Love,	M.	I.,	Huber,	W.,	&	Anders,	S.	(2014).	Moderated	estimation	of	fold	change	and	
dispersion	 for	 RNA-seq	 data	 with	 DESeq2.	 Genome	 Biol,	 15(12),	 550.	
doi:10.1186/s13059-014-0550-8	

Lu,	J.,	Herrera,	P.	L.,	Carreira,	C.,	Bonnavion,	R.,	Seigne,	C.,	Calender,	A.,	.	.	.	Zhang,	C.	X.	
(2010).	Alpha	cell-specific	Men1	ablation	triggers	the	transdifferentiation	of	
glucagon-expressing	 cells	 and	 insulinoma	 development.	 Gastroenterology,	
138(5),	1954-1965.	doi:10.1053/j.gastro.2010.01.046	

Lundqvist,	M.,	&	Wilander,	E.	(1987).	A	study	of	the	histopathogenesis	of	carcinoid	
tumors	of	the	small	intestine	and	appendix.	Cancer,	60(2),	201-206.		

Mafficini,	A.,	&	Scarpa,	A.	(2018).	Genomic	landscape	of	pancreatic	neuroendocrine	
tumours:	the	International	Cancer	Genome	Consortium.	J	Endocrinol,	236(3),	
R161-R167.	doi:10.1530/JOE-17-0560	

Mansouri,	A.	(2012).	Development	and	regeneration	in	the	endocrine	pancreas.	ISRN	
Endocrinol,	2012,	640956.	doi:10.5402/2012/640956	

Marinoni,	I.,	Kurrer,	A.	S.,	Vassella,	E.,	Dettmer,	M.,	Rudolph,	T.,	Banz,	V.,	.	.	.	Perren,	A.	
(2014).	Loss	of	DAXX	and	ATRX	are	associated	with	chromosome	instability	
and	 reduced	 survival	 of	 patients	 with	 pancreatic	 neuroendocrine	 tumors.	
Gastroenterology,	146(2),	453-460	e455.	doi:10.1053/j.gastro.2013.10.020	

Miller,	 J.	A.,	Cai,	C.,	Langfelder,	P.,	Geschwind,	D.	H.,	Kurian,	S.	M.,	Salomon,	D.	R.,	&	
Horvath,	 S.	 (2011).	 Strategies	 for	 aggregating	 gene	 expression	 data:	 the	
collapseRows	 R	 function.	 BMC	 Bioinformatics,	 12,	 322.	 doi:10.1186/1471-
2105-12-322	

Modali,	 S.	 D.,	 Parekh,	 V.	 I.,	 Kebebew,	 E.,	 &	 Agarwal,	 S.	 K.	 (2015).	 Epigenetic	
regulation	 of	 the	 lncRNA	 MEG3	 and	 its	 target	 c-MET	 in	 pancreatic	
neuroendocrine	 tumors.	 Mol	 Endocrinol,	 29(2),	 224-237.	
doi:10.1210/me.2014-1304	

Modlin,	 I.	M.,	Shapiro,	M.	D.,	&	Kidd,	M.	 (2004).	Siegfried	Oberndorfer:	origins	and	
perspectives	of	carcinoid	tumors.	Hum	Pathol,	35(12),	1440-1451.		



	

	

96	

																																																																																						
	

Morris,	 T.	 J.,	 Butcher,	 L.	 M.,	 Feber,	 A.,	 Teschendorff,	 A.	 E.,	 Chakravarthy,	 A.	 R.,	
Wojdacz,	 T.	 K.,	 &	 Beck,	 S.	 (2014).	 ChAMP:	 450k	 Chip	 Analysis	Methylation	
Pipeline.	Bioinformatics,	30(3),	428-430.	doi:10.1093/bioinformatics/btt684	

Muraro,	M.	 J.,	Dharmadhikari,	 G.,	 Grun,	D.,	 Groen,	N.,	Dielen,	 T.,	 Jansen,	 E.,	 .	 .	 .	 van	
Oudenaarden,	 A.	 (2016).	 A	 Single-Cell	 Transcriptome	 Atlas	 of	 the	 Human	
Pancreas.	Cell	Syst,	3(4),	385-394	e383.	doi:10.1016/j.cels.2016.09.002	

