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ABSTRACT OF THE DISSERTATION

Optimization in Sparse Learning: from Convexity to

Non-Convexity

by Bo Liu

Dissertation Director: Professor Dimitris N. Metaxas

Nowadays, the explosive data scale increase provides an unprecedented opportunity to

apply machine learning methods in various application domains. The high-dimension

data representation proposes curse of dimension challenge to machine learning models.

Sparse model offers a tool that can alleviate this challenge by learning a low-dimension

feature and model representation. Traditionally, the sparse model is learned by pe-

nalizing the `1-norm of the model parameter in optimization. Recent sparse model

learning research is studying more accurate way of modeling the sparsity degree as pri-

or knowledge, representative work includes k-support norm regularized minimization

and `0-constrained minimization.

If the training loss is convex, minimizing the training loss with model parameter

k-support-norm regularizer is still a convex optimization problem. In chapter 2 we

introduce the proposed fully corrective Frank-Wolfe type algorithm, called k-FCFW,

for k-support-norm regularized sparse model learning. We reformulate the regularized

minimization into a constrained minimization task, then the the proposed algorithm is

applied to solve the reformulated problem. In this work we compare the per-iteration

complexity of the proposed k-FCFW algorithm with proximal gradient algorithm, which

is conventionally used to solve the original problem. One theoretical contribution is
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that we establish a linear convergence for the proposed algorithm under some standard

assumptions.

The model parameter `0-norm can be directly used as constraint in the learning

objective. However, in this condition even if training loss is convex, the problem is non-

convex and NP-hard because of the `0-norm constraint. To obtain a tradeoff between

model solving accuracy and efficiency, several primal domain greedy algorithms have

been proposed. The algorithm properties such as model estimation error upper bound

and support recovery are analyzed in literature. In chapter 3 we introduce the proposed

dual space algorithm for the sparsity-constrained `2-norm regularized finite sum loss

minimization problem. The sparse duality theory established in this work sets up the

sufficient and necessary conditions under which the original non-convex problem can

be equivalently solved in a concave dual formulation. The dual iterative hardthresh-

olding (DIHT) algorithm and its stochastic variant are proved to be able to recover the

parameter support without the Restricted Isometry Property (RIP) condition.

Distributed optimization algorithm is used for learning a global optimal model when

training samples locate on different machines. Communication efficiency is one impor-

tant concern in distributed model training algorithm design. Chapter 4 elaborates the

proposed Newton-type inexact pursuit algorithm for the `0-constrained empirical risk

minimization problem. The proposed algorithm iterates between inexactly solving a

local sparse learning problem with existing single machine algorithms, and communi-

cating gradient and model parameter between master machine and worker machines.

Algorithm analysis shows the model estimation error upper bound has linear conver-

gence rate.

In the last part, we conclude this dissertation and present the future direction of

sparse model learning research.
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Chapter 1

Introduction

1.1 Background

Powerful machine learning models and large-scale training data motivate the rapid

popularization of AI method in various areas such as data science, computer vision

and natural language processing. The explosive model complexity and training data

scale increase propose an urgent requirement for efficient model training algorithms.

Optimization algorithm design for model training, as one of the fundamental issue in

machine learning research, keeps on getting extensive attention from academia and

industry.

Many machine learning problems can be generalized into solving the following min-

imization problem:

min
w
F (w;X,Y ) (1.1.1)

where X = {xi}Ni=1, xi ∈ Rp denotes the feature representation of training samples;

Y = {yi}Ni=1, yi ∈ R denotes the corresponding labels; w denotes the model parameters

to be learned and F (·) is proper training loss, such as square loss for regression

F (w;xi, yi) =
1

2
(yi − w>xi)2,

or logistic loss for binary classification, when yi ∈ {−1, 1}, that is

F (w;xi, yi) = log
(

1 + exp(−yiw>xi)
)
.

The real world data, such as text and image, usually have high dimension feature

representation. If the feature dimensionality significantly outnumbers training sample,

the trained model is very likely to be overfitting. However, this high dimension feature

representation is usually redundant. The feature redundancy gives us the chance to
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find a low dimension feature and model representation. Sparse model learning, which

aims to discover such a low dimension representation, has been demonstrated as an

effective way to alleviate the model overfitting challenge. Apart from alleviating the

model overfitting, sparse model also has other desirable properties, such as better model

interpretability, running time efficiency in testing and model storage benefits.

The popular method that learns a sparse model used to be modeling `1-norm of

model parameter w as a regularizer or constraint in the objective optimization, that is,

min
w
F (w;X,Y ) + λ‖w‖1 (1.1.2)

or

min
w
F (w;X,Y ) subject to ‖w‖1 ≤ c (1.1.3)

where λ and c are pre-defined hyper-parameters. These convex relaxation based meth-

ods are prone to introduce parameter estimation bias [97]. More recently, several alter-

native methods are proposed. Those methods can more accurately model the parameter

sparsity degree as prior knowledge. Taking the linear model (e.g. linear regression) pa-

rameterized by w ∈ Rd as example, we hope that the learned sparse model has only

k ≤ p non-zero entries. In [2], k-support norm ‖w‖spk is proposed and used as a regu-

larizer to encourage the solution of w has k non-zero entries, the objective is

min
w
F (w;X,Y ) + λ(‖w‖spk )2. (1.1.4)

The k-support norm is shown to be a tighter convex relaxation of `0-norm compared

to `1-norm. Alternatively, we can directly solve the `0-constrained minimization prob-

lem [93, 41], that is

min
w
F (w;X,Y ) subject to ‖w‖0 ≤ k. (1.1.5)

In this dissertation, I will introduce my research on optimization algorithm design

and analysis for sparse model learning problems. The sparse model learning objective

includes optimizing convex model with ‖w‖spk regularizer as well as the model learning

with parameter cardinality constraint. In addition to the proposed single machine al-

gorithms, I will also introduce our recent research progress in communication efficient
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distributed sparse model learning. The designed algorithm targeted for each specif-

ic problem significantly improves the model training efficiency compared to baseline

algorithms.

1.2 Thesis Organization

The following of this dissertation is organized as follows:

In chapter 2, I will introduce the proposed Frank-Wolfe type algorithm for the k-

support-norm regularized model learning task. The k-support-norm is proposed in [2].

It is used as a tighter convex relaxation of model parameter `0-norm than `1-norm in

regularized sparse model learning problems [49]. The traditional method that solves

the k-support-norm regularized minimization problem

min
w
F (w,X, Y ) + λ(‖w‖spk )2

is based on the proximal gradient algorithm, which has large computational cost, espe-

cially for high dimension model learning task. We propose a Frank-Wolfe type algorithm

which has shown to have cheaper per-iteration computational cost and linear conver-

gence rate. Both of the algorithm analysis and experiment results verify the superior

efficiency of the proposed algorithm.

Chapter 3 is about our research on developing dual method for `0-constrained min-

imization problem. With the model sparsity degree as prior knowledge, we consider

minimizing the `0-constrained empirical risk plus the `2-norm model parameter regu-

larizer, which is defined as:

min
w

1

N

N∑
i=1

f(w;xi, yi) +
λ

2
‖w‖2 subject to ‖w‖0 ≤ k (1.2.1)

where f(·) is convex training loss, {xi, yi}Ni=1, xi ∈ Rp, yi ∈ R are training samples.

Iterative Hard Thresholding (IHT) is a popular class of first-order greedy selection

methods among existing methods [93, 41]. Different from existing IHT-type algorithms

that solves the problem in primal domain, our research explores solving (1.2.1) in dual

space. We first establish a duality theory for `2-regularized sparse finite-sum minimiza-

tion. Based on the theory, Dual Iterative Hard Thresholding (DIHT) algorithm and



4

its stochastic variant are proposed. Numerical experiments verify the sparse duality

theory and higher efficiency of the proposed dual algorithms in sparse SVM-type model

learning tasks.

In chapter 4, I will introduce the proposed distributed optimization algorithm for

the `0-constrained empirical risk minimization problem. In this problem setting, the

training samples are distributed on multiple machines. Although each machine can

learn a local optimal model parameter based on its local training samples, the task is

to learn a global model parameter based on all training samples. The proposed method

alternates between local inexact optimization of a Newton-type approximation and cen-

tralized global results aggregation. Theoretical analysis shows that for a general class

of convex functions with Lipschitze continuous Hessian, the method converges linear-

ly with contraction factor scaling inversely with data size; whilst the communication

complexity required to reach desirable statistical accuracy scales logarithmically with

the number of machines for some popular statistical learning models. For non-convex

objective functions, our method can still be shown to converge globally. Numerical

results on convex and non-convex model training tasks confirm the high efficiency of

our method.

In chapter 5, I conclude this dissertation and discuss some future work of sparse

learning research.
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Chapter 2

k-Support Norm Regularized Minimization via

Frank-Wolfe Method

2.1 Introduction

In many machine learning problems, it is common that the number of collected samples

is substantially smaller than the dimensionality of the feature, implying that consistent

estimators cannot be used unless additional assumptions are imposed on the model. One

of the widely acknowledged prior assumptions is that the data exhibit low-dimensional

structure, which can often be captured by imposing sparsity constraint on the model

parameter space. Sparsity is typically obtained by regularizing the goodness of fit with

sparsity inducing regularizer. However, as this typically leads to nonconvex optimiza-

tion problems with high computational demands, the standard approach is to replace

and relax these regularizers with convex surrogates for cardinality.

The most widely used regularizer is the `1-norm which is justified as the convex

envelope of the cardinality `0-norm (i.e., number of non zero elements in a vector) on

the `∞-norm unit ball [2]. The `1-norm, however, tends to shrink excessive number of

variables to zeros, regardless the potential correlation among the variables. In order to

alleviate such an over-shrinkage issue of `1-norm, numerous methods including elastic

net [101], pairwise elastic net [63], trace Lasso [29] and OSCAR [12] have been proposed

in literature. All of these methods tend to smooth the output parameters by averaging

similar features rather than selecting out a single one. More recently, k-support-norm

‖ · ‖spk is proposed as a new alternative that provides the tightest convex relaxation of

cardinality on the Euclidean norm unit ball [2]. The intuition is that in certain instances

it might be reasonable to expect that not only the number of non-zero variable entry

is bounded, but also the variable has bound on its Euclidean norm as well. Formally,
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the k-support-norm of a vector w ∈ Rp is defined as

‖w‖spk := min

∑
g∈Gk

‖vg‖2 : supp(vg) ⊆ g, w =
∑
g∈Gk

vg

 ,

where Gk denotes the set of all subsets of {1, 2, ..., p} of cardinality at most k. It is

shown in [2] that the value of ‖w‖spk can be computed through

‖w‖spk =

k−j−1∑
i=1

(|w|↓i )
2 +

1

r + 1
(

p∑
i=k−j

|w|↓i )
2

 1
2

,

where |w|↓i denotes the i-th largest element in |w| and |w|↓0 is assumed to be +∞.

j ∈ {0, 1, ..., k − 1} satisfies |w|↓k−j−1 >
1
j+1

(
p∑

i=k−j
|w|↓i

)
≥ |w|↓k−j . More properties of

k-support-norm are analyzed in [2].

As a regularizer, the k-support-norm is characterized by simultaneously selecting a

few relevant groups and penalizing the `2-norm of the selected individual groups. The

following k-support-norm regularized model is considered in [2] for sparse prediction

tasks:

min
w
F (w) + λ(‖w‖spk )2, (2.1.1)

where F (w) is a convex and differentiable objective function parameterized by w. The

parameter k is regarded as an upper bound estimation of the number of non-zero ele-

ments in w. It has been shown that this model leads to improved learning guarantees as

well as better algorithmic stability. As an extreme case with k = 1, the problem (2.1.1)

reduces to the squared `1-norm regularized minimization problem known as exclusive

Lasso [100]. In another extreme case with k = p, the problem (2.1.1) reduces to ridge

regression.

2.1.1 Challenge and Motivation

One challenge that hinders the applicability of the k-support-norm regularized mod-

el (2.1.1) is its high computational complexity in large scale settings. Indeed, proximal

gradient methods are conventionally used for optimizing the composite minimization

problem in (2.1.1) [2, 49, 24]. Given the gradient vector, the per-iteration computa-

tional cost of proximal gradient methods is dominated by an proximity operator of the
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following form:

w∗ = arg min
w

1

2
‖w − v‖22 + λ(‖w‖spk )2. (2.1.2)

In the pioneering work of [2], an exhaustive search strategy with O(p(k + log p)) com-

plexity is proposed to compute the above proximal operator, which is computationally

expensive. Despite significant speed-ups have been reported in [49, 24], those meth-

ods are still exhaustive in nature and could be expensive for huge scale problems with

relatively large sparsity parameter k.

It has been known that the k-support-norm ball Bk,spr := {w ∈ Rp : ‖w‖spk ≤ r} is

equivalent to the convex hull of the following set of cardinality and `2-norm constraint:

C(2)
k,r = {w ∈ Rp : ‖w‖0 ≤ k, ‖w‖2 ≤ r}.

That is,

Bk,spr = co(C(2)
k,r) =


∑

w∈C(2)k,r

αww : αw ≥ 0,
∑
w

αw = 1

 .

In this sense, k-support-norm ball Bk,spr provides a convex envelope of the nonconvex

set C(2)
k,r , which is referred to as the coreset of Bk,spr .

2.1.2 Contributions

In this chapter we will show that, compared to the existing methods that solves the

regularized formulation (2.1.1) though proximal gradient based methods, the proposed

fully corrective Frank-Wolfe based method is more convenient and efficient in sense of

optimization. One important reason is that the constrained formulation the convex

hull structure of the k-support-norm ball suggests extremely simple gradient projection

operation. We name the proposed algorithm as k-FCFW in the following context.

The original Frank-Wolfe method is designed to solve the constrained minimization

problem. In our method, by introducing an augmented variable as the bound of k-

support regularization ‖w‖spk to (2.1.1), the regularized objective is converted into a

constrained minimization problem. The two model parameters are iteratively optimized

by a fully corrective variant of the Frank-Wolfe algorithm. Theoretical analysis is

conducted to establish the converge rate and model estimation error of the proposed
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algorithm. Particularly, we prove that the proposed algorithm converges linearly under

proper conditions, which is stronger than the sublinear convergence rate proved in [32]

for norm regularized minimization problem. We further discuss the extension of the

proposed algorithm in low-rank introducing problem and show that it has obvious

computational cost advantage. Experimental results on various forms of loss function

demonstrate the superior efficiency of the proposed algorithm.

2.1.3 Organization

The remaining of this chapter is organized as follows: In §2.2 we briefly review some

properties and related work of k-support-norm, k-support-norm regularized proximal

operator and the forward greedy selection algorithms for sparsity constrained optimiza-

tion. In §2.3 we present our k-support-norm constrained minimization problem and two

forward greedy selection algorithms for optimization. In §2.4 we access the performance

of the proposed model and algorithms on a number of benchmark datasets. Finally, in

§2.5 we conclude this paper and prospect the future work.

2.2 Related Work

In this section we briefly review some previous literatures on k-support-norm and the

Frank-Wolfe method for optimization.

2.2.1 k-Support Norm Regularized Minimization

Using k-support-norm enables us with the flexibility of controlling the cardinality of

solution by setting the value of k. In [67], box norm is proposed based as an extension of

k-support-norm. Multiple k-support-norm regularized convex models are investigated

in [9]. The applications of k-support-norm in various computer vision problems have

been explored in [49]. In [17], the k-support norm is applied in generalized dantzig se-

lector for linear model. The authors of [8] show that it is helpful to use k-support-norm

regularization in fMRI data analysis including classification, regression and data visual-

ization task. In [7], total variation penalty is incorporated in the k-support framework
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and applied in image and neuroscience data analysis.

Most of the k-support norm related applications require to solve the regularized

minimization task (2.1.1). Proximal gradient algorithm [71] is the acknowledged state

of the art algorithm designed for solving (2.1.1). The proximal operator (2.1.2) has

been proved to have the following closed form solution [2]:

w∗si = sign(vsi)qi, i = 1, ..., p,

where vsi is the i-th largest (in magnitude) entry of v and

qi =



β
1+β vsi i = 1, 2, ..., k − r − 1

vsi −

l∑
i=k−r

vsi

l−k+(β+1)r+β+1 i = k − r, ..., l

0 i = l + 1, ..., p

,

in which β = 2λ, r and l are integers satisfying
1

β+1vsk−r−1
>

l∑
i=k−r

vsi

l−k+(β+1)r+β+1 ≥
1

β+1vsk−r

vsl >

l∑
i=k−r

vsi

l−k+(β+1)r+L+1 ≥ vsl+1

.

The major computational cost of the above proximal operator lies in how to find integers

r and l. In [2], an exhaustive search method with O(p(k + log p)) complexity was used

to find r and l. In [49], a binary search strategy with O((p + k) log p) complexity was

proposed to find l, which has been shown to be much more efficient and scalable than

exhaustive search in large scale problems. In [24], the authors explored the dual form of

k-support-norm and proposed to use a more efficient iterative binary searching method

to find the optimal integers r and l.

2.2.2 Frank-Wolfe Method

The history of Frank-Wolfe method dates back to [26] for polytope constrained op-

timization. It is also known as conditional gradient algorithm. Consider a compact

convex set S. The Frank-Wolfe method applies to solve the following constrained opti-

mization problem:

w∗ = arg min
w

f(w) subject to w ∈ S, (2.2.1)
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where f is assumed to be a real valued convex function.

Due to the potential of efficiency improvement when applied in solving minimization

problem with certain form of constraint, recently there is an increasing trend to revisit

and restudy this method [36, 27, 28]. Frank-Wolfe based methods have been developed

to solve some optimization problems such as structural SVM [48], trace norm regular-

ization problem [22] and atomic norm constrained problem [73]. In [32], the conditional

gradient methods are used to solve regularized convex optimization problems with spe-

cific forms of regularization including nuclear norm and total variation. However, this

method replies on an estimation of the bound of regularization, which is difficult to

obtain.

Many sparse model learning algorithm can be viewed as variants of Frank-Wolfe

method. Specifically, when the constraint set in (2.2.1) is a convex hull in S, i.e.,

w ∈ co(S), where

co(S) =


|S|∑
i=1

αiui : αi ≥ 0,

|S|∑
i=1

αi = 1, ui ∈ S

 ,

the sequential greedy approximation (SGA) method was proposed to find a sparse

approximate solution of (2.2.1). Recently, several variants of SGA, e.g., forward greedy

selection [80] and gradient Lasso [44] have been proposed in sparse learning. It has

also received significant interests in semi-definite program [33] and low-rank matrix

completion/approximation [38, 79, 96]. In the context of boosting classification, the

restricted gradient projection algorithms stated in [30] is essentially a forward greedy

selection method over `2-functional space.

2.3 The Fully Corrective Frank-Wolfe Method for k-Support Norm

Regularized Minimization

We consider using the class of Frank-Wolfe algorithm to solve the regularized mini-

mization problem (2.1.1). To this end, we first reformulate (2.1.1) into a constrained

optimization problem:

min
w,θ

G(w, θ;λ) := f(w) + λθ s.t.
(
‖w‖spk

)2 ≤ θ, (2.3.1)
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Here θ is an augmented variable bounding the term
(
‖w‖spk

)2
. We next introduce

the detail of k-FCFW algorithm. After that algorithm convergence and parameter

estimation error analysis is provided.

2.3.1 Algorithm Description

Algorithm 1: k-FCFW Algorithm for k-support norm regularized problem.

Initialization: set w(0) to be a k-sparse vector, θ(0) = ‖w(0)‖2, U = w(0),

V = θ(0).

for t = 1, 2, ... do

(S1) Compute ∇f(w(t−1)).

(S2) Solve the constrained linear problem

{u(t), v(t)} = arg min
u,v

〈∇f(w(t−1)), u〉+ λv subject to
(
‖u‖spk

)2 ≤ v.
(2.3.2)

(S3) Update U (t) = [U (t−1), u(t)], V (t) = [V (t−1), v(t)].

Compute

α(t) = min
α∈4t

f(U (t)α) + λV (t)α, (2.3.3)

where 4t = {α ∈ Rt+1 : α ≥ 0, ‖α‖1 = 1};

(S4) Update

w(t) = U (t)α(t), θ(t) = V (t)α(t).

end

Output: w(t).

The k-FCFW algorithm for k-support norm regularized minimization is outlined

in Algorithm 1. Since the k-support-norm ball ‖w‖spk ≤ v is a convex hull of the set

C(2)
k,v = {w ∈ Rp : ‖w‖0 ≤ k, ‖w‖2 ≤ v}, it is trivial to derive that, given the optimal

v > 0, the optimal u of (2.3.2) admits the following close-form solution:

u = −
√
v∇kf(w(t−1))

‖∇kf(w(t−1))‖
, (2.3.4)

where ∇kf(w(t−1)) denotes a truncated version of ∇f(w(t−1)) with its top k (in magni-

tude) entries preserved. By substituting this back to (2.3.2) we get that v(t) solves the
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following quadratic program:

v(t) = arg min
v>0

−‖∇kf(w(t−1))‖
√
v + λv.

Obviously,

v(t) =

(
‖∇kf(w(t−1))‖

2λ

)2

, (2.3.5)

and thus,

u(t) = −
√
v(t)∇kf(w(t−1))

‖∇kf(w(t−1))‖
= −∇kf(w(t−1))

2λ
. (2.3.6)

At each time instance t, we keep a memory of all previous updates, that is

U (t) = {w(0), u(1), ..., u(t)},

V (t) = {θ(0), v(1), v(2), ..., v(t)}.

At the t-th iteration, the optimal value of w(t) and θ(t) are jointly searched on the

convex hull define by U (t) and V (t). The subproblem (2.3.3) of estimating α(t) is a

simplex constrained smooth minimization problem. The scale of such a problem is

dominated by the value of t. This subproblem can be solved via some off-the-shelf

algorithms such as the projected quasi-Newton (PQN) method [77].

It is noteworthy that the subproblem (2.3.2) is equivalent to the following k-support-

norm regularized linear program:

u(t) = arg min
u
〈∇f(w(t−1)), u〉+ λ(‖u‖spk )2.

This is different from the proximal gradient method which involves solving the quadratic

proximity operator (2.1.2) at each iteration. Apparently solving (2.3.2) is more efficient

than solving (2.1.2). When t is of moderate value and warm start is adopted to initialize

the parameters, the subproblem (2.3.3) can be efficiently solved with few iterations.

2.3.2 Convergence Analysis

To analyze the model convergence, we need the following key technical conditions im-

posed on the curvature of the objective function f restricted on sparse subspaces.
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Definition 1 (Restricted strong smoothness and strong convexity). We say f is L-

smooth if there exists a positive constant L such that for any w and w′,

f(w′)− f(w)− 〈∇f(w), w′ − w〉 ≤ L

2
‖w − w′‖2. (2.3.7)

We say f is ρs-strongly convex at sparsity level s, if there exists positive constants ρs

such that for any ‖w − w′‖0 ≤ s,

f(w′)− f(w)− 〈∇f(w), w′ − w〉 ≥ ρs
2
‖w − w′‖2. (2.3.8)

The conditions of restricted strong convexity/smoothness are key to the analysis of

several previous greedy selection methods [80, 96, 3]. In the following, we define

F (w;λ) = f(w) + λ(‖w‖spk )2,

and

w̄ = arg min
w

F (w;λ).

Let s̄ = ‖w̄‖0 and θ̄ = (‖w̄‖spk )2. Consider the radius r defined by

r = max

{
‖∇kf(w)‖

2λ
: F (w;λ) ≤ F (w(0);λ)

}
.

