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ABSTRACT OF THE THESIS 

 

 

CONTEXT-AWARE PROCESS RECOMMENDATION SYSTEM FOR 

MEDICAL TREATMENT  

 

 

By Weiqing Ni 

Thesis Director: Dr. Ivan Marsic 

 

 
AI-based recommendation systems are widely utilized in different fields including movies, 

music, news, social tags and products in general. Such systems may help reduce medical 

team errors and improve patient outcomes in treatment processes (e.g., trauma 

resuscitation, surgical processes) by extracting knowledge from historic data and providing 

online recommendations. We developed data-driven process recommender systems for 

trauma resuscitations process based on different models. This thesis includes three main 

topics: (1) process data augmentation algorithms; (2) two intention mining models; and (3) 

two process recommender systems. Topic (1) and (2) were developed for improving the 

performance of recommender systems (Topic (3)).  

Our process data was collected manually by medical experts reviewing the recorded 

videos. The data collection was labor intensive and we coded 123 trauma patient records 

in the past four years. Because of the small size of our dataset, we attempted to augment it 

by generating synthetic data. We developed two synthetic data generators to augment our 

dataset: (1) alignment-based process data generator and (2) sequential generative 

adversarial network. Both of them can generate large amounts of semi-synthetic process 

data that has similar characteristics with those of real-world process data. 
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We used intention mining models to discover the relationship between observed 

treatment activities and medical team’s underlying intentions. By identifying medical 

team’s intentions, we are able to generate accurate recommendations. We developed two 

different intention mining algorithms, one based on Hidden Markov Models and the other 

based on Seq2seq models. 

Last, we designed the process recommendation systems using two different models, 

(1) Hierarchical Hidden Markov Model (HHMM) and (2) Long Short-Term Memory 

(LSTM). The HHMM-based recommender system utilizes the intention mining algorithm 

to estimate the medical team’s current intention, and then provides the process 

recommendation identified in that intention category. On the other hand, the LSTM-based 

recommender system learns the relationships from different processes. And also, the LSTM 

model was modified to deal with both environmental (i.e., patient demographics) and 

behavioral (i.e., preceding treatment activities) contextual information. To provide the 

process recommendation, the LSTM is iterated over the previous process trace, and uses 

the most likely activity as the next-step recommending process. For HHMM-based 

recommender system, we achieved top-1 accuracy at 34.4% and top-5 accuracy 56.9% over 

102 kinds of activities. The LSTM-based recommender system showed a higher top-1 

accuracy at 39.9% and top-5 accuracy 65.5%. The experimental results indicated both of 

out recommender systems (HHMM & LSTM) outperforms baseline models in 

recommendation accuracy, demonstrating the feasibility of our context-aware process 

recommendation systems for complex real-world medical processes. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Medical teams make unavoidable errors in the fast-paced and high-risk medical treatment 

processes. Take trauma resuscitations for example. Critically injured trauma patients have 

up to a four-fold higher risk of death from errors than general hospital patients. Nearly half 

of these preventable deaths are related to errors during the initial resuscitation phase of 

treatment [1]. During trauma resuscitations, multidisciplinary teams are responsible for 

rapidly identifying and treating potentially life-threatening injuries, then developing and 

executing a short-term management plan for those injuries. Despite the use of standardized 

protocols for establishing treatment and management goals, deviations from these 

protocols are observed in up to 85% of trauma resuscitations [2]. Although most deviations 

are variations resulting from the flexibility or adaptability needed for managing patients 

with different injuries, other deviations represent significant errors that may contribute to 

adverse patient outcomes [3]. To reduce the chances of errors, our research explores how 

to remind the clinical doctors during the medical processes by data-driven recommender 

system. The recommender system built on artificial intelligence (AI) and data mining 

techniques will provide the medical team leader (or surgical coordinator) with next-step 

treatment recommendations through the wall displays. 

1.2 Synthetic Data Generator 

Process mining techniques have been applied to the visualization, interpretation and 

analysis of medical processes [4]. However, only limited process data is publicly available, 
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especially in the medical field. Our process data was collected manually by medical experts 

reviewing the recorded videos. The data collection was labor intensive and we coded 123 

trauma patient records in the past four years. Therefore, we need to generate synthetic 

trauma resuscitation process data. We achieve this goal in two different approaches: 1. 

Alignment-based Process Data Generator and 2. Sequential Generative Adversarial 

Network. Both of them can generate large amounts of semi-synthetic process data that has 

similar characteristics with those of real-world process data. 

1.3 Intention Mining Algorithms 

Intentions are the thoughts directed towards achieving process goals. We can infer people’s 

intentions from their activities. For example, during trauma resuscitations, “maintain 

oxygenation” is a goal. Activities for addressing this goal may include “placing oxygen” 

or “placing an oxygen saturation monitor”. The team may have the goal of “maintaining 

oxygenation”, but not have the intention of fulfilling this goal for several minutes. When 

they do intend to satisfy this goal, their intention may be identified by observing the two 

oxygen-related activities. Previous workflow analyses in process mining have focused on 

simple mining of the patterns of observed activities. They did not attempt to understand 

the hidden (or unobservable) intentions underlying the observed processes. In addition, 

most previous research has focused on simple processes that include a limited number of 

activities. Performing these analyses in medical settings is more challenging because of the 

complex concurrency of associated activities. Knowing the intentions behind the activities 

can help simplify modeling of complex processes and provide accurate recommendations. 

Intention mining has not been deployed in clinical settings. No previous research 

has tried to identify the intentions of a medical team during a clinical process. Hence, there 
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is no established intention model of the trauma resuscitation process that could be used to 

supervise the intention mining. Although it is possible to manually perform intention 

mining, this approach is vulnerable to subjective bias. Experienced observers may bring 

useful domain knowledge to this analysis, but may also be prone to identifying only 

familiar or expected patterns while neglecting others. Careful review of activity lists and 

patient features could mitigate this bias, but require time and labor commitment. For this 

reason, a data-driven approach to intention discovery is more attractive. 

1.4 Context-aware Process Recommendation System 

Our application differs from traditional recommendation problems in two ways. Firstly, 

temporal information plays a much more important role. Some treatment activities have 

temporal correlations, i.e., the secondary survey of the trauma resuscitation usually follows 

a head-to-toe examination. Secondly, different patients need different medical treatment 

procedures. The medical team must act according to the different patient conditions (e.g., 

injury area and severity). For this reason, it is important to incorporate context attributes 

into the recommender system for prescriptive analytics [5]. There are two types of 

contextual information: environmental and behavioral. Behavioral context refers treatment 

workflow. It is the activities performed and the order of their performance. Environmental 

context can be further divided into two categories: static and dynamic. Static context is a 

set of features of the patient or resuscitation that is present when the patient arrives and 

does not change. Examples are time of day, age of patient, and mechanism of injury. 

Dynamic context is a feature that changes as treatment goes on. For example, attributes of 

the activities, e.g., descriptor and completeness of an activity, are dynamic context. 
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We designed process recommendation system based on different models: 

Hierarchical Hidden Markov Model and LSTM network.  

For the Hidden Markov Model (HMM) approach, we first perform unsupervised 

intention discovery by finding patterns in the observed activities. Our intention discovery 

is based on the fact that observed activities are correlated with hidden intentions. We also 

assume that activities caused by the same intention will be associated with each other. We 

used an HMM inference algorithm to extract these associations automatically. In addition, 

because no general criteria are available to assess the quality of trauma resuscitations across 

patients with various injuries and conditions, our process recommendation is based on the 

assumption that the “average” process enactment is more effective and valid than those 

deviating from the average. The key components of this system include: mining intentions 

from historic data, integrating contextual information into the recommender system, and 

finding the “average” enactment. 

For the LSTM approach, we modified the RNN to receive and incorporate patient 

demographics as auxiliary inputs to the network. The main technical challenge in our study 

is the limited amount of medical process data. The proper learning of the complex temporal 

correlations requires a sizable amount of training data. Coding medical process data, 

however, can be labor-intensive. Over two years, we coded 122 resuscitation cases, but our 

data is still too small to training a deep neural network. We attempt to address this 

limitation by pre-training the neural network with synthetic data. 
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CHAPTER 2 

SYNTHETIC DATA GENERATOR 

Process mining techniques have been applied to the visualization, interpretation, and 

analysis of medical processes. However, only a very limited amount of process data 

necessary for these analyses is publicly available, especially in the medical field. This 

limits novel medical process research to using insufficiently large or randomly-generated 

synthetic datasets. Here a model is needed to generate large amounts of synthetic process 

data which is trained by using a limited amount of observed data. The generated data has 

similar proprieties comparing to the real data, and could potentially be observed in reality. 

In this study, we tried to use two different methods to implement the data generator: trace 

alignment and generative adversarial network.  

2.1 Alignment-based Process Data Generator   

Many of today’s information systems are recording an abundance of event logs. Process 

mining techniques attempt to extract non-trivial knowledge and interesting insights from 

these event logs and to exploit these for further analysis [6][32].  

2.1.1 Pair-wise Trace Alignment 

In this section, trace alignment is formally defined and the techniques for finding optimal 

alignments will be discussed. Firstly, the notations used in description of trace alignment 

algorithm are listed: 

• ∑ is the set of activities. |∑| denotes the number of the activities. 

• ∑+ is the set of all sequences of activities from ∑  . 𝑇 ∈ ∑+ is a trace over ∑. 

|𝑇| denotes the length of trace T. 
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• 𝑇(𝐾) represents the 𝑘𝑡ℎ  activity in the trace, and 𝑇𝑛 represents the n length 

prefix of 𝑇, which means 𝑇𝑛 = 𝑇𝑛−1𝑇(𝑛). 

