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ABSTRACT OF THE DISSERTATION

Optimization in Sparse Learning: from Convexity to

Non-Convexity

by Bo Liu

Dissertation Director: Professor Dimitris N. Metaxas

Nowadays, the explosive data scale increase provides an unprecedented opportunity to
apply machine learning methods in various application domains. The high-dimension
data representation proposes curse of dimension challenge to machine learning models.
Sparse model offers a tool that can alleviate this challenge by learning a low-dimension
feature and model representation. Traditionally, the sparse model is learned by pe-
nalizing the £;-norm of the model parameter in optimization. Recent sparse model
learning research is studying more accurate way of modeling the sparsity degree as pri-
or knowledge, representative work includes k-support norm regularized minimization
and {y-constrained minimization.

If the training loss is convex, minimizing the training loss with model parameter
k-support-norm regularizer is still a convex optimization problem. In chapter 2 we
introduce the proposed fully corrective Frank-Wolfe type algorithm, called k-FCFW,
for k-support-norm regularized sparse model learning. We reformulate the regularized
minimization into a constrained minimization task, then the the proposed algorithm is
applied to solve the reformulated problem. In this work we compare the per-iteration
complexity of the proposed k-FCFW algorithm with proximal gradient algorithm, which

is conventionally used to solve the original problem. One theoretical contribution is
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that we establish a linear convergence for the proposed algorithm under some standard
assumptions.

The model parameter fg-norm can be directly used as constraint in the learning
objective. However, in this condition even if training loss is convex, the problem is non-
convex and NP-hard because of the p-norm constraint. To obtain a tradeoff between
model solving accuracy and efficiency, several primal domain greedy algorithms have
been proposed. The algorithm properties such as model estimation error upper bound
and support recovery are analyzed in literature. In chapter 3 we introduce the proposed
dual space algorithm for the sparsity-constrained fs-norm regularized finite sum loss
minimization problem. The sparse duality theory established in this work sets up the
sufficient and necessary conditions under which the original non-convex problem can
be equivalently solved in a concave dual formulation. The dual iterative hardthresh-
olding (DIHT) algorithm and its stochastic variant are proved to be able to recover the
parameter support without the Restricted Isometry Property (RIP) condition.

Distributed optimization algorithm is used for learning a global optimal model when
training samples locate on different machines. Communication efficiency is one impor-
tant concern in distributed model training algorithm design. Chapter 4 elaborates the
proposed Newton-type inexact pursuit algorithm for the fyp-constrained empirical risk
minimization problem. The proposed algorithm iterates between inexactly solving a
local sparse learning problem with existing single machine algorithms, and communi-
cating gradient and model parameter between master machine and worker machines.
Algorithm analysis shows the model estimation error upper bound has linear conver-
gence rate.

In the last part, we conclude this dissertation and present the future direction of

sparse model learning research.
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Chapter 1

Introduction

1.1 Background

Powerful machine learning models and large-scale training data motivate the rapid
popularization of Al method in various areas such as data science, computer vision
and natural language processing. The explosive model complexity and training data
scale increase propose an urgent requirement for efficient model training algorithms.
Optimization algorithm design for model training, as one of the fundamental issue in
machine learning research, keeps on getting extensive attention from academia and
industry.

Many machine learning problems can be generalized into solving the following min-

imization problem:

min F'(w; X,Y) (1.1.1)
w

where X = {:c,}fil,x, € RP denotes the feature representation of training samples;
Y = {y:})¥,y: € R denotes the corresponding labels; w denotes the model parameters

to be learned and F'(-) is proper training loss, such as square loss for regression
1
F(w7 37@:3/1) = 5(2/1 - wai)27
or logistic loss for binary classification, when y; € {—1,1}, that is

F(w;x;,y;) = log (1 + exp(—yinmi)> .

The real world data, such as text and image, usually have high dimension feature
representation. If the feature dimensionality significantly outnumbers training sample,
the trained model is very likely to be overfitting. However, this high dimension feature

representation is usually redundant. The feature redundancy gives us the chance to



find a low dimension feature and model representation. Sparse model learning, which
aims to discover such a low dimension representation, has been demonstrated as an
effective way to alleviate the model overfitting challenge. Apart from alleviating the
model overfitting, sparse model also has other desirable properties, such as better model
interpretability, running time efficiency in testing and model storage benefits.