We now analyze the convergence of Algorithm 1. Before presenting the main result, we

need some preliminaries.

Lemma 1. There exist Ū = [ū1, ..., ūl̄] ∈ Rp×l̄ with ‖ūi‖0 ≤ k, ‖ūi‖2 =
√
θ̄, and ᾱ ∈ 4l̄

such that

w̄ = Ū ᾱ.

Proof. A proof of this result is given in §2.6.1.

In the following analysis, we will consider such a decomposition w̄ = Ū ᾱ as guaran-

teed by Lemma 1. Given a matrix M , we write its mathcal version M as a vector set

consisting of the columns of M . Similarly, given a set M of vectors of the same size,

we denote M be a matrix whose columns are the elements of M.

We show in the following theorem that a stronger geometric rate of convergence can

be established for Algorithm 1.
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Theorem 1. Let s = maxt ‖w(t)‖0. Let M(t) = Ū ∪ U (t). Assume that there exists

a β̄ > 0 such that σmin(M (t)) ≥ β̄ for all t. Assume that f is L-strongly smooth and

ρs+s̄-strongly convex. Given ε > 0, let us run t iterations of Algorithm 1 with

t ≥ 1

ζ
ln

[
F (w(0);λ)− F (w̄;λ)

ε

]

where

ζ := min

{
ρs+s̄β̄

4l̄Lr2
,
1

2

}
.

then Algorithm 1 will output w(t) satisfying

F (w(t);λ) ≤ F (w̄;λ) + ε.

Proof. A proof of this result is given in §2.6.2.

Remark 1. There have been several literatures that dedicate in exploring the conver-

gence rate of FW methods in constrained minimization problem. In general case, the

Frank-Wolfe method is known to have O(1
t ) convergence rate [36]. An O( 1

t2
) conver-

gence rate is proved in [28] for applying Frank-Wolfe method in constrained minimiza-

tion over strongly-convex sets. Several linear convergence guarantees are established

[56, 5, 45, 50, 46, 69] by adding various specific assumptions to either constraint set or

loss function, which are not directly applicable to our problem. In recent work of [47], a

global linear convergence rate is proved for a number of Frank-Wolfe algorithm variants

given the polytope constraint set. This analysis doesn’t perfectly fit for our algorithm

that applies FW method in solving the regularized optimization objective (2.1.1). In

each iteration of our algorithm, we adaptively update the value of v. The constrain-

t (‖w‖spk )2 ≤ v is a k-support norm cone, rather than a polytope as a result. This

imposes extra challenges in analysis.

Remark 2. In Algorithm 1 we have required the subproblem (2.3.3) in Step (S3) to be

solved exactly. This could be be computationally demanding if the objective function f

is highly nonlinear and t is relatively large. Instead of solving the subproblem (2.3.3)

exactly, a more realistic option in practice is to find a suboptimal solution up to a

precision ε > 0 w.r.t. the first-order optimality condition. That is, {w(t), θ(t)} satisfy
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for any w = U (t)α and θ = V (t)α,

〈∇f(w(t−1)), w − w(t−1)〉+ λ(θ − v(t−1)) ≥ −ε.

Following the similar arguments in the proof of Theorem 1 we can be prove that F (w(t);λ) ≤

F (w̄;λ)+ε+O(ε) after t = O
(
ln(1

ε )
)

steps of iteration. In other words, the optimization

error of the subproblem (2.3.3) does not accumulate during the iteration.

2.3.3 Parameter Estimation Error Analysis

The parameter estimation error can be analyzed based on the convergence results es-

tablished in the previous subsection.

Lemma 2. Let w be an s-sparse vector. Assume that f is ρs+s̄-strongly convex. It

holds that

‖w − w̄‖ ≤

√
2(F (w;λ)− F (w̄;λ))

ρs+s̄
.

Proof. A proof of this Lemma is provided in §2.6.3.

Based on Theorem 1 and Lemma 2, we directly obtain the following corollary on

the estimation error of k-FCFW.

Corollary 1. Given ε > 0 and the conditions in Theorem 1 are satisfied, after t =

O
(
ln(1

ε )
)

running, Algorithm 1 will output w(t) satisfying ‖w(t) − w̄‖ = O(
√
ε).

2.4 Experiments

We conduct experiments to verify the high efficiency of k-FCFW by testing its empirical

performance given numerous forms of k-support norm regularized optimization task

with different forms of loss functions including logistic loss and matrix pursuit. All the

considered algorithms are implemented in Matlab and tested on a computer equipped

with 3.0GHz CPU and 32GB RAM.
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2.4.1 k-Support-Norm Regularized `2-Logistic Regression

Given a binary training set {xi, yi}Ni=1, xi ∈ Rp, ym ∈ {−1, 1}, the k-support-norm

regularized logistic regression problem is formulated as

min
w
F (w) =

1

N

N∑
i=1

log
(
1 + exp(−yiw>xi)

)
+
τ

2
‖w‖2 + λ(‖w‖spk )2, (2.4.1)

The parameter τ controls the strong convexity of the loss function.

We test the algorithm efficiency on a synthetic dataset. The model parameter

ground truth w̄ is designed to be a p-dimension vector as follows:

w̄ = [10, 10, · · · , 10︸ ︷︷ ︸
p′

, 0, 0, · · · , 0︸ ︷︷ ︸
p−p′

].

Each training sample is designed to have two components. the first p′-dimension is

drawn from Gaussian distribution N (0,Σ), Σi,j =

 1 if i == j

0.5
|i−j|

2 if i 6= j
. Other p− p′

dimensions are drawn from Gaussian N (0, 1) as noise. The label yi follows Bernoulli

distribution with probability P(yi = 1|xi) = exp(w̄>xi)
1+exp(w̄>xi)

. The task is designed as

selecting the top k = p′ most discriminative features for classification using logistic

regression model through solving (2.4.1).

We produce the training data by setting N = 500, p = 105, p′ = 5×103, respectively.

We compare the efficiency of k-FCFW with three state-of-the-art proximal gradient

methods: (1) the Box Norm solver (denoted by BN) proposed in [67]; (2) the binary

search based solver (denoted by BS) proposed in [49]; and (3) the solver proposed

in [24] which tries to find the active set (AS) by a two-step binary searching strategy.

All of these proximal gradient solvers are implemented in the framework of FISTA [6].

We also compare the efficiency of k-FCFW with ADMM [71] which is another popular

framework for regularized minimization problems.

The running time of the considered algorithms is shown in Figure 2.4.1(a). The

value of λ is varied to be {10−5, 5 × 10−5, 10−4, 5 × 10−4, 10−3}. We first run FISTA

algorithm to reach the convergence state determined by |F (w(t))−F (w(t−1))|
F (w(t))

≤ 10−4, then

we run other algorithms to the same training loss or maximum number of iteration is
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(a) Time Cost, k = 5K (b) Convergence, λ = 10−3

Figure 2.4.1: Results on synthetic dataset: (a) Running time (in second) curves of the

considered comparing methods under different values of λ. (b) Convergence curves of

the considered methods under k = 5K,λ = 10−4.

reached. It can be observed that our method is significantly faster than all the three

comparing solvers.

Since AS has been observed to be superior to the other considered proximity operator

solvers, we equip ADMM with AS as its proximity operator solver. The running time

curve of ADMM-AS is drawn in Figure 2.4.1(a). Clearly, ADMM-AS is inferior to k-

FCFW and the proximal gradient algorithms as well. Actually, we observe that ADMM-

AS fails to converge to the desired accuracy given maximum number of iterations. In

Figure 2.4.1(b), we plot the convergence curves of the considered algorithms under

λ = 10−4. It can be observed that our method needs significant less number of iterations

to reach comparable optimization accuracy.

2.4.2 k-Support-Norm Matrix Pursuit

In this group of experiments, we apply the proposed method to the k-support-norm

regularized matrix pursuit problem. Matrix pursuit has extensive applications such as

subspace segmentation, semi-supervised learning and sparse coding. The results of [49]

indicate that the k-support-norm regularized matrix pursuit method achieves superior

performance in various applications. The k-support-norm regularized matrix pursuit is
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formulated as:

min
W∈Rn×n

1

2
‖X −XW‖2F + λ(‖vec(W )‖spk )2, (2.4.2)

where X ∈ Rp×n is the data matrix with n samples in d-dimension space and vec(W )

denotes the vectorization of W .

The MNIST [53] and USPS [35] datasets are adopted for testing. For MNIST

dataset, we resize each image into 14×14 then normalize the gray value into [0, 1]. The

pixel values are then vectorized as image feature. The USPS dataset is preprocessed

by [14]. Each image is represented by a 256-dimension feature vector and the feature

values are normalized into [−1, 1]. Each image of both datasets are normalized to be

a unit vector. We select 100 images per digit from MNIST and 200 images per digit

from USPS hence the size of datasets are 1000 and 2000, respectively. We use the same

optimization termination criterion as in the previous experiment. The algorithms are

tested under varying k values in the k-support-norm. The regularization parameter is

set to be λ = 10.
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(a) MNIST
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Figure 2.4.2: Time cost comparison between k-FCFW and baseline algorithms on M-

NIST and USPS datasets.

We first compare k-FCFW with three FISTA algorithms that respectively employ

proximity operator solver BN, BS and AS. The comparison of average time cost over 10

replications is illustrated in Figure 2.4.2. The time cost curves of ADMM-AS are also

shown in Figure 2.4.2. The convergence curves of the considered methods evaluated
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Figure 2.4.3: The convergence curves of considered methods on MNIST-1000 and USPS-

2000 datasets. The starting point of each curve is F (W (1)).

by F (W ) when k = 8K for MNIST dataset and k = 16K for USPS dataset are shown

in Figure 2.4.3. From these results we can see that in all cases, k-FCFW is the most

efficient one for optimization.

2.5 Conclusion

In this chapter, we proposed k-FCFW as a fully corrective Frank-Wolfe algorithm for

optimizing the k-support-norm regularized loss minimization problem. We have estab-

lished a linear rate of convergence for the proposed algorithm, which to our knowledge is

new for Frank-Wolfe-type algorithms when applied to composite formulation. Compar-

ing to the conventionally adopted proximal gradient algorithms and ADMM, k-FCFW

has superior rate of convergence in theory and practice. Numerical results in logistic

regression and matrix pursuit applications confirmed that k-FCFW is significantly more

efficient than several state-of-the-art proximal gradient descent methods, especially in

large scale settings. To conclude, both theoretical analysis and empirical observation-

s suggest that k-FCFW is a computationally attractive alternative to the proximal

gradient algorithms for solving the k-support-norm regularized minimization problems.
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2.6 Appendix

2.6.1 Proof of Lemma 1

Proof. Consider

Ũ = arg min
U

{∑
u∈U
‖u‖2 : ‖u‖0 ≤ k, w̄ =

∑
u∈U

u

}
.

Let l̄ = |Ũ | and Ũ = {ũi}l̄i=1. Based on the definition of k-support-norm we have that

w̄ =
∑

i ũi and
∑

i ‖ũi‖2 = ‖w̄‖spk =
√
θ̄. We construct Ū = [ū1, ..., ūl̄] with ūi defined

by ūi =
√
θ̄ũi/‖ũi‖. Then we can show that w̄ admits a decomposition of w̄ = Ū ᾱ with

some ᾱ lies in a l̄-dimensional simplex 4l̄. Indeed, since w̄ =
∑

i ũi =
∑

i ūi(‖ũi‖/
√
θ̄),

we may define ᾱi = ‖ũi‖/
√
θ̄ such that

∑
i ᾱi = 1.

2.6.2 Proof of Theorem 1

Proof. From the definition of G(w, θ;λ) and the step (S4) of Algorithm 1 we have that

G(w(t), θ(t);λ) =f(U (t)α(t)) + λV (t)α(t)

≤f((1− η)U (t−1)α(t−1) + ηu(t)) + λ((1− η)V (t−1)α(t−1) + ηv(t))

=f((1− η)w(t−1) + ηu(t)) + λ((1− η)θ(t−1) + ηv(t))

≤f(w(t−1)) + η〈∇f(w(t−1)), u(t) − w(t−1)〉+ 2η2r2L+ λ((1− η)θ(t−1) + ηv(t))

=f(w(t−1)) + λθ(t−1) + η
(
〈∇f(w(t−1)), u(t) − w(t−1)〉+ λ(v(t) − θ(t−1))

)
+ 2η2r2L

=G(w(t−1), θ(t−1);λ) + η
(
〈∇f(w(t−1)), u(t) − w(t−1)〉+ λ(v(t) − θ(t−1))

)
+ 2η2r2L.

For simplicity, let us now denote x(t) = [w(t); θ(t)] ∈ Rd+1 as the concatenation of w(t)

and θ(t). We define V̄ = [θ̄, ..., θ̄] ∈ Rl̄. Similarly, we denote X̄ = [Ū ; V̄ ] ∈ R(p+1)×l̄ and

X(t) = [U (t);V (t)] ∈ R(p+1)×t. By writing G(x(t);λ) = G(w(t), θ(t);λ), the preceding

inequality can be equivalent written as

G(x(t);λ) ≤ G(x(t−1);λ) + η〈∇G(x(t−1)), x(t) − x(t−1)〉+ 2η2r2L.

Let X c := X̄ \ X (t−1). Assume X c 6= ∅. From the update rule of {θ(t), v(t)} in (S2) we

know the following inequality holds for any x ∈ X c:

〈∇G(x(t−1)), x(t) − x(t−1)〉 ≤ 〈∇G(x(t−1)), x− x(t−1)〉.
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Let ξ =
∑

x∈X c ᾱx. From the above two inequalities we get

ξG(x(t);λ) ≤ ξG(x(t−1);λ) + η

(∑
x∈X c

ᾱx〈∇G(x(t−1);λ), x〉 − ξ〈∇G(x(t−1);λ), x(t−1)〉

)

+ 2η2r2ξL.

(2.6.1)

Since
∑

x∈X (t−1) ᾱx/(1 − ξ) = 1, from the optimality of α(t−1) (see the step (S3)) we

can derive that

〈∇G(x(t−1);λ),
∑

x∈X (t−1)

ᾱxx/(1− ξ)− x(t−1)〉 ≥ 0. (2.6.2)

Note that α
(t−1)
x = 0 for x /∈ X (t−1) and ᾱx = 0 for x /∈ X̄ . Therefore∑

x∈X c
ᾱx〈∇G(x(t−1);λ), x〉

=
∑
x∈X c
〈∇G(x(t−1);λ), ᾱxx− (1− ξ)α(t−1)

x x〉

≤
∑

x∈X (t−1)∪X̄

〈∇G(x(t−1);λ), ᾱxx− (1− ξ)α(t−1)
x x〉

=〈∇G(x(t−1);λ), x̄− (1− ξ)x(t−1)〉

=〈∇G(x(t−1);λ), x̄− x(t−1)〉+ ξ〈∇G(x(t−1);λ), x(t−1)〉,

where the inequality follows (2.6.2). Combining the preceding inequality with (2.3.8)

we obtain that ∑
x∈X c

ᾱx〈∇G(x(t−1);λ), x〉 − ξ〈∇G(x(t−1);λ), x(t−1)〉

≤〈∇G(x(t−1);λ), x̄− x(t−1)〉

=〈∇f(w(t−1)), w̄ − w(t−1)〉+ λ(θ̄ − θ(t−1))

≤f(w̄)− f(w(t−1))− ρs+s̄
2
‖w(t−1) − w̄‖2 + λ(θ̄ − θ(t−1))

≤G(x̄;λ)−G(x(t−1);λ)− ρs+s̄
2
‖
∑

u∈U(t−1)

αuu−
∑
u∈Ū

ᾱuu‖2

≤G(x̄)−G(x(t−1))− ρs+s̄β̄

2

∑
u∈Ū\U(t−1)

ᾱ2
u

≤G(x̄)−G(x(t−1))− ρs+s̄β̄ξ
2

2l̄
,
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where the last inequality follows
∑

u∈Ū\U(t−1) ᾱ2
u ≥ (

∑
u∈Ū\U(t−1) ᾱu)2/l̄. By combining

the above with (2.6.1) we get

ξG(x(t);λ) ≤ξG(x(t−1);λ)− η
(
G(x(t−1);λ)−G(x̄;λ) +

ρs+s̄β̄ξ
2

2l̄

)
+ 2η2r2ξL.

Let us choose η = ξζ ≤ 1 in the above inequality with

ζ := min

{
ρs+s̄β̄

4l̄Lr2
,
1

2

}
.

Then we have

G(x(t);λ) ≤ G(x(t−1);λ)− ζ(G(x(t−1);λ)−G(w̄;λ)).

Let us denote εt := G(x(t);λ)−G(x̄;λ). Applying this inequality recursively we obtain

εt ≤ ε0 (1− ζ)t. Using the inequality 1 − x ≤ exp(−x) and rearranging we get that

εt ≤ ε0 exp(−ζt). When t ≥ 1
ζ ln ε0

ε , it can be guaranteed that εt ≤ ε. The desired result

follows directly from F (w(t);λ)− F (w̄;λ) ≤ G(w(t), θ(t);λ)−G(w̄;λ) = εt.

2.6.3 Proof of Lemma 2

Proof. Let r(w) := (‖w‖spk )2. From the definition of F (w;λ) and the strong convexity

of f we know that

F (w;λ) =f(w) + λr(w)

≥f(w̄) + 〈∇f(w̄), w − w̄〉+
ρs+s̄

2
‖w − w̄‖2 + λ(r(w̄) + 〈∂r(w̄), w − w̄〉)

=f(w̄) + λr(w̄) + 〈∇f(w̄) + λ∂r(w̄), w − w̄〉+
ρs+s̄

2
‖w − w̄‖2

=F (w̄;λ) + 〈∇f(w̄) + λ∂r(w̄), w − w̄〉+
ρs+s̄

2
‖w − w̄‖2.

Since w̄ is optimal, it satisfies

∇f(w̄) + λ∂r(w̄) = 0.

Therefore

F (w) ≥ F (w̄) +
ρs+s̄

2
‖w − w̄‖2,

which implies the desired result.
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Chapter 3

Dual Iterative Hard Thresholding Method for

`0-Constrained Minimization

3.1 Introduction

The k-support-norm as a regularizer in sparse learning is a convex relaxation of `0-norm.

In this chapter we consider solving the sparse model learning problem that involves the

parameter `0-norm as a constraint. Given a set of training samples {(xi, yi)}Ni=1 in

which xi ∈ Rp is the feature representation and yi ∈ R the corresponding label, the

following sparsity-constrained `2-norm regularized loss minimization problem is often

considered in high-dimensional analysis:

min
‖w‖0≤k

P (w) :=
1

N

N∑
i=1

f(w>xi, yi) +
λ

2
‖w‖2. (3.1.1)

Here f(·; ·) is a convex loss function, w ∈ Rp is the model parameter vector and λ

controls the regularization strength. For example, the squared loss

f(w>xi, yi) = (yi − w>xi)2

is used in linear regression and the hinge loss

f(w>xi, yi) = max{0, 1− yiw>xi}

in support vector machines. Due to the presence of cardinality constraint ‖w‖0 ≤ k,

the problem (3.1.1) is simultaneously non-convex and NP-hard in general, and thus is

challenging for optimization.

We are interested in algorithms that directly minimize the non-convex formulation

in (3.1.1). Early efforts mainly lie in compressed sensing for signal recovery, which is

a special case of (3.1.1) with squared loss. Among others, a family of the so called
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Iterative Hard Thresholding (IHT) methods [11, 25] have gained significant interests

and they have been witnessed to offer the fastest and most scalable solutions in many

cases. More recently, IHT-style methods have been generalized to handle generic convex

loss functions [4, 93, 41] as well as structured sparsity constraints [40]. The common

theme of these methods is to iterate between gradient descent and hard thresholding

to maintain sparsity of solution while minimizing the objective value.

Although IHT-style methods have been extensively studied, the state-of-the-art is

only designed for the primal formulation (3.1.1). It remains an open problem to inves-

tigate the feasibility of solving the original NP-hard/non-convex formulation in a dual

space that might potentially further improve computational efficiency. To fill this gap,

inspired by the recent success of dual methods in regularized learning problems, we

systematically build a sparse duality theory and propose an IHT-style algorithm along

with its stochastic variant for dual optimization.

3.1.1 Overview of Our Contribution

The core contribution of this work is two-fold in theory and algorithm. As the the-

oretical contribution, we have established a novel sparse Lagrangian duality theory

for the NP-hard/non-convex problem (3.1.1) which to the best of our knowledge has

not been reported elsewhere in literature. We provide in this part a set of sufficien-

t and necessary conditions under which one can safely solve the original non-convex

problem through maximizing its concave dual objective function. As the algorithmic

contribution, we propose the dual IHT (DIHT) algorithm as a super-gradient method

to maximize the non-smooth dual objective. In high level description, DIHT iterates

between dual gradient ascent and primal hard thresholding pursuit until convergence.

A stochastic variant of DIHT is proposed to handle large-scale learning problems. For

both algorithms, we provide non-asymptotic convergence analysis on parameter esti-

mation error, sparsity recovery, and primal-dual gap as well. In sharp contrast to

the existing analysis for primal IHT-style algorithms, our analysis is not relying on

Restricted Isometry Property (RIP) conditions and thus is less restrictive in real-life
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high-dimensional statistical settings. Numerical results on synthetic datasets and ma-

chine learning benchmark datasets demonstrate that dual IHT significantly outperforms

the state-of-the-art primal IHT algorithms in accuracy and efficiency. The theoretical

and algorithmic contributions of this paper are highlighted in below:

• Sparse Lagrangian duality theory: we established a sparse saddle point theorem

(Theorem 2), a sparse mini-max theorem (Theorem 3) and a sparse strong duality

theorem (Theorem 4).

• Dual optimization: we proposed an IHT-style algorithm along with its stochastic

extension for non-smooth dual maximization. These algorithms have been shown

to converge at sub-linear rates when the individual loss functions are Lipschitz

smooth, and at linear rates if further assuming strongly convexity of loss functions.

3.1.2 Notation and Organization

Notation. Before continuing, we define some notations to be used. Let x ∈ Rp be

a vector and F be an index set. We use HF (x) to denote the truncation operator

that restricts x to the set F . Hk(x) is a truncation operator which preserves the

top k (in magnitude) entries of x and sets the remaining to be zero. The notation

supp(x) represents the index set of nonzero entries of x. We conventionally define

‖x‖∞ = maxi |[x]i| and define xmin = mini∈supp(x) |[x]i|. For a matrix A, σmax(A)

(σmin(A)) denotes its largest (smallest) singular value.

Organization. The rest of this chapter is organized as follows: In §3.2 we briefly re-

view some relevant work. In §3.3 we develop a Lagrangian duality theory for sparsity-

constrained minimization problems. The dual IHT-style algorithms along with conver-

gence analysis are presented in §??. The numerical evaluation results are reported in

§3.4. Finally, the concluding remarks are made in §3.5. All the technical proofs are

deferred to §3.6.
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3.2 Related Work

3.2.1 `0-Constrained Sparse Learning

In signal processing, the compressed sensing problem has been extensively studied [21,

15]. It can be viewed as a special case of `0-constrained sparse learning task with

squared training loss. The representative algorithms include matching pursuit [65],

orthogonal matching pursuit [89] and subspace pursuit [19].