 The trace alignment over a set of traces 𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑛} is defined as a mapping 

of the set of traces in 𝑇  to another set of traces �̅� = {�̅�1, �̅�2, … , �̅�𝑛}   where each 𝑇�̅�  ∈

(∑ ⋃ {−})+ for 1 ≤ 𝑖 ≤ 𝑛 and : 

• |𝑇1̅| =  |𝑇2̅| = ⋯ =  |𝑇𝑛̅̅ ̅| = 𝑚, where m is the length of the alignment. 

• 𝑇�̅� by removing all “—” gap symbols is equal to |𝑇𝑖|. 

An alignment over a set of traces can be represented as a matrix 𝒜(𝑇) = {𝑎𝑖𝑗}. 

Here shows an example of aligning several traces.   

 

Figure 1 Data Generator Based on Trace Alignment 

 

Here is the method of computing alignments based on a dynamic programming 

algorithm for finding the optimal alignment between sequences. A matrix F indexed by i 

and j is constructed and F(i, j) is the score of the best alignment. F(0, 0) is initialized to 0 

and we can get the rest values by: 

𝐹(𝑖, 𝑗) = 𝑚𝑎𝑥 {

𝐹(𝑖 − 1, 𝑗 − 1) + 𝑆(𝑇1(𝑖), 𝑇2(𝑗)),       𝑇(𝑖) →  𝑇(𝑗)

𝐹(𝑖 − 1, 𝑗) + 𝐼(𝑇1(𝑖), 𝑇1(𝑖 − 1)),       𝑇1(𝑖) → 
′ −′

𝐹(𝑖, 𝑗 − 1) + 𝐼(𝑇2(𝑗), 𝑇2(𝑗 − 1)),       𝑇2(𝑗) → 
 ′ −′

 (1) 

 

Where S(a, b) denotes the score for substitution of activity a with activity b, and I(a, b) 

denotes the score for inserting activity a given that the left activity is b which 𝐼(𝑎, −) =

1 1 0.2 0.4 1 10.2 0.6 1

A B B C D ED B A
A B C D E-- A

Generate Synthetic Data

-- --

A B -- D E-- AB B

𝑇1:

𝑇2:

A B C D E B A

A B B D E B A

A B D E B A

A B D E A

A B C D D E A

1 1 0.2 0.4 1 10.2 0.6 1
A B B C D ED B AT1: A, B, C, D, E, B, A

T2: A, B, B, D, E, B, A

T3: A, B, D, E, B, A

T4: A, B, D, E, A

T5: A, B, C, D, D, E, A    
    :

  

𝒜( )
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𝐼(−, 𝑎) = 𝐼(−,−) = 0  for all 𝑎 ∈  ∑. The bottom right cell of the matrix 𝐹(|𝑇1|, |𝑇2|) is 

the best alignment score of trace 𝑇1 and 𝑇2. To get the alignment 𝒜( ),  we backtrack from 

the bottom right on how the values were derived and stop at the start of the matrix, 𝑖 = 𝑗 =

0. 

2.1.2 Synthetic Data Generator Based on Trace Alignment 

Our synthetic data generator is backed by trace alignment, of aligning traces in an event 

log and shows the promise of such an approach in process diagnostics addressing some of 

the questions enumerated above [7]. Given process traces T, the trace alignment algorithm 

𝒜( ) forms an alignment matrix M with the traces in T as rows and activities of the same 

type as columns. If for a given trace a matching activity cannot be found, a gap symbol “-

” is inserted in the corresponding cell (Figure 1).  𝒜( )   also returns the consensus 

sequence   , a sequence that records the activity in each column of the alignment matrix. 

Our synthetic generator first calculates the alignment matrix and integrates each activity in 

the matrix with its associated environmental context attributes. Then we compress the 2D 

alignment matrix in to a 1D consensus sequence. Lastly, we try to reconstruct the 2D 

dataset using the consensus sequence. The reconstructed synthetic data will retain most of 

authentic data’s characteristics. Throughout, we introduce noise to vary the synthetic data 

from the authentic data, helping the model generalize better to unseen data. 

 

Table 1 Algorithm of Synthetic Data Generator based on Trace Alignment 

Algorithm:  Synthetic Patient Record Generator Based on Trace Alignment 

Input: 𝒓 = {𝒊𝒅, 𝒙,  }  /* historic patient ids, patient attributes and treatment traces */  

Output:  𝑟𝑠                 /* A synthetic patient record */ 

Step 1. Calculate alignment matrix { ,  } = 𝒜( ) 
Step 2. for each column col in alignment matrix  : 
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Step 3.   Initialize     = 0, 𝑩   = ∅, 𝑿   = ∅ 

Step 4.  Calculate column frequency:      = num(non-gap cells)/num(rows) 

Step 5.  for each non-gap activity a in col: 

Step 6.  
 

Let b as the activity attributes of a and x as patient attributes 

associated with a 

Step 7.   𝑩   = 𝑩   ∪ 𝒃;  𝑿   = 𝑿   ∪ 𝒙 

Step 8.  The prob. distribution of activity attributes is 𝒃   = avg(𝑩   ) 
Step 9.  The prob. distribution of patient attributes is 𝒙   = avg(𝑿   ) 
Step 10.    [col] = {𝑎,     , 𝒃   , 𝒙   } 
Step 11. Initialize 𝒙𝑠 = ∅,  𝑠 = ∅, n=0    

Step 12. for i in range(size(  ))    

Step 13.  Let activity 𝑎 =   [i][0], 
     =   [i][1], 
 𝒃   =   [i][2], 
 𝒙   =   [i][3] 

Step 14.  if rand() <                  
Step 15.   Randomly generate activity attributes 𝒃 based on 𝒃    
Step 16.    𝑠 =  𝑠 ∪ {𝑎, 𝒃}             
Step 17.   𝒙𝑠 = 𝒙𝑠 + 𝒙   ;   n++      

Step 18.  else continue 

Step 19. Randomly generate 𝒙𝑠 based on 𝒙𝑠/n  

Step 20. return 𝑟𝑠 = {0, 𝒙𝑠,  𝑠} 
 

2.2 Generative Adversarial Network 

Recently, recurrent neural networks (RNNs) with long-short-term-memory(LSTM) cells 

have shown excellent performance ranging from natural language generation to 

handwriting generation [8]. GANs were proposed as a training methodology to generative 

models where the training procedure is a minimax game between a generative model and 

a discriminative model [9]. On the other hand, a lot of efforts have been made to generate 

structured sequences. Recurrent neural networks can be trained to produce sequences of 

tokens in many applications such as machine translation. The sequence data generation can 

be formulated as a sequential decision-making process, which can be potentially be solved 

by reinforcement learning techniques [10]. In this section, we will introduce the sequence 
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GAN model which extends the GANs with RL-based generator to solve the sequence 

generation problems. 

2.2.1 Structure of Sequence GAN 

The generative adversarial networks are usually structured in two parts: generator and 

discriminator, which is showed in Figure 2. Given a dataset of real-world sequences, train 

a generative model 𝐺𝜃 to produce a sequence 𝑌1 𝑇 = (𝑦1, 𝑦2, … 𝑦𝑇), 𝑦𝑡 ∈ 𝛶 , where 𝛶 is the 

vocabulary of the set of tokens. In timestep t, the state s is the current generated tokens 

(𝑦1, 𝑦2, … 𝑦𝑡−1) and the action a is the next token 𝑦𝑡 to select. Also, we need to train a 

discriminator 𝐷𝜙  to improve the generator 𝐺𝜃 . 𝐷𝜙(𝑌1 𝑇) is a probability indicates how 

likely the sequence 𝑌1 𝑇 is a real-world sequence. The discriminator 𝐷𝜙 is trained over the 

real-world sequences and synthesis sequences generated from the generator 𝐺𝜃 . At the 

same time, the generative model 𝐺𝜃 is updated by applying a policy gradient and Monte-

Carlo search on the basis of the expected and reward got from the discriminator 𝐷𝜙 [11].  

 

 

Figure 2 The illustration of SeqGAN 
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2.2.2 Policy Gradient 

The objective of the generator (policy) 𝐺𝜃 is to generator a sequence from the start state 

𝑠0 to maximize its expected and reward. 

𝐽(𝜃) = 𝔼[𝑅𝑇|𝑠0, 𝜃) =  ∑ 𝐺𝜃(𝑦1 |

𝑦1∈𝛶

𝑠0)  ∙  𝑄𝐷𝜙
𝐺𝜃 (𝑠0, 𝑦1) (2) 

Where 𝑅𝑇 is the reward for a complete sequence obtained from the discriminator 𝐷𝜙. 

𝑄𝐷𝜙
𝐺𝜃 (𝑠, 𝑎) is the action-value function of a sequence, which is the excepted accumulative 

reward starting from state s, taking action a, and then following policy 𝐺𝜃. As described 

above, we get the value from the discriminator 𝐷𝜙, and thus we have: 

𝑄
𝐷𝜙

𝐺𝜃 (𝑠 = 𝑌1 t−1, 𝑎 = 𝑦
𝑡
)

=  {

1

𝑁
∑ 𝐷𝜙(𝑌1 𝑇

𝑛 )
𝑁

𝑛=1

 ,   𝑌1 𝑇
𝑁  ∈ 𝑀𝐶𝐺𝛽(𝑌1 𝑡, 𝑁)    𝑜𝑟 𝑡 < 𝑇

𝐷𝜙(𝑌1 𝑇
 )                                                                𝑜𝑟 𝑡 = 𝑇

 

(3) 

 In summary, Table 2 shows full details of the process. First, we pre-train the 

generator using maximum likelihood estimation on dataset S. And then the generator and 

discriminator trained alternatively. 