Noguchi,	A.,	Li,	X.,	Kubota,	A.,	Kikuchi,	K.,	Kameda,	Y.,	Zheng,	H.,	.	.	.	Takano,	Y.	(2013).	
SIRT1	 expression	 is	 associated	 with	 good	 prognosis	 for	 head	 and	 neck	
squamous	 cell	 carcinoma	 patients.	 Oral	 Surg	 Oral	 Med	 Oral	 Pathol	 Oral	
Radiol,	115(3),	385-392.	doi:10.1016/j.oooo.2012.12.013	

Noguchi,	M.,	Sumiyama,	K.,	&	Morimoto,	M.	(2015).	Directed	Migration	of	Pulmonary	
Neuroendocrine	 Cells	 toward	 Airway	 Branches	 Organizes	 the	 Stereotypic	
Location	 of	 Neuroepithelial	 Bodies.	 Cell	 Rep,	 13(12),	 2679-2686.	
doi:10.1016/j.celrep.2015.11.058	

Oronsky,	B.,	Ma,	P.	C.,	Morgensztern,	D.,	&	Carter,	C.	A.	(2017).	Nothing	But	NET:	A	
Review	of	Neuroendocrine	Tumors	and	Carcinomas.	Neoplasia,	19(12),	991-
1002.	doi:10.1016/j.neo.2017.09.002	

Pal,	S.	K.,	Agarwal,	N.,	Boorjian,	S.	A.,	Hahn,	N.	M.,	Siefker-Radtke,	A.	O.,	Clark,	P.	E.,	&	
Plimack,	 E.	 R.	 (2016).	 National	 Comprehensive	 Cancer	 Network	
Recommendations	on	Molecular	Profiling	of	Advanced	Bladder	Cancer.	J	Clin	
Oncol,	34(27),	3346-3348.	doi:10.1200/JCO.2016.68.1429	

Park,	J.	K.,	Paik,	W.	H.,	Lee,	K.,	Ryu,	J.	K.,	Lee,	S.	H.,	&	Kim,	Y.	T.	(2017).	DAXX/ATRX	
and	 MEN1	 genes	 are	 strong	 prognostic	 markers	 in	 pancreatic	
neuroendocrine	 tumors.	 Oncotarget,	 8(30),	 49796-49806.	
doi:10.18632/oncotarget.17964	

Pelosi,	G.,	Papotti,	M.,	Rindi,	G.,	&	Scarpa,	A.	(2014).	Unraveling	tumor	grading	and	
genomic	 landscape	 in	 lung	 neuroendocrine	 tumors.	 Endocr	 Pathol,	 25(2),	
151-164.	doi:10.1007/s12022-014-9320-0	

Pelosi,	 G.,	 Rindi,	 G.,	 Travis,	 W.	 D.,	 &	 Papotti,	 M.	 (2014).	 Ki-67	 antigen	 in	 lung	
neuroendocrine	tumors:	unraveling	a	role	in	clinical	practice.	J	Thorac	Oncol,	
9(3),	273-284.	doi:10.1097/JTO.0000000000000092	

Pelosi,	G.,	Rodriguez,	J.,	Viale,	G.,	&	Rosai,	J.	(2005).	Typical	and	atypical	pulmonary	
carcinoid	tumor	overdiagnosed	as	small-cell	carcinoma	on	biopsy	specimens:	
a	major	pitfall	 in	the	management	of	 lung	cancer	patients.	Am	J	Surg	Pathol,	
29(2),	179-187.		

Reich,	 M.,	 Liefeld,	 T.,	 Gould,	 J.,	 Lerner,	 J.,	 Tamayo,	 P.,	 &	 Mesirov,	 J.	 P.	 (2006).	
GenePattern	2.0.	Nat	Genet,	38(5),	500-501.	doi:10.1038/ng0506-500	

Rekhtman,	 N.,	 Pietanza,	 C.	 M.,	 Sabari,	 J.,	 Montecalvo,	 J.,	 Wang,	 H.,	 Habeeb,	 O.,	 .	 .	 .	
Joubert,	 P.	 (2018).	 Pulmonary	 large	 cell	 neuroendocrine	 carcinoma	 with	
adenocarcinoma-like	features:	napsin	A	expression	and	genomic	alterations.	
Mod	Pathol,	31(1),	111-121.	doi:10.1038/modpathol.2017.110	

Sachithanandan,	 N.,	 Harle,	 R.	 A.,	 &	 Burgess,	 J.	 R.	 (2005).	 Bronchopulmonary	
carcinoid	 in	multiple	 endocrine	 neoplasia	 type	 1.	 Cancer,	 103(3),	 509-515.	
doi:10.1002/cncr.20825	