The popular method that learns a sparse model used to be modeling ¢;-norm of

model parameter w as a regularizer or constraint in the objective optimization, that is,
min F(w; X,Y) + A||wl)1 (1.1.2)
w

or

min F'(w; X,Y) subject to |Jw|; < ¢ (1.1.3)
w

where A and c¢ are pre-defined hyper-parameters. These convex relaxation based meth-
ods are prone to introduce parameter estimation bias [97]. More recently, several alter-
native methods are proposed. Those methods can more accurately model the parameter
sparsity degree as prior knowledge. Taking the linear model (e.g. linear regression) pa-
rameterized by w € R? as example, we hope that the learned sparse model has only
k < p non-zero entries. In [2], k-support norm [jw||;” is proposed and used as a regu-

larizer to encourage the solution of w has k non-zero entries, the objective is
min F(w; X,Y) + A(JJw||)?. (1.1.4)
w

The k-support norm is shown to be a tighter convex relaxation of £p-norm compared
to £1-norm. Alternatively, we can directly solve the £y-constrained minimization prob-

lem [93, 41], that is
min F'(w; X,Y) subject to [Jw|o < k. (1.1.5)
w

In this dissertation, I will introduce my research on optimization algorithm design
and analysis for sparse model learning problems. The sparse model learning objective
includes optimizing convex model with ||w||;” regularizer as well as the model learning
with parameter cardinality constraint. In addition to the proposed single machine al-

gorithms, I will also introduce our recent research progress in communication efficient



distributed sparse model learning. The designed algorithm targeted for each specif-
ic problem significantly improves the model training efficiency compared to baseline

algorithms.

1.2 Thesis Organization

The following of this dissertation is organized as follows:

In chapter 2, I will introduce the proposed Frank-Wolfe type algorithm for the k-
support-norm regularized model learning task. The k-support-norm is proposed in [2].
It is used as a tighter convex relaxation of model parameter £p-norm than £;-norm in
regularized sparse model learning problems [19]. The traditional method that solves

the k-support-norm regularized minimization problem
min F(w, X,Y) + )\(Hszp)Q
w

is based on the proximal gradient algorithm, which has large computational cost, espe-
cially for high dimension model learning task. We propose a Frank-Wolfe type algorithm
which has shown to have cheaper per-iteration computational cost and linear conver-
gence rate. Both of the algorithm analysis and experiment results verify the superior
efficiency of the proposed algorithm.

Chapter 3 is about our research on developing dual method for £p-constrained min-
imization problem. With the model sparsity degree as prior knowledge, we consider
minimizing the fyg-constrained empirical risk plus the ¢3-norm model parameter regu-

larizer, which is defined as:
1 & A
mu%nﬁ z;f(w;xi,yi) + §||w]|2 subject to |lwl|lo < k (1.2.1)
1=

where f(-) is convex training loss, {z;, %}, 7 € RP,y; € R are training samples.
Iterative Hard Thresholding (IHT) is a popular class of first-order greedy selection
methods among existing methods [93, 41]. Different from existing IHT-type algorithms
that solves the problem in primal domain, our research explores solving (1.2.1) in dual
space. We first establish a duality theory for fo-regularized sparse finite-sum minimiza-

tion. Based on the theory, Dual Iterative Hard Thresholding (DIHT) algorithm and



its stochastic variant are proposed. Numerical experiments verify the sparse duality
theory and higher efficiency of the proposed dual algorithms in sparse SVM-type model
learning tasks.

In chapter 4, I will introduce the proposed distributed optimization algorithm for
the fp-constrained empirical risk minimization problem. In this problem setting, the
training samples are distributed on multiple machines. Although each machine can
learn a local optimal model parameter based on its local training samples, the task is
to learn a global model parameter based on all training samples. The proposed method
alternates between local inexact optimization of a Newton-type approximation and cen-
tralized global results aggregation. Theoretical analysis shows that for a general class
of convex functions with Lipschitze continuous Hessian, the method converges linear-
ly with contraction factor scaling inversely with data size; whilst the communication
complexity required to reach desirable statistical accuracy scales logarithmically with
the number of machines for some popular statistical learning models. For non-convex
objective functions, our method can still be shown to converge globally. Numerical
results on convex and non-convex model training tasks confirm the high efficiency of
our method.

In chapter 5, I conclude this dissertation and discuss some future work of sparse

learning research.