Table 2 Algorithm of Synthetic Data Generator Based on GAN 

Algorithm:  Sequence Generative Adversarial Nets 

Input: 𝑺 = {𝒊𝒅,  }  /* historic patient ids and treatment traces */  

Output:  𝑟𝑠                 /* A synthetic patient record */ 

Step 1. Initialize 𝐺𝜃 , 𝐷𝜙 with random weights 𝜃, 𝜙  

Step 2. Pretrain 𝐺𝜃 using MLE over S, 𝜃 → 𝛽 

Step 3. Generate negative samples using 𝐺𝜃 for training 𝐷𝜙 

Step 4. do 

Step 5.  for _ in range(g-steps): 

Step 6.   Generate sequence 𝑌1 𝑇 using generator 𝐺𝜃 

Step 7.   Get accumulative reward by calculating 𝑄𝐷𝜙
𝐺𝜃  

Step 8.  Update generator parameters 𝜃 using policy gradient 

Step 9.  for _ in range(d-steps): 

Step 10.   Generate sequence 𝑌1 𝑇 using generator 𝐺𝜃 
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Step 11.   Train discriminator Dϕ using S and 𝑌1 𝑇             

Step 12. Until converges 

2.3 Experimental Result 

The use of medical data for this study was approved by the Institutional Review Board at 

our hospital. 101 endotracheal intubation (breathing tube insertion) records were coded 

from surveillance videos. We evaluated the synthetic data quality based on statistics and 

medical expect feedback. Our results show that the synthetic data generated by trace 

alignment is highly similar to the real data. In addition, to assess the realism of the synthetic 

data, we created a mixed log with 16 authentic and 19 synthetic traces. A medical expert 

with experience coding our datasets was asked to identify which cases are authentic (i.e., 

possible to observe in practice). Our experimental results show that the medical expert 

correctly labelled 19 out of 35 cases.  The accuracy was only 54.3 %, similar to random 

guessing, implying that the synthetic data was realistic and may be observed in practice. 

However, the sequences generated by GAN differ from the real data, which is caused by 

lack of the restriction on the length of the generated sequences. And also, the discriminator 

focuses on the single sequence rather than the whole set of synthetic data, i.e., the 

distribution of the length and activities is not considered in the training step. 

Table 3 Statistics of two real-world medical datasets and two synthetic datasets 

Dataset 

Stats 
Real Data 

Trace  

Alignment  

Sequence 

GAN 

Num. Patient Records 101 2000 1000 

Num. Total Acts 1239 24,673 10,520 

Avg. Num. Acts in Trace  12.27 12.34 10.52 

Var.  of length of traces 2.54 2.42 1.67 
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CHAPTER 3 

INTENTION MINING TECHNOLOGY 

3.1 Background of Intention Mining 

Intentions are the thoughts directed towards achieving process goals. We can infer people’s 

intentions from their activities. For example, during trauma resuscitations (Figure 3), 

“maintain oxygenation” is a goal. Activities for addressing this goal may include “placing 

oxygen” or “placing an oxygen saturation monitor”. The team may have the goal of 

“maintaining oxygenation”, but not have the intention of fulfilling this goal for several 

minutes. When they do intend to satisfy this goal, their intention may be identified by 

observing the two oxygen-related activities. Previous workflow analyses in process mining 

have focused on simple mining of the patterns of observed activities. They did not attempt 

to understand the hidden (or unobservable) intentions underlying the observed processes. 

In addition, most previous research has focused on simple processes that include a limited 

number of activities. Performing these analyses in medical settings is more challenging 

because of the complex concurrency of associated activities. Knowing the intentions 

behind the activities can help simplify modeling of complex processes and provide accurate 

recommendations. 

Intention mining has not been deployed in clinical settings. No previous research 

has tried to identify the intentions of a medical team during a clinical process. Hence, there 

is no established intention model of the trauma resuscitation process that could be used to 

supervise the intention mining. Although it is possible to manually perform intention 

mining, this approach is vulnerable to subjective bias. Experienced observers may bring 
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useful domain knowledge to this analysis, but may also be prone to identifying only 

familiar or expected patterns while neglecting others. Careful review of activity lists and 

patient features could mitigate this bias, but require time and labor commitment. For this 

reason, a data-driven approach to intention discovery is more attractive. 

 

 

Figure 3 Emergency department (ED) trauma bay.  

 

3.2 Intention Mining using Hierarchical Hidden Markov Model 

Intention model discovery includes: (1) inferring a hierarchical hidden Markov model (H-

HMM) using historic process traces; (2) integrating context attributes into the induced H-

HMM; (3) labeling the discovered intentions. We first perform unsupervised intention 

discovery by finding patterns in the observed activities. Our intention discovery is based 

on the fact that observed activities are correlated with hidden intentions. We also assume 

that activities caused by the same intention will be associated with each other. We used an 

HMM inference algorithm to extract these associations automatically. In addition, because 

no general criteria are available to assess the quality of trauma resuscitations across patients 
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with various injuries and conditions, our process recommendation is based on the 

assumption that the “average” process enactment is more effective and valid than those 

deviating from the average. 

 

 

Figure 4 Flow Chart of HMM Intention Mining Model 

 

We used hierarchical hidden Markov models (H-HMM) that model (Figure 4) 

intentions at multiple levels and high-level intentions are composed of low-level intentions. 

To derive this model, we introduced a state-splitting approach that avoids subjective and 

labor-intense parameter initialization (e.g., number of hidden states, transition 

probabilities). We integrated context attributes into the intention model, making it context-

aware. We applied the approach on the trauma resuscitation process and the results show 

that we correctly labelled 86.59% of the intentions (with 𝐹1 score as 0.87). 
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3.2.1 Inference of Hierarchical Hidden Markov Model  

3.2.1.1 State-splitting Hierarchical HMM 

The trauma resuscitation log 𝑳 = [𝑐(1), … , 𝑐( )]𝑇 is a vector of elements 𝑐(𝑖). Each 𝑐(𝑖) =

{𝑖𝑑(𝑖), 𝒙(𝑖), 𝑶(𝑖)} represents a trauma resuscitation case, which is indexed with a unique 

case id, contains the resuscitation trace 𝑶(𝑖), and has a vector 𝒙(𝑖) of context attributes. A 

resuscitation trace is 𝑶(𝑖) = [𝑎1
(𝑖)
, … , 𝑎𝑘

(𝑖)
]𝑇 , where k total activities a are ordered by 

activity start time. Traces of different resuscitation executions may have varying lengths, 

especially for complex processes with optional, omitted, or even erroneously performed 

activities. Context attributes 𝒙(𝑖) = [𝑥1
(𝑖)
, … , 𝑥𝑔

(𝑖)
]𝑇  is a vector of 𝑔  recorded patient 

attributes (e.g., patient age, injury type) and hospital factors (e.g., day vs. night shift, 

prehospital triage of injury severity).  

An intention 𝐼𝑖
(ℓ,𝑝)

 is defined as a hidden (or unobservable) goal, objective, or 

motivation that can be achieved by a group of activities. Intentions can exist on multiple 

levels. Low-level intentions are called subintentions or subsubintentions. We use ℓ to 

denote the ℓ-th level of intention, i to denote the intention’s index at the ℓ-th level, and p 

to denote the index of a parent intention at the (ℓ–1)-th level. At the top level (ℓ = 1), 

p = null[33][34]. 

A Hidden Markov Model 𝜆 = (𝑨,𝑩, 𝝅,𝑸, 𝜮) can model temporal sequences using 

hidden or unobserved states. Here, 𝑨 is the state transition probability matrix, so 𝑡𝑖𝑗 ∈ 𝑨 

represents the transition probability between states i and j, 𝑩  represents each state’s 
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observation probability distribution, 𝝅 is a vector of the initialized state distribution, 𝑸 =

[𝑞1, … , 𝑞|𝑸| ]
𝑇 is the vector of hidden states, and 𝜮 = [𝑒1, … , 𝑒|𝜮| ]

𝑇 is the emission alphabet 

(i.e., observations). During trauma resuscitations, we can directly observe the team 

activities, but not their intentions. The unobservable intentions need to be inferred from the 

observations. We used hidden states of an HMM to model medical team intentions. To 

model the hierarchical intention structure, we adopted a hierarchical HMM. High-level 

intentions (or states) are composed of low-level intentions, and the lowest level of 

intentions are carried out by observable activities (Figure 5). 

 

Figure 5 Hierarchical Intention Model with 3 Layers 

 

To model intentions in a scenario as complex as the trauma resuscitation, we used 

an HMM inference model with several enhancements. First, to reduce the influence of the 

initial topology on the results, we used a state-splitting approach [12][13][14][15] instead 

of existing methods such as Baum-Welch. Second, we used in novel ways several 

characteristics of maximum a posteriori probability scoring [16] to guide the state-splitting. 

Third, to model intentions at different levels of granularity, we introduced a novel recursive 

algorithm for hierarchical HMM discovery.  
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State splitting works by initializing a general HMM (e.g., a single state) and 

successively splitting states until convergence is achieved (Figure 6). All candidate states 

for splitting are split and the best split found is used in the next iteration i of the model:  

𝜆𝑖 = argmax
𝜆
𝑖−1
𝑞

Score(𝜆𝑖−1
𝑞 , 𝑶)  𝑠. 𝑡.   𝑞 ∈ 𝑸 

(4) 

where 𝜆𝑖−1
𝑞

 is the candidate model for splitting state q on the model 𝜆𝑖−1 . The scoring 

function Score(λ, O) quantifies how well the model λ fits the observations O, balanced 

against the model complexity penalty [12][13][14][15]. The algorithm terminates when 

further splitting does not increase the score: 

Score(𝜆𝑖, 𝑶) ≤  Score(𝜆𝑖−1, 𝑶) (5) 

Too many split states may lead to overfitting, trading representativeness for 

accuracy. Too few split states may lead to underfitting and less accurate models. We used 

the maximum a posteriori probability [16] scoring function to guide splitting. This method 

has several advantages over existing complexity metrics such as BIC [13], MDL [14], and 

Heuristic [14]. In our experiments, other metrics suffered from either over-penalizing 

(disallowing the model to split at all) or imbalanced splitting (where only a few states retain 

all information). MAP does not have these problems for several reasons. First, MAP 

penalizes complexity from three aspects: emission probabilities, transition probabilities, 

and number of states. The other metrics do not consider all three penalties. Second, the 

other metrics penalize the model linearly, whereas MAP compounds the measure of 

complexity (Eq. (3)). A set of observation process traces 𝑶 = [𝑶1, … , 𝑶𝑛], the MAP helps 

to find an HMM topology topology 𝜆 that maximizes the posterior probability 𝑃(𝜆|𝑶): 
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�̂�𝑀𝐴𝑃(𝑶) = argmax
𝜆

𝑃(𝜆|𝑶) =
𝑃(𝜆)𝜔1𝑃(𝑶|𝜆)

𝑃(𝑶)
 

(6) 

where 𝑃(𝑶|𝜆) is observation sequence probability, solved with the Forward algorithm 

[17]. The model prior P(λ) can be considered as model complexity penalty. The weight 

(hyperparameter) ω1 is used to control model complexity. Observation P(O) is fixed for a 

given data, so it can be ignored in the maximization.   