For generic convex objective beyond quadratic loss, the rate of convergence and

parameter estimation error of IHT-style methods were analyzed under proper RIP (or

restricted strong condition number) bounding conditions [10, 93]. In [41], several re-

laxed variants of IHT-style algorithms were presented for which the high-dimensional

estimation consistency can be established without requiring the RIP conditions. The

support recovery performance of IHT-style methods were investigated in [94, 85, 86] to

understand when the algorithm can exactly recover the support of a sparse signal from

its compressed measurements. In large-scale settings where a full gradient evaluation

on all data samples becomes a bottleneck, stochastic and variance reduction techniques

have been adopted to improve the computational efficiency of IHT [70, 59, 18]. Recent-

ly, a Nesterov’s momentum based hard thresholding method was proposed to further

improve the efficiency of IHT [43].

3.2.2 Dual Methods

Dual optimization algorithms have gained considerable popularity in various learning

tasks including SVMs [34], multi-task learning [52] and graphical models learning [66].

In recent years, many stochastic dual coordinate ascent (SDCA) methods have been

proposed for solving large-scale regularized loss minimization problems [81, 82, 83]. All

these methods exhibit fast convergence rate in theory and highly competitive numerical

performance in practice. A dual free variant of SDCA that supports non-regularized

objectives and non-convex individual loss functions was investigated in [78]. To further

improve computational efficiency, some primal-dual methods are developed to alter-

nately minimize the primal objective and maximize the dual objective. The successful
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examples of primal-dual methods include learning total variation regularized model [16]

and generalized Dantzig selector [55]. More recently, a number of stochastic variants

were developed to make the primal-dual algorithms more scalable and efficient [99, 92].

Our work lies at the intersection of the above two disciplines of research. Although

dual optimization methods have long been understood in machine learning, it still

remains largely unknown, in both theory and algorithms, how to apply dual methods

to the non-convex and NP-hard problem (3.1.1), where the non-convexity arises from

the cardinality constraint rather than the loss function. We are going to close this

gap by presenting a sparse Lagrangian duality theory and a dual variant of IHT for

solving the related dual maximization problem with provable primal-dual convergence

and support recovery guarantees.

3.3 A Sparse Lagrangian Duality Theory

In this section, we establish weak and strong duality theory that guarantees the orig-

inal non-convex and NP-hard problem in (3.1.1) can be equivalently solved in a dual

space. The results in this part build the theoretical foundation of developing dual IHT

methods.

From now on we abbreviate fi(w
>xi) = f(w>xi, yi). The convexity of f(w>xi, yi)

implies that fi(u) is also convex. Let f∗i (αi) = max
u
{αiu−fi(u)} be the convex conjugate

of fi(u) and F ⊆ R be the feasible set of αi. According to the well-known expression

of fi(u) = maxαi∈F {αiu− f∗i (αi)}, the problem (3.1.1) can be reformulated into the

following mini-max formulation:

min
‖w‖0≤k

1

N

N∑
i=1

max
αi∈F
{αiw>xi − f∗i (αi)}+

λ

2
‖w‖2. (3.3.1)

The following Lagrangian form will be useful in analysis:

L(w,α) =
1

N

N∑
i=1

(
αiw

>xi − f∗i (αi)
)

+
λ

2
‖w‖2,

where α = [α1, ..., αN ] ∈ FN is the vector of dual variables. We now introduce the

following concept of sparse saddle point which is a restriction of the conventional saddle

point to the setting of sparse optimization.
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Definition 2 (Sparse Saddle Point). A pair (w̄, ᾱ) ∈ Rp ×FN is said to be a k-sparse

saddle point for L if ‖w̄‖0 ≤ k and the following holds for all ‖w‖0 ≤ k, α ∈ FN :

L(w̄, α) ≤ L(w̄, ᾱ) ≤ L(w, ᾱ). (3.3.2)

Different from the conventional definition of saddle point, the k-sparse saddle point

only requires the inequality (3.3.2) holds for any arbitrary k-sparse vector w. The

following result is a basic sparse saddle point theorem for L. Throughout the chapter,

we will use f ′(·) to denote a sub-gradient (or super-gradient) of a convex (or concave)

function f(·), and use ∂f(·) to denote its sub-differential (or super-differential).

Theorem 2 (Sparse Saddle Point Theorem). Let w̄ ∈ Rp be a k-sparse primal vector

and ᾱ ∈ FN be a dual vector. Then the pair (w̄, ᾱ) is a sparse saddle point for L if and

only if the following conditions hold:

(a) w̄ solves the primal problem in (3.1.1);

(b) ᾱ ∈ [∂f1(w̄>x1), ..., ∂fN (w̄>xN )];

(c) w̄ = Hk

(
− 1
λN

∑N
i=1 ᾱixi

)
.

Proof. A proof of this result is given in § 3.6.1.

Remark 3. Theorem 2 shows that the conditions (a)∼(c) are sufficient and necessary

to guarantee the existence of a sparse saddle point for the Lagrangian form L. This

result is different from the traditional saddle point theorem which requires the use of the

Slater Constraint Qualification to guarantee the existence of saddle point.

Remark 4. Let us consider P ′(w̄) = 1
N

∑N
i=1 ᾱixi+λw̄ ∈ ∂P (w̄). Denote F̄ = supp(w̄).

It is easy to verify that the condition (c) in Theorem 2 is equivalent to

HF̄ (P ′(w̄)) = 0, w̄min ≥
1

λ
‖P ′(w̄)‖∞. (3.3.3)

We use a quadratic optimization problem as an example to illustrate this condition.

Consider

P (w) =
1

2N

N∑
i=1

(yi − wi)2 +
λ

2
‖w‖2
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where the model parameter w ∈ RN . In this case we can derive that w̄ = Hk(
y

1+λN )

and P ′(w) = (λ+ 1
N )w̄− 1

N y. Denote [|y|](j) the j-th largest entry of |y|, i.e., [|y|](1) ≥

[|y|](2)... ≥ [|y|](N). The condition (3.3.3) is essentially
[|y|](k)
1+λN ≥

[|y|](k+1)

λN which requires

λ ≥ [|y|](k+1)

N([|y|](k)−[|y|](k+1))
. Obviously, we need [|y|](k) to be strictly larger than [|y|](k+1) to

guarantee the existence of λ.

We next propose the following sparse mini-max theorem that guarantees the min

and max in (3.3.1) can be safely switched if and only if there exists a sparse saddle

point for L(w,α).

Theorem 3 (Sparse Mini-Max Theorem). The mini-max relationship

max
α∈FN

min
‖w‖0≤k

L(w,α) = min
‖w‖0≤k

max
α∈FN

L(w,α) (3.3.4)

holds if and only if there exists a sparse saddle point (w̄, ᾱ) for L.

Proof. A proof of this result is given in § 3.6.2.

The sparse mini-max result in Theorem 3 provides sufficient and necessary condi-

tions under which one can safely exchange a min-max for a max-min, in the presence

of the cardinality constraint for primal variable parameter w. By applying Theorem 2

to Theorem 3 we can derive the following corollary.

Corollary 2. The mini-max relationship

max
α∈FN

min
‖w‖0≤k

L(w,α) = min
‖w‖0≤k

max
α∈FN

L(w,α)

holds if and only if there exist a k-sparse primal vector w̄ ∈ Rp and a dual vector

ᾱ ∈ FN such that the conditions (a)∼(c) in Theorem 2 are satisfied.

The mini-max result in Theorem 3 can be used as a basis for establishing sparse

duality theory. Indeed, we have already shown the following:

min
‖w‖0≤k

max
α∈FN

L(w,α) = min
‖w‖0≤k

P (w).

This is called the primal minimization problem and it is the min-max side of the sparse

mini-max theorem. The other side, the max-min problem, will be called as the dual



30

maximization problem with dual objective function D(α) := min‖w‖0≤k L(w,α), i.e.,

max
α∈FN

D(α) = max
α∈FN

min
‖w‖0≤k

L(w,α). (3.3.5)

The following Proposition 1 shows that the dual objective function D(α) is concave and

explicitly gives the expression of its super-differential.

Proposition 1. The dual objective function D(α) is given by

D(α) =
1

N

N∑
i=1

−f∗i (αi)−
λ

2
‖w(α)‖2,

where w(α) = Hk

(
− 1
Nλ

∑N
i=1 αixi

)
. Moreover, D(α) is concave and its super-differential

is given by

∂D(α) =
1

N
[w(α)>x1 − ∂f∗1 (α1), ..., w(α)>xN − ∂f∗N (αN )].

Particularly, if w(α) is unique at α and {f∗i }i=1,...,N are differentiable, then ∂D(α) is

unique and it is the super-gradient of D(α).

Proof. A proof of this result is given in §3.6.3.

Based on Theorem 2 and Theorem 3, we are able to further establish a sparse

strong duality theorem which gives the sufficient and necessary conditions under which

the optimal values of the primal and dual problems coincide.

Theorem 4 (Sparse Strong Duality Theorem). Let w̄ ∈ Rp is a k-sparse primal vec-

tor and ᾱ ∈ FN be a dual vector. Then ᾱ solves the dual problem in (3.3.5), i.e.,

D(ᾱ) ≥ D(α), ∀α ∈ FN , and P (w̄) = D(ᾱ) if and only if the pair (w̄, ᾱ) satisfies the

conditions (a)∼(c) in Theorem 2.

Proof. A proof of this result is given in § 3.6.4.

We define the sparse primal-dual gap εPD(w,α) := P (w)−D(α). The main message

conveyed by Theorem 4 is that the sparse primal-dual gap reaches zero at the primal-

dual pair (w̄, ᾱ) if and only if the conditions (a)∼(c) in Theorem 2 hold.
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3.3.1 On the Dual Sufficient Conditions for Sparse Strong Duality

The previously established strong sparse duality theory relies on the sparsity constraint

qualification condition (c) in Theorem 2. This key condition is essentially imposed on

the underlying primal sparse minimizer w̄ one would like to recover. To make the results

more comprehensive, we further provide in the following theorem a sufficient condition

imposed on the dual maximizer of D(α) to guarantee zero primal-dual gap. From now

on we denote X = [x1, ..., xN ] ∈ Rp×N the data matrix of which the N data samples

are columns.

Theorem 5. Assume that each fi is differentiable and smooth, and each dual feasible set

Fi is convex. Let ᾱi = arg maxαD(α) be a dual maximizer. If w(ᾱ) = Hk(− 1
Nλ

N∑
i=1

ᾱixi)

is unique with respect to ᾱ, then (w(ᾱ), ᾱ) is a sparse saddle point and w(ᾱ) is a primal

minimizer of P (w) satisfying P (w(ᾱ)) = D(ᾱ).

Remark 5. The dual sufficient condition given in Theorem 5 basically shows that under

mild conditions if w(ᾱ) constructed from a dual maximizer ᾱ is unique, then sparse

strong duality holds. Such a uniqueness condition is computationally more verifiable

than the condition (c) in Theorem 2 as maximizing the dual concave program is easier

than minimizing the primal non-convex problem.

We use sparse linear regression and logistic regression model learning tasks as ex-

ample to provide intuition of Theorem 5. Those two models are commonly used in

statistical machine learning.

Example I: Sparse strong duality for linear regression. The first example is

to show that strong sparse duality hold mildly for the sparse linear regression model

which is widely applied in compressed sensing. Consider the special case of the pri-

mal problem (3.1.1) with least square loss f(w>xi, yi) = 1
2(yi − w>xi)2. Let us write

f(w>xi, yi) = fi(w
>xi) with fi(a) = 1

2(a− yi)2. It is standard to know that the convex

conjugate of fi(a) is f∗i (αi) =
α2
i

2 + yiαi and Fi ∈ R. Obviously, f∗i is differentiable

and Fi is convex. By directly applying Theorem 5 to this case we obtain the following

corollary showing that strong sparse duality holds for sparse linear regression given that

w(ᾱ) is unique.
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Corollary 3 (Sparse strong duality for linear regression). Consider the special case

of the primal problem (3.1.1) with least square loss f(w>xi, yi) = 1
2(yi − w>xi)2. Let

ᾱ = arg max
α

D(α) be a dual maximizer. If w(ᾱ) = Hk

(
− 1
Nλ

N∑
i=1

ᾱixi

)
is unique with

respect to ᾱ, then w(ᾱ) is a primal minimizer of P (w) satisfying P (w(ᾱ)) = D(ᾱ).

Remark 6. To illustrate the result in the above corollary, we consider the same example

as presented in Remark 4. In this case, we have the dual objective function written by

D(α) =
1

N

N∑
i=1

{
−α

2
i

2
− αiyi

}
− 1

2λN2
‖Hk(α)‖2

Provided that
λN [|y|](k)

1+λN > [|y|](k+1), we can directly verify that the dual solution is

[ᾱ](i) =

 −
λN

1+λN [y]i i ∈ {1, ..., k}

−[y](i) i ∈ {k + 1, ..., N}

and w(ᾱ) = Hk(− 1
λN ᾱ) is by definition unique. According to the discussion in Re-

mark 4, w(ᾱ) is exactly the primal minimizer. This verifies the validness of Corollary 3

on the considered example.

Example II: Sparse strong duality for logistic regression. We further show that

strong sparse duality hold mildly for the sparse logistic regression model, In logistic re-

gression model, given a k-sparse parameter vector w̄, the relation between the random

feature vector x ∈ Rp and its associated random binary label y ∈ {−1,+1} is determined

by the conditional probability P(y|x; w̄) = exp(2yw̄>x)/(1 + exp(2yw̄>x)). The logistic

loss over a sample (xi, yi) is written by f(w>xi, yi) = fi(w
>xi) = log

(
1 + exp(−yiw>xi)

)
,

where fi(a) = log (1 + exp(−ayi)). In this case we have f∗(αi) = −αiyi log(−αiyi) +

(1 +αiyi) log(1 +αiyi) with αiyi ∈ [−1, 0]. Note that f∗i is differentiable and Fi is con-

vex. Therefore Theorem 5 implied the following corollary for sparse logistic regression

models.

Corollary 4 (Sparse strong duality for logistic regression). Consider the special case

of the primal problem (3.1.1) with logistic loss f(w>xi, yi) = log
(
1 + exp(−yiw>xi)

)
.

Let ᾱ = arg max
α

D(α) be a dual maximizer. If w(ᾱ) = Hk

(
− 1
Nλ

N∑
i=1

ᾱixi

)
is unique

with respect to ᾱ, then w(ᾱ) is a primal minimizer of P (w) satisfying P (w(ᾱ)) = D(ᾱ).
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Algorithm 2: Dual Iterative Hard Thresholding (DIHT)

Input : Training set {xi, yi}Ni=1. Regularization strength parameter λ.

Cardinality constraint k. Step-size η.

Initialization w(0) = 0, α
(0)
1 = ... = α

(0)
N = 0.

for t = 1, 2, ..., T do

(S1) Dual projected super-gradient ascent: ∀ i ∈ {1, 2, ..., N},

α
(t)
i = PF

(
α

(t−1)
i + η(t−1)g

(t−1)
i

)
, (3.3.6)

where g
(t−1)
i = 1

N (x>i w
(t−1) − f∗′i (α

(t−1)
i )) is the super-gradient and PF (·) is

the Euclidian projection operator with respect to feasible set F .

(S2) Primal hard thresholding:

w(t) = Hk

(
− 1

λN

N∑
i=1

α
(t)
i xi

)
. (3.3.7)

end

Output: w(T ).

3.3.2 The Dual Iterative Hard Thresholding Algorithm

The Dual Iterative Hard Thresholding (DIHT) algorithm, as outlined in Algorithm 2,

is essentially a projected super-gradient method for maximizing D(α). The procedure

generates a sequence of prima-dual pairs (w(0), α(0)), (w(1), α(1)), . . . from an initial pair

w(0) = 0 and α(0) = 0. At the t-th iteration, the dual update step S1 conducts the

projected super-gradient ascent in (3.3.6) to update α(t) from α(t−1) and w(t−1). Then

in the primal update step S2, the primal variable w(t) is constructed from α(t) using a

k-sparse truncation operation in (3.3.7).

3.3.3 The Stochastic Dual Iterative Hard Thresholding Algorithm

When a batch estimation of super-gradient D′(α) becomes expensive in large-scale ap-

plications, it is natural to consider the stochastic implementation of DIHT, namely
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SDIHT, as outlined in Algorithm 3. Different from the batch computation in Algo-

rithm 2, the dual update step S1 in Algorithm 3 randomly selects a block of samples

(from a given block partition of samples) and update their corresponding dual variables

according to (3.3.8). Then in the primal update step S2.1, we incrementally update

an intermediate accumulation vector w̃(t) which records − 1
λN

∑N
i=1 α

(t)
i xi as a weighted

sum of samples. In S2.2, the primal vector w(t) is updated by applying k-sparse trun-

cation on w̃(t). The SDIHT is essentially a block-coordinate super-gradient method for

the dual problem. Particularly, in the extreme case m = 1, SDIHT reduces to the batch

DIHT. At the opposite extreme end with m = N , i.e., each block contains one sample,

SDIHT becomes a stochastic coordinate-wise super-gradient method.

The dual update (3.3.8) in SDIHT is much more efficient than DIHT as the former

only needs to access a small subset of samples at a time. If the hard thresholding

operation in primal update becomes a bottleneck, e.g., in high-dimensional settings,

we suggest to use SDIHT with relatively smaller number of blocks so that the hard

thresholding operation in S2.2 can be less frequently called.

3.3.4 Convergence Analysis of DIHT

We now analyze the non-asymptotic convergence behavior of DIHT. In the following

analysis, we will denote w̄ = arg min‖w‖0≤k P (w) and use the abbreviation ε
(t)
PD :=

εPD(w(t), α(t)). Let r = maxa∈F |a| be the bound of the dual feasible set F and ρ =

maxi,a∈F |f∗
′
i (a)|. For example, such quantities exist when fi and f∗i are Lipschitz

continuous [82]. The following is our theorem on the sub-linear convergence of dual

parameter estimation error and primal-dual gap of DIHT. The support recovery can be

guaranteed after sufficient iteration.

Theorem 6. Assume that fi is 1/µ-smooth and ε̄ := w̄min − 1
λ‖P

′(w̄)‖∞ > 0. Set the

step size as η(t) = N
µ(t+2) .

(a) Parameter estimation error and primal dual gap: The sequence {α(t)}t≥1

generated by Algorithm 2 satisfies the following estimation error inequality:

‖α(t) − ᾱ‖ ≤
r
√
k‖X‖22,∞ + λ

√
Nρ

λµ

(
1√
t+ 2

)
.
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Algorithm 3: Stochastic Dual Iterative Hard Thresholding (SDIHT)

Input : Training set {xi, yi}Ni=1. Regularization strength parameter λ.

Cardinality constraint k. Step-size η. A block disjoint partition

{B1, ..., Bm} of the sample index set [1, ..., N ].

Initialization w(0) = w̃(0) = 0, α
(0)
1 = ... = α

(0)
N = 0.

for t = 1, 2, ..., T do

(S1) Dual projected super-gradient ascent: Uniformly randomly select an

index block B
(t)
i ∈ {B1, ..., Bm}. For all j ∈ B(t)

i update α
(t)
j as

α
(t)
j = PF

(
α

(t−1)
j + η(t−1)g

(t−1)
j

)
. (3.3.8)

Set α
(t)
j = α

(t−1)
j , ∀j /∈ B(t)

i .

(S2) Primal hard thresholding:

– (S2.1) Intermediate update:

w̃(t) = w̃(t−1) − 1

λN

∑
j∈B(t)

i

(α
(t)
j − α

(t−1)
j )xj . (3.3.9)

– (S2.2) Hard thresholding: w(t) = Hk(w̃
(t)).

end

Output: w(T ).

Moreover, the primal-dual gap is bounded as

ε
(t)
PD ≤

(r
√
k‖X‖22,∞ + λ

√
Nρ)2

λ2µN

(√
k‖X‖22,∞
λ
√
Nµ

(1 +
4‖X‖2,∞‖ᾱ‖

λNε̄
) + 1

)(
1√
t+ 2

)

(b) Support recovery. The exact support recovery supp(w(t)) = supp(w̄) holds if

t ≥

⌈
4‖X‖22,∞(r

√
k‖X‖22,∞ + λ

√
Nρ)2

λ4µ2N2ε̄2

⌉

Proof. A proof of this result is given in § 3.6.6.

Remark 7. To gain better intuition of the bounds in the theorem, if conventionally

choosing the regularization parameter λ = O( 1√
N

), then 1√
N
‖α(t) − ᾱ‖ = O

(√
k
t

)
,

ε
(t)
PD = O

(√
k
t

)
and supp(w(t)) = supp(w̄) is guaranteed after O( k

ε̄2
) steps of iteration.
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Theorem 6 also suggests a computationally tractable termination criterion for DIHT:

the algorithm can be stopped when the primal-dual gap becomes sufficiently small and

supp(w(t)) becomes stable.

Consider primal sub-optimality ε
(t)
P := P (w(t)) − P (w̄). Since ε

(t)
P ≤ ε

(t)
PD always

holds, the convergence rates in Theorem 6 are applicable to the primal sub-optimality as

well. An interesting observation is that these convergence results on ε
(t)
P are not relying

on the Restricted Isometry Property (RIP) (or restricted strong condition number)

which is required in most existing analysis of IHT-style algorithms [11, 93]. In [41],

several relaxed variants of IHT-style algorithms are presented for which the estimation

consistency can be established without requiring the RIP conditions. In contrast to the

RIP-free sparse recovery analysis in [41], our Theorem 6 does not require the sparsity

level k to be relaxed.

3.3.5 Convergence Analysis of SDIHT

When the primal loss functions are Lipschitz continuous, we can similarly establish sub-

linear convergence rate bounds for SDIHT, as summarized in the following theorem.

Theorem 7. Assume that the primal loss functions {fi(·)}Ni=1 are 1/µ-smooth and

ε̄ := w̄min − 1
λ‖P

′(w̄)‖ > 0. Set η(t) = mN
µ(t+2) .

(a) Parameter estimation error: Let ᾱ = [f
′
1(w̄>x1), ..., f

′
N (w̄>xN )]. The se-

quence {α(t)}t≥1 generated by Algorithm 3 satisfies the following expected estima-

tion error inequality:

E[‖α(t) − ᾱ‖2] ≤
m(r
√
k‖X‖22,∞ + λ

√
Nρ)2

λ2µ2

(
1

t+ 2

)
,

Moreover, the primal-dual gap is bounded in expectation by

E[ε
(t)
PD] ≤

√
m(r
√
k‖X‖22,∞ + λ

√
Nρ)2

λ2µN

(√
k‖X‖22,∞
λµ
√
N

(1 +
4‖X‖2,∞‖ᾱ‖

λNε̄
) + 1

)
(

1√
t+ 2

)

(b) Support recovery: For any δ ∈ (0, 1), it holds with probability at least 1 − δ

that supp(w(t)) = supp(w̄) when

t ≥
⌈

4m‖X‖22,∞(r
√
k‖X‖22,∞ + λ

√
Nρ)2

δ2λ4µ2N2ε̄

⌉
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Proof. A proof of this result is given in Appendix 3.6.7.

Remark 8. Theorem 7 shows that, up to scaling factors, the expected or high probability

iteration complexity of SDIHT is almost identical to that of DIHT. The scaling factor

m reflects a trade-off between the decreased per-iteration cost and the increased iteration

complexity.

Remark 9. The part(b) of Theorem 7 show that supp(w(t)) = supp(w̄) occurs with high

probability when t is sufficiently large. When this event occurs, SDIHT (with m = N)

reduces to a restricted version of SDCA [82] over supp(w̄), and thus we are able to obtain

improved primal-dual gap convergence rate by straightforwardly applying the analysis of

SDCA over supp(w̄). However, we do not pursue further in that direction as the final

state convergence behavior of SDIHT, after exact support recovery, is not the primal

gola of this work.