Sadanandam,	A.,	Wullschleger,	S.,	Lyssiotis,	C.	A.,	Grotzinger,	C.,	Barbi,	S.,	Bersani,	S.,	.	
.	 .	 Hanahan,	 D.	 (2015).	 A	 Cross-Species	 Analysis	 in	 Pancreatic	



	

	

97	

																																																																																						
	

Neuroendocrine	 Tumors	 Reveals	 Molecular	 Subtypes	 with	 Distinctive	
Clinical,	 Metastatic,	 Developmental,	 and	 Metabolic	 Characteristics.	 Cancer	
Discov,	5(12),	1296-1313.	doi:10.1158/2159-8290.CD-15-0068	

Sathirapongsasuti,	J.	F.,	Lee,	H.,	Horst,	B.	A.,	Brunner,	G.,	Cochran,	A.	J.,	Binder,	S.,	.	.	.	
Nelson,	 S.	 F.	 (2011).	 Exome	 sequencing-based	 copy-number	 variation	 and	
loss	 of	 heterozygosity	 detection:	 ExomeCNV.	 Bioinformatics,	 27(19),	 2648-
2654.	doi:10.1093/bioinformatics/btr462	

Scarpa,	A.,	Chang,	D.	K.,	Nones,	K.,	Corbo,	V.,	Patch,	A.	M.,	Bailey,	P.,	.	.	.	Grimmond,	S.	
M.	(2017).	Whole-genome	landscape	of	pancreatic	neuroendocrine	tumours.	
Nature,	543(7643),	65-71.	doi:10.1038/nature21063	

Scherubl,	 H.,	 Streller,	 B.,	 Stabenow,	 R.,	 Herbst,	 H.,	 Hopfner,	M.,	 Schwertner,	 C.,	 .	 .	 .	
Zappe,	 S.	 M.	 (2013).	 Clinically	 detected	 gastroenteropancreatic	
neuroendocrine	tumors	are	on	the	rise:	epidemiological	changes	in	Germany.	
World	J	Gastroenterol,	19(47),	9012-9019.	doi:10.3748/wjg.v19.i47.9012	

Schimmack,	 S.,	 Svejda,	 B.,	 Lawrence,	 B.,	 Kidd,	 M.,	 &	 Modlin,	 I.	 M.	 (2011).	 The	
diversity	 and	 commonalities	 of	 gastroenteropancreatic	 neuroendocrine	
tumors.	Langenbecks	Arch	Surg,	396(3),	 273-298.	 doi:10.1007/s00423-011-
0739-1	

Schnorbusch,	 K.,	 Lembrechts,	 R.,	 Pintelon,	 I.,	 Timmermans,	 J.	 P.,	 Brouns,	 I.,	 &	
Adriaensen,	D.	(2013).	GABAergic	signaling	in	the	pulmonary	neuroepithelial	
body	microenvironment:	 functional	 imaging	 in	GAD67-GFP	mice.	Histochem	
Cell	Biol,	140(5),	549-566.	doi:10.1007/s00418-013-1093-x	

Shen,	H.	C.,	He,	M.,	Powell,	A.,	Adem,	A.,	Lorang,	D.,	Heller,	C.,	.	.	.	Libutti,	S.	K.	(2009).	
Recapitulation	 of	 pancreatic	 neuroendocrine	 tumors	 in	 human	 multiple	
endocrine	neoplasia	type	I	syndrome	via	Pdx1-directed	inactivation	of	Men1.	
Cancer	Res,	69(5),	1858-1866.	doi:10.1158/0008-5472.CAN-08-3662	

Shen,	H.	C.,	Ylaya,	K.,	Pechhold,	K.,	Wilson,	A.,	Adem,	A.,	Hewitt,	S.	M.,	&	Libutti,	S.	K.	
(2010).	Multiple	endocrine	neoplasia	type	1	deletion	in	pancreatic	alpha-cells	
leads	 to	 development	 of	 insulinomas	 in	mice.	Endocrinology,	151(8),	 4024-
4030.	doi:10.1210/en.2009-1251	

Simbolo,	M.,	Mafficini,	A.,	Sikora,	K.	O.,	Fassan,	M.,	Barbi,	S.,	Corbo,	V.,	 .	 .	 .	Scarpa,	A.	
(2017).	 Lung	 neuroendocrine	 tumours:	 deep	 sequencing	 of	 the	 four	World	
Health	 Organization	 histotypes	 reveals	 chromatin-remodelling	 genes	 as	
major	 players	 and	 a	 prognostic	 role	 for	 TERT,	 RB1,	 MEN1	 and	 KMT2D.	 J	
Pathol,	241(4),	488-500.	doi:10.1002/path.4853	