The model prior P(λ) is composed of structural priors 𝑃(𝜆𝑠) (i.e., prior probability 

distribution over all possible model topologies with a given number of states) and 

parameter priors 𝑃(𝜃𝜆) (i.e., prior probability distribution of transitions and emissions). 

𝑃(𝜆)  = 𝑃(𝜆𝑠)𝑃(𝜃𝜆|𝜆𝑠) (7) 

Let 𝑃(𝜆𝐺) denote the prior for global aspects of the model structure (e.g., the 

number of states), where 𝜆𝐺 is assumed to be unbiased and fixed. We have 

𝑃(𝜆)  = 𝑃(𝜆𝐺)∏𝑃(𝜆𝑠
(𝑞)|𝜆𝐺) 𝑃 (𝜃𝜆

(𝑞)|𝜆𝐺 , 𝜆𝑠
(𝑞))

𝑞∈𝑸

 
(8) 

where 𝑃(𝜆𝑠
(𝑞)

) is a prior for the structure of state q and 𝑃(𝜃𝜆
(𝑞)|𝜆𝐺) is a prior for the 

parameters of state q. 

𝑃 (𝜆𝑠
(𝑞)|𝜆𝐺) =  𝑝𝑡

𝑛𝑡
(𝑞)

(1 − 𝑝𝑡)
|𝑸|−𝑛𝑡

(𝑞)

[𝑝𝑒
𝑛𝑒
(𝑞)

(1 − 𝑝𝑒)
|𝜮|−𝑛𝑒

(𝑞)

]
𝜔2

 (9) 

where 𝑛𝑡
(𝑞)

 is the estimated number of outgoing transitions of state q and 𝑛𝑒
(𝑞)

 is the number 

of its emissions. 𝑝𝑡 = 𝑛𝑡̅̅̅ |𝑸|⁄  is the probability of a potential transition’s existence, and 

𝑝𝑒 = 𝑛𝑒̅̅ ̅ |𝑸|⁄  is the probability of a possible emission. 𝑛𝑡̅̅̅ , 𝑛𝑒̅̅ ̅  are the expected (i.e., 

average) number of transitions and emissions per state. The weight ω2 serves to balance 

the penalty of emissions over transitions.  
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𝑃 (𝜃𝜆
(𝑞)
|𝜆𝐺 , 𝜆𝑠

(𝑞)
)

=
1

𝐵(𝛼𝑡, … , 𝛼𝑡)
∏𝜃𝑞𝑖

(𝛼𝑡−1)

𝑛𝑡
(𝑞)

𝑖=1

[
1

𝐵(𝛼𝑒 , … , 𝛼𝑒)
∏𝜃𝑞𝑗

(𝛼𝑒−1)

𝑛𝑒
(𝑞)

𝑗=1

]

𝜔2

 

(10) 

where the Dirichlet distribution is used as the prior distribution over the model parameters 

(transition probabilities 𝜽𝑡
(𝑞)

= [𝜃𝑞1, … , 𝜃𝑞𝑛]
𝑇  and emission probabilities 𝜽𝑒

(𝑞)
=

[𝜃𝑞1, … , 𝜃𝑞𝑛]
𝑇) in a given HMM structure 𝜆𝑠. We set the prior weights α to 2 in the Beta 

function 𝐵(𝛼,… , 𝛼). The normalizing constant Beta function helps produce more balanced 

states (i.e., states of similar size) and avoid imbalanced states (i.e., states that greatly differ 

in size) in the intention model. Intuitively, we favor similar-size intentions in the same 

model. The hierarchical HMM  is inferred recursively (Table 4). We first find a subset of 

observations 𝑶𝑖
𝑠 ⊆ 𝑶𝑠 that can be emitted in hidden state qi in the intention model 𝜆 . This 

is done using the Viterbi algorithm [17], which finds the optimal state sequence associated 

with the observed activity sequence. A lower level intention model �̂�𝑖
ℓ+1 is then recursively 

inferred based on 𝑶𝑖
𝑠 (Table 4). The initial topology of this model is set to three nodes (one 

for start, one for end, and one split-able state in between). The recursion terminates at levels 

where the complexity does not allow any more splitting. Afterwards as a post-processing 

step, the inferred model 𝝀𝐻 is smoothed to flatten the emission probability distribution so 

that all traces can occur with some probability.  
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Figure 6 Log-likelihood and MAP change as state splitting 

 

 

Figure 7 (a) Influence of ω2 with a constant ω1 = 1. (b) Influence of ω1 with a 

constant ω2 = 1. (*The avg. num. of activities per lowest-level intentions before 

smoothing). 
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𝜔1, 𝜔2 are two weights (or hyperparameters) that control model complexity and 

the inferred model’s topology. 𝜔1, 𝜔2 are 1 by default. A smaller 𝜔1 leads to larger, deeper 

models. A smaller 𝜔2  is equivalent to smaller emission penalties, allowing for more 

activities to be observed in the split states (Figure 7). Intuitively, we favor a hierarchical 

model that is smaller, simpler, and easily-interpretable for labeling purposes. As 𝜔1 

increases (with 𝜔2 held constant at 1), the depth of the intention model drops from eight to 

five hierarchical levels of the model. The total number of states and transitions decreases. 

The average number of activities per lowest-level state increases from 4.5 to 7 per state. 

 

Table 4 Algorithm of State-Splitting Hierarchical HMM Inference 

Algorithm: State-Splitting Hierarchical HMM Inference 

Input: 𝑶, 𝜔1, 𝜔2 

Output: 𝝀𝐻 

/* Initialization */ 

Step 1. 
Initialize HMM topology λ0 as three nodes (a single node of observations and 

two functional nodes, start and end); 

/* When intention level ℓ = 1 (top level) */ 

Step 2.  Infer top level of intention model: �̂�1 = MapSS(𝑶,𝜔1, 𝜔2); 
/* When intention level ℓ >1, do recursive inference */ 

Step 3.  𝝀𝐻 = RecursiveInference(�̂�1, 𝑶); 

Step 4. Smooth the model: 𝝀𝐻 = Smoothing(𝝀𝐻); 

Step 5. return 𝝀𝐻; 

  

Function: RecursiveInference (inferred λℓ, observation 𝑶𝑠) 

Step 1. Find subsequence 𝑶𝑖
𝑠 ⊆ 𝑶𝑠 that can be observed in hidden state 𝑞𝑖, {𝑶𝑖

𝑠} =

Viterbi(𝑶𝑠, 𝜆ℓ); 

Step 2. for each state 𝑞𝑖 in λℓ, do 

Step 3.  Infer subintention model: �̂�𝑖
ℓ+1 = MapSS(𝑶𝑖

𝑠, 𝜔1, 𝜔2);  

Step 4.  If number of states in subintention model |𝑸𝑖
ℓ+1|>3 

Step 5.   RecursiveInference(�̂�𝑖
ℓ+1, 𝑶𝑖

𝑠); 

Step 6.  end if 

Step 7. end for 

Step 8. 𝝀𝐻 = 𝝀𝐻 ∪ {𝜆ℓ} ;  
end Function 
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Function: Smoothing (inferred model 𝝀𝐻) 

Step 1. for each 𝜆 in 𝝀𝐻, do 

Step 2.  for each state 𝑞𝑖 in 𝜆, do 

Step 3.   Let |𝜮| denote the number of emissions in 𝑞𝑖; 
Step 4.   for each emission e in 𝑞𝑖, do 

Step 5.    if 𝑩(𝑒) ≠ 0, do 

Step 6. 
    

𝑩(𝑒) = 𝑩(𝑒) ∙ (1–0.003) + 0.003/|𝜮|   // 0.003 is selected based on 

three-sigma rule of thumb; 

Step 7.    else 

Step 8.     𝑩(𝑒) = 0. 003/|𝜮|; 
Step 9.    end if 

Step10.   end for 

Step11.  end for 

Step12. return 𝝀ℎ; 

end Function 

 

3.2.1.2 Incorporation of Context Attributes 

The medical team must act according to the different conditions of patients arriving at the 

emergency department (e.g., injury area and severity). For this reason, it is important to 

incorporate context attributes into the recommender system for prescriptive analytics 

[21][22]. The recommendations (or predictions) need to be based on the intentions or 

objectives the medical team forms to treat patients of different conditions. 