3.4 Experiments

Numerical experiments are conducted to verify the proposed theory and evaluate the

algorithm. We verify the proposed strong sparse duality theorems established in §3.3

through a sparse linear regression model learning task on simulated data. Then we

evaluate the efficiency of DIHT/SDIHT on sparse `2-regularized smooth SVM loss and

Hinge loss minimization tasks using real-world datasets.

3.4.1 Theory Verification

For theory verification, we consider the sparse ridge regression model with quadratic

loss function f(w>xi, yi) = 1
2(yi−w>xi)2. The feature points {xi}Ni=1 are sampled from

standard normal distribution. The responses {yi}Ni=1 are generated according to a linear

model yi = w̄>xi + εi with a k̄-sparse parameter w̄ ∈ Rp and random Gaussian noise

ε ∼ N (0, σ2). For this simulation study, we tested with two baseline dimensionality-

sparse configurations (p, k̄) ∈ {(30, 5), (500, 50)}. For each configuration, we fixed the

baseline sample size N = p and studied the effect of varying regularization strength λ,
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signal strength w̄min and noise level σ on the optimal primal-dual gap between primal

minimum and dual maximum.

Setup and results of strong sparse duality theory verification. The strong

sparse duality theory relies on the sparsity constraint qualification condition (c) in

Theorem 2, which essentially requires w̄min ≥ 1
λ‖P

′(w̄)‖∞. In this group of simulation

study, keeping all other quantities fixed, we tested how the optimal primal-dual gap

evolves under varying w̄min ∈ {0.1, 0.5, 5, 10} and λ = λ0√
N

for a wide range of λ0 ∈

[10−3, 10]. To compute the optimal primal-dual gap, we need to find ways to estimate

the primal and dual optimal values. For the configuration (p, k̄) = (30, 5), the primal

minimizer can be exactly determined via brute-force search among the optimal values

over all the feasible index sets of cardinality k̄, and the dual maximizer is estimated via

running the proposed DIHT algorithm until convergence. For (p, k̄) = (500, 50), it is

computationally prohibitive to compute the exact primal minimum. In this case, we just

run DIHT on the dual problem until convergence and compute the suboptimal primal-

dual gap at the estimated dual maximizer. Figure 3.4.1 shows the optimal primal-dual

gap evolving curves as functions of λ under different values of signal strength w̄min.

From this group of curves we can make the following key observations:

• For each curve with fixed w̄min, the optimal primal-dual gap decreases as λ in-

creases and the gap reaches zero when λ is sufficiently large. This is as expected

because the larger λ is, the easier the condition w̄min ≥ 1
λ‖P

′(w̄)‖∞ can be fulfilled

so as to guarantee strong sparse duality.

• For a fixed λ, we note that the primal-dual gap is insensitive to w̄min especially

when λ is sufficiently large and w̄min is relatively small. This is partially because

w̄ appears on both sides of the inequality w̄min ≥ 1
λ‖P

′(w̄)‖∞ so that its scale

seems not having significant impact on the validness of this inequality.

3.4.2 Algorithm Evaluation

We now turn to evaluate the effectiveness and efficiency of the proposed DIHT/SDIHT

algorithm for dual sparse optimization. We begin with a simulation study to confirm
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Figure 3.4.1: Verification of strong sparse duality theory on linear regression: optimal

primal-dual gap evolving curves as functions of regularization strength λ under different

levels of signal strength w̄min. For the sake of semi-log curve plotting, we set the primal-

dual gap as 10−6 when the gap is exactly zero.

some theoretical properties of DIHT. After that we conduct a set of real data exper-

iments to demonstrate the computational efficiency of DIHT/SDIHT when applied to

sparse hinge loss minimization problems.

Simulated Study

The basic setting of this simulation study is identical to the one as described in the

theory verification part. As we pointed out at the end of Section 4.1, an interesting

theoretical property of DIHT is that its convergence is not relying on the RIP-type

conditions which in contrast are usually required by primal IHT-style algorithms. To

confirm this point, for each configuration (p, k̄), we studied the effect of varying regular-

ization strength λ and condition number of design matrix on the optimal primal-dual

gap achieved by DIHT, and make a comparison to some baseline primal IHT-style

methods as well.

Convergence of DITH under varying condition number. In this simulation,

when λ is fixed and given a desirable condition number κ, we generate feature points

{xi}Ni=1 from multivariate Gaussian distribution N (0,Σ) of which the covariance matrix

is carefully designed such that the condition number of Σ +λI is κ. In this way of data

generation, the condition number of the primal Hessian matrix 1
NXX

> + λI is close



40

to κ. Keeping all other quantities fixed, we tested how the optimal primal-dual gap

output by DIHT evolves under varying κ ∈ [1, 200] and regularization strength λ = λ0√
N

for λ0 ∈ {0.1, 1, 5, 10}. Figure 3.4.2 shows the corresponding optimal primal-dual gap

evolving curves. From these curves we can observe that the optimal primal-dual gap

curves are not sensitive to κ in most cases, especially in badly conditioned cases when

κ ≥ 50. This numerical observation confirms our theoretical claim that the convergence

behavior of DIHT is not relying on the condition number of problem.
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Figure 3.4.2: Convergence of DITH under varying condition number of problem: opti-

mal primal-dual gap evolving curves as functions of condition number κ of the Hessian

matrix 1
NXX

> + λI, under different regularization strength λ.

DIHT versus primal methods on ill-conditioned problems. We further ran

experiments to compare DIHT against primal IHT and HTP methods [93, 41] in high

condition number setting. For this simulation study, we tested with the dimensionality-

sparsity configuration (p, k̄) = (500, 50). To make the problem badly conditioned, we

followed a protocol introduced by [41] to select k̄/2 random coordinates from the sup-

port of nominal parameter vector w̄ and k̄/2 random coordinates outside its support

and constructed a covariance matrix with heavy correlations between these chosen co-

ordinates. The condition number of the resulting matrix was around 50. Keeping all

other quantities fixed, we tested how the primal objective values output by the con-

sidered algorithms evolve under varying sample size N ≤ p and regularization strength

λ = λ0√
N

for λ0 ∈ {1, 10}. The resulting curves are plot in Figure 3.4.3. It can be

seen from these curves that in most cases DIHT is able to achieve more optimal primal
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objective values than IHT and HTP in the considered ill-conditioned problems. We

attribute such a numerical benefit of DIHT to its invariance to the condition number

of problem.
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Figure 3.4.3: DIHT versus primal IHT-style methods on badly conditioned problems:

primal objective value evolving curves as functions of sample size N with regularization

strength chosen as λ = 1√
N

(left panel) and λ = 10√
N

(right panel).

Real Data: Computational Efficiency Evaluation

For real data experiment, since there is no ground truth model to compare against, we

will mainly evaluate the computational efficiency of DIHT. We test with the hinge loss

functions which are commonly used by support vector machines. Two binary bench-

mark datasets from LibSVM data repository1, RCV1 (p = 47, 236) [57] and News20

(p = 1, 355, 191) [51], are used for algorithm efficiency evaluation and comparison. We

select 0.5 million samples from RCV1 dataset for model training (N � p). For News20

dataset, all of the 19, 996 samples are used as the training data (p� N).

Smoothed Hinge Loss. We consider the sparse learning model (3.1.1) with the

following smoothed hinge loss function

f(w>xi, yi) =


0 yiw

>xi ≥ 1

1− yiw>xi − γ
2 yiw

>xi < 1− γ
1

2γ (1− yiw>xi)2 otherwise

.

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Its convex conjugate can be shown as

f∗(αi) =

 yiαi + γ
2α

2
i if yiαi ∈ [−1, 0]

+∞ otherwise
.

We set γ = 0.25 throughout our experiment. The computational efficiency of DIHT

and SDIHT is evaluated by comparing their running time against three primal baseline

algorithms: IHT, HTP, and SVR-GHT which is a stochastic variance reduction variant

of IHT [59]. Particularly, the following protocol is used for running time comparison: we

first run IHT until the sub-optimality criterion |P (w(t))−P (w(t−1))|
P (w(t))

≤ 10−4 or a maximum

number of iteration is reached, and then test the running time cost spend by other

algorithms to reach the same level of primal objective value P (w(t)). The parameter

update step-size of all the considered algorithms is tuned by grid search. For running

the two stochastic algorithms SDIHT and SVR-GHT, we uniformly randomly divide

the training data into |B| = 10 mini-batches.

Figure 3.4.4 shows the running time curves on both datasets under varying sparsity

level k and regularization strength λ = λ0√
N
, λ0 = {0.4, 0.8, 1.2, 1.6, 2}. It is obvious that

under all tested (k, λ) configurations on both datasets, DIHT and SDIHT need much

less time than their respective primal baseline algorithms IHT, HTP and SVR-GHT to

reach the same primal sub-optimality. Also, it can be seen that SDIHT is more efficient

than DIHT which matches the consensus that stochastic dual coordinate methods often

outperform their batch counterpart [34, 82].

We next evaluate the primal-dual convergence behavior of DIHT and SDIHT, we plot

the primal-dual gap evolving curves with respect to the number of epochs. Figure 3.4.5

illustrates the primal-dual gap convergence on both datasets, under sparsity level k =

1K for RCV1 dataset and k = 50K for News20 dataset. The regularization parameters

are set to be λ = λ0√
N
, λ0 = {0.4, 1.2, 2}, respectively. The results again verify the

superior efficiency of SDIHT over DIHT as it uses less number of training sample pass

to reach comparable primal-dual gap.

Non-smooth Hinge Loss. Finally, we test the efficiency of our algorithms when

applied to the vanilla hinge loss f(w>xi, yi) = max(0, 1 − yiw>xi). It is standard to
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Figure 3.4.4: Smoothed hinge loss: Running time (in second) comparison of the con-

sidered algorithms.

know

f∗(αi) =

 yiαi if yiαi ∈ [−1, 0]

+∞ otherwise
.

We follow the same experiment protocol in the smoothed hinge loss model training

experiment to compare the considered algorithms on the benchmark datasets. In this

non-smooth model training task, we set the step-size in DIHT and SDIHT to be η(t) =

c
t+2 , where c is a constant determined by grid search for optimal efficiency. The time

cost comparison is illustrated in Figure 3.4.6 and the prima-dual gap sub-optimality

is illustrated in Figure 3.4.7. This group of results indicate that DIHT and SDIHT

still exhibit remarkable efficiency advantage over the considered primal IHT algorithms

even when the loss function is non-smooth.
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Figure 3.4.5: Smoothed hinge loss: The primal-dual gap evolving curves of DIHT and

SDIHT. We use sparsity level k = 1K for RCV1 and k = 50K for News20.

3.5 Conclusion and Future Work

In this chapter, we systematically investigated duality theory and optimization algo-

rithms for solving the sparsity-constrained minimization problem which is NP-hard and

non-convex in its primal formulation. As the core theoretical contribution, we estab-

lished a sparse Lagrangian duality theory which guarantees strong duality in sparse

settings under certain sufficient and necessary conditions. For the cases when strong

duality can be violated, we further developed an approximate duality theory to upper

bound the prima-dual gap with statistical estimation error of model. Our theory opens

the gate to solve the original NP-hard/non-convex problem equivalently in a dual for-

mulation. We then propose DIHT as a first-order method to maximize the non-smooth

dual concave formulation. The algorithm is characterized by dual super-gradient ascent

and primal hard thresholding. To further improve iteration efficiency in large-scale set-

tings, we propose SDIHT as a block-coordinate stochastic variant of DIHT. For both
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Figure 3.4.6: Hinge loss: Running time (in second) comparison of the considered algo-

rithms.

algorithms we have proved sub-linear primal-dual gap convergence rate when the loss

is smooth, and the improved linear rate can be obtained when the loss is additional-

ly strongly convex. An interesting finding is that these convergence results are valid

without assuming RIP-style conditions which are usually required by the existing IHT

methods. Based on our theoretical findings and numerical results, we conclude that

DIHT and SDIHT are theoretically sound and computationally attractive alternatives

to the conventional primal IHT algorithms, especially when the sample size is smaller

than feature dimensionality.

Our work leaves several open issues for future exploration. First, it remains an open

question on how to verify the key condition (c) in Theorem 2 for general sparse learning

models. It will be interesting to provide some more intuitive ways to understand this

condition in popular statistical learning models such as linear regression and logistic

regression. Second, our convergence results in Theorem 7 merely indicate that SDIHT
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Figure 3.4.7: Hinge loss: The primal-dual gap evolving curves of DIHT and SDIHT.

We use sparsity level k = 1K for RCV1 and k = 50K for News20.

is not worse than DIHT in convergence rate, but without showing that its dependence

of scaling factors on sample size N and regularization strength λ can be significantly im-

proved as what has been achieved by SDCA for unconstrained regularized learning [82].

In our opinion, a main challenge we are facing here is the non-smoothness of the dual

objective D(α), which prevents us from mimicking the analysis of SDCA to SDIHT. It

will be interesting to develop some new proof approaches to justify why SDIHT often

outperforms DIHT in practice. Finally, it would be an interesting future work to apply

our duality theory and algorithms to communication-efficient distributed sparse learn-

ing problems which have recently gained considerable attention in large-scale machine

learning [37, 90].
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3.6 Appendix

3.6.1 Proof of Theorem 2

Proof. “⇐”: If the pair (w̄, ᾱ) is a sparse saddle point for L, then from the definition

of conjugate convexity and inequality (3.3.2) we have

P (w̄) = max
α∈F

L(w̄, α) ≤ L(w̄, ᾱ) ≤ min
‖w‖0≤k

L(w, ᾱ).

On the other hand, we know that for any ‖w‖0 ≤ k and α ∈ F

L(w,α) ≤ max
α′∈F

L(w,α′) = P (w).

By combining the preceding two inequalities we obtain

P (w̄) ≤ min
‖w‖0≤k

L(w, ᾱ) ≤ min
‖w‖0≤k

P (w) ≤ P (w̄).

Therefore P (w̄) = min‖w‖0≤k P (w), i.e., w̄ solves the problem in (3.1.1), which proves

the necessary condition (a). Moreover, the above arguments lead to

P (w̄) = max
α∈F

L(w̄, α) = L(w̄, ᾱ).

Then from the maximizing argument property of convex conjugate we know that ᾱi ∈

∂fi(w̄
>xi). Thus the necessary condition (b) holds. Note that

L(w, ᾱ) =
λ

2

∥∥∥∥∥w +
1

Nλ

N∑
i=1

ᾱixi

∥∥∥∥∥
2

− 1

N

N∑
i=1

f∗i (ᾱi) + C, (3.6.1)

where C is a quantity not dependent on w. Let F̄ = supp(w̄). Since the above analysis

implies L(w̄, ᾱ) = min‖w‖0≤k L(w, ᾱ), it must hold that

w̄ = HF̄

(
− 1

Nλ

N∑
i=1

ᾱixi

)
= Hk

(
− 1

Nλ

N∑
i=1

ᾱixi

)
.

This validates the necessary condition (c).

“⇒”: Conversely, let us assume that w̄ is a k-sparse solution to the problem (3.1.1)

(i.e., conditio(a)) and let ᾱi ∈ ∂fi(w̄>xi) (i.e., condition (b)). Again from the maximiz-

ing argument property of convex conjugate we know that fi(w̄
>xi) = ᾱiw̄

>xi− f∗i (ᾱi).

This leads to

L(w̄, α) ≤ P (w̄) = max
α∈F

L(w̄, α) = L(w̄, ᾱ). (3.6.2)



48

The sufficient condition (c) guarantees that F̄ contains the top k (in absolute value)

entries of − 1
Nλ

∑N
i=1 ᾱixi. Then based on the expression in (3.6.1) we can see that the

following holds for any k-sparse vector w

L(w̄, ᾱ) ≤ L(w, ᾱ). (3.6.3)

By combining the inequalities (3.6.2) and (3.6.3) we get that for any ‖w‖0 ≤ k and

α ∈ F ,

L(w̄, α) ≤ L(w̄, ᾱ) ≤ L(w, ᾱ).

This shows that (w̄, ᾱ) is a sparse saddle point of the Lagrangian L.

3.6.2 Proof of Theorem 3

Proof. “⇒”: Let (w̄, ᾱ) be a saddle point for L. On one hand, note that the following

holds for any k-sparse w′ and α′ ∈ F

min
‖w‖0≤k

L(w,α′) ≤ L(w′, α′) ≤ max
α∈F

L(w′, α),

which implies

max
α∈F

min
‖w‖0≤k

L(w,α) ≤ min
‖w‖0≤k

max
α∈F

L(w,α). (3.6.4)

On the other hand, since (w̄, ᾱ) is a saddle point for L, the following is true:

min
‖w‖0≤k

max
α∈F

L(w,α) ≤ max
α∈F

L(w̄, α)

≤ L(w̄, ᾱ) ≤ min
‖w‖0≤k

L(w, ᾱ)

≤ max
α∈F

min
‖w‖0≤k

L(w,α).

(3.6.5)

By combining (3.6.4) and (3.6.5) we prove the equality in (3.3.4).

“⇐”: Assume that the equality in (3.3.4) holds. Let us define w̄ and ᾱ such that

max
α∈F

L(w̄, α) = min
‖w‖0≤k

max
α∈F

L(w,α)

min
‖w‖0≤k

L(w, ᾱ) = max
α∈F

min
‖w‖0≤k

L(w,α)

.

Then we can see that for any α ∈ F ,

L(w̄, ᾱ) ≥ min
‖w‖0≤k

L(w, ᾱ) = max
α′∈F

L(w̄, α′) ≥ L(w̄, α),
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where the “=” is due to (3.3.4). In the meantime, for any ‖w‖0 ≤ k,

L(w̄, ᾱ) ≤ max
α∈F

L(w̄, α) = min
‖w′‖0≤k

L(w′, ᾱ) ≤ L(w, ᾱ).

This shows that (w̄, ᾱ) is a sparse saddle point for L.

3.6.3 Proof of Proposition 1

Proof. For any fixed α ∈ F , then it is easy to verify that the k-sparse minimum of

L(w,α) with respect to w is attained at the following point:

w(α) = arg min
‖w‖0≤k

L(w,α) = Hk

(
− 1

Nλ

N∑
i=1

αixi

)
.

Thus we have

D(α) = min
‖w‖0≤k

L(w,α) = L(w(α), α)

=
1

N

N∑
i=1

(
αiw(α)>xi − f∗i (αi)

)
+
λ

2
‖w(α)‖2

ζ1
=

1

N

N∑
i=1

−f∗i (αi)−
λ

2
‖w(α)‖2,

where “ζ1” follows from the above definition of w(α).

Now let us consider two arbitrary dual variables α′, α′′ ∈ F and any g(α′′) ∈
1
N [w(α′′)>x1 − ∂f∗1 (α′′1), ..., w(α′′)>xN − ∂f∗N (α′′N )]. From the definition of D(α) and

the fact that L(w,α) is concave with respect to α at any fixed w we can derive that

D(α′) = L(w(α′), α′)

≤ L(w(α′′), α′)

≤ L(w(α′′), α′′) +
〈
g(α′′), α′ − α′′

〉
.

This shows that D(α) is a concave function and its super-differential is as given in the

theorem.

If we further assume that w(α) is unique and {f∗i }i=1,...,N are differentiable at any α,

then ∂D(α) = 1
N [w(α)>x1 − ∂f∗1 (α1), ..., w(α)>xN − ∂f∗N (αN )] becomes unique, which

implies that ∂D(α) is the unique super-gradient of D(α).
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3.6.4 Proof of Theorem 4

Proof. “⇒”: Given the conditions in the theorem, it can be known from Theorem 2

that the pair (w̄, ᾱ) forms a sparse saddle point of L. Thus based on the definitions of

sparse saddle point and dual function D(α) we can show that

D(ᾱ) = min
‖w‖0≤k

L(w, ᾱ) ≥ L(w̄, ᾱ) ≥ L(w̄, α) ≥ D(α).

This implies that ᾱ solves the dual problem in (3.3.5). Furthermore, Theorem 3 guar-

antees the following

D(ᾱ) = max
α∈F

min
‖w‖0≤k

L(w,α) = min
‖w‖0≤k

max
α∈F

L(w,α) = P (w̄).

This indicates that the primal and dual optimal values are equal to each other.

“⇐”: Assume that ᾱ solves the dual problem in (3.3.5) and D(ᾱ) = P (w̄). Since

D(ᾱ) ≤ P (w) holds for any ‖w‖0 ≤ k, w̄ must be the sparse minimizer of P (w). It

follows that

max
α∈F

min
‖w‖0≤k

L(w,α) = D(ᾱ) = P (w̄) = min
‖w‖0≤k

max
α∈F

L(w,α).

From the “⇐” argument in the proof of Theorem 3 and Corollary 2 we get that the

conditions (a)∼(c) in Theorem 2 should be satisfied for (w̄, ᾱ).

3.6.5 Proof of Theorem 5

Proof. Recall the dual objective function D(α) is

D(α) =
1

N

N∑
i=1

−f∗i (αi)−
λ

2
‖w(α)‖2.

Since w(ᾱ) is unique and each f∗i is differentiable, according to Proposition 1 it is true

that the super-gradient ofD(α) at ᾱ is given byD′(ᾱ) = 1
N [w(ᾱ)>x1−f∗

′
1 (ᾱ1), ..., w(ᾱ)>xN−

f∗
′
N (ᾱN )]. Under the conditions in the theorem, we are going to show that for sufficiently

small η, the following must hold:

ᾱi = PFi (ᾱi + ηḡi) , (3.6.6)

where ḡi = 1
N (x>i w(ᾱ) − f∗′i (ᾱi)) and PFi(·) is the Euclidian projection operator with

respect to feasible set Fi. Before proving this, we need to present a few preliminaries.
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For any α ∈ F , let us define w̃(α) = − 1
Nλ

∑N
i=1 αixi. For a vector x ∈ Rp, denote

[x](j) the j-th largest entry (in absolute value) of x, i.e., |[x](1)| ≥ |[x](2)| ≥ ... ≥

|[x](p)|. Since w(ᾱ) is unique, or equivalently, the top k entries of w̃(ᾱ) is unique,

we must have ε̄ := [w̃(ᾱ)](k) − [w̃(ᾱ)](k+1) > 0. Let F̄ = supp(w(ᾱ)) and define

B(ᾱ) =
{
α ∈ RN : ‖α− ᾱ‖ ≤ λNε̄

2‖X‖2,∞

}
.

We prove the equation (3.6.6) by contradiction. Note that for any α ∈ B(ᾱ) we have

‖w̃(α)− w̃(ᾱ)‖∞ =
1

Nλ
‖X(α− ᾱ)‖∞ ≤

‖X‖2,∞
λN

‖α− ᾱ‖ ≤ ε̄

2
.