Subramanian,	A.,	Tamayo,	P.,	Mootha,	V.	K.,	Mukherjee,	S.,	Ebert,	B.	L.,	Gillette,	M.	A.,	.	
.	 .	 Mesirov,	 J.	 P.	 (2005).	 Gene	 set	 enrichment	 analysis:	 a	 knowledge-based	
approach	 for	 interpreting	 genome-wide	 expression	 profiles.	Proc	Natl	Acad	
Sci	U	S	A,	102(43),	15545-15550.	doi:10.1073/pnas.0506580102	

Swarts,	D.	R.,	van	Suylen,	R.	J.,	den	Bakker,	M.	A.,	van	Oosterhout,	M.	F.,	Thunnissen,	
F.	B.,	Volante,	M.,	.	.	.	Speel,	E.	J.	(2014).	Interobserver	variability	for	the	WHO	
classification	of	pulmonary	carcinoids.	Am	J	Surg	Pathol,	38(10),	1429-1436.	
doi:10.1097/PAS.0000000000000300	

Taal,	 B.	 G.,	 &	 Visser,	 O.	 (2004).	 Epidemiology	 of	 neuroendocrine	 tumours.	
Neuroendocrinology,	80	Suppl	1,	3-7.	doi:10.1159/000080731	



	

	

98	

																																																																																						
	

Tang,	L.	H.,	Basturk,	O.,	Sue,	J.	J.,	&	Klimstra,	D.	S.	(2016).	A	Practical	Approach	to	the	
Classification	 of	 WHO	 Grade	 3	 (G3)	 Well-differentiated	 Neuroendocrine	
Tumor	(WD-NET)	and	Poorly	Differentiated	Neuroendocrine	Carcinoma	(PD-
NEC)	 of	 the	 Pancreas.	 Am	 J	 Surg	 Pathol,	 40(9),	 1192-1202.	
doi:10.1097/PAS.0000000000000662	

Tang,	 L.	H.,	&	Klimstra,	D.	 S.	 (2011).	 Conundrums	 and	Caveats	 in	Neuroendocrine	
Tumors	 of	 the	 Pancreas.	 Surg	 Pathol	 Clin,	 4(2),	 589-624.	
doi:10.1016/j.path.2011.03.003	

Tang,	L.	H.,	Untch,	B.	R.,	Reidy,	D.	L.,	O'Reilly,	E.,	Dhall,	D.,	 Jih,	L.,	 .	 .	 .	Klimstra,	D.	S.	
(2016).	Well-Differentiated	Neuroendocrine	Tumors	with	a	Morphologically	
Apparent	 High-Grade	 Component:	 A	 Pathway	 Distinct	 from	 Poorly	
Differentiated	 Neuroendocrine	 Carcinomas.	 Clin	 Cancer	 Res,	 22(4),	 1011-
1017.	doi:10.1158/1078-0432.CCR-15-0548	

Travis,	W.	D.,	Brambilla,	E.,	Nicholson,	A.	G.,	Yatabe,	Y.,	Austin,	J.	H.	M.,	Beasley,	M.	B.,	
.	.	.	Panel,	W.	H.	O.	(2015).	The	2015	World	Health	Organization	Classification	
of	 Lung	Tumors:	 Impact	 of	 Genetic,	 Clinical	 and	Radiologic	 Advances	 Since	
the	 2004	 Classification.	 J	 Thorac	 Oncol,	 10(9),	 1243-1260.	
doi:10.1097/JTO.0000000000000630	

Travis,	W.	D.,	Rush,	W.,	Flieder,	D.	B.,	Falk,	R.,	Fleming,	M.	V.,	Gal,	A.	A.,	&	Koss,	M.	N.	
(1998).	 Survival	 analysis	 of	 200	 pulmonary	 neuroendocrine	 tumors	 with	
clarification	of	criteria	 for	atypical	carcinoid	and	its	separation	from	typical	
carcinoid.	Am	J	Surg	Pathol,	22(8),	934-944.		