We incorporated context attributes into the intention model by replaying the historic 

data on the intention model 𝝀𝐻  and recording the distribution of context attributes 𝒙 at each 

transition and emission (Table 5). Specifically, we used the Viterbi algorithm [17] to find 

the optimal sequence of hidden states, 𝑸(𝑖) = {𝑞1
(𝑖), … , 𝑞𝑡

(𝑖), … , 𝑞𝑇
(𝑖)}, given a specific 

observation sequence 𝑶(𝑖) = {𝑎1
(𝑖), … , 𝑎𝑡

(𝑖), … , 𝑎𝑇
(𝑖)} and HMM 𝜆. For each state 𝑞𝑡

(𝑖) 

and transition (𝑞𝑡
(𝑖) → 𝑞𝑡+1

(𝑖)), we assigned context attribute 𝒙(𝑖). The output from Alg. 2 

is a hierarchical intention model 𝝀(𝐻, ) with labeled context attributes 𝑐 on each transition 

and emission. 
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Table 5 Methods of Incorporation Context Attributes 

Algorithm: Incorporating Context Attributes 

Input: 𝑶, 𝝀𝐻, map<𝑶(𝑖), 𝒙(𝑖)> 

Output: 𝝀(𝐻, ) 
Step 1.  for each trace 𝑶(𝑖) ∈ 𝑶, do 

Step 2.  Find the most likely path 𝑝(𝑖) = {𝑸(𝑖),  𝒕(𝑖)} in 𝝀𝐻 given an observed trace 

𝑶(𝑖). 𝑝(𝑖) = arg max
𝑝={𝑸(𝑖), 𝒕(𝑖)}

𝑃(𝑝 | 𝑶(𝑖), 𝝀𝐻). 

Solve 𝑝(𝑖) using Viterbi algorithm;  

Step 3.  for each state 𝑞𝑗 ∈ 𝑸
(𝑖) and transition 𝑡𝑘𝑗 ∈ 𝒕

(𝑖) do 

Step 4.   𝑞𝑗 . 𝒙 = 𝑞𝑗. 𝒙 + 𝒙
(𝑖); 

Step 5.   𝑡𝑘𝑗 . 𝒙 = 𝑡𝑘𝑗 . 𝒙 + 𝒙
(𝑖); 

Step 6.  end for 

Step 7.  Normalize 𝑞𝑗 . 𝒙 and 𝑡𝑘𝑗 . 𝒙 into likelihood: 𝑃𝑞𝑗(𝒙) and 𝑃𝑡𝑘𝑗(𝒙); 

Step 8.  Smooth 𝑃𝑞𝑗(𝒙) and 𝑃𝑡𝑘𝑗(𝒙); 

Step 9. end for 

Step10. 𝝀(𝐻, ) = 𝝀𝐻  ; 
Step11. return 𝝀(𝐻, ); 

3.2.2 Experimental Results 

To evaluate the discovered intention model, we checked whether our data-driven approach 

can discover meaningful intentions. We discovered the intention model in an unsupervised 

way, under the assumption that sequential relationships between the observed activities are 

correlated with medical team intentions. To validate our assumption and evaluate our 

intention model, we conducted two different experiments. (1) We asked medical experts 

whether they could manually assign the discovered intentions (Figure 8) with meaningful 

labels. If they could not come up with a label, they would note “intention cannot be 

defined”. (2) We provided medical experts 40 cases of a total 1074 activities and asked 

them to manually label the activities with top-level (level-1) intentions (Figure 9).  We then 

compare the human labels to algorithm-derived labels. 
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3.2.2.1 Qualitative Evaluation 

From engineering perspective, the emission distribution of low-level intentions is sparse 

(matrix in Figure 8). This is because of the nature of our trauma resuscitation data. Many 

resuscitation activities have a strict or strong association with certain intentions. For 

example, activity “L-spine-BK” (Figure 9) is only associated with intention I1 
(2, )

  

“Assessment of Lumbar Spine”. For other activities, a strict or strong association with a 

specific intention is not observed. For example, “Palpation-H” is not only correlated with 

level-1 intention “Assessment of Head and Face” but also the level-1 intention 

“Assessment of Back and Posterior Aspect of the Head and Extremities”. This is because 

the back of the head is exposed once the medical team rolls the patient onto his or her side 

in order to assess the back. Assessing the back of the head here allows the examining 

provider to complete the head exam without placing stress on the neck or cervical-spine. 

The medical experts commented: the intention model correctly captures the intentions 

associated with the medical tasks. Associated activities were grouped primarily according 

to the expectations of medical experts. The model is advantageous because it 

accommodates for differences between providers and resuscitation attributes. Additionally, 

the model correctly groups related intentions, for example head and neck or chest and 

abdomen, which reflects the same groupings that medical experts would predict. 
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Figure 8. Multi-level intentions (left) labeled by medical experts. The column of the 

matrix represents activity type and the row represents the lowest level of intentions. 

The size and color of the dots in the emission matrix represents the probability. 

 

 

Figure 9. Discovered intention model. The model is trained based on a sample data 

with 17 secondary survey activities in 123 resuscitations. 

 

Level 1 Level2 Level 3 Level 4

Assessment of Head 
and Face

Assessment of Head

Assessment of Face

Assessment of 
Neck, Chest and 

Ears

Assessment of Neck

Assessment of Ears

Assessment of Ears

Assessment of Check 
and shoulders, which are 

anatomically close

Assessment of Chest

Assessment of shoulders

Assessment of 
Abdomen and 

Pelvis

Assessment of Pelvis

Assessment of 
Abdomen

Assessment of the 
Extremities

Assessment of Upper 
Extremities

Assessment of Lower 
Extremities

Assessment of right lower 
extremities

Assessment of lower 
extremities

Assessment of left lower 
extremities

Assessment of Back
and Posterior 

Aspect of the Head 
and Extremities

Assessment of Thoracic-
Spine

Assessment of Lumbar-
Spine

Assessment of Head and 
Rectum

Palpation of Back of Head

Rectal Assessment

Undefined

Assessment of Cervical-Spine

Undefined
Performing Log Roll

Ear Assessment (before or 
after back assessment

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pal

pa
tio

n-
H
   

Pal
pa

tio
n-

F

R
-o

to
sc

op
y-
EAR

L-
ot

os
co

py
-E

AR

Pal
pa

tio
n-

N
E

Pal
pa

tio
n-

C

Pal
pa

tio
n-

A

Sta
bi
lity

-P
E

Pal
pa

tio
n-

R
LE

Pal
pa

tio
n-

LL
E

Pal
pa

tio
n-

LU
E

Pal
pa

tio
n-

R
UE

Lo
g-

ro
ll-
BK

R
ec

ta
l-B

K

C
-s
pi
ne

-B
K

T-s
pi
ne

-B
K

L-
sp

in
e-

BK

I1
2 1

I2
2 1

I3
2 2

I4
2 2

I5
2 2

I1
3 6

I2
3 6

I7
2 3

I8
2 3

I9
2 4

I10

2 4

I3
3 11

I4
3 11

I5
3 11

I12

2 5

I13

2 5

I6
3 14

I7
3 14

I8
3 15

I1
4 1

I2
4 1

start

𝐼 
(1,𝑛   )

end

𝐼1
( , )

𝐼2
( , )

𝐼 
(2,2)

𝐼 
(2,2)

𝐼 
(2,2)

Head & Neck

𝐼 
( ,11)

𝐼 
( ,11)

𝐼 
( ,11)

𝐼 
(2, )

𝐼10
(2, )

𝐼1
( ,1)

𝐼2
( ,1)

𝐼 
( ,1 )

𝐼 
( ,1 ) 𝐼 

( ,1 )

𝐼12
(2, )

𝐼1 
(2, )

𝐼1
(2,1)

𝐼2
(2,1)

Head

Extremities

Back

𝐼 
(2, )

𝐼 
(2, )

Chest & Abdomen

0.41

0.01

0.07

0.79

0.02

0.51

0.05

0.73 0.21

0.02

0.1

0.54

0.76

0.03
0.04

0.03

𝐼 
(1,𝑛   )

𝐼 
(1,𝑛   )

𝐼1
(1,𝑛   )

𝐼2
(1,𝑛   )

𝐼 
(2,2)

𝐼11
(2, )

𝐼1 
(2, )

𝐼1 
(2, )

𝐼1
( ,2)



26 

 

 

One limitation however is that the model only provides a limited description of 

provider intentions. It is unable to distinguish between deviations and innovations. For 

example, medical experts were unable to assign some level 2 and level 3 intentions under 

the level 1 intention of assessment of back and posterior aspect of the head and extremities. 

Most of the activities that occur under this intention take place while the patient is rolled 

to her side, exposing the back. Given this context, medical experts were unable to 

determine why inner ear examination (otoscopy) was included as it is typically performed 

while the patient is lying on her back. That an explanation was unavailable should not be 

considered evidence of no association. However, future work should attempt to uncover 

reasons for these data driven results. 

3.2.2.2 Quantitative Evaluation 

The intention labeling (algorithm vs. hand) results (Figure 10) show high intention mining 

accuracy, with 86.59% 𝑎𝑐𝑐  and 0.87 𝐹1 score, indicating the feasibility of data-driven 

algorithms for intention mining. The misclassification mainly occurs at the “N” and “Bk” 

intentions. There most likely cause for this is the proximity of one body region to another. 

The neck, chest, shoulders (upper extremities), and abdomen are located very close to each 

other and providers will frequently move between these regions during an assessment. This 

is less true of these regions and the head because examiners typically complete the head 

exam before moving onto the thorax and abdomen. It makes sense, however, that there is 

some confusion associated with the head and back exams as the back of the head is 

commonly assessed during the back exam.  
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Figure 10 Confusion matrix for algorithm-derived (predicted) intentions vs. hand 

(actual) intentions. 