This indicates that supp(w(α)) = F̄ = supp(w(ᾱ)). That is, F̄ still contains the

(unique) top k entries of w̃(α) for all α ∈ B(ᾱ). Consider the vector β with βi = ᾱi+ηḡi

with a sufficiently small step-size η > 0 such that β ∈ B(ᾱ). Let α′ be a vector such

that α′i = PFi (βi). From the non-expanding property of Euclidian projection we know

that and ‖α′− ᾱ‖ ≤ ‖β− ᾱ‖ and thus α′ ∈ B(ᾱ). Therefore supp(w(α′)) = F̄ . Assume

that α′ 6= ᾱ. Assume that l∗i is `-smooth. Then

D(α′) =
1

N

N∑
i=1

−f∗i (α′i)−
λ

2
‖w(α′)‖2

=
1

N

N∑
i=1

−f∗i (α′i)−
λ

2

∥∥∥∥∥HF̄

(
− 1

Nλ

N∑
i=1

α′ixi

)∥∥∥∥∥
2

≥ 1

N

N∑
i=1

(
−f∗i (ᾱi)− f∗

′

i (αi)(α
′
i − ᾱi)−

`

2
(α′i − ᾱi)2

)
− λ

2

∥∥∥∥∥HF̄

(
− 1

Nλ

N∑
i=1

α′ixi

)∥∥∥∥∥
2

=
1

N

N∑
i=1

(
−f∗i (ᾱi)− f∗

′

i (αi)(α
′
i − ᾱi)−

`

2
(α′i − ᾱi)2

)
− λ

2
‖w(ᾱ)‖2

+
1

N

N∑
i=1

x>i w(ᾱ)(α′i − ᾱi)−
1

2λN2
(α′ − ᾱ)>X>F̄XF̄ (α′ − ᾱ)

ζ1
≥D(ᾱ) + 〈D′(ᾱ), α′ − ᾱ〉 − λN`+ ‖X‖2

2λN2
‖α′ − ᾱ‖2

ζ2
≥D(ᾱ) +

(
1

2η
− λN`+ ‖X‖2

2λN2

)
‖α′ − ᾱ‖2,

where in “ζ1” we have used (α′ − ᾱ)>X>
F̄
XF̄ (α′ − ᾱ) ≤ ‖X‖2‖α′ − ᾱ‖2, “ζ2” is due to the fact

that ‖α′ − β‖2 ≤ ‖ᾱ − β‖2 which then implies ‖α′ − ᾱ‖2 − 2η〈α′ − ᾱ,D′(ᾱ)〉 ≤ 0. Since we

have assumed ‖α′ − ᾱ‖ 6= 0, by choosing sufficiently small η < λN2

λN`+‖X‖2 , we can always find

D(α′) > D(ᾱ), which contradicts the optimality of ᾱ. Therefore α′ = ᾱ, i.e., the equation (3.6.6)

must hold for sufficiently small η.
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Next we show that (w(ᾱ), ᾱ) forms a sparse saddle point of the Lagrangian of the form:

L(w,α) =
1

N

N∑
i=1

(
αiw

>xi − f∗i (αi)
)

+
λ

2
‖w‖2.

Since (3.6.6) holds and Fi is convex, it must hold that either ḡi = 1
N (x>i w(ᾱ)− f∗′i (ᾱi)) = 0 for

ᾱi lies in the interior of Fi, or ᾱi lies on the boundary of Fi (if it is closed) and it maximizes

the function 1
N

(
αiw

>xi − f∗i (αi)
)
. In any case, we always have that ᾱi is a maximizer of

1
N

(
αix
>
i w(ᾱ)− f∗i (αi)

)
over the feasible set Fi, which implies L(w(ᾱ), α) ≤ L(w(ᾱ), ᾱ) holds

for any α ∈ F . From the definition of w(ᾱ) we know that L(w(ᾱ), ᾱ) ≤ L(w, ᾱ) is valid for

all k-sparse primal vector w. Therefore (w(ᾱ), ᾱ) is a sparse saddle point, and consequently

according to Theorem 4 that w(ᾱ) admits a primal k-sparse minimizer.

3.6.6 Proof of Theorem 6

We need a series of technical lemmas to prove this theorem. The following lemma

bounds the estimation error ‖α − ᾱ‖2 = O(〈D′(α) − D′(ᾱ), ᾱ − α〉) when the primal

loss {fi}Ni=1 are Lipschitz smooth.

Lemma 3. Assume that the primal loss functions {fi(·)}Ni=1 are 1/µ-smooth. Then the

following inequality holds for any α, α′′ ∈ F and g(α′) ∈ ∂D(α′), g(α′′) ∈ ∂D(α′′):

‖α′ − α′′‖2 ≤ N

µ
〈g(α′)− g(α′′), α′′ − α′〉.

Proof. Recall that

D(α) =
1

N

N∑
i=1

−f∗i (αi)−
λ

2
‖w(α)‖2,

Now let us consider two arbitrary dual variables α′, α′′ ∈ F . The assumption of fi

being 1/µ-smooth implies that its convex conjugate function l∗i is µ-strongly-convex.
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Let F ′′ = supp(w(α′′)). We have

D(α′) =
1

N

N∑
i=1

−f∗i (α′i)−
λ

2
‖w(α′)‖2

=
1

N

N∑
i=1

−f∗i (α′i)−
λ

2

∥∥∥∥∥Hk

(
− 1

Nλ

N∑
i=1

α′ixi

)∥∥∥∥∥
2

≤ 1

N

N∑
i=1

(
−f∗i (α′′i )− f∗

′
i (α′′i )(α

′
i − α′′i )−

µ

2
(α′i − α′′i )2

)
− λ

2

∥∥∥∥∥HF ′′

(
− 1

Nλ

N∑
i=1

α′ixi

)∥∥∥∥∥
2

≤ 1

N

N∑
i=1

(
−f∗i (α′′i )− f∗

′
i (α′′i )(α

′
i − α′′i )−

µ

2
(α′i − α′′i )2

)
− λ

2
‖w(α′′)‖2

+
1

N

N∑
i=1

x>i w(α′′)(α′i − α′′i )−
1

2λN2
(α′ − α′′)>X>F ′′XF ′′(α

′ − α′′)

≤D(α′′) + 〈g(α′′), α′ − α′′〉 − µ

2N
‖α′ − α′′‖2.

By adding two copies of the above inequality with α and α′ interchanged we arrive at

µ

N
‖α′ − α′′‖2 ≤ 〈g(α′)− g(α′′), α′′ − α′〉.

This leads to the desired inequality in the lemma.

The following lemma gives a simple expression of the gap for properly connected

primal-dual pairs.

Lemma 4. Given a dual variable α ∈ F and the related primal variable

w = Hk

(
− 1

Nλ

N∑
i=1

αixi

)
.

The primal-dual gap εPD(w,α) can be expressed as:

εPD(w,α) =
1

N

N∑
i=1

(
fi(w

>xi) + f∗i (αi)− αiw>xi
)
.

Proof. It is directly to know from the definitions of P (w) and D(α) that

P (w)−D(α)

=
1

N

N∑
i=1

fi(w
>xi) +

λ

2
‖w‖2 −

(
1

N

N∑
i=1

(
αiw

>xi − f∗i (αi)
)

+
λ

2
‖w‖2

)

=
1

N

N∑
i=1

(
fi(w

>xi) + f∗i (αi)− αiw>xi
)
.

This shows the desired expression.
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Based on Lemma 4, we can derive the following lemma which establishes a bound

on the primal-dual gap.

Lemma 5. Consider a primal-dual pair (w,α) satisfying

w = Hk

(
− 1

Nλ

N∑
i=1

αixi

)
.

Then the following inequality holds for any g(α) ∈ ∂D(α) and β ∈ [∂f1(w>x1), ..., ∂fN (w>xN )]:

P (w)−D(α) ≤ 〈g(α), β − α〉.

Proof. For any i ∈ [1, ..., N ], from the maximizing argument property of convex conju-

gate we have

fi(w
>xi) = w>xif

′
i(w
>xi)− f∗i (l′i(w

>xi)),

and

f∗i (αi) = αif
∗′
i (αi)− fi(f∗

′
i (αi)).

By summing both sides of above two equalities we get

fi(w
>xi) + f∗i (αi)

=w>xif
′
i(w
>xi) + αif

∗′
i (αi)− (fi(f

∗′
i (αi)) + f∗i (f ′i(w

>xi)))

ζ1
≤w>xif ′i(w>xi) + αif

∗′
i (αi)− f∗

′
i (αi)f

′
i(w
>xi),

(3.6.7)

where “ζ1” follows from Fenchel-Young inequality. Therefore

〈g(α), β − α〉

=
1

N

N∑
i=1

(w>xi − f∗
′
i (αi))(f

′
i(w
>xi)− αi)

=
1

N

N∑
i=1

(
w>xif

′
i(w
>xi)− f∗

′
i (αi)f

′
i(w
>xi)− αiw>xi + αif

∗′
i (αi)

)
ζ2
≥ 1

N

N∑
i=1

(fi(w
>xi) + f∗i (αi)− αiw>xi)

ζ3
=P (w)−D(α),

where “ζ2” follows from (3.6.7) and “ζ3” follows from Lemma 4. This proves the desired

bound.
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The following lemma shows that under proper conditions, w(α) is locally smooth

around w̄ = w(ᾱ).

Lemma 6. Assume that {fi}i=1,...,N are differentiable and ε̄ := w̄min− 1
λ‖P

′(w̄)‖∞ > 0.

Let ᾱ = [f ′1(w̄>x1), ..., f ′N (w̄>xN )]. If ‖α − ᾱ‖ ≤ λNε̄
2‖X‖2,∞ , then supp(w(α)) = supp(w̄)

and

‖w(α)− w̄‖ ≤
√
k‖X‖2,∞
λN

‖α− ᾱ‖.

Moreover if ‖α− ᾱ‖ > λNε̄
2‖X‖2,∞ , then

‖w(α)− w̄‖ ≤
√
k‖X‖2,∞
λN

(
1 +

4‖X‖2,∞‖ᾱ‖
λNε̄

)
‖α− ᾱ‖.

Proof. For any α ∈ F , let us define

w̃(α) = − 1

Nλ

N∑
i=1

αixi.

Consider F̄ = supp(w̄). Given ε̄ > 0, it is known from Theorem 4 that w̄ = HF̄ (w̃(ᾱ))

and P ′(w̄)
λ = HF̄ c (−w̃(ᾱ)). Then ε̄ > 0 implies F̄ is unique, i.e., the top k entries of

w̃(ᾱ) is unique, and w̄ = w(ᾱ). Given that ‖α− ᾱ‖ ≤ λNε̄
2‖X‖2,∞ , from the consistency of

matrix `2,∞-norm we can show that

‖w̃(α)− w̃(ᾱ)‖∞ =
1

Nλ
‖X(α− ᾱ)‖∞ ≤

‖X‖2,∞
λN

‖α− ᾱ‖ ≤ ε̄

2
.

This indicates that F̄ still contains the (unique) top k entries of w̃(α). Therefore,

supp(w(α)) = F̄ = supp(w̄).

Consequently we have

‖w(α)− w(ᾱ)‖ = ‖HF̄ (w̃(α))−HF̄ (w̃(ᾱ)) ‖

≤
√
k‖w̃(α)− w̃(ᾱ)‖∞

=

√
k

Nλ
‖X(α− ᾱ)‖∞

≤
√
k‖X‖2,∞
λN

‖α− ᾱ‖.

This proves the first desired bound.
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Next let us consider the case ‖α − ᾱ‖ > λNε̄
2‖X‖2,∞ . From the expression of w(α) we

can verify that ‖w(α)‖ ≤
√
k

λN ‖Xα‖∞ ≤
√
k

λN ‖X‖2,∞‖α‖. Then we have

‖w(α)− w(ᾱ)‖ ≤
√
k‖X‖2,∞
λN

(‖α‖+ ‖ᾱ‖)

≤
√
k‖X‖2,∞
λN

(‖α− ᾱ‖+ 2‖ᾱ‖)

≤
√
k‖X‖2,∞
λN

(
‖α− ᾱ‖+

4‖X‖2,∞
λNε̄

‖ᾱ‖‖α− ᾱ‖
)

=

√
k‖X‖2,∞
λN

(
1 +

4‖X‖2,∞
λNε̄

‖ᾱ‖
)
‖α− ᾱ‖.

This shows the second bound.

We are now in the position to prove Theorem 6.

of Theorem 6. Part(a): Let us consider g(t) ∈ ∂D(α(t)) with g
(t)
i = 1

N (x>i w
(t) −

f∗
′
i (α

(t)
i )). From the expression of w(t) we can verify

‖w(t)‖ ≤
√
k

λN
‖Xα(t)‖∞ ≤

√
k‖X‖2,∞‖α(t)‖

λN
≤ r
√
k‖X‖2,∞
λ
√
N

.

Since ‖xi‖ ≤ ‖X‖2,∞, we can show that

‖g(t)‖ ≤
r
√
k‖X‖22,∞ + λ

√
Nρ

λN
. (3.6.8)

Let ḡ ∈ ∂D(ᾱ) with ḡi = 1
N (x>i w(ᾱ) − f∗′i (ᾱi)). We will now claim ḡ = 0. Indeed,

Since ε̄ = w̄min − 1
λ‖P

′(w̄)‖∞ > 0, from the strong sparse duality theory we can show

that w̄ = w(ᾱ). Then, according to the fact f∗
′
(f ′(a)) = a we can derive g

(t)
i =

1
N (x>i w̄ − f∗

′
i (f ′i(x

>
i w̄))) = 1

N (x>i w̄ − x>i w̄) = 0, and thus ḡ = 0.

Let h(t) = ‖α(t) − ᾱ‖ and v(t) = 〈g(t) − ḡ, ᾱ − α(t)〉. From Lemma 3 we know that

(h(t))2 ≤ Nv(t)/µ. Then

(h(t))2 =‖PF
(
α(t−1) + η(t−1)g(t−1)

)
− ᾱ‖2

≤‖α(t−1) + η(t−1)g(t−1) − ᾱ‖2

=(h(t−1))2 − 2η(t−1)〈g(t−1), ᾱ− α(t−1)〉+ (η(t−1))2‖g(t−1)‖2

=(h(t−1))2 − 2η(t−1)〈g(t−1) − ḡ, ᾱ− α(t−1)〉+ (η(t−1))2‖g(t−1)‖2

≤(h(t−1))2 − η(t−1) 2µ

N
(h(t−1))2 + (η(t−1))2

(r
√
k‖X‖22,∞ + λ

√
Nρ)2

λ2N2
,
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where the first inequality is permitted by the non-expansion property of convex projec-

tion operator. Let η(t) = N
µ(t+2) . Then we obtain

(h(t))2 ≤
(

1− 2

t+ 1

)
(h(t−1))2 +

(r
√
k‖X‖22,∞ + λ

√
Nρ)2

λ2µ2(t+ 1)2
. (3.6.9)

We will now use induction over t ≥ 1 to prove our claimed bound, i.e., for all t ≥ 1,

(h(t))2 ≤ c0

t+ 2
.

where c0 =
(r
√
k‖X‖22,∞+λ

√
Nρ)2

λ2µ2
. The base-case t = 1 follows immediately from (3.6.9).

Now considering t ≥ 2, the bound in (3.6.9) reads as

(h(t))2 ≤
(

1− 2

t+ 1

)
(h(t−1))2 +

c0

(t+ 1)2

≤
(

1− 2

t+ 1

)
c0

t+ 1
+

c0

(t+ 1)2

=

(
1− 1

t+ 1

)
c0

t+ 1
≤ c0

t+ 2
,

which is our claimed estimation error bound when t ≥ 2.

To prove the convergence of primal-dual gap, we consider β(t) := [f ′1(x>1 w
(t)), ..., f ′N (x>Nw

(t))].

According to Lemma 5 we have

ε
(t)
PD = P (w(t))−D(α(t))

≤ 〈g(t), β(t) − α(t)〉

≤ ‖g(t)‖(‖β(t) − ᾱ‖+ ‖ᾱ− α(t)‖).

From the smoothness of li and Lemma 6 we get

‖β(t) − ᾱ‖ ≤
√
N‖X‖2,∞

µ
‖w(t) − w̄‖ ≤

√
k‖X‖22,∞
λµ
√
N

(
1 +

4‖X‖2,∞‖ᾱ‖
λNε̄

)
‖α− ᾱ‖,

where in the first “≤” we have used the assumption ‖xi‖ ≤ ‖X‖2,∞. By combining the

above with the bound in (3.6.8) we obtain

ε
(t)
PD ≤ ‖g

(t)‖(‖β(t) − ᾱ‖+ ‖ᾱ− α(t)‖)

≤
r
√
k‖X‖22,∞ + λ

√
Nρ

λN

(√
k‖X‖22,∞
λµ
√
N

(
1 +

4‖X‖2,∞‖ᾱ‖
λNε̄

)
+ 1

)
‖α(t) − ᾱ‖

≤
(r
√
k‖X‖22,∞ + λ

√
Nρ)2

λ2µN

(√
k‖X‖22,∞
λµ
√
N

(
1 +

4‖X‖2,∞‖ᾱ‖
λNε̄

)
+ 1

)(
1√
t+ 2

)
.
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This completes the proof of Part(a).

Part(b): Let us consider ε0 = λNε̄
2‖X‖2,∞ . From Part(a) we obtain

‖α(t) − ᾱ‖ ≤ ε0

after t ≥ t0 = c0
ε20

. In this case, it is known from Lemma 6 that supp(w(t)) = supp(w̄).

This proves the desired bound in Part(b).

3.6.7 Proof of Theorem 7

Proof. Part(a): The proof argument mostly mimics that of Theorem 6. Let h(t) =

‖α(t)−ᾱ‖ and v(t) = 〈g(t)− ḡ, ᾱ−α(t)〉. From Lemma 3 we know that (h(t))2 ≤ Nv(t)/µ.

For an index set B, denote g
(t)
B := HB(g(t)) and v

(t)
B := 〈g(t)

B − ḡB, ᾱ− α(t)〉. Then from

the non-expansion property of convex projection operator and the fact of ḡ = 0 we can

show

(h(t))2 =‖PF
(
α(t−1) + η(t−1)g

(t−1)
B
i(t−1)

)
− ᾱ‖2

≤‖α(t−1) + η(t−1)g
(t−1)
B
i(t−1)

− ᾱ‖2

=(h(t−1))2 − 2η(t−1)v
(t−1)
B
i(t−1)

+ (η(t−1))2‖g(t−1)
B
i(t−1)

‖2.

By taking conditional expectation (with respect to uniform random block selection,

conditioned on α(t−1)) on both sides of the above inequality we get

E[(h(t))2 | α(t−1)]

≤(h(t−1))2 − 1

m

m∑
i=1

2η(t−1)v
(t−1)
Bi

+
1

m

m∑
i=1

(η(t−1))2‖g(t−1)
Bi
‖2

=(h(t−1))2 − 2η(t−1)

m
v(t−1) +

(η(t−1))2

m
‖g(t−1)‖2

≤(h(t−1))2 − 2η(t−1)µ

mN
(h(t−1))2 + (η(t−1))2

(r
√
k‖X‖22,∞ + λ

√
Nρ)2

mλ2N2
.

Let us choose η(t) = mN
µ(t+2) . Then we obtain

E[(h(t))2 | α(t−1)] ≤
(

1− 2

t+ 1

)
(h(t−1))2 +

m(r
√
k‖X‖22,∞ + λ

√
Nρ)2

λ2µ2(t+ 1)2
.

By taking expectation on both sides of the above over α(t−1), we further get

E[(h(t))2] ≤
(

1− 2

t+ 1

)
E[(h(t−1))2] +

m(r
√
k‖X‖22,∞ + λ

√
Nρ)2

λ2µ2(t+ 1)2
.
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This recursive inequality leads to

E[(h(t))2] ≤
m(r
√
k‖X‖22,∞ + λ

√
Nρ)2

λ2µ2

(
1

t+ 2

)
.

Moreover, similar to the argument in the proof of Theorem 6 we obtain

E[ε
(t)
PD] ≤ E[‖g(t)‖(‖β(t) − ᾱ‖+ ‖ᾱ− α(t)‖)]

≤
r
√
k‖X‖22,∞ + λ

√
Nρ

λN

(√
k‖X‖22,∞
λµ
√
N

(
1 +

4‖X‖2,∞‖ᾱ‖
λNε̄

)
+ 1

)
E[‖α(t) − ᾱ‖]

≤
√
m(r
√
k‖X‖22,∞ + λ

√
Nρ)2

λ2µN

(√
k‖X‖22,∞
λµ
√
N

(
1 +

4‖X‖2,∞‖ᾱ‖
λNε̄

)
+ 1

)(
1√
t+ 2

)
.

This proves the results in Part(a).

Part(b): Let us consider ε0 = λNε̄
2‖X‖2,∞ . From Part(a) we obtain

E[‖α(t) − ᾱ‖] ≤ δε0

after t ≥ t1 =

⌈
m(r
√
k‖X‖22,∞+λ

√
Nρ)2

λ2µ2δ2ε20

⌉
. Then from the Markov inequality we know that

‖α(t)− ᾱ‖ ≤ E[‖α(t)− ᾱ‖]/δ ≤ ε0 holds with probability at least 1− δ. Lemma 6 shows

that ‖α(t) − ᾱ‖ ≤ ε0 implies supp(w(t)) = supp(w̄). Therefore when t ≥ t1, the event

supp(w(t)) = supp(w̄) occurs with probability at least 1 − δ. This proves the desired

result in Part(b).
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Chapter 4

Distributed Inexact Newton-type Pursuit for Non-convex

Sparse Learning

4.1 Introduction

In chapter 3 we have introduced the work about using dual method to solve the `2-

regularized minimization problem with model parameter `0-constraint. Now let’s con-

sider the following model parameter cardinality-constrained empirical risk minimization

(ERM) problem:

min
w∈Rp

F (w) :=
1

N

N∑
i=1

f(w;xi, yi), subject to ‖w‖0 ≤ k, (4.1.1)

where {xi, yi}Ni=1 are training samples, f is a general loss function, ‖w‖0 represents the

number of non-zero entries in w, and k is an integer controlling the cardinality. Due

to the presence of cardinality constraint, the problem is non-convex and NP-hard even

when f is convex. In this work, we are interested in distributed computing methods for

solving such a non-convex ERM problem. In particular, we assume the training data

D = {D1, ..., Dm} with N = mn samples is evenly and randomly distributed over m

different machines; each machine j locally stores and accesses n training samples Dj =

{xji, yji}ni=1. Let Fj(w) := 1
n

∑n
i=1 f(w;xji, yji) be the local empirical risk evaluated

on Dj . The global goal is to minimize the average of these local objectives under

cardinality constraint:

min
w∈Rp

F (w) =
1

m

m∑
j=1

Fj(w), s.t. ‖w‖0 ≤ k. (4.1.2)

We will refer to the above model as `0-ERM in this chapter.
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4.1.1 Iterative Hard Thresholding

The iterative hard thresholding (IHT) methods have demonstrated superior scalability

in `0-ERM problems [4, 93, 41]. The iteration procedure of IHT is as simple as a

truncated version of gradient descent step: w(t) = Hk

(
w(t−1) − η∇F (w(t−1))

)
, where

Hk(x) is a truncation operator which preserves the top k (in magnitude) entries of vector

x and sets the remaining to be zero. Let w̄ be a k̄-sparse target solution. If F (w) is

L-smooth and µs-strongly-convex over any s-sparse vector space with s = O(k), then

it is known from [41] that with some sparsity level k = O
(
L2

µ2s
k̄
)

, IHT-style methods

reach the estimation error level ‖w(t) − w̄‖ = O
(√

k‖∇F (w̄)‖∞/µs
)

after

O

(
L

µs
log

(
µs‖w(0) − w̄‖√
k‖∇F (w̄)‖∞

))
(4.1.3)

rounds of iteration. A direct approach for distributed `0-ERM is a centralized map-

reduce implementation of IHT: (1) map step: each machine calculates local gradient

∇Fj(w(t−1)) at w(t−1) then send ∇Fj(w(t−1)) to master; (2) reduce step: parameter

update w(t) = Hk(w
(t−1) − η 1

m

∑m
j=1 Fj(w

(t−1))) on a master machine then send w(t)

to workers. This distributed IHT approach was first introduced in [72] for compressive

sensing. However, as suggested by (4.1.3), the linear dependence of the iteration com-

plexity on the restricted condition number L/µs obviously makes the distributed IHT

communication inefficient in ill-conditioned problems.