Chapter 2

k-Support Norm Regularized Minimization via
Frank-Wolfe Method

2.1 Introduction

In many machine learning problems, it is common that the number of collected samples
is substantially smaller than the dimensionality of the feature, implying that consistent
estimators cannot be used unless additional assumptions are imposed on the model. One
of the widely acknowledged prior assumptions is that the data exhibit low-dimensional
structure, which can often be captured by imposing sparsity constraint on the model
parameter space. Sparsity is typically obtained by regularizing the goodness of fit with
sparsity inducing regularizer. However, as this typically leads to nonconvex optimiza-
tion problems with high computational demands, the standard approach is to replace
and relax these regularizers with convex surrogates for cardinality.

The most widely used regularizer is the ¢;-norm which is justified as the convex
envelope of the cardinality fp-norm (i.e., number of non zero elements in a vector) on
the {so-norm unit ball [2]. The ¢;-norm, however, tends to shrink excessive number of
variables to zeros, regardless the potential correlation among the variables. In order to
alleviate such an over-shrinkage issue of ¢1-norm, numerous methods including elastic
net [101], pairwise elastic net [63], trace Lasso [29] and OSCAR [12] have been proposed
in literature. All of these methods tend to smooth the output parameters by averaging
similar features rather than selecting out a single one. More recently, k-support-norm
| - |I;¥ is proposed as a new alternative that provides the tightest convex relaxation of
cardinality on the Euclidean norm unit ball [2]. The intuition is that in certain instances
it might be reasonable to expect that not only the number of non-zero variable entry

is bounded, but also the variable has bound on its Euclidean norm as well. Formally,



the k-support-norm of a vector w € RP is defined as

[Jw]l;” := min Z [vgll2 = supp(vg) C g, w = Z Vg ¢ s

9€Gk g€k
where Gy, denotes the set of all subsets of {1,2,...,p} of cardinality at most k. It is

shown in [2] that the value of ||w||;” can be computed through

k—j—1 p
lolli =1 D (wl)? Z wih)* |
i=1 i=k—j
where |w[zi denotes the i-th largest element in |w| and |w\$ is assumed to be +oo.
P
j€{0,1,...,k — 1} satisfies |w\k > ]H > |w|li > \w|i_j. More properties of
i=k—j

k-support-norm are analyzed in [2].

As a regularizer, the k-support-norm is characterized by simultaneously selecting a
few relevant groups and penalizing the fo-norm of the selected individual groups. The
following k-support-norm regularized model is considered in [2] for sparse prediction
tasks:

mui)nF(w)—f—A(||wHZp)2, (2.1.1)

where F'(w) is a convex and differentiable objective function parameterized by w. The
parameter k is regarded as an upper bound estimation of the number of non-zero ele-
ments in w. It has been shown that this model leads to improved learning guarantees as
well as better algorithmic stability. As an extreme case with k£ = 1, the problem (2.1.1)
reduces to the squared /;-norm regularized minimization problem known as exclusive
Lasso [100]. In another extreme case with k& = p, the problem (2.1.1) reduces to ridge

regression.

2.1.1 Challenge and Motivation

One challenge that hinders the applicability of the k-support-norm regularized mod-
el (2.1.1) is its high computational complexity in large scale settings. Indeed, proximal
gradient methods are conventionally used for optimizing the composite minimization
problem in (2.1.1) [2, 49, 24]. Given the gradient vector, the per-iteration computa-

tional cost of proximal gradient methods is dominated by an proximity operator of the



following form:

w :argm1n§||w—v||%—|—)\(||w||zp)2. (2.1.2)
w

In the pioneering work of [2], an exhaustive search strategy with O(p(k + logp)) com-
plexity is proposed to compute the above proximal operator, which is computationally
expensive. Despite significant speed-ups have been reported in [19, 24], those meth-
ods are still exhaustive in nature and could be expensive for huge scale problems with
relatively large sparsity parameter k.

It has been known that the k-support-norm ball By := {w € RP : w7 < r}is

equivalent to the convex hull of the following set of cardinality and f2-norm constraint:
2
e = {w e RP ¢ Jwllo < kw2 < ).
That is,

B = coc2) = { 3 auwan =0, Yo =1
(2) w
weck,r

In this sense, k-support-norm ball BEsP provides a convex envelope of the nonconvex

set C,(fg, which is referred to as the coreset of BX*P.