Valdes,	N.,	Alvarez,	V.,	Diaz-Cadorniga,	F.,	Aller,	J.,	Villazon,	F.,	Garcia,	I.,	 .	 .	 .	Coto,	E.	
(1998).	 Multiple	 endocrine	 neoplasia	 type	 1	 (MEN1):	 LOH	 studies	 in	 a	
affected	family	and	in	sporadic	cases.	Anticancer	Res,	18(4A),	2685-2689.		

van	den	Bent,	M.	J.	(2010).	Interobserver	variation	of	the	histopathological	diagnosis	
in	clinical	trials	on	glioma:	a	clinician's	perspective.	Acta	Neuropathol,	120(3),	
297-304.	doi:10.1007/s00401-010-0725-7	

Van	 Lommel,	 A.	 (2001).	 Pulmonary	 neuroendocrine	 cells	 (PNEC)	 and	
neuroepithelial	 bodies	 (NEB):	 chemoreceptors	 and	 regulators	 of	 lung	
development.	Paediatr	Respir	Rev,	2(2),	171-176.		

Verckist,	 L.,	 Lembrechts,	 R.,	 Thys,	 S.,	 Pintelon,	 I.,	 Timmermans,	 J.	 P.,	 Brouns,	 I.,	 &	
Adriaensen,	 D.	 (2017).	 Selective	 gene	 expression	 analysis	 of	 the	
neuroepithelial	 body	 microenvironment	 in	 postnatal	 lungs	 with	 special	
interest	 for	 potential	 stem	 cell	 characteristics.	 Respir	 Res,	 18(1),	 87.	
doi:10.1186/s12931-017-0571-4	

Vinik,	A.	 I.,	 Silva,	M.	 P.,	Woltering,	 E.	A.,	 Go,	 V.	 L.,	Warner,	R.,	&	Caplin,	M.	 (2009).	
Biochemical	 testing	 for	 neuroendocrine	 tumors.	 Pancreas,	 38(8),	 876-889.	
doi:10.1097/MPA.0b013e3181bc0e77	

Vinik,	A.	I.,	Woltering,	E.	A.,	Warner,	R.	R.,	Caplin,	M.,	O'Dorisio,	T.	M.,	Wiseman,	G.	A.,	
.	 .	 .	 North	 American	Neuroendocrine	 Tumor,	 S.	 (2010).	 NANETS	 consensus	
guidelines	for	the	diagnosis	of	neuroendocrine	tumor.	Pancreas,	39(6),	713-
734.	doi:10.1097/MPA.0b013e3181ebaffd	

Volante,	 M.,	 Gatti,	 G.,	 &	 Papotti,	 M.	 (2015).	 Classification	 of	 lung	 neuroendocrine	
tumors:	lights	and	shadows.	Endocrine,	50(2),	315-319.	doi:10.1007/s12020-
015-0578-x	



	

	

99	

																																																																																						
	

Vollbrecht,	C.,	Werner,	R.,	Walter,	R.	F.,	Christoph,	D.	C.,	Heukamp,	L.	C.,	Peifer,	M.,	.	.	.	
Mairinger,	 F.	 D.	 (2015).	 Mutational	 analysis	 of	 pulmonary	 tumours	 with	
neuroendocrine	 features	 using	 targeted	 massive	 parallel	 sequencing:	 a	
comparison	 of	 a	 neglected	 tumour	 group.	Br	 J	Cancer,	113(12),	 1704-1711.	
doi:10.1038/bjc.2015.397	

Waldum,	H.	L.,	Oberg,	K.,	Sordal,	O.	F.,	Sandvik,	A.	K.,	Gustafsson,	B.	I.,	Mjones,	P.,	&	
Fossmark,	R.	 (2018).	Not	only	stem	cells,	but	also	mature	cells,	particularly	
neuroendocrine	cells,	may	develop	 into	 tumours:	 time	 for	a	paradigm	shift.	
Therap	 Adv	 Gastroenterol,	 11,	 1756284818775054.	
doi:10.1177/1756284818775054	

Walter,	 D.,	 Harter,	 P.	 N.,	 Battke,	 F.,	Winkelmann,	 R.,	 Schneider,	 M.,	 Holzer,	 K.,	 .	 .	 .	
Waidmann,	 O.	 (2018).	 Genetic	 heterogeneity	 of	 primary	 lesion	 and	
metastasis	 in	 small	 intestine	 neuroendocrine	 tumors.	 Sci	 Rep,	 8(1),	 3811.	
doi:10.1038/s41598-018-22115-0	