4.1.2 Distributed Approximate Newton-type Methods

For classical distributed ERM problems, the iteration complexity of first-order dis-

tributed approaches including gradient descent and ADMM [13] also suffer from the

unsatisfactory polynomial dependence on condition number. To tackle this problem,

[84] proposed a distributed approximate Newton-type (DANE) method that takes ad-

vantage of the stochastic nature of problem: the i.i.d. data samples {xi, yi}Ni=1 are

uniformly distributed and each local problem will become sufficiently similar to the

global problem when data size increases. If F (w) is quadratic with condition num-

ber L/µ, the communication complexity (in high probability) of DANE to reach ε-

precision was shown to be O
(
L2

µ2n
log(mp) log

(
1
ε

))
, which has an improved dependence
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on the condition number L/µ which could scale as large as O(
√
mn) in regularized

learning problems. By applying Nesterov’s acceleration technique, AIDE [75] further

reduces the communication complexity of DANE to O
(√

L
µn1/2 log(mp) log

(
1
ε

))
in the

quadratic case, while allowing the local optimization to be inexact. For more general

self-concordant empirical risk functions, [98] proposed DiSCO as a distributed inexact

damped Newton method with comparable communication complexity to AIDE. More

recently, the EDSL and Two-way Truncation (TWT) method [90, 76] extend DANE to

solving `1-norm regularized ERM problems, obtaining similarly improved dependence

of communication cost on condition number. The main finding here is: when the lo-

cal functions are well structured and sufficiently correlated, distributed Newton-type

methods are able to approximate the optimal solution in considerably fewer rounds of

communication than those first-order methods.

4.1.3 Overview of Our Approach

In this work, we propose a DANE-type algorithm for distributed `0-ERM. The method

iterates between two main steps: 1) each worker machine (inexactly) solves a variance-

reduced local `0-ERM which is constructed based on the difference between global and

local gradients of loss; and 2) the master machine generates the next iterate via properly

aggregating the local solutions from workers. In practice, the proposed method has been

implemented on parameter server platform [58] with actual performance evaluated on

synthetic and real data high dimensional statistical learning tasks.

Although our method shares a similar algorithmic framework with DANE, its it-

eration complexity analysis turns out to be more challenging due to the presence of

non-convex cardinality constraint ‖w‖0 ≤ k and potentially non-convex objective func-

tions. Provided that n is sufficiently large and F (w) is convex with restricted Lipschitz

continuous Hessian (see Definition 4) and restricted condition number L/µs, we show

in Theorem 9 that the estimation error ‖w(t) − w̄‖ = O
(√

k‖∇F (w̄)‖∞/µs
)

can be

guaranteed in high probability after

O

 1

1− L
µs

√
log(mp)

n

log

(
µs‖w(0) − w̄‖√
k‖∇F (w̄)‖∞

) (4.1.4)



63

rounds of communication. In sharp contrast to the analysis of DANE [84] and AIDE [75]

which are restricted to the quadratic case, our bound in (4.1.4) is applicable to a much

wider problem spectrum in machine learning. Given that n = O
(
L2 log(mp)

µ2s

)
is suf-

ficiently large and equipped with proper initialization, the bound also implies that

in some popular statistical learning models the communication complexity scales in

O(log(m)) with respect to the number of machines. In comparison, the sample com-

plexity in [90, 76] for `1-regularized ERM is n = O
(
s2L2 log p

µ2s

)
which is inferior to ours.

As another highlight of analysis, we have analyzed our method for non-convex functions,

which to our knowledge has not been touched in previous DANE-type methods.

4.1.4 Notation

We denote Hk(x) as a truncation operator which preserves the top k (in magnitude)

entries of vector x and forces the remaining to be zero. The notation supp(x) represents

the index set of nonzero entries of x. We conventionally define ‖x‖∞ = maxi |[x]i| and

define xmin = mini∈supp(x) |[x]i|. For an index set S, we define [x]S and [A]SS as the

restriction of x to S and the restriction of rows and columns of A to S, respectively.

For an integer n, we abbreviate the set {1, ..., n} to [n].

4.2 The DINPS Method

We now introduce the Distributed Inexact Newton-type PurSuit (DINPS) method.

The high level algorithmic procedure of DINPS is outlined in Algorithm 4. Starting

from an initial k-sparse approximation w(0), the procedure generates a sequence of

intermediate k-sparse iterate {w(t)}t≥1 via distributed local sparse estimation and global

synchronization among machines. More precisely, each iteration loop of DINPS can be

decomposed into the following three consequent main steps:

Map-reduce gradient computation. In this step, the global gradient ∇F (w(t−1)) =

1
m

∑m
j=1∇Fj(w(t−1)) is evaluated at the current iterate via simple map-reduce averaging

and distributed to all machines for local computation.

Local inexact sparse approximation. Based on the received gradient ∇F (w(t−1)),
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each machine j constructs at the current iterate a local objective function (4.2.1) and

then inexactly estimate a local k-sparse solution w
(t)
j ≈ arg min‖w‖0≤k Pj(w;w(t−1), η, γ)

up to sparsity level k̄ ≤ k and ε-precision. This inexact sparse optimization step can be

implemented using IHT-style algorithms which have been witnessed to offer fast and

accurate solutions for `0-estimation [93, 41].

Centralized results aggregation. We compute the truncated average

w(t) = Hk

 1

m

m∑
j=1

w
(t)
j


as the next iterate generated from local sparse predictors. Here the truncation operation

is needed to maintain sparsity of output.

Algorithm 4: Distributed Inexact Newton-type PurSuit (DINPS)

Input : Loss functions {Fj(w)}mj=1, sparsity level k, parameter γ ≥ 0 and η > 0.

Initialization w(0) = 0 or w(0) ≈ arg min
‖w‖0≤k

F1(w).

for t = 1, 2, ... do

Compute ∇F (w(t−1)) = 1
m

∑m
j=1∇Fj(w(t−1)) and broadcast it to all workers;

for all the workers j = 1, ...,m in parallel do

(i) Construct a local objective function:

Pj(w;w(t−1) | η, γ) := Fj(w) + 〈η∇F (w(t−1))−∇Fj(w(t−1)), w〉+
γ

2
‖w − w(t−1)‖2,

(4.2.1)

(ii) Estimate a k-sparse vector w
(t)
j such that for any k̄-sparse w̄ with k̄ ≤ k:

Pj(w
(t)
j ;w(t−1) | η, γ) ≤ Pj(w̄;w(t−1) | η, γ) + ε;

end

Compute w(t) = Hk

(
1
m

∑m
j=1 w

(t)
j

)
.

end

Output: w(t).

The construction of the local objective (4.2.1) is inspired by the idea of leveraging

the first-order gradient information and local higher-order information for local process-

ing as originally introduced in DANE [84]. Compared to those first-order distributed

methods [13, 37], such a way of local computation is known to be able to take ad-

vantage of inter-machine statistical correlation to dramatically reduce the frequency of
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communication. Similar local optimization strategy was also considered by [90, 76] for

l1-regularized sparse learning. Different from these existing DANE-type approaches for

convex optimization, our method is designed for `0-ERM of which the constraint and

objective function can both be non-convex.

For initialization, the simplest way is to set w(0) = 0, i.e., starting the iteration from

scratch. Since the data samples are assumed to be evenly and randomly distributed

on machines, another reasonable option of initialization is to minimize one of the local

`0-ERM problems, say w(0) ≈ arg min‖w‖0≤k F1(w), which is expected to be close to the

global solution.

4.3 Analysis for Convex Functions

In this section, we analyze the rate-of-convergence performance of DINPS for convex

objective functions.

4.3.1 Preliminaries

We start by introducing the concept of restricted strong convexity and smoothness

which are conventionally used in analyzing greedy pursuit methods [80, 93, 41].

Definition 3 (Restricted Strong Convexity/Smoothness). For any integer s > 0, we

say f(w) is restricted µs-strongly-convex and Ls-smooth if µs2 ‖w−w
′‖2 ≤ f(w)−f(w′)−

〈∇f(w′), w − w′〉 ≤ Ls
2 ‖w − w

′‖2 holds for ∀w,w′ with ‖w − w′‖0 ≤ s.

We next introduce the concept of restricted Lipschitz continuous gradient and Hes-

sian which characterizes the continuity of the gradient vector and Hessian matrix over

sparse subspaces. To simplify the notation, we will use abbreviations ∇Sf := [∇f ]S

and ∇2
SSf := [∇2f ]SS .

Definition 4 (Restricted Lipschitz Gradient/Hessian). We say f(w) has Restrict-

ed Lipschitz Gradient with constant αs ≥ 0 (or αs-RLG) if ‖∇Sf(w)−∇Sf(w′)‖ ≤

αs‖w −w′‖ holds for all w,w′ with ‖w −w′‖0 ≤ s and S = supp(w) ∪ supp(w′). More-

over, suppose that f(w) is twice continuously differentiable. We say f(w) has Restrict-

ed Lipschitz Hessian with constant βs ≥ 0 (or βs-RLH) if
∥∥∇2

SSf(w)−∇2
SSf(w′)

∥∥ ≤
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βs‖w − w′‖.

The RLH property of logistic loss function. Consider the logistic loss f(w) =

1
n

∑n
i=1 log(1 + exp(−2yiw

>xi)) for some y = (yi) ∈ {−1,+1}n and Xn = (xi) ∈

Rn×p. We need to access the gradient and Hessian of the logistic loss f(w). Let

σ(z) = 1/(1 + exp(−z)) be the sigmoid function. It is easy to show that the gradient

∇f(w) = Xa(w)/n where a(w) ∈ Rn with [a(w)]i = −2yi(1 − σ(2xiw
>ui)); and the

Hessian∇2f(w) = XΛ(w)X>/n where Λ(w) is an n×n diagonal matrix whose diagonal

entries [Λ(w)]ii = 4σ(2viw
>ui)(1 − σ(2viw

>ui)). The following proposition further

shows that the logistic loss has RLH.

Proposition 2. Given a cardinality number s. Assume that ‖[xi]s‖ ≤ rs holds for all

xi. Let Σn = 1
nXX

> be the sample covariance matrix. Then the logistic loss f(w) has

βs-RLH with βs = 24rsρ
max
s (Σn).

Proof. See Appendix 4.7.4 for a proof of this result.

4.3.2 Results for quadratic objective functions

Here we present our results in a special setting where F (w) is quadratic with RL-

H strength parameter βs ≡ 0 for all s. The widely applied sparse least square re-

gression model belongs to this case. We need in our analysis the concept of sparse

largest/smallest eigenvalue of a square matrix.

Definition 5 (Sparse Largest/Smallest Eigenvalues). Let H ∈ Rp×p be a square matrix.

we define the largest s-sparse eigenvalue of H as

ρmax
s (H) = max

w∈Rp

{
w>Hw | ‖w‖0 ≤ s, ‖w‖ = 1

}
,

and the smallest s-sparse eigenvalue of H as

ρmin
s (H) = min

w∈Rp

{
w>Hw | ‖w‖0 ≤ s, ‖w‖ = 1

}
.

The following is a deterministic result on sparse parameter estimation error of

DINPS when the objective F (w) is quadratic.
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Theorem 8. Let w̄ be a k̄-sparse target vector with k̄ ≤ k. Assume that each com-

ponent Fj(w) is quadratic with a Hessian matrix Hj and ρmin
3k (Hj) ≥ µ3k > 0. Let

H = 1
m

∑m
j=1Hj. Assume that maxj ‖Hj − ηH‖ ≤ θµ3k

3.24 for some θ ∈ (0, 1) and

ε ≤ kη2‖∇F (w̄)‖2∞
5.29µ3k

. Set γ = 0. Then Algorithm 4 will output solution w(t) satisfying

‖w(t) − w̄‖ ≤ 7.62η
√
k‖∇F (w̄)‖∞

(1− θ)µ3k

after t ≥ 1
1−θ log

(
µ3k‖w(0)−w̄‖
η
√
k‖∇F (w̄)‖∞

)
rounds of iteration.

Proof. A proof of this result is given in Appendix 4.7.2.

The result established in Theorem 8 shows that under proper conditions: 1) the

estimation error of DINPS is controlled by the multiplier of
√
k‖∇F (w̄)‖∞ which usually

represents the optimal statistical error in high dimensional learning models; and 2) the

rate of convergence before reaching the error region is linear.

We now turn to a stochastic setting where the samples are uniformly randomly

distributed over m machines. The following lemma, which is based on a matrix con-

centration bound [88], shows that the Hessian Hj is close to H when sample size is

sufficiently large. The same result appears in [84].

Lemma 7. Assume that ‖∇2f(w>xji, yji)‖ ≤ L holds for all j ∈ [m] and i ∈ [n]. Let

Hj = 1
n

∑n
i=1∇2f(w>xji, yji) and H = 1

m

∑m
j=1Hj. Then for each j, with probability

at least 1− δ over the samples, maxj ‖Hj −H‖ ≤
√

32L2 log(mp/δ)
n .

Equipped with Lemma 7, we are able to derive the following result as a specialization

of Theorem 8 to the considered stochastic setting.

Corollary 5. Let w̄ be a k̄-sparse target vector with k̄ ≤ k. Assume that the samples

are uniformly randomly distributed on m machines and the conditions in Theorem 8

hold. Assume ‖∇2f(w>xji, yji)‖ ≤ L holds for all j ∈ [m] and i ∈ [n]. Set γ = 0

and η = 1. For any δ ∈ (0, 1), if n > 336L2 log(mp/δ)
µ23k

, then with probability at least

1 − δ, Algorithm 4 will output solution w(t) satisfying ‖w(t) − w̄‖ ≤ 7.62η
√
k‖∇F (w̄)‖∞

(1−θ)µ3k

after t ≥ 1
1−θ log

(
µ3k‖w(0)−w̄‖√
k‖∇F (w̄)‖∞

)
rounds of iteration with θ = L

µ3k

√
336 log(mp/δ)

n .
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Proof. See Appendix 4.7.2 for a proof of this corollary.

The main message conveyed by Corollary 5 is that in the quadratic case, the con-

traction factor θ can be arbitrarily small given that the sample size n = O
(
L2 log(mp)

µ23k

)
is sufficiently large. This sample size complexity is clearly superior to the correspond-

ing n = O
(
k2L2 log p

µ23k

)
complexity established in [90, 76] for `1-regularized sparse linear

regression models.

4.3.3 Results for objective functions with RLH

We now study the case where the objective functions are twice differentiable with RLH.

The following is a deterministic result on sparse parameter estimation error of DINPS

in the considered setting.

Theorem 9. Let w̄ be a k̄-sparse target vector with k̄ ≤ k. Let H̄j = ∇2Fj(w̄) and

H̄ = 1
m

∑m
j=1 H̄j. Assume that: (a) Fj(w) is µ3k-strongly-convex and has β3k-RLH;

(b) maxj ‖H̄j − ηH̄‖ ≤ θµ3k
6.48 for some θ ∈ (0, 1), ‖∇F (w̄)‖∞ ≤

θ(1−θ)µ23k
21.45η(1+η)β3k

√
k

, and

ε ≤ kη2‖∇F (w̄)‖2∞
5.29µ3k

; (c) ‖w(0) − w̄‖ ≤ θµ3k
3.24(1+η)β3k

. Set γ = 0. Then Algorithm 4 will

output w(t) satisfying

‖w(t) − w̄‖ ≤ 7.62η
√
k‖∇F (w̄)‖∞

(1− θ)µ3k

after t ≥ 1
1−θ log

(
µ3k‖w(0)−w̄‖
η
√
k‖∇F (w̄)‖∞

)
rounds of iteration.

Proof. A proof of this result is given in Appendix 4.7.3.

Given that w(0) is properly initialized and the gradient infinity norm ‖∇F (w̄)‖∞ is

sufficiently small, the estimation error of DINPS for RLH objectives is controlled by

the multiplier of
√
k‖∇F (w̄)‖∞ which typically represents the optimal statistical error

in sparse learning models; and the rate of convergence towards this error level is linear.

As a direct consequence of Theorem 9, if we further assume w̄min >
7.62η

√
k‖∇F (w̄)‖∞

(1−θ)µ3k ,

then support recovery supp(w(t)) ⊇ supp(w̄) can be guaranteed at w(t).

Stochastic result. By plugging Lemma 7 to Theorem 9 we obtain the following

stochastoc result of DINPS for objectives with RLH.
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Corollary 6. Let w̄ be a k̄-sparse target vector with k̄ ≤ k. Assume that the samples

are uniformly randomly distributed on m machines and the conditions in Theorem 9

and Lemma 7 hold. Set γ = 0 and η = 1. For any δ ∈ (0, 1), if n > 1344L2 log(mp/δ)
µ23k

,

then with probability at least 1 − δ, Algorithm 4 will output w(t) satisfying ‖w(t) −

w̄‖ ≤ 7.62
√
k‖∇F (w̄)‖∞

(1−θ)µ3k after t ≥ 1
1−θ log

(
µ3k‖w(0)−w̄‖√
k‖∇F (w̄)‖∞

)
rounds of iteration with θ =

L
µ3k

√
1344 log(mp/δ)

n .

Proof. See § 4.7.3 for a proof of this corollary.

Corollary 6 shows that when objective functions have RLH, provided that sam-

ple size n = O
(
L2 log(mp)

µ23k

)
is sufficiently large, the contraction factor θ can be well

controlled to remove the dependency on condition number L/µ3k. This sample com-

plexity improves the corresponding n = O
(
k2L2 log p

µ23k

)
complexity presented in [90, 76]

for distributed sparse learning.

On local initialization. The iteration complexity results established in Theorem 9

and Corollary 6 rely on the initialization error ‖w(0) − w̄‖. Let us consider an ideal

local initialization strategy of w(0) = arg min‖w‖0≤k F1(w). If the component F1(w)

is µ3k-strongly convex then it can be verified that ‖w(0) − w̄‖ ≤ 2.84
√
k‖∇F1(w̄)‖∞
µ3k

. By

plugging this error bound to Corollary 6, the iteration complexity of DINPS for RLH

objectives can be bounded from above by

O

 1

1− L
µs

√
log(mp)

n

log

(
‖∇F1(w̄)‖∞
‖∇F (w̄)‖∞

). (4.3.1)

In the following example, we will show that the term log
(
‖∇F1(w̄)‖∞
‖∇F (w̄)‖∞

)
scales as log(m)

in logistic regression.

Implications for distributed sparse logistic regression. As an example, we briefly

discuss the implications of our results for distributed sparse logistic regression models.

The logistic loss over data Dj is defined as Fj(w) = 1
n

∑n
i=1 log

(
1 + exp(−yjiw>xji)

)
.

Let F (w) = 1
m

∑m
j=1 Fj(w) be the average of local loss. From Proposition 2 we

know that each local logistic loss has RLH. Suppose xji are sub-Gaussian with pa-

rameter σ. It is known that ‖∇F (w̄)‖∞ = O
(
σ
√

log p/(mn)
)

and ‖∇Fj(w̄)‖∞ =

O
(
σ
√

log p/n
)

hold with high probability [93]. Then with the local initialization
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w(0) ≈ arg min‖w‖0≤k F1(w), the bound in (4.3.1) suggests that DINPS essentially

needs O(logm) rounds of iteration/communication to reach the statistical error barrier

O
(
σ
√
k log p/(mn)

)
.

4.3.4 Results for general strongly-convex functions

For more general strongly convex F (w) without necessarily having RLH, the following

result further shows that by using properly relaxed sparsity levels, DINPS can accu-

rately estimate parameters. For the purpose of readability, we only consider the ideal

case where the local subproblems are solved exactly with ε = 0, although the result

generalizes easily to the inexact case of ε > 0.

Theorem 10. Let w̄ be a k̄-sparse vector. Assume that: (a) Fj(w) is µ3k-strongly-

convex and L3k-smooth; (b) k >

(
1 +

(
L2
3k+µ3kL3k−µ23k

µ23k

)2
)
k̄ and ε = 0. Set γ =

L2
3k−µ

2
3k

2µ3k
and η = L3k

µ3k
. Then the Algorithm 4 will output

‖w(t) − w̄‖ ≤ 4.47L3k

√
k

(1− θ)(L2
3k − µ2

3k)
‖∇F (w̄)‖∞

after t ≥ 1
1−θ log

(1−θ)(L2
3k−µ

2
3k)‖w(0)−w̄‖

θL3k

√
k‖∇F (w̄)‖∞

rounds of iteration with the contraction factor

θ =
(L2

3k − µ2
3k)(

√
k − k̄ +

√
k̄)

(L2
3k + µ2

3k)
√
k − k̄ −

√
k̄(L2

3k − µ2
3k + 2µ3kL3k)

.

Proof. A proof of this result is given in § 4.7.5.

Remark 10. Theorem 10 actually generalizes those RIP-free convergence results for

IHT [41] to DINPS.

Particularly, if F (w) has bounded restricted strong condition number, then we can

establish linear convergence of DINPS without relaxing the sparsity level k, as formally

stated in the following Theorem.

Theorem 11. Let w̄ be a k̄-sparse target vector with k̄ ≤ k. Assume that each com-

ponent Fj(w) is µ3k-strongly-convex and L3k-smooth. Assume that L3k
µ3k

< 1.37 and

ε ≤ kL2
3k‖∇F (w̄)‖2∞

10.58(L2
3k+µ23k)µ3k

. Set γ =
L2
3k−µ

2
3k

2µ3k
and η = L3k

µ3k
. Then Algorithm 4 will output
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solution w(t) satisfying

‖w(t) − w̄‖ ≤ 8.47L3k

√
k

L2
3k + µ2

3k

‖∇F (w̄)‖∞

after t ≥ 1
1−θ log

(
(1−θ)(L2

3k+µ23k)‖w(0)−w̄‖
L3k

√
k‖∇F (w̄)‖∞

)
rounds of iteration, where θ =

3.24(L2
3k−µ

2
3k)

L2
3k+µ23k

∈

[0, 1).

Proof. See § 4.7.6 for a proof of this result.

Comparing to Theorem 9, the results of Theorem 10 and Theorem 11 are not as

strong because the contraction factor has polynomial dependence on the restricted

condition number.

4.4 Analysis for Non-Convex Functions

We now turn to study the case when the objective function is non-convex. To analyze

the global convergence of general non-convex problems, we follow the convention to use

the value ‖∇F (w)‖2 as a measurement of quality for approximate stationary solutions,

keeping in mind that the estimation error criterion for convex problems is not applicable

due to the hardness of non-convex problems [74]. For our global analysis, we make two

slight modifications of Algorithm 4 to adapt to non-convexity: i) estimate a k-sparse

vector w
(t)
j such that ‖∇Pj(w(t)

j ;w(t−1) | η(t), γ)‖ ≤ ε; and ii) update w(t) = w
(t)
1 , that

is, we always set w(t) as the local solution of the first (or any other fixed) machine.

Theorem 12. Assume that for all j, Fj(w) is L2k-smooth. Set γ = (η + 2)L2k. Then

min
1≤τ≤t

‖∇F (w(τ))‖2 ≤
(

8(η + 3)2L2k(F (w(0))− F (w∗))

η

)
1

t
+

18(η + 3)2

η2
ε2,

where F (w∗) = min‖w‖0≤k F (w).