2.1.2 Contributions

In this chapter we will show that, compared to the existing methods that solves the
regularized formulation (2.1.1) though proximal gradient based methods, the proposed
fully corrective Frank-Wolfe based method is more convenient and efficient in sense of
optimization. Omne important reason is that the constrained formulation the convex
hull structure of the k-support-norm ball suggests extremely simple gradient projection
operation. We name the proposed algorithm as k-FCFW in the following context.
The original Frank-Wolfe method is designed to solve the constrained minimization
problem. In our method, by introducing an augmented variable as the bound of k-
support regularization ||w||;” to (2.1.1), the regularized objective is converted into a
constrained minimization problem. The two model parameters are iteratively optimized
by a fully corrective variant of the Frank-Wolfe algorithm. Theoretical analysis is

conducted to establish the converge rate and model estimation error of the proposed



algorithm. Particularly, we prove that the proposed algorithm converges linearly under
proper conditions, which is stronger than the sublinear convergence rate proved in [32]
for norm regularized minimization problem. We further discuss the extension of the
proposed algorithm in low-rank introducing problem and show that it has obvious
computational cost advantage. Experimental results on various forms of loss function

demonstrate the superior efficiency of the proposed algorithm.

2.1.3 Organization

The remaining of this chapter is organized as follows: In §2.2 we briefly review some
properties and related work of k-support-norm, k-support-norm regularized proximal
operator and the forward greedy selection algorithms for sparsity constrained optimiza-
tion. In §2.3 we present our k-support-norm constrained minimization problem and two
forward greedy selection algorithms for optimization. In §2.4 we access the performance
of the proposed model and algorithms on a number of benchmark datasets. Finally, in

§2.5 we conclude this paper and prospect the future work.

2.2 Related Work

In this section we briefly review some previous literatures on k-support-norm and the

Frank-Wolfe method for optimization.

2.2.1 k-Support Norm Regularized Minimization

Using k-support-norm enables us with the flexibility of controlling the cardinality of
solution by setting the value of k. In [67], box norm is proposed based as an extension of
k-support-norm. Multiple k-support-norm regularized convex models are investigated
in [9]. The applications of k-support-norm in various computer vision problems have
been explored in [19]. In [17], the k-support norm is applied in generalized dantzig se-
lector for linear model. The authors of [3] show that it is helpful to use k-support-norm
regularization in fMRI data analysis including classification, regression and data visual-

ization task. In [7], total variation penalty is incorporated in the k-support framework



and applied in image and neuroscience data analysis.

Most of the k-support norm related applications require to solve the regularized
minimization task (2.1.1). Proximal gradient algorithm [71] is the acknowledged state
of the art algorithm designed for solving (2.1.1). The proximal operator (2.1.2) has

been proved to have the following closed form solution [2]:

* j—

wy, = sign(vs,;)qi, i =1,...,p,

where vg, is the i-th largest (in magnitude) entry of v and

25vs, i=1,2,..k—r—1
R Zl: Us;
=N gy — k] ’
i l—k+(B+1)r+4+1
0 i=1+1,..,p

in which 8 = 2\, r and [ are integers satisfying

l
1 D 1
Br1Vsk—r—1 = TRI(BIDriAT1 = AriVsk-r
!
> Us;
i=k—r >

Usi 2 (BT DriL+1 = Ysin
The major computational cost of the above proximal operator lies in how to find integers
r and [. In [2], an exhaustive search method with O(p(k + logp)) complexity was used
to find r and [. In [19], a binary search strategy with O((p + k)logp) complexity was
proposed to find I, which has been shown to be much more efficient and scalable than
exhaustive search in large scale problems. In [24], the authors explored the dual form of

k-support-norm and proposed to use a more efficient iterative binary searching method

to find the optimal integers r and I.

2.2.2 Frank-Wolfe Method

The history of Frank-Wolfe method dates back to [26] for polytope constrained op-
timization. It is also known as conditional gradient algorithm. Consider a compact
convex set S. The Frank-Wolfe method applies to solve the following constrained opti-
mization problem:

w* = argmin f(w) subject to w € S, (2.2.1)

w
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where f is assumed to be a real valued convex function.
Due to the potential of efficiency improvement when applied in solving minimization

problem with certain form of constraint, recently there is an increasing trend to revisit

and restudy this method [36, 27, 28]. Frank-Wolfe based methods have been developed
to solve some optimization problems such as structural SVM [18], trace norm regular-
ization problem [22] and atomic norm constrained problem [73]. In [32], the conditional

gradient methods are used to solve regularized convex optimization problems with spe-
cific forms of regularization including nuclear norm and total variation. However, this
method replies on an estimation of the bound of regularization, which is difficult to
obtain.