 

 

3.3 Intention Mining Using Seq2seq Model 

3.3.1 Background of Seq2seq Model 

Critically injured patients have up to a four-fold higher risk of death from errors than 

general hospital patients, and nearly half of these preventable deaths are related to human 

errors during the initial resuscitation phase of treatment. We are developing a computerized 

decision support system in the trauma bay that gives real-time alerts or recommendations 

to medical teams based on their intentions (defined as hidden goals or objectives). To 

capture such intentions, we developed an activity-to-intention model using the sequence-

to-sequence model from deep learning. Our model includes two recurrent neural networks 

(RNNs): an encoder that processes the observed medical treatment procedures and a 

decoder that generates the intention sequences. We tested our model on 35 trauma 
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resuscitation cases from Children's National Medical Center, a level 1 trauma center.  Our 

preliminary analyses showed the feasibility of automated discovery of medical team's 

intentions in the trauma resuscitation process.  

3.3.2 Seq2seq Model Structures 

3.3.2.1 Recurrent Neural Networks (RNN) 

RNNs are powerful at modeling temporal sequences. The standard RNN, however, still 

suffers vanishing or exploding gradients when learning long-term dependencies. So we 

used two RNN variations, Long Short Term Memory (LSTM, [20]) networks and Gated 

Recurrent Unit (GRU, [21]). A LSTM unit at time step t is composed of an input gate 𝑖𝑡 , 

a forget gate  𝑡, an output gate 𝑜𝑡, a memory cell 𝑐𝑡 and a hidden state ℎ𝑡−1. The LSTM 

transition equations are: 

𝑖𝑡 = 𝜎(𝑊(𝑖)𝑥𝑡 + 𝑈
(𝑖)ℎ𝑡−1 + 𝑏

(𝑖)), 

 𝑡 = 𝜎(𝑊(𝑓)𝑥𝑡 + 𝑈
(𝑓)ℎ𝑡−1 + 𝑏

(𝑓)), 

𝑜𝑡 = 𝜎(𝑊( )𝑥𝑡 + 𝑈
( )ℎ𝑡−1 + 𝑏

( )), 

𝑢𝑡 = 𝑡𝑎𝑛ℎ(𝑊( )𝑥𝑡 + 𝑈
( )ℎ𝑡−1 + 𝑏

( )), 

𝑐𝑡 = 𝑖𝑡 ⊙𝑢𝑡 +  𝑡 ⊙𝑐𝑡−1, 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡) 

(11) 

A GRU unit at time step t consists of an update gate 𝑧𝑡, a reset gate 𝑟𝑡 and a hidden 

state ℎ𝑡−1. The GRU transition equations are: 

𝑧𝑡 = 𝜎(𝑊(𝑧)𝑥𝑡 + 𝑈
(𝑧)ℎ𝑡−1 + 𝑏

(𝑧)), (12) 
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𝑟𝑡 = 𝜎(𝑊(𝑟)𝑥𝑡 + 𝑈
(𝑟)ℎ𝑡−1 + 𝑏

(𝑟)), 

𝑢𝑡 = 𝑡𝑎𝑛ℎ(𝑊( )𝑥𝑡 +  𝑈
( )(ℎ𝑡−1⊙  𝑟𝑡) + 𝑏

( )), 

ℎ𝑡 = 𝑧𝑡 ⊙ℎ𝑡−1 + (1 −  𝑧𝑡) ⊙ 𝑢𝑡 

where  𝑥𝑡  is the input at the current time step, 𝜎  denotes the sigmoid function and ⊙ 

denotes element-wise multiplicationGRUs have simpler internal structure (3 gates vs. 2 

gates) and are easier to train with less training data. Existing research shows GRUs 

outperforming LSTMs in most tasks [21]. We tried both in our framework.  

Loss Function: We used categorical cross-entropy as the loss function (Eq. 13).  

ℒ(�̂�, 𝑦) = −
1

𝑁
∑∑𝑤𝑗(𝑦𝑖𝑗 log �̂�𝑖𝑗)

𝛭

𝑗

𝑁

𝑖

 (13) 

where N is the total number of predictions and M is the number of activity types. �̂�𝑖𝑗 is the 

predicted probability for the activity type of index j. 𝑦𝑖𝑗 is either 0 or 1 stating if the activity 

type of index j is the correct class. To handle the imbalanced distribution of activity types, 

we included the class weights 𝒘 = [𝑤1, … , 𝑤𝑀] (Eq.14) so that the model can pay more 

attention to the underrepresented classes.  

𝑤𝑗 = 𝑛𝑠𝑎𝑚𝑝 𝑒𝑠/(𝑛  𝑎𝑠𝑠𝑒𝑠 ∗ 𝑛𝑦𝑗) (14) 

3.3.2.2 Framework of Seq2seq Intention Mining Model 

Seq2seq models are usually used in language translation tasks. Here we show a 

straightforward application of the LSTM architecture can solve general sequence to 

sequence problems. The idea is to use one LSTM to read the input sequence, one timestep 

at a time, to obtain large fixed dimensional vector representation, and then to use another 
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LSTM to extract the output sequence from that vector (Figure 11). The second LSTM is 

essentially a recurrent neural network language model [22][23][24] except that it is 

conditioned on the input sequence. The LSTM’s ability to successfully learn on data with 

long range temporal dependencies makes it a natural choice for this application due to the 

considerable time lag between the inputs and their corresponding outputs (Figure 11)[25].  

 

Figure 11 Structure of Seq2seq Models 

 

Here we applied the Seq2seq model to the intention mining procedures. The inputs 

are traces of the activities, and the outputs are the intentions extracted in traces. In Figure 

12, we show an example trace to illustrate the procedure. The activity trace ‘palpation-h, 

r-otoscopy-ear … t-spine-bk’ is feed into the encoder part of the seq2seq model. After the 

LSTM iterate over the input trace, we can get the latent representation o of the input trace. 

And then the decoder extracts the intentions from the latent representation which is ‘asses 

of head, asses of face, …, asses of bk’. 
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Figure 12 Framework of Medical Intention Mining System 

 

 We also applied the Act2Vec in the input activity traces, which is similar to the 

Word2Vec used in the translation models. For tasks like object or speech recognition we 

know that all the information required to successfully perform the task is encoded in the 

data. However, natural language processing systems traditionally treat words as discrete 

atomic symbols, these encodings are arbitrary, and provide no useful information to the 

system regarding the relationships that may exist between the individual symbols. Act2vec 

is a particularly computationally efficient predictive model for learning word embeddings 

from raw text. We constructed an activity dictionary and converted the sequences to related 

vectors. 

 Table 6 Shows the details of the seq2seq algorithm. In our approach, we tried to 

learn a Seq2seq model 𝜆 from labelled process traces 𝑂𝑏 and use 𝜆 extract intention from 

new process data 𝑂𝑡. Our method can be summarized in three steps. 

Table 6 Algorithm of Seq2seq Intention Mining Model 

Algorithm: Intention Mining Using Seq2seq Model 

Input: 𝑶𝒃, 𝑶𝒕, 𝑰𝒃        /* Medical Process and labelled intentions */ 

Output: 𝑰𝒕                   /* Extracted Intentions from new medical process */ 
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Step 1.  Convert the medical process data sequences 𝑶𝒃  to vectors 𝑽𝒙 , and labelled 

intentions to vectors 𝑽𝒚 

Step 2. Infer the Seq2seq model 𝝀  on medical process vectors 𝑽𝒙  and intentions 

vectors 𝑽𝒚 

Step 3.  Extract intentions 𝑰𝒕  from new medical process 𝑶𝒕 
Step 3.1  Convert the process 𝑶𝒕 to vectors 𝑽𝒙′ 

Step 3.2  Generate intentions vectors 𝑽𝒚′by trained model 𝝀 

Step 3.3  Recover vectors 𝑽𝒚′to intention sequences 𝑰𝒕 
Step 4. return 𝑰𝒕; 

3.3.3 Experimental Results 

To evaluate the seq2seq model, here we tested our model on 35 trauma resuscitation cases 

from Children's National Medical Center, a level 1 trauma center. Training accuracy goes 

up to 80% in after 300 epochs of training, and the accuracy on the testing set is 65%. Figure 

13 shows the confusion matrix of the testing result. For the values 𝑣(𝑖, 𝑗)  in matrix, 

indicates the number of occurrence that the actual intention is j and the predicted intention 

is i, e.g. the values on the diagonal line indicated the number of correct predictions. 

 

Figure 13 Confusion Matrix of Seq2seq Intention Mining Results 
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As mentioned above, overfitting is a common problem of deep learning models. 

When the hidden layer size increase, the training accuracy can goes higher (up to 97% for 

hidden layer size = 1000). However, the model cannot output reasonable intentions and the 

accuracy decreased. The model is overfitted. 
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CHAPTER 4 

MEDICAL TREATMENT PROCESS RECOMMENDATION 

4.1 Background of Medical Treatment Process Recommendation 

Medical teams make unavoidable errors in the fast-paced and high-risk medical treatment 

processes. Take trauma resuscitations for example. Critically injured trauma patients have 

up to a four-fold higher risk of death from errors than general hospital patients. Nearly half 

of these preventable deaths are related to errors during the initial resuscitation phase of 

treatment [26]. During trauma resuscitations, multidisciplinary teams are responsible for 

rapidly identifying and treating potentially life-threatening injuries, then developing and 

executing a short-term management plan for those injuries. Despite the use of standardized 

protocols for establishing treatment and management goals, deviations from these 

protocols are observed in up to 85% of trauma resuscitations [27]. Although most 

deviations are variations resulting from the flexibility or adaptability needed for managing 

patients with different injuries, other deviations represent significant errors that may 

contribute to adverse patient outcomes [28]. To reduce the chances of errors, our research 

explores how to remind the clinical doctors during the medical processes by data-driven 

recommender system. The recommender system built on artificial intelligence (AI) and 

data mining techniques will provide the medical team leader (or surgical coordinator) with 

next-step treatment recommendations through the wall displays (monitors) (Figure 14).  
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Figure 14 Overview of Recommendation System in Trauma Bay 

 

4.2 Process Recommendation Based on Hierarchical Hidden Markov Model 

We’ve already introduced the HHMM technology in Chapter 3.2. We first perform 

unsupervised intention discovery by finding patterns in the observed activities. Our 

intention discovery is based on the fact that observed activities are correlated with hidden 

intentions. We also assume that activities caused by the same intention will be associated 

with each other. We used an HMM inference algorithm to extract these associations 

automatically. In addition, because no general criteria are available to assess the quality of 

trauma resuscitations across patients with various injuries and conditions, our process 

recommendation is based on the assumption that the “average” process enactment is more 

effective and valid than those deviating from the average. 