Wang,	 Y.	 J.,	 Schug,	 J.,	Won,	 K.	 J.,	 Liu,	 C.,	 Naji,	 A.,	 Avrahami,	 D.,	 .	 .	 .	 Kaestner,	 K.	 H.	
(2016).	 Single-Cell	 Transcriptomics	 of	 the	 Human	 Endocrine	 Pancreas.	
Diabetes,	65(10),	3028-3038.	doi:10.2337/db16-0405	

Wang,	 Z.	 J.,	 Yang,	 J.	 L.,	Wang,	 Y.	 P.,	 Lou,	 J.	 Y.,	 Chen,	 J.,	 Liu,	 C.,	 &	 Guo,	 L.	 D.	 (2013).	
Decreased	histone	H2B	monoubiquitination	 in	malignant	gastric	carcinoma.	
World	J	Gastroenterol,	19(44),	8099-8107.	doi:10.3748/wjg.v19.i44.8099	

Warden,	 C.	D.,	 Lee,	H.,	 Tompkins,	 J.	D.,	 Li,	 X.,	Wang,	 C.,	 Riggs,	A.	D.,	 .	 .	 .	 Yuan,	 Y.	 C.	
(2013).	 COHCAP:	 an	 integrative	 genomic	 pipeline	 for	 single-nucleotide	
resolution	 DNA	 methylation	 analysis.	 Nucleic	 Acids	 Res,	 41(11),	 e117.	
doi:10.1093/nar/gkt242	

Wei,	Y.,	Xia,	W.,	Zhang,	Z.,	Liu,	J.,	Wang,	H.,	Adsay,	N.	V.,	.	.	.	Hung,	M.	C.	(2008).	Loss	of	
trimethylation	at	 lysine	27	of	histone	H3	 is	 a	predictor	of	poor	outcome	 in	
breast,	 ovarian,	 and	 pancreatic	 cancers.	 Mol	 Carcinog,	 47(9),	 701-706.	
doi:10.1002/mc.20413	

Welin,	 S.,	 Stridsberg,	M.,	 Cunningham,	 J.,	 Granberg,	 D.,	 Skogseid,	 B.,	 Oberg,	 K.,	 .	 .	 .	
Janson,	E.	T.	(2009).	Elevated	plasma	chromogranin	A	is	the	first	indication	of	
recurrence	 in	 radically	 operated	 midgut	 carcinoid	 tumors.	
Neuroendocrinology,	89(3),	302-307.	doi:10.1159/000179900	

Wiedenmann,	 B.,	 &	 Huttner,	 W.	 B.	 (1989).	 Synaptophysin	 and	
chromogranins/secretogranins--widespread	constituents	of	distinct	types	of	
neuroendocrine	vesicles	and	new	tools	 in	 tumor	diagnosis.	Virchows	Arch	B	
Cell	Pathol	Incl	Mol	Pathol,	58(2),	95-121.		

Williams,	E.	D.,	&	Sandler,	M.	(1963).	The	classification	of	carcinoid	tum	ours.	Lancet,	
1(7275),	238-239.		

Yao,	 J.	 C.,	 Hassan,	M.,	 Phan,	 A.,	 Dagohoy,	 C.,	 Leary,	 C.,	Mares,	 J.	 E.,	 .	 .	 .	 Evans,	D.	 B.	
(2008).	One	hundred	years	after	"carcinoid":	epidemiology	of	and	prognostic	
factors	for	neuroendocrine	tumors	in	35,825	cases	in	the	United	States.	J	Clin	
Oncol,	26(18),	3063-3072.	doi:10.1200/JCO.2007.15.4377	

Yokoyama,	A.,	Somervaille,	T.	C.,	Smith,	K.	S.,	Rozenblatt-Rosen,	O.,	Meyerson,	M.,	&	
Cleary,	 M.	 L.	 (2005).	 The	 menin	 tumor	 suppressor	 protein	 is	 an	 essential	
oncogenic	 cofactor	 for	 MLL-associated	 leukemogenesis.	 Cell,	 123(2),	 207-
218.	doi:10.1016/j.cell.2005.09.025	



	

	

100	

																																																																																						
	

Yoshihara,	 K.,	 Shahmoradgoli,	M.,	Martinez,	 E.,	 Vegesna,	 R.,	 Kim,	H.,	 Torres-Garcia,	
W.,	 .	 .	 .	 Verhaak,	 R.	 G.	 (2013).	 Inferring	 tumour	 purity	 and	 stromal	 and	
immune	 cell	 admixture	 from	 expression	 data.	 Nat	 Commun,	 4,	 2612.	
doi:10.1038/ncomms3612	

 

	