Many sparse model learning algorithm can be viewed as variants of Frank-Wolfe
method. Specifically, when the constraint set in (2.2.1) is a convex hull in S, i.e.,
w € co(S), where

S| S|
co(S) = Z%‘Uz’ Doy > O,Zozi =1lu, €8,
i=1 i=1

the sequential greedy approximation (SGA) method was proposed to find a sparse
approximate solution of (2.2.1). Recently, several variants of SGA, e.g., forward greedy
selection [80] and gradient Lasso [141] have been proposed in sparse learning. It has
also received significant interests in semi-definite program [33] and low-rank matrix
completion/approximation [38, 79, 96]. In the context of boosting classification, the
restricted gradient projection algorithms stated in [30] is essentially a forward greedy

selection method over fo-functional space.

2.3 The Fully Corrective Frank-Wolfe Method for k-Support Norm

Regularized Minimization

We consider using the class of Frank-Wolfe algorithm to solve the regularized mini-
mization problem (2.1.1). To this end, we first reformulate (2.1.1) into a constrained

optimization problem:

min G(w, ; A) := f(w) + A0 st (JwlliF)* <9, (2.3.1)

w,0
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Here 0 is an augmented variable bounding the term (||w|;” )2. We next introduce
the detail of k-FCFW algorithm. After that algorithm convergence and parameter

estimation error analysis is provided.

2.3.1 Algorithm Description

Algorithm 1: k-FCFW Algorithm for k-support norm regularized problem.

Initialization: set w(®) to be a k-sparse vector, 8©) = ||w©)||2, U = w(®,
V=00,

fort=1,2,...do
(S1) Compute V f(w*=1).

(S2) Solve the constrained linear problem

{u(t)’v(t)} = arg min<Vf(w(t71))7 u) + Av subject to (||u|]zp)2 <.
h (2.3.2)
(S3) Update U® = [Ut=D 4®] v = [yE=1 ).
Compute

o) = min FUDa) + AV Oq, (2.3.3)
aclg

where Ay = {a € R a0 >0, [Jaf; = 1};
(S4) Update
w®) =00 gl) = D)),

end

Output: w®.

The k-FCFW algorithm for k-support norm regularized minimization is outlined

in Algorithm 1. Since the k-support-norm ball |jw||;” < v is a convex hull of the set

C,(f) ={w € RP : ||lw|lo <k, |Jw|l2 < v}, it is trivial to derive that, given the optimal

\U

v > 0, the optimal u of (2.3.2) admits the following close-form solution:

VoV f(w=)
T et (2.34)

where V. f(w~) denotes a truncated version of V f(w(*~1)) with its top &k (in magni-

tude) entries preserved. By substituting this back to (2.3.2) we get that v() solves the
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following quadratic program:
v® = arg min — ||V, f(w®V)||[vv + Ao.
v>0
Obviously,

2
@ _ [ IVef @)
vl = ( o : (2.3.5)

and thus,

VD) 22

0 _ YOV ') Vif! V) (2.3.6)

At each time instance ¢, we keep a memory of all previous updates, that is

U0 = {0 4O 0},

VO = (9O 51 4@ 0y,

At the t-th iteration, the optimal value of w® and 6 are jointly searched on the
convex hull define by U®) and V®. The subproblem (2.3.3) of estimating a® is a
simplex constrained smooth minimization problem. The scale of such a problem is
dominated by the value of ¢t. This subproblem can be solved via some off-the-shelf
algorithms such as the projected quasi-Newton (PQN) method [77].

It is noteworthy that the subproblem (2.3.2) is equivalent to the following k-support-

norm regularized linear program:
u = arg min(V f(w® V), u) + A(JJull )2

This is different from the proximal gradient method which involves solving the quadratic
proximity operator (2.1.2) at each iteration. Apparently solving (2.3.2) is more efficient
than solving (2.1.2). When ¢ is of moderate value and warm start is adopted to initialize

the parameters, the subproblem (2.3.3) can be efficiently solved with few iterations.