The process recommendation is done in two steps. First, based on the given 

observation sequence, we estimate the current intention, i.e., the state in the intention 

model. Second, knowing the estimated intention, we provide several different types of 

recommendations. 

Intention estimation is done using our context-aware Viterbi algorithm. Extended 

from the classic Viterbi algorithm, our context-aware version considers the context 
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attributes while finding the optimal state sequence associated with a given observation 

sequence. We modified the objective function of the Viterbi algorithm (Eq.31 in [16]) to 

include the context attribute probabilities: 

𝛿𝑡+1(𝑗)

= [max
𝑘

𝛿𝑡(𝑗) 𝑃𝑡𝑘𝑗(𝒙
(𝑖))] ⋅ 𝑒𝑗(𝑎𝑡+1

(𝑖))

⋅ 𝑃𝑞𝑗(𝒙
(𝑖)) 

(15) 

where 𝛿𝑡(𝑗) is the score (i.e., the probability) of the optimal state sequence, at time 𝑡, 

associated with the first 𝑡  observations 𝑶(𝑖) = {𝑎1
(𝑖), … , 𝑎𝑡

(𝑖)} and ending at state 𝑞𝑡
(𝑖)

. 

𝑃𝑡𝑘𝑗(𝒙
(𝑖)) and 𝑃𝑞𝑗(𝒙

(𝑘)) are calculated as: 

𝑃𝑡𝑘𝑗(𝒙
(𝑖)) =  √∏𝑃𝑡𝑘𝑗(𝑥𝑚

(𝑖)
)

𝑚

|𝒙|
 (16) 

and  

𝑃𝑞𝑗(𝒙
(𝑖)) =  √∏𝑃𝑞𝑗(𝑥𝑚

(𝑖)
)

𝑚

|𝒙|
 (17) 

The estimated intention is: 

𝑞𝑡
(𝑖)
 =  argmax

0≤𝑗≤|𝑸|
𝛿𝑡(𝑗) (18) 
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Figure 15 Incorporating Context Attributes to Intention Model 

 

We use three different procedure recommendation strategies, two at the activity 

level (Obj.1 and Obj.2) and one at the intention level (Obj.3).  

One-step activity recommendation (Obj.1) is the most common and simplest 

recommendation strategy. This approach has limitations of low accuracy and is short-

sighted (can only see one activity ahead). It makes recommendations mainly based on the 

sequential relationships between adjacent activities. In complex real-world processes, a 

certain set of closely-knitted activities for an intention might not need to be performed in a 

strict sequence. Instead, they may occur in any order so long as they are close to each other. 

A strict sequential recommender would fail to model this flexibility. Hence, we presented 

the second approach (Obj.2), recommending a sequence of activities to follow the current 

observation, which considers fulfilling an intention with a group of activities. The 

recommendation is found on by a greedy search of the next activity that maximizes 

probability to be observed next from the current state in the model (Eq. 18). To avoid being 
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trapped in loops (e.g., self-transitions), we updated the probabilities of recommended 

transitions and emissions based on multinomial distribution. Compared to the first (Obj.1), 

recommending several next-step activities (Obj.2) can facilitate planning and execution. In 

practice, trauma resuscitations are fast paced and dynamic processes, making anticipating 

future steps essential to care. Identifying multiple next-steps also provides model 

flexibility. Although a standardized protocol for trauma care has been developed 

(Advanced Trauma Life Support, or ATLS [3]) the order of activity performance may 

change depending on patient and resuscitation attributes. Recommending only one activity 

ahead, therefore, would not reflect how lower-level intentions can dynamically change. 

It may also be useful to recommend the next intention (Obj.3) instead of specific 

activities. It is possible to satisfy a particular intention with more than one activity. 

Focusing only on activity recommendation may obfuscate the fulfillment of a given 

intention if a medical provider performed an activity other than those the system 

recommends. Intention recommendation could allow providers to perform a range of 

activities to fulfill an intention without relying on specific activity recommendations. 

For Obj.1, we recommend a next activity 𝑎𝑡+1 to the medical team that maximizes:  

𝑎𝑡+1 = argmax
𝑒∈𝜮

𝑃(𝑒) =  ∑𝑃(𝑒|𝑞𝑡+1
𝑘 )𝑃(𝑞𝑡+1

𝑘 )𝑃𝑞𝑡+1𝑘 (𝒙′)

|𝑸|

𝑘=1

 (19) 

where 𝑞𝑡+1
𝑘  is the hidden state indexed as k at time 𝑡 + 1. The key is to solve 𝑃(𝑞𝑡+1

𝑘 ), 

which can be done by the forward algorithm, 𝑃𝑞𝑡+1𝑘 (𝒙′) is the context probability (Eq.10). 

 For Obj.2, we provide the medical team with a treatment prototype. This prototype 

 𝑟 = [𝑎𝑡+1, … , 𝑎𝑘]
𝑇 is a recommended sequence of activities obtained by greedy iterative 

maximization: 
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 𝑟 =  𝑟 ∪ {argmax
𝑒∈𝜮

𝑃(𝑞𝑡+1
𝑗
|𝑞𝑡
𝑖)𝑃(𝑒|𝑞𝑡

𝑖)𝑃𝑡𝑖𝑗(𝒙
′)𝑃𝑞𝑗(𝒙

′)} (20) 

 For Obj.3, we recommend a next intention 𝐼𝑡+1 to the medical team that maximizes:  

𝐼𝑡+1 = argmax
𝑞𝑡+1
𝑗

𝑃(𝑞𝑡+1
𝑗
|𝑞𝑡
𝑖) 𝑃𝑡𝑖𝑗(𝒙

′)    𝑠. 𝑡.  𝑗 = 1,… , |𝑸|, 
(21) 

 

Table 7 Algorithm of Recommending Prototypical Process Enactment 

Algorithm:  Recommending Prototypical Process Enactment 

Input: 𝑶′, 𝝀(𝐻, ), 𝒙′, current intention I  

Output:  𝑟 = [𝑎𝑡+1, … , 𝑎𝑘]
𝑇 

Step 1. Find next level HMM 𝜆𝑖
 +1; 

Step 2. Find the most likely path 𝑝(𝑖) = {𝑸(𝑖),  𝒕(𝑖)} in 𝜆𝑖
 +1 given an observed trace 𝑶′; 

Step 3. Find current sub-intention 𝐼𝑖 = argmax
𝑞𝑗∈𝜆𝑖

𝑙+1
𝑃𝑞𝑗(𝑥′) 

Step 4.  while 𝑎 ≠ "end", do 

Step 5.  Find activity 𝑎 =  argmax
𝑒∈𝜮

𝑃(𝑒|𝐼𝑡+1
𝑗
) 𝑃(𝐼𝑡+1

𝑗
|𝐼𝑡
𝑖) 

Step 6.    Add  𝑟 =  𝑟 ∪ {𝑎};  
Step 7.  Update the probability of recommended emissions and transitions; 

Step 8. end while 

Step 9. return  𝑟; 
 

4.3 Process Recommendation Based on LSTM 

In this section, we used long short-term memory (LSTM) to model temporal dependencies. 

Moreover, we modified the LSTM to incorporate with the patient demographics to provide 

the process recommendation. The goal of the proposed algorithm is to recommend the next-

step treatment activities to the medical team based on the observed behavioral contextual 

information. The recommender system is mainly built on a RNN (Figure 16).The LSTM 

cell takes the concatenation of the activity vectors 𝑣𝛼 and the activity attribute vectors 𝑣𝛽 

as the input. The latent vector output from RNN cell is then merged again with the patient 

attribute vector 𝒗𝑥 (auxiliary input, static environmental context).  For the final output, we 



40 

 

 

applied a  fully-connected layer after the concatenation layer followed by a top-k SoftMax 

activation function.  The most probable k activities will be shown to the medical team as 

the recommended treatment for next step (t+1).  

 

Figure 16 Treatment Recommendation Framework Based on RNN 

 

And also, we use multiple contextual information as input. Given the treatment 

activity trace from time 1 to t:  = [𝛼1, … , 𝛼𝑡]
𝑇, the i-th activity  𝛼𝑖 ∈   is embedded into 

a vector representation 𝒗𝒕
𝜶. This behavioral context is the main input to the model. Each 

activity may also be associated with a set of attributes 𝒗𝑖
𝑏, e.g., descriptor and completeness 

of the task. As this environmental context is also dynamically changing over time, we 

combined the environmental context 𝒗𝒕
𝜷

 with activity vector 𝒗𝒕
𝜶 at the same timestep t as 

the input of the LSTM network. The other auxiliary input, patient attribute 𝒗𝒙s, is static 

over time. We thus integrate this information after the LSTM iteration over the input 

sequence. In addition, according to our domain knowledge, we however know that not all 

environmental context will contribute to the model performance. Environmental attributes 

like patient’s gender and weight, may have little or no predictive power. Hence, we add a 
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dense layer after the auxiliary input layer to help select the useful features from all of the 

patient demographic. 

We used categorical cross-entropy as the loss function (Eq. 22).  