Proof. A proof of this result is given in Appendix 4.7.7.

Remark 11. The precision barrier O(ε2) appeared in the above bound is introduced by

the local sparse solution whose gradient is generally non-vanishing. In the extreme case

of dense learning where the cardinality constraint is inactive, the local solution precision

ε can be arbitrarily small. This leads to a sub-linear convergence result for the original

DANE method with non-convex objective functions.
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(b) γ = 8.

Figure 4.5.1: Simulation study on sparse linear regression: communication efficiency

comparison with varying γ values.

To our knowledge, Theorem 12 is the first convergence result for IHT-style methods

with non-convex objective functions.

4.5 Experiments

In this section, we present empirical results of DINPS on a number of synthetic and

real-world sparse learning problems, including sparse linear/logistic regression, sparse

bilinear regression and training skinny neural networks. The considered algorithms are

implemented with C++ and tested on multiple machines with 3.0GHz CPU intercon-

nected by Ethernet. Machine communication interface is implemented by parameter

server [58]. In this section, we present empirical results of DINPS on a number of

synthetic and real-world sparse learning problems, including sparse linear/logistic re-

gression, sparse bilinear regression and deep neural nets pruning. The considered algo-

rithms are implemented with C++ and tested on multiple machines with 3.0GHz CPU

interconnected by Ethernet. The machine communication interface is implemented by

parameter server [58].

4.5.1 Sparse linear regression

We first compare DINPS with distributed IHT (Dist-IHT) [72], efficient distributed

sparse learning (EDSL) [90] and two-way trauncation (TWT) [76] on simulated sparse
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linear regression tasks. Recollect that EDSL and TWT are DANE-type distributed

computing methods for solving the Lasso-type estimation problem. A synthetic N × p

design matrix is generated with each data sample xi drawn from Gaussian distribution

N (0,Σ) with Σj,k =


1 if j = k

1.1
− |j−k|

γ otherwise

. A k̄-sparse model parameter w̄ ∈ Rp

is generated with the top k̄ entries uniformly randomly valued in interval (0, 1) and

all the other entries set to be zero. The response variables {yi}Ni=1 are generated by

yi = w̄>xi + εi with εi ∼ N (0, 1). The convergence is measured by relative estimation

error ‖w − w̄‖/‖w̄‖. The algorithm hyper-parameters are tuned by grid search for

optimal performance. We fix the training sample size to be N = 5 × 103, p = 104,

k̄ = 100, the number of machines to be m = 8 and vary the value of γ to be 2 and 8.

The convergence curves of the considered algorithms with respect to round of com-

munication are shown in Figure 4.5.1. From this group of results we can see: 1) DINPS,

EDSL and TWT converge quickly after a few rounds of master-worker communication,

while Dist-IHT method needs thousands more rounds of communication to reach the

comparable accuracy of DINPS; 2) When convergence is attained, DINPS outputs more

accurate sparse solution than EDSL and TWT, mainly because DINPS directly works

on the cardinality-constrained formulation while the EDSL and TWT work a relaxed

`1-formulation which tends to introduce bias in sparse learning. In conclusion, DINPS

simultaneously achieves higher communication efficiency and model estimation accura-

cy than the two state-of-the-art baseline methods.

4.5.2 Sparse `2-regularized logistic regression

Next we evaluate the performance of DINPS in sparse `2-regularized binary logistic

regression tasks. We compare the training time of DINPS with Dist-IHT on two real-

world datasets: rcv1 (N = 6 × 105, p ≈ 4.7 × 105) and kdd2010-algebra (N ≈ 8 × 106,

p ≈ 2×107). For both datasets, the training samples are evenly distributed onto m = 4

and 8 machines, and the `2-regularization strength is set as 10−5.

Figure 4.5.2 shows the running time of algorithms under varying sparsity level k ∈

{0.05, 0.1, 0.5, 1, 5} × 103 for rcv1 and k ∈ {0.05, 0.1, 5, 1, 5} × 104 for kdd2010-algebra,
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(a) rcv1. (b) kdd2010-algebra.

Figure 4.5.2: Sparse logistic regression model training: time cost (in second) comparison

and kdd2010-algebra.

k = 100 k = 1K

EDSL TWT DINPS EDSL TWT DINPS

m = 2 0.3237 0.2820 0.2709 0.2201 0.1823 0.1551

m = 4 0.3255 0.2828 0.2717 0.2225 0.1842 0.1554

m = 8 0.3298 0.2830 0.2723 0.2236 0.1861 0.1555

Table 4.5.1: Distributed `2-sparse logistic regression: model training loss comparison

on rcv1, with k = 100 and 1K.

k = 100 k = 1K

EDSL TWT DINPS EDSL TWT DINPS

m = 2 0.3959 0.3832 0.3709 0.3503 0.3422 0.3314

m = 4 0.4049 0.3874 0.3712 0.3521 0.3460 0.3347

m = 8 0.4060 0.3902 0.3723 0.3526 0.3463 0.3356

Table 4.5.2: Distributed `2-sparse logistic regression: model training loss comparison

on kdd-algebra, with k = 100 and 1K.
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with machine number m = 4 and 8. For any sparsity level, We first run Dist-IHT until

it reaches a sub-optimality |F (w(t))−F (w(t−1))|/|F (w(t))| ≤ 10−4 or maximum number

of iteration, then record the running time of DINPS with different machine number m

to reach the training loss level below this. Each model training is repeated 5 times to

calculate the average time cost. It can be clearly seen that DINPS is consistently more

efficient than Dist-IHT under varying sparsity level and number of machines.

We compare the sparse logistic regression model training accuracy between D-

INPS, EDSL and TWT. We run both algorithms to the convergence state evaluated by

|F (w(t))− F (w(t−1))| − /F (w(t)) ≤ 10−4. The average training loss comparison over 5

splits, given k = 100 and 1K, m = 2, 4 and 8 on RCV1 and kdd-algebra datasets, is

shown in Table 4.5.1 and 4.5.2. It is observable that DINPS achieves superior model

training accuracy than EDSL and TWT.

4.5.3 Sparse bilinear regression

This is a simulated experiment to verify our convergence analysis of DINPS for non-

convex functions. Here we consider a non-convex regression problem in which the

training samples {Xi, yi}Ni=1, Xi ∈ Rp1×p2 , yi ∈ R are generated according to a bilinear

model yi = w̄>1 Xiw̄2 + εi, where w̄1 ∈ Rp1 and w̄2 ∈ Rp2 are two sparse vectors

whose non-zero entries are uniformly drawn from interval (0,1), Xi ∼ N (0, I) and

εi ∼ N (0, 0.5). The objective is to minimize F (w1, w2) := 1
2N

∑N
i=1 ‖yi − w>1 Xiw2‖2

with constraint ‖w1‖0 ≤ k1, ‖w2‖0 ≤ k2. We test with p1 = 40, ‖w̄1‖0 = 20, p2 = 20,

‖w̄1‖0 = 10, k1 = ‖w̄1‖, k2 = ‖w̄2‖ and N = 104.

We study the global convergence of DINPS under three different initialization schemes:

(1) Gaussian random initialization N (0, 1), (2) uniform random initialization (0, 1), and

(3) constant initialization 1. For solving the local `0-minimization problem (4.2.1), we

alternately optimize w1 and w2 using IHT. The convergence curves of ‖∇w1F‖ and

‖∇w2F‖ with respect to round of communication are respectively plot in Figure 4.5.3

for machine number m = 4 and 8. From this group of curves we can see that the

`2-norm of parameter gradient converges quickly to a stable state after sufficient com-

munication among machines. This is consistent with our global convergence results
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stated in Theorem 12.

(a) Convergence of ‖∇w1F‖, m = 4. (b) Convergence of ‖∇w2F‖, m = 4.

(c) Convergence of ‖∇w1F‖, m = 8. (d) Convergence of ‖∇w2F‖, m = 8.

Figure 4.5.3: Distributed sparse bilinear regression: global convergence of gradients

‖∇wjF‖, j = 1, 2, with respect to communication round under different initialization.

The number of machine is m = 4 and 8.

4.5.4 Sparse deep neural networks

Finally, we apply DINPS to distributed learning of neural networks under layer-wise

sparsity constraint over neuron connections. Such skinny neural networks have recently

been shown to be able to efficiently compress model size without sacrificing accuracy

such as in image classification problems [31, 42, 91]. In our experiment, we test with

two LeNet structures, denoted by LeNet-1 (3 fully-connected layers) and LeNet-2 (2

convolutional layers and 2 fully-connected layers) [53], on mnist digit dataset. For both
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LeNet-1 LeNet-2

FedAvg DINPS FedAvg DINPS

m = 2 1.49 1.43 0.71 0.63

m = 4 1.51 1.44 0.70 0.68

m = 8 1.55 1.46 0.73 0.69

model size 266K 53K 430K 94K

Table 4.5.3: Distributed skinny neural networks learning: validation set classification

error (in %) and model size.

networks, we prune 50% of the parameters in convolutional layers and 80% of the pa-

rameters in fully connected layers. To initialize DINPS, we train a dense network by

applying the Federated-Averaging (FedAvg) method [68] on the given data partition.

The algorithm proposed in [42] is adopted for local training. We compare the sparse

network output by DINPS against the dense network by FedAvg in prediction accura-

cy and compression ratio. The experiment is replicated 5 times with average results

reported. The considered algorithms are implemented on Apache MXNet platform and

tested on a cluster with Nvidia K80 GPUs.

Table 4.5.3 lists the experimental results on m = 2, 4 and 8 machines. It can

be observed from these results that the sparse networks trained by the DINPS have

quite competitive or even superior prediction accuracy to the dense ones obtained by

FedAvg, while the former has ∼ 80% fewer model parameters than the latter. This

set of empirical results confirm that DINPS is an accurate and communication-efficient

method for distributed sparse neural networks learning.

4.6 Conclusion

We proposed DINPS as a Newton-type communication-efficient distributed comput-

ing method for `0-constrained sparse learning. The algorithm iterates between: (1)

solving an inexact variance reduced `0-constrained minimization problem on each local

worker machine; and (2) parameter and gradient aggregation on master machine. For
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generic convex loss functions, DINPS has been shown to exhibit logarithmical commu-

nication complexity and lower sample complexity than prior methods. For non-convex

loss functions, we have established global sublinear convergence for DINPS under prop-

er conditions. Extensive empirical results confirmed our theoretical predictions and

demonstrated the advantages of DINPS over the state-of-the-art methods.

4.7 Appendix

4.7.1 Technical Lemmas

The following lemma shows that the estimation error of the truncated average of esti-

mators is well upper bounded by the average error of estimators.

Lemma 8. Let w̄ be k̄-sparse vector. For a set of k-sparse vectors {wj}mj=1 with k ≥ k̄,

it holds that ∥∥∥∥∥∥Hk

 1

m

m∑
j=1

wj

− w̄
∥∥∥∥∥∥ ≤ 1.62

m

m∑
j=1

‖wj − w̄‖.

Moreover, if k > k̄, then∥∥∥∥∥∥Hk

 1

m

m∑
j=1

wj

− w̄
∥∥∥∥∥∥ ≤ 1

m

√
1 + 2

√ k̄

k − k̄

m∑
j=1

‖wj − w̄‖.

Proof. The first claim follows directly from [87, Theorem 1] and triangle inequality.

The second claim is due to the result in [59, Lemma 3.3].

The following lemma summarizes some important properties of restricted strong

smoothness/convexity, restricted Lipschitz gradient and restricted Lipschitz Hessian.

Lemma 9. Assume that f(w) is differentiable. Then f(w) has αs-RLG if and only if

for any w,w′ with ‖w − w′‖0 ≤ s,

∣∣f(w)− f(w′)− 〈∇Sf(w′), w − w′〉
∣∣ ≤ αs

2
‖w − w′‖2,

where S = supp(w) ∪ supp(w′). Moreover, assume that f(w) has βs-RLH. Then

∥∥∇Sf(w)−∇Sf(w′)−∇2
SSf(w′)(w − w′)

∥∥ ≤ βs
2
‖w − w′‖2.
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Proof. The “⇒” direction of the first part: Assume that

∣∣f(w)− f(w′)− 〈∇Sf(w′), w − w′〉
∣∣ ≤ αs

2
‖w − w′‖2

. We first claim and prove the following inequality which is key to our analysis:

f(w′) ≤ f(w)+
αs
4
‖w−w′‖2+

1

2
〈∇Sf(w′)+∇Sf(w), w′−w〉− 1

4αs

∥∥∇Sf(w)−∇Sf(w′)
∥∥2
.

(4.7.1)

Let g(w) = f(w) + αs
2 ‖w‖

2. The assumption on f(w) implies

0 ≤ g(w)− g(w′)− 〈∇Sg(w′), w − w′〉 ≤ αs‖w − w′‖2. (4.7.2)

That is, g(w) is 0-strongly-convex and 2αs-smooth. Let us fix w′ and allow w to vary

under the constraint ‖w−w′‖0 ≤ s. Consider the function φ(w) = g(w)−〈∇Sg(w′), w〉.

From (4.7.2) we can verify w′ is an optimal point of φ(w) over {w : ‖w − w′‖0 ≤ s}.

Therefore, in view of (4.7.2), we get that for any w satisfying ‖w − w′‖0 ≤ s

φ(w′) ≤ φ
(
w − 1

2αs
∇Sφ(w)

)
≤ φ(w)− 1

4αs
‖∇Sφ(w)‖2.

By substituting the expression of φ(w) into the above we have

g(w′) ≤ g(w) + 〈∇Sg(w′), w′ − w〉 − 1

4αs
‖∇Sg(w)−∇Sg(w′)‖2.

By substituting the expression of g(w) into the above and with proper elementary

calculation we further get

f(w′) ≤ f(w) +
αs
2
‖w‖2 − αs

2
‖w′‖2 + 〈∇Sf(w′) + αsw

′, w′ − w〉

− 1

4αs

∥∥∇Sf(w)−∇Sf(w′) + αs(w − w′)
∥∥2

= f(w) +
αs
4
‖w − w′‖2 +

1

2
〈∇Sf(w′) +∇Sf(w), w′ − w〉 − 1

4αs

∥∥∇Sf(w)−∇Sf(w′)
∥∥2
.

This is exactly the desired inequality in (4.7.1). By adding two copies of the inequali-

ty (4.7.1) with w and w′ interchanged we arrive at

∥∥∇Sf(w)−∇Sf(w′)
∥∥ ≤ αs‖w − w′‖.

This indicates that f(w) has αs-RLG.
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The “⇐” direction of the first part: Assume that f(w) has αs-RLG. From the

Taylor’s theorem we know that

f(w)− f(w′) =

∫ 1

0
〈∇Sf(w + t(w′ − w)), w − w′〉dt.

Therefore ∣∣f(w)− f(w′)− 〈∇Sf(w′), w − w′〉
∣∣

=

∣∣∣∣∫ 1

0
〈∇Sf(w′)−∇Sf(w + t(w′ − w)), w − w′〉dt

∣∣∣∣
≤‖w − w′‖

∫ 1

0

∥∥∇Sf(w)−∇Sf(w + t(w′ − w))
∥∥ dt

≤αs‖w − w′‖2
∫ 1

0
tdt =

αs
2
‖w − w′‖2.

This completes the proof of the first part.

To prove the second part, we invoke the Taylor’s theorem for vector-valued functions

to get

∇Sf(w)−∇Sf(w′) =

∫ 1

0
∇2
SSf(w + t(w′ − w))(w − w′)dt.

Therefore ∥∥∇Sf(w)−∇Sf(w′)−∇2
SSf(w′)(w − w′)

∥∥
=

∥∥∥∥∫ 1

0
[∇2

SSf(w′)−∇2
SSf(w + t(w′ − w))](w − w′)dt

∥∥∥∥
≤‖w − w′‖

∫ 1

0

∥∥∇2
SSf(w)−∇2

SSf(w + t(w′ − w))
∥∥ dt

≤βs‖w − w′‖2
∫ 1

0
tdt =

βs
2
‖w − w′‖2.

This proves the claim of the second part.

The following lemma gives a necessary condition on spare minimizer.

Lemma 10. If f(w) is L2k-smooth, then the following inequality holds for the global

minimizer w? = arg min‖w‖0≤k f(w):

w?min ≥
‖∇f(w?)‖∞

L2k
.

where w?min denotes the minimum nonzero value in magnitude of w?.
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Proof. Assume otherwise that ϑ? :=
L2kw

?
min

‖∇f(w?)‖∞ < 1. Let us consider w̃? = w?−η∇f(w?)

with any η ∈ (ϑ?/L2k, 1/L2k). Since f is L2k-smooth, it follows that

f(w̃?k)− f(w?) ≤〈∇f(w?k), w̃
?
k − w?〉+

L2k

2
‖w̃?k − w?‖2

ξ1
≤− 1

2η
‖w̃?k − w?‖2 +

L2k

2
‖w̃?k − w?‖2

=− 1− ηL2k

2η
‖w̃?k − w?‖2,

where ξ1 follows from the fact that w̃?k is the best k-support approximation to w̃? such

that

‖w̃?k − w̃?‖2 = ‖w̃?k − w? + η∇f(w?)‖2 ≤ ‖w? − w? + η∇f(w?)‖2 = ‖η∇f(w?)‖2,

which implies 2η〈∇f(w?), w̃?k − w?〉 ≤ −‖w̃?k − w?‖2. Since η ∈ (ϑ?/L2k, 1/L2k) and

w?min = ϑ?‖∇f(w?)‖∞
L2k

< η‖∇f(w?)‖∞, we have w̃?k 6= w? and thus it follows from the

above inequality that f(w̃?k) < f(w?). This contradicts the optimality of w?.

The following lemma is key to our analysis.

Lemma 11. Let w̄ be a k̄-sparse target vector with k̄ ≤ k. Assume that each component

Fj(w) is µ3k-strongly-convex and ηF (w)− Fj(w)− γ
2‖w‖

2 has α3k-RLG. Then

‖w(t) − w̄‖ ≤ 3.24α3k

γ + µ3k
‖w(t−1) − w̄‖+

5.62η
√
k

γ + µ3k
‖∇F (w̄)‖∞ + 2.3

√
ε

γ + µ3k
.

Moreover, assume that each Fj(w) has β3k-RLH. Let H̄j = ∇2Fj(w̄) and H̄ = 1
m

∑m
j=1 H̄j.

Then

‖w(t) − w̄‖ ≤3.24(γ + maxj ‖H̄j − ηH̄‖)
γ + µ3k

‖w(t−1) − w̄‖+
1.62(1 + η)β3k

γ + µ3k
‖w(t−1) − w̄‖2

+
5.62η

√
k

γ + µ3k
‖∇F (w̄)‖∞ + 2.3

√
ε

γ + µ3k
.

Proof. For any j ∈ [m], since Fj(w) is µ3k-strongly-convex, we have Pj(w;w(t−1) | η, γ)

is (γ + µ3k)-strongly-convex. Let S
(t)
j = supp(w

(t)
j ), S(t−1) = supp(w(t−1)) and S̄ =

supp(w̄). Consider S = S
(t)
j ∪ S(t−1) ∪ S̄. Then

Pj(w
(t)
j ;w(t−1) | η, γ)

≥Pj(w̄;w(t−1) | η, γ) + 〈∇Pj(w̄;w(t−1) | η, γ), w
(t)
j − w̄〉+

γ + µ3k

2
‖w(t)

j − w̄‖
2

=Pj(w̄;w(t−1) | η, γ) + 〈∇SPj(w̄;w(t−1) | η, γ), w
(t)
j − w̄〉+

γ + µ3k

2
‖w(t)

j − w̄‖
2

ξ1
≥Pj(w(t);w(t−1) | η, γ)− ε− ‖∇SPj(w̄;w(t−1) | η, γ)‖‖w(t)

j − w̄‖+
γ + µ3k

2
‖w(t)

j − w̄‖
2,
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where “ξ1” follows from the definition of w(t) as an approximate k-sparse minimizer of

Pj(w;w(t−1) | η, γ) up to precision ε. By rearranging both sides of the above inequality

with proper elementary calculation we get

‖w(t)
j − w̄‖

≤ 2

γ + µ3k
‖∇SPj(w̄;w(t−1) | η, γ)‖+

√
2ε

γ + µ3k

=
2

γ + µ3k
‖η∇SF (w(t−1))−∇SFj(w(t−1)) + γ(w̄ − w(t−1)) +∇SFj(w̄)‖+

√
2ε

γ + µ3k

=
2

γ + µ3k
‖η∇SF (w(t−1))− η∇SF (w̄)− (∇SFj(w(t−1))−∇SFj(w̄)) + γ(w̄ − w(t−1))

+ η∇SF (w̄)‖+

√
2ε

γ + µ3k

ξ1
≤ 2

γ + µ3k

∥∥∥(η∇SF (w(t−1))−∇SFj(w(t−1))− γw(t−1)
)
− (η∇SF (w̄)−∇SFj(w̄)− γw̄)

∥∥∥
+

2η

γ + µ3k
‖∇SF (w̄)‖+

√
2ε

γ + µ3k

≤ 2α3k

γ + µ3k
‖w(t−1) − w̄‖+

2η
√

3k

γ + µ3k
‖∇F (w̄)‖∞ +

√
2ε

γ + µ3k
,

where ζ1 is according to the assumption that ηF (w) − Fj(w) − γ
2‖w‖

2 has α3k-RLG.

From the definition of w(t) = Hk

(
1
m

∑m
j=1w

(t)
j

)
and by applying the first claim in

Lemma 8 we have

‖w(t) − w̄‖ = 1.62

∥∥∥∥∥∥ 1

m

m∑
j=1

w
(t)
j − w̄

∥∥∥∥∥∥
≤ 1.62

m

m∑
j=1

∥∥∥w(t)
j − w̄

∥∥∥ ≤ 3.24α3k

γ + µ3k
‖w(t−1) − w̄‖+

5.62η
√
k

γ + µ3k
‖∇F (w̄)‖∞ + 2.3

√
ε

γ + µ3k
.

This shows the validity of the first part.
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Now we prove the second part. Similar to the above argument, we have

‖w(t)
j − w̄‖ ≤

2

γ + µ3k
‖∇SPj(w̄;w(t−1) | η, γ)‖+

√
2ε

γ + µ3k

≤ 2

γ + µ3k

∥∥∥γ(w(t−1) − w̄) + η∇SF (w(t−1))− η∇SF (w̄)− (∇SFj(w(t−1))−∇SFj(w̄))
∥∥∥

+
2η

γ + µ3k
‖∇SF (w̄)‖+

√
2ε

γ + µ3k

≤ 2

γ + µ3k

∥∥∥γ(w(t−1) − w̄) + η∇2
SSF (w̄)(w(t−1) − w̄)−∇2

SSFj(w̄)(w(t−1) − w̄)
∥∥∥

+
2η

γ + µ3k
‖∇SF (w̄)‖+

2η

γ + µ3k

∥∥∥∇SF (w(t−1))−∇SF (w̄)−∇2
SSF (w̄)(w(t−1) − w̄)

∥∥∥
+

2

γ + µ3k

∥∥∥∇SFj(w(t−1))−∇SFj(w̄)−∇2
SSFj(w̄)(w(t−1) − w̄)

∥∥∥+

√
2ε

γ + µ3k

≤ 2

γ + µ3k

(
γ + ‖η∇2

SSF (w̄)−∇2
SSFj(w̄)‖

)
‖w(t−1) − w̄‖+

2η

γ + µ3k
‖∇SF (w̄)‖

+
(1 + η)β3k

γ + µ3k
‖w(t−1) − w̄‖2 +

√
2ε

γ + µ3k

≤
2(γ + maxj′ ‖H̄j′ − ηH̄‖)

γ + µ3k
‖w(t−1) − w̄‖+

(1 + η)β3k

γ + µ3k
‖w(t−1) − w̄‖2

+
2η
√

3k

γ + µ3k
‖∇F (w̄)‖∞ +

√
2ε

γ + µ3k
,

Again, from the definition of w(t) and by applying the first claim in Lemma 8 we have∥∥∥w(t) − w̄
∥∥∥

≤3.24(γ + maxj ‖H̄j − ηH̄‖)
γ + µ3k

‖w(t−1) − w̄‖+
1.62(1 + η)β3k

γ + µ3k
‖w(t−1) − w̄‖2

+
5.62η

√
k

γ + µ3k
‖∇F (w̄)‖∞ + 2.3

√
ε

γ + µ3k
.