2.3.2 Convergence Analysis

To analyze the model convergence, we need the following key technical conditions im-

posed on the curvature of the objective function f restricted on sparse subspaces.
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Definition 1 (Restricted strong smoothness and strong convexity). We say f is L-

smooth if there exists a positive constant L such that for any w and w’,
/ / L /(12
f') = f(w) = (Vf(w), v’ —w) < Fllw —w'|". (2.3.7)

We say f is ps-strongly convex at sparsity level s, if there exists positive constants ps

such that for any ||lw —w'[jp < s,
F') = f(w) = (V) w' —w) > Efw - w'|% (2.3.8)

The conditions of restricted strong convexity/smoothness are key to the analysis of

several previous greedy selection methods [30, 96, 3]. In the following, we define
F(w; A) = f(w) + A(|lw][iF)?,

and

w = arg min F'(w; A).
w

Let 5 = ||wl|o and 6 = (||w|);")?. Consider the radius r defined by

_ IVefl . e :
r= max{”\ s F(wy\) < F(w(o),)\)} .

We now analyze the convergence of Algorithm 1. Before presenting the main result, we

need some preliminaries.

Lemma 1. There exist U = [y, ..., 4;] € RPXL with, ||igllo < k, |@il|l2 = V0, and & € Ay
such that

w=Ua.
Proof. A proof of this result is given in §2.6.1. O

In the following analysis, we will consider such a decomposition @w = Uda as guaran-
teed by Lemma 1. Given a matrix M, we write its mathcal version M as a vector set
consisting of the columns of M. Similarly, given a set M of vectors of the same size,
we denote M be a matrix whose columns are the elements of M.

We show in the following theorem that a stronger geometric rate of convergence can

be established for Algorithm 1.
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Theorem 1. Let s = maxy |[w®]jg. Let M® = U UUD. Assume that there exists
a > 0 such that Umin(M(t)) > B for all t. Assume that f is L-strongly smooth and

ps+z-strongly convex. Given € > 0, let us run t iterations of Algorithm 1 with

where

L . ps+§B }
¢= mm{zqu?’ 2}'

then Algorithm 1 will output w® satisfying

Fw®;\) < F(w; \) + e

Proof. A proof of this result is given in §2.6.2. O

Remark 1. There have been several literatures that dedicate in exploring the conver-
gence rate of FW methods in constrained minimization problem. In general case, the
Frank-Wolfe method is known to have O(%}) convergence rate [6]. An O(3%) conver-
gence rate is proved in [25] for applying Frank-Wolfe method in constrained minimiza-
tion over strongly-convex sets. Several linear convergence guarantees are established
[56, 5, 45, 50, 10, 69] by adding various specific assumptions to either constraint set or
loss function, which are not directly applicable to our problem. In recent work of [17], a
global linear convergence rate is proved for a number of Frank-Wolfe algorithm variants
given the polytope constraint set. This analysis doesn’t perfectly fit for our algorithm
that applies FW method in solving the regularized optimization objective (2.1.1). In
each iteration of our algorithm, we adaptively update the value of v. The constrain-
t (Jwlli?)? < v is a k-support norm cone, rather than a polytope as a result. This

imposes extra challenges in analysis.

Remark 2. In Algorithm 1 we have required the subproblem (2.3.3) in Step (S3) to be
solved exactly. This could be be computationally demanding if the objective function f
is highly nonlinear and t is relatively large. Instead of solving the subproblem (2.3.3)
exactly, a more realistic option in practice is to find a suboptimal solution up to a

precision € > 0 w.r.t. the first-order optimality condition. That is, {w(t),H(t)} satisfy
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for any w=UWBa and = Vq,
(VD) w—wtDy 4 A0 — oY) > —¢.

Following the similar arguments in the proof of Theorem 1 we can be prove that F(w(t); A)
F(w; \)+e+0(g) aftert = O (In(2)) steps of iteration. In other words, the optimization
error of the subproblem (2.3.3) does not accumulate during the iteration.

2.3.3 Parameter Estimation Error Analysis

The parameter estimation error can be analyzed based on the convergence results es-

tablished in the previous subsection.