ℒ(�̂�, 𝑦) = −
1

𝑁
∑∑𝑤𝑗(𝑦𝑖𝑗 log �̂�𝑖𝑗)

𝛭

𝑗

𝑁

𝑖

 (22) 

where N is the total number of predictions and M is the number of activity types. �̂�𝑖𝑗 is the 

predicted probability for the activity type of index j. 𝑦𝑖𝑗 is either 0 or 1 stating if the activity 

type of index j is predicted correctly. Because of the imbalance distribution of activity 

types, we included the class weights 𝒘 = [𝑤1, … , 𝑤𝑀] (Eq.23) so that the model can pay 

more attention to the underrepresented classes.  

𝑤𝑗 = 𝑛𝑠𝑎𝑚𝑝 𝑒𝑠/(𝑛  𝑎𝑠𝑠𝑒𝑠 ∗ 𝑛𝑦𝑗) (23) 

4.4 Computational Result 

Our goal is to correctly recommend the top-k next-step treatment activities to the medical 

team. The ground truth at a particular time step is therefore the set of activities that occur 

next. We adopted standard accuracy and top-k accuracy for evaluation. Standard accuracy 

measures the percentage of correct recommendations. Top-k accuracy the fraction of 

recommendations for which the correct label is among the top-k most probable predicted. 

Standard accuracy can be treated as top-1 accuracy. 

To get a comprehensive evaluation of the proposed method, we employed 6 popular 

sequential modelling methods as baselines. POP and Act-KNN [29] are frequently used 

baselines in recommendation research. MC (Markov model) and HMM [31] (hidden 

Markov model) are classical sequential modelling methods. LSTM and GRU are state-of-
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the-art techniques recently introduced to recommender problems [29][30]. POP always 

recommends the most popular activities in the training data. Act-KNN recommends 

activities most similar to the current activity. The similarity here is the Euclidean distance 

between Act2vec embeddings. HMMs are able to model observations driven by latent (i.e., 

hidden) variables. The latent variable in medical processes can be understood as the 

treatment goals of the medical team. 

 We first evaluated the intermediate output of the Act2vec. We encoded 102 trauma 

activities into 100D vectors where the embedding window size is 5. And then, we applied 

TSNE to project the vectors onto a 2D plane (Figure 17), where each dot represents an 

activity. The color of the dots indicates the probable medical goals of the activity and the 

distance between dots shows the similarity of the activities. We also invited our medical 

experts to group the activities based on their domain knowledge to test whether the data-

driven results make sense. The colors in Figure 17 indicate 12 different groups. 

The visualization results reveal several insights here. First, activities under the same 

medical goal stay closer than under different medical goals. This finding indicates that the 

medical team usually performs the trauma resuscitation by finishing medical goals step by 

step rather than simultaneously. Representative exceptions are points 75 (visual inspection 

of left eye), 77 (visual inspection of right eye), 83 (assess left pupil), and 84 (assess right 

pupil). They belong to medical goal “assess head and face”, but are not close to other points 

under the same goal. Our medical expert explains that these four activities are usually 

skipped because the patients’ pupils are often checked ahead to calculate the patient’s 

Glasgow coma scale (i.e., a metric to assess whether the patient is in a coma). 
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Second, without considering the low-level groups (12 groups clustered by the 

medical experts), the activities points can be grouped into four major clusters (dashed 

circles in Figure 17). The clusters reveal the high-level medical goals. The left cluster 

constitutes the primary survey, a medical phase with the goal of quickly identifying life 

threatening injuries. The top and right clusters constitute the secondary survey, a head-to-

toe physical examination of the patient’s body. The bottom cluster includes activities 

assessing the patient’s back and the conditional treatments performed depending on 

assessment outcomes. 

 

Figure 17 Activity embedding (or Act2vec) visualization 
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Figure 18 Training and validation (a) loss and (b) accuracy plot for model with and 

without pre-training.   

 

We performed offline evaluation of our recommender model. For our method and 

all baseline models, we divided the dataset into the training, validation, and testing sets in 

a 0.8:0.1:0.1 ratio. Our experimental results (Table 8) show that deep learning (models 5-

14) outperforms conventional recommendation methods (models 1-5). As an important 

baseline, POP only achieved 0.031 accuracy and 0.136 top-5 accuracy on the trauma 

resuscitation. This exemplifies the challenges of making treatment recommendations from 

a large activity vocabulary (102 activity types in trauma and 15 in intubation). It also shows 

the importance of modeling associations between activities. Without a predictive model, 

Act-KNN using proximity alone has limited prediction power. Classical sequential models 

like MC and HMM achieved much higher accuracy. As they depend on first-order Markov 

assumptions, each prediction is only based on the immediate previous state. Their high 

accuracy reveals the strong dependency between adjacent activities. By considering both 

adjacent and long-term dependencies, the RNN methods achieved the best performance. 

However, the design of the network also affects performance. 

 

 

(b)(a)
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Table 8 Model performance comparison on two real-world medical datasets 

                                                                             Datasets 
Models 

Trauma Intubation 
top-1    top-5 top-1 top-3 

1 POP 0.031 0.136 0.098 0.302 
2 Act-KNN 0.177 0.479 0.125 0.280 
3 MC 0.324 0.601 0.427 0.648 
4 HMM 0.344 0.569 0.395 0.750 
5 LSTM + One-hot 0.155 0.633 0.260 0.753 
6 GRU + One-hot 0.159 0.627 0.225 0.711 
7 LSTM + Embedding 0.393 0.631 0.410 0.773 
8 GRU + Embedding 0.395 0.634 0.436 0.680 
9 LSTM + Embedding + Environmental Context 0.387 0.640 0.350 0.722 
10 GRU + Embedding + Environmental Context 0.393 0.645 0.385 0.711 

11 
LSTM + Embedding + Environmental Context 

(Dense) 
0.397 0.644 0.444 0.701 

12 GRU + Embedding + Environmental Context (Dense)  0.405 0.646 0.461 0.742 

13 
Pre-train(LSTM+Embedding+Environmental Context 

(Dense)) 
0.400 0.643 0.436 0.753 

14 
Pre-train (GRU+Embedding+Environmental Context 

(Dense)) 
0.399 0.655 0.462 0.773 

 

The RNN with embedding layer (Act2vec, models 7&8) achieved much higher top-

1 accuracy than the RNN with one-hot vector representation (models 5&6). This is 

expected, as the skip-gram training of Act2vec take neighboring activities (a form of low-

order logic) into account. HMM/MC performs well with just first-order logic, so Act2vec 

would intuitively help the deep model.  

Our results (models 9&10) also show that simply concatenating the attribute vectors 

into the input did not help prediction. Redundant attributes do not usually help prediction 

and may actually harm performance. We thus placed a fully-connected layer before the 

merging layer to reduce the dimensionality of the attribute vector.  The improved model 

increased top-1 prediction accuracy by ~1% on trauma data and ~8% on intubation data 

respectively (models 11&12 vs. models 9&10). 

Pre-training on the synthetic data may also improve model performance. On 

intubation data, the pre-trained model (models 13&14) of setups “GRU, Embedding, and 

Environmental Context” achieved a higher top-1 and top-3 accuracy than models of the 
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same setups but without pre-training (models 13&14). This implies the synthetic data helps 

generalize the model. Compared with randomly initialized model, the validation loss of the 

pre-trained model converges faster (Figure 18). But on trauma data, pre-training with 

synthetic data did not improve the performance. This may be caused by the complexity of 

the trauma resuscitation process. Each trauma treatment sequence has 95 activities in 

average and each activity belongs to one of the 102 types. Besides, the order of treatment 

activities can be performed in numerous ways. Compared to such complexity, our observed 

122 cases may still be too sparse. And the variations learnt from the synthetic data in the 

pre-training may still be insufficient to regularize the model. 
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CHAPTER 5 

CONCLUSION 

 

5.1 Summary of Thesis Contribution 

This thesis began by developing the medical treatment process recommendation system. 

Firstly, we extended the Hidden Markov Model (HMM) into hierarchical structure and thus 

tried mining different levels of intentions. Furthermore, context attributes were then 

incorporated using the Viterbi algorithm so that the model offers recommendations better 

tailored to specifics of the situation. Recommended treatment procedures were generated 

step-by-step during the resuscitation. Process deviations were identified by comparing 

practical procedures to intention-specific treatment prototypes. We have shown that the 

discovered intention groupings align with medical expert knowledge. Our results showed 

the potential for intention mining at making adaptable recommendations to the medical 

team and helping them reduce errors. 

 Secondly, we tried to provide the process recommendation in deep learning 

approach. Our system was built on recurrent neural networks. The networks took both 

environmental and behavioral contextual information as input, and outputs next-step 

treatment suggestions. We contributed different approaches to enhance our model. First, 

we proposed Act2vec to embed different activity types into numerical vectors. Second, we 

designed the sliding-window attention to assist model prediction. Third, we developed a 

novel synthetic patient data generation algorithm. We used the generated synthetic data to 

pre-train our neural networks, addressing our problem of limited amount of data. Our 
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numerical results showed our recommender system achieved improvement compared to 

the baseline methods. Our visual analytics extracted interesting knowledge and insights.   

5.2 Future Work 

Some computer-aided decision support systems and expert-derived algorithms have 

been proposed to reduce medical team errors and improve patient outcomes for trauma 

resuscitations. These initial attempts, despite being carefully designed by medical experts, 

have had limited success because: (a) expert-derived knowledge-based models can be 

biased, (b) the algorithms’ rules were meant for general trauma patients and so ignored 

each resuscitation’s contextual attributes, and (c) the approaches lacked generalizability 

and applicability to other practice settings. 

We presented a data-driven intention-aware context-based trauma resuscitation 

process recommender and diagnostic system. However, the accuracy does not meet the 

requirement in the trauma resuscitation field. Due to the lack of data, lots of the transition 

between activities was not discovered by our models. It might be a solution that we develop 

a system based on a simple model proposed by medical experts, and thus we optimize the 

model by training it using large scale of datasets. 
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