This proves the second part.

4.7.2 Proof of Theorem 8 and Corollary 5

Proof of Theorem 8. Since the local objectives Fj are quadratic, we can simply set

βs = 0 for all cardinality s. By assumption Fj(w) is µ3k-strongly-convex. Then by

applying the second part of Lemma 11 with β3k = 0, γ = 0 and ε ≤ kη2‖∇F (w̄)‖2∞
5.29µ3k

we get

‖w(t) − w̄‖ ≤ 3.24 maxj ‖H̄j − ηH̄‖
µ3k

‖w(t−1) − w̄‖+
6.62η

√
k

µ3k
‖∇F (w̄)‖∞.
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It can be checked that the factor
3.24 maxj ‖H̄j−ηH̄‖

µ3k
≤ θ < 1. By recursively applying

the above inequality we arrive at

‖w(t) − w̄‖ ≤ θt‖w(0) − w̄‖+
6.62η

√
k‖∇F (w̄)‖∞

(1− θ)µ3k
.

Based on the inequality 1− x ≤ exp(−x) we need

t ≥ 1

1− θ
log

(1− θ)µ3k‖w(0) − w̄‖
η
√
k‖∇F (w̄)‖∞

steps of iteration to achieve the precision of ‖w(t)− w̄‖ ≤ 7.62η
√
k‖∇F (w̄)‖∞

(1−θ)µ3k . This proves

the desired complexity bound.

Proof of Corollary 5. From the definition of θ and Lemma 7 we get maxj ‖Hj −H‖ ≤
θµ3k
3.24 holds with probability at least 1− δ. Since n > 336L2 log(mp/δ)

µ23k
, we have θ ∈ (0, 1).

The desired bound is then directly implied by Theorem 8.

Implications for distributed sparse linear regression. Given a k̄-sparse pa-

rameter vector w̄, assume the samples are generated according to the linear model

y = w̄>x + ε where ε is a zero-mean Gaussian random noise variable with parame-

ter σ. Assume the data samples {Dj = {xji, yji}ni=1}
m
j=1 are distributed over m ma-

chines and let Fj(w) = 1
2n

∑n
i=1 ‖yji − w>xji‖2, j ∈ [m] be the least square loss

over Dj and F (w) = 1
m

∑m
j=1 Fj(w) be the average of local loss. This example be-

longs to the quadratic case for which the performance of DINPS is analyzed in §4.3.2.

Suppose xji are drawn from Gaussian distribution with covariance Σ. Then it hold-

s with high probability that Fj(w) has restricted strong-convexity constant µ3k ≥

λmin(Σ) − O(k log p/n) and smoothness constant L ≤ maxj,i ‖xji‖; and ‖∇F (w̄)‖∞ =

O
(
σ
√

log p/(mn)
)

and ‖∇Fj(w̄)‖∞ = O
(
σ
√

log p/n
)

. Consider the local initializa-

tion strategy of w(0) ≈ arg min‖w‖0≤k F1(w). Then according to the bound in (4.3.1), if

the sample size n = O
(
L2 log(mp)

µ23k

)
is sufficiently large, DINPS needs O(logm) rounds

of iteration/communication to reach the statistical error level O
(
σ
√
k log p/(mn)

)
.

4.7.3 Proof of Theorem 9 and Corollary 6

Proof of Theorem 9. We first claim that ‖w(t) − w̄‖ ≤ µ3kθ
3.24(1+η)β3k

holds for all t ≥ 0.

This can be shown by induction. Based on the theorem assumptions the claim holds
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for t = 0. Now suppose that ‖w(t−1) − w̄‖ ≤ µ3kθ
3.24(1+η)β3k

for some t ≥ 1. Since γ = 0,

according to Lemma 11 we have

‖w(t) − w̄‖ ≤ 3.24 maxj ‖H̄j − ηH̄‖
µ3k

‖w(t−1) − w̄‖+
1.62(1 + η)β3k

µ3k
‖w(t−1) − w̄‖2

+
5.62η

√
k

µ3k
‖∇F (w̄)‖∞ + 2.3

√
ε

µ3k

ζ1
≤ θ

2
‖w(t−1) − w̄‖+

1.62(1 + η)β3k

µ3k
‖w(t−1) − w̄‖2 +

6.62η
√
k

µ3k
‖∇F (w̄)‖∞

≤ θ‖w(t−1) − w̄‖+
6.62η

√
k

µ3k
‖∇F (w̄)‖∞

ζ2
≤ µ3kθ

2

3.24(1 + η)β3k
+

µ3kθ(1− θ)
3.24(1 + η)β3k

=
µ3kθ

3.24(1 + η)β3k
,

where “ζ1” follows from the assumptions on maxj ‖H̄j − ηH̄‖ and ε, and “ζ2” follows

from the condition of ‖∇F (w̄)‖∞ ≤
(1−θ)θµ23k

21.45η(1+η)β3k
√
k
. Thus by induction ‖w(t) − w̄‖ ≤

µ3kθ
3.24(1+η)β3k

holds for all t ≥ 1. Then it follows from the inequality below “ζ1” of the

above we get that for all t ≥ 0,

‖w(t) − w̄‖ ≤ θ‖w(t−1) − w̄‖+
6.62η

√
k

µ3k
‖∇F (w̄)‖∞.

By recursively applying the above inequality we get

‖w(t) − w̄‖ ≤ θt‖w(0) − w̄‖+
6.62η

√
k

(1− θ)µ3k
‖∇F (w̄)‖∞.

Based on the inequality 1− x ≤ exp(−x) we need

t ≥ 1

1− θ
log

(
(1− θ)µ3k‖w(0) − w̄‖
η
√
k‖∇F (w̄)‖∞

)

steps of iteration to achieve ‖w(t) − w̄‖ ≤ 7.62η
√
k‖∇F (w̄)‖∞

(1−θ)µ3k . This proves the desired

complexity bound.

Based on the results in Theorem 9 we can easily prove Corollary 6.

Proof of Corollary 6. From the definition of θ and Lemma 7 we get that maxj ‖Hj −

H‖ ≤ θµ3k
6.48 holds with probability at least 1 − δ. Since n > 1344L2 log(mp/δ)

µ23k
, we have

θ ∈ (0, 1). By invoking Theorem 9 we get the desired result.



86

4.7.4 Proof of Proposition 2

Proof. Consider an index set S with cardinality |S| ≤ s and all w,w′ with supp(w) ∪

supp(w′) ⊆ S. Since σ(z) is Lipschitz continuous with constant 1, we have that

|σ(2yiw
>xi)− σ(2yiw

′>xi)|

≤|2(w − w′)>yixi| ≤ 2‖[xi]S‖‖w − w′‖ ≤ 2rs‖w − w′‖.

Using this above inequality and the fact that σ(z) ≤ 1 we obtain

|σ(2viw
>ui)(1− σ(2viw

>ui))− σ(2viw
′>ui)(1− σ(2viw

′>ui))|

≤|σ(2viw
>ui)− σ(2viw

′>ui)|(1 + σ(2viw
>ui) + σ(2viw

′>ui))

≤3|σ(2viw
>ui)− σ(2viw

′>ui)| ≤ 6rs‖w − w′‖.

This yields ‖Λ(w)− Λ(w′)‖ ≤ 24rs‖w − w′‖. Therefore,

∥∥∇2
SSf(w)−∇2

SSf(w′)
∥∥ ≤ 1

n
‖Xn

S‖2‖Λ(w)− Λ(w′)‖
ζ1
≤24rs

∥∥∥∥ 1

n
Xn
S (Xn

S )>
∥∥∥∥ ‖w − w′‖

≤24rsρ
max
s (Σn)‖w − w′‖,

where the “ζ1” follows from the standard matrix norm equality ‖A‖2 = ‖AA>‖. This

proves the desired result.

4.7.5 Proof of Theorem 10

Proof. Recall the definition of Pj(w;w(t−1) | η, γ):

Pj(w;w(t−1) | η, γ) = 〈η∇F (w(t−1))−∇Fj(w(t−1)), w−w(t−1)〉+ γ

2
‖w−w(t−1)‖2+Fj(w).

For any sparsity level s, Pj(w;w(t−1) | η, γ) is (γ + Ls)-smooth and (γ + µs)-strongly-

convex. Let S = S
(t)
j ∪ S̄. Since w

(t)
j = arg min‖w‖0≤k Pj(w;w(t−1) | η, γ) (note that

ε = 0 as assumed), from Lemma 10 we have

w
(t)
j,min ≥

‖∇Pj(w(t)
j ;w(t−1) | η, γ)‖∞
γ + L2k

. (B.1)
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Then based on the strong convexity of Pj(w;w(t−1) | η, γ) we can derive

‖w(t)
j − w̄‖ ≤

‖∇SPj(w(t)
j ;w(t−1) | η, γ)−∇SPj(w̄;w(t−1) | η, γ)‖

γ + µ2k

ξ1
≤
‖∇

S̄\S(t)
j

Pj(w
(t)
j ;w(t−1) | η, γ)‖+ ‖∇SPj(w̄;w(t−1) | η, γ)‖

γ + µ2k

≤

√
k̄‖∇Pj(w(t)

j ;w(t−1) | η, γ)‖∞ + ‖∇SPj(w̄;w(t−1) | η, γ)‖
γ + µ2k

ξ2
≤

√
k̄(γ + L2k)w

(t)
j,min + ‖∇SPj(w̄;w(t−1) | η, γ)‖

γ + µ2k

ξ3
≤

√
k̄(γ + L2k)‖w

(t)
j − w̄‖√

k − k̄(γ + µ2k)
+
‖∇SPj(w̄;w(t−1) | η, γ)‖

γ + µ2k
,

where “ξ1” follows from the optimality of w(t) on its own support such that∇S(t)Pj(w
(t)
j ;w(t−1) |

η, γ) = 0, “ξ2” is according to (B.1) and “ξ3” is based on the fact of ‖w(t)
j − w̄‖ ≥√

k − k̄w(t)
j,min. Since the condition on k implies

√
k̄(γ+L2k)√
k−k̄(γ+µ2k)

< 1, by properly rearrang-

ing both sides of the above inequality and noting µ3k ≤ µ2k and L3k ≥ L2k,

‖w(t)
j − w̄‖ ≤

√
k − k̄‖∇SPj(w̄;w(t−1) | η, γ)‖√
k − k̄(γ + µ3k)−

√
k̄(γ + L3k)

.

Let Q(w) = ηF (w)−Fj(w)− γ
2‖w‖

2. Then for any w,w′ with ‖w−w′‖0 ≤ 3k, we have

ηµ3k − L3k − γ
2

‖w − w′‖2 ≤ Q(w)−Q(w′)− 〈∇Q(w′), w − w′〉 ≤ ηL3k − µ3k − γ
2

‖w − w′‖2.

By setting η = L3k
µ3k

and γ =
L2
3k−µ

2
3k

2µ3k
in the above we get

−
L2

3k − µ2
3k

4µ3k
≤ Q(w)−Q(w′)− 〈∇Q(w′), w − w′〉 ≤

L2
3k − µ2

3k

4µ3k
‖w − w′‖2.

Then according to Lemma 9 we know that Q(w) has
(
L2
3k−µ

2
3k

2µ3k

)
-RLG. Let S′ = S

(t)
j ∪

S(t−1) ∪ S̄. Then based on the above we can show that

‖∇SP (w̄;w(t−1) | η, γ)‖

≤‖∇S′Pj(w̄;w(t−1) | η, γ)‖

=
∥∥∥η∇S′F (w(t−1))−∇S′Fj(w(t−1))− γw(t−1) +∇S′Fj(w̄) + γw̄

∥∥∥
≤
∥∥∥(η∇S′F (w(t−1))−∇S′Fj(w(t−1))− γw(t−1)

)
− (η∇S′F (w̄)−∇S′Fj(w̄)− γw̄)

∥∥∥
+ η‖∇S′F (w̄)‖

≤
L2

3k − µ2
3k

2µ3k
‖w(t−1) − w̄‖+

L3k‖∇S′F (w̄)‖
µ3k

.
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From the preceding two inequalities we get

‖w(t)
j − w̄‖ ≤

(L2
3k − µ2

3k)
√
k − k̄

(L2
3k + µ2

3k)
√
k − k̄ −

√
k̄(L2

3k − µ2
3k + 2µ3kL3k)

‖w(t−1) − w̄‖

+
2L3k

√
k − k̄

(L2
3k + µ2

3k)
√
k − k̄ −

√
k̄(L2

3k − µ2
3k + 2µ3kL3k)

‖∇S′F (w̄)‖.

From the definition of w(t) and by applying the second part of Lemma 8 we obtain

‖w(t)− w̄‖ ≤

√
1 + 2

√ k̄

k − k̄
1

m

m∑
j=1

‖w(t)
j − w̄‖ ≤ θ‖w

(t−1)− w̄‖+
2θL3k

L2
3k − µ2

3k

‖∇S′F (w̄)‖,

where θ =
(L2

3k−µ
2
3k)(
√
k−k̄+

√
k̄)

(L2
3k+µ23k)

√
k−k̄−

√
k̄(L2

3k−µ
2
3k+2µ3kL3k)

. Given k >

(
1 +

(
L2
3k+µ3kL3k−µ23k

µ23k

)2
)
k̄,

we have θ ∈ (0, 1). Then from the above recursion and |S′| ≤ 3k we obtain

‖w(t) − w̄‖ ≤ θt‖w(0) − w̄‖+
3.47θL3k

√
k

(1− θ)(L2
3k − µ2

3k)
‖∇F (w̄)‖∞.

We need

t ≥ 1

1− θ
log

(1− θ)(L2
3k − µ2

3k)‖w(0) − w̄‖
θL3k

√
k‖∇F (w̄)‖∞

steps of iteration to achieve ‖w(t) − w̄‖ ≤ 4.47θL3k

√
k

(1−θ)(L2
3k−µ

2
3k)
‖∇F (w̄)‖∞. This proves the

desired complexity bound.

4.7.6 Proof of Theorem 11

Proof. Since Fj(w) are µ3k-strongly-convex and L3k-smooth, F (w) = 1
m

∑m
j=1 Fj(w) is

also µ3k-strongly-convex and L3k-smooth. Let Q(w) = ηF (w)− Fj(w)− γ
2‖w‖

2. Then

for any w,w′ with ‖w − w′‖0 ≤ 3k, we have

ηµ3k − L3k − γ
2

‖w − w′‖2 ≤ Q(w)−Q(w′)− 〈∇Q(w′), w − w′〉 ≤ ηL3k − µ3k − γ
2

‖w − w′‖2.

By setting η = L3k
µ3k

and γ =
L2
3k−µ

2
3k

2µ3k
in the above we get

−
L2

3k − µ2
3k

4µ3k
≤ Q(w)−Q(w′)− 〈∇Q(w′), w − w′〉 ≤

L2
3k − µ2

3k

4µ3k
‖w − w′‖2.

Then according to Lemma 9 we know that Q(w) has
(
L2
3k−µ

2
3k

2µ3k

)
-RLG. By applying the

first part of Lemma 11 we further obtain

‖w(t) − w̄‖ ≤
3.24(L2

3k − µ2
3k)

L2
3k + µ2

3k

‖w(t−1) − w̄‖+
11.24L3k

√
k

L2
3k + µ2

3k

‖∇F (w̄)‖∞ + 2.3

√
2µ3kε

L2
3k + µ2

3k

≤ θ‖w(t−1) − w̄‖+
12.24L3k

√
k

L2
3k + µ2

3k

‖∇F (w̄)‖∞,
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where the last inequality is due to the assumption L3k < 1.37µ3k (which also implies

θ =
3.24(L2

3k−µ
2
3k)

L2
3k+µ23k

< 1) and the assumption on the precision level ε. The desired result

then follows by recursively applying the above inequality.

Remark 12. As we can see from this result that the contraction factor θ has polynomial

dependence on the restricted condition number L3k/µ3k. Nevertheless, as we require

L3k/µ3k < 1.37, the factor θ is still reasonably well-controlled.

4.7.7 Proof of Theorem 12

Proof. Recall that we update w(t) = w
(t)
1 in this non-convex setting. Then the assump-

tion ‖∇P1(w
(t)
1 ;w(t−1) | η, γ)‖ ≤ ε implies

‖∇F1(w(t)) + η∇F (w(t−1))−∇F1(w(t−1)) + γ(w(t) − w(t−1))‖ ≤ ε. (C.1)

Since F (w) is L2k-smooth,

F (w(t)) ≤ F (w(t−1)) + 〈∇F (w(t−1)), w(t) − w(t−1)〉+
L2k

2
‖w(t) − w(t−1)‖2

= F (w(t−1))− 1

η
〈∇F1(w(t))−∇F1(w(t−1)) + γ(w(t) − w(t−1)), w(t) − w(t−1)〉

+
L2k

2
‖w(t) − w(t−1)‖2 +

1

η
〈∇F1(w(t))

+ η∇F (w(t−1))−∇F1(w(t−1)) + γ(w(t) − w(t−1)), w(t) − w(t−1)〉

≤ F (w(t−1))− 2γ − (η + 1)L2k

2η
‖w(t) − w(t−1)‖2 +

ε

η
‖w(t) − w(t−1)‖,

which implies

2γ − (η + 1)L2k

2η
‖w(t) − w(t−1)‖2 − ε

η
‖w(t) − w(t−1)‖ ≤ F (w(t−1))− F (w(t)).

By adding the both sides of the above from index 1 to t we obtain

min
τ=1,...,t

2γ − (η + 1)L2k

2η
‖w(τ) − w(τ−1)‖2 − ε

η
‖w(τ) − w(τ−1)‖

≤1

t

t∑
τ=1

2γ − (η + 1)L2k

2η
‖w(τ) − w(τ−1)‖2 − ε

η
‖w(τ) − w(τ−1)‖

≤1

t
(F (w(0))− F (w(t))) ≤ 1

t
(F (w(0))− F (w∗)).
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From the above and the basic fact that ax2 − bx − c < 0 implies x2 ≤ 2b2

a2
+ 2c

a for

a, b, c > 0, we can verify

min
τ=1,...,t

‖w(τ) − w(τ−1)‖2 ≤ 8ε2

(γ − (η + 1)L2k)2
+

4η(F (w(0))− F (w∗))

(γ − (η + 1)L2k)t
.

Then based on (C.1) and triangle inequality we can show that

‖∇F (w(t−1))‖2 ≤
(

1

η
‖∇F1(w(t))−∇F1(w(t−1)) + γ(w(t) − w(t−1))‖+ ε

)2

≤ 2(L2k + γ)2

η2
‖w(t) − w(t−1)‖2 + 2ε2.

By combining the preceding two inequalities we get

min
τ=1,...,t

‖∇F (w(τ))‖2 ≤
(

16(L2k + γ)2

η2(γ − (η + 1)L2k)2
+ 2

)
ε2+

(
8(L2k + γ)2(F (w(0))− F (w∗))

η(γ − (η + 1)L2k)

)
1

t
.

The desired bound then follows from the setting of γ = (η + 2)L2k and elementary

calculus.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Training sparse machine learning model has been shown to be an effective way of

alleviating model overfitting, improving model interpretability, reducing computational

cost in prediction and model storage space. Designing efficient sparse model learning

algorithm keeps on getting extensive attention in machine learning research. The main

theme of this thesis is to introduce my research on designing efficient sparse model

learning algorithm for some widely used general learning objectives. In this thesis some

popular optimization algorithm frameworks are covered, including Frank-Wolfe method,

dual method and Newton-type method. For each designed algorithm the convergence

is analyzed and numerical experiment is conducted to verify the superior algorithm

efficiency over state of the art baseline methods.

In chapter 2, we introduced the proposed fully corrective Frank-Wolfe-type algo-

rithm for solving the k-support-norm regularized sparse model learning problem. The

proximal gradient algorithm is conventionally applied as the optimization framework to

solve such a non-differentiable problem. The proximal gradient algorithm is featured by

solving the proximal operator in each iteration. Motivated by the Frank-Wolfe algorith-

m which is originally designed for constrained model learning, the proposed k-FCFW

algorithm reformulates the regularized minimization into a constrained minimization

problem. In each iteration of k-FCFW, the major computation is searching top k en-

tries in magnitude of the gradient. Under proper conditions, the algorithm analysis

establishes the linear convergence rate for the proposed k-FCFW algorithm.

In chapter 3, we consider the `2-norm regularized empirical risk minimization prob-

lem with model parameter `0-norm constraint. Because of the model parameter `0-norm
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constraint, the problem is in general non-convex and NP-hard. We first propose the

duality theory of this sparse model learning problem. The Dual Iterative Hard Thresh-

olding algorithm as well as its stochastic variant are proposed based on the sparse

duality theory. Algorithm convergence analysis is conducted when proper conditions

are satisfied. The designed algorithm is shown to be more efficient than primal domain

optimization algorithms for SVM-type model learning tasks.

In chapter 4, we turn to study solving the `0-constrained empirical risk minimization

problem in distributed computing environment. When training samples are distributed

on multiple machines, special optimization algorithm design is needed to learn the global

optimal model based on all training samples. In distributed optimization algorithm de-

sign, one important consideration is to keep low communication cost between machines.

The proposed Distributed In-exact Newton-type Pursuit (DINPS) algorithm involves

solving a local learning objective inexactly on each machine, communicating gradient

and model parameter between worker machines and master machine. Algorithm analy-

sis demonstrates that for a general class of convex functions with Lipschitze continuous

Hessian, the method converges linearly with contraction factor scales inversely with

data size; whilst the communication complexity required to reach desirable statistical

accuracy scales logarithmically with the number of machines for some popular statistical

learning models.

5.2 Future Work

Some interesting future directions are listed but are not limited to the following topics:

• Because of the varying numerical properties of machine learning model and train-

ing data, optimization algorithm design for each specific problem is needed, for

the sake of model learning efficiency. This direction is worthwhile to be explored

as the sample scale and model complexity keep on increasing and efficient model

training is highly demanded.

• The wide application of non-convex models in various areas, with deep neural

network as a representative, proposes the requirement of studying the theory
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and methodology in non-convex optimization. Some algorithms are developed to

solve the non-convex model training, such as forward-backward optimization in

deep neural network learning, but the understanding is insufficient. Compared

to convex model optimization, there are more technical challenges in non-convex

optimization, such as local minima, saddle points and flat regions. Some recent

research efforts in this direction include [20, 1, 39].

• The third research direction is to further explore the application of sparse mod-

el learning. Some current application examples of sparse model include feature

learning [54], MR image reconstruction [64] and data clustering [23]. The prop-

erties of sparse model is highly desirable in many machine learning applications,

therefore we believe more applications will appear.
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