Lemma 2. Let w be an s-sparse vector. Assume that f is psrz-strongly convezr. It

holds that
_ 2(F(w; A) — F(w; )
lw - < \/ - :
Ps+3
Proof. A proof of this Lemma is provided in §2.6.3. O

Based on Theorem 1 and Lemma 2, we directly obtain the following corollary on

the estimation error of k-FCFW.

Corollary 1. Given ¢ > 0 and the conditions in Theorem 1 are satisfied, after t =

(@) (ln(%)) running, Algorithm 1 will output w® satisfying |w® — @ = O(V/e).

2.4 Experiments

We conduct experiments to verify the high efficiency of k-FCFW by testing its empirical
performance given numerous forms of k-support norm regularized optimization task
with different forms of loss functions including logistic loss and matrix pursuit. All the
considered algorithms are implemented in Matlab and tested on a computer equipped

with 3.0GHz CPU and 32GB RAM.

<
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2.4.1 k-Support-Norm Regularized /,-Logistic Regression

Given a binary training set {z;,v;}¥,,2; € RP,y,, € {—1,1}, the k-support-norm
regularized logistic regression problem is formulated as
: 1 & T LRTINTD spy2
n}})nF(w) =5 Z'Z;log (1+exp(—yw ;) + §Hw|] + A([lw|l7)*, (2.4.1)
The parameter 7 controls the strong convexity of the loss function.
We test the algorithm efficiency on a synthetic dataset. The model parameter
ground truth w is designed to be a p-dimension vector as follows:

w=[}0,10,--~ ,10,0,0,--- ,(ﬂ.

/

p p—p’

Each training sample is designed to have two components. the first p’-dimension is

1 if § == j
drawn from Gaussian distribution N (0,%), ¥; ; = - . Other p —p/
05 2 ifi#j
dimensions are drawn from Gaussian N(0,1) as noise. The label y; follows Bernoulli
distribution with probability P(y; = 1|z;) = %. The task is designed as

selecting the top k = p’ most discriminative features for classification using logistic
regression model through solving (2.4.1).

We produce the training data by setting N = 500, p = 10°, p’ = 5x 103, respectively.
We compare the efficiency of k-FCFW with three state-of-the-art proximal gradient
methods: (1) the Box Norm solver (denoted by BN) proposed in [67]; (2) the binary
search based solver (denoted by BS) proposed in [19]; and (3) the solver proposed
in [24] which tries to find the active set (AS) by a two-step binary searching strategy.
All of these proximal gradient solvers are implemented in the framework of FISTA [0].
We also compare the efficiency of k-FCFW with ADMM [71] which is another popular
framework for regularized minimization problems.

The running time of the considered algorithms is shown in Figure 2.4.1(a). The

value of \ is varied to be {107°,5 x 107°,107%,5 x 107%,1073}. We first run FISTA

|F(w®)—F (V)

\ —4
) <1077, then

algorithm to reach the convergence state determined by

we run other algorithms to the same training loss or maximum number of iteration is
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Figure 2.4.1: Results on synthetic dataset: (a) Running time (in second) curves of the

considered comparing methods under different values of A. (b) Convergence curves of

the considered methods under k = 5K, A\ = 10~%.

reached. It can be observed that our method is significantly faster than all the three
comparing solvers.

Since AS has been observed to be superior to the other considered proximity operator
solvers, we equip ADMM with AS as its proximity operator solver. The running time
curve of ADMM-AS is drawn in Figure 2.4.1(a). Clearly, ADMM-AS is inferior to k-
FCFW and the proximal gradient algorithms as well. Actually, we observe that ADMM-
AS fails to converge to the desired accuracy given maximum number of iterations. In
Figure 2.4.1(b), we plot the convergence curves of the considered algorithms under

A = 107%. Tt can be observed that our method needs significant less number of iterations

to reach comparable optimization accuracy.

2.4.2 k-Support-Norm Matrix Pursuit

In this group of experiments, we apply the proposed method to the k-support-norm
regularized matrix pursuit problem. Matrix pursuit has extensive applications such as
subspace segmentation, semi-supervised learning and sparse coding. The results of [19]

indicate that the k-support-norm regularized matrix pursuit method achieves superior

performance in various applications. The k-support-norm regularized matrix pursuit is

17
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formulated as:

. 1 s
i 21X = XWR -+ Aoec(W) )% (24.2)

where X € RP*" is the data matrix with n samples in d-dimension space and vec(W)
denotes th